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Abstract
Background: High-throughput sequencing technology has become popular and widely used to
study protein and DNA interactions. Chromatin immunoprecipitation, followed by sequencing of
the resulting samples, produces large amounts of data that can be used to map genomic features
such as transcription factor binding sites and histone modifications.

Methods: Our proposed statistical algorithm, BayesPeak, uses a fully Bayesian hidden Markov
model to detect enriched locations in the genome. The structure accommodates the natural
features of the Solexa/Illumina sequencing data and allows for overdispersion in the abundance of
reads in different regions. Moreover, a control sample can be incorporated in the analysis to
account for experimental and sequence biases. Markov chain Monte Carlo algorithms are applied
to estimate the posterior distributions of the model parameters, and posterior probabilities are
used to detect the sites of interest.

Conclusion: We have presented a flexible approach for identifying peaks from ChIP-seq reads,
suitable for use on both transcription factor binding and histone modification data. Our method
estimates probabilities of enrichment that can be used in downstream analysis. The method is
assessed using experimentally verified data and is shown to provide high-confidence calls with low
false positive rates.

Background
The importance of DNA-binding proteins in molecular
functions such as transcription, replication, DNA repair
and chromosome segregation highlights the significance
of identifying the locations of their binding sites through-
out the genome. The most widely used method for map-
ping these genomic locations is chromatin
immunoprecipitation (ChIP). This process involves shear-
ing the DNA and isolating the fragments to which pro-
teins have bound [1], after which various methods can be
used to identify those protein-bound fragments. A similar

approach may be used to identify histone marks such as
trimethylation. Direct sequencing is a reliable and effi-
cient technique that is gradually replacing microarray
hybridization for determining the contents of the immu-
noprecipitated samples [2]. These two procedures are
widely known as ChIP-seq and ChIP-chip respectively,
and both present their own statistical challenges. Hidden
Markov models (HMM) fit naturally in this framework
and have had numerous implementations in the analysis
of ChIP-chip data sets [3-8]. However, these models are
not directly applicable to ChIP-seq data.
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In this paper we focus on a method of analyzing ChIP-seq
data to identify protein-binding locations and the pres-
ence of specific histone modifications in the genome.
Such data consist of the locations of the ends of the pro-
tein-bound and background fragments from the sample
of interest as well as often containing control data from a
sample that contains fragments of DNA with no prefer-
ence for the regions to which the specific protein binds.
Various statistical tools have been developed to interpret
the data resulting from these techniques, but the set of
available tools is not yet mature.

Our algorithm models the positions of the sequenced
fragments and determines the locations of enriched areas,
such as binding sites, by using HMMs and Bayesian statis-
tical methodology. In this (and other) ways, it differs from
previously published methods that we now briefly review.

ChipSeq Peak Finder [9] clusters the sequenced reads (i.e.,
the beginnings of the fragments), and uses the ratio of the
counts from the immunoprecipitated sample to the con-
trol in order to identify (or call) regions where large num-
bers of fragments overlap as "peaks". An updated version
of the method, eRange [10], also allows the use of reads
that map to multiple locations in the genome, which
results in an increase in the amount of data applied to
peak-calling.

The extended set method XSET [11] uses the full estimated
length of the DNA fragments to identify the regions with
the highest numbers of overlapping fragments. The
method in Mikkelsen et al. [12] takes into account the
"mappability" of the underlying sequence, by excluding
regions from the reference genome that correspond to
multiple occurrences of the same short sequences, and
computes p-values to find significant differences between
the observed and expected numbers of fragments. Peak-
Seq [13], another algorithm that allows for this mappabil-
ity effect, starts with a normalization step comparing the
control to the background component of the ChIP sample
and then, using the Binomial distribution, identifies sig-
nificantly different concentrations of reads between the
two samples.

A feature of ChIP-seq is that, by examining only the start
of protein-bound fragments, we can identify peaks offset
on the forward and reverse strands of the DNA, the true
binding site lying somewhere in between. Model-based
Analysis for ChIP-seq (MACS) [14] shifts the reads on the
forward and reverse strands together, and uses the Poisson
distribution to identify the density of reads in enriched
and non-enriched regions in order to call peaks. In addi-
tion, the method identifies multiple identical reads to
avoid biases during amplification and sequencing library
preparation.

Quantitative enrichment of sequence tags (QuEST) [15]
also shifts the peaks from opposite strands together and
derives a kernel density estimation score to call the
enriched regions. FindPeaks [16] calls peaks according to
some minimum height criteria without including a con-
trol sample in the analysis. Another algorithm is Site Iden-
tification from Short Sequence Reads (SISSR) [17], which
estimates Poisson probabilities of high read counts, and
calls regions where the peaks shift from the forward to the
reverse strand.

In Kharchenko et al. [18] three similar peak calling meth-
ods are proposed that score read counts upstream and
downstream of each region to match read patterns in the
forward and reverse strands. In addition, Nix et al. [19]
have simulated spike-in data, combined them with con-
trol reads from real experiments and used different met-
rics to score the peaks while controlling for false
discoveries. Table 1 presents a structured comparison of
these algorithms.

