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The Large Hadron Collider (LHC) experiments are an excellent tool for the im-
provement of our knowledge of the Standard Model and the examination of Beyond
Standard Model theories. Nonetheless, to maximise the learning-potential of the LHC,
clear and precise theoretical predictions are needed, for both the Standard Model and
its extensions, to allow critical comparison of these models with data. In particular,
given the complexity of the collision environment at the LHC, and the expansive nature
of many parameter spaces of Beyond Standard Model theories, computational programs

to perform theoretical calculations are increasingly required.

The work presented in this thesis fits this role, it is focused on two computational
programs developed with the aim of producing such theoretical predictions for LHC
phenomenology in two key areas. These are the precision Standard Model predictions
of transverse momentum spectra for a wide class of processes at the LHC, and Beyond
Standard Model predictions for the decay widths of as-yet undiscovered particles in the

context of supersymmetry.

Chapter 1 presents a brief chronology and review of the Standard Model. Fol-
lowing this, the work reported in this thesis is split into two parts, focused on the
two main projects undertaken. Chapters 2, 3 and 4 describe the development of the
SoftSusy decay calculator program to determine the partial widths and branching ra-
tios of supersymmetric and Higgs particles in the Minimal Supersymmetric Standard
Model and the Next-to-Minimal Supersymmetric Standard Model. The theoretical and
phenomenological background, methodology, assumptions, and the vast array of decay
modes calculated by the program are described. This is followed by details of the ex-
tensive validation of the decay calculator program and a selection of results. Chapter 5
begins the second part of the thesis, providing theoretical background for Chapters 6
and 7, which discuss the newly-developed reSolve program, designed to undertake the
theoretically-demanding calculations associated with transverse momentum resumma-
tion for a wide range of LHC processes. Details of the methods, assumptions, validation
and results for channels so far included are all provided, these show excellent agreement
with previous theoretical results and experimental data. Both projects are then sum-
marised in Chapter 8. Further information is provided in the appendices; Appendix A
presents explicitly all formulae incorporated into the SoftSusy decay calculator pro-
gram; whilst Appendix B provides further details on the theoretical underpinning of the

transverse momentum resummation calculations performed by the reSolve program.
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Preface

This thesis contains the majority of the work undertaken during my PhD in Theo-
retical Particle Physics and is the result of my work unless otherwise specified here or
in the text. The first chapter offers an introduction to the general area of research, and
consequently is necessarily review material, although of course in my words and with

my own explanation.

Chapters 2, 3 and 4 are the result of my first PhD project on the SoftSusy program,
which was performed in collaboration with my supervisor, Professor Benjamin Allanach.
Chapter 2 provides a specific introduction into the theoretical and experimental context
in this area and so is further review material, collated and written by myself using the
references contained therein. Chapters 3 and 4 detail the exact research I performed in
this area. In this project the vast majority of the work was my own, the initial idea was
that of my supervisor and the decay calculator program is designed to be part of the
SoftSusy package which is also my supervisor’s creation. Nonetheless the development
of the decay calculator as part of this program, which I focus my comments on in this
thesis, was overwhelmingly my own. I was responsible for re-deriving and verifying all
the decay formulae included (with the exception of the three body modes which are
adapted from sPHENO [3,4]) and the subsequent coding, validation of the decay modes
and the results. The only exceptions to this are the chargino to neutralino pion modes
mentioned briefly in Chapters 3.4.1 and 3.4.5 and presented in Chapter 4.11, these were
added by my supervisor; in addition he wrote the numerical integrator used in my code
to evaluate the 3-body decay numerical integrals. He also undertook some occasional
overall restructuring of the whole SoftSusy package. All formulae used in the program
are given in Appendix A, which appears also in our published paper on this work [1],
which acts as a manual and validation of the SoftSusy decay calculator. Several of the
sections in these chapters have been adapted and extended from our work presented
there.

Chapters 5, 6 and 7 present the results of my work in collaboration with Dr
Francesco Coradeschi at the Department of Applied Mathematics and Theoretical
Physics (DAMTP) on developing the new reSolve transverse momentum resumma-
tion program. Chapter 5 is again review material on this area and is therefore my
understanding of the context of this research, with many references used in its writing.
Chapters 6 and 7 demonstrate the culmination of our work in this area - the reSolve
program. Chapter 6 begins explaining the theoretical formalism, this formalism was

developed by many others and references are given in the text, we simply apply and
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adapt the formalism in our research. This work was very much a collaborative effort,
with Dr Coradeschi offering the initial theoretical expertise in this area, the initial idea
and the overall framework for the structure of the program. I was responsible for the
explicit programming, testing, validation and results of the program. In particular, the
code is largely my own based on the theoretical formalism and using private programs
in this area such as 2gRes [5,6] and DYRes [7, 8] as inspiration and as useful compar-
isons. Francesco developed the histogrammer and parallelisation of the program, as
well as the built-in Monte Carlo integrator (k_vegas), and offered much effort in the
general development and debugging of the initial program version. As I was responsible
for the validation and results, the figures presented in Chapter 7 are all completely my
own as are the comparisons and comments associated. The work presented represents
the first main version of many of the reSolve program, again this has been collated in
our paper [2], which contains a shorter version of much of the information presented
here and serves as the manual for the program. Appendix B provides further details
on many aspects of the resummation formalism and its application in reSolve, the
resummation coefficients in Appendix B.1 were gathered by Francesco from several ref-
erences as described. Appendices B.2 and B.3 give details on Mellin space and Monte
Carlo integration and are my explanation of how and why this is done in the reSolve

program.

Both the SoftSusy and reSolve programs are provided on memory
sticks in addition to this thesis for the examiners; for other readers they
are also available online on Github, where the most up-to-date versions
will always be found, at the links https://github.com/BAllanach/softsusy and
https://github.com/fkhorad /reSolve. The two programs are also available with their
published papers [1] [2], whilst SoftSusy can additionally be found on its web page
“http://softsusy.hepforge.org/”. Each of these projects displayed in the following thesis
are first stages in what we hope to be a long continuous path of development, extension
and augmentation for both programs - we hope they will prove of great use to the
particle physics community. This thesis therefore serves as a meticulous and detailed
summary of my PhD efforts over the past four years and so I hope that the reader will

find this thesis as informative and as rewarding as it was to work in this area.
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Chapter 1

Introduction

Particle physics as a field has grown tremendously over the past century since its genesis
as an experimentally testable and verifiable area of research, beginning with J.J. Thomson’s
discovery of the electron in Cambridge in 1897. Since then our understanding of the fundamental
constituents of matter and the laws that govern them has progressed with undeniable fervour
fuelled by human curiosity. It has been marked by many achievements; through Rutherford’s
probing of the atom, the development of quantum mechanics and quantum field theory, starting
from the 1920s with the efforts of Dirac to quantise the electromagnetic field and leading to
the postulation of antimatter. This was followed theoretically by the formulation of QED,
renormalisation and other techniques in the 1950s by Schwinger, Feynman, Tomanaga and
others; whilst experimentally the 1950s and 60s were marked by the somewhat confusing days
of the “particle zoo” as new mesons and baryons were discovered at times on an almost weekly
basis. This situation was clarified theoretically with the development of the quark model by Gell-
Mann and others and the subsequent development of QCD through the 1970s by David Gross
and Frank Wilczek. Meanwhile, electroweak theory was also being developed by Glashow,
Salam and Weinberg, to be verified experimentally later in the 1980s by the UAl and UA2
collaborations at CERN. The discovery of the top particle in 1995 at Fermilab [10,11] and the
key discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012 [12,13] have since
completed the contemporary picture of particle physics, described by a Standard Model based
on SU(3) x SU(2) x U(1) gauge symmetry and with fermions as fundamental matter particles
and gauge bosons as force mediators. This involved the efforts of thousands of physicists - be
they experimental or theoretical - including many making crucial contributions that have been

skipped in this brief chronology.

1.1 Standard Model

This “Standard Model” of particle physics is itself ever-adapting, absorbing new concepts
and changing to reflect new developments and knowledge, for example the addition of neutrino
masses. It is described here in its current form, which is only slightly altered from its initial
formulations. The Standard Model encompasses three fundamental interactions, and is governed
by the fundamental gauge group SU(3). x SU(2)r x U(1)y, with each gauge group having
couplings gs, g and ¢’ respectively. This theory contains all of the fundamental matter particles

currently known in addition to 4 types of gauge boson to mediate particle interactions, and 1



Chapter 1. Introduction 1.1. Standard Model

scalar. There are therefore 17 fundamental fields in the Standard Model - 12 matter particles
split into 6 quarks and 6 leptons; 4 gauge bosons; which are the gluons, photon, W and Z
bosons; and 1 scalar, the Higgs boson. These themselves are grouped into structures and bound
by symmetries constraining their properties. The 12 matter particles split into quarks, which
interact under the SU(3) gauge group, and leptons, which do not, and for each of which there
are 6 fermionic particles. These fermions are divided into 3 generations, demonstrating the
same overall properties but having increasing masses: up and down, charm and strange, top and
bottom; and electron and electron neutrino, muon and muon neutrino and tau and tau neutrino
respectively for the quarks and leptons, with the precise reasons behind these generation copies
unknown. These matter particles and the gauge bosons governing their interactions live in
specific representations of the gauge groups which specify their behaviour and properties via

their quantum numbers.

The quarks are triplets of the SU(3). gauge group in the fundamental representation, they
interact under the strong interaction of QCD via the gluons which are the 8 generators of
SU(3). and are correspondingly in the adjoint representation. The leptons, and indeed all
other particles, meanwhile are singlets of SU(3). and so feel no interactions under this gauge
group. The SU(2); gauge group is chiral, acting on the left-hand chiral components of SU(2)y,
doublets of the fermions, with each doublet containing one generation; (u;, dr)?, (e sp)7,
(tr o), (Wer, er)”s (v, po)'s (vrp 7o), whilst the right-hand components of these fields
are singlets under SU(2);, due to its chiral nature ug, dg, cr, Sg, tr, br, €r, Ur, Tr'. The
SU(3). and SU(2), groups commute so the QCD interactions do not change flavour, whilst the
SU(2)r, interactions do not change colour. Just as for the QCD interactions, the gauge bosons
of SU(2);, are in the adjoint and so there are 3 generator gauge bosons of the SU(2); group,
denoted W1, W§', W{'. As for the final U(1)y group, it also treats left-hand and right-hand
fields differently. All of the Standard Model fields carry hypercharge (Y'), defined by Y = Q—1T73,
where @ is the electromagnetic charge and [ 3[, is the third component of weak isospin (eigenvalue
of the third SU(2)[, generator), this U(1)y group comes with the gauge boson B. All the matter
particles also are accompanied by antiparticle partners of the same mass but opposite charges.
The field content of the Standard Model, and the fields’ quantum numbers under the three
fundamental Standard Model gauge groups, are given in Table 1.1.

1.1.1 Standard Model Lagrangian

The interactions of the various matter and force particles are described by the Standard
Model Lagrangian, which can be broken up in several different ways; here it is broken into

gauge, fermion, Higgs and Yukawa pieces:

£SM = Egauge + Ef + Eqb + EYukawa- (11)

'Tt should be noted that there may also be right-handed neutrinos v. g, Vug, Vr g in extensions to the Standard
Model, for example to generate neutrino masses.

Thomas Cridge 2
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Field name Symbol | Representation
Left-handed quarks qr, (3, 2, %)
Left-handed leptons lr, (1, 2, —%

Right-handed up quark UR (3, 1, %)
Right-handed down quark dr (3, 1, —%)
Right-handed electron eR (1, 1,-1)
Gluons G (8,1, 0)

Weak Isospin Gauge Bosons W; (1, 3, 0)
Weak Hypercharge Gauge Boson B (1, 1, 0)
Higgs H (1,2, 1)

Table 1.1: The Standard Model field content and their quantum numbers under the Standard Model
gauge group SU(3). x SU(2);, x U(1)y, the quark and lepton left and right-handed parts are repeated
for each of the three generations.

First, consider the gauge part:

1 . 1 ;1
Loange = _ZGWGWZ — ZW‘“’WW — ZB’“’BW’ (1.2)
this contains the kinetic and self-interaction terms of the SU(3)., SU(2)r and U(1l)y gauge
bosons. Here 4,5,k = 1,...,8 and I,m,n = 1,...,3; the U(1)y gauge boson B, has no self-
interactions and so no structure constants f;;; appear, in contrast the SU(2);, and SU(3).
groups are non-Abelian and so have non-zero commutators of their gauge generators which are

described by their structure constants €, and f;;x respectively?:

Gl =0uGh, — 0,G,, — gs [ GGy, (1.3)
W;lw :8MWZI/ - 8VW;ZL - gelmnW'ZnWJLy (14)
B, =0,B, — 0,B,, (1.5)

where for example the structure constants of QCD are given in terms of the Gell-Mann matrices,
which are the generators of SU(3)., by:

)\a )\b . )\c

—,—| = — 1.

[ 29 ] fabc 9 ( 6)

The fermionic part of the Standard Model Lagrangian, L; consists of covariant derivatives

of the fields, encompassing kinetic terms and the fermion interactions with the gauge bosons of
SU(3)C, SU(Q)L and U(l)y:

3
Ef = Z(CjnLilDQnL + l_nLimlnL + anRZJDunR + JnRZlanR + énRilDenR)a (17)

n=1

here n = 1,2,3 is the generation index, whilst colour indices have been suppressed. Each of

2The possibility of §qcp terms and similar have been neglected here.
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the covariant derivatives contains appropriate interactions for that particle type, based on the

particle quantum numbers as listed in Table 1.1; the term for the left-handed quark fields is:

. ) - 10
GuriBa =1 Y (a2, dop)y [D Sag + 2 T XapC 12]( ul, 4’7" (1.8)
a,B=1

—

The «, 8 are colour indices, A,z is a vector of the 8 Gell-Mann matrices® (the generators of
SU(3).) and C_ju a corresponding vector of the 8 gluon gauge fields. Of course, the SU(3).
part only acts for the quark ¢,r, unr, d,gr fields. The covariant derivative here is that for the
SU(2)r x U(1)y gauge bosons:

Dy Xon = (au n %%L&WM n ig/YXBN> X (1.9)

X is one of the fields, n is again a generation index, h = L, R is the handedness so §j s, turns off the
SU(2)r interaction for the right-handed fields, & is a vector of the Pauli matrices (which are the

0 1 0 —¢ 1 0 —
- — — —(w! w2 w3
generators of SU(2)1), o1 = (1 0>, o9 = < 0) and o3 = (0 _1>, Wy =W, Wi, Wp2)

i
and Yy is the hypercharge of the given field.

The Higgs part of the Standard Model Lagrangian is
Ly = (D'¢)'Dyus — V(). (1.10)

This contains the covariant derivatives of the Higgs:

)

D#¢:( Eg G.W, + Zg )¢, (1.11)

¢ is an SU(2), doublet ¢7 = (¢t ¢°). The covariant derivatives themselves involve the kinetic
terms and the SU(2)p x U(1)y interactions of gauge bosons with the Higgs, as they must to
break these in electroweak symmetry breaking (EWSB) and give the gauge bosons masses. This
EWSB occurs as a result of the Higgs potential V(¢) = —pu2¢!p + A(¢!$)? acquiring a vacuum
expectation value (VEV) different from 0, due to its “Mexican-Hat” shape, which occurs for

12 > 0. For such a potential the minimum occurs at:

Volo = \/i = % (1.12)

here v is the non-zero VEV of the Higgs potential. The Higgs field in the potential minimum at its
VEV may then replace the Higgs field in the covariant derivative terms of the Higgs Lagrangian;
indeed by taking the unitary gauge we remove the Goldstone modes which are “eaten” and allow

the explicit development of the W* and Z gauge boson masses to be observed. In this gauge

3Rather than the Gell-Mann matrices Aa, in QCD the t, matrices are often used, here the factor of % is

absorbed into the matrices so t, = %‘L
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make the replacement ¢ — %(O v+ h)T so that h represents excitations about the VEV (i.e.

the physical Higgs boson) and expand the covariant derivative squared term:

ig [ gW8 V2w ig' 0
Dyp=|0,+ = P+ =B, |I
9 (u 2 (ﬂW; -4 2 M w4k

) ( 0+ S5 VAWE (o + R)g > (1-13)
O |

v+h)+ 2\%(—9W5’ +¢'B,)(v+ h)

Here we have identified the charged W bosons as linear combinations of the Wl} and Wi,
VVMjE = %(Wl} F ZW&) The overall covariant derivative term, which is hiding the gauge boson
masses and gauge boson - Higgs interactions, may therefore be expanded as:

(D)t Dy =0 (v + 1) 0, (0 + h) — 2\@@ [0+ ) (g W5 + ¢ B, (0 + )

1
— 00+ W) (=gW}i +¢'By) x (v+ )] + < (20 W g? (1.14)
+ (—gW§' + g B)(~gW + g'B,) ) (v + 1) (v + ).

Analysing this expression reveals that we now have gauge boson mass and interaction terms
for the W/f, but also more subtly for linear combinations of the remaining W4 and B* gauge
bosons. Specifically, we obtain mass and interaction terms for new gauge bosons which are
rotations of the W4 and B* gauge bosons through some angle, called the weak mixing angle (or
“Weinberg” angle) - these are the physical Z boson and photon we observe in nature:

(ij’ Bu) _ ( cos Oy sin9W> (Zu Au>. (1.15)

—sinfy  cos Oy

With this we can rearrange the (D*¢)'D,¢ term to look for mass terms m%,VWM'Wu_ and
%mQZZ“ZN for the W and Z bosons respectively?, as well as their interaction terms. However,
first it can be noted that the only linear combination of the W' and B* which appears is —gW§'+
g' B = —g(cos Oy Z* + sin Oy AM) + ¢’ (— sin Oy Z" + cos Oy AF) = —Z1\/g2 + g2 + 0A*. This
arises as the Weinberg mixing angle is related to the gauge couplings for the SU(2), and U(1)y
groups, these are set by identifying the charges under QED with the relevant Lagrangian terms.
The result is no mass term for the photon, and correspondingly no Higgs-photon couplings, at
tree-level. We have therefore managed to break SU(2)r x U(1)y — U(1)em and give the W and

Z bosons mass whilst leaving the photon massless:

v\2|, 2h h? 1 v2|. 2h h?
(DH¢) D, = 8“h*8uh+(%> L= (W Wt (0P49?) 5 |15+ | 292,404 A,
(1.16)
The mass terms are my = %4, mz = §1/9? +¢? = C:;‘g/w and my = 0, giving a prediction for

the ratio of the W and Z masses on the basis of the chosen representations of the fields and

4The different normalisations arise as the W¥ is a complex field whilst the Z is a real field.
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Chapter 1. Introduction 1.1. Standard Model

the fact that charges must match observation upon EWSB, this prediction is experimentally
verified. There are also 3- and 4-point vertices of the Higgs with gauge bosons here, but again

(as it is massless) no direct Higgs-photon coupling.

We can verify that in this process we have conserved the number of degrees of freedom as a
complex Higgs doublet with 4 degrees of freedom has become a real scalar and masses for the
W+, W~ and Z. Furthermore we can view this process of electroweak symmetry breaking in
the context of Goldstone’s theorem, which states that for each spontaneously broken generator a
Goldstone boson is generated. In our case we break three generators in breaking SU(2)r, xU(1)y
down to U(1)em. These three massless Goldstone modes are then eaten by the previously-
massless gauge bosons W* and Z; the Goldstone modes become the longitudinal degrees of
freedom of the gauge bosons which thereby acquire a mass. The Higgs boson then corresponds

to the remaining unbroken generator.

The same replacement of the Higgs doublet via its VEV must be made in the Higgs potential

in order to extract the Higgs mass and 3- and 4-point self-interaction terms

2 A 1 A
V() =— 1ol o+ Apl9)? = —%( +h)?+ (v +h)t= —Z’UQ)\ + M?h? + Avh® + Zh"‘,

4
(1.17)

this reveals that m}% = 2X\v2. Given that the Higgs VEV v is known through our knowledge of
the gauge couplings by equating the expressions for the W and Z boson masses in electroweak
symmetry breaking with experimental measurements, this means that once the mass of the Higgs
boson (125 GeV [12,13]) is measured the self-coupling is theoretically known, although is yet to

be measured experimentally.

Finally, whilst the Higgs mechanism has given mass to the gauge bosons, there are still no
fermion masses at this stage in the discussion as a result of electroweak gauge symmetry. The
masses are instead generated in the spontaneous breaking of electroweak symmetry via Higgs
- fermion couplings, these couplings are the “Yukawa” couplings which are matrices linking
left-handed and right-handed fermion fields as follows®:%:

3
Lyuiawa = — Y _[~y"GurHur — y'GurHdr — y°lnHeg +h.c), (1.18)

n=1

here H¢ = io9oH™ so it has hypercharge —% as required to conserve hypercharge in the up quark
Yukawa term. These interaction terms generate fermion masses in EWSB as the Higgs field is
replaced by its VEV, and they generate Higgs-fermion couplings proportional to these Yukawas

and so also to the fermion masses:

my = (1.19)

‘QQ
S\
Nl <

5The Yukawa matrices therefore have generation indices so that the first term in the Yukawa Lagrangian is
—(y")ij@nLiH “ur;.
64h.c.” indicates here the hermitian conjugate of the terms included must also be added.
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1.1.2 Perturbation Theory

Following this introduction detailing the Standard Model Lagrangian, we can now use the
interactions between the particles it encompasses to build up Feynman diagrams for processes
of interest. These Feynman diagrams are then converted into matrix elements for each process
which are in turn squared, summed over final states and averaged over initial states, before being
integrated over the relevant 4-momenta state space (“phase space”) to obtain expressions for
cross-sections, decays and transition rates. However, as well as “tree-level diagrams” at leading
order, incorporating the minimum number of intermediates and vertices possible, we can build up
an infinite series of diagrams “beyond Leading order” (beyond LO) for each process by adding
loops or vertices with additional particles. These processes are suppressed by the necessary
additional couplings at the vertices, therefore we are able to build up a perturbative series in

the relevant coupling to describe the overall total transition rate, this is given in Figure 1.1.

LO NLO NNLO
ﬂfLo — Mnyro ~ O( ai/‘g M}VALO ~ O

Figure 1.1: The Leading Order (LO), Next-to-Leading order (NLO) and Next-to-Next-to-Leading order
(NNLO) QED contributions to the matrix element for electron positron annihilation into a muon and
antimuon. In the NLO case the emission of the photon can occur off any initial of final state leg;
while in the NNLO case there are further diagrams which have not been included here. Each additional
contribution in the series has a higher power of the gauge coupling.

Any loops added have momenta which, unlike in the tree-level processes, are undetermined

and so add additional integrals to be performed in the phase space.

In fact, the couplings themselves are attached to sub-diagrams representing their vertices and
so they can also be loop-corrected, they therefore build up energy dependence as they “run” to

different values as the energy scale is changed, this is described further in Chapter 1.1.4.

1.1.3 Divergences

Thus far our picture of the Standard Model has been a little naive; whilst we have established
a Lagrangian giving the required masses and couplings of the observed particles and introduced
perturbation theory, we have not given it foundations in quantum field theory. In fact the picture
we have given is, on closer inspection, plagued by divergences at both low (infrared - IR) and
high (ultraviolet - UV) energies. If one attempts to determine the Feynman rules along with
amplitudes for various processes, several features immediately become apparent, aspects which

greatly troubled our predecessors in particle physics. First of all, it quickly becomes clear that
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loop contributions to amplitudes offer corrections to the “bare” masses and coupling constants
found in the Standard Model Lagrangian and that the associated loop integrals are divergent.
At first sight this causes the theory to lose all predictivity as any calculations are swamped
by infinite contributions. These UV divergences appear due to arbitrarily high allowed loop

momentum and are generically of the form:
k)2
/d%]€4 ~ /kdk — 00, as k — 0o. (1.20)

An example of such a divergence is given in the next section in the context of the photon propa-
gator and the running electromagnetic coupling, whilst a quadratic UV divergence is derived for
contributions to the Higgs mass in Chapter 1.2. However, this is not all - more subtle divergences
also appear at low energies, typically due to propagators of massless particles. These are a key
part of our work in Chapters 5-7. Such IR divergences, in contrast, arise at low momenta k — 0

from integrals generically of the form below, with logarithmic divergences being produced:
/d4k /dk—>oo ask —0 (1.21)
k4 k ’ ’ '

1.1.4 Renormalisation

In order to remove the UV divergences appearing from loop corrections, we may “renor-
malise” the bare parameters in the theory, which have infinite corrections, to physical finite
parameters by cancelling infinite contributions against one another. As an example consider
Figure 1.2(a), for any photon propagator one can add loop corrections of this form (known as
vacuum polarisation diagrams). The issue arises as the loop momentum is not fixed by the
external momenta - rather any loop momentum on one side of the loop can be balanced by one
on the other side, therefore the loop contributions contain integrals over an infinite range of loop
momenta. Such problems were a great source of consideration for theoretical particle physicists
through the 1930s and 1940s until the work of Kramers, Bethe, Schwinger, Feynman, Tomonaga
and Dyson.

Schematically, considering for example these photon propagator corrections in the case of
electron scattering in Figure 1.2(b) and (c), in order to determine the full amplitude an infinite
tower of insertions of loop corrections of the form of the photon vacuum polarisation must be
summed. Each of the loops included on the photon propagator provides a divergent loop integral

correction of the form

A ga i i
“icieo? [ e e T = ) (1.22)

m' f—m

Here eg is the bare, unrenormalised electron charge, as appearing in the Standard Model La-
grangian, k is the four-momentum scale of the loop and ¢ is the 4-momentum transfer of the

photon mediating the scattering, whilst A is some UV cut-off. The bare photon progagator can
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{a) e & ®

Figure 1.2: (a) Vacuum polarisation contribution to the photon propagator, it offers an infinite correction
to any diagrams containing photons, ostensibly creating a problem for the predictivity of QED. (b) The
tree-level diagram for electron-electron scattering in QED. (¢) The vacuum polarisation 1-loop correction
to electron-electron scattering. The vacuum polarisation can be inserted an arbitrary number of times,
creating an infinite sum of corrections to the amplitude, each of which diverges.

be denoted Py = Z—(z), the effective photon propagator accounting for all possible vacuum polar-
isation insertions may then be written as a geometric series which can be summed to infinity.
Skipping over details of the tensor structure and contractions for brevity and simplicity here, it
can be shown each insertion adds a factor of eZII(q?) where II(¢?) is related to I14”(g), but with

the tensor structure accounted for. As a result the series is:

0 2 2(,2
; e 1 e
Py + BodTI(a?) + Pocd@)eT(q) + - =Ro1 + Y ()] = B = )
= q* 1 — egll(q?) q
(1.23)

Therefore the effect of the loop contributions is to modify the Standard Model Lagrangian bare
charge eg into a momentum-scale dependent charge e(q?). We can rewrite the bare charge in
terms of this effective charge and the one-loop self-energy (or vacuum polarisation) II(¢?) in
order to extract how this new momentum-dependent effective charge varies with energy scale.
ez(qz) _ (1) ‘

1—e?(?)[I(g?) — T (p?)]

(1.24)

Given that experimentally we can measure e(q?) and see that it is finite, this means that the
renormalisation cancels two separately divergent quantities I1(¢?) and II(u?) against each other
to leave a finite quantity. This difference can be calculated in quantum field theory and results in
a logarithmic running of the fine structure constant with momentum, more details on these cal-
culations can be found in [14]. The minus sign in the denominator meaning the QED interaction
becomes stronger at higher energies (shorter distances) - for example whilst a(g? ~ 0) = 1/137,
at the LHC the relevant interaction strength is a(q? = m%) = 1/127.

a(p?)

a(g?) = :
(¢°) 1 - a(u?)5= In (Zé)

(1.25)

If we expand this to form a perturbative series in a we see each term contains a logarithm of

the ratio of scales to the power of the order of that term in a:
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1+O[gt2)ln<zz>+<a<u2)ln<q?)>2+...

T 3

a(q?) = a(u?) (1.26)

Therefore the renormalisation group running of the fine structure constant a(q?) absorbs an
infinite series of logarithms of the ratio of scales, it thereby “resums” potentially large logarithmic

terms %’f) In (Z—i), which will be large when al~ 3# In <Z—22)

There is an alternative manner by which to derive the running of the coupling a(q?) however;
rather than considering loop corrections to the Feynman diagram for the relevant vertex, we
may instead consider that we expect any observable to be formally independent of the scale it is
evaluated at when calculated to all orders, this must be true as the scales are purely arbitrary
choices made in our calculations. For an arbitrary observable A at each order of its evaluation it
will depend on « and the ratio of scales considered Q?/u?, we then expect the sum of all orders

to be independent of the scale and so
d Q2 0 da 0
2 2 2
X _— - =0. 1.2
,ud2 (a, 2) [,u 5+ 57 ]A 0 (1.27)

We may introduce the logarithm of the ratio of scales and a § function, incorporating the

dependence of the gauge coupling on the energy scale:

(< _ 2 o
t_ln<M2>, Be) =15 5 = G (1.28)
So we have
0 0

solving this differential equation for any observable A(a, %22) requires:

Q) gp
= — . 1.

We may then differentiate equation 1.30 with respect to t to obtain

_ 9a(@%)
Bla(@) = —5— (1.31)

The § function may then be expanded as a function of « (corresponding to 1-loop, 2-loop, etc

considerations in our previous method) as

o o n+1
=— | — ) 1.32
Blo) = —a 35 (&) (1.32)
Taking the first order correction only we have from equation 1.31 that:
da(Q?) Bo
2 2
- _ = 1.
@ 0Q? @ (471')’ (1.33)
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integrating both sides we obtain an expression for the running of a(Q?) at 1-loop order:

a(Q2) — a(,u2) — a(,uZ) )
L+ Ra)t 14 La()n (%)

(1.34)

This is of the same form as obtained considering the 1-loop corrections directly in equation 1.25,

4

—3, which may be calculated from Feynman

all that remains is the determination of 5y =

diagrammatic calculations as before.

The dependences of the gauge couplings on energy are therefore encoded in their respective
B functions, which may be calculated up to a given order accuracy. Similar calculations can
be performed for the electron propagator, with self-energy diagrams via loops of photons now
causing the electron mass to run with energy scale. Meanwhile in QCD, although the situation is
complicated by the fact it is a non-Abelian theory (i.e. its structure constants are non-zero) and
consequently there are additional loop corrections from gluon self-interactions on top of those
from fermion loops, analogous calculations (via either method) follow through for the running
of the coupling a,. As a result of the additional loop corrections, in QCD the difference of the
self-energy contributions is altered relative to QED, resulting in a plus sign in the denominator
of the running expression. This sign flip has remarkable consequences for its phenomenology; it
causes a; to run to smaller values at higher energies (“asymptotic freedom”), or equally to run
to large values at large distances (low energies), indicating confinement of quarks and gluons.
For example, as(Agep ~ 250 MeV) ~ 1, as(1 GeV) ~ 0.5 and a,(mz) ~ 0.1184.

This renormalisation procedure, removing infinities in physical observed quantities, has some
ambiguities - there are also renormalisation schemes, different methods for exactly how to remove
the infinities in renormalisation of the masses and couplings, which result in differences in the
values of the couplings and masses even when renormalised at the same order. The differences
in such schemes largely come down to different choices of factors to absorb in the renormalisa-
tion in the so-called “counter-terms” to cancel the divergences, and to different choices of UV
regulation (i.e. using a cut-off as above or an alternative method to deal with the UV diver-
gent integrals). The most common examples are the “Minimal Subtraction” M .S and “Modified
Minimal Subtraction” M S schemes, whilst supersymmetry (SUSY) uses the “Dimensional Re-
duction” DR and DR schemes, this will be mentioned briefly in Chapter 2 but more information
on renormalisation schemes may be found in [14]. The conversions between masses and coupling
parameters evaluated in different schemes can be determined at given loop order. Meanwhile,
the subtraction of the divergence at a given scale p in the first method introduces an arbitrary
scale into the calculation - termed the “renormalisation scale”. As seen in the second method,
we require that observables are formally independent of this scale when evaluated to all orders;
however, any quantity in reality is evaluated as a perturbative expansion, truncated at given
order, and therefore scale dependence remains in theoretical quantities. As a result of these
scheme differences and scale dependences theoretical predictions to the same order often pro-

duce different numerical values. Such differences of parameters evaluated in different schemes
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and with different scales simply correspond to higher-order effects, nonetheless they can have
significant consequences for theoretical predictions at a given order. Many texts cover this in

far more detail, for example refer to the books [14,15] for more information.

As well as divergences in the UV (high-energy scale) for the Standard Model, divergences may
also arise in the IR (low-energy scale) as a result of poles in the propagators, these divergences
can too be absorbed into running of parameters, and indeed IR divergences in initial states
can be absorbed into PDF's at some factorisation scale in an analogous manner. This will be

described in more detail in Chapter 5 for our work in QCD.

1.1.5 QCD

Finally, whilst we have introduced Quantum Chromodynamics as an SU(3) gauge theory
with gauge quantum number “colour” as part of the Standard Model Lagrangian, we focused
much of our attention on the electroweak sector and the Higgs, as this is of relevance to our
work in Chapters 2-4. QCD however is a theory of rich complexity and is a key component of

our research in Chapters 5-7, we therefore wish to highlight a few salient features here.

QCD is a sector of the Standard Model of particular intricacy and of rich and varied phe-
nomenology, and, given the premier contemporary collider is a hadron-hadron collider, it is
an area of great relevance to ongoing particle physics theory, phenomenology and experiments.
First of all, in QCD the gauge coupling «; offers distinct behaviour to the electroweak gauge
couplings, «; is larger than « at collider energies so QCD processes necessitate many more orders
of corrections be calculated in our perturbative series for theoretical predictions. Furthermore,
the value of the a; coupling increases at lower energies causing non-perturbative effects at low
energies such as hadronisation, whilst thankfully reducing at collider energies (“asymptotic free-
dom”) and thereby allowing perturbative calculations to be performed for theoretical predictions
at colliders in a similar way to in QED. These large a, values at low energies lead to confinement
and the “colour confinement hypothesis” that all long-lived particles are colour singlets, with
quarks and gluons both coloured and permanently dressed in QCD radiation causing hadronisa-
tion at long distances. As a result, at hadron colliders we must separate the long distance non-
perturbative behaviour from the short distance hard scattering, this leads to “QCD factorisation
theorems” (see Chapter 5.5), the parton model of QCD and its QCD improvements allowing
parton splittings. In order to describe the fact that we collide composite objects we incorporate
such intricate non-perturbative effects into parton distribution functions (PDFs) which give the
probability of obtaining a given particle (aka “parton”) of given momentum fraction from the
overall composite hadron being collided. The large value of o, at low scales also ensures the
probability of additional emissions becomes very large as the energy is reduced, ensuring “soft”
(i.e. low energy) emissions can dominate processes and phenomenology and causing divergences
which must be treated (such as absorbing them into PDF's) and subsequently the resummation
that is the subject of our research in this area. This leads to splitting and fragmentation be-

haviour of partons, which we will not touch upon in great detail, but is further complicated
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by the non-Abelian nature of QCD allowing gluon-gluon interactions. This whistle-stop tour of
QCD is simply to give a flavour of some of the effects and its importance, much greater detail
is given later, focusing on areas of specific interest for our applications (Chapters 5-7). For a
full exposition there are a great many textbooks ranging from pedagogical introductions [16] to

more detailed descriptions [17,18] and many in between [19].

1.2 Problems with the Standard Model

This completes a brief review of the mathematical formulation of the Standard Model, sum-
marising only its features salient to our work in this thesis. It is a theory which contains 30
elementary particles (counting antiparticles as well as particles) and 26 parameters - 9 fermion
masses, 3 quark mixing angles, 1 (Charge Parity (CP)-violating) phase, 3 gauge couplings, 1
further angle (QCD vacuum angle), 1 Higgs mass and one Higgs vacuum expectation value, 3
neutrino masses’ and 4 neutrino mixing matrix (PMNS matrix) parameters. Its development
and experimental verification have been the subjects of extensive efforts throughout the past
century and it has proved remarkably successful, both in extending our theoretical knowledge of
fundamental particle physics and in describing experimental results at colliders and elsewhere,
often up to unprecedented accuracy via loop calculations. Nonetheless, despite its obvious suc-
cess, the Standard Model is known to be incomplete, having several theoretical and experimental
problems and absences. A brief summary of several of the key issues is presented here; again
targeted on those most relevant to our work, nonetheless more comprehensive reviews can be
found in [20-22].

1. Technical Hierarchy Problem - As demonstrated in the discussion of renormalisation
and running of parameters within the Standard Model, loop corrections can offer interest-
ing problems for the Standard Model as a quantum field theory. In an exactly analogous
manner to the computations of loop corrections to fermion masses and gauge couplings in
the context of running, loop corrections to the Higgs mass must also be considered in order
to determine their effect upon its mass. The Higgs boson couples to all particles with mass,
therefore there are corrections from scalar loops, fermion loops and vector boson loops as

demonstrated in Figure 1.3.

Figure 1.3: 1-loop corrections to the Higgs mass arising in the Standard Model; starting from the
top left and proceeding anticlockwise there are corrections from scalars (i.e. the Higgs itself) due
to the Higgs self-interaction, fermions due to the Higgs Yukawa couplings, and Vector bosons due
to the 3- and 4-point interactions resulting from Electroweak Symmetry Breaking (EWSB).

"In fact, as only the mass squared differences of the 3 neutrinos are known, the lightest may be massless,
reducing the number of parameters by 1.
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The Higgs however couples to particles in proportion to their masses, therefore the domi-
nant correction to the Higgs mass comes from a top-antitop fermion loop. Using the Stan-
dard Model Feynman rules this 1-loop Higgs mass correction can be written down and
evaluated, here the correction is ultimately determined at zero Higgs momentum (g = 0)
for simplicity, we introduce a UV cut-off to demonstrate that the divergence naturally
pushes the Higgs mass to the largest scale in the theory:

2__|yt12/A Lk g, Krgm frm
e ) et e mi R

(6

A 4 2
d*k 1 2
~ _2|yt|2/ [ ot a 2 }
(2m) L(k2 — mi) (k% —mi)?

A 21.3 A 2

2k dk 1 kdk |yt
~ =2y |2 ~ =2 2/ — o~ LA 1.35
[ / (2m)* (k2 —m?) v 872 872 (1.35)

Therefore the Higgs boson mass-squared receives corrections at 1-loop which are quadratic
in the UV cut-off of the Standard Model and this indicates that the Higgs mass has a very
sensitive dependence upon higher scale physics. This implies that either new physics
should be seen very soon at energy scales being probed at colliders and elsewhere, or there
must be some delicate cancellation present at the higher-than-expected new physics scale
whereby new physics particle loop corrections to the Higgs mass are fine-tuned to be very
close to one another and hence delicately cancel to provide a Higgs boson at the lower
scale of electroweak physics. There are in fact two related but subtly different questions
here - first, is the Higgs boson mass stable with respect to loop corrections? As we have
just seen it is not in the Standard Model, this is called the “Technical” Hierarchy Problem.
Second of all, why do these different scales arise in the first place, i.e. why is the scale
of the Higgs boson (and hence electroweak physics) significantly lower than the scale of
new physics even if the Higgs boson mass satisfies this Technical Hierarchy Problem (is
“technically natural”)? This is the Hierarchy or Naturalness Problem. There are many
potential new physics solutions to these hierarchy and naturalness issues, however often to
avoid constraints (such as smallness of observed flavour-changing-neutral currents, small
CP violation (CPV), precision electroweak tests or collider search bounds) the new physics
in these models is pushed to higher energies, thereby reintroducing a “little” hierarchy

problem between this scale and the electroweak (EW) scale.

2. Dark Matter - Evidence from a variety of astrophysical distance scales clearly indicates
the presence of some non-Standard Model mass component in the universe which has so
far only been detected interacting gravitationally. This evidence comes from a variety of
sources; from rotational velocity curves of stars around galaxies through cluster dynamics
(the Bullet Cluster being a classic example) to large-scale structure formation. There
are many reviews on this subject [23,24] so the details are skipped here. Nonetheless
the conclusion is that there is an additional fundamental component of the universe not

accounted for by the Standard Model. There are many potential suggestions for what this
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component could be; from new Weakly Interacting Massive Particles (WIMPS) at around
the electroweak and collider scale, to axions which are a very light pseudoscalar particle
behaving as a collectively oscillating field (as a result of the low mass), to primordial black
holes. One of many reviews on the subject is given in [25]. Many new physics models
include various dark matter candidate particles, for example the Lightest (stable) Susy
Particles (LSPs) of supersymmetry, see Chapter 2. The common features of these dark
matter candidates are that they are either too light /heavy, too weakly interacting, or both,
to have so far been detected at experiments; nevertheless this is an active area of research
with many current and proposed experiments aiming to target different candidates and

regions of parameter space in the search for the nature of dark matter.

3. Matter-Antimatter Asymmetry - It is observed astrophysically that the universe has
a discrepancy between the number of baryons (np) and the number of antibaryons (ng):
(g = % = 1077, with n~ the number of photons. However, given it is assumed
that the Big Bang produced equal numbers of baryons and antibaryons and that these
were in equilibrium with photons, the question of how such an asymmetry could have
emerged arises. As the universe expanded in its early history we expect v+ v < B +
B backward and forward processes to be in equilibrium as the photon temperature is
initially high. As the temperature drops the forward process becomes disfavoured and
so only the reverse annihilation reaction of baryon-antibaryon annihilation to photons
remains, depleting the number of baryons and antibaryons in favour of photons. This
continues until the baryon and antibaryon density becomes such that the reverse reaction
freezes out as it eventually becomes slower than the expansion rate of the universe, as
set by the Hubble scale. Therefore it is expected that the number of photons be much
greater than the number of baryons and antibaryons, but also naively that the baryon
and antibaryon densities in the universe are equal. In order to create a matter-antimatter
asymmetry 3 “Sakharov” conditions [26] must be satisfied. In the Standard Model there
is allowance for the number of baryons to exceed the number of antibaryons and so create
a small asymmetry as a result of CP violation, arising via the complex phase of the
Cabbibo-Kobayashi-Maskawa (CKM) matrix which relates the mass and gauge eigenstates
of quarks. In addition to this measured CP violation in the quark sector, there may also
be CPV in the lepton sector, nonetheless the scale of the CPV in the Standard Model is

%M = 10~'®, much lower than observed in the universe. As a result, new sources of CPV

are required beyond the Standard Model in order to explain the observed asymmetry.

4. Neutrino Masses - The observation of neutrino oscillations at a variety of experiments
around the world [27-32] (a review is presented in [33]) means that the 3 neutrino mass
eigenstates must have different masses, i.e. Am3, # 0 and Am?2; # 0. Masses for at least
2 of the 3 neutrinos must therefore be incorporated into the Standard Model. As seen
previously in this chapter, Dirac particle mass terms can be generated in EWSB of the
form mch)( fLofr + frROfL), where mch) = %, requiring the addition of right-handed
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neutrinos to obtain a neutrino mass. However this would not explain the smallness of the
neutrino masses without accepting a correspondingly small Yukawa coupling for the neu-
trinos. Given the right-handed neutrinos are gauge singlets however, arbitrary additional
terms involving them may be added to Lgps whilst respecting the overall gauge symme-
tries. Consequently, “Majorana” mass terms of the form —%M VgpvR may be added®. Such
Majorana terms can be understood to be allowed as a result of the fact the right-handed
neutrinos are singlets and so may act as their own antiparticles, such terms therefore vi-
olate lepton number. Consequently the overall Lagrangian for the neutrino masses would
contain Dirac and Majorana mass contributions, and the diagonalisation of the mass ma-
trix can then generate a “see-saw” mechanism [36-40] (a review is available in [41]) pushing
the left-handed neutrinos to small masses and the right-handed neutrinos to large masses,
explaining the suppressed masses of the former and the lack of experimental observation
of the latter.

5. Many other issues - In addition to these issues, there are a number of other problems
and absences of the Standard Model which are listed here for brevity and in no particular
order. There is no Standard Model explanation for the manner in which fermions are repli-
cated into 3 near-identical copies differing only by mass, the complicated flavour structure
of the Standard Model and the highly hierarchical nature of the CKM matrix are unex-
plained as they are input parameters in the Standard Model, and no reason behind the
apparent quantisation of the electromagnetic charges is offered. Why there are 3 gauge
groups and the combined SU(2);, x U(1)y is chiral are also not answered, furthermore
there is no inclusion of gravity or dark energy (on top of the exclusion of a viable dark
matter candidate). Similarly, the strong CP problem of why the 6gcp parameter in the
Lagrangian term HQCDQ‘—;FWFW is observed to be smaller than 10! (this results in no
measurable electric dipole moment for the neutron) is unexplained. Subsets of such issues
may be explained by a variety of Beyond Standard Model theories, many of which are
not relevant for the discussion of the work undertaken in this thesis and are therefore not
detailed. Grand Unified Theories may offer solutions for charge quantisation and for the
existence of 3 generations and 3 gauge groups, the strong CP problem can be accounted for
via the introduction of the axion through the Peccei-Quinn mechanism [42] perhaps also
offering a dark matter candidate, flavour structure may be explained by a variety of new
physics theories, and the list goes on. Several reviews of some of the issues of the Standard
Model and their possible solution in Beyond Standard Model theories are available, for

example in [20-22].

The Standard Model therefore suffers from many issues. Nonetheless it also has great scope
for improvement and adaptation, hopefully explaining many of these matters whilst retaining
the successes of our predecessors in developing such an accurate description of physics up to

collider scales. This has therefore led to a wide and blossoming field of Beyond Standard Model

8More information is available in [34] and [35].
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physics, with many theories, adaptations and hypotheses built to resolve various subsets of these

issues.

In general, the aims of these Beyond Standard Model theories are to offer some minimal
extension or additional framework within which to set the Standard Model in order to provide
all its innumerable successes on top of further resolutions of some of these issues and intricacies
left unresolved. There are correspondingly two approaches, the first are UV complete models
offering a “top-down” approach with the well-tested Standard Model physics at collider scales
and lower arising naturally out of these models as a lower energy scale manifestation of some more
fundamental picture. The second are those offering minimal theoretical or phenomenological
extensions (“bottom-up” models) to explicitly maintain the Standard Model as a fundamental
basis for particle physics but with slight modifications to rectify some of its issues and absences.
The wide range of Beyond Standard Model theories will not be reviewed here, the only one
of specific relevance to the work discussed will be supersymmetry (one of the most popular of
these theories), a UV complete model that serves as an extension of the Standard Model at
low scales and which we shall therefore describe in Chapter 2. Further information and more
detailed discussions of the Standard Model, its issues and Beyond Standard Model theories may
be found in the books [14,16, 34].

1.3 Contemporary Particle Physics

All of this makes the current epoch of particle physics a very exciting one; from a theoretical
point of view there is a very successful model with clear problems to be explained and resolved,
meanwhile experimentally there is also the Large Hadron Collider at CERN, the world’s largest
machine and the biggest scientific experiment ever assembled, specifically aimed at targeting
these issues. This combination of the Standard Model and its issues along with the LHC as a
microscope to hone in on its properties has already revealed significant results. The first run of
the LHC reinforced our belief in the Standard Model via the discovery of one of its key missing
pieces - the Higgs boson [12] [13], the fundamental scalar providing mass to the gauge bosons
and fermions. With this discovery, LHC run 2 has been able to focus its efforts on both the
precise testing of our knowledge of the Standard Model, and on direct and indirect searches
for the new particles postulated in Beyond Standard Model (BSM) theories. With this run
near completion there are now numerous constraints on many of these BSM theories and their
parameter spaces (for example recent results include [43-46]). Such constraints in the context
of supersymmetry are described in Chapter 2. As of yet, there have been no unarguable hints
for any such new physics, and despite concerted efforts and the multitude of LHC data available
many possibilities remain. Nonetheless, with significant constraints on the parameter spaces
of some of the most minimal BSM theories (such as the Minimal Supersymmetric Standard
Model, MSSM), whilst such direct searches for new physics continue unabated, there is a growing
appetite for complementary searches looking for indirect signs of new physics. Foremost amongst

these are precision physics measurements, aiming to look for tiny deviations from Standard
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Model expectations as signs for Beyond Standard Model physics. These also have the benefit of
acting as tests of the Standard Model, further improving our theoretical understanding of it as a
description of nature. For any of these approaches, whether direct and indirect searches for new
physics at colliders or precision physics measurements of the Standard Model alone, in this era of
vast swathes of data and the unclean environment provided by a hadron-hadron collider at high
energies, determining theoretical predictions for all searches and all interaction setups becomes
increasingly difficult. This difficulty will only increase as we move to higher luminosities at run
3 of the LHC and the subsequent High-Luminosity LHC (HL-LHC) machine. Moreover, this is
further complicated by the extensive parameter spaces of many Beyond Standard Model theories,
particularly those offering UV completions (such as supersymmetry). The needs either to scan
such parameter spaces or to evaluate very difficult integrals and simulate events via Monte
Carlo integration methods (whether in the Standard Model or beyond) therefore often preclude
by-hand analytic calculations, or at least make them inefficient and intractable. As a result,
computational tools are not only increasingly desired for producing theoretical predictions, but
are in fact required. Only with such computational tools for theoretical predictions is the
particle physics community able to maximise the potential of the LHC (and other experiments)
for the extension of our knowledge of fundamental particle physics. Such tools allow precise
experimental searches to be carried out via comparisons of theory predictions with LHC data,
whilst also offering the ability to extend theoretical understanding; as a consequence there has
been a growing focus on the development of computational tools for LHC phenomenology. It is
this area in which our research has been undertaken, and our efforts in this area are detailed in

the remaining chapters of this thesis.
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1.4 Thesis Outline

In this work we will describe the development of two new computational tools designed to
produce theoretical predictions for phenomenology at the LHC, both in the Standard Model
and beyond. These are: SoftSusy decay calculator [1], which is a new tool built onto an
existing widely used program and predicts the branching ratios of supersymmetric and Higgs
particles; and reSolve [2], a completely new program for computing differential spectra for a
wide class of processes at the LHC, focusing upon transverse momentum resummation. The
work will be described in two halves, ordered chronologically, with the first half describing the
research, development and results of the decay calculator program for SoftSusy, and the sec-
ond half detailing the production, validation and results of the reSolve transverse momentum
(gr) resummation program. Chapter 2 therefore begins our discussions with an overview of
the theory of supersymmetry from a phenomenological perspective, aiming to put our endeav-
ours in this area into context. This is followed by Chapter 3, which provides specific details of
the decay calculator program; its assumptions, methodology and implementation, as well as a
summary of the decay modes included. Chapter 4 builds on this, providing particulars on how
to use the SoftSusy decay calculator program, before giving a comprehensive examination
of the validation and results of the program. Subsequently it also outlines limitations of the
work and areas of priority for future developments. Chapter 5 begins the second half of this
work, describing the background for our research efforts in transverse momentum resummation
by detailing the need for differential spectra and resummation at the LHC, this will provide
theoretical background with a phenomenological focus. An overview of the reSolve program,
its methodology, the implementation of its theoretical formalism and its structure, along with
the channels so far incorporated, is provided next in Chapter 6. The specifics of how to use
the reSolve program are then given in Chapter 7, along with an extensive description and
analysis of the careful validation of the program and results produced. Thereafter, the current
limitations of this work and consequent topics for future developments in this program and in
this area are discussed. Finally, the research in both projects is summarised in Chapter 8. The
Appendices provide further details on several points, with the complete set of supersymmetric
and Higgs particle decay formulae given in Appendix A, along with information on the contri-
butions included and assumptions made. Further information on the theoretical ideas behind
the reSolve program are given in Appendix B, including a list of the resummation coefficients

involved in the formalism.
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Chapter 2

Supersymmetry and the LHC

2.1 Supersymmetry Theoretical Background

Supersymmetry is one of the most popular Beyond Standard Model theories available to
explain many of the issues of the Standard Model and does so by extending it to a more funda-
mental theory, it thereby retains all of the numerous successes of the Standard Model as a theory
of nature. However, supersymmetry was not originally developed or proposed as a remedy to
issues of the Standard Model; rather these solutions were only understood later, following its de-
velopment. This therefore makes the successes of supersymmetry as a Beyond Standard Model
theory all the more remarkable. In order to appreciate the phenomenology of supersymmetry,
and consequently the motivations for our work in this area of supersymmetric particle decays,

we first take a brief sojourn into the theoretical background of supersymmetry.

2.1.1 Superspace, Superfields, Supermultiplets

Symmetry is a key element of the quantum field theory of the Standard Model, whether via
the gauge symmetries controlling the interactions, the discrete C, P, T symmetries, or other
symmetries (whether deliberate or accidental) such as baryon and lepton number conservation.
These symmetries therefore are the key element determining the theory and phenomenology of
the Standard Model, and the same applies for its extensions. An example of such an additional
symmetry which may be applied is supersymmetry. We shall focus on its general properties in
this introduction, avoiding many of the precise mathematical details as they are unnecessary

here, highlighting only aspects relevant to this research. A more detailed review is [47].

At its most basic level, supersymmetry transforms bosons into fermions and vice versa,

consequently it must have fermionic generators;
Q| fermion)  |boson), Q|boson) o |fermion). (2.1)

The supersymmetry generators therefore produce superpartners of each of the known particles,
which differ by % in spin. Particles and their superpartners are linked, living together in the
same irreducible representations of the supersymmetry algebra - termed “supermultiplets”. A

variety of properties of these supermultiplets may be straightforwardly derived.
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- Particles and their superpartners are in the same supermultiplet and must have the same

mass, assuming the supersymmetry is unbroken.

- The number of fermionic and bosonic degrees of freedom must be equal; this is somewhat

intuitive given the link the supersymmetry generators form between bosons and fermions.

- Particles and their superpartners must have the same gauge quantum numbers as the
supersymmetry generators @, Q' commute with the generators of the Standard Model

gauge transformations.

There are two obvious classes of supermultiplets!: containing either a spin—% fermion (in
Weyl 2-component spinor form so the number of fermionic degrees of freedom, np = 2) and 2
spin-0 real scalars (“sfermions”) (so the number of bosonic degrees of freedom, np =2 x 1 =2)
- these are “chiral supermultiplets”; or containing a spin-1 massless gauge boson (so np = 2)
and a spin—% fermionic partner (“gaugino”) (again in Weyl 2-component form so that np = 2)
- these are “vector supermultiplets”, also referred to as “gauge supermultiplets”. In order to
apply supersymmetry to the Standard Model, one must group the existing particles and their
superpartners into appropriate chiral and vector supermultiplets, this is detailed in Chapter 2.2

in introducing the Minimal Supersymmetric Standard Model.

A key overall result of supersymmetry is that as the particles and their superpartners are
contained within the same superfields (i.e. in the same supermultiplets) then the requirements
of invariance of the supersymmetric Lagrangian under the supersymmetry transformation fixes
the coupling of the superpartners by relating them to those of their partner particles. Cou-
plings between superpartners can therefore be regarded simply as “supersymmetrisations” of
those in the Standard Model. As a result supersymmetry guarantees set relationships between
fermionic/bosonic and superpartner bosonic/fermionic particles (respectively), this is key to the
resolution of the technical hierarchy problem in supersymmetry, as described further in Chap-
ter 2.3.

These supermultiplets of separate bosonic and fermionic fields may be combined into single
objects, ®(X), known as superfields [48,49]. These superfields are a function of superspace coor-
dinates, z#, 6% and 02. The motivation for the development of a new mathematical framework
of superspace and superfields lies in the ease of deriving various properties of supersymmetric
field theories in this language, as opposed to using the standard quantum field theory language
of the Standard Model. We will not go into details on the topics of superspace and superfields

here as a precise understanding is not necessary for the research presented in this thesis.

The formal and rigorous mathematical background of supersymmetry is an area of great inter-
est, and further information on this can be found in many texts, including [50,51]. Nonetheless,
we end our outline here and now focus on specific aspects relevant to the work undertaken. The
general information provided thus far is more than sufficient to detail the work carried out in
Chapters 3 and 4.

