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The Large Hadron Collider (LHC) experiments are an excellent tool for the im-

provement of our knowledge of the Standard Model and the examination of Beyond

Standard Model theories. Nonetheless, to maximise the learning-potential of the LHC,

clear and precise theoretical predictions are needed, for both the Standard Model and

its extensions, to allow critical comparison of these models with data. In particular,

given the complexity of the collision environment at the LHC, and the expansive nature

of many parameter spaces of Beyond Standard Model theories, computational programs

to perform theoretical calculations are increasingly required.

The work presented in this thesis fits this role, it is focused on two computational

programs developed with the aim of producing such theoretical predictions for LHC

phenomenology in two key areas. These are the precision Standard Model predictions

of transverse momentum spectra for a wide class of processes at the LHC, and Beyond

Standard Model predictions for the decay widths of as-yet undiscovered particles in the

context of supersymmetry.

Chapter 1 presents a brief chronology and review of the Standard Model. Fol-

lowing this, the work reported in this thesis is split into two parts, focused on the

two main projects undertaken. Chapters 2, 3 and 4 describe the development of the

SoftSusy decay calculator program to determine the partial widths and branching ra-

tios of supersymmetric and Higgs particles in the Minimal Supersymmetric Standard

Model and the Next-to-Minimal Supersymmetric Standard Model. The theoretical and

phenomenological background, methodology, assumptions, and the vast array of decay

modes calculated by the program are described. This is followed by details of the ex-

tensive validation of the decay calculator program and a selection of results. Chapter 5

begins the second part of the thesis, providing theoretical background for Chapters 6

and 7, which discuss the newly-developed reSolve program, designed to undertake the

theoretically-demanding calculations associated with transverse momentum resumma-

tion for a wide range of LHC processes. Details of the methods, assumptions, validation

and results for channels so far included are all provided, these show excellent agreement

with previous theoretical results and experimental data. Both projects are then sum-

marised in Chapter 8. Further information is provided in the appendices; Appendix A

presents explicitly all formulae incorporated into the SoftSusy decay calculator pro-

gram; whilst Appendix B provides further details on the theoretical underpinning of the

transverse momentum resummation calculations performed by the reSolve program.
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Preface

This thesis contains the majority of the work undertaken during my PhD in Theo-

retical Particle Physics and is the result of my work unless otherwise specified here or

in the text. The first chapter offers an introduction to the general area of research, and

consequently is necessarily review material, although of course in my words and with

my own explanation.

Chapters 2, 3 and 4 are the result of my first PhD project on the SoftSusy program,

which was performed in collaboration with my supervisor, Professor Benjamin Allanach.

Chapter 2 provides a specific introduction into the theoretical and experimental context

in this area and so is further review material, collated and written by myself using the

references contained therein. Chapters 3 and 4 detail the exact research I performed in

this area. In this project the vast majority of the work was my own, the initial idea was

that of my supervisor and the decay calculator program is designed to be part of the

SoftSusy package which is also my supervisor’s creation. Nonetheless the development

of the decay calculator as part of this program, which I focus my comments on in this

thesis, was overwhelmingly my own. I was responsible for re-deriving and verifying all

the decay formulae included (with the exception of the three body modes which are

adapted from sPHENO [3, 4]) and the subsequent coding, validation of the decay modes

and the results. The only exceptions to this are the chargino to neutralino pion modes

mentioned briefly in Chapters 3.4.1 and 3.4.5 and presented in Chapter 4.11, these were

added by my supervisor; in addition he wrote the numerical integrator used in my code

to evaluate the 3-body decay numerical integrals. He also undertook some occasional

overall restructuring of the whole SoftSusy package. All formulae used in the program

are given in Appendix A, which appears also in our published paper on this work [1],

which acts as a manual and validation of the SoftSusy decay calculator. Several of the

sections in these chapters have been adapted and extended from our work presented

there.

Chapters 5, 6 and 7 present the results of my work in collaboration with Dr

Francesco Coradeschi at the Department of Applied Mathematics and Theoretical

Physics (DAMTP) on developing the new reSolve transverse momentum resumma-

tion program. Chapter 5 is again review material on this area and is therefore my

understanding of the context of this research, with many references used in its writing.

Chapters 6 and 7 demonstrate the culmination of our work in this area - the reSolve

program. Chapter 6 begins explaining the theoretical formalism, this formalism was

developed by many others and references are given in the text, we simply apply and
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adapt the formalism in our research. This work was very much a collaborative effort,

with Dr Coradeschi offering the initial theoretical expertise in this area, the initial idea

and the overall framework for the structure of the program. I was responsible for the

explicit programming, testing, validation and results of the program. In particular, the

code is largely my own based on the theoretical formalism and using private programs

in this area such as 2gRes [5, 6] and DYRes [7, 8] as inspiration and as useful compar-

isons. Francesco developed the histogrammer and parallelisation of the program, as

well as the built-in Monte Carlo integrator (k vegas), and offered much effort in the

general development and debugging of the initial program version. As I was responsible

for the validation and results, the figures presented in Chapter 7 are all completely my

own as are the comparisons and comments associated. The work presented represents

the first main version of many of the reSolve program, again this has been collated in

our paper [2], which contains a shorter version of much of the information presented

here and serves as the manual for the program. Appendix B provides further details

on many aspects of the resummation formalism and its application in reSolve, the

resummation coefficients in Appendix B.1 were gathered by Francesco from several ref-

erences as described. Appendices B.2 and B.3 give details on Mellin space and Monte

Carlo integration and are my explanation of how and why this is done in the reSolve

program.

Both the SoftSusy and reSolve programs are provided on memory

sticks in addition to this thesis for the examiners; for other readers they

are also available online on Github, where the most up-to-date versions

will always be found, at the links https://github.com/BAllanach/softsusy and

https://github.com/fkhorad/reSolve. The two programs are also available with their

published papers [1] [2], whilst SoftSusy can additionally be found on its web page

“http://softsusy.hepforge.org/”. Each of these projects displayed in the following thesis

are first stages in what we hope to be a long continuous path of development, extension

and augmentation for both programs - we hope they will prove of great use to the

particle physics community. This thesis therefore serves as a meticulous and detailed

summary of my PhD efforts over the past four years and so I hope that the reader will

find this thesis as informative and as rewarding as it was to work in this area.
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Chapter 1

Introduction

Particle physics as a field has grown tremendously over the past century since its genesis

as an experimentally testable and verifiable area of research, beginning with J.J. Thomson’s

discovery of the electron in Cambridge in 1897. Since then our understanding of the fundamental

constituents of matter and the laws that govern them has progressed with undeniable fervour

fuelled by human curiosity. It has been marked by many achievements; through Rutherford’s

probing of the atom, the development of quantum mechanics and quantum field theory, starting

from the 1920s with the efforts of Dirac to quantise the electromagnetic field and leading to

the postulation of antimatter. This was followed theoretically by the formulation of QED,

renormalisation and other techniques in the 1950s by Schwinger, Feynman, Tomanaga and

others; whilst experimentally the 1950s and 60s were marked by the somewhat confusing days

of the “particle zoo” as new mesons and baryons were discovered at times on an almost weekly

basis. This situation was clarified theoretically with the development of the quark model by Gell-

Mann and others and the subsequent development of QCD through the 1970s by David Gross

and Frank Wilczek. Meanwhile, electroweak theory was also being developed by Glashow,

Salam and Weinberg, to be verified experimentally later in the 1980s by the UA1 and UA2

collaborations at CERN. The discovery of the top particle in 1995 at Fermilab [10, 11] and the

key discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012 [12,13] have since

completed the contemporary picture of particle physics, described by a Standard Model based

on SU(3)× SU(2)× U(1) gauge symmetry and with fermions as fundamental matter particles

and gauge bosons as force mediators. This involved the efforts of thousands of physicists - be

they experimental or theoretical - including many making crucial contributions that have been

skipped in this brief chronology.

1.1 Standard Model

This “Standard Model” of particle physics is itself ever-adapting, absorbing new concepts

and changing to reflect new developments and knowledge, for example the addition of neutrino

masses. It is described here in its current form, which is only slightly altered from its initial

formulations. The Standard Model encompasses three fundamental interactions, and is governed

by the fundamental gauge group SU(3)c × SU(2)L × U(1)Y , with each gauge group having

couplings gs, g and g′ respectively. This theory contains all of the fundamental matter particles

currently known in addition to 4 types of gauge boson to mediate particle interactions, and 1
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scalar. There are therefore 17 fundamental fields in the Standard Model - 12 matter particles

split into 6 quarks and 6 leptons; 4 gauge bosons; which are the gluons, photon, W and Z

bosons; and 1 scalar, the Higgs boson. These themselves are grouped into structures and bound

by symmetries constraining their properties. The 12 matter particles split into quarks, which

interact under the SU(3) gauge group, and leptons, which do not, and for each of which there

are 6 fermionic particles. These fermions are divided into 3 generations, demonstrating the

same overall properties but having increasing masses: up and down, charm and strange, top and

bottom; and electron and electron neutrino, muon and muon neutrino and tau and tau neutrino

respectively for the quarks and leptons, with the precise reasons behind these generation copies

unknown. These matter particles and the gauge bosons governing their interactions live in

specific representations of the gauge groups which specify their behaviour and properties via

their quantum numbers.

The quarks are triplets of the SU(3)c gauge group in the fundamental representation, they

interact under the strong interaction of QCD via the gluons which are the 8 generators of

SU(3)c and are correspondingly in the adjoint representation. The leptons, and indeed all

other particles, meanwhile are singlets of SU(3)c and so feel no interactions under this gauge

group. The SU(2)L gauge group is chiral, acting on the left-hand chiral components of SU(2)L

doublets of the fermions, with each doublet containing one generation; (uL dL)T , (cL sL)T ,

(tL bL)T , (νeL eL)T , (νµL µL)T , (ντL τL)T , whilst the right-hand components of these fields

are singlets under SU(2)L due to its chiral nature uR, dR, cR, sR, tR, bR, eR, µR, τR
1. The

SU(3)c and SU(2)L groups commute so the QCD interactions do not change flavour, whilst the

SU(2)L interactions do not change colour. Just as for the QCD interactions, the gauge bosons

of SU(2)L are in the adjoint and so there are 3 generator gauge bosons of the SU(2)L group,

denoted Wµ
1 , Wµ

2 , Wµ
3 . As for the final U(1)Y group, it also treats left-hand and right-hand

fields differently. All of the Standard Model fields carry hypercharge (Y ), defined by Y = Q−T 3
L,

where Q is the electromagnetic charge and I3
W is the third component of weak isospin (eigenvalue

of the third SU(2)L generator), this U(1)Y group comes with the gauge boson B. All the matter

particles also are accompanied by antiparticle partners of the same mass but opposite charges.

The field content of the Standard Model, and the fields’ quantum numbers under the three

fundamental Standard Model gauge groups, are given in Table 1.1.

1.1.1 Standard Model Lagrangian

The interactions of the various matter and force particles are described by the Standard

Model Lagrangian, which can be broken up in several different ways; here it is broken into

gauge, fermion, Higgs and Yukawa pieces:

LSM = Lgauge + Lf + Lφ + LYukawa. (1.1)

1It should be noted that there may also be right-handed neutrinos νeR, νµR, ντR in extensions to the Standard
Model, for example to generate neutrino masses.
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Field name Symbol Representation

Left-handed quarks qL (3, 2, 1
6)

Left-handed leptons lL (1, 2, -1
2)

Right-handed up quark uR (3, 1, 2
3)

Right-handed down quark dR (3, 1, -1
3)

Right-handed electron eR (1, 1, -1)

Gluons G (8, 1, 0)

Weak Isospin Gauge Bosons Wi (1, 3, 0)

Weak Hypercharge Gauge Boson B (1, 1, 0)

Higgs H (1, 2, 1
2)

Table 1.1: The Standard Model field content and their quantum numbers under the Standard Model
gauge group SU(3)c × SU(2)L × U(1)Y , the quark and lepton left and right-handed parts are repeated
for each of the three generations.

First, consider the gauge part:

Lgauge = −1

4
GiµνG

µνi − 1

4
W l
µνW

µνl − 1

4
BµνB

µν , (1.2)

this contains the kinetic and self-interaction terms of the SU(3)c, SU(2)L and U(1)Y gauge

bosons. Here i, j, k = 1, . . . , 8 and l,m, n = 1, . . . , 3; the U(1)Y gauge boson Bµ has no self-

interactions and so no structure constants fijk appear, in contrast the SU(2)L and SU(3)c

groups are non-Abelian and so have non-zero commutators of their gauge generators which are

described by their structure constants εlmn and fijk respectively2:

Giµν =∂µG
i
ν − ∂νGiµ − gsfijkGjµGkν , (1.3)

W l
µν =∂µW

l
ν − ∂νW l

µ − gεlmnWm
µ W

n
ν , (1.4)

Bµν =∂µBν − ∂νBµ, (1.5)

where for example the structure constants of QCD are given in terms of the Gell-Mann matrices,

which are the generators of SU(3)c, by:

[
λa
2
,
λb
2

] = ifabc
λc
2

(1.6)

The fermionic part of the Standard Model Lagrangian, Lf consists of covariant derivatives

of the fields, encompassing kinetic terms and the fermion interactions with the gauge bosons of

SU(3)c, SU(2)L and U(1)Y :

Lf =

3∑
n=1

(q̄nLi /DqnL + l̄nLi /DlnL + ūnRi /DunR + d̄nRi /DdnR + ēnRi /DenR), (1.7)

here n = 1, 2, 3 is the generation index, whilst colour indices have been suppressed. Each of

2The possibility of θQCD terms and similar have been neglected here.
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the covariant derivatives contains appropriate interactions for that particle type, based on the

particle quantum numbers as listed in Table 1.1; the term for the left-handed quark fields is:

q̄nLi /DqnL = i
3∑

α,β=1

(ūαnL d̄αnL)γµ
[
Dµδαβ +

igs
2
~λαβ. ~GµI2

]
(uβnL dβnL)T . (1.8)

The α, β are colour indices, ~λαβ is a vector of the 8 Gell-Mann matrices3 (the generators of

SU(3)c) and ~Gµ a corresponding vector of the 8 gluon gauge fields. Of course, the SU(3)c

part only acts for the quark qnL, unR, dnR fields. The covariant derivative here is that for the

SU(2)L × U(1)Y gauge bosons:

DµXnh =
(
∂µ +

ig

2
δhL~σ. ~Wµ + ig′YXBµ

)
Xnh. (1.9)

X is one of the fields, n is again a generation index, h = L,R is the handedness so δhL turns off the

SU(2)L interaction for the right-handed fields, ~σ is a vector of the Pauli matrices (which are the

generators of SU(2)L), σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
, ~Wµ = (W 1

µ ,W
2
µ ,W

3
µ)

and YX is the hypercharge of the given field.

The Higgs part of the Standard Model Lagrangian is

Lφ = (Dµφ)†Dµφ− V (φ). (1.10)

This contains the covariant derivatives of the Higgs:

Dµφ =
(
∂µ +

ig

2
~σ. ~Wµ +

ig′

2
Bµ

)
φ, (1.11)

φ is an SU(2)L doublet φT = (φ+ φ0). The covariant derivatives themselves involve the kinetic

terms and the SU(2)L × U(1)Y interactions of gauge bosons with the Higgs, as they must to

break these in electroweak symmetry breaking (EWSB) and give the gauge bosons masses. This

EWSB occurs as a result of the Higgs potential V (φ) = −µ2φ†φ+ λ(φ†φ)2 acquiring a vacuum

expectation value (VEV) different from 0, due to its “Mexican-Hat” shape, which occurs for

µ2 > 0. For such a potential the minimum occurs at:

√
φ†φ =

√
µ2

2λ
≡ v√

2
, (1.12)

here v is the non-zero VEV of the Higgs potential. The Higgs field in the potential minimum at its

VEV may then replace the Higgs field in the covariant derivative terms of the Higgs Lagrangian;

indeed by taking the unitary gauge we remove the Goldstone modes which are “eaten” and allow

the explicit development of the W± and Z gauge boson masses to be observed. In this gauge

3Rather than the Gell-Mann matrices λa, in QCD the ta matrices are often used, here the factor of 1
2

is

absorbed into the matrices so ta = λa
2

.
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make the replacement φ→ 1√
2
(0 v + h)T so that h represents excitations about the VEV (i.e.

the physical Higgs boson) and expand the covariant derivative squared term:

Dµφ =

(
∂µ +

ig

2

(
gWµ

3

√
2W+

µ√
2W−µ −Wµ

3

)
+
ig′

2
Bµ

)
I2

(
0

v + h

)

=

(
0 + i

2
√

2

√
2W+

µ (v + h)g

∂µ(v + h) + i
2
√

2
(−gW 3

µ + g′Bµ)(v + h)

)
.

(1.13)

Here we have identified the charged W bosons as linear combinations of the W 1
µ and W 2

µ ,

W±µ = 1√
2
(W 1

µ ∓ iW 2
µ). The overall covariant derivative term, which is hiding the gauge boson

masses and gauge boson - Higgs interactions, may therefore be expanded as:

(Dµφ)†Dµφ =∂µ(v + h)†∂µ(v + h)− i

2
√

2

[
(v + h)†(−gWµ

3 + g′Bµ)∂µ(v + h)

− ∂µ(v + h)†(−gW 3
µ + g′Bµ)× (v + h)

]
+

1

8

(
2Wµ+W−µ g

2

+ (−gWµ
3 + g′Bµ)(−gW 3

µ + g′Bµ)
)

(v + h)†(v + h).

(1.14)

Analysing this expression reveals that we now have gauge boson mass and interaction terms

for the W±µ , but also more subtly for linear combinations of the remaining Wµ
3 and Bµ gauge

bosons. Specifically, we obtain mass and interaction terms for new gauge bosons which are

rotations of the Wµ
3 and Bµ gauge bosons through some angle, called the weak mixing angle (or

“Weinberg” angle) - these are the physical Z boson and photon we observe in nature:(
W 3
µ Bµ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Zµ Aµ

)
. (1.15)

With this we can rearrange the (Dµφ)†Dµφ term to look for mass terms m2
WW

µ+W−µ and
1
2m

2
ZZ

µZµ for the W and Z bosons respectively4, as well as their interaction terms. However,

first it can be noted that the only linear combination of the Wµ
3 and Bµ which appears is −gWµ

3 +

g′Bµ = −g(cos θWZ
µ + sin θWA

µ) + g′(− sin θWZ
µ + cos θWA

µ) = −Zµ
√
g2 + g′2 + 0Aµ. This

arises as the Weinberg mixing angle is related to the gauge couplings for the SU(2)L and U(1)Y

groups, these are set by identifying the charges under QED with the relevant Lagrangian terms.

The result is no mass term for the photon, and correspondingly no Higgs-photon couplings, at

tree-level. We have therefore managed to break SU(2)L×U(1)Y → U(1)em and give the W and

Z bosons mass whilst leaving the photon massless:

(Dµφ)†Dµφ = ∂µh†∂µh+
(gv

2

)2
[

1+
2h

v
+
h2

v2

]
Wµ+Wµ−+

1

2
(g2+g′2)

v

2

2
[

1+
2h

v
+
h2

v2

]
ZµZµ+0AµAµ.

(1.16)

The mass terms are mW = gv
2 , mZ = v

2

√
g2 + g′2 = mW

cos θW
and mA = 0, giving a prediction for

the ratio of the W and Z masses on the basis of the chosen representations of the fields and

4The different normalisations arise as the W± is a complex field whilst the Z is a real field.
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the fact that charges must match observation upon EWSB, this prediction is experimentally

verified. There are also 3- and 4-point vertices of the Higgs with gauge bosons here, but again

(as it is massless) no direct Higgs-photon coupling.

We can verify that in this process we have conserved the number of degrees of freedom as a

complex Higgs doublet with 4 degrees of freedom has become a real scalar and masses for the

W+, W− and Z. Furthermore we can view this process of electroweak symmetry breaking in

the context of Goldstone’s theorem, which states that for each spontaneously broken generator a

Goldstone boson is generated. In our case we break three generators in breaking SU(2)L×U(1)Y

down to U(1)em. These three massless Goldstone modes are then eaten by the previously-

massless gauge bosons W± and Z; the Goldstone modes become the longitudinal degrees of

freedom of the gauge bosons which thereby acquire a mass. The Higgs boson then corresponds

to the remaining unbroken generator.

The same replacement of the Higgs doublet via its VEV must be made in the Higgs potential

in order to extract the Higgs mass and 3- and 4-point self-interaction terms

V (φ) =− µ2φ†φ+ λ(φ†φ)2 = −µ
2

2
(v + h)2 +

λ

4
(v + h)4 = −1

4
v2λ+ λv2h2 + λvh3 +

λ

4
h4,

(1.17)

this reveals that m2
h = 2λv2. Given that the Higgs VEV v is known through our knowledge of

the gauge couplings by equating the expressions for the W and Z boson masses in electroweak

symmetry breaking with experimental measurements, this means that once the mass of the Higgs

boson (125 GeV [12,13]) is measured the self-coupling is theoretically known, although is yet to

be measured experimentally.

Finally, whilst the Higgs mechanism has given mass to the gauge bosons, there are still no

fermion masses at this stage in the discussion as a result of electroweak gauge symmetry. The

masses are instead generated in the spontaneous breaking of electroweak symmetry via Higgs

- fermion couplings, these couplings are the “Yukawa” couplings which are matrices linking

left-handed and right-handed fermion fields as follows5,6:

LYukawa = −
3∑

n=1

[−yuq̄nLHcuR − ydq̄nLHdR − ye l̄nLHeR + h.c.], (1.18)

here Hc = iσ2H
∗ so it has hypercharge −1

2 as required to conserve hypercharge in the up quark

Yukawa term. These interaction terms generate fermion masses in EWSB as the Higgs field is

replaced by its VEV, and they generate Higgs-fermion couplings proportional to these Yukawas

and so also to the fermion masses:
mf =

yfv√
2
. (1.19)

5The Yukawa matrices therefore have generation indices so that the first term in the Yukawa Lagrangian is
−(yu)ij q̄nLiH

cuRj .
6“h.c.” indicates here the hermitian conjugate of the terms included must also be added.
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1.1.2 Perturbation Theory

Following this introduction detailing the Standard Model Lagrangian, we can now use the

interactions between the particles it encompasses to build up Feynman diagrams for processes

of interest. These Feynman diagrams are then converted into matrix elements for each process

which are in turn squared, summed over final states and averaged over initial states, before being

integrated over the relevant 4-momenta state space (“phase space”) to obtain expressions for

cross-sections, decays and transition rates. However, as well as “tree-level diagrams” at leading

order, incorporating the minimum number of intermediates and vertices possible, we can build up

an infinite series of diagrams “beyond Leading order” (beyond LO) for each process by adding

loops or vertices with additional particles. These processes are suppressed by the necessary

additional couplings at the vertices, therefore we are able to build up a perturbative series in

the relevant coupling to describe the overall total transition rate, this is given in Figure 1.1.

Figure 1.1: The Leading Order (LO), Next-to-Leading order (NLO) and Next-to-Next-to-Leading order
(NNLO) QED contributions to the matrix element for electron positron annihilation into a muon and
antimuon. In the NLO case the emission of the photon can occur off any initial of final state leg;
while in the NNLO case there are further diagrams which have not been included here. Each additional
contribution in the series has a higher power of the gauge coupling.

Any loops added have momenta which, unlike in the tree-level processes, are undetermined

and so add additional integrals to be performed in the phase space.

In fact, the couplings themselves are attached to sub-diagrams representing their vertices and

so they can also be loop-corrected, they therefore build up energy dependence as they “run” to

different values as the energy scale is changed, this is described further in Chapter 1.1.4.

1.1.3 Divergences

Thus far our picture of the Standard Model has been a little naive; whilst we have established

a Lagrangian giving the required masses and couplings of the observed particles and introduced

perturbation theory, we have not given it foundations in quantum field theory. In fact the picture

we have given is, on closer inspection, plagued by divergences at both low (infrared - IR) and

high (ultraviolet - UV) energies. If one attempts to determine the Feynman rules along with

amplitudes for various processes, several features immediately become apparent, aspects which

greatly troubled our predecessors in particle physics. First of all, it quickly becomes clear that

Thomas Cridge 7
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loop contributions to amplitudes offer corrections to the “bare” masses and coupling constants

found in the Standard Model Lagrangian and that the associated loop integrals are divergent.

At first sight this causes the theory to lose all predictivity as any calculations are swamped

by infinite contributions. These UV divergences appear due to arbitrarily high allowed loop

momentum and are generically of the form:∫
d4k

k2

k4
∼
∫
kdk →∞, as k→∞. (1.20)

An example of such a divergence is given in the next section in the context of the photon propa-

gator and the running electromagnetic coupling, whilst a quadratic UV divergence is derived for

contributions to the Higgs mass in Chapter 1.2. However, this is not all - more subtle divergences

also appear at low energies, typically due to propagators of massless particles. These are a key

part of our work in Chapters 5-7. Such IR divergences, in contrast, arise at low momenta k → 0

from integrals generically of the form below, with logarithmic divergences being produced:∫
d4k

k4
∼
∫
dk

k
→∞, as k→ 0. (1.21)

1.1.4 Renormalisation

In order to remove the UV divergences appearing from loop corrections, we may “renor-

malise” the bare parameters in the theory, which have infinite corrections, to physical finite

parameters by cancelling infinite contributions against one another. As an example consider

Figure 1.2(a), for any photon propagator one can add loop corrections of this form (known as

vacuum polarisation diagrams). The issue arises as the loop momentum is not fixed by the

external momenta - rather any loop momentum on one side of the loop can be balanced by one

on the other side, therefore the loop contributions contain integrals over an infinite range of loop

momenta. Such problems were a great source of consideration for theoretical particle physicists

through the 1930s and 1940s until the work of Kramers, Bethe, Schwinger, Feynman, Tomonaga

and Dyson.

Schematically, considering for example these photon propagator corrections in the case of

electron scattering in Figure 1.2(b) and (c), in order to determine the full amplitude an infinite

tower of insertions of loop corrections of the form of the photon vacuum polarisation must be

summed. Each of the loops included on the photon propagator provides a divergent loop integral

correction of the form

−1(−ie0)2

∫ Λ

0

d4k

(2π)4
γµ

i

(/k + /q)−m
γν

i

/k −m ≡ iΠ
µν
2 (q). (1.22)

Here e0 is the bare, unrenormalised electron charge, as appearing in the Standard Model La-

grangian, k is the four-momentum scale of the loop and q is the 4-momentum transfer of the

photon mediating the scattering, whilst Λ is some UV cut-off. The bare photon progagator can
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Figure 1.2: (a) Vacuum polarisation contribution to the photon propagator, it offers an infinite correction
to any diagrams containing photons, ostensibly creating a problem for the predictivity of QED. (b) The
tree-level diagram for electron-electron scattering in QED. (c) The vacuum polarisation 1-loop correction
to electron-electron scattering. The vacuum polarisation can be inserted an arbitrary number of times,
creating an infinite sum of corrections to the amplitude, each of which diverges.

be denoted P0 =
e20
q2 , the effective photon propagator accounting for all possible vacuum polar-

isation insertions may then be written as a geometric series which can be summed to infinity.

Skipping over details of the tensor structure and contractions for brevity and simplicity here, it

can be shown each insertion adds a factor of e2
0Π(q2) where Π(q2) is related to Πµν

2 (q), but with

the tensor structure accounted for. As a result the series is:

P0 + P0e
2
0Π(q2) + P0e

2
0Π(q2)e2

0Π(q2) + · · · =P0[1 +
∞∑
j=1

(e2
0Π(q2))j ] =

e2
0

q2

1

1− e2
0Π(q2)

≡ e2(q2)

q2
.

(1.23)

Therefore the effect of the loop contributions is to modify the Standard Model Lagrangian bare

charge e0 into a momentum-scale dependent charge e(q2). We can rewrite the bare charge in

terms of this effective charge and the one-loop self-energy (or vacuum polarisation) Π(q2) in

order to extract how this new momentum-dependent effective charge varies with energy scale.

e2(q2) =
e2(µ2)

1− e2(µ2)[Π(q2)−Π(µ2)]
. (1.24)

Given that experimentally we can measure e(q2) and see that it is finite, this means that the

renormalisation cancels two separately divergent quantities Π(q2) and Π(µ2) against each other

to leave a finite quantity. This difference can be calculated in quantum field theory and results in

a logarithmic running of the fine structure constant with momentum, more details on these cal-

culations can be found in [14]. The minus sign in the denominator meaning the QED interaction

becomes stronger at higher energies (shorter distances) - for example whilst α(q2 ≈ 0) = 1/137,

at the LHC the relevant interaction strength is α(q2 = m2
Z) = 1/127.

α(q2) =
α(µ2)

1− α(µ2) 1
3π ln

(
q2

µ2

) . (1.25)

If we expand this to form a perturbative series in α we see each term contains a logarithm of

the ratio of scales to the power of the order of that term in α:
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α(q2) = α(µ2)

[
1 +

α(µ2)

3π
ln
( q2

µ2

)
+
(α(µ2)

3π
ln
( q2

µ2

))2
+ . . .

]
. (1.26)

Therefore the renormalisation group running of the fine structure constant α(q2) absorbs an

infinite series of logarithms of the ratio of scales, it thereby “resums” potentially large logarithmic

terms α(µ2)
3π ln

(
q2

µ2

)
, which will be large when α−1 ∼ 1

3π ln
(
q2

µ2

)
.

There is an alternative manner by which to derive the running of the coupling α(q2) however;

rather than considering loop corrections to the Feynman diagram for the relevant vertex, we

may instead consider that we expect any observable to be formally independent of the scale it is

evaluated at when calculated to all orders, this must be true as the scales are purely arbitrary

choices made in our calculations. For an arbitrary observable A at each order of its evaluation it

will depend on α and the ratio of scales considered Q2/µ2, we then expect the sum of all orders

to be independent of the scale and so

µ2 d

dµ2
A
(
α,
Q2

µ2

)
=

[
µ2 ∂

∂µ2
+ µ2 ∂α

∂µ2

∂

∂α

]
A = 0. (1.27)

We may introduce the logarithm of the ratio of scales and a β function, incorporating the

dependence of the gauge coupling on the energy scale:

t ≡ ln
(Q2

µ2

)
, β(α) ≡ µ2 ∂α

∂µ2
≡ ∂α

∂ lnµ2
. (1.28)

So we have [
− ∂

∂t
+ β(α)

∂

∂α

]
A = 0, (1.29)

solving this differential equation for any observable A
(
α, Q

2

µ2

)
requires:

t =

∫ α(Q2)

α(µ2)

dx

β(x)
. (1.30)

We may then differentiate equation 1.30 with respect to t to obtain

β(α(Q2)) =
∂α(Q2)

∂t
. (1.31)

The β function may then be expanded as a function of α (corresponding to 1-loop, 2-loop, etc

considerations in our previous method) as

β(α) = −α
∞∑
n=0

βn

( α
4π

)n+1
. (1.32)

Taking the first order correction only we have from equation 1.31 that:

Q2∂α(Q2)

∂Q2
= −α2

(β0

4π

)
, (1.33)
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integrating both sides we obtain an expression for the running of α(Q2) at 1-loop order:

α(Q2) =
α(µ2)

1 + β0

4πα(µ2)t
=

α(µ2)

1 + β0

4πα(µ2) ln
(
Q2

µ2

) . (1.34)

This is of the same form as obtained considering the 1-loop corrections directly in equation 1.25,

all that remains is the determination of β0 = −4
3 , which may be calculated from Feynman

diagrammatic calculations as before.

The dependences of the gauge couplings on energy are therefore encoded in their respective

β functions, which may be calculated up to a given order accuracy. Similar calculations can

be performed for the electron propagator, with self-energy diagrams via loops of photons now

causing the electron mass to run with energy scale. Meanwhile in QCD, although the situation is

complicated by the fact it is a non-Abelian theory (i.e. its structure constants are non-zero) and

consequently there are additional loop corrections from gluon self-interactions on top of those

from fermion loops, analogous calculations (via either method) follow through for the running

of the coupling αs. As a result of the additional loop corrections, in QCD the difference of the

self-energy contributions is altered relative to QED, resulting in a plus sign in the denominator

of the running expression. This sign flip has remarkable consequences for its phenomenology; it

causes αs to run to smaller values at higher energies (“asymptotic freedom”), or equally to run

to large values at large distances (low energies), indicating confinement of quarks and gluons.

For example, αs(ΛQCD ≈ 250 MeV) ∼ 1, αs(1 GeV) ≈ 0.5 and αs(mZ) ≈ 0.1184.

This renormalisation procedure, removing infinities in physical observed quantities, has some

ambiguities - there are also renormalisation schemes, different methods for exactly how to remove

the infinities in renormalisation of the masses and couplings, which result in differences in the

values of the couplings and masses even when renormalised at the same order. The differences

in such schemes largely come down to different choices of factors to absorb in the renormalisa-

tion in the so-called “counter-terms” to cancel the divergences, and to different choices of UV

regulation (i.e. using a cut-off as above or an alternative method to deal with the UV diver-

gent integrals). The most common examples are the “Minimal Subtraction” MS and “Modified

Minimal Subtraction” MS schemes, whilst supersymmetry (SUSY) uses the “Dimensional Re-

duction” DR and DR schemes, this will be mentioned briefly in Chapter 2 but more information

on renormalisation schemes may be found in [14]. The conversions between masses and coupling

parameters evaluated in different schemes can be determined at given loop order. Meanwhile,

the subtraction of the divergence at a given scale µ in the first method introduces an arbitrary

scale into the calculation - termed the “renormalisation scale”. As seen in the second method,

we require that observables are formally independent of this scale when evaluated to all orders;

however, any quantity in reality is evaluated as a perturbative expansion, truncated at given

order, and therefore scale dependence remains in theoretical quantities. As a result of these

scheme differences and scale dependences theoretical predictions to the same order often pro-

duce different numerical values. Such differences of parameters evaluated in different schemes

Thomas Cridge 11



Chapter 1. Introduction 1.1. Standard Model

and with different scales simply correspond to higher-order effects, nonetheless they can have

significant consequences for theoretical predictions at a given order. Many texts cover this in

far more detail, for example refer to the books [14,15] for more information.

As well as divergences in the UV (high-energy scale) for the Standard Model, divergences may

also arise in the IR (low-energy scale) as a result of poles in the propagators, these divergences

can too be absorbed into running of parameters, and indeed IR divergences in initial states

can be absorbed into PDFs at some factorisation scale in an analogous manner. This will be

described in more detail in Chapter 5 for our work in QCD.

1.1.5 QCD

Finally, whilst we have introduced Quantum Chromodynamics as an SU(3) gauge theory

with gauge quantum number “colour” as part of the Standard Model Lagrangian, we focused

much of our attention on the electroweak sector and the Higgs, as this is of relevance to our

work in Chapters 2-4. QCD however is a theory of rich complexity and is a key component of

our research in Chapters 5-7, we therefore wish to highlight a few salient features here.

QCD is a sector of the Standard Model of particular intricacy and of rich and varied phe-

nomenology, and, given the premier contemporary collider is a hadron-hadron collider, it is

an area of great relevance to ongoing particle physics theory, phenomenology and experiments.

First of all, in QCD the gauge coupling αs offers distinct behaviour to the electroweak gauge

couplings, αs is larger than α at collider energies so QCD processes necessitate many more orders

of corrections be calculated in our perturbative series for theoretical predictions. Furthermore,

the value of the αs coupling increases at lower energies causing non-perturbative effects at low

energies such as hadronisation, whilst thankfully reducing at collider energies (“asymptotic free-

dom”) and thereby allowing perturbative calculations to be performed for theoretical predictions

at colliders in a similar way to in QED. These large αs values at low energies lead to confinement

and the “colour confinement hypothesis” that all long-lived particles are colour singlets, with

quarks and gluons both coloured and permanently dressed in QCD radiation causing hadronisa-

tion at long distances. As a result, at hadron colliders we must separate the long distance non-

perturbative behaviour from the short distance hard scattering, this leads to “QCD factorisation

theorems” (see Chapter 5.5), the parton model of QCD and its QCD improvements allowing

parton splittings. In order to describe the fact that we collide composite objects we incorporate

such intricate non-perturbative effects into parton distribution functions (PDFs) which give the

probability of obtaining a given particle (aka “parton”) of given momentum fraction from the

overall composite hadron being collided. The large value of αs at low scales also ensures the

probability of additional emissions becomes very large as the energy is reduced, ensuring “soft”

(i.e. low energy) emissions can dominate processes and phenomenology and causing divergences

which must be treated (such as absorbing them into PDFs) and subsequently the resummation

that is the subject of our research in this area. This leads to splitting and fragmentation be-

haviour of partons, which we will not touch upon in great detail, but is further complicated
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by the non-Abelian nature of QCD allowing gluon-gluon interactions. This whistle-stop tour of

QCD is simply to give a flavour of some of the effects and its importance, much greater detail

is given later, focusing on areas of specific interest for our applications (Chapters 5-7). For a

full exposition there are a great many textbooks ranging from pedagogical introductions [16] to

more detailed descriptions [17,18] and many in between [19].

1.2 Problems with the Standard Model

This completes a brief review of the mathematical formulation of the Standard Model, sum-

marising only its features salient to our work in this thesis. It is a theory which contains 30

elementary particles (counting antiparticles as well as particles) and 26 parameters - 9 fermion

masses, 3 quark mixing angles, 1 (Charge Parity (CP)-violating) phase, 3 gauge couplings, 1

further angle (QCD vacuum angle), 1 Higgs mass and one Higgs vacuum expectation value, 3

neutrino masses7 and 4 neutrino mixing matrix (PMNS matrix) parameters. Its development

and experimental verification have been the subjects of extensive efforts throughout the past

century and it has proved remarkably successful, both in extending our theoretical knowledge of

fundamental particle physics and in describing experimental results at colliders and elsewhere,

often up to unprecedented accuracy via loop calculations. Nonetheless, despite its obvious suc-

cess, the Standard Model is known to be incomplete, having several theoretical and experimental

problems and absences. A brief summary of several of the key issues is presented here; again

targeted on those most relevant to our work, nonetheless more comprehensive reviews can be

found in [20–22].

1. Technical Hierarchy Problem - As demonstrated in the discussion of renormalisation

and running of parameters within the Standard Model, loop corrections can offer interest-

ing problems for the Standard Model as a quantum field theory. In an exactly analogous

manner to the computations of loop corrections to fermion masses and gauge couplings in

the context of running, loop corrections to the Higgs mass must also be considered in order

to determine their effect upon its mass. The Higgs boson couples to all particles with mass,

therefore there are corrections from scalar loops, fermion loops and vector boson loops as

demonstrated in Figure 1.3.

Figure 1.3: 1-loop corrections to the Higgs mass arising in the Standard Model; starting from the
top left and proceeding anticlockwise there are corrections from scalars (i.e. the Higgs itself) due
to the Higgs self-interaction, fermions due to the Higgs Yukawa couplings, and Vector bosons due
to the 3- and 4-point interactions resulting from Electroweak Symmetry Breaking (EWSB).

7In fact, as only the mass squared differences of the 3 neutrinos are known, the lightest may be massless,
reducing the number of parameters by 1.
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The Higgs however couples to particles in proportion to their masses, therefore the domi-

nant correction to the Higgs mass comes from a top-antitop fermion loop. Using the Stan-

dard Model Feynman rules this 1-loop Higgs mass correction can be written down and

evaluated, here the correction is ultimately determined at zero Higgs momentum (q = 0)

for simplicity, we introduce a UV cut-off to demonstrate that the divergence naturally

pushes the Higgs mass to the largest scale in the theory:

(δ(t)
mh

)2 =− |yt|
2

2

∫ Λ d4k

(2π)4
Tr
[ /k + /q +mt

(k + q)2 −m2
t

/k +mt

k2 −m2
t

]
∼ −2|yt|2

∫ Λ d4k

(2π)4

[ 1

(k2 −m2
t )

+
2m2

t

(k2 −m2
t )

2

]
∼ −2|yt|2

∫ Λ 2π2k3dk

(2π)4

1

(k2 −m2
t )
∼ −2|yt|2

∫ Λ kdk

8π2
∼ −|yt|

2

8π2
Λ2. (1.35)

Therefore the Higgs boson mass-squared receives corrections at 1-loop which are quadratic

in the UV cut-off of the Standard Model and this indicates that the Higgs mass has a very

sensitive dependence upon higher scale physics. This implies that either new physics

should be seen very soon at energy scales being probed at colliders and elsewhere, or there

must be some delicate cancellation present at the higher-than-expected new physics scale

whereby new physics particle loop corrections to the Higgs mass are fine-tuned to be very

close to one another and hence delicately cancel to provide a Higgs boson at the lower

scale of electroweak physics. There are in fact two related but subtly different questions

here - first, is the Higgs boson mass stable with respect to loop corrections? As we have

just seen it is not in the Standard Model, this is called the “Technical” Hierarchy Problem.

Second of all, why do these different scales arise in the first place, i.e. why is the scale

of the Higgs boson (and hence electroweak physics) significantly lower than the scale of

new physics even if the Higgs boson mass satisfies this Technical Hierarchy Problem (is

“technically natural”)? This is the Hierarchy or Naturalness Problem. There are many

potential new physics solutions to these hierarchy and naturalness issues, however often to

avoid constraints (such as smallness of observed flavour-changing-neutral currents, small

CP violation (CPV), precision electroweak tests or collider search bounds) the new physics

in these models is pushed to higher energies, thereby reintroducing a “little” hierarchy

problem between this scale and the electroweak (EW) scale.

2. Dark Matter - Evidence from a variety of astrophysical distance scales clearly indicates

the presence of some non-Standard Model mass component in the universe which has so

far only been detected interacting gravitationally. This evidence comes from a variety of

sources; from rotational velocity curves of stars around galaxies through cluster dynamics

(the Bullet Cluster being a classic example) to large-scale structure formation. There

are many reviews on this subject [23, 24] so the details are skipped here. Nonetheless

the conclusion is that there is an additional fundamental component of the universe not

accounted for by the Standard Model. There are many potential suggestions for what this
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component could be; from new Weakly Interacting Massive Particles (WIMPS) at around

the electroweak and collider scale, to axions which are a very light pseudoscalar particle

behaving as a collectively oscillating field (as a result of the low mass), to primordial black

holes. One of many reviews on the subject is given in [25]. Many new physics models

include various dark matter candidate particles, for example the Lightest (stable) Susy

Particles (LSPs) of supersymmetry, see Chapter 2. The common features of these dark

matter candidates are that they are either too light/heavy, too weakly interacting, or both,

to have so far been detected at experiments; nevertheless this is an active area of research

with many current and proposed experiments aiming to target different candidates and

regions of parameter space in the search for the nature of dark matter.

3. Matter-Antimatter Asymmetry - It is observed astrophysically that the universe has

a discrepancy between the number of baryons (nB) and the number of antibaryons (nB̄):

ξB =
nB−nB̄
nγ

= 10−9, with nγ the number of photons. However, given it is assumed

that the Big Bang produced equal numbers of baryons and antibaryons and that these

were in equilibrium with photons, the question of how such an asymmetry could have

emerged arises. As the universe expanded in its early history we expect γ + γ ⇔ B +

B̄ backward and forward processes to be in equilibrium as the photon temperature is

initially high. As the temperature drops the forward process becomes disfavoured and

so only the reverse annihilation reaction of baryon-antibaryon annihilation to photons

remains, depleting the number of baryons and antibaryons in favour of photons. This

continues until the baryon and antibaryon density becomes such that the reverse reaction

freezes out as it eventually becomes slower than the expansion rate of the universe, as

set by the Hubble scale. Therefore it is expected that the number of photons be much

greater than the number of baryons and antibaryons, but also naively that the baryon

and antibaryon densities in the universe are equal. In order to create a matter-antimatter

asymmetry 3 “Sakharov” conditions [26] must be satisfied. In the Standard Model there

is allowance for the number of baryons to exceed the number of antibaryons and so create

a small asymmetry as a result of CP violation, arising via the complex phase of the

Cabbibo-Kobayashi-Maskawa (CKM) matrix which relates the mass and gauge eigenstates

of quarks. In addition to this measured CP violation in the quark sector, there may also

be CPV in the lepton sector, nonetheless the scale of the CPV in the Standard Model is

ξSM
B = 10−18, much lower than observed in the universe. As a result, new sources of CPV

are required beyond the Standard Model in order to explain the observed asymmetry.

4. Neutrino Masses - The observation of neutrino oscillations at a variety of experiments

around the world [27–32] (a review is presented in [33]) means that the 3 neutrino mass

eigenstates must have different masses, i.e. ∆m2
12 6= 0 and ∆m2

13 6= 0. Masses for at least

2 of the 3 neutrinos must therefore be incorporated into the Standard Model. As seen

previously in this chapter, Dirac particle mass terms can be generated in EWSB of the

form m
(D)
f (f̄LφfR + f̄RφfL), where m

(D)
f =

yfv√
2

, requiring the addition of right-handed
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neutrinos to obtain a neutrino mass. However this would not explain the smallness of the

neutrino masses without accepting a correspondingly small Yukawa coupling for the neu-

trinos. Given the right-handed neutrinos are gauge singlets however, arbitrary additional

terms involving them may be added to LSM whilst respecting the overall gauge symme-

tries. Consequently, “Majorana” mass terms of the form −1
2Mν̄cRνR may be added8. Such

Majorana terms can be understood to be allowed as a result of the fact the right-handed

neutrinos are singlets and so may act as their own antiparticles, such terms therefore vi-

olate lepton number. Consequently the overall Lagrangian for the neutrino masses would

contain Dirac and Majorana mass contributions, and the diagonalisation of the mass ma-

trix can then generate a “see-saw” mechanism [36–40] (a review is available in [41]) pushing

the left-handed neutrinos to small masses and the right-handed neutrinos to large masses,

explaining the suppressed masses of the former and the lack of experimental observation

of the latter.

5. Many other issues - In addition to these issues, there are a number of other problems

and absences of the Standard Model which are listed here for brevity and in no particular

order. There is no Standard Model explanation for the manner in which fermions are repli-

cated into 3 near-identical copies differing only by mass, the complicated flavour structure

of the Standard Model and the highly hierarchical nature of the CKM matrix are unex-

plained as they are input parameters in the Standard Model, and no reason behind the

apparent quantisation of the electromagnetic charges is offered. Why there are 3 gauge

groups and the combined SU(2)L × U(1)Y is chiral are also not answered, furthermore

there is no inclusion of gravity or dark energy (on top of the exclusion of a viable dark

matter candidate). Similarly, the strong CP problem of why the θQCD parameter in the

Lagrangian term θQCD
αs
8πFµνF̃

µν is observed to be smaller than 10−11 (this results in no

measurable electric dipole moment for the neutron) is unexplained. Subsets of such issues

may be explained by a variety of Beyond Standard Model theories, many of which are

not relevant for the discussion of the work undertaken in this thesis and are therefore not

detailed. Grand Unified Theories may offer solutions for charge quantisation and for the

existence of 3 generations and 3 gauge groups, the strong CP problem can be accounted for

via the introduction of the axion through the Peccei-Quinn mechanism [42] perhaps also

offering a dark matter candidate, flavour structure may be explained by a variety of new

physics theories, and the list goes on. Several reviews of some of the issues of the Standard

Model and their possible solution in Beyond Standard Model theories are available, for

example in [20–22].

The Standard Model therefore suffers from many issues. Nonetheless it also has great scope

for improvement and adaptation, hopefully explaining many of these matters whilst retaining

the successes of our predecessors in developing such an accurate description of physics up to

collider scales. This has therefore led to a wide and blossoming field of Beyond Standard Model

8More information is available in [34] and [35].
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physics, with many theories, adaptations and hypotheses built to resolve various subsets of these

issues.

In general, the aims of these Beyond Standard Model theories are to offer some minimal

extension or additional framework within which to set the Standard Model in order to provide

all its innumerable successes on top of further resolutions of some of these issues and intricacies

left unresolved. There are correspondingly two approaches, the first are UV complete models

offering a “top-down” approach with the well-tested Standard Model physics at collider scales

and lower arising naturally out of these models as a lower energy scale manifestation of some more

fundamental picture. The second are those offering minimal theoretical or phenomenological

extensions (“bottom-up” models) to explicitly maintain the Standard Model as a fundamental

basis for particle physics but with slight modifications to rectify some of its issues and absences.

The wide range of Beyond Standard Model theories will not be reviewed here, the only one

of specific relevance to the work discussed will be supersymmetry (one of the most popular of

these theories), a UV complete model that serves as an extension of the Standard Model at

low scales and which we shall therefore describe in Chapter 2. Further information and more

detailed discussions of the Standard Model, its issues and Beyond Standard Model theories may

be found in the books [14,16,34].

1.3 Contemporary Particle Physics

All of this makes the current epoch of particle physics a very exciting one; from a theoretical

point of view there is a very successful model with clear problems to be explained and resolved,

meanwhile experimentally there is also the Large Hadron Collider at CERN, the world’s largest

machine and the biggest scientific experiment ever assembled, specifically aimed at targeting

these issues. This combination of the Standard Model and its issues along with the LHC as a

microscope to hone in on its properties has already revealed significant results. The first run of

the LHC reinforced our belief in the Standard Model via the discovery of one of its key missing

pieces - the Higgs boson [12] [13], the fundamental scalar providing mass to the gauge bosons

and fermions. With this discovery, LHC run 2 has been able to focus its efforts on both the

precise testing of our knowledge of the Standard Model, and on direct and indirect searches

for the new particles postulated in Beyond Standard Model (BSM) theories. With this run

near completion there are now numerous constraints on many of these BSM theories and their

parameter spaces (for example recent results include [43–46]). Such constraints in the context

of supersymmetry are described in Chapter 2. As of yet, there have been no unarguable hints

for any such new physics, and despite concerted efforts and the multitude of LHC data available

many possibilities remain. Nonetheless, with significant constraints on the parameter spaces

of some of the most minimal BSM theories (such as the Minimal Supersymmetric Standard

Model, MSSM), whilst such direct searches for new physics continue unabated, there is a growing

appetite for complementary searches looking for indirect signs of new physics. Foremost amongst

these are precision physics measurements, aiming to look for tiny deviations from Standard
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Model expectations as signs for Beyond Standard Model physics. These also have the benefit of

acting as tests of the Standard Model, further improving our theoretical understanding of it as a

description of nature. For any of these approaches, whether direct and indirect searches for new

physics at colliders or precision physics measurements of the Standard Model alone, in this era of

vast swathes of data and the unclean environment provided by a hadron-hadron collider at high

energies, determining theoretical predictions for all searches and all interaction setups becomes

increasingly difficult. This difficulty will only increase as we move to higher luminosities at run

3 of the LHC and the subsequent High-Luminosity LHC (HL-LHC) machine. Moreover, this is

further complicated by the extensive parameter spaces of many Beyond Standard Model theories,

particularly those offering UV completions (such as supersymmetry). The needs either to scan

such parameter spaces or to evaluate very difficult integrals and simulate events via Monte

Carlo integration methods (whether in the Standard Model or beyond) therefore often preclude

by-hand analytic calculations, or at least make them inefficient and intractable. As a result,

computational tools are not only increasingly desired for producing theoretical predictions, but

are in fact required. Only with such computational tools for theoretical predictions is the

particle physics community able to maximise the potential of the LHC (and other experiments)

for the extension of our knowledge of fundamental particle physics. Such tools allow precise

experimental searches to be carried out via comparisons of theory predictions with LHC data,

whilst also offering the ability to extend theoretical understanding; as a consequence there has

been a growing focus on the development of computational tools for LHC phenomenology. It is

this area in which our research has been undertaken, and our efforts in this area are detailed in

the remaining chapters of this thesis.
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1.4 Thesis Outline

In this work we will describe the development of two new computational tools designed to

produce theoretical predictions for phenomenology at the LHC, both in the Standard Model

and beyond. These are: SoftSusy decay calculator [1], which is a new tool built onto an

existing widely used program and predicts the branching ratios of supersymmetric and Higgs

particles; and reSolve [2], a completely new program for computing differential spectra for a

wide class of processes at the LHC, focusing upon transverse momentum resummation. The

work will be described in two halves, ordered chronologically, with the first half describing the

research, development and results of the decay calculator program for SoftSusy, and the sec-

ond half detailing the production, validation and results of the reSolve transverse momentum

(qT ) resummation program. Chapter 2 therefore begins our discussions with an overview of

the theory of supersymmetry from a phenomenological perspective, aiming to put our endeav-

ours in this area into context. This is followed by Chapter 3, which provides specific details of

the decay calculator program; its assumptions, methodology and implementation, as well as a

summary of the decay modes included. Chapter 4 builds on this, providing particulars on how

to use the SoftSusy decay calculator program, before giving a comprehensive examination

of the validation and results of the program. Subsequently it also outlines limitations of the

work and areas of priority for future developments. Chapter 5 begins the second half of this

work, describing the background for our research efforts in transverse momentum resummation

by detailing the need for differential spectra and resummation at the LHC, this will provide

theoretical background with a phenomenological focus. An overview of the reSolve program,

its methodology, the implementation of its theoretical formalism and its structure, along with

the channels so far incorporated, is provided next in Chapter 6. The specifics of how to use

the reSolve program are then given in Chapter 7, along with an extensive description and

analysis of the careful validation of the program and results produced. Thereafter, the current

limitations of this work and consequent topics for future developments in this program and in

this area are discussed. Finally, the research in both projects is summarised in Chapter 8. The

Appendices provide further details on several points, with the complete set of supersymmetric

and Higgs particle decay formulae given in Appendix A, along with information on the contri-

butions included and assumptions made. Further information on the theoretical ideas behind

the reSolve program are given in Appendix B, including a list of the resummation coefficients

involved in the formalism.
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Chapter 2

Supersymmetry and the LHC

2.1 Supersymmetry Theoretical Background

Supersymmetry is one of the most popular Beyond Standard Model theories available to

explain many of the issues of the Standard Model and does so by extending it to a more funda-

mental theory, it thereby retains all of the numerous successes of the Standard Model as a theory

of nature. However, supersymmetry was not originally developed or proposed as a remedy to

issues of the Standard Model; rather these solutions were only understood later, following its de-

velopment. This therefore makes the successes of supersymmetry as a Beyond Standard Model

theory all the more remarkable. In order to appreciate the phenomenology of supersymmetry,

and consequently the motivations for our work in this area of supersymmetric particle decays,

we first take a brief sojourn into the theoretical background of supersymmetry.

2.1.1 Superspace, Superfields, Supermultiplets

Symmetry is a key element of the quantum field theory of the Standard Model, whether via

the gauge symmetries controlling the interactions, the discrete C, P, T symmetries, or other

symmetries (whether deliberate or accidental) such as baryon and lepton number conservation.

These symmetries therefore are the key element determining the theory and phenomenology of

the Standard Model, and the same applies for its extensions. An example of such an additional

symmetry which may be applied is supersymmetry. We shall focus on its general properties in

this introduction, avoiding many of the precise mathematical details as they are unnecessary

here, highlighting only aspects relevant to this research. A more detailed review is [47].

At its most basic level, supersymmetry transforms bosons into fermions and vice versa,

consequently it must have fermionic generators;

Q|fermion〉 ∝ |boson〉, Q|boson〉 ∝ |fermion〉. (2.1)

The supersymmetry generators therefore produce superpartners of each of the known particles,

which differ by 1
2 in spin. Particles and their superpartners are linked, living together in the

same irreducible representations of the supersymmetry algebra - termed “supermultiplets”. A

variety of properties of these supermultiplets may be straightforwardly derived.
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- Particles and their superpartners are in the same supermultiplet and must have the same

mass, assuming the supersymmetry is unbroken.

- The number of fermionic and bosonic degrees of freedom must be equal; this is somewhat

intuitive given the link the supersymmetry generators form between bosons and fermions.

- Particles and their superpartners must have the same gauge quantum numbers as the

supersymmetry generators Q, Q† commute with the generators of the Standard Model

gauge transformations.

There are two obvious classes of supermultiplets1: containing either a spin-1
2 fermion (in

Weyl 2-component spinor form so the number of fermionic degrees of freedom, nF = 2) and 2

spin-0 real scalars (“sfermions”) (so the number of bosonic degrees of freedom, nB = 2× 1 = 2)

- these are “chiral supermultiplets”; or containing a spin-1 massless gauge boson (so nB = 2)

and a spin-1
2 fermionic partner (“gaugino”) (again in Weyl 2-component form so that nF = 2)

- these are “vector supermultiplets”, also referred to as “gauge supermultiplets”. In order to

apply supersymmetry to the Standard Model, one must group the existing particles and their

superpartners into appropriate chiral and vector supermultiplets, this is detailed in Chapter 2.2

in introducing the Minimal Supersymmetric Standard Model.

A key overall result of supersymmetry is that as the particles and their superpartners are

contained within the same superfields (i.e. in the same supermultiplets) then the requirements

of invariance of the supersymmetric Lagrangian under the supersymmetry transformation fixes

the coupling of the superpartners by relating them to those of their partner particles. Cou-

plings between superpartners can therefore be regarded simply as “supersymmetrisations” of

those in the Standard Model. As a result supersymmetry guarantees set relationships between

fermionic/bosonic and superpartner bosonic/fermionic particles (respectively), this is key to the

resolution of the technical hierarchy problem in supersymmetry, as described further in Chap-

ter 2.3.

These supermultiplets of separate bosonic and fermionic fields may be combined into single

objects, Φ(X), known as superfields [48,49]. These superfields are a function of superspace coor-

dinates, xµ, θα and θ†α̇. The motivation for the development of a new mathematical framework

of superspace and superfields lies in the ease of deriving various properties of supersymmetric

field theories in this language, as opposed to using the standard quantum field theory language

of the Standard Model. We will not go into details on the topics of superspace and superfields

here as a precise understanding is not necessary for the research presented in this thesis.

The formal and rigorous mathematical background of supersymmetry is an area of great inter-

est, and further information on this can be found in many texts, including [50,51]. Nonetheless,

we end our outline here and now focus on specific aspects relevant to the work undertaken. The

general information provided thus far is more than sufficient to detail the work carried out in

Chapters 3 and 4.

1There are actually other combinations of particles and superpartners possible in supermultiplets, however
these may be reduced to combinations of chiral and gauge supermultiplets.
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2.1.2 Supersymmetry Breaking

A key result of our introduction to supersymmetry in the previous section was that the masses

of particles and their superpartners must be the same as they live in the same supermultiplets.

However, this provides significant problems for supersymmetry as a Beyond Standard Model

explanation of nature as this implies any superpartner particles would have been observed long

ago (given their couplings are also linked to their partner particles and so are of the same scale).

Therefore it is obvious that supersymmetry must be broken in nature, i.e. that the vacuum

state is not invariant under action by the supersymmetry generators, Q|0〉 6= 0 and Q†|0〉 6= 0.

This will occur if the scalar potential V (φ) has a non-zero global minimum, or at least a non-

zero metastable minimum whose instability with respect to the global minimum gives a lifetime

greater than the age of the universe.

There are two ways to break a symmetry, either directly - for example in the way that

the fermion masses explicitly break the [U(3)]5 flavour symmetry of the Standard model, or

spontaneously - where the Lagrangian of the theory satisfies the symmetry but develops a vacuum

value which does not, in the way the Higgs mechanism breaks the electroweak symmetry (see

Chapter 1.1.1). We restrict our attention to the case of supersymmetry breaking relevant to the

MSSM and NMSSM; in this case neither a direct nor a spontaneous breaking in the same sector

can occur as these would both preserve the “Supertrace” (STr) over particle masses:

STr(m2) =
∑
i

(−1)2i+1(2i+ 1)m2
i = 0, (2.2)

where i is the spin of each particle. As supersymmetry commutes with the gauge group gen-

erators, this supertrace can be applied to each supermultiplet, or indeed each particle and its

partners (as these have the same charge). Generically therefore one expects to have superpart-

ners either equal (or a fixed ratio) in mass to their partner Standard Model particles, or spaced

around the Standard Model particle masses with some lighter and some heavier, depending upon

the particle spin. Applying this to the W boson and down quark and their partners we then find

that there would be a “wino” of mass
√

3
2m

2
W , whilst the d̃L (“sdownL”) and d̃R (“sdownR”)

would be spaced equally around the down quark mass:

−3m2
W + 2m2

W̃
=0, (2.3)

2m2
d − d̃ 2

L − d̃ 2
R =0. (2.4)

Such similar mass superpartners have not been observed, therefore clearly it must be the case

that supersymmetry is spontaneously broken in the MSSM/NMSSM in a hidden sector so as to

avoid the supertrace constraint and this breaking is assumed to be radiative, or at least indirect.

The topic of supersymmetry breaking and the associated supertrace sum rules is one with many

subtleties; our discussion here is general and rather schematic, thereby broad-brushing many

specifics which affect the arguments here (more details are available in [47,52,53]).
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As a result of these difficulties in breaking supersymmetry directly, a two-sector system

has become the archetype model, whereby the supersymmetry breaking occurs spontaneously

in some hidden sector and is communicated into the visible MSSM sector via some messenger

fields. This setup evades the supertrace relations linking the particle and superpartner masses.

Typically, the hidden sector is assumed charged under some additional gauge group G���SUSY,

the MSSM and hidden sector are then singlets under the Hidden sector gauge group and the

Standard Model gauge group respectively. Only the mediating fields are charged under the

combined G���SUSY × (SU(3)c × SU(2)L × U(1)Y ) group, as illustrated in Figure 2.1.

Figure 2.1: Archetypal two-sector model for spontaneous supersymmetry breaking, with a hidden sector
of some additional gauge group where the supersymmetry breaking occurs which is linked to the visible
sector via some mediating fields charged under both the Standard Model gauge group and the additional
gauge group.

There are many options for the breaking in the hidden sector and how it is communicated

into the visible sector. We list the three most popular supersymmetry-breaking mediation

mechanisms relevant to LHC phenomenology here:

- Gravity-mediated Supersymmetry-Breaking - New physics arising near the Planck

scale (such as gravity) communicates the breaking in the hidden sector into the visible

sector via tree-level interactions causing mass splittings of particles and their superpartners

of order
∆m ∼ M2

���SUSY

MPl
, (2.5)

where MPl is the Planck mass. For desired mass splittings of 1 TeV, this requires the

supersymmetry breaking scale to be M���SUSY ∼ 1011 GeV.

In gravity mediated supersymmetry breaking [54–57], the minimal model is called

“mSUGRA” (minimal supergravity). In this model the scalar masses, fermion masses

and the trilinear couplings (of fermions, sfermions and Higgses) are each assumed unified

at the Grand-Unification (GUT) scale; consequently there are only 5 additional parameters

relative to the Standard Model: m0, m 1
2
, A0, tanβ and sign(µ); where m0 is the unified

scalar mass, m 1
2

is the unified fermion mass, A0 is the unified trilinear coupling, tanβ is the

ratio of the vacuum expectation values of the two Higgs doublets and µ is the dimensionful

parameter setting the scale of the Higgs and Higgsino masses. This setup is arguably the

most well-studied form of supersymmetry breaking, theoretically and experimentally, with

LHC searches often focusing upon the “Constrained Minimal Supersymmetric Standard

Model” (CMSSM), which features the MSSM with the parameters arising from mSUGRA

at the GUT scale.
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- Gauge-Mediated Supersymmetry Breaking (GMSB) - In this mechanism, gauge

loops (perhaps of the ordinary electroweak or QCD interactions) transmit the supersym-

metry breaking from the hidden sector into the MSSM [58, 59]. Consequently we expect

the mass splitting of particles and superpartners to be of order

∆m ∼ M���SUSY

16π2
, (2.6)

where here the 16π2 is the usual factor arising from loop integration. For mass splittings

of order 1 TeV we therefore require M���SUSY ∼ 105 GeV, which is much lower than the

corresponding supersymmetry breaking scale in mSUGRA. The reason for this essentially

is that one expects the mass scale of the superpartner masses is now only suppressed by

the messenger fields mass scale, rather than by MPl.

The minimal model is called mGMSB and has 6 additional parameters relative to the

Standard Model; M���SUSY (the supersymmetry breaking scale), Mm (the mass scale asso-

ciated with the messenger fields), n5 (the number of messenger field multiplets), tanβ,

sign(µ) and Cgrav (which parametrises the decay rate to gravitinos and hence their mass).

GMSB models can have unique phenomenology depending upon the gravitino mass (see

later Chapter 2.1.3 for details).

- Anomaly-Mediated Supersymmetry Breaking (AMSB) - In the supergravity se-

tups which may cause gravity-mediated supersymmetry breaking, there are also always

1-loop contributions arising when supersymmetry is broken, giving contributions to mass

splittings via supergravity VEVs [60, 61]. These contributions are loop-suppressed, and

so are usually sub-dominant to the gravity-mediated tree-level mediation. However, if the

tree-level contributions are prevented or suppressed themselves (for example exponential

suppression may arise in extra-dimensional models due to separation of branes) then the

anomaly-mediated loop contributions may become important.

The minimal model is called mAMSB and has 4 additional parameters relative to the

Standard Model; m0 (universal scalar mass), m 3
2

(gravitino mass), tanβ and sign(µ). The

key phenomenological feature of AMSB models is that the gaugino masses are given by

Mi ∝
big

2
i

16π2
m 3

2
, (2.7)

again the 16π2 occurs due to the mediation being 1-loop. The important point is that

the gaugino masses are in proportion to their gauge couplings squared multiplied by their

gauge group factors bi (which are given later in equation 2.37). As a result the lightest su-

persymmetric particle (LSP) (if it is a neutralino) will be dominated by the superpartners

of the charged W bosons, the wino (not the superpartner of the B gauge field, the bino

as is usually assumed). Moreover, the lightest chargino and lightest neutralino will cor-

respondingly be near degenerate in mass (as both are dominantly wino in this scenario),

such small mass splittings lead to phase-space suppressed decays, greatly affecting the

phenomenology of these models in this case.
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Regardless of their precise form, all supersymmetry breaking mechanisms relate the

supersymmetric masses, couplings and other parameters to one another at some higher

supersymmetry-breaking or GUT scale, thereby reducing the number of free parameters in the

theory. The parameters at this high scale may then be run down to the collider and electroweak

scale via the MSSM renormalisation group equations to obtain the full mass spectra, mixings

and couplings which are potentially observable at colliders. In any case, none of the known

supersymmetry breaking mechanisms are perfect or completely prescriptive, and the scale of the

supersymmetry breaking is unknown. For this reason, our ignorance of its exact details is often

parametrised phenomenologically by the explicit addition, by hand, of supersymmetry breaking

terms2 to the Lagrangian of the supersymmetric theory being considered;

L = LSUSY + Lsoft
���SUSY . (2.8)

Nonetheless, one must be careful to only add terms which, whilst they break the supersym-

metry and accordingly result in mass splittings between the supersymmetric and Standard Model

particles, do not reintroduce quadratic divergences. Only these retain a natural explanation of

the hierarchy of the electroweak and higher (e.g. GUT) scales3, in particular the supersymmetric

relationships linking the couplings of bosons and fermions must hold. Such terms are termed

“soft” supersymmetry breaking terms [62]. In the case of softly-broken supersymmetry, whilst

there are mass splittings between supersymmetric and Standard Model particles, the quadratic

divergences in scalar masses are still cancelled to all orders in perturbation theory, leaving only

logarithmic divergences which do not destabilise the hierarchy.

The terms which may be added to softly break the supersymmetry are scalar masses (m2),

gaugino masses (M), and trilinear couplings (aijk); clearly these are supersymmetry breaking as

they give masses to only the scalars and gauginos, not their respective Standard Model partners4.

The Lagrangian for the MSSM, along with the soft breaking terms, is given in Chapter 2.2.

Unfortunately however, the addition of these explicit parametrisations of potential soft super-

symmetry breaking terms which may be induced introduces to our phenomenological theory all

possible such parameters with no relationships amongst them. As a result, the parameter space

to search for these supersymmetric models is expanded drastically with ≈ 120 new parameters.

It is the supersymmetry breaking mechanism which links these together, often enforcing relations

between them at the high scale, reducing these to the 4− 6 parameters of mSUGRA, mGMSB

and mAMSB. Consequently, dropping any assumptions about the breaking and parametrising

all possibilities leaves a vast parameter space to search. Nonetheless, there are phenomenological

2As this addition is explicit and only made to parametrise possible supersymmetry breaking terms which may
arise as a result of some unexplained indirect mechanism, it avoids the supertrace considerations.

3The cancellation of quadratically divergent contributions to the Higgs mass is shown explicitly in Chapter 2.3.
4In the case where there are no gauge singlet chiral superfields then additional non-holomorphic (i.e. functions

of superfield conjugates as well as of the superfields themselves) scalar trilinear couplings cijk may also be added,
for example in the MSSM. However, these terms tend to be negligibly small. In theories, such as the NMSSM,
where there is a gauge singlet chiral superfield they reintroduce quadratic divergences. These terms are conse-
quently colloquially referred to as “maybe soft”. There are also tadpole terms tiφi which are possible for gauge
singlet scalars φi, there are none of these in the MSSM.
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guides: the extended parameter space is not arbitrary - many parts of it introduce unacceptable

amounts of CP violation, flavour violation and similar phenomenologically undesirable effects.

Therefore constraints are often placed to generate the “phenomenological” MSSM (pMSSM), a

19 parameter sub-space, which is described further in Chapter 2.5.

2.1.3 Gravitino and Goldstino

In the Standard Model, gravity is glaringly absent, posing an issue for considering it as a

complete description of nature; however, as alluded to in the discussions of gravity-mediated su-

persymmetry breaking and AMSB, gravity may be incorporated into supersymmetry producing

“supergravity” theories. These supergravity theories often arise from GUT-scale models; usu-

ally involving string theory and a fundamental, enlarged gauge group out of which our Standard

Model gauge group appears. In light of these theoretical motivations, it is therefore interesting

to consider the consequences of including gravity in our supersymmetric models. In order to

do so, the particle spectrum of our supergravity models must include a spin-2 graviton and its

supersymmetric partner the spin-3
2 gravitino (both are massless) and supersymmetry must also

be promoted to a local symmetry. When supersymmetry is spontaneously broken, a Goldstone

mode appears (as usual for a spontaneously broken symmetry), however as supersymmetry has

fermionic generators it is a Goldstone fermion, the massless spin-1
2 “Goldstino”. However, in

direct analogy with the Higgs mechanism, a “super-Higgs” mechanism now occurs [63] whereby,

during spontaneous supersymmetry breaking, the massless gravitino (the equivalent of the Higgs

mechanism’s massless gauge boson) “eats” the massless Goldstino (equivalent of the scalar Higgs

doublet components). The Goldstino therefore becomes the longitudinal (i.e. spin-1
2) compo-

nents of the now massive gravitino.

The result of this mechanism is that the gravitino, rather than interacting purely with grav-

itational strength, now has longitudinal components which interact more strongly via the Gold-

stino components [64]. It may therefore produce signatures of relevance to LHC phenomenology

and so must be included in the particle spectrum. The mass of the gravitino induced determines

the phenomenological relevance of the signals. The gravitino has no Standard Model gauge

interactions and so will only be observed through missing energy/transverse momentum. In

general, the mass of the gravitino is of order

mG̃ := m 3
2
∼ M2

���SUSY

MPl
. (2.9)

However, the precise mass scale to which this corresponds varies significantly as a result

of the differences in the supersymmetry breaking scales in different supersymmetry breaking

mediations. For the case of gravity mediated supersymmetry breaking models, the mass splitting

of particles and their superpartners is also of order ∆m ∼ M2
���SUSY

MPl
, therefore the gravitino mass

is of order mG̃ ∼ 1 TeV and so the gravitino will be of limited relevance to phenomenology. In

gauge mediated supersymmetry breaking models on the other hand, the mass splitting is set
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via a 1-loop effect, not via Planck scale physics, therefore the supersymmetry breaking scale is

much lower and mG̃ ∼
M2
���SUSY

MPl
∼ 10 eV. As a result, the gravitino will be the LSP and so R-parity

conserving GMSB models will have cascades of decays ending in the gravitino; this produces

phenomenologically interesting signatures described in further detail in Chapters 2.5 and 4. For

a description of R-parity we refer the reader to Chapter 2.2.4.

2.2 Minimal Supersymmetric Standard Model

2.2.1 Particle Content

In the Minimal Supersymmetric Standard Model (MSSM), we wish to extend the Standard

Model by the minimal additional particle/field content in order to make it consistent with

supersymmetry. This therefore requires the grouping of the Standard Model particles into as

few supermultiplets as possible. The requirement that each supermultiplet may only contain

particles with the same gauge quantum numbers however severely restricts this. Looking back at

the field content of the Standard Model in Table 1.1, this illustrates that none of the Standard

Model particles can be grouped to form the supermultiplets of each other. In other words,

the fermions cannot be the gaugino partners of gauge bosons, and the Higgs cannot be the

scalar partners of the fermions (and vice versa). Therefore for each Standard Model particle

we must introduce an additional supersymmetric superpartner (or more strictly superpartners

in order to equate the bosonic and fermionic degrees of freedom - for example there are two

scalar sfermions for each fermion). The fermions are chiral, and therefore must exist in chiral

superfields with their sfermion superpartners. Chiral superfields may only be left-handed and

so any right-handed particles are included via their charge conjugates, which are left-handed.

The gauge bosons meanwhile are promoted to exist in vector supermultiplets with their gaugino

superpartners. All told, there are 5 chiral superfields for the fermions of each generation - Qi,

U ci , Dc
i , Li, E

c
i (i is a generation index) - and 3 vector superfields B, W , G.

In addition, given the Higgs boson is spin 0 it must be assigned to a chiral supermulti-

plet. However, this is insufficient - in fact two Higgs chiral superfields must be present and

correspondingly there are two Higgs doublets in the MSSM5. The reasons for this are twofold:

• Fermion Masses - Firstly, the Higgs doublets must give mass to the fermions, which occurs

via the superpotential in the MSSM. The terms desired to give mass to the fermions are

therefore yuQHU
c, ydQH

cDc and yeLH
cEc for the up quarks, down quarks and leptons

respectively. However, the superpotential must be a holomorphic function of the chiral

superfields - holomorphic meaning depending only on the chiral superfields and not on their

conjugates - and so terms including Hc are forbidden. Two Higgs doublets are therefore

required, the first Higgs doublet is called Hu, having the standard Higgs quantum numbers

and giving mass to the up type quarks, the second Higgs doublet Hd is introduced with

opposite hypercharge to give mass to the down type quarks and the leptons.

5The MSSM is therefore an example of a “Two Higgs Doublet Model” (2HDM). These come in several types,
the MSSM is type II as the up quarks couple to a different Higgs doublet to the down quarks and leptons.
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• Gauge Anomalies - The second reason is for the cancellation of gauge anomalies associ-

ated with the electroweak SU(2)L × U(1)Y gauge symmetry. In general, chiral fermions

may generate gauge anomalies, which break gauge symmetries at loop-level. The triangle

diagrams shown in Figure 2.2 illustrate the gauge anomalies relevant for this discussion.

The diagrams in Figures 2.2a and 2.2b are (U(1)Y )3 and U(1)Y (SU(2)L)2 anomalies. In

the case of the Standard Model, the particle quantum numbers are such that they both

cancel, as demonstrated in equations (2.10) and (2.11). For the (U(1)Y )3 anomaly the

contributions will generate a logarithmic divergence proportional to the trace over the Y 3

values of the chiral fermions in the loop, with left-handed (LH) and right-handed (RH)

fermions contributing with opposite sign due to the trace over the Dirac structure. Here

the factors of 3 are for colour and factors of 2 are for the fact SU(2)L doublets contain 2

particles of the same hypercharge.

(a) (U(1)Y )3 (b) U(1)Y (SU(2)L)2

Figure 2.2: Electroweak gauge anomalies at 1-loop in the Standard Model (and in the MSSM). All
chiral fermions can contribute to the (U(1)Y )3 anomaly in (a), whilst only SU(2)L doublets may
contribute to the U(1)Y (SU(2)L)2 anomaly in (b). The amplitudes are proportional to the traces
over the Y 3 or Y of the chiral fermions contributing, with LH and RH chiral fermions contributing
with opposite sign. There are also diagrams with crossed outgoing particles, these have identical
expressions for the anomalies.

Tr(Y 3) =
∑
fL

Y 3
fL
−
∑
fR

Y 3
fR

=
[

3× 2× (
1

6
)3︸ ︷︷ ︸

LH quarks

+ 2× (−1

2
)3︸ ︷︷ ︸

LH leptons

]
−
[

3× (
2

3
)3︸ ︷︷ ︸

RH up quarks

+ 3× (−1

3
)3︸ ︷︷ ︸

RH down quarks

+ (−1)3︸ ︷︷ ︸
RH electrons

]
= 0.

(2.10)

Meanwhile for the Y (I
(3)
W )2 case (remember I

(3)
W is the third component of weak isospin)

only the SU(2)L doublets contribute, again the factor of 3 is as the quarks are coloured:

Tr(Y (I
(3)
W )2) =

∑
fL

YfL(I
(3)
W )2)

= 3× 1

6
×
[
(
1

2
)2 + (−1

2
)2
]

︸ ︷︷ ︸
LH quarks

+−1

2
×
[
(
1

2
)2 + (−1

2
)2︸ ︷︷ ︸

LH leptons

]
= 0.

(2.11)

The addition of Higgsinos in the MSSM, as chiral fermions, may ruin this anomaly can-

cellation. If there was a single Hu Higgs doublet then its Higgsino, which has hypercharge

of 1
2 , would contribute an additional (1

2)3 to the Tr(Y 3), and an additional 1
2 × (1

2)2 to

the Tr(Y (I
(3)
W )2), rendering both non-zero and introducing a 1-loop breaking of the elec-
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troweak gauge symmetry. These problems are avoided with two Higgs doublets of opposite

hypercharge, as the Hd doublet then provides equal but opposite contributions to those of

the Hu doublet to both anomalies, returning the overall trace to 0.

With two Higgs doublets, electroweak symmetry breaking (EWSB) is slightly altered in

the MSSM. In the Standard Model, there was one complex Higgs doublet corresponding to

four degrees of freedom, two of which were charged degrees of freedom and two of which were

neutral. In EWSB, the two charged degrees of freedom give mass to the W± and one neutral

degree of freedom (the neutral CP odd degree of freedom as it turns out) gives mass to the Z

boson, leaving one CP even neutral Higgs boson. In the MSSM, there are two complex Higgs

doublets (each with a charged Higgsino and a neutral Higgsino superpartner), this is therefore

eight degrees of freedom - now four charged and four neutral degrees of freedom. In EWSB, as

in the Standard Model, two charged degrees of freedom form the longitudinal degrees of freedom

of the W±, giving these mass, meanwhile one CP odd neutral degree of freedom gives the Z

boson mass. This therefore leaves two CP even neutral Higgs degrees of freedom, forming two

CP even neutral Higgs bosons, one CP odd neutral Higgs boson, and two charged Higgs bosons.

Following all these considerations, the particle and superfield content of the MSSM is given

in Tables 2.1 and 2.2. To summarise there are 12 squarks (one superpartner for each of the

left- and right-handed quarks of the Standard Model), 9 sleptons (one superpartner for each

of the left- and right-handed charged leptons and one superpartner for each of the left-handed

neutrinos, assuming no right-handed neutrinos), the gluino, bino, winos (charged and neutral),

and 5 Higgs fields and 4 Higgsinos (two neutral, two charged). After mixing, as described in

Chapter 2.2.3, these form the 32 additional particles listed in Table 2.1; the R-parity is also

listed, this is explained in Chapter 2.2.4.

Particle Type Spin Rp Label

gluino 1
2 -1 g̃

ũL ũR d̃L d̃R

squark 0 -1 c̃L c̃R s̃L s̃R

t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e

slepton 0 -1 µ̃L µ̃R ν̃µ

τ̃1 τ̃2 ν̃τ

chargino 1
2 -1 W̃±1 W̃±2

neutralino 1
2 -1 Z̃0

1 Z̃0
2 Z̃0

3 Z̃0
4

Higgs bosons 0 +1 h0 H0 H+ H− A0

Table 2.1: The 32 additional particles of the Minimal Supersymmetric Standard Model (MSSM) after
mixing of particles with the same quantum numbers in electroweak symmetry breaking, only intra-
generational mixing and only in the third generation is allowed for the sfermions here. Whilst the
sfermions have L and R subscripts they have no handedness, the subscript denotes the quark-handedness
to which their couplings are linked via supersymmetry. The lightest CP even neutral Higgs h is listed,
although this is expected to be Standard Model-like and so it not technically an additional particle.
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Type Name Symbol
Particle content Representation

(SU(3)C , SU(2)L, U(1)Y )Spin-0 Spin-1
2

chiral
supermul-

tiplets

LH Quark
supermultiplet

Qi

(
ũL d̃L

) (
uL dL

)
(3, 2, 1

6)

RH Up quark
supermultiplet

(Ui)
c ũ∗R u†R (3̄, 1,−2

3)

RH Down
quark

supermultiplet
(Di)

c d̃∗R d†R (3̄, 1, 1
3)

LH Lepton
supermultiplet

Li

(
ν̃L ẽL

) (
νL eL

)
(1, 2,−1

2)

RH electron
supermultiplet

(Ei)
c ẽ∗R e†R (1, 1, 1)

Higgs-up
supermultiplet

Hu

(
H+
u H0

u

) (
H̃+
u H̃0

u

)
(1, 2, 1

2)

Higgs-down
supermultiplet

Hd

(
H0
d H−d

) (
H̃0
d H̃−d

)
(1, 2,−1

2)

Spin-1
2 Spin-1

vector
supermul-

tiplets

Gluino
supermultiplet

G g̃ g (8, 1, 0)

Wino
supermultiplet

W W̃± W̃ 0 W± W 0 (1, 3, 0)

Bino
supermultiplet

B B̃0 B0 (1, 1, 0)

Table 2.2: The chiral and vector supermultiplets of the MSSM, their symbols, particle content and
gauge group representations are all given. These supermultiplets contain all the 17 particles of the
Standard Model and the 32 MSSM additional particles. “LH” and “RH” indicate left/right-handed. Note
that as chiral supermultiplets may only be left-handed, any right-handed supermultiplets are written as
conjugates to produce left-handed chiral supermultiplets, this flips the representations so the 3 of SU(3)C
becomes 3̄ and the hypercharge assignments are also flipped. For the quark and lepton supermultiplets
only those of the first generation are given, the index i is a generation index running from 1 to 3.

2.2.2 MSSM Lagrangian

Now the particle and supermultiplet content of the MSSM has been outlined, let us provide

the MSSM Lagrangian. It has two main parts, the supersymmetry-conserving part, and the soft

supersymmetry-breaking part which purely parametrises all the supersymmetry breaking which

may arise as a result of an unknown supersymmetry breaking mechanism. Beginning with the

supersymmetry-conserving part, there are three parts to this: the superpotential, the Kähler

potential and the gauge kinetic function. For a renormalisable supersymmetric theory, the only

component that needs to be provided once the particle content and gauge quantum numbers

are given is the superpotential, as the Kähler potential and gauge kinetic function are fixed by

renormalisability requirements.
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• Superpotential, W - The superpotential is a holomorphic function of the chiral superfields

of mass dimension 3 and, for the MSSM (assuming R-parity conservation - see Chap-

ter 2.2.4) is given by

WMSSM = (yu)ijHuQiU
c
j + (yd)ijHdQiD

c
j + (ye)ijHdLiE

c
j + µHuHd. (2.12)

This contains, as the first three terms, the usual Yukawa interaction terms for the fermions

and sfermions, which also give mass to these particles just as in the Standard Model.

The last term is the Higgsino mass term which sets the masses of the Higgs bosons

and Higgsinos. The gauge indices have been suppressed with only the generation in-

dices i, j = 1, 2, 3 explicitly included. The first term for example may be written in full

as (yu)ij(Hu)α(Qi)βa(Uj)
c
aε
αβ with a = 1, 2, 3 the colour index and the α, β as SU(2)L

indices contracted in a gauge invariant manner via the epsilon tensor.

• Kähler Potential, K - The Kähler potential is a real function of the chiral and antichiral

superfields (i.e. left and right-handed) of mass dimension 2 and incorporates the vector

superfields in order to ensure supergauge invariance. It is fixed by the particle content,

quantum numbers and renormalisability requirements to be

K = Φ†i exp(2V )Φi. (2.13)

Here the Φ are each of the chiral superfields of the MSSM, whilst V = gs
λa

2 G
a + g

2σ
iW i +

g′Y B is a vector superfield of all the gauge interactions in the MSSM, with the λa the Gell-

Mann matrices and the σi the Pauli matrices. This form of Kähler potential ensures it is

invariant under the generalised gauge transformations of the chiral and vector superfields.

The Kähler potential provides the kinetic terms for the matter and Higgs fields6.

• Gauge Kinetic Function, f - This is the prefactor function for the kinetic term of the

field-strength superfields, which are functions of the vector superfields, and so provides

the kinetic terms for the gauge bosons and gauginos. In general, it is a holomorphic

function of the chiral superfields and has mass dimension 0, for renormalisable theories

it is just proportional to a δαβ function. This ensures the kinetic terms are products of

field strength superfields for the same gauge interactions, the constant of proportionality

depends on normalisation, it is usually 1
g2
a
, where ga (for a = 1, 2, 3) is the coupling for

each of the gauge groups.

These three pieces specify everything needed to construct the overall supersymmetry con-

serving part of the MSSM Lagrangian; we will not repeat this process here. A detailed overview

of how to construct supersymmetric Lagrangians in general, with the MSSM as an example, is

available in [65].

6The reader may be concerned that the vector superfield V is exponentiated and appears dimensionful, this
issue is avoided as it is expanded in superspace and Grassmanian variables have inverse dimensions which ensure
the overall expanded exponential is dimensionless.
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The soft supersymmetry-breaking part of the Lagrangian must also be stated. The soft

supersymmetry-breaking Lagrangian in the R-parity conserving case7 (which is all that is con-

sidered later in the SoftSusy decay calculator in Chapters 3 and 4) consists of gaugino mass

terms, scalar mass terms for the sfermions and Higgs bosons, and trilinear couplings of the

scalars. Such terms are clearly supersymmetry breaking as they provide additional masses to

the superpartners but not their Standard Model partner particles:

L���SUSY =
1

2
M1B̃B̃ +

1

2
M2W̃W̃ +

1

2
M3g̃g̃ +m2

2|Hu|2 +m2
1|Hd|2 + (m2

3HuHd + h.c.)

+ Q̃∗Li(m
2
Q̃

)ijQ̃Lj + L̃∗Li(m
2
L̃

)ijL̃Lj + ũRi(m
2
Ũ

)ij ũ
∗
Rj + d̃Ri(m

2
D̃

)ij d̃
∗
Rj + ẽRi(m

2
Ẽ

)ij ẽ
∗
Rj

+ (AU )ijQ̃LiHuũ
∗
Rj + (AD)ijQ̃LiHdd̃

∗
Rj + (AE)ijL̃LiHdẽ

∗
Rj .

(2.14)

Supersymmetry breaking mechanisms link these soft parameters together at the

supersymmetry-breaking scale. For example in the CMSSM at the GUT scale there are unified

scalar masses, unified fermion masses, and unified trilinear couplings; therefore M1 = M2 =

M3 ≡ M 1
2
, m2

1 = m2
2 = m2

Q̃
= m2

L̃
= m2

Ũ
= m2

D̃
= m2

Ẽ
≡ m2

0, AU = A0YU , AD = A0YD and

AE = A0YE .

2.2.3 Mixing

In Standard Model electroweak symmetry breaking, the B and W3 fields mix according to

the weak mixing angle θW to produce the observable Z boson and photon. The quarks also

have a misalignment between mass and gauge eigenstates, as parametrised by the CKM matrix,

leading the mass eigenstates to be mixtures of the gauge eigenstates; a similar structure is also

encoded in the lepton sector via the PMNS matrix. In all these cases we have particles of the

same quantum numbers mixing. In particular, for mixing in electroweak symmetry breaking,

particles of the same charge and colour representation may mix (even if they have different

weak isospin or hypercharge) as only the SU(3)c × U(1)em group remains unbroken. These

mixing effects in electroweak symmetry breaking will be phenomenologically important for our

additional Higgs and supersymmetric particles of supersymmetry.

There are four sets of gauge eigenstates in the MSSM which may therefore mix to form the

potentially observable supersymmetric mass eigenstates.

2.2.3.1 Higgs Bosons

In the Higgs sector of the MSSM, there are three neutral Higgs bosons and 2 charged Higgs

bosons; the neutral and charged Higgs bosons may not mix as this breaks the unbroken U(1)em

symmetry left after EWSB. Therefore the mixing is confined to the neutral Higgs sector8. In

7The concept of R-parity will be introduced later in Chapter 2.2.4.
8For the interests of brevity, here we do not detail the mixing that occurs in the charged Higgs sector between

the charged Goldstone and the charged Higgs gauge eigenstate to give the physical charged Higgs, or the mixing

Thomas Cridge 33



Chapter 2. Supersymmetry and the LHC 2.2. Minimal Supersymmetric Standard Model

addition, since we assume CP invariance in the Higgs sector, the two CP even neutral Higgs

bosons may not mix with the one CP odd neutral Higgs, leaving a 2 × 2 mixing matrix in the

CP even neutral Higgs sector:

L ⊃ 1

2

(
R(H0

u) R(H0
d)
)
MR(H0)

(
R(H0

u)

R(H0
d)

)
. (2.15)

Here R(H0
u/d) indicates the real part of the complex Higgs field. The elements of the matrix

MR(H0) for the gauge eigenstates of the neutral CP even Higgs bosons are set via partial

derivatives of the scalar potential with respect to the neutral CP even Higgs fields, with these

then set to their VEVs. The elements therefore are dependent upon mA, tanβ and mZ :

MR(H0) =

(
m2
A cos2 β +m2

Z sin2 β −(m2
A +m2

Z) sinβ cosβ

−(m2
A +m2

Z) sinβ cosβ m2
A sin2 β +m2

Z cos2 β

)
. (2.16)

As this mass matrix is real and symmetric, it may be diagonalised via an orthogonal trans-

formation to find its mass eigenstates and their eigenvalues (masses). We may parametrise this

orthogonal transformation as a rotation matrix with mixing angle α:(
h0

H0

)
=

(
cosα sinα

− sinα cosα

)(
R(H0

u)

R(H0
d)

)
. (2.17)

Given that the determinant of the mass matrix is positive (detMR(H0) = m2
Am

2
Z cos2 2β ≥ 0)

and the diagonal elements (which are the principal minors of the matrix) are all positive, the

matrix is positive semi-definite and so the mass eigenstates are guaranteed to have positive

masses. From the trace and determinant, it can be straightforwardly derived that:

mh,H =
1

2
(m2

Z +m2
A)

[
1∓

√
1− 4m2

Am
2
Z cos2 2β

(m2
A +m2

Z)2

]
, (2.18)

where h is defined as the lighter of the two CP even neutral Higgs mass eigenstates. Meanwhile

the mixing angle can be determined as:

tanα =
(m2

A −m2
Z) cos 2β +

√
(m2

A +m2
Z)2 − 4m2

Am
2
Z cos2 2β

(m2
A +m2

Z) sin 2β
. (2.19)

It should be noted at this stage that, whereas in the Standard Model the Higgs boson mass

was a free non-predicted parameter mh = 2λv2, in the MSSM the Higgs boson mass is predicted

theoretically in terms of the Z mass (and hence the gauge couplings), the CP odd neutral Higgs

mass (itself constrained in terms of the ratio of the Higgs VEVs, the mass parameter µ and

others) and the ratio of the two Higgs doublet VEVs tanβ. In particular upper bounds on the

of the neutral Goldstone and the CP odd neutral Higgs to form the physical CP odd neutral Higgs. These mixings
introduce factors of cosβ and sinβ into the interactions of these particles, where tanβ is the ratio of the vacuum
expectation values of the two Higgs doublets.
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lightest Higgs mass can be obtained. The expectation value for a general vector admixture of the

two eigenvectors of the mass matrix must lie between the two eigenvalues of the mass matrix,

consequently we may evaluate an upper bound:

m2
h ≤

(
cos θ sin θ

)( m2
A cos2 β +m2

Z sin2 β −(m2
A +m2

Z) sinβ cosβ

−(m2
A +m2

Z) sinβ cosβ m2
A sin2 β +m2

Z cos2 β

)(
cos θ

sin θ

)
≤ cos2 θ(m2

A cos2 β +m2
Z sin2 β)− cos θ sin θ(m2

A +m2
Z) sin 2β + sin2 θ(m2

A sin2 β +m2
Z cos2 β).

(2.20)

The upper bound is generally saturated for large values of mA and large tanβ - in the

decoupling limit of mA � mZ the lightest MSSM Higgs boson is then Standard Model-like.

Now we may select the value of θ to extract bounds as the limits are true for any θ, in

particular selecting θ = π
2 − β obtains

m2
h ≤m2

Z(sin4 β + cos4 β − 2 sin2 β cos2 β) = m2
Z(cos2 β − sin2 β)2 = m2

Z cos2 2β, (2.21)

this implies that at tree-level mh ≤ mZ (occurs if β ≈ 0, π2 where the latter is the decoupling

limit as there tanβ is large). Given the measured value of mh = 125 GeV, this may seem as

though it causes issues for the MSSM. Fortunately however, radiative corrections raise this upper

bound. Details can be found in Chapter 2.3.4.

2.2.3.2 Sfermions

Sfermions are also of the same colour representations and electric charge as each other,

therefore they may also mix in electroweak symmetry breaking. In this discussion, we limit

the mixing to intra-generation sfermion mixing as we assume no additional flavour violation

relative to the Standard Model (a standard pMSSM assumption), which means the trilinear

coupling matrices and Yukawa matrices are proportional (Af ∝ Yf ), i.e. they are diagonal

in the same basis. In general there are 5 contributions to sfermion masses; three which give

the f̃L and f̃R separate mass contributions, and two which cause mixing in EWSB [65]. Both

intra-generation mixing terms are proportional to mf as they arise during EWSB and so are

proportional to the VEV of the relevant up/down-Higgs doublet. For this reason it is often

assumed that mixing in the first two generations of sfermions is negligible; this assumption

will be made in Chapter 3. Taking this assumption, along with the alignment of the trilinear

and Yukawa matrices, essentially results in approximating these 3 × 3 matrices via their (3, 3)

element, which is overwhelmingly dominant due to the hierarchy of the Yukawa couplings. As

a result, let us consider the stop sfermions from here as an example. The mass matrix in the

Lagrangian for the stops, incorporating all 5 contributions, is therefore given by:

Lt̃i 3
(
t̃†L t̃†R

)(m2
t̃L

+m2
t +m2

Z cos 2β(1
2 − 2

3 sin2 θW ) mt(µ cotβ −At)
mt(µ cotβ −At) m2

t̃R
+m2

t +m2
Z cos 2β(2

3 sin2 θW )

)(
t̃L

t̃R

)
.

(2.22)
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Once more this is real symmetric, and so it may be diagonalised by a rotation matrix linking

the gauge and mass eigenstates.(
t̃1

t̃2

)
=

(
cos θt sin θt

− sin θt cos θt

)(
t̃L

t̃R

)
. (2.23)

Again, one may determine the masses of the lightest (t̃1) and heaviest stops (t̃2) via the

eigenvalues and the mixing angle θt may be determined; we do not provide these here. This

same exposition applies for the other third generation sfermions and their mixings; the sbottoms

and the staus. There is no mixing of the third generation ντ as this only exists in its left-handed

form.

2.2.3.3 Neutralinos

The MSSM contains four spin-1
2 neutralino states, in the form of the bino (B̃), neutral wino

(W̃3), and two Higgsinos (H̃u, H̃d); these all share the same electric charge of 0, the same spin

and the same colour representation (singlets) and so will mix in electroweak symmetry breaking

to give 4 neutral spin-1
2 states, the lightest of which may be a good dark matter candidate (see

Chapter 2.3). The Lagrangian and neutralino mass matrix for these particles has contributions

from the last term of the superpotential in equation 2.12 (unsurprisingly as this is the Higgsino

mass term), a contribution from EWSB, and one from the soft supersymmetry breaking gaugino

mass terms of equation 2.14; the physical neutralino mass eigenstates are often denoted χ̃
(0)
i ,

however here they will be denoted Z̃i for ease of reading.

LZ̃i 3 −
1

2

(
−iB̃ −iW̃3 H̃u H̃d

)
MZ̃i

(
−iB̃ −iW̃3 H̃u H̃d

)T
, (2.24)

where

MZ̃i
=


M1 0 −MZ cosβ sin θW MZ sinβ sin θW

0 M2 MZ cosβ cos θW −MZ sinβ cos θW

−MZ cosβ sin θW MZ cosβ cos θW 0 −µ
MZ sinβ sin θW −MZ sinβ cos θW −µ 0

 .

(2.25)

As before, the neutralino mass matrix is real and symmetric and so is diagonalised by an

orthogonal transformation9:
Z̃1

Z̃2

Z̃3

Z̃4

 =


v

(1)
1 v

(2)
1 v

(3)
1 v

(4)
1

v
(1)
2 v

(2)
2 v

(3)
2 v

(4)
2

v
(1)
3 v

(2)
3 v

(3)
3 v

(4)
3

v
(1)
4 v

(2)
4 v

(3)
4 v

(4)
4



−iB̃
−iW̃3

H̃u

H̃d

 , (2.26)

here the Z̃i are mass ordered (by absolute values of their masses), with Z̃1 the lightest neutralino.

9Our orthogonal transformation matrix N (where N(i,j) = v
(j)
i ) here is the transpose of the O matrix of [66],

and is also transformed (transposed and with rows swapped) relative to that of [65] as a result of a different
ordering of the gauge eigenstates.
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Now in this case, the fact there are 0s on the diagonal indicates that the mass matrix is not

positive definite, and so generically we must expect the possibility of neutralino mass eigenstates

with negative masses. In general, in our discussions in this thesis in Chapters 3 and 4 we will

therefore have the possibility of negative neutralino masses. However, given that we have ordered

the neutralinos via their absolute values of their masses, it is often customary to define their

masses to be positive (although we shall not). In this case the sign of the mass is changed

via a field redefinition, absorbing a factor of iγ5 into the relevant row of the neutralino mixing

matrix. Performing this field redefinition can be shown to simultaneously change the sign of the

mass term in the Lagrangian, whilst leaving the kinetic term unchanged; it does however affect

neutralino couplings as additional γ5 matrices and factors of i appear which can have significant

effects in interferences. The effects of negative masses are accounted for in the SoftSusy code

and in Appendix A via factors of the form (−1)θi which are ±1 depending on the sign of the

mass of the neutralino being considered.

2.2.3.4 Charginos

In the MSSM, there are also two charginos of each charge (±), arising from the charged

winos and the charged Higgsinos of the gauge eigenbasis. The mass matrix present in the

MSSM Lagrangian is given by

LW̃i
3 −1

2

(
−iW̃+ H̃+

u −iW̃− H̃−d

)
MW̃i

(
−iW̃+ H̃+

u −iW̃− H̃−d

)T
. (2.27)

However, given the charge symmetry here, the mass matrix MW̃i
reduces to 2 × 2 block

form:

MW̃i
=

(
0 NT

N 0

)
, where N =

(
M2 gvu

gvd µ

)
=

(
M2

√
2mW sinβ√

2mW cosβ µ

)
. (2.28)

Accordingly, we may reduce the whole Lagrangian mass expression to 2× 2 form:

LW̃i
3 −1

2

(
−iW̃−
H̃−d

)
N
(
−iW̃+ H̃+

u

)
+ h.c.. (2.29)

Unlike all our previous diagonalisations, this chargino mass matrix is not symmetric. As

the γ5 matrix acts in similar block diagonal form we can therefore relate the asymmetry of the

mass matrix to γ5 (i.e. handedness) dependence. The generalisation of the usual diagonalisation

of a real symmetric matrix via an orthogonal transformation to a non symmetric matrix is to

perform a singular value decomposition. We act on the mass matrixMW̃i
with different matrices

U and V on its left- and right-hand side such that U †DV =MW̃i
, for unitary matrices U and

V and a diagonal matrix of singular values D. As a result of the 2× 2 block structure, we can

consequently consider diagonalising the 2×2 blocks separately by different rotations, essentially

rotating the left-hand and right-hand chiral components differently.
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(
W̃+

1

W̃+
2

)
= V

(
−iW̃+

H̃+
u

)
,

(
W̃−1
W̃−2

)
= U

(
−iW̃−
H̃−d

)
. (2.30)

We can therefore exploit the separate LH and RH rotations to remove any chirality depen-

dence:

U∗NV −1 = D =

(
mW̃1

0

0 mW̃2

)
, (2.31)

where the eigenvalues mW̃1/2
are necessarily real but may be negative (in which case we may

perform the field redefinitions exactly as described in the context of neutralinos). U and V may

be parametrised in terms of rotation angles in the usual manner:

U =

(
cos θL − sin θL

sin θL cos θL

)
, V =

(
cos θR − sin θR

sin θR cos θR

)
. (2.32)

U is the unitary matrix which diagonalises NTN and V is similarly the unitary matrix which

diagonalises NNT (both NTN and NNT are clearly symmetric and so permit diagonalisation via

an orthogonal transformation). The NNT and NTN matrices have eigenvalues m2
W̃1

and m2
W̃2

,

which again explains why the mass values themselves may be negative. As usual, the masses of

the physical charginos (W̃1, W̃2, mass ordered from lowest to highest) may be determined and

are

m2
W̃1,2

=
1

2

[
|M2|2 + |µ|2 + 2m2

W ∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin 2β|2
]
. (2.33)

2.2.3.5 Further Mixing

In addition to this mixing of gauge eigenstates of the same colour, spin and charge in EWSB,

in general there can be large amounts of additional mixing in the MSSM and its extensions as

caused by particles running in loops. In particular, this is a concern where supersymmetric

particles act in loops between Standard Model particles as this can cause effects already ruled

out experimentally. Amongst the large general MSSM parameter space (as parametrised via the

120 possible supersymmetry breaking parameters), there are large sections where supersymmet-

ric particles would cause large quark mixing, additional flavour violation and flavour-changing

neutral currents (FCNCs) which have been ruled out by Standard Model measurements. We

therefore expect that the precise but unknown supersymmetry breaking mechanism imposes

constraints on these parameters to structure the parameter space such that these phenomeno-

logically undesirable regions are ruled out. Some assumptions of this form can be made on the

MSSM parameter space to reduce it, resulting in the phenomenological MSSM (pMSSM).
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2.2.4 R-parity

In the Standard Model, baryon number (B) and lepton number (L) arise as accidental sym-

metries purely as a result of the gauge invariance, particle content and renormalisability require-

ments. In the MSSM however, this is no longer the case. The additional particle content, specif-

ically the scalars carrying baryon and lepton number (the superpartners of the fermions), allow

additional B and L violating terms to be written down in the superpotential. The superpotential

given in equation 2.12 neglected these terms on the basis of minimality and phenomenology. In

particular, phenomenologically, B and L number violation combined are excluded by processes

such as proton decay, which currently has a measured lifetime of longer than 1034 years [67]. If

the B and L number violating terms are not included then supersymmetry non-renormalisation

theorems ensure they are not regenerated radiatively. Therefore provided such terms can be

satisfactorily ruled out theoretically, we can explain such experimental measurements. In the

MSSM the potential B and L number violating terms arising from the superpotential are

WRPV = λijkLiLjE
c
k + λ′ijkLiQjD

c
k + λ′′ijkU

c
iD

c
jD

c
k + κiLiHu. (2.34)

In order to ban such terms, rather than just neglect them on the basis of minimality, a

symmetry must be invoked - the most common of these symmetries is a Z2 symmetry termed

“R-parity”10. R-parity is a multiplicative conserved quantum number given by:

Rp = (−1)3(B−L)+2S , (2.35)

where S is the spin of the particle. Given all Standard Model particles and their superpartners

have the same B and L number but differ in spin by 1
2 , Standard Model particles (including

all Higgses) and their supersymmetric superpartner particles consequently have opposite sign

R-parity. Conventionally, the Standard Model particles are given Rp = 1 and the supersymmet-

ric superpartners have Rp = −1. A subtle point is how R-parity, a symmetry which explicitly

distinguishes Standard Model particles and their supersymmetric partners, does not break su-

persymmetry. The resolution of this is that in reality it is an effective symmetry, which can be

considered as arising from more fundamental symmetries such as “matter parity”, which do not

break supersymmetry, in addition to the conservation of angular momentum. Further details on

this area may be found in [47, 65]. The precise method of generating this phenomenologically

needed R-parity discrete symmetry is itself a subject of much interest, however we will not delve

into it for this work. R-parity conservation is assumed in the standard meaning of the MSSM,

and will be assumed in our work on supersymmetric decays in Chapters 3 and 4.

10There are actually many additional symmetries which can ban various subsets of the R-parity violating terms,
for example see reference [47] for a summary.
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2.2.4.1 R-parity conservation

The imposition of this R-parity symmetry, to produce the R-parity conserving (“RPC”)

MSSM, has tremendous consequences for phenomenology:

• All interactions in RPC models must involve an even number of supersymmetric particles

in order to conserve R-parity: in particular it is this requirement that allows one to gain

intuition of the allowed supersymmetric interactions in Chapter 2.2.5 by “supersymmetris-

ing” Standard Model interactions via the exchange of an even number of Standard Model

particles with their superpartners.

• In experiments Standard Model particles are necessarily collided; consequently conserva-

tion of R-parity ensures that supersymmetric particles must be pair produced, this has

significant impacts on the kinematics and signatures.

• Any supersymmetric particle must decay to an odd number of supersymmetric particles,

in addition to any number of Standard Model particles. Given decay kinematics favours

fewer particles being produced (see Chapter 3.1) most supersymmetric particles undergo

decays of the form SUSY→ SUSY + SM.

• The lightest supersymmetric particle (LSP) of the model, having no further supersym-

metric particles to decay to, is stable and so may provide a good dark matter candidate,

particularly if it is the lightest neutralino Z̃1.

• These LSPs remain after cascades of supersymmetric particle decays and, if they are

neutral (as they must be to provide a dark matter candidate), leave the experiments as

missing energy and momentum.

For these reasons, most research in this area focuses on R-parity conserving models, as

they offer the possibility of resolving the issues of dark matter in addition to the standard

motivations for supersymmetry. Our SoftSusy decay calculator also assumes RPC for these

reasons, nonetheless the spectrum generator part of the SoftSusy program [66] includes the

possibility of allowing R-parity violation (RPV); therefore we discuss it briefly here.

2.2.4.2 R-parity violation

In spite of this focus in the field on R-parity conservation, it is possible to allow R-parity

violating couplings or various subsets thereof, though they are constrained to be very small by

experiments. In particular, with RPV one generically expects proton decay as demonstrated

in Figure 2.3. However, proton decay requires both B number violation (via the first vertex

corresponding to the third term in WRPV in equation 2.34) and L number violation (via the

second vertex corresponding to the second vertex in WRPV ) separately. Therefore preventing

just one of B number violation and L number violation will prevent proton decay. Given there

are strong bounds on B number violation via non-observation of processes such as neutron-

antineutron mixing, it is often supposed that only L number is violated. In that case such

small lepton number violation may also generate Majorana fermion masses and mixings for

the neutrinos (for example see references [68–70]), whilst still preventing proton decay. In
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general there are various UV models possible to generate a symmetry which prevents undesirable

phenomenological consequences in this way whilst providing explanations for neutrino masses

or other observations; a particular popular one is to note that whilst both B and L number

are expected to be broken by non-perturbative effects in the Standard Model, B-L is not and is

present in many GUT models. Therefore many models consider a gauged U(1)B−L symmetry

broken by a scalar VEV [71], the remaining conserved unbroken subgroup can then correspond

to R-parity conservation.

Figure 2.3: Proton decay allowed in the case of R-parity violation, the λ′′ijk is a baryon number violating
coupling and the λ′ijk is a lepton number violating coupling corresponding to the appropriate terms in
the superpotential in equation 2.34. The B, L and B-L numbers are shown for each particle.

R-parity violation, even in very small amounts, may have significant phenomenological con-

sequences (which will be outside the scope of our work in Chapters 3 and 4); the LSP may now

decay offering a new array of signatures at the LHC.

2.2.5 Interactions

The particle interactions in the MSSM, and in supersymmetric models in general, are derived

in a similar manner to the mass terms described in the Chapter 2.2.3; gathering all terms in

the Lagrangian which may contribute to a given coupling and diagonalising and rotating states

as required to obtain the couplings of the physical mass eigenstates. In general this process of

deriving the various MSSM interactions is therefore very involved, nonetheless there are several

guiding principles which may aid the intuition. Deriving the relevant interactions is vital to the

calculation of the supersymmetric and Higgs decay branching ratios in our work in SoftSusy in

Chapters 3 and 4.

First of all, as is the case in the Standard Model, all interactions must preserve all the

quantum numbers of the MSSM, as any Lagrangian terms must be overall singlets of the SU(3)c×
SU(2)L ×U(1)Y gauge group. In addition, as we impose R-parity conservation in our work, we

also expect baryon number and lepton number conservation. R-parity conservation also lends a

second useful guide; as R-parity assigns a quantum number of +1 to Standard Model particles

(and all Higgs bosons) and −1 to MSSM superpartners, all interactions must have an even

number of supersymmetric particles. In particular, adding to this the fact that supersymmetry

links particle and superpartner couplings, one may expect supersymmetric specific interactions

to simply be “supersymmetrisations” of Standard Model interactions, where we take an even
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number of the Standard Model particles present in a Standard Model allowed interaction and

replace them by their superpartners. This will still be allowed by conservation of quantum

numbers as particles and their superpartners are in the same overall gauge group representations,

whilst transforming an even number of particles ensures R-parity conservation.

However, in reality, the only certain way to obtain the interactions of the MSSM is to perform

the full derivations (this is demonstrated in many texts, including [65]), which were nonetheless

performed in our work in this area. As an example of the need to rigorously perform such

calculations rather than rely on guiding principles, an interaction vertex which one might naively

expect to appear in the MSSM at tree-level is the H+W−Z vertex as it satisfies conservation

of all quantum numbers and R-parity conservation. In reality however it is absent at tree-level

(occurring only at 1-loop); the physical reason behind this is a cancellation resulting from the

fact that the same angle β which is the ratio of the VEVs of the neutral Higgs fields also sets

the mixing of the charged Higgs components of the doublets, thereby guaranteeing cancellation

and the absence of this vertex at tree-level.

2.2.6 Renormalisation in the MSSM

In a manner exactly analogous to the Standard Model, supersymmetric (SUSY) models

such as the MSSM and its extensions also have particle masses, couplings, mixings and gauge

couplings which depend on the energy scale. However with additional particle content relative to

the Standard Model this running of parameter values is altered, whilst the fundamental values

of parameters matched onto the Standard Model or MSSM may also vary.

In generating the spectra of the MSSM, as performed by the SoftSusy spectrum generator,

before the decay calculator aspect of the program our work has focused upon, one must take

boundary conditions for physical masses and parameters at the electroweak scale (usually taken

as MZ); for example the top pole mass, the gauge coupling α in the MS scheme and the bottom

mass in the MS scheme are usual boundary conditions. These boundary conditions then apply to

the renormalisation group equation running between MZ and MSUSY or MGUT. These physical

parameters are experimentally measured and so include corrections to all orders, in theoretical

predictions these must then be matched onto Feynman diagrams up to the required order to

extract the fundamental parameters of the theory. Given the MSSM has additional particles and

interactions relative to the Standard Model, this means the fundamental theoretical parameters

extracted are different. For example, the strong coupling constant αs may be determined via

gluon to quark-antiquark vertices. In the MSSM however there are 1-loop corrections from

gluinos to this vertex (see Figure 3.3) in addition to the 1-loop Standard Model corrections, and

so after subtracting off the various corrections at the specified loop level, the value extracted in

the MSSM will be different from that of the Standard Model. Moreover, there can be different

schemes for the mass extraction and different approximations made even within one theory

in determining the fundamental parameters, and different numbers of loops included. These

parameters are then used in the decay calculator expressions and so differences in numerical

values here are a significant source of differences in the decay calculations.
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Figure 2.4: Running of the gauge couplings to higher scales in the Standard Model and the MSSM. This
demonstrates how gauge coupling unification occurs in the MSSM but not in the SM, with the unification
of the three gauge couplings occurring at around MGUT ≈ 2× 1016 GeV. Figure from [72].

Meanwhile, with addition particles, the running of the gauge couplings, as parametrised via

the β functions, are also altered in the MSSM relative to the Standard Model. These additional

particles typically appear around the TeV scale and so bend the running of the coupling constants

beyond this point. The 1-loop expressions for the β(gi) functions in the Standard Model and

MSSM are
β(gi) = Q

∂gi(Q)

∂Q
=
∂gi(Q)

∂ logQ
=

g3
i

16π2
bi, (2.36)

where bi differs for each gauge group and depends on the particle content11:

bi =

4.1,−19
6 ,−7 for SM for i=1,2,3;

6.6, 1,−3 for MSSM for i = 1,2,3.
(2.37)

As a result, running the values of the gauge couplings to higher scales causes differences

between the Standard Model and the MSSM. In the Standard Model the gauge couplings never

unify, see Figure 2.4. In contrast, in the MSSM, with the altered values of the bi coefficients (and

in particular with the b2 for the SU(2)L group changing sign and so running to larger values)

Figure 2.4 shows all three gauge couplings unify approximately at a single scale (certainly within

the errors that would be caused by corrections at the unification scale). This would indicate

unification of the three fundamental forces relevant at particle scales, suggesting some GUT scale

complete model arises at around MGUT ≈ 2× 1016 GeV. This is therefore regarded as a further

motivation for supersymmetry and the MSSM. Investigations into the running of gauge couplings

with different particle content or particle masses can be performed within SoftSusy [66].

As an aside, one may ask why the running of the gauge couplings with the log of the scale

Q is linear in Figure 2.4, this is straightforward to demonstrate. Given αi = gi/4π
2 then

∂α−1
i

∂ logQ
= −8π

g3
i

∂gi
∂ logQ

= −8π

g3
i

g3
i

16π2
bi = − bi

2π
. (2.38)

Therefore the gradient of α−1
i is constant in units of logQ as observed.

11To be precise it should be noted that here the gi are slightly different to the conventional Standard Model
definitions as now g1 =

√
5/3g′.
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2.3 Motivations for Supersymmetry

There are consequently a great many motivations for supersymmetry from a theoretical

and phenomenological perspective; this has contributed to its enduring popularity as a Beyond

Standard Model theory, even in the face of a lack of discovery at the LHC. We summarise the

motivations here, in the context of the MSSM.

2.3.1 Technical Hierarchy Problem and Naturalness

As demonstrated previously in Chapter 1.2, the Standard Model faces a problem of stability

of the Higgs mass with respect to loop corrections, which raises questions of the origin of the

difference of scales between electroweak and GUT/Planck scale physics and the stability of this

scale difference. In Chapter 1.2, we explicitly evaluated the quadratic divergences to the Higgs

boson mass mh caused by the dominant top loop corrections in equation 1.35. If one were to

repeat the calculation for the contribution of scalars to the Higgs boson mass, with the the

Feynman diagram as shown in top left of Figure 1.3, then the mass correction due to a scalar

1-loop correction is

(δmh)2 = λS

∫ Λ d4k

(2π)4

1

k2 −m2
s

∼ λS
∫ Λ k32π2dk

(2π)4

1

k2
∼ λS

8π2

∫ Λ

kdk ∼ λSΛ2

16π2
. (2.39)

The key differences relative to the fermionic corrections are - there is no minus sign as

we have a loop of scalars, there is only one factor of the coupling as the Feynman diagrams

involves a single 4-point vertex (c.f. two 3-point vertices for the fermionic case), and there is a

factor of two difference arising from the coupling normalisation and lack of taking a trace in the

scalar case. Crucially, the sign difference means that, if we can relate the scalar and fermionic

couplings such that λs = 2λ2
f (where λf was the top Yukawa coupling yt in equation 1.35),

then the quadratically divergent contributions to mh will cancel between scalar and fermion

contributions, leaving only logarithmic divergences and resolving any issues of naturalness and

stability. This is what happens in supersymmetry, each fermion is accompanied by two scalars

- the f̃L and f̃R - in order to have the same number of fermionic and bosonic degrees of freedom

in each supermultiplet, giving the necessary factor of two. Meanwhile, supersymmetry relates

the fermions and their superpartners, linking their couplings and ensuring the cancellation.