Results
Algorithm
During chromatin immunoprecipitation, the proteins are
cross-linked with the DNA, the cells are lysed, and the
DNA is randomly sheared. The fragments bound by the
protein of interest are isolated using specific antibodies to
immunoprecipitate the protein and the cross-links of pro-
tein and DNA are reversed to liberate the DNA fragments.
The resulting sample is enriched in the target immunopre-
cipitated areas but consists mainly of background DNA
fragments.

Following the experiment, high throughput sequencing is
used to reveal the identity of a sample of the fragments.
The fragments are size-selected beforehand to improve the
throughput and reproducibility of the sequencing reac-
tion. We use the Illumina Genome Analyzer platform, in
which the samples are placed on flow cells and go through
several cycles of preparation, imaging and identification.
The short reads from the ends of fragments are then
mapped back to the reference genome to give the chromo-
somal position and strand of each read. The length of each
fragment is unknown, since only one end is sequenced,
but the average fragment length can be estimated experi-
mentally (e.g. using the Bioanalyzer platform). In our
analysis we only use the reads that map to a unique loca-
tion of the genome.

An important part of the process is the addition of a con-
trol sample, such as an Input preparation, which under-
goes the same cross-linking, fragmentation and
sequencing procedure, the key difference being that the
bound fragments are not isolated using an antibody. Our
method can be applied with or without the inclusion of a
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control sample, but we would advise researchers to use
control data, as they are necessary for identifying sequen-
tial artefacts or sample biases.

HMM model description

We have constructed a fully probabilistic model that takes
into account the natural features of the data and incorpo-
rates them in a hidden Markov framework. The method
divides the genome into equidistant regions, or windows,
whose size is not less than half the mean fragment length;
depending on the experiment and the length of the sites
of interest, the resolution can be modified as desired.

Counts for each window are defined as the number of 5'
fragment ends (the end that was sequenced) that map to
that region, either on the forward or the reverse DNA

strand. We define these counts as  and  for window

t, on the forward (+) and reverse (-) strand. The window
length is chosen such that most fragments cover the win-
dow to which their 5' end is mapped and also the neigh-

bouring one. Thus for windows t and t + 1, the counts 

and  have the same dependence on the underlying

sequence.

Yt
+ Yt

−

Yt
+
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−
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Table 1: Comparison of different peak-calling algorithms

Method A B C D E F G

CSPF control or IP only read length
no orientation

merge strands
no shift

N simple height criteria ROC curve 
(empirically)

both

XSET IP only fragment length
orientation

merge strands
no shift

Y simple height criteria FDR estimate using 
Poisson distribution

both

Mikkelsen et al. IP only no orientation no merge
no shift

Y p-values from 
permutations

no official FDR both

MACS control or IP only fragment length
orientation

no duplicated reads

shift reads
merge strands

N Poisson p-values FDR estimate by 
peaks in control:IP

both

QuEST control orientation shift reads
merge strands

N kernel density 
estimation

FDR estimate by 
permutations of the 

control

better for TF

FindPeaks IP only fragment length
orientation

no merge
no shift

N simple height criteria FDR estimate by 
permutations of the IP

both

SISSR control or IP only fragment length
orientation

no merge
no shift

N compares reads on 
different strands

FDR estimate by 
peaks in 

background:IP

better for TF

Kharchenko et al. control orientation no merge
no shift

N Poisson distribution FDR estimate by 
permutations of the 

control

better for TF

PeakSeq control fragment length
orientation

merge strands Y sample normalisation 
Binomial distribution

FDR estimate, q-
values 

(BH correction)

both

BayesPeak control or IP only fragment length
orientation

no merge
no shift

N negative binomial 
distribution, Bayesian 
posterior probabilities

posterior enrichment 
probabilities

both

The methods shown are compared with respect to the following features:
A. whether they require a control sample (control) or whether they only use the ChIP sample (IP only)
B. whether they take into account the (average) length of the reads/fragments and their orientation
C. whether they take into account the different DNA strands or if they merge the reads, and whether the reads are shifted towards the 3' end
D. whether an externally estimated mappability file is used
E. how the scores, on which the classifications are based, are estimated
F. whether/how any FDR or sensitivity/specificity estimates are calculated
G. whether or not the method is applicable to both transcription factor (TF) and histone mark data.
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We use a hidden Markov model (HMM) that assigns a
state to each region t such that St = 1, if there is a binding
site or modification in that region increasing relative frag-
ment abundance, and St = 0 if not. We assume that the
dependence between adjacent windows is the same
throughout the genomic region under study, i.e., P(St+1 =
1|St = 0) = p and P (St+1 = 1|St = 1) = r for parameters p and
r and for all t.

As the fragment counts  and  depend on both St

and St+1, the working states correspond to the set of paired

combinations

for all windows t. Figure 1 shows an illustration of the
model. We consider states Zt = {1, 2, 3} to have the same

enrichment effect and the state Zt = 0 to have none. The
initial state distribution for t = 1 assigns equal probability
to all 4 states.