!There are actually other combinations of particles and superpartners possible in supermultiplets, however
these may be reduced to combinations of chiral and gauge supermultiplets.
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2.1.2 Supersymmetry Breaking

A key result of our introduction to supersymmetry in the previous section was that the masses
of particles and their superpartners must be the same as they live in the same supermultiplets.
However, this provides significant problems for supersymmetry as a Beyond Standard Model
explanation of nature as this implies any superpartner particles would have been observed long
ago (given their couplings are also linked to their partner particles and so are of the same scale).
Therefore it is obvious that supersymmetry must be broken in nature, i.e. that the vacuum
state is not invariant under action by the supersymmetry generators, Q|0) # 0 and QT|0) # 0.
This will occur if the scalar potential V(¢) has a non-zero global minimum, or at least a non-
zero metastable minimum whose instability with respect to the global minimum gives a lifetime

greater than the age of the universe.

There are two ways to break a symmetry, either directly - for example in the way that
the fermion masses explicitly break the [U(3)]® flavour symmetry of the Standard model, or
spontaneously - where the Lagrangian of the theory satisfies the symmetry but develops a vacuum
value which does not, in the way the Higgs mechanism breaks the electroweak symmetry (see
Chapter 1.1.1). We restrict our attention to the case of supersymmetry breaking relevant to the
MSSM and NMSSM; in this case neither a direct nor a spontaneous breaking in the same sector

can occur as these would both preserve the “Supertrace” (STr) over particle masses:

STr(m?) =Y (=1)**1(2i + )m} =0, (2.2)
i

where ¢ is the spin of each particle. As supersymmetry commutes with the gauge group gen-
erators, this supertrace can be applied to each supermultiplet, or indeed each particle and its
partners (as these have the same charge). Generically therefore one expects to have superpart-
ners either equal (or a fixed ratio) in mass to their partner Standard Model particles, or spaced
around the Standard Model particle masses with some lighter and some heavier, depending upon
the particle spin. Applying this to the W boson and down quark and their partners we then find
that there would be a “wino” of mass \/gm%/v, whilst the d;, (“sdownL”) and dg (“sdownR”)

would be spaced equally around the down quark mass:

—3miy + 2m%, =0, (2.3)

o2m3 — df — d3 =0. (2.4)

Such similar mass superpartners have not been observed, therefore clearly it must be the case
that supersymmetry is spontaneously broken in the MSSM /NMSSM in a hidden sector so as to
avoid the supertrace constraint and this breaking is assumed to be radiative, or at least indirect.
The topic of supersymmetry breaking and the associated supertrace sum rules is one with many
subtleties; our discussion here is general and rather schematic, thereby broad-brushing many

specifics which affect the arguments here (more details are available in [47,52,53]).
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As a result of these difficulties in breaking supersymmetry directly, a two-sector system
has become the archetype model, whereby the supersymmetry breaking occurs spontaneously
in some hidden sector and is communicated into the visible MSSM sector via some messenger
fields. This setup evades the supertrace relations linking the particle and superpartner masses.
Typically, the hidden sector is assumed charged under some additional gauge group Gsysy,
the MSSM and hidden sector are then singlets under the Hidden sector gauge group and the
Standard Model gauge group respectively. Only the mediating fields are charged under the
combined Gguysy x (SU(3). x SU(2), x U(1)y) group, as illustrated in Figure 2.1.

G  x(SU@3) x E
Sy c '
SUR)xuU(),)

MSSM = | feccccccccaaaaad Susy-breaking
(visible sector) - _— (hidden) sector
SU(3)_x SU(2), x U(1), G

susy

Figure 2.1: Archetypal two-sector model for spontaneous supersymmetry breaking, with a hidden sector
of some additional gauge group where the supersymmetry breaking occurs which is linked to the visible
sector via some mediating fields charged under both the Standard Model gauge group and the additional
gauge group.

There are many options for the breaking in the hidden sector and how it is communicated
into the visible sector. We list the three most popular supersymmetry-breaking mediation
mechanisms relevant to LHC phenomenology here:

- Gravity-mediated Supersymmetry-Breaking - New physics arising near the Planck
scale (such as gravity) communicates the breaking in the hidden sector into the visible
sector via tree-level interactions causing mass splittings of particles and their superpartners
of order

M2
Am ~ —SE85Y 2.5
Mo, (2.5)

where Mp; is the Planck mass. For desired mass splittings of 1TeV, this requires the
supersymmetry breaking scale to be Mgygy ~ 10! GeV.

In gravity mediated supersymmetry breaking [54-57], the minimal model is called
“mSUGRA” (minimal supergravity). In this model the scalar masses, fermion masses
and the trilinear couplings (of fermions, sfermions and Higgses) are each assumed unified
at the Grand-Unification (GUT) scale; consequently there are only 5 additional parameters
relative to the Standard Model: mg, mi, Ag, tan 5 and sign(u); where my is the unified
scalar mass, m1 is the unified fermion m;ss, Ap is the unified trilinear coupling, tan S is the
ratio of the VaCZuum expectation values of the two Higgs doublets and p is the dimensionful
parameter setting the scale of the Higgs and Higgsino masses. This setup is arguably the
most well-studied form of supersymmetry breaking, theoretically and experimentally, with
LHC searches often focusing upon the “Constrained Minimal Supersymmetric Standard
Model” (CMSSM), which features the MSSM with the parameters arising from mSUGRA
at the GUT scale.
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- Gauge-Mediated Supersymmetry Breaking (GMSB) - In this mechanism, gauge
loops (perhaps of the ordinary electroweak or QCD interactions) transmit the supersym-
metry breaking from the hidden sector into the MSSM [58,59]. Consequently we expect
the mass splitting of particles and superpartners to be of order

Mgusy
Am ~ 6.2 (2.6)
where here the 1672 is the usual factor arising from loop integration. For mass splittings
of order 1TeV we therefore require Mgygy ~ 10° GeV, which is much lower than the
corresponding supersymmetry breaking scale in mSUGRA. The reason for this essentially
is that one expects the mass scale of the superpartner masses is now only suppressed by
the messenger fields mass scale, rather than by Mp;.
The minimal model is called mGMSB and has 6 additional parameters relative to the
Standard Model; Mgysy (the supersymmetry breaking scale), M,, (the mass scale asso-
ciated with the messenger fields), ns (the number of messenger field multiplets), tan 3,
sign(p) and Cgrqy (Which parametrises the decay rate to gravitinos and hence their mass).
GMSB models can have unique phenomenology depending upon the gravitino mass (see
later Chapter 2.1.3 for details).

- Anomaly-Mediated Supersymmetry Breaking (AMSB) - In the supergravity se-
tups which may cause gravity-mediated supersymmetry breaking, there are also always
1-loop contributions arising when supersymmetry is broken, giving contributions to mass
splittings via supergravity VEVs [60,61]. These contributions are loop-suppressed, and
so are usually sub-dominant to the gravity-mediated tree-level mediation. However, if the
tree-level contributions are prevented or suppressed themselves (for example exponential
suppression may arise in extra-dimensional models due to separation of branes) then the
anomaly-mediated loop contributions may become important.

The minimal model is called mAMSB and has 4 additional parameters relative to the
Standard Model; mg (universal scalar mass), m 3 (gravitino mass), tan 8 and sign(u). The
key phenomenological feature of AMSB models is that the gaugino masses are given by

big;
M; x 162 ™) (2.7)

again the 1672 occurs due to the mediation being 1-loop. The important point is that
the gaugino masses are in proportion to their gauge couplings squared multiplied by their
gauge group factors b; (which are given later in equation 2.37). As a result the lightest su-
persymmetric particle (LSP) (if it is a neutralino) will be dominated by the superpartners
of the charged W bosons, the wino (not the superpartner of the B gauge field, the bino
as is usually assumed). Moreover, the lightest chargino and lightest neutralino will cor-
respondingly be near degenerate in mass (as both are dominantly wino in this scenario),
such small mass splittings lead to phase-space suppressed decays, greatly affecting the

phenomenology of these models in this case.
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Regardless of their precise form, all supersymmetry breaking mechanisms relate the
supersymmetric masses, couplings and other parameters to one another at some higher
supersymmetry-breaking or GUT scale, thereby reducing the number of free parameters in the
theory. The parameters at this high scale may then be run down to the collider and electroweak
scale via the MSSM renormalisation group equations to obtain the full mass spectra, mixings
and couplings which are potentially observable at colliders. In any case, none of the known
supersymmetry breaking mechanisms are perfect or completely prescriptive, and the scale of the
supersymmetry breaking is unknown. For this reason, our ignorance of its exact details is often
parametrised phenomenologically by the explicit addition, by hand, of supersymmetry breaking

terms? to the Lagrangian of the supersymmetric theory being considered;

L = Lsusy + Efg‘}offsy. (2.8)

Nonetheless, one must be careful to only add terms which, whilst they break the supersym-
metry and accordingly result in mass splittings between the supersymmetric and Standard Model
particles, do not reintroduce quadratic divergences. Only these retain a natural explanation of
the hierarchy of the electroweak and higher (e.g. GUT) scales®, in particular the supersymmetric
relationships linking the couplings of bosons and fermions must hold. Such terms are termed
“soft” supersymmetry breaking terms [62]. In the case of softly-broken supersymmetry, whilst
there are mass splittings between supersymmetric and Standard Model particles, the quadratic
divergences in scalar masses are still cancelled to all orders in perturbation theory, leaving only

logarithmic divergences which do not destabilise the hierarchy.

The terms which may be added to softly break the supersymmetry are scalar masses (m?),
gaugino masses (M), and trilinear couplings (a*); clearly these are supersymmetry breaking as
they give masses to only the scalars and gauginos, not their respective Standard Model partners*.

The Lagrangian for the MSSM, along with the soft breaking terms, is given in Chapter 2.2.

Unfortunately however, the addition of these explicit parametrisations of potential soft super-
symmetry breaking terms which may be induced introduces to our phenomenological theory all
possible such parameters with no relationships amongst them. As a result, the parameter space
to search for these supersymmetric models is expanded drastically with ~ 120 new parameters.
It is the supersymmetry breaking mechanism which links these together, often enforcing relations
between them at the high scale, reducing these to the 4 — 6 parameters of mSUGRA, mGMSB
and mAMSB. Consequently, dropping any assumptions about the breaking and parametrising

all possibilities leaves a vast parameter space to search. Nonetheless, there are phenomenological

2 As this addition is explicit and only made to parametrise possible supersymmetry breaking terms which may
arise as a result of some unexplained indirect mechanism, it avoids the supertrace considerations.

3The cancellation of quadratically divergent contributions to the Higgs mass is shown explicitly in Chapter 2.3.

“In the case where there are no gauge singlet chiral superfields then additional non-holomorphic (i.e. functions
of superfield conjugates as well as of the superfields themselves) scalar trilinear couplings ¢;;, may also be added,
for example in the MSSM. However, these terms tend to be negligibly small. In theories, such as the NMSSM,
where there is a gauge singlet chiral superfield they reintroduce quadratic divergences. These terms are conse-
quently colloquially referred to as “maybe soft”. There are also tadpole terms t'¢; which are possible for gauge
singlet scalars ¢;, there are none of these in the MSSM.
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guides: the extended parameter space is not arbitrary - many parts of it introduce unacceptable
amounts of CP violation, flavour violation and similar phenomenologically undesirable effects.
Therefore constraints are often placed to generate the “phenomenological” MSSM (pMSSM), a
19 parameter sub-space, which is described further in Chapter 2.5.

2.1.3 Gravitino and Goldstino

In the Standard Model, gravity is glaringly absent, posing an issue for considering it as a
complete description of nature; however, as alluded to in the discussions of gravity-mediated su-
persymmetry breaking and AMSB, gravity may be incorporated into supersymmetry producing
“supergravity” theories. These supergravity theories often arise from GUT-scale models; usu-
ally involving string theory and a fundamental, enlarged gauge group out of which our Standard
Model gauge group appears. In light of these theoretical motivations, it is therefore interesting
to consider the consequences of including gravity in our supersymmetric models. In order to
do so, the particle spectrum of our supergravity models must include a spin-2 graviton and its
supersymmetric partner the spin—% gravitino (both are massless) and supersymmetry must also
be promoted to a local symmetry. When supersymmetry is spontaneously broken, a Goldstone
mode appears (as usual for a spontaneously broken symmetry), however as supersymmetry has
fermionic generators it is a Goldstone fermion, the massless spin—% “Goldstino”. However, in
direct analogy with the Higgs mechanism, a “super-Higgs” mechanism now occurs [63] whereby,
during spontaneous supersymmetry breaking, the massless gravitino (the equivalent of the Higgs
mechanism’s massless gauge boson) “eats” the massless Goldstino (equivalent of the scalar Higgs
doublet components). The Goldstino therefore becomes the longitudinal (i.e. spin—%) compo-

nents of the now massive gravitino.

The result of this mechanism is that the gravitino, rather than interacting purely with grav-
itational strength, now has longitudinal components which interact more strongly via the Gold-
stino components [64]. It may therefore produce signatures of relevance to LHC phenomenology
and so must be included in the particle spectrum. The mass of the gravitino induced determines
the phenomenological relevance of the signals. The gravitino has no Standard Model gauge
interactions and so will only be observed through missing energy/transverse momentum. In
general, the mass of the gravitino is of order

M3
I - susy
meg = ms Moy (2.9)

However, the precise mass scale to which this corresponds varies significantly as a result
of the differences in the supersymmetry breaking scales in different supersymmetry breaking
mediations. For the case of gravity mediated supersymmetry bzreaking models, the mass splitting
of particles and their superpartners is also of order Am ~ %’r , therefore the gravitino mass
is of order mg ~ 1TeV and so the gravitino will be of limited relevance to phenomenology. In

gauge mediated supersymmetry breaking models on the other hand, the mass splitting is set
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via a 1-loop effect, not Vi2& Planck scale physics, therefore the supersymmetry breaking scale is
much lower and mg ~ MM%Y ~ 10eV. As a result, the gravitino will be the LSP and so R-parity
conserving GMSB models will have cascades of decays ending in the gravitino; this produces
phenomenologically interesting signatures described in further detail in Chapters 2.5 and 4. For

a description of R-parity we refer the reader to Chapter 2.2.4.

2.2 Minimal Supersymmetric Standard Model
2.2.1 Particle Content

In the Minimal Supersymmetric Standard Model (MSSM), we wish to extend the Standard
Model by the minimal additional particle/field content in order to make it consistent with
supersymmetry. This therefore requires the grouping of the Standard Model particles into as
few supermultiplets as possible. The requirement that each supermultiplet may only contain
particles with the same gauge quantum numbers however severely restricts this. Looking back at
the field content of the Standard Model in Table 1.1, this illustrates that none of the Standard
Model particles can be grouped to form the supermultiplets of each other. In other words,
the fermions cannot be the gaugino partners of gauge bosons, and the Higgs cannot be the
scalar partners of the fermions (and vice versa). Therefore for each Standard Model particle
we must introduce an additional supersymmetric superpartner (or more strictly superpartners
in order to equate the bosonic and fermionic degrees of freedom - for example there are two
scalar sfermions for each fermion). The fermions are chiral, and therefore must exist in chiral
superfields with their sfermion superpartners. Chiral superfields may only be left-handed and
so any right-handed particles are included via their charge conjugates, which are left-handed.
The gauge bosons meanwhile are promoted to exist in vector supermultiplets with their gaugino
superpartners. All told, there are 5 chiral superfields for the fermions of each generation - @Q;,
U¢, DS, Li, Ef (i is a generation index) - and 3 vector superfields B, W, G.

In addition, given the Higgs boson is spin 0 it must be assigned to a chiral supermulti-
plet. However, this is insufficient - in fact two Higgs chiral superfields must be present and

correspondingly there are two Higgs doublets in the MSSM?®. The reasons for this are twofold:

e Fermion Masses - Firstly, the Higgs doublets must give mass to the fermions, which occurs
via the superpotential in the MSSM. The terms desired to give mass to the fermions are
therefore vy, QHU®, y,QH*D* and y. LHCE* for the up quarks, down quarks and leptons
respectively. However, the superpotential must be a holomorphic function of the chiral
superfields - holomorphic meaning depending only on the chiral superfields and not on their
conjugates - and so terms including H¢ are forbidden. Two Higgs doublets are therefore
required, the first Higgs doublet is called H,,, having the standard Higgs quantum numbers
and giving mass to the up type quarks, the second Higgs doublet H; is introduced with
opposite hypercharge to give mass to the down type quarks and the leptons.

5The MSSM is therefore an example of a “T'wo Higgs Doublet Model” (2HDM). These come in several types,
the MSSM is type II as the up quarks couple to a different Higgs doublet to the down quarks and leptons.
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e Gauge Anomalies - The second reason is for the cancellation of gauge anomalies associ-
ated with the electroweak SU(2)r x U(1)y gauge symmetry. In general, chiral fermions
may generate gauge anomalies, which break gauge symmetries at loop-level. The triangle

diagrams shown in Figure 2.2 illustrate the gauge anomalies relevant for this discussion.

The diagrams in Figures 2.2a and 2.2b are (U(1)y)? and U(1)y(SU(2)1)? anomalies. In
the case of the Standard Model, the particle quantum numbers are such that they both
cancel, as demonstrated in equations (2.10) and (2.11). For the (U(1)y)? anomaly the
contributions will generate a logarithmic divergence proportional to the trace over the Y3
values of the chiral fermions in the loop, with left-handed (LH) and right-handed (RH)
fermions contributing with opposite sign due to the trace over the Dirac structure. Here
the factors of 3 are for colour and factors of 2 are for the fact SU(2) doublets contain 2

particles of the same hypercharge.

wl e

(b) U()y (SU(2

Figure 2.2: Electroweak gauge anomalies at 1-loop in the Standard Model (and in the MSSM). All
chiral fermions can contribute to the (U(1)y)® anomaly in (a), whilst only SU(2), doublets may
contribute to the U(1)y (SU(2)r)? anomaly in (b). The amplitudes are proportional to the traces
over the Y3 or Y of the chiral fermions contributing, with LH and RH chiral fermions contributing
with opposite sign. There are also diagrams with crossed outgoing particles, these have identical
expressions for the anomalies.

- nygL B ZYJ;’R
fr fr

1 1 2 1 2.10
~[3xzx@reax 3P - [3x (P +ax (P + 18] =0 1
6 2 3 3 L

LH quarks LH leptons RH up quarks RH down quarks RH electrons

Meanwhile for the Y(I‘(/I?}))2 case (remember I‘(/I‘{i) is the third component of weak isospin)

only the SU(2); doublets contribute, again the factor of 3 is as the quarks are coloured:

PV U 75 SR T B N D5 IV BVC B (2.11)
*“W[(? Ul e Rl 5 i
LH quarks LH leptons

The addition of Higgsinos in the MSSM, as chiral fermions, may ruin this anomaly can-
cellation. If there was a single H,, Higgs doublet then its Higgsino, which has hypercharge
of 3, would contribute an additional (1)3 to the Tr(Y®), and an additional § x ()% to

the TT‘(Y(I‘(;))Q), rendering both non-zero and introducing a 1-loop breaking of the elec-
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troweak gauge symmetry. These problems are avoided with two Higgs doublets of opposite
hypercharge, as the H; doublet then provides equal but opposite contributions to those of

the H, doublet to both anomalies, returning the overall trace to 0.

With two Higgs doublets, electroweak symmetry breaking (EWSB) is slightly altered in
the MSSM. In the Standard Model, there was one complex Higgs doublet corresponding to
four degrees of freedom, two of which were charged degrees of freedom and two of which were
neutral. In EWSB, the two charged degrees of freedom give mass to the W* and one neutral
degree of freedom (the neutral CP odd degree of freedom as it turns out) gives mass to the Z
boson, leaving one CP even neutral Higgs boson. In the MSSM, there are two complex Higgs
doublets (each with a charged Higgsino and a neutral Higgsino superpartner), this is therefore
eight degrees of freedom - now four charged and four neutral degrees of freedom. In EWSB, as
in the Standard Model, two charged degrees of freedom form the longitudinal degrees of freedom
of the W¥, giving these mass, meanwhile one CP odd neutral degree of freedom gives the Z
boson mass. This therefore leaves two CP even neutral Higgs degrees of freedom, forming two

CP even neutral Higgs bosons, one CP odd neutral Higgs boson, and two charged Higgs bosons.

Following all these considerations, the particle and superfield content of the MSSM is given
in Tables 2.1 and 2.2. To summarise there are 12 squarks (one superpartner for each of the
left- and right-handed quarks of the Standard Model), 9 sleptons (one superpartner for each
of the left- and right-handed charged leptons and one superpartner for each of the left-handed
neutrinos, assuming no right-handed neutrinos), the gluino, bino, winos (charged and neutral),
and 5 Higgs fields and 4 Higgsinos (two neutral, two charged). After mixing, as described in
Chapter 2.2.3, these form the 32 additional particles listed in Table 2.1; the R-parity is also
listed, this is explained in Chapter 2.2.4.

Particle Type | Spin | R, Label
gluino % -1 g
iy, dr dp dr
squark 0 -1 ¢, Cr SL SR
th B b by
€, €r Ue
slepton 0 -1 AL AR Uy
T T Dy
chargino % -1 VNVIi Wf
neutralino % -1 z0 Zy 729 79
Higgs bosons 0 | +1|ArY H° Ht H- A°

Table 2.1: The 32 additional particles of the Minimal Supersymmetric Standard Model (MSSM) after
mixing of particles with the same quantum numbers in electroweak symmetry breaking, only intra-
generational mixing and only in the third generation is allowed for the sfermions here. Whilst the
sfermions have L and R subscripts they have no handedness, the subscript denotes the quark-handedness
to which their couplings are linked via supersymmetry. The lightest CP even neutral Higgs h is listed,
although this is expected to be Standard Model-like and so it not technically an additional particle.
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T N Svmbol Particle content Representation
[§] ame mbo
P Y Spin-0 Spin—% (SU3)c,SU(2),U(1)y)
LH Quark N ~ .
supermultiplet Qi (uL dL) (uL dL) (3,2, 5)
RH Up quark e . i ~ )
supermultiplet (i) YR Up (3,1,-%)
RH Down .
. quark (Di) d dhy (3.1.3)
chiral | supermultiplet
superintt- LH Lepton R
tiplets supermultiplet Li (VL BL) (I/L eL) (1,2,-3)
RH electron . . i
supermultiplet (Ei) R °R (1,1,1)
Higgs-up . 0 ( - 0 R
supermultiplet Hu Hy H Hy Hy (1,2,3)
Higgs-down 0 _ ( - 0 ~ )
supermultiplet Hy Hy Hy Hy H, (1,2, 2)
Spin-% Spin-1
Gluino N
supermultiplet G g 9 (8,1,0)
vector Wino - -
supermul- . w W WO w* wo (1,3,0)
. supermultiplet
tiplets B
ino =0 0
supermultiplet B B b (1,1,0)

Table 2.2: The chiral and vector supermultiplets of the MSSM, their symbols, particle content and
gauge group representations are all given. These supermultiplets contain all the 17 particles of the
Standard Model and the 32 MSSM additional particles. “LH” and “RH” indicate left /right-handed. Note
that as chiral supermultiplets may only be left-handed, any right-handed supermultiplets are written as
conjugates to produce left-handed chiral supermultiplets, this flips the representations so the 3 of SU(3)¢
becomes 3 and the hypercharge assignments are also flipped. For the quark and lepton supermultiplets
only those of the first generation are given, the index i is a generation index running from 1 to 3.

2.2.2 MSSM Lagrangian

Now the particle and supermultiplet content of the MSSM has been outlined, let us provide
the MSSM Lagrangian. It has two main parts, the supersymmetry-conserving part, and the soft
supersymmetry-breaking part which purely parametrises all the supersymmetry breaking which
may arise as a result of an unknown supersymmetry breaking mechanism. Beginning with the
supersymmetry-conserving part, there are three parts to this: the superpotential, the Kéahler
potential and the gauge kinetic function. For a renormalisable supersymmetric theory, the only
component that needs to be provided once the particle content and gauge quantum numbers
are given is the superpotential, as the Kéahler potential and gauge kinetic function are fixed by

renormalisability requirements.
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e Superpotential, W - The superpotential is a holomorphic function of the chiral superfields
of mass dimension 3 and, for the MSSM (assuming R-parity conservation - see Chap-

ter 2.2.4) is given by
Wassm = (Yu)ij HuQiUj + (Ya)ij HaQi D5 + (ye)ijHaLi B + pnHy Hy. (2.12)

This contains, as the first three terms, the usual Yukawa interaction terms for the fermions
and sfermions, which also give mass to these particles just as in the Standard Model.
The last term is the Higgsino mass term which sets the masses of the Higgs bosons
and Higgsinos. The gauge indices have been suppressed with only the generation in-
dices 7,7 = 1,2,3 explicitly included. The first term for example may be written in full
as (Yu)ij(Hu)a(Qi)pa(U;)¢e®” with a = 1,2,3 the colour index and the a, B as SU(2),
indices contracted in a gauge invariant manner via the epsilon tensor.

e Kaéhler Potential, K - The Kéahler potential is a real function of the chiral and antichiral
superfields (i.e. left and right-handed) of mass dimension 2 and incorporates the vector
superfields in order to ensure supergauge invariance. It is fixed by the particle content,

quantum numbers and renormalisability requirements to be
K = &/ exp(2V)®;. (2.13)

Here the ® are each of the chiral superfields of the MSSM, whilst V' = gng“ + %UiWi +
¢'Y B is a vector superfield of all the gauge interactions in the MSSM, with the A* the Gell-
Mann matrices and the o; the Pauli matrices. This form of Kéhler potential ensures it is
invariant under the generalised gauge transformations of the chiral and vector superfields.
The Kéhler potential provides the kinetic terms for the matter and Higgs fields®.

e Gauge Kinetic Function, f - This is the prefactor function for the kinetic term of the
field-strength superfields, which are functions of the vector superfields, and so provides
the kinetic terms for the gauge bosons and gauginos. In general, it is a holomorphic
function of the chiral superfields and has mass dimension 0, for renormalisable theories
it is just proportional to a d,g function. This ensures the kinetic terms are products of
field strength superfields for the same gauge interactions, the constant of proportionality

1

depends on normalisation, it is usually ek where g, (for a = 1,2,3) is the coupling for

each of the gauge groups.

These three pieces specify everything needed to construct the overall supersymmetry con-
serving part of the MSSM Lagrangian; we will not repeat this process here. A detailed overview
of how to construct supersymmetric Lagrangians in general, with the MSSM as an example, is
available in [65].

5The reader may be concerned that the vector superfield V is exponentiated and appears dimensionful, this
issue is avoided as it is expanded in superspace and Grassmanian variables have inverse dimensions which ensure
the overall expanded exponential is dimensionless.
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The soft supersymmetry-breaking part of the Lagrangian must also be stated. The soft
supersymmetry-breaking Lagrangian in the R-parity conserving case” (which is all that is con-
sidered later in the SoftSusy decay calculator in Chapters 3 and 4) consists of gaugino mass
terms, scalar mass terms for the sfermions and Higgs bosons, and trilinear couplings of the
scalars. Such terms are clearly supersymmetry breaking as they provide additional masses to

the superpartners but not their Standard Model partner particles:

1 - 1. - 1
Lspsy =5 MiBB + S MyWW + 2 Mygg + mi| Hul* +mi | Hol* + (m5HuHy + hec.)

+ Q1 (m%)ijQrs + Lii(m3 )i Ly + tiri(m? )ijiin; + dri(m’)ijdn; + Eri(m%)iiéh,

Q
+ (AU)ijQLiHuﬁEj + (AD)ijQLinCZ}}j + (AE)ijﬂLiné*Rj~
(2.14)

Supersymmetry breaking mechanisms link these soft parameters together at the
supersymmetry-breaking scale. For example in the CMSSM at the GUT scale there are unified
scalar masses, unified fermion masses, and unified trilinear couplings; therefore My = My =
MgEM%,m%:m%:m2~ =m2 =mZ =m2 =m2 Emg,AU:AOYU,AD:AOYD and

Q L U D E
AE = A()YE.

2.2.3 Mixing

In Standard Model electroweak symmetry breaking, the B and W3 fields mix according to
the weak mixing angle 0y to produce the observable Z boson and photon. The quarks also
have a misalignment between mass and gauge eigenstates, as parametrised by the CKM matrix,
leading the mass eigenstates to be mixtures of the gauge eigenstates; a similar structure is also
encoded in the lepton sector via the PMNS matrix. In all these cases we have particles of the
same quantum numbers mixing. In particular, for mixing in electroweak symmetry breaking,
particles of the same charge and colour representation may mix (even if they have different
weak isospin or hypercharge) as only the SU(3). X U(1)enm group remains unbroken. These
mixing effects in electroweak symmetry breaking will be phenomenologically important for our

additional Higgs and supersymmetric particles of supersymmetry.

There are four sets of gauge eigenstates in the MSSM which may therefore mix to form the

potentially observable supersymmetric mass eigenstates.

2.2.3.1 Higgs Bosons

In the Higgs sector of the MSSM, there are three neutral Higgs bosons and 2 charged Higgs
bosons; the neutral and charged Higgs bosons may not mix as this breaks the unbroken U(1)ep,

symmetry left after EWSB. Therefore the mixing is confined to the neutral Higgs sector®. In

"The concept of R-parity will be introduced later in Chapter 2.2.4.
8For the interests of brevity, here we do not detail the mixing that occurs in the charged Higgs sector between
the charged Goldstone and the charged Higgs gauge eigenstate to give the physical charged Higgs, or the mixing

Thomas Cridge 33



Chapter 2. Supersymmetry and the LHC 2.2. Minimal Supersymmetric Standard Model

addition, since we assume CP invariance in the Higgs sector, the two CP even neutral Higgs
bosons may not mix with the one CP odd neutral Higgs, leaving a 2 x 2 mixing matrix in the
CP even neutral Higgs sector:
1 R(HD)
0 0 u
£o5 (R R(HY)) M) (R(Hg) . (2.15)
Here R(HS / ) indicates the real part of the complex Higgs field. The elements of the matrix
Mz goy for the gauge eigenstates of the neutral CP even Higgs bosons are set via partial

derivatives of the scalar potential with respect to the neutral CP even Higgs fields, with these

then set to their VEVs. The elements therefore are dependent upon my4, tan g and my:

m? cos® B+ m%sin? B —(m?% + m%)sin (3 cos B) (2.16)

Moy goy =

RUH?) <—(m?A +m%)sinBcos B m sin? B + m? cos? 3
As this mass matrix is real and symmetric, it may be diagonalised via an orthogonal trans-

formation to find its mass eigenstates and their eigenvalues (masses). We may parametrise this

orthogonal transformation as a rotation matrix with mixing angle c:

hY [ cosa  sina R(HY)
<H0> a (— sin « cosa> (R(Hf})) ) (2.17)

Given that the determinant of the mass matrix is positive (det Mg goy = m3m7 cos* 23 > 0)
and the diagonal elements (which are the principal minors of the matrix) are all positive, the
matrix is positive semi-definite and so the mass eigenstates are guaranteed to have positive

masses. From the trace and determinant, it can be straightforwardly derived that:

422 29
1¢%_mw¢mﬁi (2.18)

(m? +m%)?

1
mpH = Q(WQZ +m?%)

where h is defined as the lighter of the two CP even neutral Higgs mass eigenstates. Meanwhile

the mixing angle can be determined as:

(m?% —m%)cos2B + \/(m?q +m%)? — 4m%m? cos? 23

(m? +m%)sin23

tana = (2.19)

It should be noted at this stage that, whereas in the Standard Model the Higgs boson mass
was a free non-predicted parameter mj, = 2Av?, in the MSSM the Higgs boson mass is predicted
theoretically in terms of the Z mass (and hence the gauge couplings), the CP odd neutral Higgs
mass (itself constrained in terms of the ratio of the Higgs VEVs, the mass parameter p and

others) and the ratio of the two Higgs doublet VEVs tan 5. In particular upper bounds on the

of the neutral Goldstone and the CP odd neutral Higgs to form the physical CP odd neutral Higgs. These mixings
introduce factors of cos 8 and sin 8 into the interactions of these particles, where tan 3 is the ratio of the vacuum
expectation values of the two Higgs doublets.
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lightest Higgs mass can be obtained. The expectation value for a general vector admixture of the
two eigenvectors of the mass matrix must lie between the two eigenvalues of the mass matrix,

consequently we may evaluate an upper bound:

m2 < (cos 0 sin 9> mi cos? B+ m2Z sin? 3 —(mi + m2Z) sin 8cos B\ [cos@
h = —(m% +m%)sinBecos B m? sin? B + m? cos? 3 sin 6
< cos? O(m? cos? B+ m% sin? B) — cos O sin (m? + m%) sin 23 + sin? O(m? sin® B + m% cos? 3).
(2.20)

The upper bound is generally saturated for large values of m4 and large tan/ - in the
decoupling limit of m4 > myz the lightest MSSM Higgs boson is then Standard Model-like.

Now we may select the value of 6 to extract bounds as the limits are true for any 6, in

particular selecting 6 = 7 — 3 obtains

ms <m%(sin? B + cos®  — 2sin? §cos? §) = m%(cos? B — sin B)? = m% cos® 28, (2.21)

this implies that at tree-level m; < myz (occurs if 3 =~ 0,7 where the latter is the decoupling
limit as there tan 3 is large). Given the measured value of m;, = 125 GeV, this may seem as
though it causes issues for the MSSM. Fortunately however, radiative corrections raise this upper
bound. Details can be found in Chapter 2.3.4.

2.2.3.2 Sfermions

Sfermions are also of the same colour representations and electric charge as each other,
therefore they may also mix in electroweak symmetry breaking. In this discussion, we limit
the mixing to intra-generation sfermion mixing as we assume no additional flavour violation
relative to the Standard Model (a standard pMSSM assumption), which means the trilinear
coupling matrices and Yukawa matrices are proportional (Ay o Y7), i.e. they are diagonal
in the same basis. In general there are 5 contributions to sfermion masses; three which give
the f1, and fr separate mass contributions, and two which cause mixing in EWSB [65]. Both
intra-generation mixing terms are proportional to my as they arise during EWSB and so are
proportional to the VEV of the relevant up/down-Higgs doublet. For this reason it is often
assumed that mixing in the first two generations of sfermions is negligible; this assumption
will be made in Chapter 3. Taking this assumption, along with the alignment of the trilinear
and Yukawa matrices, essentially results in approximating these 3 x 3 matrices via their (3,3)
element, which is overwhelmingly dominant due to the hierarchy of the Yukawa couplings. As
a result, let us consider the stop sfermions from here as an example. The mass matrix in the

Lagrangian for the stops, incorporating all 5 contributions, is therefore given by:

1 2 o ~
£ 5 (ET t > mtgL +m? +m% cos2B(5 — % sin® Oyy) my(pcot f— Ay) {L '
b LR my(pcot B — Ay) mth +m? + m?% cos 26(% sin? Oy) ) \tr

(2.22)
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Once more this is real symmetric, and so it may be diagonalised by a rotation matrix linking

the gauge and mass eigenstates.
t 9 in @ t
S I e A N A (2.23)
to —sinf; cosb; tr

Again, one may determine the masses of the lightest (f;) and heaviest stops (f2) via the
eigenvalues and the mixing angle 6; may be determined; we do not provide these here. This
same exposition applies for the other third generation sfermions and their mixings; the sbottoms
and the staus. There is no mixing of the third generation v, as this only exists in its left-handed

form.

2.2.3.3 Neutralinos

The MSSM contains four spin—% neutralino states, in the form of the bino (B), neutral wino
(Wd), and two Higgsinos (f{u7 fId); these all share the same electric charge of 0, the same spin
and the same colour representation (singlets) and so will mix in electroweak symmetry breaking
to give 4 neutral spin—% states, the lightest of which may be a good dark matter candidate (see
Chapter 2.3). The Lagrangian and neutralino mass matrix for these particles has contributions
from the last term of the superpotential in equation 2.12 (unsurprisingly as this is the Higgsino
mass term), a contribution from EWSB, and one from the soft supersymmetry breaking gaugino
(0)

mass terms of equation 2.14; the physical neutralino mass eigenstates are often denoted Y, ”,

however here they will be denoted Z; for ease of reading.

L35 —5(<iB —iWy B, H)My (=B —iWa A, H) . (224)
where
M, 0 —MyzcosfBsinfy My sin §sin Oy
Mo — 0 M> Mz cos BcosBy  —Mysin B3 cos Oy
2 —My cosBsinfy My cos 5 cos Oy 0 —
Mgzsin Bsinfy,  —Myg sin 8 cos Oy — i 0
(2.25)

As before, the neutralino mass matrix is real and symmetric and so is diagonalised by an

orthogonal transformation®:

Z1 vy ) (N vy ) vy ) —iB

Zs vél) 11;2) vés) v§4) —iW;3

Zo| T o0 W@ o® 0 a, | (2.26)
24 ’U[(ll) Uf) ’U4(13) ’Uf:g f{ld

here the Z; are mass ordered (by absolute values of their masses), with 7, the lightest neutralino.

?0ur orthogonal transformation matrix N (where N(; ;) = vgj)) here is the transpose of the O matrix of [66],
and is also transformed (transposed and with rows swapped) relative to that of [65] as a result of a different
ordering of the gauge eigenstates.
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Now in this case, the fact there are Os on the diagonal indicates that the mass matrix is not
positive definite, and so generically we must expect the possibility of neutralino mass eigenstates
with negative masses. In general, in our discussions in this thesis in Chapters 3 and 4 we will
therefore have the possibility of negative neutralino masses. However, given that we have ordered
the neutralinos via their absolute values of their masses, it is often customary to define their
masses to be positive (although we shall not). In this case the sign of the mass is changed
via a field redefinition, absorbing a factor of iy5 into the relevant row of the neutralino mixing
matrix. Performing this field redefinition can be shown to simultaneously change the sign of the
mass term in the Lagrangian, whilst leaving the kinetic term unchanged; it does however affect
neutralino couplings as additional 5 matrices and factors of ¢ appear which can have significant
effects in interferences. The effects of negative masses are accounted for in the SoftSusy code
and in Appendix A via factors of the form (—1)% which are +1 depending on the sign of the

mass of the neutralino being considered.

2.2.3.4 Charginos

In the MSSM, there are also two charginos of each charge (4), arising from the charged
winos and the charged Higgsinos of the gauge eigenbasis. The mass matrix present in the

MSSM Lagrangian is given by
1 W+ HT W— HT Wt HT - =)
Ly, =5 (<iW* Hf —iW— i) My, (<iWr B - Hp) . (221)

However, given the charge symmetry here, the mass matrix MVV’L reduces to 2 x 2 block

form:
0 NT M. M: 2 i
My, = . where N= |2 9%)_ 2 V2mw sin ) (2.28)
‘ N 0 gug V2myy cos B 7
Accordingly, we may reduce the whole Lagrangian mass expression to 2 x 2 form:
1 (—iW— L
Ly, 2 =5 | ol N (=i EE) 4 he. (2.29)
i 2 Hd

Unlike all our previous diagonalisations, this chargino mass matrix is not symmetric. As
the 75 matrix acts in similar block diagonal form we can therefore relate the asymmetry of the
mass matrix to s (i.e. handedness) dependence. The generalisation of the usual diagonalisation
of a real symmetric matrix via an orthogonal transformation to a non symmetric matrix is to
perform a singular value decomposition. We act on the mass matrix MWi with different matrices
U and V on its left- and right-hand side such that UTDV = MWi’ for unitary matrices U and
V and a diagonal matrix of singular values D. As a result of the 2 x 2 block structure, we can
consequently consider diagonalising the 2 x 2 blocks separately by different rotations, essentially

rotating the left-hand and right-hand chiral components differently.
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Wi —iW Wi\ (=i
() GeE) e

We can therefore exploit the separate LH and RH rotations to remove any chirality depen-

dence:
U*NV~'=D= (val 0 > : (2.31)
0 my,
where the eigenvalues my, , are necessarily real but may be negative (in which case we may
perform the field redefinitions exactly as described in the context of neutralinos). U and V may

be parametrised in terms of rotation angles in the usual manner:
cosfp —sinf cosflp —sinf
v=|"" =), v=| "F . (2.32)
sinf;, cosfy, sinfr cosfp
U is the unitary matrix which diagonalises NTN and V is similarly the unitary matrix which
diagonalises NNT (both NN and NN are clearly symmetric and so permit diagonalisation via
an orthogonal transformation). The NNT and N7 N matrices have eigenvalues m%/1 and m%;vg,
which again explains why the mass values themselves may be negative. As usual, the masses of

the physical charginos (Wl, W3, mass ordered from lowest to highest) may be determined and

are

1 .
M, = 5 [IM2\2 + |ul? + 2my, F \/(IMzP + |ul? + 2m, )2 — 4|uMy — m, sin 282 |, (2.33)

2.2.3.5 Further Mixing

In addition to this mixing of gauge eigenstates of the same colour, spin and charge in EWSB,
in general there can be large amounts of additional mixing in the MSSM and its extensions as
caused by particles running in loops. In particular, this is a concern where supersymmetric
particles act in loops between Standard Model particles as this can cause effects already ruled
out experimentally. Amongst the large general MSSM parameter space (as parametrised via the
120 possible supersymmetry breaking parameters), there are large sections where supersymmet-
ric particles would cause large quark mixing, additional flavour violation and flavour-changing
neutral currents (FCNCs) which have been ruled out by Standard Model measurements. We
therefore expect that the precise but unknown supersymmetry breaking mechanism imposes
constraints on these parameters to structure the parameter space such that these phenomeno-
logically undesirable regions are ruled out. Some assumptions of this form can be made on the

MSSM parameter space to reduce it, resulting in the phenomenological MSSM (pMSSM).
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2.2.4 R-parity

In the Standard Model, baryon number (B) and lepton number (L) arise as accidental sym-
metries purely as a result of the gauge invariance, particle content and renormalisability require-
ments. In the MSSM however, this is no longer the case. The additional particle content, specif-
ically the scalars carrying baryon and lepton number (the superpartners of the fermions), allow
additional B and L violating terms to be written down in the superpotential. The superpotential
given in equation 2.12 neglected these terms on the basis of minimality and phenomenology. In
particular, phenomenologically, B and L. number violation combined are excluded by processes
such as proton decay, which currently has a measured lifetime of longer than 1034 years [67]. If
the B and L number violating terms are not included then supersymmetry non-renormalisation
theorems ensure they are not regenerated radiatively. Therefore provided such terms can be
satisfactorily ruled out theoretically, we can explain such experimental measurements. In the

MSSM the potential B and L number violating terms arising from the superpotential are

In order to ban such terms, rather than just neglect them on the basis of minimality, a
symmetry must be invoked - the most common of these symmetries is a Z> symmetry termed

“R-parity”10. R-parity is a multiplicative conserved quantum number given by:
R, = (—1)*(B-1+25, (2.35)

where S is the spin of the particle. Given all Standard Model particles and their superpartners
have the same B and L number but differ in spin by %, Standard Model particles (including
all Higgses) and their supersymmetric superpartner particles consequently have opposite sign
R-parity. Conventionally, the Standard Model particles are given R, = 1 and the supersymmet-
ric superpartners have R, = —1. A subtle point is how R-parity, a symmetry which explicitly
distinguishes Standard Model particles and their supersymmetric partners, does not break su-
persymmetry. The resolution of this is that in reality it is an effective symmetry, which can be
considered as arising from more fundamental symmetries such as “matter parity”, which do not
break supersymmetry, in addition to the conservation of angular momentum. Further details on
this area may be found in [47,65]. The precise method of generating this phenomenologically
needed R-parity discrete symmetry is itself a subject of much interest, however we will not delve
into it for this work. R-parity conservation is assumed in the standard meaning of the MSSM,

and will be assumed in our work on supersymmetric decays in Chapters 3 and 4.

0T here are actually many additional symmetries which can ban various subsets of the R-parity violating terms,
for example see reference [47] for a summary.
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2.2.4.1 R-parity conservation

The imposition of this R-parity symmetry, to produce the R-parity conserving (“RPC”)

MSSM, has tremendous consequences for phenomenology:

e All interactions in RPC models must involve an even number of supersymmetric particles
in order to conserve R-parity: in particular it is this requirement that allows one to gain
intuition of the allowed supersymmetric interactions in Chapter 2.2.5 by “supersymmetris-
ing” Standard Model interactions via the exchange of an even number of Standard Model
particles with their superpartners.

e In experiments Standard Model particles are necessarily collided; consequently conserva-
tion of R-parity ensures that supersymmetric particles must be pair produced, this has
significant impacts on the kinematics and signatures.

e Any supersymmetric particle must decay to an odd number of supersymmetric particles,
in addition to any number of Standard Model particles. Given decay kinematics favours
fewer particles being produced (see Chapter 3.1) most supersymmetric particles undergo
decays of the form SUSY — SUSY + SM.

e The lightest supersymmetric particle (LSP) of the model, having no further supersym-
metric particles to decay to, is stable and so may provide a good dark matter candidate,
particularly if it is the lightest neutralino Z;.

e These LSPs remain after cascades of supersymmetric particle decays and, if they are
neutral (as they must be to provide a dark matter candidate), leave the experiments as

missing energy and momentum.

For these reasons, most research in this area focuses on R-parity conserving models, as
they offer the possibility of resolving the issues of dark matter in addition to the standard
motivations for supersymmetry. Our SoftSusy decay calculator also assumes RPC for these
reasons, nonetheless the spectrum generator part of the SoftSusy program [66] includes the

possibility of allowing R-parity violation (RPV); therefore we discuss it briefly here.

2.2.4.2 R-parity violation

In spite of this focus in the field on R-parity conservation, it is possible to allow R-parity
violating couplings or various subsets thereof, though they are constrained to be very small by
experiments. In particular, with RPV one generically expects proton decay as demonstrated
in Figure 2.3. However, proton decay requires both B number violation (via the first vertex
corresponding to the third term in Wxrpy in equation 2.34) and L number violation (via the
second vertex corresponding to the second vertex in Wgrpy ) separately. Therefore preventing
just one of B number violation and L. number violation will prevent proton decay. Given there
are strong bounds on B number violation via non-observation of processes such as neutron-
antineutron mixing, it is often supposed that only L number is violated. In that case such
small lepton number violation may also generate Majorana fermion masses and mixings for

the neutrinos (for example see references [68-70]), whilst still preventing proton decay. In
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general there are various UV models possible to generate a symmetry which prevents undesirable
phenomenological consequences in this way whilst providing explanations for neutrino masses
or other observations; a particular popular one is to note that whilst both B and L number
are expected to be broken by non-perturbative effects in the Standard Model, B-L is not and is
present in many GUT models. Therefore many models consider a gauged U(1)p_1, symmetry
broken by a scalar VEV [71], the remaining conserved unbroken subgroup can then correspond

to R-parity conservation B0

B=1,L=0 B=0,L.=0
B-1L=1 B-L=0

Figure 2.3: Proton decay allowed in the case of R-parity violation, the A}, is a baryon number violating
coupling and the )\;j « 18 a lepton number violating coupling corresponding to the appropriate terms in
the superpotential in equation 2.34. The B, L. and B-L numbers are shown for each particle.

R-parity violation, even in very small amounts, may have significant phenomenological con-
sequences (which will be outside the scope of our work in Chapters 3 and 4); the LSP may now

decay offering a new array of signatures at the LHC.

2.2.5 Interactions

The particle interactions in the MSSM, and in supersymmetric models in general, are derived
in a similar manner to the mass terms described in the Chapter 2.2.3; gathering all terms in
the Lagrangian which may contribute to a given coupling and diagonalising and rotating states
as required to obtain the couplings of the physical mass eigenstates. In general this process of
deriving the various MSSM interactions is therefore very involved, nonetheless there are several
guiding principles which may aid the intuition. Deriving the relevant interactions is vital to the
calculation of the supersymmetric and Higgs decay branching ratios in our work in SoftSusy in
Chapters 3 and 4.

First of all, as is the case in the Standard Model, all interactions must preserve all the
quantum numbers of the MSSM, as any Lagrangian terms must be overall singlets of the SU(3).x
SU(2)r, x U(1)y gauge group. In addition, as we impose R-parity conservation in our work, we
also expect baryon number and lepton number conservation. R-parity conservation also lends a
second useful guide; as R-parity assigns a quantum number of +1 to Standard Model particles
(and all Higgs bosons) and —1 to MSSM superpartners, all interactions must have an even
number of supersymmetric particles. In particular, adding to this the fact that supersymmetry
links particle and superpartner couplings, one may expect supersymmetric specific interactions

to simply be “supersymmetrisations” of Standard Model interactions, where we take an even
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number of the Standard Model particles present in a Standard Model allowed interaction and
replace them by their superpartners. This will still be allowed by conservation of quantum
numbers as particles and their superpartners are in the same overall gauge group representations,

whilst transforming an even number of particles ensures R-parity conservation.

However, in reality, the only certain way to obtain the interactions of the MSSM is to perform
the full derivations (this is demonstrated in many texts, including [65]), which were nonetheless
performed in our work in this area. As an example of the need to rigorously perform such
calculations rather than rely on guiding principles, an interaction vertex which one might naively
expect to appear in the MSSM at tree-level is the HT™W ~Z vertex as it satisfies conservation
of all quantum numbers and R-parity conservation. In reality however it is absent at tree-level
(occurring only at 1-loop); the physical reason behind this is a cancellation resulting from the
fact that the same angle 8 which is the ratio of the VEVs of the neutral Higgs fields also sets
the mixing of the charged Higgs components of the doublets, thereby guaranteeing cancellation

and the absence of this vertex at tree-level.

2.2.6 Renormalisation in the MSSM

In a manner exactly analogous to the Standard Model, supersymmetric (SUSY) models
such as the MSSM and its extensions also have particle masses, couplings, mixings and gauge
couplings which depend on the energy scale. However with additional particle content relative to
the Standard Model this running of parameter values is altered, whilst the fundamental values

of parameters matched onto the Standard Model or MSSM may also vary.
In generating the spectra of the MSSM, as performed by the SoftSusy spectrum generator,

before the decay calculator aspect of the program our work has focused upon, one must take
boundary conditions for physical masses and parameters at the electroweak scale (usually taken
as My); for example the top pole mass, the gauge coupling « in the M .S scheme and the bottom
mass in the M .S scheme are usual boundary conditions. These boundary conditions then apply to
the renormalisation group equation running between Mz and Mgysy or Mgut. These physical
parameters are experimentally measured and so include corrections to all orders, in theoretical
predictions these must then be matched onto Feynman diagrams up to the required order to
extract the fundamental parameters of the theory. Given the MSSM has additional particles and
interactions relative to the Standard Model, this means the fundamental theoretical parameters
extracted are different. For example, the strong coupling constant a; may be determined via
gluon to quark-antiquark vertices. In the MSSM however there are 1-loop corrections from
gluinos to this vertex (see Figure 3.3) in addition to the 1-loop Standard Model corrections, and
so after subtracting off the various corrections at the specified loop level, the value extracted in
the MSSM will be different from that of the Standard Model. Moreover, there can be different
schemes for the mass extraction and different approximations made even within one theory
in determining the fundamental parameters, and different numbers of loops included. These
parameters are then used in the decay calculator expressions and so differences in numerical

values here are a significant source of differences in the decay calculations.
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Figure 2.4: Running of the gauge couplings to higher scales in the Standard Model and the MSSM. This
demonstrates how gauge coupling unification occurs in the MSSM but not in the SM, with the unification
of the three gauge couplings occurring at around Mgyt ~ 2 x 1016 GeV. Figure from [72].

Meanwhile, with addition particles, the running of the gauge couplings, as parametrised via
the g functions, are also altered in the MSSM relative to the Standard Model. These additional
particles typically appear around the TeV scale and so bend the running of the coupling constants
beyond this point. The 1-loop expressions for the (g;) functions in the Standard Model and

MSSM are 0g:(Q)  0¢i(Q) g

(2.36)

where b; differs for each gauge group and depends on the particle content!':

4.1,-2, -7 for SM for i=1,2,3;
b; = (2.37)
6.6,1,—3 for MSSM for i = 1,2,3.

As a result, running the values of the gauge couplings to higher scales causes differences
between the Standard Model and the MSSM. In the Standard Model the gauge couplings never
unify, see Figure 2.4. In contrast, in the MSSM, with the altered values of the b; coefficients (and
in particular with the bo for the SU(2) group changing sign and so running to larger values)
Figure 2.4 shows all three gauge couplings unify approximately at a single scale (certainly within
the errors that would be caused by corrections at the unification scale). This would indicate
unification of the three fundamental forces relevant at particle scales, suggesting some GUT scale
complete model arises at around Mgyt ~ 2 x 106 GeV. This is therefore regarded as a further
motivation for supersymmetry and the MSSM. Investigations into the running of gauge couplings

with different particle content or particle masses can be performed within SoftSusy [66].

As an aside, one may ask why the running of the gauge couplings with the log of the scale

is linear in Figure 2.4, this is straightforward to demonstrate. Given a; = g; /472 then
g g g

da;! 87 g 8r g} b;
o _ 8t 09 8m gl b (2.38)
dlog Q g? 0log @ g; 16m2 21

Therefore the gradient of o i constant in units of log Q as observed.

"To be precise it should be noted that here the g; are slightly different to the conventional Standard Model
definitions as now g1 = /5/3¢’.
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2.3 Motivations for Supersymmetry

There are consequently a great many motivations for supersymmetry from a theoretical
and phenomenological perspective; this has contributed to its enduring popularity as a Beyond
Standard Model theory, even in the face of a lack of discovery at the LHC. We summarise the
motivations here, in the context of the MSSM.

2.3.1 Technical Hierarchy Problem and Naturalness

As demonstrated previously in Chapter 1.2, the Standard Model faces a problem of stability
of the Higgs mass with respect to loop corrections, which raises questions of the origin of the
difference of scales between electroweak and GUT /Planck scale physics and the stability of this
scale difference. In Chapter 1.2, we explicitly evaluated the quadratic divergences to the Higgs
boson mass my, caused by the dominant top loop corrections in equation 1.35. If one were to
repeat the calculation for the contribution of scalars to the Higgs boson mass, with the the
Feynman diagram as shown in top left of Figure 1.3, then the mass correction due to a scalar

1-loop correction is

A 4 A 1.3 2 A 2

d*k 1 k22n4dk 1 Ag AsA
Omy )2 = A T~ 2 85 kdk ~ . 2.39
on =25 [ e~ [ ome e~ ar o (23

The key differences relative to the fermionic corrections are - there is no minus sign as
we have a loop of scalars, there is only one factor of the coupling as the Feynman diagrams
involves a single 4-point vertex (c.f. two 3-point vertices for the fermionic case), and there is a
factor of two difference arising from the coupling normalisation and lack of taking a trace in the
scalar case. Crucially, the sign difference means that, if we can relate the scalar and fermionic
couplings such that A\; = 2/\? (where Ay was the top Yukawa coupling v in equation 1.35),
then the quadratically divergent contributions to myj will cancel between scalar and fermion
contributions, leaving only logarithmic divergences and resolving any issues of naturalness and
stability. This is what happens in supersymmetry, each fermion is accompanied by two scalars
- the f1, and fg - in order to have the same number of fermionic and bosonic degrees of freedom
in each supermultiplet, giving the necessary factor of two. Meanwhile, supersymmetry relates

the fermions and their superpartners, linking their couplings and ensuring the cancellation.