2.3.2 Gauge Coupling Unification

As described in the previous section, Chapter 2.2.6, the gauge couplings unify when run to

high scales in the MSSM, suggesting the presence of a GUT-scale UV complete model. This is

theoretically satisfying, lending credence to work on grand unified theories (GUTs) and offers

an indication of the scales at which new physics must be important in a way that does not arise

from the Standard Model.
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2.3.3 Dark Matter

One of the key obvious absences from the Standard Model, is its complete lack of any viable

candidates for dark matter, as outlined in Chapter 1.2. However, the MSSM and its extensions

naturally provide a good dark matter candidate in the case of R-parity conservation. In par-

ticular, the lightest supersymmetric particle is then stable, and so if it is neutral and colourless

it is then a possible source for the dark matter observed astrophysically. Moreover the super-

symmetric particles are generically expected to be WIMP-like (“Weakly Interacting Massive

Particle”), given that they occur at masses just a few times the weak scale and with couplings

linked to those of the Standard Model by supersymmetry. The requirement of neutral, colour-

less particles leaves 3 main types of supersymmetric particle which may be the LSP and dark

matter - neutralinos Z̃, sneutrinos ν̃ and gravitinos G̃. ν̃ dark matter is largely ruled out exper-

imentally [73], whilst LSP gravitino dark matter is possible in gauge-mediated supersymmetry

breaking models. In this case constraints are generically weaker due to the very weak couplings

of the gravitino, but may be set via long-lived NLSP decays to the LSP gravitino and Stan-

dard Model particles. In particular high energy photons produced in this manner would have

cosmological effects, whilst gravitino masses in the certain mass ranges may result in displaced

vertices at the LHC (see Chapter 4.2.4 for these modes in the SoftSusy decay calculator). In

any case, collider experiments have focused on the possibility of neutralino dark matter, as this

offers the most significant possibility of observation at such experiments. The exact nature of

the lightest neutralino, i.e. its precise linear combination of bino, wino and Higgsino, along with

its mass and the mass spectrum of the supersymmetric model, will alter its experimental and

cosmological properties, and in particular whether or not it has the correct relic abundance in

the universe. In the CMSSM, the LSP is usually a bino (as explained later below equation 2.52),

this tends to be over-produced and so needs coannihilation with fermions and possibly signif-

icant Higgsino fraction to give the right relic abundance. There are many reviews available

considering supersymmetric dark matter in great detail, including [74]. In generality, the calcu-

lation of the neutralino relic abundances for different supersymmetric parameter space points,

and consequent restriction of the parameter space to that with viable dark matter candidates,

is very complex. Fortunately however, public codes have been developed to perform this task,

including DarkSUSY [75–77] and micrOMEGAs [78, 79], the latter of which can interface with the

SoftSusy program.

2.3.4 Higgs mass prediction

In Chapter 1.1.1 we saw that the Higgs mass is not theoretically predicted by the Standard

Model, but rather it may only be experimentally measured and input into the theory. In contrast,

in the MSSM the Higgs mass is predicted as a function of other parameters of the theory and,

as we demonstrated in Chapter 2.2.3.1, bounds may be placed on its mass. Specifically, in

equation 2.21 it was shown that a tree-level upper bound of mZ may be placed on mh. Given

then that the Higgs mass has been measured at the LHC to be mh = 125 GeV [12, 13, 80], this
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naively causes problems for the MSSM. In reality however there are also loop corrections to

this bound, and given the Higgs couples to Standard Model particles and their superpartners

in proportion to the mass of the Standard Model particles, the dominant contributions will be

from tops and stops. The calculation of all the radiative corrections to the Higgs mass, including

smaller contributions from gauge bosons and from bottoms and taus and their superpartners

(which may be important in regions of larger tanβ), is very involved (excellent reviews of the

techniques involved and the results are available in [81, 82]). In general however there are 3

requirements for large radiative corrections to the lightest Higgs boson mass:

• Large stop masses (mt̃i
) increase the loop corrections to the Higgs mass caused by stop

loops; these are usually the dominant contributions due to the large top Yukawa coupling.

Under various simplifying assumptions (mt̃1
= mt̃2

= mt̃ and no stop mixing (Xt = 0))

the stop loop contributions can be written as:

(∆mh)2 =
3GF√

2π2
m4
t ln

m2
t̃

m2
t

. (2.40)

Whilst this contribution is only logarithmic in the stop mass squared, m2
t̃
, it is quartic

in the large top mass and so may offer corrections of tens of GeV for stops of masses

mt̃ ∼ O(1 TeV).

• Large stop mixing, parametrised via the mixing parameter Xt = At − µ cotβ, which is a

measure of the amount of mixing between the two stop eigenstates t̃1 and t̃2. It may be

shown that large mixing Xt ∼ mt̃, may increase the stop loop corrections to the lightest

Higgs mass by 10 − 15 GeV in these “maximal mixing” scenarios. The calculations to

demonstrate this are somewhat complex and will not be included here, nonetheless the

calculations can be performed and demonstrated using the SoftSusy spectrum generator

[66]. The stop mixing corrections may be written as follows (more details are available

in [83]):

(∆mh)2 =
3GF√

2π2
m4
t

[
X2
t

m2
t̃

− X4
t

12m4
t̃

]
. (2.41)

• Large values of tanβ increase the Yukawa couplings of the down type fermions such as

the bottoms and taus. This allows the b, τ and their superpartners b̃i and τ̃i to also make

significant radiative contributions to mh. Large mA values are also required to maximise

the tree-level Higgs mass. With these conditions the bottom and tau fermion and sfermion

contributions may contribute an additional few GeV to the Higgs mass.

In addition to these one-loop effects, there are also 2-loop corrections, scheme dependences

and various other effects. In general however, these radiative corrections allow the lightest

Higgs mass of the MSSM to reach up to mh ∼ 135 GeV, thereby providing an explanation of

the LHC measured Higgs mass of 125 GeV. This may therefore be seen as a motivation for

the MSSM; it should be noted however that reaching the value of the observed Higgs mass is

not possible over much of the MSSM parameter space, and so it may be argued that this is

Thomas Cridge 46



Chapter 2. Supersymmetry and the LHC 2.3. Motivations for Supersymmetry

a little unsatisfactory, requiring some tuning. This is in fact one of the motivations for the

Next-to-Minimal Supersymmetric Standard Model (NMSSM), described in Chapter 2.4, with

the idea being that additional particle content allows mh to be raised further, contributing an

extra positive term to mh across the parameter space and thereby allowing the observed Higgs

mass to be achieved more naturally across the majority of the supersymmetric parameter space.

More information on the Higgs mass in the MSSM may be found in the review [84].

2.3.5 Grand Unified Theories, Supergravity and String Theory

Supersymmetry is also a necessary part of many of the most compelling “top-down” models of

the fundamental physics of the universe, including many Grand Unified Theories (GUTs). Local

supersymmetry allows the formation of supergravity theories, incorporating general relativity

into our description of particle physics. Meanwhile string theory, via superstring theories, often

requires supersymmetry (or at least simplifies greatly in its presence). These may therefore be

seen as theoretical indications of supersymmetry being an important part of the physics of the

universe, particularly at high scales; however they offer no reason to suggest supersymmetry

should be present at our current collider scales. These models are not relevant to our work in

this thesis and so we go into no further details here.
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2.4 Next-to-Minimal Supersymmetric Standard Model

Whilst the MSSM may be the most “minimal” of the phenomenologically testable super-

symmetric models, it is by no means the sole possibility, indeed a plethora of extensions to the

MSSM exist, all offering solutions to additional problems not resolved in the MSSM alone. Pop-

ular extensions include the Lepton-Number Violating MSSM (�LMSSM) [70, 85–87], the U(1)

extended MSSM (UMSSM) [88, 89], Two Higgs Doublet Models (2HDMs) [90, 91] and many

others; the only one of direct relevance to this work, and indeed one of the most popular for

phenomenology, is the Next-to-Minimal Supersymmetric Standard Model (NMSSM).

The basic idea behind the NMSSM is to add a gauge singlet chiral superfield, S, to the

MSSM. A chiral superfield contains an additional fermion - the “singlino” - and two additional

scalars. This additional particle content has a significant effect upon the phenomenology; just

as in the MSSM (see Chapter 2.2.3), gauge eigenstates with the same quantum numbers mix

in electroweak symmetry breaking to form mass eigenstates. Now the additional singlino mixes

with the two Higgsinos, the bino and neutral wino of the MSSM to form 5 neutralinos; the

NMSSM therefore has an extended neutralino sector. Meanwhile, assuming CP conservation

in the Higgs sector (which need not necessarily hold), the additional scalars form one CP even

scalar and one CP odd scalar which each mix with the two CP even neutral scalars and the one

CP odd neutral scalar of the MSSM respectively, forming an extended Higgs sector of 3 CP even

neutral Higgs scalars and 2 CP odd neutral Higgs scalars.

More specifically, we define the NMSSM as the MSSM but with the superpotential now

containing additional terms relative to the MSSM superpotential of equation 2.12:

WNMSSM = WMSSM + λSHuHd + ξFS +
1

2
µ′S2 +

κ

3
S3. (2.42)

As the superpotential must have dimension 3, this makes the constants λ, κ dimensionless,

whilst µ′ has dimensions of mass and ξF has dimensions of [mass]2. As the chiral superfield

added is a gauge singlet, the singlino and two additional scalars may only interact with non

Higgs/Higgsino particles via mixing.

The soft supersymmetry breaking contribution to the Lagrangian also contains extra pieces

relative to the MSSM (see equation 2.14) as indicated in equation 2.43:

L(NMSSM)
���SUSY = L(MSSM)

���SUSY +m2
S |S|2 +

(
λAλHuHdS +

1

3
κAκS

3 +
1

2
m2
S′S

2 + ξSS + h.c.
)
. (2.43)

The NMSSM consequently introduces several extra parameters: these are the dimensionless

Yukawa couplings λ and κ, where λ sets the coupling of the gauge singlet superfield particles to

the Higgs chiral superfields; it therefore sets the scalar and neutralino mixing as well as the Higgs

and Higgsino mass, whilst κ also contributes to these mixings and mass parameters in both the

extended neutralino and extended Higgs sectors. s is the vacuum expectation value of the S

singlet scalar, which attains a VEV in EWSB in the same manner as occurs for the two Higgs
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doublets; ξF and ξS are supersymmetry conserving and supersymmetry breaking tadpole terms

respectively; µ′ is a supersymmetric mass term for the new singlet (analogous to the µ parameter

for the two Higgs doublets in the MSSM); mS is a soft supersymmetry breaking mass for the

new singlet; whilst Aλ and Aκ are soft supersymmetry breaking trilinear couplings associated

with the new singlet and its interactions with the other two Higgs doublets. As a result of the

additional parameters, many extra contributions are made to the corresponding parameters of

the MSSM, and so several effective parameters are often defined for ease: m2
3 = Bµ, m

′2
S = B′µ′,

µeff = µ+ λs, Beff = Aλ + κs and m̂2
3 = m2

3 + λ(µ′s+ ξF ). The details of this are unimportant

for our work, however we have outlined them as these parameters appear in several of the

expressions given in this section and later in Chapter 4 as well as in Appendix A.6. As in the

MSSM, the parameters may be constrained and linked via considerations of the nature of the

minimum of the scalar potential, requiring a minimum which is phenomenologically admissible.

This is somewhat more complicated to deal with in the NMSSM as there may be several local

minima. We do not go into details here, however they may be found in the excellent review on

the NMSSM [92].

The first added term in the superpotential in equation 2.42 enables the singlino to mix

with the usual 4 neutralinos of the MSSM forming the extended neutralino sector, so that the

Lagrangian term in equation 2.24 becomes:

LZ̃i 3 −
1

2

(
−iB̃ −iW̃3 H̃u H̃d S̃

)
MZ̃i

(
−iB̃ −iW̃3 H̃u H̃d S̃

)T
, (2.44)

where the neutralino mixing matrix previously given by equation 2.25, is now as follows12:

MZ̃i
=



M1 0 −g′vd√
2

g′vu√
2

0

0 M2
gvd√

2
−gvu√

2
0

−g′vd√
2

gvd√
2

0 −µeff −λvu
g′vu√

2
−gvu√

2
−µeff 0 −λvd

0 0 0 0 2κs+ µ′.


(2.45)

Diagonalising this mass matrix then gives each of the 5 physical mass eigenstate neutralinos

a singlino component. This may significantly affect the phenomenology of the supersymmet-

ric model, in particular if the LSP is singlino-like then the NLSPs may have long lifetimes,

potentially producing displaced vertex signatures in colliders such as the LHC.

As for the Higgs sector of the NMSSM, the same first term of the superpotential also generates

mixing of the singlet scalars with the scalars of the MSSM. Therefore we obtain a 3 × 3 mass

matrix in the CP even sector and a 2×2 mass matrix in the CP odd sector (splitting the complex

scalar singlet into real and imaginary parts and assuming CP conservation in the extended Higgs

12The terms have been rewritten from functions of the variables mZ , β and θW into functions of the vari-

ables g, g′, vu, vd using tanβ = vu
vd

, tan θW = g′

g
, mW = g√

2

√
v2
u + v2

d and mZ cos θW = mW , for example

mZ cosβ sin θW = mW
g′

g
cosβ = mW

g′

g
vd√
v2
u+v2

d

= g′vd√
2

.
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sector). The CP even neutral Higgs mixing matrix is now given in equation 2.46 and again must

be diagonalised to obtain the masses and mixing matrix between the different eigenbases, where

R(S) has been added as the third component of vectors in this space:

MR(H0) =



g2v2
d

+(µeffBeff+m̂2
3) tanβ

(2λ2−g2)vuvd
−µeffBeff−m̂2

3

λ(2µeffvd
−(Beff+κs+µ′)vu)

(2λ2−g2)vuvd
−µeffBeff−m̂2

3

g2v2
u

+(µeffBeff+m̂2
3)/ tanβ

λ(2µeffvu
−(Beff+κs+µ′)vd)

λ(2µeffvd
−(Beff+κs+µ′)vu)

λ(2µeffvu
−(Beff+κs+µ′)vd)

λ(Aλ+µ′)
vuvd
s

+κs(Aκ+4κs+3µ′)−(ξS+ξFµ
′)/s


. (2.46)

Meanwhile, in the NMSSM there are therefore two physical CP odd neutral Higgs bosons (in

addition to the usual Goldstone which essentially gives mass to the Z boson), the mass matrix

for the two CP odd neutral Higgs bosons of the NMSSM is given in equation 2.47 and must be

diagonalised to obtain the masses and mixing matrix. Here the ordering of the gauge eigenstates

is
(
I(H0

d) I(H0
u) I(S)

)T
.

MI(H0) =


(µeffBeff + m̂2

3) tanβ µeffBeff + m̂2
3 λvu(Aλ − 2κs− µ′)

µeffBeff + m̂2
3 (µeffBeff + m̂2

3)/ tanβ λvd(Aλ − 2κs− µ′)
λvu(Aλ − 2κs− µ′) λvd(Aλ − 2κs− µ′) λ(Beff+3κs+µ′)

vuvd
s
−3κAκs

−2m
′2
S −κµ

′s−ξF (4κ+µ′
s

)− ξS
s

 . (2.47)

The effect of the extended Higgs sector is to significantly alter the phenomenology of the expected

Higgs bosons, now there may be a lighter CP odd or CP even Higgs than the Standard Model-

like Higgs at 125 GeV. This can significantly affect the decay signatures of the NMSSM as now

there may be large invisible widths of the Standard Model-like Higgs to lighter scalar degrees of

freedom.

2.4.1 Motivations for the NMSSM

Given all the additional complications of the extra contributions and extended neutralino

and Higgs sectors of the NMSSM, the question naturally arises of what the motivations are for

disrupting the minimality of the MSSM via the addition of the gauge singlet chiral superfield.

In fact, there are two general motivations, both associated with naturalness and fine tuning,

with the first more theoretical and the second more phenomenological:

• µ problem of the MSSM - In the MSSM superpotential of equation 2.12, the term µHuHd

introduces an additional dimensionful parameter into the theory as µ has mass dimension

1. This µ parameter therefore sets the mass scale of the Higgses and Higgsinos and conse-

quently must be of order the electroweak scale in order to ensure the Hu and Hd scalars get

VEVs after electroweak symmetry breaking of the correct order of magnitude. However,

setting µ by hand to this value with no additional explanation is rather unsatisfactory

when the origin of the scale of µ is nominally completely independent of the electroweak
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scale and would therefore naturally be expected to be of order the cut-off scale MGUT

or MPl. In fact, this is a big problem for the MSSM as it essentially reintroduces nat-

uralness issues involving the hierarchies of scales, the resolution of which in the context

of the electroweak scale and the Higgs mass value and stability was a key motivation for

supersymmetry.

The NMSSM resolves this issue by allowing the dynamical generation of the µ parameter.

In an exactly analogous manner to the generation of fermion masses in the Standard Model

(or MSSM) via Yukawa couplings and VEVs of the Higgs doublet(s), we may generate the

µ parameter at the EW/SUSY scale when the singlet S gets a VEV s in electroweak

symmetry breaking. In order to do this, we must replace the superpotential µ term with

a coupling of the singlet to the two Higgs doublets:

µHuHd
replace−−−−→ λSHuHd

EWSB−−−−→ λ〈S〉HuHd = λsHuHd ⇒ µeff = λs. (2.48)

As the VEV s occurs in EWSB it is naturally at the electroweak scale, avoiding any issues

of naturalness. This therefore removes the need to add an additional scale to the theory.

The NMSSM therefore resolves the µ problem of the MSSM.

• Higgs mass mh - In the MSSM in Chapter 2.3.4 we saw that the MSSM provides an

explanation of the size of the Higgs mass, in a way the Standard Model is unable to,

however it was also apparent that only a small particularly fine-tuned part of the overall

supersymmetric parameter space for the MSSM, i.e. one with heavy stops and large stop

mixing, was able to reach mh = 125 GeV. So once again, in the MSSM we still have the

question of why it should be that only a very specific and restricted part of the parameter

space seems to have arisen in nature. In the NMSSM however, with the addition of the

singlet scalars, we have additional contributions to the Higgs mass mh. In order to extract

the Higgs masses we must diagonalise the mass matrix for the CP even neutral Higgs

bosons. In order to obtain an upper bound on the Higgs mass we may rotate the upper

2× 2 sub-matrix by an angle β and find:

m2
h ≤ m2

Z

(
cos2 2β +

λ2

g2
sin2 2β

)
. (2.49)

Therefore in the NMSSM there is an additional positive contribution to the upper bound

on the Higgs mass set by λ. This raises the obtainable Higgs mass at tree-level such that

the upper bound is larger than mZ , adding on the radiative corrections as in the MSSM

then allows mh = 125 GeV to be reached over much of the parameter space of the NMSSM,

avoiding any questions of selection of specific regions of parameter space13.

13The overall upper bound, including radiative corrections, on mh is now ∼ 150 GeV due to this additional
positive tree-level contribution to its mass.
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2.4.2 Z3 invariant NMSSM

There is a clear problem with the NMSSM as we have thus far presented it as a resolution

of the µ problem; whilst it is true that we may now dynamically generate a contribution to the

µeff parameter dynamically via the VEV of S, we still must explain why a contribution of the

form of the µ term in the MSSM is not present. In addition, we have also added in further

dimensionful parameters in µ′, ξF to the superpotential and corresponding soft supersymmetry

breaking dimensionful mass parameters m2
3, m

′2
S and ξS exist in L���SUSY, all of which must be

around the electroweak and SUSY scales with no prior justification, again removing naturalness

as a motivation for the NMSSM. Thankfully, one may ban such terms by instead considering

the “scale-invariant” NMSSM: by requiring the addition of no new scales to the theory we set

µ = µ′ = ξF = m2
3 = m

′2
S = ξS = 0, recovering naturalness. However, we must ban such terms

for a good reason - examining the superpotential of the NMSSM given in equation 2.42, it is clear

that the dimensionless terms exhibit a Z3 symmetry which is not present in the dimensionful

terms. In other words, as the superpotential is cubic, any transformation of the form Φ→ Φe2πi/3

on all of the chiral superfields will exclude any terms with dimensionful parameters, leaving only

the scale invariant superpotential as this has an accidental Z3 symmetry.

We can therefore distinguish the general NMSSM, which we have discussed so far, from the

Z3-invariant NMSSM (often referred to as the NMSSM in the literature). The Z3-invariant

NMSSM is naturally scale-invariant, therefore resolving the µ problem of the MSSM whilst

retaining naturalness as a motivation. The superpotential for the Z3-invariant NMSSM is:

WZ3
NMSSM = WMSSM

∣∣∣∣
µ=0

+ λSHuHd +
κ

3
S3. (2.50)

However, adding a discrete Z3 symmetry to the theory also poses problems. After EWSB

this Z3 is spontaneously broken as the scalar fields get VEVs and so the universe would contain

regions of space with equivalent (i.e. same vacuum energy) values but different phases of the

VEVs vu, vd, s, with the VEVs in different regions related by Z3 transformations. These “bub-

bles” of different vacua would be separated by domain walls interpolating between the different

phase but equivalent solutions and which would contain significant fractions of the energy den-

sity of the universe and have observable impacts on the Cosmic Microwave Background. There

has been much work on avoiding such issues. Generally it is assumed that the Z3 is an accidental

symmetry and so there is an explicit Z3 breaking term at late times to break the degeneracy of

energy between the different vacuum bubbles and so cause the domain walls to evaporate. This

still maintains the ability to effectively ban the scale invariant terms of the superpotential as

the Z3 violation is small. Alternatively, embedding the discrete Z3 symmetry in a continuous

symmetry, for example U(1)′ added symmetries in extensions of NMSSM models, can avoid

domain walls. More information on these topics is available in references [92,93].

SoftSusy works for both the Z3-conserving and Z3-violating NMSSM in both the spectrum

generation (i.e. particle mass calculation) and decay calculation aspects of the program. This

is detailed further in Chapter 4.
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2.5 Supersymmetric Phenomenology

Supersymmetry, as demonstrated diligently throughout this chapter, is therefore a very well

theoretically motivated extension to the Standard Model, and consequently has been a very

popular model amongst theorists, phenomenologists and experimentalists alike. Nonetheless,

the acid test for any theory is its discovery in nature; the LHC experiments at CERN offer an

ideal environment to search for low-energy supersymmetry and so there has been a conscientious,

meticulous effort since its inception to determine the possible signatures of supersymmetric

particles at the LHC. Pedagogical reviews of supersymmetric phenomenology are available in

[94,95] and we detail some of the key features of supersymmetry phenomenology in the remaining

sections of this chapter.

2.5.1 Searching for Supersymmetry at the LHC

Supersymmetry adds many new particles and interactions to the Standard Model and con-

sequently supersymmetric models offer a rich and varied phenomenology with many different

classes of signatures at the LHC. We focus on R-parity conserving signatures, which are the

subject of both our work and the majority of the research efforts in this area. As a result, su-

persymmetric particles are necessarily pair produced. First of all, the supersymmetric particles

produced can have direct signatures at the LHC, with charged particles such as squarks, charged

sleptons, charginos and charged Higgses all leaving charged tracks, whilst coloured particles such

as gluinos or squarks will produce jets of QCD particles. In general however, these direct sig-

natures are not the optimal means by which to search for supersymmetric particles as they sit

on top of very large backgrounds of charged particles and QCD objects of the Standard Model

produced naturally and copiously in a hadron-hadron collider. Consequently, indirect searches

for supersymmetric particles afford the greatest potential for their discovery.

Regardless of the type of supersymmetric particle produced, under the assumption of R-

parity conservation, each supersymmetric particle must decay into an odd number of super-

symmetric particles (in addition to Standard Model particles). Given decays producing fewer

particles are kinematically favoured (see Chapter 3.1), this results in each supersymmetric par-

ticle produced decaying into a supersymmetric particle and a Standard Model particle in a

“2-body” decay. This process continues in a cascade of decays until the LSP (lightest super-

symmetric particle) is produced, which must be stable by R-parity. Each of these cascades of

decays is typically very prompt in the absence of both unnaturally small couplings and any

kinematic suppression such as small mass differences, all occurring within the body of the LHC

detectors. As a result, a signature for a broad array of supersymmetric models at the LHC is

missing energy and momentum corresponding to a neutral (and hence undetectable) LSP parti-

cle carrying energy and momentum out of the detector. Given hadron-hadron colliders have no

control over the longitudinal momentum of a given event (as it is set via the parton distribution

functions determining the momentum fractions of the colliding partons), the signature is re-
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ferred to as missing transverse energy/momentum (“MET”). Whilst Standard Model processes

involving neutrinos will also produce MET, this is typically much less than would be expected

from supersymmetric cascades of decays. The MET produced in the supersymmetric cascades

will also typically come with multi-jet and/or multi-lepton signatures arising as Standard Model

by-products from the cascade of decays to the LSP, see Figure 2.5 for an example.

Figure 2.5: Supersymmetric particles pair-produced in proton-proton collisions at the LHC each cascade
down to the LSP (usually the lightest neutralino Z̃1) producing missing transverse energy and momentum
(MET) along with other signatures. In the cascade given here each supersymmetric decay chain produces
a lepton and jets and therefore the overall signature for the pair production is MET + jets + same sign
dileptons (same sign dileptons have a small Standard Model background).

The specifics of which particles are produced, which decay modes are dominant, which are

suppressed and the like are very much dependent on the model parameters, the mass spectrum

and the admixtures of gauginos and Higgsinos in the electroweakinos. Indeed the SoftSusy de-

cay calculator is specifically designed to perform the decay calculations for any supersymmetric

parameter point of the MSSM or NMSSM in order to guide experimental searches for superpar-

ticles as to which decay modes are most promising or most constraining. Nonetheless, general

points can be made - in particular there are a range of signals which occur for broad ranges of

(N)MSSM parameters; whilst given the importance of the supersymmetric cascade decays to the

LSP for supersymmetric searches, generic comments can be made which depend largely only on

the nature of the LSP, which can have a notable impact on the phenomenology.

The LHC is generically able to place stronger bounds on the strong production of supersym-

metric particles (g̃, q̃) than on electroweakinos (W̃±j , Z̃0
i ). This occurs as coloured supersym-

metric particles are easier to search for, producing more jets and usually more MET than the

lighter electroweakinos due to their heavier masses, whilst also tending to be more copiously

produced at a hadron-hadron collider. For this reason, searches for neutralinos and charginos

frequently have to use lepton signatures to suppress backgrounds, but even so produce less

stringent bounds.

The LSP is a key aspect of supersymmetric phenomenology and so its composition (i.e. its

amounts of each of the gauginos and Higgsinos) as well as that of the other light electroweakinos

has important effects on the nature of the decays which occur and accordingly on the Stan-

dard Model products produced, which determines the lepton signatures, jet activity and other

features. The gauge eigenstates of the electroweakinos are related by supersymmetry to their su-
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perpartner electroweak gauge bosons and the Higgs bosons; as these all interact differently with

different particles, so do the electroweakinos. Consequently the fraction of each electroweakino

gauge eigenstate in the mass eigenstates for the lighter neutralinos and charginos affects their

interactions and decays. These considerations may allow more precise searches for given model

points or more information to be gleaned for given signatures. This situation is complicated

further in the NMSSM, where the neutralinos may also have singlino components, as these cou-

ple to non-Higgs boson particles only via mixing, neutralinos with large singlino components

will interact very weakly, allowing long-lived NLSPs in the case where the LSP is dominantly

singlino. These NLSPs may then produce displaced vertex signatures. In general the admixtures

of singlino will also reduce the rates of decays and reduce branching ratios, making searches more

difficult.

Given the large extent of the supersymmetric parameter space, even within the MSSM,

assumptions are often made simplifying the setup and phenomenology of the associated models.

In particular, insight into the nature of the LSP in different models is welcome given its key

importance to the phenomenology. One such common assumption is “gaugino mass unification”,

given in supersymmetry the gauge couplings unify at a high scale it is often also assumed the

gaugino masses unify, for example in the Constrained MSSM (CMSSM) a common gaugino

mass of M1(GUT) = M2(GUT) = M3(GUT) = m 1
2

is taken. This assumption has important

consequences as the ratios of the gaugino masses to their gauge couplings, Mi

g2
i

are fixed as the

scales are changed as a result of the form of the 1-loop β functions. The proof is straightforward

and is summarised here. In Chapter 2.2.6 in equation 2.36 we gave the MSSM 1-loop β functions

(for the gauge couplings) in terms of the scale Q, if we were to derive the β function for the

gaugino masses at 1-loop we would obtain

β(Mi) =
∂Mi(Q)

∂ logQ
=

1

8π2
g2
iMibi. (2.51)

Then combining the β functions for the gauge couplings and their matching gauginos we then

observe the β functions for the ratios Mi

g2
i

are 0:

β
(Mi

g2
i

)
=

∂Mi
∂ logQg

2
i −Mi

∂g2
i

∂ logQ

g4
i

=

(
1

8π2 g
2
iMibi

)
g2
i −Mi2gi

(
g3
i

16π2 bi

)
g4
i

= 0. (2.52)

The result of this is that, under the assumption of gaugino mass unification, given the gauge

couplings also unify at MGUT, the ratios M1

g2
1

= M2

g2
2

= M3

g2
3

are fixed at all scales. Consequently

the ratio M1 : M2 : M3 is approximately 1 : 2 : 7 at all scales and therefore the gluino will be

the heaviest gaugino and the lightest neutralino (LSP) will be dominantly bino. This allows

us to make largely model independent comments about gluinos producing more boosted events

(and hence more MET) than electroweakinos, whilst having a dominantly bino LSP also affects

the signatures of the supersymmetric cascades of decays. Having a dominantly bino LSP can

however cause problems astrophysically as it interacts weakly and so freezes out with relic
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abundance larger than that expected for dark matter - it must therefore be further depleted

by some resonance in its interactions or via coannihilation. More detail about the dark matter

phenomenology of different supersymmetric LSPs can be found in [96]. However, given the

lack of discovery of gluinos, and the consequent stringent bounds placed on the gluino mass, the

lightest possible gluino mass is ever-increasing, under the assumption of gaugino mass unification

this pushes up the values of the bino and wino masses too; contrastingly however, the Higgsinos

can never be too heavy as, to avoid unacceptably large fine-tuning, they must always be of

order the electroweak scale. Therefore it is becoming increasingly favoured to have Higgsino-

like LSPs [97], whose phenomenology is significantly different - for example Higgsinos tend to

be under-produced as a result of large annihilation cross-sections, whilst as the masses of the

gauginos all increase the lighter electroweakinos become more and more dominantly Higgsino

and accordingly have smaller mass splittings. This ensures 3-body and phase-space suppressed

decays become more likely, perhaps offering displaced vertex signatures.

There are, nonetheless, specific setups in which other LSP types are dominant. One classic

example is that in Anomaly-mediated supersymmetry breaking models the gaugino masses are

found in approximate proportion to their β functions (i.e. the bi coefficients of equations 2.36

and 2.37), ergo the lightest electroweakinos are predominantly wino and nearly degenerate.

As a result, decays of the lightest chargino W̃±1 to the lightest neutralino Z̃0
1 may be 3-body

phase-space suppressed decays, or even produce pions. These decays therefore require special

treatment and offer interesting signatures such as kinks and disappearing tracks. This setup

is consequently included in the SoftSusy decay calculator and more information is given later

in Chapter 4.2.5. There is also the possibility of gravitino LSPs in supergravity models. As

described in Chapter 2.1.3, in GMSB models the gravitino is often the LSP, therefore NLSP

decays to the gravitino LSP and a Standard Model particle (photon, Z, Higgs, gluon or fermion

depending on the NLSP particle) become important, the weaker interactions present for a grav-

itino enable the possibility of displaced vertex signatures. This configuration is also available in

the SoftSusy decay calculator and so is described further in Chapter 4.2.4.

Of course, this discussion of the importance of the LSP for supersymmetric phenomenology

is nominally redundant in the case of R-parity violating (RPV) models. However with small

RPV some of this may still hold as the LSP may be stable on the scales of the size of the LHC

detectors; alternatively RPV decays of the LSP to Standard Model particles may allow unusual

displaced vertex and other signatures. Nonetheless, RPV models are not included in our decay

research and so we make no further mention of these.

In addition to these searches for specific decay signatures or specific final state LSPs, the

indirect effects of supersymmetric particles as intermediates or in loops can also be sought in

otherwise purely Standard Model processes. One means of searching for supersymmetric inter-

mediates in a general manner is to perform searches for resonances looking for the effects of

new species of intermediate particles affecting the differential distributions of known Standard

Model processes. In these searches, sharp peaks are searched for in the invariant mass spectra

of Standard Model particles, with the idea being that if these are produced via intermediate
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unknown particles one would expect a Breit-Wigner type resonance (see equation 3.3 in Chap-

ter 3.1) in the production cross-section as the intermediate particle decays into the observed

Standard Model particles. This type of search was crucial in the discovery of the Higgs boson

in the diphoton invariant mass spectrum [12,13].

As the main discovery of the LHC era, the discovery of the Higgs boson itself offers the

opportunity to search for an extended Higgs sector, whilst the Standard Model loop decays

of the Higgs boson to two photons, two gluons or a Z boson and a photon may be measured

to test for additional contributions from supersymmetric particles. For example, whilst in the

Standard Model the h → γγ 1-loop decay only has dominant contributions for fermions (of

which top is dominant due to its Yukawa coupling) and gauge bosons running in the loop,

in the MSSM and NMSSM there are also contributions from charginos, charged Higgses and

sfermions; similar considerations hold for the h → Zγ decay, the Feynman diagrams are given

in Figure 2.6. The contributions and expressions for the partial widths of these modes are

listed in the expressions A.150 to A.204 in Appendix A.3.6. So far, no evidence for additional

contributions to these Standard Model loop processes has been observed, with the hγγ coupling

agreeing with the Standard Model within errors [98], whilst the hZγ coupling is yet to be

observed with only an upper bound of 6.6 times the Standard Model prediction currently set [99].

Both modes are targets for more precise measurements in the remainder of run II of the LHC

and in future runs.

In fact, the situation is more complicated in examining the decays and couplings of the

Standard Model Higgs, as it is expected that the lightest Higgs of the MSSM, or the NMSSM

eigenstate corresponding to the 125 GeV observation (which in the NMSSM may not be the

lightest Higgs), is in the decoupling limit where all the supersymmetric mass parameters and

the CP odd Higgs mass mA are all large compared to the electroweak scale. In this limit,

the decays and couplings of the supersymmetric Higgs at 125 GeV tend to that of the Standard

Model Higgs, making distinguishing the (N)MSSM from the Standard Model potentially difficult

[100]. This decoupling with increasing mass of the supersymmetric particles also enables the

MSSM to replicate the Standard Model results for electroweak precision tests, thereby foregoing

potential discrepancies. As a result of such possible similarities between the supersymmetric

Higgs at 125 GeV and the Standard Model Higgs, searches for higher mass resonances in the

same outgoing states produced by the 125 GeV Higgs but at much larger masses are performed

in order to search directly for the heavier Higgs bosons of the extended Higgs sector of the

(N)MSSM. Nonetheless, as of yet there have only been exclusion limits set [101].

Further information on the contributions to Standard Model and MSSM Higgs loop decays,

and on Higgs physics in general in the Standard Model and supersymmetric extensions, can be

found in the excellent book [102] and in the relevant partial width formulae in Appendices A.3.6,

A.6.1 and A.6.2 of this thesis, as well as in the figures in Chapter 4.2.2.

All of these varieties of signals of supersymmetry are being searched for at the LHC, there

are therefore two main overall goals of the LHC at run II and beyond from the point of view of
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Figure 2.6: The dominant contributions to the h → γγ and h → Zγ decays, these are W loops and
fermion loops in the Standard Model. There are additional loop particles in the MSSM, however in
practice sfermion, charged Higgs and chargino (χ±i in this notation means W̃±i ) loops all have negligible
effects as LHC bounds restrict their masses to large values. There are also crossed versions of these
diagrams for the diphoton mode.

supersymmetry searches14.

- Further inclusive and exclusive searches at yet higher energies looking for new BSM par-

ticles, via their decays to Standard Model and other supersymmetric particles. Included

in this is the possibility of finding dark matter candidates.

- Study the discovered SM-like Higgs boson with greater precision, looking at its decays for

deviations from the Standard Model. Loop decays are particularly important here as they

can tell us about contributions of heavy particles yet to be discovered. Also search for the

possibility of an extended Higgs sector via resonances in Higgs decay products or Higgs

decay widths.

All of this requires knowledge of the decays predicted in supersymmetric models, in partic-

ular in the MSSM and extensions such as the NMSSM, in order to compare the LHC data with

theoretical predictions and allow efficient search strategies to be carried out. This is the moti-

vation behind the computational tools developed to produce decay tables for supersymmetric

and Higgs particles, such as the SoftSusy program decay calculator that we have focused our

research on, which is described in Chapters 3 and 4.

2.5.2 Experimental constraints

The foremost challenge to supersymmetry is that whilst it is very well motivated theoretically,

there has been no direct evidence for it experimentally; rather there is only indirect evidence

when experimental measurements are cast in a theoretical light (naturalness, gauge unification,

dark matter and the like). If supersymmetry is to be discovered it would therefore represent a

tremendous theoretical insight into the nature of our physical world. However, as of yet, despite

significant efforts there have been no verifiable signs of supersymmetric particles or their effects.

This lack of observation is used to put bounds on sparticle masses; which are summarised in

their current form in Table 2.3.

14Outside of specific supersymmetry research, there is also the ambition of measuring Standard Model processes
to greater precision in order to extend our knowledge of the Standard Model, whilst also enabling possible
deviations from the Standard Model to be discovered which may offer hints of the form of new physics present.
This aim is a motivation for our work in the second half of this thesis in Chapters 5, 6 and 7 on transverse
momentum spectra and resummation.
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Particle
Exclusion at 95% CL (i.e.

lower bound on mass)
Reference

gluino g̃ 1.85 TeV [103]

lightest stop t̃1 1 TeV [104]

lightest sbottom b̃1 860 GeV [105]

squarks of first two generations q̃ 1.55 TeV [106]

lightest neutralino (LSP) Z̃0
1 650 GeV [107]

lightest chargino/second lightest
neutralino

W̃±1 /Z̃0
2 1.1 TeV [107]

Heavier CP odd neutral Higgs A 440 GeV [108]

sleptons l̃ 500 GeV [107]

Table 2.3: Bounds on the various supersymmetric and Higgs particles of the MSSM by the ATLAS
experiment. These bounds are at 95% confidence level (approximately 2σ) and each rely on a series of
assumptions and so are only a guide to the approximate order of the mass range searched, in particular
they rely on the masses of other supersymmetric particles. There are many different searches and exclusion
limits set for each particle depending upon the model assumptions made and channels searched. Moreover
an extensive search was not performed to produce the table, the limits are those available at [109].

These bounds present potential problems given the motivation for supersymmetry to resolve

problems of naturalness. There are nonetheless possible explanations for the non-discovery of

sub-TeV mass sparticles including RPV (which causes reduced missing energy by allowing the

LSP to decay) and degenerate/compressed spectra (which reduces the transverse momentum in

final states due to small mass splittings between initial and final state particles), as well as a va-

riety of other supersymmetry (SUSY) models. In addition it may simply be that supersymmetry

is present at slightly higher scales, out of the reach of the LHC in its current form.

In reality, these stated limits are in any case at best a guide: they depend on the model,

assumptions and the masses of the other supersymmetric particles. They should consequently be

viewed as the highest mass possible to exclude thus far rather than the lowest mass at which the

specific supersymmetric particles may exist. Given the vastness of even the MSSM parameter

space, rigorously excluding all possible models is very difficult and possibly even out of reach of

the LHC. Rather, the experimental data are typically viewed in the light of a set of assumptions

in order to simplify the setup, but which restrict the exclusions to specific models. For example,

the experimental data are often viewed in the context of simplified models where the MSSM

parameter space is reduced to a two dimensional plane, whilst branching ratios are often assumed

to be 100% and direct decays to the LSP are usually assumed. All of these assumptions are

invalid for many different regions of supersymmetric parameter space, the masses of the other

supersymmetric particles not included in the two-dimensional reduction may be such that the

specific decay mode searched for may be suppressed, whilst there may alternatively be many

different relevant decay modes for the particle considered which would reduce its branching ratio

for the mode assumed. Furthermore, as we have seen, supersymmetric decays do not come in

isolation and instead take many steps to decay to the LSP in cascades of decays. These factors

all significantly affect the phenomenology and signatures and likely reduce the exclusion reach
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in the case of realistic models. Indeed, it is for these reasons and more that programs such as

SoftSusy are desired in order to allow the examination of experimental data in the context of

the full supersymmetric model theoretical predictions without such assumptions built in.

The LHC experiments do however also place model-dependent constraints for some of the

more popular, reduced parameter space supersymmetric models. In particular, much of the

early Run I work of the LHC focused on the Constrained Minimal Supersymmetric Standard

Model (CMSSM), which features unified scalar masses, unified fermion masses, and unified

trilinear couplings at the GUT scale and so reduces the parameter space to just 5 variables M0,

M 1
2
, A0, tanβ and sign(µ). Consequently this model has now been largely ruled out around

electroweak scales (see [110, 111]), although again there are various assumptions and caveats

folded into these exclusion limits. At Run II there has correspondingly been a large focus on the

“Phenomenological MSSM” (pMSSM), an enlarged model relative to the CMSSM and which

has 19 free parameters. It is a bottom-up model based on taking the entire MSSM parameter

space and making only assumptions based on reasonable expectations and required consistency

with observed data elsewhere; it therefore assumes there are no new sources of CP violation

relative to the Standard Model15, no Flavour Changing Neutral Currents (FCNCs) added and

assumes first and second generation universality. Given this parameter space is much much

larger than the CMSSM, the exclusions placed on it are much less stringent and it is very

experimentally challenging to rigorously exclude. For phenomenological studies of the pMSSM

model exclusions from the LHC see [112]. There are further additional assumptions which can

be made in order to simplify the parameter space further or explain to some degree the lack of

CP or flavour violating effects. For example, “universality” (and reality) of soft parameters takes

the scalar mass-squared matrices as proportional to the identity in the basis of the quark mass

matrices (and takes the trilinear coupling matrices as proportional to the Yukawa matrices),

whilst “alignment” takes them to be diagonal (or almost diagonal) in the basis of the quark

mass matrices; both assumptions allow the scalar matrices to be diagonal in the required bases

and thereby eliminate any FCNCs, whilst the matrices are also real eliminating any additional

CPV. Alternatively, one may wish to be generic in the flavour structure and instead argue

the masses of the first two generations of squarks are decoupled, being much higher than the

electroweak scale (typically tens of TeV) so that loop effects causing FCNCs are suppressed. In

this scenario one should endeavour to leave third generation squarks and gauginos around the

TeV scale to continue to resolve issues of technical hierarchy, whilst Higgsinos must always be

around the electroweak scale in order to set the Higgs mass of the correct order16, though the

hierarchy of supersymmetric masses may then be regarded as unnatural.

15The “SUSY CP Problem” is the question of why, given that most of the parameter space would introduce
extra CP violation, there in fact appears to be little additional CP violation relative to the Standard Model. There
is a similar “SUSY Flavour Problem” of why there are no large Flavour Changing Neutral Currents (FCNCs)
arising from large off-diagonal elements in sfermion mixing matrices.

16If instead only gauginos and Higgsinos are left around the 1 TeV scale and third generation sfermions are also
made heavy then one has a model of “Split Supersymmetry” [113].
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Chapter 3

SoftSusy Overview

In this chapter and the next, we discuss our work on the SoftSusy program and the develop-

ment of a decay calculator program which determines the branching ratios for supersymmetric

and Higgs particles at the LHC. Further details are available in our paper associated with this

work [1].

3.1 Particle Decays

As we have underlined in Chapter 2, decays are the key to experimental signatures of su-

persymmetry at the LHC, and form a crucial part of our work in this area. Therefore, ahead of

the description of the research performed in the development of the decay calculator program

for SoftSusy in the rest of the chapter and in Chapter 4, we provide a summary of particle

decay theory in this context; more information is available in [16,33,114]. In our description in

this section and the rest of the thesis, we classify decay modes according to both the number

of daughter particles (with n-body meaning n decay products) and the order of the corrections

included, i.e. tree-level, 1-loop or 2-loop.

Particles and their interactions are inherently quantum mechanical in their behaviour, there-

fore when considering particle interactions we may begin with Fermi’s Golden Rule of quantum

mechanics for the transition from one quantum mechanical state to another:

Γfi = 2π|Tfi|2ρ(Ei) = 2π

∫
|Tfi|2δ(Ei − E)dn. (3.1)

This describes the transition probability to go from one quantum mechanical state |i〉 to the state

|f〉 in terms of the transition matrix element Tfi between the states and the ρ(Ei) density of

available states, encapsulating the physics of the transition and the number of possible equivalent

transitions respectively. In this case, the integral ensures that all states are integrated over,

whilst the delta function imposes energy conservation on the allowed states. The transition

matrix element may be expanded, in the limit of weak interactions, as a perturbative expansion,

essentially expanding the transitions order-by-order as is often done for expressions in quantum

field theory.

We may then generalise this expression to the case of particle interactions in quantum field

theory; in this case the transition matrix element and integral over states become the matrix

element and integral over available phase space. In the case of a 2-body decay we now integrate
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over the 3-momenta of the outgoing particles and ensure energy and momentum conservation

with appropriate delta functions:

Γ(i→ f1f2) =
(2π)4

2Ei

∫
|Mfi|2δ(Ei − Ef1 − Ef2)δ3(pi − pf1 − pf2)

d3pf1

(2π)32E1

d3pf2

(2π)32E2

=
(2π)4

2Ei

∫
|Mfi|2δ4(pi − pf1 − pf2)δ(p2

f1 −m2
f1)δ(p2

f2 −m2
f2)d4pf1d

4pf2.

(3.2)

The matrix element Mfi contains the particle physics of how the interaction (here the decay)

occurs, whilst the integration over the 3 or 4-momenta of the final states (i.e. over the phase

space) sums up all the possible ways the interaction could occur, whilst ensuring 4-momentum

conservation, thereby encoding the kinematics behind the calculation. In the second step here we

rewrote the 3-momentum integrations in terms of integration over the entirety of a 2-dimensional

4-momentum phase space with additional delta functions ensuring the 4-momenta square to the

mass squared of the particles considered. This simplifies the calculation as the matrix element

and phase-space integration are both Lorentz invariant, and so may be evaluated separately in

any frame and once only. All frame dependence occurs in the prefactor of the integral via the

1/Ei which provides the necessary factor expected - the decay rate is inversely proportional to

the energy due to relativistic time dilation effects.

Such integrals of the matrix elements over phase space must be evaluated for each possible

decay for each decaying (parent) particle. Each particle may however interact in a number of

ways, therefore there are many possible decay modes for each parent particle, which all must

be summed to give the total decay rate of the particle. This is termed the total “decay width”

(Γ) of the particle, which is the inverse of the particle lifetime τ . The decay width is so-called

as it is related to the form of resonances in the production of unstable particles, for example at

colliders, with the energy spectrum for the production of an unstable particle of mass M and

decay width Γ set by the Breit-Wigner form:

f(E) =
k

(E2 −M2) +M2Γ2
. (3.3)

The total decay rate of a particle is consequently referred to as its “decay width” as Γ sets the

full-width at half-maximum of the energy distribution of the decaying unstable particle. Each

of the decay widths of the individual decay modes are then “partial widths” (PWs) (Γi), and

so the probability of a specific decay mode occurring for a given parent particle is expressed as

the “branching ratio” (BR) for that decay mode and is simply the ratio of the relevant partial

width to the total width:

BR =
Γi
Γ
. (3.4)

In the sample case of our 2-body decay i → f1f2 considered above, we may perform the
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integrals present, first the 3-momentum conserving δ function removes the d3p2 integral:

Γ(i→ f1f2) =
1

8π2Ei

∫
|Mfi|2δ(Ei − Ef1 − Ef2)

d3pf1

4Ef1Ef2
. (3.5)

Then as the integral is Lorentz invariant we choose to evaluate it in the centre of mass frame

of the decaying particle so that Ei = mi and Ef2 =
√
m2
f2 + p2

f1, and we convert to spherical

polar coordinates, d3pf1 = p2
f1dpf1dΩ:

Γ(i→ f1f2) =
1

8π2mi

∫
|Mfi|2δ

(
mi −

√
m2
f1 + p2

f1 −
√
m2
f2 + p2

f1

) p2
f1dpf1dΩ

4
√
m2
f1 + p2

f1

√
m2
f2 + p2

f1

.

(3.6)

The integral may then be performed using the property of the delta function

δ(f(x)) =

∣∣∣∣ dfdx
∣∣∣∣−1

x0

δ(x− x0), (3.7)

which assumes there is only one root (zero) of the function f(x) at x0. If there are multiple roots

these must be summed over. Applying this leads to the standard expression for the integral of

a function of a variable with a delta function of the same variable:∫
g(x)δ(f(x)) = g(x0)

∣∣∣∣ dfdx
∣∣∣∣−1

x0

. (3.8)

Consequently our expression in equation 3.6 may be considered as:

Γ(i→ f1f2) =
1

8π2mi

∫
|Mfi|2δ(f(pf1))g(pf1)dpf1dΩ =

1

8π2mi

∫
|Mfi|2

∣∣∣∣ dfdpf1

∣∣∣∣−1

p∗
g(p∗)dΩ,

(3.9)

where f(pf1) = mi −
√
m2
f1 + p2

f1 −
√
m2
f2 + p2

f1 and g(pf1) =
p2
f1

4
√
m2
f1+p2

f1

√
m2
f2+p2

f1

.

Therefore df
pf1

= − pf1√
m2
f1+p2

f1

− pf1√
m2
f2+p2

f1

, where x0 is now p∗ and is the value of the outgoing

particle 3-momenta when the centre of mass momentum is 0, and so:

Γ(i→ f1f2) =
1

8π2mi

∫
|Mfi|2

p∗

4(Ef1 + Ef2)
dΩ =

1

8π2mi

∫
|Mfi|2

p∗

4mi
dΩ =

p∗

32π2m2
i

∫
|Mfi|2dΩ,

(3.10)

which is the generic expression for the partial width for a 2-body decay of a parent particle i

decaying to two daughter particles f1 and f2 in quantum field theory. Straightforward kinematics

then reveals that:

p∗ =
1

2mi

√
[m2

i − (mf1 +mf2)2][m2
i − (mf1 −mf2)2] =

mi

2
λ̃

1
2 (mi,mf1,mf2). (3.11)
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The function λ̃
1
2 is a common kinematic function arising in decay formulae and is given by

λ̃
1
2 (mi,mf1,mf2) =

√[
1−

(mf1 +mf2

mi

)2][
(1−

(mf1 −mf2

mi

)2]
. (3.12)

Consequently we may rewrite the 2-body decay expression as:

Γ(i→ f1f2) =
1

64π2mi
λ̃

1
2 (mi,mf1,mf2)

∫
|Mfi|2dΩ =

1

16πmi
λ̃

1
2 (mi,mf1,mf2)|Mfi|2. (3.13)

In the last stage we have assumed no solid angle dependence in the matrix element. In general,

in order to complete the derivation for a given mode, one must evaluate the matrix element and

integrate over any solid angle dependence. This involves evaluating a trace of Dirac spinors in

the usual way for quantum field theory and then converting the dot products into momenta and

angles before performing the integration.

In general however, particles may undergo not just 2-body decays, but n-body decays; each

additional particle in the final state introduces an extra dimension to the phase space which must

be integrated over, the corresponding 3-body decay formula may be straightforwardly written

down:

Γ(i→ f1f2f3)=
(2π)4

2Ei

∫
|Mfi|2δ(Ei−Ef1−Ef2−Ef3)δ3(pi−pf1−pf2−pf3)

d3pf1d
3pf2d

3pf3

(2π)92Ef12Ef22Ef3
.

(3.14)

Such expressions are much more complicated to evaluate as they have an additional final state

integral. Add to this the need to sum over different intermediates and consider interferences

between such different contributions then it is understandable why such integrals are largely

performed in the SoftSusy decay calculator via numerical integration. The exception to this

are the Higgs decays to an on-shell vector boson and off-shell vector boson which goes on to

decay into a fermion-antifermion pair; in that case the masses of the final state fermions may

be neglected, simplifying the calculation and also giving the problem greater symmetry, which

we exploit in determining the integrals.

In fact, the expressions may be generalised to an n-body decay1 as:

Γ(i→ f1f2 . . . fn) =
(2π)4

2Ei

∫
|Mfi|2δ4(pi − pf1 − pf2 − · · · − pfn)

n∏
j=1

d3pfj
(2π)32Efj

. (3.15)

Fortunately however, in determining the decays of particles at the LHC we do not have

to consider all of the infinite set of many body decays available to each parent particle as

every additional particle in the final state suppresses the partial width for that mode. This

can be argued qualitatively by considering that every additional particle, whilst offering a new

dimension to the phase space, spreads the same total incoming energy-momentum over one

1As an aside one can use this to deduce the number of independent variables, or Mandelstams, for a given
process with n final state particles. Each additional final state particle has an additional 3-momentum integration
whilst there is also overall 4-momentum conservation giving 3n− 4.
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additional particle. Energy-momentum conservation requires that the energies and momenta

of the final state particles sum to that of the ingoing decaying parent, however in the phase

space integration we integrate each particle over a factor d3p
2E(2π)3 which essentially represents

a fraction of the total energy-momentum in that final state particle. Therefore upon adding a

particle to the final state, each such fraction is reduced and overall we therefore suppress the

partial width, in fact Figure 4.9 in Chapter 4.2.3 demonstrates the dominance of 2-body modes

over 3-body modes due to this suppression. Quantitatively this can be observed by comparing

1-body and 2-body phase space (as in [114]). The phase space for a “1-body decay”, where a

particle transforms into another particle (this cannot really be observed in quantum field theory

as it would just be considered a mixing of particles which is accounted for to obtain the physical

eigenstates) would be:

dPS1 = (2π)4 d3pf1

(2π)32Ef1
δ4(pi − pf1) = (2π)

d3pf1

2Ef1
δ4(pi − pf1), (3.16)

but, using equation 3.7:∫
δ(E2

f1 − p2
f1 −m2

f1)dEf1 =

∫
δ(f(Ef1))dEf1 =

∣∣∣∣ df

dEf1

∣∣∣∣−1

=
1

2Ef1
. (3.17)

Therefore we may write it instead as an integral over the full 4-dimensional phase space as:

dPS1 = (2π)

∫
d4pf1δ

4(pi − pf1)δ(p2
f1 −m2

f1) = (2π)δ(s−m2
f1), (3.18)

and changing variables from s to
√
s via equation 3.7 in the first step, and using δ(αx) = δ(x)

|α|
in the second we obtain

dPS1 = (2π)δ(
√
s−mf1)

1

2
√
s

= π
δ
(

1− mf1√
s

)
s

. (3.19)

The coefficient of this normalised δ function represents the volume of the phase space available

for such “1-body” modes and is π, whilst s ensures the dimensions are correct.

Meanwhile for the 2-body case we can similarly extract this coefficient from the expression

we derived previously in equation 3.13. The coefficient parametrising the size of the 2-body

decay phase space is therefore (1/16π) so the presence of the additional particle in the final

state suppresses the decay width by (1/(4π)2). A similar suppression occurs for each additional

particle in the final state; therefore our work on SoftSusy focuses on 2-body decay modes and

also 3-body modes in regimes where there are no 2-body modes present.

The form of the kinematic functions produced by the phase space element integration also

reveals information about the behaviour of partial widths in compressed spectra where the mass

difference between the initial state and the final state δm = mi −
∑N

j=1mfj is small. Take as

an example the 2-body phase space element - in these compressed regions their behaviour is
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dominated by kinematics, and for the 2-body decay case the kinematic function is λ̃ as given

previously in equation 3.12. We can consider the behaviour of this function as mi → (mf1+mf2)

to determine how the partial widths behave for compressed spectra. Figure 3.1 plots this function

for mf1 +mf2 = 300 GeV in the region mf1 +mf2 to 5(mf1 +mf2) for different mass differences

between the two final state particles. The key feature is the sharp rise in the function in the

compressed region nearmi = mf1+mf2, here changes of just a few percent in the masses of any of

the initial and final state particles can cause the partial width to change considerably, particularly

for extremely compressed decays. For example, for final state masses mf1 = 250 GeV, mf2 =

50 GeV a change of 41% in the partial width arises in changing the initial state particle mass

by less than 1% from mi = 300.25 GeV to mi = 300.5 GeV. This is due to the change in the

λ̃ function which behaves as λ̃ ∼
√

∆m
mi

as ∆m = mi − mf1 − mf2 → 0 and so the expected

factor increase in increasing ∆m from 0.25 GeV to 0.5 GeV is
√

0.5/0.25 = 1.41 as observed. As

a result the accuracy of the mass spectrum predictions, as well as the approximations, schemes

and order of the decay calculations, causes significant variations in the partial widths for very

compressed spectra. In reality, compressed spectra typically produce 3-body decay modes,

rather than 2-body modes as analysed here - nonetheless the conclusions and sensitivity to the

mass predictions and decay assumptions are similar. The figure also confirms the expected

behaviour that decay modes are forbidden kinematically (as they cannot conserve energy) if the

final state particle masses sum to greater than the initial state particle masses, decay modes

therefore “turn on” once the sum of the final state particle masses, the threshold, is reached:

mi ≥ mf1 +mf2 + . . .mfn.

In addition to tree-level 2- and 3-body modes, we also consider loop decays and loop cor-

rections where these are phenomenologically important modes or produce important corrections

respectively. In general however, the addition of a loop to a process results in an additional in-

tegral to be performed over the loop momentum, as well as extra propagator and vertex terms;

this additional integral therefore greatly increases the difficulty of evaluating the partial widths.

Furthermore, there are often also many loop contributions to the 1-loop expression, meaning

many different Feynman diagrams must be evaluated. In any case, all the loop decays and

loop corrections in SoftSusy are performed explicitly and evaluated analytically. Propitiously

for our applications in decay calculators, loop decays and loop contributions and corrections to

amplitudes result in an extra factor of αi = (g2
i /4π) in the matrix element, and so 1-loop decays

are typically suppressed relative to tree-level modes by at least factors of (1/(4π)2). As a result,

for many of the modes included in SoftSusy only tree-level expressions for the partial widths

are required. Exceptions occur when the tree-level mode is suppressed or not available and so

the first such decay occurs at 1-loop, or when the corrections caused at 1-loop are particularly

large - as in some QCD decays as αs ∼ O(0.1) at collider energies. In particular, we include the

1-loop decays of the Higgs bosons to two photons, to two gluons or to a Z boson and a photon,

which are not available at tree-level as the final state contains massless particles, but which are

key experimental channels at the LHC. Moreover they are not as suppressed relative to tree-level

modes as one might expect due to the Yukawa couplings of the top quark which enhance the
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Figure 3.1: The kinematic function which dominates the behaviour of the partial width expressions as
the initial and final state masses approach each other, demonstrating the sharp increase and significant
dependence on the mass predictions near initial and final state mass degeneracy. This figure is made
for the 2-body decay kinematic function λ̃

1
2 of equation 3.12, nonetheless the conclusions are general.

Here the final state masses sum to 300 GeV and the figure demonstrates three different final state mass
differences mf1 −mf2, the kinematic function is plotted as the mass of the initial particle mi is varied
from degeneracy (mi = mf1 +mf2 = 300 GeV), where there is no available phase space, to 5(mf1 +mf2),
where large amounts of phase space are available .

top 1-loop contribution by (mt/mh)2. We also include beyond Leading Order QCD corrections

to the Higgs boson decays to gluons (which is a 1-loop process so these are 2-loop corrections)

and to the Higgs boson decays to quarks as it is well known that these have significant effects on

the partial widths, reducing the partial widths to bottom and charm quarks by approximately

50% and 75% respectively, whilst increasing the partial width to gluons by around 50% [84,115].

These decay modes to quarks, particularly bottom quarks, are dominant modes for the Standard

Model-like Higgs boson and so their accuracy affects all branching ratios significantly, whilst the

Higgs to gluon gluon decay amplitude is the reverse of the key gluon gluon fusion production

mechanism for the Higgs.

It should also be noted that the factor gained from an additional particle in the final state is

approximately the same factor as is gained by adding a loop to an expression, so in regimes where

we consider 3-body tree-level modes, 2-body 1-loop modes may be important also, depending

on the relative couplings and the kinematics. We will endeavour to add 2-body 1-loop modes in

these cases in future developments.
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3.2 Decay Calculator Context

In order to produce theoretical predictions for the phenomenology of supersymmetric models

at the LHC and elsewhere, several different types of computational tools are required. The anal-

ysis flow and different classes of programs needed at each stage of the calculation are summarised

in Figure 3.2 and more details are available in [116].

The first stage is the determination of the supersymmetric mass spectrum, i.e. the calculation

of the supersymmetric and Higgs particle masses for the model and parameter point considered -

this is performed by “Supersymmetric Spectrum Generators”, of which SoftSusy [66] has been a

premier example. SoftSusy is able to calculate the particle masses and couplings in the following

cases: the R-parity conserving MSSM, with three-loop renormalisation group equations (RGEs)

and some leading two-loop threshold corrections to gauge and Yukawa unification [117] (both

one order higher than comparable alternative programs); the R-parity violating MSSM [68] in-

cluding neutrino masses and mixings [69]; or in the R-parity conserving NMSSM [118]. Both

the MSSM and NMSSM have two-loop corrections to the squark and gluino pole masses [119] as

the production of these strongly interacting supersymmetric particles offers key signatures for

supersymmetry at the LHC. SoftSusy has therefore developed into a comprehensive, publicly

available, key program in the determination of the properties of supersymmetric particles for

searches at the LHC. Nonetheless, other programs exist which also determine the mass spec-

trum of supersymmetric particles in various approximations, and to various degrees of accuracy;

for the MSSM there are the codes FLEXIBLESUSY [120, 121], ISASUSY [122], SUSEFLAV [123],

SUSPECT [124] and sPHENO [3,4], whilst Higgs masses can be calculated in supersymmetric mod-

els in FeynHiggs [125]. For the NMSSM the choices are more limited, with only one alternative

stand-alone program to SoftSusy for the spectrum generation: this is the NMSSMTools [126–128]

program. Nevertheless, the SARAH [129] Mathematica package (which produces vertices, mass

matrices and RGEs for supersymmetric models) can be combined with FLEXIBLESUSY or sPHENO

to calculate the spectrum. Meanwhile, NMSSMCALC [130] can be used for the computation of the

Higgs masses and decays in the NMSSM.

Following the calculation of the supersymmetric and Higgs masses, as well as their couplings,

the next stage is the determination of their decays. This is performed by “Supersymmetric

Decay Calculators”, and the development of such a program for SoftSusy was the primary

focus behind our research in this area. The SoftSusy decay calculator program can compute

the partial widths and branching ratios of supersymmetric and Higgs particles in the MSSM and

NMSSM [1], including all tree-level 2-body decay modes as well as 3-body modes at tree-level for

the Higgs particles, gluino, chargino and neutralinos, and the phenomenologically crucial 1-loop

decay modes of the Higgs particles into two photons, two gluons or a photon and a Z boson. QCD

corrections are also included for Higgs decays to quarks (1-loop corrections) and to gluons (2-loop

corrections). The decay modes included, implementation, validation and results of the SoftSusy

decay calculator program that we have written and developed as part of our research in this

area are elucidated in much greater detail in the remainder of this chapter and the next. Again,
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a variety of alternative programs are available, each able to compute to differing accuracies

different subsets of the supersymmetric and Higgs decays for given supersymmetric models.

Some programs have incorporated this task into their calculations, such as event generators

(described in the next paragraph), however the majority of programs for supersymmetric decay

calculation are dedicated tools: foremost amongst them being SUSYHIT [131] (itself a combination

of two codes, HDECAY [132, 133] and SDECAY [134]); FeynHiggs [125], which determines only the

Higgs boson decays; and sPHENO [3, 4], which contains a decay calculator for the MSSM along

with its spectrum generator. The options for decay calculations in the NMSSM, exactly as for

the spectrum generation, are much more limited, with the NMSSMTools [126–128] program once

more the sole stand-alone option, whilst again SARAH [129, 135] can be combined with sPHENO.

Meanwhile, in the area of Higgs decays of the NMSSM, as well as determining the masses,

NMSSMCALC [130] can calculate the branching ratios. This includes CP violating effects, which

may in general be present in the NMSSM, once more some dominant QCD loop corrections are

incorporated.

The information about the mass spectrum and decay widths of the supersymmetric particles

may then be passed to event generator programs to simulate the supersymmetric particle events

produced at the LHC and elsewhere. “Matrix Element Generators” first simulate the collision of

the 2 protons in the LHC beam, producing N particles, these particles are then allowed to shower

into hadrons, and decay using the input of the supersymmetric decay calculators to govern the

ratio of different decay modes undertaken. The production of such events is generated randomly

via Monte Carlo integrations. Examples of such supersymmetric event generator programs

include PYTHIA [136], Herwig++ [137,138] and SHERPA [139,140], all of which carry out both the

matrix element generation and the parton showering and hadronisation. This showering and

hadronisation produces many Standard Model particles and QCD jets which may also be used

as event signatures, depending upon if they can be discriminated from the general large QCD

backgrounds which are also produced. There are also specific programs dedicated to matrix

element generation, including MadGraph [141] (which also then matches the results onto parton

showering algorithms), PROSPINO [142], and many others. The list here is not exhaustive and

only representative of a large area of previous and ongoing research - more can be found in the

literature, including in [116].

As well as these cross-section estimates and event production information, in order to con-

front experimental data with theoretical predictions detector simulations are also required; these

impose various cuts, efficiencies and acceptances based on the precise morphology and design

of the detector used experimentally. This stage is usually performed partially in the Monte

Carlo event generators, but the details of the experimental setup are known only to the relevant

collaboration and so further such collider simulations may have to be done “in-house” within

the experimental collaborations themselves. Nonetheless, general conclusions can be drawn and

searches can often be approximated outside of this by phenomenologists, perhaps using detector

simulation tools such as DELPHES [143].

In addition to all of this, calculations of specific further observables may also be desired, in
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order to address the relevant supersymmetric model or parameter space point with further con-

straints and evidence outside of the specific signatures simulated. One such class of constraints

comes from dark matter and associated observables. As described in Chapter 2, supersym-

metric models may provide an LSP as a viable dark matter candidate, several programs are

therefore available to calculate the associated dark matter relic density and direct and indirect

dark matter detection observables arising from the considered supersymmetric model parameter

point(s). Examples of programs that can perform these calculations include DarkSUSY [75–77]

and micrOMEGAs [78, 79].

Further observables not directly related to the collider signatures but which offer indirect

collider constraints on supersymmetric models include the b → sγ branching ratio, which is

sensitive to supersymmetric particles at 1-loop (such as charginos and charged Higgses). This

decay itself is only present at 1-loop in the Standard Model (via W bosons) and so beyond

Standard Model effects can be very significant. Constraints also arise from the anomalous

magnetic moment of the muon (g − 2)µ, to which there can also be a substantial non-zero

supersymmetric contribution. A review of this area is available in [144], whilst there is currently

a 3.4σ discrepancy.

Finally, electroweak observables are also key constraints on supersymmetric models: all

spectrum generators, including SoftSusy use electroweak masses such as the Z boson mass

or top mass and other masses as constraints at the electroweak scale, nonetheless they also

determine the mass of the lightest Higgs boson mh to varying levels of accuracy, with SoftSusy

offering particularly high precision via 3-loop corrections to the Higgs mass by linking with

the Himalaya program [145, 146]. As indicated previously in Chapter 2.3.4, the necessity to

reproduce the Standard Model-like Higgs boson of mass 125 GeV places significant constraints

on many parts of the supersymmetric parameter space.

There are also global fitting codes which aim at producing either a χ2 or likelihood value

or perhaps a posterior probability map over the supersymmetric parameter space given input

collider, cosmological and precision constraints. These tools often rely on many of the programs

already mentioned to carry out the supersymmetric calculations, before they themselves eval-

uate the fits. As with the rest of this field, there are several different options available in the

literature including: SuperBayeS [147, 148], which uses SoftSusy, DarkSUSY and FeynHiggs

input; SFITTER [149] and FITINO [150] are other options; whilst recently the GAMBIT tool has

been released as a further Beyond Standard Model fitting code, again incorporating elements of

several programs, including SoftSusy, DarkSUSY and ISAJET. We go into no further details on

these programs as they are not of direct relevance to the work presented here.

As should be now obvious, there are a great number of computer programs available in this

field, and this plethora of computer programs is useful, enabling all possible calculations for

supersymmetric models to be made in a way that would be inconceivable to manage within any

single program. Moreover, the different programs themselves also have different benefits, using

different approximations and covering different models. Our research focuses in particular on
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Figure 3.2: The analysis flowchart for producing theoretical predictions for the phenomenology of su-
persymmetric modes, detailing the types of programs required and which tasks may be performed by
SoftSusy. This figure is adapted from [116].

the mass spectrum generation and decay partial widths calculation aspects of these analyses

and so our comments will now be aimed at these programs. A summary of the capabilities of

the mass spectrum generation and decay calculation programs relevant to our work is given in

Table 3.1, which is a projection of the program abilities of each code onto the plane of relevance

to our work and so is far from exhaustive; moreover it is based on reading the available program

manuals and web pages and so is only schematic. For full details we encourage the user to refer

themselves to the manuals of the appropriate programs, whose version numbers are listed.

It is clear that the programs available differ in many subtle aspects. In fact, even programs

having apparently the same approximations and assumptions for a given calculation often will

differ in their numerical answers due to the incorporated higher order corrections being different.

For example decay widths can vary because of the use of different schemes, scales and orders

of running masses and couplings in order to approximate higher order corrections not explicitly

included in the formulae. The same effects are true in the sparticle spectrum [151] and in the

Higgs masses calculated [152–154]. As a result, numerous comparisons have been performed

between the different codes, such as [116,155], whilst we explicitly demonstrate comparisons in

the decay widths in our validation of the SoftSusy decay calculator code in Chapter 4, based

on our own paper in [1]. As a result of these differences, and the complexity of the calculations,

one key means by which to gauge the theoretical errors associated with the calculations is

the comparison of the results of different spectrum generator and decay calculator programs.

Meanwhile, different codes also serve the purpose of allowing cross-checking and error-finding to

be performed more easily, ensuring the accuracy of the predictions.

The different programs also have to be compatible with one another, allowing each to inter-

face with other codes to perform different parts of the calculations. This can lead to potential
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issues with different versions of different codes not matching or potentially making inconsistent

assumptions or approximations. To attempt to ameliorate this situation as much as possible,

as well as make the lives of the users much easier should they have to use many different pro-

grams to complete their calculations, the SUSY Les Houches Accord (SLHA) [156] and SUSY

Les Houches Accord 2 (SLHA2) [157] were produced. These are designed to allow the more

straightforward interfacing of different programs via input and output ASCII text files listing

the relevant masses, couplings and other model parameters in separate blocks. This has been

largely successful, although some issues occasionally remain, still thereby favouring single pro-

grams determining as many steps of the calculations as possible. Before the advent of the

SoftSusy decay calculator program, SoftSusy has been interfaced with various different pro-

grams, including SUSYHIT [131] to determine the branching ratios of supersymmetric and Higgs

particles in the MSSM, NMSSMTools [126–128] to calculate the branching ratios of supersym-

metric and Higgs particles in the NMSSM, and micrOMEGAs [78, 79] to determine dark matter

observables. The SoftSusy decay calculator, which is the focus of our research in this area, now

supersedes the former two, with all decay calculations able to be performed within SoftSusy.

The situation with many separate programs with separate assumptions and methodologies

is, of course, far from ideal; it is preferable to have as many of the calculations as possible

implemented in a single program or even in each of the single programs. This has clear benefits

in usability as users only have to download and compile a single program; avoids interfacing

programs which, even with the SLHA, can introduce bugs; and is cleaner from the point of

view of programming. This would ensure that exactly the same approximations and assump-

tions are made throughout a calculation and the same parameter values used, thereby reducing

possible sources of error. Moreover, there are also physics motivations, by performing many

calculations in each program this means multiple programs carry out each calculation, enabling

cross-checking between programs as well as permitting a greater understanding of the theoretical

errors involved. This should lead to a better awareness of what can be inferred from experimen-

tal data about theoretical SUSY models. For these reasons the all-in-one SoftSusy spectrum

generator and decay calculator package, now available as a result of our work, offers many ben-

efits over the previous setup and enables theoretical predictions for searches for supersymmetric

signatures to be made with greater certainty and ease. We hope that this addition of function-

ality to SoftSusy will facilitate collider studies of sparticle and supersymmetric Higgs searches,

both through the study of differences between it and the other programs as an estimate of the

size of theoretical uncertainty in the prediction and through a fast and unified computation.
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SoftSusy

(4.1.4)

SusyHit

(1.5)

sPHENO

(4.0.3)

NMSSMTools

(5.3.0)

FeynHiggs

(2.14.1)

PYTHIA

(8.2)

NMSSMCALC

(2.00)

Spectrum

Calculator

3 3

SUSPECT

3 3

NMSpec

3(Higgses

only)

7 3(Higgses

only)

RGEs 3-loop 2-loop 3-loop 2-loop - (different

approach)

- -

Highest

Order

Mass

Corrections

3-loop

(Higgs)

2-loop 2-loop

(Higgs)

2-loop

(Higgs)

2-loop (+

resumma-

tions and

EFTs)

- 2-loop

NMSSM 3 7 (7) Only

with SARAH

3 7 - 3

FV 3 3 3 7 3 - 7

RPV 3 7 3 7 7 - 7

ν masses

mixings

3 7 3 7 7 - 7

Experi-

mental

constraints

7

(Only EW)

3 3 3 3 - 3

(some)

Decay

Calculator

3 3

HDECAY,

SDECAY

3 3 3 3 3

SUSY

decays

3 3

SDECAY

3 3 7 3 7

Higgs

decays

3 3

HDECAY

3 3 3(high

accuracy)

3 3

Loop

corrections

3

(Higgses

only,

h→ qq̄, gg)

3 3

(Higgs

only)

3

(Mainly

Higgs

decays)

3

(Higgs

only)

7 3

(h→
qq̄, gg)

Decays to

Gravitinos

3 3 3 3 7 7 7

3-body

decays

3

(not f̃ yet)

3 3 3 (3)

(h→ V V ∗

only)

(3)

some

(3)

(h→ V V ∗

only)

NMSSM 3 7 (7) Only

with SARAH

3 7 7 3

RPV 7 7 3 7 7 7 7

CPV 7 7 7 3 7 7 3

Table 3.1: A comparison of the programs available for calculation of SUSY mass spectra and decay
branching ratios, version numbers are given for each program. The presence and corresponding capabili-
ties of a spectrum generator in the programs is given in rows 2-9. Rows 10-18 similarly reveal whether each
program has a decay calculator and its capabilities. The features of the SoftSusy decay calculator which is
the focus of our work, are given in the second column in rows 10-18. Only a subset of all public programs in
this area can be included in a single table therefore a selection has been made of programs against which we
have performed explicit comparisons and programs demonstrating the breadth of possibilities in this area.
The programs included are SoftSusy [1,66,68,69,117–119,145,146], SUSYHIT [131–134], sPHENO [3,4,158],
NMSSMTools [126–128, 159–162], FeynHiggs [125, 163–167], PYTHIA [136] and NMSSMCalc [130, 168–171].
Other relevant programs not included are given in the text and this table is not exhaustive.
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3.2.1 Mass Spectrum Generator Approach

We now provide a detailed description of the overall workings of spectrum generator and

decay calculator programs. We begin with the first stage of such calculations, the supersymmet-

ric mass spectrum generation. Mass spectrum generators solve a system of linked differential

equations with boundary conditions at each end. These are the renormalisation group equations

of the supersymmetric model with boundary conditions at the low electroweak scale provided

by physical measurements, such as the top mass, Z mass, fine structure constant at mZ and

others; and theoretical boundary conditions on the soft supersymmetry breaking parameters at

the high GUT scale. In addition, there are requirements on the solution of successful radiative

electroweak symmetry breaking. In order to solve this system, to determine the supersymmetric

masses and couplings at the SUSY scale, spectrum generators must run particle masses, cou-

plings and mixing parameters between two disparate scales. To complete this process in full

generality and with complete rigour, one would have to integrate out each particle below its

mass and match the theory above each particle mass to a reduced effective theory below each

particle mass; however given the number of additional particles present in the MSSM (with even

more in its extensions), this is intractable. Moreover, with the particles able to order themselves

in mass in all possible ways, N additional particles would therefore result in ∼ N ! effective

theories to be run, each needing its own renormalisation group equations. Given this situation

there are two approaches used in the literature, each relevant in a different regime.

The first approach, and the method adopted in SoftSusy as well as SUSPECT (and also in

versions of sPHENO prior to version 4.0), is to match the Standard Model parameters used as

inputs at the low scale immediately onto the full MSSM at mZ
2. This matching involves the

conversion of the Standard Model parameters extracted from experiment into MSSM parameters.

For example, considering αs, this is determined via jet cross-sections with vertices such as

g → qq̄, gg. The measurements for such cross-sections are then used to determine the vertex

factors (proportional to αs at the scale it is measured) including Standard Model loop corrections

up to the desired order in perturbation theory. However, if the theory is taken to be the MSSM

rather than the Standard Model, there are additional loop corrections which we must subtract

off the calculated αs value to obtain our boundary condition on αs(mt) for the MSSM. At 1-

loop, such corrections come from gluino loops via processes such as that in Figure 3.3. These

“finite term” corrections are proportional to m2
Z/(16π2m2

SUSY) and are included by matching

straight onto the MSSM at the low scale3. However, by matching at an electroweak scale,

logarithmic pieces in the β function are not resummed which arise in the RGEs between mt

and mSUSY due to mass splittings between the various supersymmetric particles (i.e. as not all

supersymmetric particles appear at mSUSY); these are proportional to (1/16π2) log[(∆m)2/m2
Z ]

and alter the gradient of the running. In order to account for such missing pieces, SoftSusy and

other programs that use this method add “threshold corrections” to a given order, these account

2Traditionally the low matching scale is mZ , however as of SoftSusy version 4.1.1 the matching is done at mt,
this may have effects on the numerical values of the parameters obtained, such as mh [83].

3In spectrum generators mSUSY =
√
mt̃1

mt̃2
although this can be altered by the user.
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for the difference in gradient over the mZ to mSUSY running with additional intercept corrections

on top of the finite pieces4. This approach deals with the effects of sparticle thresholds by using

the MSSM (or its extensions as appropriate) as an effective theory between mZ and mSUSY.

Even within this prescription, there are choices which represent different higher order terms -

for the gluino correction of Figure 3.3 for example, the question of which gluino mass value

should one use in the loop ensues. Using the pole mass or the DR running mass will lead to

distinct αs values essentially corresponding to 2-loop effects. In order to minimise such effects,

higher orders must be included; in this respect SoftSusy is state of the art, containing 3-loop

RGEs and many 2-loop threshold corrections to the third generation Yukawas and the strong

gauge coupling αs as these have particularly large effects on the Higgs mass [117].

Figure 3.3: Supersymmetric correction to the vertex used to provide the value of αs(mt), the contribution
of this diagram must be factored in to obtain our value of αs at the low scale in the MSSM. There is also
a similar contribution from squark loop corrections.

The alternative approach, as used by ISAJET, NMSSMTools, sPHENO (since version 4.0 released

in March 2017) [158] and FlexbileSUSY, is to integrate out the sparticles from the RGEs at a

higher scale (mSUSY) and then run in an effective theory between mSUSY and mZ . This naturally

resums the logarithmic terms due to mass splittings in the RGEs, but misses finite terms due to

loop corrections via sparticles in loops. Generically, these two approaches have different regimes

of validity, with the SoftSusy approach missing terms of order O(log[(∆m)2/m2
Z ]), whilst the

NMSSMTools and sPHENO approach misses some terms of order O(m2
Z/m

2
SUSY). Therefore the

former approach will be most accurate for lower values of the mSUSY scale, whilst the latter is

more accurate for higher values of mSUSY where the mass splittings increase but the finite terms

reduce in size. Where the exact boundary of the two approaches occurs is a model-dependent

question, and one of increasing interest given the LHC constraints on low-scale supersymmetry.

It has been addressed by the paper [83] in the context of the accuracy of the Standard Model-like

Higgs mass, which offers a key constraint on supersymmetric models. The different approaches

therefore offer another source of potential mass, mixing and coupling differences between spec-

trum generators; these parameters are then used as inputs to the decay calculators and so may

cause significant differences in partial widths obtained, depending upon the nature of the mass

spectrum and model considered. Nonetheless, as previously mentioned, any such differences

between codes can be used as an estimator of associated theoretical errors for these difficult

calculations and offer an order of magnitude estimate for the size of higher order effects.

Aside from these differences in approach at the low end of the renormalisation group running,

4Note we distinguish between these threshold corrections, and those obtained between mSUSY and the high
scale whose logarithms are resummed up to the order of the renormalisation group equations included: 3-loop
with Next-to-Next-to-Leading-Logarithms.
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the basic methodology of the fixed point iteration solution of the two boundary RGE problem

to determine the supersymmetric and Higgs masses and couplings is the same and is illustrated

in a simplified form in Figure 3.4. It is described here:

1. Match the low energy boundary conditions on fermion masses, gauge couplings and other

electroweak parameters onto either the MSSM or the Standard Model, depending on which

of the two approaches are used. Threshold corrections are included at this stage in

SoftSusy to account for leading missing logarithmic pieces arising due to the sparticle

mass splitting. Guesses are required for the parameters on which there are no boundary

conditions, such as the supersymmetric masses, these are made approximately and are

irrelevant, being overwritten the next time the iteration reaches the low scale.

2. If the latter approach is used match, onto the full MSSM at mSUSY; if the former is used,

there is no need for this step as the spectrum generator already runs in the full MSSM.

3. The particle masses, couplings and other parameters are then run in the full MSSM up to

the high scale (however it is defined) - often this is the GUT scale, defined as the point

where the SU(2)L and U(1)Y coupling unify: α1(MGUT) = α2(MGUT).

4. At the high scale, the supersymmetric parameters are compared with the theoretical

boundary conditions (such as unification of scalar masses, fermion masses and trilinear

couplings in the case of minimal supergravity models); the parameters for which there are

theoretical boundary conditions are replaced by the boundary condition values, leaving

the remaining parameters unaltered.

5. The new set of parameters are all run down to the low scale in the full MSSM (perhaps

via matching at mSUSY and running in the Standard Model as an EFT below this if the

second approach is used). These parameters at the low scale are compared with the low

scale boundary conditions and replaced as appropriate, the whole new set of parameters

is then run back to the high scale.

6. Steps 3-5 are then repeated in fixed point iteration until the parameters reach convergence

within the level of the tolerance defined, by default this numerical precision is 10−4 but

this may be changed in the input file5. Usually a self-consistent solution satisfying both

low scale and high scale boundary conditions is found within 3-5 iterations. The number

of iterations required is dependent on the model and the precise setup as well as the low

and high energy scales set.

7. Finally, once the solution is found, the parameters are run to the supersymmetry scale

mSUSY and the supersymmetric and Higgs masses, mixings and couplings are output in

the mass spectrum at this scale. This information is then used as an input to the decay

calculator program.

There are potential issues which may arise from such an iterative approach, in particular

can we be certain there is just one solution and if not does the fixed point iteration method

necessarily produce the “best” solution, however that may be defined. For example, it may

5Specifically it is set in item 1 of the SOFTSUSY block, information on the SoftSusy input file is given in
Chapter 4.1.1.
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Figure 3.4: Schematic overview of how a spectrum generator program solves the two boundary differential
equation problem posed to determine the masses of the supersymmetric and Higgs particles. It does so
by repeatedly running between the low and high scales in fixed point iteration, taking the boundary
conditions at each end as inputs each time, until the masses are determined and consistent within a given
tolerance.

appear that it would be prone to finding local minima in the solution “fit”, rather than the

global minimum or even that the fixed point algorithm may be unstable in the region of some

solutions. This has been studied in the literature, in particular in the context of SoftSusy itself

an alternative “shooting” approach was investigated [172] and demonstrated that the fixed point

iterative method may in some instances only provide one of several solutions, although cases

where the phenomenology of these new solutions is markedly different are comparatively rare.

3.2.2 Decay Calculator Approach

The second stage of the calculation, and the one most relevant to our research, is the calcu-

lation of the partial widths of the available decay modes given the mass spectrum of sparticles

and Higgs bosons and their associated mixings and couplings. This part of the program is com-

putationally more straightforward, with the difficulty lying in the number of modes to calculate

and in the physics associated with difficult decay modes, particularly beyond tree-level or with

more than 2 final state particles where there are additional difficult integrals to perform and

many contributions and interferences to consider.

As is the case in the vast majority of decay calculator programs, we have chosen in SoftSusy

to set up the program to deal with specific models, these being any MSSM or NMSSM models
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satisfying a small number of assumptions as described in Chapter 3.3.4. Therefore the decay

calculation aspects are applicable for all three classes of MSSM supersymmetry breaking at the

high scale (see Chapter 2.1.2), or more generally for the pMSSM, or indeed user specified high

scale and breaking conditions in the spectrum generation, as well as for the NMSSM; provided

the assumptions accompanying our decay calculator are satisfied in such approaches. The decay

partial widths are hard-coded into the program, therefore extensions to further models would

require further coding, for example if an extension to the RPV case was desired additional

modes and coupling contributions would need to be added explicitly. This general model-

specific approach is used by all decay calculators in their stand-alone forms (SusyHit, sPHENO,

NMSSMTools, ISAJET, NMSSMCalc, FeynHiggs, PYTHIA, etc). An alternative is to produce decay

calculators that can determine the branching ratios for any given model and model extensions.

The Mathematica package SARAH is able to generate the vertices and mass matrices for any given

supersymmetric model, the decay calculator sPHENO with SARAH can then analyse additional

models and model extensions not directly coded into the decay calculator. Whilst this approach

has advantages in enabling the analysis of a wider variety of models, we have chosen the former

approach for its simplicity, usability and accuracy, with explicitly coding and analysing certain

classes of models under strict decay calculator assumptions enabling more specific modes to be

added and potentially offering greater insights into the phenomenology of these models.

The mechanics of any decay calculator program involves the computation of a vast number

of different decay modes; first checking which modes are kinematically available, and then eval-

uating relevant couplings for the decay modes, before evaluating the partial widths of relevant

modes, obtaining total widths and branching ratios, and finally outputting them in a series of

decay tables for each parent particle. An overall schematic of the functioning of the SoftSusy

decay calculator is provided in Figure 3.5; this is similar for all decay calculators, with differences

arising as a result of different modes being evaluated and different approximations, choices and

assumptions within equivalent decay modes. First the input mass, coupling and mixing param-

eters are read at the SUSY scale from the SoftSusy spectrum generator. Next the decay modes

are calculated one by one for each parent supersymmetric or Higgs particle, with switches used

to call MSSM or NMSSM decay formulae. 3-body modes and decays to gravitino LSPs may

also be evaluated depending upon the flags used and by default will be evaluated where they

are relevant to the phenomenology of the model, these can be turned off however (in the input

file for 3-body decays or in the code for decays to LSP gravitino). Branching ratios are only

output for modes with branching ratios above the branching ratio tolerance and 3-body modes

are only called where 2-body modes of the same particles are not available. Even in this case,

if there are other 2-body modes (to different final state particles), the 3-body modes calculated

will typically not be output as the 2-body modes often dominate the branching ratios, forcing

the 3-body mode branching ratios below the branching ratio output tolerance. Additional com-

plications arise from QCD corrections, which may be applied to some Higgs modes (as described

in Chapter 3.4). 1-loop modes also involve intricacies, with the masses and couplings often first

run to the scale of the decaying parent particle mass so as to endeavour to reduce the size of any
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corrections and hopefully produce a more accurate partial width. Many of these specific details

of the assumptions, choices and decay modes are given in Chapter 3.3, whilst more information

is also available in Appendix A and in our paper [1]. In Figure 3.5, dashed lines represent calls

that are only made if the appropriate input flags and conditions are met.

Figure 3.5: Schematic overview of the SoftSusy decay calculator, dashed lines represent calls that are
only made if the appropriate input flags and conditions are met, only the MSSM is always called (even
for the NMSSM as several decays are identical in the MSSM and NMSSM), the NMSSM specific modes
(involving the extended Higgs and neutralino sectors) are only called for NMSSM models. By default
QCD corrections are added to Higgs decays to quarks or gluons in the MSSM or NMSSM, by default
3-body modes are also calculated where required, although only in the MSSM, however both 3-body
modes and QCD corrections may be turned off by the user. Decays to gravitino LSPs are evaluated by
default but this may be turned off in the code.

Care has been taken to ensure consistency throughout the decay calculations with the

SoftSusy spectrum generator, with the masses and couplings used evaluated and applied in

the same schemes and under the same approximations in order to eliminate additional sources

of errors which may arise from theoretical inconsistencies. In addition, the spectrum generation

and decay calculation aspects of the SoftSusy program are largely independent; the spectrum

generator is only called after the inputs are provided if parameters are run to the scale of the

decaying parent particle mass in order to improve the accuracy of the partial widths calculated.

Consequently, the decay calculator may be used as a stand-alone provided all necessary input

parameters for the partial width functions are input.
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3.3 Conventions, Methodology and Implementation

We now outline the conventions, choices, assumptions and methodology used in our work on

the SoftSusy decay calculator, in our associated paper [1], and in the decay calculator program.

Throughout Z̃i and W̃j are used for neutralinos (i = 1, 2, 3, 4 in the MSSM or i = 1, 2, 3, 4, 5

in the NMSSM) and charginos (j = 1, 2), respectively. This is different to the commonly used χ̃0
i

and χ̃+
j notation for ease of reading, particularly when they appear in subscripts. The notation

for the mass-ordered CP even and CP odd neutral Higgs bosons is that hi ∈ {h,H,H3} for

i = 1, 2, 3 are the CP even neutral Higgs bosons in order of increasing mass, whilst Ai ∈ {A,A2}
for i = 1, 2 are the CP odd neutral Higgs bosons again in order of increasing mass, remembering

that H3 and A2 occur only in the NMSSM.

The partial width formulae for all of the decay modes included in the SoftSusy decay

calculation6 are listed in Appendix A; many of these were re-derived in the development of the

program and have been written in one consistent set of conventions. The latest version of the

whole SoftSusy program itself is also submitted with this thesis.

3.3.1 MSSM

While the conventions used in the decays code are largely those used in SoftSusy [66], there

are differences in a few places in order to allow easier comparison with partial width (PW)

formulae provided elsewhere. The few differences with respect to Ref. [66] are as listed below7:

• In our calculations, it is convenient to work in a basis where the third generation sfermions

are mass ordered with mf̃1
< mf̃2

. In order to ensure this, the mixing angle θf is trans-

formed accordingly (θf → θf + π/2) in the case where the SoftSusy spectrum generator

has mf̃1
> mf̃2

.

• The mixing angles for the charginos are transformed with respect to the SoftSusy spec-

trum generator in order to match conventions used elsewhere (e.g. [124]). Therefore θL/R

as indicated below is given by θdecaysL/R = −θspectrumL/R + π/2.

• The neutralino mixing matrix employed here is N = OT , where O is the neutralino mixing

defined in Ref. [66].

3.3.2 NMSSM

The conventions used in the decay code are predominantly those described previously in the

SoftSusy NMSSM manual [118], but there are differences in a few places. As well as those listed

above, there are a few changes specific to the NMSSM, to allow straightforward comparison with

NMSSMTools [126–128,159]:

6The source code for the calculations is in the folder src in the files decays.cpp, mainDecay.cpp,
twoBodyDecays.cpp and threeBodyDecays.cpp, which are in the C++ programming language.

7In the decay code itself, the neutralino mixing matrix used (N in SoftSusy notation) is transposed.
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• The Charge Parity (CP) even neutral Higgs mixing matrix, S, is altered relative to the

matrix R provided by SoftSusy [118]. The matrix S used in the decay formulae is obtained

via an orthogonal transformation exchanging eigenstates:

S = R

 0 1 0

1 0 0

0 0 1

 =

 R(1, 2) R(1, 1) R(1, 3)

R(2, 2) R(2, 1) R(2, 3)

R(3, 2) R(3, 1) R(3, 3)

 , (3.20)

i.e. the first two columns are interchanged.

• The CP odd neutral Higgs mixing matrix is altered relative to the matrix provided by

SoftSusy [118], the matrix P detailed in the decay formulae (different to the P in Ref. [118]

which we write here as P prov) is given below. The differences are that the first row of P prov

is dropped (as this refers to the Goldstone boson) and the first and second columns are

interchanged. The mixing angles β and θA are as used elsewhere in SoftSusy [66, 118].

P =

 P prov(2, 2) P prov(2, 1) P prov(2, 3)

P prov(3, 2) P prov(3, 1) P prov(3, 3)

0 0 0

 =

 cosβ cos θA sinβ cos θA sin θA

cosβ sin θA sinβ sin θA − cos θA

0 0 0

 .

(3.21)

3.3.3 Mass Choices and Scales Used

As described previously, at any given order of calculation in the mass spectrum generation,

there are assumptions, schemes and approximations that can result in numerically different val-

ues for quantities corresponding to the same physical parameter. Subsequently however, there

are also potential differences originating from the choices and assumptions made in the decay

calculations themselves as well as the corrections included. In this case, as for the spectrum

generators, these choices correspond to different higher order effects and are theoretically equiv-

alently valid choices at the order of approximation applied, nonetheless they of course lead to

further differences in the numerical partial widths and branching ratios output. One particularly

pervasive choice is that of the renormalisation scale at which to evaluate the parameters input

into each partial width formula. For example, consider the decay of a gluino into a top and a

stop. One must choose a renormalisation scale for the coupling, whilst the masses of the parti-

cles involved could be running masses evaluated at different scales or pole masses. Each choice

affects the numerical value of the partial width, but all choices are equivalent at tree-level. In

SoftSusy the following choices are made:

• In general, unless explicitly stated otherwise, the masses of the supersymmetric (SUSY)

and Higgs particles and other parameters, such as mixing angles and gauge couplings, are

evaluated at the scale MSUSY = x
√
mt̃1

(MSUSY)mt̃2
(MSUSY), where x by default is 1 but

can be set by the user. Here, mt̃i
(MSUSY) is the running ith stop mass evaluated at a

modified dimensional reduction [173] (DR) renormalisation scale MSUSY.
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• For Higgs loop decays the gauge coupling strengths αs and α are evaluated at the mass of

the decaying Higgs, with the hope of improving the accuracy obtained for these important

modes.

• For Higgs loop decays to γγ or Zγ the masses of the important quarks (i.e. mt, mb,

mc) are evaluated at the mass of the decaying Higgs in order to attempt to improve the

accuracy of the partial width evaluated. Below MZ , these are run in 3 loop QCD and 1

loop in QED, as they are in the case of the lightest CP even Higgs h’s decays. In the

calculation of decays of H, H3, A and A2 quark masses are run to mH , mH3, mA, mA2 in

the (N)MSSM as appropriate.

• Throughout the program, unless otherwise stated here, we use two different quark masses;

“kinematic masses” for the kinematics (i.e. for masses of particles in the initial or final

states) and “running masses” for the evaluation of couplings. This hopefully allows a large

part of some higher order corrections to be incorporated into the quark legs via the mass

running. The way in which these masses are evaluated is listed in Table 3.2.

• In addition to the above quark masses, there are extra masses mcpole and mspole defined

in decays.h which are used only for the neutral Higgs boson decays to qq̄ or gg and are

set to avoid double counting in the QCD corrections [174].

• If the QCD corrections to these decays are turned off then the running masses for the

quarks are used in order to attempt to hopefully incorporate some of the NLO corrections

to the quark legs.

As detailed in Table 3.2, for the third generation sfermions the “kinematic” masses are pole

masses obtained from the propagators whilst the “running (coupling)” masses are in the DR

scheme. For the “kinematic” masses of the first two generation fermions, the MS mass at MZ

is used, whilst the “running” masses are extracted from the running Yukawa couplings. For

the electron and muon, the running is small as there are only QED effects. The “kinematic”

masses for the vector bosons are pole masses, whilst for the “running (coupling)” masses they

are running DR masses evaluated at MSUSY. MS masses include only SM corrections within

SoftSusy, with 3-loop QCD and 1-loop QED corrections; whilst Yukawa-extracted masses are

in the DR scheme and include SM and SUSY corrections. Quark input masses can be reset

by the user within the SMINPUTS block of the SLHA/SLHA2 input file and the kinematic and

running masses used will then change accordingly.

The different choices of scales for the input parameters is one of the key sources of differences

between different decay calculator programmes. It is worth noting that an experimental value of

Fermi’s constant, GF , is also used; this is inconsistent with the tree-level expression GF√
2

= g2

8m2
W

as it is an empirical quantity and so incorporates higher order terms.
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kinematic masses running (coupling) masses

mtPole pole mass from propagator runmt DR mass at MZ

mbPole pole mass from propagator runmb DR mass at MZ

mtauPole pole mass from propagator runmtau DR mass at MZ

mc MS mass at MZ runmc Yukawa-extracted mass at MZ

ms MS mass at MZ runms Yukawa-extracted mass at MZ

mup MS mass at MZ runmu Yukawa-extracted mass at MZ

mdo MS mass at MZ runmd Yukawa-extracted mass at MZ

mel MS mass at MZ runmel Yukawa-extracted mass at MZ

mmu MS mass at MZ runmmu Yukawa-extracted mass at MZ

polemw pole mass from propagator runmw running W mass at MSUSY

polemz pole mass from propagator runmz running Z mass at MSUSY

Table 3.2: The two different types of masses used for the fermions and gauge bosons. The names given
are those used in the code. “kinematic” masses are used for the masses of initial and final state particles
whilst “running (coupling)” masses are used in couplings in the partial width formulae. Note that within
SoftSusy, the MS masses include only SM corrections whilst the Yukawa-extracted masses (DR masses)
include SM and SUSY corrections.

3.3.4 Assumptions Made

The following assumptions are made in the decay calculator:

• R-parity conservation in the MSSM and in the NMSSM.

• No additional CP violation relative to the SM.

• No additional flavour violation relative to the SM.

• Sfermion mixing has only been accounted for in the third generation of sfermions as it is

proportional to the Yukawa couplings, which are negligible for the first two generations.

• We assume CP conservation in Higgs sector of the MSSM and in the extended Higgs sector

of the NMSSM.

3.3.5 Method

The SoftSusy decay calculator is a C++ program, matching the language of the vast majority

of the SoftSusy spectrum generator package. This language is chosen as not only do most

contemporary high energy physics experiments and computer programs use C++ (with many

previous fortran programs, such as PYTHIA, recently migrating over to C++), but also the

object orientation allows a modular program to develop which is optimal for the many different

calculations and models that may wish to be evaluated.

As for the implementation of the decay partial width formulae themselves within the de-

cay calculator program, we have chosen to evaluate as many of the modes as is practicable

analytically in order to favour speed of execution; for 2-body tree-level decay modes, the ana-
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lytical expressions for the partial widths are explicitly used in order to provide fast evaluation.

Similarly, for the 2-body 1-loop decays the loop integrals were performed analytically and the

resulting formulae used. For 3-body decay modes (all tree-level), the phase space integral has

been analytically reduced to a one-dimensional integral, which is then performed using adaptive

Gaussian numerical integration [175].

The tree-level 3-body decay modes were therefore where most complications arose. In gen-

eral for an n-body tree-level decay there are n integrals to perform, one over the three-momenta

of each of the final state particles, as explained in Chapter 3.1. One of these integrals is always

trivial to perform using the momentum-conserving delta function. For the 2-body tree-level

decay widths this leaves one remaining integral with the energy delta function, this can then be

performed easily. For tree-level 3-body decay widths however, one has two remaining integrals

to perform and in general they are non-trivial to determine analytically. In certain cases the

symmetry of the integrands, along with certain assumptions, may allow them to be performed.

For h → V V ∗ → V f(′)f̄ modes (V represents a vector boson), the mass of the Higgs boson

ensures that the outgoing fermions may not be top quarks. Therefore one can neglect the masses

of the outgoing fermions and greatly simplify the calculation. Passarino-Veltman reduction [176]

can then allow reduction of the integrals to a one-dimensional integral, which in this case may

be determined explicitly analytically; the result is given in Appendix A.3.6 equations A.144 and

A.145, as well as in the “Higgs Hunter’s Guide” [102]. For a general 3-body decay mode the

calculations are however considerably more involved. There are two approaches that can be

taken once the first trivial integral using the momentum-conserving delta function is performed;

at this stage the partial width can be written as a double differential decay rate in two Mandel-

stam variables as is the case in SUSYHIT-1.4, following the work performed in reference [177],

these two dimensional integrals can then be performed numerically. Alternatively, often one

of the two integrals (remaining after the first trivial integral is performed) may be evaluated

analytically, leaving a single one-dimensional integral to be performed numerically. This is the

approach used in the work in reference [65,178] and is the method adopted in sPHENO [3,4], from

which the expressions we use for the 3-body decays originate. The Feynman diagrams involved,

effects included and any assumptions made for each of the 3-body decays are given in detail in

Appendix A.4 with the corresponding partial width formulae.

In the case of very compressed regions, the 3-body decays often involve very fine cancellations

between quantities, and this may cause issues with numerical precision, giving essentially random

positive and negative numbers rather than reflecting the overall size of the integral (which must

be positive definite). There can be negative integrands due to numerical precision close to both

ends of the integration region for any of the 3-body modes, however these end regions are usually

very phase space suppressed relative to the rest of the phase space, therefore issues only arise

when the phase space region available itself is only “ends”, i.e. is very compressed. In order to

attempt to deal with potential issues originating here, we have implemented a check for negative

partial widths, which may arise due to the numerical precision in the fine cancellations. If such

negative partial widths arise anywhere in the program a warning is output and this partial width
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is set to 0. Setting such partial widths to 0 is acceptable as these decay modes are very suppressed

and so only important when they are the only modes available. One circumstance where these

very compressed modes are the only ones available occurs for a gluino nearly degenerate with the

lightest neutralino which is the LSP. In this case the only modes available are very suppressed

decays to the lightest neutralino and quark-antiquark pairs of the first generation. Consequently

the size of the integral determined in the 3-body decays is important for the phenomenology of

the model and so (since SoftSusy version 4.1.4) we circumvent the numerical precision issues

associated with the fine cancellations by taking the compressed spectrum limit of the integrand

in this case and explicitly performing the cancellation analytically, leaving the remainder of the

integrand. This is then calculated by SoftSusy and integrated numerically as before to give the

partial widths (and hence branching ratios) and lifetime of the gluino. More information on the

limit taken and formulae used are given in Appendix A.4.1. There may be similar regions in the

3-body decays of neutralinos, charginos (or sfermions when these are added to the program),

which would benefit from increased accuracy gained from taking such limits; for now this is

left to future work and greater study. In general, the outputs of spectrum generator and decay

calculator programs for such very compressed spectra are of questionable accuracy in any case

and should be used with caution; when the spectrum is so compressed the decay modes are

dominated by the exact amount of the limited phase space available and consequently small

differences in the masses of the supersymmetric particles and the quarks can significantly alter

the partial widths. This was explained in the context of 2-body modes in Chapter 3.1 and

illustrated in Figure 3.18.

Finally, for the loop decays the situation is of course more complicated than at tree-level,

each loop provides an additional loop integral to be performed. In the case of the 1-loop

decays included in SoftSusy, the integrals were performed explicitly with the help of Passarino-

Veltman reduction [176] and formulae are available in Appendices A.3.6 and A.6 for the MSSM

and NMSSM respectively.

3.4 Decay Modes

The following section provides a list of all the decay modes included in the decay part of the

SoftSusy package along with some explanations; they are split into MSSM SUSY tree-level 2-

body decays, MSSM Next-to-Lightest Supersymmetric Particle (NLSP) decays to the gravitino

LSP, MSSM Higgs tree-level 2-body decays, MSSM Higgs 1-loop 2-body decays, MSSM tree-

level 3-body decays, NMSSM SUSY and Higgs tree-level 2-body decays, NMSSM 1-loop 2-body

decays and decays for which QCD corrections have been included. A comprehensive list of the

formulae for all of the decays included is given explicitly in Appendix A for ease of reference,

this also contains more details of the contributions and assumptions for the more complicated

3-body and loop decay modes. To summarise, we include:

8We refer here to very or highly compressed regions, rather than just compressed regions, the effects we discuss
and the limited accuracy onsets around mass splittings of a few hundred MeV.
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• All MSSM 2-body decays at (at least) tree-level, both sparticle and Higgs boson decays.

• Next-to-Lightest SUSY Particle (NLSP) 2-body decays to gravitinos in the MSSM at tree

level.

• The phenomenologically most relevant 3-body decays of gluinos, charginos and neutralinos.

• Higgs decays to γγ and Zγ at leading order (i.e. one-loop) in the MSSM and NMSSM.

• QCD corrections to neutral Higgs decays to quarks (1-loop) and to gluons (2-loop) in the

MSSM and NMSSM.

• All NMSSM 2-body decays at (at least) tree-level, including the extended neutralino and

extended Higgs sectors.

Whilst the majority of the decay modes are therefore calculated at tree-level, some effects

of higher order corrections are approximated via the use of running masses and couplings, as

calculated using the SoftSusy spectrum generator [66] - the details of the mass choices were

given in Section 3.3.3. In Appendix A.1 there are a series of tables indicating all the modes

included, along with appendix references for their partial width formulae as used in SoftSusy.

The branching ratios for each mode are grouped into decay tables for each parent SUSY or

Higgs particle and are printed to standard output in the SLHA/SLHA2 convention [156,157] to

allow it to be passed straightforwardly to other programs (such as PYTHIA [136], Herwig7 [137],

MadGraph [141], for instance).

3.4.1 MSSM SUSY Tree-Level 2-Body Decays

The detailed formulae for these modes are in Appendix A.3. We begin with the gluino

decays. The gluino g̃, being only charged under SU(3)c and with R-parity conservation, can

only decay via squarks and so it decays dominantly to these on-shell squarks and quarks if it is

heavy enough. The 2-body modes included are:

g̃ → qq̃∗L/R, q̄q̃L/R, tt̃
∗
1/2, t̄t̃1/2, bb̃

∗
1/2, b̄b̃1/2.

If mg̃ < mq̃ + mq for all quark-squark partners, then such 2-body modes are kinematically

unavailable and the 3-body modes via off-shell squarks are undertaken, these are given in Chap-

ter 3.4.5. The radiative decay g̃ → gZ̃i has not yet been included in SoftSusy but will be added

in a future version as it may be competitive with the 3-body decays included for compressed

regions.

The sfermion f̃ decays included are, for the first two generations where there is no sfermion

mixing9:

q̃L/R → g̃q, f̃L → W̃jf
′, f̃L/R → Z̃if.

9f ′ indicates a fermion in the same generation as the f fermion but with opposite third component of weak
isospin, i.e. f and f ′ could be u and d or νe and e−.
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The decays of the squarks to gluinos and quarks will routinely dominate if available as they

occur via the strong interaction. The decays of left-handed sfermions tend to prefer wino-like

neutralinos and charginos to bino-like as the gauge coupling of SU(2)L is greater than that

of U(1)Y . Nonetheless, for third generation sfermions decays to Higgsino-like neutralinos and

charginos are also important, having potentially significant branching ratios due to the larger

Yukawa couplings of the third generation. The 2-body decays of third generation sfermions are

listed below; these are more exotic due to their larger Yukawa couplings, this opens up decay

modes involving charged Higgses and neutral Higgs bosons. In addition, the larger Yukawas

cause significant intra-generational mixing (not present for the first two generations) which

allows decays involving W and Z bosons to occur more readily:

b̃1/2 → g̃b, W̃jt, Z̃ib, t̃1/2W
−, t̃1/2H

−,

t̃1/2 → g̃t, W̃jb, Z̃it, b̃1/2W
+, b̃1/2H

+,

b̃2 → b̃1Z, b̃1h/H/A,

t̃2 → t̃1Z, t̃1h/H/A,

τ̃1/2 → W̃jντ , Z̃iτ, ν̃τW
−, ν̃τH

−,

ν̃τ → W̃jτ, Z̃iντ , τ̃1/2W
+, τ̃1/2H

+,

τ̃2 → τ̃1Z, τ̃1h/H/A.

For charginos, the 2-body decay modes included are (where δj1 is Kronecker delta):

W̃j → q̃Lq̄′, q̃1/2q̄′, l̃Lν̄l, ν̃lL l̄, τ̃1/2ν̄τ , ν̃τL τ̄ , Z̃iW
+, Z̃iH

±, δj1Z̃1π
±,

W̃2 → W̃1Z, W̃1h/H/A.

The question of which of these are dominant is again a complicated one, for which decay

calculators such as SoftSusy are specifically designed. There are general comments which can

be made, with the decays to sfermions important either for Higgsino-like charginos, which have

large branching ratios to third generation sfermions via their Yukawa couplings, or for wino-like

charginos, which have moderate couplings to left-handed sfermions via the weak interaction. As

expected, decays involving Higgs bosons (charged or neutral) are relevant as one chargino is more

Higgsino-like and one more wino-like, both of which couple significantly to the Higgs. Decays

involving Z bosons are more relevant when a Higgsino-like chargino is involved, similarly decays

involving W bosons are more germane for wino-like charginos. Most of these general comments

also apply to the case of neutralino 2-body decays.

We have also included a case which may be phenomenologically relevant, offering interest-

ing signatures with long-lived charginos. This occurs when the lightest chargino and lightest

neutralino are quasi-mass degenerate (such is the case when the lightest neutralino is wino dom-

inated, for instance, as occurs often in AMSB models, see Chapter 2.1.2). In these cases it

may be more appropriate to discuss decays into explicit hadrons rather than quark states if the

mass splitting is of order a few times ΛQCD. This includes 2-body chargino decay modes to the

lightest neutralino and a pion. There are also 3-body modes which produce 2 pions and the
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lightest neutralino, these are included in the 3-body SUSY modes listed in Chapter 3.4.5.

For neutralinos the 2-body decay modes are (k > i as the neutralinos are mass ordered):

Z̃i → f̃L/Rf̄ , f̃1/2f̄ , W̃jW
+, W̃jH

+,

Z̃k → Z̃iZ, Z̃ih/H/A.

The same comments as for the chargino decays apply regarding the favoured modes in sce-

narios with different admixtures of Higgsino and wino in the neutralinos. In addition there are

also bino-like neutralinos, which interact little with any of the decay modes10.

The 1-loop decay Z̃j → Z̃iγ, for j > i, is yet to be included in the program, however it will

soon be added as it may be competitive with the 3-body modes included in compressed regions

of phase space.

3.4.2 MSSM Decays to Gravitinos

The following NLSP → G̃+ SM decays are included (where SM indicates a Standard Model

particle), for cases when the gravitino G̃ is the LSP. The gravitino often arises as the LSP in

GMSB models as outlined in Chapter 2.1.3 - in this case these NLSP decays to gravitino LSPs

offer interesting signatures at colliders, with long-lived NLSPs producing displaced vertices or

even leaving the detector. The lifetime of the NLSP is governed by the mass of the gravitino.

The decay modes included in SoftSusy are:

g̃ → gG̃, q̃i → qG̃, l̃→ lG̃, Z̃i → γG̃, Z̃i → ZG̃, Z̃i → φG̃.

In these expressions φ denotes one of the neutral Higgs bosons h, H or A. The formulae for the

partial widths are in Appendix A.5.

3.4.3 MSSM Higgs Tree-Level 2-Body Decays

The tree-level 2-body decay modes included for the Higgs particles in the MSSM are as

follows, the formulae for the partial widths are explicitly given in Appendix A.3.6. The CP

odd neutral Higgs boson has significantly fewer available decay modes than the CP even neutral

Higgs bosons due to the constraint of CP conservation, this prevents decays of the A to two alike

scalars or two alike vector bosons. Consequently, note that whilst all handedness combinations

are allowed for the CP even Higgs in the decays to sfermions, the alike handedness combinations

LL, RR are not allowed for the CP odd Higgs bosons. Similarly, for the third generation where

there is squark mixing the combinations 11, 22 are not allowed for the CP odd Higgs bosons. For

the decays to charginos however, alike combinations 11, 22 are allowed (in addition to unalike

combinations) for the CP odd neutral Higgs bosons (as well as for the CP even neutral Higgs

bosons as always) as the charginos are fermions:

10This is why bino-like LSPs are overproduced as a dark matter candidate, they interact little and so freeze-out
early, leaving larger relic densities.
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h/H/A→ f̃L/Rf̃
∗
L/R, f̃1/2f̃

∗
1/2, W̃1/2W̃1/2, Z̃iZ̃l, l

+l−,

H+ → Z̃iW̃j , qq̄′, νl l̄, f̃L/Rf̃
∗
L/R, t̃1/2b̃

∗
1/2, ντ τ̃

∗
1/2, hW

+,

h/H → AA,AZ,

H → H+H−, hh, V V,

A→ h/HZ.

The decay of the heavier CP even neutral Higgs boson to two vector bosons is listed here as

it is typically heavy enough to decay into two on-shell vector bosons. In contrast, for the lightest

(Standard Model-like) Higgs boson this decay is kinematically forbidden and instead the 3-body

mode to a vector boson and fermion-antifermion pair via an off-shell vector boson occurs; this

is listed later in Chapter 3.4.5. No A → V V decay is available due to CP conservation. The

decays of the heavier CP even neutral Higgs H into two CP even or two CP odd Higgs bosons

are relevant when both MH and tanβ have intermediate values [84].

The neutral Higgs decays to quarks are not included in this list as QCD corrections have

been incorporated for these, see Chapter 3.4.8. It can be argued that QCD corrections for the

charged Higgs decays to quarks are also important (although less so as the H± is an MSSM-only

particle unlike the lightest CP even neutral Higgs boson), so QCD corrections to these decays

will be added in a future version; they are particularly relevant for decays to the bottom quark

at large tanβ [84]. Meanwhile, the scenario where mH± < mt +mb but H± undergoes a 3-body

decay via an off-shell top to W±bb̄ is yet to be included. For H+, decays to CKM suppressed

combinations of q and q′ are nonetheless considered in the program, for example H+ → us̄. Note

however that the decays H+ → H/AW+ are not included as they are kinematically forbidden in

the MSSM assuming tree-level mass formulae, these modes are however included in the NMSSM.

3.4.4 MSSM Higgs 1-loop 2-body decays

The key Higgs 1-loop decays are also included as these are very important channels for LHC

Higgs discovery and measurement:

h/H/A→ γγ, Zγ.

The explicit expressions for their partial widths and the loop contributions included are in

Appendix A.3.6 equations A.150 to A.204. The Feynman diagrams for these modes were given

earlier in Chapter 2.5.1 in Figure 2.6. For the CP even neutral Higgs bosons the Standard Model

contributions are fermion loops (dominantly top and bottom loops due to their larger Yukawa

couplings) and W bosons, whilst in the MSSM there are also contributions from sfermions,

charginos and charged Higgs bosons. In SoftSusy for the diphoton mode we include fermion

contributions for top, bottom, charm and tau; sfermion contributions from stops, sbottoms and

staus (as 3rd generation sfermions have larger Yukawa couplings and also tend to be lighter and so

offer less suppressed contributions); charged Higgs contributions; W contributions and chargino

contributions. For the Zγ mode we include fewer contributions as the mode is yet to be observed

Thomas Cridge 89



Chapter 3. SoftSusy Overview 3.4. Decay Modes

and so we need only potentially dominant contributions: we include top, bottom, charm, strange,

W and charged Higgs contributions only. However with the lack of observation of a charged Higgs

boson around the electroweak scale at the LHC and elsewhere, the charged Higgs contribution

to γγ (and Zγ) is likely to be small as it is suppressed by m4
W /m

4
H± . Likewise, the contributions

of the sfermions and charginos are increasingly small as their masses are pushed higher by LHC

exclusions, with their contributions suppressed by m2
W /m

2
W̃i

and m2
W /m

2
f̃

respectively. This

pushes the partial width of the lightest CP even Higgs towards the Standard Model value as the

supersymmetric particles in the loop decouple, producing the observed h→ γγ branching ratio.

Meanwhile, the CP odd neutral Higgs only has contributions from fermion and chargino loops

because of CP conservation.

The charged Higgs boson also has 1-loop decays to a photon and a W boson, or to a Z

boson and a W boson, via top-bottom triangle loops dominantly [179]; however these are not

phenomenologically important and are suppressed relative to the tree-level modes. These modes

are not included in SoftSusy.

The loop decays to two gluons φ → gg incorporate QCD corrections and so are listed in

Chapter 3.4.8.

