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Abstract 

The syndromes associated with frontotemporal dementia are heterogeneous in their 

presentation and progression, with variable correlation between clinical phenotype and 

underlying proteinopathy. Single pathologies are associated with diverse clinical presentations, 

while the same clinical presentation can be caused by multiple pathological entities. 

Heterogeneity makes predicting underlying pathology and longitudinal outcomes challenging 

in clinical practice and in research settings. I propose that a multi-modal imaging approach, 

including structural and task-free functional magnetic resonance imaging, will provide 

mechanistic insight into how phenotypic variance arises and improve predictions of disease 

progression and survival.  

In this thesis I draw from data for participants recruited at the University of Cambridge and 

from two multi-site collaborations, the Progressive Supranuclear Palsy Corticobasal Syndrome 

Multiple System Atrophy Longitudinal Study UK (PROSPECT-M-UK) and the Genetic 

Frontotemporal Dementia Initiative (GENFI).  I describe characteristic differences in markers 

derived from task-free functional MRI and their relationship to patients’ clinical 

manifestations. I relate these functional changes to imaging markers of neuronal loss, cell death 

and synaptic loss. I find that subcortical atrophy from structural MRI relates to cortical 

functional network disruption, and that synaptic loss measured through [11C]UCB-J positron 

emission tomography affects behaviour in relation to changes in functional connectivity.  

I investigate differences in functional connectivity across the disease course. In individuals 

with familial frontotemporal dementia, time-varying functional network abnormalities predict 

symptomatic conversion in presymptomatic mutation carriers and future cognitive decline in 

symptomatic participants. In progressive supranuclear palsy and corticobasal syndrome 

between-network connectivity explains variability in survival but does not improve predictive 

accuracy beyond clinical and structural imaging metrics.  

Imaging-derived biomarkers in frontotemporal lobar degeneration need to be appropriately 

targeted at components of the neurodegenerative cascade. Task-free functional MRI is an 

objective and scalable neural marker of clinical syndrome, useful in detecting symptomatic 

onset and prognostication but limited by small effect sizes, poor signal-to-noise ratio, and 

moderate reliability. I discuss developments required in image acquisition and analysis to 

support clinical practice and trials of experimental treatments.  
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1 Introduction 

Neurodegenerative diseases are characterised by progressive loss of neuronal structure and 

function, resulting in decline in everyday function relative to premorbid performance 

(Dugger and Dickson, 2017; World Health Organization, 2019). Impairment can be in 

multiple cognitive domains, causing dementia, and in motor and physical well-being. 

Neurodegenerative diseases are common, with the number of people reaching diagnostic 

criteria for dementia globally estimated to increase from 57 million to over 150 million by 

2050 (Nichols et al., 2022). These diseases come at great cost to the patient, their families, 

and to wider society, with an estimated $263 billion global spending directly attributable 

to dementia in 2019 (Pedroza et al., 2022). Even in high income settings diagnosis is often 

delayed (Bradford et al., 2009; Department of Health, 2013; Livingston et al., 2020) and 

with variable correlation between clinical diagnosis and confirmed neuropathology at post-

mortem (Beach et al., 2012). Delayed or missed diagnosis results in lost opportunities for 

timely and informed intervention (Hunter et al., 2015). There are currently no licensed 

disease modifying treatments for neurodegenerative diseases in the UK, with even 

therapeutics that successfully achieve their stated outcomes (van Dyck et al., 2022) 

challenging to implement in clinical practice and potentially not applicable to the majority 

of individuals with a relevant diagnosis (The Lancet, 2022; Walsh et al., 2022). There is 

therefore a pressing need to improve outcomes for people living with neurodegenerative 

diseases. Central to this is to understand how motor and cognitive impairments differ 

between individuals, variation in disease trajectory, and the causes of such heterogeneity. 

Neurodegenerative syndromes arise from a spectrum of pathologies. In this thesis I focus 

on syndromes associated with frontotemporal lobar degeneration (FTLD), a 

neuropathological diagnosis characterised by progressive atrophy of the frontal and 

temporal lobes (Cairns et al., 2007; Mackenzie et al., 2010). FTLD as a neuropathological 

finding is associated with an umbrella of clinical syndromes: the behavioural variant 

frontotemporal dementia (bvFTD), progressive supranuclear palsy (PSP), corticobasal 

syndrome (CBS), the non-fluent/agrammatic variant of primary progressive aphasia 

(nfvPPA), and the semantic variant of primary progressive aphasia (svPPA). These 

clinically heterogeneous syndromes result in significant morbidity, reduced life 

expectancy, and include common causes of young onset dementia (Coyle-Gilchrist et al., 



2 

 

2016). Given the overlap in symptomatology and neuropathology, there is benefit in 

considering the FTLD disorders together to understand shared neuropathological 

mechanisms and factors influencing disease progression. 

In this chapter I introduce the syndromes and the primary pathological subtypes associated 

with FTLD, and the relationship between clinical diagnosis and pathological aetiology. I 

then explore the models of biomarker change in FTLD from presymptomatic accumulation 

of pathology to death. This provides a setting to discuss the role of neuroimaging 

biomarkers in FTLD in clinical practice, in supporting preclinical work, and in conducting 

trials of experimental treatments.  The broad aim of this thesis is to understand how 

neuroimaging, particularly task-free functional magnetic resonance imaging, can be used 

to improve our understanding of heterogeneity in the symptom trajectory for individuals 

with FTLD and their families. 

1.1 The clinical syndromes associated with frontotemporal 

lobar degeneration 

In this section I will present the clinical syndromes associated with FTLD. Although they 

are described as distinct diagnostic entities it is important to recognise that they have 

overlapping clinical features, with patients often satisfying diagnostic criteria for more than 

one syndrome, while the most appropriate diagnosis may change through the disease course 

(Murley et al., 2020a). 

1.1.1 Behavioural variant frontotemporal dementia 

The behavioural variant frontotemporal dementia is a clinical syndrome of progressive 

changes in behaviour, personality, social conduct, and cognition (Rascovsky et al., 2011). 