2.3.2 Gauge Coupling Unification

As described in the previous section, Chapter 2.2.6, the gauge couplings unify when run to
high scales in the MSSM, suggesting the presence of a GUT-scale UV complete model. This is
theoretically satisfying, lending credence to work on grand unified theories (GUTs) and offers
an indication of the scales at which new physics must be important in a way that does not arise
from the Standard Model.
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2.3.3 Dark Matter

One of the key obvious absences from the Standard Model, is its complete lack of any viable
candidates for dark matter, as outlined in Chapter 1.2. However, the MSSM and its extensions
naturally provide a good dark matter candidate in the case of R-parity conservation. In par-
ticular, the lightest supersymmetric particle is then stable, and so if it is neutral and colourless
it is then a possible source for the dark matter observed astrophysically. Moreover the super-
symmetric particles are generically expected to be WIMP-like (“Weakly Interacting Massive
Particle”), given that they occur at masses just a few times the weak scale and with couplings
linked to those of the Standard Model by supersymmetry. The requirement of neutral, colour-
less particles leaves 3 main types of supersymmetric particle which may be the LSP and dark
matter - neutralinos Z, sneutrinos 7 and gravitinos G.  dark matter is largely ruled out exper-
imentally [73], whilst LSP gravitino dark matter is possible in gauge-mediated supersymmetry
breaking models. In this case constraints are generically weaker due to the very weak couplings
of the gravitino, but may be set via long-lived NLSP decays to the LSP gravitino and Stan-
dard Model particles. In particular high energy photons produced in this manner would have
cosmological effects, whilst gravitino masses in the certain mass ranges may result in displaced
vertices at the LHC (see Chapter 4.2.4 for these modes in the SoftSusy decay calculator). In
any case, collider experiments have focused on the possibility of neutralino dark matter, as this
offers the most significant possibility of observation at such experiments. The exact nature of
the lightest neutralino, i.e. its precise linear combination of bino, wino and Higgsino, along with
its mass and the mass spectrum of the supersymmetric model, will alter its experimental and
cosmological properties, and in particular whether or not it has the correct relic abundance in
the universe. In the CMSSM, the LSP is usually a bino (as explained later below equation 2.52),
this tends to be over-produced and so needs coannihilation with fermions and possibly signif-
icant Higgsino fraction to give the right relic abundance. There are many reviews available
considering supersymmetric dark matter in great detail, including [74]. In generality, the calcu-
lation of the neutralino relic abundances for different supersymmetric parameter space points,
and consequent restriction of the parameter space to that with viable dark matter candidates,
is very complex. Fortunately however, public codes have been developed to perform this task,
including DarkSUSY [75-77] and micrOMEGAs [78,79], the latter of which can interface with the
SoftSusy program.

2.3.4 Higgs mass prediction

In Chapter 1.1.1 we saw that the Higgs mass is not theoretically predicted by the Standard
Model, but rather it may only be experimentally measured and input into the theory. In contrast,
in the MSSM the Higgs mass is predicted as a function of other parameters of the theory and,
as we demonstrated in Chapter 2.2.3.1, bounds may be placed on its mass. Specifically, in
equation 2.21 it was shown that a tree-level upper bound of mz may be placed on my. Given
then that the Higgs mass has been measured at the LHC to be m;, = 125 GeV [12,13,80], this
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naively causes problems for the MSSM. In reality however there are also loop corrections to
this bound, and given the Higgs couples to Standard Model particles and their superpartners
in proportion to the mass of the Standard Model particles, the dominant contributions will be
from tops and stops. The calculation of all the radiative corrections to the Higgs mass, including
smaller contributions from gauge bosons and from bottoms and taus and their superpartners
(which may be important in regions of larger tan (3), is very involved (excellent reviews of the
techniques involved and the results are available in [81,82]). In general however there are 3

requirements for large radiative corrections to the lightest Higgs boson mass:

e Large stop masses (mﬂ) increase the loop corrections to the Higgs mass caused by stop
loops; these are usually the dominant contributions due to the large top Yukawa coupling.
Under various simplifying assumptions (m; = m;, = m; and no stop mixing (X; = 0))
the stop loop contributions can be written as:

2
3GF 4] mg

(Amy)% = mgIn—5.
¢

V2n?

(2.40)

Whilst this contribution is only logarithmic in the stop mass squared, m?, it is quartic
in the large top mass and so may offer corrections of tens of GeV for stops of masses
m; ~ O(1TeV).

e Large stop mixing, parametrised via the mixing parameter X; = A; — pcot 8, which is a
measure of the amount of mixing between the two stop eigenstates ¢; and t5. It may be
shown that large mixing X; ~ m;, may increase the stop loop corrections to the lightest
Higgs mass by 10 — 15GeV in these “maximal mixing” scenarios. The calculations to
demonstrate this are somewhat complex and will not be included here, nonetheless the
calculations can be performed and demonstrated using the SoftSusy spectrum generator
[66]. The stop mixing corrections may be written as follows (more details are available
in [83]):

3Gr 4

(Amp)? = ﬁmt [

e Large values of tan 8 increase the Yukawa couplings of the down type fermions such as

2 4
Xi X ] . (2.41)

2 4
ms 12mf

the bottoms and taus. This allows the b, 7 and their superpartners b; and 7; to also make
significant radiative contributions to my. Large ma values are also required to maximise
the tree-level Higgs mass. With these conditions the bottom and tau fermion and sfermion

contributions may contribute an additional few GeV to the Higgs mass.

In addition to these one-loop effects, there are also 2-loop corrections, scheme dependences
and various other effects. In general however, these radiative corrections allow the lightest
Higgs mass of the MSSM to reach up to my ~ 135 GeV, thereby providing an explanation of
the LHC measured Higgs mass of 125 GeV. This may therefore be seen as a motivation for
the MSSM,; it should be noted however that reaching the value of the observed Higgs mass is

not possible over much of the MSSM parameter space, and so it may be argued that this is
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a little unsatisfactory, requiring some tuning. This is in fact one of the motivations for the
Next-to-Minimal Supersymmetric Standard Model (NMSSM), described in Chapter 2.4, with
the idea being that additional particle content allows my to be raised further, contributing an
extra positive term to my across the parameter space and thereby allowing the observed Higgs
mass to be achieved more naturally across the majority of the supersymmetric parameter space.

More information on the Higgs mass in the MSSM may be found in the review [84].

2.3.5 Grand Unified Theories, Supergravity and String Theory

Supersymmetry is also a necessary part of many of the most compelling “top-down” models of
the fundamental physics of the universe, including many Grand Unified Theories (GUTSs). Local
supersymmetry allows the formation of supergravity theories, incorporating general relativity
into our description of particle physics. Meanwhile string theory, via superstring theories, often
requires supersymmetry (or at least simplifies greatly in its presence). These may therefore be
seen as theoretical indications of supersymmetry being an important part of the physics of the
universe, particularly at high scales; however they offer no reason to suggest supersymmetry
should be present at our current collider scales. These models are not relevant to our work in

this thesis and so we go into no further details here.
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2.4 Next-to-Minimal Supersymmetric Standard Model

Whilst the MSSM may be the most “minimal” of the phenomenologically testable super-
symmetric models, it is by no means the sole possibility, indeed a plethora of extensions to the
MSSM exist, all offering solutions to additional problems not resolved in the MSSM alone. Pop-
ular extensions include the Lepton-Number Violating MSSM (EMSSM) [70, 85-87], the U(1)
extended MSSM (UMSSM) [88,89], Two Higgs Doublet Models (2HDMs) [90, 91] and many
others; the only one of direct relevance to this work, and indeed one of the most popular for

phenomenology, is the Next-to-Minimal Supersymmetric Standard Model (NMSSM).
The basic idea behind the NMSSM is to add a gauge singlet chiral superfield, S, to the

MSSM. A chiral superfield contains an additional fermion - the “singlino” - and two additional
scalars. This additional particle content has a significant effect upon the phenomenology; just
as in the MSSM (see Chapter 2.2.3), gauge eigenstates with the same quantum numbers mix
in electroweak symmetry breaking to form mass eigenstates. Now the additional singlino mixes
with the two Higgsinos, the bino and neutral wino of the MSSM to form 5 neutralinos; the
NMSSM therefore has an extended neutralino sector. Meanwhile, assuming CP conservation
in the Higgs sector (which need not necessarily hold), the additional scalars form one CP even
scalar and one CP odd scalar which each mix with the two CP even neutral scalars and the one
CP odd neutral scalar of the MSSM respectively, forming an extended Higgs sector of 3 CP even
neutral Higgs scalars and 2 CP odd neutral Higgs scalars.

More specifically, we define the NMSSM as the MSSM but with the superpotential now

containing additional terms relative to the MSSM superpotential of equation 2.12:

1
Whnissm = Warssut + ASH, Hy + §pS + S/ + §53. (2.42)

As the superpotential must have dimension 3, this makes the constants A, x dimensionless,
whilst 1/ has dimensions of mass and £ has dimensions of [mass]?. As the chiral superfield
added is a gauge singlet, the singlino and two additional scalars may only interact with non
Higgs/Higgsino particles via mixing.

The soft supersymmetry breaking contribution to the Lagrangian also contains extra pieces

relative to the MSSM (see equation 2.14) as indicated in equation 2.43:

£ (NMSSM)

(MSSM
SUSY L

= LIS 2 gp2 ()\AAHquS + %mﬁsi“’ + %m%,SQ +E9S + h.c.). (2.43)

The NMSSM consequently introduces several extra parameters: these are the dimensionless
Yukawa couplings A and k, where A sets the coupling of the gauge singlet superfield particles to
the Higgs chiral superfields; it therefore sets the scalar and neutralino mixing as well as the Higgs
and Higgsino mass, whilst k also contributes to these mixings and mass parameters in both the
extended neutralino and extended Higgs sectors. s is the vacuum expectation value of the S

singlet scalar, which attains a VEV in EWSB in the same manner as occurs for the two Higgs
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doublets; £ and £g are supersymmetry conserving and supersymmetry breaking tadpole terms
respectively; 1 is a supersymmetric mass term for the new singlet (analogous to the p parameter
for the two Higgs doublets in the MSSM); mg is a soft supersymmetry breaking mass for the
new singlet; whilst Ay and A, are soft supersymmetry breaking trilinear couplings associated
with the new singlet and its interactions with the other two Higgs doublets. As a result of the
additional parameters, many extra contributions are made to the corresponding parameters of
the MSSM, and so several effective parameters are often defined for ease: m3 = By, mIS2 = B\,
feff = [+ AS, Beg = Ay + ks and m3 = m3 + A(i's + &r). The details of this are unimportant
for our work, however we have outlined them as these parameters appear in several of the
expressions given in this section and later in Chapter 4 as well as in Appendix A.6. As in the
MSSM, the parameters may be constrained and linked via considerations of the nature of the
minimum of the scalar potential, requiring a minimum which is phenomenologically admissible.
This is somewhat more complicated to deal with in the NMSSM as there may be several local

minima. We do not go into details here, however they may be found in the excellent review on
the NMSSM [92].

The first added term in the superpotential in equation 2.42 enables the singlino to mix
with the usual 4 neutralinos of the MSSM forming the extended neutralino sector, so that the

Lagrangian term in equation 2.24 becomes:
1 . - - - . . . _ AT
£7,5-3 (43 —iWs H, H, S) My, (—iB Wy H, H, S) , (2.44)
where the neutralino mixing matrix previously given by equation 2.25, is now as follows'?:

/ /

My 0 -L 0
0 My T4 T 0
My = —gjg L 0 —lef —AUy (2.45)
g:/z%‘ —% —per 0 —Avg
0 0 0 0 2ks+pu.

Diagonalising this mass matrix then gives each of the 5 physical mass eigenstate neutralinos
a singlino component. This may significantly affect the phenomenology of the supersymmet-
ric model, in particular if the LSP is singlino-like then the NLSPs may have long lifetimes,

potentially producing displaced vertex signatures in colliders such as the LHC.

As for the Higgs sector of the NMSSM, the same first term of the superpotential also generates
mixing of the singlet scalars with the scalars of the MSSM. Therefore we obtain a 3 x 3 mass
matrix in the CP even sector and a 2 x 2 mass matrix in the CP odd sector (splitting the complex

scalar singlet into real and imaginary parts and assuming CP conservation in the extended Higgs

2The terms have been rewritten from functions of the variables mz, 8 and Ow into functions of the vari-

’7

ables g, ¢, Vu, vq using tanf = Z—Z, tan Oy = %, mw = % v2 +v3 and mzcosOw = mw, for example
/

— 9 Y4

__Yd 9 Yd
\/vi+'u3 \/5

! ’
myz cos 3 sin Oy :mw%cosﬁ = mw%
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sector). The CP even neutral Higgs mixing matrix is now given in equation 2.46 and again must
be diagonalised to obtain the masses and mixing matrix between the different eigenbases, where

R(S) has been added as the third component of vectors in this space:

g2’U3 (2A2792)vuvd )\(QMQH"Ud
+(ﬂeffBeff+m§) tanﬁ _MeffBeff_mg 7(Beff+ﬁs+#l)vu)
— (2N —g?)vuva g2l M2ftervn
MR(HO) - —Hefi Beg—1h3 +(pefi Begi+13)/ tan 8 —(Begt+rs+p')vg) : (2.46)
A(2pevg A(2ptervu A(Ax /) 2e2d
—(Beff‘i‘HS“rH,)’Uu) —(Beff-i-lis-l-//)’l)d) +RS(AH+455+3#/)—(§S+§F;L/)/s

Meanwhile, in the NMSSM there are therefore two physical CP odd neutral Higgs bosons (in
addition to the usual Goldstone which essentially gives mass to the Z boson), the mass matrix
for the two CP odd neutral Higgs bosons of the NMSSM is given in equation 2.47 and must be

diagonalised to obtain the masses and mixing matrix. Here the ordering of the gauge eigenstates

is (I(Hg) I(HY) I(S))T

(Lot Bet + 1) tan 3 Left Beft + 1 Aoy (Ax —2ks — 1)
Mz g0y = feft Bett + 1173 (HewBewr +103)/ tan B Avg(Ax — 265 — 1) | (2.47)

A(Beg+3rs+u') 224 3k A, s
My (Ay — 2ks — i/ Mg(Ax — 2ks — 1/ °
u( A H ) d( A K ) 72mgfnu’sfép(4ﬁ+%l)*£fs

s

The effect of the extended Higgs sector is to significantly alter the phenomenology of the expected
Higgs bosons, now there may be a lighter CP odd or CP even Higgs than the Standard Model-
like Higgs at 125 GeV. This can significantly affect the decay signatures of the NMSSM as now
there may be large invisible widths of the Standard Model-like Higgs to lighter scalar degrees of

freedom.

2.4.1 Motivations for the NMSSM

Given all the additional complications of the extra contributions and extended neutralino
and Higgs sectors of the NMSSM, the question naturally arises of what the motivations are for
disrupting the minimality of the MSSM via the addition of the gauge singlet chiral superfield.
In fact, there are two general motivations, both associated with naturalness and fine tuning,

with the first more theoretical and the second more phenomenological:

e 1 problem of the MSSM - In the MSSM superpotential of equation 2.12, the term uH,Hy
introduces an additional dimensionful parameter into the theory as p has mass dimension
1. This u parameter therefore sets the mass scale of the Higgses and Higgsinos and conse-
quently must be of order the electroweak scale in order to ensure the H, and H, scalars get
VEVs after electroweak symmetry breaking of the correct order of magnitude. However,
setting 1 by hand to this value with no additional explanation is rather unsatisfactory

when the origin of the scale of i is nominally completely independent of the electroweak
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scale and would therefore naturally be expected to be of order the cut-off scale Mgyt
or Mpy. In fact, this is a big problem for the MSSM as it essentially reintroduces nat-
uralness issues involving the hierarchies of scales, the resolution of which in the context
of the electroweak scale and the Higgs mass value and stability was a key motivation for
supersymmetry.

The NMSSM resolves this issue by allowing the dynamical generation of the p parameter.
In an exactly analogous manner to the generation of fermion masses in the Standard Model
(or MSSM) via Yukawa couplings and VEVs of the Higgs doublet(s), we may generate the
u parameter at the EW/SUSY scale when the singlet S gets a VEV s in electroweak
symmetry breaking. In order to do this, we must replace the superpotential p term with

a coupling of the singlet to the two Higgs doublets:

pH Hy " \SH, Hy ZVSB \(SYH Hy = AsHyHy = prog = As. (2.48)
As the VEV s occurs in EWSB it is naturally at the electroweak scale, avoiding any issues
of naturalness. This therefore removes the need to add an additional scale to the theory.
The NMSSM therefore resolves the p problem of the MSSM.

e Higgs mass myp - In the MSSM in Chapter 2.3.4 we saw that the MSSM provides an
explanation of the size of the Higgs mass, in a way the Standard Model is unable to,
however it was also apparent that only a small particularly fine-tuned part of the overall
supersymmetric parameter space for the MSSM, i.e. one with heavy stops and large stop
mixing, was able to reach my = 125 GeV. So once again, in the MSSM we still have the
question of why it should be that only a very specific and restricted part of the parameter
space seems to have arisen in nature. In the NMSSM however, with the addition of the
singlet scalars, we have additional contributions to the Higgs mass my,. In order to extract
the Higgs masses we must diagonalise the mass matrix for the CP even neutral Higgs
bosons. In order to obtain an upper bound on the Higgs mass we may rotate the upper

2 x 2 sub-matrix by an angle 8 and find:
)\2
mi < m%(cos2 28+ — sin? 26). (2.49)
g

Therefore in the NMSSM there is an additional positive contribution to the upper bound
on the Higgs mass set by A. This raises the obtainable Higgs mass at tree-level such that
the upper bound is larger than myz, adding on the radiative corrections as in the MSSM
then allows m;, = 125 GeV to be reached over much of the parameter space of the NMSSM,

avoiding any questions of selection of specific regions of parameter space'3.

13The overall upper bound, including radiative corrections, on ms, is now ~ 150 GeV due to this additional
positive tree-level contribution to its mass.
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2.4.2 73 invariant NMSSM

There is a clear problem with the NMSSM as we have thus far presented it as a resolution
of the p problem; whilst it is true that we may now dynamically generate a contribution to the
Leff Parameter dynamically via the VEV of S, we still must explain why a contribution of the
form of the p term in the MSSM is not present. In addition, we have also added in further
dimensionful parameters in p/, ¢ to the superpotential and corresponding soft supersymmetry
breaking dimensionful mass parameters m3, m,SQ and £g exist in Lgygy, all of which must be
around the electroweak and SUSY scales with no prior justification, again removing naturalness
as a motivation for the NMSSM. Thankfully, one may ban such terms by instead considering
the “scale-invariant” NMSSM: by requiring the addition of no new scales to the theory we set
w=p =& = m% = m,SQ = &g = 0, recovering naturalness. However, we must ban such terms
for a good reason - examining the superpotential of the NMSSM given in equation 2.42, it is clear
that the dimensionless terms exhibit a Z3 symmetry which is not present in the dimensionful
terms. In other words, as the superpotential is cubic, any transformation of the form & — Pe2mi/3
on all of the chiral superfields will exclude any terms with dimensionful parameters, leaving only

the scale invariant superpotential as this has an accidental Z3 symmetry.

We can therefore distinguish the general NMSSM, which we have discussed so far, from the
Zs-invariant NMSSM (often referred to as the NMSSM in the literature). The Zsz-invariant
NMSSM is naturally scale-invariant, therefore resolving the p problem of the MSSM whilst

retaining naturalness as a motivation. The superpotential for the Zs-invariant NMSSM is:

Wikiss = Wassu|  +ASH Hq+ 25% (2.50)
u=0

However, adding a discrete Z3 symmetry to the theory also poses problems. After EWSB
this Z3 is spontaneously broken as the scalar fields get VEVs and so the universe would contain
regions of space with equivalent (i.e. same vacuum energy) values but different phases of the
VEVs vy, v4, s, with the VEVs in different regions related by Z3 transformations. These “bub-
bles” of different vacua would be separated by domain walls interpolating between the different
phase but equivalent solutions and which would contain significant fractions of the energy den-
sity of the universe and have observable impacts on the Cosmic Microwave Background. There
has been much work on avoiding such issues. Generally it is assumed that the Z3 is an accidental
symmetry and so there is an explicit Z3 breaking term at late times to break the degeneracy of
energy between the different vacuum bubbles and so cause the domain walls to evaporate. This
still maintains the ability to effectively ban the scale invariant terms of the superpotential as
the Z3 violation is small. Alternatively, embedding the discrete Z3 symmetry in a continuous
symmetry, for example U(1)" added symmetries in extensions of NMSSM models, can avoid

domain walls. More information on these topics is available in references [92,93].

SoftSusy works for both the Zs-conserving and Zs-violating NMSSM in both the spectrum
generation (i.e. particle mass calculation) and decay calculation aspects of the program. This
is detailed further in Chapter 4.
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2.5 Supersymmetric Phenomenology

Supersymmetry, as demonstrated diligently throughout this chapter, is therefore a very well
theoretically motivated extension to the Standard Model, and consequently has been a very
popular model amongst theorists, phenomenologists and experimentalists alike. Nonetheless,
the acid test for any theory is its discovery in nature; the LHC experiments at CERN offer an
ideal environment to search for low-energy supersymmetry and so there has been a conscientious,
meticulous effort since its inception to determine the possible signatures of supersymmetric
particles at the LHC. Pedagogical reviews of supersymmetric phenomenology are available in
[94,95] and we detail some of the key features of supersymmetry phenomenology in the remaining

sections of this chapter.

2.5.1 Searching for Supersymmetry at the LHC

Supersymmetry adds many new particles and interactions to the Standard Model and con-
sequently supersymmetric models offer a rich and varied phenomenology with many different
classes of signatures at the LHC. We focus on R-parity conserving signatures, which are the
subject of both our work and the majority of the research efforts in this area. As a result, su-
persymmetric particles are necessarily pair produced. First of all, the supersymmetric particles
produced can have direct signatures at the LHC, with charged particles such as squarks, charged
sleptons, charginos and charged Higgses all leaving charged tracks, whilst coloured particles such
as gluinos or squarks will produce jets of QCD particles. In general however, these direct sig-
natures are not the optimal means by which to search for supersymmetric particles as they sit
on top of very large backgrounds of charged particles and QCD objects of the Standard Model
produced naturally and copiously in a hadron-hadron collider. Consequently, indirect searches

for supersymmetric particles afford the greatest potential for their discovery.

Regardless of the type of supersymmetric particle produced, under the assumption of R-
parity conservation, each supersymmetric particle must decay into an odd number of super-
symmetric particles (in addition to Standard Model particles). Given decays producing fewer
particles are kinematically favoured (see Chapter 3.1), this results in each supersymmetric par-
ticle produced decaying into a supersymmetric particle and a Standard Model particle in a
“2-body” decay. This process continues in a cascade of decays until the LSP (lightest super-
symmetric particle) is produced, which must be stable by R-parity. Each of these cascades of
decays is typically very prompt in the absence of both unnaturally small couplings and any
kinematic suppression such as small mass differences, all occurring within the body of the LHC
detectors. As a result, a signature for a broad array of supersymmetric models at the LHC is
missing energy and momentum corresponding to a neutral (and hence undetectable) LSP parti-
cle carrying energy and momentum out of the detector. Given hadron-hadron colliders have no
control over the longitudinal momentum of a given event (as it is set via the parton distribution

functions determining the momentum fractions of the colliding partons), the signature is re-
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ferred to as missing transverse energy/momentum (“MET”). Whilst Standard Model processes
involving neutrinos will also produce MET, this is typically much less than would be expected
from supersymmetric cascades of decays. The MET produced in the supersymmetric cascades
will also typically come with multi-jet and/or multi-lepton signatures arising as Standard Model
by-products from the cascade of decays to the LSP, see Figure 2.5 for an example.

lepton
Has its own o

cascades producing I /T,f =+ _> lj: y —

jets and lepton of

same sign il / -
4—/‘ 7] 7 -2 rad @ j MfT
G q—»q —» S _>Zl LSP

\ jets
Z —e[m]

Figure 2.5: Supersymmetric particles pair-produced in proton-proton collisions at the LHC each cascade
down to the LSP (usually the lightest neutralino Zl) producing missing transverse energy and momentum
(MET) along with other signatures. In the cascade given here each supersymmetric decay chain produces
a lepton and jets and therefore the overall signature for the pair production is MET + jets 4+ same sign
dileptons (same sign dileptons have a small Standard Model background).

The specifics of which particles are produced, which decay modes are dominant, which are
suppressed and the like are very much dependent on the model parameters, the mass spectrum
and the admixtures of gauginos and Higgsinos in the electroweakinos. Indeed the SoftSusy de-
cay calculator is specifically designed to perform the decay calculations for any supersymmetric
parameter point of the MSSM or NMSSM in order to guide experimental searches for superpar-
ticles as to which decay modes are most promising or most constraining. Nonetheless, general
points can be made - in particular there are a range of signals which occur for broad ranges of
(N)MSSM parameters; whilst given the importance of the supersymmetric cascade decays to the
LSP for supersymmetric searches, generic comments can be made which depend largely only on

the nature of the LSP, which can have a notable impact on the phenomenology.

The LHC is generically able to place stronger bounds on the strong production of supersym-
metric particles (g, ¢) than on electroweakinos (VNVji, ZZO) This occurs as coloured supersym-
metric particles are easier to search for, producing more jets and usually more MET than the
lighter electroweakinos due to their heavier masses, whilst also tending to be more copiously
produced at a hadron-hadron collider. For this reason, searches for neutralinos and charginos
frequently have to use lepton signatures to suppress backgrounds, but even so produce less

stringent bounds.

The LSP is a key aspect of supersymmetric phenomenology and so its composition (i.e. its
amounts of each of the gauginos and Higgsinos) as well as that of the other light electroweakinos
has important effects on the nature of the decays which occur and accordingly on the Stan-
dard Model products produced, which determines the lepton signatures, jet activity and other

features. The gauge eigenstates of the electroweakinos are related by supersymmetry to their su-
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perpartner electroweak gauge bosons and the Higgs bosons; as these all interact differently with
different particles, so do the electroweakinos. Consequently the fraction of each electroweakino
gauge eigenstate in the mass eigenstates for the lighter neutralinos and charginos affects their
interactions and decays. These considerations may allow more precise searches for given model
points or more information to be gleaned for given signatures. This situation is complicated
further in the NMSSM, where the neutralinos may also have singlino components, as these cou-
ple to non-Higgs boson particles only via mixing, neutralinos with large singlino components
will interact very weakly, allowing long-lived NLSPs in the case where the LSP is dominantly
singlino. These NLSPs may then produce displaced vertex signatures. In general the admixtures
of singlino will also reduce the rates of decays and reduce branching ratios, making searches more
difficult.

Given the large extent of the supersymmetric parameter space, even within the MSSM,
assumptions are often made simplifying the setup and phenomenology of the associated models.
In particular, insight into the nature of the LSP in different models is welcome given its key
importance to the phenomenology. One such common assumption is “gaugino mass unification”,
given in supersymmetry the gauge couplings unify at a high scale it is often also assumed the
gaugino masses unify, for example in the Constrained MSSM (CMSSM) a common gaugino

mass of M;(GUT) = My(GUT) = M3(GUT) = m is taken. This assumption has important
2

consequences as the ratios of the gaugino masses to their gauge couplings, J;/[" are fixed as the

scales are changed as a result of the form of the 1-loop § functions. The proof is straightforward
and is summarised here. In Chapter 2.2.6 in equation 2.36 we gave the MSSM 1-loop S functions
(for the gauge couplings) in terms of the scale @, if we were to derive the § function for the
gaugino masses at 1-loop we would obtain

OM;(Q) 1

N _ L 2ary
BOM) = i = gt Mibi (2.51)

Then combining the 8 functions for the gauge couplings and their matching gauginos we then

observe the § functions for the ratios ];4; are 0:

7

OM; .2 _ pr dg? (ngM-b-)g-Q _ M'Qg-(ib)
ﬂ(MZ) N dlog Qi iPlogQ _ \8m2Ji T I rEJe 1672 2

2 4
9;

=0. (2.52)
9; g?

The result of this is that, under the assumption of gaugino mass unification, given the gauge

couplings also unify at MgyT, the ratios M M % are fixed at all scales. Consequently

the ratio My : My : M3 is approximately 191: 2: ;2at allgscales and therefore the gluino will be
the heaviest gaugino and the lightest neutralino (LSP) will be dominantly bino. This allows
us to make largely model independent comments about gluinos producing more boosted events
(and hence more MET) than electroweakinos, whilst having a dominantly bino LSP also affects
the signatures of the supersymmetric cascades of decays. Having a dominantly bino LSP can

however cause problems astrophysically as it interacts weakly and so freezes out with relic
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abundance larger than that expected for dark matter - it must therefore be further depleted
by some resonance in its interactions or via coannihilation. More detail about the dark matter
phenomenology of different supersymmetric LSPs can be found in [96]. However, given the
lack of discovery of gluinos, and the consequent stringent bounds placed on the gluino mass, the
lightest possible gluino mass is ever-increasing, under the assumption of gaugino mass unification
this pushes up the values of the bino and wino masses too; contrastingly however, the Higgsinos
can never be too heavy as, to avoid unacceptably large fine-tuning, they must always be of
order the electroweak scale. Therefore it is becoming increasingly favoured to have Higgsino-
like LSPs [97], whose phenomenology is significantly different - for example Higgsinos tend to
be under-produced as a result of large annihilation cross-sections, whilst as the masses of the
gauginos all increase the lighter electroweakinos become more and more dominantly Higgsino
and accordingly have smaller mass splittings. This ensures 3-body and phase-space suppressed

decays become more likely, perhaps offering displaced vertex signatures.

There are, nonetheless, specific setups in which other LSP types are dominant. One classic
example is that in Anomaly-mediated supersymmetry breaking models the gaugino masses are
found in approximate proportion to their 5 functions (i.e. the b; coefficients of equations 2.36
and 2.37), ergo the lightest electroweakinos are predominantly wino and nearly degenerate.
As a result, decays of the lightest chargino Wli to the lightest neutralino Z? may be 3-body
phase-space suppressed decays, or even produce pions. These decays therefore require special
treatment and offer interesting signatures such as kinks and disappearing tracks. This setup
is consequently included in the SoftSusy decay calculator and more information is given later
in Chapter 4.2.5. There is also the possibility of gravitino LSPs in supergravity models. As
described in Chapter 2.1.3, in GMSB models the gravitino is often the LSP, therefore NLSP
decays to the gravitino LSP and a Standard Model particle (photon, Z, Higgs, gluon or fermion
depending on the NLSP particle) become important, the weaker interactions present for a grav-
itino enable the possibility of displaced vertex signatures. This configuration is also available in

the SoftSusy decay calculator and so is described further in Chapter 4.2.4.

Of course, this discussion of the importance of the LSP for supersymmetric phenomenology
is nominally redundant in the case of R-parity violating (RPV) models. However with small
RPYV some of this may still hold as the LSP may be stable on the scales of the size of the LHC
detectors; alternatively RPV decays of the LSP to Standard Model particles may allow unusual
displaced vertex and other signatures. Nonetheless, RPV models are not included in our decay

research and so we make no further mention of these.

In addition to these searches for specific decay signatures or specific final state LSPs, the
indirect effects of supersymmetric particles as intermediates or in loops can also be sought in
otherwise purely Standard Model processes. One means of searching for supersymmetric inter-
mediates in a general manner is to perform searches for resonances looking for the effects of
new species of intermediate particles affecting the differential distributions of known Standard
Model processes. In these searches, sharp peaks are searched for in the invariant mass spectra

of Standard Model particles, with the idea being that if these are produced via intermediate
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unknown particles one would expect a Breit-Wigner type resonance (see equation 3.3 in Chap-
ter 3.1) in the production cross-section as the intermediate particle decays into the observed
Standard Model particles. This type of search was crucial in the discovery of the Higgs boson

in the diphoton invariant mass spectrum [12,13].

As the main discovery of the LHC era, the discovery of the Higgs boson itself offers the
opportunity to search for an extended Higgs sector, whilst the Standard Model loop decays
of the Higgs boson to two photons, two gluons or a Z boson and a photon may be measured
to test for additional contributions from supersymmetric particles. For example, whilst in the
Standard Model the h — 77 1-loop decay only has dominant contributions for fermions (of
which top is dominant due to its Yukawa coupling) and gauge bosons running in the loop,
in the MSSM and NMSSM there are also contributions from charginos, charged Higgses and
sfermions; similar considerations hold for the h — Z~ decay, the Feynman diagrams are given
in Figure 2.6. The contributions and expressions for the partial widths of these modes are
listed in the expressions A.150 to A.204 in Appendix A.3.6. So far, no evidence for additional
contributions to these Standard Model loop processes has been observed, with the Ay~ coupling
agreeing with the Standard Model within errors [98], whilst the hZ~y coupling is yet to be
observed with only an upper bound of 6.6 times the Standard Model prediction currently set [99].
Both modes are targets for more precise measurements in the remainder of run II of the LHC

and in future runs.

In fact, the situation is more complicated in examining the decays and couplings of the
Standard Model Higgs, as it is expected that the lightest Higgs of the MSSM, or the NMSSM
eigenstate corresponding to the 125 GeV observation (which in the NMSSM may not be the
lightest Higgs), is in the decoupling limit where all the supersymmetric mass parameters and
the CP odd Higgs mass m4 are all large compared to the electroweak scale. In this limit,
the decays and couplings of the supersymmetric Higgs at 125 GeV tend to that of the Standard
Model Higgs, making distinguishing the (N)MSSM from the Standard Model potentially difficult
[100]. This decoupling with increasing mass of the supersymmetric particles also enables the
MSSM to replicate the Standard Model results for electroweak precision tests, thereby foregoing
potential discrepancies. As a result of such possible similarities between the supersymmetric
Higgs at 125 GeV and the Standard Model Higgs, searches for higher mass resonances in the
same outgoing states produced by the 125 GeV Higgs but at much larger masses are performed
in order to search directly for the heavier Higgs bosons of the extended Higgs sector of the
(N)MSSM. Nonetheless, as of yet there have only been exclusion limits set [101].

Further information on the contributions to Standard Model and MSSM Higgs loop decays,
and on Higgs physics in general in the Standard Model and supersymmetric extensions, can be
found in the excellent book [102] and in the relevant partial width formulae in Appendices A.3.6,
A.6.1 and A.6.2 of this thesis, as well as in the figures in Chapter 4.2.2.

All of these varieties of signals of supersymmetry are being searched for at the LHC, there

are therefore two main overall goals of the LHC at run II and beyond from the point of view of
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Figure 2.6: The dominant contributions to the h — ~v and h — Zv decays, these are W loops and
fermion loops in the Standard Model. There are additional loop particles in the MSSM, however in
practice sfermion, charged Higgs and chargino (xli in this notation means VNVZi) loops all have negligible
effects as LHC bounds restrict their masses to large values. There are also crossed versions of these
diagrams for the diphoton mode.

supersymmetry searches.

- Further inclusive and exclusive searches at yet higher energies looking for new BSM par-
ticles, via their decays to Standard Model and other supersymmetric particles. Included

in this is the possibility of finding dark matter candidates.

- Study the discovered SM-like Higgs boson with greater precision, looking at its decays for
deviations from the Standard Model. Loop decays are particularly important here as they
can tell us about contributions of heavy particles yet to be discovered. Also search for the
possibility of an extended Higgs sector via resonances in Higgs decay products or Higgs

decay widths.

All of this requires knowledge of the decays predicted in supersymmetric models, in partic-
ular in the MSSM and extensions such as the NMSSM, in order to compare the LHC data with
theoretical predictions and allow efficient search strategies to be carried out. This is the moti-
vation behind the computational tools developed to produce decay tables for supersymmetric
and Higgs particles, such as the SoftSusy program decay calculator that we have focused our

research on, which is described in Chapters 3 and 4.

2.5.2 Experimental constraints

The foremost challenge to supersymmetry is that whilst it is very well motivated theoretically,
there has been no direct evidence for it experimentally; rather there is only indirect evidence
when experimental measurements are cast in a theoretical light (naturalness, gauge unification,
dark matter and the like). If supersymmetry is to be discovered it would therefore represent a
tremendous theoretical insight into the nature of our physical world. However, as of yet, despite
significant efforts there have been no verifiable signs of supersymmetric particles or their effects.
This lack of observation is used to put bounds on sparticle masses; which are summarised in

their current form in Table 2.3.

M Outside of specific supersymmetry research, there is also the ambition of measuring Standard Model processes
to greater precision in order to extend our knowledge of the Standard Model, whilst also enabling possible
deviations from the Standard Model to be discovered which may offer hints of the form of new physics present.
This aim is a motivation for our work in the second half of this thesis in Chapters 5, 6 and 7 on transverse
momentum spectra and resummation.
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Particle Exclusion at 95% CL (i.e. Reference
lower bound on mass)
gluino g 1.85 TeV [103]
lightest stop t 1TeV [104]
lightest sbottom by 860 GeV [105]
squarks of first two generations q 1.55 TeV [106]
lightest neutralino (LSP) A 650 GeV [107]
lightest chargino/ sgcond lightest Wli / ZS 11 TeV [107]
neutralino
Heavier CP odd neutral Higgs A 440 GeV [108]
sleptons ] 500 GeV [107]

Table 2.3: Bounds on the various supersymmetric and Higgs particles of the MSSM by the ATLAS
experiment. These bounds are at 95% confidence level (approximately 20) and each rely on a series of
assumptions and so are only a guide to the approximate order of the mass range searched, in particular
they rely on the masses of other supersymmetric particles. There are many different searches and exclusion
limits set for each particle depending upon the model assumptions made and channels searched. Moreover
an extensive search was not performed to produce the table, the limits are those available at [109].

These bounds present potential problems given the motivation for supersymmetry to resolve
problems of naturalness. There are nonetheless possible explanations for the non-discovery of
sub-TeV mass sparticles including RPV (which causes reduced missing energy by allowing the
LSP to decay) and degenerate/compressed spectra (which reduces the transverse momentum in
final states due to small mass splittings between initial and final state particles), as well as a va-
riety of other supersymmetry (SUSY) models. In addition it may simply be that supersymmetry
is present at slightly higher scales, out of the reach of the LHC in its current form.

In reality, these stated limits are in any case at best a guide: they depend on the model,
assumptions and the masses of the other supersymmetric particles. They should consequently be
viewed as the highest mass possible to exclude thus far rather than the lowest mass at which the
specific supersymmetric particles may exist. Given the vastness of even the MSSM parameter
space, rigorously excluding all possible models is very difficult and possibly even out of reach of
the LHC. Rather, the experimental data are typically viewed in the light of a set of assumptions
in order to simplify the setup, but which restrict the exclusions to specific models. For example,
the experimental data are often viewed in the context of simplified models where the MSSM
parameter space is reduced to a two dimensional plane, whilst branching ratios are often assumed
to be 100% and direct decays to the LSP are usually assumed. All of these assumptions are
invalid for many different regions of supersymmetric parameter space, the masses of the other
supersymmetric particles not included in the two-dimensional reduction may be such that the
specific decay mode searched for may be suppressed, whilst there may alternatively be many
different relevant decay modes for the particle considered which would reduce its branching ratio
for the mode assumed. Furthermore, as we have seen, supersymmetric decays do not come in
isolation and instead take many steps to decay to the LSP in cascades of decays. These factors

all significantly affect the phenomenology and signatures and likely reduce the exclusion reach
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in the case of realistic models. Indeed, it is for these reasons and more that programs such as
SoftSusy are desired in order to allow the examination of experimental data in the context of

the full supersymmetric model theoretical predictions without such assumptions built in.

The LHC experiments do however also place model-dependent constraints for some of the
more popular, reduced parameter space supersymmetric models. In particular, much of the
early Run I work of the LHC focused on the Constrained Minimal Supersymmetric Standard
Model (CMSSM), which features unified scalar masses, unified fermion masses, and unified
trilinear couplings at the GUT scale and so reduces the parameter space to just 5 variables My,
M 1 Ap, tan 8 and sign(p). Consequently this model has now been largely ruled out around
electroweak scales (see [110,111]), although again there are various assumptions and caveats
folded into these exclusion limits. At Run IT there has correspondingly been a large focus on the
“Phenomenological MSSM” (pMSSM), an enlarged model relative to the CMSSM and which
has 19 free parameters. It is a bottom-up model based on taking the entire MSSM parameter
space and making only assumptions based on reasonable expectations and required consistency
with observed data elsewhere; it therefore assumes there are no new sources of CP violation
relative to the Standard Model'®, no Flavour Changing Neutral Currents (FCNCs) added and
assumes first and second generation universality. Given this parameter space is much much
larger than the CMSSM, the exclusions placed on it are much less stringent and it is very
experimentally challenging to rigorously exclude. For phenomenological studies of the pMSSM
model exclusions from the LHC see [112]. There are further additional assumptions which can
be made in order to simplify the parameter space further or explain to some degree the lack of
CP or flavour violating effects. For example, “universality” (and reality) of soft parameters takes
the scalar mass-squared matrices as proportional to the identity in the basis of the quark mass
matrices (and takes the trilinear coupling matrices as proportional to the Yukawa matrices),
whilst “alignment” takes them to be diagonal (or almost diagonal) in the basis of the quark
mass matrices; both assumptions allow the scalar matrices to be diagonal in the required bases
and thereby eliminate any FCNCs, whilst the matrices are also real eliminating any additional
CPV. Alternatively, one may wish to be generic in the flavour structure and instead argue
the masses of the first two generations of squarks are decoupled, being much higher than the
electroweak scale (typically tens of TeV) so that loop effects causing FCNCs are suppressed. In
this scenario one should endeavour to leave third generation squarks and gauginos around the
TeV scale to continue to resolve issues of technical hierarchy, whilst Higgsinos must always be
around the electroweak scale in order to set the Higgs mass of the correct order', though the

hierarchy of supersymmetric masses may then be regarded as unnatural.

15The “SUSY CP Problem” is the question of why, given that most of the parameter space would introduce
extra CP violation, there in fact appears to be little additional CP violation relative to the Standard Model. There
is a similar “SUSY Flavour Problem” of why there are no large Flavour Changing Neutral Currents (FCNCs)
arising from large off-diagonal elements in sfermion mixing matrices.

161 instead only gauginos and Higgsinos are left around the 1 TeV scale and third generation sfermions are also
made heavy then one has a model of “Split Supersymmetry” [113].
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Chapter 3

SoftSusy Overview

In this chapter and the next, we discuss our work on the SoftSusy program and the develop-
ment of a decay calculator program which determines the branching ratios for supersymmetric
and Higgs particles at the LHC. Further details are available in our paper associated with this

work [1].

3.1 Particle Decays

As we have underlined in Chapter 2, decays are the key to experimental signatures of su-
persymmetry at the LHC, and form a crucial part of our work in this area. Therefore, ahead of
the description of the research performed in the development of the decay calculator program
for SoftSusy in the rest of the chapter and in Chapter 4, we provide a summary of particle
decay theory in this context; more information is available in [16,33,114]. In our description in
this section and the rest of the thesis, we classify decay modes according to both the number
of daughter particles (with n-body meaning n decay products) and the order of the corrections

included, i.e. tree-level, 1-loop or 2-loop.

Particles and their interactions are inherently quantum mechanical in their behaviour, there-
fore when considering particle interactions we may begin with Fermi’s Golden Rule of quantum

mechanics for the transition from one quantum mechanical state to another:
Ty = 27| Ty * () = 277/ |Tyi|?0(E; — E)dn. (3.1)

This describes the transition probability to go from one quantum mechanical state |i) to the state
|f) in terms of the transition matrix element Ty; between the states and the p(E;) density of
available states, encapsulating the physics of the transition and the number of possible equivalent
transitions respectively. In this case, the integral ensures that all states are integrated over,
whilst the delta function imposes energy conservation on the allowed states. The transition
matrix element may be expanded, in the limit of weak interactions, as a perturbative expansion,
essentially expanding the transitions order-by-order as is often done for expressions in quantum
field theory.

We may then generalise this expression to the case of particle interactions in quantum field
theory; in this case the transition matrix element and integral over states become the matrix

element and integral over available phase space. In the case of a 2-body decay we now integrate
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over the 3-momenta of the outgoing particles and ensure energy and momentum conservation

with appropriate delta functions:

(

d3Pf1 d3pf2

. _(2m)! 9 5
P k) =g, /'Mf" o= En = Ep)0 P =Py = Pr2) ooyss by (aryiz, (3.2)
21t 4 .
= <2E)¢ / |Myil26% (i — pr1 — pr2)d(0F — mF)0(PFy — m3y)d prrd pyo.

The matrix element My; contains the particle physics of how the interaction (here the decay)
occurs, whilst the integration over the 3 or 4-momenta of the final states (i.e. over the phase
space) sums up all the possible ways the interaction could occur, whilst ensuring 4-momentum
conservation, thereby encoding the kinematics behind the calculation. In the second step here we
rewrote the 3-momentum integrations in terms of integration over the entirety of a 2-dimensional
4-momentum phase space with additional delta functions ensuring the 4-momenta square to the
mass squared of the particles considered. This simplifies the calculation as the matrix element
and phase-space integration are both Lorentz invariant, and so may be evaluated separately in
any frame and once only. All frame dependence occurs in the prefactor of the integral via the
1/E; which provides the necessary factor expected - the decay rate is inversely proportional to

the energy due to relativistic time dilation effects.

Such integrals of the matrix elements over phase space must be evaluated for each possible
decay for each decaying (parent) particle. Each particle may however interact in a number of
ways, therefore there are many possible decay modes for each parent particle, which all must
be summed to give the total decay rate of the particle. This is termed the total “decay width”
(T") of the particle, which is the inverse of the particle lifetime 7. The decay width is so-called
as it is related to the form of resonances in the production of unstable particles, for example at
colliders, with the energy spectrum for the production of an unstable particle of mass M and
decay width I" set by the Breit-Wigner form:

k

F(B) = (B2 — M2) + M2T? (3:3)

The total decay rate of a particle is consequently referred to as its “decay width” as I' sets the
full-width at half-maximum of the energy distribution of the decaying unstable particle. Each
of the decay widths of the individual decay modes are then “partial widths” (PWs) (I';), and
so the probability of a specific decay mode occurring for a given parent particle is expressed as
the “branching ratio” (BR) for that decay mode and is simply the ratio of the relevant partial
width to the total width: r

i

BR= . (3.4)

In the sample case of our 2-body decay ¢ — f1fo considered above, we may perform the
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integrals present, first the 3-momentum conserving § function removes the d*p, integral:

d*p

. 1
(i — fif2) = Si2E; / |Myi|*6(E; — Efy — Ef2)m. (3.5)

Then as the integral is Lorentz invariant we choose to evaluate it in the centre of mass frame

of the decaying particle so that E; = m; and Eyy = ,/m?c2 + p?l, and we convert to spherical
polar coordinates, d°p 1= pfcldpfldQ:

2
(2—>f1f2 /|Mfl‘ 5 m; — \/mf1+pf1 \/mf2+pf1> pflcipfldQ '
\/mfl +pf1\/m3‘2 + 1%
(3.6)
The integral may then be performed using the property of the delta function
6(f(x)) = o 15(16—930) (3.7)
dz |, ’

which assumes there is only one root (zero) of the function f(z) at zg. If there are multiple roots
these must be summed over. Applying this leads to the standard expression for the integral of

a function of a variable with a delta function of the same variable:

ar | !
9281 (@) = gl0) | L (33)
o
Consequently our expression in equation 3.6 may be considered as:
Dl fifa) = P oraten)dpnd® = 5 [ M| 7| ()0
1J2 ) f1 f1)aps1 Sr2m; fi dp )
(3.9)

2
where :m~—\/m2 + p? —\/m2 + p2, and = i .
f(pfl) i f1 pr F2 pfl g(pfl) 4\/m%1+p?1\/m?2+p?1

Therefore 4 = — z 1 where x( is now p* and is the value of the outgoing
Pl \/mfl—i-pfl \/mf2+pfl
particle 3-momenta when the centre of mass momentum is 0, and so:
, 1 P p*
(i — = My;|? 2 / My, |2dQ,
(= fif) =50 sil 4(Ef1+Ef2) ~ 8n%m, /’ Mel™ 4, 327r Myl
(3.10)

which is the generic expression for the partial width for a 2-body decay of a parent particle ¢
decaying to two daughter particles f; and f in quantum field theory. Straightforward kinematics

then reveals that:

.1
v = 5 \lm? — (mp+ mpPllmE — (my — mpa)?] =

N

2

m;
5 (mi, mp1, my2). (3.11)
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S . . . S .
The function Az is a common kinematic function arising in decay formulae and is given by

M mprmg) = [t (P2 [o - (YT (g

m; m;

Consequently we may rewrite the 2-body decay expression as:

1
64m2m;

L@ — fif2) =

~1 ~1
)\2(mi,mf1,mf2)/|Mfi]2dQ: )\i(mi,mfl,mfgﬂMﬁ\z. (313)

16mm;
In the last stage we have assumed no solid angle dependence in the matrix element. In general,
in order to complete the derivation for a given mode, one must evaluate the matrix element and
integrate over any solid angle dependence. This involves evaluating a trace of Dirac spinors in
the usual way for quantum field theory and then converting the dot products into momenta and

angles before performing the integration.
In general however, particles may undergo not just 2-body decays, but n-body decays; each

additional particle in the final state introduces an extra dimension to the phase space which must

be integrated over, the corresponding 3-body decay formula may be straightforwardly written

down:
; (27T)4/ 2 3 d3pf1d3pf2d3pf3
r =——— | |M¢|*0(E;—E—FEn—E3)0°(p,— —Pro— .
(i = fifafs) oF, |Myi|“0(Ei—Ep1—Ea—Ef3)0°(P;—Pf1—Py2 pf3)(27r)92Ef12Ef22Ef3
(3.14)

Such expressions are much more complicated to evaluate as they have an additional final state
integral. Add to this the need to sum over different intermediates and consider interferences
between such different contributions then it is understandable why such integrals are largely
performed in the SoftSusy decay calculator via numerical integration. The exception to this
are the Higgs decays to an on-shell vector boson and off-shell vector boson which goes on to
decay into a fermion-antifermion pair; in that case the masses of the final state fermions may
be neglected, simplifying the calculation and also giving the problem greater symmetry, which

we exploit in determining the integrals.
In fact, the expressions may be generalised to an n-body decay' as:

3
d°py;

(27.‘_)4 n
2F; /’Mfi|254(pi_pf1_pf2_"'_pfn) | | W (315)
) pate)

L@ — fifo.. . fa) =

Fortunately however, in determining the decays of particles at the LHC we do not have
to consider all of the infinite set of many body decays available to each parent particle as
every additional particle in the final state suppresses the partial width for that mode. This
can be argued qualitatively by considering that every additional particle, whilst offering a new

dimension to the phase space, spreads the same total incoming energy-momentum over one

'As an aside one can use this to deduce the number of independent variables, or Mandelstams, for a given
process with n final state particles. Each additional final state particle has an additional 3-momentum integration
whilst there is also overall 4-momentum conservation giving 3n — 4.
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additional particle. Energy-momentum conservation requires that the energies and momenta
of the final state particles sum to that of the ingoing decaying parent, however in the phase
space integration we integrate each particle over a factor QEd(ngr)g which essentially represents
a fraction of the total energy-momentum in that final state particle. Therefore upon adding a
particle to the final state, each such fraction is reduced and overall we therefore suppress the
partial width, in fact Figure 4.9 in Chapter 4.2.3 demonstrates the dominance of 2-body modes
over 3-body modes due to this suppression. Quantitatively this can be observed by comparing
1-body and 2-body phase space (as in [114]). The phase space for a “1-body decay”, where a
particle transforms into another particle (this cannot really be observed in quantum field theory
as it would just be considered a mixing of particles which is accounted for to obtain the physical

eigenstates) would be:

d3pfl

ICISESY %54(@- —Py1) (3.16)
(27T)32Ef1 ’

dPS; = (2m)? 25,

0% (pi — pp1) = (2m)

but, using equation 3.7:

—1 B 1
C2Ep’

i
[ ok vy = miars = [ atsEnaEn =

(3.17)
Therefore we may write it instead as an integral over the full 4-dimensional phase space as:

iPS) = (27) / d'p 18 (s — )3 (PP — miy) = (2m)6(s — m?y), (3.18)

and changing variables from s to /s via equation 3.7 in the first step, and using 6(ax) = %

in the second we obtain

§(1—=4
dPS, = (27)5(v/5 — mf1)2\1/§ _ ( — ) . (3.19)

The coefficient of this normalised § function represents the volume of the phase space available

for such “l-body” modes and is 7, whilst s ensures the dimensions are correct.

Meanwhile for the 2-body case we can similarly extract this coefficient from the expression
we derived previously in equation 3.13. The coefficient parametrising the size of the 2-body
decay phase space is therefore (1/167m) so the presence of the additional particle in the final
state suppresses the decay width by (1/(47)2). A similar suppression occurs for each additional
particle in the final state; therefore our work on SoftSusy focuses on 2-body decay modes and

also 3-body modes in regimes where there are no 2-body modes present.

The form of the kinematic functions produced by the phase space element integration also
reveals information about the behaviour of partial widths in compressed spectra where the mass
difference between the initial state and the final state d,, = m; — Zjvzl my; is small. Take as
an example the 2-body phase space element - in these compressed regions their behaviour is
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dominated by kinematics, and for the 2-body decay case the kinematic function is A as given
previously in equation 3.12. We can consider the behaviour of this function as m; — (ms1+my2)
to determine how the partial widths behave for compressed spectra. Figure 3.1 plots this function
for mg1 +mype = 300 GeV in the region m g +myo to 5(myp1 +myo) for different mass differences
between the two final state particles. The key feature is the sharp rise in the function in the
compressed region near m; = mf1+mya, here changes of just a few percent in the masses of any of
the initial and final state particles can cause the partial width to change considerably, particularly
for extremely compressed decays. For example, for final state masses my; = 250 GeV, myy =
50 GeV a change of 41% in the partial width arises in changing the initial state particle mass

by less than 1% from m; = 300.25 GeV to m; = 300.5GeV. This is due to the change in the
Am

m;
factor increase in increasing Am from 0.25 GeV to 0.5 GeV is 1/0.5/0.25 = 1.41 as observed. As

a result the accuracy of the mass spectrum predictions, as well as the approximations, schemes

X function which behaves as A ~ as Am = m; —my — myp2 — 0 and so the expected

and order of the decay calculations, causes significant variations in the partial widths for very
compressed spectra. In reality, compressed spectra typically produce 3-body decay modes,
rather than 2-body modes as analysed here - nonetheless the conclusions and sensitivity to the
mass predictions and decay assumptions are similar. The figure also confirms the expected
behaviour that decay modes are forbidden kinematically (as they cannot conserve energy) if the
final state particle masses sum to greater than the initial state particle masses, decay modes
therefore “turn on” once the sum of the final state particle masses, the threshold, is reached:
m; = myg+mMypo+ ..My,

In addition to tree-level 2- and 3-body modes, we also consider loop decays and loop cor-
rections where these are phenomenologically important modes or produce important corrections
respectively. In general however, the addition of a loop to a process results in an additional in-
tegral to be performed over the loop momentum, as well as extra propagator and vertex terms;
this additional integral therefore greatly increases the difficulty of evaluating the partial widths.
Furthermore, there are often also many loop contributions to the 1-loop expression, meaning
many different Feynman diagrams must be evaluated. In any case, all the loop decays and
loop corrections in SoftSusy are performed explicitly and evaluated analytically. Propitiously
for our applications in decay calculators, loop decays and loop contributions and corrections to
amplitudes result in an extra factor of a; = (g2 /4n) in the matrix element, and so 1-loop decays
are typically suppressed relative to tree-level modes by at least factors of (1/(4m)?). As a result,
for many of the modes included in SoftSusy only tree-level expressions for the partial widths
are required. Exceptions occur when the tree-level mode is suppressed or not available and so
the first such decay occurs at 1-loop, or when the corrections caused at 1-loop are particularly
large - as in some QCD decays as as ~ O(0.1) at collider energies. In particular, we include the
1-loop decays of the Higgs bosons to two photons, to two gluons or to a Z boson and a photon,
which are not available at tree-level as the final state contains massless particles, but which are
key experimental channels at the LHC. Moreover they are not as suppressed relative to tree-level

modes as one might expect due to the Yukawa couplings of the top quark which enhance the
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Figure 3.1: The kinematic function which dominates the behaviour of the partial width expressions as
the initial and final state masses approach each other, demonstrating the sharp increase and significant
dependence on the mass predictions near initial and final state mass degeneracy. This figure is made
for the 2-body decay kinematic function A% of equation 3.12, nonetheless the conclusions are general.
Here the final state masses sum to 300 GeV and the figure demonstrates three different final state mass
differences m¢; — myo, the kinematic function is plotted as the mass of the initial particle m; is varied
from degeneracy (m; = mys1 +myo = 300 GeV), where there is no available phase space, to 5(m 1 +my2),
where large amounts of phase space are available .

top 1-loop contribution by (m;/my)?. We also include beyond Leading Order QCD corrections
to the Higgs boson decays to gluons (which is a 1-loop process so these are 2-loop corrections)
and to the Higgs boson decays to quarks as it is well known that these have significant effects on
the partial widths, reducing the partial widths to bottom and charm quarks by approximately
50% and 75% respectively, whilst increasing the partial width to gluons by around 50% [84,115].
These decay modes to quarks, particularly bottom quarks, are dominant modes for the Standard
Model-like Higgs boson and so their accuracy affects all branching ratios significantly, whilst the
Higgs to gluon gluon decay amplitude is the reverse of the key gluon gluon fusion production

mechanism for the Higgs.