3.4.5 MSSM Tree-Level 3-Body Decays

The phenomenologically most important 3-body decays in the MSSM are included. For the

neutralino decays to another neutralino and a fermion-antifermion pair i > j as the neutralinos

are mass-ordered:

h→ V ff̄ .

g̃ → Z̃iqq̄, W̃iqq̄′.

Z̃i → Z̃jff̄ , W̃jff̄ ′.

W̃j → Z̃iff̄ ′, δj1Z̃1π
±π0.

These 3-body modes are all typically suppressed relative to available 2-body modes and so

are relevant largely in regions where no 2-body modes are available, such as compressed spectra.

The Higgs 3-body modes to a vector boson and a fermion-antifermion pair via an off-shell vector

boson intermediate have a large branching ratio for the Standard Model-like Higgs at 125 GeV

as, whilst it is suppressed due to being 3-body, vector bosons have a large coupling to the

Higgs boson via their large masses. Furthermore, for the Standard Model-like Higgs, these 3-

body decays only compete with 2-body decays to fermions, for which the largest coupling is the

(relatively small) bottom Yukawa coupling.

As for the gluino, its 3-body mode is available when the squarks are all heavier than the

gluino11. The gluino 3-body modes to the lightest neutralino ordinarily dominate due to the

larger phase space available, in addition the lightest stops are usually the lightest squarks and so

11This may occur if M3(MGUT) is set lower than that expected from gaugino mass unification. It can even
occur in the CMSSM - a CMSSM point in which the gluino is lighter than the squarks is given later in Figure 4.8.
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the off-shell intermediate suppresses these modes less than for other heavier squark intermediates.

Moreover, if the lightest neutralino is Higgsino-like then its couplings to squarks and quarks are

proportional to the Yukawa couplings and so this further favours the 3-body decays to stops and

tops, and to sbottoms and bottoms for large tanβ.

The 3-body modes of the neutralinos and charginos are particularly complex, having con-

tributions from sfermion, Higgs and gauge boson intermediates, and so their relative strength

depends on all of these couplings, making general comments more difficult. The neutralinos

may only decay in 2-body modes to produce lighter neutralinos and Z bosons or neutral Higgs

bosons, or lighter charginos and W bosons or charged Higgs bosons, or sfermion-fermion pairs;

consequently typically the 3-body modes are the only decays available if the mass splitting be-

tween a neutralino and the lighter neutralinos is less than mZ and the mass splitting between a

neutralino and the lighter charginos is less than mW . As a result, none of the fermions produced

in the case of the neutralino 3-body decays decays will be a top quark in the relevant regions of

parameter space. Which of the fermions are produced more abundantly depends on the exact

nature of the spectrum. For larger mass splittings (although still smaller than the electroweak

gauge boson masses) it is often the case that decays producing bottom quarks (and also tau

leptons) dominate for the neutralino to neutralino decays as the large Yukawa couplings pull

the sbottoms (staus) to lower masses so these sbottom intermediates suppress the partial widths

less. In addition, the large Yukawa couplings also enhance their couplings to the Higgsino parts

of the neutralinos. These effects are particularly relevant for the case of large tanβ values as

here the Yukawa couplings to bottoms and taus are amplified. As the mass splitting is reduced

the phase space plays an increasing role and the necessity of additional mass energy in the case

of the bottom quark (tau lepton) reduces the partial width relative to the first two generations

until eventually the mass splitting is small enough that the 3-body decays producing these bot-

tom quarks (tau leptons) are also kinematically forbidden, leaving only 3-body modes to the

first and second generation fermions. Meanwhile, for the 3-body decays involving charginos the

bottom is not relevant as it has to be produced in association with a top quark, which is too

heavy to be relevant in these compressed phase space regions. Nonetheless the tau is particu-

larly relevant as it is still third generation and is produced in association with a massless tau

neutrino. Further information on the 3-body modes of electroweakinos is given in [180]. Once

the mass splitting becomes very small, and the initial and final state electroweakino particles be-

come quasi-degenerate, only first generation modes may become available. Eventually however

as ∆m→ 0 the quarks produced will not behave independently and instead hadronise together;

consequently they must be considered together as hadrons in the final state and appropriate

form factors accounted for, producing 2- and 3-body pion modes. We have included these for

the phenomenologically interesting case of a near degenerate lightest chargino and neutralino

LSP, as arising in AMSB.

As of yet, there are no 3-body decays of sfermions included; this will be resolved in future

versions. The explicit formulae used for our 3-body decays, for which sPHENO [3] provided a

useful reference, are given in Appendix A.4.
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3.4.6 NMSSM SUSY and Higgs Tree-Level 2-Body decays

In the NMSSM, decays not involving the extended Higgs or neutralino sectors are the same

as in the MSSM. For the extended neutralino and Higgs sectors the allowed decays are largely

as before with the exception that now the neutralino index i runs from 1 to 5, whilst there is

an additional CP even neutral Higgs and an additional CP odd neutral Higgs. All of the Higgs

states are of course mixtures of the original MSSM states and the new NMSSM states, therefore

the most “NMSSM-type” state need not necessarily be the heaviest. The Z̃1,2,3,4, h and H

(which we now use to label the lightest two CP even neutral Higgs bosons) and A have the same

available modes as listed before; therefore we now list the decay modes of the additional states.

As a guide, the same decays which can occur for the heaviest of the two CP even Higgs bosons

of the MSSM, the H, may now also occur for the H3; similarly we can extend the decays of the

A to the A2, and of the Z̃1,2,3,4 of the MSSM to the Z̃5. Additional decay modes in the NMSSM

are therefore:

Z̃5 →WW̃1/2, ZZ̃n, H
±W̃1/2, Z̃nh/H/H3/A/A2, f̃L/Rf̄ , f̃1/2f̄ ,

H3→ f̃L/Rf̃
∗
L/R, f̃1/2f̃

∗
1/2, W̃1/2W̃1/2, Z̃iZ̃l, l

+l−, AA,AA2,

H3→ A2A2, ZA/A2, H+H−, hh, hH,HH,W−H+, V V,

A2→ f̃Lf̃
∗
R, f̃1f̃

∗
2 , W̃1/2W̃1/2, Z̃iZ̃l, l

+l−, Zh/H/H3, Ah/H/H3,W−H+,

where V V ∈ {W+W−, ZZ}, i, l = 1, 2, 3, 4, 5 and n = 1, 2, 3, 4 since the Z̃5 decays into lighter

neutralinos. As before, for the A2 there are fewer decays than the H3 as many decays are ruled

out by CP conservation. For the decays to two sfermions, any combination of handedness is

permitted LL, LR, RL, RR for the CP even Higgs decays and, similarly, for the decays to

mixed sfermions all combinations 11, 12, 21, 22 are allowed; whilst for the CP odd Higgs decays

the produced sfermions must be different by CP conservation and so only LR and RL, and 12

and 21 are available. Decays to all combinations 11, 12, 21, 22 are allowed for the charginos

for both CP even and CP odd Higgs bosons. For the decays to quarks only charm, strange,

top and bottom quarks are considered as the partial widths are proportional to the squares of

the Yukawa couplings. Decays of the H3 or A2 to qq̄ or gg are listed in Chapter 3.4.8 as QCD

corrections are included in these channels.

The additional decays available in the NMSSM relative to the MSSM are similar, with the

complication that the neutralinos have a supplementary singlino component and the CP even

and CP odd neutral Higgs bosons have an extra singlet component. These singlino/singlet

components have no interactions with the non-Higgs/Higgsino components in the model and so

reduce the strengths of the interactions of the neutralinos and neutral Higgs bosons relative to

the MSSM. Given the extended Higgs sector, it is now possible to have light CP even or CP

odd Higgs bosons which are lighter than the Standard Model-like Higgs boson and therefore

may significantly alter the phenomenology relative to the MSSM. Either the h or the H (i.e.

the lightest or second lightest CP even neutral Higgs bosons) may now be identified with the
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discovered Standard Model-like Higgs at 125 GeV. A light CP odd Higgs boson would allow

Higgs to invisible decays to have a significant width due to h→ AA decays. This can therefore

be constrained via measurements of the visible decays to deduce the invisible width as the

extra invisible width would suppress the other branching ratios, such as h→ ττ, bb12. Searches

for Higgs to two Higgs modes may be possible via searches for the decay products of the two

produced Higgs bosons, such as bbτ+τ− signals, if they can be observed above backgrounds.

When such Higgs to Higgs decay modes are kinematically forbidden, the Higgs sector searches

for the NMSSM are similar to those in the MSSM but with reduced couplings at tree-level

and possible additional contributions at loop-level. We include more decay modes involving

charged Higgs - gauge boson - neutral Higgs couplings as the theoretical mass constraints at

tree-level in the NMSSM are far less stringent than in the MSSM. The effective MSSM is

recovered from the NMSSM in the limit that λ, κ→ 0, s ∼ 1/κ→∞ whilst keeping κ/λ and µ

fixed, the Higgs sector then decouples into the MSSM doublet and a separate purely NMSSM

singlet. Nonetheless with the additional Higgs states, if these couplings are slightly non-zero,

the phenomenology can still therefore be quite different to the MSSM. In the neutralino sector

in the NMSSM decoupling limit, the singlino neutralino decouples from the MSSM neutralinos

and the neutralino sector of the NMSSM cannot be distinguished from the MSSM unless the

singlino is the LSP. In this case NLSP MSSM neutralinos may leave the detector or produce

displaced vertices. See references [92,181] for further details of NMSSM phenomenology.

The explicit partial width expressions used within the decay calculator in the NMSSM in

SoftSusy are given in Appendix A.6, the expressions were generalised from the MSSM corre-

sponding decays with appropriate changes. NMSSMTools [126,128,159] proved a useful reference

point with which to compare our decay widths and check the relevant formulae.

3.4.7 NMSSM 1-loop 2-Body Decays

As in the MSSM, in the NMSSM the important 1-loop decays of Higgs bosons are included:

h/H/H3/A/A2→ γγ, Zγ.

These modes are essentially identical to the 1-loop Higgs decays of the MSSM with the

appropriate coupling changes. For the decay mode to diphotons we include fermion contribu-

tions from top, bottom, charm and tau; sfermion contributions from charm sfermions, strange

sfermions, stops, sbottoms, staus and smuons; W contributions, charged Higgs contributions

and chargino contributions. As in the MSSM case we need not include any first generation

fermions or sfermions as their contributions are proportional to their Yukawas. In general only

the 3rd generation contributions are important, particularly as the 3rd generation sfermions can

be lighter and so the loop is less suppressed by the propagators. For the Zγ mode as before

we include fewer modes as it is yet to be observed at the LHC; the contributions included are

12Measurements via the total width of the Higgs directly are difficult as it is very narrow and so far only
bounded experimentally rather than measured.
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from tops, bottoms, charms, charginos, W bosons and charged Higgses. Meanwhile, whichever

of the two lightest CP even Higgs bosons we identify with the Standard Model-like Higgs at

125 GeV must have its couplings very close to those of the Standard Model due to experimental

constraints on its decay modes. The partial width expressions for these modes, and the loop

contributions included, are listed in Appendix A.6 equations A.851 to A.902.

Again the decay to two gluons is listed in the next section as it includes QCD corrections.

The detailed formulae used within the code for the partial widths of these modes are provided

in Appendix A.7.

3.4.8 QCD Corrected Decays

NLO QCD corrections have been incorporated for the decays in which such effects are most

important in both the MSSM and NMSSM, these are the neutral Higgs decays to quarks and

decays to gluons:

h/H/H3/A/A2→ qq̄, gg.

The expressions used are given in Appendix A.7 and are based on those provided in the

calculations in [182, 183]. Note that the quarks which are considered for neutral Higgs decays

are only charm, strange and bottom for the lightest CP even neutral Higgs h, whilst the top is

also included for the heavier CP even neutral Higgs boson(s) and for the CP odd neutral Higgs

boson(s) of the (N)MSSM. Decays to u and d are negligible as a result of their small Yukawa

couplings. For the decay to two quarks, the QCD corrections just offer an additional correction

factor to the whole partial width, the corrections are identical in the MSSM and NMSSM

with the difference arising in the tree-level formulae only. For the decay to two gluons, the

situation is more complicated as there are both standard QCD and SUSY-QCD corrections, with

the standard QCD corrections applying to all contributions but the SUSY-QCD contributions

applying only to the scalar squark contributions. The corrections are therefore not just a simple

factor to be applied. The QCD corrections for both the qq̄ and gg case also differ between the

CP even and CP odd neutral Higgs bosons as might be expected. These QCD corrections can

be turned off if the user desires but by default are on as they result in significant changes to the

partial widths, as detailed earlier at the end of Chapter 3.1.

Unlike in the case of the γγ and Zγ decays, the masses used in the QCD corrected formulae

cannot be running masses evaluated at the scale of the decaying Higgs mass - rather pole masses

must be used in order to avoid double counting of corrections [174, 184]. The gauge coupling

αs is however evaluated at mφ in order to attempt to include further additional corrections of

higher orders.
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3.5 Advantages of the SoftSusy Decay Calculator

Before moving on to the details of the use of the decay calculator for SoftSusy, its validation

and a selection of results in the next chapter; we first summarise here the motivations and

associated advantages of the SoftSusy decay calculator for the field:

• All-in-one spectrum generation and decay calculation: The program works straight out-of-

the-box, performing the spectrum generation and decay calculation aspects automatically

for each input file, producing one output file containing both the spectrum and decay infor-

mation. There is no need to run model files or other programs in advance, it is absolutely

self-contained for these aspects. This makes the program easy to use and straightforward

to understand, both key features for any program to be used by the experimental and

phenomenological communities. Moreover, with SoftSusy already a very popular spec-

trum generator, the addition of the decay calculator reduces the need to interface and pass

information between many programs. It is at such junctions that issues typically occur,

even with the SLHA, whether they be computational issues or issues of inconsistencies.

• NMSSM included in spectrum generation and decay calculation: Even amongst the many

programs in this area it is very rare to have a program include both the spectrum generation

and decay calculation aspects for the NMSSM, this will be of increasing importance to the

field as the spotlight shifts from the most constrained MSSM models to its extensions.

The only other options available are NMSSMTools, which, whilst it can perform spectrum

calculation, typically was previously interfaced with SoftSusy to allow it to evaluate the

spectrum before NMSSMTools evaluated the decay widths; meanwhile SARAH and sPHENO

can be used together to perform spectrum generation and decay calculation in the NMSSM;

whilst NMSSMCalc can evaluate the spectrum and widths for the Higgs sector only of the

NMSSM. Consequently the inclusion of a spectrum generator and decay calculator within

the same program for sparticle and Higgs decays of the NMSSM, with the program working

without the need for any others, represents a significant advantage.

• Theoretical consistency: Interfaces and passing information between various programs for

different aspects of these calculations, as they are very complicated, offer potential issues

even with the SLHA. The decay calculator program has been explicitly built as part of the

SoftSusy package and set up carefully to ensure the same assumptions and approximations

are made in the same places. This ensures no additional theoretical errors originate from

theoretical inconsistencies in the approaches and approximations taken, circumventing

errors which may arise if separate programs are linked together.

• Additional decay calculator program: As should now be clear, the process of predicting the

spectrum and partial widths for supersymmetric and Higgs particles is far from straight-

forward. Therefore the development of an additional decay calculator program allows for

a further program against which to compare the theoretical predictions for given masses
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and modes, allowing a greater awareness of the size of the theoretical errors involved in

these calculations by observing the numerical differences produced by different approaches,

approximations and included corrections. In addition, with the spectrum generator and

decay calculator in one consistent package, error propagation can be examined, looking

at how errors from the spectrum generation are enhanced or altered as they pass through

the decay calculation in order to produce the theoretical predictions for experimentally

observable branching ratios.
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Chapter 4

Use and Results of the SoftSusy

Decay Calculator

In this chapter we discuss how to use the SoftSusy program with an emphasis on the decay

calculator program included in the package as a result of our work. We begin by explaining the

input file flags and options, the decay information produced and the output file. This includes

sample input and output files in addition to those provided directly with the program package.

We then move on to outline the validation steps performed in the development of the decay

calculator program. Finally, we present a comprehensive, but still far from exhaustive, catalogue

of results produced by the SoftSusy decay program in order to provide an indication of the wide

range of decay modes incorporated and the broad scope of the program for phenomenological

applications. The paper associated with the SoftSusy decay calculator [1] contains further

details and serves as its manual; the SoftSusy decay calculator incorporated into the overall

SoftSusy program is also provided with this thesis.

4.1 How to use SoftSusy Decays

The SoftSusy program package is publicly available online at

“http://softsusy.hepforge.org/”, as well as with our paper at [1] and on GitHub; the

SoftSusy web page being where the most up-to-date version is guaranteed to be found, along

with a summary of changes made in each new version or sub-version released. The program

comes with several test files and executables, for our uses we will primarily be interested in the

main program executable ./softpoint.x which runs the mass spectrum generation and decay

calculation for a supersymmetric parameter point. For this executable itself there are several

test files for the different models included:

• ./softpoint.x leshouches < inOutFiles/lesHouchesInput

- Runs the mass spectrum and decay calculation for a CMSSM model point.

• ./softpoint.x leshouches < inOutFiles/nmssmSLHAZ3Input

- Runs the mass spectrum and decay calculation for an NMSSM model point with Z3

conservation.

• ./softpoint.x leshouches < inOutFiles/nmssmSLHAnoZ3Input

- Runs the mass spectrum and decay calculation for an NMSSM model point with Z3

violation.
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• ./softpoint.x leshouches < inOutFiles/rpvHouchesInput

- Runs the mass spectrum generation, but not the decay calculation, for an MSSM model

point with R-parity violation, decay calculation can only be done with RPC currently.

• ./softpoint.x leshouches < inOutFiles/slha2Input

- Runs the mass spectrum for the CMSSM10.1.1 benchmark input point [185] - the decay

calculation can be added via a line in the SOFTSUSY BLOCK to set item 0 to 1.

• ./softpoint.x leshouches < inOutFiles/pmssmInput

- Runs the mass spectrum for a pMSSM input point including the decay calculations.

More information on flags and options are given in the next section, whilst a number of additional

input files will be explored later in Chapter 4.2 as we present the validation and a selection of

results from the decay calculator program.

4.1.1 Input

The input file in SoftSusy contains a number of options for the mass spectrum generation

and decay calculation. We focus on those of particular relevance to the partial width calculation

aspects, further information on other options in the input file are available in the SoftSusy

manuals [1, 66, 68, 69, 117–119]. A sample input file for the SoftSusy program is given in Fig-

ure 4.1; it is the lesHouchesInput file provided with the program and the different inputs are

highlighted by the arrows. The input file is in SLHA form and split into 4 sections. The first

BLOCK MODSEL is where the appropriate model is chosen: in the example in the figure item

1 in this block is chosen as 1 to indicate mSUGRA as the supersymmetry breaking model (this

is the only option for the NMSSM), 2 indicates GMSB, 3 indicates AMSB; the item 3 in this

block if present is set to 0 (default) to select the MSSM or 1 to select the NMSSM; item 4

indicates R-parity conservation if set to 0 (default) whilst 1 indicates RPV1; item 6 chooses no

flavour violation if set to 0 (default). The second BLOCK, labelled “SMINPUTS”, is where

the input boundary conditions at the low scale are set on parameters such as the MS fine

structure constant αMS(mZ) and strong coupling constant αMS
s (mZ), the Fermi constant, the

Z, top and τ pole masses and the MS bottom mass mMS
b (mb), amongst other possible inputs.

The BLOCK “MINPAR” similarly is where the high scale boundary conditions for the RGEs

are set, in the case of mSUGRA as in the sample input file this requires setting the unified

scalar mass m0, unified fermion mass m 1
2
, ratio of VEVs of the two Higgs doublets tanβ, the

unified trilinear coupling A0 and the sign of the µ parameter. Further descriptions of these input

options are available in the SLHA and SLHA2 papers [156] and [157]. An additional optional

BLOCK “EXTPAR” may be also introduced to provide further non-standard inputs for high

scale boundary conditions, for example for the pMSSM. Here NMSSM parameters may addi-

tionally be specified but only subsets of parameters which can be independently set and which

lead to correct Higgs minimisation may be set together. Finally, the BLOCK “SOFTSUSY”

sets the SoftSusy specific input flags for the spectrum generation and decay calculation. Item 0

is set to 1 to inform the program to perform decay calculations, by default the decay calculation

1RPV can only be run for the spectrum generation, not the decay calculation.
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is not called. Items 24, 25 and 26 provide further information for the decay calculator program:

item 24 sets the value of the minimum branching ratio output in the decay tables, the default

is 10−6; item 25 switches the 3-body decays on or off with 1 (default) calculating them if they

are required and 0 switching 3-body decay calculations off. This may be useful in order to save

time in large scans as the 3-body decays are performed numerically and so take longer. Finally,

item 26 allows the partial widths to also be output in the decay tables, this can be useful if

comparing different programs. The default option (0) has the partial widths not output, whilst

the option 1 outputs the partial widths beyond the comments column in order to not disturb the

SLHA format and still allow the output to be passed directly to other programs further down the

analysis chain. Beyond these options there are the spectrum generator specific options, which

are outlined in greater detail in [66]; these set the numerical precision for the convergence of the

spectrum, the number of loops, gravitino mass and other inputs.

It is also possible to use command line input to set up the mass spectrum gener-

ation and decay calculation with the main executable ./softpoint.x, rather than sup-

ply a “leshouches” input file. For the spectrum generator part the default format of

the options is ./softpoint.x <SUSY-breaking-model> [SUSY-breaking-model options]

[general options] with the specific details provided in the MSSM RPC and the NMSSM

SoftSusy manuals [66] and [118] respectively. The options relevant for the decay calcula-

tor are that --decays switches on the decay calculation, --minBR=<value> sets the minimum

branching ratio to be output, --dontCalculateThreeBody switches off the 3-body decays, whilst

-outputPartialWidths ensures the partial widths are output in addition to the branching ra-

tios. For example, the lesHouchesInput file of Figure 4.1 can be replicated using the command

line via:

./softpoint.x sugra --m0=125 --m12=500 --a0=0 --sgnMu=1 --tanBeta=10 --decays --higgsUncertainties.

There are further flags and switches inside the source code for users requiring finer control

of the decay calculator. There are flags at the start of the code named flag<particle name>

- when these flags have value 1 the particle decays are calculated, therefore by default all such

flags are set to 1. These flags allow the user to turn off irrelevant decays for their analyses;

for example in producing the scanning plots, such as Figure 4.9 in Chapter 4.2.3, all decays

apart from those of the relevant decaying particle were turned off by setting these flags for

all other particles to 0, allowing the plots to be produced more straightforwardly. Similarly

there is a Boolean variable QCDcorr, which by default is true, which may be used to turn off

QCD corrections. In case the user should want to run the parameters used to different scales,

for example in performing comparisons with other decay calculators, it should be noted that

running in SoftSusy is implemented using MssmSoftsusy and NmssmSoftsusy objects (detailed

in references [66] and [118] respectively) and the runto command. If one alters the running scales

within SoftSusy one must remember to instruct SoftSusy to recalculate the DR parameters at

this scale using calcDRbarPars(). Nonetheless, any changes made to the code are at the user’s

risk. Finally, given the dependence of many of the partial widths on the input parameters, and

in particular on the quark masses used, users may wish to alter the quark masses mq. This
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Figure 4.1: The input file lesHouchesInput included with the SoftSusy package. It is split into four
sections for different input information and is SLHA-compliant. The first BLOCK MODSEL indicates
the supersymmetric model and supersymmetry breaking to use, the section BLOCK SMINPUTS sets
the Standard Model input values used as boundary conditions for the RGEs at the low scale. The
third BLOCK MINPAR sets the high scale boundary conditions specific to the model of supersymmetry
breaking, further information can be provided in an optional additional BLOCK “EXTPAR” (see [66,
156]). The final SOFTSUSY BLOCK contains the SoftSusy spectrum generator and decay calculator
specific input, with items 0, 24, 25, 26 for the decay calculation.

may be done in the input file BLOCK SMINPUTS, the masses used within the decay calculator

(“kinematic” and “running”) will change accordingly.

4.1.2 Output

The output comes in the standard SLHA/SLHA2 format [156, 157]. In concordance with

SLHA conventions the particle masses, total widths and partial widths (PW) are output in units

of GeV.

Running the ./softpoint.x executable with either an input file (such as that provided

in Figure 4.1) or command line instructions produces a single output file in around 0.1-1s,
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containing all the mass spectrum and decay branching ratios information for the supersymmetric

and Higgs particles in the model. Furthermore, this information is all provided in SLHA/SLHA2

format [156, 157] and so may be passed straight into additional programs, for example PYTHIA

if event generation is required. This makes the SoftSusy program straightforward to use. For

the sample input file provided in Figure 4.1, the output file lesHouchesOutput provided with

the SoftSusy package is generated, this is split into several parts with Figures 4.2 and 4.3

illustrating the parts containing the mass spectrum and one decay table2. The structure of the

output file produced is as follows:

• Input information - At the top of the output file the input information provided to the

SoftSusy program is listed so that output files can be identified with the input files.

• Mass spectrum - Next, the BLOCK MASS, lists the masses of all the supersymmetric and

Higgs particles of the model, as seen in Figure 4.2.

• Couplings and Mixing Matrices - The couplings and mixing matrices calculated are output

next.

• Decay information - For each possible parent supersymmetric and Higgs particle in the

model a decay table is produced. This lists the total width of the particle followed by all

available modes with branching ratio greater than minBR and their associated branching

ratios. NDA indicates the number of daughter particles produced in the decay (2 or 3 in the

current version of the SoftSusy decay calculator), the PDGi columns give the Particle Data

Group (PDG) codes of the daughter particles produced in the decays (see Section 43 of

Ref. [33] for a list of PDG codes) and the final column, following the # symbol, contains a

human-readable comment listing the decay mode. Beyond this column the partial widths

are output if Item 26 in the SOFTSUSY BLOCK is set to 1 or --outputPartialWidths

is used as a command line option. The decay table for the gluino decays is shown in

Figure 4.3 from the lesHouchesOutput file.

• Finally, as of recent versions of SoftSusy, the uncertainties in the predictions of the Higgs

masses are output into a BLOCK DMASS at the bottom of the output file.

This output information may be more easily visualised using the program pyslha [186];

this allows the production of Figure 4.4 straight from the SLHA SoftSusy output file, here

for the lesHouchesOutput file. It shows the mass spectrum produced as well as all the decays

of branching ratio greater than minBR= 10−5 shown with arrows, with bolder, thicker arrows

indicating larger branching ratios.

4.1.3 Decay Information

The decay information produced by the SoftSusy decay calculator is stored in an object-

oriented manner, with each possible parent supersymmetric and Higgs particle having a decay

object of the Particle class containing all the relevant decay information determined. We

display the class in Table 4.1, the user may wish to access this information if they seek to alter

the code for their own purposes.

2The whole output file is available with the SoftSusy package but is too long to provide in full here.
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Figure 4.2: The second part of a SoftSusy output file, this contains the parameters determined by the
spectrum generation, i.e. the masses of the supersymmetric and Higgs particles and their couplings and
mixing matrices. This is from the file lesHouchesOutput.

Figure 4.3: The third part of a SoftSusy output file, this contains the parameters determined by the de-
cay calculator, i.e. the total widths, available decay modes and branching ratios for each supersymmetric
and Higgs particle in the model. Here we provide just the decay table for the gluino, this is followed by a
similar table for each of the other parent particles in the model. This is from the file lesHouchesOutput.
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Figure 4.4: Visualisation of the output information contained in the lesHouchesOutput file and produced
by SoftSusy, the mass spectrum is shown along with the decay branching ratios available (with branching
ratio greater than 10−5) to each particle, with bolder, thicker arrows indicating larger branching ratios.
This figure has been produced by passing the SLHA output file lesHouchesOutput to the slhaplot

executable of the pyslha interface program [186], the command line input required is ./slhaplot

lesHouchesOutput --br=10e-5 --decaystyle=brwidth.

data variable description
string name particle name
double mass particle mass
double PDG particle PDG code

double No of Decays Total Number of possible decays of particle
double No 1to2 Decays Total Number of possible 2-body decays of particle
double No 1to3 Decays Total Number of possible 3-body decays of particle
double No grav Decays Total Number of possible decays of particle to LSP gravitinos
double No NMSSM Decays Total Number of possible decays of particle in the NMSSM
double total width Total Decay Width of the particle
double two width 2-body decay partial width of the particle
double three width 3-body decay partial width of the particle

vector

<vector<double>>
Array Decays

A Nx6 array, where N = No of Decays. PDGs of the daughter
particles are in columns 0 and 1 (and 4 for 3-body decays),
the partial widths are in column 2, the number of daughters
(NDA) in column 3 and the branching ratios in column 5.

vector <string>
Array Comments

A Nx1 array (vector), where N = No of Decays, listing each
decay mode, e.g. g̃ → ūũL.

Table 4.1: The information contained in the Particle object for each of the decaying particles.
PDG codes are given in the reference [157]. Note that the numbers of decays contained in double

No ... Decays are the total number of such decays assuming non are kinematically forbidden. All these
decays are checked by the program to see if they are allowed kinematically and calculated if so.
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4.2 Validation and Results

We begin now comparisons of the results of the SoftSusy decay calculator against other

publicly available decay programs, this also serves to illustrate a selection of the results which

can be produced using the program. Specific and fairly extensive tests and comparisons were

made for particular benchmark points against the programs sPHENO, SUSYHIT and NMSSMTools.

Comparisons for some of these benchmark points are provided here for a selection of decaying

SUSY and Higgs particles as illustrations; in addition scans over the mass of the decaying particle

are given for the decays of the lightest SM-like Higgs and for the decays of a gluino g̃. The results

given in this section represent only a small selection of the actual validation performed and only

give a flavour of the results our program can produce. Nonetheless they allow both a qualitative

check of the behaviour of the decays in the program and a quantitative comparison of the level

of agreement with other programs. In particular the level of agreement with the same input

parameters and with our set of input parameters is detailed in some specific cases.

4.2.1 Supersymmetric 2-body decays

All 2-body supersymmetric decay modes at tree-level are included in the SoftSusy program,

therefore this is by far the biggest class of decay modes included. Nonetheless these modes

are also amongst the simplest both from a physics point of view and computationally. To

demonstrate this vast swathe of decay modes, we consider the decays of the lightest stop, t̃1. The

comparison of the results for this benchmark point between the new SoftSusy decay calculator

and those of SUSYHIT-1.4 is given in Table 4.2. The input values used for the various masses

are: top pole mass mtPole= 174.3 GeV, bottom pole mass mbPole= 4.985 GeV, running top

mass runmt= 145.555 GeV and running bottom mass runmb= 2.576 GeV. These differ from the

default values used for these quantities in SUSYHIT and Table 4.2 illustrates the differences

observed between SoftSusy and SUSYHIT-1.4 branching ratios calculated as a result, as well as

the differences when SoftSusy has the SUSYHIT mass inputs inserted by hand. This demonstrates

that the level of agreement between the programs is around 10%, dropping down to 1% when

the same input masses and coupling constants are used in both programs. These differences

result from the different mass and scheme choices, as outlined in Chapter 3.3.3. The remaining

disagreements in the neutralino decay modes occur as a result of differences in the neutralino

mixing matrix due to differences in its calculation.

4.2.2 Higgs tree-level and 1-loop decays

The second key class of decay modes included in SoftSusy are those of the supersymmetric

Higgs particles. These are of great importance due to the discovery of the Standard Model-

like Higgs at the LHC. In Table 4.4, we perform similar comparisons between SoftSusy and

HDECAY-3.4 of SUSYHIT-1.4 for Higgs decays. Here we have taken a SM-like Higgs, in the

decoupling limit so all the SUSY decays are kinematically forbidden, given by a point in the
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SoftSusy default inputs SoftSusy SUSYHIT’s inputs SUSYHIT mode

PW/GeV BR PW/GeV BR PW/GeV BR

1.833e+00 3.202e-01 1.708e+00 3.211e-01 1.708e+00 3.218e-01 t̃1 → bW̃1

1.267e+00 2.218e-01 1.103e+00 2.073e-01 1.103e+00 2.078e-01 t̃1 → bW̃2

1.304e+00 2.277e-01 1.299e+00 2.441e-01 1.299e+00 2.448e-01 t̃1 → tZ̃1

7.181e-01 1.254e-01 6.848e-01 1.287e-01 6.729e-01 1.268e-01 t̃1 → tZ̃2

6.009e-01 1.049e-01 5.250e-01 9.871e-02 5.249e-01 9.889e-02 t̃1 → tZ̃3

Table 4.2: t̃1 decays at the parameter point of the lesHouchesInput file provided with SoftSusy,
which has a common scalar mass m0 = 125 GeV, a common gaugino mass m1/2 = 500 GeV, ratio of
Higgs vacuum expectation values tanβ = 10, sign of the superpotential µ parameter sign(µ) = +1 and
common soft SUSY breaking trilinear parameter A0 = 0 in the constrained MSSM (CMSSM). This
results in mt̃1

= 808.7 GeV, mW̃1
= 385.0 GeV, mW̃2

= 637.5 GeV, mZ̃1
= 204.0 GeV, mZ̃2

= 385.0 GeV,
mZ̃3

= −622.7 GeV, mZ̃4
= 637.2 GeV. This table compares the partial widths and branching ratios as

output by SoftSusy with our mass choices (and corresponding Yukawa couplings) and with the masses
and Yukawa couplings in SUSYHIT, with the results of SUSYHIT-1.4. This illustrates the differences of
order 10% that may arise depending upon mass (“kinematic” and “running”) choices, the differences
reduce to order 1% once the same masses are taken. SoftSusy-4.0 was used for these results.

pMSSM parameter space which has Higgs mass 125 GeV - this point we call pmssm1 and the

SLHA [156] form of the input file is given verbatim in Table 4.3. The results of our decay

calculator without QCD corrections included, with QCD corrections included, and with the

same input quark and gauge boson masses and same input gauge couplings as SUSYHIT, again

with QCD corrections, are compared with HDECAY-3.4. Note that the comparisons are done

against the non-current version HDECAY-3.4 as this is the version included in the SUSYHIT-1.4

package. This allowed straightforward comparisons to be done between the new decay calculator

and SUSYHIT’s version of HDECAY as one can input the spectrum as calculated by SoftSusy

straight into SUSYHIT. This allowed the effects of the spectrum generator to be isolated as much

as possible from the decay calculator which is being tested. Nonetheless, even with the same

spectrum SUSYHIT first converts the mixing matrices and other inputs to its own conventions

and assumptions, this accounts for the remaining numerical differences between the codes.

We include important QCD corrections for the neutral Higgs decays to quarks and to gluons.

In Table 4.4, the comparison of the partial widths with QCD corrections switched on and

switched off clearly demonstrates the significant difference these corrections make, as is widely

known in the literature [84, 115, 183, 187]. Furthermore, it is clear that the main source of

differences in partial widths between the decay calculator of SoftSusy-4.0 and HDECAY is in the

choice of masses used. Remaining differences tend to be small and are due largely to differences

in other inputs, the exception being the decays to two vector bosons where order 10% differences

are observed. This is due to HDECAY incorporating additional effects such as the width of the

resonance and NLO corrections which are not included in SoftSusy. It should also be noted here

that HDECAY performs a numerical integration whilst SoftSusy has an explicit expression with

no integration required so the calculation methods are different. A comparison of the branching

ratios output for this SM-like Higgs are given in Figure 4.5. In particular it should be noted that

as SoftSusy predicts a larger partial width for the h→ bb mode in this case due to a difference
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Block MODSEL # Select model

1 0 # non universal

1 1 # sugra input

Block SMINPUTS # Standard Model inputs

1 1.279340000e+02 # alpha^(-1) SM MSbar(MZ)

2 1.166370000e-05 # G_Fermi

3 1.172000000e-01 # alpha_s(MZ) SM MSbar

4 9.118760000e+01 # MZ(pole)

5 4.250000000e+00 # mb(mb) SM MSbar

6 1.733000000e+02 # mtop(pole)

7 1.777000000e+00 # mtau(pole)

Block MINPAR # Input parameters

1 1.000000000e+03 # m0

2 3.000000000e+02 # m12

3 3.000000000e+01 # tanb

Block SOFTSUSY # Optional SOFTSUSY-specific parameters

0 1.000000000e+00 # Calculate decays in output (only for RPC (N)MSSM)

1 1.000000000e-03 # Numerical precision: suggested range 10^(-3...-6)

2 0.000000000e+00 # Quark mixing parameter: see manual

5 1.000000000e+00 # Include 2-loop scalar mass squared/trilinear RGEs

24 1.000000000e-09 # If decay BR is below this number, don’t output

25 1.000000000e+00 # If set to 0, don’t calculate 3-body decays (1=default)

26 1.000000000e+00 # Output PWs

Block EXTPAR # non-universal SUSY breaking parameters

0 -1.000000000000000e+00 # Set MX=MSUSY

3 1.000000000000000e+03 # M_3(MX)

11 -7.700000000000000e+03 # At(MX)

12 1.000000000000000e+03 # Ab(MX)

13 -3.000000000000000e+03 # Atau(MX)

23 3.000000000000000e+02 # mu(MX)

26 3.000000000000000e+03 # mA(pole)

33 3.000000000000000e+03 # mtauL(MX)

36 3.000000000000000e+03 # mtauR(MX)

43 3.500000000000000e+03 # mqL3(MX)

46 3.800000000000000e+03 # mtR(MX)

Table 4.3: The pMSSM parameter space point used for the h decay comparisons in Table 4.4 and
Figure 4.5, and for the h→ γγ loop contributions in Figure 4.7, this input file is in SLHA form [156].

in the default b mass used, then as this is a dominant decay mode this difference causes a larger

total Higgs decay width in SoftSusy and so suppresses the branching ratios of the other modes

slightly. For example, the partial widths for the h → cc mode are in exact agreement between

SoftSusy and HDECAY in Table 4.4, however SoftSusy calculates a reduced branching ratio for

this mode due to the larger predicted total width. Such effects are apparent in Figure 4.5 due

to the logarithmic scale.

In order to provide a qualitative demonstration that the decay calculator is functioning

correctly one may also scan the mass of the decaying particle and investigate how the partial

widths and branching ratios change. Figure 4.6 shows how the branching ratios of a SM-like

Higgs change as its mass is scanned from the Z0 boson mass up to 200 GeV as calculated in

(a) SoftSusy and in (b) a well-known plot produced by the LHC Higgs Cross Section Working

Group [188] in 2011. This shows a good level of agreement, with small differences due to effects

detailed previously in the quantitative comparison at mh = 125 GeV. The largest differences are

in the cc, ττ , gg, γγ channels and particularly at the low energy end near mZ . There are several

effects which cause this, in addition to those previously listed; firstly the amplitudes of the bb, cc

channels are particularly sensitive to the value of αs used. This dictates the size of the NLO QCD

corrections, with larger αs values enlarging the corrections and reducing the width; these effects
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SoftSusy no
QCD corrections

SoftSusy with
QCD corrections

SoftSusy with
SUSYHIT’s

masses and QCD
corrections

HDECAY-3.4 with
same QCD
corrections

mode

PW BR PW BR PW BR PW BR
1.04e-04 3.30e-02 2.25e-04 4.03e-02 2.25e-04 4.31e-02 2.25e-04 4.24e-02 h→ cc

8.00e-07 2.55e-04 1.62e-06 2.91e-04 1.62e-06 3.11e-04 1.63e-06 3.06e-04 h→ ss

1.75e-03 5.56e-01 3.96e-03 7.10e-01 3.60e-03 6.90e-01 3.61e-03 6.80e-01 h→ bb

8.52e-07 2.71e-04 8.52e-07 1.53e-04 9.17e-07 1.76e-04 9.19e-07 1.73e-04 h→ µµ

2.61e-04 8.30e-02 2.61e-04 4.67e-02 2.59e-04 4.97e-02 2.60e-04 4.90e-02 h→ ττ

1.06e-05 3.36e-03 1.06e-05 1.89e-03 9.24e-06 1.77e-03 9.24e-06 1.74e-03 h→ γγ

1.65e-04 5.27e-02 2.71e-04 4.86e-02 2.72e-04 5.22e-02 2.72e-04 5.13e-02 h→ gg

6.74e-06 2.15e-03 6.74e-06 1.21e-03 5.88e-06 1.13e-03 6.11e-06 1.15e-03 h→ Zγ

7.61e-04 2.42e-01 7.61e-04 1.36e-01 7.61e-04 1.46e-01 8.22e-04 1.55e-01 h→WW

8.44e-05 2.69e-02 8.44e-05 1.51e-02 8.44e-05 1.62e-02 1.02e-04 1.92e-02 h→ ZZ

3.14e-03 1.00e+00 5.58e-03 1.00e+00 5.22e-03 1.00e+00 5.31e-03 1.00e+00 Total

Table 4.4: The h decay partial widths (in GeV) and branching ratios as output by SoftSusy first without
QCD corrections, with QCD corrections, with QCD corrections and withSUSYHIT’s quark and gauge
boson masses and gauge couplings, and the results of HDECAY-3.4 from SUSYHIT-1.4. This illustrates
the necessity of including QCD corrections for decays to quarks or gluons, as well as that masses are
the primary source of differences between SoftSusy and HDECAY-3.4. The pMSSM point pmssm1 listed
in Table 4.3 is used; it has mh = 125 GeV. The masses and gauge couplings from SUSYHIT inserted into
the SoftSusy decay calculator in columns 5 and 6 are αs = 0.11 and mc = 1.40 GeV, ms = 0.19 GeV,
mb = 4.77 GeV, mt = 173.30 GeV for the h → qq̄ and h → gg decays; mµ = 0.11 GeV, mτ = 1.78 GeV
for h → l+l− decays; α(MZ) = 7.29 × 10−3 and mW = 80.35 GeV, mt = 188.72 GeV, mb = 3.47 GeV,
mc = 0.74 GeV and mτ = 1.78 GeV for h → γγ; mZ = 91.19 GeV, mt = 173.30 GeV, mb = 4.77 GeV,
α = 7.29× 10−3 and mW = 80.36 GeV for h→ Zγ and for h→ V V ∗. SoftSusy-4.0 was used.

are known to be particularly large for these Higgs to quark-antiquark channels. As a result,

any subtle differences in the numerical values of αs used, originating from different running

schemes and methods for example, have a significant impact on the partial widths to these

modes. Indeed, this effect is precisely the origin of the larger error regions seen in Figure 4.6b

for this region for these modes, and whilst we have not evaluated such effects in SoftSusy

we would expect similar size error regions for the SoftSusy predictions; this would bring the

predictions into closer agreement. Specifically for this case our value of αs(mh) is lower than the

corresponding value in HDECAY; this ensures our partial widths to the bb, cc channels are larger

and correspondingly the branching ratios to other modes are reduced, as is seen in Figure 4.6.

Additional effects are seen in the loop decays, particularly the gg, γγ modes; as always their

partial widths depend upon the values of the quark and gauge boson masses running in the loop

as well as the running values of the gauge couplings. Consequently, differences in the schemes

of the running here alter the loop contributions. Furthermore, HDECAY also includes additional

effects of electroweak NLO corrections which are not included in SoftSusy. It should also be

noted that Figure 4.6b has been taken directly out of the relevant paper [188], and the input files

used for HDECAY are not clear. We find that if we attempt to make the same plot again using

HDECAY of SusyHit for our input file and with the same order corrections then the resulting

plot is in better agreement still with our plot in Figure 4.6a, indicating some of the differences
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Figure 4.5: Branching ratios for a SM-like Higgs predicted by SoftSusy and by HDECAY-3.4 in
SUSYHIT-1.4 for mh = 125 GeV. This is for the pMSSM point pmssm1, see Table 4.3. SoftSusy-4.0 was
used for these results.

arise as a result of different corrections included between the codes and different input setups.

Nonetheless, the qualitative agreement is clear.

In conjunction with the results on the individual branching ratios of the Higgs particles,

the sizes of different loop contributions to the Higgs 1-loop decays to γγ, Zγ and gg may also

be extracted, offering potential insight into the effects of Standard Model and supersymmetric

particles together on Standard Model loop decays. Should any deviation in the rate of one or

more of the Standard Model Higgs loop decays be detected, or should a resonance be detected in

a similar final state at higher energy, predictions of the size of different contributions will provide

additional discriminating power to determine the possible supersymmetric models present. As

a testimony to this, we present here in Figure 4.7 the loop contributions to the diphoton decay

channel for the Standard Model-like Higgs and the heavier Higgs boson of the MSSM for the

same pMSSM point, that given earlier in Table 4.3 (for which the heavier Higgs had mass

mH = 3 TeV). In order to produce this figure the absolute values of the contributions have

been taken in order to allow a logarithmic scale, this therefore hides some of the destructive

interferences, for example between top and W boson for the lighter Higgs and between the two

charginos for both the lighter and heavier Higgs. Figure 4.7(a) shows the contributions for the

Standard Model-like Higgs, dominated by the top and W contributions as expected. There are

contributions from the charginos but they largely cancel each other and experiments will not be

sensitive to such contributions in the near future. Figure 4.7(b) shows the relative contributions

of the different loops for the heavier Higgs of the pMSSM point. As expected, the contributions
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(a) SoftSusy

(b) LHC Higgs Cross-Section Working Group

Figure 4.6: Branching ratios for a SM(-like) Higgs as calculated in (a) by SoftSusy-4.0 and in (b) by
the LHC Higgs Cross-Section Working Group in [188]. This demonstrates a verification of the partial
widths output by SoftSusy.
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to the heavier Higgs loop decays are typically smaller as a result of the dependence of the loop

contributions on the parameter τa = 4m2
a/m

2
φ (where φ = h,H), which is much smaller for the

heavier Higgs as a result of its larger mass. Note that the imaginary contributions to the loop

decay appear when the loop particle has mass 2mloop < mφ as in such cases the on-shell decay to

two loop particles at tree-level is allowed; consequently there are more imaginary contributions

for the heavier Higgs. Also note that the supersymmetric contributions to the heavier Higgs

are relatively larger than for the Standard Model-like lighter Higgs, as it has enlarged couplings

to supersymmetric particles whereas the Standard Model-like Higgs has reduced couplings to

supersymmetric particles.

(a) mh = 125 GeV (b) mH = 3 TeV

Figure 4.7: Absolute values of the matrix element contributions of different loop particles to the
h,H → γγ decay channels. Absolute values are taken so as to use a logarithmic scale and thereby
allow all contributions to be viewed, nonetheless this does hide the sign of the contributions and so the
presence of destructive interferences. Loop contributions shown against the y-axis scale here have di-
mensions of energy in GeV and are simply the size of the matrix element arising from that contribution.
SoftSusy-4.1.4 was used for these results.

4.2.3 Supersymmetric 3-body decays

So far we have demonstrated the validation of SUSY 2-body and Higgs MSSM decays,

including the Higgs loop-decays, QCD corrections and Higgs 3-body decays. Similar validation

and comparison was also performed for the MSSM 3-body decays and the NMSSM decays, as

well as for special case decays to gravitinos and to pions, which we also examine later in this

chapter.

First, let us consider the MSSM 3-body decays: an explicit comparison can be performed

for the gluino 3-body decays with the spectrum given in Figure 4.8; the gluino 3-body decays to
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neutralinos or charginos and quark-antiquark pairs are indicated, as are the appropriate Feynman

diagrams for these modes. As the gluino only interacts via QCD, the only 2-body modes it has

at tree-level are to squarks and quarks, however in this spectrum the gluino is lighter than all

the squarks and so these modes are kinematically forbidden. At tree-level the dominant modes

are therefore now the 3-body modes via an off-shell squark to neutralinos and a quark-antiquark

pair or to charginos and a quark-antiquark pair, as illustrated. Radiative decays of the form

g̃ → gZ̃i may also be important for such points but are yet to be included in SoftSusy. A

comparison of the partial widths and branching ratios given by SoftSusy-4.0, sPHENO-3.3.8

and SUSYHIT-1.4 for this spectrum is presented in Table 4.5. This was performed taking the

mass, coupling and other input decay parameters from sPHENO and inputting these directly by

hand into the SoftSusy decay calculator in order to evaluate only differences due to the decay

calculation, not any differences which might arise as a result of differing parameters from the

spectrum generators. The agreement between the three programs is generally very good; in

particular the agreement between SoftSusy and sPHENO-3.3.8, upon which the calculations

of the 3-body decays is based, is usually between 1 and 5% with the larger differences often

occurring where there are larger differences between SUSYHIT-1.4 and sPHENO-3.3.8. The

exceptions to this are the decays to third generation quark-antiquark pairs and the third and

fourth heaviest neutralinos; i.e. g̃ → tt̄Z̃3, g̃ → tt̄Z̃4, g̃ → bb̄Z̃3 and g̃ → bb̄Z̃4. Here the

differences observed are 10− 20% and they arise because of differences in the Yukawa couplings

taken, for example for the b quark here the Yukawa coupling used in SoftSusy is determined by a

running bottom mass of runmb= 2.63 GeV, whereas sPHENO has a Yukawa coupling corresponding

to a mass of runmb= 2.37 GeV. In order to show this results in the differences observed, the

running b mass in SoftSusy was temporarily set to that of sPHENO and the comparison for

g̃ → bb̄Z̃i is provided in Table 4.6. This demonstrates that the decays to Z̃1 and Z̃2 are not

significantly altered by the new Yukawa coupling whereas the decays to Z̃3 and Z̃4 (i.e. those

which showed differences with respect to sPHENO) now have significantly altered partial widths

which are in much closer agreement with sPHENO, back down to the few percent level agreement

seen in the other 3-body decays. This sensitivity to the b mass for the Z̃3,4 indicates their

increased proportions of Higgsino components.

A scan over the mass of the gluino to demonstrate the expected suppression of 3-body decays

relative to 2-body decays was also performed, see Figure 4.9 where 3-body modes are shown as

dashed lines and 2-body modes as solid lines. The result of this is that, phenomenologically,

3-body modes are only important when 2-body tree level modes are unavailable, as described in

Chapter 3.1. This therefore verifies SoftSusy produces the expected behaviour for these decay

modes. For this reason, SoftSusy only calculates 3-body modes when there are no similar

2-body modes available.

More details on the other 3-body modes included in the SoftSusy decay calculator, the

contributions included, approximations made and the level of agreement seen between SoftSusy

and other decay calculators for each mode are given in Appendix A.4. There, the relevant

expressions used by our decay calculator to determine their partial widths are also provided.
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Figure 4.8: Spectrum used for quantitative comparison of gluino g̃ 3-body decays. Here the arrows
indicate only the 3-body decay modes of the gluino: these are those investigated. This CMSSM spectrum
has m0 = 1500 GeV, m1/2 = 400 GeV, tanβ = 10.37, sign(µ) = +1, A0 = −80 GeV and was generated
in sPHENO. The figure was produced using a modified version slhaplot-3.0.4 from pyslha [186]. The
Feynman diagrams for these 3-body modes are also given inset on the spectrum.

Figure 4.9: Branching ratios for the gluino g̃ of Figure 4.8 as its mass is scanned from 1 to 2 TeV.
3-body modes are shown in dashed lines and 2-body modes in solid lines. The suppression of 3-body
modes relative to 2-body tree level modes is clearly evident in the drop in the 3-body branching ratios
once the first 2-body mode g̃ → t̃1t is available. Note that the “g” indicated in the plot are g̃ (i.e.
gluinos), whilst “Zi” are Z̃i (i.e. neutralinos) and “Wj” are W̃j (i.e. charginos). “st” indicates stops t̃i,

“sb” indicate sbottoms b̃i, “sq” are q̃ squarks of the first two generations and “q” here are quarks of the
first two generations in the case of the 2-body modes. For the 3-body modes however “q” indicates that
they are instead summed over all three generations of quarks. SoftSusy-4.0 was used for these results.
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SoftSusy sPHENO-3.38 SUSYHIT-1.4 mode
PW/GeV BR PW/GeV BR PW/GeV BR

2.90e-04 2.26e-02 2.89e-04 2.32e-02 2.89e-04 2.32e-02 g̃ → Z̃1uū

3.21e-04 2.51e-02 3.19e-04 2.56e-02 3.19e-04 2.56e-02 g̃ → Z̃2uū

1.35e-07 1.06e-05 1.35e-07 1.08e-05 1.35e-07 1.08e-05 g̃ → Z̃3uū

5.52e-06 4.31e-04 5.49e-06 4.40e-04 5.49e-06 4.40e-04 g̃ → Z̃4uū

9.06e-05 7.07e-03 9.02e-05 7.22e-03 9.02e-05 7.24e-03 g̃ → Z̃1dd̄

3.07e-04 2.40e-02 3.06e-04 2.45e-02 3.06e-04 2.45e-02 g̃ → Z̃2dd̄

1.75e-07 1.36e-05 1.74e-07 1.39e-05 1.74e-07 1.40e-05 g̃ → Z̃3dd̄

6.67e-06 5.21e-04 6.64e-06 5.31e-04 6.64e-06 5.33e-04 g̃ → Z̃4dd̄

2.90e-04 2.26e-02 2.89e-04 2.32e-02 2.89e-04 2.32e-02 g̃ → Z̃1cc̄

3.21e-04 2.51e-02 3.19e-04 2.56e-02 3.19e-04 2.56e-02 g̃ → Z̃2cc̄

1.35e-07 1.05e-05 1.41e-07 1.13e-05 1.35e-07 1.08e-05 g̃ → Z̃3cc̄

5.52e-06 4.31e-04 5.50e-06 4.40e-04 5.49e-06 4.40e-04 g̃ → Z̃4cc̄

9.06e-05 7.07e-03 9.02e-05 7.22e-03 9.02e-05 7.24e-03 g̃ → Z̃1ss̄

3.07e-04 2.40e-02 3.06e-04 2.45e-02 3.06e-04 2.45e-02 g̃ → Z̃2ss̄

1.75e-07 1.36e-05 1.77e-07 1.42e-05 1.74e-07 1.40e-05 g̃ → Z̃3ss̄

6.67e-06 5.21e-04 6.64e-06 5.32e-04 6.64e-06 5.33e-04 g̃ → Z̃4ss̄

1.47e-03 1.15e-01 1.47e-03 1.17e-01 1.44e-03 1.15e-01 g̃ → Z̃1tt̄

2.56e-04 1.99e-02 2.46e-04 1.97e-02 2.67e-04 2.15e-02 g̃ → Z̃2tt̄

3.48e-04 2.71e-02 3.10e-04 2.48e-02 3.34e-04 2.68e-02 g̃ → Z̃3tt̄

6.13e-04 4.79e-02 5.66e-04 4.53e-02 5.21e-04 4.18e-02 g̃ → Z̃4tt̄

1.27e-04 9.93e-03 1.25e-04 1.00e-02 1.25e-04 1.00e-02 g̃ → Z̃1bb̄

7.80e-04 6.09e-02 7.74e-04 6.20e-02 7.74e-04 6.21e-02 g̃ → Z̃2bb̄

2.20e-05 1.72e-03 1.77e-05 1.42e-03 1.78e-05 1.43e-03 g̃ → Z̃3bb̄

3.48e-05 2.72e-03 3.24e-05 2.60e-03 3.23e-05 2.60e-03 g̃ → Z̃4bb̄

6.28e-04 4.90e-02 6.24e-04 5.00e-02 6.24e-04 5.01e-02 g̃ → W̃−1 ud̄

6.28e-04 4.90e-02 6.24e-04 5.00e-02 6.24e-04 5.01e-02 g̃ → W̃+
1 dū

6.28e-04 4.90e-02 6.24e-04 5.00e-02 6.24e-04 5.01e-02 g̃ → W̃−1 cs̄

6.28e-04 4.90e-02 6.24e-04 5.00e-02 6.24e-04 5.01e-02 g̃ → W̃+
1 sc̄

1.20e-05 9.36e-04 1.19e-05 9.56e-04 1.19e-05 9.58e-04 g̃ → W̃−2 ud̄

1.20e-05 9.36e-04 1.19e-05 9.56e-04 1.19e-05 9.58e-04 g̃ → W̃+
2 dū

1.20e-05 9.36e-04 1.19e-05 9.56e-04 1.19e-05 9.58e-04 g̃ → W̃−2 cs̄

1.20e-05 9.36e-04 1.19e-05 9.56e-04 1.19e-05 9.58e-04 g̃ → W̃+
2 sc̄

9.29e-04 7.25e-02 9.21e-04 7.38e-02 9.21e-04 7.39e-02 g̃ → W̃−1 tb̄

9.29e-04 7.25e-02 9.21e-04 7.38e-02 9.21e-04 7.39e-02 g̃ → W̃+
1 bt̄

1.35e-03 1.05e-01 1.27e-03 1.01e-01 1.27e-03 1.02e-01 g̃ → W̃−2 tb̄

1.35e-03 1.05e-01 1.27e-03 1.01e-01 1.27e-03 1.02e-01 g̃ → W̃+
2 bt̄

Table 4.5: The g̃ decay partial widths and branching ratios in SoftSusy-4.0, sPHENO-3.3.8 and
SUSYHIT-1.4 for the spectrum in Figure 4.8, for which the gluino only has 3-body decay modes available
at tree-level.
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SoftSusy with altered runmb sPHENO-3.38 mode
PW/GeV BR PW/GeV BR

1.27e-04 9.93e-03 1.25e-04 1.00e-02 g̃ → Z̃1bb̄

7.78e-04 6.10e-02 7.74e-04 6.20e-02 g̃ → Z̃2bb̄

1.81e-05 1.42e-03 1.77e-05 1.42e-03 g̃ → Z̃3bb̄

3.18e-05 2.50e-03 3.24e-05 2.60e-03 g̃ → Z̃4bb̄

Table 4.6: The g̃ decay partial widths and branching ratios to Z̃ibb̄ as output by SoftSusy-4.0 with
runmb taken so that the b Yukawa coupling in SoftSusy matches that in sPHENO. These decays showed
significant differences between the two programs for Z̃3 and Z̃4, see Table 4.5. The agreement is now
much improved, demonstrating that the differences result from a choice of the running b mass runmb.

4.2.4 Gravitino Decays

As outlined in Chapter 2.1.3, gravitinos inherit larger couplings via a super-Higgs mechanism,

this can cause decays involving gravitinos to be relevant at colliders, particularly if the gravitino

is the LSP as is often the case in GMSB models. In this case, the decays of NLSPs to the LSP

gravitino can generate key signatures at the LHC, such as displaced vertex signatures. The

decay formulae are given in detail in Appendix A.5, but the general form is given as an inset

to Figure 4.10. The principal behaviour of these modes is that they are inversely proportional

to the square gravitino mass, consequently the proper lifetimes τi ∝ mG̃
2. Proper lifetimes are

then converted into physical distances travelled in the detector by factoring in the velocity and

time dilation effects, under the assumption the velocity is v = 0.8c for the data in Figure 4.10.

The figure is representative and only intended to illustrate the fundamental features of these

decays - therefore the exact velocities are unimportant. A different assumption for the velocity

will shift the curves parallel to the y-axis by a constant small amount (small as the y-axis is

logarithmic). As the distances are all proportional to mG̃
2, all the NLSP decays available have

the same gradient on the logarithmic scale, with the prefactors determining the intercepts and

hence separating the different decay modes. At ATLAS and CMS the typical distance scales

relevant to displaced vertices are between 1mm and 1m, this corresponds to a given gravitino

mass range which can be probed. Whilst Figure 4.10 shows an enlarged range of gravitino

masses, cosmological and other observations place constraints on the gravitino masses allowed.

These however tend to be model and assumption dependent and so are not summarised here

- gravitino masses as light as eV and as heavy as 10 TeV 3 can be accommodated, depending

on the model. As can be seen, this includes the range of gravitino masses over which displaced

vertices would be expected to be produced via these NLSP to gravitino LSP decays.

3Although in that case the gravitino would not be the LSP.
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Figure 4.10: Next-to-Lightest Susy Particle (NLSP) decays to a gravitino LSP and Standard Model
particle, such decays are relevant particularly for GMSB models, a randomly chosen example of which is
provided here for which the NLSP is the lightest neutralino and the gravitino mass is scanned. The key
feature is that the partial widths are proportional to mG̃

−2 for all NLSPs, consequently the lifetimes are
proportional to mG̃

2 and so all decay modes have the same gradient in the log plot shown. The prefactors
and mass differences alter the intercepts. SoftSusy-4.0 was used for these results.

4.2.5 Chargino to Neutralino Pion Decays

A further special class of supersymmetric decay modes included are those of charginos decay-

ing to quasi-degenerate neutralinos and pions. When chargino 2-body modes are unavailable4,

3-body modes become important, specifically the 3-body decays to a neutralino and quark-

antiquark pair such as W̃1 → Z̃1ud̄. For standard mass splittings ∆m ≡ mW̃j
− mZ̃i

, the

quark-antiquark pair behave exactly as such, forming jets in the observed final state; however,

as the mass splitting is reduced, eventually the quark and antiquark will hadronise together and

so should be described together as pions. This includes various additional form factors which will

alter their decay widths. We have included this particular case in the SoftSusy decay calculator

program as such very compressed spectra modes lead to intriguing signatures at colliders. These

include high transverse momentum chargino tracks decaying to pions and large missing trans-

verse momentum (due to the neutralino LSP produced), and also kinks and disappearing tracks

observed in one-pronged decays where a charged pion is detected produced from a chargino track

but the neutralino produced is unseen. These signatures are a smoking gun for AMSB models,

which typically produce a quasi-degenerate lightest chargino and lightest neutralino as the LSP

is wino-like, with the more wino-like the LSP the smaller the mass splitting. In Figure 4.11,

4For example, typically chargino 2-body modes are not available for the lightest chargino when the mass
splitting between it and the lightest neutralino is less than mW .
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we present the branching ratios and lifetime for a quasi-degenerate lightest chargino, scanning

the mass splitting ∆m between it and the lightest neutralino by scanning the M2(MGUT) pa-

rameter as this in turn determines the size of the wino components in the lightest neutralino

and chargino. The modes relevant at different mass splittings are given in Figure 4.11a, with

the 3-body mode to electron and neutrino the only one available at mass splitting less than mπ.

Once ∆m > mπ, the pion modes dominate, with one and two pion modes included in SoftSusy

as the two pion mode branching ratio increases with ∆m as the phase space suppression reduces.

Eventually, the standard 3-body modes to quarks and antiquarks again dominate and we switch

to these once ∆m > ΛH = 1.5 GeV. The exact point of the switch between the pion description

and the quark description in SoftSusy was determined phenomenologically as the mass splitting

at which the quark-antiquark modes and the corresponding pion modes each sum to the same

branching ratio. Meanwhile, Figure 4.11b demonstrates the effect of the reduced phase space

that occurs as ∆m reduces on the lifetimes of the decaying lightest charginos; for small enough

mass splittings these lifetimes become long enough to leave observable tracks at the LHC, with

lifetimes of greater than around 10−11s corresponding to the millimetre scales at which the LHC

may resolve displaced and secondary vertices.
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Figure 4.11: Decays of the lightest chargino near to degeneracy with the lightest neutralino for a
deformed CMSSM point - the model begins with m0 = m 1

2
= 500 GeV, A0 = 0, tanβ = 20, sign(mu) =

+1, but then gaugino non-universality is imposed by scanning M2(MGUT) between 255 GeV and 280 GeV
in order to zoom in on small ∆m = m

W̃
+
1
− m

Z̃
0
1
. This scanning of the wino mass varies how wino-

dominated the lightest chargino and lightest neutralino are, and correspondingly how similar their masses
are. The dominant branching ratios are shown in (a), including the standard 3-body decays as well as the
one and two pion modes and the switch-over point between the two descriptions at ∆m = ΛH = 1.5 GeV,
whilst (b) presents the lifetimes of the quasi-degenerate chargino. SoftSusy-4.1.0 was used for these
results.
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4.2.6 NMSSM Decays

Similar detailed checks to those above were performed in the NMSSM and we provide some

details here. In Table 4.7 we present a quantitative comparison of the decays of the second

heaviest neutral CP even Higgs of the NMSSM, the H. The spectrum used, as generated by

SoftSusy, is given in Figure 4.12 with decay modes of branching ratios (BRs) greater than 0.1

(also calculated automatically by SoftSusy) indicated by arrows, with thicker, bolder arrows

representing larger BRs. For this parameter point, H is the CP even Higgs which has the largest

singlet component, with R(2, 3) = 0.998.

The comparison in Table 4.7 demonstrates that the level of agreement is usually better than

10% with the exception of a few of the decay modes. The decay modes which show larger

differences are the decays to “down-type” fermions (i.e. fermions with third component of

weak isospin T3 = −1
2) and the 1-loop decay to two photons H → γγ. Note that the decays

to two gluons here show good agreement with NMSSMTools: the scale of the decaying Higgs

mH = 519.3 GeV is relatively close to MSUSY =
√
mt̃1

mt̃2
= 675.5 GeV so any differences in the

running between the two programs have little effect. SoftSusy and NMSSMTools both run the

gauge couplings to mH , however there are potential differences in the running order and scheme.

For the case of the decays H → ss̄, bb̄, µ+µ− and τ+τ−, differences are seen between the

default SoftSusy partial widths and those of NMSSMTools. Some of these differences can be

explained by the use of different values for the masses from which Higgs couplings are extracted,

particularly in the case of the decays to b, µ and τ pairs. SoftSusy uses mb(pole) = 4.97 GeV,

mµ(MSUSY) = 0.103 GeV and mτ (MSUSY) = 1.80 GeV; meanwhile NMSSMTools uses mb =

4.54 GeV, mµ = 0.106 GeV and mτ = 1.78 GeV. However, most of the differences are due to

the definition of the CP even mixing matrix S: the coupling of the singlet-like H to “down-

type” fermions is given by [S(2, 2)/ cos(β)]2. SoftSusy obtains S(2, 2) = 2.71 × 10−2, whilst

NMSSMTools has S(2, 2) = 2.87 × 10−2. Given that the partial widths are proportional to

the square of the mixing matrix element, this results in an approximate 12% difference. The

SoftSusy decay calculation uses the tree-level value S(MSUSY), whereas NMSSMTools uses S as

extracted from the loop-corrected pole mass matrix. The two choices are equivalent at leading

order, and so the numerical difference between the programs is simply a higher order effect. To

demonstrate this effect explains much of the remaining differences, the CP even mixing matrix

elements have also been set to those of NMSSMTools in columns 5 and 6 of Table 4.7.

The other significant difference observed in the partial widths between the default SoftSusy

results and those of NMSSMTools is in the γγ channel. By default SoftSusy runs α and quark

masses, whereas NMSSMTools runs α but not the quark masses to calculate the Higgs cou-

plings. The quark masses used by SoftSusy for this point are mt(mH) = 144.5 GeV, mb(mH) =

2.40 GeV, mc(mH) = 0.57 GeV whereas NMSSMTools uses mt = 170.9 GeV, mb = 4.54 GeV,

mc = 1.40 GeV; meanwhile SoftSusy uses α(mH) = 7.88 × 10−3 whereas NMSSMTools obtains

α(mH) = 7.30× 10−3. The difference in the values of α(mH) is presumably due to a difference
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in the scheme5. With the quark masses and α used by NMSSMTools inserted into the SoftSusy

decay code the difference between the two programs is dramatically reduced, with them now

showing excellent agreement. This clearly demonstrates that the difference observed is due to

different quark masses and coupling constants taken; in particular it is the quark masses which

have the largest effect here. The reason for such sensitivity to the masses taken is that for this

parameter point there is a large cancellation between the t, W and other loop contributions.

The degree of the cancellation is consequently heavily dependent upon the top mass used. With

SoftSusy’s choices then the real part of the top loop contribution is R[It] = 8.99×10−2 and the

real part of the W loop contribution R[IW ] = −0.114 whilst the other significant contribution is

that of the heaviest chargino W̃2: R[IW̃2
] = 5.53×10−2, resulting in significant cancellation such

that the total of all the particle loop contributions is (2.65−6.62i)×10−2. With the quark mass

choices of NMSSMTools instead one obtains R[It] = 0.135 and so the total cancellation is much

smaller and the total of all the loop contributions is (7.16− 7.30i)× 10−2, which has a modulus

much larger than that obtained using the usual SoftSusy choices. Once these are squared this

explains the significant discrepancy. Differences seen between the two programs for this channel

should be interpreted as an indication of a large theoretical error in the calculation at this order

for this parameter point6.

Figure 4.13 displays the same comparisons of Table 4.7 graphically for ease of reference,

with Figure 4.13a presenting the original SoftSusy results and Figure 4.13b giving the SoftSusy

results with the NMSSMTools inputs taken. Again the clear improvement in the H → bb, cc, ττ, γγ

modes is obvious in Figure 4.13b.

5SoftSusy, in the version used here, matches at mZ and then runs α in the full NMSSM at 2-loops. As of
SoftSusy version 4.1.1 the matching has instead been done at mt as noted previously [83]. The matching in
NMSSMTools uses the alternative EFT approach discussed previously as the second approach in Chapter 3.2.1.

6Note that our comparisons are carried out against an old version of NMSSMTools (NMSSMTools-4.2.1) since
there only exists an interface between the SoftSusy spectrum generator and this version. This allowed the effects
of the spectrum generator to be isolated from other differences in the decay calculations for validation.
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Figure 4.12: Mass spectrum and branching ratios for the constrained NMSSM Z3 violating parameter
point with m0 = 400 GeV, m1/2 = 350 GeV, tanβ = 10, sign(µ) = +1, A0 = −300 GeV, λ = 0.1, κ = 0.1,
λ〈S〉 = 200 GeV and ξF = 100 GeV used in Table 4.7. The arrows represent decay modes with branching
ratios (BRs) greater than 0.1, with thicker, bolder arrows representing larger BRs. SoftSusy-4.0 was
used for these results. The figure was produced with the aid of slhaplot-3.0.4 of pyslha [186].

SoftSusy default

SoftSusy with
NMSSMTools quark

masses and
running coupling

constants

SoftSusy with
NMSSMTools quark

masses, running
coupling constants

and S

NMSSMTools-4.2.1

with same QCD
corrections

mode

PW/GeV BR PW/GeV BR PW/GeV BR PW/GeV BR
2.98e-06 9.22e-06 2.99e-06 9.24e-06 3.04e-06 9.22e-06 3.04e-06 9.21e-06 H → cc̄
3.65e-07 1.13e-06 3.67e-07 1.14e-06 4.10e-07 1.24e-06 4.33e-07 1.31e-06 H → ss̄
9.44e-04 2.92e-03 7.73e-04 2.39e-03 8.64e-04 2.62e-03 8.93e-04 2.71e-03 H → bb̄
5.58e-02 1.73e-01 5.58e-02 1.73e-01 5.68e-02 1.72e-01 5.68e-02 1.72e-01 H → tt̄
2.52e-07 7.79e-07 2.68e-07 8.27e-07 2.99e-07 9.06e-07 3.16e-07 9.56e-07 H → µµ
7.75e-05 2.40e-04 7.57e-05 2.34e-04 8.45e-05 2.56e-04 8.92e-05 2.70e-04 H → ττ

1.21e-05 3.73e-05 1.21e-05 3.74e-05 1.33e-05 4.04e-05 1.22e-05 3.70e-05 H → Z̃1Z̃1

3.25e-05 1.00e-04 3.25e-05 1.01e-04 3.60e-05 1.09e-04 3.44e-05 1.04e-04 H → Z̃1Z̃2

2.00e-02 6.18e-02 2.00e-02 6.18e-02 2.00e-02 6.06e-02 2.07e-02 6.27e-02 H → hh
9.03e-08 2.97e-07 1.61e-07 4.97e-07 1.62e-07 4.91e-07 1.68e-07 5.09e-07 H → γγ
1.47e-04 4.54e-04 1.47e-04 4.54e-04 1.49e-04 4.53e-04 1.53e-04 4.63e-04 H → gg
2.07e-06 6.39e-06 1.93e-06 5.98e-06 2.14e-06 6.47e-06 2.21e-06 6.69e-06 H → Zγ
1.67e-01 5.15e-01 1.67e-01 5.15e-01 1.70e-01 5.16e-01 1.70e-01 5.15e-01 H →WW
8.00e-02 2.47e-01 8.00e-02 2.47e-01 8.17e-02 2.48e-01 8.16e-02 2.47e-01 H → ZZ
3.24e-01 1.00e+00 3.23e-01 1.00e+00 3.30e-01 1.00e+00 3.30e-01 1.00e+00 Total

Table 4.7: H decay partial widths and branching ratios as output by SoftSusy by default, by SoftSusy

with the quark masses and coupling constants set to those of NMSSMTools, and then with the CP even
Higgs mixing matrix (S) additionally set to that of NMSSMTools, and finally by NMSSMTools-4.2.1. For
columns 3 and 4 this meant the main differences are due to setting mb = 4.54 GeV for H → bb compared
with the default value SoftSusy uses mb(pole) = 4.97 GeV. For H → γγ, SoftSusy uses mt(mH) =
144.5 GeV, mb(mH) = 2.40 GeV, mc(mH) = 0.57 GeV whereas NMSSMTools has mt = 170.9 GeV, mb =
4.54 GeV, mc = 1.40 GeV. In SoftSusy α(mH) = 7.88 × 10−3 whereas NMSSMTools obtains α(mH) =
7.30× 10−3. These were therefore input into SoftSusy for columns 3 and 4. The CP even mixing matrix
(S) was additionally set to that of NMSSMTools in columns 5 and 6. SoftSusy-4.0 was used for these
results. This information is presented graphically in Figure 4.13.
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Figure 4.13: Decays of the second heaviest Higgs of the NMSSM, this is the most singlet-like for this
parameter point. The results are those presented in Table 4.7 and demonstrate good agreement between
SoftSusy-4.0 and NMSSMTools-4.2.1, particularly after the same inputs are taken in (b), this improves
the agreement in the ss, bb, µµ, ττ and γγ channels. SoftSusy-4.0 was used for these results.

4.3 NMSSM scan

One advantage that programs such as SoftSusy have is that they can calculate the particles

masses and couplings for a variety of input parameters, this enables scanning of the parameter

spaces of supersymmetric models. With the addition of MSSM and NMSSM supersymmetric

and Higgs decays, this scanning may be extended to examining how decay widths (and hence

signatures) vary across the parameter spaces of the various supersymmetric models included.

Given the inclusion of the NMSSM is rare, and the NMSSM parameter space is enriched via the

additional singlet coupling parameters, here we present such a scan for the extended neutralino

sector decays of the NMSSM in Figure 4.14. The neutralino singlino components are solid lines

in the figure read on the left-hand y-axis and the corresponding neutralino total widths are

dashed lines read on the right-hand y-axis . This scan is demonstrative of the analyses which

may be performed with SoftSusy’s spectrum generator and decay calculator linked together,

indicating the improved model examination power of such an all-in-one program package.

As the scan is only for display purposes, we simply take the nmssmSLHAnoZ3Input file pro-

vided with the SoftSusy program and scan λ from 0.001 to 0.25. The data however stop at

λ ≈ 0.2295 as at this point the lightest Higgs becomes tachyonic (has negative mass squared)

- this is a problem for correct electroweak symmetry breaking so these model points are not

valid and the spectrum and decays are not calculated. Referring back to our introduction to the
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NMSSM in Chapter 2.4, in equation 2.45 we see that the λ parameter in the extended neutralino

sector dictates the coupling of the two Higgsino neutralino gauge eigenstates to the singlino, this

ultimately originates in the λSHuHd NMSSM superpotential coupling. Therefore we can con-

sider λ as the mixing of the singlino component into the Higgsino like neutralinos. For our

setup here the third and fourth heaviest neutralinos are the dominantly Higgsino neutralinos;

therefore as we increase λ in Figure 4.14 we observe that their singlino components (N(3, 5) and

N(4, 5)) rise most (although those of all the four MSSM neutralino all rise slightly), meanwhile

the singlino component of the heaviest neutralino (N(5, 5)) correspondingly drops as it mixes

more with the other neutralinos. As the singlino only interacts with non-Higgs like particles

via mixing, we can observe the same effects in the total widths of the neutralinos. At small

λ the heaviest neutralino (which is the dominantly singlino one at this stage) has very small

total decay width and as λ increases its singlino component reduces and its decay width accord-

ingly increases rapidly as it gains Higgsino neutralino decays. Meanwhile the total width of the

fourth heaviest neutralino drops concurrently as it cedes its Higgsino component gradually to

the heaviest neutralino. There is also an interesting feature in the singlino components, and in

the same manner in the decay widths, at λ ≈ 0.1347; as the Higgsino like neutralinos mix with

the singlino, initially it is the fourth heaviest neutralino which mixes most, however as it does so

its mass reduces whilst the absolute mass of the third heaviest neutralino increases. Eventually

at λ ≈ 0.1347 the third and fourth heaviest neutralinos are relabelled as the absolute values of

their masses cross; as a result in our plot we see the N(3, 5) and N(4, 5) singlino components,

and the Γ3 and Γ4 total decay width values each interchange.
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Figure 4.14: A scan of the λ parameter in the NMSSM using SoftSusy-4.1.4 and the base point
nmssmSLHAnoZ3Input. The singlino components of each of the 5 physical mass-ordered neutralinos are
shown on the left-hand y-axis and are given by the solid lines. This shows that the 3rd and 4th heaviest
neutralinos, being the dominantly Higgsino neutralinos, mix increasingly with the singlino as λ increases
as expected. The dashed lines and right-hand y-axis indicates how the total decay width of each neutralino
varies with λ. Increasing/decreasing singlino fraction reduces/increases the total width as expected.
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4.3.1 Decay Calculator Processing Performance

In performing such scans the issue is often the program speed; many different parameter

points must be evaluated for both their mass spectrum and couplings, and their decay widths.

As such, the speed of evaluation of one parameter point is important for allowing such analyses

to be easily manageable. Of course, spectrum generator and decay calculator programs are

far from the bottleneck in the overall analysis chain (given previously in Figure 3.2), this is in

the Monte Carlo event generation for particle production cross-section evaluation. Nonetheless,

if investigations include only the spectrum generation and decay calculation we should ensure

the decay calculation does not significantly slow the program and thereby make such scans

more cumbersome than necessary. Fortunately the decay calculations are not computationally

intensive, and our approach to include as many formulae as possible hand-coded and evaluated

analytically ensures the decay calculations require minimal time to evaluate. The only modes

which may take more significant computational power are the 3-body modes, requiring numerical

integration; however even in these cases we have first analytically reduced the integral to one-

dimension lessening the computer time required. As a consequence, the decay calculation step

adds minimal additional burden to the SoftSusy package, typically increasing the evaluation

time by only 5% when 3-body modes are included and by only 2% if these are excluded7.

Although this evaluation time of the decay calculator will increase as further modes, particularly

3-body modes, are added; we still anticipate it taking no more than a fraction of the spectrum

calculator computation time, as the spectrum calculator requires an iterative process to be

completed until convergence is reached.

4.4 Future Developments

SoftSusy-4.0 was the first version of many including the decay calculator program and

therefore contained only the modes deemed crucial to collider applications. Since then, minor

additions and changes have been made in updating the package to the latest SoftSusy-4.1.4

version; these include the introduction of the chargino to neutralino pion modes described in

Chapter 4.2.5 and the addition of a limit to improve the accuracy of predictions for extremely

compressed gluino spectra as outlined in Chapter 3.3.5 and elucidated further in Appendix A.4.1,

amongst others. We hope the decay calculator aspect will prove of tremendous use for collider

search applications, representing a major upgrade of the SoftSusy package capabilities. To

this end, we plan a program of future developments and improvements to the decay calculator

program, building on the foundations we have laid in its first versions. The exact changes,

additions and augmentations made and the order of these improvements will be guided by the

needs of users, and by data from ATLAS and CMS, nonetheless the following are a selection of

those we currently intend to prioritise:

7For example, running on my personal laptop with the lesHouchesInput file provided with the SoftSusy code,
I find the mass spectrum generator takes 0.75s, the decay calculator with 3-body modes included takes 0.04s and
without 3-body modes included takes 0.01s.
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• 3-body sfermion f̃ decays - The current version of SoftSusy includes the most phenomeno-

logically relevant 3-body decay modes of the gluinos, charginos and neutralinos; however

currently no sfermion 3-body decays are included. These may be particularly relevant

for searching compressed spectra regions, for example these are pertinent to spectra with

light stop masses8 such that mt̃i
< mt + mZ̃1

,mb + mW̃±1
, but mt̃i

> mb + mW + mZ̃1
.

These points can arise for light stops due to the larger top mass preventing 2-body decays

including tops in the final state. There are also t̃i → bll̃ decays (where ll̃ are a lepton sneu-

trino or slepton neutrino pair): these 3-body decays arise where again no 2-body modes

are available and sleptons are lighter than squarks, the latter condition often occurring

for common GUT scale scalar masses, such as those imposed in mSUGRA. Meanwhile

t̃i → b̃iff̄ ′ decays mediated via W bosons or charged Higgses, may be relevant for larger

tanβ in regions where t̃i − b̃i < mW . More information on the 3-body decays of third

generation squarks is given in [189].

• Further chargino, neutralino and gluino 3-body decays - Whilst the most likely 3-body

decays relevant to colliders are included for charginos and neutralinos, there are some

rarer candidate decays remaining which may be apposite. These include the chargino or

neutralino 3-body modes to gluinos and quark-antiquark pairs, which can easily be incorpo-

rated into the program, being the crossing of 3-body gluino modes already included. Also,

as of yet, 3-body heaviest chargino to lightest chargino modes plus a fermion-antifermion

pair via Higgs, Z or sfermion intermediates are not included, although these are of sub-

stantially reduced importance as spectra with the two charginos quasi-degenerate are rare

phenomenologically. Concurrently, gluino 3-body decays to stops, a bottom quark and a

W boson (or charged Higgs) could also be of relevance in some regions of parameter space,

whilst neutralino to neutralino pion modes could also be added, reflecting regions where

two neutralinos (particularly the lightest two) are quasi-degenerate

• Loop decay modes - These early versions of the SoftSusy decay calculator included only

the crucial 1-loop decay modes of Higgs particles, albeit in both the MSSM and NMSSM.

However, given we explained briefly in Chapter 3.1 that 1-loop and 3-body modes are

ordinarily similarly suppressed, there are radiative decay modes relevant to the compressed

spectra regions for which we have included 3-body modes to target. Key examples are the

g̃ → gZ̃i and the Z̃j → Z̃iγ decays, the latter of which can be especially relevant for Z̃2

decays [190]. In addition, the mode t̃i → cZ̃1 may be needed for some regions of parameter

space, even though it is CKM and loop-suppressed, if no tree-level 2-body modes are

available and the phase space for the 3-body modes is small due to the compressed nature

of the spectra.

• Further QCD Corrections - To date, the SoftSusy decay calculator has only included

QCD corrections in the neutral Higgs decays to quarks (at 1-loop) and to gluons (at 2-

8The lightest stop is often light as the mixing between the stop eigenstates is proportional to the large top
Yukawa and large mixing leads to a large separation of masses between the two stop eigenstates.
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loop), although already in both the MSSM and NMSSM, as these are essential to correctly

reproducing the branching ratios of the Standard Model-like Higgs. Nonetheless, QCD

corrections can have significant impacts on the decays of other supersymmetric particles,

in particular the branching ratios of squark and gluino decays. Modes for which QCD

corrections will be added include g̃ → q̃q̄, q̃ → g̃q, q̃ → Z̃iq, q̃ → W̃±i q
′, q̃2 → q̃1V and

q̃2 → q̃1φ. More minutiae are given in [134, 191–196], in some regions of parameter space

the effects of such SUSY-QCD corrections can be of order 10%.

• Very Compressed Regions - In very compressed regions spectrum generators and decay

calculators can lose precision due to two main factors: first of all, decays in such regions

are very phase space dominated, and so any small differences in the particle masses de-

termined by the spectrum generator can alter the partial widths significantly by altering

the phase space available. Secondly, decay calculators can lose accuracy due to numerical

precision in such regions as very fine cancellations frequently arise at the ends of phase

space integrals. Whilst the former issue can only be resolved with greater precision in

the spectrum generation, the latter can be aided by taking appropriate limits for very

compressed regions. This has been performed for the gluino 3-body decays, as described

in Chapter 3.3.5 and Appendix A.4.1. This approach could be extended to other very

compressed decays.

• NMSSM 3-body decays - Longer term, as we enhance the program with further MSSM

3-body decays, we may also decide to extend this work into incorporating NMSSM 3-body

decays. Currently these are less important due to the enlarged parameter space and limited

constraints on the NMSSM, nevertheless they may become relevant with time and collider

results. A selection of these modes are available in NMSSMTools.

• R-parity violation - SoftSusy is in limited company as a spectrum generator able to in-

corporate RPV effects for the MSSM, with only sPHENO able to do the same amongst the

main programs publicly available (see Table 3.1). Extending this to the decay calculator

may therefore offer significant benefits to the community in searching for RPV signatures

at colliders, particularly as R-parity conserving models become further restricted by ex-

perimental exclusions. Again this would be a longer term development of the program and

so is dependent upon the nature of collider results in the interim.

As can be seen, this represents a significant program of development and many opportunities

for improvement. We therefore hope and expect this program of research continues considerably

into the longer term future.
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Chapter 5

Differential Spectra and Resumma-

tion

We now take a breath and move onto a different track, describing in this chapter and the

next two (Chapters 5-7) the research we have undertaken in the development of the reSolve

program [2] for transverse momentum resummations and the general production of differential

spectra for hadron-hadron processes.

5.1 Precision Physics at the LHC

In our previous discussions of the research performed for the SoftSusy decay program in

Chapters 2-4, we focused on the search for new physics states via specific model-dependent direct

and indirect searches for new particles; through resonances, in loops or via their signatures at the

LHC. However, with no clear new discoveries forthcoming from such searches since that of the

Higgs boson in 2012 [12, 13], and increasing exclusions on the most minimal Beyond Standard

Model parameter spaces, there is a growing endeavour at the LHC and elsewhere to develop

efforts in precision physics measurements and searches. In particular, such a lack of observations

suggests that new physics may be largely decoupled from the Standard Model at LHC scales and

so may only produce small deviations in measured results. In such precision physics analyses,

we aim to measure known Standard Model processes to high precision with the objectives being

twofold; firstly to further our knowledge and understanding of Standard Model physics, and

secondly to look for tiny model-independent deviations of experimental results from precise

theoretical predictions as an alternative sign of new physics states. In this vein, differential cross-

sections for a variety of processes are being measured at unprecedented precisions during Run II

of the LHC and beyond. In order to take advantage of these precise measurements however we

need equally precise theoretical predictions. In fact, unlike direct searches which may proceed to

a degree without precise theoretical predictions - requiring theoretical predictions largely for the

interpretation of new physics results (or lack thereof) in terms of the various model parameter

spaces, for precision physics measurements the strategy is fundamentally dependent upon precise

theoretical predictions. The calculation of such theoretical predictions for a particularly vital

and difficult class of spectra, transverse momentum (pT ) spectra at low pT , is the target of our

work in this area. Transverse momentum spectra are of great importance for the testing of

the Standard Model and for the precise measurement of its parameters, including the W mass
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and PDFs. The resulting precise determinations of Standard Model parameters allow smaller

theoretical uncertainties in many other calculations. In addition, these precise measurements are

also able to serve as new physics searches, with any small deviations from the precise Standard

Model predictions indicating the potential presence of Beyond Standard Model particles.

Nonetheless, before we embark upon an explanation of the underlying technicalities involved

and the functionalities and results of the reSolve program we have written to augment efforts

in this area through Chapters 6 and 7, we first begin outlining in this chapter some of the basic

concepts in collider kinematics, differential spectra and resummation that are required to attain

an understanding of this work.

5.2 Collider Kinematics

In this section we are considering production cross-sections of the following form, where h

are incoming colliding hadrons, one from each beam, and F is the target measured final state

system, whilst X is undetected additional radiation:

h(p1) + h(p2)→ F +X. (5.1)

As the measured final state system F will be two photons, or two Drell-Yan leptons for our

applications, here we begin by simplifying and considering the kinematics of 2 → 2 processes,

we therefore introduce the Lorentz invariant Mandelstam variables s, t, u:

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (5.2)

Given these are Lorentz invariant, we may evaluate them in any frame. Considering s in the

centre of mass frame of the collision it is clear that
√
s = Etot, i.e. s is the total square centre

of mass energy in the collision. s is of particular relevance as it defines the “invariant mass” of

a final state system of particles, M2, or equivalently q2 (or QQ2):

M2 = sfinal state = m2
1 +m2

2 + 2(E1E2 − p1.p2). (5.3)

However, at a hadron-hadron collider, the incoming beams of colliding partons have a spec-

trum of longitudinal momenta set by the parton distribution functions; as a result, in general,

the centre of mass frame of the parton-parton scattering is boosted along the beam (z) direction.

It is therefore useful to classify the 4-momenta in terms of variables which transform straightfor-

wardly under these longitudinal boosts, so rather than describing pµ = (E, px, py, pz) we choose

to describe it in terms of the variables pµ = (E, pT , φ, y), which are the energy, transverse mo-

mentum, angle in the xy plane perpendicular to the beam, and rapidity. We define rapidity

by

y =
1

2
log

(
E + pz
E − pz

)
. (5.4)
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Whilst it is clear that the pT and φ angle are invariant under the longitudinal boosts necessary

to reach the centre of mass frame, it is not immediately obvious that this is true for rapidity -

boosting along z we obtain E′ = γ(E−βpz), p′z = γ(−βE+pz) and so the rapidity y transforms

to:

y′ =
1

2
log

(
(E − βpz) + (pz − βE)

(E − βpz)− (pz − βE)

)
=⇒ y′ = y − tanh−1 β. (5.5)

As a result all rapidities transform with the same additive factor, which is the rapidity of the

boost momentum, and so rapidity differences are longitudinal Lorentz boost invariant, as desired.

If we also introduce the “transverse energy” variable1 defined by:

ET =
√
m2 + p2

T =
√
m2 + p2

x + p2
y =

√
E2 − p2

z, (5.6)

we may rewrite:

E = ET cosh y, pz = ET sinh y. (5.7)

So our coordinate change is given by:

pµ = (E, px, py, pz) = (ET cosh y, pT cosφ, pT sinφ,ET sinh y). (5.8)

In practice, in particle phenomenology rapidity, y, is not often used as it relies upon the

simultaneous measurement of the energy and longitudinal momentum, instead the “pseudora-

pidity”, η is preferred2:

η =
1

2
log

(
|p|+ pz
|p| − pz

)
= tanh−1

(
pz
|p|

)
= tanh−1(cos θ). (5.9)

This is clearly equivalent to the rapidity y in the massless limit (as then E → |p|), however it is

preferred as it can be straightforwardly related to the angle to the beam axis θ through

η =
1

2
log

(
1 + cos θ

1− cos θ

)
= − log(tan

θ

2
). (5.10)

The relationship between η and θ is shown in the oft-seen Figure 5.1:

The relationship between rapidity and pseudorapidity can be further elucidated using equa-

tion 5.9 and substituting in equations 5.7, which implies after a little algebra that

sinh y =
pT
ET

sinh η. (5.11)

1Sometimes this is also referred to as transverse mass, however we distinguish here as we also have the
experimental definition of transverse mass later in equation 5.15)

2Where the penultimate step follows from tanh−1(x) = 1
2

log
(

1+x
1−x

)
.
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Figure 5.1: The relationship between the pseudorapidity η and the angle to the beam axis θ.

We may then use sinh−1 z = log(z +
√

1 + z2) to obtain:

y = log

(
1√

m2 + p2
T

(
pT sinh η +

√
m2 + p2

T cosh2 η
))

. (5.12)

Finally we can rewrite this as a function of χ = m
pT

and Taylor expand around χ = 0 (the

massless limit):

y =log

(
sinh η +

√
cosh2 η + χ2√

1 + χ2

)
=log(sinh η + cosh η)−χ

2

2

(
1− 1

cosh η(cosh η + sinh η)

)
+O(χ4)

=
1

2
log(exp η)− χ2

2
tanh η +O(χ4) = η − m2

2p2
T

tanh η +O
(m4

p4
T

)
. (5.13)

This makes it further clear that rapidity and pseudorapidity are equivalent in the massless

limit.

We also use rapidity and the φ angle perpendicular to the beam to determine the angular

separation between two final state particles defined by:

∆R =
√

(∆y)2 + (∆φ)2 ≈
√

(∆η)2 + (∆φ)2. (5.14)

This is relevant for cuts in the diphoton process, which we consider in Chapter 7.1.2, as two

photons with small opening angle may not be distinguished. Furthermore, it may be used to

define an “isolation cut” for the photons, in order to reject cases where a QCD parton is too

close to the photon, as otherwise distinguishing a photon from a jet containing photons becomes

difficult.

Before we move on, we introduce a further variable, the “transverse mass”, which has useful

properties in particle searches. In experiments often it is the case that one particle in the final

state cannot be detected, for example neutrinos produced from W boson decay. As a result

the total energy and momentum is often unknown, particularly down the beam-pipe, instead

inferring the presence of the additional particle via missing transverse energy and momentum.

Consequently, rather than use the transverse energy ET , the alternative transverse mass mexp
T

is often used:
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mexp
T =

√
(E

(1)
T + E

(2)
T )2 − (p

(1)
T + p

(2)
T )2 ≈

√
2|p(1)

T ||p
(2)
T | − p

(1)
T .p

(2)
T . (5.15)

The last approximate equality here holds in the limit in which the final state particles are mass-

less. In analogy with the invariant mass given in equation 5.3, we may write this experimental

transverse mass3 as

m2
T = (E

(1)
T + E

(2)
T )2 − (p

(1)
T + p

(2)
T )2 = m2

1 +m2
2 + 2(E

(1)
T E

(2)
T − p

(1)
T .p

(2)
T ). (5.16)

Consider for now the expression for the rapidity difference ∆y, for which we may write:

cosh ∆y =
1

2

[√√√√(E1 + p
(1)
z )(E2 − p(2)

z )

(E1 − p(1)
z )(E2 + p

(2)
z )

+

√√√√ E1 − p(1)
z )(E2 + p

(2)
z )

(E1 + p
(1)
z )(E2 − p(2)

z )

]
=
E1E2 − p(1)

z p
(2)
z

E
(1)
T E

(2)
T

. (5.17)

Therefore we have

E
(1)
T E

(2)
T cosh ∆y − p

(1)
T .p

(2)
T = E1E2 − p(1)

z p(2)
z − p

(1)
T .p

(2)
T = E1E2 − p1.p2. (5.18)

So we may rewrite the expression for the invariant mass squared as:

M2 = m2
1 +m2

2 + 2(E
(1)
T E

(2)
T cosh ∆y − p

(1)
T .p

(2)
T ), (5.19)

and as coshx ≥ 1 we have the inequality

M2 ≥ m2
1 +m2

2 + 2(E
(1)
T E

(2)
T − p

(1)
T .p

(2)
T ) = m2

T , (5.20)

where the last equality is from equation 5.15. Therefore if we measure the distribution of trans-

verse masses attained at the LHC for a given final state, then the transverse mass distribution

has an upper cut-off at the invariant mass, which will be equal to the mass of the parent in-

termediate particle producing the two final state particles. This is how the W mass may be

measured. Furthermore this endpoint in the transverse mass distribution is achieved when the

two final state particles are emitted at the same rapidity so ∆y = 0.

5.3 Production Cross-Sections

Following our brief sojourn into collider kinematics, let us move in the direction of our

application and consider the basic theory behind production cross-sections at hadron-hadron

colliders. First we begin with a simplification, supposing two fundamental particles (such as

two quarks) collide to produce two further particles in a 2→ 2 collision; then, following similar

calculations we performed for particle decays in Chapter 3.1, it can be shown that the general

expression for such a production cross-section is given by4:

3From now we denote the transverse mass as mT neglecting the “exp” label which is implied.
4In this equation and the next we label the cross-sections as σ̂ rather than σ to reflect the fact these are

cross-sections for the collisions of fundamental objects and so in our context these are the forms of the partonic
cross-sections used later.
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σ̂(a+b→ 1+2) =
(2π)4

4
√

(pa.pb)2 −m2
am

2
b

∫
|Mfi|2δ4(pa+pb−p1−p2)

d3p1

2E1(2π)3

d3p2

2E2(2π)3
. (5.21)

Here the prefactor is (2π)4F where F is the so-called “Lorentz invariant flux factor”5. This

general expression is Lorentz invariant and so the cross-section may be evaluated in the centre

of mass frame in which the total energy is
√
s and the initial and outgoing 3-momenta are each

net zero. Again, one uses the expression for a delta function of a function of the integration

variable in equation 3.7, then in the centre of mass frame:

σ̂(a+ b→ 1 + 2) =
1

64π2s

p∗f
p∗i

∫
|Mfi|2dΩ∗, (5.22)

where the ∗ indicates these quantities are determined in the centre of mass frame. Performing

such phase space integrals is relatively simple when the phase space is complete; however, once

cuts are present and the experimental sensitivity is accounted for, it is much more complex. The

complexity also grows extremely quickly with the number of particles produced and as beyond

leading order contributions are considered. We are however fortunate that at collider scales

QCD becomes asymptotically free in its running and so we can treat it perturbatively, allowing

the computation of observables such as the total cross-section as a series of Feynman diagrams

of growing order and offering increasing precision.

Nevertheless, for precision physics applications we require more than just the total cross-

section; instead precise measurements are made of the spectra of particles produced, i.e. we

measure cross-sections differential in some experimental variable(s), this adds further compli-

cations to the evaluation of the our expressions. From equation 5.22 we can quickly determine

the differential cross-section in solid angle in the centre of mass frame dσ
dΩ∗ , however in general

we require either differential cross-sections in the laboratory frame, or in Lorentz invariant vari-

ables such as the Mandelstam variable t. This requires changes of coordinates, nonetheless t

can be related to scattering angles via equation 5.2 with the 4-momenta in the relevant frame.

A pedagogical introduction to cross-sections and differential cross-sections in particle physics is

available in [16].

Whilst differential cross-sections in such variables are relatively simply derived, scattering

angles are not the most natural variables to measure at hadron-hadron colliders, because the

longitudinal boost of the particles produced is unknown. Therefore differential cross-section

spectra in terms of longitudinal boost-invariant coordinates pT , φ and y or η are a more natural

choice. To obtain differential cross-sections in these variables we again require a change of

variables, starting from dσ ∝ d3p
2E(2π)3 :

5This form of the flux factor F−1 = 4
√

(pa.pb)2 −m2
am

2
b may be unfamiliar, if we assume the particles

are travelling in the z-direction only it can be shown this form is equivalent to the alternative common form
F−1 = 4|εµ12νp

µ
ap
ν
b | = 4|Ebp3

a − Eap
3
b | = 4EaEb|va − vb|. This second form is, in fact, only invariant under

boosts along the collision axis (taken to be the z axis) and under general rotations. This must be the case as the
cross-section is a space-like area and so must vary with transformations perpendicular to the collision axis. As
in the case of particle decays, the non-Lorentz invariance is then all incorporated in this flux factor, ensuring the
phase space integral is Lorentz invariant and may be evaluated in any frame.
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E
d3σ

dpxdpydpz
=

E

pT

d3σ

dpTdφdpz
=

1

pT

d3σ

dpTdφdy
. (5.23)

In the last step here we have used that:

dy

dpz
=

1

2

[ 1

E + pz

(
1 +

dE

dpz

)
+

1

E − pz

(
− 1 +

dE

dpz

)]
=

1

E
. (5.24)

However, this work so far has been a drastic simplification of the setup at hadron-hadron

colliders such as the LHC, indeed the expressions would naturally apply at a lepton-lepton

collider. They only apply to the fundamental underlying process at hadron-hadron colliders,

which add an additional layer of complication due to the fact the initial and final states are

no longer fundamental particles but are hadronised into QCD objects. The colliding quarks or

gluons themselves originate as “partons” from the hadrons themselves (protons for the LHC),

and therefore carry an unknown fraction of the 4-momentum of the ingoing protons. Therefore

whilst our expressions for cross-sections and differential cross-sections so far in this section

considered colliding fundamental particles such as quarks, we must generalise to collisions of

quarks (or generally partons including gluons) within hadrons. We therefore must make the

step from the “partonic cross-sections” we have so far considered to “hadronic cross-sections”

reflecting the reality at the LHC. This development adds a myriad of complications and issues.

Nevertheless, we begin by introducing the momentum fractions x1, x2 of the colliding partons;

these are the fractions of the total momenta of their parent hadrons that the colliding partons

each have, and may be written in terms of the invariant mass and rapidity as follows. Consider

first the 4-momentum of the colliding partons in the hadron-hadron collision centre of mass

frame, neglecting their masses as at hadron colliders the energies are much larger than the

particle masses, then

q = x1p1 + x2p2 = ((x1 + x2)E, 0, 0, (x1 − x2)E). (5.25)

Therefore we may write the invariant mass squared and transverse energy as6:

q2 = ((x1 + x2)2 − (x1 − x2)2)E2 = 4x1x2E
2 = x1x2s, (5.26)

ET =
√
E2 − p2

z = 2
√
x1x2E =

√
x1x2s =

√
q2. (5.27)

Using equation 5.7 we may obtain ey and then substitute equation 5.27 in to obtain

cosh y = (x1 + x2)
E

ET
, sinh y = (x1 − x2)

E

ET
, ⇒ ey =

2x1E

ET
=

√
x1

x2
, (5.28)

therefore finally we reach:

6Remember s = 4E2 and note that ET =
√
q2 as no momentum transverse to the beam has been taken so

p2
z = p2.
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x1 = |q| e
y

√
s
, x2 = |q|e

−y
√
s
. (5.29)

We now need to convert from our partonic cross-sections, which may be obtained without

thought for the detailed QCD non-perturbative dynamics occurring to bind the partons into

hadrons, to hadronic cross-sections. To do this we must parametrise our ignorance and create

probability distribution functions representing the chance of receiving a parton of given momen-

tum fraction from the protons colliding. “Parton Distribution Functions” (PDFs), f(x), must

be defined where f(x)dx represents the probability of obtaining a parton of momentum fraction

between x and x+δx from a proton; the PDFs are different for each flavour of parton considered

due to the QCD dynamics and parton masses. To calculate the required hadronic cross-sections,

we then integrate the partonic cross-sections (containing the short distance, high energy physics

of the fundamental collision) multiplied by the PDFs for each colliding parton (containing the

long distance, low energy physics of the QCD hadronisation) over the total momentum fractions

allowed. This “factorisation” of short and long distance physics is key, and not obvious a pri-

ori. Our description follows from Feynman’s “parton model”, which applies at leading-order in

QCD up to corrections which reflect various inherent assumptions in this model, including that

the separate contributions from each parton may be incoherently summed and do not interact

with one another. The QCD improved parton model, incorporating beyond leading order effects

of factorisation scale dependence, absorption of collinear singularities and parton splitting is

introduced later.

σ(h1 + h2 → 1 + 2) =

∫ 1

0
dx1

∫ 1

0
dx2

Nf∑
a,b=−Nf

fa/h1
(x1)fb/h2

(x2)σ̂(a+ b→ 1 + 2). (5.30)

In fact, beyond leading-order, the nature of the partonic cross-sections which are summed is

also non-trivial, with partonic cross-sections with addition undetected real emissions (X) and

loop corrections giving virtual contributions both needing to be summed to obtain the hadronic

cross-section for h1 + h2 → F (= 1 + 2) +X.

In any case, in this simplified parton model, we convolute the PDFs with the partonic cross-

sections to produce the overall hadronic production cross-sections. As a result, as well as the

three momentum differentials over which to integrate, we also have the momentum fractions to

integrate over, this allows greater flexibility in obtaining differential cross-sections as we may

also change variables from the x1, x2 to rapidity, invariant mass and other desired variables.

For example we may determine the double differential cross-section with respect to rapidity and

invariant mass given by equation 5.32 using our expression for the hadronic cross section of

equation 5.30 after first determining the Jacobian for the relevant change of variables:

∂(q2, y)

∂(x1, x2)
=

∣∣∣∣∣ ∂q
2

∂x1

∂q2

∂x2
∂y
∂x1

∂y
∂x2

∣∣∣∣∣ =

∣∣∣∣∣x2s x1s
1

2x1
− 1

2x2

∣∣∣∣∣ = s =
q2

x1x2
, (5.31)
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d2σ

dq2dy
(h1 + h2 → 1 + 2) =

1

q2

Nf∑
a,b=−Nf

x1fa/h1
(x1)x2fb/h2

(x2)σ̂(a+ b→ 1 + 2). (5.32)

In fact, the partonic cross-section itself was integrated over angular and momentum variables,

therefore we can derive higher power differential distributions with respect to further kinematic

variables:

d4σ

dq2dydθ∗dφ∗
(h1 + h2 → 1 + 2) =

1

q2

Nf∑
a,b=−Nf

x1fa/h1
(x1)x2fb/h2

(x2)
d2σ̂(a+ b→ 1 + 2)

dθ∗dφ∗
. (5.33)

The expression for the double differential distribution with respect to the two angular centre

of mass variables is then read from equation 5.22. At Born level, where there can be no net

transverse momentum for the outgoing 2 particle system, a 4th order differential distribution is

the highest possible as the number of final state independent variables in a 2→ n interaction is

3n− 4, plus we have two further from the incoming momentum fractions of the partons.

The evaluation of the integrals over any remaining necessary variables in determining such

differential distributions can be significantly more complicated than integrating over the whole

phase space to obtain the total cross-section, as more kinematic information is retained. Fur-

thermore this is complicated by arbitrary experimental cuts on different kinematic variables (be

it to enhance searches over backgrounds or due to the experiment detector sensitivity itself)

which may spoil the analytic form of the integrals. On top of this, to perform analytic inte-

grations we often have to be very “inclusive” in our descriptions in order to avoid problems

with un-cancelled singularities, integrating over all possible related final states in a way which

does not reflect the exclusive nature of many measurements. Consequently, theoretical tools

for performing such calculations typically rely upon Monte Carlo integration, as will our tool

reSolve.

In Monte Carlo integration, individual “events” corresponding loosely to the events at a col-

lider7 are generated randomly within the phase space and the cross-section integrand is evaluated

for each point. Keeping the information of the individual events calculated one can then sum

them, with the sum usually weighted appropriately by a grid describing the error distribution

over the phase space, to obtain the total cross-section; or one may sum only in some variables in

order to obtain differential distributions, the events can then be binned to produce the desired

spectrum. Further details on the Monte Carlo evaluation are given in Appendix B.3.

More specifics and formal background on all the ideas and equations outlined here, and more,

including the contents of the rest of the chapter, are given in [14,17].

7The correspondence is not exact due to the effects of higher orders which may produce negative contributions
in some applications and as the events produced inherently depend upon any latent assumptions within the
theoretical application, such as schemes and other choices.
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5.4 Soft and Collinear Divergences

In this section we seek to clarify the IR divergences which were briefly mentioned previously

and are the key to the complexity of predictions for transverse momentum spectra at low pT . In

considering an amplitude for an arbitrary process beyond leading order, one must consider all

real corrections due to radiating additional particles and all virtual corrections due to additional

loops at the order considered. We have seen previously UV divergences arising from arbitrarily

high momenta (k →∞) running in loop integrals; IR divergences on the other hand have their

source in low momenta k → 0 integrals, as mentioned in Chapter 1.1.3.

As an example of IR divergences and their cancellations, let us contemplate a general 2→ 2

process, at NLO we get real and virtual corrections such as those in Figure 5.2a, amongst other

such contributions.

(a) (b)

Figure 5.2: (a) Real (left) and virtual (right) corrections to a generic 2→ 2 process, these give additional
propagator factors as well as extra vertex gauge coupling factors and photon (for QED) polarisation
contractions. (b) Multiple emissions, as have to be summed over for each external state, these emissions
are photons in QED.

Each such correction introduces both additional factors of the gauge coupling via the extra

vertex, and an additional propagator, the additional propagator is the source of soft and collinear

divergences in the infrared in the case of massless propagating particles:

1

(p+ q)2 −m2 − iε

∣∣∣∣
q→0

=
1

2p.q
=

1

2p0q0(1− cos θ)
→ 0

for q0 → 0 “soft divergence”,

or cos θ → 1 “collinear divergence”.

(5.34)

In the case of massive propagating particles however, the collinear divergence is regulated

by the mass as then 2p.q = 2p0q0 − 2|p|q0 cos θ which no longer has a divergence as cos θ → 1

as p0 > |p|. Instead logarithmic collinear enhancements appear. Meanwhile, soft divergences

cancel between real emissions and virtual corrections, leaving logarithmic soft enhancements.

It is these soft and collinear enhancements which may spoil perturbation theory and require

resummation.

In order to demonstrate the appearance of such divergences and logarithmic enhancements

in the IR, let us consider these divergences in QED, where the structure is simpler. We begin

with real emissions, scrutinising first the case of emitting a single soft photon; this is examined
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more formally in [14] and [197] (based on [198]). Real emission from a final state particle is

shown in the left-hand of Figure 5.2a, nonetheless we will include initial and final state emission

in our derivation. For the final state emission case we label the initial momentum as p+q before

radiation of a photon of momentum q leaves momentum p on the fermion line8, this will give an

additional factor (dropping the photon polarisation vectors for now) in the amplitude of 9:

[i(2π)4e(2pµ ± qµ)]

[
−i

(2π)4

1

(p± q)2 −m2 − iε

]
−−−→
q→0

epµ

±p.q − iε , (5.35)

where the ± is a “+” for emission in the final state and a “−” for emission in the initial state

and we have taken the soft photon limit q → 0. Summing over all n legs off which to emit (4 for

us as 2 → 2), one obtains an extra factor given in equation 5.36, ηn is ±1 accordingly for final

and initial state real emission: ∑
n

ηne
npµn

pn.q − iηnε
. (5.36)

However, in reality we must sum over the emission of any number of soft photons, considering

two emissions we have a diagram as in Figure 5.2b, as well as the reverse ordering of the photon

legs.

The first ordering (given in the figure) and the second ordering give additional factors of:[
ηepµ

p.q1 − iηε

][
ηepν

p.(q1 + q2)− iηε

]
,

[
ηepν

p.q2 − iηε

][
ηepµ

p.(q1 + q2)− iηε

]
. (5.37)

These may then be summed, and happily factorise into separate analogous factors per emission:[
ηepµ

p.q1 − iηε

][
ηepν

p.q2 − iηε

]
. (5.38)

The same applies for any number of photon emissions factoring into separate pieces; this is

often referred to as factorisation of dynamics10 and is explicitly shown in [197] so we do not

repeat it here, it is crucial to the ability to resum these emissions via exponentiation as we

shall demonstrate. Emitting N soft photons gives an additional factor (neglecting the photon

polarisations) of
N∏
r=1

ηnenp
µ
n

p.qr − iηnε
. (5.39)

Each emitted soft photon polarisation then contracts with this extra factor so we obtain

8For initial state emission the momentum of the initial fermion is p, it then emits a photon of momentum q
leaving momentum p− q on the fermion line so the propagator has an additional relative minus sign.

9Here this has been simplified by taking a spin 0 charged particle emitting a photon. In the spin 1
2

case of

real QED the additional factor is instead
(/p±/q+m)

((p±q)2−m2)
eγµεµu(p+ q), if the q → 0 Eikonal limit is again taken one

may commute the relevant γ matrices using the Clifford algebra and use the Dirac equation to obtain the same
limit as on the right-hand side of equation 5.35 above. In fact this limiting form is independent of spin, spin 0
was therefore chosen above for simplicity.

10This factorisation of dynamics occurs similarly in QCD with the small complication of colour factors.
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(where the product is over the number of emissions and the sum is over the number of external

states):

Memissions = MLO

N∏
r=1

∑
n

ηnenpn.ε
∗(qr)

pn.qr
. (5.40)

We must square this, sum over helicities
∑

h=±1 ε
µ(q, h)εν∗(q, h) = −gµν (terms have been

dropped here due to charge conservation) and divide by N ! as the photons are indistinguishable,

and so our differential rate is:

dΓemissions(q1, q2, . . . , qN ) = − 1

N !
ΓLO

N∏
r=1

d3qr
(2π)32|q|

∑
nm

ηnηmenem(pn.pm)

(pn.qr)(pm.qr)
. (5.41)

Integrating over phase space, which incorporates integrating over the energies and directions of

the outgoing photons, we will observe soft divergences and collinear enhancements11 respectively.

First we integrate over the photon directions; for each emitted photon we obtain:

−(pn.pm)

∫
2πdq̂

(En − q̂.pn)(Em − q̂.pm)
=

2π

βnm
log

(
1 + βnm
1− βnm

)
. (5.42)

q̂ is the normalised photon momentum and βnm =
√

1− m2
nm

2
m

(pn.pm)2 is the relative velocity of

particles n and m in each other’s rest frames. This demonstrates the collinear enhancements

log
(

1+βnm
1−βnm

)
, which are large when the two intermediate (electron) lines have near collinear

momenta as then βnm → 1, this occurs when the photon emitted is collinear. However, these

are not collinear divergences as the intermediate electrons have mass. If we take the massless

limit (which applies for QCD for example as then the charged intermediates can be massless

gluons) by taking the mass of one electron line to be zero so m1 → 0, whilst keeping p1 fixed,

then we can rewrite our collinear logarithmic enhancement:

β1n =

√
1− m2

1m
2
n

(p1.pn)2
= 1− m2

1m
2
n

2(p1.pn)2
+O(m4

1), (5.43)

so in this limit to first order

log

(
1 + βnm
1− βnm

)
≈ log

(
4(p1.pn)2

m2
1m

2
n

)
. (5.44)

So, as m1 → 0 whilst keeping p1 fixed we have a collinear divergence. We may extract the

divergent piece and it is proportional to logm1, and so it is directly the mass of the charged

intermediates which prevent such divergences in QED.

Integrating over all emitted photon momenta leaves the integrals over the photon energies:

11QED gives collinear enhancements, rather than divergences, as the electron mass in the propagators regulate
the collinear divergences. Nonetheless these enhancements may still be an issue phenomenologically, being poten-
tially large logarithms at all orders in relevant regions of parameter space and so would also have to be resummed
in the same way.
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dΓemissions(E1, E2, . . . , EN ) = ΓLO
1

N !

[
1

8π2

∑
nm

enemηnηm
βnm

log
(1 + βnm

1− βnm

)]N dE1

E1

dE2

E2
. . .

dEN
EN

= ΓLO
1

N !
AN

dE1

E1

dE2

E2
. . .

dEN
EN

,

(5.45)

where we have defined

A =

∫
d2ΩA(q̂) =− 1

16π3

∫
d2Ω

∑
nm

enemηnηm(pn.pm)

(En − q̂.pn)(Em − q̂.pm)

=
1

8π2

∑
nm

enemηnηm
βnm

log

(
1 + βnm
1− βnm

)
,

(5.46)

which is raised to power N due to the product over photon emissions.

Now, in integrating over the photon energies, we must introduce an upper bound energy Ed

which is the detector threshold energy, below which the photons are undetected and so may be

considered “soft” and therefore part of the same final state as the no emissions case, whilst we

use an IR cut-off λ to demonstrate the IR divergence:∫ Ed

λ

dE

E
= log

Ed
λ
. (5.47)

This soft piece is logarithmically divergent as λ → 0. Each emission also produces an extra

factor of α from the vertex and so, schematically, for each N we obtain an additional double

logarithm factor

1

N !
αN logN

(
Ed
λ

)
logN

(
1 + βnm
1− βnm

)
. (5.48)

As such a term arises for all N , each term in the perturbative expansion in α is enhanced by

the double logarithm, with one logarithm from the soft divergence and one from the collinear

enhancement; the soft divergence logarithmic enhancement is infinite as the IR cut-off λ is taken

to 0:

Γemissions = ΓLO

∞∑
N=0

1

N !
αN logN

(
Ed
λ

)
logN

(
1 + βnm
1− βnm

)
. (5.49)

Formally, this means that if these logarithms are large (the soft logarithm is infinite as λ →
0 so they are!) our perturbation theory may break down as each successive order is of the

same approximate magnitude as the previous one. This would cause drastic problems for our

theoretical predictions. However, we can identify the sum over N as the Taylor series for an

exponential and resum this infinite series to obtain:

Γemissions = ΓLO exp

[
α log

(Ed
λ

)
log
(1 + βnm

1− βnm

)]
. (5.50)

This resummation via exponentiation is the key to recovering the predictivity of the perturbative
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series in the case where the logarithm terms become large. However, our soft divergence still

remains (as would our collinear divergence if we had one, as in QCD).

Fortunately, before making any theoretical predictions we must consider all possible degen-

erate final states, i.e. final states which we cannot distinguish from one another. So far we have

considered only the possibility of real emissions below some detector threshold; in addition,

physically we cannot distinguish the final state from the loop-corrected final state, and so we

must consider the possibility of virtual photons.