Core behavioural features include marked apathy or inertia, impulsiveness, socially 

inappropriate behaviour, and loss of empathy (Boeve, 2022; Chow et al., 2009; Lansdall et 

al., 2017; Rascovsky et al., 2011; Snowden et al., 2001). Perseverative, stereotyped, 

compulsive or ritualistic behaviours may be observed in simple repetitive motor 

movements such as pacing or tapping, in stereotypy of speech, or in complex compulsive 

or ritualistic behaviours such as hoarding or walking fixed routes (Mateen and Josephs, 

2009; Moheb et al., 2019; Rascovsky et al., 2011; Rosso et al., 2001). Changes in dietary 

behaviour and eating preferences are common, particularly in preferences for sweet foods 

and hyperorality (R. M. Ahmed et al., 2014; Ikeda, 2002; Miller et al., 1995). Oral 

exploration with ingestion of inedible objects may occur (Ikeda, 2002). These behavioural 
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changes have a profound impact on both the patient and their carers, with decline in 

caregiver health and healthcare related costs double that observed in Alzheimer’s disease 

(Galvin et al., 2017). 

The most prominent deficits on neuropsychological testing in bvFTD are typically in 

attention and executive function (Boeve, 2022; Rascovsky et al., 2011), although patients 

early in disease may perform within the normal range on many standard 

neuropsychological measures (Boeve, 2022; Piguet et al., 2017). Short executive batteries 

which incorporate measures of inhibitory control, verbal fluency and planning differentiate 

bvFTD from Alzheimer’s disease (Leslie et al., 2016; Torralva et al., 2009). Nonetheless 

there is debate as to the specificity of impairments in executive functioning and attention 

for bvFTD, potentially reflecting the choice of testing modality used (Boeve, 2022; 

Hutchinson and Mathias, 2007; Ranasinghe et al., 2016). Part of the challenge is that 

patients with bvFTD may perform poorly on testing due to factors extrinsic to the cognitive 

domain intended to be tested, such as lack of motivation or concern with accuracy of 

answers (Mendez and Shapira, 2011; Ranasinghe et al., 2016). 

Despite early proposals that the absence of akinesis and rigidity would support the 

diagnosis of frontotemporal dementia from Alzheimer’s disease (Neary et al., 1988), motor 

signs and symptoms are commonly found in patients with bvFTD. In some series 

extrapyramidal features are observed in the majority of patients with bvFTD (Coyle-

Gilchrist et al., 2016; Irwin et al., 2016), in keeping with neuropathological and imaging 

findings of striatal atrophy and loss of fronto-striatal connections (Bertoux et al., 2015; 

Irwin et al., 2016; Rowe, 2019). In contrast to idiopathic Parkinson’s disease, rigidity is 

more likely to be predominantly axial, while limb akinesia may occur in the absence of 

rigidity (Rowe, 2019).  

Approximately 20% to 40% of patients with bvFTD have a family history in keeping with 

a dominantly inherited familial disorder (Boeve, 2022; Greaves and Rohrer, 2019), with 

bvFTD the most common presentation of familial FTD (Moore et al., 2020). Mutations in 

three genes account for at least half of these cases: chromosome 9 open reading frame 72 

(C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) (Greaves 

and Rohrer, 2019; Rohrer et al., 2009). Certain clinical characteristics show relative 

predominance depending on the causative mutation. Of particular note are the frequency of 

psychosis and anxiety in symptomatic patients with a C9ORF72 hexanucleotide expansion 
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(Ducharme et al., 2017), the association of this mutation with amyotrophic lateral sclerosis 

(DeJesus-Hernandez et al., 2011), and early parkinsonism in the MAPT mutation (Rowe, 

2019).  

Early and accurate diagnosis of bvFTD is important for families and carers but can be 

challenging, even for experienced clinicians. Many of the cardinal diagnostic features in 

bvFTD are observed in the behavioural/executive variant of Alzheimer’s disease, with 

patients who ultimately have a pathological diagnosis of Alzheimer’s disease tending to 

have a more restricted behavioural profile and co-existent memory impairment 

(Ossenkoppele et al., 2015). However memory impairment is well recognised in bvFTD 

(Hornberger et al., 2010) despite the inclusion of ‘relative sparing of episodic memory’ in 

the bvFTD diagnostic criteria (Rascovsky et al., 2011). A proportion of patients present 

with cognitive and behavioural impairment meeting the criteria for possible bvFTD, but 

without imaging abnormalities and whose symptoms do not progress (Hornberger et al., 

2010, 2008; Kipps et al., 2009). The aetiology of this phenocopy syndrome of bvFTD is 

debated, with some cases likely due to late life decompensation of a psychiatric or 

neurodevelopmental disorder (Piguet et al., 2011b), although very slow evolution of 

symptoms has been observed in individuals with a C9ORF72 hexanucleotide expansion 

(Gómez‐Tortosa et al., 2014). 

1.1.2 Amyotrophic lateral sclerosis-frontotemporal dementia spectrum 

disorders 

The co-existence of motor neurone diseases (particularly amyotrophic lateral sclerosis or 

ALS) and behavioural and cognitive impairment has long been recognised (Hudson, 1981), 

ranging from isolated dysexecutive function in at least half of patients with motor neurone 

disease, to symptoms meeting bvFTD criteria in up to a quarter of cases (Cividini et al., 

2022; Strong et al., 2017). Strong and colleagues’ consensus criteria set out the 

requirements for a diagnosis of ALS-FTD (Strong et al., 2017), which emphasises the 

spectrum of FTD-related deficits that arise in ALS. On these criteria individuals are 

classified as having ALS with normal cognition (ALS-cn), ALS with cognitive impairment 

(ALS-ci), ALS with behavioural impairment (ALS-bi), ALS with cognitive and 

behavioural impairment (ALS-cbi), and ALS with FTD (ALS-FTD). 