It should also be noted that the factor gained from an additional particle in the final state is
approximately the same factor as is gained by adding a loop to an expression, so in regimes where
we consider 3-body tree-level modes, 2-body 1-loop modes may be important also, depending
on the relative couplings and the kinematics. We will endeavour to add 2-body 1-loop modes in

these cases in future developments.
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3.2 Decay Calculator Context

In order to produce theoretical predictions for the phenomenology of supersymmetric models
at the LHC and elsewhere, several different types of computational tools are required. The anal-
ysis flow and different classes of programs needed at each stage of the calculation are summarised

in Figure 3.2 and more details are available in [116].

The first stage is the determination of the supersymmetric mass spectrum, i.e. the calculation
of the supersymmetric and Higgs particle masses for the model and parameter point considered -
this is performed by “Supersymmetric Spectrum Generators”, of which SoftSusy [66] has been a
premier example. SoftSusy is able to calculate the particle masses and couplings in the following
cases: the R-parity conserving MSSM, with three-loop renormalisation group equations (RGEs)
and some leading two-loop threshold corrections to gauge and Yukawa unification [117] (both
one order higher than comparable alternative programs); the R-parity violating MSSM [68] in-
cluding neutrino masses and mixings [69]; or in the R-parity conserving NMSSM [118]. Both
the MSSM and NMSSM have two-loop corrections to the squark and gluino pole masses [119] as
the production of these strongly interacting supersymmetric particles offers key signatures for
supersymmetry at the LHC. SoftSusy has therefore developed into a comprehensive, publicly
available, key program in the determination of the properties of supersymmetric particles for
searches at the LHC. Nonetheless, other programs exist which also determine the mass spec-
trum of supersymmetric particles in various approximations, and to various degrees of accuracy;
for the MSSM there are the codes FLEXIBLESUSY [120, 121], ISASUSY [122], SUSEFLAV [123],
SUSPECT [124] and sPHENO [3,4], whilst Higgs masses can be calculated in supersymmetric mod-
els in FeynHiggs [125]. For the NMSSM the choices are more limited, with only one alternative
stand-alone program to SoftSusy for the spectrum generation: this is the NMSSMTools [126-128]
program. Nevertheless, the SARAH [129] Mathematica package (which produces vertices, mass
matrices and RGEs for supersymmetric models) can be combined with FLEXIBLESUSY or sPHENO
to calculate the spectrum. Meanwhile, NMSSMCALC [130] can be used for the computation of the
Higgs masses and decays in the NMSSM.

Following the calculation of the supersymmetric and Higgs masses, as well as their couplings,
the next stage is the determination of their decays. This is performed by “Supersymmetric
Decay Calculators”, and the development of such a program for SoftSusy was the primary
focus behind our research in this area. The SoftSusy decay calculator program can compute
the partial widths and branching ratios of supersymmetric and Higgs particles in the MSSM and
NMSSM [1], including all tree-level 2-body decay modes as well as 3-body modes at tree-level for
the Higgs particles, gluino, chargino and neutralinos, and the phenomenologically crucial 1-loop
decay modes of the Higgs particles into two photons, two gluons or a photon and a Z boson. QCD
corrections are also included for Higgs decays to quarks (1-loop corrections) and to gluons (2-loop
corrections). The decay modes included, implementation, validation and results of the SoftSusy
decay calculator program that we have written and developed as part of our research in this

area are elucidated in much greater detail in the remainder of this chapter and the next. Again,
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a variety of alternative programs are available, each able to compute to differing accuracies
different subsets of the supersymmetric and Higgs decays for given supersymmetric models.
Some programs have incorporated this task into their calculations, such as event generators
(described in the next paragraph), however the majority of programs for supersymmetric decay
calculation are dedicated tools: foremost amongst them being SUSYHIT [131] (itself a combination
of two codes, HDECAY [132,133] and SDECAY [134]); FeynHiggs [125], which determines only the
Higgs boson decays; and sPHENO [3, 4], which contains a decay calculator for the MSSM along
with its spectrum generator. The options for decay calculations in the NMSSM, exactly as for
the spectrum generation, are much more limited, with the NMSSMTools [126-128] program once
more the sole stand-alone option, whilst again SARAH [129,135] can be combined with sPHENO.
Meanwhile, in the area of Higgs decays of the NMSSM, as well as determining the masses,
NMSSMCALC [130] can calculate the branching ratios. This includes CP violating effects, which
may in general be present in the NMSSM, once more some dominant QCD loop corrections are

incorporated.

The information about the mass spectrum and decay widths of the supersymmetric particles
may then be passed to event generator programs to simulate the supersymmetric particle events
produced at the LHC and elsewhere. “Matrix Element Generators” first simulate the collision of
the 2 protons in the LHC beam, producing N particles, these particles are then allowed to shower
into hadrons, and decay using the input of the supersymmetric decay calculators to govern the
ratio of different decay modes undertaken. The production of such events is generated randomly
via Monte Carlo integrations. Examples of such supersymmetric event generator programs
include PYTHIA [136], Herwig++ [137,138] and SHERPA [139,140], all of which carry out both the
matrix element generation and the parton showering and hadronisation. This showering and
hadronisation produces many Standard Model particles and QCD jets which may also be used
as event signatures, depending upon if they can be discriminated from the general large QCD
backgrounds which are also produced. There are also specific programs dedicated to matrix
element generation, including MadGraph [141] (which also then matches the results onto parton
showering algorithms), PROSPINO [142], and many others. The list here is not exhaustive and
only representative of a large area of previous and ongoing research - more can be found in the
literature, including in [116].

As well as these cross-section estimates and event production information, in order to con-
front experimental data with theoretical predictions detector simulations are also required; these
impose various cuts, efficiencies and acceptances based on the precise morphology and design
of the detector used experimentally. This stage is usually performed partially in the Monte
Carlo event generators, but the details of the experimental setup are known only to the relevant
collaboration and so further such collider simulations may have to be done “in-house” within
the experimental collaborations themselves. Nonetheless, general conclusions can be drawn and
searches can often be approximated outside of this by phenomenologists, perhaps using detector
simulation tools such as DELPHES [143].

In addition to all of this, calculations of specific further observables may also be desired, in
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order to address the relevant supersymmetric model or parameter space point with further con-
straints and evidence outside of the specific signatures simulated. One such class of constraints
comes from dark matter and associated observables. As described in Chapter 2, supersym-
metric models may provide an LSP as a viable dark matter candidate, several programs are
therefore available to calculate the associated dark matter relic density and direct and indirect
dark matter detection observables arising from the considered supersymmetric model parameter
point(s). Examples of programs that can perform these calculations include DarkSUSY [75-77]
and micrOMEGAs [78,79].

Further observables not directly related to the collider signatures but which offer indirect
collider constraints on supersymmetric models include the b — sv branching ratio, which is
sensitive to supersymmetric particles at 1-loop (such as charginos and charged Higgses). This
decay itself is only present at 1-loop in the Standard Model (via W bosons) and so beyond
Standard Model effects can be very significant. Constraints also arise from the anomalous
magnetic moment of the muon (g — 2),, to which there can also be a substantial non-zero
supersymmetric contribution. A review of this area is available in [144], whilst there is currently

a 3.4o0 discrepancy.

Finally, electroweak observables are also key constraints on supersymmetric models: all
spectrum generators, including SoftSusy use electroweak masses such as the Z boson mass
or top mass and other masses as constraints at the electroweak scale, nonetheless they also
determine the mass of the lightest Higgs boson my, to varying levels of accuracy, with SoftSusy
offering particularly high precision via 3-loop corrections to the Higgs mass by linking with
the Himalaya program [145,146]. As indicated previously in Chapter 2.3.4, the necessity to
reproduce the Standard Model-like Higgs boson of mass 125 GeV places significant constraints

on many parts of the supersymmetric parameter space.

There are also global fitting codes which aim at producing either a y? or likelihood value
or perhaps a posterior probability map over the supersymmetric parameter space given input
collider, cosmological and precision constraints. These tools often rely on many of the programs
already mentioned to carry out the supersymmetric calculations, before they themselves eval-
uate the fits. As with the rest of this field, there are several different options available in the
literature including: SuperBayeS [147, 148], which uses SoftSusy, DarkSUSY and FeynHiggs
input; SFITTER [149] and FITINO [150] are other options; whilst recently the GAMBIT tool has
been released as a further Beyond Standard Model fitting code, again incorporating elements of
several programs, including SoftSusy, DarkSUSY and ISAJET. We go into no further details on

these programs as they are not of direct relevance to the work presented here.

As should be now obvious, there are a great number of computer programs available in this
field, and this plethora of computer programs is useful, enabling all possible calculations for
supersymmetric models to be made in a way that would be inconceivable to manage within any
single program. Moreover, the different programs themselves also have different benefits, using

different approximations and covering different models. Our research focuses in particular on
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I Theoretical boundary condition ‘ Dark matter
SoftSusy

‘ SUSY Spectrum calculator H Global fits ‘ Spectrum
Generator

‘ Input observables ‘ ‘ Electroweak/flavour observables ‘

Input Flags —Jpp»
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Decay

Calculator

Event generator
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‘ Parton shower/hadronisation |

‘ Detector simulation ‘

Figure 3.2: The analysis flowchart for producing theoretical predictions for the phenomenology of su-
persymmetric modes, detailing the types of programs required and which tasks may be performed by
SoftSusy. This figure is adapted from [116].

the mass spectrum generation and decay partial widths calculation aspects of these analyses
and so our comments will now be aimed at these programs. A summary of the capabilities of
the mass spectrum generation and decay calculation programs relevant to our work is given in
Table 3.1, which is a projection of the program abilities of each code onto the plane of relevance
to our work and so is far from exhaustive; moreover it is based on reading the available program
manuals and web pages and so is only schematic. For full details we encourage the user to refer

themselves to the manuals of the appropriate programs, whose version numbers are listed.

It is clear that the programs available differ in many subtle aspects. In fact, even programs
having apparently the same approximations and assumptions for a given calculation often will
differ in their numerical answers due to the incorporated higher order corrections being different.
For example decay widths can vary because of the use of different schemes, scales and orders
of running masses and couplings in order to approximate higher order corrections not explicitly
included in the formulae. The same effects are true in the sparticle spectrum [151] and in the
Higgs masses calculated [152-154]. As a result, numerous comparisons have been performed
between the different codes, such as [116, 155], whilst we explicitly demonstrate comparisons in
the decay widths in our validation of the SoftSusy decay calculator code in Chapter 4, based
on our own paper in [1]. As a result of these differences, and the complexity of the calculations,
one key means by which to gauge the theoretical errors associated with the calculations is
the comparison of the results of different spectrum generator and decay calculator programs.
Meanwhile, different codes also serve the purpose of allowing cross-checking and error-finding to

be performed more easily, ensuring the accuracy of the predictions.

The different programs also have to be compatible with one another, allowing each to inter-

face with other codes to perform different parts of the calculations. This can lead to potential
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issues with different versions of different codes not matching or potentially making inconsistent
assumptions or approximations. To attempt to ameliorate this situation as much as possible,
as well as make the lives of the users much easier should they have to use many different pro-
grams to complete their calculations, the SUSY Les Houches Accord (SLHA) [156] and SUSY
Les Houches Accord 2 (SLHA2) [157] were produced. These are designed to allow the more
straightforward interfacing of different programs via input and output ASCII text files listing
the relevant masses, couplings and other model parameters in separate blocks. This has been
largely successful, although some issues occasionally remain, still thereby favouring single pro-
grams determining as many steps of the calculations as possible. Before the advent of the
SoftSusy decay calculator program, SoftSusy has been interfaced with various different pro-
grams, including SUSYHIT [131] to determine the branching ratios of supersymmetric and Higgs
particles in the MSSM, NMSSMTools [126-128| to calculate the branching ratios of supersym-
metric and Higgs particles in the NMSSM, and micrOMEGAs [78,79] to determine dark matter
observables. The SoftSusy decay calculator, which is the focus of our research in this area, now

supersedes the former two, with all decay calculations able to be performed within SoftSusy.

The situation with many separate programs with separate assumptions and methodologies
is, of course, far from ideal; it is preferable to have as many of the calculations as possible
implemented in a single program or even in each of the single programs. This has clear benefits
in usability as users only have to download and compile a single program; avoids interfacing
programs which, even with the SLHA, can introduce bugs; and is cleaner from the point of
view of programming. This would ensure that exactly the same approximations and assump-
tions are made throughout a calculation and the same parameter values used, thereby reducing
possible sources of error. Moreover, there are also physics motivations, by performing many
calculations in each program this means multiple programs carry out each calculation, enabling
cross-checking between programs as well as permitting a greater understanding of the theoretical
errors involved. This should lead to a better awareness of what can be inferred from experimen-
tal data about theoretical SUSY models. For these reasons the all-in-one SoftSusy spectrum
generator and decay calculator package, now available as a result of our work, offers many ben-
efits over the previous setup and enables theoretical predictions for searches for supersymmetric
signatures to be made with greater certainty and ease. We hope that this addition of function-
ality to SoftSusy will facilitate collider studies of sparticle and supersymmetric Higgs searches,
both through the study of differences between it and the other programs as an estimate of the

size of theoretical uncertainty in the prediction and through a fast and unified computation.
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3.2. Decay Calculator Context

SoftSusy | SusyHit sPHENO NMSSMTools| FeynHiggs | PYTHIA| NMSSMCALC
(4.1.4) (1.5) (4.0.3) (5.3.0) (2.14.1) | (8.2) (2.00)
Spectrum v v v v v/ (Higgses X v/ (Higgses
Calculator SUSPECT NMSpec only) only)
RGEs 3-loop 2-loop 3-loop 2-loop - (different - -
approach)
Highest 3-loop 2-loop 2-loop 2-loop 2-loop (+ - 2-loop
Order (Higgs) (Higgs) (Higgs) resumma-
Mass tions and
Corrections EFTs)
NMSSM v X (X) Only v X - v
with SARAH
FV v v v X v - X
RPV v X v X X - X
v masses v X v X X - X
mixings
Experi- X v v v v - v
mental (Only EW) (some)
constraints
Decay v v v v v v v
Calculator HDECAY,
SDECAY
SUSY v v v v/ X v X
decays SDECAY
Higgs v v v v v (high v v
decays HDECAY accuracy)
Loop v v v v v X v
corrections (Higgses (Higgs (Mainly (Higgs (h —
only, only) Higgs only) qd,99)
h — qq, 99) decays)
Decays to v v v v X X X
Gravitinos
3-body v v v v (V) (V) (V)
decays (not f yet) (h = VV* | some | (h - VV*
only) only)
NMSSM v X (X) Only v X X v
with SARAH
RPV X X v X X X X
CPV X X X v X X v

Table 3.1: A comparison of the programs available for calculation of SUSY mass spectra and decay
branching ratios, version numbers are given for each program. The presence and corresponding capabili-
ties of a spectrum generator in the programs is given in rows 2-9. Rows 10-18 similarly reveal whether each
program has a decay calculator and its capabilities. The features of the SoftSusy decay calculator which is
the focus of our work, are given in the second column in rows 10-18. Only a subset of all public programs in
this area can be included in a single table therefore a selection has been made of programs against which we
have performed explicit comparisons and programs demonstrating the breadth of possibilities in this area.
The programs included are SoftSusy [1,66,68,69,117-119,145,146], SUSYHIT [131-134], sPHENO [3,4,158],
NMSSMTools [126-128,159-162], FeynHiggs [125,163-167], PYTHIA [136] and NMSSMCalc [130,168-171].
Other relevant programs not included are given in the text and this table is not exhaustive.
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3.2.1 Mass Spectrum Generator Approach

We now provide a detailed description of the overall workings of spectrum generator and
decay calculator programs. We begin with the first stage of such calculations, the supersymmet-
ric mass spectrum generation. Mass spectrum generators solve a system of linked differential
equations with boundary conditions at each end. These are the renormalisation group equations
of the supersymmetric model with boundary conditions at the low electroweak scale provided
by physical measurements, such as the top mass, Z mass, fine structure constant at my and
others; and theoretical boundary conditions on the soft supersymmetry breaking parameters at
the high GUT scale. In addition, there are requirements on the solution of successful radiative
electroweak symmetry breaking. In order to solve this system, to determine the supersymmetric
masses and couplings at the SUSY scale, spectrum generators must run particle masses, cou-
plings and mixing parameters between two disparate scales. To complete this process in full
generality and with complete rigour, one would have to integrate out each particle below its
mass and match the theory above each particle mass to a reduced effective theory below each
particle mass; however given the number of additional particles present in the MSSM (with even
more in its extensions), this is intractable. Moreover, with the particles able to order themselves
in mass in all possible ways, N additional particles would therefore result in ~ N! effective
theories to be run, each needing its own renormalisation group equations. Given this situation

there are two approaches used in the literature, each relevant in a different regime.

The first approach, and the method adopted in SoftSusy as well as SUSPECT (and also in
versions of sPHENO prior to version 4.0), is to match the Standard Model parameters used as
inputs at the low scale immediately onto the full MSSM at my 2. This matching involves the
conversion of the Standard Model parameters extracted from experiment into MSSM parameters.
For example, considering g, this is determined via jet cross-sections with vertices such as
g — qq,9g9. The measurements for such cross-sections are then used to determine the vertex
factors (proportional to ay at the scale it is measured) including Standard Model loop corrections
up to the desired order in perturbation theory. However, if the theory is taken to be the MSSM
rather than the Standard Model, there are additional loop corrections which we must subtract
off the calculated «; value to obtain our boundary condition on ag(m;) for the MSSM. At 1-
loop, such corrections come from gluino loops via processes such as that in Figure 3.3. These
“finite term” corrections are proportional to m%/(167*méqy) and are included by matching
straight onto the MSSM at the low scale®. However, by matching at an electroweak scale,
logarithmic pieces in the 8 function are not resummed which arise in the RGEs between my
and mgyusy due to mass splittings between the various supersymmetric particles (i.e. as not all
supersymmetric particles appear at msysy); these are proportional to (1/1672) log[(Am)?/m?%]
and alter the gradient of the running. In order to account for such missing pieces, SoftSusy and

other programs that use this method add “threshold corrections” to a given order, these account

2Traditionally the low matching scale is m, however as of SoftSusy version 4.1.1 the matching is done at mq,
this may have effects on the numerical values of the parameters obtained, such as m; [83].
3In spectrum generators mgusy = /mz M, although this can be altered by the user.
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for the difference in gradient over the myz to mgysy running with additional intercept corrections
on top of the finite pieces?. This approach deals with the effects of sparticle thresholds by using
the MSSM (or its extensions as appropriate) as an effective theory between mz; and mgysy.
Even within this prescription, there are choices which represent different higher order terms -
for the gluino correction of Figure 3.3 for example, the question of which gluino mass value
should one use in the loop ensues. Using the pole mass or the DR running mass will lead to
distinct a values essentially corresponding to 2-loop effects. In order to minimise such effects,
higher orders must be included; in this respect SoftSusy is state of the art, containing 3-loop
RGEs and many 2-loop threshold corrections to the third generation Yukawas and the strong

gauge coupling ag as these have particularly large effects on the Higgs mass [117].

Figure 3.3: Supersymmetric correction to the vertex used to provide the value of as(my), the contribution
of this diagram must be factored in to obtain our value of o, at the low scale in the MSSM. There is also
a similar contribution from squark loop corrections.

The alternative approach, as used by ISAJET, NMSSMTools, sPHENQ (since version 4.0 released
in March 2017) [158] and FlexbileSUSY, is to integrate out the sparticles from the RGEs at a
higher scale (mgysy) and then run in an effective theory between mgugy and myz. This naturally
resums the logarithmic terms due to mass splittings in the RGEs, but misses finite terms due to
loop corrections via sparticles in loops. Generically, these two approaches have different regimes
of validity, with the SoftSusy approach missing terms of order O(log[(Am)?/m?%]), whilst the
NMSSMTools and sPHENO approach misses some terms of order O(m%/m2yqy). Therefore the
former approach will be most accurate for lower values of the mgusy scale, whilst the latter is
more accurate for higher values of mgysy where the mass splittings increase but the finite terms
reduce in size. Where the exact boundary of the two approaches occurs is a model-dependent
question, and one of increasing interest given the LHC constraints on low-scale supersymmetry.
It has been addressed by the paper [83] in the context of the accuracy of the Standard Model-like
Higgs mass, which offers a key constraint on supersymmetric models. The different approaches
therefore offer another source of potential mass, mixing and coupling differences between spec-
trum generators; these parameters are then used as inputs to the decay calculators and so may
cause significant differences in partial widths obtained, depending upon the nature of the mass
spectrum and model considered. Nonetheless, as previously mentioned, any such differences
between codes can be used as an estimator of associated theoretical errors for these difficult

calculations and offer an order of magnitude estimate for the size of higher order effects.

Aside from these differences in approach at the low end of the renormalisation group running,

4Note we distinguish between these threshold corrections, and those obtained between msusy and the high
scale whose logarithms are resummed up to the order of the renormalisation group equations included: 3-loop
with Next-to-Next-to-Leading-Logarithms.
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the basic methodology of the fixed point iteration solution of the two boundary RGE problem
to determine the supersymmetric and Higgs masses and couplings is the same and is illustrated

in a simplified form in Figure 3.4. It is described here:

1. Match the low energy boundary conditions on fermion masses, gauge couplings and other
electroweak parameters onto either the MSSM or the Standard Model, depending on which
of the two approaches are used. Threshold corrections are included at this stage in
SoftSusy to account for leading missing logarithmic pieces arising due to the sparticle
mass splitting. Guesses are required for the parameters on which there are no boundary
conditions, such as the supersymmetric masses, these are made approximately and are
irrelevant, being overwritten the next time the iteration reaches the low scale.

2. If the latter approach is used match, onto the full MSSM at mgysy; if the former is used,
there is no need for this step as the spectrum generator already runs in the full MSSM.

3. The particle masses, couplings and other parameters are then run in the full MSSM up to
the high scale (however it is defined) - often this is the GUT scale, defined as the point
where the SU(2)r, and U(1)y coupling unify: a;(Mgur) = ce(Mgur).

4. At the high scale, the supersymmetric parameters are compared with the theoretical
boundary conditions (such as unification of scalar masses, fermion masses and trilinear
couplings in the case of minimal supergravity models); the parameters for which there are
theoretical boundary conditions are replaced by the boundary condition values, leaving
the remaining parameters unaltered.

5. The new set of parameters are all run down to the low scale in the full MSSM (perhaps
via matching at mgysy and running in the Standard Model as an EFT below this if the
second approach is used). These parameters at the low scale are compared with the low
scale boundary conditions and replaced as appropriate, the whole new set of parameters
is then run back to the high scale.

6. Steps 3-5 are then repeated in fixed point iteration until the parameters reach convergence
within the level of the tolerance defined, by default this numerical precision is 10~% but
this may be changed in the input file’. Usually a self-consistent solution satisfying both
low scale and high scale boundary conditions is found within 3-5 iterations. The number
of iterations required is dependent on the model and the precise setup as well as the low
and high energy scales set.

7. Finally, once the solution is found, the parameters are run to the supersymmetry scale
mgusy and the supersymmetric and Higgs masses, mixings and couplings are output in
the mass spectrum at this scale. This information is then used as an input to the decay

calculator program.

There are potential issues which may arise from such an iterative approach, in particular
can we be certain there is just one solution and if not does the fixed point iteration method

necessarily produce the “best” solution, however that may be defined. For example, it may

®Specifically it is set in item 1 of the SOFTSUSY block, information on the SoftSusy input file is given in
Chapter 4.1.1.
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Figure 3.4: Schematic overview of how a spectrum generator program solves the two boundary differential
equation problem posed to determine the masses of the supersymmetric and Higgs particles. It does so
by repeatedly running between the low and high scales in fixed point iteration, taking the boundary
conditions at each end as inputs each time, until the masses are determined and consistent within a given
tolerance.

appear that it would be prone to finding local minima in the solution “fit”, rather than the
global minimum or even that the fixed point algorithm may be unstable in the region of some
solutions. This has been studied in the literature, in particular in the context of SoftSusy itself
an alternative “shooting” approach was investigated [172] and demonstrated that the fixed point
iterative method may in some instances only provide one of several solutions, although cases

where the phenomenology of these new solutions is markedly different are comparatively rare.

3.2.2 Decay Calculator Approach

The second stage of the calculation, and the one most relevant to our research, is the calcu-
lation of the partial widths of the available decay modes given the mass spectrum of sparticles
and Higgs bosons and their associated mixings and couplings. This part of the program is com-
putationally more straightforward, with the difficulty lying in the number of modes to calculate
and in the physics associated with difficult decay modes, particularly beyond tree-level or with
more than 2 final state particles where there are additional difficult integrals to perform and

many contributions and interferences to consider.

As is the case in the vast majority of decay calculator programs, we have chosen in SoftSusy

to set up the program to deal with specific models, these being any MSSM or NMSSM models
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satisfying a small number of assumptions as described in Chapter 3.3.4. Therefore the decay
calculation aspects are applicable for all three classes of MSSM supersymmetry breaking at the
high scale (see Chapter 2.1.2), or more generally for the pMSSM, or indeed user specified high
scale and breaking conditions in the spectrum generation, as well as for the NMSSM; provided
the assumptions accompanying our decay calculator are satisfied in such approaches. The decay
partial widths are hard-coded into the program, therefore extensions to further models would
require further coding, for example if an extension to the RPV case was desired additional
modes and coupling contributions would need to be added explicitly. This general model-
specific approach is used by all decay calculators in their stand-alone forms (SusyHit, sPHENO,
NMSSMTools, ISAJET, NMSSMCalc, FeynHiggs, PYTHIA, etc). An alternative is to produce decay
calculators that can determine the branching ratios for any given model and model extensions.
The Mathematica package SARAH is able to generate the vertices and mass matrices for any given
supersymmetric model, the decay calculator sPHENO with SARAH can then analyse additional
models and model extensions not directly coded into the decay calculator. Whilst this approach
has advantages in enabling the analysis of a wider variety of models, we have chosen the former
approach for its simplicity, usability and accuracy, with explicitly coding and analysing certain
classes of models under strict decay calculator assumptions enabling more specific modes to be

added and potentially offering greater insights into the phenomenology of these models.

The mechanics of any decay calculator program involves the computation of a vast number
of different decay modes; first checking which modes are kinematically available, and then eval-
uating relevant couplings for the decay modes, before evaluating the partial widths of relevant
modes, obtaining total widths and branching ratios, and finally outputting them in a series of
decay tables for each parent particle. An overall schematic of the functioning of the SoftSusy
decay calculator is provided in Figure 3.5; this is similar for all decay calculators, with differences
arising as a result of different modes being evaluated and different approximations, choices and
assumptions within equivalent decay modes. First the input mass, coupling and mixing param-
eters are read at the SUSY scale from the SoftSusy spectrum generator. Next the decay modes
are calculated one by one for each parent supersymmetric or Higgs particle, with switches used
to call MSSM or NMSSM decay formulae. 3-body modes and decays to gravitino LSPs may
also be evaluated depending upon the flags used and by default will be evaluated where they
are relevant to the phenomenology of the model, these can be turned off however (in the input
file for 3-body decays or in the code for decays to LSP gravitino). Branching ratios are only
output for modes with branching ratios above the branching ratio tolerance and 3-body modes
are only called where 2-body modes of the same particles are not available. Even in this case,
if there are other 2-body modes (to different final state particles), the 3-body modes calculated
will typically not be output as the 2-body modes often dominate the branching ratios, forcing
the 3-body mode branching ratios below the branching ratio output tolerance. Additional com-
plications arise from QCD corrections, which may be applied to some Higgs modes (as described
in Chapter 3.4). 1-loop modes also involve intricacies, with the masses and couplings often first

run to the scale of the decaying parent particle mass so as to endeavour to reduce the size of any
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corrections and hopefully produce a more accurate partial width. Many of these specific details
of the assumptions, choices and decay modes are given in Chapter 3.3, whilst more information
is also available in Appendix A and in our paper [1]. In Figure 3.5, dashed lines represent calls

that are only made if the appropriate input flags and conditions are met.

mixing parameters from

Input particle masses, couplings,
¢ SoftSusy spectrum generator

Calculator Call partial width formulae for

= - each parent susy or Higgs \
/ l \ - . particle
“

SoftSusy Decay J

Gluino Sfermion neutralino| | chargino Higgs Gravitino Call decays to LSP
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available modes and their
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Figure 3.5: Schematic overview of the SoftSusy decay calculator, dashed lines represent calls that are
only made if the appropriate input flags and conditions are met, only the MSSM is always called (even
for the NMSSM as several decays are identical in the MSSM and NMSSM), the NMSSM specific modes
(involving the extended Higgs and neutralino sectors) are only called for NMSSM models. By default
QCD corrections are added to Higgs decays to quarks or gluons in the MSSM or NMSSM, by default
3-body modes are also calculated where required, although only in the MSSM, however both 3-body
modes and QCD corrections may be turned off by the user. Decays to gravitino LSPs are evaluated by
default but this may be turned off in the code.

Care has been taken to ensure consistency throughout the decay calculations with the
SoftSusy spectrum generator, with the masses and couplings used evaluated and applied in
the same schemes and under the same approximations in order to eliminate additional sources
of errors which may arise from theoretical inconsistencies. In addition, the spectrum generation
and decay calculation aspects of the SoftSusy program are largely independent; the spectrum
generator is only called after the inputs are provided if parameters are run to the scale of the
decaying parent particle mass in order to improve the accuracy of the partial widths calculated.
Consequently, the decay calculator may be used as a stand-alone provided all necessary input

parameters for the partial width functions are input.
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3.3 Conventions, Methodology and Implementation

We now outline the conventions, choices, assumptions and methodology used in our work on

the SoftSusy decay calculator, in our associated paper [1], and in the decay calculator program.

Throughout Z; and Wj are used for neutralinos (i = 1,2, 3,4 in the MSSM or ¢ = 1,2,3,4,5
in the NMSSM) and charginos (j = 1, 2), respectively. This is different to the commonly used X!
and )Z;r notation for ease of reading, particularly when they appear in subscripts. The notation
for the mass-ordered CP even and CP odd neutral Higgs bosons is that h; € {h, H, H3} for
i =1,2,3 are the CP even neutral Higgs bosons in order of increasing mass, whilst A; € {A, A2}
for i = 1,2 are the CP odd neutral Higgs bosons again in order of increasing mass, remembering
that H3 and A2 occur only in the NMSSM.

The partial width formulae for all of the decay modes included in the SoftSusy decay
calculation® are listed in Appendix A; many of these were re-derived in the development of the
program and have been written in one consistent set of conventions. The latest version of the

whole SoftSusy program itself is also submitted with this thesis.

3.3.1 MSSM

While the conventions used in the decays code are largely those used in SoftSusy [66], there
are differences in a few places in order to allow easier comparison with partial width (PW)

formulae provided elsewhere. The few differences with respect to Ref. [66] are as listed below”:

e In our calculations, it is convenient to work in a basis where the third generation sfermions
are mass ordered with m 7 <mg,. In order to ensure this, the mixing angle 0y is trans-
formed accordingly (6 — 65 4+ /2) in the case where the SoftSusy spectrum generator
has m 7> my,

e The mixing angles for the charginos are transformed with respect to the SoftSusy spec-
trum generator in order to match conventions used elsewhere (e.g. [124]). Therefore 0,5

as indicated below is given by Hie/cgys = —Qz%?mm + /2.

e The neutralino mixing matrix employed here is N = O, where O is the neutralino mixing
defined in Ref. [66].

3.3.2 NMSSM

The conventions used in the decay code are predominantly those described previously in the
SoftSusy NMSSM manual [118], but there are differences in a few places. As well as those listed
above, there are a few changes specific to the NMSSM, to allow straightforward comparison with
NMSSMTools [126-128,159]:

5The source code for the calculations is in the folder src in the files decays.cpp, mainDecay.cpp,
twoBodyDecays.cpp and threeBodyDecays.cpp, which are in the C++ programming language.
"In the decay code itself, the neutralino mixing matrix used (N in SoftSusy notation) is transposed.

Thomas Cridge 80



Chapter 3. SoftSusy Overview 3.3. Conventions, Methodology and Implementation

e The Charge Parity (CP) even neutral Higgs mixing matrix, S, is altered relative to the
matrix R provided by SoftSusy [118]. The matrix S used in the decay formulae is obtained

via an orthogonal transformation exchanging eigenstates:

010 R(1,2) R(1,1) R(1,3)
S=R| 100 |=]| R22 R21) RE23) |, (3.20)
00 1 R(3,2) R(3,1) R(3,

i.e. the first two columns are interchanged.

e The CP odd neutral Higgs mixing matrix is altered relative to the matrix provided by
SoftSusy [118], the matrix P detailed in the decay formulae (different to the P in Ref. [118]
which we write here as PP™V) is given below. The differences are that the first row of PP

is dropped (as this refers to the Goldstone boson) and the first and second columns are

interchanged. The mixing angles 8 and 04 are as used elsewhere in SoftSusy [66,118].

PProv(2,2)  PPOV(2,1) PPYV(2,3) cosfcosfy sinfcosfy sinfy
P = PP°v(3,2) PP™V(3,1) PP™(3,3) | = | cosfsinfy sinfsinfy —cosfs
0 0 0 0 0 0
(3.21)

3.3.3 Mass Choices and Scales Used

As described previously, at any given order of calculation in the mass spectrum generation,
there are assumptions, schemes and approximations that can result in numerically different val-
ues for quantities corresponding to the same physical parameter. Subsequently however, there
are also potential differences originating from the choices and assumptions made in the decay
calculations themselves as well as the corrections included. In this case, as for the spectrum
generators, these choices correspond to different higher order effects and are theoretically equiv-
alently valid choices at the order of approximation applied, nonetheless they of course lead to
further differences in the numerical partial widths and branching ratios output. One particularly
pervasive choice is that of the renormalisation scale at which to evaluate the parameters input
into each partial width formula. For example, consider the decay of a gluino into a top and a
stop. One must choose a renormalisation scale for the coupling, whilst the masses of the parti-
cles involved could be running masses evaluated at different scales or pole masses. Each choice
affects the numerical value of the partial width, but all choices are equivalent at tree-level. In

SoftSusy the following choices are made:

e In general, unless explicitly stated otherwise, the masses of the supersymmetric (SUSY)

and Higgs particles and other parameters, such as mixing angles and gauge couplings, are

evaluated at the scale Mgygy = :L‘\/ mz (Msusy)mz,(Msusy), where x by default is 1 but
can be set by the user. Here, mgi(MSUsy) is the running ith stop mass evaluated at a

modified dimensional reduction [173] (DR) renormalisation scale Mgysy-
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e For Higgs loop decays the gauge coupling strengths a; and « are evaluated at the mass of
the decaying Higgs, with the hope of improving the accuracy obtained for these important
modes.

e For Higgs loop decays to vy or Z7v the masses of the important quarks (i.e. my, mp,
m,.) are evaluated at the mass of the decaying Higgs in order to attempt to improve the
accuracy of the partial width evaluated. Below My, these are run in 3 loop QCD and 1
loop in QED, as they are in the case of the lightest CP even Higgs h’s decays. In the
calculation of decays of H, H3, A and A2 quark masses are run to mpg, mgs, ma, mas in
the (N)MSSM as appropriate.

e Throughout the program, unless otherwise stated here, we use two different quark masses;
“kinematic masses” for the kinematics (i.e. for masses of particles in the initial or final
states) and “running masses” for the evaluation of couplings. This hopefully allows a large
part of some higher order corrections to be incorporated into the quark legs via the mass
running. The way in which these masses are evaluated is listed in Table 3.2.

e In addition to the above quark masses, there are extra masses mcpole and mspole defined
in decays.h which are used only for the neutral Higgs boson decays to qq or gg and are
set to avoid double counting in the QCD corrections [174].

e If the QCD corrections to these decays are turned off then the running masses for the
quarks are used in order to attempt to hopefully incorporate some of the NLO corrections

to the quark legs.

As detailed in Table 3.2, for the third generation sfermions the “kinematic” masses are pole
masses obtained from the propagators whilst the “running (coupling)” masses are in the DR
scheme. For the “kinematic” masses of the first two generation fermions, the M S mass at My
is used, whilst the “running” masses are extracted from the running Yukawa couplings. For
the electron and muon, the running is small as there are only QED effects. The “kinematic”
masses for the vector bosons are pole masses, whilst for the “running (coupling)” masses they
are running DR masses evaluated at Msysy. MS masses include only SM corrections within
SoftSusy, with 3-loop QCD and 1-loop QED corrections; whilst Yukawa-extracted masses are
in the DR scheme and include SM and SUSY corrections. Quark input masses can be reset
by the user within the SMINPUTS block of the SLHA/SLHA2 input file and the kinematic and

running masses used will then change accordingly.

The different choices of scales for the input parameters is one of the key sources of differences

between different decay calculator programmes. It is worth noting that an experimental value of

. . . . . . . . 2
Fermi’s constant, G, is also used; this is inconsistent with the tree-level expression % - i 5
w

as it is an empirical quantity and so incorporates higher order terms.
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kinematic masses running (coupling) masses
mtPole pole mass from propagator runmt DR mass at My
mbPole | pole mass from propagator | runmb DR mass at My
mtauPole | pole mass from propagator | runmtau DR mass at My
mc MS mass at My runmc Yukawa-extracted mass at My
ms MS mass at My runms | Yukawa-extracted mass at My
mup MS mass at My runmu Yukawa-extracted mass at My
mdo MS mass at Mz runmd | Yukawa-extracted mass at My
mel MS mass at My runmel | Yukawa-extracted mass at My
mmu MS mass at Mz runmmu | Yukawa-extracted mass at My
polemw | pole mass from propagator | runmw running W mass at Msusy
polemz | pole mass from propagator | runmz running Z mass at Msyusy

Table 3.2: The two different types of masses used for the fermions and gauge bosons. The names given
are those used in the code. “kinematic” masses are used for the masses of initial and final state particles
whilst “running (coupling)” masses are used in couplings in the partial width formulae. Note that within
SoftSusy, the M S masses include only SM corrections whilst the Yukawa-extracted masses (DR masses)
include SM and SUSY corrections.

3.3.4 Assumptions Made
The following assumptions are made in the decay calculator:
e R-parity conservation in the MSSM and in the NMSSM.
e No additional CP violation relative to the SM.

No additional flavour violation relative to the SM.

Sfermion mixing has only been accounted for in the third generation of sfermions as it is

proportional to the Yukawa couplings, which are negligible for the first two generations.

e We assume CP conservation in Higgs sector of the MSSM and in the extended Higgs sector
of the NMSSM.

3.3.5 Method

The SoftSusy decay calculator is a C++ program, matching the language of the vast majority
of the SoftSusy spectrum generator package. This language is chosen as not only do most
contemporary high energy physics experiments and computer programs use C++ (with many
previous fortran programs, such as PYTHIA, recently migrating over to C++), but also the
object orientation allows a modular program to develop which is optimal for the many different

calculations and models that may wish to be evaluated.

As for the implementation of the decay partial width formulae themselves within the de-
cay calculator program, we have chosen to evaluate as many of the modes as is practicable

analytically in order to favour speed of execution; for 2-body tree-level decay modes, the ana-
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lytical expressions for the partial widths are explicitly used in order to provide fast evaluation.
Similarly, for the 2-body 1-loop decays the loop integrals were performed analytically and the
resulting formulae used. For 3-body decay modes (all tree-level), the phase space integral has
been analytically reduced to a one-dimensional integral, which is then performed using adaptive

Gaussian numerical integration [175].

The tree-level 3-body decay modes were therefore where most complications arose. In gen-
eral for an n-body tree-level decay there are n integrals to perform, one over the three-momenta
of each of the final state particles, as explained in Chapter 3.1. One of these integrals is always
trivial to perform using the momentum-conserving delta function. For the 2-body tree-level
decay widths this leaves one remaining integral with the energy delta function, this can then be
performed easily. For tree-level 3-body decay widths however, one has two remaining integrals
to perform and in general they are non-trivial to determine analytically. In certain cases the
symmetry of the integrands, along with certain assumptions, may allow them to be performed.
For h — VV* — V£(')f modes (V represents a vector boson), the mass of the Higgs boson
ensures that the outgoing fermions may not be top quarks. Therefore one can neglect the masses
of the outgoing fermions and greatly simplify the calculation. Passarino-Veltman reduction [176]
can then allow reduction of the integrals to a one-dimensional integral, which in this case may
be determined explicitly analytically; the result is given in Appendix A.3.6 equations A.144 and
A.145, as well as in the “Higgs Hunter’s Guide” [102]. For a general 3-body decay mode the
calculations are however considerably more involved. There are two approaches that can be
taken once the first trivial integral using the momentum-conserving delta function is performed;
at this stage the partial width can be written as a double differential decay rate in two Mandel-
stam variables as is the case in SUSYHIT-1.4, following the work performed in reference [177],
these two dimensional integrals can then be performed numerically. Alternatively, often one
of the two integrals (remaining after the first trivial integral is performed) may be evaluated
analytically, leaving a single one-dimensional integral to be performed numerically. This is the
approach used in the work in reference [65,178] and is the method adopted in sPHENO [3,4], from
which the expressions we use for the 3-body decays originate. The Feynman diagrams involved,
effects included and any assumptions made for each of the 3-body decays are given in detail in

Appendix A.4 with the corresponding partial width formulae.

In the case of very compressed regions, the 3-body decays often involve very fine cancellations
between quantities, and this may cause issues with numerical precision, giving essentially random
positive and negative numbers rather than reflecting the overall size of the integral (which must
be positive definite). There can be negative integrands due to numerical precision close to both
ends of the integration region for any of the 3-body modes, however these end regions are usually
very phase space suppressed relative to the rest of the phase space, therefore issues only arise
when the phase space region available itself is only “ends”, i.e. is very compressed. In order to
attempt to deal with potential issues originating here, we have implemented a check for negative
partial widths, which may arise due to the numerical precision in the fine cancellations. If such

negative partial widths arise anywhere in the program a warning is output and this partial width
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is set to 0. Setting such partial widths to 0 is acceptable as these decay modes are very suppressed
and so only important when they are the only modes available. One circumstance where these
very compressed modes are the only ones available occurs for a gluino nearly degenerate with the
lightest neutralino which is the LSP. In this case the only modes available are very suppressed
decays to the lightest neutralino and quark-antiquark pairs of the first generation. Consequently
the size of the integral determined in the 3-body decays is important for the phenomenology of
the model and so (since SoftSusy version 4.1.4) we circumvent the numerical precision issues
associated with the fine cancellations by taking the compressed spectrum limit of the integrand
in this case and explicitly performing the cancellation analytically, leaving the remainder of the
integrand. This is then calculated by SoftSusy and integrated numerically as before to give the
partial widths (and hence branching ratios) and lifetime of the gluino. More information on the
limit taken and formulae used are given in Appendix A.4.1. There may be similar regions in the
3-body decays of neutralinos, charginos (or sfermions when these are added to the program),
which would benefit from increased accuracy gained from taking such limits; for now this is
left to future work and greater study. In general, the outputs of spectrum generator and decay
calculator programs for such very compressed spectra are of questionable accuracy in any case
and should be used with caution; when the spectrum is so compressed the decay modes are
dominated by the exact amount of the limited phase space available and consequently small
differences in the masses of the supersymmetric particles and the quarks can significantly alter
the partial widths. This was explained in the context of 2-body modes in Chapter 3.1 and
illustrated in Figure 3.18.

Finally, for the loop decays the situation is of course more complicated than at tree-level,
each loop provides an additional loop integral to be performed. In the case of the 1-loop
decays included in SoftSusy, the integrals were performed explicitly with the help of Passarino-
Veltman reduction [176] and formulae are available in Appendices A.3.6 and A.6 for the MSSM
and NMSSM respectively.

3.4 Decay Modes

The following section provides a list of all the decay modes included in the decay part of the
SoftSusy package along with some explanations; they are split into MSSM SUSY tree-level 2-
body decays, MSSM Next-to-Lightest Supersymmetric Particle (NLSP) decays to the gravitino
LSP, MSSM Higgs tree-level 2-body decays, MSSM Higgs 1-loop 2-body decays, MSSM tree-
level 3-body decays, NMSSM SUSY and Higgs tree-level 2-body decays, NMSSM 1-loop 2-body
decays and decays for which QCD corrections have been included. A comprehensive list of the
formulae for all of the decays included is given explicitly in Appendix A for ease of reference,
this also contains more details of the contributions and assumptions for the more complicated

3-body and loop decay modes. To summarise, we include:

8We refer here to very or highly compressed regions, rather than just compressed regions, the effects we discuss
and the limited accuracy onsets around mass splittings of a few hundred MeV.
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e All MSSM 2-body decays at (at least) tree-level, both sparticle and Higgs boson decays.
e Next-to-Lightest SUSY Particle (NLSP) 2-body decays to gravitinos in the MSSM at tree

level.
e The phenomenologically most relevant 3-body decays of gluinos, charginos and neutralinos.
e Higgs decays to 7y and Z~ at leading order (i.e. one-loop) in the MSSM and NMSSM.

e QCD corrections to neutral Higgs decays to quarks (1-loop) and to gluons (2-loop) in the
MSSM and NMSSM.

e All NMSSM 2-body decays at (at least) tree-level, including the extended neutralino and

extended Higgs sectors.

Whilst the majority of the decay modes are therefore calculated at tree-level, some effects
of higher order corrections are approximated via the use of running masses and couplings, as
calculated using the SoftSusy spectrum generator [66] - the details of the mass choices were
given in Section 3.3.3. In Appendix A.l there are a series of tables indicating all the modes

included, along with appendix references for their partial width formulae as used in SoftSusy.

The branching ratios for each mode are grouped into decay tables for each parent SUSY or
Higgs particle and are printed to standard output in the SLHA /SLHA2 convention [156,157] to
allow it to be passed straightforwardly to other programs (such as PYTHIA [136], Herwig7 [137],
MadGraph [141], for instance).

3.4.1 MSSM SUSY Tree-Level 2-Body Decays

The detailed formulae for these modes are in Appendix A.3. We begin with the gluino
decays. The gluino g, being only charged under SU(3). and with R-parity conservation, can
only decay via squarks and so it decays dominantly to these on-shell squarks and quarks if it is

heavy enough. The 2-body modes included are:

9= 4d5, /g, QAL Ry 18 )9 B /2, 0D} /9, by 2.

If mg < mg + my for all quark-squark partners, then such 2-body modes are kinematically
unavailable and the 3-body modes via off-shell squarks are undertaken, these are given in Chap-
ter 3.4.5. The radiative decay § — ¢Z; has not yet been included in SoftSusy but will be added
in a future version as it may be competitive with the 3-body decays included for compressed
regions.

The sfermion f decays included are, for the first two generations where there is no sfermion
mixing?:

dr/r = 94 fuo—=W;f, fiir = Zif.

9" indicates a fermion in the same generation as the f fermion but with opposite third component of weak
isospin, i.e. f and f’ could be u and d or v, and e~ .
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The decays of the squarks to gluinos and quarks will routinely dominate if available as they
occur via the strong interaction. The decays of left-handed sfermions tend to prefer wino-like
neutralinos and charginos to bino-like as the gauge coupling of SU(2), is greater than that
of U(1)y. Nonetheless, for third generation sfermions decays to Higgsino-like neutralinos and
charginos are also important, having potentially significant branching ratios due to the larger
Yukawa couplings of the third generation. The 2-body decays of third generation sfermions are
listed below; these are more exotic due to their larger Yukawa couplings, this opens up decay
modes involving charged Higgses and neutral Higgs bosons. In addition, the larger Yukawas
cause significant intra-generational mixing (not present for the first two generations) which

allows decays involving W and Z bosons to occur more readily:
b1z — Gb, Wit, Zib,ty oW ™1 ;o H ™,
tijo — gt Wib, Zit, by s W, by o HT,
by — b1 Z,b1h/H/A,
to — 01 Z,t1h/H/A,
Frio = Wive, Zir, i W™, 0, H ™,
Ur = Wit, Zive, 71 )W 7y o H T,

7:2 — 7:1Z,7~'1h/H/A.

For charginos, the 2-body decay modes included are (where d;; is Kronecker delta):

W = Grds @120 Lo, i, L 7 jalir, gy 7 ZiW T, ZiHE, 651 Zy ™,
Wy — W1 Z, Wih/H/A.

The question of which of these are dominant is again a complicated one, for which decay
calculators such as SoftSusy are specifically designed. There are general comments which can
be made, with the decays to sfermions important either for Higgsino-like charginos, which have
large branching ratios to third generation sfermions via their Yukawa couplings, or for wino-like
charginos, which have moderate couplings to left-handed sfermions via the weak interaction. As
expected, decays involving Higgs bosons (charged or neutral) are relevant as one chargino is more
Higgsino-like and one more wino-like, both of which couple significantly to the Higgs. Decays
involving Z bosons are more relevant when a Higgsino-like chargino is involved, similarly decays
involving W bosons are more germane for wino-like charginos. Most of these general comments

also apply to the case of neutralino 2-body decays.

We have also included a case which may be phenomenologically relevant, offering interest-
ing signatures with long-lived charginos. This occurs when the lightest chargino and lightest
neutralino are quasi-mass degenerate (such is the case when the lightest neutralino is wino dom-
inated, for instance, as occurs often in AMSB models, see Chapter 2.1.2). In these cases it
may be more appropriate to discuss decays into explicit hadrons rather than quark states if the
mass splitting is of order a few times Agcp. This includes 2-body chargino decay modes to the

lightest neutralino and a pion. There are also 3-body modes which produce 2 pions and the
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lightest neutralino, these are included in the 3-body SUSY modes listed in Chapter 3.4.5.

For neutralinos the 2-body decay modes are (k > i as the neutralinos are mass ordered):

Zi = frnf, fef, W;W T, W,HT,

The same comments as for the chargino decays apply regarding the favoured modes in sce-
narios with different admixtures of Higgsino and wino in the neutralinos. In addition there are

also bino-like neutralinos, which interact little with any of the decay modes!?.

The 1-loop decay Zj — Ziy, for j > 14, is yet to be included in the program, however it will
soon be added as it may be competitive with the 3-body modes included in compressed regions

of phase space.

3.4.2 MSSM Decays to Gravitinos

The following NLSP — G + SM decays are included (where SM indicates a Standard Model
particle), for cases when the gravitino G is the LSP. The gravitino often arises as the LSP in
GMSB models as outlined in Chapter 2.1.3 - in this case these NLSP decays to gravitino LSPs
offer interesting signatures at colliders, with long-lived NLSPs producing displaced vertices or
even leaving the detector. The lifetime of the NLSP is governed by the mass of the gravitino.
The decay modes included in SoftSusy are:

g — gé, qi — qé, [ — l@, ZZ- — 7@, Zi — Z@, Zi — gb@.

In these expressions ¢ denotes one of the neutral Higgs bosons h, H or A. The formulae for the

partial widths are in Appendix A.5.

3.4.3 MSSM Higgs Tree-Level 2-Body Decays

The tree-level 2-body decay modes included for the Higgs particles in the MSSM are as
follows, the formulae for the partial widths are explicitly given in Appendix A.3.6. The CP
odd neutral Higgs boson has significantly fewer available decay modes than the CP even neutral
Higgs bosons due to the constraint of CP conservation, this prevents decays of the A to two alike
scalars or two alike vector bosons. Consequently, note that whilst all handedness combinations
are allowed for the CP even Higgs in the decays to sfermions, the alike handedness combinations
LL, RR are not allowed for the CP odd Higgs bosons. Similarly, for the third generation where
there is squark mixing the combinations 11, 22 are not allowed for the CP odd Higgs bosons. For
the decays to charginos however, alike combinations 11, 22 are allowed (in addition to unalike
combinations) for the CP odd neutral Higgs bosons (as well as for the CP even neutral Higgs

bosons as always) as the charginos are fermions:

10This is why bino-like LSPs are overproduced as a dark matter candidate, they interact little and so freeze-out
early, leaving larger relic densities.
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hHIA = frrfiig Fuelte Wi Wi, Zi2, 1007,
H™ - Zin,qc}’,yll_, fL/RfZ/R,EI/QBT/Q,VT%T/27hW+,
h/H — AA, AZ,
H— HYH ,hh, VYV,
A—h/HZ.

The decay of the heavier CP even neutral Higgs boson to two vector bosons is listed here as
it is typically heavy enough to decay into two on-shell vector bosons. In contrast, for the lightest
(Standard Model-like) Higgs boson this decay is kinematically forbidden and instead the 3-body
mode to a vector boson and fermion-antifermion pair via an off-shell vector boson occurs; this
is listed later in Chapter 3.4.5. No A — V'V decay is available due to CP conservation. The
decays of the heavier CP even neutral Higgs H into two CP even or two CP odd Higgs bosons

are relevant when both My and tan 5 have intermediate values [84].

The neutral Higgs decays to quarks are not included in this list as QCD corrections have
been incorporated for these, see Chapter 3.4.8. It can be argued that QCD corrections for the
charged Higgs decays to quarks are also important (although less so as the H* is an MSSM-only
particle unlike the lightest CP even neutral Higgs boson), so QCD corrections to these decays
will be added in a future version; they are particularly relevant for decays to the bottom quark
at large tan 8 [84]. Meanwhile, the scenario where m g+ < mg 4+ mp but H* undergoes a 3-body
decay via an off-shell top to W=¥bb is yet to be included. For HT, decays to CKM suppressed
combinations of ¢ and ¢’ are nonetheless considered in the program, for example H™ — us. Note
however that the decays H™ — H/AW™ are not included as they are kinematically forbidden in

the MSSM assuming tree-level mass formulae, these modes are however included in the NMSSM.

3.4.4 MSSM Higgs 1-loop 2-body decays

The key Higgs 1-loop decays are also included as these are very important channels for LHC

Higgs discovery and measurement:

h/HJA — vy, Z7~.

The explicit expressions for their partial widths and the loop contributions included are in
Appendix A.3.6 equations A.150 to A.204. The Feynman diagrams for these modes were given
earlier in Chapter 2.5.1 in Figure 2.6. For the CP even neutral Higgs bosons the Standard Model
contributions are fermion loops (dominantly top and bottom loops due to their larger Yukawa
couplings) and W bosons, whilst in the MSSM there are also contributions from sfermions,
charginos and charged Higgs bosons. In SoftSusy for the diphoton mode we include fermion
contributions for top, bottom, charm and tau; sfermion contributions from stops, sbottoms and
staus (as 3" generation sfermions have larger Yukawa couplings and also tend to be lighter and so
offer less suppressed contributions); charged Higgs contributions; W contributions and chargino

contributions. For the Z+ mode we include fewer contributions as the mode is yet to be observed
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and so we need only potentially dominant contributions: we include top, bottom, charm, strange,
W and charged Higgs contributions only. However with the lack of observation of a charged Higgs
boson around the electroweak scale at the LHC and elsewhere, the charged Higgs contribution
to vy (and Zv) is likely to be small as it is suppressed by my,/ m‘}gi. Likewise, the contributions
of the sfermions and charginos are increasingly small as their masses are pushed higher by LHC
exclusions, with their contributions suppressed by m?, /m%/l and mi, /mfg respectively. This
pushes the partial width of the lightest CP even Higgs towards the Standard Model value as the
supersymmetric particles in the loop decouple, producing the observed h — ~v branching ratio.
Meanwhile, the CP odd neutral Higgs only has contributions from fermion and chargino loops

because of CP conservation.