Implementing the same analysis for virtual soft photons, for each additional soft photon the

additional propagator factor is i
(2π)4

gµν
q2−iε , and comes along with two additional vertices. As

before, we consider an arbitrary number, N , of additional virtual photons and we divide by

2NN ! as each propagator can be attached either way around and the ordering is unimportant.

Ultimately, the overall matrix element is enhanced by the following factor by possible virtual

corrections from photons:

1

2NN !

[
1

(2π)4

∑
nm

enemηnηm

∫ Λ

λ

d4q (ipn.pm)

(q2iε)(pn.q − iηnε)(−pm.q − iηmε)

]N
=

1

N !

[
1

2

∫ Λ

λ
d4q[−A(q̂)]

]N
.

(5.51)

Unlike the real emissions, this is the extra factor for the matrix element, rather than the tran-

sition rate, and so we must square, which removes the superfluous factor of 2. We thus obtain

the same integrals as for the real emissions case with different bounds on the photon energies.

We integrate the photon energies between the IR cut-off λ as before, and a new upper cut-off Λ

which cuts off the integral at large energies as we expect no IR effects once q ∼ Λ ∼ Q, where

Q is a hard scale - such as the momentum transfer. This Λ cut-off acts to define what is meant

by virtual “soft” photons. As a result of the minus sign, once the integral over the photon

directions is performed to reveal the same collinear enhancement factor, the integral over the

photon energies is: ∫ Λ

λ

−dq
q

= − log
Λ

λ
= log

λ

Λ
. (5.52)

Therefore at the N th order in a perturbative expansion in α the virtual corrections produce

an enhancement, again containing a soft divergent piece as λ→ 0 and a collinear enhancement

piece:
1

N !
αN logN

(
λ

Λ

)
logN

(
1 + βnm
1− βnm

)
. (5.53)

The virtually corrected rate, Γv, is therefore as follows, where in the last step we have again

resummed via exponentiation, however as for the real emissions case this does not resolve the

divergence(s) present:

Γv = ΓLO

∞∑
N=0

1

N !
αN logN

(
λ

Λ

)
logN

(
1 + βnm
1− βnm

)
= ΓLO exp

[
α log

(λ
Λ

)
log
(1 + βnm

1− βnm

)]
.

(5.54)

We must consider the effect of real emissions and virtual corrections together, multiplying

the effects they each have on the leading order rate and combining them at each order:

Thomas Cridge 138



Chapter 5. Differential Spectra and Resummation 5.4. Soft and Collinear Divergences

Γobserved = ΓLO

[
1 + α log

(Ed
λ

)
log
(1 + βnm

1− βnm

)
+
α2

2
log2

(Ed
λ

)
log2

(1 + βnm
1− βnm

)
+ . . .

]
×
[
1 + α log

(λ
Λ

)
log
(1 + βnm

1− βnm

)
+
α2

2
log2

(λ
Λ

)
log2

(1 + βnm
1− βnm

)
+ . . .

]
= 1 + α log

(1 + βnm
1− βnm

)
log
(Ed

Λ

)
+
α2

2
log2

(1 + βnm
1− βnm

)
log2

(Ed
Λ

)
+O(α3)

(5.55)

Therefore the soft divergence as λ→ 0 cancels out at each order, leaving a soft and a collinear

logarithmic enhancement each of the same order in the perturbative series. The overall expres-

sion for the rate may then be written:

Γobserved = ΓLO

∞∑
N=0

1

N !
αN logN

(
Ed
Λ

)
logN

(
1 + βnm
1− βnm

)
. (5.56)

The logarithmic enhancements may still spoil the perturbative series once

α log
(
Ed
Λ

)
log
(

1+βnm
1−βnm

)
∼ 1, nonetheless we can again identify the sum as the Taylor se-

ries for an exponential and resum these potentially dangerous terms to recover the predictivity

of the perturbative series:

Γobserved = ΓLO exp

[
α log

(Ed
Λ

)
log
(1 + βnm

1− βnm

)]
. (5.57)

We can therefore resum all the logarithmically enhanced pieces arising from the cancelled infrared

divergences via exponentiation. This calculation has been schematic so several factors and

subtleties have been overlooked but it demonstrates the key physics for resummation associated

with IR divergences.

It should be noted at this stage that whilst the soft divergences have cancelled, the collinear

logarithms remain the same, however in QED these are not actually divergent as the divergence

is regulated by the electron mass, therefore the fact these collinear pieces are unchanged is not

an issue as there are no massless QED-charged particles. The IR divergences have therefore

cancelled between the real emissions and virtual corrections, as described more rigorously by

Block-Nordsieck Theorem for QED [199]. This states that in QED such cancellation of diver-

gences is attained when summing over all possible degenerate final states.

This toy example was given in QED for simplicity, however the same argument can be applied

in QCD with a few appropriate changes. First of all αs � α, so the logarithmic enhancement in

the overall perturbation series for real emissions and virtual corrections is worse, and will ruin

the predictivity at smaller ratios of scales than would be required in QED, making the problem

all the more pressing. Secondly, whilst we have shown that the soft divergences cancelled, the

collinear pieces remained the same; in QCD there is also a collinear divergence arising from

the fact that the massless gluons are colour-charged particles and so we also need to cancel

these collinear divergences. Fortunately, Block-Nordsieck theorem of QED is replaced with the
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Kinoshita-Lee-Nauenberg (KLN) Theorem [200,201], which states that IR divergences (including

the collinear divergence) are cancelled in an observable when all possible initial and final states

are summed over, with the additional need to sum over initial states arising precisely from the

non-Abelian nature of QCD. In fact, when deducing the DGLAP equations in Chapter 5.5, we

perform this sum over initial states by allowing parton splittings, causing collinear divergences

and absorbing the dependence into PDF running12.

The need to include all possible real emissions and virtual corrections order-by-order in per-

turbation theory in order to ensure the cancellation of soft and collinear divergences can be

interpreted physically. Any detector could not distinguish between an electron and an electron

and a soft photon (or in QCD a quark or gluon and a soft gluon) and similarly any radiation

emitted along the fermion line will not be distinguished; both these effects are due to experi-

mental resolution practically. However, here our theoretical understanding of these divergences

and the need to be inclusive is actually informing us of something stronger, that regardless of

experimental sensitivity any fermion will always be surrounded by a cloud of soft (and collinear)

radiation and so this is the physical state of the theory, rather than the single particles we

usually think of.

5.5 Scales

Our exposition so far is still not detailed enough to understand the basic fundamentals

involved in our research in this area; QCD is full of complications and, in fact, what we have

described thus far is itself dependent on various assumptions. Many of these complications

arise as a result of the IR and UV divergences present, including the introduction of scales

into theoretical predictions. The interested reader can consult any of the vast array of QCD

textbooks [17, 202, 203] for more detailed and formal approaches, whilst there are several good

reviews [204,205].

In writing down the hadronic cross-section expression in equation 5.30 we implicitly made

the assumption that it is possible to factorise out the long distance, low energy scale physics

associated with hadronisation from the details of the short distance, high energy physics asso-

ciated with the partonic cross-section. Such an assumption need not a priori be true, but sepa-

rates the physics into our universal (process-independent) PDFs capturing the non-perturbative

behaviour, and our process-dependent perturbatively calculable partonic cross sections. This as-

sumption is an example of the “QCD Factorisation Theorem” [206–208], which has been proven

for Deep Inelastic Scattering of leptons off hadrons and demonstrated for Drell-Yan, but is typ-

ically used as an ansatz for other collider processes [209]. Such factorisations are typically only

correct up to a certain order in small corrections, usually of the order O(ΛQCD/Q) due to the

assumed independence of physics on the different scales, which adds a degree of approximation

on top of the usual perturbative expansion calculation of the partonic cross-section. This sep-

12This inclusion of initial state divergences into non-perturbative, universal PDF functions based on QCD
factorisation saves us as otherwise KLN would be inapplicable in experimental setups, requiring an initial state
as a superposition of all possible degenerate states to be set up.
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aration of energy scales itself has an ingrained additional unphysical scale, often termed the

“factorisation scale”, µF , which separates the two regimes. The exact numerical value of this

scale choice is somewhat arbitrary, with its order of magnitude guided via other scales in the

process; given its arbitrary nature we therefore do not expect any observables to be formally

dependent upon it. More rigorously, what is being done is to separate the infrared divergent

pieces associated with the long distance physics in the incoming states into PDFs of the incoming

hadrons. This removal of the IR divergences comes with a scale (the factorisation scale), and in

fact also a scheme choice in the exact same way renormalisation of UV divergences introduces

a renormalisation scale and choice. This absorbs the IR divergences associated with the initial

state, and so our transverse momentum resummation formalism is left to deal with the remnant

initial state soft and collinear enhancements associated with the QCD splittings and additional

propagators in virtual corrections13.

The factorisation scale is only one of three scales introduced in our formulae for the differen-

tial spectra determined in the reSolve program, with the other two being the “renormalisation

scale”, µR, associated with the removal of UV divergences, and the resummation scale, µS , as-

sociated with the arbitrariness in our definitions of the logarithms in our b-space resummation

formalism or equivalently with the arbitrary division of low and high transverse momentum

scales in our resummation formalism. All these scales are artefacts remaining from our theo-

retical treatment and must drop out of any observable quantities if it were possible to evaluate

them to all orders in perturbation theory. In fact, by requiring that any observable quantities

are independent of these scales (when summed to all orders) we can absorb divergences into

running parameters by writing down Callan-Symanzik style equations, again in an analogous

manner to the alternative derivation of the gauge coupling running in Chapter 1.1.4. We take an

aside here to outline the first two of these scales, leaving the resummation scale to our discussion

in Chapter 6.2.1.

First consider the renormalisation scale arising from the cancellation of UV divergences. Here

the additional scale originates from the renormalisation process in the subtraction of infinities

via the counter-terms, with the exact scale at which this subtraction is performed translating

into a scale dependence for the renormalised quantity. The relevant quantity at some arbitrary

scale is related to its value at the renormalisation scale via a renormalisation group equation

β function; which, as a solution to the associated differential equations, resums any potential

logarithms of the scales considered. For the UV case we absorb the renormalisation scale into the

running coupling, αs(µR), and obtain the renormalisation group equations defining this running

given by the β functions.

Next we describe the factorisation scale in more detail; as outlined previously, this arises as

a result of IR divergences and leads the PDFs to obtain a factorisation scale dependence. This

is where the parton model breaks down, failing to account for initial state radiation giving the

“partons” transverse momentum and corresponding collinear divergences, it is replaced by the

13Our formalism applies exclusively to final states consisting of non-QCD interacting particles and so there are
no final state QCD divergences to deal with.

Thomas Cridge 141



Chapter 5. Differential Spectra and Resummation 5.5. Scales

“QCD Improved Parton Model” with parton splittings and divergences taken into account [203].

For example, following the argument in [210] we may consider the cross-section for a qq̄ → Zg

Drell-Yan process with an additional gluon radiation. The squared matrix element then contains

a divergence when the gluon emitted becomes collinear to the incoming parton, i.e. as the

transverse momentum kT of the gluon tends to 0

|M |2 ∼ 1

k2
T

+O(k0
T ). (5.58)

Consequently, the total cross-section will become infinite in the absence of either cut-offs to

the integration or regularisation, whilst the transverse momentum spectrum loses predictivity at

small values of pT due to the divergence. To recover the accuracy of the transverse momentum

spectrum, we must subtract the divergence at a given scale, which will therefore once more

introduce a scale into the problem, this is the factorisation scale µF . Now, for the UV divergences

and the renormalisation scale, we were able to write down differential equations linking the

divergences to the coupling constant via 1-loop diagrams, and so absorb the reference scale at

which the subtraction was done into a running of the coupling via the RGEs. We now seek the

equivalent absorption of the reference scale for our IR case with the factorisation scale. The

collinear divergences we have outlined depend only on the details of QCD and not on the process;

specifically they depend on the probabilities of the partons splitting and radiating other partons,

which then cause un-cancelled divergences in the collinear limit of the phase space. These are

parametrised by the universal Altarelli-Parisi splitting functions Pi←j(x), which can be found

in any QCD textbook and which we list here only at leading order [211]:

Pg←q(x) = CF

[
1 + (1− x)2

x

]
, Pq←q(x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
,

Pq←g(x) =
1

2

[
x2 + (1− x)2

]
, Pg←g(x) = 2CA

[
x

[1− x]+
+

1− x
x

+ x(1− x)

]
+
β0

2
δ(1− x).

(5.59)

The precise details of these splitting functions are unimportant for now; for reference however

here CA, CF are different values of the quadratic Casimir of the SU(3)c QCD group for the

adjoint (gluon) and fundamental (quark) representations, and β0 is the leading order beta func-

tion, these are given later in Appendix B.1, whilst x is the momentum fraction of the partons.

Meanwhile, the “plus” prescription [. . . ]+ removes divergences in the terms at x = 1:∫ 1

0

f(z)

[1− z]+
dz =

∫ 1

0

f(z)− f(1)

1− z dz. (5.60)

We may then schematically write equation 5.61, assuming only one allowed splitting (the

case with multiple splittings linking differential equations is more complicated but does not

alter the physics of the divergences we discuss here). This will lead to the advertised logarith-

mic divergence via ratios of scales upon integration of the gluon transverse momentum as in

equation 5.62:

Thomas Cridge 142



Chapter 5. Differential Spectra and Resummation 5.5. Scales

dσ ∼ αs
π

dk2
T

k2
T

dxPi←j , (5.61)

σ ∼
∑
j

αs
π

log
(Q2

λ2

)
Pi←j , (5.62)

where Q2 is a physical scale, such as that of the hard scattering, whilst λ is an IR cut-off to

regulate the collinear divergence which occurs as kT → 0.

Now we seek to absorb these divergences into the parton densities by solving the (coupled)

differential equations. This will therefore violate the typical “Bjorken scaling” energy indepen-

dence of PDFs which arises at leading order, producing scaling violations whereby the parton

densities now vary with energy scale; we therefore follow the same procedure as absorbing the

UV divergences into the gauge coupling running by requiring independence of the IR cut-off λ.

We take our bare PDFs f(x) which are those from the parton model and observe Bjorken scaling

and absorb the collinear divergences from the parton splittings into them at a given factorisation

scale µF . As a result the new renormalised PDFs obtain a factorisation scale dependence due

to this subtraction point, the new renormalised PDFs are derived in [17] and can be shown at

next-to-leading order to be:

f(x, µ2
F ) = f(x) +

αs
π

∫ 1

x

dy

y
f(y)

[
P (x/y) log

(µ2
F

λ2

)
+ C(x/y)

]
. (5.63)

P (x/y) are the QCD splitting functions given previously in equation 5.59 and parametrise how

QCD interactions can cause one parton to transform into another (thereby “mixing” the PDFs

beyond leading order), where y is the momentum fraction of the initial parton before splitting

to give momentum fraction x. Meanwhile, C(x/y) is a finite term added which incorporates how

the separation of scales between the low scale non-perturbative hadronic behaviour and the high

scale partonic collision is achieved. However, again this has the parton distribution functions

dependent on a non-perturbative scale λ - we wish to remove this dependence on the scale and

solve the differential equations in order to derive RGEs for the PDFs. Evaluating equation 5.63

at µF = λ reveals the bare PDFs are just those evaluated at the non-perturbative scale λ as

expected; f(x, λ2) = f(x). Therefore if we require the overall renormalised PDFs f(x, µ2
F ) are

independent of this IR cut-off then we obtain14

∂

∂ log λ2
[f(x, µ2

F )] =
∂f(x, λ2)

∂ log λ2
− αs

π

∫ 1

x

dy

y
f(y, λ2)P (x/y) = 0 (5.64)

Rewriting this and writing λ as µ so as to give the PDFs the usual dependence on the energy

scale µ at which they are evaluated implies that

∂f(x, µ2)

∂ logµ2
=
αs
π

∫ 1

x

dy

y
f(y, µ2)P (x/y) (5.65)

14Here we have neglected the term of O(α2
s) arising from the partial derivative acting directly on the f(y, λ2)

inside the integral, this is order α2
s as the other term tells us ∂f(x,λ2)

∂ log λ2 ∼ αs and there is also the αs prefactor.
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This process thereby absorbs the collinear divergences with λ into a scale dependence of the

PDFs. This expression is the general form of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) equations [211–214], which in actuality are a set of coupled integro-differential equa-

tions due to the nuances of quarks and gluons each splitting into each other. Again we encourage

the reader to refer to [17] or [210] for further details. These DGLAP equations are the analogues

of the RGEs of the coupling constants, and allow the PDFs to be run between different scales

(in the process resumming logarithms of ratios of these scales) once the PDFs have been exper-

imentally extracted at one scale. Different PDF extraction techniques exist, assuming different

functional forms, scales, schemes, techniques and methodologies for the f(x, λ2); examples are

the MMHT [215], NNPDF [216] and CTEQ [217] extracted PDF sets.

We have seen how these renormalisation and factorisation scales arise out of considerations

of divergences in perturbation theory; we have to evaluate the PDFs at a certain factorisation

scale and the gauge coupling at a certain renormalisation scale but we expect the effects of

these choices to drop out of the overall all-order, formal predictions. Therefore logarithms

of these scales will appear in different contributions and at different orders (as we observed)

but their effects should cancel out across the summation across all possible contributions and

all-orders to make the overall sum renormalisation scale, factorisation scale (and resummation

scale) independent. Computing cross-sections and other observables to all orders is however

not possible practically; many of the most precise determinations are known only up to NNLO.

There are therefore missing higher order corrections and consequently the cancellation of the

scale dependence is spoiled, leaving residual scale dependence in the predictions. As we include

higher order contributions we expect more of the scale dependences to cancel out, as is verified

in all processes currently known for phenomenological applications. This scale dependence

therefore introduces a frustrating and somewhat intractable theoretical error which can only

be indisputably reduced by incorporating higher orders. There are clearly bad scale choices,

scales far from the physical scales of the problem considered will result in large logarithms and

so larger higher order corrections would then be expected in such perturbative series; however

provided the order of the physical scales is chosen, the size of the logarithms is minimised and

little more can be said for the exact value. Nonetheless, as the choices of scales are arbitrary

and anthropogenic, we can attempt to exploit our freedom to minimise the dependences on

these scales and there are varying approaches about how best to do this [218], which we shall

not elucidate here. Furthermore, the scale dependence of predictions may be exploited, with its

general reduction order by order indicating the relevant perturbative series are indeed converging.

The scale variation may therefore be utilised to estimate the magnitude of the effects of higher

order corrections.

Thomas Cridge 144



Chapter 5. Differential Spectra and Resummation 5.6. Transverse Momentum Resummation

5.6 Transverse Momentum Resummation

Large logarithmic terms, such as those observed in the previous section, in general appear

in individual contributions in multi-scale physics problems in quantum field theory. For our

particular applications we are considering soft and collinear divergences arising in transverse

momentum spectra at low qT
15 and their resummation. First we begin by identifying the in-

tricacies associated with this specific application. Given we revealed the KLN theorem states

that soft and collinear logarithmic divergences arising individually in real emission and virtual

contributions should cancel in observables when summed over all possible initial and final states,

the question quickly arises as to why resummation is necessary for certain differential spectra

and other measurements. The resolution is that whilst logarithmic divergences cancel upon in-

tegration, they leave logarithmic enhancements in some cases where there may be restrictions on

one or more of the phase space integrals which therefore prevents complete cancellation of these

logarithms. Viewed alternatively it can be said our observable is not sufficiently inclusive to

ensure the complete cancellation, rather the transverse momentum spectrum is a semi-inclusive

variable (other examples include shape variables such as the so-called “thrust” of a jet). For the

specific case of transverse momentum spectra, whilst it is clear that the integration is performed

over the entirety of the phase space for the loop integration in virtual corrections, for real emis-

sions it is less clear. In fact the requirement of conservation of transverse momentum ensures

we must incorporate a factor of δ2(qT + kT1 + kT2 + . . . ) into the integrand; this restricts the

phase space available for the real emissions, leaving the cancellation of logarithms between real

emissions and virtual corrections incomplete. As a result, at each nth order in the perturbative

expansion a term known as a “Sudakov double logarithm” [219] appears (as well as sub-leading

terms), with one power of the logarithm of square scales from each of the soft and collinear

divergences remaining for each power of αs:

αns log2n

(
Q2

q2
T

)
. (5.66)

Here Q is a hard scale in the problem. Whilst such terms are small for qT ∼ Q, ensuring in this

large qT regime the usual perturbative expansion in αs is justified, once qT � Q the logarithms

become large and the perturbative expansion breaks down completely. Therefore these terms

must be resummed and factored out of the αs expansion. In fact, given αs(mZ) = 0.1185, this

occurs once qT ∼ Q/5.

Indeed, as an aside in this discussion, the transverse momentum conservation condition

increases the complexity further, as it prevents the factorisation of each additional emission

piece into a separate factor in the way we saw in our toy calculation in equations 5.38 and

5.39 (and is detailed in [197]) as transverse momentum conservation links emitted states, the

kinematics therefore do not factorise in momentum space. This is a problem for the resummation

15From this section onwards we refer to transverse momentum (or strictly its magnitude) as qT rather than pT
as this is the standard in the theoretical formalism we apply.
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in the form we saw previously as this factorisation of kinematics was key to how the resummation

worked. Fortunately however this factorisation can be recovered by Fourier transforming from

transverse momentum qT space into impact parameter b space:

∫
d2qT exp(−ib.qT )δ(qT −

∑
i

qiT ) =
∏
i

exp(−ib.qiT ). (5.67)

So each additional emission produces an identical separate factor in impact parameter space

and we can proceed as before but with the factorisation, and subsequently the resummation

(see Chapter 6), now in b-space. The large logarithms at small qT , log(Q2/q2
T ), become large

logarithms at large b, log(Q2b2).

Returning to our main discussion, schematically we can understand why the vestiges of

the soft and collinear divergences remain in our transverse momentum spectra as follows, this

outline follows a more detailed exposition presented in [220,221] and elsewhere. First we begin

considering a general differential distribution d(X) and its cumulative distribution D(X) of some

variable of interest X:

d(X) =
dσ

dX
, D(X) =

∫ X

X0

dX ′
dσ

dX ′
(5.68)

For our application X = pT and the starting point of the integral is X0 = 0; this lower bound

is where the singularities arise and also is the Born value. For an observable to be “infrared

safe”, i.e. to have no remnant singularities, we require it to be unaffected by soft and collinear

emission of gluons. We may write our differential distribution d(X) as an integral over the other

phase space variables Ω defining the state, with g(Ω) defining the variable X in terms of the

other phase space variables:
dσ

dX
=

∫
Ω

dσ

dΩ
δ(X − g(Ω))dΩ. (5.69)

For IR safety one requires g(Ω) → 0 for soft and collinear emissions, as if g(Ω) 9 0 then it

places additional constraints on the form of X in this region in terms of the other phase space

variables, thereby constraining the phase space and preventing the complete cancellation of the

divergences. Consider the case of real emission of a single gluon, we may write the distribution of

our variable X as an integral over the energy and emission angle of the gluon, each normalised,

via the variables ω = E/Emax and t = 0.5(1− cos θ):

DR(X) =

∫ 1

0
dω

∫ 1

0
dt|M |2(ω, t)δ(X − g(w, t)). (5.70)

Here |M |2 has been integrated over the other phase space variables, such as the azimuthal angle

of the gluon emission, and includes summing and averaging over final state and initial states

degrees of freedom (colour, helicity). This makes it somewhat clearer that our conditions for IR

safety are:

g(ω, t = 0) = 0, for collinear safety, g(ω = 0, t) = 0, for soft safety. (5.71)
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We can understand this further by expanding our squared matrix element in terms of soft and

collinear poles:

|M |2(ω, t) ≡ Υ(ω, t)

ωt
= αs

[
A1

ωt
+
S1(t)

ω
+
C1(ω)

t
+ F1(ω, t)

]
. (5.72)

A1 then is the coefficient for the part of the square matrix element with soft and collinear

singularities and is given by Υ(0, 0), S1(t) is the coefficient for the soft singularity only part

and is given by Υ(0,t)−Υ(0,0)
t , C1(ω) is the coefficient of the collinear singularity only part and is

given by Υ(ω,0)−Υ(0,0)
ω , and F1(ω, t) is the finite part of the square amplitude and can be written

as Υ(ω,t)−Υ(0,t)−Υ(ω,0)−Υ(0,0)
ωt . Then all these coefficient functions are finite by definition as the

singularities are factored out. If we integrate this purely real emission process near the borders

of the phase space, the expected logarithms then arise in the cumulative distribution:

DR(X) = 1 +
αs
π

(
Ã1 log2X +B1 logX + r(X)

)
, (5.73)

The Ã1 piece comes from the A1 coefficient and this term is the leading Sudakov double logarithm

piece, the B1 comes from both the soft S1 and collinear C1 pieces separately and is the next-to-

leading logarithm contribution, and r(X) is a finite remainder piece of the distribution.

Of course, these logarithms should appear as we have only considered the real emission; if

we consider also the virtual corrections, as KLN theorem tells us we must, we obtain the overall

distribution

D(X) = DR(X) +DV (X). (5.74)

Then we expect no large logarithms of X appearing near the border of the phase space. So

we now add the virtual correction contribution to our integral to obtain equation 5.75; it has

no g(ω, t) part in the second δ function with X as virtual corrections are independent of any

radiated gluons:

D(X) = R(X) + αs

∫ 1

0
dω

∫ 1

0
dt

[
A1

ωt
+
S1(t)

ω
+
C1(ω)

t

]{
δ(X − g(ω, t))− δ(X)

}
. (5.75)

Then for this combined distribution we have IR safety, as from equations 5.71 we have the δ

function subtraction piece is 0 where the soft and collinear singularities occur and hence the

distribution has no singularities remaining. R(X) is the remaining finite piece.

If however, our setup is such that we constrain the real or virtual pieces, then the conditions

in equations 5.71 no longer hold and logarithmically divergent pieces remain as in equation 5.73

as the δ function bracket in equation 5.75 is not zero throughout the integration region. In reality

it is the real emissions that are the ones which can be constrained via the g(ω, t) functions in

cases where they do not satisfy equations 5.71.
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This is the case for transverse momentum spectra, as transverse momentum conservation

restricts the transverse momenta of emitted gluons. The low transverse momentum qT → 0

region of phase space corresponds to both the soft q → 0 and collinear cos θ → 1 regimes and so

we retain the double logarithms of the Sudakov form as logarithmic enhancements at each order

in the perturbative expansion. We must therefore re-sum these to all orders, as we demonstrated

earlier in the chapter in equation 5.57, to recover the predictivity of the perturbative expansion.

In general, when large logarithms remain, the perturbative expansion in the differential

cross-section dσ will be of the form

dσ = 1+αs(L
2+L+1)+α2

s(L
4+L3+L2+L+1)+α3

s(L
6+L5+L4+L3+L2+L+1)+. . . , (5.76)

where here we have illustrated the case where double logarithms arise as both soft and collinear

logarithms of the scales are present and L are the large logs. In the case of the transverse

momentum spectrum dσ
dq2
T

we have L = log
(
Q2

q2
T

)
where Q is some high physical scale in the

problem. This expansion in αs may be resummed in an analogous manner to demonstrated

previously, but with greater complications (more details of the resummation for our transverse

momentum application are given in Chapter 6), to produce an expression of the form:

dσ = C(αs)Σ(αs)+R(αs) = C(αs) exp
[
Lg1(αsL)+g2(αsL)+αsg3(αsL)+ . . .

]
+R(αs). (5.77)

The C(αs) represents the factorised coefficient function for the hard process and pre-multiplies

the resummed contribution, it is a process dependent perturbative expansion in αs. The R(αs)

is the remainder function, which is also a process dependent expansion in αs accounting for hard

contributions without logarithmic enhancement; it tends to zero in the resummed region but is

the dominant contribution in the region where the logs are small, i.e. large qT for our application.

Finally the function Σ(αs) is a universal process-independent function as it depends only on the

structure of QCD corrections. It is an exponential and contains the resummed contributions;

each of the pieces gn contain all orders in αsL resummed but each is suppressed by a power of

αs relative to gn−1. Consequently the exponential is now also a perturbative series in αs rather

than αsL and we recover predictivity of the perturbative expansion. The first term g1 therefore

offers the largest contributions, and including it incorporates “Leading Logarithms” (LL) in the

resummation, i.e. those of the form αnsL
2n from equation 5.76; the second term g2 resums “Next-

to-Leading Logarithms” (NLL), i.e. those of the form αnsL
2n−1 from equation 5.76; the third

term g3 resums “Next-to-Next-to Leading Logarithms” (NNLL), i.e. those of the form αnsL
2n−2

from equation 5.76; and so on. For our applications we stop at NNLL, which represents the

highest precision currently calculated in most processes. The gi functions will be given later in

equations B.1, B.2 and B.3 in Appendix B.1.

There is in fact a subtlety here: whilst if you expand at fixed order and integrate unresolved

radiation you obtain the double logarithms and powers αnsL
m for 0 ≤ m ≤ 2n in the expansion

as in equation 5.76, when you exponentiate and resum, the gn contain reduced powers of the
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logarithms relative to the αs as any powers n + 2 ≤ m ≤ 2n vanish leaving αnsL
m only for

0 ≤ m ≤ n + 1, so that the g1 is of order αnsL
n+1, g2 of order αnsL

n and so on as given in

equation 5.7716. This is detailed further in [222] and originally in [223]. Each additional set of

sub-leading logarithms included in the resummation must also be accompanied by an increase in

the precision in the finite pieces in order to increase the precision of the prediction; in fact these

must be matched to ensure there is no double counting and no inclusion of resummed effects in

regions of parameter space where they may cause unphysical contributions. This is discussed

briefly in Chapter 5.7. The first term C(αs)Σ(αs) of equation 5.77 in the formalism we apply in

reSolve, is called the “resummed part”, whilst R(αs) is called the “finite part”. Finally, in order

to give an intuitive picture, we mention in passing now that the appearance of an exponential

in resummed formulae can be intuitively appreciated by considering the fact it sums an infinite

series of Poisson statistics governed emissions, the Sudakov factor then represents a no emission

probability.

This section, and the chapter up to this point, has been focused on providing a background

for the need for transverse momentum resummation and how it may be performed. Further

information is available in a variety of sources including the TASI lectures [204] and the review

[224], as well as the original papers which provided the foundations of this work, listed in

Chapter 6. The background thus far provided will be built upon and crystallised in Chapter 6,

first however we consider the transverse momentum spectrum as a whole.

16This apparent difference in orders in the expansion of dσ and the exponential is due to the perturbative
dynamics and kinematics factorisation. It can be seen that the exponential is able to reproduce all the leading
logarithm αnsL

2n terms by expanding with the functional form of g1 given later in Appendix B.1 equation B.1,
we can set gi = 0 for i > 1 as we only need to show it can produce the highest powers of the logarithm. Consider:
exp[L[1 + log(1− αsL)/αsL]] which is of the form of exp(g1L), expand first the logarithm in powers of αsL and
then the exponential: exp[L+ (−αsL− (αsL)2/2− (αsL)3/3− . . . )/αs] = exp(L−L−αsL2/2−α2

sL
3/3− . . . ) =

exp(−αsL2/2−α2
sL

3/3−. . . ) = (1−αsL2/2−(αsL
2/2)2/2−(αsL

2/2)3/6−. . . )×(1−α2
sL

3/3−(α2
sL

3/3)2/2−. . . ) =
1−αsL2/2−α2

sL
3/3−α2

sL
4/8−α3

sL
5/6−α3

sL
6/48− . . . ), so the first exponential expansion produces the leading

logarithm terms αnsL
2n as required.
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5.7 Transverse Momentum Spectra

The primary aim of our work is the precise prediction of transverse momentum spectra for

processes including unresolved radiation. As detailed, this calculation is greatly complicated by

the remaining soft and collinear logarithmic enhancements at small qT requiring resummation.

As a result we need to consider the low qT � Q and high qT ∼ Q regions separately, where Q

is some natural mass scale in the hard collision, such as the mass of the particle produced or

invariant mass of the system of particles. As a result, it is common to decompose the differential

qT spectrum for the partonic cross-section into two regions to make their different behaviour

explicit:
dσ̂

dq2
T

=
dσ̂res

dq2
T

+
dσ̂fin

dq2
T

. (5.78)

Here the “res” part is the resummed contribution dominant at low qT and is where the majority

of the events are produced as the probability of emitting a soft or collinear gluon increases dra-

matically as the strength of the αs coupling increases at low energy; this part can be determined

to a given logarithmic accuracy in the resummed expansion in αs. The “fin” part is the usual

hard scattering finite contribution, evaluated via truncating the perturbative series in αs in the

standard way at some order, and is dominant at large qT . Both components are needed to

accurately describe the spectrum over the whole region of qT and their division is arbitrary from

a physics perspective, made purely to simplify the theoretical calculation. In order to produce

a theoretical prediction at given accuracy, we may truncate each piece at consistent accuracy17:

[ dσ̂
dq2
T

]
f.o.

=
[dσ̂res

dq2
T

]
l.a.

+
[dσ̂fin

dq2
T

]
f.o.
, (5.79)

where “f.o.” indicates truncation at a fixed order in the usual perturbative expansion, whilst

“l.a.” indicates truncation of the resummed perturbative expansion at given logarithmic accu-

racy - i.e. leading logarithm (LL), next-to-leading logarithm (NLL), and higher orders. In fact,

we define the fixed order truncation of the finite part of the differential transverse momentum

spectrum as the subtraction of the resummed part at fixed order from the overall spectrum, with

the resummed part at fixed order being defined as the fixed order truncation of the logarithmic

accuracy truncated expansion:

[dσ̂fin

dq2
T

]
f.o.

=
[ dσ̂
dq2
T

]
f.o.
−
[[dσ̂res

dq2
T

]
l.a.

]
f.o

. (5.80)

Any pieces divergent at small qT are therefore incorporated into the resummed part and

so the finite part makes no contribution in the limit qT → 0; in fact this is imposed order-

by-order in perturbation theory. This IR subtraction therefore defines what is meant by the

17The notation
[
dσ̂/dq2

T

]
means we truncate the perturbative series for dσ̂/dq2

T at a given order in αs and any

subscripts - “l.a.” or “f.o.” define how this truncation is done, i.e. to given logarithmic accuracy or given fixed
order accuracy.
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finite piece. Meanwhile, the finite piece should contain all the contributions at large qT and

so any contributions in this large qT limit for the resummed piece are unphysical and must be

suppressed. In order to achieve this our formalism, which is described in much further detail

in Chapter 6 and in [222], imposes a unitarity constraint to constrain the integral over qT of

the resummed part of the differential transverse momentum spectrum at a given logarithmic

accuracy to be equal to the corresponding integral truncated at given fixed order:∫ ∞
0

dq2
T

[dσ̂res

dq2
T

]
l.a.

=

∫ ∞
0

dq2
T

[dσ̂res

dq2
T

]
f.o.
. (5.81)

This ensures that the integral over the finite and resummed pieces truncated together correctly

gives the overall total cross-section evaluated at the same order via standard truncation as

indicated in equation 5.82, and particularly constrains the unphysical contributions of the qT

resummed pieces at intermediate qT ;∫ ∞
0

dq2
T

[ dσ̂
dq2
T

]
f.o.

=

∫ ∞
0

dq2
T

[dσ̂res

dq2
T

]
l.a.

+

∫ ∞
0

dq2
T

[dσ̂fin

dqT

]
f.o.

= [σ̂tot]f.o. (5.82)

This means of putting together the contributions important at either end of the qT spectrum

in a consistent manner is known as “matching”. The method described is just one of many that

can be used and has the benefit of not having an arbitrary switch-over point between the two

regimes, instead interpolating between the two smoothly. Specifically the method described is

an “additive matching”, which is in some sense more natural - there are also “multiplicative

matching” methods which are less well motivated but provide greater numerical stability [225,

226]. In any case, our reSolve program in its current, early implementations only determines the

resummed part of the spectrum, and so is only relevant at the low qT end, which nonetheless is

where the majority of the total cross-section is produced. From here on we will therefore drop any

mention of the finite piece of the differential cross-section, focusing our efforts on the arguably

more difficult part of the calculation, and typically the part with the larger contributions, the

low qT resummed part. The need for resummation in this low qT region can clearly be seen in

Figure 5.3, where the leading order contribution without resummation diverges as expected as

qT → 0 whilst the resummation effects cause a Sudakov suppression (essentially by a no-emission

probability) at this low transverse momentum end, removing this unphysical divergence.
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Figure 5.3: The leading order differential transverse momentum spectrum for diphoton production at
ATLAS, with the total leading order, finite part leading order, and total leading order + NLL resummation
spectra shown. The effects of resummation are clear, removing the unphysical divergence in the theoretical
predictions as qT → 0 seen in the total leading order spectrum. This figure is from the paper [5].
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Chapter 6

reSolve Overview

In this chapter we move on to our specific area of research, providing context for different

approaches to transverse momentum (qT ) resummation before elaborating on the details of the

analytic b-space resummation formalism we apply and its implementation within the reSolve

program. The diphoton and Drell-Yan production channels included in the current version of

reSolve are then introduced and a brief catalogue of the advantages of our reSolve program

implementation of the qT resummation formalism ends the chapter. Details of the use, validation

and results of the reSolve program are omitted at this stage, with this left to Chapter 7. The

research described in this chapter and the next is based upon that reported in our paper [2].

6.1 Approaches to qT resummation

As described in Chapter 5, whilst the transverse momentum spectrum for an arbitrary process

at colliders is in principle completely derivable in perturbative QCD, at small qT logarithmic

enhancements ruin the perturbativity of the series expansion in the strong coupling αs, offering

large corrections which must first be resummed to all orders before the perturbative expansion

can be re-established. This fact has been known for a long time, since at least the 1970s,

and several different methods to resum these troubling logarithmic contributions have been

developed. In general these can be classified into two distinct types, numerical and analytic

resummations. We begin outlining the possibilities available in numerical resummations, before

moving onto the analytic resummations of which the formalism in reSolve is an example.

Numerical resummations are performed by parton shower programs - these aim to fully

exclusively describe the soft and collinear radiation produced in a hard scattering event, rather

than simply integrate over it in the way analytic resummations do. They exploit the factorisable

and universal nature of QCD splittings in a semi-classical approximation, determining particle

splitting probabilities via the Sudakov no-emission probability factors. The basic process of this

is to start with the momentum of a hard scattered particle and then randomly choose momenta

of emissions, with probabilities guided by the splitting functions, in a Markov Chain Monte

Carlo process. Each successive branching particle has the process repeated iteratively until a

whole shower of particles, the “parton shower” is produced, with the branching only stopping

once a numerical cut-off (usually 1 GeV) of order ΛQCD is reached when hadronisation effects

take over. The result is a cascade down in virtuality (Q2 = p2 −m2) and momentum fraction

space. A full description of the algorithmic procedure adopted for parton shower programs is
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presented in [17].

Many of these parton shower programs are incorporated into larger “event generator” pro-

grams, which simulate the whole hard scattering process from the hard collision matrix element

generation through the showering of each outgoing hard particle and finally to the hadronisa-

tion. Well-known examples of such programs include PYTHIA [136], Herwig++ [137, 138] and

Sherpa [140]. Meanwhile programs like MC@NLO [141, 227] and POWHEG(-BOX) [228, 229] aim

to merge parton showers with NLO QCD corrections from matrix generators using these pro-

grams. For further details of the programs’ individual capabilities we refer the user to their

copious manuals. This start-to-end process involves an array of complications; foremost among

them is the “matching” and “merging” of the hard events onto the parton showers. This is done

in order to avoid possible double counting as well as dead kinematical regions not populated

by events and radiation; this is extensively reviewed in the literature and so we do not describe

it here [227, 230–232]. An advantage of such numerical resummations is that they allow the

production of explicit “events” with all final state particles exclusively known. This matches

the actual events observed at colliders more naturally than the semi-inclusive states needed for

analytical resummations, with the large multiplicities of produced events simply intractable for

analytic analysis. They also offer the possibility to describe the whole process from hard scatter

through to hadronisation including multiple particle interactions and interactions with beam

remnants through the overall event generator package. They do however have significant dis-

advantages relative to analytical resummations; primary amongst these is that they are largely

leading order (although this has been extended to NLO via POWHEG(-BOX) and MC@NLO with

the latter using Herwig, whilst MINLO [233] and GENEVA [234] are extending even to NNLO for

some simpler processes) meaning leading logarithm resummation is all that is typically included.

This occurs as the ability to match parton showers onto hard scatter matrix element generators

beyond leading order is far less clear, and so they offer reduced precision relative to analytic

resummations. This element is a crucial disadvantage in the context of LHC precision studies.

In any case, numerical resummations are tangential to our research, which has been in

analytic resummations in the context of transverse momentum spectra. Before we proceed to

the b-space resummation formalism we employ, we first mention that Soft-Collinear Effective

field Theory (SCET) is an alternative analytic formalism for developing formulae for transverse

momentum resummation. This has become more popular in recent years and is introduced

in [235]. The basic idea is to use an effective field theory to separate the high scale (hard

scattering process) and low scale (non-perturbative) behaviour. By expanding in the ratio of

the scales, the high scale is integrated out and absorbed into the Wilson coefficients of the

effective theory at the low scale. By using an effective Lagrangian, rather than perturbative

QCD Feynman diagrammatic methods, it can offer a more simple means of maintaining gauge

invariance and so may simplify computations otherwise involving cancellations between different

diagrams, such as between real emissions and virtual contributions. SCET has been applied

to many different resummation problems, including transverse momentum resummation; we

refer the reader to references for its application to Drell-Yan [236, 237]. Nonetheless, it has
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its disadvantages, connecting less easily with standard Feynman diagrammatic approaches of

perturbative QCD (pQCD) expansions.

In our work we utilise the impact parameter b-space analytic transverse momentum resum-

mation formalism which has been developed over a number of years, starting in the 1980s with

the development of leading logarithmic resummations [238–240]. This was soon extended to be-

yond leading logarithm resummation in [241] and further developments summing soft emissions

in b-space (typically in the context of e+e− → A + B + X) followed [242–244]. The seminal

work of the reference [223] then illustrated LL and NLL resummation in the context of Drell-Yan

production and considered the connections between low and high transverse momentum regions,

setting the foundations for the formalism. Other developments occurring alongside this work

are detailed in [245, 246]. Following this early work, the baton was picked up by the group of

Catani and collaborators in the work [247], who have led the modern developments in this area.

More recently this has borne fruit with the development of NNLL resummation [8,222,248,249]

for processes such as Drell-Yan, diphoton and Higgs production. At this stage, the formulae

for beyond leading logarithm resummations were written down independently for each process,

with collinear factors which were process dependent, and it was simply hoped that this could

be developed into a process independent structure. However, it was soon shown [250] that this

is not the case and rather a single process dependent hard factor HF is required to absorb this

process dependence (see equation 6.28). This hard factor is purely virtual and so has the same

kinematics as the Born, depending upon it in a straightforward manner. As a result, with this

hard factor the resummation formalism is made universal, with process independent Sudakovs

and collinear factors; this is summarised in the paper [251] and will become clear in our overview

of this area later in the chapter. This universality will be key to our development of the reSolve

program, allowing transverse momentum resummation to be added to any of a given class of

processes in an independent manner. As the b-space formalism we apply has developed gradu-

ally, there is no over-arching reference - the closest to this are [222] [251], which we will follow

for several elements of our description and explanation in Chapter 6.2. We hope our description

provides the reader with sufficient clarity to understand this complex area.

We apply this formalism [223, 238–240, 242, 244, 247–249, 251] for transverse momentum re-

summation to the general class of processes producing colourless measured final states and

arbitrary unresolved radiation, focusing our initial efforts on the important diphoton and Drell-

Yan channels. reSolve nonetheless can be used to add transverse momentum resummation to

any such process in principle. There are alternative programs available, including public codes

such as ResBos [252, 253]. ResBos is able to perform transverse momentum resummation for

Drell-Yan, diphoton and Higgs processes producing differential spectra in qT as well as in in-

variant mass and rapidity; it is therefore similar to reSolve in this regard. However it is less

modularised to allow adaptation to new processes in the way reSolve is and is not parallelis-

able in the same way. From a theoretical perspective there are also differences in the theoretical

approach with the matching done more straightforwardly, switching from low qT to high qT at

qT ∼ Q rather than using our unitarity constraint of equation 5.81. There are also the largely
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private programs of the 2gRes [5, 6], HRes [254, 255], DYRes [7, 8] family, of which there is an

initial DYRes version publicly available. These have acted as a guide in our work and enabled

verification of our reSolve program, having themselves been used in several experimental works.

We hope our work improves on these, being transparently documented, customisable and more

straightforwardly implemented via a modularised structure designed to allow general applica-

tions, whilst also being completely publicly available. reSolve is a completely new program,

completely rewritten and developed anew with several advantages over other codes available,

whether public or private, which we elucidate throughout our exposition in this chapter and the

next and which we summarise in Chapter 6.5. This ensures the reSolve program is unique in

its area and we hope it will be of great use for future precision studies.

6.2 Theoretical Formalism

We consider hadron-hadron collisions producing only a colourless detected final state F (by

which we mean F is made up only of purely colourless particles), accompanied by arbitrary

unresolved radiation, X, of the following form, where Ω indicates further final state variables:

h(p1) + h(p2)→ F (Q2, q2
T , y,Ω) +X. (6.1)

Here
√
s = (p1 + p2) ≈ 2p1.p2 is the centre of mass energy of the colliding hadrons and this

is pre-multiplied by x1 and x2, the momentum fractions of the partons extracted from the

PDFs, to obtain the centre of mass energy in the partonic collision ŝ = x1x2s. This therefore

limits the class of processes for which this is applicable to ones with electroweak gauge bosons,

Higgses and leptons in the final state; this nonetheless includes many production channels of

great importance to LHC phenomenology, including Drell-Yan, diphoton and Higgs production.

There is theoretical work being undertaken to extend this formalism to coloured states [256];

this is more difficult due to the fact the final state then carries colour charge and can interact

with initial state radiation and provide additional soft and collinear radiation. The final state

F may be made up of several particles, its invariant mass Q2 is then (as given in equation 5.3)

the square sum of the 4-momenta {q1, q2, . . . , qn} of the particles in F , Q2 = (q1 + q2 + . . . qn)2.

The invariant mass of the system F is not equal to the partonic centre of mass energy in

general as the unresolved collinear emissions in X may carry away energy and momentum. The

remaining variables to describe the final state system as a whole are its transverse momentum,

qT and rapidity, y. In addition, further variables Ω are required to fully define the final state

configuration in the case it is made up of more than one particle, for example for diphoton

production or Drell-Yan production the polar (θ∗) and azimuthal (φ∗) angles of one of the

two particles in the centre of mass frame are required. Whilst our formalism is targeted at

determining the small qT part of the transverse momentum spectrum, it is fully differential in

these final state variables and so may also determine the invariant mass, rapidity and other

differential spectra in the same calculation. In general, for most of our purposes we consider

the fully differential hadronic cross-section given in equation 6.2; however spectra in further
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arbitrary variables such as transverse mass or minimum and maximum transverse momenta of

individual components of the final state F may also be determined, and indeed are included in

reSolve.
dσF

d2qTdQ
2dydΩ

(p1, p2; qT , Q
2, y,Ω). (6.2)

As detailed in Chapter 5.7, we divide the differential cross-section into the resummed contri-

bution important at small qT and the finite contribution important for large qT . The resummed

contribution contains the logarithmic enhancements and all contributions finite in the qT → 0

limit and is the focus of our work and of the reSolve program. We neglect the remaining finite

contribution from here onwards - nonetheless it must be calculated and matched appropriately

to the resummed contribution we calculate to determine the qT spectrum across the full range.

This is not available in this first reSolve version.

We present a master formula for the whole calculation of the fully differential hadronic cross-

section in Chapter 6.2.3; for now however we discuss the key aspects one by one. Coefficients

involved in the formalism are gathered in Appendix B.1. We denote the partons extracted from

the hadrons in the conventional manner as a and b, not to be confused in the latter case with

the impact parameter b, this should however be clear from context. Ultimately, the partons

colliding in the hard process are denoted c, c̄ to reflect that they must be qq̄ or gg - this is

true as the final state system F is a made up of particles of no colour charge. These different

initiating partons result in different Sudakov form factors (see equation 6.16) but aside from

this the Sudakovs show no further, specific process dependence. We use the value of the strong

gauge coupling αs evaluated in the MS scheme at the renormalisation scale µR.

6.2.1 b-space

Our transverse momentum resummation formalism is crucially dependent upon factorisation

of both dynamics and kinematics; therefore we perform a Fourier transform from transverse mo-

mentum space to its conjugate variable, impact parameter b-space, as explained in Chapter 5.6.

We may then write our transverse momentum spectrum as follows:

dσres
F

dQ2d2qTdydΩ
(p1, p2,qT , Q

2, y,Ω) =

∫
d2b

(2π)2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
eib.qTWF (b, z1, z2, Q

2, y,Ω)

=

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2

∫ ∞
0

db
b

2π
J0(bqT )WF (b, z1, z2, Q

2, y,Ω).

(6.3)

Here z1 and z2 are the momentum fractions taken in the collinear splitting, leaving momentum

fractions x1 and x2 on the colliding partons for the hard scattering, this is clarified by Figure 6.1

later. Note that there is no integral over the momentum fractions x1 and x2 of the partons

extracted in the PDFs as this formula is fully differential1. Transforming into impact parameter

1Integrals over x1 and x2 arise for cross-sections integrated over invariant mass and rapidity as equation 5.31
illustrates.
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space converts our qT logarithms of the form log(Q2/q2
T ) to log(Q2b2) and so low transverse

momenta correspond to high impact parameters2. In the last step we have assumed that, as for

qq̄ initiated processes, there is no dependence on the azimuthal angle φb, where the 0th order

Bessel function J0 is:

J0(x) =

∫ 2π

0

dφ

2π
e±ix cosφb . (6.4)

In fact, in the case of gg initiation there is φb dependence due to the helicities giving azimuthal

correlations. In that case the integral is split into a φb independent piece involving J0(bqT ),

and a φb dependent piece involving J2(bqT ) [257]. As a result of this replacement with the

0th order Bessel function, we reduce the number of integrals to be performed from 4 to 3, i.e.

over the absolute value of the impact parameter space and the two momentum fractions in

collinear splitting z1, z2. These integrals are done via an inverse Fourier transform for the b

integral, and via a double inverse Mellin transform for z1 and z2 (as detailed in the next section

and in Appendix B.2). We therefore evaluate the function WF in impact parameter space

and must inverse Fourier transform back to transverse momentum space at the conclusion of

the calculation, this itself offers complications for the numerical use of the formalism as the

integrand is a rapidly oscillating function. This problem is overcome in reSolve by using a

specially designed external integration package, intde, using the “double exponential” formula

of [258].

The b logarithms however contain divergences: at low b the logarithms become divergent as

log(Q2b2)→ −∞ as b→ 0, which corresponds to large values of the transverse momentum, where

our formulae are not relevant in any case. Therefore we seek to simply cut off the contributions at

low b, to do so we shift the argument of the logarithms by 1 so that log(Q2b2)→ log(1 +Q2b2),

in this case at high b we recover the standard logarithm form as Q2b2 � 1, whilst at low b,

log(1 + Q2b2) → 0 cutting off these contributions and therefore leaving the finite piece only

contributing to the differential cross-section at large qT . This therefore has the added benefit of

ensuring the unitarity constraints of equations 5.81 and 5.82 are implemented by removing the

resummed contributions at large qT where they would be unphysical.

Whilst discussing these logarithms, it is convenient to introduce the resummation scale, µS ,

the third of our three scales after the factorisation scale (present in the PDFs) and the renormal-

isation scale (present in αs). As logarithms can always be shifted by a finite piece by rescaling

their arguments, the division of logarithmic and finite pieces includes some arbitrariness. The

resummation scale is therefore introduced to parametrise this flexibility and enable a quantita-

tive measure of the corresponding theoretical error induced, this can be done through standard

scale variation assessments. We therefore rescale the logarithms as follows and define our large

logarithms L = log(
µ2
Sb

2

b20
); here b0 = 2e−γE and γE = 0.5772... is the Euler constant:

2The way to intuitively see this is to consider the two partons incoming with zero transverse momentum, for a
final state with large transverse momentum the outgoing particles are deflected more from those of the incoming
beams corresponding to a smaller impact parameter.
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log(Q2b2) = log
(µ2

Sb
2

b20

)
+ log

(Q2b20
µ2
S

)
= L+ log

(Q2b20
µ2
S

)
, (6.5)

as a result, we have the overall b logarithm

blog = log

[
1 +

µ2
Sb

2

b0
2

]
. (6.6)

The resummation, factorisation and renormalisation scales must all be set to the order of the

hard scale in the problemQ as otherwise we reintroduce further large logarithms, these additional

unnecessarily large logarithms would then appear at each order in the expansion and so reduce

the accuracy of our theoretical prediction made by truncating the series at given order (in both

logarithmic accuracy and finite order).

As well as singularities at low b, there are also those present at high b, corresponding to

low qT . These singularities thus arise in the region that our transverse momentum formalism

is targeted at and cannot be simply cut off. The singularities arise due to the presence of the

Landau pole in QCD; specifically singularities arise as λ = (1/π)β0αs(µ
2
S) log(µ2

Sb
2/b20) → 1 3,

which corresponds to b → bL = (b/µS) exp[π/(2β0αs(µ
2
R))] ∼ 1/ΛQCD, here β0 is the lowest

order β function coefficient, given later in equation B.7. These divergences are a sign of non-

perturbative effects becoming important in these regions corresponding to small qT ∼ ΛQCD

and must not be ignored as they are of physical relevance and will limit the validity of our

calculation. This kind of singularity is a common feature of all-order resummation formulae of

soft gluon contributions and has to be regularised. In the current reSolve implementation, we

follow the standard prescription of reference [259]. We freeze the integration over b below a fixed

upper limit via the substitution

b→ b? =
b√

1 + b2/b2lim

, (6.7)

blim =
b′0√
Q2

exp(1/(2αsβ0)), and b′0 = 2 exp(−γE)

√
Q2

µS
. (6.8)

By replacing b with b?, at low b we have b? → b as required, whilst at very high b then b? →
blim, cutting off the integration before the very high b singularities. We then reintroduce the

phenomenological effects at low qT via non-perturbative functions which smear out the low qT

region:
SNP = exp(−gcNPb

2), (6.9)

these smearing functions pre-multiply the b-space integrand before the inverse Fourier transform

is performed and the constants gcNP parametrise the phenomenological implications of the non-

perturbative effects which we cannot calculate. Their values are expected to depend upon if

3These singularities arise in the ḡ(i) functions given in Appendix B.1 in equations B.1, B.2 and B.3, whilst λ
is given in equation B.4.
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the process is gg or qq̄ initiated (c = g, q respectively). The default values in reSolve are

0 GeV2; nonetheless these can be altered in the reSolve input file, and provide an additional

source of theoretical error. Generically one might expect gqNP = CF g1 and ggNP = CAg2, however

many different values for these parameters are used in the literature. In the validation plots

for reSolve throughout Chapter 7 we have used values ggNP = 6, gqNP = 8
3 ; these are chosen so

the quark initiated gqNP matches that used in the reference [5] (where g1 = 2 GeV2 was seen to

provide the best phenomenological match to diphoton data), the gluon-initiated ggNP was then

set by taking arbitrarily that g1 = g2 which sets ggNP = gqNP × CA/CF = 9/4× gqNP = 6. There

are several other ranges of these gcNP parameters used and indeed different functional forms of

the parametrisation in equation 6.9 in the literature, these are outlined in [8, 222,260].

All of these complications, and more, are contained within the b-space, double momentum

fraction space function WF (b, z1, z2, Q
2, y,Ω), whose structure we now examine across the next

two sections.

6.2.2 Mellin space

The WF (b, z1, z2, Q
2, y,Ω) factor contains the standard “multiplicative” convolutions of the

partonic cross-section with the PDFs, however with a great deal of further structure associated

with the soft and collinear emissions. By transforming from double momentum fraction space

(one integral per ingoing parton) to double Mellin space we convert these convolutions into

simple products; this is outlined in Appendix B.2 and follows the work in [222,261]. The double

Mellin transform is:

WF
N1,N2

(b, . . .) =

∫ 1

0
dz1z

N1−1
1

∫ 1

0
dz2z

N2−1
2 WF (b , . . .), (6.10)

z1, z2 are the momentum fractions left after the collinear emissions of the ingoing partons. The

precise form of the WF
N1,N2

function is described in great detail in the next chapter.

After evaluating theWF
N1,N2

(b, . . .) Mellin space functions, these must be transformed back to

momentum fraction space before the inverse Fourier transform from b-space to qT is undertaken.

As described in Appendix B.2, the inverse of a Mellin transform is an integral over a complex

contour in the Mellin space parallel to the imaginary axis (but shifted to avoid poles). In reSolve

we instead integrate by summing contributions along a contour at 45◦ to the imaginary axis in

the shape of a ‘V ’ rotated anticlockwise; this enhances the convergence without affecting the

result to the precision to which we calculate. This prescription is also used in the 2gRes family of

programs. Evaluating the WF
N1,N2

(b, . . .) at each point along this contour adds a further obstacle

to the implementation as it requires knowledge of the PDFs in Mellin space4. PDF collaborations

provide grids of PDF values in momentum fraction space with interpolation between points via

the DGLAP evolution equations and the PDFs’ functional forms. We determine the PDFs along

the contour by fitting the PDFs to an analytic form whose Mellin moments are known. This fit

4Any b dependence of the PDFs arises only from the αs evolution, as the PDFs have no qT dependence, and
therefore is accounted for by the running of αs.
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is done “once and for all” at the start of the reSolve program and can be provided to the code

by referencing it in the input file. To perform the fit we use the external minuit package [262]

for minimisation. Further details are supplied in Chapter 7.1.4.

6.2.3 Master Formula

In order to definitively explain the formalism applied in reSolve, it is best to give an overall

intuitive picture, therefore we start with such a schematic in Figure 6.1, providing also the overall

associated “master formula” in equation 6.11. We then spend this section describing how this

arises and how it performs the required exponentiation of the soft and collinear logarithms, we

follow closely the reference [222] as well as our own reSolve paper [2]. We collect many of the

basis function expressions involved in Appendix B.1, so as not to obscure the explanation here.

Figure 6.1: Pictorial version of equation 6.11. A parton a of momentum fraction x1/z1 is extracted
from hadron h1 in the upper leg with an associated PDF factor, it then splits further to leave momentum
fraction x1 via a collinear partonic sub-process a→ c. A specular process happens at the lower leg and so
the momenta that enter the hard process H are x1p1 and x2p2, where p1,2 are the momenta of the initial
hadrons. Soft partons can be emitted anywhere (except inside H itself) and contribute to the Sudakov
form factor Sc. This figure is adapted from [250].

Our master formula [251] for the fully differential cross-section dσ at low qT for the h1h2 →
F +X process is then:

dσFres(p1, p2, Q
2,qT , y,Ω)

dQ2d2qTdydΩ
=

∫
d2b

(2π)2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
WF (b, z1, z2, . . .) ≡

Q2

s

[
dσ̂F,LO

cc̄

]
×
∫

d2b

(2π)2
eib·qTSc(Q

2, b20/b
2)

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2

[
HFC1C2

]
fa1/h1

(x1/z1, b
2
0/b

2)fa2/h2
(x2/z2, b

2
0/b

2).

(6.11)

The master equation contains only the resummed piece, not the finite piece onto which it must

be matched, and is therefore valid up to corrections of order O(
q2
T
Q2 ), i.e. it is valid at low qT .
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The aim of the resummation formalism is to take the N Mellin moments of the function WF

and write it as an exponential piece containing all the pieces logarithmically divergent as b→∞,

and a separate multiplicative finite piece containing the pieces with no explicit b dependence.

As described in the last section, this introduces a resummation scale (µS) dependence via the

flexibility in the separation of these pieces. We have one Mellin transform for each final leg and

so we have N1 and N2 Mellin moments:

WF
N1N2

(b,Q2;αs(µ
2
R), µ2

R, µ
2
F ) = HFN1N2

(Q2, αs(µ
2
R);Q2/µ2

R, Q
2/µ2

F , Q
2/µ2

S)

× exp[GN1N2(αs(µ
2
R), L;Q2/µ2

R, Q
2/µ2

S)].
(6.12)

This form is identical to the first term, representing the resummed piece, of equation 5.77 with

C(αs) now H and Σ(αs) now exp(G). We may then expand the exponent G as a perturbative

series in αs - only powers up to αnsL
n+1 are required as remaining powers are made up in

expanding the exponential. The general form of the expression for GN is

GN1N2(αs(µ
2
R), L;Q2/µ2

R, Q
2/µ2

S) =Lg(1)(αsL) + g
(2)
N

(
αsL;

Q2

µ2
R

,
Q2

µ2
S

)
+

∞∑
n=3

(αs
π

)n−2
g

(n)
N

(
αsL;

Q2

µ2
R

,
Q2

µ2
S

)
,

(6.13)

where the giN are perturbative functions. Meanwhile, as usual we can expand the finite HFN1N2

factor as a series in αs without issue as it contains no logarithmically divergent terms; σ
(0)
F is

the Born cross-section:

HFN1N2
(Q2, αs(µ

2
R);Q2/µ2

R,Q
2/µ2

F , Q
2/µ2

S) = σ
(0)
F (αs(µ

2
R), Q2)

[
1 +

αs
π
HF (1)
N1N2

(Q2

µ2
R

,
Q2

µ2
F

,
Q2

µ2
S

)
+
(αs
π

)2
HF (2)
N1N2

(Q2

µ2
R

,
Q2

µ2
F

,
Q2

µ2
S

)
+
∞∑
n=3

(αs
π

)n
HF (3)
N1N2

(Q2

µ2
R

,
Q2

µ2
F

,
Q2

µ2
S

)]
.

(6.14)

The important things to note at this stage are that GN1N2 had no dependence on the process

(hence no F label) or on the factorisation scale, this is due to the universal nature of soft and

collinear radiation from QCD partons. All process dependence is contained in the function

HFN1N2
which contains the hard scattering cross-section and is proportional to the Born cross-

section; therefore it contains only virtual corrections, as one might expect after the factorisation

of the real emissions into the exponential. At this stage we can also see why the hard scattering

piece (finite piece) must be included up to the same expansion order as the resummation, as

they produce the same order in the αs expansion of the whole expression.

It may then be shown that, in order to perform the all-order resummation of the transverse

momentum logarithms, then HFN1N2
becomes a product of the Born cross-section, collinear fac-

tors Cca Cc̄b, hard factor HF
c and the PDFs f ; whilst GN1N2 becomes a product of the Sudakov
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factor and exponentials from the collinear factor running and PDF running5. The explicit re-

quired forms of the functions given in these expressions are provided in the rest of this section;

as a result the WF
N1N2

moments match those listed in our master formula 6.11. This form is

crucial to allowing a universal expression for the transverse momentum resummation, which is

as process independent as possible [223,250]:

WF
N1N2

=
∑
c

σ
(0)
c,F (αs(Q

2), Q2)HF
c (αs(Q

2))Sc(Q
2, b)

×
∑
ab

Cca,N1(αs(b
2
0/b

2))Cc̄b,N2(αs(b
2
0/b

2))fa/h1,N1
(αs(b

2
0/b

2))fb/h2,N2
(αs(b

2
0/b

2)).

(6.15)

It is at this stage we can understand Figure 6.1 in more detail - the two hadrons h1, h2 are

incoming with momenta p1, p2, PDFs fa/h1
and fb/h2

extract partons a and b of momentum

fractions x1/z1 and x2/z2 from the hadrons, collinear emissions on top of the Born process

σ
(0)
c,F ensure further z1 and z2 fractions of momenta are passed on leaving x1 and x2 in each leg

before the hard scattering. These transform the parton species to cc̄ via factors Cca and Cc̄b

on each of the respective parton lines. Meanwhile, at any stage the partons may undergo soft

emissions which do not change the momentum transfer and can be factored out of the sum over

the possible ingoing partons a, b as these depend only on the nature of the final partons cc̄, they

therefore produce the Sudakov factor, denoted Sc. Finally the partons collide and undergo a

hard scattering in the partonic sub-process c + c̄ → F with hard factor HF
c , which includes

possible virtual corrections.

First consider the Sudakov factor, its form is the expected exponential; however as well as a

logarithm in the exponent integrand, there is also a non-logarithm piece:

Sc(µ
2
2, µ

2
1) = exp

{
−
∫ µ2

2

µ2
1

dq2

q2

[
Ac(αs(q

2)) log
µ2

2

q2
+Bc(αs(q

2))

]}
, (6.16)

where µ1, µ2 are any two scales. In our case we have µ2
1 = b20/b

2 and µ2
2 = Q2. This carries out

the resummation to all orders via renormalisation group running and exponentiation.

The Ac and Bc functions represent the soft and collinear flavour-conserving radiation respec-

tively, they serve as a basis and are clearly perturbative expansions as each additional emission

produces a factor of αs:

Ac(αs) =

∞∑
n=1

(αs
π

)n
A(n)
c , Bc(αs) =

∞∑
n=1

(αs
π

)n
B(n)
c , (6.17)

where we sum over all possible emissions. The coefficients up to A
(3)
c and B

(2)
c are explicitly

5It is these exponentials from the collinear and PDF factors that contribute the Mellin dependence to GN ,
the Sudakov is Mellin space independent and so if G was made up of the Sudakov alone it would have no N
dependence.
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known; these are those required for NNLL resummation6. The expressions for these resummation

coefficients, and others, are given in Appendix B.1 so as not to obfuscate the description at this

stage.

In order to demonstrate that this Sudakov factor of equation 6.16 does indeed resum the

logarithmic contributions to all orders, we can perform the logarithmic q2 integral in the expo-

nent. This can be done by using the evolution equation for αs to convert αs(q
2) to αs(Q

2) and

make its q2 dependence explicit:

d log(αs(q
2))

d log q2
≡ β(αs(q

2)) ≡ −
∞∑
n=0

βn(αs(q
2))n+1. (6.18)

The βn are the beta function coefficients to the required order, these coefficients are given in

Appendix B.1. This means that αs(q
2) contains an infinite tower of logarithms of q2 resummed

via renormalisation running, where l = 1 + β0αs(Q
2) log(q2/Q2):

αs(q
2) =

(αs(Q2)

l

)
−
(αs(Q2)

l

)2β1

β0
log l + . . . . (6.19)

We may now carry out the integral over log q2 and gather terms of the same order in αs(Q
2) to

obtain the leading log, next-to-leading log, next-to-next-to leading log terms and more if desired:

−
∫ Q2

b20/b
2

dq2

q2

[
Aa(αs(q

2)) log
Q2

q2
+Ba(αs(q

2))

]
=
(αs(Q2)

π

)−1
ḡ(1) + ḡ(2) +

(αs(Q2)

π

)
ḡ(3) + . . . .

(6.20)

Finally, if we wished to recover the full tower of αnsL
2n logarithms in the original expansion

we need only expand the exponential. Each of the ḡ(n) contain all order contributions of

αs log(b2/b20Q
2), now in an expansion in αs/π; therefore the ḡ(1) represent leading logarithmic

contributions, the ḡ(2) are next-to-leading logarithmic contributions and the ḡ(3) are next-to-

next-to-leading logarithmic contributions. We include up to NNLL in reSolve so we stop our

discussion here. The ḡ(n) for n = 1, 2, 3 are given in Appendix B.1 in equations B.1, B.2, B.3.

The leading log ḡ(1) depends only on the A(1) coefficient function, the NLL ḡ(2) depends on A(2)

and B(1), and the NNLL ḡ(3) depends on A(3) and B(2).

The PDF factors, like the Sudakov, are universal; nonetheless their form in the master

formula requires significant explanation. The PDFs are extracted essentially at the start of the

leg in each diagram with momentum fractions x1/(z1z
′
1) and x2/(z2z

′
2) at the factorisation scale

at which initial state radiation has been absorbed. In our formalism we require the PDFs at

b20/b
2 for the resummation, therefore we may evolve the PDFs using the DGLAP equations to

obtain them at this scale with momentum fractions x1/z1 and x2/z2; as shown at the start of

each leg in the master picture in Figure 6.1:

fa1/h1
(x/z, b20/b

2) =

∫ 1

x

dz′

z′
Uaa1(z′;µ2

F , b
2
0/b

2)fa/h1
(x/zz′, µ2

F ). (6.21)

6The B coefficients are needed to one order less than the A coefficients as when the expansion is performed
the logarithms result in an extra 1/αs for the A terms.
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These factors fai/hi(xi/zi, b
2
0/b

2) (for i = 1, 2) are those appearing in the master formula. As

a result of the running of the PDFs between these scales various further logarithms of scales

αs log(b2µ2
F /b

2
0) arise which are resummed via the kernels Uaa1(z′;µ2

F , b
2
0/b

2). The Uaa1 evolution

kernels are implemented in the program in a dedicated routine and are given by the usual

anomalous dimension γaa1,N (αs) evolution:

dUaa1,N (µ2, µ2
0)

d logµ2
=
∑
c

γac,N (αs(µ
2))Uca1(µ2, µ2

0), (6.22)

and so we have the usual DGLAP evolution kernels to evolve between energy scales, but in

Mellin space:

UN (b20/b
2, Q2) = exp

[ ∫ b20/b
2

Q2

dq2

q2
γN (αs(q

2))
]

(6.23)

These anomalous dimensions are then given by the Mellin moments of the splitting functions

Paa1(αs, z)

γaa1,N (αs) =

∫ 1

0
dzzN−1Paa1(αs, z) =

∞∑
n=1

(αs
π

)n
γ

(n)
aa1,N

. (6.24)

Next we move onto the hard and collinear factors and the Born factor of equations 6.11

and 6.15, which together contain the process dependence. The Born factor is trivial, with no

b dependence as there is no transverse momentum at Born level; to be explicit however, the

expression
[
dσ̂F,LO

cc̄

]
in equation 6.11 contains additional factors for ease of expression:

[
dσ̂F,LO

cc̄

]
=

dσ̂F,LO
cc̄

Q2dΩ
(x1p1, x2p2,Ω, αs(Q

2)) . (6.25)

There is further process dependence in the collinear factors CFca and CFc̄b; however this depen-

dence is simply on whether the initiating partons are gg or qq̄ and nothing further. The collinear

factors are then, in some sense universal. We now focus here only on the qq̄ case as our dipho-

ton and Drell-Yan processes only involve qq̄ initiation for the HF
c and CFqa factors as gg only

enters in diphoton (and does not enter Drell-Yan) for the first time at NNLO via the gg box

diagram of Figure 6.4, whilst HF
c and CFqa factors are only required once beyond leading order

for a contribution is needed7. The [HF
c C1C2]cc̄,a1a2 part of equation 6.11 is of the form of the

corresponding parts of equation 6.15 when written in full. The HF
c and CFqa factors then admit

perturbative expansions in the usual way:

HF
q (x1p1, x2p2,Ω, αs(M

2), µR) = 1 +

∞∑
n=1

(αs
π

)n
HF (n)
q (x1p1, x2p2,Ω, µR),

Cqa(z, αs) = δqaδ(1− z) +

∞∑
n=1

(αs
π

)n
C(n)
qa (z).

(6.26)

As we work in the massless quark limit these HF
q and Cqa never obtain dependence on the specific

7The structure of the [HF
c C1C2] piece is more complex for gg initiation due to spin correlations amongst the

gluons, see [2] for the expressions.
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quark flavour. The collinear factors up to C
(2)
qa are known and are given in equations B.18 -

B.28 in Appendix B.1. We evaluate the collinear factors using αs at energy scale b20/b
2 in our

resummation formalism, and they thereby contribute to the resummation of large logarithms

between the factorisation scale at which they are applied and the small scale at which the

resummation formalism is implemented b20/b
2. This evolution is done in a way which is general

for any function with only implicit dependence on the energy scale through αs:

Cqa(z, αs(b
2
0/b

2)) = Cqa(z, αs(µ
2
F )) exp

[
−
∫ µ2

F

b20/b
2

dq2

q2
β(αs(q

2))
d log(Cqa(z, αs(q

2)))

d log(αs(q2))

]
. (6.27)

This holds element-by-element for Cqa, so that each Cqa coefficient is now expressed as a func-

tion of αs at the factorisation scale µ2
F and an integral of the same form as in equation 6.16,

making it obvious that it contributes to the all-order resummation of the large b logarithms, in

addition to the Sudakovs and the PDFs. The Cab factors represent un-cancelled real and virtual

contributions due to collinear radiation.

Finally, the HF
q contain the last explicit process dependence - in fact this hard factor was

introduced in [250] in order to absorb as much of the process dependence as possible, enabling

our largely process-independent application in reSolve. This hard factor is b independent, with

all large logarithms absorbed elsewhere in the formalism. The hard factors contain the purely

virtual corrections to the cc̄→ F partonic sub-process which occurs after the various emissions.

The hard factor HF
q is the ratio of the square matrix element for the sub-process including

virtual corrections to that for the Born process and is therefore

HF
q =

|M̃qq̄→F |2
|Mqq̄→F (0) |2 . (6.28)

Here F (0) indicates the Born cross-section with no virtual corrections. The matrix element for

the virtually corrected amplitude is denoted M̃qq̄→F , as it must be UV renormalised in the usual

way; this is done in the MS scheme in reSolve. Meanwhile, as described in Chapter 5.4, the

virtual correction amplitudes contain IR divergences as well, which normally cancel with those

from the real emissions. Therefore given we have separated the real emission and virtual pieces

and already accounted for the IR divergences of the real emissions in the rest of the formalism,

we must subtract the IR divergences from the virtually corrected matrix element. We use the

universal subtraction operator Ĩc(ε,Q
2, µ2

R) to do this:

M̃cc̄→F (x1p1, x2p2,Ω, µR) = [1− Ĩc(ε,Q2, µ2
R)]Mqq̄→F (x1p1, x2p2,Ω, µR), (6.29)

here the matrix element M in the right-hand side is UV renormalised in the MS scheme in

the usual manner. M̃ is then the UV-renormalised and IR-regulated matrix element. The

explicit expressions for the subtraction operator Ĩc(ε,Q
2, µ2

R) to 1- and 2-loops are given in

reference [251]. After cancelling the ε poles in this way the renormalised, regularised matrix

element for the virtually corrected amplitude M̃cc̄→F is finite. A similar relation to equation 6.28
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holds for the case of the gg initiation hard factor HF
g but with the complication of the need

to sum over gluon helicities and a similar IR subtraction is then performed. This is yet to be

implemented in reSolve as the diphoton and Drell-Yan processes have no virtually-corrected

contributions from gg initiation as the contributions occur at higher order in αs than NNLO.

The explicit expressions for the subtraction operators are given in [251] and the expressions for

the hard factors for the relevant processes are given in Appendix B.1.

Last of all we comment on a further ambiguity in the formalism, additional to the scales

introduced via renormalisation, factorisation and resummation, there is a choice of “resummation

scheme”. This arises from the observation that the equation 6.11 (or equivalently equation 6.15)

is invariant under transformation using a perturbative function hc(αs) = 1 +O(αs) such that:

HF
c (αs)→ HF

c (αs)[hc(αs)]
−1,

Bc(αs)→ Bc(αs)− β(αs)
d log hc(αs)

d logαs
,

Cab(αs, z)→ Cab(αs, z)
√
hc(αs).

(6.30)

In order to prove this invariance we begin by deriving how an arbitrary function of αs, such

as h(αs) evolves between scales, starting from the β function definition in QCD in equation 6.18

we can write:

d log h(αs(q
2))

d log q2
=
d logαs(q

2)

d log q2

d log h(αs(q
2))

d logαs(q2)
= β(αs(q

2))
d log h(αs(q

2))

d logαs(q2)

⇒
∫ µ2

2

µ2
1

d log h(αs(q
2)) =

∫ µ2
2

µ2
1

dq2

q2
β(αs(q

2))
d log h(αs(q

2))

d logαs(q2)
.

(6.31)

So we obtain the general renormalisation group expression (as used in equation 6.27):

h(αs(µ
2
1)) = h(αs(µ

2
2)) exp

[
−
∫ µ2

2

µ2
1

dq2

q2
β(αs(q

2))
d log h(αs(q

2))

d logαs(q2)

]
. (6.32)

We may now use this expression to consider the invariance of the Sudakovs and the overall

master equation under such changes, first take the Sudakov, this changes with Bc(αs) so that:

Sc(µ
2
2, µ

2
1)→ exp

{
−
∫ µ2

2

µ2
1

dq2

q2

[
Ac(αs(q

2)) log
µ2

2

q2
+Bc(αs(q

2))− β(αs(q
2))

d log h(αs(q
2))

d logαs(q2)

]}

= Sc(µ
2
2, µ

2
1)
[h(αs(µ

2
1))

h(αs(µ2
2))

]
= Sc(µ

2
2, µ

2
1) +O(αs).

(6.33)

Where we have substituted in equation 6.32 in the penultimate step, and used the fact that h(αs)

is perturbative in the last stage to show that the change in the Sudakov is of a higher order in

αs. As for the remainder of the master equation, the remaining factor [HF
c C1C2]cc̄,a1a2 factor is

not dependent on the Bc(αs) basis functions and so its transformation under the resummation
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transformation in equation 6.30 is straightforward and the invariance trivial as the h(αs) factors

cancel.

This invariance under resummation scheme transformations of the form in equation 6.30

allows us to make a choice of scheme, and as ever, whilst any choice is equally valid, there are

easier and more difficult choices from the point of view of making theoretical predictions. Until

the discovered universality of our formalism by Catani et al in [250], essentially applications

of this formalism were making the choice HF
c = 1 for each process individually, as there was

no such hard factor to absorb process dependence. As a result, the collinear factors (and the

B
(n)
c factors beyond n = 1) were process dependent and non-universal, making the formalism

much more difficult to apply in a modular, universal manner to difficult processes of the same

class h1 + h2 → F + X. This choice is therefore a “bad” one, complicating the theoretical

calculations. A common and better choice is the “hard” scheme, where any factors in the

flavour off-diagonal parts of the collinear functions C
(n)
ab (z) which are also singular as z → 1, i.e.

which are proportional to δ(1−z), are removed from the collinear factors. This can be argued to

be a “physical” choice in that as z → 1 then there is no longer any collinear radiation as it takes

all the momentum and there is no splitting. In fact, as the collinear factors differ depending on

the leading order partons which initiate the process, i.e. gg or qq̄, an alternative scheme choice

can be made by choosing the hard factors in one qq̄ initiated process and in one gg initiated

process. For example a common choice is to set H
F (n)
q = 0 and H

F ′(n)
g = 0 for a qq̄ initiated

final state F and a gg initiated final state F ′. Indeed, in reSolve we use the “Drell-Yan - Higgs”

scheme which sets H
(n)
q = 0 for Drell-Yan and H

(n)
g for Higgs production, simplifying the hard

factors for these processes.

The resummation scheme transformations in equation 6.30 can then be used to transform

between the hard, collinear and B factors for different processes by replacing the hc(αs) with

expressions of the form HFF̃ = HF /H F̃ so that the perturbative function of αs transforming

between schemes is the ratio of the hard factors of different schemes; see [250] for further details.

We can actually offer an intuitive explanation for the resummation scheme independence. It

is a real order-by-order invariance of the resummed part alone arising from the fact that some

contributions can be moved between the Bc, C
F
ab and HF

c coefficients without affecting the overall

combined formula. This ambiguity in the exact nature of each of the pieces can be thought of

relating to the method of regulating the IR divergences. The transverse momentum spectrum is

not collinear-safe, diverging in perturbation theory; in order to regularise these divergences we

must subtract off their effects, however the exact choice to make is not clear and the ambiguity

seeps into the definition of the collinear functions Cab, and consequently into the HF
c and Sc

(via the Bc) factors, this effect is also linked to the resummation scale dependence. Again this

is explained further in [250,251].
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6.2.4 Phase Space Definition of Final State F

In addition to the theoretical uncertainty already mentioned from scale choices, PDF fitting,

Monte Carlo and other sources, there is a further origin of uncertainty. This arises in the

definition of the phase space of the final state system F for processes where this is made up of

more than one particle, such as the Drell-Yan and diphoton cases implemented in reSolve. At

leading order in our formalism the final state system F must have zero transverse momentum

as the incoming partons have no transverse momentum and there is no radiation against which

to recoil. Beyond leading order this is however different as unresolved radiation may have net

finite qT 6= 0 and so the final state system F can recoil against this radiation and gain a non-

zero transverse momentum itself. Indeed this is crucial in allowing reSolve, and the formalism

in general, to determine the transverse momentum spectrum; the radiation spreads the delta

function in qT at LO out into a finite qT distribution peaked near, but just above, 0. However,

in the formalism we also factorise out the kinematics into a hard-scattering factor and the Born

cross-section from the all-order resummed emissions formally in the limit qT → 0; fortunately this

misalignment only has sizeable effects at large qT where our resummation formalism is invalid

in any case. There is however a further choice to make, these hard scattering and Born cross-

sections both require the 4-momenta of the initial incoming partons and of the individual final

state particles making up the final state system F . We generate the angles Ω = {θCM , φCM} via

Monte Carlo to define the individual particle momenta of the final state system. However, given

the incoming partons have zero net transverse momentum for the Born, the outgoing final state

particles in F in this factorisation must also have zero total transverse momentum, producing a

contradiction as the resummation gives F non-zero qT . Therefore to determine the appropriate

Born kinematics in our formalism we must choose how to assign the transverse momentum in

the initial and final state particles. This includes how to designate the angular variables Ω.

This ambiguity disappears if only questions about F , and not the individual particles in F , are

asked. However, given we often wish to look at distributions of p
min/max
T in the Drell-Yan case and

other similar variables which require assignment of the individual final state particle momenta,

we must undertake this assignment consistently and in a physically acceptable manner.

Traditionally there are two approaches to this, which are described further in [5,8]. The first

is to neglect this issue, and define the initial state particles with zero net transverse momentum

whilst the final state particles still have net qT 6= 0 in order to provide transverse momentum

spectra. This therefore builds 4-momentum non-conservation into the implementation of the

formalism, which is of course unsatisfactory from a physical point of view and may affect even

the transverse momentum spectrum. This is often referred to as the “2-body phase space

setup”. The second, more physical, approach is that given the final state particles must have

net transverse momentum to correctly reproduce the total transverse momentum of the final

state system as a whole, we must impose net transverse momentum on the initial state particles

to conserve 4-momentum in the Born kinematics. Nonetheless, the exact manner in which to

assign this transverse momentum requires specification of a qT recoil method, with an infinite
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number of possibilities. Many applications of the transverse momentum resummation formalism

do this in the Collins-Soper rest frame (CS frame) [263], which is the rest frame of the F final

state system in which the z-axis bisects the angle between the incoming parton momentum P1

and minus the other incoming parton momentum −P2 (now not collinear as there is a net qT ).

θCS is then the angle between the outgoing momentum of one of the final state particles and

the z axis and φCS is its angle relative to the net transverse momentum qT . This therefore

absorbs the net transverse momentum of F into the incoming partons. In this frame you may

then declare that you will define the (θCM , φCM ) angles of the individual final state particles in

the leading order Born distribution (with which we generate the individual final state particle

momenta) to be equal to the Collins-Soper angles of the resummed distribution. This is a

perfectly valid, adequate, well-defined choice; however it hides the fact that the CS rest frame

definition itself is dependent upon the qT (which is zero for the LO case), so any prescription

you declare introduces a dependence on qT in the angular distribution. Any differences due to

this choice of assignment will be O(qT /Q) but represent an additional higher order correction

which we may wish to estimate.

As characterised in [8], any such prescriptions are one of an infinite class of possibilities for

how to assign the incoming parton momenta. There are several properties one desires of such a

scheme; the first is that it recovers the standard LO expression of the factorisation for qT → 0,

we also need the energies of the partons to be positive and that their 4-momenta are invariant

under longitudinal boosts of the partonic centre of mass frame. Such a method, taken from [8]

and adapted in reSolve, is given here. The incoming qT -recoiled 4-momentum of parton 1 is

set as:

kµ1 = ζ1
Q2

2Q.P1
Pµ1 + kµ1T +

k2
1T

ζ1

Q.P1

Q2P1.P2
Pµ2 , (6.34)

where

ζ1 =
Q2 + 2qT .k1T +

√
(Q2 + 2qT .k1T )2 − 4M2

Tk2
1T

2Q2
. (6.35)

We choose kµ1T as a vector transverse to the 4-momenta of each of the initial incoming hadrons,

Pµ1 and Pµ2 , and such that k1T → 0 as qT → 0. This ensures that the LO expression is

recovered for qT = 0 and that the k1T lies in the qT plane. Furthermore, k1T is chosen such

that Q2 + 2qT .k1T > 2MT |k1T | so that ζ1 is real and consequently k0
1 > 0 (then k0

2 > 0 follows

as q0 > 0). The definition of kµ1 in terms of kµ1T and ζ1 then ensures that that kµ1 is invariant

under longitudinal hadronic centre of mass boosts. This is useful as it means our definition can

be consistently applied regardless of the boosts required to get to the incoming parton frame

where we apply the Born kinematics. The other incoming parton 4-momentum is defined via

4-momentum conservation kµ2 = Qµ−kµ1 , where Qµ is the 4-momentum of the final state system

F as a whole with non-zero qT . P1 and P2 are the incoming four-momenta of the hadrons. This

method is called the “3-body phase space setup”, as it assumes recoil against some collective 3rd

particle/system of particles, which physically are the unresolved radiation. In this prescription

the k1T is arbitrary and parametrises the infinite number of possibilities for the assignment of
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this transverse momentum, all of which are consistent qT recoils. Any dependence on this choice

of k1T cancels up to the given order of evaluation in observables inclusive over the individual

particles making up the measured final state F , i.e. after integrating over the angular variables

in Ω.

It is the latter approach that we use in reSolve. Specifically, in this methodology, and in

reSolve, there are essentially four (sets) of momenta which are to be distinguished. First of

all there is the incoming momentum of the hadrons, the {Pµ1 , Pµ2 } = (
√
s/2, 0, 0,±√s/2) which

have zero net transverse momentum. These, along with the parton momentum fractions, set

the incoming momenta of the partons, {Kµ
1 ,K

µ
2 } = {x1P

µ
1 , x2P

µ
2 } which also have zero net

transverse momentum. The mismatch and contradiction in the application of the theoretical

formalism then comes in matching these with the final state particle momenta, given the final

state F has net finite, non-zero qT . The method we follow, and given above, is to define a qT

recoiled set of incoming parton momenta {kµ1 , kµ2 } given by equation 6.34 which has net non-zero

transverse momentum, in fact it has transverse momentum equal to that of F . We then generate

the Born dynamics using these incoming parton momenta, transforming to this frame so that

there is zero qT in the rest frame of F before transforming to the frame of the incoming partons

with net transverse momentum, so that the formalism is at least physically consistent. As there

are infinitely many rest frames of final state systems F depending on the exact Q, qT , η generated

by the Monte Carlo, and any arbitrary 3D rotation gives another rest frame, we have two free

parameters in our prescription. These two degrees of freedom correspond to the arbitrary 2D

vector k1T , which can be interpreted as a choice in how to spread the 2D vector of transverse

momentum between the incoming partons, this is the choice of how to set the Ω = {θCM , φCM}
angles of the individual final state particles. We can then view the relationship between the

LO zero net transverse momentum incoming parton momenta Kµ
i and the qT recoiled kµi as a

Lorentz transformation from the hadronic collision frame to the rest frame of the final state (i.e.

the rest frame in which the incoming partons actually collided).

In reSolve we have k1T given as in equation 6.36 and with different values of α allowing for

the arbitrary nature of the k1T .

k1T =
qT
2

(1 + α), (6.36)

α = 0 is the default choice in the code, corresponding to the Collins-Soper frame, in which

case we are equating the angles of the individual particles states Ω = {θCM , φCM} with those

in the Collins-Soper frame. However α, and correspondingly the chosen frame, can be altered

should the user wish to investigate the effects of this ambiguity in the phase space definition on

distributions of the final state individual particle momenta and associated variables. This may

allow an estimate to be made of the higher order corrections and errors associated with this

aspect of the resummation formalism.
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6.2.5 Crucial Points of the Formalism

The theoretical formalism we have described, and which is applied in reSolve, therefore

enables the all-order resummation of logarithmically-enhanced contributions at small transverse

momenta. Here we summarise the key points of the theoretical formalism applied, for ease of

perusal:

• General - The formalism applied is general in nature and can be applied to a wide range

of LHC (and other collider) processes, requiring only that the measured final state system

is made up of colourless particles.

• Modular - The formalism factorises the different contributions into several different parts;

the Born cross-section, Sudakov factor, collinear factors and hard factor are all separate.

Therefore it allows a modular application which is customisable so that it can be easily

extended to several further processes.

• Universal - It is almost completely universal, as a consequence of QCD factorisation for

IR singularities, with process dependence only via the nature of the incoming partons in

the LO contribution (for the collinear and Sudakov factors) and the Born cross-section

for the hard factor encoding the virtual contributions. The resummation calculation can

therefore be applied independently of the hard factor and Born computation and in the

same manner for all included processes.

• Fully differential - The setup ensures that, whilst aimed at resumming transverse momen-

tum logarithms in determining the qT spectra, the differential distributions in a range of

other final state variables are automatically generated, including in invariant mass, rapidity

and others.

• b-space - The use of b-space allows the factorisation of the kinematics of transverse momen-

tum conservation. Meanwhile the formalism explicitly deals with and controls singularities

at high and low impact parameter values.

• Non-perturbative contributions - High b singularities indicating low, non-perturbative qT

values must be cut off and phenomenologically parametrised as a low qT smearing in the

qT distribution.

• Mellin space - Mellin space converts complex convolution integrals to simple products

which can be summed along the inverse Mellin transform contour, as outlined in Ap-

pendix B.2.

• Parton level - The resummation is applied at partonic level. PDFs must therefore be

evaluated at the factorisation scale.

• Events and cuts - The application of the formalism means that “events” can be generated

by Monte Carlo at low qT with simple interpretation, this means experimental selection

cuts can be straightforwardly applied, accurately reflecting experimental setups.
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• Perturbative - The formalism recovers the standard predictivity of a perturbative expan-

sion in αs, all the resummation coefficients are perturbative.

• Standard diagrammatic pQCD - The formalism is based on the standard setup of diagram-

matic evaluation in perturbative QCD, which is ubiquitously used throughout particle

physics at colliders.

• Known up to NNLO+NNLL - All the necessary resummation coefficients and contributions

are known up to at least NNLO with NNLL resummation for all relevant studied processes,

although for Higgs production at NNLO+NNLL the final order hard factor coefficients are

known only in the large mt limit. In general, many of the universal factors (such as A
(4)
a

and B
(3)
a ) are actually known at N3LL, however the hard factors are not nor are many

of the collinear factors. It should be noted however that in this first version reSolve

only includes the resummed piece, not the matched finite piece. Consequently the vast

majority of the results we present in Chapter 7 are only “NNLL”8. Nonetheless, whilst

they do not include the finite piece they do include some beyond leading order virtual

corrections through the hard factors, as seen in equation 6.28. In an upcoming version the

matched finite piece will also be included so that the results will then truly be available

up to “NNLO+NNLL” including all beyond leading order corrections up to this order.

• NNLO subtraction scheme - Once the hard-virtual factor in the resummation formalism is

known one can use the qT subtraction to define an IR subtracted NNLO fixed order finite

term expression.

• Resummation scale - The factorisation of the resummation and the hard factor introduces

the resummation scale, representing uncertainties in the theoretical predictions. Its effect

and corresponding uncertainty has to be evaluated via scale variation in the same way as

is done for the standard factorisation and renormalisation scales.

• Resummation scheme - The resummation scheme choice can simplify the calculation for

some processes, for example reSolve uses the Drell-Yan - Higgs scheme so extensions from

its original diphoton application to Drell-Yan (already completed) and Higgs (future) are

simpler than otherwise.

• PDF fitting - Use of Mellin space means PDFs must be fitted to an analytic form of known

Mellin transform; this fit provides an additional source of uncertainties into the calculation.

• Final state phase space - Ambiguity in the definition of the momenta of the individual final

state particles for observables not inclusive in the final state adds theoretical uncertainty

to predictions of differential spectra for these individual final state particle kinematic

variables.

• Many integrals - Whilst transforming to b-space and Mellin space for each incoming parton

simplifies the formulae analytically, it leaves many nested integrals to be performed.

8In fact, as the Born cross-section is included they could be described as “LO+NNLL”, we will however refer
to them as “NNLL”.
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6.3 Methodology, Implementation and Structure

Our application of this theoretical formalism is the new reSolve program, which is a Monte

Carlo differential cross-section parton level event generator written in C++ and is capable of

adding transverse momentum resummation to a range of processes. It is specifically designed to

be modular, transparent, easily customisable and extendible, moreover it is clearly commented

and comprehensively documented in our paper [2]. It is set up to allow parallelisation of the

code (see Chapter 7.1.6) as well as to interface with other codes relatively straightforwardly if

desired by the user.

The program works by randomly generating the invariant mass, transverse momentum and

rapidity of the final state system F as well as the relative angles of the individual particles

in F . This defines an event, for which the 4-momenta of the incoming and outgoing particles

are determined and subsequently the Born cross-section is calculated for the given process. In

the meantime, completely independently, the resummation is performed in impact parameter

space and double Mellin space as the collinear and Sudakov factors are combined with the hard

factors. The double Mellin inversion and inverse Fourier transform back to qT space are then

performed to produce the cross-section for each event. This process is repeated, generating

separate phase space points and their cross-sections. These events can be weighted according

to the approximate value of the integrand for the given phase space point region, this is set by

a Monte Carlo grid determined iteration on iteration. Any phase space integration to obtain

given spectra is then performed by summing event cross-sections in the integrated variables.

The resummation is performed up to NNLL and histograms are automatically produced for

the user’s desired differential spectra, albeit including only the resummed contribution to the

cross-section in the current version.

6.3.1 Program Structure

A key feature of the program is its explicitly modular and carefully constructed structure in

order to take maximal advantage of the near universal nature of the resummation formalism.

Different aspects of the calculation are divided into different self-contained sections in separate

folders in order to make the program as transparent as possible. In principle several of these

- Histogrammer, Integral, PDFfit, Resummation and Utility - can be used independently of

the main code, this is important for the straightforward extension of the program to additional

processes. The details of the calculations in each folder are detailed here, and following this an

explanation of how the program works is given in Chapter 6.3.2. This is intended to allow users

to understand how the program functions in order to both simplify its use and enable users to

add their own processes should they wish.

• Histogrammer - This contains the files required to calculate the cross-section per bin width

in the desired differential cross-sections.

• Integral - This contains the files necessary to perform the Monte Carlo phase space in-
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tegration. In keeping with the modular and customisable structure there are two Monte

Carlo integrators included in reSolve: the in-house k vegas integrator (see Appendix B.3

for more information) or the external Cuba integrator [264].

• Main - This contains all the general files used to read in the input file, perform pre-

processing, post-processing and interface with the Monte Carlo integration routines.

• PDFfit - This contains the routines used to evaluate the fit parameters for the PDF fits,

as well as to output them in a form useful for the rest of the program.

• Process - This folder contains any process-specific code, currently these are for the diphoton

and Drell-Yan processes.

• Resummation - This folder contains the resummation routines which are process inde-

pendent. This includes the inverse Fourier and inverse Mellin transforms and the process

independent parts of the hard factor calculation, as well as the Sudakov factors.

• User - This is a folder where the user can call additional routines they may write for

pre-processing, Monte Carlo or post-processing, as well as to read process-specific input.

Currently, it contains the switch between using k vegas or Cuba as the Monte Carlo inte-

grator and routines to allow parallelisation of k vegas across multiple cores and multiple

machines.

• Utility - This folder contains auxiliary functions necessary for the program; including the

alphaS.f fortran routine for αs evolution, the “dumper” routines to output the events in

“easy” or “pseudo-lhe” form, routines for the Lorentz algebra, and initialisation routines

associated with the PDFs.

This program structure is designed to modularise the program; this enables the straightfor-

ward extension of the program into other processes, indeed we intend to perform this further

ourselves in the future. In order to add a new process one must simply add a sub-folder in

Process/ with equivalent files to those for diphoton and Drell-Yan for the new process. De-

pending on the process, additional hard factors may need to be added to the hard function

calculation in the resummation and potentially also the different orders included for the qq̄ and

gg processes as their relative order contributions depend upon the process. Currently, qq̄ hard

factors are included up to NNLL, whilst gg hard factors are only up to LL; this will be resolved

in future versions as we extend the program to additional processes. A detailed guide on how to

add a process to the reSolve program is given in Chapter 7.1.7. The underlying aim of reSolve

is to take a Born process and add resummation up to NNLL; this resummed contribution to

the total fully differential cross-section must then be consistently matched with the standard

fixed order expansion (the “finite piece”), as described in Chapter 5.7, to produce the total fully

differential cross-section across the entire qT range.

By far the most important section of the code, is the unique Resummation folder. In here all

the theoretical formalism described in Chapter 6.2 is packaged and built into an independently-

compilable sub-program which takes the Born cross-section, the PDF fit, and information on

the orders at which qq̄ and gg initiation contribute in the desired process and on which Born

contributions are non-zero. It then determines the resummed part of the differential cross-section
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in a process independent manner. The structure of this section of reSolve is shown later in

Figure 6.3. It consequently knows nearly nothing about the underlying process, with the non-

zero Born contributions only specified so as to pragmatically avoid spending time summing over

zero contributions.

The program has all necessary external files and codes required for its running explicitly

included within it; these include the minuit library for function minimisation used for the PDF

fits, the pdffit.f to perform the PDF fits, partons.f to call the PDFs at the required points

and interface with the PDF grids, the fortran routine alphaS.f for evolving the QCD coupling,

the random.f to generate the random values for the Monte Carlo and the intde2.cc code (based

on [258]) used to perform the inverse Fourier transform. On top of this, as described, it contains

functions to interface with the Cuba integrator package [264], which needs to be downloaded

separately should the user wish to use it. Cuba however is not required as our own k vegas

integrator is included within reSolve which is based on Lepage’s [265] DGauss algorithm. As all

the separate pieces of the computation in reSolve are largely self-contained, passing information

via objects, interfacing with other codes or additional calculations should not be difficult to

perform, allowing it to be customised, interfaced and extended as the user requires.

6.3.2 Program Flow

We now summarise how the program functions and the different steps performed to undertake

the calculation. Figure 6.2 shows in detail the flow of the calculations performed, starting at

main.cc, Figure 6.3 then illustrates in more detail the crucial resummation aspects of the

calculation. The colours of the boxes indicate where in the program structure the various files

and routines lie, with the key given in Figure 6.2. The following description and figures are for

the diphoton process, but the exact same sequence occurs for the Drell-Yan processes with the

appropriate process-specific files in the Process sub-folder interchanged:

1. The calculation begins in main.cc, this calls InputPars.cc to read in the input file. From

here user.cc is called to carry out required processing before the Monte Carlo integration.

2. This pre-processing includes calling resu preproc.cc, which carries out various initiali-

sations including those of the inverse Fourier transform, N-independent resummation pa-

rameters (via resu procindep.cc), inverse Mellin transform contour and N-dependent

resummation parameters (via mellinspace fns.cc). It also calls the PDF fitting rou-

tines and calls pdfmellin.cc to convert the PDF fits into Mellin space.

3. User.cc then moves onto the Monte Carlo aspect of the program, calling

k vegas interface.cc or cuba interface.cc appropriately. These programs call the

random generator and pass any points evaluated to the Monte Carlo evaluation programs.

4. The Monte Carlo interface programs themselves then call the process-specific files - first

diphoton integrand.cc; this is the integrand of the Monte Carlo integral. It calls

diphoton ps to convert the randoms generated into a phase space point; determining

qq2, q2
T , η, θCM and φCM - these are the invariant mass squared, transverse momentum
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squared and pseudorapidity of the final state system F , and the polar and azimuthal angles

of the individual particles in the final state F respectively.

5. diphoton integrand.cc next calls diphoton cuts.cc, this has the task of reading the

cut information from the input file and determining whether the current phase space point

passes the cuts. Provided the cuts are passed, diphoton hard.cc is called, this evaluates

the Born cross-section and other process-specific resummation variables; such as the H1
q ,

H2
q , H1

g and H2
g hard factors.

6. reSolve now moves onto the general resummation routines as diphoton integrand.cc

calls resummed in inv fourier.cc. This section of the calculation is shown in more detail

in Figure 6.3.

7. First in the resummation routines, inv fourier.cc determines the correction factor re-

quired to account for the fact that the PDFs are fit. This factor is the ratio of the LO

cross-section calculated directly with standard PDFs to that calculated with the PDF fit.

This is all determined in xsection.cc.

8. invbtoqt is now called to perform the inverse Fourier transform from b-space to qT space.

The routine invres is the integrand of this inverse Fourier transform.

9. invbtoqt calls invres for several points in impact parameter space, usually of the order

of 20, depending on the precise details of the convergence. For each b value, invres

evaluates the double inverse Mellin transform used to perform the resummation via the

routine inversemellin resummed.

10. inversemellin resummed in inv mellin.cc organises the double inverse Mellin transform

calculation, this calculation is built directly into the code.

11. First, the Sudakov form factors for soft gluon and soft quark emission are calculated by

calling sudakov.cc. Then GetResuPars determines the C1, C2, anomalous dimensions and

other N-dependent basis functions in Mellin space and evolves them from the resummation

scale µS to the scale b20/b
2 of the resummed logs.

12. hard fns.cc next determines the hard factors, incorporating the virtual diagram contri-

butions into the resummation.

13. The Sudakovs, hard factors and appropriate weights are used at each of 40 − 88 points

along the contour in Mellin space, with the number of points depending on the rapidities

of the two photons; this is done for each inverse Mellin transform. The contributions at

each point are then summed along the contours to calculate the double inverse Mellin

transform.

14. Putting all this information together gives the inverse Mellin transformations, if these are

called for each of around 20 b values this allows the determination of the inverse Fourier

transform for each phase space point. Repeating the process for O(105 − 107) randomly

distributed phase space points and including the effects of the Jacobian transformation be-

tween the randoms space volume and the phase space volume, reSolve thereby determines

the overall cross-section.

15. The total cross-section is printed out after each iteration; meanwhile all the events, their
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individual cross-sections and the randoms associated with their phase space points go

into output files (one per iteration). This information can be used to re-create the phase

space variables and so produce histograms of the differential cross-section in invariant

mass (qq), transverse momentum (qT ), rapidity (η), transverse mass (mT ), or minimum

and maximum transverse momenta for the two photons (p
min/max
T ), or alternative user-

specified observables.

The Monte Carlo phase space integration selectively refines the grid from which it draws the

randoms iteration on iteration so as to maximise the sampling where the integrand is largest; it

does this by importance sampling [264] [265], more information on this is given in Appendix B.3.

The result is each successive iteration should produce a more accurate estimate. In addition, the

number of evaluations per iteration typically increases iteration on iteration (set by nincrease)

and hence the statistical fluctuations also reduce.

A comprehensive review of how to use the reSolve program, its input and output options,

parallelisation and other features is presented in Chapter 7.

There are several pragmatic choices made in the reSolve program in order to make its

application computationally either quicker or simpler. We summarise these here for reference;

however they are not of great consequence for using reSolve and the list is not exhaustive, with

several other differences between the theoretical formalism and its practical computer program

implementation in reSolve not outlined as they are inconsequential.

Firstly, our summation over Born cross-section contributions in determining the hard factors

is process dependent to save time, explicitly not summing over contributions known to be zero.

This introduces a process dependence not present in the theoretical framework. This is important

as this section of the code is called once per Mellin space point and so is called at least 40 times

for each branch of the 2 Mellin inverse transforms. These Mellin transforms are each in turn

performed around 20 times for each impact parameter point in the inverse Fourier transform

and the inverse Fourier transform is performed for each of the O(105− 107) phase space points.

As a result, this section of code may be called O(109−11) times per program run, and so the

speed of this section of the program governs that of the overall calculation. Any time savings

which can be made therefore afford significant benefit.

A second difference between the theoretical formalism and the program is that the inverse

Mellin transforms are performed over contours at 45 degrees (rather than 90 degrees) to the

imaginary axis (displaced from it to avoid poles) to ensure better convergence properties.

Thirdly, problems can arise in regions when b is randomly chosen to be very large, these

regions are otherwise uninteresting from the perspective of evaluating the resummed contribution

but can nonetheless be reached in the program. In this case the collinear factors in the overall

hard factor become very large as there is a large scale difference across which to evolve the

relevant factors such as αs and they are evolved to become close to the Landau pole, whilst

the Sudakovs become correspondingly very small as they have the non-perturbative suppression
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Monte Carlo Integration
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User.cc
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cuba_interface.cc
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Cuba
integrator_flag 
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integrator is used

Interfaces 
generate 
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diphoton_integrand.cc
The integrand of the 
Monte Carlo phase 
space integration is 
diphoton_integrand

diphoton_ps.cc

diphoton_ps converts randoms 
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Diphoton_integrand 
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pdfmellin.cc
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N independent 
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then in N space

Resummation Routines

Key 
– Main folder files in blue
- User folder files in yellow
- Integral folder files in red
- Process folder files in purple
- Resummation folder files in green
- Pdffit folder files in orange
- Cuba is external so is in white

Figure 6.2: A flowchart demonstrating the different aspects included in the program and what is called
when in the calculations. The different aspects of the program are coloured differently to indicate where
they sit in the program folder structure. A zoom in of the resummation routines at the bottom of the
flowchart is given in Figure 6.3. The program functions analogously in the case of Drell-Yan processes.
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The Net result of all the integrals
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point, the inverse Fourier transform
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each of which have a double inverse

Mellin transform involving 40-88
Mellin space contour points per branch.

Resummation Routines

Figure 6.3: A flowchart providing more detail on the resummation aspect of the program, which is the
main part of the calculation. This highlights how both the inverse Fourier and double inverse Mellin
transforms are performed. This part of the program is process independent.

smearing of exp(−gNPc b2) built-in to the formalism to account for these Landau pole effects.

However, at such large b the hard factors can register as infinities, potentially causing problems

in determining the inverse Fourier transform. To avoid this, blog as given in equation 6.6 but

with b∗ in place of b is used in the Sudakovs, whilst b∗ is used in the hard factors - this is found

to offer greater numerical stability by cutting off particularly large values of b earlier in the

formalism. This has no theoretical impact on the numerical output of the reSolve calculation,

practically it is aimed at ensuring unphysical contributions do not swamp the actual answer and

thereby improve the stability of the code if a large b value happens to be chosen by the double

exponential inverse Fourier transform function.

Fourthly, to attempt further to avoid such issues, the hard factors and Sudakovs are combined
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earlier in the calculation at the level of the Mellin space contour contributions (even though the

Sudakov is independent of Mellin space variables), in order to pre-empt the appearance of very

large and very small values separately in these factors and improve the accuracy of evaluation.

Finally, there is a difference in the parametrisations of the transverse momentum in the dipho-

ton and Drell-Yan phase space, which has no physical or theoretical impact on the resummed

differential cross-sections. In the diphoton phase space, in order to match events against other

private codes (such as 2gRes) used for verification of the reSolve program, the transverse mo-

mentum is chosen to lie along the x-axis. As a consequence, each event has its xy axes rotated

with respect to all others and so individual particle momenta distributions for each of the two

photons cannot be deduced directly. For the diphoton case this is not a problem as no such ob-

servables are relevant as the two photons cannot be distinguished. For the Drell-Yan case this is

not as physically satisfactory, in the case of the W± boson production the lepton and neutrino

can be distinguished and we may wish for differential distributions in the lepton or neutrino

(missing) momenta. We must therefore know the relative orientation of the different events,

requiring fixed xy axes; the qT is therefore defined against fixed axes as (qT cosφ, qT sinφ).

Physically, this makes no difference as all observables (even p
min/max
T ) are rotationally invariant

in φ.
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6.4 Production Channels

The reSolve program has been designed to allow the same overall program structure to be

extended to many different processes of interest, this can even be performed by the user so they

may tailor the program to their own needs. In any case, this process of addition of production

channels of experimental and theoretical interest to the program is one the authors expect to

continue in the future developments of the program and some of these targeted future additions

are given in Chapter 7.3. Currently, only two processes are included, diphoton production and

Drell-Yan production, chosen as they are amongst the most important modes at the Large

Hadron Collider.

6.4.1 Diphoton Production

Prompt photons are an ideal probe of physics at hadron colliders; both in a theoretical

sense due to their lack of QCD interactions, and in an experimental sense as their energies and

momenta can be precisely measured in electromagnetic calorimeters and given the diphoton

channel has a relatively large production rate. As a result of 4-momentum conservation, quark-

antiquark annihilation must produce at least two photons9 and so diphoton modes are relevant

at hadron-hadron colliders. We therefore consider processes pp → γγX (or pp̄ → γγX for the

Tevatron).

As a result of its clean experimental signature, the diphoton decay channel was a golden

discovery mode for the Higgs boson at the LHC via h→ γγ. Therefore hopes of understanding

electroweak symmetry breaking and the Higgs boson itself make the diphoton channel a key

focus for the LHC in both signal and background. In particular, as the centre of mass energy for

collisions at the LHC has increased, higher diphoton invariant masses can be reached and similar

resonance searches to those which revealed the Higgs in the diphoton channel can be utilised

to search for new physics at higher masses. Many Beyond Standard Model theories, including

supersymmetry (as described in Chapters 2-4) via its additional heavier CP even (H) and CP

odd (A) neutral Higgs bosons, predict states which lead to resonances in diphoton invariant

mass. As a consequence, there has been much experimental and theoretical effort aimed at

thoroughly understanding and precisely predicting the Standard Model diphoton backgrounds

arising from partonic processes producing diphotons. This enables the analysis of diphoton

differential spectra with respect to these precise theoretical predictions and ensures any small

deviations can be reliably interpreted as signs of much-coveted new physics states, whilst it also

offers an excellent testing ground for perturbative QCD.

9Consider the possibility of single photon production, qq̄ → γ, this is forbidden by energy and momentum
conservation as if we Lorentz transform to the centre of mass frame of the colliding quark-antiquark pair they
have zero net momentum but non-zero energy, this cannot occur for a photon as it is not possible to transform
into its rest frame. Two photons must therefore be produced so that net zero momentum can be produced in the
centre of mass frame, therefore diphoton modes are present at colliders, not single photon modes. Meanwhile if
one takes the gg channel similar considerations mean two photons must be produced. Similarly the Higgs, as a
scalar, must produce two photons rather than one as a result of angular momentum conservation.
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We have therefore chosen the diphoton Standard Model background channel as one to in-

clude in our first versions of the reSolve program. At leading order this production channel is

initiated by quark-antiquark annihilation, being a purely electromagnetic process it is O(α0
s);

at NLO however the qg → γγq partonic sub-process becomes available which is order O(αs);

whilst at NNLO the gluon-gluon box initiation process of Figure 6.4 opens up at order O(α2
s).

This gg box contribution can have a significant impact on the production rate due to the large

PDF of the gluon. Consequently, NNLO contributions (and correspondingly NNLL resumma-

tions) are known to be of substantial importance for precise theoretical predictions for this

mode. We therefore include the diphoton background production process thus far at NNLL

and all contributions up to this order are incorporated in reSolve, including the important

gg box contribution. This includes the majority of the important NNLO corrections through

the hard factors containing the virtual corrections but nonetheless will be soon updated to in-

clude the matched finite piece at NNLO so that then the diphoton process will be available

at NNLO+NNLL. Our work in this area was guided by and verified against the private 2gRes

program [5, 6], as well as experimental data. The results, together with the cuts implemented

for the diphoton case, are discussed in greater detail in Chapter 7.2.1. Of these cuts, a standard

cut is to require that the larger of the two photon transverse momenta is larger than pT1cut and

the smaller is larger than pT2cut (it must be defined as such as the individual photons cannot

be distinguished from one another), whilst a cut on the opening angle between the two pho-

tons is required as two highly collimated photons may be interpreted experimentally as a single

higher energy photon. This is mentioned here as it has a significant effect on the amplitude of

the effects of the beyond LO corrections. At LO, there is no radiation to take away momen-

tum and so the two photons are produced with exactly the same transverse momentum; this

means both photons must have momenta greater than the larger transverse momentum cut, i.e.

Max(q
(γ,1)
T , q

(γ,2)
T ) = q

(γ,1)
T = q

(γ,2)
T > pT1cut > pT2cut. Beyond LO however, radiation carries

away transverse momentum and so one of the photons can have smaller transverse momentum,

greater than the smaller qT cut so that pT1cut > Min(q
(γ,1)
T , q

(γ,2)
T ) > pT2cut is now an allowed

non-cut region of phase space. This therefore opens up the phase space available and enhances

the effect of NLO corrections. On top of this, an additional effect that ensures beyond LO

corrections are large is that new partonic sub-processes open up at each order, thereby adding

additional contributions beyond the αs suppressed additional emissions to the previous order

sub-processes [266].

Figure 6.4: Gluon gluon box diagram contribution to diphoton production
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Whilst reSolve concentrates on the resummed contribution to the diphoton cross-section,

several programs are able to compute the finite (non-resummed) part of the differential diphoton

cross-section, including DIPHOX [267] and 2gammaMC [268] to NLO, and MCFM (“Monte Carlo for

FeMtobarn processes”) [269] and the private 2gNNLO program [266] to NNLO. The ResBos

program [252, 253, 270] includes the finite and resummed contributions up to NNLO+NNLL.

Meanwhile, electroweak corrections up to NLO have been analysed in [271]. Many of these

programs include the effects of fragmentation, which are not included in reSolve - photons may

arise from fragmentation of partons, rather than just from the hard scattering partonic sub-

process. This however depends on poorly known non-perturbative fragmentation functions for

photons, on which there is no consensus in a resummation context. These effects can however

be removed by photon isolation cuts, which are often performed at experiments10.

The validation and results for the diphoton production channel in reSolve are presented in

Chapter 7.2.1.

6.4.2 Drell-Yan Production

The second process included in the reSolve program is Drell-Yan production of lepton

pairs [272]. Both neutral current Z on-shell or Z/γ∗ off-shell producing a lepton-antilepton pair

and charged current W±, W+, W− (again on-shell or off-shell) producing a lepton and neutrino

can be calculated in reSolve and are included up to NNLL in the resummed piece. The matched

finite piece contribution is not yet included however, although it will be in the near future. The

formalism naturally includes some beyond leading order corrections through the hard factors

which incorporate effects of virtual corrections up to NNLO, however these are not the full

NNLO corrections, consequently reSolve strictly only calculates the Drell-Yan process up to

NNLL currently. Drell-Yan production is a particularly apt channel to include as it has been

key to the development of the resummation formalism [7, 8, 223, 238, 239, 273]; its cross-section

is largely produced at low transverse momentum with q2
T � Q2 and so it is a blatant process

for which resummation is needed. The Drell-Yan hadroproduction of lepton pairs has been of

great importance at many hadron-hadron colliders, and continues to be so at the LHC; its clean

signal of lepton pairs may be used as a standard candle due to its experimental and theoretical

simplicity arising from the lack of strong interactions of the leptons produced. It also has a large

production rate and these features mean it can be used for detector calibration and luminosity

measurements. This production channel consequently has a variety of uses, having been the

focus of much experimental and theoretical work. Drell-Yan production therefore provides an

excellent test of perturbative QCD.

From an experimental point-of-view Drell-Yan production is also of tremendous interest; it

is a key input for constraining PDFs, which are crucial to all production processes at hadron

colliders. The W+/W− rapidity distributions are dependent on the PDFs. At a pp̄ collider

102gRes, used for the calculations in [5], uses an isolation prescription to mimic the experimental analysis
results.
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such as the Tevatron, the production of a W+ is dominated by extracting a u from the proton

and a d̄ from the antiproton (i.e. ud̄ dominates d̄u as the PDFs of the proton/antiproton favour

quarks/antiquarks respectively). As the PDFs have larger momentum fraction in up quarks than

down quarks in protons (and so more than antidown quarks in antiprotons) the W+ boson is

then dominantly produced along the proton beam direction at positive rapidity. Meanwhile for

a W− it is dominantly produced via dū and so is produced along the antiproton beam direction

at negative rapidity. This is shown in the LO rapidity distributions for W+ and W− produced

by reSolve in Figure 6.5. Measurements of the rapidity distributions therefore directly depend

upon the momentum fractions of the quarks (and antiquarks via the sub-dominant modes) and

so these distributions may be used to extract the PDFs for the valence quarks.

The rapidity asymmetries seen at the Tevatron are a direct result of the fact the beam

environment is itself asymmetric as the Tevatron was a pp̄ collider. At the LHC we have a

proton-proton collider and so such rapidity asymmetries are no longer seen in the distributions.