The clinical heterogeneity and overlap between ALS and FTD is particularly recognised in 

patients with C9orf72, with expansions in the gene additionally associated with 
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parkinsonism and psychiatric features (Breevoort et al., 2022). Proposed pathogenic 

mechanisms for C9orf72 include loss of function (O’Rourke et al., 2016) or gain of toxicity 

from RNA expansion or via RNA translation products (Jiang et al., 2016; Nguyen et al., 

2020). There may be synergistic and tissue specific effects of these processes which 

contribute to the variation in clinical presentation (Breevoort et al., 2022).  

In ALS-FTD in general there is uncertainty as to whether cognitive/behavioural and motor 

symptom occur on a spectrum mirroring deposition of pathological protein, or if divergent 

phenotypes represent distinct diseases. The varying degree of cognitive and behavioural 

impairment is reflected in patterns of structural and functional changes observed on 

imaging (Cividini et al., 2022; Young et al., 2023). Both behavioural and executive 

dysfunction at baseline indicate poorer survival in ALS (Elamin et al., 2013; Hu et al., 

2013), with relative stability of cognition in those who performed well on initial 

neuropsychological assessment. 

1.1.3 Primary progressive aphasia 

A clinical diagnosis of primary progressive aphasia (PPA) requires the presence from onset 

of a prominent, isolated and progressive language deficit caused by a neurodegenerative 

condition (Gorno-Tempini et al., 2011; Mesulam, 2003). Three variants of PPA are 

described, namely the semantic variant, non-fluent/agrammatic variant, and the logopenic 

variant. Logopenic variant primary progressive aphasia, characterised by impaired word 

retrieval and length-dependent difficulties with sentence repetition (Gorno-Tempini et al., 

2008), is predictive of underlying Alzheimer’s pathology (Spinelli et al., 2017). As such it 

is not considered a syndrome associated with frontotemporal lobar degeneration under 

current nosology (Mackenzie et al., 2010), and I will therefore focus on the other two 

variants here. 

Speech in svPPA (also sometimes called semantic dementia) is fluent, but with impaired 

single-word comprehension and confrontational naming, indicating a profound loss in 

semantic knowledge (Hodges et al., 1992; Snowden et al., 1989). Speech production is 

often normal, particularly early in disease, such that a patient may be able to name an object 

without being able to define it (Hodges et al., 2008). Loss of object and concept knowledge 

begins with low frequency items, with progressive difficulties in more familiar objects as 

the disease develops. (Gorno-Tempini et al., 2008). Patients with svPPA will make 

regularisation errors, where atypical words are pronounced as they are spelt (Wilson et al., 
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2009). Semantic variant PPA is relatively slowly progressing (Coyle-Gilchrist et al., 2016; 

Tastevin et al., 2021), with maintained performance in many cognitive domains until late 

in the illness. However behavioural dysfunction is common and may occur early in the 

condition, with symptoms including apathy, rigidity and clockwatching, and emotional 

withdrawal (Hodges and Patterson, 2007; Rosen et al., 2006). Bizarre food choices are more 

common that hyperorality (Hodges and Patterson, 2007) and may reflect food related 

semantic loss.  

Imaging is important in the diagnosis of svPPA, with predominant and marked anterior 

temporal lobe atrophy (Gorno-Tempini et al., 2011; Hodges et al., 1992). Atrophy is 

normally asymmetrical, with more extensive atrophy in the left (language dominant) 

hemisphere in the majority of patients (Chan et al., 2009; Kumfor et al., 2016). There is 

currently a lack of consensus regarding terminology to describe the less commonly seen 

syndrome associated with focal right anterior lobe degeneration, with suggestions including 

semantic behavioural variant frontotemporal dementia (Younes et al., 2022), right 

semantic dementia (Mesulam et al., 2021), and right temporal variant frontotemporal 

dementia (Joubert et al., 2006). Characteristic clinical features of this syndrome are 

difficulty recognising familiar people and behavioural changes with early loss of empathy 

(Chan et al., 2009; Younes et al., 2022). 

The core features of the non-fluent/agrammatic variant of primary progressive aphasia are 

effortful, halting speech and agrammatism, one of which must be present to meet published 

diagnostic criteria (Gorno-Tempini et al., 2011). Agrammatism is most commonly manifest 

as omission of short phrases such as function words (e.g. “of”, “it”, “to”) or inflections 

(Botha and Josephs, 2019; Gorno-Tempini et al., 2011). Speech may be slow and laboured, 

or with impairment in articulatory planning and programming (apraxia of speech). There is 

heterogeneity in the relative burden of agrammatism and apraxia of speech in patients with 

nfvPPA (Graham et al., 2016). Some individuals may present with only apraxia of speech 

and it is has been argued that this should be considered a distinct diagnostic entity (Josephs 

et al., 2021), separate from the primary progressive aphasias due to lack of complaints of a 

language deficit. Patients may progress to develop signs and symptoms associated with 

corticobasal syndrome or progressive supranuclear palsy (Santos-Santos et al., 2016). A 

frontal cognitive syndrome may be found (Botha and Josephs, 2019; Rohrer and Warren, 

2010), although the behavioural and socioemotional dysfunction tends to be less severe 

than in svPPA (Rosen et al., 2006). 
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There are a proportion of patients with primary progressive aphasia who cannot be 

classified into one of the three primary subtypes (Wicklund et al., 2014). While this may 

be due to the point on the disease course at which a patient is assessed, with either 

symptoms that are too mild to satisfy criteria or too severe to formally test, there are some 

patients who are unclassifiable throughout their illness (Botha and Josephs, 2019). 

Assessment and classification of patients with PPA is challenging, and modifications to the 

current criteria have been suggested to reduce the numbers of unclassified patients 

(Mesulam et al., 2021), although it is unclear yet if these changes improve ability to predict 

pathology and alter management. 