Conditional on the parameters γ and wt (defined below)
and on the hidden state Zt = 0, the counts are negative
binomially (NB) distributed, and given Zt = 1 the counts
are the sum of two independent negative binomial ran-
dom variables, corresponding to background and fore-
ground counts. Using this distribution avoids estimation
problems caused by overdispersion of the data when
greater variability than expected is observed. Such issues
would arise if we used the simple Poisson model that
implies equality between the mean and the variance of the
counts. In addition, the NB can be expressed as a Poisson-
Gamma mixture to make parameter estimation and addi-
tions to the model more straightforward. When a control
sample is available, it is included in the analysis by intro-
ducing a parameter via Poisson regression, as shown
below. In this way external factors causing high or low
read concentration can be quantified using the density of
the Input reads and protein-related enrichment can be
correctly identified.

The emission distributions of the model are

where Γ (α, β) represents the Gamma distribution with
density f(x|α, β) ∝ xα-1 exp(-βx) for x ≥ 0, wt is the number
of Input fragments with 5' ends in windows t and t + 1 (on
either strand), λ0 and λ1 are the parameters corresponding
to relative fragment abundance in the unenriched and
enriched regions respectively, γ is the parameter that
allows for the dependence on the Input sample, and α0,
β0, α1 and β1 are hyperparameters.

Parameter and state estimation
Within the Bayesian framework of this paper we use effi-
cient Markov chain Monte Carlo (MCMC) algorithms, as
opposed to the Expectation-Maximization (EM) algo-
rithm [20] that has been commonly used for HMM
parameter estimation, thus providing a natural way of
avoiding problems with unstable numerical optimisation.
Bayesian methods estimate the model parameters by sam-
pling from their full posterior density rather than giving
point estimates, and offer the opportunity of including
prior parameter information in the analysis [21].

MCMC algorithms take an approach similar to EM by
using the complete data (i.e., observed reads and missing
hidden states) to sample from the posterior distributions

Yt
+ Yt+

−
1

Z

S S

S S

S St

t t

t t

t t
=

=
=
=

+

+

+

0 0 0

1 0 1

2 1 0

3

1

1

1

if

if

if

( , ) ( , )

( , ) ( , )

( , ) ( , )

iif ( , ) ( , )S St t+ =

⎧

⎨
⎪
⎪

⎩
⎪
⎪

1 1 1

Y Y Z

Y Y Z

t t t

t t t

wt+
+
−

+
+
−

=

=

, |

, | , ,

~ ( )

~

1

1

0

1

00

1 2 3

l
l

l gPoisson

Poissonn(( ) )

~ ( , )

~ ( , )

l l g
a b
a b

0 1

0 0

1 1

+ wt

Γ
Γ
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Illustration of the model. This figure shows how the 
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by red and blue respectively, are counted as  and  
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of the parameters and states. The posterior samplers alter-
nate between simulating the states given the parameters
and read counts, and simulating the parameters given the
complete data. We set Gamma priors for the parameters
α0, β0, α1 and β1 and γ and Beta priors for p and r.

We evaluate the likelihood expression using a recursive
technique introduced by Baum and Welch [22] that con-
sists of forward and backward steps as also used in a Baye-
sian context by Scott [23]. Depending on the parameter
involved at each step and whether it has a conjugate pos-
terior distribution, the algorithm samples new values
using either Gibbs or Metropolis-Hastings updates.

To sample from the posterior distribution of the states we
use another recursive technique, called forward-backward
(FB) Gibbs [23], which treats all the state parameters as
one block, updates their distribution and then uses the FB
recursions to sample each state directly from the joint
density. This algorithm leads to more rapidly mixing runs,
since the Markov chain consists of fewer components and
the dependence of each hidden state on its previous
drawn value is reduced.

The nature of the hidden states is then estimated using
their marginal posterior probabilities, which indicate
whether each window is enriched or not, according to the
model and the data. More details on how these are calcu-
lated can be found in the Methods section. Once the pos-
terior probabilities for the Z states are estimated, it is very
easy to calculate the equivalent ones for the S states that
correspond directly to the existence or absence of a site of
interest in each window. In our examples we chose a nat-
ural threshold of 0.5 so that the peaks that we called are
those regions that are more likely to be enriched than
non-enriched. In other circumstances, we might choose a
different threshold to return only highly probable regions,
or conversely more speculative regions. In our examples,
the majority of posterior probabilities are near to either
zero or one, and so the exact choice of threshold would
have little effect.

Implementation
We applied the method to ChIP-seq data to study both
transcription factor binding and histone modification
assays. We used ChIP samples for the liver-enriched tran-
scription factor HNF4α and trimethylated lysine 4 histone
3 (H3K4me3) from livers of mice primarily of the Black 6
strain [24,25]. In addition, a control sample was used,
consisting of Input DNA that went through the same
crosslinking and shearing process but without immuno-
precipitation.

The reads were aligned using Illumina's Eland program,
allowing for up to two mismatches in the first 32 bases of

each read. To improve efficiency of the algorithm we split
the genome into 5 Mb-long regions and analysed them
separately using non-overlapping windows. Furthermore,
we ran the method twice, the second time using an offset
of half a window's length, to classify correctly all the
regions and avoid any bias due to the position of the win-
dows. We then merged all the called peaks between the
two runs.

Choice of window length
As expected, the transcription factor and histone mark
data look very different. The first have narrow peaks at the
locations of the binding sites, and the latter have wider
enriched regions that are usually covered by multiple
peaks. Figure 2 shows a genomic region of the two data
sets and the control sample highlighting the differences
between them, and Figure 3 shows some enriched regions
for HNF4α and H3K4me3 respectively and how they con-
sist of individual or multiple peaks.