The charged Higgs boson also has 1-loop decays to a photon and a W boson, or to a Z
boson and a W boson, via top-bottom triangle loops dominantly [179]; however these are not
phenomenologically important and are suppressed relative to the tree-level modes. These modes

are not included in SoftSusy.

The loop decays to two gluons ¢ — gg incorporate QCD corrections and so are listed in
Chapter 3.4.8.

3.4.5 MSSM Tree-Level 3-Body Decays

The phenomenologically most important 3-body decays in the MSSM are included. For the
neutralino decays to another neutralino and a fermion-antifermion pair ¢ > j as the neutralinos

are mass-ordered:

h—VFff.
9 — 293, Wiqq'.
Zi— Ziff,W,ff.
Wj — Ziff’,éﬂzmiﬁo.

These 3-body modes are all typically suppressed relative to available 2-body modes and so
are relevant largely in regions where no 2-body modes are available, such as compressed spectra.
The Higgs 3-body modes to a vector boson and a fermion-antifermion pair via an off-shell vector
boson intermediate have a large branching ratio for the Standard Model-like Higgs at 125 GeV
as, whilst it is suppressed due to being 3-body, vector bosons have a large coupling to the
Higgs boson via their large masses. Furthermore, for the Standard Model-like Higgs, these 3-
body decays only compete with 2-body decays to fermions, for which the largest coupling is the

(relatively small) bottom Yukawa coupling.

As for the gluino, its 3-body mode is available when the squarks are all heavier than the

11

gluino*. The gluino 3-body modes to the lightest neutralino ordinarily dominate due to the

larger phase space available, in addition the lightest stops are usually the lightest squarks and so

HThis may occur if Ms(Mgur) is set lower than that expected from gaugino mass unification. It can even
occur in the CMSSM - a CMSSM point in which the gluino is lighter than the squarks is given later in Figure 4.8.
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the off-shell intermediate suppresses these modes less than for other heavier squark intermediates.
Moreover, if the lightest neutralino is Higgsino-like then its couplings to squarks and quarks are
proportional to the Yukawa couplings and so this further favours the 3-body decays to stops and

tops, and to sbottoms and bottoms for large tan (.

The 3-body modes of the neutralinos and charginos are particularly complex, having con-
tributions from sfermion, Higgs and gauge boson intermediates, and so their relative strength
depends on all of these couplings, making general comments more difficult. The neutralinos
may only decay in 2-body modes to produce lighter neutralinos and Z bosons or neutral Higgs
bosons, or lighter charginos and W bosons or charged Higgs bosons, or sfermion-fermion pairs;
consequently typically the 3-body modes are the only decays available if the mass splitting be-
tween a neutralino and the lighter neutralinos is less than mz and the mass splitting between a
neutralino and the lighter charginos is less than my,. As a result, none of the fermions produced
in the case of the neutralino 3-body decays decays will be a top quark in the relevant regions of
parameter space. Which of the fermions are produced more abundantly depends on the exact
nature of the spectrum. For larger mass splittings (although still smaller than the electroweak
gauge boson masses) it is often the case that decays producing bottom quarks (and also tau
leptons) dominate for the neutralino to neutralino decays as the large Yukawa couplings pull
the sbottoms (staus) to lower masses so these sbottom intermediates suppress the partial widths
less. In addition, the large Yukawa couplings also enhance their couplings to the Higgsino parts
of the neutralinos. These effects are particularly relevant for the case of large tan 8 values as
here the Yukawa couplings to bottoms and taus are amplified. As the mass splitting is reduced
the phase space plays an increasing role and the necessity of additional mass energy in the case
of the bottom quark (tau lepton) reduces the partial width relative to the first two generations
until eventually the mass splitting is small enough that the 3-body decays producing these bot-
tom quarks (tau leptons) are also kinematically forbidden, leaving only 3-body modes to the
first and second generation fermions. Meanwhile, for the 3-body decays involving charginos the
bottom is not relevant as it has to be produced in association with a top quark, which is too
heavy to be relevant in these compressed phase space regions. Nonetheless the tau is particu-
larly relevant as it is still third generation and is produced in association with a massless tau
neutrino. Further information on the 3-body modes of electroweakinos is given in [180]. Once
the mass splitting becomes very small, and the initial and final state electroweakino particles be-
come quasi-degenerate, only first generation modes may become available. Eventually however
as Am — 0 the quarks produced will not behave independently and instead hadronise together;
consequently they must be considered together as hadrons in the final state and appropriate
form factors accounted for, producing 2- and 3-body pion modes. We have included these for
the phenomenologically interesting case of a near degenerate lightest chargino and neutralino
LSP, as arising in AMSB.

As of yet, there are no 3-body decays of sfermions included; this will be resolved in future
versions. The explicit formulae used for our 3-body decays, for which sPHENO [3] provided a

useful reference, are given in Appendix A.4.
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3.4.6 NMSSM SUSY and Higgs Tree-Level 2-Body decays

In the NMSSM, decays not involving the extended Higgs or neutralino sectors are the same
as in the MSSM. For the extended neutralino and Higgs sectors the allowed decays are largely
as before with the exception that now the neutralino index ¢ runs from 1 to 5, whilst there is
an additional CP even neutral Higgs and an additional CP odd neutral Higgs. All of the Higgs
states are of course mixtures of the original MSSM states and the new NMSSM states, therefore
the most “NMSSM-type” state need not necessarily be the heaviest. The 21,2,3,4, h and H
(which we now use to label the lightest two CP even neutral Higgs bosons) and A have the same
available modes as listed before; therefore we now list the decay modes of the additional states.
As a guide, the same decays which can occur for the heaviest of the two CP even Higgs bosons
of the MSSM, the H, may now also occur for the H3; similarly we can extend the decays of the
A to the A2, and of the 21,27374 of the MSSM to the 25. Additional decay modes in the NMSSM

are therefore:

Zs = WW )9, ZZn, HSW, jo, Znh/H/H3/AJA2, f1 r . f1)2f,

H3 — fL/RJE}E/R’ f1/2ff/27 Wi oW o, Zi 21,1717, AA, AA2,

H3 — A2A2, ZAJA2, H"H™  hh,hH, HH, W~ H" V'V,

A2 = frfh fifs WioWije, ZiZ), 171, Zh/H/H3, Ah/H/H3, W~ H*,

where VV e {WtW~, ZZ},i,1 =1,2,3,4,5 and n = 1,2, 3,4 since the Z5 decays into lighter
neutralinos. As before, for the A2 there are fewer decays than the H3 as many decays are ruled
out by CP conservation. For the decays to two sfermions, any combination of handedness is
permitted LL, LR, RL, RR for the CP even Higgs decays and, similarly, for the decays to
mixed sfermions all combinations 11, 12, 21, 22 are allowed; whilst for the CP odd Higgs decays
the produced sfermions must be different by CP conservation and so only LR and RL, and 12
and 21 are available. Decays to all combinations 11, 12, 21, 22 are allowed for the charginos
for both CP even and CP odd Higgs bosons. For the decays to quarks only charm, strange,
top and bottom quarks are considered as the partial widths are proportional to the squares of
the Yukawa couplings. Decays of the H3 or A2 to qq or gg are listed in Chapter 3.4.8 as QCD

corrections are included in these channels.

The additional decays available in the NMSSM relative to the MSSM are similar, with the
complication that the neutralinos have a supplementary singlino component and the CP even
and CP odd neutral Higgs bosons have an extra singlet component. These singlino/singlet
components have no interactions with the non-Higgs/Higgsino components in the model and so
reduce the strengths of the interactions of the neutralinos and neutral Higgs bosons relative to
the MSSM. Given the extended Higgs sector, it is now possible to have light CP even or CP
odd Higgs bosons which are lighter than the Standard Model-like Higgs boson and therefore
may significantly alter the phenomenology relative to the MSSM. Either the h or the H (i.e.
the lightest or second lightest CP even neutral Higgs bosons) may now be identified with the
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discovered Standard Model-like Higgs at 125 GeV. A light CP odd Higgs boson would allow
Higgs to invisible decays to have a significant width due to h — AA decays. This can therefore
be constrained via measurements of the visible decays to deduce the invisible width as the
extra invisible width would suppress the other branching ratios, such as h — 77, bb'?. Searches
for Higgs to two Higgs modes may be possible via searches for the decay products of the two
produced Higgs bosons, such as bbr ™7~ signals, if they can be observed above backgrounds.
When such Higgs to Higgs decay modes are kinematically forbidden, the Higgs sector searches
for the NMSSM are similar to those in the MSSM but with reduced couplings at tree-level
and possible additional contributions at loop-level. We include more decay modes involving
charged Higgs - gauge boson - neutral Higgs couplings as the theoretical mass constraints at
tree-level in the NMSSM are far less stringent than in the MSSM. The effective MSSM is
recovered from the NMSSM in the limit that A,k — 0, s ~ 1/k — oo whilst keeping /A and p
fixed, the Higgs sector then decouples into the MSSM doublet and a separate purely NMSSM
singlet. Nonetheless with the additional Higgs states, if these couplings are slightly non-zero,
the phenomenology can still therefore be quite different to the MSSM. In the neutralino sector
in the NMSSM decoupling limit, the singlino neutralino decouples from the MSSM neutralinos
and the neutralino sector of the NMSSM cannot be distinguished from the MSSM unless the
singlino is the LSP. In this case NLSP MSSM neutralinos may leave the detector or produce
displaced vertices. See references [92,181] for further details of NMSSM phenomenology.

The explicit partial width expressions used within the decay calculator in the NMSSM in
SoftSusy are given in Appendix A.6, the expressions were generalised from the MSSM corre-
sponding decays with appropriate changes. NMSSMTools [126,128,159] proved a useful reference

point with which to compare our decay widths and check the relevant formulae.

3.4.7 NMSSM 1-loop 2-Body Decays

As in the MSSM, in the NMSSM the important 1-loop decays of Higgs bosons are included:

h/H/H3/AJA2 — v, Z~.

These modes are essentially identical to the 1-loop Higgs decays of the MSSM with the
appropriate coupling changes. For the decay mode to diphotons we include fermion contribu-
tions from top, bottom, charm and tau; sfermion contributions from charm sfermions, strange
sfermions, stops, sbottoms, staus and smuons; W contributions, charged Higgs contributions
and chargino contributions. As in the MSSM case we need not include any first generation
fermions or sfermions as their contributions are proportional to their Yukawas. In general only
the 3™ generation contributions are important, particularly as the 3" generation sfermions can
be lighter and so the loop is less suppressed by the propagators. For the Z+ mode as before

we include fewer modes as it is yet to be observed at the LHC; the contributions included are

2Measurements via the total width of the Higgs directly are difficult as it is very narrow and so far only
bounded experimentally rather than measured.
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from tops, bottoms, charms, charginos, W bosons and charged Higgses. Meanwhile, whichever
of the two lightest CP even Higgs bosons we identify with the Standard Model-like Higgs at
125 GeV must have its couplings very close to those of the Standard Model due to experimental
constraints on its decay modes. The partial width expressions for these modes, and the loop

contributions included, are listed in Appendix A.6 equations A.851 to A.902.

Again the decay to two gluons is listed in the next section as it includes QCD corrections.
The detailed formulae used within the code for the partial widths of these modes are provided

in Appendix A.7.

3.4.8 QCD Corrected Decays

NLO QCD corrections have been incorporated for the decays in which such effects are most
important in both the MSSM and NMSSM, these are the neutral Higgs decays to quarks and

decays to gluons:
h/H/H3/AJA2 — qq, g9.

The expressions used are given in Appendix A.7 and are based on those provided in the
calculations in [182,183]. Note that the quarks which are considered for neutral Higgs decays
are only charm, strange and bottom for the lightest CP even neutral Higgs h, whilst the top is
also included for the heavier CP even neutral Higgs boson(s) and for the CP odd neutral Higgs
boson(s) of the (N)MSSM. Decays to u and d are negligible as a result of their small Yukawa
couplings. For the decay to two quarks, the QCD corrections just offer an additional correction
factor to the whole partial width, the corrections are identical in the MSSM and NMSSM
with the difference arising in the tree-level formulae only. For the decay to two gluons, the
situation is more complicated as there are both standard QCD and SUSY-QCD corrections, with
the standard QCD corrections applying to all contributions but the SUSY-QCD contributions
applying only to the scalar squark contributions. The corrections are therefore not just a simple
factor to be applied. The QCD corrections for both the ¢¢ and gg case also differ between the
CP even and CP odd neutral Higgs bosons as might be expected. These QCD corrections can
be turned off if the user desires but by default are on as they result in significant changes to the

partial widths, as detailed earlier at the end of Chapter 3.1.
Unlike in the case of the vy and Zv decays, the masses used in the QCD corrected formulae

cannot be running masses evaluated at the scale of the decaying Higgs mass - rather pole masses
must be used in order to avoid double counting of corrections [174,184]. The gauge coupling
o, is however evaluated at mg in order to attempt to include further additional corrections of

higher orders.
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3.5 Advantages of the SoftSusy Decay Calculator

Before moving on to the details of the use of the decay calculator for SoftSusy, its validation
and a selection of results in the next chapter; we first summarise here the motivations and

associated advantages of the SoftSusy decay calculator for the field:

e All-in-one spectrum generation and decay calculation: The program works straight out-of-
the-box, performing the spectrum generation and decay calculation aspects automatically
for each input file, producing one output file containing both the spectrum and decay infor-
mation. There is no need to run model files or other programs in advance, it is absolutely
self-contained for these aspects. This makes the program easy to use and straightforward
to understand, both key features for any program to be used by the experimental and
phenomenological communities. Moreover, with SoftSusy already a very popular spec-
trum generator, the addition of the decay calculator reduces the need to interface and pass
information between many programs. It is at such junctions that issues typically occur,

even with the SLHA, whether they be computational issues or issues of inconsistencies.

e NMSSM included in spectrum generation and decay calculation: Even amongst the many
programs in this area it is very rare to have a program include both the spectrum generation
and decay calculation aspects for the NMSSM, this will be of increasing importance to the
field as the spotlight shifts from the most constrained MSSM models to its extensions.
The only other options available are NMSSMTools, which, whilst it can perform spectrum
calculation, typically was previously interfaced with SoftSusy to allow it to evaluate the
spectrum before NMSSMTools evaluated the decay widths; meanwhile SARAH and sPHENO
can be used together to perform spectrum generation and decay calculation in the NMSSM;
whilst NMSSMCalc can evaluate the spectrum and widths for the Higgs sector only of the
NMSSM. Consequently the inclusion of a spectrum generator and decay calculator within
the same program for sparticle and Higgs decays of the NMSSM, with the program working

without the need for any others, represents a significant advantage.

e Theoretical consistency: Interfaces and passing information between various programs for
different aspects of these calculations, as they are very complicated, offer potential issues
even with the SLHA. The decay calculator program has been explicitly built as part of the
SoftSusy package and set up carefully to ensure the same assumptions and approximations
are made in the same places. This ensures no additional theoretical errors originate from
theoretical inconsistencies in the approaches and approximations taken, circumventing

errors which may arise if separate programs are linked together.

e Additional decay calculator program: As should now be clear, the process of predicting the
spectrum and partial widths for supersymmetric and Higgs particles is far from straight-
forward. Therefore the development of an additional decay calculator program allows for

a further program against which to compare the theoretical predictions for given masses
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and modes, allowing a greater awareness of the size of the theoretical errors involved in
these calculations by observing the numerical differences produced by different approaches,
approximations and included corrections. In addition, with the spectrum generator and
decay calculator in one consistent package, error propagation can be examined, looking
at how errors from the spectrum generation are enhanced or altered as they pass through
the decay calculation in order to produce the theoretical predictions for experimentally

observable branching ratios.
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Chapter 4

Use and Results of the SoftSusy
Decay Calculator

In this chapter we discuss how to use the SoftSusy program with an emphasis on the decay
calculator program included in the package as a result of our work. We begin by explaining the
input file flags and options, the decay information produced and the output file. This includes
sample input and output files in addition to those provided directly with the program package.
We then move on to outline the validation steps performed in the development of the decay
calculator program. Finally, we present a comprehensive, but still far from exhaustive, catalogue
of results produced by the SoftSusy decay program in order to provide an indication of the wide
range of decay modes incorporated and the broad scope of the program for phenomenological
applications. The paper associated with the SoftSusy decay calculator [1] contains further
details and serves as its manual; the SoftSusy decay calculator incorporated into the overall

SoftSusy program is also provided with this thesis.

4.1 How to use SoftSusy Decays

The SoftSusy program package is publicly available online at
“http://softsusy.hepforge.org/”, as well as with our paper at [1] and on GitHub; the
SoftSusy web page being where the most up-to-date version is guaranteed to be found, along
with a summary of changes made in each new version or sub-version released. The program
comes with several test files and executables, for our uses we will primarily be interested in the
main program executable ./softpoint.x which runs the mass spectrum generation and decay
calculation for a supersymmetric parameter point. For this executable itself there are several
test files for the different models included:

e ./softpoint.x leshouches < inOutFiles/lesHouchesInput
- Runs the mass spectrum and decay calculation for a CMSSM model point.
e ./softpoint.x leshouches < inQutFiles/nmssmSLHAZ3Input
- Runs the mass spectrum and decay calculation for an NMSSM model point with Z3
conservation.
e ./softpoint.x leshouches < inOutFiles/nmssmSLHAnoZ3Input
- Runs the mass spectrum and decay calculation for an NMSSM model point with Z3

violation.
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e ./softpoint.x leshouches < inOutFiles/rpvHouchesInput
- Runs the mass spectrum generation, but not the decay calculation, for an MSSM model
point with R-parity violation, decay calculation can only be done with RPC currently.
e ./softpoint.x leshouches < inOutFiles/slha2Input
- Runs the mass spectrum for the CMSSM10.1.1 benchmark input point [185] - the decay
calculation can be added via a line in the SOFTSUSY BLOCK to set item 0 to 1.
e ./softpoint.x leshouches < inOutFiles/pmssmInput
- Runs the mass spectrum for a pMSSM input point including the decay calculations.
More information on flags and options are given in the next section, whilst a number of additional
input files will be explored later in Chapter 4.2 as we present the validation and a selection of

results from the decay calculator program.
4.1.1 Input

The input file in SoftSusy contains a number of options for the mass spectrum generation
and decay calculation. We focus on those of particular relevance to the partial width calculation
aspects, further information on other options in the input file are available in the SoftSusy
manuals [1,66,68,69,117-119]. A sample input file for the SoftSusy program is given in Fig-
ure 4.1; it is the lesHouchesInput file provided with the program and the different inputs are
highlighted by the arrows. The input file is in SLHA form and split into 4 sections. The first
BLOCK MODSEL is where the appropriate model is chosen: in the example in the figure item
1 in this block is chosen as 1 to indicate mSUGRA as the supersymmetry breaking model (this
is the only option for the NMSSM), 2 indicates GMSB, 3 indicates AMSB; the item 3 in this
block if present is set to 0 (default) to select the MSSM or 1 to select the NMSSM; item 4
indicates R-parity conservation if set to 0 (default) whilst 1 indicates RPV!; item 6 chooses no
flavour violation if set to 0 (default). The second BLOCK, labelled “SMINPUTS”, is where

the input boundary conditions at the low scale are set on parameters such as the MS fine

MS(m4) and strong coupling constant aMS(

Z, top and 7 pole masses and the M S bottom mass m%ﬁs(mb), amongst other possible inputs.

The BLOCK “MINPAR” similarly is where the high scale boundary conditions for the RGEs

are set, in the case of mSUGRA as in the sample input file this requires setting the unified

structure constant « myz), the Fermi constant, the

scalar mass myg, unified fermion mass mi, ratio of VEVs of the two Higgs doublets tan 5, the
unified trilinear coupling Ay and the sign 2of the p parameter. Further descriptions of these input
options are available in the SLHA and SLHA2 papers [156] and [157]. An additional optional
BLOCK “EXTPAR” may be also introduced to provide further non-standard inputs for high
scale boundary conditions, for example for the pMSSM. Here NMSSM parameters may addi-
tionally be specified but only subsets of parameters which can be independently set and which
lead to correct Higgs minimisation may be set together. Finally, the BLOCK “SOFTSUSY”
sets the SoftSusy specific input flags for the spectrum generation and decay calculation. Item 0

is set to 1 to inform the program to perform decay calculations, by default the decay calculation

'RPV can only be run for the spectrum generation, not the decay calculation.
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is not called. Ttems 24, 25 and 26 provide further information for the decay calculator program:
item 24 sets the value of the minimum branching ratio output in the decay tables, the default
is 107%; item 25 switches the 3-body decays on or off with 1 (default) calculating them if they
are required and 0 switching 3-body decay calculations off. This may be useful in order to save
time in large scans as the 3-body decays are performed numerically and so take longer. Finally,
item 26 allows the partial widths to also be output in the decay tables, this can be useful if
comparing different programs. The default option (0) has the partial widths not output, whilst
the option 1 outputs the partial widths beyond the comments column in order to not disturb the
SLHA format and still allow the output to be passed directly to other programs further down the
analysis chain. Beyond these options there are the spectrum generator specific options, which
are outlined in greater detail in [66]; these set the numerical precision for the convergence of the

spectrum, the number of loops, gravitino mass and other inputs.

It is also possible to use command line input to set up the mass spectrum gener-
ation and decay calculation with the main executable ./softpoint.x, rather than sup-
ply a “leshouches” input file. For the spectrum generator part the default format of
the options is ./softpoint.x <SUSY-breaking-model> [SUSY-breaking-model options]
[general options] with the specific details provided in the MSSM RPC and the NMSSM
SoftSusy manuals [66] and [118] respectively. The options relevant for the decay calcula-
tor are that -—decays switches on the decay calculation, ~—minBR=<value> sets the minimum
branching ratio to be output, —~—dontCalculateThreeBody switches off the 3-body decays, whilst
-outputPartialWidths ensures the partial widths are output in addition to the branching ra-
tios. For example, the lesHouchesInput file of Figure 4.1 can be replicated using the command
line via:

./softpoint.x sugra --m0=125 --m12=500 --a0=0 --sgnMu=1 --tanBeta=10 --decays --higgsUncertainties.

There are further flags and switches inside the source code for users requiring finer control
of the decay calculator. There are flags at the start of the code named flag<particle name>
- when these flags have value 1 the particle decays are calculated, therefore by default all such
flags are set to 1. These flags allow the user to turn off irrelevant decays for their analyses;
for example in producing the scanning plots, such as Figure 4.9 in Chapter 4.2.3, all decays
apart from those of the relevant decaying particle were turned off by setting these flags for
all other particles to 0, allowing the plots to be produced more straightforwardly. Similarly
there is a Boolean variable QCDcorr, which by default is true, which may be used to turn off
QCD corrections. In case the user should want to run the parameters used to different scales,
for example in performing comparisons with other decay calculators, it should be noted that
running in SoftSusy is implemented using MssmSoftsusy and NmssmSoftsusy objects (detailed
in references [66] and [118] respectively) and the runto command. If one alters the running scales
within SoftSusy one must remember to instruct SoftSusy to recalculate the DR parameters at
this scale using calcDRbarPars (). Nonetheless, any changes made to the code are at the user’s
risk. Finally, given the dependence of many of the partial widths on the input parameters, and

in particular on the quark masses used, users may wish to alter the quark masses mg,. This
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# Example input in SLHA format, and suitable for input to
# SOFTSUSY (v1.8 or higher): (MSSM10.1.1 input - see arXiv:1109.3859
Block MODSEL # Select model

Choose model P ¢ s
Block SMINPUTS # Standard Model inputs
MSSM SUng' Gme' ngb 1 1.279340000e+02 # alpha®(-1) SM MSbar(MZ)
NMSSM eTC 1.166370000e-05 # 6 Fermi
1.172000000e-01 # alpha s(MZ) SM MSbar
9.118760000e+01 # MZ(pole)

4.250000000e+00  # mb(mb) SM MSbar
1.743000000e+62  # mtop(pole)

. 7 1.777000000e+00 # mtau(pole)
Set SM InpUTS Block MINPAR # Input parameters

1 1.250000000e+02 #mo

2 5.000000000e+02 #ml2

3 1.000000000e+01 # tan beta at MZ, in DRbar scheme, Feynman gauge
4 1.000000000e+00 # sign(mu)

5 0.000000000e+00 # A0

o =W N

Set

pOrO meTerS Block SOFTSUSY # Optional SOFTSUSY-specific parameters
0 1.000000000e+00 # Calculate decays in output (only for RPC (N)MSSM)
(]T GUT SC(]|e # The default is that without this, SOFTSUSY will only calculate the spectrum

24 1.600000000e-06 # If decay BR is below this number, don't output
25 1.000000000e+00 # If set to 0, don't calculate 3-body decays (1=default)
26 ©.000000000e+00 # If set to 1, output partial widths (6=default)

1 1.000000000e-03  # 1 : ted 10°(-3...-6)
Set flagsfor decay e
process - decoys on /Off,] - 0.000000000e+00  # Additional verbose output?
>3, gravitinos etc

1.000000000e+00 # Include 2-loop scalar mass squared/trilinear RGES
1.660000000e-04 # Numerical precision

/ 7 2.000000000e+00 # Number of loops in Higgs mass computation

10 0.000000000e+00 # Force 1t to SLHA***1*** output?

Se’[ Spechfum generotor 11 1.060000000e+19 # Gravitino mass

12 6.600000000e+00 # Print spectrum even when point disallowed

requirements - precision, |, %, e, -« i gt e
no. of loops, gravitino mass,

2
3
4 1.000000000e+00 # Change electroweak symmetry breaking scale?
5
6

\

#
# 20 3.100000000e+01 # Include 2-loop g/Yuk corrections: 31 for all
# 22 1.000000000e+00 # Include 2-loop sparticle mass thresholds

# 23 0.000000000e+00 # No expansion of 2-loop gluino terms

Figure 4.1: The input file lesHouchesInput included with the SoftSusy package. It is split into four
sections for different input information and is SLHA-compliant. The first BLOCK MODSEL indicates
the supersymmetric model and supersymmetry breaking to use, the section BLOCK SMINPUTS sets
the Standard Model input values used as boundary conditions for the RGEs at the low scale. The
third BLOCK MINPAR sets the high scale boundary conditions specific to the model of supersymmetry
breaking, further information can be provided in an optional additional BLOCK “EXTPAR” (see [66,
156]). The final SOFTSUSY BLOCK contains the SoftSusy spectrum generator and decay calculator
specific input, with items 0, 24, 25, 26 for the decay calculation.

may be done in the input file BLOCK SMINPUTS, the masses used within the decay calculator
(“kinematic” and “running”) will change accordingly.

4.1.2 Output

The output comes in the standard SLHA/SLHA2 format [156,157]. In concordance with
SLHA conventions the particle masses, total widths and partial widths (PW) are output in units
of GeV.

Running the ./softpoint.x executable with either an input file (such as that provided

in Figure 4.1) or command line instructions produces a single output file in around 0.1-1s,
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containing all the mass spectrum and decay branching ratios information for the supersymmetric
and Higgs particles in the model. Furthermore, this information is all provided in SLHA /SLHA2
format [156,157] and so may be passed straight into additional programs, for example PYTHIA
if event generation is required. This makes the SoftSusy program straightforward to use. For
the sample input file provided in Figure 4.1, the output file lesHouchesOutput provided with
the SoftSusy package is generated, this is split into several parts with Figures 4.2 and 4.3
illustrating the parts containing the mass spectrum and one decay table?. The structure of the

output file produced is as follows:

e Input information - At the top of the output file the input information provided to the
SoftSusy program is listed so that output files can be identified with the input files.

e Mass spectrum - Next, the BLOCK MASS, lists the masses of all the supersymmetric and
Higgs particles of the model, as seen in Figure 4.2.

e Couplings and Mixing Matrices - The couplings and mixing matrices calculated are output
next.

e Decay information - For each possible parent supersymmetric and Higgs particle in the
model a decay table is produced. This lists the total width of the particle followed by all
available modes with branching ratio greater than minBR and their associated branching
ratios. NDA indicates the number of daughter particles produced in the decay (2 or 3 in the
current version of the SoftSusy decay calculator), the PDGi columns give the Particle Data
Group (PDG) codes of the daughter particles produced in the decays (see Section 43 of
Ref. [33] for a list of PDG codes) and the final column, following the # symbol, contains a
human-readable comment listing the decay mode. Beyond this column the partial widths
are output if Item 26 in the SOFTSUSY BLOCK is set to 1 or ——outputPartialWidths
is used as a command line option. The decay table for the gluino decays is shown in
Figure 4.3 from the lesHouchesOutput file.

e Finally, as of recent versions of SoftSusy, the uncertainties in the predictions of the Higgs
masses are output into a BLOCK DMASS at the bottom of the output file.

This output information may be more easily visualised using the program pyslha [186];
this allows the production of Figure 4.4 straight from the SLHA SoftSusy output file, here
for the lesHouchesQOutput file. It shows the mass spectrum produced as well as all the decays
of branching ratio greater than minBR= 10~° shown with arrows, with bolder, thicker arrows

indicating larger branching ratios.
4.1.3 Decay Information

The decay information produced by the SoftSusy decay calculator is stored in an object-
oriented manner, with each possible parent supersymmetric and Higgs particle having a decay
object of the Particle class containing all the relevant decay information determined. We
display the class in Table 4.1, the user may wish to access this information if they seek to alter

the code for their own purposes.

2The whole output file is available with the SoftSusy package but is too long to provide in full here.
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Block MASS # Mass spectrum
# PDG code mass particle
24 8.03604456e+01 # MW
25 1.13377987e+02 # ho
35 7.06258916e+02 # HO
36 7.05981693e+02 # AD
3T 7.10783740e+02 # H+
16000021 1.14489121e+03 # ~g
1000022 2.04338616e+02 # ~neutralino(l)
1000023 3.85279664e+02 # ~neutralino(2)
le00024 3.85275816e+02 # ~chargino(1)
1000025 -6.22425291e+02 # ~neutralino(3)
1800035 6.36914220e+02 # ~neutralino(4)
1000037 6.37189628Be+02 # ~chargino(2)
1800001 1.85321726e+03 # ~d L
16000002 1.05036934e+03 # ~u_L
100003 1.853215601e+03 # ~s5_ L
10060004 1.05036709%e+03 # ~c_L
lee0005 9.66192879%e+02 # ~b_1
1000006 8.06475613e+02 # ~t_1
1000011 3.61526445e+02 # ~e L
1000012 3.52607618e+02 # ~nue_L
1000013 3.61523108e+02 # ~mu_L
1000014 3.5260419%e+02 # ~numu_L
1800015 2.22672378e+02 # ~stau_1
1000016 3.51418985e+02 # ~nu_tau_L
2000001 1.00857791e+03 # ~d R
2000002 1.0119067%9e+03 # ~u_R
2000003 1.060857573e+03 # ~s R
2000004 1.01190423e+03 # ~c_R
2000005 1.00538427e+03 # ~b_2
2000006 1.01147162e+03 # ~t 2
2000011 2.29807642e+02 # ~e R
2000013 2.29796987e+02 # ~mu_R
2000015 3.62610867e+02 # ~stau 2

Figure 4.2: The second part of a SoftSusy output file, this contains the parameters determined by the
spectrum generation, i.e. the masses of the supersymmetric and Higgs particles and their couplings and
mixing matrices. This is from the file lesHouchesOutput.

# PDG Width

DECAY 1080021 1.41408172e+01 # Gluino decays

# BR NDA  PDG1 PDG2 Comments
2.13758723e-02 2 1 -1000001 # ~g -> d ~d_L*
2.13758723e-02 2 = 1000001 # ~g -> db ~d L
4.53615031e-02 2 1 -2000001 # ~g -> d ~d_R*
4.53615031e-02 2 =1 2000001 # ~g -> db ~d R
2.26657670e-02 2 2 -1000002 # ~g -> u ~u_L*
2.26657670e-02 2 =P 1000002 # ~g -> ub ~u_L
4.33066040e-02 2 2 -2000002 # ~g -> U ~u_R*
4.33066040e-02 2 -2 2000002 # ~g -> ub ~u_R
2.13768707e-02 2 3 -1000003 # ~g -> S5 ~s_L*
2.13768707e-02 2 -3 1000003 # ~g -> sb ~s L
4.53628609e-02 2 3 -2000003 # ~g -> s ~S_R*
4.53628609e-02 2 -3 2000003 # ~g -> sb ~s R
2.26663840e-02 2 4 -1000004 # ~g -> C ~C_L*
2.26663840e-02 2 -4 1000004 # ~g -> cb ~c L
4.33077833e-02 2 4 -2000004 # ~g -> € ~cC_R*
4.33077833e-02 2 -4 2000004 # ~g -> cb ~c_R
7.36731998e-02 2 5 -1000085 # ~g -> b ~b_1*
7.36731998e-02 2 -5 1000005 # ~g -> bb ~b_1
4.83144041e-02 2 5 -2000005 # ~g -> b ~b_2*
4.83144041e-02 2 -5 2000085 # ~g -> bb ~b_2
1.12588751e-01 2 6 -1000006 # ~g -> t ~t_1*
1.12588751e-01 2 -6 1000006 # ~g -> tb ~t_1

Figure 4.3: The third part of a SoftSusy output file, this contains the parameters determined by the de-
cay calculator, i.e. the total widths, available decay modes and branching ratios for each supersymmetric
and Higgs particle in the model. Here we provide just the decay table for the gluino, this is followed by a
similar table for each of the other parent particles in the model. This is from the file lesHouchesOutput.
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Figure 4.4: Visualisation of the output information contained in the lesHouchesOutput file and produced
by SoftSusy, the mass spectrum is shown along with the decay branching ratios available (with branching
ratio greater than 107°) to each particle, with bolder, thicker arrows indicating larger branching ratios.
This figure has been produced by passing the SLHA output file lesHouchesOutput to the slhaplot
executable of the pyslha interface program [186], the command line input required is ./slhaplot
lesHouchesOutput --br=10e-5 --decaystyle=brwidth.

data variable description
string name particle name
double mass particle mass
double PDG particle PDG code
double No_of Decays Total Number of possible decays of particle
double No_1to2 Decays Total Number of possible 2-body decays of particle
double No_1to3 Decays Total Number of possible 3-body decays of particle

double No_grav Decays | Total Number of possible decays of particle to LSP gravitinos
double No NMSSM Decays Total Number of possible decays of particle in the NMSSM

double total width Total Decay Width of the particle
double two_width 2-body decay partial width of the particle
double three width 3-body decay partial width of the particle

A Nx6 array, where N = No_of Decays. PDGs of the daughter

t . .
vector particles are in columns 0 and 1 (and 4 for 3-body decays),
<vector<double>> . . .
Arrav Decavs the partial widths are in column 2, the number of daughters
Y ¥ (NDA) in column 3 and the branching ratios in column 5.
vector <string> A Nx1 array (vector), where N = No_of Decays, listing each
Array _Comments decay mode, e.g. ¢ — uuy.

Table 4.1: The information contained in the Particle object for each of the decaying particles.
PDG codes are given in the reference [157]. Note that the numbers of decays contained in double
No_. .. Decays are the total number of such decays assuming non are kinematically forbidden. All these
decays are checked by the program to see if they are allowed kinematically and calculated if so.
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4.2 Validation and Results

We begin now comparisons of the results of the SoftSusy decay calculator against other
publicly available decay programs, this also serves to illustrate a selection of the results which
can be produced using the program. Specific and fairly extensive tests and comparisons were
made for particular benchmark points against the programs sPHENO, SUSYHIT and NMSSMTools.
Comparisons for some of these benchmark points are provided here for a selection of decaying
SUSY and Higgs particles as illustrations; in addition scans over the mass of the decaying particle
are given for the decays of the lightest SM-like Higgs and for the decays of a gluino g. The results
given in this section represent only a small selection of the actual validation performed and only
give a flavour of the results our program can produce. Nonetheless they allow both a qualitative
check of the behaviour of the decays in the program and a quantitative comparison of the level
of agreement with other programs. In particular the level of agreement with the same input

parameters and with our set of input parameters is detailed in some specific cases.

4.2.1 Supersymmetric 2-body decays

All 2-body supersymmetric decay modes at tree-level are included in the SoftSusy program,
therefore this is by far the biggest class of decay modes included. Nonetheless these modes
are also amongst the simplest both from a physics point of view and computationally. To
demonstrate this vast swathe of decay modes, we consider the decays of the lightest stop, t;. The
comparison of the results for this benchmark point between the new SoftSusy decay calculator
and those of SUSYHIT-1.4 is given in Table 4.2. The input values used for the various masses
are: top pole mass mtPole= 174.3 GeV, bottom pole mass mbPole= 4.985 GeV, running top
mass runmt= 145.555 GeV and running bottom mass runmb= 2.576 GeV. These differ from the
default values used for these quantities in SUSYHIT and Table 4.2 illustrates the differences
observed between SoftSusy and SUSYHIT-1.4 branching ratios calculated as a result, as well as
the differences when SoftSusy has the SUSYHIT mass inputs inserted by hand. This demonstrates
that the level of agreement between the programs is around 10%, dropping down to 1% when
the same input masses and coupling constants are used in both programs. These differences
result from the different mass and scheme choices, as outlined in Chapter 3.3.3. The remaining
disagreements in the neutralino decay modes occur as a result of differences in the neutralino

mixing matrix due to differences in its calculation.

4.2.2 Higgs tree-level and 1-loop decays

The second key class of decay modes included in SoftSusy are those of the supersymmetric
Higgs particles. These are of great importance due to the discovery of the Standard Model-
like Higgs at the LHC. In Table 4.4, we perform similar comparisons between SoftSusy and
HDECAY-3.4 of SUSYHIT-1.4 for Higgs decays. Here we have taken a SM-like Higgs, in the
decoupling limit so all the SUSY decays are kinematically forbidden, given by a point in the
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SoftSusy default inputs | SoftSusy SUSYHIT’s inputs SUSYHIT mode
PW/GeV BR PW/GeV BR PW/GeV BR

1.833e+00 | 3.202e-01 | 1.708e+-00 3.211e-01 1.708e+00 | 3.218e-01 | t; — bW
1.267e+00 | 2.218e-01 | 1.103e+00 2.073e-01 1.103e4+00 | 2.078e-01 | t; — bWy
1.304e+00 | 2.277e-01 | 1.299e+4-00 2.441e-01 1.299e4-00 | 2.448e-01 | t; — tZ;
7.181e-01 1.254e-01 6.848e-01 1.287e-01 6.729¢-01 | 1.268e-01 | t; — tZ5
6.009e-01 1.049e-01 5.250e-01 9.871e-02 5.249e-01 | 9.889e-02 | t; — tZ3

Table 4.2: ¢, decays at the parameter point of the lesHouchesInput file provided with SoftSusy,
which has a common scalar mass mo = 125GeV, a common gaugino mass my,, = 500 GeV, ratio of
Higgs vacuum expectation values tan § = 10, sign of the superpotential p parameter sign(pu) = +1 and
common soft SUSY breaking trilinear parameter Ay = 0 in the constrained MSSM (CMSSM). This
results in my, = 808.7GeV, my;, = 385.0GeV, my, = 637.5GeV, m; = 204.0GeV, my = 385.0GeV,
mg = —0622.7GeV, my = 637.2GeV. This table compares the partial widths and branching ratios as
output by SoftSusy with our mass choices (and corresponding Yukawa couplings) and with the masses
and Yukawa couplings in SUSYHIT, with the results of SUSYHIT-1.4. This illustrates the differences of
order 10% that may arise depending upon mass (“kinematic” and “running”) choices, the differences
reduce to order 1% once the same masses are taken. SoftSusy-4.0 was used for these results.

pMSSM parameter space which has Higgs mass 125 GeV - this point we call pmssml and the
SLHA [156] form of the input file is given verbatim in Table 4.3. The results of our decay
calculator without QCD corrections included, with QCD corrections included, and with the
same input quark and gauge boson masses and same input gauge couplings as SUSYHIT, again
with QCD corrections, are compared with HDECAY-3.4. Note that the comparisons are done
against the non-current version HDECAY-3.4 as this is the version included in the SUSYHIT-1.4
package. This allowed straightforward comparisons to be done between the new decay calculator
and SUSYHIT’s version of HDECAY as one can input the spectrum as calculated by SoftSusy
straight into SUSYHIT. This allowed the effects of the spectrum generator to be isolated as much
as possible from the decay calculator which is being tested. Nonetheless, even with the same
spectrum SUSYHIT first converts the mixing matrices and other inputs to its own conventions

and assumptions, this accounts for the remaining numerical differences between the codes.

We include important QCD corrections for the neutral Higgs decays to quarks and to gluons.
In Table 4.4, the comparison of the partial widths with QCD corrections switched on and
switched off clearly demonstrates the significant difference these corrections make, as is widely
known in the literature [84, 115,183, 187]. Furthermore, it is clear that the main source of
differences in partial widths between the decay calculator of SoftSusy-4.0 and HDECAY is in the
choice of masses used. Remaining differences tend to be small and are due largely to differences
in other inputs, the exception being the decays to two vector bosons where order 10% differences
are observed. This is due to HDECAY incorporating additional effects such as the width of the
resonance and NLO corrections which are not included in SoftSusy. It should also be noted here
that HDECAY performs a numerical integration whilst SoftSusy has an explicit expression with
no integration required so the calculation methods are different. A comparison of the branching
ratios output for this SM-like Higgs are given in Figure 4.5. In particular it should be noted that
as SoftSusy predicts a larger partial width for the h — bb mode in this case due to a difference

Thomas Cridge 105



Chapter 4. Use and Results of SoftSusy Decay Calculator

4.2.

Validation and Results

Block MODSEL # Select model
1 0 # non universal
1 1 # sugra input

Block SMINPUTS # Standard Model inputs
1 1.279340000e+02 # alpha”(-1) SM MSbar(MZ)
2 1.166370000e-05 # G_Fermi
3  1.172000000e-01 # alpha_s(MZ) SM MSbar
4  9.118760000e+01 # MZ(pole)
5  4.250000000e+00 # mb(mb) SM MSbar
6  1.733000000e+02 # mtop(pole)
7 1.777000000e+00 # mtau(pole)

Block MINPAR

# Input parameters

1 1.000000000e+03 # mO0
2 3.000000000e+02 # m12
3  3.000000000e+01 # tanb
Block SOFTSUSY # Optional SOFTSUSY-specific parameters
0  1.000000000e+00 # Calculate decays in output (only for RPC (N)MSSM)
1 1.000000000e-03 # Numerical precision: suggested range 10°(-3...-6)
2  0.000000000e+00 # Quark mixing parameter: see manual
5 1.000000000e+00 # Include 2-loop scalar mass squared/trilinear RGEs
24 1.000000000e-09 # If decay BR is below this number, don’t output
25 1.000000000e+00 # If set to 0, don’t calculate 3-body decays (1=default)
26  1.000000000e+00 # Output PWs
Block EXTPAR # non-universal SUSY breaking parameters
0 -1.000000000000000e+00 # Set MX=MSUSY
3 1.000000000000000e+03 # M_3(MX)
11 -7.700000000000000e+03 # At (MX)
12 1.000000000000000e+03 # Ab(MX)
13 -3.000000000000000e+03 # Atau(MX)
23 3.000000000000000e+02 # mu(MX)
26 3.000000000000000e+03 # mA(pole)
33 3.000000000000000e+03 # mtaul (MX)
36 3.000000000000000e+03 # mtauR (MX)
43 3.500000000000000e+03 # mqL3 (MX)
46 3.800000000000000e+03 # mtR(MX)

Table 4.3: The pMSSM parameter space point used for the h decay comparisons in Table 4.4 and
Figure 4.5, and for the h — v loop contributions in Figure 4.7, this input file is in SLHA form [156].

in the default b mass used, then as this is a dominant decay mode this difference causes a larger
total Higgs decay width in SoftSusy and so suppresses the branching ratios of the other modes
slightly. For example, the partial widths for the A — cc mode are in exact agreement between
SoftSusy and HDECAY in Table 4.4, however SoftSusy calculates a reduced branching ratio for
this mode due to the larger predicted total width. Such effects are apparent in Figure 4.5 due

to the logarithmic scale.

In order to provide a qualitative demonstration that the decay calculator is functioning
correctly one may also scan the mass of the decaying particle and investigate how the partial
widths and branching ratios change. Figure 4.6 shows how the branching ratios of a SM-like
Higgs change as its mass is scanned from the Z° boson mass up to 200 GeV as calculated in
(a) SoftSusy and in (b) a well-known plot produced by the LHC Higgs Cross Section Working
Group [188] in 2011. This shows a good level of agreement, with small differences due to effects
detailed previously in the quantitative comparison at my = 125 GeV. The largest differences are
in the cc, 77, gg, 77 channels and particularly at the low energy end near myz. There are several
effects which cause this, in addition to those previously listed; firstly the amplitudes of the bb, cc
channels are particularly sensitive to the value of as used. This dictates the size of the NLO QCD

corrections, with larger o values enlarging the corrections and reducing the width; these effects
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SoftSusy with HDECAY-3.4 with

SoftSusy no SoftSusy with SUSYHIT’s same QCD mode
QCD corrections QCD corrections masses and QCD -
corrections corrections
PW BR PW BR PW BR PW BR

1.04e-04 | 3.30e-02 | 2.25e-04 | 4.03e-02 | 2.25e-04 | 4.31e-02 | 2.25e-04 | 4.24e-02 | h — cc

8.00e-07 | 2.55e-04 | 1.62e-06 | 2.91e-04 | 1.62e-06 | 3.11e-04 | 1.63e-06 | 3.06e-04 | h — ss

1.75e-03 | 5.56e-01 | 3.96e-03 | 7.10e-01 | 3.60e-03 | 6.90e-01 | 3.61e-03 | 6.80e-01 | h — bb

8.52e-07 | 2.71e-04 | 8.52e-07 | 1.53e-04 | 9.17e-07 | 1.76e-04 | 9.19e-07 | 1.73e-04 | h — pp

2.61e-04 | 8.30e-02 | 2.61e-04 | 4.67e-02 | 2.59e-04 | 4.97e-02 | 2.60e-04 | 4.90e-02 | h — 77

1.06e-05 | 3.36e-03 | 1.06e-05 | 1.89e-03 | 9.24e-06 | 1.77e-03 | 9.24e-06 | 1.74e-03 | h — vy

1.65e-04 | 5.27e-02 | 2.71e-04 | 4.86e-02 | 2.72e-04 | 5.22e-02 | 2.72e-04 | 5.13e-02 | h — gg

6.74e-06 | 2.15e-03 | 6.74e-06 | 1.21e-03 | 5.88e-06 | 1.13e-03 | 6.11e-06 | 1.15e-03 | h — Zv

7.61e-04 | 2.42e-01 | 7.61e-04 | 1.36e-01 | 7.61e-04 | 1.46e-01 | 8.22e-04 | 1.55e-01 |h - WW

8.44e-05 | 2.69e-02 | 8.44e-05 | 1.51e-02 | 8.44e-05 | 1.62e-02 | 1.02e-04 | 1.92e-02 | h — ZZ

3.14e-03 | 1.00e+00| 5.58e-03 | 1.00e+00| 5.22e-03 | 1.00e+-00| 5.31e-03 | 1.00e+00| Total

Table 4.4: The h decay partial widths (in GeV) and branching ratios as output by SoftSusy first without
QCD corrections, with QCD corrections, with QCD corrections and withSUSYHIT’s quark and gauge
boson masses and gauge couplings, and the results of HDECAY-3.4 from SUSYHIT-1.4. This illustrates
the necessity of including QCD corrections for decays to quarks or gluons, as well as that masses are
the primary source of differences between SoftSusy and HDECAY-3.4. The pMSSM point pmssmi listed
in Table 4.3 is used; it has m;, = 125 GeV. The masses and gauge couplings from SUSYHIT inserted into
the SoftSusy decay calculator in columns 5 and 6 are ay; = 0.11 and m, = 1.40GeV, m; = 0.19 GeV,
my = 4.77GeV, m; = 173.30 GeV for the h — ¢¢ and h — gg decays; m, = 0.11GeV, m, = 1.78 GeV
for h — 171~ decays; a(Mz) = 7.29 x 1072 and my = 80.35GeV, m; = 188.72GeV, m; = 3.47 GeV,
me = 0.74GeV and m, = 1.78 GeV for h — ~vv; mz = 91.19GeV, m; = 173.30 GeV, my = 4.77 GeV,
a=17.29x 1073 and my = 80.36 GeV for h — Z~ and for h — VV*. SoftSusy-4.0 was used.

are known to be particularly large for these Higgs to quark-antiquark channels. As a result,
any subtle differences in the numerical values of ay used, originating from different running
schemes and methods for example, have a significant impact on the partial widths to these
modes. Indeed, this effect is precisely the origin of the larger error regions seen in Figure 4.6b
for this region for these modes, and whilst we have not evaluated such effects in SoftSusy
we would expect similar size error regions for the SoftSusy predictions; this would bring the
predictions into closer agreement. Specifically for this case our value of as(my,) is lower than the
corresponding value in HDECAY; this ensures our partial widths to the bb, cc channels are larger
and correspondingly the branching ratios to other modes are reduced, as is seen in Figure 4.6.
Additional effects are seen in the loop decays, particularly the gg, vy modes; as always their
partial widths depend upon the values of the quark and gauge boson masses running in the loop
as well as the running values of the gauge couplings. Consequently, differences in the schemes
of the running here alter the loop contributions. Furthermore, HDECAY also includes additional
effects of electroweak NLO corrections which are not included in SoftSusy. It should also be
noted that Figure 4.6b has been taken directly out of the relevant paper [188], and the input files
used for HDECAY are not clear. We find that if we attempt to make the same plot again using
HDECAY of SusyHit for our input file and with the same order corrections then the resulting

plot is in better agreement still with our plot in Figure 4.6a, indicating some of the differences
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Figure 4.5: Branching ratios for a SM-like Higgs predicted by SoftSusy and by HDECAY-3.4 in
SUSYHIT-1.4 for my = 125 GeV. This is for the pMSSM point pmssm1, see Table 4.3. SoftSusy-4.0 was
used for these results.

arise as a result of different corrections included between the codes and different input setups.

Nonetheless, the qualitative agreement is clear.

In conjunction with the results on the individual branching ratios of the Higgs particles,
the sizes of different loop contributions to the Higgs 1-loop decays to vy, Zv and gg may also
be extracted, offering potential insight into the effects of Standard Model and supersymmetric
particles together on Standard Model loop decays. Should any deviation in the rate of one or
more of the Standard Model Higgs loop decays be detected, or should a resonance be detected in
a similar final state at higher energy, predictions of the size of different contributions will provide
additional discriminating power to determine the possible supersymmetric models present. As
a testimony to this, we present here in Figure 4.7 the loop contributions to the diphoton decay
channel for the Standard Model-like Higgs and the heavier Higgs boson of the MSSM for the
same pMSSM point, that given earlier in Table 4.3 (for which the heavier Higgs had mass
mp = 3TeV). In order to produce this figure the absolute values of the contributions have
been taken in order to allow a logarithmic scale, this therefore hides some of the destructive
interferences, for example between top and W boson for the lighter Higgs and between the two
charginos for both the lighter and heavier Higgs. Figure 4.7(a) shows the contributions for the
Standard Model-like Higgs, dominated by the top and W contributions as expected. There are
contributions from the charginos but they largely cancel each other and experiments will not be
sensitive to such contributions in the near future. Figure 4.7(b) shows the relative contributions

of the different loops for the heavier Higgs of the pMSSM point. As expected, the contributions
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(b) LHC Higgs Cross-Section Working Group
Figure 4.6: Branching ratios for a SM(-like) Higgs as calculated in (a) by SoftSusy-4.0 and in (b) by

the LHC Higgs Cross-Section Working Group in [188]. This demonstrates a verification of the partial
widths output by SoftSusy.
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to the heavier Higgs loop decays are typically smaller as a result of the dependence of the loop
contributions on the parameter 7, = 4m?2/ mi (where ¢ = h, H), which is much smaller for the
heavier Higgs as a result of its larger mass. Note that the imaginary contributions to the loop
decay appear when the loop particle has mass 2mjoop < My as in such cases the on-shell decay to
two loop particles at tree-level is allowed; consequently there are more imaginary contributions
for the heavier Higgs. Also note that the supersymmetric contributions to the heavier Higgs
are relatively larger than for the Standard Model-like lighter Higgs, as it has enlarged couplings
to supersymmetric particles whereas the Standard Model-like Higgs has reduced couplings to

supersymmetric particles.
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Figure 4.7: Absolute values of the matrix element contributions of different loop particles to the
h,H — ~v decay channels. Absolute values are taken so as to use a logarithmic scale and thereby
allow all contributions to be viewed, nonetheless this does hide the sign of the contributions and so the
presence of destructive interferences. Loop contributions shown against the y-axis scale here have di-
mensions of energy in GeV and are simply the size of the matrix element arising from that contribution.
SoftSusy-4.1.4 was used for these results.

4.2.3 Supersymmetric 3-body decays

So far we have demonstrated the validation of SUSY 2-body and Higgs MSSM decays,
including the Higgs loop-decays, QCD corrections and Higgs 3-body decays. Similar validation
and comparison was also performed for the MSSM 3-body decays and the NMSSM decays, as
well as for special case decays to gravitinos and to pions, which we also examine later in this

chapter.

First, let us consider the MSSM 3-body decays: an explicit comparison can be performed

for the gluino 3-body decays with the spectrum given in Figure 4.8; the gluino 3-body decays to
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neutralinos or charginos and quark-antiquark pairs are indicated, as are the appropriate Feynman
diagrams for these modes. As the gluino only interacts via QCD, the only 2-body modes it has
at tree-level are to squarks and quarks, however in this spectrum the gluino is lighter than all
the squarks and so these modes are kinematically forbidden. At tree-level the dominant modes
are therefore now the 3-body modes via an off-shell squark to neutralinos and a quark-antiquark
pair or to charginos and a quark-antiquark pair, as illustrated. Radiative decays of the form
G — ¢Z; may also be important for such points but are yet to be included in SoftSusy. A
comparison of the partial widths and branching ratios given by SoftSusy-4.0, sPHENO-3.3.8
and SUSYHIT-1.4 for this spectrum is presented in Table 4.5. This was performed taking the
mass, coupling and other input decay parameters from sPHENO and inputting these directly by
hand into the SoftSusy decay calculator in order to evaluate only differences due to the decay
calculation, not any differences which might arise as a result of differing parameters from the
spectrum generators. The agreement between the three programs is generally very good; in
particular the agreement between SoftSusy and sPHEN0-3.3.8, upon which the calculations
of the 3-body decays is based, is usually between 1 and 5% with the larger differences often
occurring where there are larger differences between SUSYHIT-1.4 and sPHEN0-3.3.8. The
exceptions to this are the decays to third generation quark-antiquark pairs and the third and
fourth heaviest neutralinos; i.e. § — tZs, § — ttZs, § — bbZ3 and § — bbZy. Here the
differences observed are 10 — 20% and they arise because of differences in the Yukawa couplings
taken, for example for the b quark here the Yukawa coupling used in SoftSusy is determined by a
running bottom mass of runmb= 2.63 GeV, whereas sPHENO has a Yukawa coupling corresponding
to a mass of runmb= 2.37 GeV. In order to show this results in the differences observed, the
running b mass in SoftSusy was temporarily set to that of sPHENO and the comparison for
g — bBZi is provided in Table 4.6. This demonstrates that the decays to 7y and Z, are not
significantly altered by the new Yukawa coupling whereas the decays to Zs and Z4 (i.e. those
which showed differences with respect to sPHENQO) now have significantly altered partial widths
which are in much closer agreement with sPHENO, back down to the few percent level agreement
seen in the other 3-body decays. This sensitivity to the b mass for the 2374 indicates their

increased proportions of Higgsino components.