1.1.4 Progressive supranuclear palsy 

Progressive supranuclear palsy was first described in 1964 by Steele, Richardson and 

Olszewski as a progressive neurodegenerative condition characterised by supranuclear 

gaze palsy, axial predominant rigidity and early falls  (Steele et al, 1964). The combination 

of postural instability and supranuclear gaze palsy has been subsequently termed 

Richardson’s syndrome (Williams et al., 2005) as the most common of a range of PSP 

syndromes, in recognition of the varied clinical features associated with PSP pathology. A 

restriction in the range of voluntary vertical gaze, that can be at least partly overcome by 

the vestibulo-ocular reflex, is a cardinal diagnostic feature of PSP (Höglinger et al., 2017). 

Prior to development of a supranuclear gaze palsy slowing of vertical saccades or square 

wave jerks may be present (Chen et al., 2010). Patients with PSP often report visual 

disturbance, including diplopia (Hardwick et al., 2009), photophobia (Mohanty et al., 

2021), and visual loss due to blepharospasm or apraxia of eye lid opening (Yoon et al., 

2005) . Key motor features include parkinsonism, consisting of bradykinesia and rigidity. 

Typically, rigidity in PSP is predominantly axial and minimally responsive to levo-dopa 

(Höglinger et al., 2017; Litvan et al., 1996), although a proportion of patients present with 

a movement disorder that is initially clinically indistinguishable from Parkinson’s disease 

(Williams et al., 2005). Postural instability in Richardson’s syndrome occurs within three 

years of disease onset (Höglinger et al., 2017), with falls associated with significant 

morbidity and frequently necessitate careful weighting between encouraging mobilisation 

and reducing risk of injury (Brown et al., 2020). 

Even in the initial nine cases of PSP presented by Steele and colleagues the majority had 

cognitive or behavioural impairment and included cases with severe dementia or where 

cognitive features were present at onset (Steele et al, 1964). Although the cognitive profile 



8 

 

of PSP had been described as a ‘subcortical dementia’ (Albert et al., 1974), with slowness 

of thinking (bradyphrenia) and executive dysfunction, subsequent work has shown that 

cortical pathology is common in PSP (Kovacs et al., 2020), with cortical features 

dominating the clinical presentation in a quarter of patients (Jabbari et al., 2020). Dementia 

occurs in approximately 70% of patients with PSP (Burrell et al., 2014; Pilotto et al., 2017), 

with the cognitive and behavioural symptoms overlapping with bvFTD (Kaat et al., 2007), 

including apathy, impulsiveness, hyperorality, social cognitive impairment, executive 

dysfunction, and language deficits (Bak et al., 2010; Burrell et al., 2014). Apathy and 

impulsivity commonly co-exist (Kok et al., 2021; Lansdall et al., 2017), with greater apathy 

and impulsivity predicting poorer survival and shorter time to requiring institutional care 

(Lansdall et al., 2019; Murley et al., 2021). Patients often lack insight into both their 

physical and cognitive deficits (O’Keeffe et al., 2007), with mismatches between carer- and 

patient-assessed rating scales of disability. Management of cognitive and behavioural 

symptoms in PSP is challenging (Bluett et al., 2021; Rittman et al., 2016a), with cognitive 

and behavioural change often causing significant distress to families and carers. 

Impairments in speech, language and swallowing are also common in PSP. Speech in PSP 

has been described as an ‘adynamic dysarthrophonia’ (Peterson et al., 2019; Robinson et 

al., 2006), reflecting both a dysarthria arising from neurodegeneration to subcortical 

structures (Rusz et al., 2015) and impairment of executive function resulting in reduced 

verbal output (Peterson et al., 2019). A subset of patients who are ultimately found to have 

PSP pathology may present with a primary speech problem, including with non-fluent 

agrammatical speech or with apraxia of speech (Boeve et al., 2003a; Josephs, 2006; Josephs 

et al., 2021). Impaired swallow is evident on testing in the majority of patients with PSP 

(Clark et al., 2020) and is a poor prognostic sign (dell’Aquila et al., 2013). 

Heterogeneity at the point of presentation is recognised in the most recent diagnostic 

criteria for PSP, which divides variant presentations by combinations of clinical features, 

with stratification based on sensitivity of these features for PSP pathology (Höglinger et 

al., 2017). These diagnostic criteria highlight the possibility of overlap with other FTLD 

syndromes, with possible variants including PSP with predominant corticobasal syndrome 

(PSP-CBS), PSP with a predominantly frontal presentation (PSP-F), and PSP with a speech 

and language disorder (PSP-SL). Patients will commonly satisfy more than one diagnostic 

category at the same time, and so rules have been designed to assist researchers in 

identifying a single predominant type per patient (Grimm et al., 2019), although these can 
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be challenging to apply and may fail to capture a patient’s primary clinical manifestation 

(Shoeibi et al., 2019). Given that some variant presentations of PSP are rare, an additional 

stratification system has been proposed separating cases into three groups (PSP-

Richardson’s syndrome, PSP-subcortical and PSP-cortical) depending on the likely 

anatomical correlate of the dominant clinical features (Jabbari et al., 2020).   

1.1.5 Corticobasal syndrome 

The clinicopathological entity of corticobasal degeneration (CBD) was described by Rebiez 

and colleagues (Rebeiz et al., 1968), with the clinical syndrome associated with the 

pathological diagnosis subsequently termed corticobasal syndrome (CBS) (Cordato et al., 

2001). As I discuss below, CBS is associated with heterogenous underlying pathology 

(Boeve et al., 1999; Lee et al., 2011); through this thesis when using the term ‘corticobasal 

syndrome’ I refer only to the constellation of clinical features. CBS is a progressive 

asymmetric disorder with both cortical and extrapyramidal symptoms and signs 

(Constantinides et al., 2019). A diagnosis of probable corticobasal syndrome requires two 

of limb rigidity, limb myoclonus and limb dystonia, and also two of cortical sensory loss, 

alien limb phenomena, and apraxia (limb or orobuccal) (Armstrong et al., 2013). 