To ensure the algorithm is suitable for both analyses, we
applied it using different window-lengths. The length of
the library fragments as reported by the experimental pro-
cedure was in the range 110-260 bp with a slight prefer-
ence for shorter fragments. The mean fragment length of
approximately 190 bp places a lower limit on the window
size of a little under 100 bp, and our desire for fine reso-
lution places an upper limit of approximately 300 bp on
the window size, for which reason we investigated win-
dow sizes of 100 bp, 200 bp and 300 bp.

We observed that, as the length of the windows increased,
fewer enriched regions were identified for both samples.
For example, for HNF4α, the model with 100 bp windows
called 22 more peaks than the one with 300 bp windows,
and for H3K4me3 the respective comparison resulted in 9
additional peaks. We believe that the model with shorter
windows was the best one to use, since it identified the
largest number of peaks. These regions were tested for
agreement with other algorithms, and validated using
motif analysis and visual comparisons, as explained in the
next sections.

Inclusion of the control sample
Our method can be implemented in a manner that makes
use of a control sample or not, as the situation dictates.
For the HNF4α and H3K4me3 data sets, where a control
was available, we also ran the model ignoring those con-
trol data. As anticipated, the presence of control data
improved the results. We observed that in the absence of
a control sample, our technique did not identify some
peaks that were identified when the control sample was
available, specifically 17% fewer peaks for the HNF4α
sample and 2% for H3K4me3. One might anticipate that
the purpose of the control was to prevent the calling of
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false positive peaks, and so be surprised by this result.
However, in our model the lack of information leads to
greater unexplained variance, and the distinction between
background and foreground is less obvious.

Checking adequacy of the model
Since several assumptions have been used in the construc-
tion of the algorithm, it is important to check the practical
fit of the model. In a classical setting, a goodness-of-fit test
compares observed and fitted values by quantifying how
extreme the data are if we assume the model to be true. In
a Bayesian framework, model fit can be tested using pos-
terior predictive distributions of test statistics that can be
functions of both the data and the parameters [26]. These
statistics, also called discrepancy variables, emphasize the
goal of assessing the discrepancy between model and data,
as opposed to testing the model's correctness.

To investigate relevant features of ChIP-seq data, some
sensible discrepancy variables include the mean number
of reads in each window, the corresponding standard

deviation, and the maximum possible number of reads in
one location. We plot histograms of the simulated values,
which represent the posterior predictive distributions, and
visually compare them to the observed values.

Since the Poisson distribution has been widely used in
modelling the distribution of reads in the genome in
ChIP-seq applications, we compare it with the more flexi-
ble model we propose. In Figure 4 we present plots of dis-
crepancy variables generated from a model using Poisson
emission distributions (without the Gamma mixture
shown in previous sections) as well as the negative bino-
mial model that we have used to produce our results.
From the histograms we see that, for the Poisson model,
the distribution of the 3,000 simulated values for the max-
imum number of counts in each window fails to accom-
modate the observed value (observations are shown as red
lines). This is a clear sign that the Poisson model cannot
deal with overdispersion in the data. In addition, the
observed average number of reads per window for the
Poisson model lies closer to the tail of the distribution,

A view of the HNF4α, H3K4me3 and Input dataFigure 2
A view of the HNF4α, H3K4me3 and Input data. This diagram shows the read distribution on a region of chromosome 
16 for the HNF4α, H3K4me3 and Input samples. The red plots represent the reads mapped to the forward strand and the blue 
correspond to the ones mapped to the reverse strand. We can see that HNF4α has short, sharp peaks and noise in the back-
ground regions, whereas H3K4me3 has peaks that are much longer and contain most of the sample fragments since there are 
very few of them in the non-enriched areas.
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compared to the negative binomial. The Poisson distribu-
tion allows for less variability and thus may have a larger
mean to accommodate some of the higher observed val-
ues. There is little evidence, on the other hand, suggesting
discrepancy between the negative binomial model and
the data. This strengthens our belief that the more flexible
model is desirable to better explain the important features
of the data.

Testing
Application to exampled data
We present the results from region 90,000,000-
95,000,000 bp on mouse chromosome 16, which accom-
modates a large number of reads and is likely to have
more sites than a randomly selected genomic region. As
can be seen in Figure 5, the posterior probabilities of
enrichment from our model are for the most part practi-
cally 0 (most windows show no evidence of enrichment),
while most of the remaining probabilities are very close to
one (those windows that show strong evidence of enrich-
ment and will be in regions we call as peaks). We set a
threshold at 0.50 for both data sets and classify all regions
with probabilities greater than that as enriched.

Our method called 149 peaks for HNF4α and 58 for
H3K4me3 and we compared these results with the find-
ings of other peak-callers. The second time the algorithm
was run, using an offset of half a window's length, we
identified two additional peaks compared to the initial
run, for both data sets, which implies that it would be
unlikely to identify any more regions with a third shift of
the window boundaries.