However, as both beams are now protons, W+ are dominantly produced via u and d̄ PDFs in

the proton and the W− are dominantly produced via d and ū PDFs in the proton. Therefore the

overall charge asymmetry gives access to the PDFs for the valence and sea quarks. This simplified

picture is complicated by detector effects, measurement precision and beyond leading order

corrections, nonetheless many of these systematics can be cancelled by considering asymmetries

which are ratios or double ratios.

Overall, the Tevatron Drell-Yan production process probed quark PDFs down to momentum

fractions x ∼ 10−3, with fixed target Drell-Yan probing quark and antiquark PDFs at higher x.

Meanwhile at the LHC, high precision data on W and Z production is becoming an important

part of modern PDF fits, with Z qT data constraining the PDF of the gluon at intermediate x,

which is crucial for Higgs production predictions. The Drell-Yan production process must there-

fore be accurately theoretically predicted as part of a drive to reduce theoretical uncertainties

in both its own predictions and elsewhere.

On the other hand, Drell-Yan is also used to extract the W boson mass - for example from

the transverse mass distribution which has an endpoint around mW (as seen in Figure 7.14),

or from the spectrum of the individual lepton transverse momentum which has a “Jacobian

peak” at mW /2 (seen also for the Z Drell-Yan as is clear in Figure 7.12). This lepton transverse

momentum spectrum method is complicated by the W boson width, as well as QCD effects

and experimental precision, and so the shape of the individual lepton transverse momentum

distribution, rather than just the peak position, must be used. As the cross-section is dominated

by low values of the overall transverse momentum of the lepton-antilepton pair, this shape

information can only be accurately predicted once the effects of resummation of large logarithms

at small qT are accounted for. This highlights the importance of being able to accurately predict

the transverse momentum spectrum and the need for resummed theoretical predictions of high

precision. Indeed, the most precise determinations of mW are from Drell-Yan at the Tevatron,

for which we validate reSolve in Chapter 7.2.2. The W mass itself is an important electroweak

precision observable for global fits as the close agreement of the values extracted from Drell-Yan
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Figure 6.5: The leading order rapidity asymmetries in the W boson Drell-Yan production channel at the
Tevatron, as arising from the difference in the momentum fractions carried by the up and down quarks.
The W+ boson follows the direction of the proton beam and the W− boson follows the direction of the
antiproton beam. The effect is averaged out when the W+ and W− are considered together. These were
calculated by reSolve.

and measured indirectly is able to greatly constrain many Beyond Standard Model extensions.

Finally, not only is the Drell-Yan channel important as a test of perturbative QCD and for

reducing theoretical errors for other analyses, in and of itself it also allows for the search for

Beyond Standard Model extensions, with deviations at high invariant mass potentially indicative

of new physics. This further necessitates the development of tools for precise predictions of

differential spectra for the Drell-Yan channel. Models including W ′ and Z ′ particles would be

observable as additional contributions at higher masses to such spectra, such particles arise in

a variety of Beyond Standard Model theories: W ′ and Z ′ particles occur in SU(2)2 (or indeed

SU(2)n for n > 1) gauge groups; whilst Z ′s materialise from extra dimensional theories, U(1)

extensions of the Standard Model and Little Higgs Models [274]11. Whilst Z ′ and W ′ production

are not yet included in reSolve, the extension to include these modes is not of great difficulty

and will be one of several future developments made.

As a result of its general applicability, as well as its comparative experimental and theoretical

simplicity, Drell-Yan production is therefore one of the most precisely predicted and measured

channels, approaching percent level precision both theoretically and experimentally. In order to

produce such high precision theoretical predictions, QCD effects up to NNLO+NNLL have been

determined; currently reSolve is able to calculate the resummed contribution to this process up

to NNLL, whilst the matched finite piece will soon be added to enable NNLO+NNLL predictions

to be generated. Furthermore, in order to improve the accuracy from several percent to one

11In Little Higgs models the Higgs is regarded as a pseudo-Goldstone boson from the breaking of a global
symmetry near the TeV scale or higher.
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percent, recent calculations are now including the effects of NLO electroweak corrections [275].

These effects can be important as α(mZ) ≈ 1/128 ∼ α2
s(mZ) ≈ (0.1178)2 ≈ 1/72 and so they are

of the same order as NNLO QCD corrections. As of yet however, these electroweak corrections

are not included in reSolve.

reSolve calculates only the resummed contribution to the Drell-Yan cross-section, which

nonetheless is dominant; several programs determine the finite contribution, including FEWZ

[275], MCFM [269] and many others. ResBos [252, 276, 277] and DYRes [7, 8], both can calculate

the resummed contributions, the former including also the finite contribution and NLO QED

effects if desired and the latter being the program against which reSolve has been validated.

The program DYNNLO [278] can be used to compute the finite contribution and matched with the

DYRes resummed contribution to determine the whole transverse momentum spectrum. Adding

the finite contribution and consistently matching it with the resummed contribution in reSolve

is a priority for both the diphoton and Drell-Yan channels for future developments.

The cuts implemented for the Drell-Yan channel experimentally to reduce backgrounds differ

somewhat from those for the diphoton channel as the individual decay products may now be

distinguished. These cuts may be applied in reSolve and differ between the neutral current

and charged current channels due to the presence of an unmeasured neutrino for the W boson

case. For the neutral current Z or Z/γ∗ both final state leptons are detected, therefore the

standard pT1cut and pT2cut have a different meaning to in the diphoton case, reflecting cuts

on the transverse momenta of each of the leptons individually rather than together as they are

distinguishable. Similarly, cuts on the rapidities of the produced leptons can also be applied

individually for neutral current Drell-Yan. For the case of the charged current, the neutrino

produced ensures different cuts must be devised; these are cuts specifically on the rapidity of

the charged lepton and on its transverse momentum, etaecut and pTecut respectively. Cuts on

the missing transverse momentum (assigned to the neutrino), pTmisscut, and on the transverse

mass (as given in equation 5.15), tmasscut, may also be administered. Further descriptions of

the cuts are given in the explanation of the input files for reSolve in Chapter 7.1.2.

The validation and results for the Drell-Yan production channel are detailed in Chapter 7.2.2.

6.5 Advantages of reSolve

Here we finish this section by listing, for ease of perusal, several of the advantages of the

reSolve program for use in making theoretical predictions including resummation of transverse

momentum logarithms.

• Accuracy - As reSolve uses the analytic b-space resummation formalism, it offers much

greater accuracy than parton shower and other generally applicable programs for resum-

mation, including up to NNLL. Such accuracy is key to precision measurements, which

are required to enable the field to maximise the output of the LHC in both testing our

understanding of the Standard Model and searching for new physics via small deviations

in differential spectra.
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• Modularity - reSolve has been carefully constructed so as to take maximum advantage of

the near-universal nature of the analytic resummation formalism, with the code designed

to be modular. As a result, on top of the diphoton and Drell-Yan processes already in-

cluded, further processes can be added to reSolve. In principle its resummation module

is generally applicable to a wide range of hadron collider processes producing colourless

final states. There are very few such generally applicable and publicly available resumma-

tion programs at such accuracy, with public programs either using numerical resummation

(parton showers) which is of reduced accuracy, or tending to be focused on specific pro-

cesses.

• Customisable - The program structure allows the individual program sections to be used

independently, should the user wish. This could be used to enable interfacing with other

programs, for example with matrix element generators or other Monte Carlo codes.

• Transparent and well documented - A great amount of effort has been made to transpar-

ently document all the workings of reSolve, both in terms of the theoretical formalism

applied and the program structure and flow. We hope this allows the program to be under-

standable to the user and less opaque. In turn this should enable users to utilise reSolve

to maximum advantage.

• Parallelisable - The reSolve program has been explicitly designed with parallelisation in

mind and includes bash scripts which enable the parallelisation of the program. This

is unique amongst programs in this area and permits a greater number of Monte Carlo

evaluations to be performed, reducing this source of theoretical error. A description of the

parallelisation is given later in Chapter 7.1.6.

• Works straight out of the box - The reSolve program package contains all the necessary

files and external programs to work straight out of the box for the user, with simple input

and output files (as described in Chapters 7.1.2 and 7.1.3). This should encourage its use

in the field and goes hand-in-hand with its transparency and well-documented nature.

• Histogrammer - In keeping with these endeavours to ensure reSolve is as usable as possi-

ble, reSolve immediately produces differential spectra in the desired observables from the

events generated. This simplifies the process of making these theoretical predictions, with

no further work required outside of the reSolve package for the resummed contribution.

• Fully differential - The analytic resummation formalism applied is fully differential; this

means that not only the transverse momentum spectrum at which it is aimed, but any

arbitrary differential cross-section, can be predicted. It does so by keeping the full event

information and the cross-section and weight for all individual events, these may then be

combined to compute any differential spectra. Those included in the package are invariant

mass, rapidity, minimum and maximum transverse momenta of the individual final state

measured particles, and transverse mass; however others can easily be added as described

later in Chapter 7.1.8.
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Chapter 7

Use and Results of reSolve

In this chapter, we explain the usage and results of the reSolve program. We begin by

outlining its input and output files and then examine some more specific aspects of its use,

including the PDF fits which must be performed, the histogrammer program contained within

the package and how to set up reSolve for parallelisation. We also present a summary of how

new processes and new observables may be added to the program, emphasising its generality of

application. Following this, the validation and results for the two production channels included

so far, diphoton and Drell-Yan, are examined in detail. Finally we end the chapter with a

discussion of the future developments we aim to undertake to reSolve, given it is only in its

first main version currently. Many of these details have been given previously in our paper [2].

The reSolve program itself is provided with this thesis.

7.1 How to use reSolve

The new Monte Carlo parton-level differential cross-section resummation

tool reSolve is available publicly with both our paper [2] and on GitHub at

https://github.com/fkhorad/reSolve.

7.1.1 Basic Usage

Here we list the steps required to download and use the reSolve program:

• Extract the zipped tarball reSolve.tar.gz to the desired working directory.

• Enter the makefile, found in code/src and adapt any compilation flags as appropriate

to your machine. If you wish to use the Cuba integrator [264], rather than the built-in

k vegas integrator provided with the code, you need to provide the path to its location

in your machine. Interface codes for both k vegas (our integrator) and Cuba are provided

within the program and the relevant interface is automatically used once the integrator

chosen is given in the input file, see Chapter 7.1.2.

• Finally run ‘‘make’’ to compile the program and produce the ./reSolve.out executable.

reSolve is then ready to use.

• Running the program involves simply entering in the terminal

./reSolve.out {path to input file}, e.g. ./reSolve.out input/Wpm NNLL Tevatron.dat.

• The output working directory to which the output is directed is included in the input file. In order

to avoid overwriting or corruption of events, reSolve will not run if there are already events (or a
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file ‘‘reSolve main out.dat’’) in the specified folder. To re-run into the same folder either move

or delete the event files so the working directory for the output is empty before running.

• The reSolve program will then run and generate events for this setup, with the total cross-section

output in reSolve main out.dat (or reSolve main out END ITER.dat for k vegas parallelised

cases). The events are also output into the same specified output folder, along with any specified

histogram data files for the desired differential cross-sections, in particular for the qT spectrum1.

7.1.2 Input

The input for the reSolve program is read from a single flexibly-styled, customisable input

file. This input file is made up of a variety of sections, each dealing with a different type of input

information required by the program, and which are described below. There are a plethora of

input flags available that allow the user to tailor the program to their needs and we detail many

of these here. A sample input file is given in Figure 7.1; this is the Diphoton NNLL test 1.dat

input file representing the inputs listed later in Table 7.2, and is one of several sample input files

presented with the program in the folder “input/”, these are summarised later in Table 7.1.

The sections making up the input file, which are purely a construction to make them more

human-readable, are as follows:

1. Basic - The first section includes general input. These are the process, which is 1 for

diphoton resummation or 2 for Drell-Yan resummation - the only processes so far incor-

porated. If Drell-Yan is selected then one must also chose the specific Drell-Yan process

via the DYprocess flag; 1 = W+, 2 = W−, 3 = W±, 4 = Z only, 5 = Z/γ∗. In addition,

the DYnarrowwidthapprox flag allows the calculation of the on-shell only cross-section if

it is set to 1. The order flag obviously indicates the order of the calculation (leading order

(0), next-to-leading order (1) or next-to-next-to-leading order (2)) and the resum flag

turns the resummation on (1-default) or off (0). pdf flag allows for the PDFs input into

the program to be changed. Currently it is set to 82 indicating the MSTW (Martin-Stirling-

Thorne-Watt) 2008 set [279] at NNLO - MSTW is the only set currently incorporated into the

program, the program is nonetheless set up to make this easy to change between PDF sets.

80 offers the LO MSTW set and 81 the NLO MSTW PDF set. The MSTW PDF sets are

read from ‘‘Grids/’’ in the main program directory. CM energy indicates the collision

energy of the protons/antiprotons in the centre of mass frame in GeV and ih1/2 indicate

whether beam 1 and beam 2 are proton (1) or antiproton (-1) beams. save events is set

to 0 if only the total cross-section is required; however to produce differential cross-sections

the events must be saved and therefore save events should be set to 1 to indicate the

events will be saved in “easy” form (an output file in “easy” form is given in Figure 7.2) or

alternatively to 2 which is a “pseudo-lhe” (i.e. pseudo Les Houches Events) form. Finally

workdir sets the working directory to which the events are output.

1Histograms are only generated for those variables and binnings specified in the input file in the “Histograms”
section, nonetheless histograms can be calculated for previously calculated events using the hist only mode - see
Chapter 7.1.5.
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2. Scales - This section sets the three scales involved in the resummation formalism, which

were outlined in Chapter 5.5. The factorisation scale mu F (µF ) encapsulates scale depen-

dence as a result of the factorisation of the input and output processes of the collision - this

is the scale from which the PDFs are evolved. The renormalisation scale mu R (µR) depen-

dence arises from the scale at which the αs coupling is evaluated. The resummation scale

mu S (µS) results from the truncation of the resummed expression at a given perturbative

order, parametrising the ambiguity stemming from the precise definition of the logarith-

mic terms which are being resummed. Should the user wish to set µF , µR, µS directly to

fixed values throughout the resummation this is done here; in that case one must ensure

that also the flags muR flag and muF flag are set to 0. However, rather than fixed scales

one can set the values of µ2
F , µ2

R, µ2
S to fixed fractions of the Q2 invariant mass of each

generated event. To do this set muR flag and muF flag to 1 and µR, µF to the desired

fraction of Q2; the resummation scale µS will be set to half the renormalisation scale µR

in this case, as is the convention. Here one may also specify the parameter mu min, which

is the starting minimum scale from which the PDF fit factorisation scales are calculated,

see Chapter 7.1.4 for more information.

3. Integration - This section deals with the inputs specific to the Monte Carlo phase space

integration. maxeval, nstart and nincrease correspond to the approximate maximum

number of Monte Carlo evaluations to perform in total across all iterations2, the number

of evaluations to perform in the first iteration, and the number of additional evaluations

in each subsequent iteration. Therefore the number of evaluations in the nth iteration

is given by neval = nstart + (n − 1)nincrease, and the total number of evaluations across

N iterations is ntot = Nnstart + 1
2N(N − 1)nincrease. The program will stop after a

whole number of iterations once this number of evaluations ntot exceeds maxeval. The

integrator flag determines which integrator algorithm is used - either our own internal

k vegas Monte Carlo implementation is used for integrator flag= 1 or an external Cuba

Monte Carlo implementation [264] is used for integrator flag= 2. Note that Cuba will

automatically parallelise over the number of cores in the computer used whilst k vegas

will not. multi machine sets whether you wish to use parallelisation with k vegas, with

0 indicating not and 1 indicating parallelisation; it allows the user to run different batches

on different cores/computers and combine them all after each iteration. seed is used to set

the seed for the randoms used for the Monte Carlo phase space integration by k vegas or

Cuba. This can be used to set the seeds for the randoms for the Monte Carlo integration

based on time (−1) or a random repeatable set of uniformly distributed seeds (0). If one

is using parallelisation with k vegas, one can set −2 to ensure each batch has a different

seed, here the seed is set based on the machine tag but is deterministic and repeatable.

2This is not true in the k vegas parallelised case, as described in Chapter 7.1.6, here the number of total
iterations is set via the number of iterations desired per core and the number of parameter points per core per
iteration.
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4. Resummation - Here are various process-independent settings for the general resummation

implementation, this is the key part of the program. The maximum and minimum values

of the invariant mass squared Q2, transverse momentum squared q2
T and rapidity η, are

all set here3 via QQ Max, QQ Min, QT Max, QT Min, eta Max and eta Min. gqnp and ggnp

are factors to account for non-perturbative corrections to the Sudakovs; they factor in

uncertainty from very low qT ∼ ΛQCD and are given in equation 6.9 in Chapter 6.2.1. In

addition, here one may set the variables en sec multiplier and PDF fussiness which

are related to the PDF fit files used. More detail is given later in Chapter 7.1.4. Further

PDF fit options are also available; PDF fitonly can be set to 1 to run the code to obtain

the PDF fit file without running the whole resummation. This can be useful if running

parallel batches, starting without the PDF fit file here causes all batches to attempt to

evaluate the fit and this will increase the time taken to run the code (as it will wait for

the slowest core to complete the fit). It could also lead to inconsistencies in the fit used.

5. Process Inputs - Penultimately, there are the process-specific inputs.

(a) Diphoton - We first describe the diphoton process inputs. These include boxflag,

which allows the user to include (1) or not (0) the gg → γγ box diagram (see Figure 6.4

in Chapter 6.4.1), or even to only have this contribution to the process (boxflag=

2). The diphoton cuts are also given here, these are: crack1/2 which indicate if a

crack in the rapidity sensitivity of the detector is present (often 1.37 to 1.56 for the

LHC); etaCut which should be less than or equal to Min(|eta Min|,|eta Max|); and

pT1cut and pT2cut, which cut based on the qT of the photons. It is required that

Max(qγ1

T , q
γ2

T ) >pT1cut and Min(qγ1

T , q
γ2

T ) >pT2cut. Finally Rcut is a cut placed on

the opening angle of the two photons produced as two highly collimated photons may

not be resolved experimentally, we require ∆R =
√

(η1 − η2)2 + (φ1 − φ2)2 > Rcut.

(b) Drell-Yan - These process-specific inputs similarly detail possible cuts required. First

there are the usual general cuts described for the diphoton section - crack1/2. Then

there are specific cuts for different Drell-Yan sub-processes; pT1/2cut are also avail-

able for the neutral current Drell-Yan case, whilst then eta1cut and eta2cut cut

on the rapidity of the produced Drell-Yan leptons. In the case of charged current

Drell-Yan, the observables are different as the neutrino is not observed. The stan-

dard cuts are etaecut - a cut on the rapidity of the produced charged lepton, pTecut

- a cut on the transverse momentum of the charged lepton produced, pTmisscut -

a cut on the missing transverse momentum of the event (assumed to be from the

(anti-)neutrino), and tmasscut - a cut on the transverse mass of the event as defined

by mT = 2(|pT1||pT2| − pT1.pT2) (the massless limit of equation 5.15). The cut re-

quirements are |ηe| <etaecut, p
(−)
ν
T >pTmisscut, pe

±
T >pTecut and mT >tmasscut.

3It should be noted that the invariant mass, denoted Q or q throughout this thesis, is denoted as QQ in the
reSolve program.
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6. Histogram - Finally, the input file may be supplemented with inputs to the histogrammer,

which is incorporated within reSolve to determine the histogram files for the desired

differential spectra directly. For each differential cross-section desired, one line must be

added to the input file of the form “histo: {variable} {additional info}” where the

variables available are “qT”, “qq” (invariant mass), “eta”, “mT”, “pTmin” or “pTmax”

as described in Chapter 7.1.5. The histogrammer can also be used alone on previously

generated events using the flag hist only:1.

Figure 7.1: Input file for reSolve, this file shown is the example file found in
input/Diphoton NNLL test 1.dat. It is split up into appropriate sections - Basic, Scales, Integration,
Resummation, Process-specific input (diphoton in this case), and Histograms.
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Several input files are provided as part of the reSolve package, one for each main use and

validation of the program. These are used throughout the validation and results in the remainder

of this chapter and are summarised in Table 7.1.

Diphoton Input Files Included Description

Diphoton Born LHC.dat Leading-order diphoton production, LHC
14 TeV

Diphoton Born LHC parallel.dat Leading-order diphoton production, LHC
14 TeV, setup for k vegas parallelisation

Diphoton NNLL test 1.dat NNLL diphoton production, LHC 14 TeV

Diphoton NNLL test 1 parallel.dat NNLL diphoton production, LHC 14 TeV,
setup for k vegas parallelisation on one ma-
chine

Diphoton NNLL test 1 parallel multi.dat NNLL diphoton production, LHC 14 TeV,
setup for k vegas parallelisation across many
machines

Diphoton NNLL test1 twopdffits.dat NNLL diphoton production, LHC 14 TeV us-
ing two PDF fits at different scales across the
invariant mass range

Diphoton NNLL test1 fourpdffits.dat NNLL diphoton production, LHC 14 TeV us-
ing four PDF fits at different scales across the
invariant mass range

Diphoton NNLL test 2.dat NNLL diphoton production, LHC 8 TeV

Diphoton Atlas A.dat NNLL diphoton production, LHC 8 TeV,
setup for experimental comparison

Drell-Yan Input Files Included Description

Wpm Born Tevatron.dat Leading-order W± production, Tevatron

Wpm NLL Tevatron.dat NLL W± production, Tevatron

Wpm NNLL Tevatron.dat NNLL W± production, Tevatron

yZ Born Tevatron.dat Leading-order Z/γ∗ production, Tevatron

yZ Born Tevatron parallel.dat Leading-order Z/γ∗ production, Tevatron,
setup for k vegas parallelisation

yZ NLL Tevatron.dat NLL Z/γ∗ production, Tevatron

yZ NNLL Tevatron.dat NNLL Z/γ∗ production, Tevatron

yZ NNLL Tevatron parallel.dat NNLL Z/γ∗ production, Tevatron, setup for
k vegas parallelisation on one machine

yZ NNLL Tevatron parallel multi.dat NNLL Z/γ∗ production, Tevatron, setup
for k vegas parallelisation across many ma-
chines

Z OnShell Born LHC.dat Leading-order on-shell Z production, LHC

Z OnShell NLL LHC.dat NLL on-shell Z production, LHC

Z OnShell NNLL LHC.dat NNLL on-shell Z production, LHC

Table 7.1: The sample input files included with the reSolve program download for the diphoton and
Drell-Yan processes, these are used later in the validation of reSolve and in results generation, see
Chapters 7.2.1 and 7.2.2 for more information on the input files and for the corresponding results and
histograms. As emphasised previously, currently reSolve calculates only the resummed piece, not the
matched finite piece, consequently results are labelled “NLL” and “NNLL” as formally they do not include
the full set of finite NLO or NNLO contributions.
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7.1.3 Output

The output of the reSolve program comes in three parts: the total cross-section, the events,

and the histogram binning data for the differential cross-sections. These are all determined from

the individual event-by-event cross-sections generated by the program. The events are split into

iterations, with the cross-sections used to update the Monte Carlo grid assigning weights to the

different parameter space points and refining the grid so that the events are generated where

the integrand is largest. The total cross-section estimate is given by the Monte Carlo iteration

on iteration, it is output after each iteration to the terminal and is 1
N

∑
iwifi; here the sum is

over the points sampled i, wi is the weight of each phase space point, N is the total number

of samples and fi is the cross-section estimate for each phase space point. The error estimate

meanwhile is given by the square root of the standard variance given in equation 7.1; the factor

of N − 1 ensures we obtain the variance of the mean rather than of the fi evaluations:

Var =
1

N − 1

[
1

N

∑
i

(f2
i w

2
i )−

( 1

N

∑
i

(fiwi)
)2
]
. (7.1)

The Monte Carlo cross-section values for the iterations and their error estimates are

then combined by weighted average, where the weights are the inverse of the variance es-

timates. The total cross-section accumulated across all iterations is output into the file

‘‘reSolve main out.dat’’, or the file ‘‘reSolve main out END ITER.dat’’ if run across

many machines. The error given on the cross-section is consequently only approximate and

should only be used as a judgement after a few iterations. After each iteration, the grid used to

weight the Monte Carlo events is updated; the chi-squared gives an indication of how well the

grid approximates the integral, this is estimated via the difference between the weighted events

and the cross-section estimate at that iteration (the mean), weighted according to the variance.

This chi-squared should be divided by the number of degrees of freedom (which is equal to

the iteration number minus 1) to understand how good the estimate is. This is produced as

described in [265] and in the Cuba package [264], see also Appendix B.3.

In order to generate the histogram differential cross-section data, the events must be saved.

By default events are output in the “easy” form into the workdir specified; the events are split

into a different file for each iteration of the program. A sample output event file (in the “easy”

form) is shown in Figure 7.2. Each event details the 4-momenta of the incoming partons, the

2 outgoing particle 4-momenta, the random values used to define the phase space point by the

Monte Carlo and finally the event cross-section (in pb) and event weight. The events will all

be automatically read by the histogrammer to determine the histograms specified in the input

file. To determine the differential cross-sections, the histogrammer performs weighted averaging

analogous to that undertaken in the evaluation of the total cross-section, but does so now bin by

bin in order to produce a fully differential cross-section in whichever observables are required.
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Figure 7.2: Output file of reSolve, this file is in the “easy” form. In this form each event is represented
by six rows of information and followed by a blank row. The first two rows are the 4-momenta of the
incoming partons, the next two rows are the outgoing photon four-momenta, the fifth row is then the set
of 5 random values between 0 and 1 used to generate this event and its momenta. These randoms set the
invariant mass squared - Q2 ≡ qq2, the transverse momentum squared - q2

T , the rapidity - η, and the θ
and φ opening angles of the two photons in the diphoton centre of mass frame. Finally the last row gives
the value of the cross-section (in pb), 0 if cut, and the weight of the event in the Monte Carlo.

7.1.4 PDF Fits

In order to implement the b-space resummation formalism of [251] (and references therein),

the PDFs must be defined in Mellin space at generic complex values. This requires that we

perform an analytic fit for the PDFs (as a function of x, at fixed scale), which may then be

Mellin transformed to obtain the PDFs along the Mellin inversion contour4. This PDF fit is done

at the very start of the program once and for all. If a fixed scale or a narrow range of invariant

masses are used, a PDF fit at a single factorisation scale is satisfactory, indeed this is what is

traditionally done in such resummation programs. In this case, the single fit is done at the input

fixed factorisation scale µF at a momentum fraction set via xmax = (QQ Max/CM energy)2.

However, in cases where the invariant mass squared region considered is broad and one has a

dynamical factorisation scale, then one may wish to improve precision by running with multiple

PDF fits at various scales in the allowed invariant mass range. This possibility has been built into

reSolve, in order to do this set muF flag and mu F to 1 and set the variable en sec multiplier

accordingly. It should be noted however that the first version of the program is currently

4The PDFs do not need to be Fourier transformed as they have no qT dependence, they do however gain b
dependence from evolution of the PDFs from µF to the relevant scales in b-space.
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significantly slower for multiple PDF fits5 therefore we only recommend using this option in

particular cases where very wide invariant mass regions are used or if very accurate predictions

are required. A precise comparison of the runtime with one and multiple PDF fits is given in

Table 7.6, this will be optimised in future versions. The energy scale at which the PDF fits are

performed is determined by the invariant mass range and the en sec multiplier (En) variable.

The starting scale is taken as QQ Min, but this can be reset by setting mu min in the input file,

the program starts with the scale Q start = Max(mu min,QQ min). By default the value of

mu min is 20 GeV. The setting of the scales for the multiple PDF fits is as follows:

1. To determine the first value of the factorisation scale at which a PDF fit is performed,

reSolve calculates QQ temp = Q start×En; provided this is less than the QQ Max then

the scale the first PDF fit is performed at is then QQ Min×√En, i.e. the geometric mean

of QQ Min and the new scale QQ temp. The program will then go on to perform another

PDF fit, see step 3.

2. If however QQ temp > QQ Max then reSolve performs just one fit at the geometric

mean of the endpoints of the invariant mass range, µF =
√
QQ Min×QQ Max.

3. If in the previous steps, QQ temp < QQ Max, reSolve will perform a PDF fit at a

further scale. Once more, the program will take the scale of the previous fit and multiply

it by En giving a new scale QQ tempnew = QQ tempprev × En and compare this new

scale (which in the second fit case would now be QQ Min×E2
n) with QQ Max. Again if

the new scale QQ tempnew < QQ Max then the PDF fit will be performed at the scale

µF =
√
QQ tempprev ×QQ tempnew. QQ tempnew then becomes QQ tempprev and

we repeat this step 3 until QQ tempnew > QQ Max. Once QQ tempnew > QQ Max,

the final fit is performed at µF =
√
QQ tempprev ×QQ Max.

The process to fit the PDFs can take several minutes depending on the number of fits

required. In order to avoid unnecessary fits being made, PDF fussiness allows nearby previously

calculated PDF fits in the pdf fits folder to be used, for example setting it to 0.02 will ensure

that PDF fits made at a scale within 2% of the desired µF are used rather than a timely,

completely new fit being performed. By default PDF fussiness will be set to 0.01 if no input

is provided. Whether a PDF fit is appropriate is set by the factorisation scale of the fit, the

maximum momentum fraction xmax (which will be different for the same factorisation scale if

the centre of mass energy of the collider is different) and the PDF set used (for now LO, NLO

or NNLO MSTW PDFs only are included).

As an aside and to be complete in our description, we comment here that we use the fixed

flavour scheme for the PDFs, with a number of active (massless) flavours that can be set from

input but is typically set to 5. Meanwhile, the form to which we fit the PDFs is the conventional

5Essentially this is an issue of memory access - we have a PDF fit for each beam for each parton (8 corresponding
to up valence, down valence, anti-up, anti-down, strange, gluon, charm and bottom), with 8 fit parameters in up
to 14 different rapidity regions at each of up to 136 points per branch on the Mellin contour, on top of this we then
have a fit for each different fit energy scale where multiple PDF fits are used. This therefore quickly builds up
a huge PDF fit grid, which in our crude current implementation can cause slowdown in reading the appropriate
values.
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form given below which is proportional to a positive power of x and to a positive power of (1−x)

to ensure the PDFs correctly go to 0 as x→ 0, 1. These are multiplied by a polynomial in
√
x,

for which the highest power in the polynomial, aa, can be altered. This conventional form is

also used in 2gRes and DYRes and mimics the form of PDF fits performed by MSTW [279]. The

form is

f = a1x
a2(1− x)a3(1 + a4x+ a5x

1
2 + a6x

3
2 + a7x

2 + a8x
aa), (7.2)

with aa a constant which can be set within reSolve in Utility/constants.h6.

For validation plots for running the reSolve program with multiple PDF fits please see

Chapter 7.2.1.3, Figures 7.7 and 7.8.

7.1.5 Histogrammer

In order to produce the required differential distributions from the event-by-event cross-

sections produced by reSolve, the cross-sections must be binned in the desired phase space

differential variables. In the spirit of making reSolve a simple to use and independent package,

a histogrammer package is included which can be used to read in the events produced by reSolve

and bin them to produce the necessary differential cross-section histogram data. In fact, reSolve

will automatically produce the histogram data if the user includes a few lines in the usual

reSolve input file detailing the desired histograms and the binning. In the section “Histograms”

a line must be added for each desired histogram; begin by indicating this is histogrammer input

with “histo” at the start of the line, and then follow by the variable for the histogrammer,

the number of bins required and the start bin lower bound and final bin upper bound. This

will then calculate the events in each bin for the number given of evenly spaced bins across

the range specified. The option {variable} can be qT, qq, eta, mT, pTmin or pTmax for the

transverse momentum spectrum, invariant mass spectrum, rapidity distribution, transverse mass

distribution and distribution of the minimum/maximum transverse momentum of the (two)

outgoing particles respectively. Further variables for differential spectra can be added by the

user, as described in Chapter 7.1.8. To be specific, the form of the lines required in the input

file is:

histo: {variable} {no. of bins} {start bin lower end} {final bin upper end}.

If the user requires unevenly distributed bins, enter a “0.” where the number of bins is input,

and instead proceed by entering the endpoints of every bin. This is useful in allowing finer bin

spacings at the lower end of the transverse momentum spectrum, where resummation is crucial.

Histogram information will only be calculated for each variable specified, therefore if no

lines specifying the histogram information to be calculated are included in the input file, the

reSolve program will produce the events and total cross-section only. These events can then

later be used to determine the differential cross-sections required by using the reSolve package

6In order to compare against the codes 2gRes and DYRes different values of aa must be used, with the former
using aa = 2.5 and the latter using aa = 3. Of course, any differences caused by different aa values and consequent
PDF fit differences are a source theoretical error associated with the PDF fit.
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in hist only mode. In order to run the histogrammer alone, for example should the user wish

to re-bin the events or determine further histograms not initially specified in the input file, one

must include the hist only flag set to 1. In hist only mode reSolve will assume by default

that the event files are in “easy” form corresponding to setting the save events flag to 1 for the

initial event generation, if instead the user wishes to read in lhe events then “save events: 2”

must also be included in the input file for the hist only run. For either event file form reSolve

will then read the event files specified in workdir and determine the histograms specified by

the input lines of the form given earlier in this section. Histogram data files for each of the

desired differential distributions are produced; these are “histo 0 qT.dat”, “histo 1 qq.dat”,

“histo 2 eta.dat”, “histo 3 mT.dat”, “histo 4 pTmin.dat”, “histo 5 pTmax.dat”. Each of

these files lists the centre-points of each bin and the corresponding normalised cross-section in

that bin followed by a “0” column (the error in the position of the bin) and a column listing the

estimate of the error in that bin. It is important to note that the histogrammer produces the

cross-section in each bin normalised by the bin width (rather than the total cross-section in the

bin). This ensures the amplitude is independent of the binning used. For many of the validation

and results figures in this thesis in Chapter 7.2, the histogram data used is provided with our

paper [2].

7.1.6 Parallelisation

The time taken to perform Monte Carlo integration is a bottleneck for all theoretical pre-

dictions of this type. Whilst, fortunately, we do not require a very large number of evaluations

to reduce the Monte Carlo error down to the size of other theoretical errors, this still increases

the time taken to perform such predictions and restricts the reduction in Monte Carlo error.

Therefore we have built the reSolve program so as to permit straightforward, uncomplicated

parallelisation, taking further benefit from the modular and transparent form of the reSolve

program. As each phase space point undergoes precisely the same calculation to evaluate its

cross-section, the total number of phase space points may be divided across many cores and

many computers to reduce the physical runtime of the program. The process of parallelisation

is, however, somewhat complicated by the need to update the Monte Carlo grid iteration by

iteration; as a result all events from each iteration are needed to update the grid before the sub-

sequent iteration may begin. The parallelisation is therefore restricted to within iterations, the

program must wait to complete all phase space evaluations in a given iteration before the grid

can be updated and the next parallelised iteration begun on the cores and computers available.

A schematic of a parallelised run of reSolve is given later in Figure 7.3.

The actual use of reSolve with parallelisation is as follows. Of the two options for the

integrator, the Cuba implementation will by default parallelise over the number of cores of the

machine used, whilst the k vegas implementation will automatically only use one core. However,

the reSolve program has been designed to allow k vegas to run batches of events on different

cores, and indeed on different machines, and to then combine these batches after each iteration,
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before again distributing events in batches across the machines and cores available. This can

therefore be used to parallelise across all the cores in the machine used, like Cuba, or even to

run across multiple machines. This can hasten the process of producing the events required for

differential cross-section spectra greatly, depending upon the computer resources available. An

example of the reduction in physical runtime needed to produce a theoretical prediction with

such parallelisation is given later in Table 7.7.

In order to run batches in parallel across multiple machines/cores using k vegas, one must set

up the input file correctly; first turn the multi machine input to 1, as described in Chapter 7.1.2.

In addition, in order to avoid producing the same events across multiple cores, one must set seed

to -2, to allow the randoms’ seeds to be set by converting the machine tag into a numerical seed

different for each batch (in a deterministic and repeatable manner), or to -1, to set the randoms’

seed based on time - which will be marginally different for the batch sent to each machine. For

parallel running using k vegas, unlike the standard running or Cuba running, the maximum

number of iterations is not set by maxeval in the input file, rather it is set at the start of the

parallelisation script in the variable max iter - this is the number of iterations to run per core.

The number of evaluations (phase space points) per iteration per core are set as usual via nstart

and nincrease in the input file. The number of cores per machine is set via max cores at the

start of the parallelisation script. In order to parallelise across several of the cores of just one

machine, use the built in file single machine parallel, which in the default form included

with reSolve parallelises across 4 cores - this number is changed at the top of the script. To

run this, type into the terminal the call “single machine parallel {path to input file}”.

This terminal call starts the single machine parallel script included in the reSolve package

to parallelise the in-built k vegas Monte Carlo implementation across all the cores of a single

computer. It is important to note that for parallel runs in the case where one uses the k vegas

integrator, whether across the cores of one machine or across many machines, the numbers of

integration evaluations at the start and the increase in the number of evaluations from one

iteration to the next (nstart and nincrease in the input file) are then the numbers per core.

Therefore each core used in parallel will, in total, undertake n {tot per core} evaluations for a

total of n tot phase space points across all cores:

n {tot per core} = [max iter ∗ nstart + 0.5 ∗ n increase ∗ max iter ∗ (max iter− 1)], (7.3)

n tot = max cores ∗ [max iter ∗ nstart+ 0.5 ∗ n increase ∗ max iter ∗ (max iter− 1)]. (7.4)

In running the single machine parallel parallelisation script, the working directory used is

filled with event files events lhe {iter number}.lhe, each containing all the events from all the

cores for that given iteration7. In addition, there are reSolve main out {core number}.dat
and reSolve main out END ITER.dat files giving the final iteration result and accumulated

results for the total cross-section for the specified core and across all cores respectively.

7lhe here indicates the type of event output selected - save events set to 2 in the input file, the “easy” output
form with save events set to 1 also works.
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If instead of running across all the cores of one machine, one instead wants to reduce the

runtime even further by parallelising across many machines, one must use the integrator option

k vegas - setting integrator flag to 1 in the input file. Again multi machine must also be 1.

With these settings, one may then use the script multi machine parallel local to undertake

parallel runs across many computers. This parallelisation script allows the use of multiple

machines all of which are accessible via SSH on systems with or without a shared home directory

in which to access input files and to output results to. The user must change the exedir line to

the directory in which the reSolve program is installed, unless the script is run from the reSolve

working directory. To enter which machines to run on, enter the machine names into machines

at the top of the script. After saving the script, simply typing “multi machine parallel local

{path to input file}” into the terminal will set off a parallel run across the specified number

of cores of all named machines. The information is combined at the end of each iteration to

update the grid, before using all machine cores for the subsequent iteration; this continues until

all iterations are complete. The maximum number of iterations to be performed is set at the top

of the file, as is the number of cores to use per machine, in max iter and max cores respectively.

These were also set at the top of the single machine parallel script. Consequently, for both

multiple machine and single machine parallelisation the maxeval variable in the input file used

for single core k vegas running or Cuba running is not relevant. In the working directory for the

input file, a file of the form reSolve main out {machine name} {core number}.dat is created

for each core on each machine used, listing the overall total cross-section for that machine

core for both the final iteration and the accumulated results across all iterations. Meanwhile

reSolve main out END ITER.dat lists the combined total cross-section across all machines, all

cores for the final iteration and then the accumulated result across all machines, all cores and

all iterations. The output event files are also output into the input file working directory. A

schematic of a parallel run across many machines is given in Figure 7.3.

This capability of the reSolve program to parallelise across many machines is unique

amongst theoretical computational tools in this area. When reSolve is parallelised, histogram

data files will be automatically generated by the reSolve program as usual. A description of

the time taken to run in parallel compared with on one core is given in Chapter 7.2.3.

Sample input files which work with parallelisation, either across many cores of one ma-

chine, or across many SSH-accessible cores, are included with the reSolve program. These

sample parallelisable input files are in the input directory of the reSolve program, ready for

use, and are called Diphoton Born parallel LHC.dat, yZ Born Tevatron parallel.dat,

Diphoton NNLL test 1 parallel.dat and yZ NNLL Tevatron parallel.dat. These

are the same setups of the Diphoton Born LHC.dat, yZ Born Tevatron.dat,

Diphoton NNLL test 1.dat and yZ NNLL Tevatron.dat files (used in the validation of

the reSolve program in Chapters 7.2.1.1, 7.2.2.1, 7.2.1.2 and 7.2.2.2) except adapted for

k vegas parallelisation. The input files included in the reSolve package were summarised

previously in Table 7.1.
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In general, the parallelisation needed depends on the structure of the user’s computer net-

work; this varies significantly from one user to another therefore the user may have to make

small changes to the scripts as appropriate for their computer resources.

Figure 7.3: Flowchart demonstrating the running of a parallel run across the cores of many machines,
the script multi machine parallel local may be used to perform this.
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7.1.7 Adding a Process

As highlighted extensively in this chapter and previous chapters, a key driver in the devel-

opment of the reSolve program, and a key benefit of the program, is its modularity and near

process independence, taking full advantage of the universal nature of the theoretical b-space

resummation formalism. This near process independence and modularity has been incorporated

to allow flexibility in the use of reSolve, whether by enabling the future interfacing of separate

stand-alone sections of the code with different programs, or extending the program straight-

forwardly to meet the user’s needs. One set of key extensions of the current program which

reSolve is specifically designed to enable is the addition of new processes, avoiding the situa-

tion in the current literature where separate programs are developed for separate processes. In

particular, reSolve more generally has been written as a program to add transverse momen-

tum resummation to a generic process of the form h1 + h2 → F + X for a general colourless

measured final state F , so as to accurately produce the low qT part of the spectrum, which is

often the technically most-challenging piece. The user must then add this transverse momentum

resummed spectrum, produced by reSolve, to the usual finite piece and match them appro-

priately to obtain the complete spectrum over all qT . reSolve is not specifically targeted at

the diphoton and Drell-Yan processes, these are no easier to implement in the code than other

processes and are simply the first of several processes we have chosen to include.

This exercise of adding a process to reSolve is one that we the authors have undertaken

ourselves in developing reSolve from its β version, which included only the diphoton production

channel, to its first main version release which has the Drell-Yan production channels added.

The reSolve program consequently already includes all the switches and code blocks needed to

operate for two separate channels, and many of the sections must simply be copied or extended

should further processes be added. The inherently segmented structure of the code means the

process dependence is restricted largely to only one module of the program, with the remaining

sections functioning exactly as for other processes - including, crucially, the resummation mod-

ule. The main additions required for any new process are simply the Born cross-section, details

in the hard factors (related to the Born cross-section), and the relative orders at which different

initiation processes occur. We therefore hope the program, along with its transparent documen-

tation [2], lends itself to generalisation to further processes meeting the users’ requirements. To

this end we have written a guide to adding a process to reSolve, which we reproduce in outline

form here; where {process} appears in a routine, file or folder name below it is to be replaced

by a suitable name for the added process. To add a process to reSolve do the following:

1. Set 3 as the process number for the added process and extend User.cc to include the new

process in its “if . . . else if” statement, to do so copy the code section for either diphoton

or Drell-Yan to produce the new calls for the new process. This includes calling a new

routine {process} setup which will be defined in the file “{process} input.cc”, which in

turn we will create later in the new sub-folder “Process/{process} Res/”.
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2. Enter the Process sub-folder, this contains the process dependent routines. Here

there are sub-folders for each process included - currently the diphoton (Diphoton Res)

and Drell-Yan (DrellYan Res) production channels. Each process sub-folder con-

tains files and routines {process} cuts.cc, {process} hard.cc, {process} input.cc,

{process} integrand.cc, {process} ps.cc, and corresponding header files, see Fig-

ure 7.4. The goal is to produce appropriate corresponding files for the new process. First

create the new process sub-folder {process} Res.

3. Next, we will begin with the aforementioned process-specific file {process} input.cc to

read the process-specific input from the input file. This contains two parts, first there is

the {process} setup routine which organises the program pre-resummation for the new

process. To create this, the form of these files for diphoton or Drell-Yan can be copied.

This setup routine will call the second part of the file, the routine {process} ReadInput,

again the basic form of this will be analogous to the diphoton and Drell-Yan cases, with

the new relevant cuts for the process under consideration. Create also the corresponding

header file, including the class {process} input used to pass this input information to

the cut-checking routine later.

4. Create the {process} integrand.cc file and corresponding routine. This routine is called

from User.cc “if . . . else if” segment we have already extended, and coordinates the main

calculations for this process. The general form of these files for the diphoton or Drell-Yan

case may be copied. First, the routine calls a phase-space generating routine {process} ps
to generate the randoms and phase space for each process event, this is contained in the

process-specific file {process} ps.cc. Next the cuts relevant to the process phase space

are checked by calling the {process} cuts routine in the {process} cuts.cc file, then

the Born-level cross-section is determined via the routine sigmaij{process}calc in the

file {process} hard.cc. The process-independent resummation part of the calculation is

then implemented by calling the “resummed” routine contained in inv fourier.cc. This

determines the overall cross-section for each event, including resummation up to NNLL,

finally the events are then output in whichever form is indicated in the input file.

5. Therefore the {process} ps, {process} cuts and {process} hard routines and files must

be created for the new added process. First consider the phase space generation; this

routine reads in randoms generated in the rest of the code and uses them to set the relevant

parameters for the process phase space. The Jacobian for the transformation between

these random variables, whose values are between 0 and 1, and the phase space variables,

is given by “randsjacob”. A kinematics routine is then called to determine the 4-momenta

and angular separation of the relevant particles (e.g. the two photons for diphoton, two

leptons for Z Drell-Yan) in the lab frame in order to allow later application of the cuts.

Various other variables such as the factorisation, resummation and renormalisation scales

are also set here; this can be copied.
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6. The {process} cuts.cc file may be duplicated from the diphoton and Drell-Yan examples.

There are two types of cuts implemented here, first generic kinematical constraints are

applied to cut if either |η| or qT become so large that either x1 or x2 are too large or that

the resummation formalism is no longer valid respectively8. These are the “gencuts” and

should be kept for all processes. Secondly, there are the process-specific, phase space cuts

- “pscuts”. These are checked via the PS{process}cuts 1 routine, which will have to be

written anew for each added process. The process-specific cut information read in from

the input file (via the ReadInput {process} routine discussed earlier) is passed in via a

{process} input object, whilst the phase space and event information is passed via a

“PSpoint” object. With this information, the relevant phase space kinematic parameters

can be determined for each event and tested against the process-specific cuts.

7. Finally, the {process} hard.cc file consists of the sigmaij{process}calc routine, which

uses the input process information and event phase space point parameters to determine

the Born-level cross-section for the added process. This is then loaded into the sigmaij

vector array to be used elsewhere in the code, for example in computation of the hard

factors in the resummation. Process-specific hard factors are also calculated here for non-

Drell-Yan or Higgs processes, this is unnecessary for Drell-Yan and Higgs production as

we employ the DY-Higgs scheme so the hard factors are zero for these processes.

8. It is also necessary to add a new section in the file hardfns.cc in Resummation/; there

are sections of code here which detail the contributions from gluon-gluon initiation, quark-

gluon initiation and quark-quark initiation to the hard factors. In order to correctly

combine contributions with different initialising particles order-by-order, the relative or-

ders in αs of the leading order quark-quark and gluon-gluon contributions for the new

process should be added. In addition, in the interests of the speed of evaluation of the

program, only the non-zero hard contributions for each process are explicitly summed, for

example for diphoton or neutral current Drell-Yan only qq̄ is summed over as the final hard

scattering quarks must be the same flavour; whilst for W± Drell-Yan the contributions are

qq̄′ and, as a result of the CKM matrix, can occur with q and q′ of different generations,

such as us̄. Aside from these differences, one may copy the diphoton and Drell-Yan code

here. It is worth noting that the structure of the theoretical formalism here is process-

independent, one must just sum over all contributions (including zero contributions) for

each process. The small process dependence introduced in reSolve is purely a pragmatic

one, to avoid wasting time summing many zero contributions in the time-critical part of

the program.

8The η general cut comes from equations 5.29, given x1 and x2 are each momentum fractions they are bounded
to be less than 1, rearranging these equations this occurs if η > −0.5 log(Q2/s), which is the general cut applied.
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All of the remainder of the program should remain exactly as it is, the calculation of the hard

factors, Sudakovs, determination of the inverse Mellin transforms, the inverse Fourier transform

from impact parameter space, the Monte Carlo phase space integration and everything else

required will be calculated automatically by the program. In this way reSolve takes advantage

of the generality of the b-space Mellin-space resummation formalism of [223, 238–240, 242, 244,

247–249,251].

Figure 7.4: The DrellYan Res sub-folder (contained in the Process sub-folder), which contains the
Drell-Yan specific routines and links with the generic resummation parts of the reSolve program. An
analogous sub-folder and routines therein exists for the diphoton process and should be recreated for any
processes added.

We intend to undertake this process ourselves in the near future to extend the program

to the key Higgs to diphoton signal channel and others, for further information please refer to

Chapter 7.3. In the current version only the hard factors for qq̄ initiated processes are included up

to NNLL, those for gg initiated processes are only included at LL. Therefore processes requiring

these hard factors beyond LL will need the additional higher order hard factors to be added,

nevertheless we ourselves will add such hard factors for gg in the near future in order to add the

Higgs diphoton signal process.
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7.1.8 Adding a Differential Observable

A fundamental aspect of the resummation formalism applied in reSolve is that it is fully

differential, and so further differential spectra above and beyond the theoretically-complicated

transverse momentum spectrum at which it is aimed can be produced. Indeed the calculation of

differential distributions in invariant mass, rapidity and transverse mass of the final state system

F , and maximum and minimum transverse momentum of the individual particles in the final

state, are included out-of-the-box in the reSolve package. However, given that our Monte Carlo

implementation generates a complete description of all the measured particles in each event, and

the formalism is fully differential, we may determine arbitrary differential observables for the

events. As a result, differential spectra in any physical, measurable quantity can be predicted

by reSolve. In order to add a new variable for which to evaluate a differential cross-section,

minimal changes are required to the reSolve code:

1. Enter the Histogrammer/ folder in the reSolve package, and open the observables.cc

file. At the bottom of the file create a routine “{variable} obs” where {variable} is

replaced by the name of the new desired differential variable and calculate the value of

this variable from the event phase space information contained in the PS object. This

contains the four momenta of the incoming partons and of the individual outgoing final

state particles in elements PS mom(i)[j] where i is the particle (i = 0, 1 are the incoming

partons and i = 2, 3 are the outgoing particles as there are two outgoing particles for

diphoton and Drell-Yan) and j is the 4-momentum component9.

2. Remaining in the observables.cc file, call the new {variable} obs routine from the

obs values routine at the top of the file.

3. Including the relevant histogrammer line in the input file will then cause the program to

create the histogram data file when reSolve is run, producing the differential spectrum

in the new variable.

9These four momenta are calculated and added to the PS object through the process PS.cc files which call
in state w recoil in Resummation/resu PS.cc to calculate the incoming parton four-momenta including qT re-
coil, and Utility/phase space.cc/set PS twobody which determines the four-momenta of the outgoing particles.
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7.2 Validation and Results

reSolve is a completely new program implementation of the b-space resummation formalism,

and consequently, as with the development of any new tool, the validation of the results generated

is of crucial importance. Only once the code has been thoroughly tested, can it be used to make

precise theoretical predictions against which to test experimental data to further our knowledge

of the Standard Model and to search for new physics effects. With this in mind, great care

and attention was used during the development of reSolve to compare the outputs of the

various routines enclosed against similar routines and calculations elsewhere in private programs.

In addition, extensive physical checks were performed - ensuring the correct events were cut,

analysing Sudakovs and hard factors produced and many other elements. Finally, following

its completion, a number of further validation comparisons have been undertaken focusing on

the results of reSolve, comparing against the theoretical predictions of other programs and

against experimental data wherever possible. These other programs include the private 2gRes

code (version 2.2), which has been used in the production of results for previous papers in

references [5] and [6], and the DYRes code (version 1.0) [7, 8]. In this section we provide a

selection of these checks, focusing on the results reSolve generates. This is undertaken for both

the diphoton and Drell-Yan production channels in order to verify the general applicability of

reSolve. Through this comparison we also verify the ability of the program to use multiple

PDF fits at different factorisation scales and we conclude this section by commenting on the

speed of the program, which is often a limiting factor for such Monte Carlo reliant programs.

In our results in this chapter we do not perform the scale variation to determine the size of

theoretical errors as we largely seek to validate against other theoretical results, where we can

choose the precise same scales in the calculations we compare against. Throughout this chapter

the errors indicated on our results are purely Monte Carlo errors only.

Throughout our validation and the results presented for both the diphoton and Drell-Yan pro-

cesses, as reSolve does not yet include the finite piece, the results presented are the resummed

piece only and are therefore described only as “NLL” or “NNLL” rather than “NLO+NLL” or

“NNLO+NNLL”. In fact, the formalism itself includes in the resummed piece some virtual cor-

rections through the hard factor (as given in equation 6.28) in addition to the logarithmic pieces

and so in this sense some “NLO” and “NNLO” pieces are actually included in the resummed

piece. By describing as only “NLL” or “NNLL” we wish to distinguish the fact that the finite

piece, which contains pieces which are zero in the qT → 0 limit but which are important at

high values of transverse momenta, are not yet included in reSolve, therefore the overall total

cross-section will be missing a piece beyond leading order. These pieces are only important at

large transverse momenta and so do not affect the differential qT distributions at the low qT end

upon which our resummation is focused. We will seek to add these pieces in future versions,

nonetheless for our examples and many others the resummed piece is the dominant one in any
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case10. The one exception to the rule that we present only resummed pieces in this work is in

Figure 7.9 where the matched finite piece has been added from the 2gNNLO program [266] in

order to facilitate a comparison with the ATLAS experimental results.

7.2.1 Diphoton Production Results

For the validation of the program for the diphoton process (process = 1 in the input file),

first of all we ensure that the program produces the correct output for the Born-level process

by comparison against known results, this is described in Chapter 7.2.1.1. Following this, we

compare differential cross-sections in both invariant mass and in transverse momentum, for two

main test files, with the private 2gRes program (version 2.2) in Chapter 7.2.1.2. Finally, in

Chapter 7.2.1.3, we demonstrate the validation of reSolve for a setup for which we compare

against the 2gRes program and experimental data.

7.2.1.1 Diphoton Born cross-section

The first validation for any process is to confirm the Born cross-section is correctly calculated

as this is resummation independent and encodes the key process dependence that is carried

into the resummation formalism via the hard factors. Here we compare against known Born

cross-section results in a previous resummation paper, in particular against Table 1 in [266].

This reference details the production cross section for diphotons plus jets given a typical set of

kinematical cuts applied in ATLAS and CMS analyses [280] [281] for previous Higgs searches.

These inputs are
√
s = 14 TeV, 2µS = µR = qq, µF = 113 GeV, qqmin = 20 GeV, qqmax =

250 GeV, −2.5 < η < 2.5, etacut= 2.5, no “crack” in the detector, pT1cut= 40 GeV, pT2cut=

25 GeV and Rcut= 0.4. Note that as we are at leading order there is no gg box and qT is

unimportant. The input file used is provided with the code as input/Diphoton Born LHC.dat.

We can only use this as a test of the LO result as beyond LO not only the resummed piece

of the cross-section is required, but also the finite piece. Nonetheless for LO we obtain a total

cross-section of 5.708± 0.008pb whilst the value given in the paper was 5.712± 0.002pb, we are

therefore consistent.

10This dominance of the resummed piece can be seen in the results presented, for example later Table 7.4
illustrates that the resummed piece only calculations we have performed beyond leading order for the Drell-Yan
processes represent the majority of the known results (which include resummed and finite pieces).
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7.2.1.2 Diphoton Differential cross-sections at NNLL

Following the successful verification of the Born process, we now compare the differential

cross-sections in invariant mass and transverse momentum as calculated by reSolve at with

NNLL resummation against results from the private 2gRes program, which has been used in

previous comparisons with experiments. It should be noted that a small error was found in the

old 2gRes code around the Jacobian and subsequently corrected before undertaking this compari-

son11. The test files chosen are the Diphoton NNLL test 1.dat and Diphoton NNLL test 2.dat

provided with the reSolve program. The inputs of these two tests are summarised in Ta-

ble 7.2. These test files reflect common cuts, invariant mass ranges and transverse momen-

tum ranges used for diphoton measurements, at 14 TeV and 8 TeV for Diphoton test 1 and

Diphoton test 2 respectively. Therefore this comparison is of results produced by the new

reSolve program in the expected regions of application.

Test file Diphoton test 1 Diphoton test 2

Process 1 1
Order 2 2

CM energy (TeV) 14 8
µS , µR, µF (GeV) qq/2, qq, 113 qq/2, qq, 85

QQ Min, QQ Max (GeV) 80, 160 50, 110
QT Min, QT Max (GeV) 0, 120 0, 100

η Min, η Max -2.5, 2.5 -2.37, 2.37

gg box (boxflag) No (0) No (0)

etaCut 2.5 2.37
crack1, crack2 1.37, 1.37 1.37, 1.37

pT1cut, pT2cut (GeV) 40, 25 40, 30
Rcut 0.4 0.4

Table 7.2: The two test files used for validation for the diphoton process in reSolve both against
the private code 2gRes and internally, ensuring different numbers of PDF fits, different integrators and
different numbers of iterations all produce consistent results. The files are the Diphoton NNLL test 1.dat

and Diphoton NNLL test 2.dat provided with the program.

Figure 7.5 shows the comparison between reSolve and the previous private program 2gRes

for the Diphoton NNLL test 1.dat inputs with 500,000 events; with Figure 7.5a showing the

invariant mass spectrum and Figure 7.5b showing the transverse momentum spectrum. Excellent

agreement is seen in both cases with the two programs agreeing within the errors shown. First

of all consider the invariant mass spectrum; the invariant mass region for the Diphoton test 1

inputs is QQ Min = 80 GeV to QQ Max = 160 GeV, this is exactly the region over which we

have non-zero cross-section, demonstrating the events are being generated correctly. Meanwhile,

the shape of the distribution is as expected, rising sharply above 80 GeV once within the invariant

11This error has been known in the past but, being a private program, had not been corrected, essentially
the version of 2gRes we had calculated H1q = jacob×H1qY Y (costheta) and H2q = jacob×H2qY Y (costheta)
whereas it should have no Jacobian factors and appropriate factors to cancel out the normalisation differences
associated with the k in the resummation coefficients in Appendix B.1, in particular introduced for equation B.6
onwards. Therefore the correction is H1q = 2×H1qY Y (costheta) and H2q = 4×H2qY Y (costheta).
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mass region and peaking at the lower end of the invariant mass range. This occurs because as

the invariant mass increases the phase space for the production of a higher diphoton invariant

mass decreases. Meanwhile in Figure 7.5b we obtain the characteristic transverse momentum

spectrum shape, with the spectrum approaching zero at qT = 0 GeV, peaking sharply just above

0 GeV in the region where transverse momentum resummation is most important, and again

reducing as the qT increases. Furthermore we see a slight rise from 65 GeV peaking around

80 GeV; this is a kinematical effect caused by the qT cuts applied on each photon being 40 GeV

and 25 GeV. This kinematic “shoulder” produced due to the cuts is present in both theoretical

predictions and experimental results and was explained in [282]12. The qT spectrum is then

correctly cut off at the qT = 120 GeV upper bound. For this Diphoton NNLL test 1.dat input

file the total cross-section at NNLL is also in agreement; reSolve obtains 7.68± 0.03pb, whilst

2gRes obtains 7.67± 0.03pb.

Figure 7.6 illustrates a similar comparison for the Diphoton test 2.dat inputs, again with

500,000 events. Figure 7.6a shows the invariant mass spectrum comparison, whilst Figure 7.6b

is the transverse momentum spectrum comparison. For Diphoton test 2 the invariant mass

range is 50 GeV to 110 GeV as given in Table 7.2 - this region is clearly visible in Figure 7.6a.

The transverse momentum spectrum in Figure 7.6b again shows the correct behaviour, going

towards 0 at qT = 0 GeV, peaking sharply just above 0 and then falling away and cutting off at

the edge of the qT region at 110 GeV. Again the peak around 80 GeV results from an increase in

the phase space at this point, due to the cuts applied. Once more the total cross-section at NNLL

is also in good agreement between the two programs, with reSolve obtaining 2.54± 0.01pb and

2gRes 2.56± 0.01pb.

12The argument explaining this shoulder in outline is as follows - only when the qT of the diphoton system is
larger than the sum of the individual photon pT cuts, i.e. only when qT > pT1cut+pT2cut, are all relative angles
between the two photons possible. If the qT of the diphoton system is less than the cuts then the arrangement in
which the two photons are parallel is forbidden as it would not pass the cuts. In reality, there is also an angular
separation cut, Rcut, which requires the two photons to have a minimum angular separation, nonetheless the
argument follows through that until qT reaches some minimum corresponding to the resolved sum of the individual
photon momenta at this angular separation, then some angular configurations are forbidden. Moreover, even once
qT surpasses this value more and more contributions for each angular configuration contribute. Therefore as qT
tends to this minimum value and beyond, the phase space allowed by the cuts opens up, causing the kinematic
shoulder. In fact for an angular separation of 0.4 radians the minimum qT which allows all configurations of
the two relative photon momenta is given by the cosine rule as qT = 64.69 GeV for cuts pT1cut = 40 GeV and
pT2cut = 25 GeV.
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Figure 7.5: Comparison plots of the diphoton differential cross-sections with invariant mass
and transverse momentum for the Diphoton test 1 inputs as listed in Table 7.2 using the file
Diphoton NNLL test 1.dat provided with reSolve. The comparison is between the reSolve program
and the previous private program 2gRes. The comparison here includes only the resummed part of the
differential cross-section, not the finite piece, as this is all that is currently available in reSolve.
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Figure 7.6: Comparison plots of the diphoton differential cross-sections with invariant mass
and transverse momentum for the Diphoton test 2 inputs as listed in Table 7.2 using the file
Diphoton NNLL test 2.dat provided with reSolve. The comparison is between the reSolve program
and the previous private program 2gRes. The comparison includes only the resummed part of the differ-
ential cross-section, not the finite piece, as this is all that is currently available in reSolve.
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7.2.1.3 Diphoton Experimental validation

An additional validation that was performed was to use reSolve to reproduce the events

and corresponding total cross-section, invariant mass spectrum and transverse momentum spec-

trum for the inputs listed in [6]. These inputs are provided in the reSolve program pack-

age in ‘‘input/Diphoton Atlas A.dat’’ and are: diphoton process at NNLL, MSTW NNLO

PDFs (PDF flag = 82), centre of mass energy 8 TeV, pp collisions; µ2
F = µ2

R = qq2 and

µ2
S = qq2

4 ; 2,000,000 iterations with nstart = nincrease = 10000, 0 < QQ < 500 GeV,

0 < QT < 150 GeV, −2.37 < η < 2.37, gg box included, etacut= 2.37, crack1= 1.37,

crack2= 1.56, pT1cut= 40 GeV, pT2cut= 30 GeV and Rcut= 0.4. As a result of the large

invariant mass range considered, 5 PDF fits are used across the allowed range to improve accu-

racy; this is straightforward to do in reSolve by setting en sec multipler accordingly, whereas

when this analysis was performed with 2gRes the invariant mass region has to be manually split

into 5 segments which are run separately and then combined at the end. These comparisons

correspondingly also serve as validations for the ability of the reSolve program to implement

multiple PDF fits across the invariant mass range. For the inputs used in this comparison,

the 2gRes program has been previously validated against experimental data from the ATLAS

collaboration [283], with a further comparison performed for the work in [6]. We therefore also

validate reSolve against these experimental results at the end of this section. In the first parts

of the comparison with 2gres only in Figures 7.7 and 7.8, only the resummed piece is considered

so these results are NNLL only. For the later comparison against experimental data in Figure 7.9

the matched finite part from 2gNNLO [266] is used and so the results are the full NNLO+NNLL,

including both resummed and finite pieces.

The total cross-section produced by the reSolve program for these inputs was 6.188 ±
0.013pb, compared with 6.18±0.02pb from 2gRes, this therefore indicates very good agreement.

The invariant mass and transverse momentum spectra also are consistent and are given in

Figures 7.7 and 7.8 respectively. The qT plot shows agreement at both the low qT end and

higher qT end, with the position and height of the peak in the spectrum agreeing within the

errors; meanwhile as one increases qT the differential cross-section reduces as expected. The

spectrum peaks again slightly around 80 GeV as a result of increasing phase space available

beyond this qT , as demonstrated in the invariant mass spectrum raising rapidly above 80 GeV.

This is a threshold effect caused by the cuts - with cuts on pT1 and pT2 of 40 GeV and 30 GeV,

invariant masses of less than 80 GeV have fewer angular configurations of the two produced

photons allowed, as explained in the previous validations.

As well as validation against just the resummed part of the transverse momentum differen-

tial cross-section, we added the finite piece - as previously calculated by 2gNNLO [266] - in order

to validate against the total transverse momentum differential cross-section. We then com-

pared our reSolve results with the matched finite piece added (with Monte Carlo error only

and only for the resummed part of the differential cross-section) against those of 2gRes (with

errors shown indicating scale variation) and ATLAS experimental results [283]. The compari-
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son plot is shown in Figure 7.9. The figure demonstrates the excellent agreement between the

reSolve program and the data previously calculated with 2gRes, the main difference coming in

the 80 GeV-100 GeV region where we observe the expected kinematic shoulder bump in the re-

summed cross-section. The difference here is because the previous 2gRes program (as explained

in Chapter 7.2.1.2) had a small bug in the Jacobian which suppressed the effect of the bump. We

use the old 2gRes data to demonstrate its effect - indeed the new reSolve program now shows

better agreement with the experimental data in this region than the 2gRes code did previously.

There are small differences between the reSolve and 2gRes predictions and the experimental

results at intermediate transverse momenta, we expect these are within errors once all errors -

including those from the PDF fit, scale variation, Monte Carlo, matching and other sources are

taken into account. Given that reSolve and 2gRes agree excellently for the resummed part,

and consequently agree when the same matched finite piece is added as is done here, we believe

that the underestimate of the diphoton transverse momentum spectrum at intermediate qT is an

effect arising in the finite piece and/or the matching of the resummed and finite contributions.

However, given the finite piece calculation and matching were not performed by ourselves as

they cannot be undertaken in the current version of reSolve it is not possible to pin down

the exact source of the difference with respect to the experimental results. We expect to be

able to comment further on this matter in the near future once the matching is possible within

reSolve. In any case the current version of reSolve determines only the resummed piece of the

differential cross-section and so it is the excellent agreement at low transverse momenta which

is the focus of our validation here.
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Figure 7.7: Invariant mass spectrum for diphoton production for the Diphoton Atlas A.dat input file
provided with the program, and whose inputs are also listed in the text, as produced by reSolve and
compared with the previous private program 2gRes (used in the work in [5] and [6]). 5 PDF fits were
used across the invariant mass range. Only the resummed part of the differential cross-section is shown.
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Figure 7.8: Transverse momentum spectrum for diphoton production for the Diphoton Atlas A.dat

input file provided with the program and listed in the text, as produced by reSolve and compared with
the previous private program 2gRes (which was used in the work in [5] and [6]). 5 PDF fits were used
across the invariant mass range. Only the resummed part of the differential cross-section is shown.
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Figure 7.9: Transverse momentum spectrum, including resummed and finite pieces, for diphoton pro-
duction for the Diphoton Atlas A.dat input file provided with the program, and whose inputs are also
listed in the text. The spectra produced by the reSolve program (with finite pieces from 2gNNLO [266])
and the previous private program 2gRes, which was used in the work in [5] and [6], are given; also shown
are the ATLAS experimental results and corresponding errors [283]. The error bars for 2gRes show the
scale variation error, which is a dominant error. This is not calculable in reSolve as we do not include
the finite part of the cross-section in this first version of the program, therefore the reSolve error bars are
the Monte Carlo errors from the resummed part only. Once other sources of theoretical error, including
from the PDF fit, scale variation, matching and other sources are accounted for, we expect the theoretical
and experimental results would agree within the errors.
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7.2.2 Drell-Yan Production Results

The second process included in the reSolve program is the historically important Drell-Yan

production mode, this continues to be a key process in testing the Standard Model and in probing

for new physics extensions at Run II of the LHC and beyond. For this production process there

are five different sub-process options (the DY process flag - see Chapter 7.1.2), corresponding

to W+, W−, W±, Z and Z/γ∗, and the possibility of putting any of the intermediate particles

on-shell (via the DYnarrowwidthapprox flag).

In order to validate the Drell-Yan process, we performed similar checks as for the diphoton

case but for all five of these sub-process channels and including the possibility of both on-shell

and off-shell intermediate gauge bosons. Again we present only a relatively small collection of

these validations here for comparative brevity. We begin in Chapter 7.2.2.1 by verifying the Born

cross-section, comparing against known results, and then extend this to comparing results at all

included orders. This is followed by a presentation of comparisons against the program DYRes

(version 1.0) [8] in various differential variables, including the transverse momentum spectrum

and rapidity(η) spectrum in Chapter 7.2.2.2; in Chapter 7.2.2.3 we provide further differential

plots, comparing the rapidity, transverse mass (mT ), and p
min/max
T distributions against those

in [278]. Here further plots of additional differential distributions for the case of W± are also

provided in order to confirm the qualitative behaviour of the results is as expected.

It should be noted at this stage that there are several differences between our implementation

and DYRes which impact upon the answers given. In general, in producing the theoretical

predictions beyond leading-order there are a multitude of choices and methodology-linked effects

which affect the precise output values of the two programs. In order to produce these comparisons

of the reSolve and DYRes results we have sought to minimise these differences and thereby

demonstrate the absolute level of agreement of the codes. In general, results may show larger

differences down to the exact choices made in the calculations: from the running of αs, to

the nature of how higher transverse momenta are dealt with - reSolve essentially uses a step

function by allowing the user to specify a qT range, whereas DYRes gradually reduces the effects

of higher qT values via an arbitrarily-defined “switch” function. There are also differences in the

precise generation of phase-space points and how the η range is limited at its extremities, the

precise nature of the PDF-fitting function and in many other areas between the two programs.

Similarly, there are differences in mW and GF numerical values included, where the reSolve

values for these constants constitute more recent determinations. These choice differences were

eliminated as much as possible in the comparisons presented here, nonetheless these effects

tend to result in differences of order 5% and so this should be considered the accuracy of the

predictions for a generic input13.

13In particular, the effects of the αs running method and the qT switch are the largest differences seen and
may cause differences themselves of up to 5%, the choices in DYRes raise the predictions by around this amount
relative to the default choices in reSolve.
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7.2.2.1 Drell-Yan Born, NLL and NNLL cross-sections

In order to add a new process (in this case all the Drell-Yan processes) to the reSolve

program, as described in Chapter 7.1.8, we needed mainly to alter the non-resummation part of

the code by providing a new Born-level cross-section for the added process. For this reason, the

key test to perform to validate the added Drell-Yan process is to confirm it produces the Born

cross-sections correctly. With this purpose in mind, reSolve was run for three different setups:

setup 1 is for Z/γ∗ at the Tevatron, setup 2 is for Z on-shell at the 14 TeV LHC, and setup 3

is for W± at the Tevatron; the full invariant mass ranges, rapidity ranges, scale and cut setups

are listed in Table 7.3. These benchmarks were also used for NLO+NLL and NNLO+NNLL

comparisons and plots in later sections (where the resum flag must be changed to 1, the order

changed accordingly and the pdf flag changed to reflect the order of evaluation of the cross-

section). The transverse momentum ranges are therefore given, however note that there is no

transverse momentum at Born-level so the qT range set is unimportant for Born comparisons.

These benchmarks were chosen as they reflect the full range of Drell-Yan processes added and

there are full results quoted in [278] to compare against, in addition results were also obtained

from the DYRes (version 1.0) program [8] wherever possible, and from the MCFM (version 8.1)

program [284–287], for comparison (in the latter case at LO).

With these inputs as listed in Table 7.3, the reSolve program obtains the following Born

cross-sections: for the Z/γ∗ Tevatron setup 1, reSolve calculates σLO = 103.37 ± 0.06pb, we

may compare this with the results in [278] where σLO = 103.37± 0.04pb, whilst MCFM [284–287]

obtains σLO = 103.34 ± 0.04pb; for the on-shell Z LHC 14 TeV setup 2, reSolve calculates

σLO = 1758.9 ± 1.1pb, for comparison with σLO = 1761 ± 1pb in [278] and σLO(pp → Z →
l+l−) = σLO(pp→ Z)×BR(Z → l+l−) = 1761.1±0.1pb from MCFM; finally for the W± Tevatron

setup 3, reSolve calculates σLO = 1160.4±0.7pb for comparison with σLO = 1161±1pb in [278],

whilst MCFM obtains σLO(pp̄ → W±) = 1187.9 ± 0.4pb. Therefore there is good agreement for

these Born cross-sections between the reSolve program and known calculations for all three

setups.

Given this incorporates the majority of the process dependence of the formalism used for

the reSolve program, this indicates the new Drell-Yan processes are functioning correctly in

reSolve. Nonetheless, we demonstrate further results and validations in the next few sections.

Before any of the differential cross-sections are analysed, first we check that the total

cross-sections are sensible for each order beyond the Born - next-to-leading order (NLO)

cross-section with next-to-leading logarithm (NLL) resummation, and next-to-next-to-leading

order (NNLO) with next-to-next-to-leading logarithm (NNLL) resummation. For the moment,

reSolve, as mentioned, only includes the resummed piece of the differential cross-section

and so produces only “NLL” and “NNLL” results. The input files used are those for the 3

benchmark setups of Table 7.3 adapted to each of the orders and they are provided with the

reSolve program; including the Born input files used for the Born comparison already de-

scribed they are: yZ Born Tevatron.dat, yZ NLL Tevatron.dat, yZ NNLL Tevatron.dat;
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Test file setup 1 setup 2 setup 3

Process 2 2 2
resum flag 0 0 0
DYProcess 5 4 3

DYnarrowwidthapprox 0 1 0
Order 0 0 0

pdf flag 80 80 80
CM energy (GeV) 1960 14000 1960

ih1 1 1 1
ih2 -1 1 -1

µS , µR, µF (GeV) All mZ = 91.187 All mZ = 91.187 All mW = 80.398

QQ Min, QQ Max (GeV) 70, 110 70, 110 0, 200
QT Min, QT Max (GeV) 0, 200 0, 200 0, 200

η Min, η Max -3, 3 -10, 10 -3, 3

crack1, crack2 1.37, 1.37 1.37, 1.37 1.37, 1.37
pT1cut, pT2cut (GeV) 20, 20 0, 0 N.A., N.A.

eta1Cut = eta2cut 2 10 N.A.
pTecut (GeV) N.A. N.A. 20

pTmisscut (GeV) N.A N.A. 25
etaecut N.A N.A. 2

tmasscut (GeV) N.A N.A. 0

Table 7.3: The three test files used for validation of the Born cross-section for the Drell-Yan processes
in reSolve against the results in [278] and results from the program MCFM [284–287], as well as against
those of DYRes [8]. The PDF set used is MSTW2008 LO PDFs, therefore pdf flag = 80. The files used
are yZ Born Tevatron.dat, Z OnShell Born LHC.dat and Wpm Born Tevatron.dat, and similar inputs
were used for the NLL and NNLL tests, all these files are also provided with the reSolve program.

Z OnShell Born LHC.dat, Z OnShell NLL LHC.dat, Z OnShell NNLL LHC.dat; and

Wpm Born Tevatron.dat, Wpm NLL Tevatron.dat and Wpm NNLL Tevatron.dat. The re-

sults obtained from reSolve are compared with known results calculated in [278], the difference

being that, as-of-yet, reSolve does not include the finite part of the cross-section, just the

resummed part; therefore we expect our beyond LO results to be lower than in [278] but showing

the same trend with NNLL > NLL > LO. For this reason, we also present the resummed only

total cross-section contributions calculated in DYRes in Chapter 7.2.2.2 for the NNLL case.

The results are summarised in Table 7.4, those for LO were also given in the previous section.

The agreement shown at leading-order is good for all three benchmark setups with the known

results. Meanwhile, comparing the reSolve NLL and NNLL predictions with known results

for NLO+NLL and NNLO+NNLL, the predictions behave as expected, with each successive

order increasing the total cross-section as more contributions are added, whilst still being

smaller than the known results which include the additional finite contributions. Moreover, the

increases in the total cross-section are significant in going from LO to NLL but much smaller

upon going to NNLL, exactly as seen in the known results order by order. Also, as is well

known, the resummed contributions constitute the majority of the cross-section for Drell-Yan,

as is seen in our results here. Meanwhile, as reported and expanded in the next section, it is

clear the resummed only contributions of reSolve and DYRes show good agreement at the level

of the total cross-section.
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reSolve Known Result DYRes MCFM

Z/γ∗

setup 1

LO 103.37± 0.06 103.37± 0.04 - 103.34± 0.04
NLO(+NLL) 130.37± 0.10 140.43± 0.07 - -

NNLO(+NNLL) 130.40± 0.10 143.86± 0.12 130.30± 1.20 -

Z
On-shell
setup 2

LO 1758.9± 1.1 1761± 1 - 1761.1± 0.1
NLO(+NLL) 2009.1± 0.5 2030± 1 - -

NNLO(+NNLL) 2056.2± 3.0 2089± 3 2050.5± 2.1 -

W±

setup 3

LO 1160.4± 0.7 1161± 1 - 1187.9± 0.4
NLO(+NLL) 1438.6± 1.2 1550± 1 - -

NNLO(+NNLL) 1465.4± 1.3 1586± 1 1487± 10 -

Table 7.4: Summary of the total cross-sections in pb calculated by reSolve and compared with known
results [278] for the three setups of Table 7.3, the DYRes resummed only NNLL contributions calculated
for Chapter 7.2.2.2 are given for further verification, as are MCFM Born results for completeness. The
agreement is good between reSolve and the known results at LO and the behaviour beyond LO is as
expected. reSolve results beyond leading order are smaller than the known results as reSolve only
includes the resummed part of the total cross-section (i.e. NLL and NNLL), which is nonetheless the
dominant contribution as seen, not the finite part which is important at larger transverse momentum.
The beyond LO results of reSolve agree well with the resummed piece only calculations of DYRes. The
errors indicated are Monte Carlo errors only and so those for DYRes are larger as it is slower than reSolve.

7.2.2.2 Validation of reSolve against DYRes code

The aim of the reSolve program is, of course, to produce differential cross-sections not total

cross-sections. Therefore we must validate the differential cross-section results for the Drell-Yan

process in reSolve and we do so by comparison again with the program DYRes. This is from

the same series of programs as the 2gRes program against which we compared the diphoton,

and crucially for our validation it allows for the calculation of the resummed contribution only.

First we consider the Z/γ∗ Tevatron case of setup 1 (given previously in Table 7.3). DYRes

produces data for the transverse momentum spectrum and rapidity distribution, amongst oth-

ers, so we may compare these directly with these distributions as produced by reSolve. The

comparison plots are shown below in Figures 7.10a and 7.10b respectively; both figures show

the NNLL spectra and demonstrate very good agreement with the DYRes program, thereby val-

idating reSolve for this process. As given in Table 7.4, the total cross-section also agrees well,

reSolve obtains 130.4±0.1pb whilst DYRes (for the resummed piece only) obtains 130.3±1.2pb.

Similar comparisons can be performed for the on-shell Z LHC 14 TeV case of setup 2 (given

previously in Table 7.3). Figure 7.11a demonstrates the agreement in the NLL and NNLL

transverse momentum spectra between reSolve and DYRes. The total cross-sections, again given

in Table 7.4, are also in agreement between reSolve and DYRes with the programs obtaining

2056.2± 3.0pb and 2050.5± 2.1pb respectively for the resummed pieces only.

Finally, similar comparisons may be undertaken for the W± channel, and are shown for the

transverse momentum spectrum with NNLL resummation in Figure 7.11b, indicating excellent

agreement once more. The overall resummed piece only NNLL results for reSolve and DYRes

are 1465.4± 1.3pb and 1487± 10pb, this agrees at the 2% level.
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Figure 7.10: (a) Transverse momentum spectrum and (b) rapidity spectrum, including only the re-
summed piece, for Drell-Yan production via neutral current Z or γ∗ at NNLL for the setup 1 benchmark,
as given in Table 7.3. The agreement between the two programs is excellent, validating reSolve. The
error bars are the Monte Carlo errors from the resummed part only and are largely a reflection of the
length of the runs performed.
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Figure 7.11: (a) Transverse momentum spectrum, including only the resummed piece, for Drell-Yan
production via neutral current Z on-shell for the setup 2 benchmark, as given in Table 7.3. (b) Transverse
momentum spectrum, including only the resummed piece, for Drell-Yan production via charged current
W± for the setup 3 benchmark, as given in Table 7.3. In both cases the agreement between the two
programs is good, further validating reSolve. The error bars are the Monte Carlo errors from the
resummed part only and are largely a reflection of the length of the runs performed.
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At this stage it should be noted that the transverse momentum spectra in Figures 7.10a, 7.11a

and 7.11b do not show the expected behaviour of the differential cross-section tending to zero

at zero transverse momentum solely because of the binning (set to match DYRes), Figure 7.15a

in Chapter 7.2.2.3 demonstrates this expected behaviour in reSolve for the W± case of setup

3, where finer binning has been used for the low qT end of the spectrum to demonstrate this

behaviour.

7.2.2.3 Further Drell-Yan Differential Spectra

Finally, we provide several spectra obtained for each of the three setups to demonstrate the

agreement with the corresponding figures provided in [278] and to illustrate that the qualitative

behaviour of the reSolve program is as expected. Again, the figures in [278] include the finite

contribution as well as the resummed contribution, and so we expect the same behaviour in our

reSolve results but with mildly reduced cross-sections as we calculate only the resummed part.

First again consider the case of Z/γ∗ in our benchmark setup 1, the pmin
T and pmax

T distribu-

tions for this setup were given in Figure 2 of [278]. The corresponding spectrum, as produced

by the new reSolve program, is provided below in Figure 7.12 - we provide only the NLL and

NNLL spectra as the transverse momentum of the system at LO is zero within our formalism.

The qualitative agreement between the reSolve spectra and the previous spectra is good, mean-

while the behaviour of the spectra is exactly as expected with the NNLL spectrum having a

fractionally harder peak than the NLL. Both the pmin
T and pmax

T distributions cut off at 20 GeV

due to the applied pT cut; the pmin
T spectrum peaks just below mZ

2 and the pmax
T spectrum at

just above mZ
2 . The pmin

T spectrum also cuts-off at 55 GeV as the qT range had an upper limit

of 110 GeV whilst the pmax
T spectrum continues above 55 GeV, all this behaviour is exactly as

expected.

For the on-shell Z case of benchmark setup 2, Figure 1 of [278] provides the rapidity distri-

bution; the corresponding distribution calculated by reSolve is given below in our Figure 7.13,

the agreement between the two is excellent, with the effects of the resummation beyond LO

significantly increasing the cross-section between LO and NLL, with NNLL only offering a small

additional correction.

For the case of W± in our benchmark setup 3, the differential distribution provided in [278]

is the transverse mass distribution in their Figure 3, compare this with the same transverse mass

distribution produced by reSolve in Figure 7.14. Again, there is good agreement between the

results, the leading order mT distribution turns on at 50 GeV because the W± is produced at

zero net transverse momentum, so without any additional radiation we require pleptonT = pmissT

therefore the pmissT cut of 25 GeV sets the lower limit of the LO mT distribution to 50 GeV.

Of course, this limit is not a hard limit beyond LO as additional radiation can carry away

transverse momentum. For LO, NLL and NNLL the mT distribution peaks just below the W

mass at around 80 GeV as expected.
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Figure 7.12: Minimum and maximum transverse momenta spectra produced by reSolve for the two
outgoing leptons produced, including only the resummed piece, for Drell-Yan production via neutral
current Z or γ∗ for the setup 1 benchmark, as given in Table 7.3. This figure should be compared with
Figure 2 of [278], the agreement between the two results is good, with slight differences arising due to the
implementation of the formalism, as well as the lack of finite piece in reSolve. The error bars are the
Monte Carlo errors from the resummed part only and are largely a reflection of the length of the runs
performed.

Lastly, to demonstrate further validation and results in the W± channel, Figure 7.15 exhibits

the transverse momentum spectrum (Figure 7.15a) and rapidity spectrum (Figure 7.15b) of the

intermediate W± boson in charged current Drell-Yan production. As before, the features of

both differential spectra are as expected, the W± transverse momentum going to zero at zero

qT , peaking sharply at low transverse momentum and tailing towards zero once more as qT

is increased; whilst the rapidity spectrum is symmetric (indicating W+ and W− are treated

equally) and is zero outside the range −3 < η < 3 set in the input file. The rapidity spectrum also

indicates the large increase in cross-section between LO and NLL, with a much smaller further

increase up to NNLL, as anticipated and as revealed in the total cross-sections in Table 7.4.
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Figure 7.13: Rapidity distribution for the two outgoing leptons produced by the on-shell Z boson,
including only the resummed piece, for Drell-Yan production via neutral current Z on-shell for the setup
2 benchmark, as given in Table 7.3. This figure should be compared with Figure 1 of [278], the agreement
between the two results is excellent. The LO includes no resummation, whilst for beyond LO resummation
is included, so the results are at NLL and NNLL. The error bars are the Monte Carlo errors from the
resummed part only and are largely a reflection of the length of the runs performed.
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Figure 7.14: Transverse mass distribution for the W± case of the setup 3 benchmark, including only
the resummed piece, as given in Table 7.3. This figure should be compared with Figure 3 of [278], the
agreement between the two results is good, with the results of reSolve marginally smaller due to the
lack of finite piece. The LO includes no resummation, whilst beyond LO inclues resummation, so the
results are at NLL and NNLL. The error bars are the Monte Carlo errors from the resummed part only
and are largely a reflection of the length of the runs performed.
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Figure 7.15: (a) Transverse momentum spectrum and (b) rapidity spectrum, including only the re-
summed piece, for Drell-Yan production via charged current W+ or W− up to NNLL for the setup 3
benchmark, as given in Table 7.3. The addition of resummation and the additional virtual corrections in
going from leading order to NLL (with virtual corrections up to next-to-leading order also included via
the hard factors) significantly increases the amplitude of the rapidity distribution and correspondingly
also the total cross-section, contrastingly however the increase between NLL and NNLL is insignigicant.
The error bars are the Monte Carlo errors from the resummed part only and are largely a reflection of
the length of the runs performed.

7.2.3 reSolve Performance

Given the number of Monte Carlo iterations it is necessary to perform for the phase space

integral to produce the desired accuracy, and the fact that for each phase space point an inverse

Fourier transform and double inverse Mellin transform is required - each of which require at least

around 20, 50 and 50 points respectively, speed can be very important for transverse momentum

resummation programs in this formalism. As a demonstration, for 1,000,000 phase space points

parts of the resummation code (parts of inverse mellinresummed.cc and hardfns.cc) will be

called 1, 000, 000 × 20 × 50 × 50 = 5 × 1010 times. Therefore particular care has been taken,

even within this first main version of the code, to ensure it runs quickly. The run time naturally

varies significantly depending upon the input file; certain points require more b points to be

evaluated in the inverse Fourier transform, large η values have more points on each Mellin

contour, and different processes require different numbers of non-zero contributions to the cross-

section to be summed. Nevertheless we seek here to give a guide as to the speed of this first

main version of the reSolve program. In particular, in Table 7.5 we compare it against the

private code 2gRes used also for the validations in Chapter 7.2.1, again for the Diphoton test 1

and Diphoton test 2 inputs at NNLL listed in Table 7.2 with 550,000 phase space points. As

demonstrated, the reSolve program is consistently almost twice as quick as the previous 2gRes
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program, completing the same run in 53% of the time. This speed up is important, allowing a

greater number of evaluations to be performed and thereby attaining a greater accuracy with

the same computer resources.

Program Diphoton NNLL test 1 Diphoton NNLL test 2

σ(pb) time(min:s) σ(pb) time(min:s)

reSolve 7.68± 0.03 1678m:22s 2.536± 0.009 1370m:11s

2gRes 7.68± 0.03 3178m:35s 2.556± 0.008 2763m:46s

Table 7.5: Comparison of the time taken to evaluate 550,000 phase space points in the new public code
reSolve and the old private code 2gRes. The times listed are total core times, summing those across
all cores. The total cross-sections are also given, demonstrating good consistency between the programs.
Note that reSolve here used one PDF fit, as that is all that was available in the previous 2gRes program,
and the integrator Cuba was used by both programs to allow a fair comparison. The test files are the
Diphoton NNLL test 1 and Diphoton NNLL test 2 files used previously and listed in Table 7.2.

Running with multiple PDF fits will slow down the running of the reSolve program; mul-

tiple PDF fits therefore should only be used for cases with a dynamical factorisation scale (i.e.

which varies event by event) and a wide invariant mass range, where the adoption of multiple

PDF fits at different scales through the invariant mass range may offer increased precision. In

order to demonstrate this slowdown, Table 7.6 provides the run-times of the reSolve program

using 1, 2 and 4 PDF fit files respectively, once more for the Diphoton NNLL test 1 inputs

listed previously, although with a dynamical factorisation scale for the cases of 2 and 4 PDF

fits. Again the specific input files are available with the reSolve program already set up for 1,

2 and 4 PDF fits as Diphoton NNLL test 1.dat, Diphoton NNLL test1 twopdffits.dat and

Diphoton NNLL test1 fourpdffits.dat. The invariant mass and transverse momentum spec-

tra for these runs show excellent agreement as the number of PDF fits used is varied however

here we give only the comparison of the total cross section in Table 7.6 for brevity. The com-

parison demonstrates that, as one might expect, the runtime is significantly longer for multiple

PDF fits, indeed it is more than twice as long. Nonetheless, between 2 and 4 PDF fits the

runtime does not increase, demonstrating that the main difference comes when one starts to use

multiple PDF fits. Note however that even with multiple PDF fits, the reSolve program is not

dissimilar in speed to the private 2gRes program, which only uses one PDF fit.

Many of these issues of the time taken to evaluate the phase space points required are further

ameliorated by the ability of the reSolve program to allow parallelisation across many cores in

many machines. A comparison of the physical time elapsed when running more than 500,000

phase space points on one core, on 4 cores with Cuba, and on many cores on many machines

with k vegas is provided in Table 7.7. The run-times clearly demonstrate how much physical

time may be saved using the parallelisation option in reSolve. The results obtained are for

the Diphoton NNLL test 1 inputs used previously and were also consistent with those provided

in Table 7.5, with the 12 cores parallelisation across 3 machines obtaining 7.67± 0.08pb. Note

that the error is however larger here as the same number of total iterations were performed

in smaller batches. Also it should be noted that, as in its current form the reSolve program
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when parallelised using k vegas waits for all cores to be complete at a given iteration, the

speed of the program will be governed by the slowest core - this is why the core time in the

parallelised setup is longer than for the unparallelised or Cuba parallelised over one machine

implementations. This is necessary so that after each iteration the overall grid of points and

weights for the Monte Carlo integration is updated and used by all cores for the next iteration.

We therefore recommend parallelising across cores and machines of similar speeds. We intend

to develop the parallelisation scripts in the future to reduce this effect.

Number of PDF fits Diphoton NNLL test 1

σ(pb) time(min:s)

1 7.68± 0.03 1678m:22s

2 7.67± 0.03 3636m:35s

4 7.63± 0.03 3617m:52s

Table 7.6: Comparison of the time taken to evaluate 550,000 phase space points in the reSolve program
for different numbers of PDF fits. Again the times listed are total core times, summing those across all
cores. It should be noted that the time listed does not include producing the fits as the PDF fit files
were provided here. The total cross-sections are also given, demonstrating consistency between the fits.
As expected multiple PDF fits take much longer, however 4 PDF fits took no longer than 2 PDF fits.
The test files used were the Diphoton NNLL test 1.dat, Diphoton NNLL test1 twopdffits.dat and
Diphoton NNLL test1 fourpdffits.dat provided with the reSolve program. The general inputs for
this setup were listed in Table 7.2 in the case of 1 PDF fit.

Time elapsed(min:s)

One Core 4 cores (1 machine) Cuba 12 cores (3 machines) k vegas

Core time Physical time Core time Physical time Core time Physical time

∼1678m:22s ∼1678m:22s 1678m:22s 474m:34s 2756m:12s 229m:41s

Table 7.7: The time taken to evaluate over 500,000 phase space points in the reSolve program with
different degrees of parallelisation and using the Diphoton NNLL test 1 inputs given in Table 7.2. “One
Core” indicates either k vegas or Cuba used with one core only, the second column shows Cuba used
parallelising across the 4 cores of the machine used as standard, finally the time taken parallelising across
12 cores across 3 machines using the k vegas parallelisation routine multi machine parallel local

provided with reSolve is given. Note that the time given here for one core is approximate as this test
was not run, it is an indication based on extrapolation from 4 cores on the same machine.

Thomas Cridge 226



Chapter 7. Use and Results of reSolve 7.3. Future Developments

7.3 Future Developments

This version of the reSolve program is the first main version of many; we intend to optimise

and extend the program further, undertaking an ongoing development program. There are many

areas for improvement in the program, a few of those we consider the most important are listed

here:

• Add the finite parts for the diphoton and Drell-Yan spectra. Given the program currently

only includes the resummed (i.e. low qT ) part of the transverse momentum differential

cross-section, the obvious extension is to add the finite piece which is dominant at high

qT . This will require matching of the low and high qT pieces at intermediate qT using the

matching procedure outlined in [222] and Chapter 5.7.

• Extend to additional processes such as Higgs production. This will require addition of the

gg initiation hard factors beyond LO. With this extension the program will include both

signal and background (diphoton) for the Higgs and signal-background interference could

be examined [6].

• Beyond Standard Model contributions in cases such as Z ′ could be added to study how to

use the transverse momentum spectrum as a new tool with which to probe new physics at

the LHC. Addition of Z ′, and W ′, would not constitute a great amount of additional effort

as the hard factors are similar to those already incorporated in reSolve for the Drell-Yan

electroweak gauge bosons.

• Currently the PDFs are fitted and used at given scales, and whilst reSolve allows multiple

scales to be used and thereby enables the reduction of this source of error, as an initial

step we would like to examine the possibility of interpolating and using them directly at

the scale desired.

• The only PDF sets currently available to use are the MSTW PDFs [279], in future versions

we will broaden to allow any PDF set to be used. In order to do so we will allow Les

Houches Accord PDF formats [288] to be read in.

• The need for the PDFs in Mellin space is a weak point of the application of the formalism,

as it requires the PDF fit to be made with corresponding theoretical uncertainties engrained

in its application due to the fit form. We could attempt to avoid the need to fit the PDFs

altogether by taking the PDFs out of Mellin space. This perhaps could be done with

the addition of two further Monte Carlo integration variables with a potential ensuing

slowdown of the program. In addition, several evaluations would then correspond to a

single “event” losing some physical interpretation. Nonetheless the uncertainty from this

aspect of the code could be more easily gauged as it would then contribute a Monte Carlo

error rather than a difficult to measure, systematic theoretical error.

• There is substantial scope to further speed up the program, the speed of the program

is currently hampered by memory considerations which constitute a slowdown of around

20%, this could be reduced substantially. Furthermore, this memory slowdown is largely

associated with the PDF fit in Mellin space, and would be eliminated if the need to fit
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the PDF is removed. In addition, the parallelisation will be developed so that it is not

held up by the slowest core. This can be done by distributing further events to cores as

they finish their previous events, this will allow faster cores to calculate more events and

so reduce the time spent waiting for the slowest core to finish.

• The formalism could be relatively easily adapted to allow the implementation of a jet

veto, which may be of interest in certain applications. Associated with this is that in the

diphoton case photon isolation requirements could be implemented.

• The formalism and reSolve program can be extended to QED resummation.

• There is also interest in extending the application of this resummation formalism to larger

final states, perhaps WWγ even if only at NLL; reSolve, with its general implementation

of the formalism in a process-independent manner, is ideally placed to allow such studies.

• A further area of theoretical uncertainty is in the non-perturbative effects, which are

currently cut off at very large b (equivalent to very small qT ∼ ΛQCD) and then modelled

by exponential factors smearing the low qT peak. It would be compelling to analyse if

there is a better means of modelling such effects phenomenologically, perhaps guided by

experimental measurements or observations.

Beyond these short to medium-term objectives, the universality of the formalism applied

within reSolve, along with the program’s clearly-designed modularity, allow the potential to

interface the code with existing more general packages in order to allow their extension to

higher accuracy. This could incorporate interfacing with existing Matrix Element generators for

automatic generation of resummed spectra for a much wider class of processes, for example NLO

Matrix Element generators could be interfaced to allow semi-automatic production of differential

spectra at next-to-next-to-leading order with next-to-next-to-leading logarithm resummation.

From a theoretical perspective, there is also substantial interest in extending the formalism to

coloured states [256] and also separately perhaps even to N3LL, although much work remains

in this approximations may be possible in the shorter term and reSolve would be well placed

to incorporate any such extensions to the formalism. In any case, whichever the precise longer-

term direction taken, the properties of the reSolve transverse momentum resummation program

mean it can form a key part of current and future tools for precise theoretical predictions for

collider processes.
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Chapter 8

Summary and Conclusions

In this thesis we have focused our attention on the development of theoretical computational

tools for particle physics phenomenology. With the increasing amounts of data generated at

colliders such as the LHC, as well as the complicated nature of the theoretical calculations

associated with these experiments, this area of computational tools is of growing importance

and will act as a key driver of discoveries and improvements of our understanding into the future.

With the lack of obvious, compelling new physics signals at the Large Hadron Collider at

Run I and Run II so far, the particle physics community is in a position of searching for ways

by which to both probe our understanding and reveal new unknown physics contributions at

experiments. In this thesis we present two programs offering complementary means of doing

just this. The first, the SoftSusy decay calculator, explicitly calculates and predicts the forms

of signals for the Beyond Standard Model class of supersymmetric theories, focusing directly

on new physics at the LHC. The second, the reSolve transverse momentum resummation pro-

gram, takes a different approach instead concentrating on making precise predictions of known

Standard Model processes and their differential distributions in a variety of collider variables.

This allows the careful measurement of such spectra at the LHC to have the potential to re-

veal small discrepancies relative to these theoretical predictions. These differences may then

challenge our current understanding of particle physics and offer insights into Beyond Standard

Model particles and their contributions. Both approaches are complementary, offering different

levers by which to attempt to find the path to a more detailed knowledge of particle physics.

We therefore began this thesis with an overview of the Standard Model, itself a tremendous

success of particle physics in the latter part of the 20th century, and its problems and oversights.

We used this to motivate the need for new physics beyond the Standard Model. In Chapter 2.1.1

we introduced such a possible solution to many of these problems, and for a long period one of

the most favoured Beyond Standard Model theories, supersymmetry. We detailed its minimal

and next-to-minimal models, the MSSM and NMSSM, as well as various properties and moti-

vations, before moving onto to directly consider supersymmetric decays as a means to detect

supersymmetry at the LHC in Chapter 3. As part of this effort we have developed the SoftSusy

decay calculator, which is the subject of the research presented in the first half of the thesis.

Following this synopsis of the decay calculator program incorporated into SoftSusy, we

proceeded to describe the great number of decay modes incorporated as well as the validation

and results generated using the program. In particular, we provided results for each class

of included decay channels, including Higgs loop decays, 3-body supersymmetric decays and
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NMSSM decays. We also illustrated how the combination of the spectrum generator and decay

calculator of SoftSusy can be used to scan the supersymmetric parameter space and examine

the decay behaviour. A detailed and full list of all modes included in the program, as well as

their partial width formulae as implemented, is indexed in Appendix A.

Chapter 5 began the second half of the thesis, and the second major project undertaken,

which focuses on differential spectra and precision physics theoretical predictions, specifically

for the transverse momentum spectrum. It was made clear at this stage why this presents a

theoretical challenge, with the presence of un-cancelled logarithmically enhanced terms which

ruin the usual perturbative expansion in αs at low values of transverse momentum. These terms

must be resummed in order to recover predictivity. In this chapter we acquainted ourselves with

the background of this area of precision physics and resummation.

After this introduction, in Chapter 6 a meticulous narration of the b-space Mellin space

theoretical formalism chosen for our work in this area was presented, including the master

formula and a variety of included factors and their individual expressions. A summary was also

given of further pertinent points about the formalism which are crucial to its general application

in the new reSolve program, which is the centrepiece of our work in this subject. We proceeded

to describe the methodology and implementation of the transverse momentum resummation

formalism in reSolve and the carefully designed modular structure of the program, which

is key to its applications. We ended the chapter by exploring the two production channels

thus far included in the program, diphoton and Drell-Yan production, and their importance

for experimental searches and phenomenology. We culminated our description of our work

on reSolve in Chapter 7 with an explanation of the validation carried out as a vital part of

the program development; and we presented the results of the reSolve program, comparing

against other programs, known results and experimental data wherever possible. Details of the

exact resummation coefficients of the formalism, and further explanations of the Monte Carlo

integration method and of the use of Mellin space, are left to Appendix B.

Finally, for both the SoftSusy and reSolve programs we envisage our efforts to this point

as part of a continuing development of the programs, which will be guided by theoretical and

experimental motivations into the future. We have therefore summarised our work in each

section with an outline of potential extensions to the programs in both the short and long term.

The work presented in this thesis therefore represents a contribution to the ongoing global

effort of theoretical and phenomenological work associated with the LHC, which offers a tremen-

dous opportunity to further our knowledge of fundamental particle physics. The mystery of the

need for Beyond Standard Model physics so far remains unsolved and will only be unlocked by

detailed examination of the Standard Model and its potential extensions. By confronting these

with experimental data we can hope to guide our theoretical developments. With the LHC set

to continue for many more years, there is much further we can hope to learn. Computational

tools for theoretical predictions for LHC phenomenology, such as the two presented in this work,

will be crucial to any advances made. We therefore hope SoftSusy and reSolve can play a role

in extending our knowledge of fundamental particles physics at the LHC and beyond.
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Appendix A

SoftSusy Decay Formulae

A.1 Glossary - Reference Tables for Decay Formulae

We begin by listing the various decay modes included in SoftSusy along with equation

numbers for ease of reference. We group the listings into several tables: 2-body MSSM tree-level

decays are in Table A.1, Table A.2 contains MSSM Higgs boson decays, Table A.3 has MSSM

3-body decays, decays to gravitinos are in Table A.4, whilst Table A.5 and Table A.6 list the

additional NMSSM decays of neutralinos and Higgses.

Gluino Decays Slepton of first 2 generations decays

g̃ → qq̃L/R, qq̃1/2 A.4, A.5 l̃L → lZ̃i A.30

Squark of first 2 generations decays l̃R → lZ̃i A.31

q̃L → Z̃iq A.12 ν̃l → νlZ̃i A.32

q̃L/R → qg̃ A.6 l̃L → νlW̃
−
j A.33

q̃L → q
′
W̃−1/2 A.8 ν̃l → lW̃+

j A.34

q̃R → Z̃iq A.13
Squark of 3rd generation decays
q̃1/2 → qg̃ A.7 Slepton of 3rd generation decays

b̃1/2 → W̃−j t A.9 τ̃1/2 → τZ̃i A.35

t̃1/2 → W̃+
j b A.10 τ̃1/2 → ντW̃

−
j A.39

t̃1/2 → Z̃it A.14 ν̃τ → τW̃+
j A.40

b̃1/2 → Z̃ib A.17 τ̃1/2 → ν̃τH
− A.41

t̃1/2 → b̃1/2W
+ A.20 τ̃1/2 → ν̃τW

− A.42

t̃1/2 → b̃1/2H
+ A.21 ν̃τ → Z̃iντ A.32

t̃2 → φt̃1 A.23 ν̃τ → τ̃1/2W
+ A.42

b̃2 → φb̃1 A.26 ν̃τ → τ̃1/2H
+ A.41

q̃2 → Zq̃1 A.29 τ̃2 → τ̃1Z A.43
Chargino decays τ̃2 → τ̃1φ A.44

W̃+
i → q̄q̃′L A.47 Neutralino decays

W̃+
i → b̄t̃1/2 A.48 Z̃i → q̄q̃L/R A.75

W̃+
i → t̄b̃1/2 A.51 Z̃i → l̄l̃L/R A.77

W̃+
i → l̄l̃L A.55 Z̃i → t̄t̃1/2 A.79

W̃+
i → τ̄ ν̃τ A.57 Z̃i → b̄b̃1/2 A.83

W̃+
i → ¯̃τ1/2ντ A.60 Z̃i → τ̄ τ̃1/2 A.86

W̃+
1 →WZ̃j A.62 Z̃i →WW̃1/2 A.90

W̃+
1 → H−Z̃j A.64 Z̃j → H+W̃1/2 A.92

W̃2 → ZW̃1 A.67 Z̃i → ZZ̃j A.93

W̃2 → φW̃1 A.69 Z̃i → hZ̃j A.94

W̃+
1 → π+Z̃1 A.72 Z̃i → AZ̃j A.96

Table A.1: MSSM 2-body decays included in the SoftSusy decay program, the references for the
formulae in the appendices are given. φ here is h/H/A i.e. any of the neutral Higgs bosons.
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CP Even Higgs decays CP Odd Higgs decays

h/H → ff̄ A.98, A.1003 A→ ff̄ A.100, A.1005

h/H → Z̃iZ̃j A.102 A→ Z̃iZ̃j A.103

h/H → AZ A.112 A→ hZ A.113

h→ AA A.108 A→ f̃if̃
∗
j A.129

H → hh A.109 CP Even/Odd Higgs decays

H → AA A.110 φ→ W̃+
i W̃

−
i A.104

H → H+H− A.111 φ→ W̃+
i W̃

−
j A.106

h→ q̃L/Rq̃
∗
L/R A.114 φ→ γγ A.150

H → q̃L/Rq̃
∗
L/R A.116 φ→ gg A.195, A.1011, A.1012

h→ l̃L/R l̃
∗
L/R A.118 φ→ Zγ A.196

h→ t̃it̃
∗
j A.120 Charged Higgs decays

h→ b̃ib̃
∗
j A.123 H+ → ff̄ ′ A.131

h→ τ̃iτ̃
∗
j A.126 H+ → Z̃iW̃j A.132

h/H → ZZ∗, ZZ A.144, A.149 H+ →W+h A.139

h/H →WW ∗,WW A.145, A.148 H+ → f̃L/Rf̃ ′L/R A.140

H+ → f̃if̃ ′j A.142

Table A.2: Higgs decays included in the SoftSusy decay program, the references for the formulae in the
appendices are given. The same references may be given for different decays in cases where the underlying
formulae are the same and the necessary replacements for different outgoing particles are described with
the formulae. Multiple references are given for decays where QCD corrections are included, the first
reference is the non-QCD corrected decay and the remainder are once QCD corrections are included.

Gluino 3-body decays Neutralino 3-body decays

g̃ → qq̄Z̃i A.205 Z̃i → Z̃jff̄ A.262

g̃ → tt̄Z̃i A.217 Z̃i → W̃jf
′f̄ A.393

g̃ → bb̄Z̃i A.217 Chargino 3-body decays

g̃ → qq̄′W̃−i A.235 W̃j → Z̃if̄ ′f A.393

g̃ → tb̄W̃−i A.235 W̃+
1 → π0π+Z̃1 A.796

Table A.3: 3-body decays included in the SoftSusy decay program, the references for the formulae
in the appendices are given. Not all 3-body decays are included as they are naturally suppressed with
respect to the 2-body tree level decays. For this reason we have aimed only to incorporate the most
phenomenologically relevant 3-body decays, however more may be added in future versions. The same
reference is given for neutralino decays to a chargino, fermion and antifermion as for the “reverse” decays
of a chargino to a neutralino, fermion and antifermion as this just results in minus signs in several places
in the partial width formulae, which are given in the appendix.

Gravitino Decays

g̃ → gG̃ A.799 q̃ → qG̃ A.800

Z̃i → γG̃ A.801 l̃→ lG̃ A.800

Z̃i → φG̃ A.803 Z̃i → ZG̃ A.802

Table A.4: The Next-to-Lightest Susy Particle (NLSP) decays to gravitinos included in the program
along with the appendix references for their formulae.
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Neutralino Decays Decays into Neutralinos

Z̃i → q̃L/Rq̄ A.959 q̃L/R → qZ̃i A.984

Z̃i → t̃1/2t̄ A.963 t̃1/2 → tZ̃i A.987

Z̃i → b̃1/2b̄ A.966 b̃1/2 → bZ̃i A.990

Z̃i → τ̃1/2τ̄ A.969 τ̃1/2 → τZ̃i A.993

Z̃i →WW̃1/2 A.972 ν̃τ1/2 → ντ Z̃i A.996

Z̃i → H±W̃1/2 A.975 W̃1 → H±Z̃j A.997

Z̃i → ZZ̃j A.978 W̃1 →WZ̃j A.1000

Z̃i → hkZ̃j A.980

Z̃i → AkZ̃j A.982

Table A.5: The NMSSM decays involving neutralinos that are included in the SoftSusy decay program.
Note that any decays not involving neutralinos or neutral Higgs bosons are the same as in the MSSM.

CP Even Higgs Decays CP Odd Higgs Decays

hi → ff̄ A.805, A.1003 Ai → ff̄ A.903, A.1005

hi → f̃L/Rf̃L/R A.807 Ai → f̃Lf̃R A.905

hi → f̃L/Rf̃R/L A.810 Ai → Z̃jZ̃k A.907

hi → t̃j t̃j A.812 Ai → W̃jW̃j A.909

hi → t̃1t̃2 A.814 Ai → W̃1W̃2 A.911

hi → b̃j b̃j A.812 Ai → hjZ A.914

hi → b̃1b̃2 A.814 Ai → H±W A.916

hi → τ̃j τ̃k A.818 Ai → γγ A.920

hi → W̃jW̃j A.822 Ai → Zγ A.926

hi → W̃1W̃2 A.824 Ai → gg A.933, A.1019

hi → Z̃jZ̃k A.827 Decays into Higgs bosons

hi → AjAk A.829 b̃2 → b̃1hi A.937

hi → AjZ A.831 t̃2 → t̃1hi A.941

hi → H+H− A.833 τ̃2 → τ̃1hi A.945

hi →W+H− A.835 b̃2 → b̃1Ai A.949

hi → ZZ∗ A.842 t̃2 → t̃1Ai A.949

hi →WW ∗ A.843 τ̃2 → τ̃1Ai A.949

hi → ZZ A.842 W̃2 → W̃1hi A.953

hi →WW A.843 W̃2 → W̃1Ai A.956

hi → γγ A.851 hi → hjhk A.836

hi → gg A.890 A.1016 hi → hjhk A.836

hi → Zγ A.878 A2 → Ahi A.917

Table A.6: The NMSSM decays involving neutral Higgs bosons that are included in the SoftSusy decay
program, the references for the formulae in the appendices are given, where two references are given the
first is for the leading order case and the second for the QCD-corrected case. Note that any decays not
involving neutralinos or neutral Higgs bosons are the same as in the MSSM.
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A.2 Kinematic Functions

Here we begin the list of partial width expressions used in calculating the decay branching ratios in

SoftSusy, we hope this provides a useful reference. With the exception of the 3-body decays, the majority

of these widths were re-derived as a form of validation. First we list commonly occurring functions that

arise from the kinematics of the decays: λ̃1/2 appears as a result of the phase space integration:

λ̃1/2(m1,m2,m3) =

√(
1− (

m2 +m3

m1
)2

)(
1− (

m2 −m3

m1
)2

)
. (A.1)

For loop integrals the real and imaginary parts of the loop give the following kinetic factor, where

τa = 4( mamhi
)2:

f(τ) =

[sin−1( 1√
τ

)]2, for τ ≥ 1,

− 1
4 [ln( 1+

√
1−τ

1−
√

1−τ )− iπ]2, for τ < 1,
(A.2)

For the Zγ decay loops, the kinetic factor g(τ) also occurs:

g(τ) =


√
τ − 1 sin−1( 1√

τ
), for τ ≥ 1,

1
2

√
1− τ [ln

(
1+
√

1−τ
1−
√

1−τ

)
− iπ], for τ < 1.

(A.3)

A.3 MSSM Two Body Decay Formulae

Here we list for ease of reference the formulae for the partial widths of each of the 1→ 2 decay modes

incorporated into the decay calculator SoftSusy. The 1→ 2 decay widths were all re-derived, the book

by Baer and Tata [65] was used as a guide, however differences exist relative to their formulae. The

formulae provided in SUSYHIT [84, 131,132,134] also provided a useful check.

A.3.1 Gluinos

The partial widths for the decays of the gluinos to squarks and quarks are1:

Γ(g̃ → qq̃L/R) =
αS
4

1

2mg̃
(1 +

m2
q

m2
g̃

−
m2
q̃L/R

m2
g̃

)λ̃1/2(mg̃,mq,mq̃L/R), (A.4)

Γ(g̃ → qq̃1/2) =
αS
4

1

2mg̃
[1 +

m2
q

m2
g̃

−
m2
q̃L/R

m2
g̃

∓ 2 sin 2θq
mq

mg̃
]λ̃1/2(mg̃,mq,mq̃L/R). (A.5)

A.3.2 Squarks

The partial widths for the decays of the squarks to quarks are1:

Γ(q̃L/R → qg̃) =
4αS

3

1

2mq̃L/R

(1− m2
q

mq̃2
L/R

−
m2
g̃

mq̃2
L/R

)λ̃1/2(mq̃L,R ,mq,mg̃), (A.6)

Γ(q̃1/2 → qg̃) =
4αS

3

1

2mq̃1/2

(1− m2
q

mq̃2
1/2

−
m2
g̃

mq̃2
1/2

± 2 sin 2θq
mqmg̃

m2
q̃1,2

)λ̃1/2(mq̃1,2 ,mq,mg̃), (A.7)

1In both cases labelled the minus/plus sign applies for q̃1/q̃2 respectively.
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Γ(q̃L → q
′
W̃−1 ) =

g2

sin θ2
L/R

mq̃L

16π
(1−

m2
W̃−1

m2
q̃L

− m2
q

m2
q̃L

)λ̃1/2(mq̃L ,mq,m ˜
W−1

). (A.8)

Here the ′ indicates that the quark produced is the opposite type to the squark (so d̃L produces an up

quark for example), meanwhile θL and θR are for when up-type quarks (i.e. up or charm) or down-type

quarks (i.e. down or strange) are produced respectively. The expression (A.8) applies for the first two

generations of quarks as no mixing has been accounted for. The formula for decay to W̃−2 is similar but

sin θL/R → cos θL/R). The expressions with sfermion mixing, for the third generation of squarks, are:

Γ(b̃1 → W̃−1 t) =
mb̃1

16π

[
{(−g sin θL cos θb + fb cos θL sin θb)

2 + (−ft cos θR cos θb)
2}(1−

m2
W̃1

m2
b̃1

− m2
t

m2
b̃1

)

+ 4
mtmW̃1

m2
b̃1

(−g sin θL cos θb + fb cos θL sin θb)(−ft cos θR cos θb)
]
λ̃1/2(mb̃1

,mt,mW̃1
),

(A.9)

Γ(t̃1 → W̃+
1 b) =

mt̃1

16π

[
{(−g sin θR cos θt + ft cos θR sin θt)

2 + (−fb cos θL cos θt)
2}(1−

m2
W̃1

m2
t̃1

− m2
b

m2
t̃1

)

+ 4
mbmW̃1

m2
t̃1

(−g sin θR cos θt + ft cos θR sin θt)(−fb cos θL cos θt)
]
λ̃1/2(mt̃1

, b,mW̃1
),

(A.10)

where

ft =
gmrun

t√
2mW sinβ

, fb =
gmrun

b√
2mW cosβ

. (A.11)

(For decays of stops and sbottoms to W̃+
2 , sin θL/R → cos θL/R and cos θL/R → − sin θL/R, and for decays

of b̃2 and t̃2, sin θt/b → cos θt/b and cos θt/b → − sin θt/b.) The squark decays to neutralinos are given by:

Γ(q̃L → Z̃iq) =
1

2
(±gN2i +

g′

3
N1i)

2
mq̃L

16π
(1−

m2
Z̃i

m2
q̃L

− m2
q

m2
q̃L

)λ̃1/2(mq̃L ,mq,mZ̃i
), (A.12)

Γ(q̃R → Z̃iq) =
1

2
(
a

3
g′N1i)

2mq̃R

16π
(1−

m2
Z̃i

m2
q̃R

− m2
q

m2
q̃R

)λ̃1/2(mq̃R ,mq,mZ̃i
), (A.13)

where a = 4 for up type squarks and a = −2 for down type squarks. Nji are neutralino mixing matrix

elements. Decays of t̃1, b̃1, t̃2 and b̃2 are similar except the mixing of the L and R parts gives a linear

combination of the two pre-factors involving the elements Nji with weights which are sines and cosines

of the mixing angle θt/b. In addition the Higgsino components of the neutralinos become important:

Γ(t̃1 → Z̃it) =
mt̃1

8π
λ̃1/2(mt̃1

,mt,mZ̃i
)
[1

2
{a2(1− (

mt +mZ̃i

mt̃1

)2) + b2(1− (
mt −mZ̃i

mt̃1

)2)}
]
, (A.14)

a =
1

2

[
1√
2

cos θt[−gN2i −
g′

3
N1i]− fu sin θtN4i +

4

3
√

2
g′N1isinθt − fuN4i cos θt

]
, (A.15)

b =
1

2

[
1√
2

cos θt[−gN2i −
g′

3
N1i]− fu sin θtN4i −

4

3
√

2
g′N1i sin θt + fuN4i cos θt

]
. (A.16)

Whilst

Γ(b̃1 → Z̃ib) =
mb̃1

8π
λ̃1/2(mb̃1

,mb,mZ̃i
)

[
a2(1− (

mZ̃i
+mb

mb̃1

)2) + b2(1− (
mZ̃i

−mb

mb̃1

)2)

]
, (A.17)
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a =
1

2

[
1√
2

(cos θb[−N1i
g′

3
+N3ig)]− sin θbN3ifd −

2

3
√

2
sin θbN1ig

′ − cos θbfdN3i

]
, (A.18)

b =
1

2

[
1√
2

(cos θb[−N1i
g′

3
+N3ig)]− sin θbN3ifd +

2

3
√

2
sin θbN1ig

′ + cos θbfdN3i

]
. (A.19)

As usual if we instead consider q̃2, make the changes mq1 → mq2 , cos θq → sin θq and sin θq → − cos θq.