Asymmetrical rigidity and bradykinesia are common at presentation in CBS (Armstrong et 

al., 2013; Mathew et al., 2012), which rarely responds to dopaminergic therapy (Boeve et 

al., 2003b; Martin et al., 2021), although a trial of treatment is often warranted (Bluett et 

al., 2021). Dystonia is typically in the limbs rather than axial or cervical (Constantinides et 

al., 2019) and a postured hand may take a ‘fisted’ appearance or show finger 

hyperextension (Boeve et al., 2003b). Myoclonus is often prominent and may occur due to 

hyperexcitability of the motor cortex due to loss of inhibition from the sensory cortex (Lu 

et al., 1998), although subcortical structures have also been implicated (Di Stasio et al., 

2019). 

Apraxia is among the most common clinical features in CBS (Mathew et al., 2012), and 

may be observed in the limbs, face and mouth (orobuccal apraxia), eyelids (apraxia of 

eyelid opening) or eyes (ocular motor apraxia) (Armstrong et al., 2013; Boeve et al., 2003b; 

Mathew et al., 2012). In the alien limb phenomenon a patient’s limb will act independently 

of the patient’s reported intensions (Lewis-Smith et al., 2020), with reduced volitional 

control sense of agency (Wolpe et al., 2020), and must be more than simple levitation 

(Armstrong et al., 2013). Cortical sensory loss can be determined on examination by 

assessment for graphaestheia, stereognosis or sensory extinction despite preservation of 
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primary sensory modalities, while patients may report numbness or tingling (Boeve et al., 

2003b) 

Clinical features associated with classical presentations of other FTLD syndromes can be 

found in individuals who develop corticobasal syndrome through their disease course. 

Frontal and executive dysfunction are common, including apathy, decreased verbal 

fluency, impaired reasoning, disinhibition and lack of empathy (Boeve et al., 2003b; 

Mathew et al., 2012). Aphasia in CBS is most frequently non-fluent, with both apraxia of 

speech and language deficits observed (Armstrong et al., 2013; Peterson et al., 2019). Other 

cognitive domains may also be affected, including episodic memory and visuospatial 

function (Bak et al., 2006; Day et al., 2017). Clinical overlap between CBS and PSP are 

recognised in diagnostic criteria for both syndromes (Armstrong et al., 2013; Höglinger et 

al., 2017), with variation in time to developing supranuclear gaze palsy potentially pointing 

to underlying pathological aetiology (Ling et al., 2010). In CBS, the clinical signs and 

symptoms appear to only weakly suggest underlying pathology (Lee et al., 2011), although 

clinical certainty may change through the disease course.  

1.2 FTLD proteinopathies and the neuropathological cascade 

Most neurodegenerative diseases are characterised by the accumulation of misfolded and 

aggregated proteins (reviewed in Soto and Pritzkow, 2018). FTLD can be subdivided into 

three primary sub-divisions based on the pathological protein (Mackenzie and Neumann, 

2016), namely FTLD-tau, FTLD-TDP (TAR DNA-binding protein 43), and FTLD-FET 

(referring to the FET protein family). Below I discuss the first two subtypes, which account 

for approximately 95% of cases of FTLD (Irwin et al., 2015).  

FTLD-tau can be considered within the broader framework of the primary tauopathies, a 

group of neurodegenerative conditions where the characteristic feature is abnormal 

intracellular accumulation of a hyperphosphorylated form of the microtubule-associated 

protein tau (Kovacs, 2015). Tau has an important role in maintaining neuronal integrity and 

axonal transport, with six isoforms of tau found in the adult human brain (Kovacs, 2015; 

Lee et al., 2001; Mackenzie and Neumann, 2016). These tau isoforms can be subdivided 

depending on whether they contain three (3R-tau) or four repeats (4R-tau) of the 

microtubule-binding domain. 4R predominant tauopathies include the pathological 

diagnoses of progressive supranuclear palsy and corticobasal degeneration. These are not 

synonymous with the clinical syndromes of PSP and CBS discussed above and in the next 
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section I consider further the associations between clinical syndrome and pathology. 

Characteristic features of PSP pathology include neuronal tau in the form of neurofibrillary 

tangles, tufted astrocytes, and oligodendroglial coiled bodies (Kovacs et al., 2020; 

Mackenzie and Neumann, 2016). Pathological change is often concentrated in subcortical 

structures (e.g. striatum, globus pallidus, subthalamic nucleus, midbrain tegmentum, 

substantia nigra, cerebellar dentate nucleus, and cerebellar peduncle) with variable cortical 

involvement (Kovacs et al., 2020; Mackenzie and Neumann, 2016). CBD is associated 

microscopically with a greater degree of cortical neuronal and astroglial tau, with more 

numerous neurophil threads and the pathognomonic finding of astrocytic plaques, although 

differentiating the two pathologically can be challenging in atypical cases (Kouri et al., 

2011). In both CBS and PSP the distribution and load of tau pathology correlate with 

symptomatic burden (Kouri et al., 2011; Kovacs et al., 2020; Williams et al., 2005). 

The term Pick’s disease now refers to a predominantly 3R tauopathy with characteristic 

histological features of severe neuronal loss, swollen neurons and Pick bodies, a 

pathognomonic finding of large spherical argyrophilic neuronal cytoplasmic inclusions 

(Mackenzie and Neumann, 2016). The condition is named after Arnold Pick, who in 1892 

described a 71 year old with progressive behavioural and language impairment (Berrios 

and Girling, 1994; Pick, 1892). The most common presentations of Pick’s disease are with 

the behavioural variant FTD and nfvPPA (Piguet et al., 2011a).  A proportion of patients 

with FTLD-tau have mutations in the MAPT gene (Hutton et al., 1998; Poorkaj et al., 1998; 

Spillantini et al., 1998), with clinical and pathological features overlapping with sporadic 

forms of FTLD-tau (Forrest et al., 2018). 