We used the algorithms ChIPSeq Peak-Finder (CSPF),
MACS and PeakSeq for comparison. We chose those three

because they take different approaches and vary in com-
plexity, thus giving a wide spectrum of possible results.
CSPF uses simple height criteria in comparison with the
control sample to call peaks, whereas MACS takes a
model-based approach by first scanning for peaks on
opposite DNA strands and then using Poisson probabili-
ties to detect enrichment. As mentioned in the introduc-
tion, PeakSeq takes into account the mappability of the
underlying regions and makes the control and ChIP sam-
ples comparable by normalising the first with respect to
the background noise of the latter. Then it uses binomial
probabilities to generate p-values and detect significantly
large read concentrations. The results are presented as
Venn diagrams in Figure 6.

In our examples, we note that all but one of the peaks
called by BayesPeak are identified by at least one other
method, thus giving us confidence that BayesPeak is call-
ing only true peaks. Peaks that other methods call, but
that BayesPeak does not, may show discrepancy from the
model that underpins BayesPeak, as will be discussed in
the conclusions. MACS reports more peaks than any other
method, suggesting that MACS may be returning peaks
that represent false positives. Note that BayesPeak can
return more peaks by accepting a lower posterior proba-
bility threshold, but these additional peaks are more likely
to be background features.

Motif analysis
Transcription factors bind to a set of specific DNA
sequences, many of which have been identified by previ-
ous studies. We used motif analysis to check whether the
called peaks contain the known motif of the transcription
factor, indicating that they represent proper transcription
factor binding sites.

A closer view of some HeK4me3 and HNF4α peaksFigure 3
A closer view of some HeK4me3 and HNF4α peaks. These histograms present the counts of the 5' ends of the reads 
from the H3K4me3 and the HNF4α data, forming peaks on the forward (red) and reverse (blue) strand. The offset between 
them shows how the enclosed area corresponds to an enriched region. The plots are on a different scale to show the density 
of reads clearly and highlight the difference between the peaks formed by a histone mark and a transcription factor.
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We searched for the HNF4α motif in each individual peak
by using the mouse-specific Positional Weight Matrix
(PWM) as previously published [27]. We then calculated
the score for the best possible match in each peak and esti-
mated the probability of this score occurring by chance.
To do so we used 1,000 permutations of the bases of each
sequence to simulate other sequences, calculated the max-
imum enrichment score for each one and then found the
proportion of these scores that were larger than the score
of the true sequence.

We can interpret these proportions as p-values, and the
smaller they are, the greater the evidence that the peaks
contain the transcription factor binding sequence. In Fig-
ure 7, boxplots of these p-values are displayed for the
groups corresponding to all the regions called by Baye-
sPeak (including ones also called by MACS) and the peaks
identified by MACS only. We observe that the regions
identified by BayesPeak give lower p-values compared to
the other group, which suggests that the motif appears
more often in the peaks we do call than in the candidate
regions we miss.

In addition, we took another approach to check for over-
representation of the motifs in the same two groups of
enriched regions. For that purpose we used the program
CLOVER [28], which uses a library of possible motifs for
different transcription factors (in this case, the JASPAR
CORE library [29]) and tests whether for any of them the
groups show an unusually large distribution of high
enrichment scores. The peaks called by BayesPeak were
significantly enriched for the HNF4α motif with a p-value
less than 10-6, and no other of the available motifs was
detected. In addition, the program did not report signifi-
cant enrichment of any transcription factor motifs for the
regions identified only by MACS, as the p-values for the
corresponding tests were larger than 0.10. According to
these findings, the regions identified by BayesPeak, most
of which also called by MACS, have stronger evidence for
binding than the ones that are uniquely identified by
MACS.

Validation data sets
The objective testing of ChIP-seq peak calling methods is
somewhat challenging, since spike-in data sets cannot yet

Checking the model fit: Histograms of the discrepancy statistics for the HNF4α dataFigure 4
Checking the model fit: Histograms of the discrepancy statistics for the HNF4α data. The red lines represent the 
value we observe from the data for the mean number of peaks per window, their standard deviation, and the maximum possi-
ble read score. The histograms are plots of the same variables estimated using the 3,000 simulated values of the parameters 
during the run of the algorithm. The closer the real value is to the simulated distribution, the better the model explains those 
aspects of the data. The first row shows the three histograms of the values generated using the Poisson model and the second 
row shows the corresponding values for the negative binomial model. The latter shows a notable improvement in explaining 
these features of the data.
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be generated due to the difficulty of replicating the nature
of the data, and simulated data sets do not give a close
match to an experimental outcome. However there are
two small data sets for which enriched and background
regions have been validated, and we apply our methods to
these.

The first such set that we consider was presented by John-
son et al. [9] on the Neuron-Restrictive Silencer Factor
(NRSF/REST). The data set includes 83 in vivo binding
sites defined by ChIP-qPCR (quantitative real-time fluo-
rescence Polymerase Chain Reaction) and 30 sites that
equivalently showed no enrichment [30].

We ran BayesPeak on their unamplified data and used the
posterior probability threshold of 0.50 to call peaks. (The
majority of identified peaks had probabilities greater than
0.98, as was also the case with the HNF4α and H3K4me3
peaks identified previously.) We called 74 peaks out of the
83 validated positive regions and zero of the regions that

were confirmed negative, thus achieving sensitivity 89%
and specificity 100%.