Γ(t̃1 → b̃1W
+) =

g2

32π

m3
t̃1

m2
W

λ̃3/2(mt̃1
,mW ,mb̃1

) cos2 θt cos2 θb. (A.20)

For t̃2, cos θt → sin θt, whereas for b̃2 then cos θb → sin θb. If the sbottoms are the initial states and stops

are in the final state then exchange mt̃i
and mb̃i

. For the decays to charged Higgs bosons:

Γ(t̃1 → b̃1H
+) =

g2

32πmt̃1
m2
W

A2λ̃1/2(mt̃1
,mH+ ,mb̃1

), (A.21)

A =mtmb(tanβ + cotβ) sin θt sin θb +mt(µ+At cotβ) sin θt cos θb +mb(µ+Ab tanβ) sin θb cos θt

+ (m2
b tanβ +m2

t cotβ −m2
W sin 2β) cos θt cos θb.

(A.22)

If instead we have t̃2 then cos θt → sin θt and if we have b̃2 then cos θb → sin θb and again if the sbottoms

are the initial states and the stops are the final state then exchange mt̃i
and mb̃i

.

Γ(t̃2 → φt̃1) =
A2
φ

16πmt̃2

λ̃1/2(mt̃2
,mφ,mt̃1

), (A.23)

Ah =
gmW

4
sin(β + α)

[
1− 5

3

g′2

g2

]
sin 2θt +

gmt

2mW sinβ
cos 2θt(At cosα+ µ sinα), (A.24)

AH is similar but we must transform cosα→ − sinα and sinα→ cosα, whilst

AA =
gmt

2mW
(At cotβ + µ). (A.25)

For b̃2 decaying to a Higgs and b̃1:

Γ(b̃2 → φb̃1) =
B2
φ

16πmb̃2

λ̃1/2(mb̃2
,mφ,mb̃1

), (A.26)

Bh = gmW sin(α+ β)
1

4
[−1 +

1

3

g′2

g2
sin 2θb] + gmb cos 2θb

1

2mW cosβ
[−Ab sinα− µ cosα], (A.27)

BH is similar but again we must transform cosα→ − sinα and sinα→ cosα, whilst

BA =
gmb

2mW
(Ab tanβ + µ). (A.28)

For third generation squark decays to Z bosons we have the following2:

Γ(q̃2 → Zq̃1) =
g2m3

q̃2

64πm2
Z cos2 θW

λ̃3/2(mq̃2 ,mq̃1 ,mZ) cos2 θq sin2 θq. (A.29)

2Note that the amplitude is proportional to the sine squared of the mixing so this does not occur for the first
two generations.
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A.3.3 Sleptons

Γ(l̃L → lZ̃i) =
1

2
[gN2i + g′N1i]

2
ml̃L

16π
(1−

m2
Z̃i

m2
l̃L

− m2
l

m2
l̃L

)λ̃1/2(ml̃L
,ml,mZ̃i

). (A.30)

Γ(l̃R → lZ̃i) =
1

2
[g′N1i]

2
ml̃R

16π
(1−

m2
Z̃i

m2
l̃R

− m2
l

m2
l̃R

)λ̃1/2(ml̃R
,ml,mZ̃i

). (A.31)

Γ(ν̃l → νlZ̃i) =
1

2
[gN2i − g′N1i]

2mν̃l

16π
(1−

m2
Z̃i

m2
ν̃l

)2. (A.32)

Γ(l̃L → νlW̃
−
1 ) =

g2 sin2 θL
16π

ml̃L
(1−

m2
W̃1

m2
l̃L

)2. (A.33)

For decays to W̃2 make the replacement sin θL → cos θL.

Γ(ν̃l → lW̃+
1 ) =

g2 sin2 θR
16π

mν̃l(1−
m2
W̃1

m2
ν̃l

− m2
l

m2
ν̃l

)2λ̃1/2(mν̃l ,ml,mW̃1
). (A.34)

For decays to W̃2 make the replacement sin θR → cos θR.

Γ(τ̃1 → τZ̃i) =
mτ̃1

8π

[
a2(1− (

mτ +mZ̃i

mτ̃1

)2) + b2(1− (
mτ −mZ̃i

mτ̃1

)2)

]
λ̃1/2(mτ̃1 ,mτ ,mZ̃i

), (A.35)

where

a =
1

2

[
1√
2

sin θτ (gN2i + g′N1i) + fτN3i cos θτ −
√

2g′N1i cos θτ + fτN3i sin θτ

]
, (A.36)

b =
1

2

[
1√
2

sin θτ (gN2i + g′N1i) + fτN3i cos θτ +
√

2g′N1i cos θτ + fτN3i sin θτ

]
, (A.37)

fτ =
gmτ√

2mW cosβ
. (A.38)

For τ̃2 decaying replace mτ̃1 → mτ̃2 , cos θτ → sin θτ and sin θτ → − cos θτ .

Γ(τ̃1 → ντW̃
−
1 ) = [−g sin θL sin θτ − fτ cos θL cos θτ ]2mτ̃1(1−

m2
W̃1

m2
τ̃1

)2. (A.39)

For decays to W̃2 make the replacements mW̃1
→ mW̃2

, sin θL → cos θL and cos θL → − sin θL, meanwhile

for τ̃2 decays change mτ̃1 → mτ̃2 , cos θτ → sin θτ and sin θτ → − cos θτ .

Γ(ν̃τ → τW̃+
1 ) =

mν̃τ

16π

[
(g2 sin2 θR + f2

τ cos2 θL)(1−
mW̃1

m2
ν̃τ

− m2
τ

m2
ν̃τ

)

− 4
mτmW̃1

m2
ν̃τ

g sin θRfτ cos θL

]
λ̃1/2(mν̃τ ,mτ ,mW̃1

).

(A.40)

For decays to W̃2 then make the replacements mW̃1
→ mW̃2

, sin θR → cos θR and cos θL → − sin θL.

Γ(τ̃1 → ν̃τH
−) =

g2

32πm2
Wmτ̃1

[
m2
τ tanβ sin θτ −mτ (µ+Aτ tanβ) cos θτ

]2
λ̃1/2(mτ̃1 ,mν̃τ ,m

−
H). (A.41)
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For τ̃2 decays then one must make the changes mτ̃1 → mτ̃2 , cos θτ → sin θτ and sin θτ → − cos θτ as

usual.

Γ(τ̃1 → ν̃τW
−) =

g2 sin2 θτm
3
τ̃1

32πm2
W

λ̃3/2(mτ̃1 ,mν̃τ ,mW ). (A.42)

The equations for τ̃1/2 → ν̃τW
− and τ̃1/2 → ν̃τH

− can be used for ν̃τ → τ̃1/2W
− and ν̃τ → τ̃1/2H

− by

interchanging the mτ̃1/2
↔ mν̃τ .

Γ(τ̃2 → τ̃1Z) =
g2 sin2 θτ cos2 θτm

3
τ̃2

64πm2
Z cos2 θW

λ̃3/2(mτ̃2 .mτ̃1 ,mZ), (A.43)

Γ(τ̃2 → τ̃1φ) =
Ã2
φ

16πmτ̃2

λ̃1/2(mτ̃2 ,mτ̃1 ,mφ), (A.44)

Ãh =
−gmw

4
sin(α+ β) sin 2θτ

[
− 1 + 3

g′2

g2

]
+

gmτ

2mW cosβ
cos 2θτ (µ cosα+Aτ sinα), (A.45)

ÃH is the same as Ãh but with the changes cosα→ − sinα and sinα→ cosα, meanwhile ÃA is:

ÃA =
gmτ

2mW
(µ+Aτ tanβ). (A.46)

A.3.4 Charginos

Γ(W̃1 → q̄q̃′L) =
3mW̃1

32π
(g2 sin2 θL/R)(1−

m2
q̃L

m2
W̃1

+
mq

2

m2
W̃1

)λ̃1/2(mW̃1
,mq,mq̃L). (A.47)

Here the ’ on the squark indicates it’s of the opposite SU(2)L type to the quark, e.g. if the quark is an up

then the squark is a d̃L. Also note that θL occurs when up-type quarks (i.e. up or charm) are produced

and θR is when down-type quarks are produced (i.e. down or strange). The formula for decay of W̃−2 is

similar but we must change sin θL/R → cos θL/R.

Γ(W̃+
1 → b̄t̃1) =

3mW̃1

32π

[
(A2 + C2 sin2 θt)(1−

m2
t̃1

m2
W̃1

+
m2
b

m2
W̃1

) + 4AC sin θt
mb

mW̃1

]
λ̃1/2(mW̃1

,mb,mt̃1
),

(A.48)

where

A = g sin θR cos θt − fu cos θR sin θt, (A.49) C = −fd cos θL. (A.50)

For t̃2 take cos θt → sin θt, sin θt → − cos θt and mt̃1
→ mt̃2

and for W̃2 take cos θR → − sin θR ,

cos θL → − sin θL and sin θR → cos θR, and also mW̃1
→ mW̃2

.

Γ(W̃+
1 → t̄b̃1) =

3mW̃1

32π

[
(A2 + C2 cos2 θb)(1−

m2
b̃1

m2
W̃1

+
m2
t

m2
W̃1

) + 4AC cos θb
mt

mW̃1

]
λ̃1/2(mW̃1

,mt,mb̃1
),

(A.51)

where now

A = −g sin θL cos θb + fd cos θL sin θb, (A.52)

C = fu cos θR, (A.53)

ft =
gmrun

t√
2mW sinβ

, fb =
gmrun

b√
2mW cosβ

. (A.54)

For b̃2 take cos θb → sin θb, sin θb → − cos θb and o mb̃1
→ mb̃2

. For W̃2 take cos θR → − sin θR,
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cos θL → − sin θL and sin θL → cos θL, and also mW̃1
→ mW̃2

.

Γ(W̃+
i → l̄l̃L) =

mW̃i

32π
A2(1−

m2
l̃L

m2
W̃i

+
m2
l

m2
W̃i

)λ̃1/2(mW̃i
,ml,ml̃L

), (A.55)

where

A =

−g sin θL/R, for W̃1.

−g cos θL/R, for W̃2.
(A.56)

θL is used for decays to νl and θR for decays to ν̃lL .

Γ(W̃+
i → τ̄ ν̃τ ) =

mW̃i

32π

[
(A2 +B2)(1− m2

ν̃τ

m2
W̃i

+
m2
τ

m2
W̃i

) + 4AB
mτ

mW̃i

]
λ̃1/2(mW̃i

,mτ ,mν̃τ ), (A.57)

A =

g sin θR, for W̃1,

g cos θR, for W̃2,
(A.58)

B =

−fτ cos θL, for W̃1,

fτ sin θL, for W̃2,
(A.59)

and fτ has been given before in (A.38).

Γ(W̃+
i → ¯̃τ1ντ ) =

mW̃i

32π
A2(1− m2

τ̃1

m2
W̃i

)2, (A.60)

where
A = −g sin θL sin θτ − fτ cos θL cos θτ . (A.61)

For W̃2 make the replacements cos θL → − sin θL, sin θL → cos θL and mW̃1
→ mW̃2

. For τ̃2 make the

replacements cos θτ → sin θτ , sin θτ → − cos θτ and mτ̃1 → mτ̃2 .

Γ(W̃+
1 →WZ̃j) =

g2

16π|mW̃1
| λ̃

1/2(mW̃1
,mW ,mZ̃j

)
[
(X2 + Y 2)

(
m2
W̃1

+m2
Z̃j
−m2

W

+
1

m2
W

{(m2
W̃1
−m2

Z̃j
)2 −m4

W }
)
− 6(X2 − Y 2)mW̃1

mZ̃j
)
]
,

(A.62)

X =
1

2
[cos θRN4j

1√
2
− sin θRN2j − cos θLN3j

1√
2
− sin θLN2j ]. (A.63)

Y is the same as X except the first two terms change sign. For W̃2 transform cos θL → − sin θL,

sin θL → cos θL, cos θR → − sin θR, sin θR → cos θR and change mW̃1
→ mW̃2

.

Γ(W̃+
1 → H+Z̃j) =

1

16π|mW̃1
| λ̃

1/2(mW̃1
,mH− ,mZ̃j

)[(a2 + b2)(m2
W̃1

+m2
Z̃j
−m2

H−)

+ 2(a2 − b2)mW̃1
mZ̃j

],

(A.64)

where

a =
1

2
(− cosβA2 + sinβA4),

b =
1

2
(− cosβA2 − sinβA4),

(A.65)
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A2 = − 1√
2

[gN2j + g′N1j ] cos θR − gN4j sin θR,

A4 = − 1√
2

[gN2j + g′N1j ] cos θL + gN3j sin θL.

(A.66)

For W̃2 change cos θL → − sin θL, sin θL → cos θL, cos θR → − sin θR, sin θR → cos θR and mW̃1
→ mW̃2

.

Γ(W̃2 → ZW̃1) =
1

64πmW̃2

λ̃1/2(mW̃2
,mZ ,mW̃1

)
(gg′)2

g2 + g′2

[
(
g

g′
+
g′

g
)2[(x2 + y2)

(
m2
W̃2

+m2
W̃1
−m2

Z

+
1

m2
W

((m2
W̃1
−m2

W̃2
)2 −m4

Z)
)

+ 6(x2 − y2)mW̃1
mW̃2

]
, (A.67)

where

x =
1

2
(sin θL cos θL − sin θR cos θR), (A.68)

and y is the same as x except the second term changes sign.

Γ(W̃2 → φW̃1) =
g2

32πmW̃2

λ̃1/2(mW̃2
,mφ,mW̃1

)
[
(S2
φ + P 2

φ)(m2
W̃2

+m2
W̃1
−m2

φ) + 2(S2
φ − P 2

φ)mW̃1
mW̃2

]
,

(A.69)

Sh =
1

2
(− sin θR sin θL sinα− cos θL cos θR cosα+ sin θL sin θR cosα+ cos θL cos θR sinα), (A.70)

Ph is the same as Sh except the first and second terms gain an extra minus sign (become +). SH , PH

are the same as Sh and Ph if you take sinα→ − cosα and cosα→ sinα.

SA =
1

2
(sin θR sin θL sinβ − cos θL cos θR cosβ − sin θL sin θR cosβ + cos θL cos θR sinβ). (A.71)

Again PA is the same as SA except the first two terms gain an additional minus sign.

For the case when the lightest chargino and the lightest neutralino are quasi-degenerate and ignoring

decays to kaons (whose decays are Cabbibo suppressed by a factor of 20 or so), the partial width of the

lightest chargino decaying into a pion and the lightest neutralino reads [289]3:

Γ(W̃+
1 → Z̃1π

+) =
f2
πG

2
F

4π

λ(mW̃1
, mZ̃1

, mπ+)

mW̃1

{
(OL11 +OR11)2

[
(m2

W̃1
−m2

Z̃1
)2 −m2

π+(mZ̃1
−mW̃1

)2
]

+(OR11 −OL11)2
[
(m2

W̃1
−m2

Z̃1
)2 −m2

π+(mW̃1
+mZ̃1

)2
]}

, (A.72)

where fπ ≈ 93 MeV is the pion decay constant and, noting that Θ(x) is the Heaviside theta function of

x, we have:

OL11 = (−i)1−Θ(MZ̃1
)(−i)1−Θ(MW̃1

)

(
− 1√

2
N14 sin θL +N12 cos θL

)
, (A.73)

OR11 = i1−Θ(MZ̃1
)i1−Θ(MW̃1

)

(
1√
2
N13 sin θR +N12 cos θR

)
, (A.74)

which account for the wino content of the lightest chargino and the lightest neutralino.

3Note that in Eq. A.72 we have switched conventions OL11 ↔ OR11 with respect to Ref. [289].
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A.3.5 Neutralinos

Γ(Z̃i → ūũL/R) =
3C2|mZ̃i

|
32π

λ̃1/2(mZ̃i
,mu,mũL/R)(1 +

m2
u

m2
Z̃i

−
m2
ũL/R

m2
Z̃i

), (A.75)

where

C =

 1√
2
(−gN2i − g′

3 N1i), for ũL,

−4
3
√

2
g′N1i, for ũR.

(A.76)

Neutralino decays to charm and c̃L/R have a similar expression. For decays to down and d̃L/R or to

strange and s̃L/R then C for the L component is the same as above except g → −g and C for the R

component has a factor of 2 rather than -4 in the numerator of the pre-factor. The masses must also be

changed appropriately. Note that the difference between the left-handed (LH) and right-handed (RH)

squark comes from the LH squark coupling to both the zino and wino components of the neutralinos

whereas the RH squark couples only to the zino components.

Γ(Z̃i → l̄l̃L/R) =
C2|mZ̃i

|
32π

λ̃1/2(mZ̃i
,ml,ml̃L/R

)(1 +
m2
l

m2
Z̃i

−
m2
l̃L/R

m2
Z̃i

), (A.77)

C =

 1√
2
(gN2i + g′N1i), for l̃L,

√
2g′N1i, for l̃R.

(A.78)

Again the difference here between the L and R sleptons is due to the L sleptons coupling to the wino

and zino components of the neutralinos whilst the R sleptons couple only to the zino components.

Γ(Z̃i → t̄t̃1) =
3|mZ̃i

|
16π

λ̃1/2(mZ̃i
,mt,mt̃1

)

[
a2{(1 +

mt

mZ̃i

)2 − (
mt̃1

mZ̃i

)2}+ b2{(1− mt

mZ̃i

)2 − (
mt̃1

Z̃i

)2}
]
,

(A.79)

a =
1

2
(α+ β), b =

1

2
(α− β), (A.80)

α = cos θt
1√
2

[−gN2i −
g′

3
N1i]− ft sin θtN4i, (A.81)

β =
4

3
√

2
g′N1i sin θt − ft cos θtN4i. (A.82)

For t̃2 take cos θt → sin θt, sin θt → − cos θt and mt̃1
→ mt̃2

.

Γ(Z̃i → b̄b̃1) =
3|mZ̃i

|
16π

λ̃1/2(mZ̃i
,mb,mb̃1

)

[
a2{(1 +

mb

mZ̃i

)2 − (
mb̃1

mZ̃i

)2}+ b2{(1− mb

mZ̃i

)2 − (
mb̃1

Z̃i

)2}
]
,

(A.83)

where a and b are as before but the α and β are different:

α = cos θb
1√
2

[−g
′

3
N1i + gN2i]− fb sin θbN3i, (A.84)

β = − sin θb
2

3
√

2
g′N1i − cos θbfbN3i. (A.85)
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For b̃2 take cos θb → sin θb, sin θb → − cos θb and mb̃1
→ mb̃2

.

Γ(Z̃i → τ̄ τ̃1) =
|mZ̃i

|
16π

λ̃1/2(mZ̃i
,mτ ,mτ̃1)

[
a2{(1− (

mτ +mτ̃1

mZ̃i

)2}+ b2{(1− (
mτ −mτ̃1

mZ̃i

)2}
]
, (A.86)

a =
1

2
(α+ β), b =

1

2
(β − α), (A.87)

α =
1√
2

sin θτ [gN2i + g′N1i] + fτN3i cos θτ , (A.88)

β = −
√

2g′N1i cos θτ + fτN3i sin θτ . (A.89)

For τ̃2 make the replacements cos θτ → sin θτ , sin θτ → − cos θτ and mτ̃1 → mτ̃2 .

Γ(Z̃i →WW̃1) =
g2

16π|mZ̃i
| λ̃

1/2(mZ̃i
,mW ,mW̃1

)
[
(X2 + Y 2)×(

m2
Z̃i

+m2
W̃1
−m2

W +
1

m2
W

{(m2
Z̃i
−m2

W̃1
)2 −m4

W }
)
− 6(X2 − Y 2)mZ̃i

mW̃1

]
,

(A.90)

X =
1

2
[cos θRN4i

1√
2
− sin θRN2i − cos θLN3i

1√
2
− sin θLN2i], (A.91)

and Y is the same as X except the first two terms get an extra minus sign. For W̃2 change cos θL →
− sin θL, sin θL → cos θL, cos θR → − sin θR, sin θR → cos θR and mW̃1

→ mW̃2
.

Γ(Z̃j → H+W̃1) =
1

16π|mZ̃i
| λ̃

1/2(mZ̃j
,mH+ ,mW̃1

)
[
(a2 + b2)(m2

Z̃j
+m2

W̃1
−m2

H+) + 2(a2− b2)mZ̃j
mW̃1

]
,

(A.92)

where a and b and then A2 and A4 are exactly as given for the decay W̃1 → H+Zj in (A.64).

Γ(Z̃i → ZZ̃j) =
g2 + g′

2

64π|mZ̃i
| λ̃

1/2(mZ̃ij
,mZ ,mZ̃j

){N4iN4j −N3iN3j}2

×
[
m2
Z̃i

+m2
Z̃j
−m2

Z +
1

m2
Z

[(m2
Z̃i
−m2

Z̃j
)2 −m4

Z ] + 6mZ̃i
mZ̃j

]
. (A.93)

Γ(Z̃i → hZ̃j) =
(Xh

ij +Xh
ji)

2

16π|mZ̃i
| λ̃1/2(mZ̃ij

,mh,mZ̃j
)[m2

Z̃i
+m2

Z̃j
−m2

h + 2mZ̃i
mZ̃j

], (A.94)

Xh
ij =

1

2
[N3i sinα+N4i cosα](−gN2j + g′N1j), (A.95)

For Z̃i → HZ̃j the formula is the same except one must change sinα → − cosα, cosα → sinα and

mh → mH .

Γ(Z̃i → AZ̃j) =
(XA

ij +XA
ji)

2

16π|mZ̃i
| λ̃1/2(mZ̃ij

,mA,mZ̃j
)[m2

Z̃i
+m2

Z̃j
−m2

A − 2mZ̃i
mZ̃j

], (A.96)

XA
ij =

1

2
[N3i sinβ −N4i cosβ](−gN2j + g′N1j). (A.97)
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A.3.6 Higgs Sector

Once more, the partial widths for all of the Higgs decays incorporated into SoftSusy were re-derived,

including for the 3-body and 1-loop decays, however the majority of them can also be found in “The

Higgs Hunter’s Guide” [102].

Γ(h→ qq̄) =
3g2mh

32π

( mq

mW

)2

(1− 4
m2
q

m2
h

)
3
2J 2, (A.98)

where

J =

 cosα
sin β , for up type quarks (u,c,t),

sinα
cos β , for down type quarks (d,s,b).

(A.99)

The same formulae apply for the decays to leptons, however without the factor of 3 which arises due to

colour. This is similar for H → qq except we must make the replacements sinα→ − cosα, cosα→ sinα

and mh → mH .

With regards to the SoftSusy spectrum generator, when the mixing parameter is set to−1 it considers

only third family Yukawa couplings to be non zero. This would mean no h → µµ decay, which may be

important phenomenologically in spite of its small branching ratio. In this case, for the decay, we use the

pole muon mass to calculate the branching ratio.

Γ(A→ qq̄) =
3g2J 2

A

32π

( mq

mW

)2

mA

√
1− 4(

mq

mA
)2), (A.100)

where

JA =

1/(tanβ), for up type quarks (u,c,t),

tanβ, for down type quarks (d,s,b).
(A.101)

Again, the same formulae apply for the decays to leptons, however without the factor of 3 due to

colour:

Γ(h→ Z̃iZ̃j) =
|mh|
8π

(Xh
ij +Xh

ji)
2λ̃

1
2 (mh,mZ̃i

,mZ̃j
)
(

1− (
mZ̃i

+mZ̃j

mh
)2
)
, (A.102)

with an extra pre-factor of 1
2 if i = j (as the above formula includes a pre-factor of 2 from Z̃iZ̃j being

indistinguishable from Z̃jZ̃i). Here Xh
ij is as in Eq. (A.95) and Xh

ji is the same but with i ↔ j. Again

similar formulae exist for H → Z̃iZ̃j except we transform sinα→ − cosα, cosα→ sinα and mh → mH .

Γ(A→ Z̃iZ̃j) =
|mA|
8π

(XA
ij +XA

ji)
2λ̃

1
2 (mA,mZ̃i

,mZ̃j
)
(

1− (
mZ̃i

+mZ̃j

mA
)2
)
, (A.103)

here XA
ij is as given in Eq. (A.97) and XA

ji is the same but with i↔ j.

Γ(φ→ W̃+
i W̃

−
i ) =

g2|mφ|
4π

S2λ̃a(mφ,mW̃i
,mW̃i

), (A.104)
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where a = 3/2 for φ = h,H or a = 1/2 for A and S is given by:

S =



1
2 (− sinα sin θR cos θL + cosα sin θL cos θR), for: h→ W̃1W̃1,

1
2 (sinα cos θR sin θL − cosα cos θL sin θR), for: h→ W̃2W̃2,

1
2 (cosα sin θR cos θL + sinα sin θL cos θR), for: H → W̃1W̃1,

− 1
2 (cosα cos θR sin θL + sinα cos θL sin θR), for: H → W̃2W̃2,

1
2 (sinβ sin θR cos θL + cosβ sin θL cos θR), for: A→ W̃1W̃1,

− 1
2 (sinβ cos θR sin θL + cosβ cos θL sin θR), for: A→ W̃2W̃2.

(A.105)

Γ(φ→ W̃+
i W̃

−
j ) =

g2

16π|mφ|
λ̃

1
2 (mφ,mW̃i

,mW̃j
)

[
S2(1− (

mW̃i
+mW̃j

mφ
)2) + P 2(1− (

mW̃i
−mW̃j

mφ
)2)

]
,

(A.106)

where

S =


1
2 (sinα sin θR sin θL + cosα cos θL cos θR − sin θL sin θR cosα− cos θL cos θR sinα), for: φ = h,

1
2 (− cosα sin θR sin θL + sinα cos θL cos θR − sin θL sin θR sinα+ cos θL cos θR cosα), for: φ = H,

1
2 (− sinβ sin θR sin θL + cosβ cos θL cos θR + sin θL sin θR cosβ − cos θL cos θR sinβ), for: φ = A.

(A.107)

P is the same as S except the signs of the first two terms are reversed.

Γ(h→ AA) =
g2m2

W

128π|mh| cos4(θW )
λ̃

1
2 (mh,mA,mA) sin2(α+ β) cos2 2β. (A.108)

Γ(H → hh) =
g2m2

W

128π|mH | cos4(θW )
λ̃

1
2 (mH ,mh,mh)

[
cos 2α cos(α+ β)− 2 sin 2α sin(α+ β)

]2
.

(A.109)

Γ(H → AA) =
g2m2

W

128π|mH | cos4(θW )
λ̃

1
2 (mH ,mA,mA) cos2 2β cos2(α+ β). (A.110)

Γ(H → H+H−) =
g2m2

W

16π|mH |
λ̃

1
2 (mH ,mH+ ,mH−)

[
cos(β − α)− cos(α+ β) cos 2β

2 cos2 θW

]2

. (A.111)

Γ(h→ AZ) =
g2|m3

h| cos2(β − α)

64π cos2 θwm2
Z

λ̃
3
2 (mh,mZ ,mA). (A.112)

The decay H → AZ follows the same formula but with the changes cos(β − α) → sin(β − α) and

mh → mH .

Γ(A→ hZ) =
g2|m3

A| cos2(β − α)

64π cos2 θwm2
Z

λ̃
3
2 (mA,mZ ,mh). (A.113)

The decay A→ HZ is not included as it’s largely ruled out by SUSY mass constraints.

Γ(h→ q̃L/Rq̃
∗
L/R) =

3

16πmh
λ̃1/2(mh,mq̃L/R ,mq̃L/R)C2

hq̃L/Rq̃L/R
, (A.114)
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where

Chq̃L/Rq̃L/R =



g
[
mW ( 1

2 − 1
6
g′2

g2 ) sin(β + α)− m2
u cosα

mW sin β

]
, for: ũL ¯̃uL,

g
[
mW (− 1

2 − 1
6
g′2

g2 ) sin(β + α) +
m2
d sinα

mW cos β

]
, for: d̃L

¯̃
dL,

g
[

2
3mW

g′2

g2 sin(β + α)− m2
u cosα

mW sin β

]
, for: ũR ¯̃uR,

g
[
−mW

3
g′2

g2 sin(β + α) +
m2
d sinα

mW cos β

]
, for: d̃R

¯̃
dR,

gmu
2mW sin β (µ sinα+Au cosα), for: ũL ¯̃uR or ũR ¯̃uL,

gmd
2mW cos β (−µ cosα−Ad sinα), for: d̃L

¯̃
dR or d̃R

¯̃
dL.

(A.115)

Γ(H → q̃L/Rq̃
∗
L/R) =

3

16πmH
λ̃1/2(mH ,mq̃L/R ,mq̃L/R)C2

Hq̃L/Rq̃L/R
, (A.116)

where

CHq̃L/Rq̃L/R =



g
[
−mW ( 1

2 − 1
6
g′2

g2 ) cos(β + α)− m2
u sinα

mW sin β

]
, for: ũL ¯̃uL,

g
[
mW ( 1

2 + 1
6
g′2

g2 ) cos(β + α)− m2
d cosα

mW cos β

]
, for: d̃L

¯̃
dL,

g
[
−2mW

3
g′2

g2 cos(β + α)− m2
u sinα

mW cos β

]
, for: ũR ¯̃uR,

g
[
mW

3
g′2

g2 cos(β + α)− m2
d cosα

mW cos β

]
, for: d̃R

¯̃
dR,

gmu
2mW sin β (−µ cosα+Au sinα), for: ũL ¯̃uR or ũR ¯̃uL,

gmd
2mW cos β (−µ sinα+Ad cosα), for: d̃L

¯̃
dR or d̃R

¯̃
dL.

(A.117)

Γ(h→ l̃L/R
¯̃
lL/R) =

1

16πmh
λ̃1/2(mh,ml̃L/R

,ml̃L/R
)C2
hl̃L/R l̃L/R

, (A.118)

where

Chl̃L/R l̃L/R =



g
[
mW ( 1

2 + 1
2
g′2

g2 )
]

sin(β + α), for ν̃Lν̃
∗
L,

g
[
mW (− 1

2 + 1
2
g′2

g2 ) sin(α+ β) +
m2
ẽL

sinα

mW cos β

]
, for ẽLẽ

∗
L,

g
[
−mW

g′2

g2 sin(α+ β) +
m2
ẽL

sinα

mW cos β

]
, for ẽRẽ

∗
R,

gmẽL
2mW cos β (−µ cosα−Ae sinα), for ẽLẽ

∗
R or ẽRẽ

∗
L.

(A.119)

For third generation sfermions, the formulae are more complicated as a result of sfermion mixing and

Yukawa coupling effects:

Γ(h→ t̃it̃
∗
j ) =

3

16πmh
λ̃1/2(mh,mt̃i

,mt̃j
)C2
ht̃i t̃j

, (A.120)

where here i and j can each be 1 or 2 independently of each other. The coupling depends on i and j, for

t̃1t̃
∗
1 (i.e. i = j = 1):

Cht̃1 t̃1 = cos2 θtCht̃L t̃L + sin2 θtCht̃R t̃R − 2 sin θt cos θtCht̃L t̃R , (A.121)

where Cht̃L t̃L , Cht̃R t̃R and Cht̃L t̃R are the corresponding couplings of ũL ¯̃uL, ũR ¯̃uR and ũL ¯̃uR, respectively

with the changes mu → mt and Au → At. For t̃2t̃
∗
2 make the replacements cos θt → sin θt, sin θt →
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− cos θt, mt̃1
→ mt̃2

. For t̃1t̃
∗
2 or t̃2t̃

∗
1:

Cht̃1 t̃2 = (Cht̃L t̃L − Cht̃R t̃R) cos θt sin θt + Cht̃L t̃R cos 2θt. (A.122)

For H → t̃it̃
∗
j everything is as above but one must transform sinα → − cosα and cosα → sinα and

mh → mH .

Γ(h→ b̃ib̃
∗
j ) =

3

16πmh
λ̃1/2(mh,mb̃i

,mb̃j
)C2
hb̃ib̃j

. (A.123)

For b̃1b̃
∗
1, i.e. i = j = 1:

Chb̃1b̃1 = Chb̃Lb̃L cos2 θb + Chb̃Rb̃R sin2 θb − 2 cos θb sin θbChb̃Lb̃R , (A.124)

where Chb̃Lb̃L , Chb̃Rb̃R and Chb̃Lb̃R correspond to the couplings for d̃L
¯̃
dL, d̃R

¯̃
dR and d̃L

¯̃
dR with the changes

md → mb and Ad → Ab. For b̃2b̃
∗
2 one must change cos θb → sin θb, sin θb → − cos θb, mb̃1

→ mb̃2
.

For b̃1b̃
∗
2 or b̃2

¯̃
b1:

Chb̃1b̃2 = (Chb̃Lb̃L − Chb̃Rb̃R) sin θb cos θb + Chb̃Lb̃R cos 2θb. (A.125)

For H → b̃ib̃
∗
j everything is as above with the replacements sinα → − cosα and cosα → sinα and

mh → mH .

Γ(h→ τ̃1τ̃
∗
1 ) =

1

16πmh
λ̃

1
2 C2
hτ̃1τ̃1 , (A.126)

where

Chτ̃1τ̃1 = Chτ̃Lτ̃L sin2 θτ + Chτ̃Rτ̃R cos2 θτ + 2 cos θτ sin θτChτ̃Lτ̃R . (A.127)

h→ τ̃2τ̃
∗
2 is the same with the replacements cos θτ → sin θτ , sin θτ → − cos θτ and mτ̃1 → mτ̃2 . For h→

τ̃1τ̃
∗
2 or τ̃2τ̃

∗
1 the coupling is instead given by:

Chτ̃1τ̃2 = (Chτ̃Rτ̃R − Chτ̃Lτ̃L) cos θτ sin θτ + Chτ̃Lτ̃R cos 2θτ . (A.128)

Chτ̃Lτ̃L , Chτ̃Rτ̃R and Chτ̃Lτ̃R are identical to the corresponding couplings of ẽLẽ
∗
L, ẽRẽ

∗
R and ẽLẽ

∗
R respec-

tively, with the expected replacements.

For H → τ̃iτ̃
∗
j everything is as above with the changes sinα→ − cosα, cosα→ sinα and mh → mH .

Γ(A→ f̃if̃
∗
j ) =

Nc
16πmA

λ̃1/2C2
Af̃if̃j

, (A.129)

note that i 6= j by CP conservation, and Nc is 3 for squarks and 1 for sleptons. The coupling is given by:

CAf̃if̃j =


gmf
2mW

(µ+Af cotβ), for u-type sfermions ũ, c̃, t̃, ν̃,
gmf
2mW

(µ+Af tanβ), for d-type sfermions d̃, s̃, b̃, l̃.
(A.130)

Γ(H+ → qq̄′) =
3g2CKM2

32πm2
WmH+

λ̃1/2(mH+ ,mq1 ,mq2)
{

[m2
q1 tan2 β+

m2
q2

tan2 β
](m2

H+−m2
q1−m2

q2)−4m2
q1m

2
q2

}
,

(A.131)

here mq1 is the mass of the u-type quark and mq2 is the mass of the d-type quark.

Γ(H+ → Z̃iW̃j) =
1

8πmH+

λ̃1/2(mH+ ,mZ̃i
,mW̃j

)
[
(a2 + b2)(m2

H+ −m2
Z̃i
−m2

W̃j
)− 2(a2 − b2)mZ̃i

mW̃j

]
,

(A.132)
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where for j = 1 i.e. W̃1:

a =
1

2
(− cosβA2 + sinβA4), b =

1

2
(− cosβA2 − sinβA4), (A.133)

for j = 2 i.e. W̃2:

a =
1

2
(− cosβA1 + sinβA3), b =

1

2
(− cosβA1 − sinβA3). (A.134)

The Ai are:

A1 =
1√
2

[gN2i + g′N1i] sin θR − gN4i cos θR, (A.135)

A2 =
1√
2

[−gN2i − g′N1i] cos θR − gN4i sin θR, (A.136)

A3 =
1√
2

[gN2i + g′N1i] sin θL + gN3i cos θL, (A.137)

A4 =
1√
2

[−gN2i − g′N1i] cos θL + gN3i sin θL. (A.138)

Γ(H+ →W+h) =
g2 cos2(β − α)m3

H+

64πm2
W

λ̃3/2(mH+ ,mW ,mh). (A.139)

Γ(H+ → q̃L/Rq̃′L/R) =
3B

16πmH+

λ̃1/2(mH+ ,mq̃L/R ,mq̃′L/R
), (A.140)

where B is the coupling and is given by:

B =



g√
2

[
−mW sin 2β + 1

mW
(m2

d tanβ +mu cotβ)
]
, for ũLd̃L,

gmumd(tanβ + cotβ) 1√
2mW

, for ũRd̃R,

−gmd√
2mW

(Ad tanβ + µ), for ũLd̃R,

−gmu√
2mW

(Au cotβ + µ) for ũRd̃L.

(A.141)

Γ(H+ → q̃iq̃′j) =
3

16πmH+

λ̃1/2(mH+ ,mq̃i ,mq̃j )C
2, (A.142)

note that q is the top squark and q′ the bottom squark; for i = j = 1 we have t̃1b̃1 and:

C = cos θt cos θbBũLd̃L + sin θt sin θbBũRd̃R − cos θt sin θbBũLd̃R − sin θt cos θbBũRd̃L , (A.143)

for a b̃2 take cos θb → sin θb, sin θb → − cos θb; for a t̃2 take cos θt → sin θt, sin θt → − cos θt. The same

formulae as in Eq.s (A.140) and (A.142) can be used for H± decays to sleptons, but for staus one must

use θτ −π/2, so the replacements cos θτ → sin θτ and sin θτ → − cos θτ are necessary in C in Eq. (A.143).

Decays to two vector bosons are somewhat more complicated. Included in SoftSusy are the cases

both where the Higgs has mass mh/H > 2mV , and so decays to two on-shell vector bosons, and also

the case where the Higgs has mass mV < mh/H < 2mV , so that it may only undergo a decay to one

on-shell vector boson and one off-shell vector boson, which then decays into a fermion-antifermion pair,

i.e. h/H → ZZ∗ → Zff̄ or h/H → WW ∗ → Wf ′f̄ . This is technically a 3-body decay but is included

here as it is computed exactly without the need for numerical integration, unlike the 3-body decays

listed later. To obtain the formulae for h/H → V V ∗, one therefore sums over all possible outgoing f (′)f̄
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into which the V ∗ may decay. First consider the case where mV < mh/H < 2mV so we have decays

h/H →WW ∗ →Wf ′f̄ and h/H → ZZ∗ → Zff̄ , this is how the SM-like lightest Higgs, h, will decay:

Γ(h/H → ZZ∗) =
G2
Fmh/Hm

4
W c

2
h/HV V

64π3 cos4 θW
F (εZ)

[
7− 40

3
sin2 θW +

160

9
sin4 θW

]
, (A.144)

Γ(h/H →WW ∗) =
3G2

Fm
4
Wmh/Hc

2
h/HV V

16π3
F (εW ), (A.145)

here

εV =
mV

mh/H
, chV V = sin(β − α), cHV V = cos(β − α), (A.146)

and

F (εV ) =
3(1− 8ε2V + 20ε4V )√

4ε2V − 1
cos−1

[3ε2V − 1

2ε3V

]
− (1− ε2V )

(47

2
ε2V −

13

2
+

1

ε2V

)
− 3(1− 6ε2V + 4ε4V ) log(εV ).

(A.147)

If however mh/H > 2mV then the decay to two on-shell vector bosons occurs instead and the formulae

are:

Γ(h/H →WW ) =
GFm

3
h/H

8π
√

2
λ̃

1
2 (mh/H ,mW ,mW )(1− r2 +

3

4
r4)c2h/HWW , (A.148)

Γ(h/H → ZZ) =
GFm

3
h/H

16π
√

2
λ̃

1
2 (mh/H ,mZ ,mZ)(1− r2 +

3

4
r4)c2h/HZZ , (A.149)

where r = 2 mV
mh/H

.

Throughout many of the decay formulae there is some ambiguity at tree-level about whether one

should use g2

8m2
W

or GF√
2

, whilst these are formally equivalent they are not at a given order of calculation as
GF√

2
is a measured value, thereby containing many higher order vertex corrections. In general throughout

the program we use GF√
2

as this is found to give better agreement where higher order calculations are

available. For example in the diboson decays comparing with HDECAY-3.4, which includes higher orders

and finite width effects, we find that our agreement is improved using GF√
2

.

One loop decays to γγ:

The function f(τ) appears, it is given previously in Eq. (A.2),

Γ(φ→ γγ) =
GFα

2
em(mφ)m3

φ

128π3
√

2
||ΣIφloop|2, (A.150)

where the Iφloop are the amplitudes of the contributions of different particles in the loop to the decay

φ→ γγ. The top contributions are:

Iht =
4

3

cosα

sinβ

[
− 2τ{1 + (1− τ)f(τ)}

]
, (A.151)

IHt =
4

3

sinα

sinβ

[
− 2τ{1 + (1− τ)f(τ)}

]
, (A.152)

IAt = −8

3
τf(τ)cotβ. (A.153)

The stop contributions for h→ γγ are:

Iht̃1 =
4

3
τ(1− τf(τ))

[
R1
t̃L t̃L

cos2 θt +R1
t̃R t̃R

sin2 θt − 2R1
t̃L t̃R

cos θt sin θt

]
, (A.154)
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Iht̃2 =
4

3
τ(1− τf(τ))

[
R2
t̃L t̃L

sin2 θt +R2
t̃R t̃R

cos2 θt + 2R2
t̃L t̃R

cos θt sin θt

]
, (A.155)

where

Rit̃L t̃L = Rt̃L
mW

gmt̃i

=

[
mW (

1

2
− 1

6
tan2 θW ) sin(α+ β)− m2

t cosα

mW sinβ

]
mW

mt̃i

, (A.156)

Rit̃R t̃R = Rt̃R
mW

gmt̃i

=

[
mW

2

3
tan2 θW sin(α+ β)− m2

t cosα

mW sinβ

]
mW

mt̃i

, (A.157)

Rit̃L t̃R = Rt̃L t̃R
mW

gmt̃i

=
mt

2mW sinβ
(µ sinα+At cosα)

mW

mt̃i

. (A.158)

The stop contributions for H are the same but the Ri
t̃L t̃L

, Ri
t̃R t̃R

, Ri
t̃L t̃R

are different:

Rit̃L t̃L =
mW

mt̃i

[
−mW (

1

2
− 1

6
tan2 θW ) cos(α+ β)− m2

t sinα

mW sinβ

]
, (A.159)

Rit̃R t̃R =
mW

mt̃i

[
−mW

2

3
tan2 θW cos(α+ β)− m2

t sinα

mW sinβ

]
, (A.160)

Rit̃L t̃R =
mW

mt̃i

mt

2mW sinβ
(−µ cosα+At sinα). (A.161)

A→ γγ has no stop loop contribution by CP conservation, i.e. IA
t̃1/2

= 0. The bottom contributions are:

Ihb = −1

3

[
− 2τ{1 + (1− τ)f(τ)}

] sinα

cosβ
, (A.162)

IHb =
1

3

[
− 2τ{1 + (1− τ)f(τ)}

]cosα

cosβ
, (A.163)

IAb = −1

3
{2τf(τ)} tanβ. (A.164)

The sbottom contributions to h→ γγ are as follows:

Ih
b̃1

=
1

3
τ{1− τf(τ)}

[
R1
b̃Lb̃L

cos2 θb +R1
b̃Rb̃R

sin2 θb − 2 sin θb cos θbR
1
b̃Lb̃R

]
, (A.165)

Ih
b̃2

=
1

3
τ{1− τf(τ)}

[
R2
b̃Lb̃L

sin2 θb +R2
b̃Rb̃R

cos2 θb + 2 sin θb cos θbR
2
b̃Lb̃R

]
, (A.166)

where here

Ri
b̃Lb̃L

=
mW

mb̃i

[
mW (−1

2
− 1

6
tan2 θW ) sin(α+ β) +

m2
b sinα

mW cosβ

]
, (A.167)

Ri
b̃Rb̃R

=
mW

mb̃i

[
−1

3
mW tan2 θW sin(α+ β) +

m2
b sinα

mW cosβ

]
, (A.168)

Ri
b̃Lb̃R

=
mW

mb̃i

mb

2mW cosβ
(−µ cosα−Ab sinα). (A.169)
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For H → γγ the sbottom contributions are the same except the Ri
b̃Lb̃L

, Ri
b̃Rb̃R

, Ri
b̃Lb̃R

change:

Ri
b̃Lb̃L

=
mW

gmb̃i

g

[
mW (

1

2
+

1

6
tan2 θW ) cos(α+ β)− m2

b cosα

mW cosβ

]
, (A.170)

Ri
b̃Rb̃R

=
mW

gmb̃i

g

[
mW (

1

3
tan2 θW ) cos(α+ β)− m2

b cosα

mW cosβ

]
, (A.171)

Ri
b̃Lb̃R

=
mW

gmb̃i

g
mb

2mW cosβ
[−µ sinα+Ab cosα]. (A.172)

A → γγ has no sbottom loop contribution because of CP conservation, i.e. IA
b̃1/2

= 0. The charm loop

contributions are given by:

Ihc =
4

3

[
− 2τ{1 + (1− τ)f(τ)}

]cosα

sinβ
, (A.173)

IHc =
4

3

[
− 2τ{1 + (1− τ)f(τ)}

] sinα

sinβ
, (A.174)

IAc = −4

3
(2τf(τ)) cotβ. (A.175)

τ loop contributions are given by:

Ihτ = 2τ [1 + (1− τ)f(τ)]
sinα

cosβ
, (A.176)

IHτ = −2τ [1 + (1− τ)f(τ)]
cosα

cosβ
, (A.177)

IAτ = −2τf(τ) tanβ. (A.178)

τ̃i contributions to h→ γγ are:

Iτ̃1 = τ{1− τf(τ)}
[
R1
τ̃Lτ̃L sin2 θτ +R1

τ̃Rτ̃R cos2 θτ + 2 sin θτ cos θτR
1
τ̃Lτ̃R

]
, (A.179)

Iτ̃2 = τ{1− τf(τ)}
[
R2
τ̃Lτ̃L cos2 θτ +R2

τ̃Rτ̃R sin2 θτ − 2 sin θτ cos θτR
2
τ̃Lτ̃R

]
, (A.180)

here

Riτ̃Lτ̃L =
mW

mτ̃i

[
mW (−1

2
+

1

2
tan2 θW ) sin(α+ β) +

m2
τ sinα

mW cosβ

]
, (A.181)

Riτ̃Rτ̃R =
mW

mτ̃i

[
−mW tan2 θW sin(α+ β) +

m2
τ sinα

mW cosβ

]
, (A.182)

Riτ̃Lτ̃R =
mW

mτ̃i

mτ

2mW cosβ
(−µ cosα−Aτ sinα). (A.183)

For H → γγ via τ̃i it’s the same except the Riτ̃Lτ̃L , Riτ̃Rτ̃R , Riτ̃Lτ̃R differ:

Riτ̃Lτ̃L =
mW

mτ̃i

[
mW (

1

2
− 1

2
tan2 θW ) cos(α+ β)− m2

τ cosα

mW cosβ

]
, (A.184)

Riτ̃Rτ̃R =
mW

mτ̃i

[
mW tan2 θW cos(α+ β)− m2

τ cosα

mW cosβ

]
, (A.185)

Riτ̃Lτ̃R =
mW

mτ̃i

mτ

2mW cosβ
(−µ sinα+Aτ cosα). (A.186)

A→ γγ has no stau loop contribution because of CP conservation, i.e. IAτ̃1/2
= 0. The W loop contribu-
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tions are:

IhW =
[
2 + 3τ + 3τ(2− τ)f(τ)

]
sin(β − α), (A.187)

IHW =
[
2 + 3τ + 3τ(2− τ)f(τ)

]
cos(β − α). (A.188)

A → γγ has no W loop contribution because of CP conservation, i.e. IAW = 0. H+ loop contributions

are:

IhH+ = τ{1− τf(τ)} m
2
W

m2
H+

[
sin(β − α) +

cos 2β sin(β + α)

2 cos2 θW

]
, (A.189)

IHH+ = τ{1− τf(τ)} m
2
W

m2
H+

[
cos(β − α) +

cos 2β cos(β + α)

2 cos2 θW

]
. (A.190)

A→ γγ has no H+ loop contribution because of CP conservation, i.e. IAH+ = 0. W̃+
i loop contributions

are:

Ih
W̃+

1
= [−2τ{1 + (1− τ)f(τ)}] mW

mW̃+
1

√
2(− sinα sin θR cos θL + cosα sin θL cos θR), (A.191)

Ih
W̃+

2
= [−2τ{1 + (1− τ)f(τ)}] mW

mW̃+
2

√
2(sinα cos θR sin θL − cosα cos θL sin θR). (A.192)

For W̃+
i contributions to H make replacements cosα→ sinα and sinα→ − cosα, whilst for A the W̃+

i

contributions are:

IA
W̃+

1
= −2τf(τ)

mW

mW̃+
1

√
2(sin θR cos θL sinβ + sin θL cos θR cosβ), (A.193)

IA
W̃+

2
= 2τf(τ)

mW

mW̃+
2

√
2(cos θR sin θL sinβ + cos θL sin θR cosβ). (A.194)

One loop decays to gg

The coloured particle loop contributions for φ → gg are exactly the same, except the pre-factor

changes and the b and b̃ contributions get multiplied by 4 in their amplitudes. There can be no uncoloured

particles in the loop so there are no W , H±, W̃i, l or l̃ contributions; only q and q̃ loop contributions:

Γ(φ→ gg) =
α2
s(mφ)GFm

3
φ

128π3
√

2

9

8
Σ|Iφloop|2, (A.195)

with the Iφb → 4Iφb , Iφ
b̃i
→ 4Iφ

b̃i
and the remaining Iφloop as in the φ→ γγ decays.

One Loop decays to Zγ: Throughout the function g(τ) appears, it is given previously in Eq. (A.3),

Γ(φ→ Zγ) =
m3
φα

2
em(mφ)

64π3

GF√
2

(
1− mZ

mφ

2)3

Σ|Iφloop|2. (A.196)

I1(τa, τaZ) and I2(τa, τaZ) also occur frequently, where τaZ = 4(mamZ )2 in comparison with τa = 4( mamhi
)2,

they are as follows:

I1(τa, τaZ) =
τaτaZ

2(τa − τaZ)
+

τ2
aτ

2
aZ

2(τa − τaZ)2
[f(τa)− f(τaZ)] +

τ2
aτaZ

(τa − τaZ)2
[g(τa)− g(τaZ)], (A.197)

I2(τa, τaZ) = − τaτaZ
2(τa − τaZ)

[f(τa)− f(τaZ)]. (A.198)
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The fermion loop contributions are:

Iht = 3
cosα

sinβ

− 4
3 ( 1

2 − 4
3 sin2 θW )

sin θW cos θW

(
I1(τt, τtZ)− I2(τt, τtZ)

)
, (A.199)

Ihb = −3
sinα

cosβ

2
3 (− 1

2 + 2
3 sin2 θW )

sin θw cos θW

(
I1(τb, τbZ)− I2(τb, τbZ)

)
, (A.200)

For the IHf transform cosα→ sinα, sinα→ − cosα.

IAt = 3 cotβ
4
3 ( 1

2 − 4
3 sin2 θW )

sin θW cos θW
I2(τt, τtZ), (A.201)

IAb = −3 tanβ
2
3 (− 1

2 + 2
3 sin2 θW )

sin θw cos θW
I2(τb, τbZ). (A.202)

Ihc , Ihs , IAc , IAs are analogous to Iht , Ihb , IAt and IAb respectively.

The W loop contributions are given by:

IhW = − sin(β − α)

tan θW

[
4(3− tan2 θW )I2(τW , τWZ) + {(1 +

2

τW
) tan2 θW − (5 +

2

τW
)}I1(τW , τWZ)

]
.

(A.203)

IHW is the same but with the change sin(β − α)→ cos(β − α). IAW = 0 by CP conservation.

H+ contributions are:

IhH+ =

[
sin(β − α) +

cos 2β sin(β + α)

2 cos2 θW

]
(1− 2 sin2 θW )

cos θW sin θW
I1(τH+ , τH+Z)

m2
W

m2
H+

. (A.204)

For H, the IHH+ are the same except the replacements sin(β − α) → cos(β − α) and sin(β + α) →
− cos(β + α). Meanwhile IAH+ = 0 by CP conservation.

A.4 MSSM Three Body Decay Formulae

The following decay modes are included in SoftSusy:

1. h→WW ∗ →Wf ′f̄

2. h→ ZZ∗ → Zff̄

3. g̃ → Z̃iqq̄

4. g̃ → W̃iqq̄′

5. Z̃i → Z̃jff̄ where i > j

6. Z̃i → W̃jff̄ ′

7. W̃j → Z̃iff̄ ′

The modes included are the most phenomenologically relevant modes, the formulae used were not re-

derived although are written in our notation and are restructured to match the calculations performed

in SoftSusy. The formulae are as provided in sPHENO-3.3.8 [3,4], which were based on the calculations

in [177,178].

h→ V V ∗ → V ff̄ Detailed previously, see equations A.145 and A.144.
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A.4.1 Gluino 3-body Decays

g̃ → Z̃iqq̄

First the formulae for the decays to a neutralino and a quark-antiquark pair of the first two genera-

tions; here the Yukawa coupling contributions, squark mixing effects and final state quark masses have

been neglected as they are negligible. The formulae later for the third generation quarks include all such

effects.

Γ(g̃ → qq̄Z̃i) =
αs
8π2

[
|Aq
Z̃i
|2(ψL ± φL) + |Bq

Z̃i
|2(ψR ± φR)

]
. (A.205)

Here which of the ± signs to take depends on the signs of the neutralino and gluino masses; the ‘+’ sign

applies for the case when both masses have the same sign so mZ̃i
> 0 and mg̃ > 0 (or when they are both

less than 0) and the ‘−’ sign applies when one (but not both) of mZ̃i
and mg̃ are negative. The signs

essentially account for the fact that the couplings should become complex as the masses become negative.

Here the ψL/R and φL/R are integrals related to the ψ̃ and φ̃ integrals given later in Eq.s (A.291) and

(A.295) by:

ψL/R =
1

π2mg̃
ψ̃(mg̃,mq̃L/R ,mq̃L/R ,mZ̃i

). (A.206)

φL/R =
1

π2mg̃
φ̃(mg̃,mq̃L/R ,mq̃L/R ,mZ̃i

). (A.207)

The Aq
Z̃i

and Bq
Z̃i

are couplings which depend upon if the quarks are “up-type” or “down-type” in SU(2)L:

Aq
Z̃i

=

 1√
2
(−gN2i − g′

3 N1i), for “up-type” quarks,

1√
2
(gN2i − g′

3 N1i), for “down-type” quarks,
(A.208)

Bq
Z̃i

=

 −4
3
√

2
g′N1i, for “up-type” quarks,

2
3
√

2
g′N1i, for “down-type” quarks.

(A.209)

As described in Section 3.3.5, in some circumstances we may have very compressed mass spec-

tra, and in this limit the formulae provided here demonstrate numerical precision issues due to fine

cancellation. In particular, in the φ integral it is seen that the terms −[Ef̄ (max) − Ef̄ (min)] and

−
m2
Z̃j
−m2

f+2|mZ̃i |Ef−m
2
f̃2

2|mZ̃i |
logZ(mf̃2

) of equation A.295 may cancel to such a degree that numerical pre-

cision (particularly in logZ) affects the output of the integral. In general this may lead to the “partial

widths” calculated being incorrect as they are purely a reflection of integrating a series of positive and

negative numbers randomly distributed and reflecting numerical precision. Fortunately however, such fine

cancellations only occur for extremely (a few hundred MeV) compressed spectra, which are naturally very

phase-space suppressed. These modes are therefore only important to the phenomenology of the parent

particles and the sparticle spectrum when they are the only modes available and so dictate the lifetime

of the decaying particle. In the case of the gluino here, this occurs when the gluino is only a few hundred

MeV larger in mass than the neutralino LSP (Z̃1), in which case the decay to the first generation quark

and antiquark pairs set the total width and lifetime of this near degenerate gluino. We therefore must

attempt to circumvent numerical precision issues in this case to accurately reflect the phenomenology of

such ultra-compressed spectra. In order to do so we therefore focus on the fine cancellation and expand

in the limit of very compressed spectra in order to carry out any cancellation analytically, the formula

remaining then contains only the remainder piece and so can be evaluated by SoftSusy accurately to

give the partial widths and overall gluino lifetime relevant for these cases.
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Consider the φ̃(mg̃,mq̃L/R ,mq̃L/R ,mZ̃) integrand, which we call here g(φ̃):

g(φ̃)=
−0.5π2|mg̃||mZ̃ |

m2
g̃ +m2

q − 2|mg̃|Ef −m2
q̃L/R

[
[Eq̄(max)−Eq̄(min)]+

m2
Z̃
−m2

q + 2|mg̃|Eq −m2
q̃L/R

2|mg̃|
logZ(mq̃L/R)

]
.

(A.210)

The fine cancellation issues arise in the square brackets between the term [Eq̄(max)−Eq̄(min)] and

the final term, specifically the numerical precision issues often arise in the log as Z is given by:

Z(mq̃L/R) =
m2
g̃ +m2

q − 2|mg̃|Eq̄(max)−m2
q̃L/R

m2
g̃ +m2

q − 2|mg̃|Eq̄(min)−m2
q̃L/R

, (A.211)

where Eq̄(max/min) are given in equation A.300. If the spectrum is very compressed, Eq̄(max) and

Eq̄(min) are very close as their difference is given by:

Eq̄(max)− Eq̄(min) = pq

√
ζ2 − 4m2

q(m
2
g̃ +m2

q − 2|mg̃|Eq|)
m2
g̃ +m2

q − 2|mg̃|Eq
, (A.212)

where pq =
√
E2
q −m2

q and ζ = 2m2
q + m2

g̃ − m2
Z̃
− 2|mg̃|Eq and the limits on the Eq integration run

from mq → (m2
g̃ − 2mq|mZ̃ | − m2

Z̃
)/(2|mg̃|) which for very compressed spectra is of order a few times

mq. Consequently pq ∼ mq and Eq̄(max) − Eq̄(min) � |mg̃|. In this limit, Z is very close to 1 and so

the logarithm is very small, causing issues with numerical precision. The same behaviour also arises in

the limit the intermediate squarks are much heavier than the initial and final state particles, i.e. when

mq̃L/R � mg̃. In this case, the same limit and expression we shall derive also applies. First we rewrite Z

to make this closeness to 1 more explicit and Taylor expand the logarithm, taking the first term in this

expansion:

Z(mq̃L/R) = 1− 2|mg̃|(Eq̄(max)− Eq̄(min))

m2
g̃ +m2

q − 2|mg̃|Eq̄(min)−m2
q̃L/R

, (A.213)

logZ(mq̃L/R) = − 2|mg̃|(Eq̄(max)− Eq̄(min))

m2
g̃ +m2

q − 2|mg̃|Eq̄(min)−m2
q̃L/R

+ . . . , (A.214)

where we have neglected higher order terms. It is at this point that the limit (Eq̄(max)−Eq̄(min))� mg̃

or mg̃ � mq̃L/R is taken. With this limit then we may rewrite our g(φ̃) integrand as follows, where in

the second line we explicitly perform the cancellation analytically in order to leave the remainder piece

to be evaluated by SoftSusy without the issues of numerical precision:

g(φ̃) =
0.5π2|mg̃||mZ̃ |[Eq̄(max)− Eq̄(min)]

m2
g̃ +m2

q − 2|mg̃|Ef −m2
q̃L/R

[
− 1 +

m2
Z̃
−m2

q + 2|mg̃|Eq −m2
q̃L/R

m2
g̃ +m2

q − 2|mg̃|Eq̄(min)−m2
q̃L/R

]
=

0.5π2|mg̃||mZ̃ |[Eq̄(max)− Eq̄(min)]

m2
g̃ +m2

q − 2|mg̃|Ef −m2
q̃L/R

[
− 1 + 1 +

m2
Z̃
− 2m2

q + 2|mg̃|Eq + 2|mg̃|Eq̄(min)−m2
g̃

m2
g̃ +m2

q − 2|mg̃|Eq̄(min)−m2
q̃L/R

]
.

(A.215)

Consequently, in the limit of a very compressed spectrum or very large intermediate squark masses, we

may improve numerical precision and avoid fine cancellations by instead evaluating:

g(φ̃) =
0.5π2|mg̃||mZ̃ |[Eq̄(max)− Eq̄(min)]

m2
g̃ +m2

q − 2|mg̃|Ef −m2
q̃L/R

[m2
Z̃
− 2m2

q + 2|mg̃|Eq + 2|mg̃|Eq̄(min)−m2
g̃

m2
g̃ +m2

q − 2|mg̃|Eq̄(min)−m2
q̃L/R

]
. (A.216)
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As this situation is only of importance where these modes are the only modes available (as otherwise

they will be completely swamped by less phase space suppressed modes), we currently apply this only

to the cases of gluino decays to the lightest neutralino and the first generation quarks (g̃ → Z̃iuū or

g̃ → Z̃idd̄). The limiting formula Eq. A.216 is taken when pt < 10mg̃ or mq̃L/R < 5mg̃ (these choices are

somewhat arbitrary and can be changed by the user). We leave an investigation of the precise points to

change between the two formulae, and to whether similar limits may be taken for other very compressed

3-body decays (such as those of neutralinos and charginos) to future study.

For the more complicated case of decays to third generation quarks; the Yukawa coupling contribu-

tions, squark-mixing effects and final state quark masses are all included as they can have significant

effects. The decay is mediated by either t̃1 or t̃2 in the t or u channel, giving 4 Feynman diagrams (2

shown below as j = 1, 2) and 6 (i.e. 4C2) interferences. The six interferences can be split into 2 “diagonal”

contributions (t̃1 t - t̃1 u interference and t̃2 t - t̃2 u interference) and 4 “non-diagonal” contributions

(t̃1 t - t̃2 t, t̃1 t - t̃2 u, t̃1 u - t̃2 t and t̃1 u - t̃2 u interferences). The possibility of negative neutralino

masses (which can be absorbed into imaginary couplings) is also included. The formulae are adopted

from sPHENO, it should be noted that differences exit between these formulae and those present in Baer

and Tata’s book [65].

(a) channel a (b) channel b

Figure A.1: Feynman diagrams for the 3-body decay of a gluino into a neutralino and a top-
antitop pair, as mediated by stops t̃1/2. i = 1, 2, 3, 4 and j = 1, 2.

The formulae for the case of g̃ → Z̃itt̄ are given, from this decays to other quarks can be obtained by

making the appropriate replacements.

Γ(g̃ → tt̄Z̃i) =
αs

8π4mg̃
[Γt̃1 + Γt̃2 + Γt̃1 t̃2 ]. (A.217)

The Γt̃1 , Γt̃2 , Γt̃1 t̃2 can be split up into different contributions:

Γt̃1 = ΓLL(t̃1) cos2 θt + ΓRR(t̃1) sin2 θt − sin θt cos θt

[
ΓL1R1

(t̃1) + ΓL1R2
(t̃1) + ΓL2R1

(t̃1) + ΓL2R2
(t̃1)

]
.

(A.218)

Γt̃2 = ΓLL(t̃2) sin2 θt + ΓRR(t̃2) cos2 θt + sin θt cos θt

[
ΓL1R1

(t̃2) + ΓL1R2
(t̃2) + ΓL2R1

(t̃2) + ΓL2R2
(t̃2)

]
.

(A.219)

Γt̃1 t̃2 =
[
ΓLL(t̃1, t̃2) + ΓRR(t̃1, t̃2)

]
sin θt cos θt + ΓLR(t̃1, t̃2) cos2 θt + ΓRL(t̃1, t̃2) sin2 θt. (A.220)

The moduli of the complex couplings are as follows:

|αt̃11 | = Ãt
Z̃i

cos θt − ftN4i sin θt, |β t̃11 | = ftN4i cos θt + B̃t
Z̃i

sin θt, (A.221)

|αt̃21 | = Ãt
Z̃i

sin θt + ftN4i cos θt, |β t̃21 | = ftN4i sin θt − B̃tZ̃i cos θt, (A.222)
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where

Ãt
Z̃i

= − g√
2
N2i −

g
′

3
√

2
N1i, (A.223) B̃t

Z̃i
= −4

3

g
′

√
2
N1i, (A.224)

ft =
gmrun

t√
2MW sinβ

. (A.225)

The overall couplings are complex and depend upon the sign of the corresponding neutralino’s mass.

They are of the form (a, b), where this represents the complex number a + bi. For positive masses they

are:

at̃1 = (|αt̃11 |, 0), bt̃1 = (|β t̃11 |, 0), at̃2 = (|αt̃21 |, 0), bt̃2 = (|β t̃21 |, 0). (A.226)

Meanwhile, for negative neutralino masses the effect of our field redefinition is to multiply the corre-

sponding row of the neutralino mixing matrix by −i therefore the couplings are then:

at̃1 = (0,−|αt̃11 |), bt̃1 = (0,−|β t̃11 |), at̃2 = (0,−|αt̃21 |), bt̃2 = (0,−|β t̃21 |). (A.227)

In addition to account for differences in interactions for positive and negative neutralino masses as a

result of this coupling difference and the extra associated γ5 matrices we must also include factors of:

(−1)θi =

+1, for positive neutralino masses,

−1, for negative neutralino masses.
(A.228)

The formula we use for Γt̃1 and Γt̃2 are:

Γt̃1 =(−1)θi
[
(at̃1

2
+ bt̃1

2
)ψ̃(mg̃,mt̃1

,mt̃1
,mZ̃i

) + 4at̃1bt̃1mtmZ̃i
χ̃(mg̃,mt̃1

,mt̃1
,mZ̃i

)

− 4 sin θt cos θt(a
t̃1

2
+ bt̃1

2
)mg̃mtX(mg̃,mt̃1

,mt̃1
,mZ̃i

)

− 8 sin θt cos θta
t̃1bt̃1mg̃m

2
tmZ̃i

ζ(mg̃,mt̃1
,mt̃1

,mZ̃i
)

− 2 sin θt cos θta
t̃1bt̃1Y (mg̃,mt̃1

,mt̃1
,mZ̃i

) + {at̃12
cos2 θt + bt̃1

2
sin2 θt}φ̃(mg̃,mt̃1

,mt̃1
,mZ̃i

)

− 2m2
t sin θt cos θta

t̃1bt̃1ξ(mg̃,mt̃1
,mt̃1

,mZ̃i
) +mg̃mta

t̃1bt̃1ξ(mg̃,mt̃1
,mt̃1

,mZ̃i
)

−mg̃mta
t̃1bt̃1m2

Z̃i
ρ̃(mg̃,mt̃1

,mt̃1
,mZ̃i

) +mg̃m
2
tmZ̃i

{at̃12
sin2 θt + bt̃1

2
cos2 θt}ρ̃(mg̃,mt̃1

,mt̃1
,mZ̃i

)

− (at̃1
2

+ bt̃1
2
){mZ̃i

mt sin θt cos θtm
2
g̃ρ̃(mg̃,mt̃1

,mt̃1
,mZ̃i

)

−mZ̃i
mt sin θt cos θtξ(mg̃,mt̃1

,mt̃1
,mZ̃i

)}
]
.

(A.229)

Γt̃2 =(−1)θi
[
(at̃2

2
+ bt̃2

2
)ψ̃(mg̃,mt̃2

,mt̃2
,mZ̃i

) + 4at̃2bt̃2mtmZ̃i
χ̃(mg̃,mt̃2

,mt̃2
,mZ̃i

)

+ 4mg̃mt sin θt cos θt(a
t̃2

2
+ bt̃2

2
)X(mg̃,mt̃2

,mt̃2
,mZ̃i

)

+ 8 sin θt cos θta
t̃2bt̃2mg̃m

2
tmZ̃i

ζ(mg̃,mt̃2
,mt̃2

,mZ̃i
) + 2 sin θt cos θta

t̃2bt̃2Y (mg̃,mt̃2
,mt̃2

,mZ̃i
)

+ {at̃22
sin2 θt + cos2 θtb

t̃2
2}φ̃(mg̃,mt̃2

,mt̃2
,mZ̃i

) + 2m2
t sin θt cos θta

t̃2bt̃2ξ(mg̃,mt̃2
,mt̃2

,mZ̃i
)

+mg̃mta
t̃2bt̃2ξ(mg̃,mt̃2

,mt̃2
,mZ̃i

)−mg̃mtm
2
Z̃i
at̃2bt̃2 ρ̃(mg̃,mt̃2

,mt̃2
,mZ̃i

)

+mg̃mZ̃i
m2
t{at̃2

2
cos2 θt + bt̃2

2
sin2 θt}ρ̃(mg̃,mt̃2

,mt̃2
,mZ̃i

)

− (at̃2
2

+ bt̃2
2
){mZ̃i

mt sin θt cos θtξ(mg̃,mt̃2
,mt̃2

,mZ̃i
)

−m2
g̃mZ̃i

mt sin θt cos θtρ̃(mg̃,mt̃2
,mt̃2

,mZ̃i
)}
]
.

(A.230)
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For Γt̃1 t̃2 , our formula, again extracted from sPHENO-3.3.8, is:

Γt̃1 t̃2 = (−1)θi
[
4mg̃mt(cos2 θt − sin2 θt)(a

t̃1at̃2 + bt̃1bt̃2)X(mg̃,mt̃1
,mt̃2

,mZ̃i
)

+ 4mg̃m
2
tmZ̃i

(at̃1bt̃2 + bt̃1at̃2)(cos2 θt − sin2 θt)ζ(mg̃,mt̃1
,mt̃2

,mZ̃i
)

+ 2{bt̃1at̃1 cos2 θt − sin2 θtb
t̃2at̃1}Y (mg̃,mt̃1

,mt̃2
,mZ̃i

)

+ 2 sin θt cos θt(a
t̃1at̃2 − bt̃1bt̃2)φ̃(mg̃,mt̃1

,mt̃2
,mZ̃i

)

+ 2mtmZ̃i
(at̃1at̃2 − bt̃1bt̃2)χ

′
(mg̃,mt̃1

,mt̃2
,mZ̃i

)

+ 2m2
t{cos2 θta

t̃1bt̃2 − sin2 θtb
t̃1at̃2}ξ(mg̃,mt̃1

,mt̃2
,mZ̃i

)

+ 2mg̃m
2
tmZ̃i

(bt̃1bt̃2 − at̃1at̃2) sin θt cos θtρ̃(mg̃,mt̃1
,mt̃2

,mZ̃i
)

− 4 sin θt cos θtmg̃mt(a
t̃1bt̃2 − bt̃1at̃2)χ

′
(mg̃,mt̃1

,mt̃2
,mZ̃i

)

− 2 sin θt cos θtmg̃mt(a
t̃1bt̃2 − bt̃1at̃2)ξ(mg̃,mt̃1

,mt̃2
,mZ̃i

)

+ 2mtmZ̃i
{sin2 θta

t̃1at̃2 − cos2 θtb
t̃1bt̃2}ξ(mg̃,mt̃1

,mt̃2
,mZ̃i

)

+ 2m3
g̃mt(a

t̃1bt̃21 − bt̃2at̃2) sin θt cos θtρ̃(mg̃,mt̃1
,mt̃2

,mZ̃i
)

− 2m2
g̃mtmZ̃i

{sin2 θta
t̃1at̃2 − cos2 θtb

t̃1bt̃2}ρ̃(mg̃,mt̃1
,mt̃2

,mZ̃i
)
]
.

(A.231)

For the 3-body decay of g̃ → Z̃ibb̄ then the formulae are exactly as above but with the replacements:

mt̃i
→ mb̃i

, Ãt
Z̃i
→ Ãb

Z̃i
, B̃t

Z̃i
→ B̃b

Z̃i
, ft → fb, N4i → N3i, θt → θb, mt → mb. In our program both

the g̃ → Z̃itt̄ and g̃ → Z̃ibb̄ decays are implemented in the same function, just depending on whether its

decaying to tops or bottoms different couplings are used as described above.

Ãb
Z̃i

=
g√
2
N2i −

g
′

3
√

2
N1i, (A.232)

B̃b
Z̃i

=
2

3

g
′

√
2
N1i, (A.233)

fb =
gmrun

b√
2MW cosβ

. (A.234)

Note that the integrals used in these equations, ψ̃, χ̃, X, ζ, φ̃, ξ, ρ̃, Y , χ
′

are given below in Eq: (A.291),

(A.292), (A.293), (A.294), (A.295), (A.296), (A.297) (A.298), (A.299) respectively, when the formulae for

Z̃i → Z̃jff̄ are given.

g̃ → W̃iqq̄′

The decay of a gluino into a chargino, quark(q) and antiquark(q̄′) can occur via intermediate squarks

of either the q or q′, therefore there are four possible intermediates in the case where intra-generational

squark mixing effects are included. For example, g̃ → W̃jtb̄ may proceed via t̃1, t̃2, b̃1 or b̃2. Again

there are both t and u channel contributions which may contribute to g̃ → W̃jtb̄ or g̃ → W̃jbt̄. The 8

diagrams are therefore shown as a set of 4 (k = 1, 2 for each intermediate shown) in Fig A.2. There are

4 squared contributions to each of tb̄ and bt̄ as well as t̃1t̃1, t̃1t̃2, t̃2t̃2, b̃1b̃1, b̃1b̃2, b̃2b̃2, t̃1b̃1, t̃1b̃2, t̃2b̃1

and t̃2b̃2 interferences. Note that “diagonal” interferences such as t̃1t̃1 are included with non-interference

squared terms into the Γt̃1 type contributions. In the formulae, the Yukawa couplings, intra-generational

squark mixing and final state fermion masses are all accounted for; however whilst the bottom quark mass

mb is included in the phase space, it is neglected from the squared matrix element, this drops any b̃k b̃l

interferences as these are proportional to mb. The approach used follows Baer and Tata’s book ‘Weak

Scale Supersymmetry’ [65] with the formulae we use taken from sPHENO [3, 4], based on the calculations

in reference [178]. The formulae used, as in sPHENO, differ in a few places from those in Baer and Tata.
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(a) (b) (c) (d)

Figure A.2: Feynman diagrams for the 3-body decay of a gluino into a chargino and a top-bottom
pair, as mediated by stops t̃1/2 and sbottoms t̃1/2. j, k = 1, 2.

Γ(g̃ → tb̄W̃−i ) =
αs

16π2mg̃
(Γt̃1 + Γt̃2 + Γt̃1 t̃2 + Γb̃1 + Γb̃2 + Γt̃1b̃1 + Γt̃1b̃2 + Γt̃2b̃1 + Γt̃2b̃2). (A.235)

The chargino− quark− squark couplings are given below, remember we have the chargino mixing angle

θL and θR pre-transformed so that θL/R → −θL/R+π/2 in order to use the convention where the lightest

mass chargino eigenstate W̃1 appears first in the multiplet:

αt̃1
W̃1

= −g sin θL cos θt + ft cos θR sin θt, β t̃1
W̃1

= −fb cos θL cos θt,

αb̃1
W̃1

= −g sin θL cos θb + fb cos θL sin θb, βb̃1
W̃1

= −ft cos θR cos θb,

αt̃1
W̃2

= −g cos θL cos θt − ft sin θR sin θt, β t̃1
W̃2

= fb sin θL cos θt,

αb̃1
W̃2

= −g cos θL cos θb − fb sin θL sin θb, βb̃1
W̃2

= ft sin θR cos θb.

(A.236)

We obtain the couplings for t̃2 and b̃2 by changing cos θq→ sin θq and sin θq→− cos θq. The W̃2 couplings

are obtained from those of W̃1 by making the replacements cos θL/R→− sin θL/R and sin θL/R→ cos θL/R.

The contributions in (A.235) are as follows:

Γt̃1 = [(αt̃1
W̃i

)2 + (β t̃1
W̃i

)2]
[
G1(mg̃,mt̃1

,mW̃i
)− sin 2θtG8(mg̃,mt̃1

,mt̃1
,mW̃i

)
]
, (A.237)

Γt̃2 = [(αt̃2
W̃i

)2 + (β t̃2
W̃i

)2]
[
G1(mg̃,mt̃2

,mW̃i
) + sin 2θtG8(mg̃,mt̃2

,mt̃2
,mW̃i

)
]
, (A.238)

Γb̃1 = [(αb̃1
W̃i

)2 + (β b̃1
W̃i

)2]G2(mg̃,mb̃1
,mW̃i

) + αb̃1
W̃i
β b̃1
W̃i
G3(mg̃,mb̃1

,mW̃i
), (A.239)

Γb̃2 = [(αb̃2
W̃i

)2 + (β b̃2
W̃i

)2]G2(mg̃,mb̃2
,mW̃i

) + αb̃2
W̃i
β b̃2
W̃i
G3(mg̃,mb̃2

,mW̃i
), (A.240)

Γt̃1 t̃2 = 2(αt̃1
W̃i
αt̃2
W̃i

+ β t̃1
W̃i
β t̃2
W̃i

) cos 2θtG8(mg̃,mt̃1
,mt̃2

,mW̃i
), (A.241)

Γt̃1b̃1 = (cos θt sin θbα
b̃1
W̃i
β t̃1
W̃i

+ sin θt cos θbβ
b̃1
W̃i
αt̃1
W̃i

)G6(mg̃,mt̃1
,mb̃1

,mW̃i
) (A.242)

− (cos θt cos θbα
b̃1
W̃i
αt̃1
W̃i

+ sin θt sin θbβ
b̃1
W̃i
β t̃1
W̃i

)G4(mg̃,mt̃1
,mb̃1

,mW̃i
) (A.243)

− (cos θt cos θbβ
b̃1
W̃i
αt̃1
W̃i

+ sin θt sin θbα
b̃1
W̃i
β t̃1
W̃i

)G5(mg̃,mt̃1
,mb̃1

,mW̃i
) (A.244)

− (cos θt sin θbβ
b̃1
W̃i
β t̃1
W̃i

+ sin θt cos θbα
b̃1
W̃i
αt̃1
W̃i

)G7(mg̃,mt̃1
,mb̃1

,mW̃i
), (A.245)

Γt̃1b̃2 = (− cos θt cos θbα
b̃1
W̃i
β t̃1
W̃i

+ sin θt sin θbβ
b̃1
W̃i
αt̃1
W̃i

)G6(mg̃,mt̃1
,mb̃1

,mW̃i
) (A.246)

− (cos θt sin θbα
b̃1
W̃i
αt̃1
W̃i
− sin θt cos θbβ

b̃1
W̃i
β t̃1
W̃i

)G4(mg̃,mt̃1
,mb̃1

,mW̃i
) (A.247)

− (cos θt sin θbβ
b̃1
W̃i
αt̃1
W̃i
− sin θt cos θbα

b̃1
W̃i
β t̃1
W̃i

)G5(mg̃,mt̃1
,mb̃1

,mW̃i
) (A.248)

− (− cos θt cos θbβ
b̃1
W̃i
β t̃1
W̃i

+ sin θt sin θbα
b̃1
W̃i
αt̃1
W̃i

)G7(mg̃,mt̃1
,mb̃1

,mW̃i
), (A.249)
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Γt̃2b̃1 =(sin θt sin θbα
b̃1
W̃i
β t̃1
W̃i
− cos θt cos θbβ

b̃1
W̃i
αt̃1
W̃i

)G6(mg̃,mt̃1
,mb̃1

,mW̃i
)

− (sin θt cos θbα
b̃1
W̃i
αt̃1
W̃i
− cos θt sin θbβ

b̃1
W̃i
β t̃1
W̃i

)G4(mg̃,mt̃1
,mb̃1

,mW̃i
)

− (sin θt cos θbβ
b̃1
W̃i
αt̃1
W̃i
− cos θt sin θbα

b̃1
W̃i
β t̃1
W̃i

)G5(mg̃,mt̃1
,mb̃1

,mW̃i
)

− (sin θt sin θbβ
b̃1
W̃i
β t̃1
W̃i
− cos θt cos θbα

b̃1
W̃i
αt̃1
W̃i

)G7(mg̃,mt̃1
,mb̃1

,mW̃i
),

(A.250)

Γt̃2b̃2 =− (sin θt cos θbα
b̃1
W̃i
β t̃1
W̃i

+ cos θt sin θbβ
b̃1
W̃i
αt̃1
W̃i

)G6(mg̃,mt̃1
,mb̃1

,mW̃i
)

− (sin θt sin θbα
b̃1
W̃i
αt̃1
W̃i

+ cos θt cos θbβ
b̃1
W̃i
β t̃1
W̃i

)G4(mg̃,mt̃1
,mb̃1

,mW̃i
)

− (sin θt sin θbβ
b̃1
W̃i
αt̃1
W̃i

+ cos θt cos θbα
b̃1
W̃i
β t̃1
W̃i

)G5(mg̃,mt̃1
,mb̃1

,mW̃i
)

+ (sin θt cos θbβ
b̃1
W̃i
β t̃1
W̃i

+ cos θt sin θbα
b̃1
W̃i
αt̃1
W̃i

)G7(mg̃,mt̃1
,mb̃1

,mW̃i
).

(A.251)

The integrals G1 to G8 are given by the following, where st = m2
g̃+m2

t−2Etmg̃ and sb = m2
g̃+m2

b−2Ebmg̃:

G1(mg̃,mt̃k
,mW̃i

) = mg̃

∫ dEtptEt(st −m2
W̃i

)2

(st −m2
t̃k

)2st
, (A.252)

G2(mg̃,mb̃k
,mW̃i

) = mg̃

∫
dEbE

2
bλ

1
2 (sb,m

2
W̃i
,m2

t )
sb −m2

t −m2
W̃i

(s2
b −m2

b̃k
)2sb

, (A.253)

G3(mg̃,mb̃k
,mW̃i

) =

∫
dEbE

2
bλ

1
2 (sb,m

2
W̃i
,m2

t )
4mg̃mW̃i

mt

(s2
b −m2

b̃k
)2sb

, (A.254)

G4(mg̃,mt̃j
,mb̃k

,mW̃i
) = mg̃mW̃i

∫
dEt

st −m2
t̃j

[
Eb(max)− Eb(min)−

m2
b̃j

+m2
t − 2Etmg̃ −m2

W̃i

2mg̃
logX

]
,

(A.255)

G5(mg̃,mt̃j
,mb̃k

,mW̃i
) =

mt

2

∫
dEt

st −m2
W̃i

st −m2
t̃j

logX, (A.256)

G6(mg̃,mt̃j
,mb̃k

,mW̃i
)=

1

2

∫
dEt

st −m2
t̃j

{
[mg̃(st −m2

W̃i
)+

m2
b̃k
−m2

g̃

mg̃
st] logX − 2st[Eb(max)− Eb(min)]

}
,

(A.257)

G7(mg̃,mt̃j
,mb̃k

,mW̃i
) =

1

2
mW̃i

mt

∫
dEt

st −m2
t̃j

{
2[Eb(max)− Eb(min)]−

m2
b̃k
−m2

g̃

mg̃
logX

}
, (A.258)

G8(mg̃,mt̃1
,mt̃2

,mW̃i
) = mg̃mt

∫
dEt

(st −m2
W̃i

)[Eb(max)− Eb(min)]

(st −m2
t̃1

)(st −m2
t̃2

)
. (A.259)

The limits of integration here are mt to (m2
g̃ +m2

t − (mW̃i
+mb)

2)/(2mg̃) for the Et integrals, and mb to

(m2
g̃ − (mt +mW̃i

)2)/(2mg̃) for the Eb integrals. Here pt =
√
E2
t −m2

t , Eb(max/min) and X are given
by:

Eb(max/min) =
(st +m2

b −m2
W̃i

)(mg̃ − Et)± λ
1
2 (st,m

2
b ,m

2
W̃i

)

2st
, (A.260)

X =
m2
b̃j

+ 2Eb(max)mg̃ −m2
g̃

m2
b̃j

+ 2Eb(min)mg̃ −m2
g̃

. (A.261)

The formulae for the first and second generation quarks can be obtained from those for the third
generation straightforwardly, in fact they are simpler as the Yukawa coupling can often be neglected.
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A.4.2 Neutralino 3-body Decays

Z̃i → Z̃jff̄

For the 3-body decay of a neutralino into a lighter neutralino and a fermion-antifermion pair there

are three types of contribution, as illustrated in the Feynman diagrams in Fig A.3; Z boson exchange,

neutral Higgs boson exchange and sfermion exchange. The effects of Yukawa couplings, sfermion mixing

and finite non-zero quark masses in the final state have been included. Similarly, the effects of negative

neutralino masses in initial or final states are included. However, we have taken the approach of Baer

et al in references [65, 178]; whilst we have included the effects of the quark mass in the phase space,

the quark mass has been approximated as zero in the squared matrix element. This approximation is

justified on the basis that the fermion-antifermion pair may not be a tt̄ pair as the decay calculator only

evaluates the 3-body decays when 2-body decays are absent, given the dominance of 2-body modes over

3-body modes in branching ratios. Whenever the 3-body mode Z̃i → Z̃jtt̄ is available then so are the

2-body modes Z̃i → Z̃jZ and Z̃i → Z̃jh, which will make the 3-body modes negligible. It is however

crucial to include the effects of the non-zero quark masses in the phase space, as has been done, as often

the phase space available to these decays is limited (e.g. for compressed spectra) and so the reduction

in phase space caused by the finite quark masses is important. Similarly, with non-zero quark masses

the Higgs intermediate contributions are allowed. Nonetheless the effect of the approximation is just to

remove the Higgs boson - Z interferences and CP even - CP odd Higgs boson interferences, which are

generally necessarily small compared to other contributions. The formulae for the included contributions

themselves are all taken from sPHENO, as for the other 3-body modes. It should also be noted that the

calculation in sPHENO was done in the Feynman gauge so a Goldstone contribution, corresponding to the

longitudinal component of the Z boson, is required. The included contributions are therefore the squared

Z (including Goldstone), φ and f̃ contributions as well as hH, Zf̃ , φf̃ and ZA interferences.4

(a) (b) (c)

Figure A.3: Feynman diagrams for the 3-body decay of a neutralino into a lighter neutralino and
a fermion-antifermion pair, as mediated by Z bosons, Higgs bosons φ = h,H,A, or sfermions
f̃1/2. i > j and i, j ∈ 1, 2, 3, 4.

Γ(Z̃i → Z̃jff̄) =
Nc

512π3|mZ̃i
|3 (ΓZ + Γh + ΓH + ΓA + ΓhH + Γf̃ − 4Γhf̃1

− 4Γhf̃2
− 4ΓHf̃1

− 4ΓHf̃2

− 4ΓAf̃1
− 4ΓAf̃2

+ 4ΓZf̃1
− 4ΓZf̃2

− 4ΓZA + ΓG + 2ΓGA − 4ΓZG − 4ΓGf̃1
− 4ΓGf̃2

).

(A.262)

G indicates the Goldstone contribution. In the following contributions we again account for negative

neutralino masses via factors of −1 corresponding to the effects of absorbing factors of −iγ5 into the

couplings for negative mass neutralinos:

(−1)θi =

1, for mZ̃i
> 0,

−1, for mZ̃i
< 0.

(A.263)

4Differential decay rate calculations for this mode using a different approach are available in reference [177].
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The contributions are as follows:

Γh = 2(Xh
ij +Xh

ji)
2f2
q t

2
αh

[
Ih4 − 2m2

fI
h
3 + 2(−1)θj |mZ̃i

||mZ̃j
|Ih2 − 4(−1)θj |mZ̃i

||mZ̃j
|m2

fI
h
1

]
, (A.264)

where
s = m2

Z̃i
+m2

Z̃j
− 2|mZ̃i

|E, (A.265)

Emax =
m2
Z̃i

+m2
Z̃j
− 4m2

f

2|mZ̃i
| , (A.266)

Ih1 =

∫ Emax

|mZ̃j |
dE

2|mZ̃i
|
√
s− 4m2

f

√
E2 −m2

Z̃j
2|mZ̃i

|
√
s(s−m2

h)2
, (A.267)

Ih2 =

∫ Emax

|mZ̃j |
dE

2|mZ̃i
|
√
s− 4m2

f

√
E2 −m2

Z̃j
2|mZ̃i

|(s− 2m2
f )

√
s(s−m2

h)2
, (A.268)

Ih3 =

∫ Emax

|mZ̃j |
dE

2|mZ̃i
|
√
s− 4m2

f

√
E2 −m2

Z̃j
2|mZ̃i

|2|mZ̃i
|E

√
s(s−m2

h)2
, (A.269)

Ih4 =

∫ Emax

|mZ̃j |
dE

2|mZ̃i
|
√
s− 4m2

f

√
E2 −m2

Z̃j
2|mZ̃i

|(s− 2m2
f )2|mZ̃i

|E
√
s(s−m2

h)2
. (A.270)

ΓH = 2(XH
ij +XH

ji )
2f2
q t

2
αH

[
IH4 − 2m2

fI
H
3 + 2(−1)θj |mZ̃i

||mZ̃j
|IH2 − 4(−1)θj |mZ̃i

||mZ̃j
|m2

fI
H
1

]
.

(A.271)

where the IH1,2,3,4 are exactly the same as the Ih1,2,3,4 with the change mh → mH .

ΓZ = 64g2 sin2 θWW
2
ij

[
4(−1)θj |mZ̃i

||mZ̃j
|m2

f (α2
f − β2

f )IZ4 +m2
f (α2

f − β2
f )IZ3

+ (−1)θi(−1)θj |mZ̃i
||mZ̃j

|(α2
f + β2

f )IZ2 +
1

2
(α2
f + β2

f )IZ1

]
,

(A.272)

where the integrals IZi are:

IZ1 =

∫ (|mZ̃i |−|mZ̃j |)
2

4m2
f

ds
[ 1

3s2(s−m2
Z)2
{−2s4 + (m2

Z̃i
+m2

Z̃j
+ 2m2

f )s3 + [(m2
Z̃i
−m2

Z̃j
)2

− 2(m2
Z̃i

+m2
Z̃j

)2m2
f ]s2 + 2m2

f (m2
Z̃i
−m2

Z̃j
)2s}1

s

×
√

(s− (|mZ̃i
| − |mZ̃j

|)2)((s− (|mZ̃i
|+ |mZ̃j

|)2)
√
s(s− 4m2

f )
]
,

(A.273)

IZ2 =

∫ (|mZ̃i |−|mZ̃j |)
2

4m2
f

ds
[ 1

s(s−m2
Z)2

(s− 2m2
f )
√

(s− (|mZ̃i
| − |mZ̃j

|)2)((s− (|mZ̃i
|+ |mZ̃j

|)2)

×
√
s(s− 4m2

f )
]
,

(A.274)

IZ3 =

∫ (|mZ̃i |−|mZ̃j |)
2

4m2
f

ds
[ 1

s(s−m2
Z)2

(m2
Z̃i

+m2
Z̃j
− s)

√
(s− (|mZ̃i

| − |mZ̃j
|)2)((s− (|mZ̃i

|+ |mZ̃j
|)2)

×
√
s(s− 4m2

f )
]
,

(A.275)

IZ4 =

∫ (|mZ̃i |−|mZ̃j |)
2

4m2
f

ds
[ 1

s(s−m2
Z)2

√
(s− (|mZ̃i

| − |mZ̃j
|)2)((s− (|mZ̃i

|+ |mZ̃j
|)2)
√
s(s− 4m2

f )
]
.

(A.276)
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ΓA = (XA
ij +XA

ji)
2A2

q

[
IA4 + 2m2

fI
A
3 − 2(−1)θi(−1)θj |mZ̃i

||mZ̃j
|IA2 − 4(−1)θi(−1)θjm2

f |mZ̃i
||mZ̃j

|IA1
]
,

(A.277)

where the integrals IAi are:

IA1 =

∫ Emax

|mZ̃j |
dE
√
E2 −m2

Z̃j

√
s− 4m2

f

4m2
Z̃i√

s(s−m2
A)2

, (A.278)

IA2 =

∫ Emax

|mZ̃j |
dE
√
E2 −m2

Z̃j

√
s− 4m2

f

4m2
Z̃i

(s− 2m2
f )

√
s(s−m2

A)2
, (A.279)

IA3 =

∫ Emax

|mZ̃j |
dE
√
E2 −m2

Z̃j

√
s− 4m2

f

4m2
Z̃i

2|mZ̃i
|E

√
s(s−m2

A)2
, (A.280)

IA4 =

∫ Emax

|mZ̃j |
dE
√
E2 −m2

Z̃j

√
s− 4m2

f

4m2
Z̃i

2|mZ̃i
|E(s− 2m2

f )
√
s(s−m2

A)2
, (A.281)

ΓhH = 4(Xh
ij +Xh

ji)(X
H
ij +XH

ji )f
2
q tαhtαH

[
IhH4 − 2m2

fI
hH
3 + 2(−1)θi(−1)θj |mZ̃i

||mZ̃j
|IhH2

− 4(−1)θi(−1)θj |mZ̃i
||mZ̃j

|m2
fI
hH
1

]
,

(A.282)

where:

IhH1 =

∫ Emax

|mZ̃j |
dE
[
2|mZ̃i

|
√
s− 4m2

f

√
E2 −m2

Z̃j

2|mZ̃i
|√

s(s−m2
h)(s−m2

H)

]
, (A.283)

IhH2 =

∫ Emax

|mZ̃j |
dE
[
2|mZ̃i

|
√
s− 4m2

f

√
E2 −m2

Z̃j

2|mZ̃i
|(s− 2m2

f )
√
s(s−m2

h)(s−m2
H)

]
, (A.284)

IhH3 =

∫ Emax

|mZ̃j |
dE
[
2|mZ̃i

|
√
s− 4m2

f

√
E2 −m2

Z̃j

4m2
Z̃i
E

√
s(s−m2

h)(s−m2
H)

]
, (A.285)

IhH4 =

∫ Emax

|mZ̃j |
dE
[
2|mZ̃i

|
√
s− 4m2

f

√
E2 −m2

Z̃j

4m2
Z̃i
E(s− 2m2

f )
√
s(s−m2

h)(s−m2
H)

]
. (A.286)

Γf̃ = 2Γdiag
f̃1f̃1

+ 2Γdiag
f̃2f̃2

+ 2Γnondiag
f̃ f̃

+ Γtu
f̃1f̃1

+ Γtu
f̃2f̃2

+ 2Γtu
f̃1f̃2

, (A.287)

There are many sfermion contributions included here, they are as follows:

Γdiag
f̃1f̃1

=
8m2

Z̃i

π2
(αZ̃i
f̃1

2
+ βZ̃i

f̃1

2
)
[
(α
Z̃j

f̃1

2

+ β
Z̃j

f̃1

2

)ψ̃(Z̃i, f̃1, f̃1, Z̃j) + 4(−1)θjα
Z̃j

f̃1
β
Z̃j

f̃1
mf |mZ̃j

|χ̃(Z̃i, f̃1, f̃1, Z̃j)
]

−
32m2

Z̃i

π2
(−1)θi(α

Z̃j

f̃1

2

+ β
Z̃j

f̃1

2

)αZ̃i
f̃1
βZ̃i
f̃1
mf |mZ̃i

|X(Z̃i, f̃1, f̃1, Z̃j)

−
64m2

Z̃i

π2
(−1)θi(−1)θjαZ̃i

f̃1
βZ̃i
f̃1
α
Z̃j

f̃1
β
Z̃j

f̃1
|mZ̃i

|m2
f |mZ̃j

|ζ(Z̃i, f̃1, f̃1, Z̃j),

(A.288)

Γdiag
f̃2f̃2

=
8m2

Z̃i

π2
(αZ̃i
f̃2

2
+ βZ̃i

f̃2

2
)
[
(α
Z̃j

f̃2

2

+ β
Z̃j

f̃2

2

)ψ̃(Z̃i, f̃2, f̃2, Z̃j) + 4(−1)θjα
Z̃j

f̃2
β
Z̃j

f̃2
mf |mZ̃j

|χ̃(Z̃i, f̃2, f̃2, Z̃j)
]

−
32m2

Z̃i

π2
(−1)θi(α

Z̃j

f̃2

2

+ β
Z̃j

f̃2

2

)αZ̃i
f̃2
βZ̃i
f̃2
mf |mZ̃i

|X(Z̃i, f̃2, f̃2, Z̃j)

−
64m2

Z̃i

π2
(−1)θi(−1)θjαZ̃i

f̃2
βZ̃i
f̃2
α
Z̃j

f̃2
β
Z̃j

f̃2
|mZ̃i

|m2
f |mZ̃j

|ζ(Z̃i, f̃2, f̃2, Z̃j),

(A.289)where the ψ̃, χ̃, X, ζ integrals have been used before for the gluino 3-body decays and are:

Emaxf =
m2
Z̃i
− 2mf |mZ̃j

−m2
Z̃j

2|mZ̃i
| , (A.290)
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ψ̃(mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) = π2mZ̃i

∫ Emaxf

mf

dEf

√
Ef

2 −m2
fEf

λ
1
2 (s,m2

f ,m
2
Z̃j

)

s

m2
Z̃i
−m2

Z̃j
− 2mZ̃i

Ef

(s−m2
f̃1

)(s−m2
f̃2

)
,

(A.291)

χ̃(mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) = π2mZ̃i

∫ Emaxf

mf

dEf

√
Ef

2 −m2
fEf

λ
1
2 (s,m2

f ,m
2
Z̃j

)

s

1

(s−m2
f̃1

)(s−m2
f̃2

)
,

(A.292)

X(mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) =
π2

2

∫ Emaxf

mf

dEf

√
Ef

2 −m2
f

m2
Z̃i
−m2

Z̃j
− 2mZ̃i

Ef

m2
Z̃i

+m2
f − 2mZ̃i

Ef

λ
1
2 (s,m2

f ,m
2
Z̃j

)

(s−m2
f̃1

)(s−m2
f̃2

)
,

(A.293)

ζ(mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) = π2

∫ Emaxf

mf

dEf
[Ef̄ (max)− Ef̄ (min)]

(s−m2
f̃1

)(s−m2
f̃2

)
. (A.294)

Later the following integrals will also be required, where Z(mf̃2
) =

m2
Z̃i

+m2
f−2|mZ̃i |Ef̄ (max)−m2

f̃2

m2
Z̃i

+m2
f−2|mZ̃i |Ef̄ (min)−m2

f̃2

:

φ̃(mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) =
1

2
π2|mZ̃i

||mZ̃j
|
∫ Emaxf

mf

dEf
1

s−m2
f̃1

[
− [Ef̄ (max)− Ef̄ (min)]−

m2
Z̃j
−m2

f + 2|mZ̃i
|Ef −m2

f̃2

2|mZ̃i
| logZ(mf̃2

)
]
,

(A.295)

ξ(mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) =
1

2
π2

∫ Emaxf

mf

dEf
1

s−m2
f̃1

[
[Ef̄ (max)− Ef̄ (min)]

−
m2
Z̃i
−m2

f − 2|mZ̃i
|Ef +m2

f̃2

2|mZ̃i
| logZ(mf̃2

)
]
,

(A.296)

ρ̃(mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) = − π2

2|mZ̃i
|

∫ Emaxf

mf

dEf
1

s−m2
f̃1

logZ(mf̃2
), (A.297)

Y (mZ̃i
,mf̃1

,mf̃2
,mZ̃j

) =
π2

2

∫ Emaxf

mf

dEf
1

s−m2
f̃1

[
[Ef̄ (max)− Ef̄ (min)]s

+
1

2|mZ̃i
| (m

2
Z̃i
m2
Z̃j
−m2

Z̃i
m2
f̃2

+m4
f + 2|mZ̃i

|Efm2
f̃2
−m2

f̃2
m2
f ) logZ(mf̃2

)
]
,

(A.298)

χ
′
(mZ̃i

,mf̃1
,mf̃2

,mZ̃j
) =
−π2

2

∫ Emaxf

mf

dEfEf
s−m2

f̃2

logZ(mf̃1
), (A.299)

where here

Ef̄ (max/min) =
(s+m2

f −m2
Z̃j

)(|mZ̃i
| − Ef )±

√
(E2

f −m2
f )(s+m2

f −m2
Z̃j

)2 − 4(E2
f −m2

f )m2
fs

2s
.

(A.300)

Γnondiag
f̃ f̃

=
16m2

Z̃i

π2

[
(βZ̃i
f̃1
βZ̃i
f̃2

+ αZ̃i
f̃1
αZ̃i
f̃2

)(α
Z̃j

f̃1
α
Z̃j

f̃2
+ β

Z̃j

f̃2
β
Z̃j

f̃2
)ψ̃(Z̃i, f̃1, f̃2, Z̃j)

+ 2(−1)θj (βZ̃i
f̃1
βZ̃i
f̃2

+ αZ̃i
f̃1
αZ̃i
f̃2

)(α
Z̃j

f̃2
β
Z̃j

f̃1
+ α

Z̃j

f̃1
β
Z̃j

f̃2
)mf |mZ̃j

|χ̃(Z̃i, f̃1, f̃2, Z̃j)

− 2(−1)θi(αZ̃i
f̃1
βZ̃i
f̃2

+ αZ̃i
f̃2
βZ̃i
f̃1

)(α
Z̃j

f̃1
α
Z̃j

f̃2
+ β

Z̃j

f̃2
β
Z̃j

f̃1
)|mZ̃i

|mfX(Z̃i, f̃1, f̃2, Z̃j)

− 2(−1)θi(−1)θj (αZ̃i
f̃1
βZ̃i
f̃2

+ αZ̃i
f̃2
βZ̃i
f̃1

)(α
Z̃j

f̃2
β
Z̃j

f̃1
+ α

Z̃j

f̃1
β
Z̃j

f̃2
)m2

f |mZ̃i
||mZ̃j

|ζ(Z̃i, f̃1, f̃2, Z̃j)
]
,

(A.301)
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Γtu
f̃1f̃1

= −2
{

8(αZ̃i
f̃1
βZ̃i
f̃1
β
Z̃j

f̃1
α
Z̃j

f̃1
+ βZ̃i

f̃1
αZ̃i
f̃1
α
Z̃j

f̃1
β
Z̃j

f̃1
)m2

Z̃i
π2(−1)θiY (Z̃i, f̃1, f̃1, Z̃j)

− (αZ̃i
f̃1

2
α
Z̃j

f̃1

2

+ βZ̃i
f̃1

2
β
Z̃j

f̃1

2

)8m2
Z̃i
π2(−1)θi(−1)θj φ̃(Z̃i, f̃1, f̃1, Z̃j)

+ (αZ̃i
f̃1
βZ̃i
f̃1
α
Z̃j

f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
βZ̃i
f̃1
α
Z̃j

f̃1
β
Z̃j

f̃1
)m2

f

8m2
Z̃i

π2
(−1)θiξ(Z̃i, f̃1, f̃1, Z̃j)

− {(αZ̃i
f̃1

2
α
Z̃j

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1

2
α
Z̃j

f̃1
β
Z̃j

f̃1
)|mZ̃i

|mf}
[8m2

Z̃i

π2
ξ(Z̃i, f̃1, f̃1, Z̃j)

−
4m2

Z̃i

π2
(m2

Z̃i
+m2

Z̃j
)(−1)θi ρ̃(Z̃i, f̃1, f̃1, Z̃j) +

8m2
Z̃i

π2
χ
′
(Z̃i, f̃1, f̃1, Z̃j)

]
+ |mZ̃j

|(−1)θjmf (αZ̃i
f̃1
βZ̃i
f̃1
α
Z̃j

f̃1

2

+ αZ̃i
f̃1
βZ̃i
f̃1
β
Z̃j

f̃1

2

)
[−8m2

Z̃i

π2
ξ(Z̃i, f̃1, f̃1, Z̃j)

+
8m4

Z̃i

π2
(−1)θi ρ̃(Z̃i, f̃1, f̃1, Z̃j)−

8m2
Z̃i

π2
χ
′
(Z̃i, f̃1, f̃1, Z̃j)

]
− (βZ̃i

f̃1

2
β
Z̃j

f̃1
α
Z̃j

f̃1
+ αZ̃i

f̃1

2
α
Z̃j

f̃1
β
Z̃j

f̃1
)|mZ̃i

|(−1)θimf

[4m2
Z̃i

π2
(m2

Z̃i
−m2

Z̃j
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−
8m2

Z̃i
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χ
′
(Z̃i, f̃1, f̃1, Z̃j)

]
+ (αZ̃i
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βZ̃i
f̃1
α
Z̃j

f̃1

2
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βZ̃i
f̃1
β
Z̃j

f̃1

2
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|
8m2

Z̃i
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(−1)θi(−1)θjχ

′
(Z̃i, f̃1, f̃1, Z̃j)
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f̃1

2
α
Z̃j

f̃1

2

+ αZ̃i
f̃1

2
β
Z̃j

f̃1

2

)m2
f (−1)θi(−1)θj |mZ̃i

||mZ̃j
|
4m2

Z̃i

π2
ρ̃(Z̃i, f̃1, f̃1, Z̃j)

}
.

(A.302)

Γtu
f̃2f̃2

is as above but with f̃1 → f̃2 everywhere including in the masses and integrals.

Γtu
f̃1f̃2

= −2
{

8(αZ̃i
f̃1
βZ̃i
f̃2
β
Z̃j

f̃1
α
Z̃j

f̃2
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f̃1
αZ̃i
f̃2
α
Z̃j

f̃1
β
Z̃j

f̃2
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β
Z̃j
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Z̃j

f̃2
β
Z̃j
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α
Z̃j
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β
Z̃j
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ξ(Z̃i, f̃1, f̃2, Z̃j)
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]
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βZ̃i
f̃1
β
Z̃j
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)|
8m2

Z̃i

π2
χ
′
(Z̃i, f̃1, f̃2, Z̃j)

− 2(βZ̃i
f̃1
βZ̃i
f̃2
α
Z̃j

f̃1
α
Z̃j

f̃2
+ αZ̃i

f̃1
αZ̃i
f̃2
β
Z̃j

f̃1
β
Z̃j

f̃2
)m2

f (−1)θi(−1)θj |mZ̃i
||mZ̃j

|
4m2

Z̃i

π2
ρ̃(Z̃i, f̃1, f̃2, Z̃j)

}
.

(A.303)

As for the Z sfermion interferences:
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ΓZf̃1
=(−1)θi(CZf̃1

1 IZf̃1

1 +CZf̃1

2 IZf̃1

2 +CZf̃1

3 IZf̃1

3 +CZf̃1

4 IZf̃1

4 +CZf̃1

5 IZf̃1

5 +CZf̃1

6 IZf̃1

6 +CZf̃1

7 IZf̃1

7 +CZf̃1

8 IZf̃1

8 ),

(A.304)

where

CZf̃1

1 = −4Wijg sin θW [−αZ̃i
f̃1

(αf − βf )β
Z̃j

f̃1
+ βZ̃i

f̃1
(αf + βf )α

Z̃j

f̃1
]mf |mZ̃i

|, (A.305)

CZf̃1

2 = −4(−1)θi(−1)θjWijg sin θW [−αZ̃i
f̃1

(αf + βf )β
Z̃j

f̃1
+ βZ̃i

f̃1
(αf − βf )α

Z̃j

f̃1
]mf |mZ̃j

|, (A.306)

CZf̃1

3 = −4(−1)θiWijg sin θW [βZ̃i
f̃1

(αf + βf )β
Z̃j

f̃1
− αZ̃i

f̃1
(αf − βf )α

Z̃j

f̃1
], (A.307)

CZf̃1

4 = −8Wijg sin θW [−αZ̃i
f̃1

(αf + βf )β
Z̃j

f̃1
+ βZ̃i

f̃1
(αf − βf )α

Z̃j

f̃1
]|mZ̃i

|mf , (A.308)

CZf̃1

5 = −8(−1)θi(−1)θjWijg sin θW [−αZ̃i
f̃1

(αf − βf )β
Z̃j

f̃1
+ βZ̃i

f̃1
(αf + βf )α

Z̃j

f̃1
]|mZ̃j

|mf , (A.309)

CZf̃1

6 = −4(−1)θjWijg sin θW [βZ̃i
f̃1

(αf + βf )β
Z̃j

f̃1
− αZ̃i

f̃1
(αf − βf )α

Z̃j

f̃1
]|mZ̃i

||mZ̃j
|, (A.310)

CZf̃1

7 = −4(−1)θiWijg sin θW [βZ̃i
f̃1

(αf − βf )β
Z̃j

f̃1
− αZ̃i

f̃1
(αf + βf )α

Z̃j

f̃1
]m2

f , (A.311)

CZf̃1

8 = −16(−1)θjWijg sin θW [βZ̃i
f̃1

(αf − βf )β
Z̃j

f̃1
− αZ̃i

f̃1
(αf + βf )α

Z̃j

f̃1
]m2

f |mZ̃i
||mZ̃j

|. (A.312)

The upper limit for the integrals here is Eupper =
(m2

Z̃i
+m2

Z̃j
−4m2

f )

2|mZ̃i |
. The argument of the logarithm

in these integrals is as follows:

L = [|mZ̃i
|(EQ +Q

′
)− µ2]/[|mZ̃i

|(EQ −Q
′
)− µ2], (A.313)

In these expressions, EQ =
s+m2

Z̃i
−m2

Z̃j

2|mZ̃i |
, Q

′
=
√
E2
Q − s

√
1− 4m2

f/s and µ2 = s+m2
f̃1
−m2

Z̃j
−m2

q,

where s = m2
Z̃i

+m2
Z̃j
− 2|mZ̃i

|E. The necessary integrals are given by:

IZf̃1

1 =2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
Z

[
−2|mZ̃i

|
√

1− 4m2
q/s
√
E2 −m2

Z̃j
− (m2

f̃1
−m2

f +m2
Z̃j
− 2|mZ̃i

|E) logL
]
,

(A.314)

IZf̃1

2 =2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
Z

[
2|mZ̃i

|
√

1− 4m2
q/s
√
E2 −m2

Z̃j
+ (m2

f̃1
+m2

Z̃i
− 2|mZ̃i

|E −m2
f ) logL

]
,

(A.315)

IZf̃1

3 =2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
Z

[
{m2

Z̃i
+ 2m2

f +m2
Z̃j
− 3

2
m2
f̃1
− 1

2
(m2

f + |mZ̃i
|E

+ |mZ̃i
|
√

1− 4m2
f/s
√
E2 −m2

Z̃j
)}(m2

f + |mZ̃i
|E + |mZ̃i

|
√

1− 4m2
f/s
√
E2 −m2

Z̃j
−m2

f̃1
)

− {m2
Z̃i

+ 2m2
f +m2

Z̃j
− 3

2
m2
f̃1
− 1

2
(m2

f + |mZ̃i
|E − |mZ̃i

|
√

1− 4m2
f/s
√
E2 −m2

Z̃j
)

× (m2
f + |mZ̃i

|E − |mZ̃i
|
√

1− 4m2
f/s
√
E2 −m2

Z̃j
)−m2

f̃1
}

+ (m2
Z̃i

+m2
f −m2

f̃1
)(m2

f̃1
−m2

f −m2
Z̃j

) logL
]
,

(A.316)

IZf̃1

4 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
Z

[
2|mZ̃i

|
√

1− 4m2
f/s
√
E2 −m2

Z̃j
+ (m2

f̃1
−m2

f −m2
Z̃j

) logL
]
,

(A.317)

IZf̃1

5 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

−1

s−m2
Z

[
2|mZ̃i

|
√

1− 4m2
f/s
√
E2 −m2

Z̃j
+ (m2

f̃1
−m2

f −m2
Z̃i

) logL
]
,

(A.318)
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IZf̃1

6 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
Z

(s− 2m2
f ) logL, (A.319)

IZf̃1

7 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
Z

2|mZ̃i
|E logL, (A.320)

IZf̃1

8 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
Z

logL. (A.321)

ΓZf̃2
is exactly the same as ΓZf̃1

but with the change f̃1 → f̃2 throughout to get the couplings CZf̃2

1,...,8

and the integrals IZf̃2

1,...,8.

Γhf̃1
= Chf̃1

1 Ihf̃1

1 +Chf̃1

2 Ihf̃1

2 +Chf̃1

3 Ihf̃1

3 +Chf̃1

4 Ihf̃1

4 +Chf̃1

5 Ihf̃1

5 +Chf̃1

6 Ihf̃1

6 +Chf̃1

7 Ihf̃1

7 +Chf̃1

8 Ihf̃1

8 , (A.322)

where here the couplings are:

Chf̃1

1 = −1

2
(−1)θi(−1)θj (Xh

ij +Xh
ji)

fq√
2
tαh(αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
), (A.323)

Chf̃1

2 = −(−1)θj (Xh
ij +Xh

ji)
fq√

2
tαh(βZ̃i

f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
)|mZ̃i

|mf , (A.324)

Chf̃1

3 = (−1)θi(Xh
ij +Xh

ji)
fq√

2
tαh(βZ̃i

f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
)|mZ̃j

|mf , (A.325)

Chf̃1

4 = −(−1)θj (Xh
ij +Xh

ji)
fq√

2
tαh(−βZ̃i

f̃1
β
Z̃j

f̃1
− αZ̃i

f̃1
α
Z̃j

f̃1
)|mZ̃i

|mf , (A.326)

Chf̃1

5 = −(−1)θi(Xh
ij +Xh

ji)
fq√

2
tαh(βZ̃i

f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
)|mZ̃j

|mf , (A.327)

Chf̃1

6 = (Xh
ij +Xh

ji)
fq√

2
tαh(−αZ̃i

f̃1
β
Z̃j

f̃1
− βZ̃i

f̃1
α
Z̃j

f̃1
)|mZ̃i

||mZ̃j
|, (A.328)

Chf̃1

7 = (−1)θi(−1)θj (Xh
ij +Xh

ji)
fq√

2
tαh(αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
)m2

f , (A.329)

Chf̃1

8 = 2(Xh
ij +Xh

ji)
fq√

2
tαh(αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
)|mZ̃i

|m2
f |mZ̃j

|. (A.330)

The necessary integrals are:

Ihf̃1

1 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

2

s−m2
h

[
2s|mZ̃i

|
√
E2 −m2

Z̃j

√
1− 4m2

f/s+ {m2
f̃1
s−m2

f (m2
Z̃i

+m2
Z̃j

)} logL
]
,

(A.331)

Ihf̃1

2 = −2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
h

[
2|mZ̃i

|
√
E2 −m2

Z̃j

√
1− 4m2

f/s+ (m2
f̃1
−m2

f +m2
Z̃j
− 2mZ̃i

E) logL
]
,

(A.332)

Ihf̃1

3 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
h

[
2|mZ̃i

|
√
E2 −m2

Z̃j

√
1− 4m2

f/s+ (m2
f̃1
−m2

f +m2
Z̃i
− 2mZ̃i

E) logL
]
,

(A.333)

Ihf̃1

4 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
h

[
2|mZ̃i

|
√
E2 −m2

Z̃j

√
1− 4m2

f/s+ (m2
f̃1
−m2

f +m2
Z̃j

) logL
]
,

(A.334)
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Ihf̃1

5 = −2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
h

[
2|mZ̃i

|
√
E2 −m2

Z̃j

√
1− 4m2

f/s+ (m2
f̃1
−m2

f +m2
Z̃i

) logL
]
,

(A.335)

Ihf̃1

6 = −2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
h

(s− 2m2
f ) logL, (A.336)

Ihf̃1

7 = −2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
h

(2|mZ̃i
|E) logL, (A.337)

Ihf̃1

8 = −2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

s−m2
h

logL. (A.338)

Note that Γhf̃2
is exactly the same as Γhf̃1

but with the replacement f̃1 → f̃2 throughout to get the

couplings Chf̃2

1,...,8 and the integrals Ihf̃2

1,...,8. Similarly, one can obtain the ΓHf̃1
from Γhf̃1

by replacing h by

H throughout all the couplings, masses and integrals; therefore the changes Xh
ij +Xh

ji → XH
ij +XH

ji and

tαh → tαH are made. One can then obtain ΓHf̃2
again by changing f̃1 → f̃2 throughout the couplings,

masses and integrals.