A scan over the mass of the gluino to demonstrate the expected suppression of 3-body decays
relative to 2-body decays was also performed, see Figure 4.9 where 3-body modes are shown as
dashed lines and 2-body modes as solid lines. The result of this is that, phenomenologically,
3-body modes are only important when 2-body tree level modes are unavailable, as described in
Chapter 3.1. This therefore verifies SoftSusy produces the expected behaviour for these decay
modes. For this reason, SoftSusy only calculates 3-body modes when there are no similar
2-body modes available.

More details on the other 3-body modes included in the SoftSusy decay calculator, the
contributions included, approximations made and the level of agreement seen between SoftSusy
and other decay calculators for each mode are given in Appendix A.4. There, the relevant

expressions used by our decay calculator to determine their partial widths are also provided.
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Figure 4.8: Spectrum used for quantitative comparison of gluino § 3-body decays. Here the arrows
indicate only the 3-body decay modes of the gluino: these are those investigated. This CMSSM spectrum
has mg = 1500 GeV, m, /o = 400 GeV, tan 3 = 10.37, sign(u) = +1, A9 = —80GeV and was generated
in sPHENO. The figure was produced using a modified version slhaplot-3.0.4 from pyslha [186]. The
Feynman diagrams for these 3-body modes are also given inset on the spectrum.
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Figure 4.9: Branching ratios for the gluino § of Figure 4.8 as its mass is scanned from 1 to 2TeV.
3-body modes are shown in dashed lines and 2-body modes in solid lines. The suppression of 3-body
modes relative to 2-body tree level modes is clearly evident in the drop in the 3-body branching ratios
once the first 2-body mode § — #;t is available. Note that the “g” indicated in the plot are § (i.e.
gluinos), whilst “Z;” are Z; (i.e. neutralinos) and “W,” are Wj (i.e. charginos). “st” indicates stops %,
“sb” indicate sbottoms l~)i, “sq” are ¢ squarks of the first two generations and “q” here are quarks of the
first two generations in the case of the 2-body modes. For the 3-body modes however “q” indicates that
they are instead summed over all three generations of quarks. SoftSusy-4.0 was used for these results.
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SoftSusy sPHENO-3.38 SUSYHIT-1.4 mode
PW/GeV BR PW/GeV BR PW/GeV BR
2.90e-04 | 2.26e-02 | 2.89e-04 | 2.32e-02 | 2.89e-04 | 2.32e-02 | g — Zjuu
3.21e-04 | 2.51e-02 | 3.19e-04 | 2.56e-02 | 3.19e-04 | 2.56e-02 | g — Zout
1.35e-07 | 1.06e-05 | 1.35e-07 | 1.08e-05 | 1.35e-07 | 1.08e-05 | g — Zzuu
5.52e-06 | 4.31e-04 | 5.49e-06 | 4.40e-04 | 5.49e-06 | 4.40e-04 | g — Zyuu
9.06e-05 | 7.07e-03 | 9.02e-05 | 7.22e-03 | 9.02e-05 | 7.24e-03 | § — Zidd
3.07e-04 | 2.40e-02 | 3.06e-04 | 2.45e-02 | 3.06e-04 | 2.45e-02 | § — Zodd
1.75e-07 | 1.36e-05 | 1.74e-07 | 1.39e-05 | 1.74e-07 | 1.40e-05 | § — Zsdd
6.67e-06 | 5.21e-04 | 6.64e-06 | 5.31e-04 | 6.64e-06 | 5.33e-04 | § — Zydd
2.90e-04 | 2.26e-02 | 2.89e-04 | 2.32e-02 | 2.89e-04 | 2.32e-02 | g — Zjcc
3.21e-04 | 2.51e-02 | 3.19e-04 | 2.56e-02 | 3.19e-04 | 2.56e-02 | g — Zacc
1.35e-07 | 1.05e-05 | 1.41e-07 | 1.13e-05 | 1.35e-07 | 1.08e-05 | g — Zscc
5.52e-06 | 4.31e-04 | 5.50e-06 | 4.40e-04 | 5.49e-06 | 4.40e-04 | g — Zycc
9.06e-05 | 7.07e-03 | 9.02e-05 | 7.22e-03 | 9.02e-05 | 7.24e-03 | g — Z155
3.07e-04 | 2.40e-02 | 3.06e-04 | 2.45e-02 | 3.06e-04 | 2.45e-02 | g — Z255
1.75e-07 | 1.36e-05 | 1.77e-07 | 1.42e-05 | 1.74e-07 | 1.40e-05 | g — Z3s5
6.67e-06 | 5.21e-04 | 6.64e-06 | 5.32e-04 | 6.64e-06 | 5.33e-04 | g — Z455
1.47e-03 | 1.15e-01 | 1.47e-03 | 1.17e-01 | 1.44e-03 | 1.15e-01 | ¢ — Zitt
2.56e-04 | 1.99e-02 | 2.46e-04 | 1.97e-02 | 2.67e-04 | 2.15e-02 | g — Zott
3.48e-04 | 2.71e-02 | 3.10e-04 | 2.48e-02 | 3.34e-04 | 2.68e-02 | g — Zstt
6.13e-04 | 4.79e-02 | 5.66e-04 | 4.53e-02 | 5.21e-04 | 4.18e-02 | g — Zytt
1.27e-04 | 9.93e-03 | 1.25e-04 | 1.00e-02 | 1.25e-04 | 1.00e-02 | § — Z1bb
7.80e-04 | 6.09e-02 | 7.74e-04 | 6.20e-02 | 7.74e-04 | 6.21e-02 | §— Zobb
2.20e-05 | 1.72e-03 | 1.77e-05 | 1.42e-03 | 1.78¢-05 | 1.43e-03 | § — Z3bb
3.48¢-05 | 2.72e-03 | 3.24e-05 | 2.60e-03 | 3.23e-05 | 2.60e-03 | § — Z4bb
6.28¢-04 | 4.90e-02 | 6.24e-04 | 5.00e-02 | 6.24e-04 | 5.01e-02 | § — W, ud
6.28¢-04 | 4.90e-02 | 6.24e-04 | 5.00e-02 | 6.24e-04 | 5.01e-02 | § — W, du
6.28e-04 | 4.90e-02 | 6.24e-04 | 5.00e-02 | 6.24e-04 | 5.01e-02 | g — W, c5
6.28¢-04 | 4.90e-02 | 6.24e-04 | 5.00e-02 | 6.24e-04 | 5.01e-02 | § — W, sc
1.20e-05 | 9.36e-04 | 1.19e-05 | 9.56e-04 | 1.19e-05 | 9.58e-04 | § — Wy ud
1.20e-05 | 9.36e-04 | 1.19¢-05 | 9.56e-04 | 1.19e-05 | 9.58¢-04 | § — W du
1.20e-05 | 9.36e-04 | 1.19e-05 | 9.56e-04 | 1.19e-05 | 9.58e-04 | g — Wy c5
1.20e-05 | 9.36e-04 | 1.19e-05 | 9.56e-04 | 1.19e-05 | 9.58¢-04 | g — W, sc
9.29¢-04 | 7.25e-02 | 9.21e-04 | 7.38¢-02 | 9.21e-04 | 7.39e-02 | g — W, tb
9.29¢-04 | 7.25e-02 | 9.21e-04 | 7.38¢-02 | 9.21e-04 | 7.39e-02 | g — W, bt
1.35e-03 | 1.05e-01 | 1.27e-03 | 1.01e-01 | 1.27e-03 | 1.02e-01 | § — Wy tb
1.35e-03 | 1.05e-01 | 1.27e-03 | 1.01e-01 | 1.27e-03 | 1.02e-01 | § — W, bt

Table 4.5: The g decay partial widths and branching ratios in SoftSusy-4.0, sPHENO-3.3.8 and
SUSYHIT-1.4 for the spectrum in Figure 4.8, for which the gluino only has 3-body decay modes available
at tree-level.
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SoftSusy with altered runmb sPHENO-3.38 mode
PW/GeV BR PW/GeV BR
1.27e-04 9.93e-03 1.25e-04 1.00e-02 G — Z1bb
7.78e-04 6.10e-02 7.74e-04 6.20e-02 G — Zabb
1.81e-05 1.42e-03 1.77e-05 1.42e-03 G — Z3bb
3.18e-05 2.50e-03 3.24e-05 2.60e-03 G — Zybb

Table 4.6: The § decay partial widths and branching ratios to Z;bb as output by SoftSusy-4.0 with
runmb taken so that the b Yukawa coupling in SoftSusy matches that in sPHENO. These decays showed
significant differences between the two programs for Zs and Zy, see Table 4.5. The agreement is now
much improved, demonstrating that the differences result from a choice of the running b mass runmb.

4.2.4 Gravitino Decays

As outlined in Chapter 2.1.3, gravitinos inherit larger couplings via a super-Higgs mechanism,
this can cause decays involving gravitinos to be relevant at colliders, particularly if the gravitino
is the LSP as is often the case in GMSB models. In this case, the decays of NLSPs to the LSP
gravitino can generate key signatures at the LHC, such as displaced vertex signatures. The
decay formulae are given in detail in Appendix A.5, but the general form is given as an inset
to Figure 4.10. The principal behaviour of these modes is that they are inversely proportional
to the square gravitino mass, consequently the proper lifetimes 7; o m(;z. Proper lifetimes are
then converted into physical distances travelled in the detector by factoring in the velocity and
time dilation effects, under the assumption the velocity is v = 0.8¢ for the data in Figure 4.10.
The figure is representative and only intended to illustrate the fundamental features of these
decays - therefore the exact velocities are unimportant. A different assumption for the velocity
will shift the curves parallel to the y-axis by a constant small amount (small as the y-axis is
logarithmic). As the distances are all proportional to mGQ, all the NLSP decays available have
the same gradient on the logarithmic scale, with the prefactors determining the intercepts and
hence separating the different decay modes. At ATLAS and CMS the typical distance scales
relevant to displaced vertices are between 1mm and 1m, this corresponds to a given gravitino
mass range which can be probed. Whilst Figure 4.10 shows an enlarged range of gravitino
masses, cosmological and other observations place constraints on the gravitino masses allowed.
These however tend to be model and assumption dependent and so are not summarised here
- gravitino masses as light as eV and as heavy as 10 TeV 2 can be accommodated, depending
on the model. As can be seen, this includes the range of gravitino masses over which displaced

vertices would be expected to be produced via these NLSP to gravitino LSP decays.

3 Although in that case the gravitino would not be the LSP.

Thomas Cridge 114



Chapter 4. Use and Results of SoftSusy Decay Calculator 4.2. Validation and Results

1.0e+10 | : : : : : : :
1.0e+05 |
1.0e+00
€ 1.0e-05}
> [
© 1.0e-10 |
> [
1.0e-15 §
1.0e-20 |
1.0e-25 |

Gy ——
GZ
Gh—

2 . '.3. 1
[(NLSP — G + SM) o "NLsp — Msu) ]
lu"\vlu\v,,ln(‘r;.\/,'.

1e-16
1e-14 |
le-12 |
1e-10 |
1e-08 |
1e-06 t
0.0001 |
0.01}

Gravitino Mass (GeV)

Figure 4.10: Next-to-Lightest Susy Particle (NLSP) decays to a gravitino LSP and Standard Model
particle, such decays are relevant particularly for GMSB models, a randomly chosen example of which is
provided here for which the NLSP is the lightest neutralino and the gravitino mass is scanned. The key
feature is that the partial widths are proportional to mé_2 for all NLSPs, consequently the lifetimes are
proportional to ms? and so all decay modes have the same gradient in the log plot shown. The prefactors
and mass differences alter the intercepts. SoftSusy-4.0 was used for these results.

4.2.5 Chargino to Neutralino Pion Decays

A further special class of supersymmetric decay modes included are those of charginos decay-
ing to quasi-degenerate neutralinos and pions. When chargino 2-body modes are unavailable?,
3-body modes become important, specifically the 3-body decays to a neutralino and quark-
antiquark pair such as Wi — Zjud. For standard mass splittings Am = My, — Mz, the
quark-antiquark pair behave exactly as such, forming jets in the observed final state; however,
as the mass splitting is reduced, eventually the quark and antiquark will hadronise together and
so should be described together as pions. This includes various additional form factors which will
alter their decay widths. We have included this particular case in the SoftSusy decay calculator
program as such very compressed spectra modes lead to intriguing signatures at colliders. These
include high transverse momentum chargino tracks decaying to pions and large missing trans-
verse momentum (due to the neutralino LSP produced), and also kinks and disappearing tracks
observed in one-pronged decays where a charged pion is detected produced from a chargino track
but the neutralino produced is unseen. These signatures are a smoking gun for AMSB models,
which typically produce a quasi-degenerate lightest chargino and lightest neutralino as the LSP

is wino-like, with the more wino-like the LSP the smaller the mass splitting. In Figure 4.11,

4For example, typically chargino 2-body modes are not available for the lightest chargino when the mass
splitting between it and the lightest neutralino is less than myy .
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we present the branching ratios and lifetime for a quasi-degenerate lightest chargino, scanning
the mass splitting Am between it and the lightest neutralino by scanning the Ms(Mgut) pa-
rameter as this in turn determines the size of the wino components in the lightest neutralino
and chargino. The modes relevant at different mass splittings are given in Figure 4.11a, with
the 3-body mode to electron and neutrino the only one available at mass splitting less than m..
Once Am > mg, the pion modes dominate, with one and two pion modes included in SoftSusy
as the two pion mode branching ratio increases with Am as the phase space suppression reduces.
Eventually, the standard 3-body modes to quarks and antiquarks again dominate and we switch
to these once Am > Ay = 1.5 GeV. The exact point of the switch between the pion description
and the quark description in SoftSusy was determined phenomenologically as the mass splitting
at which the quark-antiquark modes and the corresponding pion modes each sum to the same
branching ratio. Meanwhile, Figure 4.11b demonstrates the effect of the reduced phase space
that occurs as Am reduces on the lifetimes of the decaying lightest charginos; for small enough
mass splittings these lifetimes become long enough to leave observable tracks at the LHC, with
lifetimes of greater than around 10~!!s corresponding to the millimetre scales at which the LHC

may resolve displaced and secondary vertices.
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Figure 4.11: Decays of the lightest chargino near to degeneracy with the lightest neutralino for a
deformed CMSSM point - the model begins with mg = my = 500 GeV, Ag = 0, tan 8 = 20, sign(mu) =
+1, but then gaugino non-universality is imposed by scanning My (MguT) between 255 GeV and 280 GeV

in order to zoom in on small Am = my+ — mzo. This scanning of the wino mass varies how wino-
1 1

dominated the lightest chargino and lightest neutralino are, and correspondingly how similar their masses
are. The dominant branching ratios are shown in (a), including the standard 3-body decays as well as the
one and two pion modes and the switch-over point between the two descriptions at Am = Ay = 1.5 GeV,
whilst (b) presents the lifetimes of the quasi-degenerate chargino. SoftSusy-4.1.0 was used for these
results.
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4.2.6 NMSSM Decays

Similar detailed checks to those above were performed in the NMSSM and we provide some
details here. In Table 4.7 we present a quantitative comparison of the decays of the second
heaviest neutral CP even Higgs of the NMSSM, the H. The spectrum used, as generated by
SoftSusy, is given in Figure 4.12 with decay modes of branching ratios (BRs) greater than 0.1
(also calculated automatically by SoftSusy) indicated by arrows, with thicker, bolder arrows
representing larger BRs. For this parameter point, H is the CP even Higgs which has the largest
singlet component, with R(2,3) = 0.998.

The comparison in Table 4.7 demonstrates that the level of agreement is usually better than
10% with the exception of a few of the decay modes. The decay modes which show larger
differences are the decays to “down-type” fermions (i.e. fermions with third component of
weak isospin T3 = —%) and the 1-loop decay to two photons H — 7. Note that the decays
to two gluons here show good agreement with NMSSMTools: the scale of the decaying Higgs
myp = 519.3 GeV is relatively close to Mgysy = VMg mg, = 675.5 GeV so any differences in the
running between the two programs have little effect. SoftSusy and NMSSMTools both run the

gauge couplings to mr, however there are potential differences in the running order and scheme.

For the case of the decays H — s5, bb, ut =~ and 777, differences are seen between the
default SoftSusy partial widths and those of NMSSMTools. Some of these differences can be
explained by the use of different values for the masses from which Higgs couplings are extracted,
particularly in the case of the decays to b, p and 7 pairs. SoftSusy uses my(pole) = 4.97 GeV,
myu(Msusy) = 0.103GeV and m,(Msysy) = 1.80 GeV; meanwhile NMSSMTools uses m, =
4.54GeV, m, = 0.106 GeV and m, = 1.78 GeV. However, most of the differences are due to
the definition of the CP even mixing matrix S: the coupling of the singlet-like H to “down-
type” fermions is given by [S(2,2)/cos()]2. SoftSusy obtains S(2,2) = 2.71 x 1072, whilst
NMSSMTools has S(2,2) = 2.87 x 1072. Given that the partial widths are proportional to
the square of the mixing matrix element, this results in an approximate 12% difference. The
SoftSusy decay calculation uses the tree-level value S(Msysy), whereas NMSSMTools uses S as
extracted from the loop-corrected pole mass matrix. The two choices are equivalent at leading
order, and so the numerical difference between the programs is simply a higher order effect. To
demonstrate this effect explains much of the remaining differences, the CP even mixing matrix

elements have also been set to those of NMSSMTools in columns 5 and 6 of Table 4.7.

The other significant difference observed in the partial widths between the default SoftSusy
results and those of NMSSMTools is in the 4 channel. By default SoftSusy runs a and quark
masses, whereas NMSSMTools runs a but not the quark masses to calculate the Higgs cou-
plings. The quark masses used by SoftSusy for this point are my(mpg) = 144.5 GeV, my(mpy) =
2.40 GeV, m.(mpg) = 0.57GeV whereas NMSSMTools uses m; = 170.9GeV, m; = 4.54GeV,
m. = 1.40 GeV; meanwhile SoftSusy uses a(my) = 7.88 x 1073 whereas NMSSMTools obtains

a(mpy) = 7.30 x 10~3. The difference in the values of a(my) is presumably due to a difference
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in the scheme®. With the quark masses and a used by NMSSMTools inserted into the SoftSusy
decay code the difference between the two programs is dramatically reduced, with them now
showing excellent agreement. This clearly demonstrates that the difference observed is due to
different quark masses and coupling constants taken; in particular it is the quark masses which
have the largest effect here. The reason for such sensitivity to the masses taken is that for this
parameter point there is a large cancellation between the ¢, W and other loop contributions.
The degree of the cancellation is consequently heavily dependent upon the top mass used. With
SoftSusy’s choices then the real part of the top loop contribution is R[I;] = 8.99 x 10~2 and the
real part of the W loop contribution R[Iy] = —0.114 whilst the other significant contribution is
that of the heaviest chargino Wo: R[IW2] = 5.53 x 1072, resulting in significant cancellation such
that the total of all the particle loop contributions is (2.65 —6.62i) x 1072, With the quark mass
choices of NMSSMTools instead one obtains R[[;] = 0.135 and so the total cancellation is much
smaller and the total of all the loop contributions is (7.16 — 7.30i) x 10~2, which has a modulus
much larger than that obtained using the usual SoftSusy choices. Once these are squared this
explains the significant discrepancy. Differences seen between the two programs for this channel
should be interpreted as an indication of a large theoretical error in the calculation at this order

for this parameter point®.

Figure 4.13 displays the same comparisons of Table 4.7 graphically for ease of reference,
with Figure 4.13a presenting the original SoftSusy results and Figure 4.13b giving the SoftSusy
results with the NMSSMTools inputs taken. Again the clear improvement in the H — bb, cc, 77, vy

modes is obvious in Figure 4.13b.

SoftSusy, in the version used here, matches at mz and then runs « in the full NMSSM at 2-loops. As of
SoftSusy version 4.1.1 the matching has instead been done at m: as noted previously [83]. The matching in
NMSSMTools uses the alternative EF'T approach discussed previously as the second approach in Chapter 3.2.1.

®Note that our comparisons are carried out against an old version of NMSSMTools (NMSSMTools-4.2.1) since
there only exists an interface between the SoftSusy spectrum generator and this version. This allowed the effects
of the spectrum generator to be isolated from other differences in the decay calculations for validation.
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Figure 4.12: Mass spectrum and branching ratios for the constrained NMSSM Z3 violating parameter
point with mg = 400 GeV, m; /o = 350 GeV, tan 3 = 10, sign(u) = +1, Ag = —300GeV, A = 0.1, ks = 0.1,
A(S) =200 GeV and {r = 100 GeV used in Table 4.7. The arrows represent decay modes with branching
ratios (BRs) greater than 0.1, with thicker, bolder arrows representing larger BRs. SoftSusy-4.0 was
used for these results. The figure was produced with the aid of slhaplot-3.0.4 of pyslha [186].

SoftSusy with SoftSusy with
NMSSMTools quark NMSSMTools quark | NMSSMTools-4.2.1
SoftSusy default masses and masses, running with same QCD mode
running coupling coupling constants corrections
constants and S

PW/GeV BR PW/GeV BR PW/GeV] BR PW/GeV BR
2.98e-06 | 9.22e-06 | 2.99e-06 | 9.24e-06 | 3.04e-06 | 9.22e-06 | 3.04e-06 | 9.21e-06 H — cc
3.65e-07 | 1.13e-06 | 3.67e-07 | 1.14e-06 | 4.10e-07 | 1.24e-06 | 4.33e-07 | 1.31e-06 H —ss
9.44e-04 | 2.92e-03 | 7.73e-04 | 2.39e-03 | 8.64e-04 | 2.62e-03 | 8.93e-04 | 2.71e-03 H —bb
5.58e-02 | 1.73e-01 | 5.58e-02 | 1.73e-01 | 5.68e-02 | 1.72e-01 | 5.68e-02 | 1.72e-01 H—tt
2.52e-07 | 7.79e-07 | 2.68e-07 | 8.27e-07 | 2.99e-07 | 9.06e-07 | 3.16e-07 | 9.56e-07 H — pp
7.75e-05 | 2.40e-04 | 7.57e-05 | 2.34e-04 | 8.45e-05 | 2.56e-04 | 8.92e-05 | 2.70e-04 H— 77
1.21e-05 | 3.73e-05 | 1.21e-05 | 3.74e-05 | 1.33e-05 | 4.04e-05 | 1.22e-05 | 3.70e-05 | H — Z1Z
3.25e-05 | 1.00e-04 | 3.25e-05 | 1.01e-04 | 3.60e-05 | 1.09e-04 | 3.44e-05 | 1.04e-04 | H — Z1Z5
2.00e-02 | 6.18e-02 | 2.00e-02 | 6.18e-02 | 2.00e-02 | 6.06e-02 | 2.07e-02 | 6.27e-02 H — hh
9.03e-08 | 2.97e-07 | 1.61e-07 | 4.97e-07 | 1.62e-07 | 4.91e-07 | 1.68e-07 | 5.09e-07 H — vy
1.47e-04 | 4.54e-04 | 1.47e-04 | 4.54e-04 | 1.49e-04 | 4.53e-04 | 1.53e-04 | 4.63e-04 H — gg
2.07e-06 | 6.39e-06 | 1.93e-06 | 5.98e-06 | 2.14e-06 | 6.47e-06 | 2.21e-06 | 6.69e-06 H — Zv
1.67e-01 | 5.15e-01 | 1.67e-01 | 5.15e-01 | 1.70e-01 | 5.16e-01 | 1.70e-01 | 5.15e-01 | H — WW
8.00e-02 | 2.47e-01 | 8.00e-02 | 2.47e-01 | 8.17e-02 | 2.48e-01 | 8.16e-02 | 2.47e-01 H—ZZ
3.24e-01 | 1.00e4-00| 3.23e-01 | 1.00e+00| 3.30e-01 | 1.00e+00| 3.30e-01 | 1.00e4-00 Total

Table 4.7: H decay partial widths and branching ratios as output by SoftSusy by default, by SoftSusy
with the quark masses and coupling constants set to those of NMSSMTools, and then with the CP even
Higgs mixing matrix (5) additionally set to that of NMSSMTools, and finally by NMSSMTools-4.2.1. For
columns 3 and 4 this meant the main differences are due to setting my = 4.54 GeV for H — bb compared
with the default value SoftSusy uses my(pole) = 4.97GeV. For H — ~7, SoftSusy uses m:(mpy) =
144.5 GeV, mp(mp) = 2.40 GeV, m.(my) = 0.57 GeV whereas NMSSMTools has m; = 170.9 GeV, my, =
4.54 GeV, m. = 1.40GeV. In SoftSusy a(mpy) = 7.88 x 1073 whereas NMSSMTools obtains a(my) =
7.30 x 1073, These were therefore input into SoftSusy for columns 3 and 4. The CP even mixing matrix
(S) was additionally set to that of NMSSMTools in columns 5 and 6. SoftSusy-4.0 was used for these
results. This information is presented graphically in Figure 4.13.
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Figure 4.13: Decays of the second heaviest Higgs of the NMSSM, this is the most singlet-like for this
parameter point. The results are those presented in Table 4.7 and demonstrate good agreement between
SoftSusy-4.0 and NMSSMTools-4.2.1, particularly after the same inputs are taken in (b), this improves
the agreement in the ss, bb, puu, 77 and v channels. SoftSusy-4.0 was used for these results.

4.3 NMSSM scan

One advantage that programs such as SoftSusy have is that they can calculate the particles
masses and couplings for a variety of input parameters, this enables scanning of the parameter
spaces of supersymmetric models. With the addition of MSSM and NMSSM supersymmetric
and Higgs decays, this scanning may be extended to examining how decay widths (and hence
signatures) vary across the parameter spaces of the various supersymmetric models included.
Given the inclusion of the NMSSM is rare, and the NMSSM parameter space is enriched via the
additional singlet coupling parameters, here we present such a scan for the extended neutralino
sector decays of the NMSSM in Figure 4.14. The neutralino singlino components are solid lines
in the figure read on the left-hand y-axis and the corresponding neutralino total widths are
dashed lines read on the right-hand y-axis . This scan is demonstrative of the analyses which
may be performed with SoftSusy’s spectrum generator and decay calculator linked together,

indicating the improved model examination power of such an all-in-one program package.

As the scan is only for display purposes, we simply take the nmssmSLHAnoZ3Input file pro-
vided with the SoftSusy program and scan A from 0.001 to 0.25. The data however stop at
A =~ 0.2295 as at this point the lightest Higgs becomes tachyonic (has negative mass squared)
- this is a problem for correct electroweak symmetry breaking so these model points are not

valid and the spectrum and decays are not calculated. Referring back to our introduction to the
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NMSSM in Chapter 2.4, in equation 2.45 we see that the A parameter in the extended neutralino
sector dictates the coupling of the two Higgsino neutralino gauge eigenstates to the singlino, this
ultimately originates in the ASH,H; NMSSM superpotential coupling. Therefore we can con-
sider A\ as the mixing of the singlino component into the Higgsino like neutralinos. For our
setup here the third and fourth heaviest neutralinos are the dominantly Higgsino neutralinos;
therefore as we increase A in Figure 4.14 we observe that their singlino components (N (3,5) and
N(4,5)) rise most (although those of all the four MSSM neutralino all rise slightly), meanwhile
the singlino component of the heaviest neutralino (N (5,5)) correspondingly drops as it mixes
more with the other neutralinos. As the singlino only interacts with non-Higgs like particles
via mixing, we can observe the same effects in the total widths of the neutralinos. At small
A the heaviest neutralino (which is the dominantly singlino one at this stage) has very small
total decay width and as A increases its singlino component reduces and its decay width accord-
ingly increases rapidly as it gains Higgsino neutralino decays. Meanwhile the total width of the
fourth heaviest neutralino drops concurrently as it cedes its Higgsino component gradually to
the heaviest neutralino. There is also an interesting feature in the singlino components, and in
the same manner in the decay widths, at A = 0.1347; as the Higgsino like neutralinos mix with
the singlino, initially it is the fourth heaviest neutralino which mixes most, however as it does so
its mass reduces whilst the absolute mass of the third heaviest neutralino increases. Eventually
at A = 0.1347 the third and fourth heaviest neutralinos are relabelled as the absolute values of
their masses cross; as a result in our plot we see the N(3,5) and N(4,5) singlino components,

and the I's and I'y total decay width values each interchange.
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Figure 4.14: A scan of the A parameter in the NMSSM using SoftSusy-4.1.4 and the base point
nmssmSLHAnoZ3Input. The singlino components of each of the 5 physical mass-ordered neutralinos are
shown on the left-hand y-axis and are given by the solid lines. This shows that the 34 and 4*" heaviest
neutralinos, being the dominantly Higgsino neutralinos, mix increasingly with the singlino as \ increases
as expected. The dashed lines and right-hand y-axis indicates how the total decay width of each neutralino
varies with A. Increasing/decreasing singlino fraction reduces/increases the total width as expected.
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4.3.1 Decay Calculator Processing Performance

In performing such scans the issue is often the program speed; many different parameter
points must be evaluated for both their mass spectrum and couplings, and their decay widths.
As such, the speed of evaluation of one parameter point is important for allowing such analyses
to be easily manageable. Of course, spectrum generator and decay calculator programs are
far from the bottleneck in the overall analysis chain (given previously in Figure 3.2), this is in
the Monte Carlo event generation for particle production cross-section evaluation. Nonetheless,
if investigations include only the spectrum generation and decay calculation we should ensure
the decay calculation does not significantly slow the program and thereby make such scans
more cumbersome than necessary. Fortunately the decay calculations are not computationally
intensive, and our approach to include as many formulae as possible hand-coded and evaluated
analytically ensures the decay calculations require minimal time to evaluate. The only modes
which may take more significant computational power are the 3-body modes, requiring numerical
integration; however even in these cases we have first analytically reduced the integral to one-
dimension lessening the computer time required. As a consequence, the decay calculation step
adds minimal additional burden to the SoftSusy package, typically increasing the evaluation
time by only 5% when 3-body modes are included and by only 2% if these are excluded”.
Although this evaluation time of the decay calculator will increase as further modes, particularly
3-body modes, are added; we still anticipate it taking no more than a fraction of the spectrum
calculator computation time, as the spectrum calculator requires an iterative process to be

completed until convergence is reached.

4.4 Future Developments

SoftSusy-4.0 was the first version of many including the decay calculator program and
therefore contained only the modes deemed crucial to collider applications. Since then, minor
additions and changes have been made in updating the package to the latest SoftSusy-4.1.4
version; these include the introduction of the chargino to neutralino pion modes described in
Chapter 4.2.5 and the addition of a limit to improve the accuracy of predictions for extremely
compressed gluino spectra as outlined in Chapter 3.3.5 and elucidated further in Appendix A.4.1,
amongst others. We hope the decay calculator aspect will prove of tremendous use for collider
search applications, representing a major upgrade of the SoftSusy package capabilities. To
this end, we plan a program of future developments and improvements to the decay calculator
program, building on the foundations we have laid in its first versions. The exact changes,
additions and augmentations made and the order of these improvements will be guided by the
needs of users, and by data from ATLAS and CMS, nonetheless the following are a selection of

those we currently intend to prioritise:

"For example, running on my personal laptop with the lesHouchesInput file provided with the SoftSusy code,
I find the mass spectrum generator takes 0.75s, the decay calculator with 3-body modes included takes 0.04s and
without 3-body modes included takes 0.01s.
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e 3-body sfermion f decays - The current version of SoftSusy includes the most phenomeno-
logically relevant 3-body decay modes of the gluinos, charginos and neutralinos; however
currently no sfermion 3-body decays are included. These may be particularly relevant
for searching compressed spectra regions, for example these are pertinent to spectra with
light stop masses® such that my, < mg +mg ,mp + My but mg > mp + mw + mg .
These points can arise for light stops due to the larger top mass preventing 2-body decays
including tops in the final state. There are also t; — bll decays (where Il are a lepton sneu-
trino or slepton neutrino pair): these 3-body decays arise where again no 2-body modes
are available and sleptons are lighter than squarks, the latter condition often occurring
for common GUT scale scalar masses, such as those imposed in mSUGRA. Meanwhile
#; — bif f' decays mediated via W bosons or charged Higgses, may be relevant for larger
tan B in regions where #; — bi < my. More information on the 3-body decays of third

generation squarks is given in [189)].

e Further chargino, neutralino and gluino 3-body decays - Whilst the most likely 3-body
decays relevant to colliders are included for charginos and neutralinos, there are some
rarer candidate decays remaining which may be apposite. These include the chargino or
neutralino 3-body modes to gluinos and quark-antiquark pairs, which can easily be incorpo-
rated into the program, being the crossing of 3-body gluino modes already included. Also,
as of yet, 3-body heaviest chargino to lightest chargino modes plus a fermion-antifermion
pair via Higgs, Z or sfermion intermediates are not included, although these are of sub-
stantially reduced importance as spectra with the two charginos quasi-degenerate are rare
phenomenologically. Concurrently, gluino 3-body decays to stops, a bottom quark and a
W boson (or charged Higgs) could also be of relevance in some regions of parameter space,
whilst neutralino to neutralino pion modes could also be added, reflecting regions where

two neutralinos (particularly the lightest two) are quasi-degenerate

e Loop decay modes - These early versions of the SoftSusy decay calculator included only
the crucial 1-loop decay modes of Higgs particles, albeit in both the MSSM and NMSSM.
However, given we explained briefly in Chapter 3.1 that 1-loop and 3-body modes are
ordinarily similarly suppressed, there are radiative decay modes relevant to the compressed
spectra regions for which we have included 3-body modes to target. Key examples are the
G — gZ; and the Zj — Ziy decays, the latter of which can be especially relevant for Zs
decays [190]. In addition, the mode #; — ¢Z1 may be needed for some regions of parameter
space, even though it is CKM and loop-suppressed, if no tree-level 2-body modes are
available and the phase space for the 3-body modes is small due to the compressed nature

of the spectra.

e Further QCD Corrections - To date, the SoftSusy decay calculator has only included
QCD corrections in the neutral Higgs decays to quarks (at 1-loop) and to gluons (at 2-

8The lightest stop is often light as the mixing between the stop eigenstates is proportional to the large top
Yukawa and large mixing leads to a large separation of masses between the two stop eigenstates.
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loop), although already in both the MSSM and NMSSM, as these are essential to correctly
reproducing the branching ratios of the Standard Model-like Higgs. Nonetheless, QCD
corrections can have significant impacts on the decays of other supersymmetric particles,
in particular the branching ratios of squark and gluino decays. Modes for which QCD
corrections will be added include ¢ — Gq, ¢ — gq, ¢ — Ziq, q — Wiiq’, g — ¢1V and
Go — q1¢. More minutiae are given in [134,191-196], in some regions of parameter space
the effects of such SUSY-QCD corrections can be of order 10%.

e Very Compressed Regions - In very compressed regions spectrum generators and decay
calculators can lose precision due to two main factors: first of all, decays in such regions
are very phase space dominated, and so any small differences in the particle masses de-
termined by the spectrum generator can alter the partial widths significantly by altering
the phase space available. Secondly, decay calculators can lose accuracy due to numerical
precision in such regions as very fine cancellations frequently arise at the ends of phase
space integrals. Whilst the former issue can only be resolved with greater precision in
the spectrum generation, the latter can be aided by taking appropriate limits for very
compressed regions. This has been performed for the gluino 3-body decays, as described
in Chapter 3.3.5 and Appendix A.4.1. This approach could be extended to other very

compressed decays.

e NMSSM 3-body decays - Longer term, as we enhance the program with further MSSM
3-body decays, we may also decide to extend this work into incorporating NMSSM 3-body
decays. Currently these are less important due to the enlarged parameter space and limited
constraints on the NMSSM, nevertheless they may become relevant with time and collider

results. A selection of these modes are available in NMSSMTools.

e R-parity violation - SoftSusy is in limited company as a spectrum generator able to in-
corporate RPV effects for the MSSM, with only sPHENO able to do the same amongst the
main programs publicly available (see Table 3.1). Extending this to the decay calculator
may therefore offer significant benefits to the community in searching for RPV signatures
at colliders, particularly as R-parity conserving models become further restricted by ex-
perimental exclusions. Again this would be a longer term development of the program and

so is dependent upon the nature of collider results in the interim.

As can be seen, this represents a significant program of development and many opportunities
for improvement. We therefore hope and expect this program of research continues considerably

into the longer term future.
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Chapter 5

Differential Spectra and Resumma-

tion

We now take a breath and move onto a different track, describing in this chapter and the
next two (Chapters 5-7) the research we have undertaken in the development of the reSolve
program [2] for transverse momentum resummations and the general production of differential

spectra for hadron-hadron processes.

5.1 Precision Physics at the LHC

In our previous discussions of the research performed for the SoftSusy decay program in
Chapters 2-4, we focused on the search for new physics states via specific model-dependent direct
and indirect searches for new particles; through resonances, in loops or via their signatures at the
LHC. However, with no clear new discoveries forthcoming from such searches since that of the
Higgs boson in 2012 [12,13], and increasing exclusions on the most minimal Beyond Standard
Model parameter spaces, there is a growing endeavour at the LHC and elsewhere to develop
efforts in precision physics measurements and searches. In particular, such a lack of observations
suggests that new physics may be largely decoupled from the Standard Model at LHC scales and
so may only produce small deviations in measured results. In such precision physics analyses,
we aim to measure known Standard Model processes to high precision with the objectives being
twofold; firstly to further our knowledge and understanding of Standard Model physics, and
secondly to look for tiny model-independent deviations of experimental results from precise
theoretical predictions as an alternative sign of new physics states. In this vein, differential cross-
sections for a variety of processes are being measured at unprecedented precisions during Run 11
of the LHC and beyond. In order to take advantage of these precise measurements however we
need equally precise theoretical predictions. In fact, unlike direct searches which may proceed to
a degree without precise theoretical predictions - requiring theoretical predictions largely for the
interpretation of new physics results (or lack thereof) in terms of the various model parameter
spaces, for precision physics measurements the strategy is fundamentally dependent upon precise
theoretical predictions. The calculation of such theoretical predictions for a particularly vital
and difficult class of spectra, transverse momentum (pr) spectra at low pr, is the target of our
work in this area. Transverse momentum spectra are of great importance for the testing of

the Standard Model and for the precise measurement of its parameters, including the W mass
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and PDFs. The resulting precise determinations of Standard Model parameters allow smaller
theoretical uncertainties in many other calculations. In addition, these precise measurements are
also able to serve as new physics searches, with any small deviations from the precise Standard

Model predictions indicating the potential presence of Beyond Standard Model particles.

Nonetheless, before we embark upon an explanation of the underlying technicalities involved
and the functionalities and results of the reSolve program we have written to augment efforts
in this area through Chapters 6 and 7, we first begin outlining in this chapter some of the basic
concepts in collider kinematics, differential spectra and resummation that are required to attain

an understanding of this work.

5.2 Collider Kinematics

In this section we are considering production cross-sections of the following form, where A
are incoming colliding hadrons, one from each beam, and F' is the target measured final state

system, whilst X is undetected additional radiation:
h(p1) + h(p2) - F + X. (5.1)

As the measured final state system F' will be two photons, or two Drell-Yan leptons for our
applications, here we begin by simplifying and considering the kinematics of 2 — 2 processes,

we therefore introduce the Lorentz invariant Mandelstam variables s, ¢, w:

s = (p1 +p2)?, t=(p1 —p3)?, u=(p1 —pa)*. (5.2)

Given these are Lorentz invariant, we may evaluate them in any frame. Considering s in the
centre of mass frame of the collision it is clear that /s = Fy, i.e. s is the total square centre
of mass energy in the collision. s is of particular relevance as it defines the “invariant mass” of

a final state system of particles, M2, or equivalently ¢ (or QQ?):
M2 = Sfinal state — m% + m% + 2(E1E2 - P1-P2)- (53)

However, at a hadron-hadron collider, the incoming beams of colliding partons have a spec-
trum of longitudinal momenta set by the parton distribution functions; as a result, in general,
the centre of mass frame of the parton-parton scattering is boosted along the beam (z) direction.
It is therefore useful to classify the 4-momenta in terms of variables which transform straightfor-
wardly under these longitudinal boosts, so rather than describing p* = (E, ps, py, p») we choose
to describe it in terms of the variables p* = (E, pr, ¢,y), which are the energy, transverse mo-

mentum, angle in the xy plane perpendicular to the beam, and rapidity. We define rapidity

by
1 E+p,
=-log | =—= ). 4
y 20g<E_pZ> (5.4)
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Whilst it is clear that the pr and ¢ angle are invariant under the longitudinal boosts necessary
to reach the centre of mass frame, it is not immediately obvious that this is true for rapidity -
boosting along z we obtain E' = v(E — fp.), p’, = v(—BE +p.) and so the rapidity y transforms

to:

y = og ((E — Bp2) + (p- — BE)

(E—=Bp.) — (o —ﬁE)> — v/ =y b 9

As a result all rapidities transform with the same additive factor, which is the rapidity of the

boost momentum, and so rapidity differences are longitudinal Lorentz boost invariant, as desired.

If we also introduce the “transverse energy” variable! defined by:

Bp = \/m2+ph = \/m? + 2 + 03 = V2~ 2, (5.6)

we may rewrite:

E = Ercoshy, p. = Ersinhy. (5.7)
So our coordinate change is given by:
P = (E,pz,py, pz) = (Er coshy, pr cos ¢, prsin ¢, Ersinhy). (5.8)

In practice, in particle phenomenology rapidity, y, is not often used as it relies upon the
simultaneous measurement of the energy and longitudinal momentum, instead the “pseudora-

pidity”, 1 is preferred?:

1
n = = log Ipl+p- —tanh ! [ 22 ) = tanh ™! (cos 6). (5.9)
2 Ip| - p- p|

This is clearly equivalent to the rapidity y in the massless limit (as then £ — |p|), however it is

preferred as it can be straightforwardly related to the angle to the beam axis 6 through

n =g log

2 1—cos@

1 1
<+COS6> = —log(tang). (5.10)

The relationship between 7 and 6 is shown in the oft-seen Figure 5.1:

The relationship between rapidity and pseudorapidity can be further elucidated using equa-

tion 5.9 and substituting in equations 5.7, which implies after a little algebra that

sinhy = %T sinh 7. (5.11)
T

!Sometimes this is also referred to as transverse mass, however we distinguish here as we also have the

experimental definition of transverse mass later in equation 5.15)

Where the penultimate step follows from tanh™'(z) = % log (H’”).

11—z
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Figure 5.1: The relationship between the pseudorapidity n and the angle to the beam axis 6.

We may then use sinh™! z = log(z + v/1 + 22) to obtain:

1
y = log ( (pT sinhn + \/m2 —|—p% cosh?n )) . (5.12)
\/m? +p%

Finally we can rewrite this as a function of y = pﬂT and Taylor expand around y = 0 (the
massless limit):
) sinh 7 + v/cosh? n + x2 log(sinh 5 + cosh 1) X2 1 1 +o( 4)
=lo =log(sin coshn)—=—11—
v =08 1+ x2 & K Ty coshn(coshn + sinh ) X
1 2 2 4
= —log(expn) — X tanhn + O(x*) =n — m—z tanhn + (’)(%) (5.13)
2 2 2p7 D1

This makes it further clear that rapidity and pseudorapidity are equivalent in the massless
limit.
We also use rapidity and the ¢ angle perpendicular to the beam to determine the angular

separation between two final state particles defined by:

AR = /(Ay)? + (A¢)? = V/(An)? + (Ag)2. (5.14)

This is relevant for cuts in the diphoton process, which we consider in Chapter 7.1.2, as two
photons with small opening angle may not be distinguished. Furthermore, it may be used to
define an “isolation cut” for the photons, in order to reject cases where a QCD parton is too
close to the photon, as otherwise distinguishing a photon from a jet containing photons becomes
difficult.

Before we move on, we introduce a further variable, the “transverse mass”, which has useful
properties in particle searches. In experiments often it is the case that one particle in the final
state cannot be detected, for example neutrinos produced from W boson decay. As a result
the total energy and momentum is often unknown, particularly down the beam-pipe, instead
inferring the presence of the additional particle via missing transverse energy and momentum.

exp

Consequently, rather than use the transverse energy Er, the alternative transverse mass m.,

is often used:
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m%zp _ \/(Eé“l) +E§~2))2 _ (pg}) + pg?))2 ~ \/2|pg})||p¥ | pg}) (2 ) (515)

The last approximate equality here holds in the limit in which the final state particles are mass-

less. In analogy with the invariant mass given in equation 5.3, we may write this experimental
3

transverse mass® as
m3 = (BY) + ED)? — (p) +pP)? = md + m + 2(E ED — pi) p). (5.16)

Consider for now the expression for the rapidity difference Ay, for which we may write:

cosh Ay — % (Er +p§zi)(E2 - p%z;) B~ ((11)))(132 +p§(22))) _ E1E2(1—) p%:ng), (5.17)
(1 —p: ") (B2 +p:7) (E1+p: ") (B2 —p:7) By Er
Therefore we have
EWER cosh Ay — pV p) = BBy — pMp® — pV p?) = B/ Ey — py.py. (5.18)
So we may rewrite the expression for the invariant mass squared as:
M2:m§+m§+2(E( ) ;)coshAy p(T)p(TQ)), (5.19)
and as coshz > 1 we have the inequality
M 2 mi +m3 +2(Bp) EfY - py) ) = mi, (5.20)

where the last equality is from equation 5.15. Therefore if we measure the distribution of trans-
verse masses attained at the LHC for a given final state, then the transverse mass distribution
has an upper cut-off at the invariant mass, which will be equal to the mass of the parent in-
termediate particle producing the two final state particles. This is how the W mass may be
measured. Furthermore this endpoint in the transverse mass distribution is achieved when the

two final state particles are emitted at the same rapidity so Ay = 0.

5.3 Production Cross-Sections

Following our brief sojourn into collider kinematics, let us move in the direction of our
application and consider the basic theory behind production cross-sections at hadron-hadron
colliders. First we begin with a simplification, supposing two fundamental particles (such as
two quarks) collide to produce two further particles in a 2 — 2 collision; then, following similar
calculations we performed for particle decays in Chapter 3.1, it can be shown that the general

expression for such a production cross-section is given by?:

3From now we denote the transverse mass as mr neglecting the “exp” label which is implied.

4In this equation and the next we label the cross-sections as & rather than o to reflect the fact these are
cross-sections for the collisions of fundamental objects and so in our context these are the forms of the partonic
cross-sections used later.

Thomas Cridge 129



Chapter 5. Differential Spectra and Resummation 5.3. Production Cross-Sections

(2m)*

s —

d3p, d>p,
2E, (27) 2B (21)

gla+b—1+2) = (5.21)

- / |Myi|?0*(pa+pp—p1 —p2)
b

Here the prefactor is (27)*F where F is the so-called “Lorentz invariant flux factor”®. This
general expression is Lorentz invariant and so the cross-section may be evaluated in the centre
of mass frame in which the total energy is y/s and the initial and outgoing 3-momenta are each
net zero. Again, one uses the expression for a delta function of a function of the integration

variable in equation 3.7, then in the centre of mass frame:

1
6472s

%
Gla+b—142)= Z{/\Mm?dm, (5.22)
i
where the * indicates these quantities are determined in the centre of mass frame. Performing
such phase space integrals is relatively simple when the phase space is complete; however, once
cuts are present and the experimental sensitivity is accounted for, it is much more complex. The
complexity also grows extremely quickly with the number of particles produced and as beyond
leading order contributions are considered. We are however fortunate that at collider scales
QCD becomes asymptotically free in its running and so we can treat it perturbatively, allowing
the computation of observables such as the total cross-section as a series of Feynman diagrams

of growing order and offering increasing precision.

Nevertheless, for precision physics applications we require more than just the total cross-
section; instead precise measurements are made of the spectra of particles produced, i.e. we
measure cross-sections differential in some experimental variable(s), this adds further compli-
cations to the evaluation of the our expressions. From equation 5.22 we can quickly determine
the differential cross-section in solid angle in the centre of mass frame dd#, however in general
we require either differential cross-sections in the laboratory frame, or in Lorentz invariant vari-
ables such as the Mandelstam variable t. This requires changes of coordinates, nonetheless ¢
can be related to scattering angles via equation 5.2 with the 4-momenta in the relevant frame.
A pedagogical introduction to cross-sections and differential cross-sections in particle physics is

available in [16].

Whilst differential cross-sections in such variables are relatively simply derived, scattering
angles are not the most natural variables to measure at hadron-hadron colliders, because the
longitudinal boost of the particles produced is unknown. Therefore differential cross-section
spectra in terms of longitudinal boost-invariant coordinates pr, ¢ and y or 7 are a more natural
choice. To obtain differential cross-sections in these variables we again require a change of

variables, starting from do mEd(aTErP:

®This form of the flux factor F~' = 4+/(pa.pp)2 — m2m? may be unfamiliar, if we assume the particles
are travelling in the z-direction only it can be shown this form is equivalent to the alternative common form
Fl = dlep12phipy| = 4\Ebp3 — Eapg| = 4E.FEy|va — vp|. This second form is, in fact, only invariant under
boosts along the collision axis (taken to be the z axis) and under general rotations. This must be the case as the
cross-section is a space-like area and so must vary with transformations perpendicular to the collision axis. As
in the case of particle decays, the non-Lorentz invariance is then all incorporated in this flux factor, ensuring the
phase space integral is Lorentz invariant and may be evaluated in any frame.
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d3c B £ d3c B i d3c (5.23)
dpdpydp. — pr dprdédp. — pr dprdedy’ '
In the last step here we have used that:
dy 1p 1 dE 1 dE 1
— (1 ) (—1 )]:f. 5.24
dp. 2[E+pz( +dpz +E—pz +dpz E ( )

However, this work so far has been a drastic simplification of the setup at hadron-hadron
colliders such as the LHC, indeed the expressions would naturally apply at a lepton-lepton
collider. They only apply to the fundamental underlying process at hadron-hadron colliders,
which add an additional layer of complication due to the fact the initial and final states are
no longer fundamental particles but are hadronised into QCD objects. The colliding quarks or
gluons themselves originate as “partons” from the hadrons themselves (protons for the LHC),
and therefore carry an unknown fraction of the 4-momentum of the ingoing protons. Therefore
whilst our expressions for cross-sections and differential cross-sections so far in this section
considered colliding fundamental particles such as quarks, we must generalise to collisions of
quarks (or generally partons including gluons) within hadrons. We therefore must make the
step from the “partonic cross-sections” we have so far considered to “hadronic cross-sections”
reflecting the reality at the LHC. This development adds a myriad of complications and issues.
Nevertheless, we begin by introducing the momentum fractions x1, xs of the colliding partons;
these are the fractions of the total momenta of their parent hadrons that the colliding partons
each have, and may be written in terms of the invariant mass and rapidity as follows. Consider
first the 4-momentum of the colliding partons in the hadron-hadron collision centre of mass
frame, neglecting their masses as at hadron colliders the energies are much larger than the

particle masses, then

q=x1p1 +x2p2 = ((x1 + 22)E, 0,0, (1 — z2)E). (5.25)

Therefore we may write the invariant mass squared and transverse energy asS:

* = ((z1 4 22)? — (21 — 22)2)E? = 4a129 B = 11095, (5.26)

ET =V E? — pg = 2\/1'1:(}2E = \/1'1:(}28 =V q2. (527)

Using equation 5.7 we may obtain e¥ and then substitute equation 5.27 in to obtain

E 201 F T
= Y= =,/— 5.28
Er’ © Er zo ( )

coshy = (1 + z2) sinhy = (21 — x2)

E
Er’

therefore finally we reach:

Remember s = 4E? and note that Er = v/ ¢? as no momentum transverse to the beam has been taken so

P =p°.
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ey e Y

T = !ql\/g, Ty = \ql\/g (5.29)

We now need to convert from our partonic cross-sections, which may be obtained without
thought for the detailed QCD non-perturbative dynamics occurring to bind the partons into
hadrons, to hadronic cross-sections. To do this we must parametrise our ignorance and create
probability distribution functions representing the chance of receiving a parton of given momen-
tum fraction from the protons colliding. “Parton Distribution Functions” (PDFs), f(x), must
be defined where f(z)dx represents the probability of obtaining a parton of momentum fraction
between x and x+ dx from a proton; the PDFs are different for each flavour of parton considered
due to the QCD dynamics and parton masses. To calculate the required hadronic cross-sections,
we then integrate the partonic cross-sections (containing the short distance, high energy physics
of the fundamental collision) multiplied by the PDFs for each colliding parton (containing the
long distance, low energy physics of the QCD hadronisation) over the total momentum fractions
allowed. This “factorisation” of short and long distance physics is key, and not obvious a pri-
ori. Our description follows from Feynman’s “parton model”, which applies at leading-order in
QCD up to corrections which reflect various inherent assumptions in this model, including that
the separate contributions from each parton may be incoherently summed and do not interact
with one another. The QCD improved parton model, incorporating beyond leading order effects
of factorisation scale dependence, absorption of collinear singularities and parton splitting is

introduced later.

1 1 Ny
olhy +hy —1+42) = / dxy / dxo Z fa/h1 (xl)fb/hz (x2)d(a+b—1+2). (5.30)
0 0 a,b:—Nf

In fact, beyond leading-order, the nature of the partonic cross-sections which are summed is
also non-trivial, with partonic cross-sections with addition undetected real emissions (X) and
loop corrections giving virtual contributions both needing to be summed to obtain the hadronic
cross-section for h; + hy — F(=142) + X.

In any case, in this simplified parton model, we convolute the PDF's with the partonic cross-
sections to produce the overall hadronic production cross-sections. As a result, as well as the
three momentum differentials over which to integrate, we also have the momentum fractions to
integrate over, this allows greater flexibility in obtaining differential cross-sections as we may
also change variables from the x1, xo to rapidity, invariant mass and other desired variables.
For example we may determine the double differential cross-section with respect to rapidity and
invariant mass given by equation 5.32 using our expression for the hadronic cross section of

equation 5.30 after first determining the Jacobian for the relevant change of variables:

2 o>  9¢> 2
Na™sy) _ |aer ug| _ |T2s TS| _ 4 5.31
Bz, x0) |2 Ov| |1 _ 1|77 o (5-31)
’ Or1 Oxo 2x1 212
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N
4 1 .
i(hl +hy—142)= = Z xlfa/hl (xl)ngb/h2 (x2)o(a+b—1+2). (5.32)

2
dg*dy @ N,

In fact, the partonic cross-section itself was integrated over angular and momentum variables,

therefore we can derive higher power differential distributions with respect to further kinematic

variables:
N
dio 1 < ?6(a+b—1+2)
(1 +h 1+2)=— . (5.33
dq2dydf*de* (h1+he = 1+2) P ) b:Z_Nf 1 fasm, (l’l)wgfb/h2 (x2) o ( )

The expression for the double differential distribution with respect to the two angular centre
of mass variables is then read from equation 5.22. At Born level, where there can be no net
transverse momentum for the outgoing 2 particle system, a 4" order differential distribution is
the highest possible as the number of final state independent variables in a 2 — n interaction is

3n — 4, plus we have two further from the incoming momentum fractions of the partons.