In Figure 8 we compare our results to the corresponding
results of the other peak-callers and observe that out of the
74 positive regions that were identified by any method, 72
were called by all of them. Similarly, 9 regions were not
identified by any peak-caller. BayesPeak detected the larg-
est number of enriched regions and none of the known-
negatives, whereas the other methods incorrectly called
one negative region.

As a final test, we analysed another transcription factor
data set, namely Tal1 (also known as Scl), with a set of 24
experimentally-validated enriched regions [31]. The
regions bound by Tal1 had been tested in transgenic mice
where all regions function as tissue-specific regulatory ele-
ments. This data set was analysed without including a
control sample in the model to confirm that the known
true positive regions are still identified.

Posterior probability plotsFigure 5
Posterior probability plots. These plots show the distributions of the posterior probabilities P(St = 1), i.e., the probability 
that there is a binding site at window t. On the left are the plots of the probabilities for the HNF4α and H3K4me3 data sets 
shown in full scale, and on the right are the same plots with a closer view of the tails of the distributions. We can see that the 
vast majority of the regions have zero probability of being enriched and the remaining regions have probabilities very close to 
1. Only a handful of regions lie in the middle of the range, and these are likely to lie in the tails of large peaks. To include some 
of these regions, we set the threshold to be equal to a posterior probability of 0.50 and called every region with a probability 
greater than that as enriched.
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We ran BayesPeak using the Tal1 sample only and identi-
fied the enriched regions using the same posterior proba-
bility threshold of 0.50 as before. Our method did find all
24 enriched regions, 20 of them having posterior proba-
bilities greater than 0.90. Comparing with the other algo-
rithms as before, CSPF also gave the full list of known
positives, whereas PeakSeq could not be used due to the
absence of a control sample. MACS did not make any of
the expected calls and reported a problem in building its
model.

Discussion
A lot of binding peaks are obvious and will be identified
by any sensible method. This, coupled with the small
amount of available validated data, makes it difficult to
show definitively that one method is better than another.
We have however shown that our method performs well,
and that it has several qualities that make it attractive for
inclusion in an analysis suite.

The key advantages of our model, that other methods do
not offer, are the Bayesian approach to parameter and

state estimation, and the use of the negative binomial dis-
tribution. Within the Bayesian paradigm, we are returning
posterior probabilities as our measure of certainty. There-
fore we do not call regions as enriched simply because
they do not look like background, but only if they look
more like a peak than background. This offers the greatest
scope for interpretation, as well as allowing for the use of
probabilities as weights in subsequent analyses (i.e., motif
discovery).

After submitting this manuscript, we became aware of
another Bayesian implementation [32] of HMMs to both
ChIP-chip and ChIP-seq data. Our application is different
in terms of the features of the model, the emission distri-
butions and the treatment of the control sample.

The negative binomial distribution allows for overdisper-
sion and provides a better fit to the data than the Poisson
distribution that has been widely used by other methods.
Not only did the Poisson distribution appear inferior in
the comparison of discrepancy variables, but peak calling

Algorithm comparison for HNF4α and H3K4me3Figure 6
Algorithm comparison for HNF4α and H3K4me3. This figure shows how the peaks called by BayesPeak, ChipSeq Peak 
Finder, MACS and PeakSeq compare. For CSPF we used a maximum gap of 100 bp between reads to create clusters, which 
were then identified as peaks if they contained more than 9 reads, more than 5 of which overlapped at the same base, and if the 
total count was larger than the corresponding number in the Input sample by a factor of 5. To identify the enriched regions 
using the other methods, we chose p-values smaller than 0.05 for both MACS and PeakSeq. The number of peaks called by 
BayesPeak seems smaller in these diagrams than we report in the paper because in some cases more than one region is cov-
ered by a long peak identified by another method; in this case, they are merged into a single peak covering the entire region.
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methods that incorporate it failed to identify some peaks
in both the HNF4α and H3K4me3 data sets.

Other features of our method that are desirable, but
shared to some degree by some other methods, are the
accounting for strandedness and orientation of the frag-

ments and the ability to identify binding regions more
precisely. Accounting for strandedness is essential for
modelling the peaks, but our use of this information dif-
fers from that of previous methods. BayesPeak also tends
to identify narrower regions than other methods, which is
a particular advantage when searching for transcription
factor binding sites.

Peaks identified by BayesPeak appear to be less likely to
contain false positives. The high-confidence regions iden-
tified by our method tend also to be called by other meth-
ods. Additionally, the motif analysis we carried out
showed high enrichment for the transcription factor's
binding sequence. However, for the H3K4me3 data set,
there were peaks that the other methods call, but that ours
does not; we present examples of those in Figure 9, con-
trasted with a typical high-probability enriched region.
Regions one and three show departure from background,
but do not conform to what we expect to be the appear-
ance of a peak. In the first example, there are a large
number of reads, but their relative orientations do not
match our expectation (i.e., that the positive strands
should lie to the left of the reverse strands), while in the
third region only the reverse strand shows evidence of
enrichment. The second illustrated region shows very low-
density reads, but there are enough for some methods to
call enrichment.