ΓAf̃1
=CAf̃1

1 IAf̃1

1 + CAf̃1

2 IAf̃1

2 + CAf̃1

3 IAf̃1

3 + CAf̃1

4 IAf̃1

4 + CAf̃1

5 IAf̃1

5 + CAf̃1

6 IAf̃1

6 + CAf̃1

7 IAf̃1

7 + CAf̃1

8 IAf̃1

8 ,

(A.339)

here we have:

CAf̃1

1 =
1

2
(−1)θi(XA

ij +XA
ji)
Aq
2

(αZ̃i
f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
), (A.340)

CAf̃1

2 = −(XA
ij +XA

ji)
Aq
2
|mZ̃i

|mf (βZ̃i
f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
), (A.341)

CAf̃1

3 = (−1)θi(−1)θj (XA
ij +XA

ji)
Aq
2
|mZ̃j

|mf (βZ̃i
f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
), (A.342)

CAf̃1

4 = −(XA
ij +XA

ji)
Aq
2
|mZ̃i

|mf (βZ̃i
f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
), (A.343)

CAf̃1

5 = (−1)θi(−1)θj (XA
ij +XA

ji)
Aq
2
|mZ̃j

|mf (βZ̃i
f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
), (A.344)

CAf̃1

6 = −(−1)θj (XA
ij +XA

ji)
Aq
2
|mZ̃i

||mZ̃j
|(αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
), (A.345)

CAf̃1

7 = (−1)θi(XA
ij +XA

ji)
Aq
2
m2
f (αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
), (A.346)

CAf̃1

8 = −(−1)θj (XA
ij +XA

ji)Aqm
2
f |mZ̃i

||mZ̃j
|(αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
). (A.347)

The IAf̃1

i are exactly as the Ihf̃1

i but with the change mh → mA.

ΓZA = 2CZA1 IZA1 + 2CZA2 IZA2 , (A.348)

where

CZA1 = −4(−1)θi(−1)θjWij(X
A
ij +XA

ji)Aqg sin θWβf |mZ̃j
|mf , (A.349)

CZA2 = 4Wij(X
A
ij +XA

ji)Aqg sin θWβf |mZ̃i
|mf . (A.350)
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The integrals included here are:

IZA1 = 2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

(s−m2
z)(s−m2

A)
2|mZ̃i

|
√
E2 −m2

Z̃j

√
1− 4m2

f/s {m2
Z̃i
− |mZ̃i

|E}, (A.351)

IZA2 = −2|mZ̃i
|
∫ Eupper

|mZ̃j |
dE

1

(s−m2
z)(s−m2

A)
2|mZ̃i

|
√
E2 −m2

Z̃j

√
1− 4m2

f/s {m2
Z̃j
−|mZ̃i

|E}. (A.352)

The Goldstone contribution is:

ΓG = 4c2
GZ̃iZ̃j

c2Gff

[
IG4 + 2m2

fI
G
3 − 2(−1)θi(−1)θj |mZ̃i

||mZ̃j
|IG2 − 4(−1)θi(−1)θjm2

f |mZ̃i
||mZ̃j

|IG1
]
.

(A.353)

The Goldstone interferences with fermions are given by:

ΓGf̃1
=CGf̃1

1 IGf̃1

1 +CGf̃1

2 IGf̃1

2 +CGf̃1

3 IGf̃1

3 +CGf̃1

4 IGf̃1

4 +CGf̃1

5 IGf̃1

5 +CGf̃1

6 IGf̃1

6 +CGf̃1

7 IGf̃1

7 +CGf̃1

8 IGf̃1

8 ,

(A.354)

where

CGf̃1

1 =
1

2
cGZ̃iZ̃jcGff (αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
), (A.355)

CGf̃1

2 = −(−1)θimf |mZ̃i
|cGZ̃iZ̃jcGff (βZ̃i

f̃1
β
Z̃j

f̃1
+ αZ̃i

f̃1
α
Z̃j

f̃1
), (A.356)

CGf̃1

3 = (−1)θjmf |mZ̃j
|cGZ̃iZ̃jcGff (αZ̃i

f̃1
α
Z̃j

f̃1
+ βZ̃i

f̃1
β
Z̃j

f̃1
), (A.357)

CGf̃1

4 = −(−1)θimf |mZ̃i
|cGZ̃iZ̃jcGff (αZ̃i

f̃1
α
Z̃j

f̃1
+ βZ̃i

f̃1
β
Z̃j

f̃1
), (A.358)

CGf̃1

5 = (−1)θj |mZ̃i
|mfcGZ̃iZ̃jcGff (αZ̃i

f̃1
α
Z̃j

f̃1
+ βZ̃i

f̃1
β
Z̃j

f̃1
), (A.359)

CGf̃1

6 = −(−1)θi(−1)θj |mZ̃i
||mZ̃j

|cGZ̃iZ̃jcGff (αZ̃i
f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
), (A.360)

CGf̃1

7 = m2
fcGZ̃iZ̃jcGff (αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
), (A.361)

CGf̃1

8 = −2(−1)θi(−1)θjm2
f |mZ̃i

||mZ̃j
|cGZ̃iZ̃jcGff (αZ̃i

f̃1
β
Z̃j

f̃1
+ βZ̃i

f̃1
α
Z̃j

f̃1
). (A.362)

The IGf̃1

1,...,8 integrals are the same as the Ihf̃1

1,...,8 but with the replacement mh → mZ as the mass of the

Goldstone is the Z mass as it represents the longitudinal component of the Z boson. Similar changes apply

to the IGf̃2

1,...,8, whilst in the couplings we apply the replacement f̃1 → f̃2 throughout. The Z-Goldstone

interference contribution is:

ΓZG = 2CZG1 IZG1 + 2CZG2 IZG2 , (A.363)

where

CZG1 = −8Wij(−1)θjmf |mZ̃j
|cGffcGZ̃iZ̃jg sin θWβf , (A.364)

CZG2 = 8Wij(−1)θimf |mZ̃i
|cGffcGZ̃iZ̃jg sin θWβf . (A.365)

The IZG1,2 are the same as the IZA1,2 but with the expected change mA → mZ .

ΓGA = CGA1 CGA3 IGA4 − 2CGA1 CGA4 m2
fI
GA
3 + 2CGA2 CGA3 |mZ̃i

||mZ̃j
|IGA2 − 4CGA2 CGA4 m2

f |mZ̃i
||mZ̃j

|IGA1 ,

(A.366)

where here

CGA1 = −2(−1)θicGZ̃iZ̃j (X
A
ij +XA

ji), (A.367)
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CGA2 = 2(−1)θjcGZ̃iZ̃j (X
A
ij +XA

ji), (A.368)

CGA3 = −AqcGff , (A.369)

CGA4 = AqcGff . (A.370)

The integrals are:

IGA1 = 2|mZ̃i
|
∫ Emax

|mZ̃j |
dE

2|mZ̃i
|
√
E2 −m2

Z̃j

√
1− 4m2

f/s

(s−m2
Z)(s−m2

A)
, (A.371)

IGA2 = 2|mZ̃i
|
∫ Emax

|mZ̃j |
dE

2|mZ̃i
|(s− 2m2

f )
√
E2 −m2

Z̃j

√
1− 4m2

f/s

(s−m2
Z)(s−m2

A)
, (A.372)

IGA3 = 2|mZ̃i
|
∫ Emax

|mZ̃j |
dE

4|mZ̃i
|2E
√
E2 −m2

Z̃j

√
1− 4m2

f/s

(s−m2
Z)(s−m2

A)
, (A.373)

IGA4 = 2|mZ̃i
|
∫ Emax

|mZ̃j |
dE

4|mZ̃i
|2E(s− 2m2

f )
√
E2 −m2

Z̃j

√
1− 4m2

f/s

(s−m2
Z)(s−m2

A)
. (A.374)

Now the list of the couplings used is:

Wij = 0.25
√
g2 + g′2(N4iN4j −N3iN3j). (A.375)

The Xφ
ij couplings are:

Xh
ij = −1

2
(−1)θi(−1)θj [−N3i sinα−N4i cosα](−gN2j + g′N1j), (A.376)

XH
ij = −1

2
(−1)θi(−1)θj [N3i cosα−N4i sinα](−gN2j + g′N1j), (A.377)

XA
ij =

1

2
(−1)θi(−1)θj [N3i sinβ −N4i cosβ](−gN2j + g′N1j). (A.378)

fq =



gmrunq√
2mW sin β

, for u-type quarks,
gmrunq√

2mW cos β
, for d-type quarks,

0, for neutrinos ν,
gmrunl√

2mW cos β
, for charged leptons.

(A.379)

Aq =



gmrunq

mW tan β , for u-type quarks,
gmrunq tan β

mW
, for d-type quarks,

0, for neutrinos ν,
gmrunl tan β

mW
, for charged leptons.

(A.380)

tαh =



cosα, for u-type quarks,

− sinα, for d-type quarks,

cosα, for neutrinos ν,

− sinα, for charged leptons.

(A.381) tαH =



sinα, for u-type quarks,

cosα, for d-type quarks,

sinα, for neutrinos ν,

cosα, for charged leptons.

(A.382)
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αf =



− 5g′p
12g + g

4g′ , for u-type quarks,

g′p
12g −

g
4g′ , for d-type quarks,

1
4 ( g

′

g + g
g′ ), for neutrinos ν,

3
4
g′

g −
g

4g′ , for charged leptons.

(A.383)

βf =



− 1
4 ( g

′

g + g
g′ ), for u-type quarks,

1
4 ( g

′

g + g
g′ ), for d-type quarks,

− 1
4 ( g

′

g + g
g′ ), for neutrinos ν,

1
4 ( g

′

g + g
g′ ), for charged leptons.

(A.384)

αZ̃i
f̃1

=



AZ̃i cos θq − fqN4i sin θq, for u-type quarks,

AZ̃i cos θq − fqN3i sin θq, for d-type quarks,

AZ̃i cos θq, for neutrinos ν,

AZ̃i sin θq + fqN3i cos θq, for charged leptons.

(A.385)

αZ̃i
f̃2

=



AZ̃i sin θq + fqN4i cos θq, for u-type quarks,

AZ̃i sin θq + fqN3i cos θq, for d-type quarks,

AZ̃i sin θq, for neutrinos ν,

−AZ̃i cos θq + fqN3i sin θq, for charged leptons.

(A.386)

βZ̃i
f̃1

=



fqN4i cos θq +BZ̃i sin θq, for u-type quarks,

fqN3i cos θq +BZ̃i sin θq, for d-type quarks,

0, for neutrinos ν,

fqN3i sin θq −BZ̃i cos θq, for charged leptons.

(A.387)

βZ̃i
f̃2

=



fqN4i sin θq −BZ̃i cos θq, for u-type quarks,

fqN3i sin θq −BZ̃i cos θq, for d-type quarks,

0, for neutrinos ν,

−fqN3i cos θq −BZ̃i sin θq, for charged leptons.

(A.388)

AZ̃i =



− g√
2
N2i − g′

3
√

2
N1i, for u-type quarks,

g√
2
N2i − g′

3
√

2
N1i, for d-type quarks,

− g√
2
N2i + g′

3
√

2
N1i, for neutrinos ν,

g√
2
N2i + g′

3
√

2
N1i, for charged leptons.

(A.389)

BZ̃i =



− 4g′

3
√

2
N1i, for u-type quarks,

2g′

3
√

2
N1i, for d-type quarks,

0, for neutrinos ν,
√

2g′N1i, for charged leptons.

(A.390)

cGff =



−fq sin β√
2

, for u-type quarks,

fq cos β√
2
, for d-type quarks,

0, for neutrinos ν,
fq cos β√

2
, for charged leptons.

(A.391)

cGZ̃iZ̃j =
1

2

[
(g
′
N1i − gN2i)(N3j cosβ +Nj4 sinβ) + (g

′
N1j − gN2j)(N3i cosβ +N4i sinβ)

]
. (A.392)
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Z̃i → W̃jf
′f̄

We turn now onto the 3-body decays of a neutralino into a chargino, fermion and antifermion. As for

all the other 3-body modes included, this mode is only calculated if no 2-body modes are kinematically

accessible. There are 4 main contributions to these decays, with W boson, H±, f̃ ′k and f̃k intermediates,

the Feynman diagrams for these are shown in Figure A.4. Therefore there are nominally 6 squared

contributions and 15 interferences; however, as the calculation is again done in Feynman gauge, the

Goldstone boson corresponding to the longitudinal components of the W boson must be added, adding

a further squared contribution and its 6 interferences.

(a) W (b) H± (c) f̃ ′k (d) f̃k

Figure A.4: W , H±, f̃ ′k, f̃k contributions to the Z̃i → W̃jf
′f̄ decay. i = 1, 2, 3, 4, j = 1, 2,

k = 1, 2. There are then also interferences between all these contributions.

For this decay mode, and the “reverse” decay mode W̃j → Z̃if
′f̄ , the formulae used are extracted

from the sPHENO code, based on the work in references [65, 178]. Note that f ′, f are fermions with

third components of weak isospin 1
2 and − 1

2 respectively. A difference relative to these references is

that, following the formulae of sPHENO, the expressions given do not neglect mf in the Dirac algebra

of the squared matrix element (whereas in [65, 178] it is neglected here, but of course included in the

phase space). As a result there is also WH± interference which is not present if mf is neglected in the

Dirac algebra. The possibilities of positive and negative neutralino and chargino masses are included

via (−1)θi and (−1)θj factors. Similarly the fermion Yukawa couplings are included and the formulae

themselves allow for mixing of the fermions. However in our program, mixing is only considered for the

third generation of sfermions and here this 3-body mode Z̃i → W̃jtb̄ is not calculated as the 2-body modes

Z̃i →WW̃j and Z̃i → hW̃j are then kinematically available and will dominate the branching ratios. The

overall expression for the partial width is:

Γ =
Nc

512π3|mZi |3
[
ΓW + Γf̃1

+ Γf̃2
+ Γf̃ ′1 + Γf̃ ′2 − 2Γf̃ ′1f̃1

− 2Γf̃ ′1f̃2
− 2Γf̃ ′2f̃1

− 2Γf̃ ′2f̃2
+ 2ΓWH±

+ 2ΓWG + ΓH± + ΓG − 2ΓWf̃ ′1
− 2ΓWf̃ ′2

− 2ΓWf̃1
− 2ΓWf̃2

+ 2ΓH±G − 2ΓGf̃ ′1

− 2ΓGf̃ ′2 − 2ΓGf̃1
− 2ΓGf̃2

− 2ΓH±f̃ ′1 − 2ΓH±f̃ ′2 − 2ΓH±f̃1
− 2ΓH±f̃2

+ 2Γf̃ ′1f̃ ′2 + 2Γf̃1f̃2

]
.

(A.393)

Here G refers to the Goldstone contribution which is the longitudinal component of the W and so

has mass equal to the W boson mass. Here the following variables and couplings are used:

Nc =

3, for f ′ f̄ quarks,

1, for f ′ f̄ charged leptons or neutrinos.
(A.394)

There are several factors of (-1) depending on whether the neutralino or chargino have negative masses,

and also there are factors of (-1) if the decay chargino → neutralino f ′ f̄ is being considered rather than
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neutralino → chargino f ′ f̄ .

(−1)θi =

1, for mZ̃i
> 0,

−1, for mZ̃i
< 0.

(A.395) (−1)θj =

1, for mW̃j
> 0,

−1, for mW̃j
< 0.

(A.396)

(−1)θc =

1, for neutralino decaying to chargino,

−1, for chargino decaying to neutralino.
(A.397)

The following couplings are used:

fu =
gmrun

q′√
2 sinβmW

, (A.398) fd =
gmrun

q√
2 cosβmW

. (A.399)

For W̃+
1 , i.e. the lightest chargino (j = 1), and where i is the index of the neutralino:

CL
W̃Z̃W

= g

(
sin θLN2i +

cos θLN3i√
2

)
, (A.400) CR

W̃Z̃W
= g

(
sin θRN2i −

cos θRN4i√
2

)
, (A.401)

CL
W̃Z̃H+

= g sin θRN4i +
cos θR√

2
(g′N1i + gN2i),

(A.402)

CR
W̃Z̃H+

= g sin θLN3i −
cos θL√

2
)(g′N1i + gN2i),

(A.403)

αW̃1

f̃ ′1
= −g sin θR cos θq′ + fu cos θR sin θq′ , (A.404) βW̃1

f̃ ′1
= −fd cos θL cos θq′(−1)θc , (A.405)

αW̃1

f̃1
= −g sin θL cos θq + fd cos θL sin θq(−1)θc ,

(A.406)

βW̃1

f̃1
= −fu cos θR cos θq, (A.407)

αW̃1

f̃ ′2
= g sin θR sin θq′(−1)θc − fu cos θR cos θq′ ,

(A.408)

βW̃1

f̃ ′2
= −fd cos θL sin θq′(−1)θc , (A.409)

αW̃1

f̃2
= −fd cos θL cos θq + g sin θL sin θq, (A.410) βW̃1

f̃2
= −fu cos θR sin θq. (A.411)

Note that because of the conventions adopted, if the fermions considered are τ and ντ , so that the

intermediates are τ̃1 and τ̃2, then the mixing angles in the formulae for this 3-body decay must be rotated

so that one must take cos θτ → sin θτ and sin θτ → − cos θτ in the formulae listed for the Z̃i → W̃jf
′f̄

and for the reverse decay W̃j → Z̃if
′f̄ . Note that in this case where the fermions are τ and ντ , then θq

would be the mixing angle for the τ̃ , whilst θq′ = 0 as there is no mixing for ν̃τ .

For W̃+
2 , i.e. the heaviest chargino (j = 2), where i is the index of the neutralino:

CL
W̃Z̃W

= g

(
cos θLN2i −

sin θLN3i√
2

)
, (A.412)

CR
W̃Z̃W

= g

(
cos θRN2i +

sin θRN4i√
2

)
, (A.413)

CL
W̃Z̃H+

= g cos θRN4i −
sin θR√

2
(g′N1i + gN2i), (A.414)

CR
W̃Z̃H+

= g cos θLN3i +
sin θL√

2
(g′N1i + gN2i), (A.415)

αW̃2

f̃ ′1
= −g cos θR cos θq′ − fu sin θR sin θq′ , (A.416) βW̃2

f̃ ′1
= fd sin θL cos θq′(−1)θc , (A.417)

αW̃2

f̃1
= −g cos θL cos θq − fd sin θL sin θq(−1)θc ,

(A.418)

βW̃2

f̃1
= fu sin θR cos θq, (A.419)
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αW̃2

f̃ ′2
= g cos θR sin θq′(−1)θc + fu sin θR cos θq′ ,

(A.420)

βW̃2

f̃ ′2
= fd sin θL sin θq′(−1)θc , (A.421)

αW̃2

f̃2
= fd sin θL cos θq + g cos θL sin θq, (A.422) βW̃2

f̃2
= fu sin θR sin θq. (A.423)

There are also the neutralino couplings to the f ′ f̄ pair and these depend upon whether they are

quarks(q) or leptons(l) and whether they are “u-type” or “d-type” (i.e. third component of weak isospin

being + 1
2 or − 1

2 respectively). For quarks:

Au
Z̃i

= − g√
2
N2i −

g′

3
√

2
N1i, (A.424) Bu

Z̃i
= − 4g′

3
√

2
N1i, (A.425)

Ad
Z̃i

=
g√
2
N2i −

g′

3
√

2
N1i, (A.426) Bd

Z̃i
=

2g′

3
√

2
N1i, (A.427)

αu
Z̃if̃1

= −Au
Z̃i

cos θq′(−1)θj (−1)θi(−1)θc − fuN4i sin θq′ , (A.428)

βu
Z̃if̃1

= fuN4i cos θq′(−1)θc −Bu
Z̃i

sin θq′ , (A.429)

αu
Z̃if̃2

= −fuN4i cos θq′(−1)θi +Au
Z̃i

sin θq′(−1)θc , (A.430)

βu
Z̃if̃2

= Bu
Z̃i

cos θq′(−1)θj (−1)θi(−1)θc + fuN4i sin θq′ . (A.431)

αd
Z̃if̃1

= −Ad
Z̃i

cos θq(−1)θj (−1)θi(−1)θc − fdN4i sin θq, (A.432)

βd
Z̃if̃1

= fdN3i cos θq(−1)θc −Bd
Z̃i

sin θq(−1)θi , (A.433)

αd
Z̃if̃2

= fdN3i cos θq(−1)θc − (−1)θc(−1)θiAd
Z̃i

sin θq, (A.434)

βd
Z̃if̃2

= Bd
Z̃i

cos θq(−1)θj (−1)θi(−1)θc + fdN4i sin θq. (A.435)

Again, remember for the case of τ and ντ as f and f ′ respectively then one must take cos θτ → sin θτ

and sin θτ → − cos θτ in the formulae listed for this decay mode.

For leptons instead the neutralino couplings are:

Au
Z̃i

= − g√
2
N2i +

g′√
2
N1i, (A.436) Bu

Z̃i
= 0, (A.437)

Ad
Z̃i

=
g√
2
N2i +

g′√
2
N1i, (A.438) Bd

Z̃i
=
√

2g′N1i. (A.439)

The α and β couplings are as before except αu
Z̃if̃2

= 0 and βu
Z̃if̃2

= 0 as there are no RH sneutrinos.

Note that in SoftSusy we use the same function for a neutralino decaying to a chargino as a chargino

decaying to a neutralino, in general the changes required are mZ̃i
↔ mW̃j

, mf ′ ↔ mf and mf̃ ′ ↔ mf̃ ,

in some places there are further effects on the integrals or couplings, where this occurs it’s listed in the

following formulae.

Now we list the contributions to this mode one by one:

ΓW

The upper limit of integration here is:

T =
1

2|mZ̃i
| (m

2
Z̃i

+m2
W̃j
−m2

f −m2
f ′ − 2mfmf ′), (A.440)

Thomas Cridge 273



Appendix A. SoftSusy Decay Formulae A.4. MSSM Three Body Decay Formulae

We also use s and λ given by:

s = m2
Z̃i

+m2
W̃j
− 2|mZ̃i

|E, (A.441)

λ =
√

(s− (mf +mf ′)2)(s− (mf −mf ′)2). (A.442)

The necessary integrals are:

I1
W = 2|mZ̃i

|
∫ T
|mW̃j |

dE
2|mZ̃i

|
s

λ
√
E2 −m2

W̃j

[
− 2s4 + ((m2

Z̃i
+m2

W̃j
+m2

f +m2
f ′))s

3

+ ((m2
Z̃i
−m2

W̃j
)2 + (m2

f −m2
f ′)

2 − 2(m2
Z̃i

+m2
W̃j

)2(m2
f +m2

f ′)s
2

+ ((m2
Z̃i

+m2
W̃j

)(m2
f −m2

f ′)
2 + (m2

f +m2
f ′)(m

2
Z̃i
−m2

W̃j
)2)s

− 2(m2
Z̃i
−m2

W̃j
)2(m2

f +m2
f ′)

2
] 1

3s2

1

(s−m2
W )2

,

(A.443)

I2
W = 2|mZ̃i

|
∫ T
|mW̃j |

dE
2|mZ̃i

|
s

λ
√
E2 −m2

W̃j
(s−m2

f −m2
f ′)

1

(s−m2
W )2

. (A.444)

Then

ΓW =− 8CL
W̃Z̃W

CR
W̃Z̃W

g2

2
|mZ̃i

||mW̃j
|I2
W |(−1)θi(−1)θj + 2(CL

W̃Z̃W

2
+ CR

W̃Z̃W

2
)
g2

2
I1
W . (A.445)

ΓH±
ωL
H+W̃+Z̃

= CL
W̃Z̃H+

cosβ, (A.446) ωR
H+W̃+Z̃

= CR
W̃Z̃H+

sinβ, (A.447)

CuH+ff ′ = fu cosβ, (A.448) CdH+ff ′ = fd sinβ, (A.449)

The relevant combinations of these couplings for this contribution are:

V(1)
H+ = ωL

H+W̃+Z̃

2
+ ωR

H+W̃+Z̃

2
, (A.450) V(2)

H+ = ωL
H+W̃+Z̃

ωR
H+W̃+Z̃

(−1)θi , (A.451)

V(3)
H+ = CuH+ff ′

2 + CdH+ff ′
2
, (A.452) V(4)

H+ = CuH+ff ′CdH+ff ′ . (A.453)

The integrals are:

I1
H± = 2|mZ̃i

|
∫ T
|mW̃j |

dE
2|mZ̃i

|
s

√
(s− (mf ′ +mf )2)(s− (mf ′ −mf )2)

√
E2 −m2

W̃j

1

(s−m2
H±)2

,

(A.454)

I2
H± = 2|mZ̃i

|
∫ T
|mW̃j |

dE
[2|mZ̃i

|
s

√
(s− (mf ′ +mf )2)(s− (mf ′ −mf )2)

√
E2 −m2

W̃j

× (s−m2
f −m2

f ′)
1

(s−m2
H±)2

]
,

(A.455)

I3
H± = 2|mZ̃i

|
∫ T
|mW̃j |

dE
[2|mZ̃i

|
s

√
(s− (mf ′ +mf )2)(s− (mf ′ −mf )2)

√
E2 −m2

W̃j

2|mZ̃i
|E

(s−m2
H±)2

]
,

(A.456)

I4
H± = 2|mZ̃i

|
∫ T
|mW̃j |

dE
[2|mZ̃i

|
s

√
(s− (mf ′ +mf )2)(s− (mf ′ −mf )2)

√
E2 −m2

W̃j

× 2|mZ̃i
|E(s−m2

f −m2
f ′)

1

(s−m2
H±)2

]
.

(A.457)
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The overall contribution is then:

ΓH± =V(1)
H+V

(3)
H+I

4
H± − 4V(1)

H+V
(4)
H+I

3
H±mfmf ′ + 4V(2)

H+V
(3)
H+I

2
H± |mZ̃i

||mW̃j
|(−1)θj

− 16V(2)
H+V

(4)
H+I

1
H±mfmf ′ |mZ̃i

||mW̃j
|(−1)θj .

(A.458)

ΓG

Here G refers to the Goldstone contribution which is the longitudinal component of the W and so

has mass equal to the W boson mass. The couplings used are:

ωL
GW̃Z̃

= CL
W̃Z̃H+

sinβ, (A.459) ωR
GW̃Z̃

= −CR
W̃Z̃H+

cosβ, (A.460)

CuGff ′ = fu sinβ, (A.461) CdGff ′ = −fd cosβ, (A.462)

V(1)
G = ωL

GW̃Z̃

2
+ ωR

GW̃Z̃

2
, (A.463) V(2)

G = ωL
GW̃Z̃

ωR
GW̃Z̃

(−1)θi , (A.464)

V(3)
G = CuGff ′2 + CdGff ′

2
, (A.465) V(4)

G = CuGff ′CdGff ′ . (A.466)

The integrals here I1
G etc are exactly the same as those for H± but with the change mH± → mW .

ΓG =V(1)
G V

(3)
G I4

G − 4V(1)
G V

(4)
G I3

Gmfmf ′ + 4V(2)
G V

(3)
G I2

G|mZ̃i
||mW̃j

|(−1)θj

− 16V(2)
G V

(4)
G I1

Gmfmf ′ |mZ̃i
||mW̃j

|(−1)θj .
(A.467)

Γf̃ ′1

V(1)

f̃ ′1
= αu

Z̃if̃1

2 + βu
Z̃if̃1

2, (A.468) V(2)

f̃ ′1
= −αu

Z̃if̃1

2βu
Z̃if̃1

2(−1)θi , (A.469)

V(3)

f̃ ′1
= αW̃

f̃ ′1

2
+ βW̃

f̃ ′1

2
, (A.470) V(4)

f̃ ′1
= −αW̃

f̃ ′1
βW̃
f̃ ′1
. (A.471)

Now the integrals I1,2,3,4

f̃ ′1
are exactly as the I1,2,3,4

H± integrals in (A.454) to (A.457) but with lower

limit mf ′ , upper limit of integration Eupper = 1
2|mZ̃1

| (m
2
Z̃i

+ m2
f ′ − m2

f − m2
Z̃j
− 2mf |mW̃j

|) and the

replacements mH± → mf̃ ′1
, |mW̃j

| → mf ′ and mf ′ → |mW̃j
|. Then:

Γf̃ ′1 =V(1)

f̃ ′1
V(3)

f̃ ′1
I4
f̃ ′1
− 4V(1)

f̃ ′1
V(4)

f̃ ′1
mf |mW̃j

|I3
f̃ ′1

+ 4V(2)

f̃ ′1
V(3)

f̃ ′1
|mZ̃i

|mf ′I
2
f̃ ′1

− 16V(2)

f̃ ′1
V(4)

f̃ ′1
|mZ̃i

||mW̃j
|mf ′mfI

1
f̃ ′1
.

(A.472)

Γf̃ ′2
Everything for Γf̃ ′2 is exactly as for Γf̃ ′1 but with the change mf̃ ′1

→ mf̃ ′2
and the coupling combi-

nations:

V(1)

f̃ ′2
= αu

Z̃if̃2

2 + βu
Z̃if̃2

2, (A.473) V(2)

f̃ ′2
= αu

Z̃if̃2

2βu
Z̃if̃2

2, (A.474)

V(3)

f̃ ′2
= αW̃

f̃ ′2

2
+ βW̃

f̃ ′2

2
, (A.475) V(4)

f̃ ′2
= αW̃

f̃ ′2
βW̃
f̃ ′2
. (A.476)

The contribution is then:

Γf̃ ′2 =V(1)

f̃ ′2
V(3)

f̃ ′2
I4
f̃ ′2
− 4V(1)

f̃ ′2
V(4)

f̃ ′2
mf |mW̃j

|I3
f̃ ′2

(−1)θc + 4V(2)

f̃ ′2
V(3)

f̃ ′2
|mZ̃i

|mf ′I
2
f̃ ′2

(−1)θc

− 16V(2)

f̃ ′2
V(4)

f̃ ′2
|mZ̃i

||mW̃j
|mf ′mfI

1
f̃ ′2
.

(A.477)

Γf̃1

The coupling combinations are now:

V(1)

f̃1
= αd

Z̃if̃1

2
+ βd

Z̃if̃1

2
, (A.478) V(2)

f̃1
= −(−1)θiαd

Z̃if̃1
βd
Z̃if̃1

, (A.479)
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V(3)

f̃1
= αW̃

f̃1

2
+ βW̃

f̃1

2
, (A.480) V(4)

f̃1
= −αW̃

f̃1
βW̃
f̃1

(−1)θj . (A.481)

The integrals are are exactly as the I1,2,3,4
H± integrals in (A.454) to (A.457) but the lower limit is now

mf , the upper limit is Eupper2 = 1
2|mZ̃i |

[m2
Z̃i

+m2
f −m2

W̃j
−m2

f ′ − 2mf ′ |mW̃j
|] and in general relative to

the H± integrals we must make the changes mH± → mf̃1
, |mW̃j

| → mf and mf → |mW̃j
|.

Γf̃1
=V(1)

f̃1
V(3)

f̃1
I4
f̃1
− 4V(1)

f̃1
V(4)

f̃1
mf ′ |mW̃j

|I3
f̃1

(−1)θc(−1)θj + 4V(2)

f̃1
V(3)

f̃1
|mZ̃i

|mfI
2
f̃1

(−1)θc

− 16V(2)

f̃1
V(4)

f̃1
|mZ̃i

||mW̃j
|mfmf ′(−1)θjI1

f̃1
.

(A.482)

Γf̃2

Nominally Γf̃2
has the same expression as Γf̃1

with the replacement f̃1 → f̃2, however differences in

expressions for couplings mean we have slight differences; the coupling combinations are now:

V(1)

f̃2
= αd

Z̃if̃2

2
+ βd

Z̃if̃2

2
, (A.483) V(2)

f̃2
= αd

Z̃if̃2
βd
Z̃if̃2

, (A.484)

V(3)

f̃2
= αW̃

f̃2

2
+ βW̃

f̃2

2
, (A.485) V(4)

f̃2
= αW̃

f̃2
βW̃
f̃2

(−1)θc . (A.486)

Therefore the contribution is given by:

Γf̃2
=V(1)

f̃2
V(3)

f̃2
I4
f̃2
− 4V(1)

f̃2
V(4)

f̃2
mf ′ |mW̃j

|I3
f̃2

(−1)θc + 4V(2)

f̃2
V(3)

f̃2
|mZ̃i

|mfI
2
f̃2

(−1)θc

− 16V(2)

f̃2
V(4)

f̃2
|mZ̃i

||mW̃j
|mfmf ′I

1
f̃2
.

(A.487)

Γf̃ ′1f̃1

Here the coupling combinations differ significantly depending on which way around the decay is being

considered, i.e. neutralino to chargino or chargino to neutralino. The following are fixed regardless of

this:

V(1)

f̃ ′1f̃1
=

1

2

[
αu
Z̃if̃1

βd
Z̃if̃1

βW̃
f̃ ′1
αW̃
f̃1

(−1)θi + βu
Z̃if̃1

αd
Z̃if̃1

αW̃
f̃ ′1
βW̃
f̃1

]
(−1)θj , (A.488)

V(2)

f̃ ′1f̃1
= −|mZ̃i

||mW̃j
|
[
(−1)θiαu

Z̃if̃1
αd
Z̃if̃1

αW̃
f̃ ′1
αW̃
f̃1

+ βu
Z̃if̃1

βd
Z̃if̃1

βW̃
f̃ ′1
βW̃
f̃1

]
(−1)θj , (A.489)

V(3)

f̃ ′1f̃1
= −mfmf ′

[
βu
Z̃if̃1

αd
Z̃if̃1

βW̃
f̃ ′1
αW̃
f̃1

+ (−1)θiαu
Z̃if̃1

βd
Z̃if̃1

αW̃
f̃1
βW̃
f̃1

]
(−1)θj (−1)θc , (A.490)

V(8)

f̃ ′1f̃1
= −2|mZ̃i

||mW̃j
|mfmf ′

[
βu
Z̃if̃1

βd
Z̃if̃1

αW̃
f̃ ′
αW̃
f̃1

+ (−1)θiαu
Z̃if̃1

αd
Z̃if̃1

βW̃
f̃ ′
βW̃
f̃1

]
(−1)θj (−1)θc . (A.491)

Meanwhile, if the decay is neutralino to chargino:

V(4)

f̃ ′1f̃1
= −|mZ̃i

|mf

[
(−1)θiαu

Z̃if̃1
αd
Z̃if̃1

βW̃
f̃ ′
αW̃
f̃1

+ βu
Z̃if̃1

βd
Z̃if̃1

αW̃
f̃ ′
βW̃
f̃1

]
, (A.492)

V(5)

f̃ ′1f̃1
= mf ′ |mW̃j

|
[
βu
Z̃if̃1

αd
Z̃if̃1

αW̃
f̃ ′1
αW̃
f̃1

+ (−1)θiαu
Z̃if̃1

βd
Z̃if̃1

βW̃
f̃ ′1
βW̃
f̃1

]
(−1)θj , (A.493)

V(6)

f̃ ′1f̃1
= −|mZ̃i

|mf ′

[
βu
Z̃if̃1

βd
Z̃if̃1

βW̃
f̃ ′
αW̃
f̃1

+ (−1)θiαu
Z̃if̃1

αd
Z̃if̃1

αW̃
f̃ ′1
βW̃
f̃1

]
, (A.494)

V(7)

f̃ ′1f̃1
= |mW̃j

|mf

[
(−1)θiαu

Z̃if̃1
βd
Z̃if̃1

αW̃
f̃ ′1
αW̃
f̃1

+ βu
Z̃if̃1

αd
Z̃if̃1

βW̃
f̃ ′1
βW̃
f̃1

]
(−1)θj . (A.495)

Whilst if the decay is instead chargino to neutralino:
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V(4)

f̃ ′1f̃1
= |mZ̃i

|mf

[
αW̃
f̃ ′1
αW̃
f̃1
βu
Z̃if̃1

αd
Z̃if̃1

+ βW̃
f̃ ′1
βW̃
f̃1
αu
Z̃if̃1

βd
Z̃if̃1

]
(−1)θj , (A.496)

V(5)

f̃ ′1f̃1
= −|mW̃j

|mf ′

[
αW̃
f̃1
βW̃
f̃ ′1
αu
Z̃if̃1

αd
Z̃if̃1

+ αW̃
f̃ ′1
βW̃
f̃1
βu
Z̃if̃1

βd
Z̃if̃1

]
(−1)θj , (A.497)

V(6)

f̃ ′1f̃1
= −|mZ̃i

|mf ′

[
βW̃
f̃ ′1
βW̃
f̃1
βu
Z̃if̃1

αd
Z̃if̃1

+ αW̃
f̃ ′1
αW̃1

f̃1
αu
Z̃if̃1

βd
Z̃if̃1

]
(−1)θj , (A.498)

V(7)

f̃ ′1f̃1
= |mW̃j

|mf

[
αW̃
f̃ ′1
βW̃
f̃1
αu
Z̃if̃1

αd
Z̃if̃1

+ βW̃
f̃ ′1
αW̃
f̃1
βu
Z̃if̃1

βd
Z̃if̃1

]
(−1)θj . (A.499)

We also need the following integrals with:

s = m2
Z̃i

+m2
f ′ − 2|mZ̃i

|E, (A.500) λ =
√

(s− (mf +mW̃ )2)(s− (mf −mW̃ )2),

(A.501)

A =
[
m2
f +m2

W̃j
+ 2|mZ̃i

|E + (m2
Z̃i
−m2

f ′)(m
2
W̃
−m2

f )
1

s
+ 2|mZ̃i

|λ1

s

√
E2 −m2

f ′ − 2m2
f̃1

]
, (A.502)

B =
[
m2
f +m2

W̃j
+ 2|mZ̃i

|E + (m2
Z̃i
−m2

f ′)(m
2
W̃
−m2

f )
1

s
− 2|mZ̃i

|λ1

s

√
E2 −m2

f ′ − 2m2
f̃1

]
, (A.503)

I1
f̃ ′1f̃1

= 4|mZ̃i
|
∫ Eupper

mf′

dE
[2|mZ̃i

|λ
√
E2 −m2

f ′ + (m2
f̃1
s−m2

Z̃i
m2
W̃j
−m2

fm
2
f ′) log(A/B)]

s−m2
f̃ ′1

, (A.504)

I2
f̃ ′1f̃1

= −2|mZ̃i
|
∫ Eupper

mf′

dE
[2|mZ̃i

|λ 1
s

√
E2 −m2

f ′ + (m2
f̃1
− 2|mZ̃i

E +m2
f ′ −m2

W̃j
) log(A/B)]

s−m2
f̃ ′1

,

(A.505)

I3
f̃ ′1f̃1

= 2|mZ̃i
|
∫ Eupper

mf′

dE
[2|mZ̃i

|λ 1
s

√
E2 −m2

f ′ + (m2
f̃1
− 2|mZ̃i

E +m2
Z̃i
−m2

f ) log(A/B)]

s−m2
f̃ ′1

, (A.506)

I4
f̃ ′1f̃1

= 2|mZ̃i
|
∫ Eupper

mf′

dE
[2|mZ̃i

|λ 1
s

√
E2 −m2

f ′ + (m2
f̃1
−m2

W̃j
−m2

f ′) log(A/B)]

s−m2
f̃ ′1

, (A.507)

I5
f̃ ′1f̃1

= 2|mZ̃i
|
∫ Eupper

mf′

dE
[2|mZ̃i

|λ 1
s

√
E2 −m2

f ′ + (m2
f̃1
−m2

Z̃i
−m2

f ) log(A/B)]

s−m2
f̃ ′1

, (A.508)

I6
f̃ ′1f̃1

= 2|mZ̃i
|
∫ Eupper

mf′

dE
log(A/B)(s−m2

f −m2
W̃j

)

s−m2
f̃ ′1

, (A.509)

I7
f̃ ′1f̃1

= 2|mZ̃i
|
∫ Eupper

mf′

dE
log(A/B)2|mZ̃i

|E
s−m2

f̃ ′1

, (A.510)

I8
f̃ ′1f̃1

= 2|mZ̃i
|
∫ Eupper

mf′

dE
log(A/B)

s−m2
f̃ ′1

. (A.511)

The Γf̃ ′1f̃1
contribution is then given by:

Γf̃ ′1f̃1
=V(1)

f̃ ′1f̃1
I1
f̃ ′1f̃1

+ V(2)

f̃ ′1f̃1
I2
f̃ ′1f̃1

+ V(3)

f̃ ′1f̃1
I3
f̃ ′1f̃1

+ V(4)

f̃ ′1f̃1
I4
f̃ ′1f̃1

+ V(5)

f̃ ′1f̃1
I5
f̃ ′1f̃1

+ V(6)

f̃ ′1f̃1
I6
f̃ ′1f̃1

+ V(7)

f̃ ′1f̃1
I7
f̃ ′1f̃1

+ V(8)

f̃ ′1f̃1
I8
f̃ ′1f̃1

.
(A.512)

The Γf̃ ′1f̃2
, Γf̃ ′2f̃1

and Γf̃ ′2f̃2
contributions follow analogously, they are given here as slight differences in

the expressions for couplings complicated the expressions.
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Γf̃ ′1f̃2

V(1)

f̃ ′1f̃2
= −1

2

[
αu
Z̃if̃1

βd
Z̃if̃2

βW̃
f̃ ′1
αW̃
f̃2

+ βu
Z̃if̃1

αd
Z̃if̃2

αW̃
f̃ ′1
βW̃
f̃2

]
(−1)θi , (A.513)

V(2)

f̃ ′1f̃2
= |mZ̃i

||mW̃j
|
[
(−1)θiαu

Z̃if̃1
αd
Z̃if̃2

αW̃
f̃ ′1
αW̃
f̃2

+ βu
Z̃if̃1

βd
Z̃if̃2

βW̃
f̃ ′1
βW̃
f̃2

]
, (A.514)

V(3)

f̃ ′1f̃2
= (−1)θimfmf ′

[
βu
Z̃if̃1

αd
Z̃if̃2

βW̃
f̃ ′1
αW̃
f̃2
− (−1)θcαu

Z̃if̃1
βd
Z̃if̃2

αW̃
f̃1
βW̃
f̃2

]
, (A.515)

V(8)

f̃ ′1f̃2
= 2|mZ̃i

||mW̃j
|mfmf ′

[
(−1)θiβu

Z̃if̃1
βd
Z̃if̃2

αW̃
f̃ ′1
αW̃
f̃2

+ αu
Z̃if̃1

αd
Z̃if̃2

βW̃
f̃ ′1
βW̃
f̃2

]
. (A.516)

If the decay is neutralino to chargino:

V(4)

f̃ ′1f̃2
= (−1)θi |mZ̃i

|mf

[
αu
Z̃if̃1

αd
Z̃if̃2

βW̃
f̃ ′
αW̃
f̃2
− βu

Z̃if̃1
βd
Z̃if̃2

αW̃
f̃ ′1
βW̃
f̃2

]
, (A.517)

V(5)

f̃ ′1f̃2
= mf ′ |mW̃j

|
[
(−1)θiβu

Z̃if̃1
αd
Z̃if̃2

αW̃
f̃ ′1
αW̃
f̃2

+ αu
Z̃if̃1

βd
Z̃if̃2

βW̃
f̃ ′1
βW̃
f̃2

]
(−1)θj , (A.518)

V(6)

f̃ ′1f̃2
= −(−1)θi |mZ̃i

|mf ′

[
−βu

Z̃if̃1
βd
Z̃if̃2

βW̃
f̃ ′1
αW̃
f̃2

+ αu
Z̃if̃1

αd
Z̃if̃2

αW̃
f̃ ′1
βW̃
f̃2

]
, (A.519)

V(7)

f̃ ′1f̃2
= |mW̃j

|mf

[
(−1)θiαu

Z̃if̃1
βd
Z̃if̃2

αW̃
f̃ ′1
αW̃
f̃2

+ βu
Z̃if̃1

αd
Z̃if̃2

βW̃
f̃ ′1
βW̃
f̃2

]
(−1)θj . (A.520)

Whilst if the decay is instead chargino to neutralino:

V(4)

f̃ ′1f̃2
= |mZ̃i

|mf

[
(−1)θjαW̃

f̃ ′1
αW̃
f̃2
βu
Z̃if̃1

αd
Z̃if̃2
− βW̃

f̃ ′1
βW̃
f̃2
αu
Z̃if̃1

βd
Z̃if̃2

]
, (A.521)

V(5)

f̃ ′1f̃2
= −|mW̃j

|mf ′

[
αW̃
f̃2
βW̃
f̃ ′1
αu
Z̃if̃1

αd
Z̃if̃2
− (−1)θjαW̃

f̃ ′1
βW̃
f̃2
βu
Z̃if̃1

βd
Z̃if̃2

]
, (A.522)

V(6)

f̃ ′1f̃2
= |mZ̃i

|mf ′

[
−βW̃

f̃ ′1
βW̃
f̃2
βu
Z̃if̃1

αd
Z̃if̃2
− αW̃

f̃ ′1
αW̃1

f̃2
αu
Z̃if̃1

βd
Z̃if̃2

]
, (A.523)

V(7)

f̃ ′1f̃2
= |mW̃j

|mf

[
−αW̃

f̃ ′1
βW̃
f̃2
αu
Z̃if̃1

αd
Z̃if̃2

+ (−1)θjβW̃
f̃ ′1
αW̃
f̃2
βu
Z̃if̃1

βd
Z̃if̃2

]
. (A.524)

The integrals are as in the f̃ ′1f̃1 case, with the appropriate mass replacements. Similarly, Γf̃ ′1f̃2
is just

the product of each coupling combination V(k)

f̃ ′1f̃2
with each corresponding integral Ik

f̃ ′1f̃2
.

Γf̃ ′2f̃1

V(8)

f̃ ′2f̃1
= |mZ̃i

||mW̃j
|mfmf ′(−1)θi(−1)θc

[
βu
Z̃if̃2

βd
Z̃if̃1

αW̃
f̃ ′2
αW̃
f̃1
− αu

Z̃if̃2
αd
Z̃if̃1

βW̃
f̃ ′2
βW̃
f̃1

]
. (A.525)

If the decay is neutralino to chargino:

V(1)

f̃ ′2f̃1
=

1

2
(−1)θi

[
−αu

Z̃if̃2
βd
Z̃if̃1

βW̃
f̃ ′2
αW̃
f̃1

+ βu
Z̃if̃2

αd
Z̃if̃1

αW̃
f̃ ′2
βW̃
f̃1

]
, (A.526)

V(2)

f̃ ′2f̃1
= −|mZ̃i

||mW̃j
|
[
αu
Z̃if̃2

αd
Z̃if̃1

αW̃
f̃ ′2
αW̃
f̃1
− βu

Z̃if̃2
βd
Z̃if̃1

βW̃
f̃ ′2
βW̃
f̃1

]
, (A.527)

V(3)

f̃ ′2f̃1
= (−1)θimfmf ′

[
−βu

Z̃if̃2
αd
Z̃if̃1

βW̃
f̃ ′2
αW̃
f̃1

+ αu
Z̃if̃2

βd
Z̃if̃1

αW̃
f̃2
βW̃
f̃1

]
, (A.528)

V(4)

f̃ ′2f̃1
= |mZ̃i

|mf

[
αu
Z̃if̃2

αd
Z̃if̃1

βW̃
f̃ ′2
αW̃
f̃1

+ (−1)θiβu
Z̃if̃2

βd
Z̃if̃1

αW̃
f̃ ′2
βW̃
f̃1

]
, (A.529)

V(5)

f̃ ′2f̃1
= (−1)θimf ′ |mW̃j

|
[
βu
Z̃if̃2

αd
Z̃if̃1

αW̃
f̃ ′2
αW̃
f̃1
− αu

Z̃if̃2
βd
Z̃if̃1

βW̃
f̃ ′2
βW̃
f̃1

]
(−1)θj , (A.530)

V(6)

f̃ ′2f̃1
= −(−1)θi |mZ̃i

|mf ′

[
−βu

Z̃if̃2
βd
Z̃if̃1

βW̃
f̃ ′2
αW̃
f̃1

+ (−1)θiαu
Z̃if̃2

αd
Z̃if̃1

αW̃
f̃ ′2
βW̃
f̃1

]
, (A.531)

V(7)

f̃ ′2f̃1
= −|mW̃j

|mf

[
αu
Z̃if̃2

βd
Z̃if̃1

αW̃
f̃ ′2
αW̃
f̃1

+ (−1)θiβu
Z̃if̃2

αd
Z̃if̃1

βW̃
f̃ ′2
βW̃
f̃1

]
(−1)θj . (A.532)

Whilst if the decay is instead chargino to neutralino:
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V(1)

f̃ ′2f̃1
=

1

2

[
αu
Z̃if̃2

βd
Z̃if̃1

βW̃
f̃ ′2
αW̃
f̃1

+ βu
Z̃if̃2

αd
Z̃if̃1

αW̃
f̃ ′2
βW̃
f̃1

]
(−1)θi , (A.533)

V(2)

f̃ ′2f̃1
= |mZ̃i

||mW̃j
|(−1)θi

[
αu
Z̃if̃2

αd
Z̃if̃1

αW̃
f̃ ′2
αW̃
f̃1

+ βu
Z̃if̃2

βd
Z̃if̃1

βW̃
f̃ ′2
βW̃
f̃1

]
, (A.534)

V(3)

f̃ ′2f̃1
= −mfmf ′

[
βu
Z̃if̃2

αd
Z̃if̃1

βW̃
f̃ ′2
αW̃
f̃1

+ αu
Z̃if̃2

βd
Z̃if̃1

αW̃
f̃2
βW̃
f̃1

]
, (A.535)

V(4)

f̃ ′2f̃1
= −|mZ̃i

|mf

[
αW̃
f̃ ′2
αW̃
f̃1
βu
Z̃if̃2

αd
Z̃if̃1

+ βW̃
f̃ ′2
βW̃
f̃1
αu
Z̃if̃2

βd
Z̃if̃1

]
, (A.536)

V(5)

f̃ ′2f̃1
= |mW̃j

|mf ′

[
αW̃
f̃1
βW̃
f̃ ′2
αu
Z̃if̃2

αd
Z̃if̃1

+ αW̃
f̃ ′2
βW̃
f̃1
βu
Z̃if̃2

βd
Z̃if̃1

]
, (A.537)

V(6)

f̃ ′2f̃1
= |mZ̃i

|mf ′

[
βW̃
f̃ ′2
βW̃
f̃1
βu
Z̃if̃2

αd
Z̃if̃1

+ αW̃
f̃ ′2
αW̃1

f̃1
αu
Z̃if̃2

βd
Z̃if̃1

]
, (A.538)

V(7)

f̃ ′2f̃1
= −|mW̃j

|mf

[
αW̃
f̃ ′2
βW̃
f̃1
αu
Z̃if̃2

αd
Z̃if̃1

+ βW̃
f̃ ′2
αW̃
f̃1
βu
Z̃if̃2

βd
Z̃if̃1

]
. (A.539)

Again, the integrals are as in the f̃ ′1f̃1 case with the obvious mass replacements. Γf̃ ′2f̃1
is just the

product of each coupling combination V(k)

f̃ ′2f̃1
with each corresponding integral Ik

f̃ ′2f̃1
.

Γf̃ ′2f̃2

V(8)

f̃ ′2f̃2
= −|mZ̃i

||mW̃j
|mfmf ′(−1)θi(−1)θj

[
βu
Z̃if̃2

βd
Z̃if̃2

αW̃
f̃ ′2
αW̃
f̃2
− αu

Z̃if̃2
αd
Z̃if̃2

βW̃
f̃ ′2
βW̃
f̃2

]
. (A.540)

If the decay is neutralino to chargino:

V(1)

f̃ ′2f̃2
=

1

2
(−1)θj

[
−αu

Z̃if̃2
βd
Z̃if̃2

βW̃
f̃ ′2
αW̃
f̃2

+ (−1)θiβu
Z̃if̃2

αd
Z̃if̃2

αW̃
f̃ ′2
βW̃
f̃2

]
, (A.541)

V(2)

f̃ ′2f̃2
= |mZ̃i

||mW̃j
|(−1)θj

[
αu
Z̃if̃2

αd
Z̃if̃2

αW̃
f̃ ′2
αW̃
f̃2
− βu

Z̃if̃2
βd
Z̃if̃2

βW̃
f̃ ′2
βW̃
f̃2

]
, (A.542)

V(3)

f̃ ′2f̃2
= −mfmf ′

[
−(−1)θiβu

Z̃if̃2
αd
Z̃if̃2

βW̃
f̃ ′2
αW̃
f̃2

+ αu
Z̃if̃2

βd
Z̃if̃2

αW̃
f̃2
βW̃
f̃2

]
, (A.543)

V(4)

f̃ ′2f̃2
= −|mZ̃i

|mf (−1)θj
[
αu
Z̃if̃2

αd
Z̃if̃2

βW̃
f̃ ′2
αW̃
f̃2
− (−1)θiβu

Z̃if̃2
βd
Z̃if̃2

αW̃
f̃ ′2
βW̃
f̃2

]
, (A.544)

V(5)

f̃ ′2f̃2
= −mf ′ |mW̃j

|
[
(−1)θi(−1)θjβu

Z̃if̃2
αd
Z̃if̃2

αW̃
f̃ ′2
αW̃
f̃2

+ αu
Z̃if̃2

βd
Z̃if̃2

βW̃
f̃ ′2
βW̃
f̃2

]
, (A.545)

V(6)

f̃ ′2f̃2
= |mZ̃i

|mf ′

[
(−1)θiβu

Z̃if̃2
βd
Z̃if̃2

βW̃
f̃ ′2
αW̃
f̃2
− αu

Z̃if̃2
αd
Z̃if̃2

αW̃
f̃ ′2
βW̃
f̃2

]
, (A.546)

V(7)

f̃ ′2f̃2
= |mW̃j

|mf

[
αu
Z̃if̃2

βd
Z̃if̃2

αW̃
f̃ ′2
αW̃
f̃2
− βu

Z̃if̃2
αd
Z̃if̃2

βW̃
f̃ ′2
βW̃
f̃2

]
(−1)θj . (A.547)

Whilst if the decay is instead chargino to neutralino:

V(1)

f̃ ′2f̃2
= −1

2

[
(−1)θjαu

Z̃if̃2
βd
Z̃if̃2

βW̃
f̃ ′2
αW̃
f̃2
− βu

Z̃if̃2
αd
Z̃if̃2

αW̃
f̃ ′2
βW̃
f̃2

]
, (A.548)

V(2)

f̃ ′2f̃2
= −|mZ̃i

||mW̃j
(−1)θi |

[
(−1)θjαu

Z̃if̃2
αd
Z̃if̃2

αW̃
f̃ ′2
αW̃
f̃2
− βu

Z̃if̃2
βd
Z̃if̃2

βW̃
f̃ ′2
βW̃
f̃2

]
, (A.549)

V(3)

f̃ ′2f̃2
= mfmf ′

[
−(−1)θjβu

Z̃if̃2
αd
Z̃if̃2

βW̃
f̃ ′2
αW̃
f̃2
− αu

Z̃if̃2
βd
Z̃if̃2

αW̃
f̃2
βW̃
f̃2

]
, (A.550)

V(4)

f̃ ′2f̃2
= |mZ̃i

|mf (−1)θj
[
αW̃
f̃ ′2
αW̃
f̃2
βu
Z̃if̃2

αd
Z̃if̃2

+ βW̃
f̃ ′2
βW̃
f̃2
αu
Z̃if̃2

βd
Z̃if̃2

]
, (A.551)

V(5)

f̃ ′2f̃2
= |mW̃j

|mf ′

[
αW̃
f̃2
βW̃
f̃ ′2
αu
Z̃if̃2

αd
Z̃if̃2
− αW̃

f̃ ′2
βW̃
f̃2
βu
Z̃if̃2

βd
Z̃if̃2

]
, (A.552)

V(6)

f̃ ′2f̃2
= (−1)θj |mZ̃i

|mf ′

[
βW̃
f̃ ′2
βW̃
f̃2
βu
Z̃if̃2

αd
Z̃if̃2

+ αW̃
f̃ ′2
αW̃1

f̃2
αu
Z̃if̃2

βd
Z̃if̃2

]
, (A.553)

V(7)

f̃ ′2f̃2
= |mW̃j

|mf

[
−αW̃

f̃ ′2
βW̃
f̃2
αu
Z̃if̃2

αd
Z̃if̃2

+ βW̃
f̃ ′2
αW̃
f̃2
βu
Z̃if̃2

βd
Z̃if̃2

]
. (A.554)

The integrals are again as in the f̃ ′1f̃1 case with the obvious mass replacements and Γf̃ ′2f̃2
is just

the product of each coupling combination V(k)

f̃ ′2f̃2
with each corresponding integral Ik

f̃ ′2f̃2
.
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ΓWH±

For this contribution the relevant coupling combinations are:

V(1)
WH± =− (CR

W̃Z̃W
ωR
H+W̃+Z̃

+ CL
W̃Z̃W

ωL
H+W̃+Z̃

)
g√
2
CuH+ff ′ |mW̃j

|mf ′(−1)θc , (A.555)

V(2)
WH± =(CL

W̃Z̃W
ωR
H+W̃+Z̃

+ CR
W̃Z̃W

ωL
H+W̃+Z̃

)
g√
2
CdH+ff ′ |mZ̃i

|mf (−1)θi(−1)θj (−1)θc , (A.556)

V(3)
WH± =(CR

W̃Z̃W
ωR
H+W̃+Z̃

+ CL
W̃Z̃W

ωL
H+W̃+Z̃

)
g√
2
CdH+ff ′ |mW̃j

|mf (−1)θc , (A.557)

V(4)
WH± =− (CL

W̃Z̃W
ωR
H+W̃+Z̃

+ CR
W̃Z̃W

ωL
H+W̃+Z̃

)
g√
2
CuH+ff ′ |mZ̃i

|mf ′(−1)θi(−1)θj (−1)θc . (A.558)

The integrals are as follows with the following variables:

Eupper3 =
1

2|mZ̃i
| (m

2
Z̃i

+m2
W̃j
−m2

f −m2
f ′ − 2mfmf ′), (A.559)

s = m2
Z̃i

+m2
W̃j
− 2|mZ̃i

|E, (A.560)

λ =
√

(s− (mf +mf ′)2)(s− (mf −mf ′)2), (A.561)

A = 2|mZ̃i
E +m2

f +m2
f ′ − (m2

Z̃i
−m2

W̃j
)(m2

f −m2
f ′)/s, (A.562)

B =
2|mZ̃i

|
s

λ
√
E2 −m2

W̃j
, (A.563)

I1
WH± = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE
− 1

2AB + (m2
Z̃i

+m2
f )B

(s−m2
W )(s−m2

H±)
, (A.564)

I2
WH± = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE

1
2AB − (m2

W̃j
+m2

f ′)B
(s−m2

W )(s−m2
H±)

, (A.565)

I3
WH± = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE
− 1

2AB + (m2
Z̃i
− 2|mZ̃i

|E −m2
f )B

(s−m2
W )(s−m2

H±)
, (A.566)

I4
WH± = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE
− 1

2AB − (m2
Z̃j
− 2|mZ̃i

| −m2
f ′)B

(s−m2
W )(s−m2

H±)
, (A.567)

So overall:

ΓWH± = V(1)
WH±I

1
WH±(−1)θc(−1)θj + V(2)

WH±I
2
WH±(−1)θc(−1)θj + V(3)

WH±I
3
WH± + V(4)

WH±I
4
WH± . (A.568)

ΓWG

Here everything is as above but in the coupling combinations we must make the appropriate re-

placements ω
L/R

H+W̃+Z̃
→ ω

L/R

GW̃Z̃
, whilst in the integrals we make the change mH± → mGoldstone = mW .

However because of subtle differences in the definitions of the couplings, the overall contribution here is

given by:

ΓWG = V(1)
WGI

1
WG + V(2)

WGI
2
WG + V(3)

WGI
3
WG + V(4)

WGI
4
WG. (A.569)
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ΓWf̃ ′1

The coupling combinations are:

V(1)

Wf̃ ′1
= −2CL

W̃Z̃W
αu
Z̃if̃1

g√
2
β
W̃j

f̃ ′1
|mZ̃i

|mf (−1)θj , (A.570)

V(2)

Wf̃ ′1
= −2CL

W̃Z̃W
βZ̃if̃1

g√
2
α
W̃j

f̃1
mf ′ |mW̃j

|(−1)θc , (A.571)

V(3)

Wf̃ ′1
= 2CR

W̃Z̃W
αu
Z̃if̃1

g√
2
α
W̃j

f̃ ′1
(−1)θi(−1)θj (−1)θc , (A.572)

V(4)

Wf̃ ′1
= (−1)θi4CR

W̃Z̃W
βu
Z̃if̃1

g√
2
α
W̃j

f̃ ′1
|mZ̃i

|mf ′(−1)θc , (A.573)

V(5)

Wf̃ ′1
= 4CR

W̃Z̃W
αu
Z̃if̃1

g√
2
β
W̃j

f̃ ′1
mf |mW̃j

|(−1)θi , (A.574)

V(6)

Wf̃ ′1
= −2CL

W̃Z̃W
αu
Z̃if̃1

g√
2
α
W̃j

f̃ ′1
|mZ̃i

||mW̃j
|(−1)θc , (A.575)

V(7)

Wf̃ ′1
= −2CL

W̃Z̃W
βu
Z̃if̃1

g√
2
β
W̃f

f̃ ′1
mf ′mf , (A.576)

V(8)

Wf̃ ′1
= 8CR

W̃Z̃W
βu
Z̃if̃1

g√
2
βW̃1

f̃ ′1
|mZ̃i

|mf ′mf |mW̃j
|(−1)θi(−1)θj . (A.577)

The integrals are as follows with:

s = m2
Z̃i

+m2
W̃j
− 2|mZ̃i

|E, (A.578)

λ =
√

(s− (mf ′ +mf )2)(s− (mf ′ −mf )2), (A.579)

A = m2
f ′ +m2

f + 2|mZ̃i
|E + (m2

Z̃i
−m2

W̃j
)(m2

f −m2
f ′)/s, (A.580)

B = 2|mZ̃i
|λ
√
E2 −m2

W̃j
, (A.581)

Z =
A+B − 2m2

f̃ ′1

A−B − 2m2
f̃ ′1

. (A.582)

I1
Wf̃ ′1

= −2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

B + (m2
f̃ ′1

+m2
W̃j
− 2|mZ̃i

|E −m2
f ) log(Z)

s−m2
W

, (A.583)

I2
Wf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

B + (m2
f̃ ′1

+m2
Z̃i
− 2|mZ̃i

|E −m2
f ′) log(Z)

s−m2
W

, (A.584)

I3
Wf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE
[
{m2

Z̃i
+m2

f +m2
f ′ +m2

W̃j
− 1.5m2

f̃ ′1
− 0.25(A+B)}(1

2
(A+B)−m2

f̃ ′1

− (m2
Z̃i

+m2
f +m2

f ′ +m2
W̃j
− 1.5m2

f̃ ′1
− 0.25(A−B))(

1

2
(A−B)−m2

f̃ ′1
)

+ (m2
Z̃i

+m2
f ′ −m2

f̃ ′1
)(m2

f̃ ′1
−m2

f −m2
W̃j

) log(Z)
] 1

s−m2
W

,

(A.585)

I4
Wf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

B + (m2
f̃ ′
−m2

f −m2
W̃j

) log(Z)

s−m2
W

, (A.586)

I5
Wf̃ ′1

= −2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

B + (m2
f̃ ′1
−m2

Z̃i
−m2

f ′) log(Z)

s−m2
W

, (A.587)
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I6
Wf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

(s−m2
f ′ −m2

f ) log(Z)

s−m2
W

, (A.588)

I7
Wf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

2|mZ̃i
|E log(Z)

s−m2
W

, (A.589)

I8
Wf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

log(Z)

s−m2
W

. (A.590)

Therefore the overall contribution is:

ΓWf̃ ′1
=V(1)

Wf̃ ′1
I1
Wf̃ ′1

+ V(2)

Wf̃ ′1
I2
Wf̃ ′1

+ V(3)

Wf̃ ′1
I3
Wf̃ ′1

+ V(4)

Wf̃ ′1
I4
Wf̃ ′1

+ V(5)

Wf̃ ′1
I5
Wf̃ ′1

+ V(6)

Wf̃ ′1
I6
Wf̃ ′1

+ V(7)

Wf̃ ′1
I7
Wf̃ ′1

+ V(8)

Wf̃ ′1
I8
Wf̃ ′1

.
(A.591)

ΓWf̃ ′2

The coupling combinations here are:

V(1)

Wf̃ ′2
= 2CL

W̃Z̃W
αu
Z̃if̃2

g√
2
β
W̃j

f̃ ′2
|mZ̃i

|mf (−1)θj (−1)θc , (A.592)

V(2)

Wf̃ ′2
= 2CL

W̃Z̃W
βu
Z̃if̃2

g√
2
α
W̃j

f̃ ′2
mf ′ |mW̃j

|(−1)θi(−1)θj , (A.593)

V(3)

Wf̃ ′2
= 2CR

W̃Z̃W
αu
Z̃if̃2

g√
2
α
W̃j

f̃ ′2
(−1)θi , (A.594)

V(4)

Wf̃ ′2
= −4CR

W̃Z̃W
βu
Z̃if̃2

g√
2
α
W̃j

f̃ ′2
|mZ̃i

|mf ′ , (A.595)

V(5)

Wf̃ ′2
= −4CR

W̃Z̃W
αu
Z̃if̃2

g√
2
β
W̃j

f̃ ′2
mf |mW̃j

|(−1)θi(−1)θc , (A.596)

V(6)

Wf̃ ′2
= −2CL

W̃Z̃W
αu
Z̃if̃2

g√
2
α
W̃j

f̃ ′2
|mZ̃i

||mW̃j
|(−1)θj , (A.597)

V(7)

Wf̃ ′2
= −2CL

W̃Z̃W
βu
Z̃if̃2

g√
2
β
W̃j

f̃ ′2
mf ′mf (−1)θi(−1)θj (−1)θc , (A.598)

V(8)

Wf̃ ′2
= 8CR

W̃Z̃W
βu
Z̃if̃2

g√
2
β
W̃j

f̃ ′2
|mZ̃i

|mf ′mf |mW̃j
|(−1)θc . (A.599)

The integrals here are exactly as for Wf̃ ′1 with the change mf̃ ′1
→ mf̃ ′2

. As above ΓWf̃ ′2
is then

the sum of the products of coupling combinations, V(i) and integrals, Ii
W f̃ ′2

.

ΓWf̃1

Here the coupling combinations required are:

V(6)

Wf̃1
= −2CR

W̃Z̃W
αd
Z̃if̃1

g√
2
α
W̃j

f̃1
|mZ̃i

||mW̃j
|(−1)θc , (A.600)

V(7)

Wf̃1
= −2CR

W̃Z̃W
βd
Z̃if̃1

g√
2
β
W̃j

f̃1
mfmf ′ , (A.601)

V(8)

Wf̃1
= 8CL

W̃Z̃W
βd
Z̃if̃1

g√
2
β
W̃j

f̃1
|mZ̃i

|mfmf ′ |mW̃j
|(−1)θi(−1)θj . (A.602)

The other coupling combinations depend upon if it is a neutralino decaying into a chargino or a

chargino decaying into a neutralino, for a neutralino decaying:
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V(1)

Wf̃1
= −2CR

W̃Z̃W
αd
Z̃if̃1

g√
2
β
W̃j

f̃1
|mZ̃i

|mf ′ , (A.603)

V(2)

Wf̃1
= −2CR

W̃Z̃W
βd
Z̃if̃1

g√
2
α
W̃j

f̃1
mf |mW̃j

|(−1)θj , (A.604)

V(3)

Wf̃1
= 2CR

W̃Z̃W
αd
Z̃if̃1

g√
2
α
W̃j

f̃1
, (A.605)

V(4)

Wf̃1
= 4CL

W̃Z̃W
βd
Z̃if̃1

g√
2
α
W̃j

f̃1
|mZ̃i

|mf (−1)θi , (A.606)

V(5)

Wf̃1
= 4CL

W̃Z̃W
αd
Z̃if̃1

g√
2
β
W̃j

f̃1
mf ′ |mW̃j

|(−1)θi(−1)θj , (A.607)

whilst if it’s a chargino decaying:

V(1)

Wf̃1
= 2CR

W̃Z̃W
βd
Z̃if̃1

α
W̃j

f̃1

g√
2
|mZ̃i

|mf ′(−1)θi , (A.608)

V(2)

Wf̃1
= −2CR

W̃Z̃W
αd
Z̃if̃1

β
W̃j

f̃1

g√
2
mf |mW̃j

|, (A.609)

V(3)

Wf̃1
= −2CL

W̃Z̃W
αd
Z̃if̃1

α
W̃j

f̃1

g√
2

(−1)θi(−1)θj , (A.610)

V(4)

Wf̃1
= 4CL

W̃Z̃W
αd
Z̃if̃1

β
W̃j

f̃1

g√
2
|mZ̃i

|mf (−1)θi(−1)θj , (A.611)

V(5)

Wf̃1
= −4CL

W̃Z̃W
βd
Z̃if̃1

α
W̃j

f̃1

g√
2
mf ′ |mW̃j

|(−1)θj . (A.612)

Then the integrals are exactly as for Wf̃ ′1 but with the changes mf ′ ↔ mf , mf̃ ′1
→ mf̃1

. ΓWf̃1
is, as

above, just the sum of the products of coupling combinations and corresponding integrals.

ΓWf̃2

The coupling combinations now are:

V(6)

Wf̃2
= 2CR

W̃Z̃W
αd
Z̃if̃2

g√
2
α
W̃j

f̃2
|mZ̃i

||mW̃j
|(−1)θj (−1)θc , (A.613)

V(7)

Wf̃2
= −2CR

W̃Z̃W
βd
Z̃if̃2

g√
2
β
W̃j

f̃2
mfmf ′(−1)θc , (A.614)

V(8)

Wf̃2
= 8CL

W̃Z̃W
βd
Z̃if̃2

g√
2
βf̃2
|mZ̃i

|mfmf ′ |mW̃j
|(−1)θi(−1)θj (−1)θc . (A.615)

Again, here some of the coupling combinations depend upon which way around the decay occurs, i.e.

neutralino to chargino or chargino to neutralino, for the neutralino decaying:

V(1)

Wf̃2
= −2CR

W̃Z̃W
αd
Z̃if̃2

g√
2
β
W̃j

f̃2
|mZ̃i

|mf ′ , (A.616)

V(2)

Wf̃2
= 2CR

W̃Z̃W
βd
Z̃if̃2

g√
2
α
W̃j

f̃2
mf |mW̃j

|(−1)θj , (A.617)

V(3)

Wf̃2
= −2CR

W̃Z̃W
αd
Z̃if̃2

g√
2
α
W̃j

f̃2
, (A.618)

V(4)

Wf̃2
= −4CL

W̃Z̃W
βd
Z̃if̃2

g√
2
α
W̃j

f̃2
|mZ̃i

|mf (−1)θi , (A.619)

V(5)

Wf̃2
= 4CL

W̃Z̃W
αd
Z̃if̃2

g√
2
β
W̃j

f̃2
mf ′ |mW̃j

|(−1)θi(−1)θj , (A.620)
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whilst if it’s a chargino decaying:

V(1)

Wf̃2
= −2CR

W̃Z̃W
βd
Z̃if̃2

α
W̃j

f̃2

g√
2
|mZ̃i

|mf ′(−1)θi(−1)θj (−1)θc , (A.621)

V(2)

Wf̃2
= 2CR

W̃Z̃W
αd
Z̃if̃2

β
θWj

f̃2

g√
2
mf |mW̃j

|(−1)θc , (A.622)

V(3)

Wf̃2
= −2CL

W̃Z̃W
αd
Z̃if̃2

α
W̃j

f̃2

g√
2

(−1)θi(−1)θc , (A.623)

V(4)

Wf̃2
= −4CL

W̃Z̃W
αd
Z̃if̃2

β
W̃j

f̃2

g√
2
|mZ̃i

|mf (−1)θi(−1)θj (−1)θc , (A.624)

V(5)

Wf̃2
= 4CL

W̃Z̃W
βd
Z̃if̃2

α
W̃j

f̃2

g√
2
mf ′ |mW̃j

|(−1)θc . (A.625)

Then the integrals, and indeed the overall expression for ΓWf̃2
, are just like that for Wf̃1 but with

the expected replacement mf̃1
→ mf̃2

.

ΓH±G

The coupling combinations are:

V(1)
H±G = ωL

GW̃Z̃
ωL
H+W̃+Z̃

+ ωR
GW̃Z̃

ωR
H+W̃+Z̃

, (A.626)

V(2)
H±G = (ωR

GW̃Z̃
ωL
H+W̃+Z̃

+ ωL
GW̃Z̃

ωR
H+W̃+Z̃

)(−1)θi(−1)θj , (A.627)

V(3)
H±G = CuGff ′CuH+ff ′ + CdGff ′CdH+ff ′ , (A.628)

V(4)
H±G = CdGff ′CuH+ff ′ + CuGff ′CdH+ff ′ , (A.629)

and the integrals with s = m2
Z̃i

+m2
W̃j
− 2|mZ̃i

|E, λ =
√

(s− (mf +mf ′)2)(s− (mf −mf ′)2) are:

I1
H±G = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE

λ
√
E2 −m2

W̃j

s(s−m2
W )(s−m2

H±)
, (A.630)

I2
H±G = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE

2|mZ̃i
|λ
√
E2 −m2

W̃j
(s−m2

f −m2
f ′)

s(s−m2
W )(s−m2

H±)
, (A.631)

I3
H±G = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE

2|mZ̃i
|λ
√
E2 −m2

W̃j
2|mZ̃i

|E
s(s−m2

W )(s−m2
H±)

, (A.632)

I4
H±G = 2|mZ̃i

|
∫ Eupper3

|mW̃j |
dE

2|mZ̃i
|λ
√
E2 −m2

W̃j
(s−m2

f −m2
f ′)2|mZ̃i

|E
s(s−m2

W )(s−m2
H±)

. (A.633)

The overall contribution is then:

ΓH±G =V(1)
H±GV

(3)
H±GI

4
H±G − 2V(1)

H±GV
(4)
H±Gmfmf ′I

3
H±G + 2V(2)

H±GV
(3)
H±G|mZ̃i

||mW̃j
|I2
H±G

− 4V(2)
H±GV

(4)
H±G|mZ̃i

||mW̃j
|mfmf ′I

1
H±G(−1)θj .

(A.634)

ΓGf̃ ′1
Here the required coupling combinations are dependent on whether it’s neutralino to chargino or

chargino to neutralino. For a neutralino decaying:
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V(1)

Gf̃ ′1
=

1

2
(ωR
GW̃Z̃

αu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
+ ωL

GW̃Z̃
βu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
), (A.635)

V(2)

Gf̃ ′1
= −(ωR

GW̃Z̃
βu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
+ ωL

GW̃Z̃
αu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
)mf |mZ̃i

|, (A.636)

V(3)

Gf̃ ′1
= (ωL

GW̃Z̃
βu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
+ ωR

GW̃Z̃
αu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
)(−1)θimf ′ |mW̃j

|, (A.637)

V(4)

Gf̃ ′1
= (ωR

GW̃Z̃
βu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
+ ωL

GW̃Z̃
αu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
)mf ′ |mZ̃i

|, (A.638)

V(5)

Gf̃ ′1
= (ωL

GW̃Z̃
βu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
− (−1)θiωR

GW̃Z̃
αu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
)mf |mW̃j

|, (A.639)

V(6)

Gf̃ ′1
= (−1)θi(ωL

GW̃Z̃
αu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
+ ωR

GW̃Z̃
βu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
)|mZ̃i

||mW̃j
|, (A.640)

V(7)

Gf̃ ′1
= −(ωR

GW̃Z̃
αu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
+ ωL

GW̃Z̃
βu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
)mf ′mf , (A.641)

V(8)

Gf̃ ′1
= 2(ωL

GW̃Z̃
αu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
+ (−1)θiωR

GW̃Z̃
βu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
)|mZ̃i

|mf ′mf |mW̃j
|. (A.642)

For a chargino decaying:

V(1)

Gf̃ ′1
= −1

2
(ωL
GW̃Z̃

αu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
+ (−1)θfωR

GW̃Z̃
βu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
), (A.643)

V(2)

Gf̃ ′1
= (ωL

GW̃Z̃
αu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
+ (−1)θjωR

GW̃Z̃
βu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
)mf ′ |mZ̃i

|, (A.644)

V(3)

Gf̃ ′1
= −(ωR

GW̃Z̃
αu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
+ (−1)θjωL

GW̃Z̃
βu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
)(−1)θjmf |mW̃j

|, (A.645)

V(4)

Gf̃ ′1
= −(ωL

GW̃Z̃
αu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
+ (−1)θjωR

GW̃Z̃
βu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
)mf |mZ̃i

|, (A.646)

V(5)

Gf̃ ′1
= ((−1)θjωR

GW̃Z̃
αu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
+ ωL

GW̃Z̃
βu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
)mf ′ |mW̃j

|, (A.647)

V(6)

Gf̃ ′1
= −((−1)θjωR

GW̃Z̃
αu
Z̃if̃1
CuGff ′β

W̃j

f̃ ′1
+ ωL

GW̃Z̃
βu
Z̃if̃1
CdGff ′α

W̃j

f̃ ′1
)|mZ̃i

||mW̃j
|, (A.648)

V(7)

Gf̃ ′1
= (ωL

GW̃Z̃
αu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
+ (−1)θjωR

GW̃Z̃
βu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
)mf ′mf , (A.649)

V(8)

Gf̃ ′1
= 2((−1)θjωR

GW̃Z̃
αu
Z̃if̃1
CdGff ′β

W̃j

f̃ ′1
+ ωL

GW̃Z̃
βu
Z̃if̃1
CuGff ′α

W̃j

f̃ ′1
)|mZ̃i

|mf ′mf |mW̃j
|. (A.650)

The integrals necessary are, for neutralino decaying with s = m2
Z̃i

+m2
W̃j
− 2|mZ̃i

|E,

λ =
√

(s− (mf ′ +mf )2)(s− (mf ′ −mf )2), A = m2
f +m2

f ′ + 2|mZ̃i
|E + (m2

Z̃i
−m2

W̃j
)(m2

f −m2
f ′)/s,

B = 2|mZ̃i
|λ/s

√
E2 −m2

W̃j
, Z =

( 1
2 (A+B)−m2

f̃′1
)

( 1
2 (A−B)−m2

f̃′1
)
, given by:
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I1
Gf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

2[sB + (m2
f̃ ′1
s−m2

Z̃i
m2
f −m2

f ′m
2
W̃j

) log(Z)]

s−m2
W

, (A.651)

I2
Gf̃ ′1

= −2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

[B + (m2
f̃ ′1

+m2
W̃j
− 2|mZ̃i

|E −m2
f ) log(Z)]

s−m2
W

, (A.652)

I3
Gf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

[B + (m2
f̃ ′1

+m2
Z̃i
− 2|mZ̃i

|E −m2
f ′) log(Z)]

s−m2
W

, (A.653)

I4
Gf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

[B + (m2
f̃ ′1
−m2

f −m2
W̃j

) log(Z)]

s−m2
W

, (A.654)

I5
Gf̃ ′1

= −2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

[B + (m2
f̃ ′1
−m2

Z̃i
−m2

f ′) log(Z)]

s−m2
W

, (A.655)

I6
Gf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

(s−m2
f ′ −m2

f ) log(Z)

s−m2
W

, (A.656)

I7
Gf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

2|mZ̃i
|E log(Z)

s−m2
W

, (A.657)

I8
Gf̃ ′1

= 2|mZ̃i
|
∫ Eupper3

|mW̃j |
dE

log(Z)

s−m2
W

. (A.658)

For a chargino decaying the integrals have the same expressions but one must swap integrals 2 and 4

and integrals 3 and 5. The overall contribution is the product of each coupling combination with the

corresponding integral:

ΓGf̃ ′1 =V(1)

Gf̃ ′1
I1
Gf̃ ′1

+ V(2)

Gf̃ ′1
I2
Gf̃ ′1

+ V(3)

Gf̃ ′1
I3
Gf̃ ′1

+ V(4)

Gf̃ ′1
I4
Gf̃ ′1

+ V(5)

Gf̃ ′1
I5
Gf̃ ′1

+ V(6)

Gf̃ ′1
I6
Gf̃ ′1

+ V(7)

Gf̃ ′1
I7
Gf̃ ′1

+ V(8)

Gf̃ ′1
I8
Gf̃ ′1

.
(A.659)

ΓGf̃ ′2
Again here the coupling combinations depend upon if we are considering neutralino to chargino or

chargino to neutralino, for neutralino decaying:

V(1)

Gf̃ ′2
= −1

2
(−1)θi [−(−1)θiωR

GW̃Z̃
αu
Z̃if̃2
CdGff ′β

W̃j

f̃ ′2
+ ωL

GW̃Z̃
βu
Z̃if̃2
CuGff ′α

W̃j

f̃ ′2
], (A.660)

V(2)

Gf̃ ′2
= (−1)θi(ωR

GW̃Z̃
βu
Z̃if̃2
CuGff ′β

W̃j

f̃ ′2
− ωL

GW̃Z̃
αu
Z̃if̃2
CdGff ′α

W̃j

f̃ ′2
)|mZ̃i

|mf , (A.661)

V(3)

Gf̃ ′2
= −(ωL

GW̃Z̃
βu
Z̃if̃2
CdGff ′β

W̃j

f̃ ′2
− ωR

GW̃Z̃
αu
Z̃if̃2
CuGff ′α

W̃j

f̃ ′2
)mf ′ |mW̃j

|(−1)θj , (A.662)

V(4)

Gf̃ ′2
= −(ωR

GW̃Z̃
βu
Z̃if̃2
CdGff ′β

W̃j

f̃ ′2
− (−1)θiωL

GW̃Z̃
αu
Z̃if̃2
CuGff ′α

W̃j

f̃ ′2
)|mZ̃i

|mf ′ , (A.663)

V(5)

Gf̃ ′2
= (ωL

GW̃Z̃
βu
Z̃if̃2
CuGff ′β

W̃j

f̃ ′2
+ ωR

GW̃Z̃
αu
Z̃if̃2
CdGff ′α

W̃j

f̃ ′2
)mf |mW̃j

|(−1)θj , (A.664)

V(6)

Gf̃ ′1
= [ωL

GW̃Z̃
αu
Z̃if̃2
CdGff ′β

W̃j

f̃ ′2
− (−1)θiωR

GW̃Z̃
βu
Z̃if̃2
CuGff ′α

W̃j

f̃ ′2
]|mZ̃i

||mW̃j
|, (A.665)

V(7)

Gf̃ ′2
= [−(−1)θiωR

GW̃Z̃
αu
Z̃if̃2
CuGff ′β

W̃j

f̃ ′2
+ ωL

GW̃Z̃
βu
Z̃if̃2
CdGff ′α

W̃j

f̃ ′2
]mf ′mf , (A.666)

V(8)

Gf̃ ′2
= 2[−ωL

GW̃Z̃
αu
Z̃if̃2
CuGff ′β

W̃j

f̃ ′2
+ (−1)θiωR

GW̃Z̃
βu
Z̃if̃2
CdGff ′α

W̃j

f̃ ′2
]|mZ̃i

|mf ′mf |mW̃j
|, (A.667)

whilst if it’s a chargino decaying into a neutralino:
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V(1)

Gf̃ ′2
=

1

2
[ωL
GW̃Z̃

β
W̃j

f̃ ′2
CuGff ′αuZ̃if̃2

(−1)θj + ωR
GW̃Z̃

α
W̃j

f̃ ′2
CdGff ′βuZ̃if̃2

], (A.668)

V(2)

Gf̃ ′2
= −((−1)θjωL

GW̃Z̃
α
W̃j

f̃ ′2
CdGff ′αuZ̃if̃2

+ ωR
GW̃Z̃

β
W̃j

f̃ ′2
CuGff ′βuZ̃if̃2

)|mZ̃i
|mf ′ , (A.669)

V(3)

Gf̃ ′2
= (ωR

GW̃Z̃
α
W̃j

f̃ ′2
CuGff ′αuZ̃if̃2

+ (−1)θjωL
GW̃Z̃

β
W̃j

f̃ ′2
CdGff ′βuZ̃if̃2

)mf |mW̃j
|, (A.670)

V(4)

Gf̃ ′2
= ((−1)θjωL

GW̃Z̃
α
W̃j

f̃ ′2
CuGff ′αuZ̃if̃2

+ ωR
GW̃Z̃

β
W̃j

f̃ ′2
CdGff ′βuZ̃if̃2

)|mZ̃i
|mf , (A.671)

V(5)

Gf̃ ′2
= −(ωR

GW̃Z̃
α
W̃j

f̃ ′2
CdGff ′αuZ̃if̃2

+ (−1)θjωL
GW̃Z̃

β
W̃j

f̃ ′2
CuGff ′βuZ̃if̃2

)mf ′ |mW̃j
|, (A.672)

V(6)

Gf̃ ′2
= [ωR

GW̃Z̃
β
W̃j

f̃ ′2
CuGff ′αuZ̃if̃2

+ (−1)θjωL
GW̃Z̃

α
W̃j

f̃ ′2
CdGff ′βuZ̃if̃2

]|mW̃j
||mZ̃i

|, (A.673)

V(7)

Gf̃ ′2
= −[(−1)θjωL

GW̃Z̃
β
W̃j

f̃ ′2
CdGff ′αuZ̃if̃2

+ ωR
GW̃Z̃

α
W̃j

f̃ ′2
CuGff ′βuZ̃if̃2

]mfmf ′ , (A.674)

V(8)

Gf̃ ′2
= −2[ωR

GW̃Z̃
β
W̃j

f̃ ′2
CdGff ′αuZ̃if̃2

+ (−1)θjωL
GW̃Z̃

α
W̃j

f̃ ′2
CuGff ′βuZ̃if̃2

]mfmf ′ |mW̃j
|mZ̃i

|. (A.675)

The integrals are exactly as for Gf̃ ′1 but with the change mf̃ ′1
→ mf̃ ′2

, and similar changes produce the

overall expression for ΓGf̃ ′2 .

ΓH±f̃ ′1
Here the couplings required are dependent again on which particle is initial state and which final

state, for the neutralino as the decaying (i.e. initial state) particle:

V(1)

H±f̃ ′1
= −1

2
[(−1)θiωR

H+W̃+Z̃
αu
Z̃if̃1
CdH+ff ′β

W̃j

f̃ ′1
+ ωL

H+W̃+Z̃
βu
Z̃if̃1
CuH+ff ′α

W̃j

f̃ ′1
], (A.676)

V(2)

H±f̃ ′1
= −(ωR

H+W̃+Z̃
βu
Z̃if̃1
CuH+ff ′β

W̃j

f̃ ′1
+ ωL

H+W̃+Z̃
αu
Z̃if̃1
CdH+ff ′α

W̃j

f̃ ′1
)|mZ̃i

|mf , (A.677)

V(3)

H±f̃ ′1
= (ωL

H+W̃+Z̃
βu
Z̃if̃1
CdH+ff ′β

W̃j

f̃ ′1
+ ωR

H+W̃+Z̃
αu
Z̃if̃1
CuH+ff ′α

W̃j

f̃ ′1
)mf ′ |mW̃j

|(−1)θi , (A.678)

V(4)

H±f̃ ′1
= −[(−1)θiωR

H+W̃+Z̃
βu
Z̃if̃1
CdH+ff ′β

W̃j

f̃ ′1
− ωL

H+W̃+Z̃
αu
Z̃if̃1
CuH+ff ′α

W̃j

f̃ ′1
]|mZ̃i

|mf ′ , (A.679)

V(5)

H±f̃ ′1
= −(ωL

H+W̃+Z̃
βu
Z̃if̃1
CuH+ff ′β

W̃1

f̃ ′1
+ ωR

H+W̃+Z̃
αu
Z̃if̃1
CdH+ff ′α

W̃j

f̃ ′1
)mf |mW̃j

|(−1)θi , (A.680)

V(6)

H±f̃ ′1
= (−1)θi [ωL

H+W̃+Z̃
αu
Z̃if̃1
CdH+ff ′β

W̃j

f̃ ′1
+ ωR

H+W̃+Z̃
βu
Z̃if̃1
CuH+ff ′α

W̃j

f̃ ′1
]|mZ̃i

||mW̃j
|, (A.681)

V(7)

H±f̃ ′1
= −(ωR

H+W̃+Z̃
αu
Z̃if̃1
CuH+ff ′β

W̃j

f̃ ′1
+ ωL

H+W̃+Z̃
βu
Z̃if̃1
CdH+ff ′α

W̃j

f̃ ′1
)mf ′mf , (A.682)

V(8)

H±f̃ ′1
= −2(−1)θi [ωL

H+W̃+Z̃
αu
Z̃if̃1
CuH+ff ′β

W̃j

f̃ ′1
+ ωR

H+W̃+Z̃
βu
Z̃if̃1
CdH+ff ′α

W̃j

f̃ ′1
]|mZ̃i

||mW̃j
|mf ′mf . (A.683)

If the initial state is a chargino:

V(1)

H±f̃ ′1
=

1

2
(−1)θj [ωL

H+W̃+Z̃
β
W̃j

f̃ ′1
CuH+ff ′α

u
Z̃if̃1

+ (−1)θjωR
H+W̃+Z̃

α
W̃j

f̃ ′1
CdH+ff ′β

u
Z̃if̃1

], (A.684)

V(2)

H±f̃ ′1
= [ωL

H+W̃+Z̃
α
W̃j

f̃ ′1
CdH+ff ′α

u
Z̃if̃1

+ (−1)θjωR
H+W̃+Z̃

β
W̃j

f̃ ′1
CuH+ff ′β

u
Z̃if̃1

]|mZ̃i
|mf ′ , (A.685)

V(3)

H±f̃ ′1
= −[(−1)θjωR

H+W̃+Z̃
α
W̃j

f̃ ′1
CuH+ff ′α

u
Z̃if̃1

+ ωL
H+W̃+Z̃

β
W̃j

f̃ ′1
CdH+ff ′β

u
Z̃if̃1

]mf |mW̃j
|, (A.686)

V(4)

H±f̃ ′1
= −[ωL

H+W̃+Z̃
α
W̃j

f̃ ′1
CuH+ff ′α

u
Z̃if̃1

+ (−1)θjωR
H+W̃+Z̃

β
W̃j

f̃ ′1
CdH+ff ′β

u
Z̃if̃1

]|mZ̃i
|mf , (A.687)

V(5)

H±f̃ ′1
= [(−1)θjωR

H+W̃+Z̃
α
W̃j

f̃ ′1
CdH+ff ′α

u
Z̃if̃1

+ ωL
H+W̃+Z̃

β
W̃j

f̃ ′1
CuH+ff ′β

u
Z̃if̃1

]mf ′ |mW̃j
|, (A.688)

V(6)

H±f̃ ′1
= [ωR

H+W̃+Z̃
β
W̃j

f̃ ′1
CuH+ff ′α

u
Z̃if̃1

+ (−1)θjωL
H+W̃+Z̃

α
W̃j

f̃ ′1
CdH+ff ′β

u
Z̃if̃1

]|mW̃j
||mZ̃i

|, (A.689)

V(7)

H±f̃ ′1
= −[(−1)θjωL

H+W̃+Z̃
β
W̃j

f̃ ′1
CdH+ff ′α

u
Z̃if̃1

+ ωR
H+W̃+Z̃

α
W̃j

f̃ ′1
CuH+ff ′β

u
Z̃if̃1

]mfmf ′ , (A.690)

V(8)

H±f̃ ′1
= −2[ωR

H+W̃+Z̃
β
W̃j

f̃ ′1
CdH+ff ′α

u
Z̃if̃1

+ (−1)θjωL
H+W̃+Z̃

α
W̃j

f̃ ′1
CuH+ff ′β

u
Z̃if̃1

]mfmf ′ |mW̃j
||mZ̃i

|. (A.691)

Thomas Cridge 287



Appendix A. SoftSusy Decay Formulae A.4. MSSM Three Body Decay Formulae

The integrals required are exactly as in the Gf̃ ′1 but with the expected change mW → mH± . ΓH±f̃ ′1
is then given exactly as ΓGf̃ ′1 .

ΓH±f̃ ′2
The coupling combinations now are, if it’s a neutralino decaying:

V(1)

H±f̃ ′2
= −1

2
[(−1)θiωR

H+W̃+Z̃
αu
Z̃if̃2
CdH+ff ′β

W̃j

f̃ ′2
+ ωL

H+W̃+Z̃
βu
Z̃if̃2
CuH+ff ′α

W̃j

f̃ ′2
], (A.692)

V(2)

H±f̃ ′2
= (ωR

H+W̃+Z̃
βu
Z̃if̃2
CuH+ff ′β

W̃j

f̃ ′2
− ωL

H+W̃+Z̃
αu
Z̃if̃2
CdH+ff ′α

W̃j

f̃ ′2
)mf |mZ̃i

|(−1)θi , (A.693)

V(3)

H±f̃ ′2
= −[(−1)θiωL

H+W̃+Z̃
βu
Z̃if̃2
CdH+ff ′β

W̃j

f̃ ′2
+ ωR

H+W̃+Z̃
αu
Z̃if̃2
CuH+ff ′α

W̃j

f̃ ′2
]mf ′ |mW̃j

|, (A.694)

V(4)

H±f̃ ′2
= −[(−1)θiωR

H+W̃+Z̃
βu
Z̃if̃2
CdH+ff ′β

W̃j

f̃ ′2
+ ωL

H+W̃+Z̃
αu
Z̃if̃2
CuH+ff ′α

W̃j

f̃ ′2
]|mZ̃i

|mf ′ , (A.695)

V(5)

H±f̃ ′2
= (ωL

H+W̃+Z̃
βu
Z̃if̃2
CuH+ff ′β

W̃j

f̃ ′2
− ωR

H+W̃+Z̃
αu
Z̃if̃2
CdH+ff ′α

W̃j

f̃ ′2
)mf |mW̃j

|(−1)θj , (A.696)

V(6)

H±f̃ ′2
= [ωL

H+W̃+Z̃
αu
Z̃if̃2
CdH+ff ′β

W̃j

f̃ ′2
− (−1)θiωR

H+W̃+Z̃
βu
Z̃if̃2
CuH+ff ′α

W̃j

f̃ ′2
]|mZ̃i

||mW̃j
|, (A.697)

V(7)

H±f̃ ′2
= [−(−1)θiωR

H+W̃+Z̃
αu
Z̃if̃2
CuH+ff ′β

W̃j

f̃ ′
+ ωL

H+W̃+Z̃
βu
Z̃if̃2
CdH+ff ′α

W̃j

f̃ ′2
]mf ′mf , (A.698)

V(8)

H±f̃ ′2
= 2(−1)θi [−ωL

H+W̃+Z̃
αu
Z̃if̃2
CuH+ff ′β

W̃j

f̃ ′2
+ ωR

H+W̃+Z̃
βu
Z̃if̃2
CdH+ff ′α

W̃j

f̃ ′2
]|mZ̃i

||mW̃j
|mf ′mf . (A.699)

Whilst if it’s a chargino decaying:

V(1)

H±f̃ ′2
=

1

2
[(−1)θjωL

H+W̃+Z̃
β
W̃j

f̃ ′2
CuH+ff ′α

u
Z̃if̃2

+ ωR
H+W̃+Z̃

α
W̃j

f̃ ′2
CdH+ff ′β

u
Z̃if̃2

], (A.700)

V(2)

H±f̃ ′2
= −[(−1)θjωL

H+W̃+Z̃
α
W̃j

f̃ ′2
CdH+ff ′α

u
Z̃if̃2

+ ωR
H+W̃+Z̃

β
W̃j

f̃ ′2
CuH+ff ′β

u
Z̃if̃2

]|mZ̃i
|mf ′ , (A.701)

V(3)

H±f̃ ′2
= (ωR

H+W̃+Z̃
α
W̃j

f̃ ′2
CuH+ff ′α

u
Z̃if̃2

+ (−1)θjωL
H+W̃+Z̃

β
W̃j

f̃ ′2
CdH+ff ′β

u
Z̃if̃2

)mf |mW̃j
|, (A.702)

V(4)

H±f̃ ′2
= [(−1)θjωL

H+W̃+Z̃
α
W̃j

f̃ ′2
CuH+ff ′α

u
Z̃if̃2

+ ωR
H+W̃+Z̃

β
W̃j

f̃ ′2
CdH+ff ′β

u
Z̃if̃2

]|mZ̃i
|mf , (A.703)

V(5)

H±f̃ ′2
= −[ωR

H+W̃+Z̃
α
W̃j

f̃ ′2
CdH+ff ′α

u
Z̃if̃2

+ (−1)θjωL
H+W̃+Z̃

β
W̃j

f̃ ′2
CuH+ff ′β

u
Z̃if̃2

]mf ′ |mW̃j
|, (A.704)

V(6)

H±f̃ ′2
= (ωR

H+W̃+Z̃
β
W̃j

f̃ ′2
CuH+ff ′α

u
Z̃if̃2

+ (−1)θjωL
H+W̃+Z̃

α
W̃j

f̃ ′2
CdH+ff ′β

u
Z̃if̃2

)|mW̃j
||mZ̃i

|, (A.705)

V(7)

H±f̃ ′2
= −[(−1)θjωL

H+W̃+Z̃
β
W̃j

f̃ ′2
CdH+ff ′α

u
Z̃if̃2

+ ωR
H+W̃+Z̃

α
W̃j

f̃ ′2
CuH+ff ′β

u
Z̃if̃2

]mfmf ′ , (A.706)

V(8)

H±f̃ ′2
= −2[ωR

H+W̃+Z̃
β
W̃j

f̃ ′2
CdH+ff ′α

u
Z̃if̃2

+ (−1)θjωL
H+W̃+Z̃

α
W̃j

f̃ ′2
CuH+ff ′β

u
Z̃if̃2

]mfmf ′ |mW̃j
||mZ̃i

|. (A.707)

The required integrals are as for Gf̃ ′2 but with with the mass change mW → mH± . Similarly, ΓH±f̃ ′2
is given analogously.

ΓGf̃1

The coupling combinations here again depend upon if it’s a neutralino decaying or chargino decaying,

if it’s a neutralino decaying:

V(1)

Gf̃1
= −1

2
[ωR
GW̃Z̃

βd
f̃1Z̃i
CdGff ′α

W̃j

f̃1
+ (−1)θiωL

GW̃Z̃
αd
f̃1Z̃i
CuGff ′β

W̃j

f̃1
], (A.708)

V(2)

Gf̃1
= −(ωR

GW̃Z̃
αd
f̃1Z̃i
CuGff ′α

W̃j

f̃1
+ (−1)θiωL

GW̃Z̃
βd
f̃1Z̃i
CdGff ′β

W̃j

f̃1
)|mZ̃i

|mf ′ , (A.709)

V(3)

Gf̃1
= [(−1)θiωL

GW̃Z̃
αd
f̃1Z̃i
CdGff ′α

W̃j

f̃1
+ ωR

GW̃Z̃
βd
f̃1Z̃i
CuGff ′β

W̃j

f̃1
]mf |mW̃j

|, (A.710)

V(4)

Gf̃1
= (ωR

GW̃Z̃
αd
f̃1Z̃i
CdGff ′α

W̃j

f̃1
− (−1)θiωL

GW̃Z̃
βd
f̃1Z̃i
CuGff ′β

W̃j

f̃1
)|mZ̃i

|mf , (A.711)
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V(5)

Gf̃1
= −[(−1)θiωL

GW̃Z̃
αd
f̃1Z̃i
CuGff ′α

W̃j

f̃1
+ ωR

GW̃Z̃
βd
f̃1Z̃i
CdGff ′β

W̃j

f̃1
]mf ′ |mW̃j

|, (A.712)

V(6)

Gf̃1
= −[(−1)θiωL

GW̃Z̃
βd
f̃1Z̃i
CdGff ′α

W̃j

f̃1
− ωR

GW̃Z̃
αd
f̃1Z̃i
CuGff ′β

W̃j

f̃1
]|mZ̃i

||mW̃j
|, (A.713)

V(7)

Gf̃1
= −(ωR

GW̃Z̃
βd
f̃1Z̃i
CuGff ′α

W̃j

f̃1
− (−1)θiωL

GW̃Z̃
αd
f̃1Z̃i
CdGff ′β

W̃j

f̃1
)mf ′mf , (A.714)

V(8)

Gf̃1
= −2[(−1)θiωL

GW̃Z̃
βd
f̃1Z̃i
CuGff ′α

W̃j

f̃1
+ ωR

GW̃Z̃
αd
f̃1Z̃i
CdGff ′β

W̃j

f̃1
]|mZ̃i

||mW̃j
|mf ′mf . (A.715)

On the other hand, if it’s instead a chargino decaying to neutralino:

V(1)

Gf̃1
=

1

2
[(−1)θjωL

GW̃Z̃
β
W̃j

f̃1
CuGff ′αdf̃1Z̃i

+ ωR
GW̃Z̃

α
W̃j

f̃1
CdGff ′βdf̃1Z̃i

], (A.716)

V(2)

Gf̃1
= [(−1)θjωL

GW̃Z̃
α
W̃j

f̃1
CdGff ′αdf̃1Z̃i

+ ωR
GW̃Z̃

β
W̃j

f̃1
CuGff ′βdf̃1Z̃i

]|mZ̃i
|mf , (A.717)

V(3)

Gf̃1
= −(ωR

GW̃Z̃
α
W̃j

f̃1
CuGff ′αdf̃1Z̃i

+ (−1)θjωL
GW̃Z̃

β
W̃j

f̃1
CdGff ′βdf̃1Z̃i

)mf ′ |mW̃j
|, (A.718)

V(4)

Gf̃1
= −[(−1)θjωL

GW̃Z̃
α
W̃j

f̃1
CuGff ′αdf̃1Z̃i

+ ωR
GW̃Z̃

β
W̃j

f̃1
CdGff ′βdf̃1Z̃i

]|mZ̃i
|mf ′ , (A.719)

V(5)

Gf̃1
= (ωR

GW̃Z̃
α
W̃j

f̃1
CdGff ′ + (−1)θjωL

GW̃Z̃
β
W̃j

f̃1
CuGff ′βdf̃1Z̃i

)mf |mW̃j
|, (A.720)

V(6)

Gf̃1
= (ωR

GW̃Z̃
β
W̃j

f̃1
CuGff ′αdf̃1Z̃i

+ (−1)θjωL
GW̃Z̃

α
W̃j

f̃1
CdGff ′βdf̃1Z̃i

)|mW̃j
||mZ̃i

|, (A.721)

V(7)

Gf̃1
= −[(−1)θjωL

GW̃Z̃
β
W̃j

f̃1
CdGff ′αdf̃1Z̃i

+ ωR
GW̃Z̃

α
W̃j

f̃1
CuGff ′βdf̃1Z̃i

]mfmf ′ , (A.722)

V(8)

Gf̃1
= −2[ωR

GW̃Z̃
β
W̃j

f̃1
CdGff ′αdf̃1Z̃i

+ (−1)θjωL
GW̃Z̃

α
W̃j

f̃1
CuGff ′βdf̃1Z̃i

]mfmf ′ |mW̃j
||mZ̃i

|. (A.723)

The integrals are exactly as for Gf̃ ′1 except you must swap mf ′ ↔ mf and mf̃ ′1
↔ mf̃1

. As for Gf̃ ′1,

for the case of a chargino decaying to a neutralino you must relabel integrals such that integrals 2 and

4 are swapped as are integrals 3 and 5. The ΓGf̃1
is then given analogously to ΓGf̃ ′1 as the sum of the

products of the coupling combinations with corresponding integrals.

ΓGf̃2

Here the coupling combinations are, if a neutralino is decaying:

V(1)

Gf̃2
= −1

2
[ωR
GW̃Z̃

βd
f̃2Z̃i
CdGff ′α

W̃j

f̃2
+ (−1)θiωL

GW̃Z̃
αd
f̃2Z̃i
CuGff ′β

W̃j

f̃2
], (A.724)

V(2)

Gf̃2
= [ωR

GW̃Z̃
αd
f̃2Z̃i
CuGff ′α

W̃j

f̃2
+ (−1)θiωL

GW̃Z̃
βd
f̃2Z̃i
CdGff ′β

W̃j

f̃2
]|mZ̃i

|mf ′ , (A.725)

V(3)

Gf̃2
= −((−1)θiωL

GW̃Z̃
αd
f̃2Z̃i
CdGff ′α

W̃j

f̃2
+ ωR

GW̃Z̃
βd
f̃2Z̃i
CuGff ′β

W̃j

f̃2
)mf |mW̃j

|, (A.726)

V(4)

Gf̃2
= −[ωR

GW̃Z̃
αd
f̃2Z̃i
CdGff ′α

W̃j

f̃2
+ (−1)θiωL

GW̃Z̃
βd
f̃2Z̃i
CuGff ′β

W̃j

f̃2
]|mZ̃i

|mf , (A.727)

V(5)

Gf̃2
= [(−1)θiωL

GW̃Z̃
αd
f̃2Z̃i
CuGff ′α

W̃j

f̃2
+ ωR

GW̃Z̃
βd
f̃2Z̃i
CdGff ′β

W̃j

f̃2
]mf ′ |mW̃j

|, (A.728)

V(6)

Gf̃2
= −((−1)θiωL

GW̃Z̃
βd
f̃2Z̃i
CdGff ′α

W̃j

f̃2
+ ωR

GW̃Z̃
αd
f̃2Z̃i
CuGff ′β

W̃j

f̃2
)|mZ̃i

||mW̃j
|(−1)θj , (A.729)

V(7)

Gf̃2
= [ωR

GW̃Z̃
βd
f̃2Z̃i
CuGff ′α

W̃j

f̃2
+ (−1)θiωL

GW̃Z̃
αd
f̃2Z̃i
CdGff ′β

W̃j

f̃2
]mf ′mf , (A.730)

V(8)

Gf̃2
= 2[(−1)θiωL

GW̃Z̃
βd
f̃2Z̃i
CuGff ′α

W̃j

f̃2
+ ωR

GW̃Z̃
αd
f̃2Z̃i
CdGff ′β

W̃j

f̃2
]|mZ̃i

|mf ′mf |mW̃j
|(−1)θj . (A.731)

If it’s a chargino decaying:

V(1)

Gf̃2
= −1

2
(−1)θj [ωL

GW̃Z̃
β
W̃j

f̃2
CuGff ′αdf̃2Z̃i

− ωR
GW̃Z̃

α
W̃j

f̃2
CdGff ′βdf̃2Z̃i

], (A.732)

V(2)

Gf̃2
= −[ωL

GW̃Z̃
α
W̃j

f̃2
CdGff ′αdf̃2Z̃i

− (−1)θjωR
GW̃Z̃

β
W̃j

f̃2
CuGff ′βdf̃2Z̃i

]|mZ̃i
|mf , (A.733)
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V(3)

Gf̃2
= [(−1)θjωR

GW̃Z̃
α
W̃j

f̃2
CuGff ′αdf̃2Z̃i

− ωL
GW̃Z̃

β
W̃j

f̃2
CdGff ′βdf̃2Z̃i

]mf ′ |mW̃j
|, (A.734)

V(4)

Gf̃2
= (ωL

GW̃Z̃
α
W̃j

f̃2
CuGff ′αdf̃2Z̃i

+ (−1)θjωR
GW̃Z̃

β
W̃j

f̃2
CdGff ′βdf̃2Z̃i

)|mZ̃i
|mf ′ , (A.735)

V(5)

Gf̃2
= −[(−1)θjωR

GW̃Z̃
α
W̃j

f̃2
CdGff ′αdf̃2Z̃i

+ ωL
GW̃Z̃

β
W̃j

f̃2
CuGff ′βdf̃2Z̃i

]mf |mW̃j
|, (A.736)

V(6)

Gf̃2
= [ωR

GW̃Z̃
β
W̃j

f̃2
CuGff ′αdf̃2Z̃i

+ ωL
GW̃Z̃

α
W̃j

f̃2
CdGff ′βdf̃2Z̃i

]|mW̃j
||mZ̃i

|, (A.737)

V(7)

Gf̃2
= −(−1)θj [ωL

GW̃Z̃
β
W̃j

f̃2
CdGff ′αdf̃2Z̃i

+ ωR
GW̃Z̃

α
W̃j

f̃2
CuGff ′βdf̃2Z̃i

]mfmf ′ , (A.738)

V(8)

Gf̃2
= 2[(−1)θjωR

GW̃Z̃
β
W̃j

f̃2
CdGff ′αdf̃2Z̃i

+ ωL
GW̃Z̃

α
W̃j

f̃2
CuGff ′βdf̃2Z̃i

]mfmf ′ |mW̃j
||mZ̃i

|. (A.739)

The integrals are exactly as for Gf̃ ′2 except you must swap mf ′ ↔ mf and mf̃ ′2
↔ mf̃2

. As for Gf̃ ′2,

for the case of a chargino decaying to a neutralino you must relabel integrals such that integrals 2 and

4 are swapped as are integrals 3 and 5. The ΓGf̃2
is then given analogously to ΓGf̃ ′2 as the sum of the

products of the coupling combinations with corresponding integrals.

ΓH±f̃1

Again couplings depend upon which direction the decay occurs, if it is a neutralino decaying the

couplings are:

V(1)

H±f̃1
=

1

2
[ωR
H+W̃+Z̃

βd
Z̃if̃1
CdH+ff ′α

W̃j

f̃1
+ ωL

H+W̃+Z̃
αd
Z̃if̃1
CuH+ff ′β

W̃j

f̃1
], (A.740)

V(2)

H±f̃1
= −[ωR

H+W̃+Z̃
αd
Z̃if̃1
CuH+ff ′α

W̃j

f̃1
+ ωL

H+W̃+Z̃
βd
Z̃if̃1
CdH+ff ′β

W̃j

f̃1
]|mZ̃i

|mf ′ , (A.741)

V(3)

H±f̃1
= (ωL

H+W̃+Z̃
αd
Z̃if̃1
CdH+ff ′α

W̃j

f̃1
+ ωR

H+W̃+Z̃
βd
Z̃if̃1
CuH+ff ′β

W̃j

f̃1
)mf |mW̃j

|(−1)θi , (A.742)

V(4)

H±f̃1
= (ωR

H+W̃+Z̃
αd
Z̃if̃1
CdH+ff ′α

W̃j

f̃1
+ ωL

H+W̃+Z̃
βd
Z̃if̃1
CuH+ff ′β

W̃j

f̃1
)|mZ̃i

|mf , (A.743)

V(5)

H±f̃1
= −[(−1)θiωL

H+W̃+Z̃
αd
Z̃if̃1
CuH+ff ′α

W̃j

f̃1
+ ωR

H+W̃+Z̃
βd
Z̃if̃1
CdH+ff ′β

W̃j

f̃1
]mf ′ |mW̃j

|, (A.744)

V(6)

H±f̃1
= [(−1)θiωL

H+W̃+Z̃
βd
Z̃if̃1
CdH+ff ′α

W̃j

f̃1
− ωR

H+W̃+Z̃
αd
Z̃if̃1
CuH+ff ′β

W̃j

f̃1
]|mZ̃i

||mW̃j
|, (A.745)

V(7)

H±f̃1
= −[ωR

H+W̃+Z̃
βd
Z̃if̃1
CuH+ff ′α

W̃j

f̃1
− (−1)θiωL

H+W̃+Z̃
αd
Z̃if̃1
CdH+ff ′β

W̃j

f̃1
]mf ′mf , (A.746)

V(8)

H±f̃1
= −2[(−1)θiωL

H+W̃+Z̃
βd
Z̃if̃1
CuH+ff ′α

W̃j

f̃1
− ωR

H+W̃+Z̃
αd
Z̃if̃1
CdH+ff ′β

W̃j

f̃1
]|mZ̃i

||mW̃j
|mf ′mf . (A.747)

Whilst if it’s a chargino decaying:

V(1)

H±f̃1
=

1

2
[(−1)θjωL

H+W̃+Z̃
β
W̃j

f̃1
CuH+ff ′α

d
Z̃if̃1

+ ωR
H+W̃+Z̃

α
W̃j

f̃1
CdH+ff ′β

d
Z̃if̃1

], (A.748)

V(2)

H±f̃1
= [(−1)θjωL

H+W̃+Z̃
α
W̃j

f̃1
CdH+ff ′α

d
Z̃if̃1

+ ωR
H+W̃+Z̃

β
W̃j

f̃1
CuH+ff ′β

d
Z̃if̃1

]|mZ̃i
|mf , (A.749)

V(3)

H±f̃1
= −[ωR

H+W̃+Z̃
α
W̃j

f̃1
CuH+ff ′α

d
Z̃if̃1

+ (−1)θjωL
H+W̃+Z̃

β
W̃j

f̃1
CdH+ff ′β

d
Z̃if̃1

]mf ′ |mW̃j
|, (A.750)

V(4)

H±f̃1
= −[(−1)θjωL

H+W̃+Z̃
α
W̃j

f̃1
CuH+ff ′α

d
Z̃if̃1

+ ωR
H+W̃+Z̃

β
W̃j

f̃1
CdH+ff ′β

d
Z̃if̃1

]|mZ̃i
|mf ′ , (A.751)

V(5)

H±f̃1
= (ωR

H+W̃+Z̃
α
W̃j

f̃1
CdH+ff ′α

d
Z̃if̃1

+ (−1)θjωL
H+W̃+Z̃

β
W̃j

f̃1
CuH+ff ′β

d
Z̃if̃1

)mf |mW̃j
|, (A.752)

V(6)

H±f̃1
= (ωR

H+W̃+Z̃
β
W̃j

f̃1
CuH+ff ′α

d
Z̃if̃1

+ (−1)θjωL
H+W̃+Z̃

α
W̃j

f̃1
CdH+ff ′β

d
Z̃if̃1

)|mW̃j
||mZ̃i

|, (A.753)

V(7)

H±f̃1
= −[(−1)θjωL

H+W̃+Z̃
β
W̃j

f̃1
CdH+ff ′α

d
Z̃if̃1

+ ωR
H+W̃+Z̃

α
W̃j

f̃1
CuH+ff ′β

d
Z̃if̃1

]mfmf ′ , (A.754)

V(8)

H±f̃1
= −2[ωR

H+W̃+Z̃
β
W̃j

f̃1
CdH+ff ′α

d
Z̃if̃1

+ (−1)θjωL
H+W̃+Z̃

α
W̃j

f̃1
CuH+ff ′β

d
Z̃if̃1

]mfmf ′ |mW̃j
||mZ̃i

|. (A.755)
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The integrals and overall contribution are given exactly as for H±f̃ ′1 but mf̃ ′1
→ mf̃1

. Remember the

integrals’ labelling depends on whether it’s a neutralino decaying (to a chargino) or a chargino decaying

(to a neutralino).