TAR DNA-binding protein 43 is a ubiquitous protein important in regulation of RNA, 

including in alternative splicing and mRNA stabilisation (Jo et al., 2020). TDP-43 was 

identified as the pathological protein in most cases of FTLD without hyperphosphorylated 

tau in 2006 (Neumann et al., 2006; Sampathu et al., 2006), with subsequent work 

recognising four subtypes of FTLD-TDP (FTLD-TDP Types A-D) (Neumann et al., 2021). 

Differentiating the subtypes of FTLD-TDP can be challenging, with moderate interrater 

reliability, particularly between Types A and B (Alafuzoff et al., 2015). TDP-43 is also 

found in aging and in non-FTLD neurodegenerative conditions (including Alzheimer’s 

disease and dementia with Lewy bodies) predominantly in limbic structures, with 

uncertainty as to whether these changes cause functional impairment (Neumann et al., 

2021). TDP-43 Type A is found at post-mortem in patients with mutations in the 
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progranulin (GRN) gene, while hexanucleotide expansions in C9orf72 are associated with 

both Types A and B. 

Full understanding of neurodegenerative diseases requires characterisation of a complex 

nexus of processes, from factors that increase the likelihood of protein misfolding and 

assembly, to determining how protein toxicity affects brain connections and thereby 

behaviour through cell death and synaptic dysfunction. This gives rise to the concept of a 

neurodegenerative cascade (Figure 1-1, Eimeren et al., 2019; Spires-Jones et al., 2017), 

with research methods from preclinical work to in vivo imaging studies aiming to shed light 

on distinct components of this cascade. Genetic (Chen et al., 2015; Ferrari et al., 2019) and 

environmental (Litvan et al., 2016; Rosso, 2003; Spencer et al., 1987) factors are important 

in increasing the chances of accumulation and propagation of misfolded proteins occurring. 

It is likely that multiple influences are important in shaping a patient’s pathology, clinical 

presentation, and disease course. Even in families with autosomal dominant mutations 

causing FTLD there is considerable within-family variation in age of disease onset and 

predominant symptoms (Cooper-Knock et al., 2014; Moore et al., 2020). Both tau and 

TDP-43 pathology accumulate with age, with brainstem tau found in most individuals by 

age 40 (Braak et al., 2011). It is possible that age related accumulation of protein is a 

prerequisite for neurodegeneration (Spires-Jones et al., 2017). 

 

Figure 1-1. A model of the pathophysiological cascade in neurodegenerative diseases. Examples are given 

of imaging and other biomarkers and their utility in characterising respective components of this cascade.  

In this thesis I predominantly focus on the lower part of the neurodegenerative cascade, to 

understand how changes in brain connections influence behaviour and the factors that 

determine maintenance or loss of connections. Pathological proteins may mediate 
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breakdown of connections in FTLD through direct toxic effects or indirectly through 

biological dysfunction to cellular processes that result in neuronal dysfunction or death 

(reviewed for FTLD-TDP and FTLD-tau in de Boer et al., 2021 and Yoshiyama et al., 

2013). Brain connections may be functionally lost through synaptic dysfunction even 

without neuronal and cell death (Spires-Jones and Hyman, 2014). Inflammation and the 

presence of co-pathology (Spires-Jones et al., 2017) are important factors in the initiation 

and acceleration of FTLD pathogenesis and subsequent connectivity loss. There are also 

extensive neurotransmitter deficits found in FTLD (reviewed in Murley and Rowe, 2018), 

with performance on cognitive tasks and cortical physiology associated with in vivo 

measures of neurotransmitter levels (Adams et al., 2021; Murley et al., 2020b). 

Investigating the relationship between pathology, synaptic dysfunction, neurotransmitter 

deficits, connectivity and behaviour has the potential to detect important and reversible 

deficits in neurodegeneration.  

1.3 Clinicoanatomical convergence and phenotypic diversity 

Clinical syndrome in FTLD is often only moderately predictive of pathology (Figure 1-2). 

The strength of the association is variable depending on the syndrome in question and the 

disease stage. For instance, Richardson’s syndrome is strongly associated with PSP 4R 

tauopathy (Litvan, 1997; Osaki et al., 2004), while most patients with svPPA have TDP-43 

Type C (Spinelli et al., 2017). In contrast, bvFTD and CBS are highly pathologically 

heterogeneous. The disassociation between clinical syndrome and pathological findings 

gives rise to two key concepts when investigating heterogeneity in FTLD, namely 

clinicoanatomical convergence and phenotypic diversity (Seeley, 2017). 
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Figure 1-2. Clinicopathological correlation in the syndromes associated with frontotemporal lobar 

degeneration. Vertical colour stripes represent the proportion of patients with the corresponding 

pathological finding shown at the bottom. bvFTD, behavioural variant frontotemporal dementia; svPPA, 

semantic variant primary progressive aphasia; nvPPA non-fluent variant primary progressive aphasia; CBS, 

corticobasal syndrome; PSP, progressive supranuclear palsy; TDP, TAR DNA-binding protein; CBD, 

corticobasal degeneration; PGRN, progranulin; C9orf72, chromosome 9 open reading frame 72; BIBD, 

basophilic inclusion body disease; FTDP-17, frontotemporal dementia with parkinsonism linked with 

chromosome 17; MAPT, microtubule associated protein tau; CTE, chronic traumatic encephalopathy; VCP, 

valosin-containing protein; AGD, argyrophilic grain disease; MST, multiple system atrophy tauopathy with 

dementia; GGT, globular glial tauopathy; NIBD, neurofilament inclusion body disease; NIFID, neuronal 

intermediate filament inclusion disease; FUS, fused in sarcoma.  Image adapted from Kim and colleagues 

(Kim et al., 2016), reprinted with permission from Cambridge University Press. 

Clinicoanatomical convergence refers to the fact that the same clinical presentation can be 

caused by multiple pathological entities. This arises when distinct pathologies can affect 

the same region or neurons, or instead involve anatomically distinct components of a 

disparate brain network responsible for certain cognitive functions (Seeley, 2017). Various 

(non-exclusive) factors may be influential in allowing clinicoanatomical convergence to 

arise. Brain regions or a single brain network may have shared vulnerability due to common 

protein expression (Rittman et al., 2016b), greater metabolic demand (de Haan et al., 2012; 

Liang et al., 2013; Saxena and Caroni, 2011), or lack of trophic factors (Appel, 1981). 