The other advantage of the modelling framework that we
have used is the ability to adapt and extend the model as
required. More states could be introduced to cope with a
different physical model of fragment length to binding-
site length, and simple modifications could allow for the
use of paired end data. Finally, it is becoming more com-
mon for the locations of multiple transcription factor
binding sites and locations of histone modifications to be
investigated together for the same sample. The tendency is
for each to be compared separately to a control sample,
and due to financial and experimental pressures the same
control sample tends to be used for each - a situation that
is clearly not ideal. Our approach can be extended to
model all samples simultaneously, sharing information
about background levels and preventing the inappropri-
ate over-influence of the control sample.

Conclusion
We have presented a flexible and adaptable method for
the detection of enriched regions of the genome that
offers advantages over methods currently in use and per-
forms well for those few data sets with validated peaks.

Methods
Availability
The code is available from our website [33], with some
instructions and data.

Box-plots of motif enrichment p-valuesFigure 7
Box-plots of motif enrichment p-values. We grouped 
all the sequences of the regions called by BayesPeak (includ-
ing the ones called by MACS) and the ones detected only by 
MACS. Here we compare boxplots for the groups of called 
peaks, which summarize the p-values corresponding to the 
significance of the motif enrichment in each of the respective 
sequences. We observe that the regions identified by Baye-
sPeak give lower p-values, on average, compared to the ones 
called by MACS only, strengthening the indication that 
enrichment is less likely to have occurred by chance and that 
binding does take place at those sites. A separate analysis 
with CLOVER used on the same groups, yielded p-values of 
less than 10-6 for the regions called by BayesPeak and greater 
than 0.10 for those identified only by MACS.
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Algorithm description
1. The genomic region is divided into windows and the
data are converted into numbers of reads per window for
each sample.

2. Starting values are assigned to the parameters of the
model.

3 i. The likelihood is calculated recursively using forward
and backward variables; the information is updated with
every new state and the distribution of states is updated
using the observed data and the likely transitions.

The forward variable can be defined as

 where θ = (p, r,

α0, β0, λ0, α1, β1, λ1, γ), which subsequently gives the for-

ward recursion for i = 0, 1, 2, 3

where  and qji = P (Zt+1 = i|Zt

= j). The backward variable is defined by

, which gives

the backward recursion for i

Then, the likelihood can be represented by

and the probability that the state of window t takes the
value i, given all the data Y, is

The probability that St = 1, i.e., that there is a binding site
in region t, is equal to P (Zt = 2) + P (Zt = 3). To prevent
underflow, we use the normalisation constant ct

-1 = Σjαt(j)
and scale the terms to α't(i) = ctαt(i), β't(i) = ctβt(i), which
does not change the recursions.

3 ii. The states are then simulated from the distribution
p(Z(1, T)|Y(1, T), θ), which is the joint posterior mass func-
tion of all the states given θ. A simple expression can be
used to calculate p(Z(1, t)|Y(1, t), θ) recursively for t = 1,..., T

a t t t ti P Y Y Y Y Z i( ) ( , , , , , | )≡ =+ −
−
+ −

1 2 1… qq

a p

a a

1 1 2

1

( ) ( | ) ( | )

( ) ( ) (

i p Y p Y

i j q p Y

i i i

t t ji

j

i t

=

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+ −

−
+∑

qq qq

|| ) ( | ) , ,qq qqp Y t Ti t+
− = −1 1 1for …

p Y P Y Z ii t t t( | ) ( | , )+ += =qq qq

b t t t T T ti P Y Y Y Y Z i( ) ( , , , , | , )≡ =+
+

+
−

−
+ −

1 2 1… qq

b

b b

T

t ij t j t j t

j

i

i q j p Y p Y t

−

+ +
+

+
−

=

= =∑
1

1 1 2

1

1

( )

( ) ( ) ( | ) ( | ) ,qq qq for … ,, .T − 2

P i i i t TT t t

ii

( | ) ( ) ( ) ( ) , , .� qq = = = −− ∑∑ 1 1 1 for all …

P Z i t i t i

t j t jj
t( | )

( ) ( )
( ) ( )

.= =
∑

Y
a b

a b

Algorithm comparison for NRSF dataFigure 8
Algorithm comparison for NRSF data. This figure shows how the known-positive and known-negative regions called by 
the same four methods compare. We merged those results for CSPF and PeakSeq that were identical.
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Some peaks called only by the other three methods and an example of a peak called by BayesPeakFigure 9
Some peaks called only by the other three methods and an example of a peak called by BayesPeak. In this figure, 
there are three regions (labelled 1, 2, 3) that BayesPeak did not identify as peaks that the three other algorithms did. The plots 
show the first 32 bases of each fragment, the ones corresponding to the forward strand in red and the reverse strand in blue. 
In addition, we include an image of a peak that was called by our method to show how the shape compares with the others. 
The images were generated using the UCSC genome browser.
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and then, starting from ZT, each state can be drawn in a
backward simulation from p(Zt|Y(1, T), Z(t+1, T), θ) for t = T
- 1,..., 1. Details on the state posterior density and the for-
ward-backward Gibbs sampler can be found in [23].