The evaluation of the integrals over any remaining necessary variables in determining such
differential distributions can be significantly more complicated than integrating over the whole
phase space to obtain the total cross-section, as more kinematic information is retained. Fur-
thermore this is complicated by arbitrary experimental cuts on different kinematic variables (be
it to enhance searches over backgrounds or due to the experiment detector sensitivity itself)
which may spoil the analytic form of the integrals. On top of this, to perform analytic inte-
grations we often have to be very “inclusive” in our descriptions in order to avoid problems
with un-cancelled singularities, integrating over all possible related final states in a way which
does not reflect the exclusive nature of many measurements. Consequently, theoretical tools
for performing such calculations typically rely upon Monte Carlo integration, as will our tool

reSolve.

In Monte Carlo integration, individual “events” corresponding loosely to the events at a col-
lider” are generated randomly within the phase space and the cross-section integrand is evaluated
for each point. Keeping the information of the individual events calculated one can then sum
them, with the sum usually weighted appropriately by a grid describing the error distribution
over the phase space, to obtain the total cross-section; or one may sum only in some variables in
order to obtain differential distributions, the events can then be binned to produce the desired

spectrum. Further details on the Monte Carlo evaluation are given in Appendix B.3.

More specifics and formal background on all the ideas and equations outlined here, and more,

including the contents of the rest of the chapter, are given in [14,17].

"The correspondence is not exact due to the effects of higher orders which may produce negative contributions
in some applications and as the events produced inherently depend upon any latent assumptions within the
theoretical application, such as schemes and other choices.

Thomas Cridge 133



Chapter 5. Differential Spectra and Resummation 5.4. Soft and Collinear Divergences

5.4 Soft and Collinear Divergences

In this section we seek to clarify the IR divergences which were briefly mentioned previously
and are the key to the complexity of predictions for transverse momentum spectra at low pp. In
considering an amplitude for an arbitrary process beyond leading order, one must consider all
real corrections due to radiating additional particles and all virtual corrections due to additional
loops at the order considered. We have seen previously UV divergences arising from arbitrarily
high momenta (k — oo) running in loop integrals; IR divergences on the other hand have their

source in low momenta k£ — 0 integrals, as mentioned in Chapter 1.1.3.

As an example of IR divergences and their cancellations, let us contemplate a general 2 — 2
process, at NLO we get real and virtual corrections such as those in Figure 5.2a, amongst other

such contributions.

q91

q2
P +d4 + 491

(a) (b)

Figure 5.2: (a) Real (left) and virtual (right) corrections to a generic 2 — 2 process, these give additional
propagator factors as well as extra vertex gauge coupling factors and photon (for QED) polarisation
contractions. (b) Multiple emissions, as have to be summed over for each external state, these emissions
are photons in QED.

Each such correction introduces both additional factors of the gauge coupling via the extra
vertex, and an additional propagator, the additional propagator is the source of soft and collinear
divergences in the infrared in the case of massless propagating particles:

1 1 1 for g — 0 “soft divergence”,

(p+q)? —m? —ie ~2pq  2poqo(1—cosh) ! “colli ' »
q—0 or cosf — 1 “collinear divergence”.

(5.34)

In the case of massive propagating particles however, the collinear divergence is regulated
by the mass as then 2p.q = 2poqo — 2|p|qo cos @ which no longer has a divergence as cosf — 1
as po > |p|. Instead logarithmic collinear enhancements appear. Meanwhile, soft divergences
cancel between real emissions and virtual corrections, leaving logarithmic soft enhancements.
It is these soft and collinear enhancements which may spoil perturbation theory and require

resummation.

In order to demonstrate the appearance of such divergences and logarithmic enhancements
in the IR, let us consider these divergences in QED, where the structure is simpler. We begin

with real emissions, scrutinising first the case of emitting a single soft photon; this is examined
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more formally in [14] and [197] (based on [198]). Real emission from a final state particle is
shown in the left-hand of Figure 5.2a, nonetheless we will include initial and final state emission
in our derivation. For the final state emission case we label the initial momentum as p-+ ¢ before
radiation of a photon of momentum ¢ leaves momentum p on the fermion line®, this will give an
additional factor (dropping the photon polarisation vectors for now) in the amplitude of %:

—1 1 ept
(2m)4 (p+ q)? — m? —ie q—>0> +p.q — i€’

[i(2m) e(2p" + ¢*)] (5.35)

“—” for emission in the initial state

where the &+ is a “4+” for emission in the final state and a
and we have taken the soft photon limit ¢ — 0. Summing over all n legs off which to emit (4 for
us as 2 — 2), one obtains an extra factor given in equation 5.36, 1, is £1 accordingly for final

and initial state real emission:
n,H
€ Pn

R (5.36)
— Pn-q — i€

However, in reality we must sum over the emission of any number of soft photons, considering
two emissions we have a diagram as in Figure 5.2b, as well as the reverse ordering of the photon

legs.

The first ordering (given in the figure) and the second ordering give additional factors of:

nep* nep” nep” nep* (5.37)
p-qi —ine | | p-(q1 + q2) — ine |’ p-g2 —ine | | p-(q1 + q2) — ine
These may then be summed, and happily factorise into separate analogous factors per emission:
1 v
[ wer ” v’ ] (539
p.qr — e | [ p.g2 — M€

The same applies for any number of photon emissions factoring into separate pieces; this is
often referred to as factorisation of dynamics!® and is explicitly shown in [197] so we do not
repeat it here, it is crucial to the ability to resum these emissions via exponentiation as we
shall demonstrate. Emitting N soft photons gives an additional factor (neglecting the photon

polarisations) of N

o
T€nPn
|| s (5.39)

r=1

Each emitted soft photon polarisation then contracts with this extra factor so we obtain

8For initial state emission the momentum of the initial fermion is p, it then emits a photon of momentum g
leaving momentum p — g on the fermion line so the propagator has an additional relative minus sign.
9Here this has been simplified by taking a spin 0 charged particle emitting a photon. In the spin % case of

real QED the additional factor is instead %
may commute the relevant v matrices using the Clifford algebra and use the Dirac equation to obtain the same
limit as on the right-hand side of equation 5.35 above. In fact this limiting form is independent of spin, spin 0
was therefore chosen above for simplicity.

10T his factorisation of dynamics occurs similarly in QCD with the small complication of colour factors.

ev*e u(p + q), if the ¢ — 0 Eikonal limit is again taken one
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(where the product is over the number of emissions and the sum is over the number of external

states): N (@)
enpn-€(q
Memissions = MLo H w (540)
—1 n Pn-Ar
We must square this, sum over helicities >, ., €”(q,h)e"*(q,h) = —gu (terms have been

dropped here due to charge conservation) and divide by N! as the photons are indistinguishable,

and so our differential rate is:

a3 ene
dFemiSSions(Qlu q2, - - - aQN) = I'io H v InlImn m(pn pm) . (541)

(2m)32|la| &~ (pn-ar)(Pm-ar)

Integrating over phase space, which incorporates integrating over the energies and directions of
the outgoing photons, we will observe soft divergences and collinear enhancements'! respectively.

First we integrate over the photon directions; for each emitted photon we obtain:

d/\ nm
—(pn.pm)/(E L 1og<1+’8 ) (5.42)

n - qpn)(Em - qpm) Bnm 1- /Bnm
q is the normalised photon momentum and B,., = /1 — (;rffg%g is the relative velocity of

particles n and m in each other’s rest frames. This demonstrates the collinear enhancements
log (Hgn’"), which are large when the two intermediate (electron) lines have near collinear
momenta as then (,,, — 1, this occurs when the photon emitted is collinear. However, these
are not collinear divergences as the intermediate electrons have mass. If we take the massless
limit (which applies for QCD for example as then the charged intermediates can be massless
gluons) by taking the mass of one electron line to be zero so m; — 0, whilst keeping p; fixed,

then we can rewrite our collinear logarithmic enhancement:

2

mim2 mim?

= 1—7”:1—7"+(9m4, 5.43
ﬁln (pl-pn)2 2(p1-pn)2 ( 1) ( )
so in this limit to first order
1 + Bnm 4(pl-pn)2
I — | =1 — . 5.44
og (1 — 5. ¢\ “p2m2 (5.44)

So, as m; — 0 whilst keeping p; fixed we have a collinear divergence. We may extract the
divergent piece and it is proportional to logmi, and so it is directly the mass of the charged

intermediates which prevent such divergences in QED.

Integrating over all emitted photon momenta leaves the integrals over the photon energies:

1 QED gives collinear enhancements, rather than divergences, as the electron mass in the propagators regulate
the collinear divergences. Nonetheless these enhancements may still be an issue phenomenologically, being poten-
tially large logarithms at all orders in relevant regions of parameter space and so would also have to be resummed
in the same way.
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N
enemnnnm 14 Bom dEy dEs dEN
AT omissions (B1, Ea, - . . Ex) = ( )
CHISSIo S( ! 2 N) [8772 Z ﬁnm 1 - ﬁnm El E2 EN
Ei dE E
:FLO ANd 1d2...dN,
E1 Es En
(5.45)
where we have defined
A= /dQQA él / enemnnnm(pn pm)
(@) = 1673 Z —a.p,)(Em — 4.Py)
(5.46)
Z enemnnnm 1+ ﬁnm
87T2 Bnm 1 - Bnm ’

which is raised to power N due to the product over photon emissions.

Now, in integrating over the photon energies, we must introduce an upper bound energy Fjy
which is the detector threshold energy, below which the photons are undetected and so may be
considered “soft” and therefore part of the same final state as the no emissions case, whilst we

use an IR cut-off A to demonstrate the IR divergence:

Ea gF Ey
=1 5.47
o ey (5.47)

This soft piece is logarithmically divergent as A — 0. Each emission also produces an extra

factor of o from the vertex and so, schematically, for each N we obtain an additional double

1 N Ed N ]. + /Bnm
N log™ <)\ > log (1 5. ) (5.48)

As such a term arises for all IV, each term in the perturbative expansion in « is enhanced by

logarithm factor

the double logarithm, with one logarithm from the soft divergence and one from the collinear

enhancement; the soft divergence logarithmic enhancement is infinite as the IR cut-off A is taken

to 0:
o0
1 E 1+
I\emissions = 1—\LO Z ﬁaN logN </\d> logN (1—,87”71) . (5.49)
N=0""" nm

Formally, this means that if these logarithms are large (the soft logarithm is infinite as A —
0 so they are!) our perturbation theory may break down as each successive order is of the
same approximate magnitude as the previous one. This would cause drastic problems for our
theoretical predictions. However, we can identify the sum over N as the Taylor series for an

exponential and resum this infinite series to obtain:

Pemissions = I'Lo exp [a log (%) log (igi:)] : (5.50)

This resummation via exponentiation is the key to recovering the predictivity of the perturbative
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series in the case where the logarithm terms become large. However, our soft divergence still

remains (as would our collinear divergence if we had one, as in QCD).

Fortunately, before making any theoretical predictions we must consider all possible degen-
erate final states, i.e. final states which we cannot distinguish from one another. So far we have
considered only the possibility of real emissions below some detector threshold; in addition,
physically we cannot distinguish the final state from the loop-corrected final state, and so we

must consider the possibility of virtual photons.

Implementing the same analysis for virtual soft photons, for each additional soft photon the

additional propagator factor is (2i)4%, and comes along with two additional vertices. As
before, we consider an arbitrary number, N, of additional virtual photons and we divide by
2N N1 as each propagator can be attached either way around and the ordering is unimportant.
Ultimately, the overall matrix element is enhanced by the following factor by possible virtual

corrections from photons:

1 1 A d*q  (ipn.pm) N_ 1|1 A R
2NN![<2¢>4;€”€"‘””%/A <q2z'e><pn.q—mnex—pm.q—mme)] _]\7![2 / d4q[—A<qﬂ]
(5.51)

Unlike the real emissions, this is the extra factor for the matrix element, rather than the tran-

N

sition rate, and so we must square, which removes the superfluous factor of 2. We thus obtain
the same integrals as for the real emissions case with different bounds on the photon energies.
We integrate the photon energies between the IR cut-off A as before, and a new upper cut-off A
which cuts off the integral at large energies as we expect no IR effects once ¢ ~ A ~ @Q, where
Q is a hard scale - such as the momentum transfer. This A cut-off acts to define what is meant
by virtual “soft” photons. As a result of the minus sign, once the integral over the photon
directions is performed to reveal the same collinear enhancement factor, the integral over the

photon energies is:

A
—dg A A
— = —log — =log —. .52
/,\ q og)\ OgA (5:52)

Therefore at the N** order in a perturbative expansion in « the virtual corrections produce

an enhancement, again containing a soft divergent piece as A — 0 and a collinear enhancement

piece: . \ 148
N N N + Pnm
—a 1 — |1 — . .
ai log <A> og <1_/8nm> (5.53)

The virtually corrected rate, I'y, is therefore as follows, where in the last step we have again
resummed via exponentiation, however as for the real emissions case this does not resolve the

divergence(s) present:

1 A 1+ Bam A 1+ Bnm
Fv = PLO NZ: ﬁaN IOgN (A) IOgN <1_ﬁnm> = FLO exp [O[ IOg (X) log (1_§nm>] .
=0
(5.54)

We must consider the effect of real emissions and virtual corrections together, multiplying

the effects they each have on the leading order rate and combining them at each order:
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E 1+ a? E 1+
I‘observed - 1—\LO [1 + alog (7d> log ( /Bnm> + — 10g2 <7d> 10g2 ( ﬁnm) + .. }

y 1= Bum/ 2 A 1= Bum
X [1 + alog (%) log (igiﬁ:) + O;Q log? (%) log? (igig) +.. }
=1+ alog (igmm") log (%) - Oj log? (ig::) log? (%) + 0(a?)
(5.55)

Therefore the soft divergence as A — 0 cancels out at each order, leaving a soft and a collinear
logarithmic enhancement each of the same order in the perturbative series. The overall expres-

sion for the rate may then be written:

= 1 Ey N [ 1+ Bam
Iobserved = I'o 'aN lOgN ( ) log () . (556)
NZ:O NI A 1= By

The logarithmic enhancements may still spoil the perturbative series once
alog (%) log (%) ~ 1, nonetheless we can again identify the sum as the Taylor se-
ries for an exponential and resum these potentially dangerous terms to recover the predictivity

of the perturbative series:

Iobserved = I'Lo €xp [a log (%) log (igiﬁ:)] . (5.57)

We can therefore resum all the logarithmically enhanced pieces arising from the cancelled infrared
divergences via exponentiation. This calculation has been schematic so several factors and
subtleties have been overlooked but it demonstrates the key physics for resummation associated

with IR divergences.

It should be noted at this stage that whilst the soft divergences have cancelled, the collinear
logarithms remain the same, however in QED these are not actually divergent as the divergence
is regulated by the electron mass, therefore the fact these collinear pieces are unchanged is not
an issue as there are no massless QED-charged particles. The IR divergences have therefore
cancelled between the real emissions and virtual corrections, as described more rigorously by
Block-Nordsieck Theorem for QED [199]. This states that in QED such cancellation of diver-

gences is attained when summing over all possible degenerate final states.

This toy example was given in QED for simplicity, however the same argument can be applied
in QCD with a few appropriate changes. First of all as > «, so the logarithmic enhancement in
the overall perturbation series for real emissions and virtual corrections is worse, and will ruin
the predictivity at smaller ratios of scales than would be required in QED, making the problem
all the more pressing. Secondly, whilst we have shown that the soft divergences cancelled, the
collinear pieces remained the same; in QCD there is also a collinear divergence arising from
the fact that the massless gluons are colour-charged particles and so we also need to cancel

these collinear divergences. Fortunately, Block-Nordsieck theorem of QED is replaced with the
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Kinoshita-Lee-Nauenberg (KLN) Theorem [200,201], which states that IR divergences (including
the collinear divergence) are cancelled in an observable when all possible initial and final states
are summed over, with the additional need to sum over initial states arising precisely from the
non-Abelian nature of QCD. In fact, when deducing the DGLAP equations in Chapter 5.5, we
perform this sum over initial states by allowing parton splittings, causing collinear divergences

and absorbing the dependence into PDF running!?.

The need to include all possible real emissions and virtual corrections order-by-order in per-
turbation theory in order to ensure the cancellation of soft and collinear divergences can be
interpreted physically. Any detector could not distinguish between an electron and an electron
and a soft photon (or in QCD a quark or gluon and a soft gluon) and similarly any radiation
emitted along the fermion line will not be distinguished; both these effects are due to experi-
mental resolution practically. However, here our theoretical understanding of these divergences
and the need to be inclusive is actually informing us of something stronger, that regardless of
experimental sensitivity any fermion will always be surrounded by a cloud of soft (and collinear)
radiation and so this is the physical state of the theory, rather than the single particles we

usually think of.

5.5 Scales

Our exposition so far is still not detailed enough to understand the basic fundamentals
involved in our research in this area; QCD is full of complications and, in fact, what we have
described thus far is itself dependent on various assumptions. Many of these complications
arise as a result of the IR and UV divergences present, including the introduction of scales
into theoretical predictions. The interested reader can consult any of the vast array of QCD
textbooks [17,202,203] for more detailed and formal approaches, whilst there are several good
reviews [204,205].

In writing down the hadronic cross-section expression in equation 5.30 we implicitly made
the assumption that it is possible to factorise out the long distance, low energy scale physics
associated with hadronisation from the details of the short distance, high energy physics asso-
ciated with the partonic cross-section. Such an assumption need not a priori be true, but sepa-
rates the physics into our universal (process-independent) PDF's capturing the non-perturbative
behaviour, and our process-dependent perturbatively calculable partonic cross sections. This as-
sumption is an example of the “QCD Factorisation Theorem” [206-208], which has been proven
for Deep Inelastic Scattering of leptons off hadrons and demonstrated for Drell-Yan, but is typ-
ically used as an ansatz for other collider processes [209]. Such factorisations are typically only
correct up to a certain order in small corrections, usually of the order O(Agcp/Q) due to the
assumed independence of physics on the different scales, which adds a degree of approximation

on top of the usual perturbative expansion calculation of the partonic cross-section. This sep-

12This inclusion of initial state divergences into non-perturbative, universal PDF functions based on QCD
factorisation saves us as otherwise KLN would be inapplicable in experimental setups, requiring an initial state
as a superposition of all possible degenerate states to be set up.
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aration of energy scales itself has an ingrained additional unphysical scale, often termed the
“factorisation scale”, pp, which separates the two regimes. The exact numerical value of this
scale choice is somewhat arbitrary, with its order of magnitude guided via other scales in the
process; given its arbitrary nature we therefore do not expect any observables to be formally
dependent upon it. More rigorously, what is being done is to separate the infrared divergent
pieces associated with the long distance physics in the incoming states into PDF's of the incoming
hadrons. This removal of the IR divergences comes with a scale (the factorisation scale), and in
fact also a scheme choice in the exact same way renormalisation of UV divergences introduces
a renormalisation scale and choice. This absorbs the IR divergences associated with the initial
state, and so our transverse momentum resummation formalism is left to deal with the remnant
initial state soft and collinear enhancements associated with the QCD splittings and additional

propagators in virtual corrections!®.

The factorisation scale is only one of three scales introduced in our formulae for the differen-
tial spectra determined in the reSolve program, with the other two being the “renormalisation
scale”, ug, associated with the removal of UV divergences, and the resummation scale, ug, as-
sociated with the arbitrariness in our definitions of the logarithms in our b-space resummation
formalism or equivalently with the arbitrary division of low and high transverse momentum
scales in our resummation formalism. All these scales are artefacts remaining from our theo-
retical treatment and must drop out of any observable quantities if it were possible to evaluate
them to all orders in perturbation theory. In fact, by requiring that any observable quantities
are independent of these scales (when summed to all orders) we can absorb divergences into
running parameters by writing down Callan-Symanzik style equations, again in an analogous
manner to the alternative derivation of the gauge coupling running in Chapter 1.1.4. We take an
aside here to outline the first two of these scales, leaving the resummation scale to our discussion
in Chapter 6.2.1.

First consider the renormalisation scale arising from the cancellation of UV divergences. Here
the additional scale originates from the renormalisation process in the subtraction of infinities
via the counter-terms, with the exact scale at which this subtraction is performed translating
into a scale dependence for the renormalised quantity. The relevant quantity at some arbitrary
scale is related to its value at the renormalisation scale via a renormalisation group equation
B function; which, as a solution to the associated differential equations, resums any potential
logarithms of the scales considered. For the UV case we absorb the renormalisation scale into the
running coupling, as(ug), and obtain the renormalisation group equations defining this running

given by the 8 functions.

Next we describe the factorisation scale in more detail; as outlined previously, this arises as
a result of IR divergences and leads the PDF's to obtain a factorisation scale dependence. This
is where the parton model breaks down, failing to account for initial state radiation giving the

“partons” transverse momentum and corresponding collinear divergences, it is replaced by the

BOur formalism applies exclusively to final states consisting of non-QCD interacting particles and so there are
no final state QCD divergences to deal with.
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“QCD Improved Parton Model” with parton splittings and divergences taken into account [203].
For example, following the argument in [210] we may consider the cross-section for a q§ — Zg
Drell-Yan process with an additional gluon radiation. The squared matrix element then contains
a divergence when the gluon emitted becomes collinear to the incoming parton, i.e. as the

transverse momentum k7 of the gluon tends to 0

1
|M|* ~ =t O(kY). (5.58)
T

Consequently, the total cross-section will become infinite in the absence of either cut-offs to
the integration or regularisation, whilst the transverse momentum spectrum loses predictivity at
small values of pr due to the divergence. To recover the accuracy of the transverse momentum
spectrum, we must subtract the divergence at a given scale, which will therefore once more
introduce a scale into the problem, this is the factorisation scale yr. Now, for the UV divergences
and the renormalisation scale, we were able to write down differential equations linking the
divergences to the coupling constant via 1-loop diagrams, and so absorb the reference scale at
which the subtraction was done into a running of the coupling via the RGEs. We now seek the
equivalent absorption of the reference scale for our IR case with the factorisation scale. The
collinear divergences we have outlined depend only on the details of QCD and not on the process;
specifically they depend on the probabilities of the partons splitting and radiating other partons,
which then cause un-cancelled divergences in the collinear limit of the phase space. These are
parametrised by the universal Altarelli-Parisi splitting functions Pj.j(x), which can be found

in any QCD textbook and which we list here only at leading order [211]:

1+ (1 —x)? 1+2% 3
Pyq(z) =CF <x$) , Ppeq(@)=Cr (1_5)++25(1—$)],
11 5 9 x 1—2 Bo
Py y(z) = 3 |® +(1—2)°|, Pyuglx)=2Cy T + . +xz(1—2)| + 5 (1—x).
(5.59)

The precise details of these splitting functions are unimportant for now; for reference however
here Cy, CF are different values of the quadratic Casimir of the SU(3). QCD group for the
adjoint (gluon) and fundamental (quark) representations, and fy is the leading order beta func-
tion, these are given later in Appendix B.1, whilst  is the momentum fraction of the partons.

Meanwhile, the “plus” prescription [...]|; removes divergences in the terms at x = 1:

U e e -,
/0[1_2]+d _/0 e (5.60)

We may then schematically write equation 5.61, assuming only one allowed splitting (the
case with multiple splittings linking differential equations is more complicated but does not
alter the physics of the divergences we discuss here). This will lead to the advertised logarith-
mic divergence via ratios of scales upon integration of the gluon transverse momentum as in

equation 5.62:
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s dk?
do ~ a—k—QdeRFj, (5.61)
T
g Q2
o~ Z — log (F).Pﬂ_j, (5.62)
j

where Q? is a physical scale, such as that of the hard scattering, whilst A is an IR cut-off to

regulate the collinear divergence which occurs as kr — 0.

Now we seek to absorb these divergences into the parton densities by solving the (coupled)
differential equations. This will therefore violate the typical “Bjorken scaling” energy indepen-
dence of PDFs which arises at leading order, producing scaling violations whereby the parton
densities now vary with energy scale; we therefore follow the same procedure as absorbing the
UV divergences into the gauge coupling running by requiring independence of the IR cut-off .
We take our bare PDFs f(x) which are those from the parton model and observe Bjorken scaling
and absorb the collinear divergences from the parton splittings into them at a given factorisation
scale up. As a result the new renormalised PDFs obtain a factorisation scale dependence due
to this subtraction point, the new renormalised PDFs are derived in [17] and can be shown at

next-to-leading order to be:

as [td 2
flaib) = 5@ + % [ 1) [Pasmios (55) + Clotm)] (5.63)
P(x/y) are the QCD splitting functions given previously in equation 5.59 and parametrise how
QCD interactions can cause one parton to transform into another (thereby “mixing” the PDF's
beyond leading order), where y is the momentum fraction of the initial parton before splitting
to give momentum fraction x. Meanwhile, C'(z/y) is a finite term added which incorporates how
the separation of scales between the low scale non-perturbative hadronic behaviour and the high
scale partonic collision is achieved. However, again this has the parton distribution functions
dependent on a non-perturbative scale A - we wish to remove this dependence on the scale and
solve the differential equations in order to derive RGEs for the PDFs. Evaluating equation 5.63
at up = A reveals the bare PDFs are just those evaluated at the non-perturbative scale A as
expected; f(z,A?) = f(z). Therefore if we require the overall renormalised PDFs f(x, u%) are
independent of this IR cut-off then we obtain'*

9 o 8f($,)\2) Qs ! dy B
m[f(w,u%)] = Doz /x ?f(y, A)P(z/y) =0 (5.64)

™

Rewriting this and writing A as p so as to give the PDFs the usual dependence on the energy

scale p at which they are evaluated implies that

of(z, 1?) _as/l dy
0log p? T )y

?f(y,MQ)P(fﬂ/y) (5.65)

Here we have neglected the term of O(a?) arising from the partial derivative acting directly on the f(y, A?)
3f(x,2%)

inside the integral, this is order a2 as the other term tells us D10z A2

~ as and there is also the a; prefactor.
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This process thereby absorbs the collinear divergences with A into a scale dependence of the
PDFs. This expression is the general form of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equations [211-214], which in actuality are a set of coupled integro-differential equa-
tions due to the nuances of quarks and gluons each splitting into each other. Again we encourage
the reader to refer to [17] or [210] for further details. These DGLAP equations are the analogues
of the RGEs of the coupling constants, and allow the PDFs to be run between different scales
(in the process resumming logarithms of ratios of these scales) once the PDFs have been exper-
imentally extracted at one scale. Different PDF extraction techniques exist, assuming different
functional forms, scales, schemes, techniques and methodologies for the f(z,\?); examples are
the MMHT [215], NNPDF [216] and CTEQ [217] extracted PDF sets.

We have seen how these renormalisation and factorisation scales arise out of considerations
of divergences in perturbation theory; we have to evaluate the PDFs at a certain factorisation
scale and the gauge coupling at a certain renormalisation scale but we expect the effects of
these choices to drop out of the overall all-order, formal predictions. Therefore logarithms
of these scales will appear in different contributions and at different orders (as we observed)
but their effects should cancel out across the summation across all possible contributions and
all-orders to make the overall sum renormalisation scale, factorisation scale (and resummation
scale) independent. Computing cross-sections and other observables to all orders is however
not possible practically; many of the most precise determinations are known only up to NNLO.
There are therefore missing higher order corrections and consequently the cancellation of the
scale dependence is spoiled, leaving residual scale dependence in the predictions. As we include
higher order contributions we expect more of the scale dependences to cancel out, as is verified
in all processes currently known for phenomenological applications. This scale dependence
therefore introduces a frustrating and somewhat intractable theoretical error which can only
be indisputably reduced by incorporating higher orders. There are clearly bad scale choices,
scales far from the physical scales of the problem considered will result in large logarithms and
so larger higher order corrections would then be expected in such perturbative series; however
provided the order of the physical scales is chosen, the size of the logarithms is minimised and
little more can be said for the exact value. Nonetheless, as the choices of scales are arbitrary
and anthropogenic, we can attempt to exploit our freedom to minimise the dependences on
these scales and there are varying approaches about how best to do this [218], which we shall
not elucidate here. Furthermore, the scale dependence of predictions may be exploited, with its
general reduction order by order indicating the relevant perturbative series are indeed converging.
The scale variation may therefore be utilised to estimate the magnitude of the effects of higher

order corrections.
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5.6 Transverse Momentum Resummation

Large logarithmic terms, such as those observed in the previous section, in general appear
in individual contributions in multi-scale physics problems in quantum field theory. For our
particular applications we are considering soft and collinear divergences arising in transverse
momentum spectra at low gp'® and their resummation. First we begin by identifying the in-
tricacies associated with this specific application. Given we revealed the KLN theorem states
that soft and collinear logarithmic divergences arising individually in real emission and virtual
contributions should cancel in observables when summed over all possible initial and final states,
the question quickly arises as to why resummation is necessary for certain differential spectra
and other measurements. The resolution is that whilst logarithmic divergences cancel upon in-
tegration, they leave logarithmic enhancements in some cases where there may be restrictions on
one or more of the phase space integrals which therefore prevents complete cancellation of these
logarithms. Viewed alternatively it can be said our observable is not sufficiently inclusive to
ensure the complete cancellation, rather the transverse momentum spectrum is a semi-inclusive
variable (other examples include shape variables such as the so-called “thrust” of a jet). For the
specific case of transverse momentum spectra, whilst it is clear that the integration is performed
over the entirety of the phase space for the loop integration in virtual corrections, for real emis-
sions it is less clear. In fact the requirement of conservation of transverse momentum ensures
we must incorporate a factor of (52(qT + k1 + ko + ... ) into the integrand; this restricts the
phase space available for the real emissions, leaving the cancellation of logarithms between real
emissions and virtual corrections incomplete. As a result, at each n'® order in the perturbative
expansion a term known as a “Sudakov double logarithm” [219] appears (as well as sub-leading
terms), with one power of the logarithm of square scales from each of the soft and collinear

divergences remaining for each power of as:

2
o log®" (%) (5.66)
dr

Here @) is a hard scale in the problem. Whilst such terms are small for gy ~ @, ensuring in this
large g7 regime the usual perturbative expansion in «j is justified, once gr < @ the logarithms
become large and the perturbative expansion breaks down completely. Therefore these terms
must be resummed and factored out of the o expansion. In fact, given ags(myz) = 0.1185, this

occurs once gy ~ Q/5.

Indeed, as an aside in this discussion, the transverse momentum conservation condition
increases the complexity further, as it prevents the factorisation of each additional emission
piece into a separate factor in the way we saw in our toy calculation in equations 5.38 and
5.39 (and is detailed in [197]) as transverse momentum conservation links emitted states, the

kinematics therefore do not factorise in momentum space. This is a problem for the resummation

Y From this section onwards we refer to transverse momentum (or strictly its magnitude) as gr rather than pr
as this is the standard in the theoretical formalism we apply.
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in the form we saw previously as this factorisation of kinematics was key to how the resummation
worked. Fortunately however this factorisation can be recovered by Fourier transforming from

transverse momentum q; space into impact parameter b space:

/ d*qy exp(—ib.qy)d(qp — Z Q) = HeXp(—ib-qiT)- (5.67)

So each additional emission produces an identical separate factor in impact parameter space
and we can proceed as before but with the factorisation, and subsequently the resummation
(see Chapter 6), now in b-space. The large logarithms at small g7, log(Q?/g%), become large
logarithms at large b, log(Q?b?).

Returning to our main discussion, schematically we can understand why the vestiges of
the soft and collinear divergences remain in our transverse momentum spectra as follows, this
outline follows a more detailed exposition presented in [220,221] and elsewhere. First we begin
considering a general differential distribution d(X) and its cumulative distribution D(X) of some

variable of interest X:

do X do
d(X) = X’ D(X)= /XO dX Fd (5.68)
For our application X = pr and the starting point of the integral is Xy = 0; this lower bound
is where the singularities arise and also is the Born value. For an observable to be “infrared
safe”, i.e. to have no remnant singularities, we require it to be unaffected by soft and collinear
emission of gluons. We may write our differential distribution d(X) as an integral over the other
phase space variables Q defining the state, with g(Q2) defining the variable X in terms of the

other phase space variables:
do do

X = A d—Q(S(X — g(22))dS. (5.69)
For IR safety one requires g(2) — 0 for soft and collinear emissions, as if g(£2) - 0 then it
places additional constraints on the form of X in this region in terms of the other phase space
variables, thereby constraining the phase space and preventing the complete cancellation of the
divergences. Consider the case of real emission of a single gluon, we may write the distribution of
our variable X as an integral over the energy and emission angle of the gluon, each normalised,

via the variables w = E/Epax and t = 0.5(1 — cos 0):

1 1
DR(X):/O dw/o dt| M| (w, 1)5(X — g(w,t)). (5.70)

Here |M|? has been integrated over the other phase space variables, such as the azimuthal angle
of the gluon emission, and includes summing and averaging over final state and initial states
degrees of freedom (colour, helicity). This makes it somewhat clearer that our conditions for IR

safety are:

g(w,t =0) =0, for collinear safety, g(w = 0,t) = 0, for soft safety. (5.71)
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We can understand this further by expanding our squared matrix element in terms of soft and
collinear poles:
T(w,t) A1 Sl(t) C’l(w)

N2 —= — E— _— 7 - 7
P (1) = == = au| o+ 02+ TE5 4 Riw, 1) (5.72)

A;p then is the coefficient for the part of the square matrix element with soft and collinear
singularities and is given by Y(0,0), Si(t) is the coefficient for the soft singularity only part
and is given by w, (' (w) is the coefficient of the collinear singularity only part and is

given by w, and F(w,t) is the finite part of the square amplitude and can be written
Y (w,t)—7(0,t)—Y(w,0)—7(0,0)
wt

as . Then all these coefficient functions are finite by definition as the
singularities are factored out. If we integrate this purely real emission process near the borders

of the phase space, the expected logarithms then arise in the cumulative distribution:

Dp(X)=1+2 (Al log? X + By log X + r(X)), (5.73)
T

The A, piece comes from the A; coefficient and this term is the leading Sudakov double logarithm
piece, the By comes from both the soft S; and collinear C pieces separately and is the next-to-

leading logarithm contribution, and (X)) is a finite remainder piece of the distribution.

Of course, these logarithms should appear as we have only considered the real emission; if
we consider also the virtual corrections, as KLN theorem tells us we must, we obtain the overall

distribution

D(X) =Dgr(X)+ Dy(X). (5.74)
Then we expect no large logarithms of X appearing near the border of the phase space. So
we now add the virtual correction contribution to our integral to obtain equation 5.75; it has
no g(w,t) part in the second 0 function with X as virtual corrections are independent of any

radiated gluons:

é + Sl(t) + Cl(w)
wt w t

D(X):R(X)+as/01dw/01dt

{5(X ~ glw, b)) — 5(X)}. (5.75)

Then for this combined distribution we have IR safety, as from equations 5.71 we have the ¢
function subtraction piece is 0 where the soft and collinear singularities occur and hence the

distribution has no singularities remaining. R(X) is the remaining finite piece.

If however, our setup is such that we constrain the real or virtual pieces, then the conditions
in equations 5.71 no longer hold and logarithmically divergent pieces remain as in equation 5.73
as the § function bracket in equation 5.75 is not zero throughout the integration region. In reality
it is the real emissions that are the ones which can be constrained via the g(w,t) functions in

cases where they do not satisfy equations 5.71.
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This is the case for transverse momentum spectra, as transverse momentum conservation
restricts the transverse momenta of emitted gluons. The low transverse momentum qr — 0
region of phase space corresponds to both the soft ¢ — 0 and collinear cos @ — 1 regimes and so
we retain the double logarithms of the Sudakov form as logarithmic enhancements at each order
in the perturbative expansion. We must therefore re-sum these to all orders, as we demonstrated

earlier in the chapter in equation 5.57, to recover the predictivity of the perturbative expansion.

In general, when large logarithms remain, the perturbative expansion in the differential

cross-section do will be of the form
do = 1+as(LP4+L+1)+ o2 (L + LA+ L2+ L+ D)+ (LS + P+ LA L3+ L2+ L+ 1) +..., (5.76)

where here we have illustrated the case where double logarithms arise as both soft and collinear

logarithms of the scales are present and L are the large logs. In the case of the transverse
do_
dq%
problem. This expansion in «as; may be resummed in an analogous manner to demonstrated

momentum spectrum we have L = log (?—22) where () is some high physical scale in the
T
previously, but with greater complications (more details of the resummation for our transverse

momentum application are given in Chapter 6), to produce an expression of the form:
do = C(as)S(as) + R(ovs) = Clas) exp [Lgl(asL)—l— ga(asL) +asgs(asL) + .. } + R(as). (5.77)

The C(ay) represents the factorised coefficient function for the hard process and pre-multiplies
the resummed contribution, it is a process dependent perturbative expansion in as. The R(ay)
is the remainder function, which is also a process dependent expansion in « accounting for hard
contributions without logarithmic enhancement; it tends to zero in the resummed region but is
the dominant contribution in the region where the logs are small, i.e. large gr for our application.
Finally the function ¥(cy) is a universal process-independent function as it depends only on the
structure of QCD corrections. It is an exponential and contains the resummed contributions;
each of the pieces g, contain all orders in asL resummed but each is suppressed by a power of
a; relative to g,—1. Consequently the exponential is now also a perturbative series in «; rather
than asL and we recover predictivity of the perturbative expansion. The first term g; therefore
offers the largest contributions, and including it incorporates “Leading Logarithms” (LL) in the
resummation, i.e. those of the form o L?" from equation 5.76; the second term go resums “Next-
to-Leading Logarithms” (NLL), i.e. those of the form a?L?**~! from equation 5.76; the third
term g3 resums “Next-to-Next-to Leading Logarithms” (NNLL), i.e. those of the form o L?"2
from equation 5.76; and so on. For our applications we stop at NNLL, which represents the
highest precision currently calculated in most processes. The g; functions will be given later in
equations B.1, B.2 and B.3 in Appendix B.1.

There is in fact a subtlety here: whilst if you expand at fixed order and integrate unresolved
radiation you obtain the double logarithms and powers aff L™ for 0 < m < 2n in the expansion

as in equation 5.76, when you exponentiate and resum, the g, contain reduced powers of the
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logarithms relative to the a, as any powers n + 2 < m < 2n vanish leaving o L™ only for
0 < m < n+1, so that the g; is of order a?L"*!, g5 of order a”L™ and so on as given in
equation 5.771¢. This is detailed further in [222] and originally in [223]. Each additional set of
sub-leading logarithms included in the resummation must also be accompanied by an increase in
the precision in the finite pieces in order to increase the precision of the prediction; in fact these
must be matched to ensure there is no double counting and no inclusion of resummed effects in
regions of parameter space where they may cause unphysical contributions. This is discussed
briefly in Chapter 5.7. The first term C(a;)3(as) of equation 5.77 in the formalism we apply in
reSolve, is called the “resummed part”, whilst R(«) is called the “finite part”. Finally, in order
to give an intuitive picture, we mention in passing now that the appearance of an exponential
in resummed formulae can be intuitively appreciated by considering the fact it sums an infinite
series of Poisson statistics governed emissions, the Sudakov factor then represents a no emission
probability.

This section, and the chapter up to this point, has been focused on providing a background
for the need for transverse momentum resummation and how it may be performed. Further
information is available in a variety of sources including the TASI lectures [204] and the review
[224], as well as the original papers which provided the foundations of this work, listed in
Chapter 6. The background thus far provided will be built upon and crystallised in Chapter 6,

first however we consider the transverse momentum spectrum as a whole.

16This apparent difference in orders in the expansion of do and the exponential is due to the perturbative
dynamics and kinematics factorisation. It can be seen that the exponential is able to reproduce all the leading
logarithm a”L?" terms by expanding with the functional form of g; given later in Appendix B.1 equation B.1,
we can set g; = 0 for i > 1 as we only need to show it can produce the highest powers of the logarithm. Consider:
exp[L[1 + log(1 — asL)/asL]] which is of the form of exp(g1L), expand first the logarithm in powers of asL and
then the exponential: exp[L + (—asL — (asL)?/2 — (asL)*/3—...)/as] = exp(L — L — s L? /2 — o213 /3 —...) =
exp(—asL?/2—aZl?/3—...) = (1—asL?*/2—(asL?/2)? )2 (s L2 /2)% /6—.. ) x (1—a2L?/3—(a2L?/3)?/2—...) =
1—asL?/2—a2L%/3—a?L*/8—a?L® /6 —a2L5/48 —...), so the first exponential expansion produces the leading
logarithm terms a”L*" as required.
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5.7 Transverse Momentum Spectra

The primary aim of our work is the precise prediction of transverse momentum spectra for
processes including unresolved radiation. As detailed, this calculation is greatly complicated by
the remaining soft and collinear logarithmic enhancements at small gr requiring resummation.
As a result we need to consider the low ¢r < @ and high ¢r ~ @ regions separately, where @
is some natural mass scale in the hard collision, such as the mass of the particle produced or
invariant mass of the system of particles. As a result, it is common to decompose the differential
qr spectrum for the partonic cross-section into two regions to make their different behaviour

explicit: .
- ~res ~ fin

j;% = ai;% + CZ;%. (5.78)
Here the “res” part is the resummed contribution dominant at low g7 and is where the majority
of the events are produced as the probability of emitting a soft or collinear gluon increases dra-
matically as the strength of the a; coupling increases at low energy; this part can be determined
to a given logarithmic accuracy in the resummed expansion in ag. The “fin” part is the usual
hard scattering finite contribution, evaluated via truncating the perturbative series in «ay in the
standard way at some order, and is dominant at large qr. Both components are needed to
accurately describe the spectrum over the whole region of g7 and their division is arbitrary from
a physics perspective, made purely to simplify the theoretical calculation. In order to produce

a theoretical prediction at given accuracy, we may truncate each piece at consistent accuracy'”:

. - res ~fin
) = Lz + gl (579)

where “f.0.” indicates truncation at a fixed order in the usual perturbative expansion, whilst
“l.a.” indicates truncation of the resummed perturbative expansion at given logarithmic accu-
racy - i.e. leading logarithm (LL), next-to-leading logarithm (NLL), and higher orders. In fact,
we define the fixed order truncation of the finite part of the differential transverse momentum
spectrum as the subtraction of the resummed part at fixed order from the overall spectrum, with
the resummed part at fixed order being defined as the fixed order truncation of the logarithmic

accuracy truncated expansion:

() = i)~ 1)) 530

Any pieces divergent at small ¢r are therefore incorporated into the resummed part and
so the finite part makes no contribution in the limit g7 — 0; in fact this is imposed order-

by-order in perturbation theory. This IR subtraction therefore defines what is meant by the

7The notation [d& / dq%} means we truncate the perturbative series for dé/ dg? at a given order in o, and any

subscripts - “l.a.” or “f.0.” define how this truncation is done, i.e. to given logarithmic accuracy or given fixed
order accuracy.
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finite piece. Meanwhile, the finite piece should contain all the contributions at large ¢r and
so any contributions in this large ¢ limit for the resummed piece are unphysical and must be
suppressed. In order to achieve this our formalism, which is described in much further detail
in Chapter 6 and in [222], imposes a unitarity constraint to constrain the integral over gp of
the resummed part of the differential transverse momentum spectrum at a given logarithmic

accuracy to be equal to the corresponding integral truncated at given fixed order:

o da.l"es o da.res
A [—] - / d? [—} . 5.81
/0 T dq% La. 0 T dq% f.o. ( )

This ensures that the integral over the finite and resummed pieces truncated together correctly
gives the overall total cross-section evaluated at the same order via standard truncation as
indicated in equation 5.82, and particularly constrains the unphysical contributions of the ¢r

resummed pieces at intermediate gr;

[, = [l ] [ ], e 6

This means of putting together the contributions important at either end of the gr spectrum

in a consistent manner is known as “matching”. The method described is just one of many that
can be used and has the benefit of not having an arbitrary switch-over point between the two
regimes, instead interpolating between the two smoothly. Specifically the method described is
an “additive matching”, which is in some sense more natural - there are also “multiplicative
matching” methods which are less well motivated but provide greater numerical stability [225,
226]. In any case, our reSolve program in its current, early implementations only determines the
resummed part of the spectrum, and so is only relevant at the low g end, which nonetheless is
where the majority of the total cross-section is produced. From here on we will therefore drop any
mention of the finite piece of the differential cross-section, focusing our efforts on the arguably
more difficult part of the calculation, and typically the part with the larger contributions, the
low g7 resummed part. The need for resummation in this low gr region can clearly be seen in
Figure 5.3, where the leading order contribution without resummation diverges as expected as
gr — 0 whilst the resummation effects cause a Sudakov suppression (essentially by a no-emission

probability) at this low transverse momentum end, removing this unphysical divergence.
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Figure 5.3: The leading order differential transverse momentum spectrum for diphoton production at
ATLAS, with the total leading order, finite part leading order, and total leading order + NLL resummation
spectra shown. The effects of resummation are clear, removing the unphysical divergence in the theoretical
predictions as g7 — 0 seen in the total leading order spectrum. This figure is from the paper [5].
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Chapter 6

reSolve Overview

In this chapter we move on to our specific area of research, providing context for different
approaches to transverse momentum (gr) resummation before elaborating on the details of the
analytic b-space resummation formalism we apply and its implementation within the reSolve
program. The diphoton and Drell-Yan production channels included in the current version of
reSolve are then introduced and a brief catalogue of the advantages of our reSolve program
implementation of the g7 resummation formalism ends the chapter. Details of the use, validation
and results of the reSolve program are omitted at this stage, with this left to Chapter 7. The

research described in this chapter and the next is based upon that reported in our paper [2].

6.1 Approaches to gr resummation

As described in Chapter 5, whilst the transverse momentum spectrum for an arbitrary process
at colliders is in principle completely derivable in perturbative QCD, at small g7 logarithmic
enhancements ruin the perturbativity of the series expansion in the strong coupling «;, offering
large corrections which must first be resummed to all orders before the perturbative expansion
can be re-established. This fact has been known for a long time, since at least the 1970s,
and several different methods to resum these troubling logarithmic contributions have been
developed. In general these can be classified into two distinct types, numerical and analytic
resummations. We begin outlining the possibilities available in numerical resummations, before

moving onto the analytic resummations of which the formalism in reSolve is an example.

Numerical resummations are performed by parton shower programs - these aim to fully
exclusively describe the soft and collinear radiation produced in a hard scattering event, rather
than simply integrate over it in the way analytic resummations do. They exploit the factorisable
and universal nature of QCD splittings in a semi-classical approximation, determining particle
splitting probabilities via the Sudakov no-emission probability factors. The basic process of this
is to start with the momentum of a hard scattered particle and then randomly choose momenta
of emissions, with probabilities guided by the splitting functions, in a Markov Chain Monte
Carlo process. Each successive branching particle has the process repeated iteratively until a
whole shower of particles, the “parton shower” is produced, with the branching only stopping
once a numerical cut-off (usually 1GeV) of order Agcp is reached when hadronisation effects
take over. The result is a cascade down in virtuality (Q? = p? — m?) and momentum fraction

space. A full description of the algorithmic procedure adopted for parton shower programs is
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presented in [17].

Many of these parton shower programs are incorporated into larger “event generator” pro-
grams, which simulate the whole hard scattering process from the hard collision matrix element
generation through the showering of each outgoing hard particle and finally to the hadronisa-
tion. Well-known examples of such programs include PYTHIA [136], Herwig++ [137,138] and
Sherpa [140]. Meanwhile programs like MCONLO [141,227] and POWHEG(-BOX) [228,229] aim
to merge parton showers with NLO QCD corrections from matrix generators using these pro-
grams. For further details of the programs’ individual capabilities we refer the user to their
copious manuals. This start-to-end process involves an array of complications; foremost among
them is the “matching” and “merging” of the hard events onto the parton showers. This is done
in order to avoid possible double counting as well as dead kinematical regions not populated
by events and radiation; this is extensively reviewed in the literature and so we do not describe
it here [227,230-232]. An advantage of such numerical resummations is that they allow the
production of explicit “events” with all final state particles exclusively known. This matches
the actual events observed at colliders more naturally than the semi-inclusive states needed for
analytical resummations, with the large multiplicities of produced events simply intractable for
analytic analysis. They also offer the possibility to describe the whole process from hard scatter
through to hadronisation including multiple particle interactions and interactions with beam
remnants through the overall event generator package. They do however have significant dis-
advantages relative to analytical resummations; primary amongst these is that they are largely
leading order (although this has been extended to NLO via POWHEG(-BOX) and MCONLO with
the latter using Herwig, whilst MINLO [233] and GENEVA [234] are extending even to NNLO for
some simpler processes) meaning leading logarithm resummation is all that is typically included.
This occurs as the ability to match parton showers onto hard scatter matrix element generators
beyond leading order is far less clear, and so they offer reduced precision relative to analytic

resummations. This element is a crucial disadvantage in the context of LHC precision studies.

In any case, numerical resummations are tangential to our research, which has been in
analytic resummations in the context of transverse momentum spectra. Before we proceed to
the b-space resummation formalism we employ, we first mention that Soft-Collinear Effective
field Theory (SCET) is an alternative analytic formalism for developing formulae for transverse
momentum resummation. This has become more popular in recent years and is introduced
in [235]. The basic idea is to use an effective field theory to separate the high scale (hard
scattering process) and low scale (non-perturbative) behaviour. By expanding in the ratio of
the scales, the high scale is integrated out and absorbed into the Wilson coeflicients of the
effective theory at the low scale. By using an effective Lagrangian, rather than perturbative
QCD Feynman diagrammatic methods, it can offer a more simple means of maintaining gauge
invariance and so may simplify computations otherwise involving cancellations between different
diagrams, such as between real emissions and virtual contributions. SCET has been applied
to many different resummation problems, including transverse momentum resummation; we

refer the reader to references for its application to Drell-Yan [236,237]. Nonetheless, it has
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its disadvantages, connecting less easily with standard Feynman diagrammatic approaches of
perturbative QCD (pQCD) expansions.

In our work we utilise the impact parameter b-space analytic transverse momentum resum-
mation formalism which has been developed over a number of years, starting in the 1980s with
the development of leading logarithmic resummations [238-240]. This was soon extended to be-
yond leading logarithm resummation in [241] and further developments summing soft emissions
in b-space (typically in the context of e"e™ — A + B + X) followed [242-244]. The seminal
work of the reference [223] then illustrated LL and NLL resummation in the context of Drell-Yan
production and considered the connections between low and high transverse momentum regions,
setting the foundations for the formalism. Other developments occurring alongside this work
are detailed in [245,246]. Following this early work, the baton was picked up by the group of
Catani and collaborators in the work [247], who have led the modern developments in this area.
More recently this has borne fruit with the development of NNLL resummation [8,222,248,249]
for processes such as Drell-Yan, diphoton and Higgs production. At this stage, the formulae
for beyond leading logarithm resummations were written down independently for each process,
with collinear factors which were process dependent, and it was simply hoped that this could
be developed into a process independent structure. However, it was soon shown [250] that this
is not the case and rather a single process dependent hard factor H¥ is required to absorb this
process dependence (see equation 6.28). This hard factor is purely virtual and so has the same
kinematics as the Born, depending upon it in a straightforward manner. As a result, with this
hard factor the resummation formalism is made universal, with process independent Sudakovs
and collinear factors; this is summarised in the paper [251] and will become clear in our overview
of this area later in the chapter. This universality will be key to our development of the reSolve
program, allowing transverse momentum resummation to be added to any of a given class of
processes in an independent manner. As the b-space formalism we apply has developed gradu-
ally, there is no over-arching reference - the closest to this are [222] [251], which we will follow
for several elements of our description and explanation in Chapter 6.2. We hope our description

provides the reader with sufficient clarity to understand this complex area.

We apply this formalism [223,238-240,242, 244,247-249, 251] for transverse momentum re-
summation to the general class of processes producing colourless measured final states and
arbitrary unresolved radiation, focusing our initial efforts on the important diphoton and Drell-
Yan channels. reSolve nonetheless can be used to add transverse momentum resummation to
any such process in principle. There are alternative programs available, including public codes
such as ResBos [252,253]. ResBos is able to perform transverse momentum resummation for
Drell-Yan, diphoton and Higgs processes producing differential spectra in g7 as well as in in-
variant mass and rapidity; it is therefore similar to reSolve in this regard. However it is less
modularised to allow adaptation to new processes in the way reSolve is and is not parallelis-
able in the same way. From a theoretical perspective there are also differences in the theoretical
approach with the matching done more straightforwardly, switching from low ¢ to high g7 at

qr ~ @ rather than using our unitarity constraint of equation 5.81. There are also the largely
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private programs of the 2gRes [5, 6], HRes [254,255], DYRes [7,8] family, of which there is an
initial DYRes version publicly available. These have acted as a guide in our work and enabled
verification of our reSolve program, having themselves been used in several experimental works.
We hope our work improves on these, being transparently documented, customisable and more
straightforwardly implemented via a modularised structure designed to allow general applica-
tions, whilst also being completely publicly available. reSolve is a completely new program,
completely rewritten and developed anew with several advantages over other codes available,
whether public or private, which we elucidate throughout our exposition in this chapter and the
next and which we summarise in Chapter 6.5. This ensures the reSolve program is unique in

its area and we hope it will be of great use for future precision studies.

6.2 Theoretical Formalism

We consider hadron-hadron collisions producing only a colourless detected final state F' (by
which we mean F' is made up only of purely colourless particles), accompanied by arbitrary

unresolved radiation, X, of the following form, where () indicates further final state variables:
h(p) + h(p2) = F(Q% ¢F,y, Q) + X. (6.1)

Here /s = (p1 + p2) =~ 2p1.p2 is the centre of mass energy of the colliding hadrons and this
is pre-multiplied by z; and x5, the momentum fractions of the partons extracted from the
PDFs, to obtain the centre of mass energy in the partonic collision § = x1x9s. This therefore
limits the class of processes for which this is applicable to ones with electroweak gauge bosons,
Higgses and leptons in the final state; this nonetheless includes many production channels of
great importance to LHC phenomenology, including Drell-Yan, diphoton and Higgs production.
There is theoretical work being undertaken to extend this formalism to coloured states [256];
this is more difficult due to the fact the final state then carries colour charge and can interact
with initial state radiation and provide additional soft and collinear radiation. The final state
F may be made up of several particles, its invariant mass Q2 is then (as given in equation 5.3)
the square sum of the 4-momenta {q1, o, ..., qn} of the particles in F, Q> = (g1 +q2 + ... qn)>.
The invariant mass of the system F' is not equal to the partonic centre of mass energy in
general as the unresolved collinear emissions in X may carry away energy and momentum. The
remaining variables to describe the final state system as a whole are its transverse momentum,
qr and rapidity, y. In addition, further variables 2 are required to fully define the final state
configuration in the case it is made up of more than one particle, for example for diphoton
production or Drell-Yan production the polar (6*) and azimuthal (¢*) angles of one of the
two particles in the centre of mass frame are required. Whilst our formalism is targeted at
determining the small gy part of the transverse momentum spectrum, it is fully differential in
these final state variables and so may also determine the invariant mass, rapidity and other
differential spectra in the same calculation. In general, for most of our purposes we consider

the fully differential hadronic cross-section given in equation 6.2; however spectra in further
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arbitrary variables such as transverse mass or minimum and maximum transverse momenta of
individual components of the final state /' may also be determined, and indeed are included in

reSolve.
dop

_— ; 2y, 9Q). 2
dqungdde(phPQaQTvQ 'Y, ) (6 )

As detailed in Chapter 5.7, we divide the differential cross-section into the resummed contri-
bution important at small g7 and the finite contribution important for large qr. The resummed
contribution contains the logarithmic enhancements and all contributions finite in the gr — 0
limit and is the focus of our work and of the reSolve program. We neglect the remaining finite
contribution from here onwards - nonetheless it must be calculated and matched appropriately
to the resummed contribution we calculate to determine the gp spectrum across the full range.

This is not available in this first reSolve version.

We present a master formula for the whole calculation of the fully differential hadronic cross-
section in Chapter 6.2.3; for now however we discuss the key aspects one by one. Coefficients
involved in the formalism are gathered in Appendix B.1. We denote the partons extracted from
the hadrons in the conventional manner as a and b, not to be confused in the latter case with
the impact parameter b, this should however be clear from context. Ultimately, the partons
colliding in the hard process are denoted ¢, ¢ to reflect that they must be g or gg - this is
true as the final state system F' is a made up of particles of no colour charge. These different
initiating partons result in different Sudakov form factors (see equation 6.16) but aside from
this the Sudakovs show no further, specific process dependence. We use the value of the strong

gauge coupling ag evaluated in the M .S scheme at the renormalisation scale pug.