Anatomical distribution of pathologies may be influenced by transneuronal spread of 

pathogenic protein from an initial ‘seed’ site, in a similar manner as occurs in prion disease 

(Clavaguera et al., 2009; Darricau et al., 2022; Frost and Diamond, 2010; Goedert, 2015; 

Jucker and Walker, 2018; Prusiner, 1984). 
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Phenotypic diversity describes the variety of clinical syndromes that may be associated 

with a single pathology. For instance, PSP pathology may present with Richardson’s 

syndrome, corticobasal syndrome, nonfluent/agrammatical PPA, or with a behavioural and 

dysexecutive syndrome. This suggests that pathogenic proteins variably involve a finite set 

of brain regions, either as initial seeds or due their relative vulnerability for reasons outlined 

above, or instead that that each protein can be subtyped further into distinct sub-strains that 

correspond to different clinical syndromes (Seeley, 2017). Recent cryo-electron 

microscopy work characterising the structure of neurodegenerative proteins suggests that 

tau sub-strains may be an important contributor to heterogeneity, notably the finding that 

some variants of PSP have distinct tau filament structures (Shi et al., 2021). 

1.4 Heterogeneity in progression in FTLD and the challenges of 

prognostication 

Neurodegenerative diseases may show heterogeneity not only in clinical presentation but 

also in progression and outcome. Predicting progression and long-term outlook is important 

both to individuals at risk of dementia and to patients with neurodegenerative disease. The 

Lancet Commission on Dementia Prevention, Intervention and Care emphasises the 

importance of advanced care planning and early discussion of the future with patients and 

their families, with timely intervention potentially reducing distress in patients with 

advanced dementia and families’ care burden (Livingston et al., 2020).  Moreover with 

growing numbers of trials of disease modifying agents and the arrival of treatments that 

significantly reduce the rate of cognitive decline (Cummings et al., 2021; van Dyck et al., 

2022), there is a pressing need to improve prognostication and to accurately risk-stratify 

trial participants. Yet predicting prognosis is challenging and clinician estimates of 

outcome may be imprecise. 

Longitudinal observational studies of carriers of genetic mutations causing dementia have 

shown that neuropathological and structural change accumulate many years prior to 

symptom onset and a diagnosis of dementia. In autosomal dominant Alzheimer’s disease 

changes in cerebrospinal fluid amyloid-beta are detectable 25 years before expected 

symptom onset, followed by amyloid-beta deposition on positron emission tomography and 

atrophy on structural magnetic resonance imaging 15 years before expected symptom onset 

(Bateman et al., 2012).  In familial frontotemporal dementia atrophy may be observed up 

to four decades before expected symptom onset (Rohrer et al., 2015; Staffaroni et al., 2022), 
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with variation in the timing of biomarker change between mutation types. Less is known 

about the chronology of pathological change in individuals with sporadic dementias, with 

ongoing developments in this area possible due to large prospective cohort studies of 

healthy individuals such the UK Biobank (Miller et al., 2016; Sudlow et al., 2015). Work 

led by colleagues in our group have found deficits on quality of life measures and 

neuropsychological testing many years prior to diagnosis in neurodegenerative disease, 

including in conditions that cause FTLD (Street et al., 2022; Swaddiwudhipong et al., 

2022). Our group have also demonstrated that it is possible to use neuroimaging as a 

biomarker to identify patients at high risk of Alzheimer’s disease before symptoms develop, 

raising the possibility of early intervention to stop or slow down the condition (Azevedo et 

al., 2022). 

While in autosomal dominant Alzheimer’s disease age of symptom onset can be accurately 

predicted from parental age of onset and mutation type (Ryman et al., 2014), this has not 

been found to be the case for non-MAPT carriers of mutations causing familial 

frontotemporal dementia (Moore et al., 2020). For instance, parental age of onset only 

explains 14% of variability in age of symptom onset in progranulin mutation carriers. 

Unlike in Huntington’s disease there is no clear evidence that length of C9orf72 expansion 

size influences timing of conversion to symptomatic disease (Fournier et al., 2019). 

Neurofilament light chain (NfL), a non-specific fluid biomarker that is increased in a range 

of neurological conditions, may be a useful aid to identify mutation carriers on the cusp of 

symptom onset (van der Ende et al., 2019). 

Variation is also seen in progression and survival in individuals with sporadic diseases 

causing FTLD. Survival is shortest in PSP and CBS, with average survival from symptom 

onset between six and eight years (Coyle-Gilchrist et al., 2016). While survival is longer in 

bvFTD, a greater proportion of time with disease is spent in care homes (Murley et al., 

2021). In semantic variant PPA and the non-fluent/agrammatic variant PPA survival from 

disease onset is between nine and twelve years (Nunnemann et al., 2011).  Divergence in 

outcome is seen not only across clinical syndromes but also in individual pathologies, with 

a subset of individuals with PSP showing exceptionally long survival (Lukic et al., 2022).  

Clinical features and phenotypic variability are associated with heterogeneity in disease 

progression. The rate of progression is slower in the subcortical phenotypes of PSP (PSP-

Parkinsonism and PSP-Progressive Gait Freezing) than in the classic PSP-Richardson’s 
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form of the disease (Jabbari et al., 2020). In keeping with this, early falls and dysphagia are 

indicators of poor survival in PSP (Glasmacher et al., 2017). Features of motor neurone 

disease in FTD-ALS at initial presentation predict faster progression and shorter survival 

than those with presenting with a primarily cognitive syndrome (Ahmed et al., 2020).  