4. Given the complete data set (observed read counts and
simulated states), each parameter is updated condition-
ally on the values of the remaining parameters using
Gibbs updates. For most of them the form of the likeli-
hood and the conjugate priors lead to closed-form poste-
rior distributions such as Beta for p, r and Gamma for β0,
β1, λ0 and λ1. As this is not the case for α0, α1 and γ, we use
Metropolis-Hastings updates with symmetric (Normal)
proposals centred at their accepted values.

5. Steps 3 and 4 are repeated a number of times and the
updated values of the model parameters and state proba-
bilities are recorded at each simulation. Averages of those
probabilities give estimates of how likely the states are to
take the values 0, 1, 2 or 3 and since any region t must be
either 2 or 3 to contain a binding site Zt, the significance
score for each region is equal to the sum of those two
probabilities.

State estimation and classification
Given the Gibbs draws of the parameters {θ(1),..., θ(m)}
and the corresponding hidden states {Z(1),..., Z(m)}, where
for the jth draw θ(j) = {p(j), r(j), α0

(j), β0
(j), λ0

(j), α1
(j), β1

(j),
λ1

(j), γ(j)} and Z(j) = {Z1
(j),..., ZT-1

(j)}, our aim is to estimate
the marginal posterior distributions of the states defined
by πt'(i) = P (Zt = i|Y) and decide on their classification.
The obvious estimator would be

which can be improved by using expectations of the terms
to become

where πt'(Z|θ(j)) is just the posterior probability calculated
for the jth simulation of the MCMC algorithm. This proc-
ess introduces a layer of Monte Carlo variability, since it
averages probabilities rather than events simulated with
those probabilities.

Prior distributions
According to the transition probabilities of our model, p
corresponds to the probability that a 100 bp window is
part of an enriched region, given that the region to the left
of it is not enriched. Thus it represents the probability that

an enriched region appears as we move along the genome.
r corresponds to the probability that, given an enriched
region, the window to the right of it is also enriched.
Therefore it is related to the expected length of the sites.
Since we do not have any information on the number or
length of the bound regions, we set these two parameters
to have a symmetric distribution around 0.5. The γ param-
eter reflects the relationship between the abundance of
reads in the control and the ChIP sample. We set this
parameter to have a mean value of 0.5 and a long tail to
accommodate possible large values.

For the remaining parameters, we used more informative
prior distributions, based on the nature of the enriched
and background regions. We expected very few reads to
map to regions where no binding is taking place, thus λ0
should be close to zero. On the other hand, enriched areas
have a wide range of fragment concentrations, reflecting
the different binding affinities of the protein; therefore λ1
should be allowed to vary considerably. We controlled for
these features by tuning the scale and rate parameters of
the Gamma priors of the hyperparameters α0, β0, α1 and
β1.

More specifically, for both datasets we used the prior dis-
tributions

where a Beta(α, β) distributed variable x has density f(x|α,
β) ∝ xα-1(1 - x)β-1 for x ∈ [0, 1].

Implementation details
The algorithm was coded in C, and Perl was used to pre-
process the data and do some of the motif analyses. The
current implementation of the code analyses 5 Mb at a
time. This allows for the parallelization of a genome-wide
or chromosome-wide analysis and saves the need for
either a) making genome-wide assumptions regarding the
consistency of parameters or b) adding complexity to the
model. The code can be altered to change the length of
sequence being examined, however the current imple-
mentation is unlikely to scale to genome-wide within typ-
ical computational constraints. Other implementations of
the model would be possible if this were desired.

We ran the MCMC algorithms for 100,000 iterations,
thinning the chains and saving every 10th value to avoid
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correlation between consecutive draws and save computa-
tional space. To use the updated values as samples from
the posterior distribution, we made sure that the values
had reached stationarity and that the number of simula-
tions was large enough to represent adequately the full
range of the distribution. To do so, we ran three chains
starting with different parameter values, discarded the first
2,000 values from the thinned sample and applied some
formal diagnostic tools that check for convergence and
good mixing between parallel chains. The Bayesian Out-
put Analysis package (BOA) [20] in R provided a range of

these diagnostics that test for stationarity of functions of
the parameters and compare different posterior samples.
We used the Brooks, Gelman and Rubin test [34] that uses
parallel chains with different initial values to test whether
they all converge to the same target distribution. It com-
pares the variance within each chain and the variance
between chains to check how similar they are. In Figure 10
we plot the Brooks and Gelman shrink factor for some of
the parameters to demonstrate how it reaches 1 after
about 2,000 iterations (which we allowed for burn-in),
thus showing agreement between the different chains.

Checking for convergence of the MCMC chains: Plots of the Brooks and Gelman shrink factorFigure 10
Checking for convergence of the MCMC chains: Plots of the Brooks and Gelman shrink factor. These plots show 
how some of the parameters of the model from different runs of the algorithm (on HNF4α data) reach their stationary distri-
bution after burn-in and therefore the simulated values we use are indeed samples from the posterior distribution of interest. 
The plotted factors show whether the chains have mixed well by comparing the variance of the simulated values within and 
between different chains.
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Furthermore, we used the Geweke [35] diagnostic and the
Heidelberger-Welch stationarity test [36] that test whether
single chains have reached equilibrium by comparing
means from the early and latter parts and checking
whether the chain comes from a covariance stationary
process. Our simulations passed the tests successfully,
suggesting that the chains had reached the stationary dis-
tribution and were run for long enough.
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