ΓH±f̃2

The coupling combinations again depend upon which way around the decay is occurring, for a neu-

tralino decaying the coupling combinations are:

V(1)

H±f̃2
= −1

2
[ωR
H+W̃+Z̃

βd
f̃2Z̃i
CdH+ff ′α

W̃j

f̃2
+ ωL

H+W̃+Z̃
αd
f̃2Z̃i
CuH+ff ′β

W̃j

f̃2
], (A.756)

V(2)

H±f̃2
= (ωR

H+W̃+Z̃
αd
f̃2Z̃i
CuH+ff ′α

W̃j

f̃2
+ ωL

H+W̃+Z̃
βd
f̃2Z̃i
CdH+ff ′β

W̃j

f̃2
]|mZ̃i

|mf ′ , (A.757)

V(3)

H±f̃2
= −[ωL

H+W̃+Z̃
Lαd

f̃2Z̃i
CdH+ff ′α

W̃j

f̃2
+ ωR

H+W̃+Z̃
βd
f̃2Z̃i
CuH+ff ′β

W̃j

f̃2
]mf |mW̃j

|(−1)θi , (A.758)

V(4)

H±f̃2
= −[ωR

H+W̃+Z̃
αd
f̃2Z̃i
CdH+ff ′α

W̃j

f̃2
+ ωL

H+W̃+Z̃
βd
f̃2Z̃i
CuH+ff ′β

W̃j

f̃2
]|mZ̃i

|mf , (A.759)

V(5)

H±f̃2
= [(−1)θiωL

H+W̃+Z̃
αd
f̃2Z̃i
CuH+ff ′α

W̃j

f̃2
+ ωR

H+W̃+Z̃
βd
f̃2Z̃i
CdH+ff ′β

W̃j

f̃2
]mf ′ |mW̃j

|, (A.760)

V(6)

H±f̃2
= −[ωL

H+W̃+Z̃
βd
f̃2Z̃i
CdH+ff ′α

W̃j

f̃2
+ ωR

H+W̃+Z̃
αd
f̃2Z̃i
CuH+ff ′β

W̃j

f̃2
]|mZ̃i

||mW̃j
|(−1)θi(−1)θj , (A.761)

V(7)

H±f̃2
= [ωR

H+W̃+Z̃
βd
f̃2Z̃i
CuH+ff ′α

W̃j

f̃2
+ ωL

H+W̃+Z̃
αd
f̃2Z̃i
CdH+ff ′β

W̃j

f̃2
]mf ′mf , (A.762)

V(8)

H±f̃2
= 2[(−1)θiωL

H+W̃+Z̃
βd
f̃2Z̃i
CuH+ff ′α

W̃j

f̃2
+ ωR

H+W̃+Z̃
αd
f̃2Z̃i
CdH+ff ′β

W̃j

f̃2
]|mZ̃i

|mf ′mf |mW̃j
|(−1)θj .

(A.763)

If it’s a chargino decaying:

V(1)

H±f̃2
=

1

2
[ωL
H+W̃+Z̃

β
W̃j

f̃2
CuH+ff ′α

d
f̃2Z̃i

+ (−1)θjωR
H+W̃+Z̃

α
W̃j

f̃2
CdH+ff ′β

d
f̃2Z̃i

], (A.764)

V(2)

H±f̃2
= −[ωL

H+W̃+Z̃
α
W̃j

f̃2
CdH+ff ′α

d
f̃2Z̃i
− (−1)θjωR

H+W̃+Z̃
β
W̃j

f̃2
CuH+ff ′β

d
f̃2Z̃i

]|mZ̃i
|mf ], (A.765)

V(3)

H±f̃2
= [(−1)θjωR

H+W̃+Z̃
α
W̃j

f̃2
CuH+ff ′α

d
f̃2Z̃i
− ωL

H+W̃+Z̃
β
W̃j

f̃2
CdH+ff ′β

d
f̃2Z̃i

]mf ′ |mW̃j
|, (A.766)

V(4)

H±f̃2
= (ωL

H+W̃+Z̃
α
W̃j

f̃2
CuH+ff ′α

d
f̃2Z̃i
− (−1)θjωR

H+W̃+Z̃
β
W̃j

f̃2
CdH+ff ′β

d
f̃2Z̃i

)|mZ̃i
|mf ′ , (A.767)

V(5)

H±f̃2
= −[(−1)θjωR

H+W̃+Z̃
α
W̃j

f̃2
CdH+ff ′α

d
f̃2Z̃i

+ ωL
H+W̃+Z̃

β
W̃j

f̃2
CuH+ff ′β

d
f̃2Z̃i

]mf |mW̃j
|, (A.768)

V(6)

H±f̃2
= (ωR

H+W̃+Z̃
β
W̃j

f̃2
CuH+ff ′α

d
f̃2Z̃i

+ ωL
H+W̃+Z̃

α
W̃j

f̃2
CdH+ff ′β

d
f̃2Z̃i

)|mW̃j
||mZ̃i

|, (A.769)

V(7)

H±f̃2
= −(−1)θj [ωL

H+W̃+Z̃
β
W̃j

f̃2
CdH+ff ′α

d
f̃2Z̃i

+ ωR
H+W̃+Z̃

α
W̃j

f̃2
CuH+ff ′β

d
f̃2Z̃i

]mfmf ′ , (A.770)

V(8)

H±f̃2
= 2[(−1)θjωR

H+W̃+Z̃
β
W̃j

f̃2
CdH+ff ′α

d
f̃2Z̃i
− ωL

H+W̃+Z̃
α
W̃j

f̃2
CuH+ff ′β

d
f̃2Z̃i

]mfmf ′ |mW̃j
||mZ̃i

|. (A.771)

The integrals and overall contribution are given exactly as for H±f̃ ′2 but mf̃ ′2
→ mf̃2

. Remember the

integrals labelling depends on whether it’s a neutralino decaying (to a chargino) or a chargino decaying

(to a neutralino).

Γf̃ ′1f̃ ′2
Here the coupling combinations for the interference of the two positively charged sfermions depend

upon whether the decay is neutralino to chargino or chargino to neutralino. For neutralino to chargino:

V(1)

f̃ ′2f̃
′
2

= (βu
f̃1Z̃i

βu
f̃2Z̃i

+ αu
f̃1Z̃i

αu
f̃2Z̃i

)(−1)θi , (A.772)

V(2)

f̃ ′2f̃
′
2

= (αu
f̃1Z̃i

βu
f̃2Z̃i

+ βu
f̃1Z̃i

αu
f̃2Z̃i

)(−1)θi , (A.773)
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V(3)

f̃ ′2f̃
′
2

= (−αW̃j

f̃ ′1
α
W̃j

f̃ ′2
+ β

W̃j

f̃ ′1
β
W̃j

f̃ ′2
)(−1)θi , (A.774)

V(4)

f̃ ′2f̃
′
2

= (β
W̃j

f̃ ′1
α
W̃j

f̃ ′2
− αW̃j

f̃ ′1
β
W̃j

f̃ ′2
)(−1)θi(−1)θj , (A.775)

whilst for chargino to neutralino:

V(1)

f̃ ′2f̃
′
2

= −βW̃j

f̃ ′1
β
W̃j

f̃ ′2
+ α

W̃j

f̃ ′1
α
W̃j

f̃ ′2
(−1)θj , (A.776)

V(2)

f̃ ′2f̃
′
2

= (−1)θjα
W̃j

f̃ ′1
β
W̃j

f̃ ′2
− αW̃j

f̃ ′2
β
W̃j

f̃ ′2
, (A.777)

V(3)

f̃ ′2f̃
′
2

= (−αu
f̃1Z̃i

αu
f̃2Z̃i

+ (−1)θjβu
f̃1Z̃i

βu
f̃2Z̃i

), (A.778)

V(4)

f̃ ′2f̃
′
2

= (−αu
f̃1Z̃i

βu
f̃2Z̃i

+ (−1)θjαu
f̃2Z̃i

βu
f̃1Z̃i

). (A.779)

The integrals are as follows with

s = m2
Z̃i

+m2
f ′ − 2|mZ̃i

|E and λ =
√

(s− (mf +mW̃j
)2)(s− (mf −mW̃j

)2:

I1
f̃ ′1f̃

′
2

= 2|mZ̃i
|
∫ Eupper

mf′

2|mZ̃i
|
√
E2 −m2

f ′
λ

s(s−m2
f̃ ′1

)(s−mf̃ ′2
)2)

, (A.780)

I2
f̃ ′1f̃

′
2

= 2|mZ̃i
|
∫ Eupper

mf′

2|mZ̃i
|
√
E2 −m2

f ′

(s−m2
f −m2

W̃j
)λ

s(s−m2
f̃ ′1

)(s−mf̃ ′2
)2)

, (A.781)

I3
f̃ ′1f̃

′
2

= 2|mZ̃i
|
∫ Eupper

mf′

2|mZ̃i
|
√
E2 −m2

f ′

2|mZ̃i
|Eλ

s(s−m2
f̃ ′1

)(s−mf̃ ′2
)2)

, (A.782)

I4
f̃ ′1f̃

′
2

= 2|mZ̃i
|
∫ Eupper

mf′

2|mZ̃i
|
√
E2 −m2

f ′

(s−m2
f −m2

W̃j
)2|mZ̃i

|Eλ
s(s−m2

f̃ ′1
)(s−mf̃ ′2

)2)
. (A.783)

Now if it’s instead a chargino decaying, as described before, swap the chargino and neutralino masses

throughout, but also here you must relabel the integrals I2
f̃ ′1f̃

′
2

↔ I3
f̃ ′1f̃

′
2

. Also for a chargino decaying

one must interchange mf and mf ′ . For a neutralino decaying:

Γf̃ ′1f̃ ′2 =− 4V(2)

f̃ ′2f̃
′
2

V(4)

f̃ ′2f̃
′
2

|mZ̃i
||mW̃j

|mf ′mfI
1
f̃ ′1f̃

′
2

+ 2V(2)

f̃ ′2f̃
′
2

V(3)

f̃ ′2f̃
′
2

|mZ̃i
|mf ′I

2
f̃ ′1f̃

′
2

− 2V(1)

f̃ ′2f̃
′
2

V(4)

f̃ ′2f̃
′
2

mf |mW̃j
|I3
f̃ ′1f̃

′
2

+ V(1)

f̃ ′2f̃
′
2

V(3)

f̃ ′2f̃
′
2

I4
f̃ ′1f̃

′
2
.

(A.784)

Γf̃1f̃2

For this interference contribution the coupling combinations used are as follows:

V(1)

f̃1f̃2
= −[(−1)θcαd

Z̃if̃1
αd
Z̃if̃2

+ βd
Z̃if̃1

βd
Z̃if̃2

](−1)θj , (A.785)

V(2)

f̃1f̃2
= [(−1)θiβd

Z̃if̃1
αd
Z̃if̃2
− αd

Z̃if̃1
βd
Z̃if̃2

](−1)θj (−1)θc , (A.786)

V(3)

f̃1f̃2
= [βW̃

f̃1
βW̃
f̃2
− αW̃

f̃1
αW̃
f̃2

](−1)θi , (A.787)

V(4)

f̃1f̃2
= (αW̃

f̃1
βW̃
f̃2
− βW̃

f̃1
αW̃
f̃2

)(−1)θc . (A.788)

The integrals are as follows, now with:
s = m2

Z̃i
+m2

f − 2|mZ̃i
|E, (A.789)

λ =
√

(s− (mf ′ −mW̃j
)2)(s− (mf ′ +mW̃j

)2), (A.790)
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I1
f̃1f̃2

= 2|mZ̃i
|
∫ Eupper2

mf

dE
2|mZ̃i

|
s

λ
√
E2 −m2

f

1

(s−m2
f̃1

)(s−m2
f̃2

)
, (A.791)

I2
f̃1f̃2

= 2|mZ̃i
|
∫ Eupper2

mf

dE
2|mZ̃i

|
s

λ
√
E2 −m2

f

s−m2
W̃j
−m2

f ′

(s−m2
f̃1

)(s−m2
f̃2

)
, (A.792)

I3
f̃1f̃2

= 2|mZ̃i
|
∫ Eupper2

mf

dE
2|mZ̃i

|
s

λ
√
E2 −m2

f

2|mZ̃i
|E

(s−m2
f̃1

)(s−m2
f̃2

)
, (A.793)

I4
f̃1f̃2

= 2|mZ̃i
|
∫ Eupper2

mf

dE
2|mZ̃i

|
s

λ
√
E2 −m2

f

2|mZ̃i
|E(s−m2

W̃j
−m2

f ′)

(s−m2
f̃1

)(s−m2
f̃2

)
, (A.794)

The expression for the overall contribution as a product of these couplings and integrals is:

Γf̃1f̃2
= −

[
(−1)θi(−1)θcV(1)

f̃1f̃2
V(3)

f̃1f̃2
I4
f̃1f̃2

+ 2(−1)θiV(1)

f̃1f̃2
V(4)

f̃1f̃2
mf |mW̃j

|I2
f̃1f̃2

+ 2(−1)θcV(2)

f̃1f̃2
V(3)

f̃1f̃2
|mZ̃i

|mf ′I
3
f̃1f̃2

+ 4V(2)

f̃1f̃2
V(4)

f̃1f̃2
|mZ̃i

||mW̃j
|mfmf ′I

1
f̃1f̃2

)
]
.

(A.795)

It should be noted the partial widths of the decays Z̃i → W̃jf
′f̄ and the “reverse” decay W̃j → Z̃if

′f̄

may show strong dependence on the quark masses taken for kinematic masses and for the running masses

(which is used to set Yukawa couplings), of course depending on the details of the exact spectrum

considered. These mass choice effects, along with the fact that sPHENO allows (small) mixing in the first

two generations of sfermions whereas it is neglected in SoftSusy, can cause larger differences between

SoftSusy and sPHENO of around 25%. If the same mass choices are made and sPHENO’s small mixing

angles inserted by hand into the SoftSusy code then these differences are reduced to around 10%.

A.4.3 Chargino 3-body Decays

W̃j → Z̃if
′f̄

It is detailed above in the formulae for Z̃i → W̃jf
′f̄ how to adapt the formula for the chargino

decaying into the neutralino rather than the neutralino decaying into the chargino.

W̃1 → Z̃1π
±π0

For the lightest neutralino-lightest chargino quasi-mass degenerate case, the lightest chargino partial

decay width into two pions and the lightest neutralino is [289]:

Γ(W̃+
1 → Z̃1π

+) =
G2
F

192π3m2
W̃1

∫ (MZ̃1
−MW̃1

)2

4m2
π

dq2
∣∣∣F̃ (q2)

∣∣∣2(1− 4m2
π

q2

)3/2

λ
(
mW̃1

, mZ̃1
,
√
q2
)

×
{[

(OL11)2 + (OR11)2
] [
q2(m2

W̃1
+m2

Z̃1
− 2q2) + (m2

W̃1
−m2

Z̃1
)2
]
−12OL11O

R
11q

2mZ̃1
mW̃1

}
,

where OL,R11 are defined in Eq. A.74 and

F̃ (q2) =
BWρ(q

2) + βBWρ′(q
2)

1 + β
, (A.796)

where β = −0.145 and BWV refers to the Breit-Wigner pole of meson V ∈ {ρ, ρ′}:

BWV (q2) =
m2
V

m2
V − q2 − i

√
q2ΓV (q2)

. (A.797)
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Here, mρ = 0.773 GeV and mρ′ = 1.370 GeV are used as well as

ΓV (q2) =
ΓVm

2
V

q2

(
q2 − 4m2

π

m2
V − 4m2

π

)3/2

, (A.798)

where Γρ = 0.145 GeV and Γρ′ = 0.510 GeV.

A.5 Decays to Gravitinos

In certain SUSY-breaking scenarios, particularly gauge-mediated SUSY breaking (GMSB), the grav-

itino can be very light and therefore may be the Lightest Supersymmetric Particle (LSP). Moreover,

the gravitino has longitudinal components from the Goldstino which couple much more strongly than

gravitational strength, this therefore provides interactions relevant to collider phenomenology, resulting

in gravitino-SUSY-SM couplings that affect collider signatures, when the gravitino is the LSP. Conse-

quently Next-to-Lightest Supersymmetric Particle (NLSP) decays to gravitino LSPs may be of interest

and are included within our decay calculator program SoftSusy. The following decay modes are relevant

when the initial SUSY particle is the NLSP:

1. g̃ → gG̃

2. q̃i → qG̃

3. l̃→ lG̃

4. Z̃i → γG̃

5. Z̃i → ZG̃

6. Z̃i → φG̃

Decays of Higgs bosons to the gravitino are not relevant as there are always other decays available to

the Higgs (whether h or A) which dominate its branching ratio, for example even a Higgs boson were the

NLSP then decays to γγ would be available and occur much more quickly than the Planck suppressed

decays to gravitinos. The formulae used were re-derived but nonetheless are as provided in [65]:

Γ(g̃ → gG̃) =
m5
g̃

48πm2
G̃
Mred
P

2 . (A.799)

Γ(q̃ → qG̃) =
(m2

q̃ −m2
q)

4

48πm3
q̃m

2
G̃
Mred
P

2 . (A.800)

Γ(Z̃i → γG̃) =
|mZ̃i

|5

48πm2
G̃
Mred
P

2 [N1i cos θW +N2i sin θW ]2. (A.801)

Γ(Z̃i → ZG̃) =
(m2

Z̃i
−m2

Z)4

96πm2
G̃
Mred
P

2|mZ̃i
|3
[
2(N1i sin θW −N2i cos θW )2 + (N4i sinβ −N3i cosβ)2

]
. (A.802)

Γ(Z̃i → φG̃) =
(m2

Z̃i
−m2

φ)4

96πm2
G̃
Mred
P

2|mZ̃i
|3
C2
h/H/A, (A.803)

where

Ch/H/A =


N4i cosα−N3i sinα, for h,

N4i sinα+N3i cosα, for H,

N4i cosβ +N3i sinβ, for A.

(A.804)

Note that Mred
P = MP√

8π
≈ 2.4× 1018 GeV.
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A.6 NMSSM Decays

Only 2-body decays have been included in the NMSSM, this does however include the important

loop decays of the neutral Higgs bosons to γγ, Zγ and gg, as well as QCD corrections to the neutral

Higgs decays to qq̄ and gg. We do however include the decays φ → WW ∗ → Wf ′f̄ and φ → ZZ∗ →
Zff̄ .5 Note that throughout S(A,B) is the now 3 × 3 CP even Higgs mixing matrix and P (A,B) is

the 2 × 3 CP odd Higgs mixing matrix (with Goldstone excluded). The additional NMSSM variables

include λ (distinct from the λ̃(A,B,C) used for kinematic part of decay widths given above), κ and

µeff = λ〈S〉√
2

. The conventions used for the NMSSM decay formulae were detailed earlier in section 3.3.2,

with differences with respect to the SoftSusy NMSSM manual [118] noted. The conventions are those of

NMSSMTools [126–128,159], against which the formulae were checked for consistency and which provided

a useful guide.

The NMSSM simply involves the addition of a gauge singlet chiral superfield to the MSSM, therefore

the NMSSM has an additional neutralino, additional CP even neutral Higgs and additional CP odd

neutral Higgs, therefore any decays not involving the extended neutralino or extended Higgs sectors are

as in the MSSM.

A.6.1 CP Even Higgs Decays

First the decay to a fermion and antifermion, with no QCD corrections (QCD corrected formulae

given later in A.7).

Γ(hi → ff̄) =
NcGFmhi√

24π
m2
q

(
1− 4

m2
q

m2
hi

) 3
2ANMSSM

hiff , (A.805)

ANMSSM
hiff =


S(i,1)
sin β , for ‘u’-type fermions,

S(i,2)
cos β , for ‘d’-type fermions.

(A.806)

For squarks of the same handedness of the first two generations (so no mixing and negligible quark

masses) the decay widths for the CP even Higgs i (i=1,2,3 are mass ordered CP even neutral Higgs

bosons) are
Γ(hi → q̃L/Rq̃L/R) =

Nc
16πmhi

λ̃
1
2 (mhi ,mq̃L/R ,mq̃L/R)C2, (A.807)

C =



g
(
mW ( 1

2 − tan2 θW
6 )[sinβS(i, 1)− cosβS(i, 2)]− m2

qS(i,1)

mW sin β

)
, for up-type LH squarks,

g
(
mW (− 1

2 − tan2 θW
6 )[sinβS(i, 1)− cosβS(i, 2)]− m2

qS(i,2)

mW cos β

)
, for down-type LH squarks,

g
(

2
3mW tan2 θW [sinβS(i, 1)− cosβS(i, 2)]− m2

qS(i,1)

mW sin β

)
, for up-type RH squarks,

g
(
−1
3 mW tan2 θW [sinβS(i, 1)− cosβS(i, 2)]− m2

qS(i,2)

mW cos β

)
, for down-type RH squarks.

(A.808)

For sleptons the same formulae apply but without the factor of 3 in the pre-factor from Nc and with

the coupling C now (“down type” here means the charged sleptons):

C =


g
(
mW ( 1

2 + tan2 θW
2 )[sinβS(i, 1)− cosβS(i, 2)]

)
, for sneutrinos (i.e. equivalent of up-type LH),

g
(
mW ( 1

2 − tan2 θW
6 )[sinβS(i, 1)− cosβS(i, 2)]− m2

qS(i,2)

mW cos β

)
, for down-type LH sleptons,

g
(
mW (tan2 θW [sinβS(i, 1)− cosβS(i, 2)]− m2

qS(i,1)

mW cos β

)
, for down-type RH sleptons.

(A.809)

5The decays φ→ WW ∗ → Wf ′f̄ and φ→ ZZ∗ → Zff̄ , whilst strictly being 3-body, are classified as having
NDA (Number of Daughters) of 2 according to SLHA conventions.
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For squarks of opposite handedness:

Γ(hi → q̃L/Rq̃R/L) =
Nc

16πmhi

λ̃
1
2 (mhi ,mq̃L ,mq̃R)D2, (A.810)

where

D =


gmq

2mW sin β [AqS(i, 1)− µeffS(i, 2)− λ
√

2mW cos β
gS(i,3) ] , for up-type squarks of different handedness,

gmq
2mW cos β [AqS(i, 2)− µeffS(i, 1)− λ

√
2mW sin β
gS(i,3) ] , for down-type squarks of different handedness.

(A.811)

For the decay to two sleptons with different handedness then we can use the same formulae as for two

squarks of opposite handedness above but dividing by 3 to account for the fact sleptons aren’t coloured

(i.e. no factor Nc). Note that as only LH sneutrinos exist, only decays to charged sleptons of opposite

handedness are possible, i.e. only “down-type sleptons” of different handedness. For third generation

squarks and sleptons the formulae are more complicated (j = 1, 2 indicates t̃1 and t̃2):

Γ(hi → t̃j t̃j) =
3

16πmhi

λ̃
1
2 (mhi ,mt̃j

,mt̃j
)C2
tjtj , (A.812)

where
Ct1t1 = cos2 θt

√
2
[
h2
u〈h1〉S(i, 1) + (

g′
2

12
− g2

4
){〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
+ sin2 θt

√
2
[
h2
u〈h1〉S(i, 1)

− g′
2

3
{〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
+ 2 cos θt sin θt

hu√
2

(
AtS(i, 1)− µeffS(i, 2)− λ〈h2〉S(i, 3)

)
.

(A.813)

This was for j = 1 i.e. for t̃1t̃1. For j = 2, make the replacements cos θt → − sin θt and sin θt → cos θt.

For different stops:

Γ(hi → t̃1t̃2) =
3

16πmhi

λ̃
1
2 (mhi ,mt̃j

,mt̃j
)C2
t1t2 , (A.814)

where Ct1t2 = cos θt sin θt

[√
2
(
h2
u〈h1〉S(i, 1)− g′

2

3
{〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

)
−
√

2
(
h2
u〈h1〉S(i, 1) + (

g′
2

12
− g2

4
){〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

)]
+ (cos2 θt − sin2 θt)

hu√
2

(
AtS(i, 1)− µeffS(i, 2)− λ〈h2〉S(i, 3)

)
.

(A.815)

Note that 〈h1〉 =
√

2mW sin β
g and 〈h2〉 =

√
2mW cos β

g , whilst hu =
mrunt

〈h1〉 .

For decays to sbottoms the decay formulae are the same (with the expected mass changes) except:

Cb1b1 = cos2 θb
√

2
[
h2
d〈h2〉S(i, 2) + (

g′
2

12
+
g2

4
){〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
+ sin2 θb

√
2
[
h2
d〈h2〉S(i, 2) +

g′
2

6
{〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
+ 2 cos θb sin θb

hd√
2

(
AbS(i, 2)− µeffS(i, 1)− λ〈h1〉S(i, 3)

)
,

(A.816)

Cb1b2 = cos θb sin θb

[√
2
(
h2
d〈h2〉S(i, 2) +

g′
2

6
{〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

)
−
√

2
(
h2
d〈h2〉S(i, 2) + (

g′
2

12
+
g2

4
){〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

)]
+ (cos2 θb − sin2 θb)

hd√
2

(
AbS(i, 2)− µeffS(i, 1)− λ〈h1〉S(i, 3)

)
.

(A.817)
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Note that hd =
mrunb

〈h2〉 . Again to get the b̃2b̃2 coupling from the b̃1b̃1, make the changes cos θb → − sin θb

and sin θb → cos θb. For staus:

Γ(hi → τ̃j τ̃k) =
1

16πmhi

λ̃
1
2 (mhi ,mτ̃j ,mτ̃k)C2

τjτk
, (A.818)

where here we have

Cτ1τ1 = sin2 θτ
√

2
[
h2
τ 〈h2〉S(i, 2) + (−g

′2

4
+
g2

4
){〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
+ cos2 θτ

√
2
[
h2
τ 〈h2〉S(i, 2) +

g′
2

2
{〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
+ 2 cos θτ sin θτ

hτ√
2

(
AτS(i, 2)− µeffS(i, 1)− λ〈h1〉S(i, 3)

)
,

(A.819)

Cτ2τ2 = cos2 θτ
√

2
[
h2
τ 〈h2〉S(i, 2) + (−g

′2

4
+
g2

4
){〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
+ sin2 θτ

√
2
[
h2
τ 〈h2〉S(i, 2) +

g′
2

2
{〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

]
− 2 cos θτ sin θτ

hτ√
2

(
AτS(i, 2)− µeffS(i, 1)− λ〈h1〉S(i, 3)

)
,

(A.820)

and

Cτ1τ2 =− cos θτ sin θτ

[√
2
(
h2
τ 〈h2〉S(i, 2) +

g′
2

2
{〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

)
−
√

2
(
h2
τ 〈h2〉S(i, 2) + (−g

′2

4
+
g2

4
){〈h1〉S(i, 1)− 〈h2〉S(i, 2)}

)]
+ (sin2 θτ − cos2 θτ )

hτ√
2

(
AτS(i, 2)− µeffS(i, 1)− λ〈h1〉S(i, 3)

)
.

(A.821)

Now the decays to charginos, first of all decays to the same chargino:

Γ(hi → W̃jW̃j) =
mhi

8π
λ̃

3
2 (mhi ,mW̃j

,mW̃j
)F2

jj , (A.822)

where

Fjj =

 λ√
2
S(i, 3) cos θL cos θR + g√

2
[S(i, 1) sin θL cos θR + S(i, 2) cos θL sin θR], for j = 1,

λ√
2
S(i, 3) sin θL sin θR − g√

2
[S(i, 1) cos θL sin θR + S(i, 2) sin θL cos θR], for j = 2.

(A.823)

For decays to different charginos:

Γ(hi → W̃1W̃2) =
mhi

16π
λ̃

1
2 (mhi ,mW̃1

,mW̃2
)

[
(c21 + c22)

1

m2
hi

(m2
hi −m2

W̃1
−m2

W̃2
)− 4c1c2

mW̃1
mW̃2

m2
hi

]
,

(A.824)

where

c1 =
λ√
2
S(i, 3) cos θL sin θR +

g√
2

(S(i, 1) sin θL sin θR − S(i, 2) cos θL cos θR) , (A.825)

c2 =
λ√
2
S(i, 3) sin θL cos θR −

g√
2

(S(i, 1) cos θL cos θR − S(i, 2) sin θL sin θR) . (A.826)
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Now the decays to neutralinos:

Γ(hi → Z̃jZ̃k) =
αjkmhi

16π
(1− (

mZ̃j
+mZ̃k

mhi

)2)λ̃
1
2 (mhi ,mZ̃j

,mZ̃k
)G2
ijk, (A.827)

where

Gijk =
λ√
2

[
S(i, 1)(N3jN5k +N5jN3k) + S(i, 2)(N4jN5k +N5jN4k) + S(i, 3)(N3jN4k +N4jN3k)

]
−
√

2κS(i, 3)N5jN5k +
g′

2

[
− S(i, 1)(N1jN4k +N1kN4j) + S(i, 2)(N1jN3k +N3jN1k)

]
+
g

2

[
S(i, 1)(N2jN4k +N4jN2k)− S(i, 2)(N2jN3k +N3jN2k)

]
.

(A.828)

Here Nab is the neutralino mixing matrix which is now 5× 5 as the singlino mixes with the four original

neutralinos. The neutralinos here are in order of increasing mass. The conventions for the NMSSM were

detailed previously in section 3.3.2. Note that the αjk is 2 if j 6= k and 1 if j = k in order to account for

indistinguishability of particles.

The neutral Higgs decays to CP odd neutral Higgs bosons are given by:

Γ(hi → AjAk) =
1

16πmhi

λ̃
1
2 (mhi ,mAj ,mAk)Q2

jk, (A.829)

where

Qjk =
g2 + g′

2

4
√

2

[
〈h1〉{C(i, j, k, 1, 1, 1)− C(i, j, k, 1, 2, 2)}+ 〈h2〉{C(i, j, k, 2, 2, 2)− C(i, j, k, 2, 1, 1)}

]
+
λAλ√

2
{C(i, j, k, 1, 2, 3) + C(i, j, k, 2, 1, 3) + C(i, j, k, 3, 1, 2)} − κAκ√

2
C(i, j, k, 3, 3, 3)

+
λ2

√
2

[
〈h1〉{C(i, j, k, 1, 2, 2) + C(i, j, k, 1, 3, 3)}+ 〈h2〉{C(i, j, k, 2, 1, 1) + C(i, j, k, 2, 3, 3)}

+
µeff
λ
{C(i, j, k, 3, 1, 1) + C(i, j, k, 3, 2, 2)}

]
+
κ2
√

2µeff
λ

C(i, j, k, 3, 3, 3)

+
λκ√

2

[
〈h1〉{C(i, j, k, 2, 3, 3)− 2C(i, j, k, 3, 2, 3)}+ 〈h2〉{C(i, j, k, 1, 3, 3)− 2C(i, j, k, 3, 1, 3)}

+ 2
µeff
λ
{C(i, j, k, 3, 1, 2)− C(i, j, k, 1, 2, 3)− C(i, j, k, 2, 1, 3)}

]
.

(A.830)

The C(i, j, k, x, y, z) is the same coupling which appears later in (A.919).

Γ(hi → AjZ) =
(g2 + g′

2
)m3

hi

64πm2
Z

λ̃
3
2 (mhi ,mAj ,mZ)R2

ij , (A.831)

where

Rij = (S(i, 1) cosβ − S(i, 2) sinβ)(P (j, 1) cosβ − P (j, 2) sinβ). (A.832)

Γ(hi → H+H−) =
1

16πmhi

λ̃
1
2 (mhi ,mH± ,mH±)S2

i , (A.833)
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where

Si =
λµeff√

2

[
2S(i, 3) cos2 β + 2S(i, 3) sin2 β

]
− λ2mW sinβ

g
(2S(i, 2) + 2S(i, 1)) cosβ sinβ

+ µeffκ2
√

2S(i, 3) cosβ sinβ + λAλ
√

2S(i, 3) cosβ sinβ

+
g′

2

4

mW

g

[
sinβ(2S(i, 1) cos2 β − 2S(i, 1) sin2 β) + cosβ(2S(i, 2) sin2 β − 2S(i, 2) cos2 β)

]
+
gmW

4

[
sinβ(2S(i, 1) sin2 β − 2S(i, 2) cos2 β + 4S(i, 2) sinβ cosβ)

+ cosβ(2S(i, 2) cos2 β + 2S(i, 2) sin2 β + 4S(i, 1) sinβ cosβ)
]
.

(A.834)

Γ(hi →W±H±) =
GFm

3
hi

8π
[S(i, 1) cosβ − S(i, 2) sinβ]2λ̃

3
2 (mhi ,mW± ,mH±). (A.835)

In this equation a factor of 2 has been included as it could be either W+H− or W−H+.

Γ(hi → hjhk) =
αjk

32πmhi

λ̃
1
2 (mhi ,mhj ,mhk)[CNMSSM

hihjhk
]2, (A.836)

where again αjk = 1 if j = k and 2 otherwise.

Also remember that:

µeff =
λ〈s〉√

2
, (A.837) 〈h1〉 =

√
2mW sinβ

g
, (A.838) 〈h2〉 =

√
2mW cosβ

g
, (A.839)

where λ is a parameter of the NMSSM which couples the singlino to Higgsinos.

Here CNMSSM
hihjhk

is given by:

CNMSSM
hihjhk

=
g2 + g′

2

4
√

2

[
〈h1〉[Sijk(1, 1, 1)− Sijk(1, 2, 2)] + 〈h2〉[Sijk(2, 2, 2)− Sijk(2, 1, 1)]

]
+
κAκ

3
√

2
Sijk(3, 3, 3) +

λ2

√
2

[
〈h1〉[Sijk(1, 2, 2) + Sijk(1, 3, 3)] + 〈h2〉[Sijk(2, 1, 1) + Sijk(2, 3, 3)]

+
µeff
λ

[Sijk(3, 1, 1) + Sijk(3, 2, 2)]
]

+ κ2
√

2
µeff
λ

Sijk(3, 3, 3)− λAλ√
2
Sijk(1, 2, 3)

− λκ√
2

[〈h1〉Sijk(3, 2, 3) + 〈h2〉Sijk(3, 1, 3) + 2
µeff
λ

Sijk(1, 2, 3)],

(A.840)

where Sijk(x, y, z) is just the symmetric combination of triples of S matrix elements with each of i, j, k

with each of x, y, z, i.e.:

Sijk(x, y, z) =S(i, x)S(j, y)S(k, z) + S(i, x)S(k, y)S(j, z) + S(j, x)S(i, y)S(k, z)

+ S(j, x)S(i, z)S(k, y) + S(k, x)S(i, y)S(j, z) + S(k, x)S(j, y)S(i, z).
(A.841)

Decays to two vector bosons are complicated by the consideration of whether the Higgs boson mass is

greater than twice the mass of the vector boson, just as they were complicated in the MSSM. Included in

SoftSusy for the NMSSM are the cases both where the Higgs has mass mh/H/H3 > 2mV , and so decays

to two on-shell vector bosons, and also the case where the Higgs has mass mV < mh/H/H3 < 2mV so

that it may only undergo a decay to one on-shell vector boson and one off-shell vector boson, which then

decays into a fermion-antifermion pair, i.e. h/H/H3 → WW ∗ → Wf ′f̄ and h/H/H3 → ZZ∗ → Zff̄ ,

exactly as were included for the MSSM.
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As in the MSSM, first consider mV < mh/H/H3 < 2mV . The only difference compared with the

MSSM formulae is in the couplings ch/H/H3V V .

Γ(h/H/H3→ ZZ∗) =
G2
Fmh/H/H3m

4
W c

2
h/H/H3V V

64π3 cos4 θW
F (εZ)

[
7− 40

3
sin2 θW +

160

9
sin4 θW

]
, (A.842)

Γ(h/H/H3→WW ∗) =
3G2

Fm
4
Wmh/H/H3c

2
h/H/H3V V

16π3
F (εW ), (A.843)

where here

εV =
mV

mh/H/H3
, (A.844) chV V = S(1, 1) sinβ + S(1, 2) cosβ, (A.845)

cHV V = S(2, 1) sinβ + S(2, 2) cosβ, (A.846) cH3V V = S(3, 1) sinβ + S(3, 2) cosβ, (A.847)

and as before

F (εV ) =
3(1− 8ε2V + 20ε4V )√

4ε2V − 1
cos−1

[3ε2V − 1

2ε3V

]
− (1− ε2V )

(47

2
ε2V −

13

2
+

1

ε2V

)
− 3(1− 6ε2V + 4ε4V ) log(εV ).

(A.848)

If however mh/H/H3 > 2mV then the decay to two on-shell vector bosons occurs instead and the formulae

are then:

Γ(h/H/H3→WW ) =
GFm

3
h/H/H3

8π
√

2
λ̃

1
2 (mh/H/H3,mW ,mW )(1− r2 +

3

4
r4)c2h/H/H3WW , (A.849)

Γ(h/H/H3→ ZZ) =
GFm

3
h/H/H3

16π
√

2
λ̃

1
2 (mh/H/H3,mZ ,mZ)(1− r2 +

3

4
r4)c2h/H/H3ZZ . (A.850)

Remember r = 2 mV
mh/H/H3

.

Now onto the loop decays of the neutral Higgs bosons in the NMSSM:

Γ(hi → γγ) =
GF√

2

m3
hi
α2
em(mhi)

32π2
|Mγγ |2, (A.851)

|Mγγ |2 =
[
Irt + Irb + Irc + Irτ + Ir

W̃1
+ Ir

W̃2
+ IrW + IrH± + Irc̃L + Irc̃R + Irs̃L + Irs̃R + Irµ̃L + Irµ̃R + Irt̃1 + Irt̃2

+ Ir
b̃1

+ Ir
b̃2

+ Irτ̃1 + Irτ̃2

]2
+
[
Iit + Iib + Iic + Iiτ + Ii

W̃1
+ Ii

W̃2
+ IiW + IiH± + Iic̃L + Iic̃R + Iis̃L

+ Iis̃R + Iiµ̃L + Iiµ̃R + Iit̃1 + Iit̃2 + Ii
b̃1

+ Ii
b̃2

+ Iiτ̃1 + Iiτ̃2

]2
.

(A.852)

The I
r/i
a are given below and are the real (r) and imaginary (i) parts.

Ia = caka, (A.853)

where the ca is the coupling for particle a and the ka is the kinetic part for particle a. The coupling is

real whilst the kinetic part may be complex, it is from the kinetic part therefore that we get real and

imaginary contributions. The couplings of the various loop particles are:

ct =
4

3

S(i, 1)

sinβ
, (A.854) cc =

4

3

S(i, 1)

sinβ
, (A.855)

cb =
1

3

S(i, 2)

cosβ
, (A.856) cτ =

S(i, 2)

cosβ
, (A.857)
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cW = S(i, 1) sinβ + S(i, 2) cosβ, (A.858)

cW̃1
=

1√√
2GFmW̃1

λ√
2
S(i, 3) cos θL cos θR +

g√
2

[S(i, 1) sin θL cos θR + S(i, 2) cos θL sin θR] , (A.859)

cW̃2
=

1√√
2GFmW̃2

λ√
2
S(i, 3) sin θL sin θR −

g√
2

[S(i, 1) cos θL sin θR + S(i, 2) sin θL cos θR] , (A.860)

cc̃L =
4

3

2mW

gm2
c̃L

[
g′

2

12
+
g2

4
]
2mW

g
(sinβS(i, 1)− cosβS(i, 2)), (A.861)

cc̃R =
4

3

2mW

gm2
c̃R

g′
2

6

2mW

g
(sinβS(i, 1)− cosβS(i, 2)), (A.862)

cs̃L =
1

3

2mW

gm2
s̃L

[
g′

2

12
+
g2

4
]
2mW

g
(sinβS(i, 1)− cosβS(i, 2)), (A.863)

cs̃R =
1

3

2mW

gm2
s̃R

g′
2

6

2mW

g
(sinβS(i, 1)− cosβS(i, 2)), (A.864)

cµ̃L =
2mW

gm2
µ̃L

[
−g′2

4
+
g2

4
]
2mW

g
(sinβS(i, 1)− cosβS(i, 2)), (A.865)

cµ̃R =
2mW

gm2
µ̃R

g′
2

2

2mW

g
(sinβS(i, 1)− cosβS(i, 2)), (A.866)

ct̃1 =
1

2
√√

2GFm2
t̃1

{
cos2 θt

√
2

√
2mW

g

[
f2
t sinβS(i, 1) + (

g′
2

12
− g2

4
)(sinβS(i, 1)− cosβS(i, 2))

]
+ sin2 θt

√
2

√
2mW

g

[
f2
t sinβS(i, 1)− g′

2

3
{sinβS(i, 1)− cosβS(i, 2)}

]
+ 2 sin θt cos θt

ft√
2

[
AtS(i, 1)− µeffS(i, 2)− λ

√
2mW cosβ

g
S(i, 3)

]}
,

(A.867)

ct̃2 =
1

2
√√

2GFm2
t̃2

{
sin2 θt

√
2

√
2mW

g

[
f2
t sinβS(i, 1) + (

g′
2

12
− g2

4
){sinβS(i, 1)− cosβS(i, 2)}

]
+ cos2 θt

√
2

√
2mW

g

[
f2
t sinβS(i, 1)− g′

2

3
{sinβS(i, 1)− cosβS(i, 2)}

]
− 2 sin θt cos θt

ft√
2

[
AtS(i, 1)− µeffS(i, 2)− λ

√
2mW cosβ

g
S(i, 3)

]}
,

(A.868)

cb̃1 =
1

2
√√

2GFm2
b̃1

{
cos2 θb

√
2
[
f2
b

√
2
mW cosβ

g
S(i, 2) + (

g′
2

12
+
g2

4
){
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
+ sin2 θb

√
2
[
f2
b

√
2mW cosβ

g
S(i, 2) +

g′
2

6
{
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
+ 2 sin θb cos θb

fb√
2

[
AbS(i, 2)− µeffS(i, 1)− λ

√
2mW sinβ

g
S(i, 3)

]}
,

(A.869)
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cb̃2 =
1

2
√√

2GFm2
b̃2

{
sin2 θb

√
2
[
f2
b

√
2
mW cosβ

g
S(i, 2) + (

g′
2

12
+
g2

4
){
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
+ cos2 θb

√
2
[
f2
b

√
2mW cosβ

g
S(i, 2) +

g′
2

6
{
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
− 2 sin θb cos θb

fb√
2

[
AbS(i, 2)− µeffS(i, 1)− λ

√
2mW sinβ

g
S(i, 3)

]}
,

(A.870)

cτ̃1 =
1

2
√√

2GFm2
τ̃1

{
cos2 θτ

√
2
[
f2
τ

√
2
mW cosβ

g
S(i, 2) + (−g

′2

4
+
g2

4
){
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
+ sin2 θτ

√
2
[
f2
τ

√
2mW cosβ

g
S(i, 2) +

g′
2

2
{
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
+ 2 sin θτ cos θτ

fτ√
2

[
AτS(i, 2)− µeffS(i, 1)− λ

√
2mW sinβ

g
S(i, 3)

]}
,

(A.871)

cτ̃2 =
1

2
√√

2GFm2
τ̃2

{
sin2 θτ

√
2
[
f2
τ

√
2
mW cosβ

g
S(i, 2) + (−g

′2

4
+
g2

4
){
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
+ cos2 θτ

√
2
[
f2
τ

√
2mW cosβ

g
S(i, 2) +

g′
2

2
{
√

2mW sinβ

g
S(i, 1)

−
√

2mW cosβ

g
S(i, 2)}

]
− 2 sin θτ cos θτ

fτ√
2

[
AτS(i, 2)− µeffS(i, 1)− λ

√
2mW sinβ

g
S(i, 3)

]}
,

(A.872)

cH± =
λµeff√

2

[
2S(i, 3) cos2 β + 2S(i, 3) sin2 β

]
− λ2mW sinβ

g
2S(i, 2) cosβ sinβ

− mW sinβ

g
2S(i, 1) cosβ sinβ + µeffκ2

√
2S(i, 3) cosβ sinβ +

λAλ√
2

2S(i, 3) cosβ sinβ

+
g′

2

4

mW

g

[
sinβ{2S(i, 1) cos2 β − 2S(i, 1) sin2 β}+ cosβ{2S(i, 2) sin2 β − 2S(i, 2) cos2 β}

]
+
gmW

4

[
sinβ{2S(i, 1) cos2 β + 2S(i, 1) sin2 β + 4S(i, 2) sinβ cosβ}

+ cosβ{2S(i, 2) cos2 β + 2S(i, 2) sin2 β + 4S(i, 1) sinβ cosβ}
]
,

(A.873)

where we remember that

ft =
gmt√

2mW sinβ
, fb =

gmb√
2mW cosβ

, fτ =
gmτ√

2mW cosβ
. (A.874)

The kinetic parts meanwhile are as follows, they depend upon the f(τ) given in Eq. (A.2).

For fermions (spin 1
2 ), i.e. the quarks and the charginos:

ka = 2τa[1− τaf(τa)]. (A.875)

For scalars (e.g. sfermions and H±):

ka = τa(τaf(τa)− 1). (A.876)

For spin 1 (i.e W± bosons):

ka = −[2 + 3τa + 3τa(2− τa)f(τa)]. (A.877)
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That is all the information needed for hi → γγ.

Γ(hi → Zγ) =
GF√

2

m3
hi
α2
em(mhi)

64π3

(
1−

(mZ

mhi

)2)3

|MZγ |2, (A.878)

where

|MZγ |2 =
(
Irt +Irb +Irc +Ir

W̃1
+Ir

W̃2
+IrW +IrH±

)2

+
(
Iit +Iib+Iic+Ii

W̃1
+Ii

W̃2
+IiW +IiH±

)2

. (A.879)

Again Ir/ia are the real and imaginary parts of each contribution and Ia = caka, where now the ca and

ka are different to above as this is now for decays to Zγ. Now the couplings are:

ct = −2(1− 8

3
sin2 θW )

1

sin θW cos θW

S(i, 1)

sinβ
, (A.880)

cc = −2(1− 8

3
sin2 θW )

1

sin θW cos θW

S(i, 1)

sinβ
, (A.881)

cb = (−1 +
4

3
sin2 θW )

1

sin θW cos θW

S(i, 2)

cosβ
, (A.882)

cW = − g
g′

[S(i, 1) sinβ + S(i, 2) cosβ], (A.883)

cW̃1
=

4mW

mW̃1
g sin θW cos θW

[ λ√
2
S(i, 3) cos θL cos θR +

g√
2
{S(i, 1) sin θL cos θR + S(i, 2) cos θL sin θR}

]
× [− sin2 θR −

1

2
cos2 θR + 2 sin2 θW − sin2 θL −

1

2
cos2 θL],

(A.884)

cW̃2
=

4mW

mW̃2
g sin θW cos θW

[ λ√
2
S(i, 3) sin θL sin θR −

g√
2
{S(i, 1) cos θL sin θR + S(i, 2) sin θL cos θR}

]
× [− cos2 θR −

1

2
sin2 θR + 2 sin2 θW − cos2 θL −

1

2
sin2 θL],

(A.885)

cH± =(1− 2 sin2 θW )
1

2 sin θW cos θWm2
H±

1√√
2GF

{λµeff√
2

[2S(i, 3) cos2 β + 2S(i, 3) sin2 β]

− λ2mW sinβ

g
2S(i, 2) cosβ sinβ − λ2mW sinβ

g
2S(i, 1) cosβ sinβ + µeffκ2

√
2S(i, 3) cosβ sinβ

+ λAλ
√

2S(i, 3) cosβ sinβ +
g′

2

4

mW

g
[sinβ(2S(i, 1) cos2 β − 2S(i, 1) sin2 β]

+ cosβ[2S(i, 2) sin2 β − 2S(i, 2) cos2 β] +
gmW

4

(
sinβ[2S(i, 1) cos2 β + 2S(i, 1) sin2 β

+ 4S(i, 2) sinβ cosβ] + cosβ[2S(i, 2) cos2 β + 2S(i, 2) sin2 β + 4S(i, 1) sinβ cosβ]
)}
.

(A.886)

Now the kinetic parts depend upon f(τa) in Eq. (A.2), g(τa) in Eq. (A.3) and f(τaZ), g(τaZ), where

τaZ = 4(mamZ )2 and τa = 4( mamhi
)2.

For the spin 1
2 particles (quarks or charginos):

ka =
τaτaZ

2(τa − τaZ)
+

(τaτaZ)2

2(τa − τaZ)2
[f(τa)−f(τaZ)]+

τ2
aτaZ

(τa − τaZ)2
[g(τa)−g(τaZ)]+

τaτaZ
2(τa − τaZ)

[f(τa)−f(τaZ)].

(A.887)

For scalars (charged Higgs bosons):

ka =
τaτaZ

2(τa − τaZ)
+

(τaτaZ)2

2(τa − τaZ)2
[f(τa)− f(τaZ)] +

τ2
aτaZ

(τa − τaZ)2
[g(τa)− g(τaZ)]. (A.888)
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For the spin 1 bosons (W bosons):

ka =− 4(3− tan2 θW )
τaτaZ

2(τa − τaZ)
[f(τa)− f(τaZ)] + {(1 +

2

τa
) tan2 θW − (5 +

2

τa
)}
[ τaτaZ

2(τa − τaZ)

+
(τaτaZ)2

2(τa − τaZ)2
[f(τa)− f(τaZ)] +

τ2
aτaZ

(τa − τaZ)2
[g(τa)− g(τaZ)]

]
.

(A.889)

That’s all the information required for hi → Zγ.

Next consider gluon gluon:

Γ(hi → gg) =
GFm

3
hi
α2
s(mhi)

64
√

2π3
|Mgg|2, (A.890)

where

|Mgg|2 =[Jrt + Jrb + Jrc + Jrc̃L + Jrc̃R + Jrs̃L + Jrs̃R + Jrt̃1 + Jrt̃2 + Jr
b̃1

+ Jr
b̃2

]2

+ [J it + J ib + J ic + J ic̃L + J ic̃R + J is̃L + J is̃R + J it̃1 + J it̃2 + J i
b̃1

+ J i
b̃2

]2.
(A.891)

As usual each of the Ja are given by Ja = caka, where the coupling parts ca are given here whilst the

kinetic parts are then exactly as in the hi → γγ case.

ct =
S(i, 1)

sinβ
, (A.892) cc =

S(i, 1)

sinβ
, (A.893) cb =

S(i, 2)

cosβ
, (A.894)

cc̃L =
2mW

gm2
c̃L

(g′2
12

+
g2

4

)2mW

g
[sinβS(i, 1)− cosβS(i, 2)], (A.895)

cc̃R =
2mW

gm2
c̃R

g′
2

6

2mW

g
[sinβS(i, 1)− cosβS(i, 2)], (A.896)

cs̃L =
2mW

gm2
s̃L

(g′2
12

+
g2

4

)2mW

g
[sinβS(i, 1)− cosβS(i, 2)], (A.897)

cs̃R =
2mW

gm2
s̃R

g′
2

6

2mW

g
[sinβS(i, 1)− cosβS(i, 2)], (A.898)

ct̃1 =
mW

gm2
t̃1

[
cos2 θt

√
2
(
f2
t

√
2
mW sinβ

g
S(i, 1) + (

g′
2

12
− g2

4
){
√

2
mW

g
(S(i, 1) sinβ − cosβS(i, 2))}

)
+ sin2 θt

√
2
(
f2
t

√
2
mW sinβ

g
S(i, 1)− g′

2

3
{
√

2
mW

g
(sinβS(i, 1)− cosβS(i, 2))}

)
+ 2 sin θt cos θt

ft√
2

(
AtS(i, 1)− µeffS(i, 2)− λ

√
2
mW cosβ

g
S(i, 3)

)]
,

(A.899)

ct̃2 =
mW

gm2
t̃2

[
sin2 θt

√
2
(
f2
t

√
2
mW sinβ

g
S(i, 1) + (

g′
2

12
− g2

4
){
√

2
mW

g
(S(i, 1) sinβ − cosβS(i, 2))}

)
+ cos2 θt

√
2
(
f2
t

√
2
mW sinβ

g
S(i, 1)− g′

2

3
{
√

2
mW

g
(sinβS(i, 1)− cosβS(i, 2))}

)
− 2 sin θt cos θt

ft√
2

(
AtS(i, 1)− µeffS(i, 2)− λ

√
2
mW cosβ

g
S(i, 3)

)]
,

(A.900)

Thomas Cridge 304



Appendix A. SoftSusy Decay Formulae A.6. NMSSM Decays

cb̃1 =
mW

gm2
b̃1

[
cos2 θb

√
2
(
f2
b

√
2
mW cosβ

g
S(i, 2) + (

g′
2

12
+
g2

4
){
√

2
mW

g
(S(i, 1) sinβ − cosβS(i, 2))}

)
+ sin2 θb

√
2
(
f2
b

√
2
mW cosβ

g
S(i, 2) +

g′
2

6
{
√

2
mW

g
(sinβS(i, 1)− cosβS(i, 2))}

)
+ 2 sin θb cos θb

fb√
2

(
AbS(i, 2)− µeffS(i, 1)− λ

√
2
mW sinβ

g
S(i, 3)

)]
,

(A.901)

cb̃2 =
mW

gm2
b̃2

[
sin2 θB

√
2
(
f2
b

√
2
mW cosβ

g
S(i, 2) + (

g′
2

12
+
g2

4
){
√

2
mW

g
(S(i, 1) sinβ − cosβS(i, 2))}

)
+ cos2 θb

√
2
(
f2
b

√
2
mW cosβ

g
S(i, 2) +

g′
2

6
{
√

2
mW

g
(sinβS(i, 1)− cosβS(i, 2))}

)
− 2 sin θb cos θb

fb√
2

(
AbS(i, 2)− µeffS(i, 1)− λ

√
2
mW sinβ

g
S(i, 3)

)]
.

(A.902)

A.6.2 CP Odd Higgs Decays

First of all decays to a quark and an antiquark:

Γ(Ai → qq̄) =
3GF

4π
√

2
m2
qmAi

√
1− 4m2

q

m2
Ai

A, (A.903)

where A =

[S(i,1)
sin β ]2, for up-type quarks (u,c,t),

[S(i,2)
cos β ]2, for down-type quarks (d,s,b).

(A.904)

Use the same formulae for decays to leptons but divide by 3 as the 3 in the pre-factor is Nc. Now decays

to sfermions, because of CP conservation, decays can only go to sfermions of different handedness.

Γ(Ai → q̃Lq̃
∗
R) =

1

16πmAi

λ̃
1
2 (mAi ,mq̃L ,mq̃R)C2

Aiq̃q̃, (A.905)

CAiq̃q̃ =


fq√

2
[Aq̃P (i, 1) + µeffP (i, 2) + λ

√
2mW cos β

g P (i, 3)], for u-type squarks,

fq√
2
[Aq̃P (i, 2) + µeffP (i, 1) + λ

√
2mW sin β

g P (i, 3)], for d-type squarks.
(A.906)

Remember that the expression for fq differs for up type and down type quarks, for example see (A.11).

Note that (A.905) holds even for third generation squarks; as we see in the MSSM, in the NMSSM the

decays of CP odd Higgs bosons to squarks are independent of the sfermion mixing angles. The formulae

for the decays to squarks also hold for decays to sleptons, but again one must divide by 3.

Decays to neutralinos:

Γ(Ai → Z̃jZ̃k) =
mAi

16π

[
1− (

mZ̃j
−mZ̃k

mAi

)2
]
λ̃

1
2 (mAi ,mZ̃j

,mZ̃k
)αijC2

AiZ̃jZ̃k
, (A.907)

where, as for the CP even decays to neutralinos, the αjk factor accounts for indistinguishability and so is

1 if j = k (i.e. decay to two of the same neutralinos) and 2 if j 6= k (i.e. decays to two different neutralino

mass eigenstates). The coupling is given by:
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CAiZ̃jZ̃k =
λ√
2

[
P (i, 1)(N3jN5k +N5jN3k) + P (i, 2)(N4jN5k +N5jN4k) + P (i, 3)(N3jN4k +N4jN3k)

]
−
√

2κP (i, 3)N5jN5k − tan θW
g

2

[
− P (i, 1)(N1jN4k +N4jN1k) + P (i, 2)(N1jN3k

+N3jN1k)
]
− g

2

[
P (i, 1)(N2jN4k +N4jN2k)− P (i, 2)(N2jN3k +N3jN2k)

]
.

(A.908)

Decays to charginos, first consider decays to the two of the same chargino:

Γ(Ai → W̃jW̃j) =
mAi

8π
λ̃

1
2 (mAi ,mW̃j

,mW̃j
)S2, (A.909)

here

S =

 λ√
2
P (i, 3) cos θL cos θR − g√

2
[P (i, 1) sin θL cos θR + P (i, 2) cos θL sin θR], for j = 1,

λ√
2
P (i, 3) sin θL sin θR + g√

2
[P (i, 1) cos θL sin θR + P (i, 2) sin θL cos θR], for j = 2.

(A.910)

Meanwhile for decays to different charginos:

Γ(Ai → W̃1W̃2) =
mAi

8π
λ̃

1
2 (mAi ,mW̃1

,mW̃2
)
[
(c21 + c22)

1

m2
Ai

(m2
Ai −m2

W̃1
−m2

W̃2
) + 4c1c2

mW̃1
mW̃2

m2
Ai

]
,

(A.911)

now

c1 =
λ√
2
P (i, 3) cos θL sin θR −

g√
2

[P (i, 1) sin θL sin θR − P (i, 2) cos θL cos θR], (A.912)

c2 =
λ√
2
P (i, 3) sin θL cos θR +

g√
2

[P (i, 1) cos θL cos θR − P (i, 2) sin θL sin θR]. (A.913)

Decays to CP even neutral Higgs bosons and a Z boson:

Γ(Ai → hjZ) =
GFm

3
Ai

8π
√

2
λ̃

3
2 (mAi ,mhj ,mZ)C2

AihjZ , (A.914)

where

CAihjZ =



[S(1, 1) cosβ − S(1, 2) sinβ] cos θA, for i = j = 1,

[S(1, 1) cosβ − S(1, 2) sinβ] sin θA, for i = 2, j = 1,

[S(2, 1) cosβ − S(2, 2) sinβ] cos θA, for i = 1, j = 2,

[S(2, 1) cosβ − S(2, 2) sinβ] sin θA, for i = j = 2,

[S(3, 1) cosβ − S(3, 2) sinβ] cos θA, for i = 1, j = 3,

[S(3, 1) cosβ − S(3, 2) sinβ] sin θA, for i = 2, j = 3.

(A.915)

The decay of a CP odd neutral Higgs to a charged Higgs and a W boson in the NMSSM is given by:

Γ(A→ H±W±) =
GFm

3
A

8π
√

2
λ̃

3
2 (mA,mH± ,mW ) cos2 θA, (A.916)

for A2 undergoing the same decay transform cos θA → sin θA and mA → mA2
.

Γ(A2 → Ahi) =
1

16πmhi

λ̃
1
2 (mA2

,mA,mhi)[CNMSSM
AA2hi ]2, (A.917)

where the coupling CNMSSM
AA2hi

is:
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CNMSSM
AA2hi =

g2 + g′
2

4
√

2

[
〈h1〉[C(i, 1, 2, 1, 1, 1)− C(i, 1, 2, 1, 2, 2)] + 〈h2〉[C(i, 1, 2, 2, 2, 2)− C(i, 1, 2, 2, 1, 1)]

]
+
λAλ√

2
[C(i, 1, 2, 1, 2, 3) + C(i, 1, 2, 2, 1, 3) + C(i, 1, 2, 3, 1, 2)]− κAκ√

2
C(i, 1, 2, 3, 3, 3)

+
λ2

√
2

[
〈h1〉[C(i, 1, 2, 1, 2, 2) + C(i, 1, 2, 1, 3, 3)] + 〈h2〉[C(i, 1, 2, 2, 1, 1) + C(i, 1, 2, 2, 3, 3)]

+ µeffλ[C(i, 1, 2, 3, 1, 1) + C(i, 1, 2, 3, 2, 2)]
]

+
κ2
√

2µeff
λ

C(i, 1, 2, 3, 3, 3)

+
λκ√

2

[
〈h1〉[C(i, 1, 2, 2, 3, 3)− 2C(i, 1, 2, 3, 2, 3)] + 〈h2〉[C(i, 1, 2, 1, 3, 3)− 2C(i, 1, 2, 3, 1, 3)]

+ 2
µeff
λ

[C(i, 1, 2, 3, 1, 2)− C(i, 1, 2, 1, 2, 3)− C(i, 1, 2, 2, 1, 3)]
]
,

(A.918)

where here C(i, 1, 2, x, y, z) is notation for

C(i, 1, 2, x, y, z) = S(i, x)[P (1, y)P (2, z) + P (1, z)P (2, y)]. (A.919)

Now the loop decays of the CP odd Higgs bosons. First consider decays to γγ:

Γ(Ai → γγ) =
GFm

3
Ai
α2
em(mAi)

32π3
√

2
|MAiγγ |2, (A.920)

where

|MAiγγ |2 = (J rt + J rb + J rc + J rτ + J r
W̃1

+ J r
W̃2

)2 + (J it + J ib + J ic + J iτ + J i
W̃1

+ J i
W̃2

)2. (A.921)

The J r/ia here are the real and imaginary parts respectively of caka where the ca and ka for this decay

mode are given below:

ct =
4

3

P (i, 1)

sinβ
, cb =

1

3

P (i, 2)

cosβ
, cc =

4

3

P (i, 1)

sinβ
, cτ =

P (i, 2)

cosβ
, (A.922)

cW̃1
=

2mW

gmW̃1

[
λ√
2
P (i, 3) cos θL cos θR −

g√
2

(P (i, 1) sin θL cos θR + P (i, 2) cos θL sin θR)], (A.923)

cW̃2
=

2mW

gmW̃2

[
λ√
2
P (i, 3) sin θL sin θR +

g√
2

(P (i, 1) cos θL sin θR + P (i, 2) sin θL cos θR)]. (A.924)

Meanwhile the kinetic parts are, for the quarks or the charginos (as both are spin 1
2 ):

ka = τaf(τa). (A.925)

The next loop decay is to Zγ:

Γ(Ai → Zγ) =
GF√

2

m3
Ai
α2
em(mAi)

64π3

(
1− (

mZ

mAi

)2
)
|MAiZγ |2, (A.926)

where

|MAiZγ |2 = (Krt +Krb +Krc +Kr
W̃1

+Kr
W̃2

)2 + (Kit +Kib +Kic +Ki
W̃1

+Ki
W̃2

)2. (A.927)
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As usual each Kr/ia is the real/imaginary part of caka where the ca and ka for this mode are given below:

ct = −2(1− 8

3
sin2 θW )

1

sin θW cos θW

P (i, 1)

sinβ
, cc = −2(1− 8

3
sin2 θW )

1

sin θW cos θW

P (i, 1)

sinβ
, (A.928)

cb = (−1 +
4

3
sin2 θW )

1

sin θW cos θW

P (i, 2)

cosβ
, (A.929)

cW̃1
= 4

mW

mW̃1
g sin θW cos θW

[
− sin2 θR −

1

2
cos2 θR − sin2 θL −

1

2
cos2 θL + 2 sin2 θW

]
×
( λ√

2
P (i, 3) cos θL cos θR −

g√
2

[P (i, 1) sin θL cos θR + P (i, 2) cos θL sin θR]
)
,

(A.930)

cW̃2
= 4

mW

mW̃2
g sin θW cos θW

[
− cos2 θR −

1

2
sin2 θR − cos2 θL −

1

2
sin2 θL + 2 sin2 θW

]
×
( λ√

2
P (i, 3) sin θL sin θR +

g√
2

[P (i, 1) cos θL sin θR + P (i, 2) sin θL cos θR]
)
,

(A.931)

The kinetic parts are all of the following form, where remember τaZ = 4(mamZ )2 and τa = 4(mamφ )2:

ka =
τaτaZ

2(τa − τaZ)
[f(τa)− f(τaZ)]. (A.932)

Finally, for the loop decay to gg:

Γ(Ai → gg) =
GF√

2

m3
Ai
α2
s(mAi)

16π3
|MAigg|2, (A.933)

where

|MAigg|2 = (Rrt +Rrb +Rrc)2 + (Rit +Rib +Ric)2. (A.934)

Again the Rr/ia are the real and imaginary parts of caka, where for this mode they are:

ct =
P (i, 1)

sinβ
, cb =

P (i, 2)

cosβ
, cc =

P (i, 1)

sinβ
. (A.935)

The kinetic parts are just:

ka = τaf(τa). (A.936)

A.6.3 Decays into Higgs Bosons

Γ(b̃2 → b̃1hi) =
1

16πmb̃2

λ̃
1
2 (mb̃2

,mb̃1
,mhi)

[
cos θb sin θb(cR − cL) + (cos2 θb − sin2 θb)cLR

]2
, (A.937)

where

cL = −
√

2

[
f2
b 〈h2〉S(i, 2) + (

g′
2

12
+
g2

4
)[〈h1〉S(i, 1)− 〈h2〉S(i, 2)]

]
, (A.938)

cR = −
√

2

[
f2
b 〈h2〉S(i, 2) + (

g′
2

6
)[〈h1〉S(i, 1)− 〈h2〉S(i, 2)]

]
, (A.939)

cLR = − fb√
2

[AbS(i, 2)− µeffS(i, 1)− λ〈h1〉S(i, 3)] . (A.940)
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Γ(t̃2 → t̃1hi) =
1

16πmt̃2

λ̃
1
2 (mt̃2

,mt̃1
,mhi)

[
cos θt sin θt(cR − cL) + (cos2 θt − sin2 θt)cLR

]2
, (A.941)

where

cL = −
√

2

[
f2
t 〈h1〉S(i, 1) + (

g′
2

12
− g2

4
)[〈h1〉S(i, 1)− 〈h2〉S(i, 2)]

]
, (A.942)

cR = −
√

2

[
f2
t 〈h1〉S(i, 1)− (

g′
2

3
)[〈h1〉S(i, 1)− 〈h2〉S(i, 2)]

]
, (A.943)

cLR = − ft√
2

[AtS(i, 1)− µeffS(i, 2)− λ〈h2〉S(i, 3)] . (A.944)

Γ(τ̃2 → τ̃1hi) =
1

16πmτ̃2

λ̃
1
2 (mτ̃2 ,mτ̃1 ,mhi)

[
cos θτ sin θτ (cR − cL) + (cos2 θτ − sin2 θτ )cLR

]2
, (A.945)

where

cL = −
√

2

[
f2
τ 〈h2〉S(i, 2) + (

−g′2
4

+
g2

4
)[〈h1〉S(i, 1)− 〈h2〉S(i, 2)]

]
, (A.946)

cR = −
√

2

[
f2
τ 〈h2〉S(i, 2) + (

g′
2

2
)[〈h1〉S(i, 1)− 〈h2〉S(i, 2)]

]
, (A.947)

cLR = − fτ√
2

[AτS(i, 2)− µeffS(i, 1)− λ〈h1〉S(i, 3)] . (A.948)

Γ(b̃2 → b̃1Ai) =
1

16πmb̃2

λ̃
1
2 (mb̃2

,mb̃1
,mÃi

)[cos2 θb − sin2 θb]
2A2

LR, (A.949)

where
ALR =

fb√
2

[AbP (i, 2) + µeffP (i, 1) + λ〈h1〉P (i, 3)] . (A.950)

For τ̃2 → τ̃1Ai the formulae are the same except the changes θb → θτ , mb → mτ and now ALR is given

by:

ALR =
fτ√

2
[AτP (i, 2) + µeffP (i, 1) + λ〈h1〉P (i, 3)] . (A.951)

For t̃2 → t̃1Ai the formulae are the same except the changes θb → θt, mb → mt and now ALR is given

by:

ALR =
ft√

2
[AtP (i, 1) + µeffP (i, 2) + λ〈h2〉P (i, 3)] . (A.952)

The chargino decays to lighter charginos and a CP even neutral Higgs:

Γ(W̃2 → W̃1hi)=
1

32π|mW̃2
| λ̃

1/2(mW̃2
,mW̃1

,mhi)
[
(c21 + c22)(m2

W̃1
+m2

W̃2
−m2

hi)+ 4c1c2mW̃1
mW̃2

]2
,

(A.953)

here the c1 and c2 are:

c1 =
λ√
2
S(i, 3) cos θL sin θR +

g√
2

[S(i, 1) sin θL sin θR − S(i, 2) cos θL cos θR], (A.954)

c2 =
λ√
2
S(i, 3) sin θL cos θR −

g√
2

[S(i, 1) cos θL cos θR − S(i, 2) sin θL sin θR]. (A.955)

The chargino decays to lighter charginos and a CP odd neutral Higgs:

Γ(W̃2 → W̃1Ai)=
1

32π|mW̃2
| λ̃

1/2(mW̃2
,mW̃1

,mAi)
[
(C2

1 + C2
2 )(m2

W̃1
+m2

W̃2
−m2

hi)+ 4C1C2mW̃1
mW̃2

]2
,

(A.956)
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here the C1 and C2 are:

C1 =
λ√
2
P (i, 3) cos θL sin θR −

g√
2

[P (i, 1) sin θL sin θR − P (i, 2) cos θL cos θR], (A.957)

C2 =
λ√
2
P (i, 3) sin θL cos θR +

g√
2

[P (i, 1) cos θL cos θR − P (i, 2) sin θL sin θR]. (A.958)

The formulae for Γ(H± → Whi) are just as above for Γ(hi → WH±) in (A.835) but with mhi ↔ mH± .

Similarly the formulae for Γ(H± → WAi) are just as above for Γ(Ai → WH±) in (A.916) but with the

replacement mAi ↔ mH± .

A.6.4 Neutralino Decays

Γ(Z̃i → q̃L/Rq̄) =
Ncg

2

32π|mZ̃i
| λ̃

1
2 (mZ̃i

,mq̃L/R ,mq)CL/R2(m2
Z̃i
−m2

q̃L/R
+m2

q), (A.959)

where

CL =



−
√

2[ 2
3c(1) sin θW + ( 1

2 − 2
3 sin2 θW ) c(2)

cos θW
], for ũL,

√
2[ 1

3c(1) sin θW + ( 1
2 − 1

3 sin2 θW ) c(2)
cos θW

], for d̃L,
√

2[−c(1) sin θW + ( 1
2 − sin2 θW ) c(2)

cos θW
], for l̃L,

−c(2)√
2

cos θW , for ν̃L,

(A.960)

CR =



−
√

2 2
3 sin θW

[
c(2) tan θW − c(1)

]
, for ũR,

√
2 1

3 sin θW

[
c(2) tan θW − c(1)

]
, for d̃R,

√
2 sin θW

[
c(2) tan θW − c(1)

]
, for l̃R,

0, for ν̃R.

(A.961)

Here Nc = 3 for quarks and 1 for leptons and c(1) and c(2) are given by:

c(1) = N1i cos θW +N2i sin θW , c(2) = −N1i sin θW +N2i cos θW . (A.962)

For the third generation, the generalisation is as expected but with extra Yukawa interactions:

Γ(Z̃i → t̃1/2t̄) =
3g2

32π|mZ̃i
| λ̃

1
2 (mZ̃i

,mt̃1/2
,mt)

[
(c21 + c22)(m2

Z̃i
−m2

t̃1/2
+m2

t ) + 4mtmZ̃i
c1c2

]
, (A.963)

where

c1 =


√

2 cos θt[− 2
3c(1) sin θW + (− 1

2 + 2
3 sin2 θW ) c(2)

cos θW
]− sin θt

ft
g N4i, for t̃1,

−
√

2 sin θt[− 2
3c(1) sin θW + (− 1

2 + 2
3 sin2 θW ) c(2)

cos θW
]− cos θt

ft
g N4i, for t̃2,

(A.964)

c2 =

−
√

2 sin θt
2
3 sin θW [c(2) tan θW − c(1)]− cos θt

ft
g N4i, for t̃1,

−
√

2 cos θt
2
3 sin θW [c(2) tan θW − c(1)] + sin θt

ft
g N4i, for t̃2,

(A.965)

Γ(Z̃i → b̃1/2b̄) =
3g2

32π|mZ̃i
| λ̃

1
2 (mZ̃i

,mb̃1/2
,mb)

[
(c21 + c22)(m2

Z̃i
−m2

b̃1/2
+m2

b) + 4mbmZ̃i
c1c2

]
, (A.966)

where
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c1 =


√

2 cos θb[
1
3c(1) sin θW + ( 1

2 − 1
3 sin2 θW ) c(2)

cos θW
]− sin θb

fb
g N3i, for b̃1,

−
√

2 sin θb[
1
3c(1) sin θW + ( 1

2 − 1
3 sin2 θW ) c(2)

cos θW
]− cos θb

fb
g N3i, for b̃2,

(A.967)

c2 =


√

2 sin θb
1
3 sin θW [c(2) tan θW − c(1)]− cos θb

fb
g N3i, for b̃1,

√
2 cos θb

1
3 sin θW [c(2) tan θW − c(1)] + sin θb

fb
g N3i, for b̃2.

(A.968)

Γ(Z̃i → τ̃1/2τ̄) =
g2

32π|mZ̃i
| λ̃

1
2 (mZ̃i

,mτ̃1/2
,mτ )

[
(c21 + c22)(m2

Z̃i
−m2

τ̃1/2
+m2

τ ) + 4mτmZ̃i
c1c2

]
, (A.969)

where

c1 =


√

2 cos θτ [c(1) sin θW + ( 1
2 − sin2 θW ) c(2)

cos θW
]− sin θτ

fτ
g N3i, for τ̃1,

−
√

2 sin θτ [c(1) sin θW + ( 1
2 − sin2 θW ) c(2)

cos θW
]− cos θτ

fτ
g N3i, for τ̃2,

(A.970)

c2 =


√

2 sin θτ sin θW [c(2) tan θW − c(1)]− cos θτ
fτ
g N3i, for τ̃1,

√
2 cos θτ sin θW [c(2) tan θW − c(1)] + sin θτ

fτ
g N3i, for τ̃2.

(A.971)

Neutralino decays to a chargino and W boson:

Γ(Z̃i →WW̃1) =
g2

32π|mZ̃i
| λ̃

1/2(mZ̃i
,mW̃1

,mW )
[
− 12mZ̃i

mW̃j
cLcR + (c2L + c2R){(m2

W̃1
+m2

Z̃i
−m2

W )

+ (m2
Z̃i

+m2
W −m2

W̃j
)(m2

Z̃i
−m2

W −m2
W̃j

)
1

m2
W

}
]
,

(A.972)

where

cL =
−1√

2
N4i cos θR +N2i sin θR, (A.973) cR =

1√
2
N3i cos θL +N2i sin θL. (A.974)

For W̃2 just take mW̃1
→ mW̃2

, cos θR → sin θR, cos θL → sin θL, sin θR → − cos θR and sin θL →
− cos θL.

Neutralino decays to a chargino and charged Higgs boson:

Γ(Z̃i → H±W̃1)=
1

32π|mZ̃i
| λ̃

1/2(mZ̃i
,mW̃1

,mH±)
[
(C2
L + C2

R){(m2
W̃1

+m2
Z̃i
−m2

H±)+ 4CLCRmZ̃i
mW̃1

}
]
,

(A.975)

here
CL = λ cosβN5i cos θL −

sinβ√
2

[g′N1i + gN2i] cos θL + g sinβN3i sin θL, (A.976)

CR = λ sinβN5i cos θR +
cosβ√

2
[g′N1i + gN2i] cos θR + g cosβN4i sin θR. (A.977)

Again for W̃2, mW̃1
→ mW̃2

, cos θR → sin θR, cos θL → sin θL, sin θR → − cos θR and sin θL → − cos θL.

Neutralino decays to a lighter neutralino and Z boson:

Γ(Z̃i → ZZ̃j) =
g2

32π|mZ̃i
| λ̃

1
2 (mZ̃i

,mZ̃j
,mZ)

[
− 12mZ̃i

mZ̃j
cLZcRZ + (c2LZ + c2RZ){(m2

Z̃i
+m2

Z̃j
−m2

Z)

+ (m2
Z̃i
−m2

Z̃j
+m2

Z)(m2
Z̃i
−m2

Z̃j
−m2

Z)
1

m2
Z

}
]
,

(A.978)

here we have:
cLZ = −cRZ =

1

2 cos θW
[N3iN3j −N4iN4j ]. (A.979)
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Neutralino decays to a lighter neutralino and CP even neutral Higgs boson:

Γ(Z̃i → hkZ̃j) =
1

4π|mZ̃i
| λ̃

1
2 (mZ̃i

,mhk ,mZ̃j
)C2
Z̃iZ̃jhk

[
m2
Z̃i

+m2
Z̃j
−m2

hk
+ 2mZ̃i

mZ̃j

]
, (A.980)

where

CZ̃iZ̃jhk =
λ

2
√

2

[
S(k, 1)(N3iN5j +N3jN5i) + S(k, 2)(N4iN5j +N4jN5i) + S(k, 3)(N3iN4j +N4iN3j)

]
−
√

2κS(k, 3)N5iN5j +
g′

2

[
− S(k, 1)(N1iN4j +N1jN4i) + S(k, 2)(N1iN3j +N1jN3i)

]
+
g

2

[
S(k, 1)(N2iN4j +N2jN4i)− S(k, 2)(N2iN3j +N2jN3i)

]
.

(A.981)

Neutralino decays to a lighter neutralino and CP odd neutral Higgs boson:

Γ(Z̃i → AkZ̃j) =
1

4π|mZ̃i
| λ̃

1
2 (mZ̃i

,mAk ,mZ̃j
)[G2

Z̃Z̃Ak
][m2

Z̃i
+m2

Z̃j
−m2

Ak
− 2mZ̃i

mZ̃j
], (A.982)

where

GZ̃iZ̃jAk =
−λ
2
√

2

[
P (k, 1)(N3iN5j +N3jN5i) + P (k, 2)(N4iN5j +N4jN5i) + P (k, 3)(N3iN4j +N4iN3j)

]
−
√

2κP (k, 3)N5iN5j −
g′

2

[
− P (k, 1)(N1iN4j +N1jN4i) + P (k, 2)(N1iN3j +N1jN3i)

]
− g

2

[
P (k, 1)(N2iN4j +N2jN4i)− P (k, 2)(N2iN3j +N2jN3i)

]
.

(A.983)

Note that the C and G couplings here are similar to those given for the reverse decays of Higgs bosons to

neutralinos earlier, with i, j, k permuted accordingly.

A.6.5 Decays into Neutralinos

For the first two generations of quarks and squarks:

Γ(q̃L/R → qZ̃i) =
g2

16πmq̃L/R

B2
q̃L/R

λ̃
1
2 (mq̃L/R ,mZ̃i

,mq)[m
2
q̃L/R

−m2
Z̃i
−m2

q], (A.984)

where:

Bq̃L/R =



−
√

2[ 2
3c(1) sin θW + ( 1

2 − 2
3 sin2 θW ) c(2)

cos θW
], for ũL type,

−
√

2 2
3 sin θW [c(2) tan θW − c(1)], for ũR type,

√
2[c(1) 1

3 sin θW + ( 1
2 − 1

3 sin2 θW ) c(2)
cos θW

], for d̃L type,
√

2 1
3 sin θW [c(2) tan θW − c(1)], for d̃R type.

(A.985)

The decay formulae for decays of the first two generations of sleptons to leptons and neutralinos are the

same as for the squarks here but with the coupling change Bq̃L/R → Bl̃L/R and squark masses exchanged

for slepton masses and quark masses for lepton masses:

Bl̃L/R =



− c(2)√
2 cos θW

, for ν̃L type,

0, for ν̃R type (as no RH sneutrinos),
√

2[c(1) sin θW + ( 1
2 − sin2 θW ) c(2)

cos θW
], for l̃L type,

√
2 sin θW [c(2) tan θW − c(1)], for l̃R type.

(A.986)
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For the third generation:

Γ(t̃1/2 → tZ̃i) =
g2

16πmt̃1/2

[
(d2

1 + d2
2)(m2

t̃1/2
−m2

t −m2
Z̃i

)− 4d1d2mtmZ̃i

]
λ̃

1
2 (mt̃1/2

,mZ̃i
,mt), (A.987)

where

d1 =

cos θt
√

2[− 2
3c(1) sin θW + (− 1

2 + 2
3 sin2 θW ) c(2)

cos θW
]− sin θt

ft
g N4i, for t̃1,

− sin θt
√

2[− 2
3c(1) sin θW + (− 1

2 + 2
3 sin2 θW ) c(2)

cos θW
]− cos θt

ft
g N4i, for t̃2,

(A.988)

d2 =

− 2
3 sin θt

√
2 sin θW [c(2) tan θW − c(1)]− cos θt

ft
g N4i, for t̃1,

− 2
3 cos θt

√
2 sin θW [c(2) tan θW − c(1)] + sin θt

ft
g N4i, for t̃2.

(A.989)

Γ(b̃1/2 → bZ̃i) =
g2

16πmb̃1/2

[
(f2

1 + f2
2 )(m2

b̃1/2
−m2

b −m2
Z̃i

)− 4f1f2mbmZ̃i

]
λ̃

1
2 (mb̃1/2

,mZ̃i
,mb), (A.990)

where

f1 =

cos θb
√

2[ 1
3c(1) sin θW + ( 1

2 − 1
3 sin2 θW ) c(2)

cos θW
]− sin θb

fb
g N3i, for b̃1,

− sin θb
√

2[ 1
3c(1) sin θW + ( 1

2 − 1
3 sin2 θW ) c(2)

cos θW
]− cos θb

fb
g N3i, for b̃2,

(A.991)

f2 =

 1
3 sin θb

√
2 sin θW [c(2) tan θW − c(1)]− cos θb

fb
g N3i, for b̃1,

1
3 cos θb

√
2 sin θW [c(2) tan θW − c(1)] + sin θb

fb
g N3i, for b̃2.

(A.992)

Γ(τ̃1/2 → τZ̃i) =
g2

16πmτ̃1/2

[
(g2

1 + g2
2)(m2

τ̃1/2
−m2

τ −m2
Z̃i

)− 4g1g2mτmZ̃i

]
λ̃

1
2 (mτ̃1/2

,mZ̃i
,mτ ),

(A.993)

where

g1 =

cos θτ
√

2[c(1) sin θW + ( 1
2 − sin2 θW ) c(2)

cos θW
]− sin θτ

fτ
g N3i, for τ̃1,

− sin θτ
√

2[c(1) sin θW + ( 1
2 − sin2 θW ) c(2)

cos θW
]− cos θτ

fτ
g N3i, for τ̃2,

(A.994)

g2 =

sin θτ
√

2 sin θW [c(2) tan θW − c(1)]− cos θτ
fτ
g N3i, for τ̃1,

cos θτ
√

2 sin θW [c(2) tan θW − c(1)] + sin θτ
fτ
g N3i, for τ̃2.

(A.995)

Remember the c(1) and c(2) were given previously in (A.962).

Sneutrino decays into neutralinos are given by:

Γ(ν̃τ1/2 → ντ Z̃i) =
g2

16πm ˜ντ1/2

λ̃
1
2 (m ˜ντ1/2

, 0,mZ̃i
)(m2

˜ντ1/2
−m2

Z̃i
)
( c(2)√

2 cos θW

)2

. (A.996)

For chargino decays into neutralinos and charged Higgs bosons the partial width is given by:

Γ(W̃1 → H±Z̃j) =
g2

32π|mW̃1
| λ̃

1
2 (mW̃1

,mZ̃j
,mH±)

[
(c12

W̃1H±Z̃j
+ c22

W̃1H±Z̃j
)(m2

Z̃j
+m2

W̃1
−m2

H±)

+ 4c12
W̃1H±Z̃j

c22
W̃1H±Z̃j

mZ̃j
mW̃1

]
,

(A.997)
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where:

c1W̃1H±Z̃j
=

1

g
[λ sinβN5j cos θR +

cosβ√
2

(g′N1j + gN2j) cos θR + g cosβN4j sin θR], (A.998)

c2W̃1H±Z̃j
=

1

g
[λ cosβN5j cos θL −

sinβ√
2

(g′N1j + gN2j) cos θL + g sinβN3j sin θL]. (A.999)

For W̃2 the formulae are the same, just make the replacements mW̃1
→ mW̃2

, cos θL/R → sin θL/R and

sin θL/R → − cos θL/R.

Γ(W̃1 →WZ̃j) =
g2

32π|mW̃1
| λ̃

1
2 (mW̃1

,mZ̃j
,mW )

[
− 12mW̃1

mZ̃j
cLW̃1WZ̃j

cRW̃1WZ̃j

+ (cL2
W̃1WZ̃j

+ cR2
W̃1WZ̃j

)
{

(m2
W̃1

+m2
Z̃j
−m2

W ) + (m2
W̃1

+m2
W −m2

Z̃j
)(m2

W̃1
−m2

Z̃j
−m2

W )
1

m2
W

}]
,

(A.1000)

where:

cLW̃1WZ̃j
= − 1√

2
N4j cos θR +N2j sin θR, (A.1001)

cRW̃1WZ̃j
=

1√
2
N3j cos θL +N2j sin θL. (A.1002)

Again for W̃2 the formulae are the same, just make the replacements mW̃1
→ mW̃2

, cos θL/R → sin θL/R

and sin θL/R → − cos θL/R.

A.7 QCD Corrections to Decays

Note, for the decays of neutral Higgs bosons to quarks or gluons, that the possibility of including

QCD corrections is included in the program, by default the QCD corrections are on. The formulae are

those provided in HDECAY-3.4 in SUSYHIT [131,132] and NMSSMTools-4.2.1 in NMHDECAY [126,159]. With

QCD corrections incorporated our formulae become as follows:

Γ(h→ qq)QCDcorr = Γ(h− > qq)tree

(
1 +

4αs(mh)

3π
[
A(β̃)

β̃
+

3 + 34β̃2 − 13β̃4

16β̃3
log

1 + β̃

1− β̃
+

3

8β̃2
(7β̃2 − 1)]

)
.

(A.1003)

This formula applies for all the CP even neutral Higgs bosons, whether in the MSSM or NMSSM, the

difference between the MSSM and NMSSM comes in the tree-level formula. Note that αs is evaluated at

the mass of the decaying Higgs boson. Also note that then β̃ =
√

1− 4m2
q/m

2
h and A(β̃) is given by:

A(β̃) =(1 + β̃2)
[
4Li2(

1− β̃
1 + β̃

) + 2Li2(
β̃ − 1

β̃ + 1
)− 3 log(

1 + β̃

1− β̃
) log

2

1 + β̃
− 2 log(

1 + β̃

1− β̃
) log β̃

]
− 3β̃ log

4

1− β̃2
− 4β̃ log β̃.

(A.1004)

This is exactly as given in equations (16) and (25) of [182]. Li2 is the di-logarithm function (Spence’s

function).

For the CP odd Higgs bosons we have:

Γ(A→ qq)QCDcorr = Γ(A− > qq)tree

(
1 +

4αs(mA)

3π
[
A(β̃)

β̃
+

19 + 2β̃2 + 3β̃4

16β̃
log

1 + β̃

1− β̃
+

3

8
(7− β̃2)]

)
.

(A.1005)
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β̃ and A(β̃) are as given above but with the change mh → mA as appropriate. This formula is as given in

equations (25) and (26) of [182]. It should be noted that when QCD corrections are applied one should

use the pole quark masses (as we do within SoftSusy here), rather than the running masses, as otherwise

the formulae double count O(αs) effects [174,184].

The QCD corrections for h→ gg are more complicated as they involve both standard QCD corrections

due to gluons being radiated, gluons in the loop, tops, bottoms and other quarks, and additional SUSY-

QCD corrections due to gluinos, stops, sbottoms and other squarks. This complicates matters as whilst

the usual “fermionic” QCD (FQCD) corrections apply to all particles in the loop, the SUSY-QCD (SQCD)

corrections only apply to the scalar squark contributions, therefore rather than multiply the whole width

by a correction factor (as was the case for h → qq) we must now correct the SM and SUSY loop

contributions separately. The usual MSSM equation for h→ gg with no corrections is:

Γ(φ→ gg)1-loop =
α2
s(mφ)

128π3

GF√
2
m3
φ

9

8
|ΣIφloop|2. (A.1006)

Here the αs is run to the mass of the decaying Higgs boson. The Iloop can be split into Iquark and Isquark

loop contributions. So Iφlooptot = Iφqtot + Iφsqtot, where Iφqtot = Iφt + Iφb + Iφc and Iφsqtot = Iφ
t̃1

+ Iφ
t̃2

+ Iφ
b̃1

+

Iφ
b̃2

+ Iφc̃L + Iφc̃R + Iφs̃L + Iφs̃R + IφũL + IφũR + Iφ
d̃L

+ Iφ
d̃R

.

To account for the usual QCD corrections, i.e. “FQCD” corrections, as these affect all the loop

contributions, the whole partial width is multiplied by δFQCD:

δCPevenHiggsFQCD = 1 +
αs(mφ)

π
(
95

4
− 7

6
Nf ), (A.1007)

δCPoddHiggsFQCD = 1 +
αs(mφ)

π
(
97

4
− 7

6
Nf ). (A.1008)

Nf is the number of active fermion flavours. The SUSY QCD corrections, i.e. “SQCD” corrections, apply

only to the squark loop contributions. Therefore to incorporate these in the final partial width you must

multiply both the squark loop squared contributions and the interference terms of the squark loops with

the quark loops by the correction factor. Therefore the |Iloop|2 (which comes from the matrix element

squared) above with both FQCD and SQCD corrections included becomes:

|Iφlooptot|2 = δφFQCD|Iφlooptot|2 +Re[(Iφlooptot)
∗Iφsqtot]δSQCD. (A.1009)

To be clear the (Iφlooptot)
∗ here means the complex conjugate of Iφlooptot, given this is an interference term.

The δSQCD correction factor is the same for CP even and CP odd neutral Higgs bosons and is given by

(A.1010) below, note that αs is run to the mass of the decaying Higgs boson:

δSQCD =
17αs(mφ)

6π
. (A.1010)

Consequently in the MSSM the overall formula for the QCD and SUSY-QCD corrected h → gg decay

(at 2-loop) is:

Γ(φ→ gg)1−loop+QCDcorr =
α2
s(mφ)

128π3

GF√
2
m3
φ

9

8

[
δφFQCD|Iφlooptot|2 +Re[(Iφlooptot)

∗Iφsqtot]δSQCD

]
.

(A.1011)

φ is a CP even neutral Higgs here as CP odd Higgs bosons do not have squark loop contributions because

of CP invariance of the decays. For the CP odd Higgs A in the MSSM we therefore only have the quark

loops and FQCD corrections:

Γ(A→ gg)1−loop+QCDcorr =
α2
s(mA)

128π3

GF√
2
m3
A

9

8

[
δAFQCD|IAqtot|2

]
. (A.1012)
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The FQCD corrections for CP even and CP odd neutral Higgs bosons in the MSSM are as given in

Ref. [183] in equations (7) and (15) but with the log terms dropped as the scale of alphas is run to the

masses of the decaying Higgs. As the corrections are purely coloured and the NMSSM only alters the

Higgs and neutralino sectors, the form of the QCD corrections is exactly the same in the NMSSM. The

alterations to the Higgs sector in the NMSSM however result in the couplings of the neutral Higgs bosons

to other particles, and therefore the leading order (i.e. 1-loop) formula for the loop contributions to

h→ gg, being altered. The formula in the uncorrected NMSSM (i.e. at 1-loop) is (as detailed previously)

as follows, with the αs evaluated at the scale of the decaying Higgs boson:

Γ(hi → gg)1−loop =
GFm

3
hi
α2
s(mhi)

64
√

2π3
|Mgg|2, (A.1013)

where

|Mφ
gg|2 =[Jrt + Jrb + Jrc + JrũL + JrũR + Jr

d̃L
+ Jr

d̃R
+ Jrc̃L + Jrc̃R + Jrs̃L + Jrs̃R + Jrt̃1 + Jrt̃2 + Jr

b̃1
+ Jr

b̃2
]2

+ [J it + J ib + J ic + J iũL + J iũR + J i
d̃L

+ J i
d̃R

+ J ic̃L + J ic̃R + J is̃L + J is̃R + J it̃1 + J it̃2 + J i
b̃1

+ J i
b̃2

]2,

(A.1014)

where the JX contributions are different to those in the MSSM as the couplings are different. Here the r

and i were used as shorthand for real and imaginary parts. The |Mgg|2 is therefore just the mod square

of the sum of the complex loop contributions.

In order to incorporate the FQCD and SQCD corrections we again group the loop contributions into

quark and squark so that Jφqtot = Jφt +Jφb +Jφc , Jφsqtot = JφũL +JφũR +Jφ
d̃L

+Jφ
d̃R

+Jφc̃L +Jφc̃R +Jφs̃L +Jφs̃R +

Jφ
t̃1

+ Jφ
t̃2

+ Jφ
b̃1

+ Jφ
b̃2

and Jφlooptot = Jφqtot + Jφsqtot. Then |Mgg|2 becomes:

|Mφ
gg|2 =

[
δφFQCD|Jφlooptot|2 +Re[(Jφlooptot)

∗Jφsqtot]δSQCD

]
, (A.1015)

because the FQCD and SQCD corrections apply to the loop contributions exactly as in the MSSM,

however the loop contributions themselves have changed between the MSSM and NMSSM. So overall in

the NMSSM, the QCD corrected partial width for neutral Higgs decays to gluons is as follows, again the

αs is evaluated at the scale of the mass of the decaying Higgs boson:

Γ(hi → gg)1−loop+QCDcorr =
GFm

3
hi
α2
s(mhi)

64
√

2π3

[
δφFQCD|Jφlooptot|2 +Re[(Jφlooptot)

∗Jφsqtot]δSQCD

]
.

(A.1016)
Again φ here is a CP even neutral Higgs boson as CP odd Higgs bosons do not have squark loop

contributions because of CP invariance of the decays, as in the MSSM. Therefore CP odd Higgs bosons

have only quark loop contributions and so only receive FQCD corrections, without corrections the formula

was:
Γ(Ai → gg)1−loop =

g2α2
s(mAi)m

3
Ai

128π3m2
W

|MAigg|2, (A.1017)

remembering that the αs(mAi) means αs evaluated at the mass of the decaying CP odd Higgs boson Ai.

Here |MAigg|2 is:

|MAigg|2 = (Rrt +Rrb +Rrc)2 + (Rit +Rib +Ric)2. (A.1018)

The corrections are incorporated by multiplying by δAFQCD, so with the QCD corrections the CP odd

Higgs decays in the NMSSM are given by:

Γ(Ai → gg)1−loop+QCDcorr =
g2α2

s(mAi)m
3
Ai

128π3m2
W

|MAigg|2δAFQCD. (A.1019)

Throughout, the formulae used are those given in HDECAY-3.4 [132] (and hence SUSYHIT [131]) and

NMSSMTools-4.2.1 [126–128,159].
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Appendix B

reSolve Theory further information

B.1 Resummation Coefficients

In this section we provide expressions and references for the resummation coefficients introduced

in Chapter 6.2.3 in order to be as comprehensive as possible. We begin with the process-independent

coefficients, the first coefficients to be given are the g(n) representing the leading logarithm, next-to-leading

logarithm and next-to-next-to-leading logarithm all-order resummations for n = 1, 2, 3 respectively in the

Sudakov factor, as outlined in equation 6.20:

ḡ(1) =
A(1)

β0

λ+ log(1− λ)

λ
, (B.1)

ḡ(2) =
B(1)

β0
log(1− λ)− A(2)

β2
0

(
λ

1− λ + log(1− λ)

)
+
A(1)β1

β3
0

(
1

2
log2(1− λ) +

log(1− λ)

1− λ +
λ

1− λ

)
,

(B.2)

ḡ(3) = −A
(3)

2β2
0

λ2

1− λ −
B(2)

β0

λ

1− λ +
A(2)β1

β3
0

(
λ(3λ− 2)

2(1− λ)2
− (1− 2λ) log(1− λ)

(1− λ)2

)
+
B(1)β1

β2
0

(
λ

1− λ +
log(1− λ)

1− λ

)
+A(1)

[
β2

1

2β4
0

1− 2λ

(1− λ)2
log2(1− λ) + log(1− λ)

(
β0β2 − β2

1

β4
0

+
β2

1

β4
0(1− λ)

)]
;

(B.3)

where the log(Q2b2) terms are contained in the variable λ:

λ =
1

π
β0αs(Q

2) log(Q2b2/b20) . (B.4)

These are the terms currently implemented in the reSolve, which can thus perform resummations up to

NNLL.

These ḡ(n) functions are just an alternative representation of the A(n) and B
(n)
c functions, hence their

dependence upon them, and are related to these by expanding the exponential in equation 6.16. The soft

A(n) and flavour-conserving collinear B
(n)
c perturbative coefficients themselves are given in terms of the

standard QCD constants, which we give here before listing the A(n) and B
(n)
c coefficients:

TR : tr(tatb) = TR δab → fundamental colour matrices normalisation,

CA ≡ Cg = Nc → SU(Nc) adjoint representation Casimir,

CF ≡ Cq ≡ Cq̄ = TR
N2
c − 1

Nc
→ SU(Nc) fundamental representation Casimir,

Nf → Number of active (effectively massless) flavours,

ζn → Value of Riemann Zeta function on point n.

(B.5)

We also attempt to be as general as possible here and banish any confusion which can arise from reading
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the literature, where many of the perturbative coefficients listed have different normalisation choices

between papers in their expansions. We therefore define an arbitrary constant k to account for this, with

common choices in the literature k = 1, 2, 4. A generic perturbative function Z(αs) is then:

Z(αs) =
∑
n

(αs
kπ

)n
Z(n) . (B.6)

We must also report the β function (defined as in equation 6.18 and present in equation 6.19) coeffi-

cients (taken from reference [222] equation (28) and reference [236] equation (B5)):

β0 =
k

12
(11CA − 4TRNf ), (B.7)

β1 =
k2

24
(17C2

A − 10CATRNf − 6CFTRNf ), (B.8)

β2 =
k3

64

(
2857

54
C3
A −

1415

27
C2
ATRNf −

205

9
CACFTRNf +2C2

FTRNf +
158

27
CAT

2
RN

2
f +

44

9
CFT

2
RN

2
f

)
.

(B.9)
Finally we can list the perturbative A(n) and B

(n)
c coefficients up to NNLO, all coefficients are defined

in the hard scheme, explained in Chapter 6.2.3, unless otherwise specified. The A
(n)
c coefficients are

resummation scheme independent, being independent of the transformations in equation 6.30. The A
(n)
c

coefficients are taken from reference [222] equation (47) for A
(1,2)
c and reference [236] equations (51), (74)

and (B3) for A
(3)
c . The B

(n)
c are from reference [222] eq. (49) for B(1) and reference [251] eq. (34)-(36)

for B
(2)
c :

A(1)
c = k Cc, (B.10)

A(2)
c =

k2

2
Cc

[(
67

18
− π2

6

)
CA −

10

9
TRNf

]
, (B.11)

A(3)
g =CA

k3

16

[
C2
A

(
245

6
− 134

27
π2 +

11

45
π4 +

22

3
ζ3

)
+CATRNf

(
−418

27
+

40

27
π2 − 56

3
ζ3

)
+ CFTRNf

(
−55

3
+ 16ζ3

)
+

16

27
T 2
RN

2
f

]
,

(B.12)

A(3)
q = A

(3)
q̄ =

CF
CA

A(3)
g + 2β0

k2

16
CF

[
CA

(
808

27
− 28ζ3

)
− 224

27
TRNf

]
, (B.13)

B(1)
g = −k

6
(11CA − 4TRNf ), (B.14)

B(1)
q = B

(1)
q̄ = −k 3

2
CF , (B.15)

B(2)
c = k

(
γ

(1)
c

16
+ πβ0Ccζ2

)
. (B.16)

The γ
(1)
c coefficients are the δ(1− z) parts of the first order Altarell-Parisi splitting kernels:

γ(1)
q = γ

(1)
q̄ = k

[
C2
F (−3 + 24ζ2 − 48ζ3) + CACF

(
−17

3
− 88

3
ζ2 + 24ζ3

)
+ CFTRNf

(
2

3
+

16

3
ζ2

)]
,

γ(1)
g = k

[
C2
A

(
−64

3
− 24ζ3

)
+

16

3
CATRNf + 4CFTRNf

]
.

(B.17)

Meanwhile we must also give the collinear expressions, which are dependent on the leading order

process which initiates the hard scatter. All C
(n)
ab coefficients are given here in z-space; in reSolve
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however the corresponding Mellin space expressions are actually used. We begin with the first order

coefficients, taken from reference [251], equations (29)-(33):

C(1)
qq (z) =

k

2
CF (1− z), (B.18) C(1)

gq (z) =
k

2
CF z, (B.19)

C(1)
qg (z) =

k

2
z(1− z), (B.20) C(1)

gg (z) = C
(1)
qq̄ (z) = C

(1)
qq′ (z) = C

(1)
qq̄′ (z) = 0.

(B.21)

Finally, for NNLL resummation, we also require the 2nd order collinear coefficients, C
(2)
ab ; these

expressions are very long and so we report them in terms of more fundamental objects whose definitions

can be found in the listed references, the formulae are extracted from [251], equations (37)-(40) and

nearby text:

C(2)
qq (z) =

k2

2

{
HDY (2)
qq̄←qq̄(z)|no δ(1−z) −

C2
F

4

[
(2π2 − 18)(1− z)− (1 + z) log z

]}
, (B.22)

C
(2)
qq̄ (z) = k2HDY (2)

qq̄←qq(z), (B.23)

C
(2)
qq′ (z) = k2HDY (2)

qq̄←qq̄′(z), (B.24)

C(2)
qg (z) = k2

{
HDY (2)
qq̄←qg(z)−

CF
4

[
z log z +

1

2
(1− z2) + (π2 − 8)z(1− z)

]}
, (B.25)

C
(2)
qq̄′ (z) = C

(2)
qq′ (z), by eqs. (24), (26) and (35) of [290]; (B.26)

C(2)
gq (z) = k2

{
HH(2)
gg←gq(z) + C2

F

3z

4
− CACF

z

[
(1 + z) log z + 2(1− z)− 5 + π2

4
z2

]}
, (B.27)

C(2)
gg (z) =

k2

2

{
HH(2)
gg←gg(z)|no δ(1−z) + C2

A

[
1 + z

z
log z + 2

1− z
z

]}
. (B.28)

The HDY (2)
qq̄←qq̄(z), HDY (2)

qq̄←qq(z)|no δ(1−z), HDY (2)
qq̄←qq̄′(z)|no δ(1−z) and HDY (2)

qq̄←qg(z) are defined in equations (23),

(24), (25) and (32) of [290]; whilst HH(2)
gg←gq(z) and HH(2)

gg←gg(z) are defined in equations (23) and (24)

of [291].

Whilst these equations are very complex, we owe some reduction in complexity to flavour and C
symmetry. All flavour indices in equation 6.11 could in principle assume 13 different values (from t̄ to t

plus g). However, since quark mass effects are not included in this formalism, given we work in a fixed

flavour scheme, the coefficients are related by flavour symmetry. This reduces the number of possible c

indices in coefficients A
(n)
c and Bnc to c = q, q̄ or g. For the collinear coefficients Cab there is a further

need to distinguish diagonal and non-diagonal flavour contributions - there are combinations Cqq′ , Cq̄q̄′ ,

Cqq̄′ and Cq̄q′ . Furthermore, due to C symmetry, all coefficients are invariant under barring of all indices

so that Aq = Aq̄, B
F
q = BFq̄ to all orders. As a result there are just seven independent combinations for

the Cab coefficients: CFgg, C
F
qq, C

F
qg, C

F
gq, C

F
qq̄, C

F
qq′ and CFqq̄′ .

Lastly, we must list the hard factors, which are process-dependent, absorbing the remaining process

dependence of the resummation formalism. Here we list the diphoton, Drell-Yan and Higgs hard factor

coefficients in the hard scheme, with only the diphoton and Drell-Yan processes so far included in the

reSolve program. In actuality, as described in Chapter 6.2.3, in reSolve we use the DY-Higgs scheme

and so our Drell-Yan (and Higgs once this process is added) hard factors are taken to be 0, nonetheless one

can use the resummation transformation of equation 6.30 to switch between resummation schemes. The

formulae listed here are given in the paper [251]: equations (82-83) are for Drell-Yan, equations (88-91)
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are for diphoton, and equations (85, 87) are for Higgs production1.

HDY (1)
q =k CF

(
π2

2
− 4

)
, (B.29)

HDY (2)
q =k2

[
CFCA

(
59

18
ζ3 −

1535

192
+

215

216
π2 − π4

240

)
+

1

4
C2
F

(
−15ζ3 +

511

16
− 67

12
π2 +

17

45
π4

)
+

1

864
CFTRNf (192ζ3 + 1143− 152π2)

]
,

(B.30)

Hγγ(1)
q =k

CF
2

[
π2 − 7 +

1

(1− v)2 + v2

[
((1− v)2 + 1) log2(1− v)

+ v(v + 2) log(1− v) + (v2 + 1) log2 v + (1− v)(3− v) log v
]]
,

(B.31)

Hγγ(2)
q =

k2

4ALO

[
F0×2
inite,qq̄γγ;s + F1×1

inite,qq̄γγ;s

]
+ 3ζ2CFH

γγ(1)
q − 45

4
C2
F

+ CFCA

(
607

324
+

1181

144
ζ2 −

187

144
ζ3 −

105

32
ζ4

)
+ CFTRNf

(
− 41

162
− 97

72
ζ2 +

17

72
ζ3

)
,

(B.32)

HH(1)
g =k

[
CA

π2

2
+

5CA − 3CF
2

]
, (B.33)

HH(2)
g =k2

[
C2
A

(
3187

288
+

7

8
LQ +

157

72
π2 +

13

144
π4 − 55

18
ζ3

)
+ CACF

(
−145

24
− 11

8
LQ −

3

4
π2

)
(B.34)

+
9

4
C2
F −

5

96
CA−

1

12
CF −CATRNf

(
287

144
+

5

36
π2 +

4

9
ζ3

)
+CFTRNf

(
−41

24
+

1

2
LQ + ζ3

)]
.

(B.35)

For the Higgs case LQ = log(m2
H/m

2
t ), whilst for the diphoton process v = −u/s (partonic Man-

delstam variables), and ALO is proportional to the LO matrix element u/t + t/u (and to KinFac in our

code):

ALO = −8Nc

(
u

t
+
t

u

)
= 8Nc

1− 2v + 2v2

v(1− v)
. (B.36)

The F0×2
inite,qq̄γγ;s, F1×1

inite,qq̄γγ;s are defined elsewhere in the literature in [293], equations. (4.6) and (5.3),

see also Appendices A and B in the same reference, they are IR-subtracted loop amplitudes with 0 × 2

being interferences of LO and 2-loop and 1 × 1 being the 1-loop squared. A subtlety which appears in

the γγ process is that as the photon couples proportional to charge so the F0×2
inite,qq̄γγ;s factor, and thus

H
γγ(2)
q , is actually dependent on the electric charge (squared) of the involved quark. There are therefore

two different H
γγ(2)
q coefficients, H

γγ(2)
u and H

γγ(2)
d . In the γγ case, the gg channel contributes with the

LO term for this initiation given by the gg → γγ box (see Figure 6.4 in Chapter 6.4.1), so that Hγγ
gg 6= 0.

However, the gg → γγ partonic process is suppressed by α2
s with respect to the qq̄-initiated one (which is

O(α0
s), a purely electromagnetic process at LO), so a non-trivial Hγγ

gg is only needed beyond N2LL, and

so is not included in reSolve.

1The Higgs hard factors were obtained in the large mt limit. For Higgs at NLO, also the contribution for finite
top mass is known: see for instance [292], equations. (21)-(30).
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B.2 Mellin Space

In our reSolve formalism, we rely on transforming from momentum fraction space for each parton

to Mellin space (z1, z2) → (N1, N2) in order to simplify the resummation and the evaluation of the

spectra. The reason for this is that in our master formula for transverse momentum resummation, we

naturally develop a “multiplicative convolution” (by which we mean a product analogue of the standard

convolutions used in Fourier theory) as the partons emerge from the hadrons with momentum fractions
x1

z1
and x2

z2
before emitting collinear radiation which reduces their momentum fractions by a further factor

to z1 and z2. We consequently develop integrals of the schematic form:∫ 1

x1

dz1

z1
C(z1, . . . )f(

x1

z1
, . . . ). (B.37)

Mellin transforms simplify such expressions as they are invariant under scale transformations, reflect-

ing the fact that mathematically scaling all the momentum fractions in such multiplicative convolutions

leaves the problem unchanged. The Mellin transformM of a function g(x) into Mellin space s is defined

in equation B.38. The “Haar measure” dx
x ensures the Mellin transform is invariant under dilatations,

i.e. it is scale invariant. Compare this with Fourier transformations where the measure is invariant under

translations and so simplifies standard (i.e. additive) convolutions.

{M(f)}(s) := φ(s) =

∫ ∞
0

xs−1g(x)dx =

∫ ∞
0

xsg(x)
dx

x
. (B.38)

Meanwhile, inverse Mellin transforms M−1 must be done along a contour in the complex plane:

{M−1(φ)}(x) := g(x) =
1

2πi

∫ c+i∞

c−i∞
x−sφ(s)ds, (B.39)

here the standard is to integrate over a vertical line in the complex plane as indicated, however in reSolve

we integrate over a contour at 45 degrees in the complex plane so as to aid convergence.

To see that such transforms will simplify our “multiplicative convolutions” in our master formula, let

us consider a general form
∫∞

0
K(x/y)g(y)dyy . Then its Mellin transform is given by:

M
(∫ ∞

0

K(x/y)g(y)
dy

y

)
=

∫ ∞
0

xs−1
(∫ ∞

0

K(x/y)g(y)
dy

y

)
dx =

∫ ∞
0

g(y)
(∫ ∞

0

xs−1K(x/y)dx
)dy
y
.

(B.40)

In the last step we interchanged the order of integration. We now change variables, let u = x/y so that
du
u = dx

x :

M(

∫ ∞
0

K(x/y)g(y)
dy

y
) =

∫ ∞
0

g(y)
(∫ ∞

0

ysusK(u)
du

u

)dy
y

=

∫ ∞
0

g(y)
(∫ ∞

0

ys−1us−1K(u)du
)
dy

=

∫ ∞
0

g(y)ys−1dy

∫ ∞
0

us−1K(u)du = {M(g)}(s)× {M(K)}(s).

(B.41)

So our multiplicative convolution becomes a simple product in Mellin space, so for our applications we

can implement the multiplicative convolution in the Master formula equation 6.11 as a simple product

in Mellin space, making the formalism much more straightforward to reproduce computationally.
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B.3 reSolve Monte Carlo Integration

Here we wish to provide an overview of the Monte Carlo integration technique applied in the k vegas

built-in, self-written integrator which is an implementation of Lepage’s VEGAS algorithm [265]. In order

to estimate an integral based on randomly sampling numbers from a flat distribution we can calculate

the integrand for each input variable x, sum the integrands and divide by the total number of samples:

I =

∫
f(x)dx ≈ 1

N

N∑
i=1

fi. (B.42)

The square error estimate in this case for this approximate integration is as follows, with the additional
1

N−1 prefactor obtaining the variance in the mean rather than in the overall distribution:

σ2 =
1

N − 1

[ 1

N

N∑
i=1

f2
i −

( 1

N

N∑
i=1

fi

)2]
. (B.43)

In this case however, the points were sampled from a flat distribution, clearly this is not the optimal

sampling strategy to reduce the variance of the estimate made. Indeed if we sample from a probability

distribution with normalised probability density function p(x) we essentially perform a change of variables

dP (x) = p(x)dx:
I =

∫
f(x)dx =

∫
f(x)

p(x)
p(x)dx =

∫
f(x)

p(x)
dP (x). (B.44)

The estimate for I and its error squared are then

I ≈ 1

N

N∑
i=1

fi
pi

=
1

N

N∑
i=1

fiwi, (B.45)

σ2 =
1

N − 1

[ 1

N

N∑
i=1

(fiwi)
2 −

( 1

N

N∑
i=1

fiwi

)2]
, (B.46)

where the wi are the weights and are the inverse of the probabilities of choosing the value of x at that

specific point.

The challenge for Monte Carlo integration methods is to choose the probability distribution p(x)

such that the variance is minimised, one method of doing this is importance sampling, i.e. sampling

the distribution where it is largest. In particular, if you were to sample from the actual function f(x)

(which would require knowing its functional form across the entire x range rather than just evaluating

it at specific points numerically) you would expect to minimise variance as you would be summing the

contributions of the integrand with probabilities set by the integrand, replicating analytic integration.

Therefore importance sampling aims to do just this, sampling the integrand function where it is largest

p(x) =
|f(x)|∫
f(x)dx

, (B.47)

so the sampling probability is proportional to the function value. As the weights of individual points

are the inverse of the probabilities of obtaining that point, the weights are correspondingly smaller for

larger values of the integrand as these have larger probabilities of being selected. Of course, to normalise

this probability density function p(x) ∝ |f(x)| as in equation B.47, you need to know the value of I

itself - but this is what we are aiming for! The Lepage VEGAS algorithm, and various other importance

sampling methods, are therefore an attempt to minimise the variance by circumventing this circularity

in the argument.
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VEGAS works by dividing the problem of obtaining a Monte Carlo integral estimate into iterations,

the estimate of the integral for the previous iterations can then be used to normalise the probability

distribution and ensure in the following iteration the integrand is sampled where it is largest.

1. In the first iteration a uniform probability density function is used and the integral and variance

estimates are simply given by equations B.42 and B.43 respectively.

2. Given there is now an estimate for the function at various values of x we can produce a grid in x

which is weighted such that it reflects the value of the function in different regions of x, this can

then be used to define the probability density function p(x) as in equation B.47.

3. In the second iteration the x values sampled are given by the Monte Carlo grid so that the prob-

ability density function approximates the integrand function. The integral and variance estimates

for the second iteration are then given by equations B.45 and B.46 respectively. The Monte Carlo

grid is then updated using the new values of the function sampled in this second iteration. It

is updated by weighted average using the variance estimates of the first and second iterations to

weight their contributions to the grid.

4. This iterative procedure is repeated until the specified number of iterations have been performed,

each time the integral estimate should get more accurate, as indicated by a reduced variance

estimate.

5. Iteration on iteration a total estimate of the integral, Ĩ, and the error, σĨ , are made using all

previous iterations. This is done by weighted averaging with the variance for each iteration estimate

used as the weighting, the error in this overall estimate is then:

σĨ =
[∑

j

1

σ2
j

]− 1
2

, (B.48)

where j is the iteration number and σj is the variance of an individual iteration estimate. The

overall estimate of the integral up to that point is the weighted average of the individual iteration

integral estimates (Ij) and is given by:

Ĩ = σ2
Ĩ

∑
j

Ij
σ2
j

. (B.49)

6. A χ2 estimate can be made iteration on iteration for the goodness of the iteration estimate for the

integral using this overall estimate:

χ2 =
∑
j

(Ij − Ĩ)2

σ2
j

, (B.50)

sometimes this may additionally be weighted by I2
j /σ

2
j . For the total estimate to be trusted, the

χ2 value should not exceed the number of iterations minus 1, this is the “χ2 per degree of freedom”

printed by reSolve and should decrease iteration on iteration, again after the first few iterations

are performed.

7. Iteration on iteration the grid is improved, once the optimal grid is obtained the error estimate is

proportional to the standard 1/
√
n with n the number of integrand evaluations in the iteration.

For this reason the number of evaluations per iteration is increased in reSolve so as to reduce the

Monte Carlo error.

This described the procedure for obtaining the overall cross-section and its error, integrated over all

phase space variables. In reality, reSolve is targeted at differential cross-sections, where the summing of
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contributions is done over all but one (or perhaps more) phase space variables. In this case the procedure

is similar, except first the events (samples) are divided into bins in the relevant differential variable, as

specified by the histogrammer through the input file. In each of these bins the cross-section estimate

and error estimate is made as in the step-by-step guide above. This essentially integrates over the other

phase space variables to obtain a cross-section estimate in each bin in the differential variable, thereby

obtaining the differential distribution.

This description has been one of importance sampling, an alternative technique to improve the Monte

Carlo error estimate is stratified sampling, we will not go into details on this other than to mention its

basic strategy is to sub-divide the integration region into smaller volumes and perform a Monte Carlo

integration in each smaller region. The size of the regions are varied, as well as their relative locations,

iteratively in order to ensure the contribution to the total variance is equal from each sub-region. This

minimises the overall variance as expressions of the form of equation B.48 are dominated by the smallest
1
σ2
j
, i.e. by the largest variance. In fact, VEGAS and hence reSolve use both stratified sampling and

importance sampling, as the grid described requires a stratification of the values of the phase space

variables sampled. Essentially the individual estimates are histogrammed in all variables in order to

define the grid from which to sample the random values. However, in order to avoid the number of bins

in the grid growing rapidly as Kd with the number of dimensions, where K is the number of bins per

dimension d, which is a problem with stratified sampling, the probability density function is assumed

to be separable in each variable: g(x1, x2, x3, . . . ) = g1(x1)g2(x2)g3(x3) . . . , this reduces the number of

bins required to define the grid to Kd. This imposes a constraint on VEGAS however, meaning it is

most efficient when the peaks of the integrand function are localised in the separate phase space variables.

Much more information on the precise strategy applied are given in Lepage’s original VEGAS paper [265].
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