6.2.1 Ob-space

Our transverse momentum resummation formalism is crucially dependent upon factorisation
of both dynamics and kinematics; therefore we perform a Fourier transform from transverse mo-
mentum space to its conjugate variable, impact parameter b-space, as explained in Chapter 5.6.

We may then write our transverse momentum spectrum as follows:

do’%es d’b le dZQ ib.apyF 2
_aopm _ et b Q
dQ2d2qude(plap27qTaQ ya / / / w ( ,Zl,ZQ,Q Y )

dz dz
/ 1/ 2/ db—Jo (bgr)WT (b, 21, 22, Q% y, Q).
(6.3)

Here z; and zo are the momentum fractions taken in the collinear splitting, leaving momentum
fractions 1 and x2 on the colliding partons for the hard scattering, this is clarified by Figure 6.1
later. Note that there is no integral over the momentum fractions z; and z9 of the partons

extracted in the PDFs as this formula is fully differential'. Transforming into impact parameter

ntegrals over x; and 2 arise for cross-sections integrated over invariant mass and rapidity as equation 5.31
illustrates.
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space converts our qr logarithms of the form log(Q? /q%) to log(Q?b?) and so low transverse

momenta correspond to high impact parameters?. In the last step we have assumed that, as for

qq initiated processes, there is no dependence on the azimuthal angle ¢, where the 0% order
Bessel function Jj is:
2m dqb o p
Jo(x) = — TSP 6.4
=[5 (6.4)

In fact, in the case of gg initiation there is ¢, dependence due to the helicities giving azimuthal
correlations. In that case the integral is split into a ¢ independent piece involving Jy(bgr),
and a ¢p dependent piece involving Ja(bgr) [257]. As a result of this replacement with the
0% order Bessel function, we reduce the number of integrals to be performed from 4 to 3, i.e.
over the absolute value of the impact parameter space and the two momentum fractions in
collinear splitting 21, zo. These integrals are done via an inverse Fourier transform for the b
integral, and via a double inverse Mellin transform for z; and 2y (as detailed in the next section
and in Appendix B.2). We therefore evaluate the function W¥ in impact parameter space
and must inverse Fourier transform back to transverse momentum space at the conclusion of
the calculation, this itself offers complications for the numerical use of the formalism as the
integrand is a rapidly oscillating function. This problem is overcome in reSolve by using a
specially designed external integration package, intde, using the “double exponential” formula
of [258].

The b logarithms however contain divergences: at low b the logarithms become divergent as
log(Q?b?) — —o0 as b — 0, which corresponds to large values of the transverse momentum, where
our formulae are not relevant in any case. Therefore we seek to simply cut off the contributions at
low b, to do so we shift the argument of the logarithms by 1 so that log(Q?b?) — log(1 + Q2b?),
in this case at high b we recover the standard logarithm form as Q?b? >> 1, whilst at low b,
log(1 + Q%v?) — 0 cutting off these contributions and therefore leaving the finite piece only
contributing to the differential cross-section at large ¢p. This therefore has the added benefit of
ensuring the unitarity constraints of equations 5.81 and 5.82 are implemented by removing the

resummed contributions at large qr where they would be unphysical.

Whilst discussing these logarithms, it is convenient to introduce the resummation scale, ug,
the third of our three scales after the factorisation scale (present in the PDFs) and the renormal-
isation scale (present in «y). As logarithms can always be shifted by a finite piece by rescaling
their arguments, the division of logarithmic and finite pieces includes some arbitrariness. The
resummation scale is therefore introduced to parametrise this flexibility and enable a quantita-
tive measure of the corresponding theoretical error induced, this can be done through standard
scale variation assessments. We therefore rescale the logarithms as follows and define our large

212
“lfgb ); here by = 2e77F and yg = 0.5772... is the Euler constant:
0

logarithms L = log(

2The way to intuitively see this is to consider the two partons incoming with zero transverse momentum, for a
final state with large transverse momentum the outgoing particles are deflected more from those of the incoming
beams corresponding to a smaller impact parameter.
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log(Q%?) = log (“12?;2) +log <Q:2§%> — L +1log (Q:é%) (6.5)

as a result, we have the overall b logarithm

2b2
blog = log [1 n “;2 ] . (6.6)
0

The resummation, factorisation and renormalisation scales must all be set to the order of the
hard scale in the problem @) as otherwise we reintroduce further large logarithms, these additional
unnecessarily large logarithms would then appear at each order in the expansion and so reduce
the accuracy of our theoretical prediction made by truncating the series at given order (in both

logarithmic accuracy and finite order).

As well as singularities at low b, there are also those present at high b, corresponding to
low gpr. These singularities thus arise in the region that our transverse momentum formalism
is targeted at and cannot be simply cut off. The singularities arise due to the presence of the
Landau pole in QCD; specifically singularities arise as A = (1/7)Boas () log(uib?/b3) — 1 3,
which corresponds to b — by, = (b/ps) exp[r/(2B0as(p%))] ~ 1/Agep, here By is the lowest
order 8 function coefficient, given later in equation B.7. These divergences are a sign of non-
perturbative effects becoming important in these regions corresponding to small g7 ~ Agcp
and must not be ignored as they are of physical relevance and will limit the validity of our
calculation. This kind of singularity is a common feature of all-order resummation formulae of
soft gluon contributions and has to be regularised. In the current reSolve implementation, we
follow the standard prescription of reference [259]. We freeze the integration over b below a fixed

upper limit via the substitution

b— b, = L, (6.7)
\/1+02/62
b/ /()2
by = —2 exp(1/(2aspPo)), and b6 = 2exp(—vE) Q ) (6.8)

V@2 Hs

By replacing b with b, at low b we have b, — b as required, whilst at very high b then b, —
biim, cutting off the integration before the very high b singularities. We then reintroduce the
phenomenological effects at low ¢r via non-perturbative functions which smear out the low ¢r

region:
Sxp = exp(—gkpb?), (6.9)

these smearing functions pre-multiply the b-space integrand before the inverse Fourier transform
is performed and the constants gyp parametrise the phenomenological implications of the non-

perturbative effects which we cannot calculate. Their values are expected to depend upon if

3These singularities arise in the g(” functions given in Appendix B.1 in equations B.1, B.2 and B.3, whilst A
is given in equation B.4.
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the process is gg or ¢q initiated (¢ = g,q respectively). The default values in reSolve are
0 GeV?; nonetheless these can be altered in the reSolve input file, and provide an additional
source of theoretical error. Generically one might expect gip = Crg1 and g{p = Caga, however
many different values for these parameters are used in the literature. In the validation plots
for reSolve throughout Chapter 7 we have used values ¢g3p = 6, ghp = %; these are chosen so
the quark initiated gip matches that used in the reference [5] (where g; = 2 GeV? was seen to
provide the best phenomenological match to diphoton data), the gluon-initiated glg\IP was then
set by taking arbitrarily that g; = go which sets g%p = gfip X Ca/Cr = 9/4 x gp = 6. There
are several other ranges of these gip parameters used and indeed different functional forms of

the parametrisation in equation 6.9 in the literature, these are outlined in [8,222,260].

All of these complications, and more, are contained within the b-space, double momentum
fraction space function W¥ (b, 21, 22, @2, 5, Q), whose structure we now examine across the next

two sections.

6.2.2 Mellin space

The W (b, 21, 22, Q%, y, Q) factor contains the standard “multiplicative” convolutions of the
partonic cross-section with the PDFs, however with a great deal of further structure associated
with the soft and collinear emissions. By transforming from double momentum fraction space
(one integral per ingoing parton) to double Mellin space we convert these convolutions into
simple products; this is outlined in Appendix B.2 and follows the work in [222,261]. The double
Mellin transform is:

1 1
W (b, = /O dzlz{“—l/o dzo2>'WH (b .., (6.10)
z1, z2 are the momentum fractions left after the collinear emissions of the ingoing partons. The

precise form of the W]{;h n, function is described in great detail in the next chapter.

After evaluating the WJI\Z, No (b, ...) Mellin space functions, these must be transformed back to
momentum fraction space before the inverse Fourier transform from b-space to gr is undertaken.
As described in Appendix B.2, the inverse of a Mellin transform is an integral over a complex
contour in the Mellin space parallel to the imaginary axis (but shifted to avoid poles). In reSolve
we instead integrate by summing contributions along a contour at 45° to the imaginary axis in
the shape of a ‘V’ rotated anticlockwise; this enhances the convergence without affecting the
result to the precision to which we calculate. This prescription is also used in the 2gRes family of
programs. Evaluating the WJI\Z, N, (P - ..) at each point along this contour adds a further obstacle
to the implementation as it requires knowledge of the PDFs in Mellin space*. PDF collaborations
provide grids of PDF values in momentum fraction space with interpolation between points via
the DGLAP evolution equations and the PDFs’ functional forms. We determine the PDF's along

the contour by fitting the PDFs to an analytic form whose Mellin moments are known. This fit

4Any b dependence of the PDFs arises only from the o, evolution, as the PDFs have no gr dependence, and
therefore is accounted for by the running of as.
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is done “once and for all” at the start of the reSolve program and can be provided to the code
by referencing it in the input file. To perform the fit we use the external minuit package [262]

for minimisation. Further details are supplied in Chapter 7.1.4.

6.2.3 Master Formula

In order to definitively explain the formalism applied in reSolve, it is best to give an overall
intuitive picture, therefore we start with such a schematic in Figure 6.1, providing also the overall
associated “master formula” in equation 6.11. We then spend this section describing how this
arises and how it performs the required exponentiation of the soft and collinear logarithms, we
follow closely the reference [222] as well as our own reSolve paper [2]. We collect many of the

basis function expressions involved in Appendix B.1, so as not to obscure the explanation here.

Py
h 1 :)
h, >

P,

Figure 6.1: Pictorial version of equation 6.11. A parton a of momentum fraction x1/z; is extracted
from hadron h; in the upper leg with an associated PDF factor, it then splits further to leave momentum
fraction x; via a collinear partonic sub-process a — ¢. A specular process happens at the lower leg and so
the momenta that enter the hard process H are x1p; and xop2, where p; o are the momenta of the initial
hadrons. Soft partons can be emitted anywhere (except inside H itself) and contribute to the Sudakov
form factor S.. This figure is adapted from [250].

Our master formula [251] for the fully differential cross-section do at low gp for the hihy —
F + X process is then:

F 2 0 2 1 1 2
dares(p17p27Q AT, Y, ) :/ d=b / le/ %WF(b,Zl,ZQ,...) = Qﬁ [da_cFE,LO}
dQ2d2qrdydQ2 (2m)2 Jo, 21 Sy 22 s

d?b ib-qr 2 12 /12 1le 1dZ? F 2 /72 2 /72

X (27[_)26 SC(Q 7b0/b ) 2 29 [H CICQ] fa1/h1(x1/217b0/b )faQ/hz(xQ/Z%bO/b )
xr1 xo

(6.11)

The master equation contains only the resummed piece, not the finite piece onto which it must

2
be matched, and is therefore valid up to corrections of order (’)(%), i.e. it is valid at low qr.
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The aim of the resummation formalism is to take the N Mellin moments of the function W*
and write it as an exponential piece containing all the pieces logarithmically divergent as b — oo,
and a separate multiplicative finite piece containing the pieces with no explicit b dependence.
As described in the last section, this introduces a resummation scale (ug) dependence via the
flexibility in the separation of these pieces. We have one Mellin transform for each final leg and

so we have N1 and Ny Mellin moments:

W N, (0, Q% s (WR), s 1) = Hiv, n, (Q% s (i); Q% /1, Q% /1, Q% /1)

(6.12)
x explGn, v, (s (1R), Ly @/, Q7 /ud)).

This form is identical to the first term, representing the resummed piece, of equation 5.77 with
C(as) now H and X(as) now exp(G). We may then expand the exponent G as a perturbative
series in a, - only powers up to a”L""! are required as remaining powers are made up in
expanding the exponential. The general form of the expression for Gy is
2 )2
Gria (s (), L Q1 Q% /1) =LgV (L) + 67 (s L Z‘% %)

2
R Mg

(6.13)

where the g% are perturbative functions. Meanwhile, as usual we can expand the finite Hﬁl No

(0)

factor as a series in a,, without issue as it contains no logarithmically divergent terms; o’ is

the Born cross-section:

o Q* Q@ @
M Q7 50tk QP ko QP s Q1) = o (e 1), @) |1+ TR (7 7 )
F PS
s\ 2 F(2) Q2 Q2 Q2 - Qs\™, F(3) Q2 Q2 Q2
+(— ) H —5 555 5 | T — | H 5555 ) |-
(71‘) NlN?(u% /,L% u%) T;’(ﬂ') NlNQ(u% /,L% N%)
(6.14)

The important things to note at this stage are that Gy, n, had no dependence on the process
(hence no ¥ label) or on the factorisation scale, this is due to the universal nature of soft and
collinear radiation from QCD partons. All process dependence is contained in the function
Hﬁl N, Which contains the hard scattering cross-section and is proportional to the Born cross-
section; therefore it contains only virtual corrections, as one might expect after the factorisation
of the real emissions into the exponential. At this stage we can also see why the hard scattering
piece (finite piece) must be included up to the same expansion order as the resummation, as

they produce the same order in the o expansion of the whole expression.

It may then be shown that, in order to perform the all-order resummation of the transverse
momentum logarithms, then Hﬁl N, becomes a product of the Born cross-section, collinear fac-
tors C,, Ca, hard factor H, CF and the PDFs f; whilst Gy, n, becomes a product of the Sudakov
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factor and exponentials from the collinear factor running and PDF running®. The explicit re-
quired forms of the functions given in these expressions are provided in the rest of this section;
as a result the WJ}\FH N, moments match those listed in our master formula 6.11. This form is
crucial to allowing a universal expression for the transverse momentum resummation, which is

as process independent as possible [223,250]:
Whine = 2 0 h(s(Q1), QO HE (s(Q1)Se(@2, 1)

X Z Cea,Ny (O‘S(bg/bQ))CEb,Nz (QS(bg/bz))fa/thl (as(bg/bQ))fb/hg,Ng (Oés(bg/bz))~
ab
(6.15)

It is at this stage we can understand Figure 6.1 in more detail - the two hadrons hy, ho are
incoming with momenta p1, p2, PDFs f,/;,, and fy /5, extract partons a and b of momentum
fractions x1/2z1 and x3/z9 from the hadrons, collinear emissions on top of the Born process
aé% ensure further z; and z, fractions of momenta are passed on leaving x1 and x2 in each leg
before the hard scattering. These transform the parton species to cc¢ via factors C., and Cg
on each of the respective parton lines. Meanwhile, at any stage the partons may undergo soft
emissions which do not change the momentum transfer and can be factored out of the sum over
the possible ingoing partons a, b as these depend only on the nature of the final partons c¢, they
therefore produce the Sudakov factor, denoted S.. Finally the partons collide and undergo a
hard scattering in the partonic sub-process ¢ + ¢ — F with hard factor HCF , which includes

possible virtual corrections.

First consider the Sudakov factor, its form is the expected exponential; however as well as a

logarithm in the exponent integrand, there is also a non-logarithm piece:

2 2 s dg? 2 I 2
Se(a, pi) = exp {— /#2 v [Ac(as(q ))log 2t Be(as(q ))] } : (6.16)
1
where ji1, p2 are any two scales. In our case we have p3 = b2/b? and p3 = Q2. This carries out
the resummation to all orders via renormalisation group running and exponentiation.
The A. and B, functions represent the soft and collinear flavour-conserving radiation respec-
tively, they serve as a basis and are clearly perturbative expansions as each additional emission

produces a factor of ay:
Ac(as) = i (%)nAgn) ) Be(as) = i (%)TLB‘S”) ) (6.17)
n=1 n=1

where we sum over all possible emissions. The coefficients up to A((;S) and Bg) are explicitly

5Tt is these exponentials from the collinear and PDF factors that contribute the Mellin dependence to G,
the Sudakov is Mellin space independent and so if G was made up of the Sudakov alone it would have no N
dependence.
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known; these are those required for NNLL resummation®. The expressions for these resummation
coefficients, and others, are given in Appendix B.1 so as not to obfuscate the description at this

stage.

In order to demonstrate that this Sudakov factor of equation 6.16 does indeed resum the
logarithmic contributions to all orders, we can perform the logarithmic ¢? integral in the expo-
nent. This can be done by using the evolution equation for a to convert a(q?) to as(Q?) and

make its g2 dependence explicit:

dlog(as(q?))

— Blon(@®) = =3 Bulan(@)) (619
dlog ¢? 4 nzzo 4

The B,, are the beta function coefficients to the required order, these coefficients are given in
Appendix B.1. This means that a,(¢?) contains an infinite tower of logarithms of ¢ resummed

via renormalisation running, where [ = 1 + Boas(Q?) log(q?/Q?):

as(q?) = (O‘S(ZQ2)> _ (O‘S(?Q))Qﬁ;logl +... . (6.19)

We may now carry out the integral over log ¢> and gather terms of the same order in as(Q?) to

obtain the leading log, next-to-leading log, next-to-next-to leading log terms and more if desired:

2

_/b;; (1](122 [Aa(as(q2))1ong +Ba(a5(q2))} _ (Oés(WQ?))—lg(l) +§(2) i (049(7?2))9(3) 4.
(6.20)

Finally, if we wished to recover the full tower of a”L?" logarithms in the original expansion

we need only expand the exponential. Each of the §(™ contain all order contributions of
s log(b?/b2Q?), now in an expansion in ag/m; therefore the g!) represent leading logarithmic
contributions, the §g(® are next-to-leading logarithmic contributions and the §®®) are next-to-
next-to-leading logarithmic contributions. We include up to NNLL in reSolve so we stop our
discussion here. The g(”) for n = 1,2,3 are given in Appendix B.1 in equations B.1, B.2, B.3.
The leading log ") depends only on the A(!) coefficient function, the NLL §®) depends on A®
and BW, and the NNLL §(3) depends on A®) and B®.

The PDF factors, like the Sudakov, are universal; nonetheless their form in the master
formula requires significant explanation. The PDFs are extracted essentially at the start of the
leg in each diagram with momentum fractions z1/(z12]) and x2/(2225) at the factorisation scale
at which initial state radiation has been absorbed. In our formalism we require the PDFs at
bg /b? for the resummation, therefore we may evolve the PDFs using the DGLAP equations to
obtain them at this scale with momentum fractions x;/z; and x2/z2; as shown at the start of
each leg in the master picture in Figure 6.1:

1 !
Fas iy (]2, 03/%) = / %Uam(z/;u%,b%/bZ)fa/m(x/zz’,u%)- (6:21)

x

5The B coefficients are needed to one order less than the A coefficients as when the expansion is performed
the logarithms result in an extra 1/as for the A terms.

Thomas Cridge 164



Chapter 6. reSolve Overview 6.2. Theoretical Formalism

These factors f,, /n, (xi/z,b5/b*) (for i = 1,2) are those appearing in the master formula. As
a result of the running of the PDFs between these scales various further logarithms of scales
s log(b*u2./b) arise which are resummed via the kernels Upg, (2; u%, b3 /b%). The U,q, evolution
kernels are implemented in the program in a dedicated routine and are given by the usual

anomalous dimension 74q, N () evolution:

dUaal ,u NO 2 2
= E ae,N (s (1)) Ueay (187, 1) 6.22

and so we have the usual DGLAP evolution kernels to evolve between energy scales, but in

Mellin space:
b2 /b? dq 2

Un (b3/b%, Q%) = exp {/Q 5 'YN(CVS(QZ))} (6.23)

These anomalous dimensions are then given by the Mellin moments of the splitting functions
Pya, (OZSa < )

q

1 00

_ as\"™ (n

7aa17N(&5):[) dZZN 1Paa1(a57z) - § (?) ﬁyc(taz,N' (624)
n=1

Next we move onto the hard and collinear factors and the Born factor of equations 6.11
and 6.15, which together contain the process dependence. The Born factor is trivial, with no
b dependence as there is no transverse momentum at Born level; to be explicit however, the

expression [dUF LO} in equation 6.11 contains additional factors for ease of expression:

~F,LO

S dacé
[dfffém} = 0240 (z1p1, m2p2, 2, a5(Q%)) - (6.25)

There is further process dependence in the collinear factors CL and Cfb, however this depen-
dence is simply on whether the initiating partons are gg or ¢g and nothing further. The collinear
factors are then, in some sense universal. We now focus here only on the ¢g case as our dipho-
ton and Drell-Yan processes only involve ¢q initiation for the H and C;; factors as gg only
enters in diphoton (and does not enter Drell-Yan) for the first time at NNLO via the gg box
diagram of Figure 6.4, whilst H and Cg; factors are only required once beyond leading order
for a contribution is needed”. The [HC}T'ClCQ]CE’alaQ part of equation 6.11 is of the form of the
corresponding parts of equation 6.15 when written in full. The H!" and Cfa factors then admit

perturbative expansions in the usual way:

00 aa\ " .
HF (z1p1, opa, Q, 05 (M?), pg) =1+ (?> HE®) (21p1, 29p2, Q, pg),
=t (6.26)
00 s\ .
Caalz:05) = 3101 = 2) + > (22) € (2).
n=1

As we work in the massless quark limit these H (f and Cy, never obtain dependence on the specific

"The structure of the [HfClCz] piece is more complex for gg initiation due to spin correlations amongst the
gluons, see [2] for the expressions.
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(2)

quark flavour. The collinear factors up to Cy,’ are known and are given in equations B.18 -
B.28 in Appendix B.1. We evaluate the collinear factors using o, at energy scale bg /b? in our
resummation formalism, and they thereby contribute to the resummation of large logarithms
between the factorisation scale at which they are applied and the small scale at which the
resummation formalism is implemented b3/b. This evolution is done in a way which is general
for any function with only implicit dependence on the energy scale through a:

HE dg?

Cgalz, as(b5/6%)) = Cgalz, as(uF)) exp [— /b%2 q25(%((12))(110%(5;58(%;;1 )

(6.27)

This holds element-by-element for Cy,, so that each Cy, coefficient is now expressed as a func-
tion of oy at the factorisation scale u% and an integral of the same form as in equation 6.16,
making it obvious that it contributes to the all-order resummation of the large b logarithms, in
addition to the Sudakovs and the PDFs. The C,; factors represent un-cancelled real and virtual

contributions due to collinear radiation.

Finally, the Hf contain the last explicit process dependence - in fact this hard factor was
introduced in [250] in order to absorb as much of the process dependence as possible, enabling
our largely process-independent application in reSolve. This hard factor is b independent, with
all large logarithms absorbed elsewhere in the formalism. The hard factors contain the purely
virtual corrections to the c¢ — F' partonic sub-process which occurs after the various emissions.
The hard factor H, (f is the ratio of the square matrix element for the sub-process including

virtual corrections to that for the Born process and is therefore

|M q—>F|

H =
qG—F(0) |

q i (6.28)
Here F(© indicates the Born cross-section with no virtual corrections. The matrix element for
the virtually corrected amplitude is denoted quﬁ F, as it must be UV renormalised in the usual
way; this is done in the MS scheme in reSolve. Meanwhile, as described in Chapter 5.4, the
virtual correction amplitudes contain IR divergences as well, which normally cancel with those
from the real emissions. Therefore given we have separated the real emission and virtual pieces
and already accounted for the IR divergences of the real emissions in the rest of the formalism,
we must subtract the IR divergences from the virtually corrected matrix element. We use the

universal subtraction operator I.(e, Q2 p%) to do this:

Meesp (2191, 222, Q, ig) = [1 — Ie(e, Q2 %) Mygs r(x1p1, T2p2, Q, iR), (6.29)

here the matrix element M in the right-hand side is UV renormalised in the MS scheme in
the usual manner. M is then the UV-renormalised and IR-regulated matrix element. The
explicit expressions for the subtraction operator fc(e, Q?, M%) to 1- and 2-loops are given in
reference [251]. After cancelling the € poles in this way the renormalised, regularised matrix

element for the virtually corrected amplitude Mcgﬁ F is finite. A similar relation to equation 6.28

Thomas Cridge 166



Chapter 6. reSolve Overview 6.2. Theoretical Formalism

holds for the case of the gg initiation hard factor H, f but with the complication of the need
to sum over gluon helicities and a similar IR subtraction is then performed. This is yet to be
implemented in reSolve as the diphoton and Drell-Yan processes have no virtually-corrected
contributions from gg initiation as the contributions occur at higher order in a; than NNLO.
The explicit expressions for the subtraction operators are given in [251] and the expressions for
the hard factors for the relevant processes are given in Appendix B.1.

Last of all we comment on a further ambiguity in the formalism, additional to the scales
introduced via renormalisation, factorisation and resummation, there is a choice of “resummation
scheme”. This arises from the observation that the equation 6.11 (or equivalently equation 6.15)

is invariant under transformation using a perturbative function h.(as) =1+ O(as) such that:

HcF(CVS) - Hf(as)[hc(as)]_l,

dlog he(as
Bulaw) = Ba(a) - Blas) i)

Cab(a& Z) - Cab(asa Z) hC(O‘S)'

, (6.30)

In order to prove this invariance we begin by deriving how an arbitrary function of ay, such
as h(ay) evolves between scales, starting from the § function definition in QCD in equation 6.18

we can write:

dlog h(as(¢®)) _dlogas(q?) dlogh(as(q?)) Bla( 2))d10gh(0és(q2))
dlog ¢? © dlogq?  dlogas(q?) s\d dlog as(q?) (6:31)
& ¥ dg? dlog h(as(q*)) '
= dlog h(as(q / —5 Bla )) -
W2 w2 dlog as(q?)
So we obtain the general renormalisation group expression (as used in equation 6.27):
v dg? dlog h(ass(*))
h S 2 = h s 2 - i S 2 . ° . 2
(s (13)) = (s (13)) exp [ / R (6:32)

We may now use this expression to consider the invariance of the Sudakovs and the overall

master equation under such changes, first take the Sudakov, this changes with B.(as) so that:

% 2 (o) Qg 2
Sc(u%,ﬂ?)%exp{—/j dq%[A( s(q ))log +B( s(q ))—B(%(f))W]}
(231 ’

= Se(u3, 117) [7} = Se(p3, 1) + O(as).

(6.33)
Where we have substituted in equation 6.32 in the penultimate step, and used the fact that h(ay)
is perturbative in the last stage to show that the change in the Sudakov is of a higher order in

as. As for the remainder of the master equation, the remaining factor [H'Cy C2)ce,a1a0 factor is

not dependent on the B.(ag) basis functions and so its transformation under the resummation
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transformation in equation 6.30 is straightforward and the invariance trivial as the h(as) factors

cancel.

This invariance under resummation scheme transformations of the form in equation 6.30
allows us to make a choice of scheme, and as ever, whilst any choice is equally valid, there are
easier and more difficult choices from the point of view of making theoretical predictions. Until
the discovered universality of our formalism by Catani et al in [250], essentially applications
of this formalism were making the choice HCF = 1 for each process individually, as there was
no such hard factor to absorb process dependence. As a result, the collinear factors (and the
Bﬁ”) factors beyond n = 1) were process dependent and non-universal, making the formalism
much more difficult to apply in a modular, universal manner to difficult processes of the same
class h1 + ho — F 4+ X. This choice is therefore a “bad” one, complicating the theoretical
calculations. A common and better choice is the “hard” scheme, where any factors in the
flavour off-diagonal parts of the collinear functions ng)(z) which are also singular as z — 1, i.e.
which are proportional to 6(1— z), are removed from the collinear factors. This can be argued to
be a “physical” choice in that as z — 1 then there is no longer any collinear radiation as it takes
all the momentum and there is no splitting. In fact, as the collinear factors differ depending on
the leading order partons which initiate the process, i.e. gg or g, an alternative scheme choice
can be made by choosing the hard factors in one ¢q initiated process and in one gg initiated
process. For example a common choice is to set H{ ™ — 0 and HgF ™ — 0 for a qq initiated
final state I’ and a gg initiated final state F’. Indeed, in reSolve we use the “Drell-Yan - Higgs”
scheme which sets Hén) = 0 for Drell-Yan and H, g(n) for Higgs production, simplifying the hard

factors for these processes.

The resummation scheme transformations in equation 6.30 can then be used to transform
between the hard, collinear and B factors for different processes by replacing the h.(as) with
expressions of the form HF = HF /H" so that the perturbative function of a transforming

between schemes is the ratio of the hard factors of different schemes; see [250] for further details.

We can actually offer an intuitive explanation for the resummation scheme independence. It
is a real order-by-order invariance of the resummed part alone arising from the fact that some
contributions can be moved between the B,, CL and H!" coefficients without affecting the overall
combined formula. This ambiguity in the exact nature of each of the pieces can be thought of
relating to the method of regulating the IR divergences. The transverse momentum spectrum is
not collinear-safe, diverging in perturbation theory; in order to regularise these divergences we
must subtract off their effects, however the exact choice to make is not clear and the ambiguity
seeps into the definition of the collinear functions Cy,, and consequently into the HY and S,
(via the B.) factors, this effect is also linked to the resummation scale dependence. Again this
is explained further in [250,251].
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6.2.4 Phase Space Definition of Final State F

In addition to the theoretical uncertainty already mentioned from scale choices, PDF fitting,
Monte Carlo and other sources, there is a further origin of uncertainty. This arises in the
definition of the phase space of the final state system F' for processes where this is made up of
more than one particle, such as the Drell-Yan and diphoton cases implemented in reSolve. At
leading order in our formalism the final state system F' must have zero transverse momentum
as the incoming partons have no transverse momentum and there is no radiation against which
to recoil. Beyond leading order this is however different as unresolved radiation may have net
finite g7 # 0 and so the final state system F' can recoil against this radiation and gain a non-
zero transverse momentum itself. Indeed this is crucial in allowing reSolve, and the formalism
in general, to determine the transverse momentum spectrum; the radiation spreads the delta
function in g7 at LO out into a finite g distribution peaked near, but just above, 0. However,
in the formalism we also factorise out the kinematics into a hard-scattering factor and the Born
cross-section from the all-order resummed emissions formally in the limit ¢ — 0; fortunately this
misalignment only has sizeable effects at large ¢r where our resummation formalism is invalid
in any case. There is however a further choice to make, these hard scattering and Born cross-
sections both require the 4-momenta of the initial incoming partons and of the individual final
state particles making up the final state system F. We generate the angles Q = {0car, ponr} via
Monte Carlo to define the individual particle momenta of the final state system. However, given
the incoming partons have zero net transverse momentum for the Born, the outgoing final state
particles in F' in this factorisation must also have zero total transverse momentum, producing a
contradiction as the resummation gives F' non-zero gr. Therefore to determine the appropriate
Born kinematics in our formalism we must choose how to assign the transverse momentum in
the initial and final state particles. This includes how to designate the angular variables ).
This ambiguity disappears if only questions about F', and not the individual particles in F', are
asked. However, given we often wish to look at distributions of p;lin/ "% in the Drell-Yan case and
other similar variables which require assignment of the individual final state particle momenta,

we must undertake this assignment consistently and in a physically acceptable manner.

Traditionally there are two approaches to this, which are described further in [5,8]. The first
is to neglect this issue, and define the initial state particles with zero net transverse momentum
whilst the final state particles still have net ¢r # 0 in order to provide transverse momentum
spectra. This therefore builds 4-momentum non-conservation into the implementation of the
formalism, which is of course unsatisfactory from a physical point of view and may affect even
the transverse momentum spectrum. This is often referred to as the “2-body phase space
setup”. The second, more physical, approach is that given the final state particles must have
net transverse momentum to correctly reproduce the total transverse momentum of the final
state system as a whole, we must impose net transverse momentum on the initial state particles
to conserve 4-momentum in the Born kinematics. Nonetheless, the exact manner in which to

assign this transverse momentum requires specification of a gr recoil method, with an infinite
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number of possibilities. Many applications of the transverse momentum resummation formalism
do this in the Collins-Soper rest frame (CS frame) [263], which is the rest frame of the F final
state system in which the z-axis bisects the angle between the incoming parton momentum P;
and minus the other incoming parton momentum —Ps (now not collinear as there is a net gr).
fcs is then the angle between the outgoing momentum of one of the final state particles and
the 2z axis and ¢cg is its angle relative to the net transverse momentum ¢p. This therefore
absorbs the net transverse momentum of F' into the incoming partons. In this frame you may
then declare that you will define the (6car, ¢onr) angles of the individual final state particles in
the leading order Born distribution (with which we generate the individual final state particle
momenta) to be equal to the Collins-Soper angles of the resummed distribution. This is a
perfectly valid, adequate, well-defined choice; however it hides the fact that the CS rest frame
definition itself is dependent upon the g (which is zero for the LO case), so any prescription
you declare introduces a dependence on gr in the angular distribution. Any differences due to
this choice of assignment will be O(qr/Q) but represent an additional higher order correction

which we may wish to estimate.

As characterised in [8], any such prescriptions are one of an infinite class of possibilities for
how to assign the incoming parton momenta. There are several properties one desires of such a
scheme; the first is that it recovers the standard LO expression of the factorisation for g — 0,
we also need the energies of the partons to be positive and that their 4-momenta are invariant
under longitudinal boosts of the partonic centre of mass frame. Such a method, taken from [8]
and adapted in reSolve, is given here. The incoming gp-recoiled 4-momentum of parton 1 is

set as:
Q2
2Q).P;

kip Q.h
G Q?P1.Py

K =( Pl + k' + Pl (6.34)

where

Q* + 2qp.kir + \/(Q2 + 2qp.ki7)? — 4M2Ki;
- e ,

We choose ki’ as a vector transverse to the 4-momenta of each of the initial incoming hadrons,

G (6.35)

Pl' and P4, and such that k;7 — 0 as g7 — 0. This ensures that the LO expression is
recovered for gr = 0 and that the kjr lies in the qp plane. Furthermore, k7 is chosen such
that Q2 + 2qp.kir > 2Mp|kir| so that i is real and consequently k9 > 0 (then k9 > 0 follows
as ¢o > 0). The definition of &} in terms of k', and ¢; then ensures that that k' is invariant
under longitudinal hadronic centre of mass boosts. This is useful as it means our definition can
be consistently applied regardless of the boosts required to get to the incoming parton frame
where we apply the Born kinematics. The other incoming parton 4-momentum is defined via
4-momentum conservation kb = Q" — kf', where Q" is the 4-momentum of the final state system
F as a whole with non-zero gr. P; and P, are the incoming four-momenta of the hadrons. This
method is called the “3-body phase space setup”, as it assumes recoil against some collective 34
particle/system of particles, which physically are the unresolved radiation. In this prescription

the ki1 is arbitrary and parametrises the infinite number of possibilities for the assignment of
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this transverse momentum, all of which are consistent gp recoils. Any dependence on this choice
of ki cancels up to the given order of evaluation in observables inclusive over the individual
particles making up the measured final state F', i.e. after integrating over the angular variables
in €.

It is the latter approach that we use in reSolve. Specifically, in this methodology, and in
reSolve, there are essentially four (sets) of momenta which are to be distinguished. First of
all there is the incoming momentum of the hadrons, the { P!, P{'} = (1/5/2,0,0, £/s/2) which
have zero net transverse momentum. These, along with the parton momentum fractions, set
the incoming momenta of the partons, {K}', K} = {z1P!', 2o P}'} which also have zero net
transverse momentum. The mismatch and contradiction in the application of the theoretical
formalism then comes in matching these with the final state particle momenta, given the final
state F' has net finite, non-zero ¢r. The method we follow, and given above, is to define a qr
recoiled set of incoming parton momenta {k{’, k5'} given by equation 6.34 which has net non-zero
transverse momentum, in fact it has transverse momentum equal to that of F'. We then generate
the Born dynamics using these incoming parton momenta, transforming to this frame so that
there is zero gr in the rest frame of F' before transforming to the frame of the incoming partons
with net transverse momentum, so that the formalism is at least physically consistent. As there
are infinitely many rest frames of final state systems F' depending on the exact Q, g7, 17 generated
by the Monte Carlo, and any arbitrary 3D rotation gives another rest frame, we have two free
parameters in our prescription. These two degrees of freedom correspond to the arbitrary 2D
vector ki7, which can be interpreted as a choice in how to spread the 2D vector of transverse
momentum between the incoming partons, this is the choice of how to set the Q = {0car, donr}
angles of the individual final state particles. We can then view the relationship between the
LO zero net transverse momentum incoming parton momenta K!* and the g recoiled k!' as a
Lorentz transformation from the hadronic collision frame to the rest frame of the final state (i.e.

the rest frame in which the incoming partons actually collided).

In reSolve we have kir given as in equation 6.36 and with different values of a allowing for
the arbitrary nature of the ky7.

kip = qu(l +a), (6.36)

a = 0 is the default choice in the code, corresponding to the Collins-Soper frame, in which
case we are equating the angles of the individual particles states Q = {0car, doar} with those
in the Collins-Soper frame. However «, and correspondingly the chosen frame, can be altered
should the user wish to investigate the effects of this ambiguity in the phase space definition on
distributions of the final state individual particle momenta and associated variables. This may
allow an estimate to be made of the higher order corrections and errors associated with this

aspect of the resummation formalism.
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6.2.5 Crucial Points of the Formalism

The theoretical formalism we have described, and which is applied in reSolve, therefore

enables the all-order resummation of logarithmically-enhanced contributions at small transverse

momenta. Here we summarise the key points of the theoretical formalism applied, for ease of

perusal:

General - The formalism applied is general in nature and can be applied to a wide range
of LHC (and other collider) processes, requiring only that the measured final state system

is made up of colourless particles.

Modular - The formalism factorises the different contributions into several different parts;
the Born cross-section, Sudakov factor, collinear factors and hard factor are all separate.
Therefore it allows a modular application which is customisable so that it can be easily

extended to several further processes.

Universal - It is almost completely universal, as a consequence of QCD factorisation for
IR singularities, with process dependence only via the nature of the incoming partons in
the LO contribution (for the collinear and Sudakov factors) and the Born cross-section
for the hard factor encoding the virtual contributions. The resummation calculation can
therefore be applied independently of the hard factor and Born computation and in the

same manner for all included processes.

Fully differential - The setup ensures that, whilst aimed at resumming transverse momen-
tum logarithms in determining the gp spectra, the differential distributions in a range of
other final state variables are automatically generated, including in invariant mass, rapidity

and others.

b-space - The use of b-space allows the factorisation of the kinematics of transverse momen-
tum conservation. Meanwhile the formalism explicitly deals with and controls singularities

at high and low impact parameter values.

Non-perturbative contributions - High b singularities indicating low, non-perturbative gr
values must be cut off and phenomenologically parametrised as a low g smearing in the

gr distribution.

Mellin space - Mellin space converts complex convolution integrals to simple products
which can be summed along the inverse Mellin transform contour, as outlined in Ap-

pendix B.2.

Parton level - The resummation is applied at partonic level. PDFs must therefore be

evaluated at the factorisation scale.

Events and cuts - The application of the formalism means that “events” can be generated
by Monte Carlo at low ¢r with simple interpretation, this means experimental selection

cuts can be straightforwardly applied, accurately reflecting experimental setups.
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e Perturbative - The formalism recovers the standard predictivity of a perturbative expan-

sion in ag, all the resummation coefficients are perturbative.

e Standard diagrammatic pQCD - The formalism is based on the standard setup of diagram-
matic evaluation in perturbative QCD, which is ubiquitously used throughout particle

physics at colliders.

e Known up to NNLO+NNLL - All the necessary resummation coefficients and contributions
are known up to at least NNLO with NNLL resummation for all relevant studied processes,
although for Higgs production at NNLO+NNLL the final order hard factor coefficients are
known only in the large m; limit. In general, many of the universal factors (such as A((;l)
and B((z3)) are actually known at N3LL, however the hard factors are not nor are many
of the collinear factors. It should be noted however that in this first version reSolve
only includes the resummed piece, not the matched finite piece. Consequently the vast
majority of the results we present in Chapter 7 are only “NNLL”®. Nonetheless, whilst
they do not include the finite piece they do include some beyond leading order virtual
corrections through the hard factors, as seen in equation 6.28. In an upcoming version the
matched finite piece will also be included so that the results will then truly be available

up to “NNLO+NNLL” including all beyond leading order corrections up to this order.

e NNLO subtraction scheme - Once the hard-virtual factor in the resummation formalism is
known one can use the gp subtraction to define an IR subtracted NNLO fixed order finite

term expression.

e Resummation scale - The factorisation of the resummation and the hard factor introduces
the resummation scale, representing uncertainties in the theoretical predictions. Its effect
and corresponding uncertainty has to be evaluated via scale variation in the same way as

is done for the standard factorisation and renormalisation scales.

e Resummation scheme - The resummation scheme choice can simplify the calculation for
some processes, for example reSolve uses the Drell-Yan - Higgs scheme so extensions from
its original diphoton application to Drell-Yan (already completed) and Higgs (future) are

simpler than otherwise.

e PDF fitting - Use of Mellin space means PDFs must be fitted to an analytic form of known

Mellin transform; this fit provides an additional source of uncertainties into the calculation.

e Final state phase space - Ambiguity in the definition of the momenta of the individual final
state particles for observables not inclusive in the final state adds theoretical uncertainty
to predictions of differential spectra for these individual final state particle kinematic

variables.

e Many integrals - Whilst transforming to b-space and Mellin space for each incoming parton

simplifies the formulae analytically, it leaves many nested integrals to be performed.

8In fact, as the Born cross-section is included they could be described as “LO+NNLL”, we will however refer
to them as “NNLL”.

Thomas Cridge 173



Chapter 6. reSolve Overview 6.3. Methodology, Implementation and Structure

6.3 Methodology, Implementation and Structure

Our application of this theoretical formalism is the new reSolve program, which is a Monte
Carlo differential cross-section parton level event generator written in C++ and is capable of
adding transverse momentum resummation to a range of processes. It is specifically designed to
be modular, transparent, easily customisable and extendible, moreover it is clearly commented
and comprehensively documented in our paper [2]. It is set up to allow parallelisation of the
code (see Chapter 7.1.6) as well as to interface with other codes relatively straightforwardly if

desired by the user.

The program works by randomly generating the invariant mass, transverse momentum and
rapidity of the final state system [’ as well as the relative angles of the individual particles
in F. This defines an event, for which the 4-momenta of the incoming and outgoing particles
are determined and subsequently the Born cross-section is calculated for the given process. In
the meantime, completely independently, the resummation is performed in impact parameter
space and double Mellin space as the collinear and Sudakov factors are combined with the hard
factors. The double Mellin inversion and inverse Fourier transform back to gp space are then
performed to produce the cross-section for each event. This process is repeated, generating
separate phase space points and their cross-sections. These events can be weighted according
to the approximate value of the integrand for the given phase space point region, this is set by
a Monte Carlo grid determined iteration on iteration. Any phase space integration to obtain
given spectra is then performed by summing event cross-sections in the integrated variables.
The resummation is performed up to NNLL and histograms are automatically produced for
the user’s desired differential spectra, albeit including only the resummed contribution to the

cross-section in the current version.

6.3.1 Program Structure

A key feature of the program is its explicitly modular and carefully constructed structure in
order to take maximal advantage of the near universal nature of the resummation formalism.
Different aspects of the calculation are divided into different self-contained sections in separate
folders in order to make the program as transparent as possible. In principle several of these
- Histogrammer, Integral, PDFfit, Resummation and Utility - can be used independently of
the main code, this is important for the straightforward extension of the program to additional
processes. The details of the calculations in each folder are detailed here, and following this an
explanation of how the program works is given in Chapter 6.3.2. This is intended to allow users
to understand how the program functions in order to both simplify its use and enable users to

add their own processes should they wish.

e Histogrammer - This contains the files required to calculate the cross-section per bin width
in the desired differential cross-sections.

e Integral - This contains the files necessary to perform the Monte Carlo phase space in-
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tegration. In keeping with the modular and customisable structure there are two Monte
Carlo integrators included in reSolve: the in-house k_vegas integrator (see Appendix B.3
for more information) or the external Cuba integrator [264].

e Main - This contains all the general files used to read in the input file, perform pre-
processing, post-processing and interface with the Monte Carlo integration routines.

e PDFfit - This contains the routines used to evaluate the fit parameters for the PDF fits,
as well as to output them in a form useful for the rest of the program.

e Process - This folder contains any process-specific code, currently these are for the diphoton
and Drell-Yan processes.

e Resummation - This folder contains the resummation routines which are process inde-
pendent. This includes the inverse Fourier and inverse Mellin transforms and the process
independent parts of the hard factor calculation, as well as the Sudakov factors.

e User - This is a folder where the user can call additional routines they may write for
pre-processing, Monte Carlo or post-processing, as well as to read process-specific input.
Currently, it contains the switch between using k_vegas or Cuba as the Monte Carlo inte-
grator and routines to allow parallelisation of k_vegas across multiple cores and multiple
machines.

e Utility - This folder contains auxiliary functions necessary for the program; including the
alphaS.f fortran routine for a; evolution, the “dumper” routines to output the events in
“eagy” or “pseudo-lhe” form, routines for the Lorentz algebra, and initialisation routines
associated with the PDFs.

This program structure is designed to modularise the program; this enables the straightfor-
ward extension of the program into other processes, indeed we intend to perform this further
ourselves in the future. In order to add a new process one must simply add a sub-folder in
Process/ with equivalent files to those for diphoton and Drell-Yan for the new process. De-
pending on the process, additional hard factors may need to be added to the hard function
calculation in the resummation and potentially also the different orders included for the g and
gg processes as their relative order contributions depend upon the process. Currently, ¢g hard
factors are included up to NNLL, whilst gg hard factors are only up to LL; this will be resolved
in future versions as we extend the program to additional processes. A detailed guide on how to
add a process to the reSolve program is given in Chapter 7.1.7. The underlying aim of reSolve
is to take a Born process and add resummation up to NNLL; this resummed contribution to
the total fully differential cross-section must then be consistently matched with the standard
fixed order expansion (the “finite piece”), as described in Chapter 5.7, to produce the total fully

differential cross-section across the entire g7 range.

By far the most important section of the code, is the unique Resummation folder. In here all
the theoretical formalism described in Chapter 6.2 is packaged and built into an independently-
compilable sub-program which takes the Born cross-section, the PDF fit, and information on
the orders at which ¢q and gg initiation contribute in the desired process and on which Born

contributions are non-zero. It then determines the resummed part of the differential cross-section
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in a process independent manner. The structure of this section of reSolve is shown later in
Figure 6.3. It consequently knows nearly nothing about the underlying process, with the non-
zero Born contributions only specified so as to pragmatically avoid spending time summing over

zero contributions.

The program has all necessary external files and codes required for its running explicitly
included within it; these include the minuit library for function minimisation used for the PDF
fits, the pdffit.f to perform the PDF fits, partons.f to call the PDFs at the required points
and interface with the PDF grids, the fortran routine alphaS.f for evolving the QCD coupling,
the random. f to generate the random values for the Monte Carlo and the intde2.cc code (based
on [258]) used to perform the inverse Fourier transform. On top of this, as described, it contains
functions to interface with the Cuba integrator package [264], which needs to be downloaded
separately should the user wish to use it. Cuba however is not required as our own k_vegas
integrator is included within reSolve which is based on Lepage’s [265] DGauss algorithm. As all
the separate pieces of the computation in reSolve are largely self-contained, passing information
via objects, interfacing with other codes or additional calculations should not be difficult to

perform, allowing it to be customised, interfaced and extended as the user requires.

6.3.2 Program Flow

We now summarise how the program functions and the different steps performed to undertake
the calculation. Figure 6.2 shows in detail the flow of the calculations performed, starting at
main.cc, Figure 6.3 then illustrates in more detail the crucial resummation aspects of the
calculation. The colours of the boxes indicate where in the program structure the various files
and routines lie, with the key given in Figure 6.2. The following description and figures are for
the diphoton process, but the exact same sequence occurs for the Drell-Yan processes with the

appropriate process-specific files in the Process sub-folder interchanged:

1. The calculation begins in main. cc, this calls InputPars. cc to read in the input file. From
here user. cc is called to carry out required processing before the Monte Carlo integration.

2. This pre-processing includes calling resu_preproc.cc, which carries out various initiali-
sations including those of the inverse Fourier transform, N-independent resummation pa-
rameters (via resu_procindep.cc), inverse Mellin transform contour and N-dependent
resummation parameters (via mellinspace_fns.cc). It also calls the PDF fitting rou-
tines and calls pdfmellin.cc to convert the PDF fits into Mellin space.

3. User.cc then moves onto the Monte Carlo aspect of the program, calling
k_vegas_interface.cc or cuba_interface.cc appropriately. These programs call the
random generator and pass any points evaluated to the Monte Carlo evaluation programs.

4. The Monte Carlo interface programs themselves then call the process-specific files - first
diphoton_integrand.cc; this is the integrand of the Monte Carlo integral. It calls
diphoton_ps to convert the randoms generated into a phase space point; determining

qqz7 q%, 1, 0oy and ¢ops - these are the invariant mass squared, transverse momentum
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10.

11.

12.

13.

14.

15.

squared and pseudorapidity of the final state system F', and the polar and azimuthal angles

of the individual particles in the final state F respectively.

. diphoton_integrand.cc next calls diphoton_cuts.cc, this has the task of reading the

cut information from the input file and determining whether the current phase space point
passes the cuts. Provided the cuts are passed, diphoton _hard.cc is called, this evaluates
the Born cross-section and other process-specific resummation variables; such as the H (},
Hq2, Hg1 and Hg hard factors.

. reSolve now moves onto the general resummation routines as diphoton_integrand.cc

calls resummed in inv_fourier.cc. This section of the calculation is shown in more detail
in Figure 6.3.

First in the resummation routines, inv_fourier.cc determines the correction factor re-
quired to account for the fact that the PDFs are fit. This factor is the ratio of the LO
cross-section calculated directly with standard PDFs to that calculated with the PDF fit.

This is all determined in xsection.cc.

. invbtogt is now called to perform the inverse Fourier transform from b-space to g7 space.

The routine invres is the integrand of this inverse Fourier transform.

. invbtogqt calls invres for several points in impact parameter space, usually of the order

of 20, depending on the precise details of the convergence. For each b value, invres
evaluates the double inverse Mellin transform used to perform the resummation via the
routine inversemellin resummed.

inversemellin resummed in inv_mellin.cc organises the double inverse Mellin transform
calculation, this calculation is built directly into the code.

First, the Sudakov form factors for soft gluon and soft quark emission are calculated by
calling sudakov.cc. Then GetResuPars determines the C, Co, anomalous dimensions and
other N-dependent basis functions in Mellin space and evolves them from the resummation
scale pg to the scale b3/b* of the resummed logs.

hard_fns.cc next determines the hard factors, incorporating the virtual diagram contri-
butions into the resummation.

The Sudakovs, hard factors and appropriate weights are used at each of 40 — 88 points
along the contour in Mellin space, with the number of points depending on the rapidities
of the two photons; this is done for each inverse Mellin transform. The contributions at
each point are then summed along the contours to calculate the double inverse Mellin
transform.

Putting all this information together gives the inverse Mellin transformations, if these are
called for each of around 20 b values this allows the determination of the inverse Fourier
transform for each phase space point. Repeating the process for O(10° — 107) randomly
distributed phase space points and including the effects of the Jacobian transformation be-
tween the randoms space volume and the phase space volume, reSolve thereby determines
the overall cross-section.

The total cross-section is printed out after each iteration; meanwhile all the events, their
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individual cross-sections and the randoms associated with their phase space points go

into output files (one per iteration). This information can be used to re-create the phase

space variables and so produce histograms of the differential cross-section in invariant

mass (qq), transverse momentum (gr), rapidity (n), transverse mass (my), or minimum
min/max

and maximum transverse momenta for the two photons (pr ), or alternative user-

specified observables.

The Monte Carlo phase space integration selectively refines the grid from which it draws the
randoms iteration on iteration so as to maximise the sampling where the integrand is largest; it
does this by importance sampling [264] [265], more information on this is given in Appendix B.3.
The result is each successive iteration should produce a more accurate estimate. In addition, the
number of evaluations per iteration typically increases iteration on iteration (set by nincrease)

and hence the statistical fluctuations also reduce.

A comprehensive review of how to use the reSolve program, its input and output options,

parallelisation and other features is presented in Chapter 7.

There are several pragmatic choices made in the reSolve program in order to make its
application computationally either quicker or simpler. We summarise these here for reference;
however they are not of great consequence for using reSolve and the list is not exhaustive, with
several other differences between the theoretical formalism and its practical computer program

implementation in reSolve not outlined as they are inconsequential.

Firstly, our summation over Born cross-section contributions in determining the hard factors
is process dependent to save time, explicitly not summing over contributions known to be zero.
This introduces a process dependence not present in the theoretical framework. This is important
as this section of the code is called once per Mellin space point and so is called at least 40 times
for each branch of the 2 Mellin inverse transforms. These Mellin transforms are each in turn
performed around 20 times for each impact parameter point in the inverse Fourier transform
and the inverse Fourier transform is performed for each of the O(10° — 107) phase space points.
As a result, this section of code may be called O(109~!!) times per program run, and so the
speed of this section of the program governs that of the overall calculation. Any time savings

which can be made therefore afford significant benefit.

A second difference between the theoretical formalism and the program is that the inverse
Mellin transforms are performed over contours at 45 degrees (rather than 90 degrees) to the

imaginary axis (displaced from it to avoid poles) to ensure better convergence properties.

Thirdly, problems can arise in regions when b is randomly chosen to be very large, these
regions are otherwise uninteresting from the perspective of evaluating the resummed contribution
but can nonetheless be reached in the program. In this case the collinear factors in the overall
hard factor become very large as there is a large scale difference across which to evolve the
relevant factors such as ag and they are evolved to become close to the Landau pole, whilst

the Sudakovs become correspondingly very small as they have the non-perturbative suppression
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Figure 6.2: A flowchart demonstrating the different aspects included in the program and what is called
when in the calculations. The different aspects of the program are coloured differently to indicate where
they sit in the program folder structure. A zoom in of the resummation routines at the bottom of the
flowchart is given in Figure 6.3. The program functions analogously in the case of Drell-Yan processes.
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Figure 6.3: A flowchart providing more detail on the resummation aspect of the program, which is the
main part of the calculation. This highlights how both the inverse Fourier and double inverse Mellin
transforms are performed. This part of the program is process independent.

smearing of exp(—gN*b?) built-in to the formalism to account for these Landau pole effects.
However, at such large b the hard factors can register as infinities, potentially causing problems
in determining the inverse Fourier transform. To avoid this, b,,, as given in equation 6.6 but
with b, in place of b is used in the Sudakovs, whilst b, is used in the hard factors - this is found
to offer greater numerical stability by cutting off particularly large values of b earlier in the
formalism. This has no theoretical impact on the numerical output of the reSolve calculation,
practically it is aimed at ensuring unphysical contributions do not swamp the actual answer and

thereby improve the stability of the code if a large b value happens to be chosen by the double

exponential inverse Fourier transform function.

Fourthly, to attempt further to avoid such issues, the hard factors and Sudakovs are combined
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earlier in the calculation at the level of the Mellin space contour contributions (even though the
Sudakov is independent of Mellin space variables), in order to pre-empt the appearance of very

large and very small values separately in these factors and improve the accuracy of evaluation.

Finally, there is a difference in the parametrisations of the transverse momentum in the dipho-
ton and Drell-Yan phase space, which has no physical or theoretical impact on the resummed
differential cross-sections. In the diphoton phase space, in order to match events against other
private codes (such as 2gRes) used for verification of the reSolve program, the transverse mo-
mentum is chosen to lie along the z-axis. As a consequence, each event has its xy axes rotated
with respect to all others and so individual particle momenta distr