Clinical features may predict prognosis across diagnostic labels, with motor features in 

FTLD associated with short absolute survival, while greater behavioural impairment 

predicts time to care home admission (Murley et al., 2021). Apathy has been associated 

with both poor survival in FTLD (Lansdall et al., 2019) and with progression in 

presymptomatic mutation carriers in familial FTD (Malpetti et al., 2021a). 

While understanding clinical predictors of prognosis assists accurate prognostication, it 

does not allow us to make direct mechanistic inferences about the neuropathological 

processes contributing to altered survival and phenotypic variation. In certain cases, longer 

survival from symptom onset may arise from the severity of clinical manifestation despite 

mild burden of pathology, perhaps due to impaired ability to compensate or to regional 

selective vulnerability to disease. This may be relevant to the long-standing observation 

that the prevalence of dyslexia is increased in the families of patients with primary 

progressive aphasia (Rogalski et al., 2008).  Untangling the relative contributions of 

regional vulnerability versus factors that attenuate or accelerate the underlying pathological 

process is important when investigating potential targets for treatments that alter prognosis. 

Studies using imaging, fluid biomarker and genetic data provide insight into this. Greater 

neuroinflammation in PSP and Alzheimer’s disease, as measured through positron 

emission tomography, is associated with increased rate of change in markers of clinical 

severity (Malpetti et al., 2021b, 2020). Genetic variation at the LRRK2 locus is associated 

with poorer survival in PSP (Jabbari et al., 2021), with LRRK2 potentially mediating 

proteostasis and the inflammatory response. Metabolic changes are common in FTD, with 

lower cholesterol associated with poorer survival in patients with FTD-ALS (Ahmed et al., 

2017).  

Accurate prognostication is relevant to patients from the development of presymptomatic 

pathological change to end-of-life care. Its importance is in supporting patients to make 

informed decisions about their care, in improving studies of experimental medicines, and 

in advancing our understanding of disease to identify novel therapeutic targets. In the next 

section I will discuss the range of biomarkers available to explain heterogeneity in 
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phenotype and survival in FTLD, and how variance explained by these biomarkers may 

vary through the disease course. 

1.5 Biomarkers of disease heterogeneity and progression in 

FTLD 

A biomarker is an objectively quantifiable measure that relates to underlying biology, a 

pathological process or response to a therapeutic intervention (NIH Biomarkers Definition 

Working Group, 2001). There are a wide array of putative applications for biomarkers, 

including in confirming diagnosis, disease monitoring, detecting or predicting treatment 

response, prognostication and for risk assessment before or after exposure to a therapeutic 

agent (FDA-NIH Biomarker Working Group, 2016). Biomarkers may therefore have a role 

not only in patient diagnosis, stratification, prediction and prognostication, but also as 

primary outcome measures for clinical trials. 

In evaluating heterogeneity and progression in FTLD it is necessary to consider both the 

type of biomarker under consideration and its intended purpose. In this thesis much of the 

focus will be on clinical and imaging biomarkers. Clinical biomarkers can be derived from 

clinician history or examination, neuropsychological testing, or formalised rating scale 

(relevant examples discussed in further detail in chapter 2). Reliance on clinical data can 

be problematic when making predictions or assessing outcomes in neurodegenerative 

conditions (Eimeren et al., 2019). For instance, in presymptomatic FTLD there may be a 

significant time lag between the optimal point for intervention and the onset of clinical 

syndrome (Beach, 2017). Similarly in trials in symptomatic participants key outcomes, 

such as survival, require assessment over many years and as a result may be impractical 

(Strimbu and Tavel, 2010). As highlighted above, clinical assessments also show variable 

relationship with underlying neuropathology. Neuroimaging can potentially be used to 

augment assessments based on clinical data or instead be used as surrogates of a clinical 

outcome of interest. In the latter case, to provide benefit the effect size of the imaging 

biomarker must be at least equivalent to the related clinical measure over the same period 

(Eimeren et al., 2019). An imaging biomarker that demonstrates short-term change 

associated with long-term clinical outcome has the potential to improve and de-risk drug 

development (Cummings, 2019; Manyara et al., 2022).  For a surrogate to be accepted as a 

trial endpoint, it requires a strong mechanistic rationale for the association between the 

biomarker and clinical outcome of interest (FDA-NIH Biomarker Working Group, 2016).  
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Eimeren and colleagues (2019) provide a conceptual framework to assess and categorise 

biomarkers (Figure 1-3). A biomarker may be useful in detecting a patient population early 

in disease, may be specific to underlying neuropathology, or be helpful in monitoring 

disease progression. When considering progression, they emphasise the difference between 

anticipation and correlation. A biomarker anticipates change if the effect size of the 

biomarker is associated with clinical progression at a late date, in contrast to biomarker 

change over time correlating with clinical progression. This framework clarifies that a 

biomarker may be useful even if it is not specific to neuropathology, and that a biomarker 

useful to detect early disease may not predict progression. Considering time dependent 

ordering of biomarker change within a model of disease progression leads to the concept 

of a cascade of biomarkers, a biomarker counterpart to the neurodegeneration cascade 

(Figure 1-4; Gordon et al., 2016; Jack et al., 2010; Sperling et al., 2011). For instance, 

cerebral atrophy, as detected by structural MRI, may be a relatively late phenomenon and 

represent the end process of neuronal and synaptic loss, axon degeneration and cell death 

(Fung et al., 2020; Planche et al., 2022). It may be hypothesised that in the presymptomatic 

phase of neurodegenerative diseases supra-normal function is required to maintain levels 

of performance given build-up of pathology, leading to biomarker specific models that 

directly characterise and allow testing for compensatory mechanisms (Figure 1-4; Gregory 

et al., 2018, 2017). 

 

Figure 1-3.  A conceptual framework for biomarker utility. From Eimeren and colleagues (2019) 

Decades of research into neuroimaging in FTLD have so far resulted in limited validated  

imaging biomarkers (Whitwell et al., 2017), with only structural magnetic resonance 
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imaging markers currently used as secondary endpoints in FTLD clinical trials (Boxer et 

al., 2020; Dam et al., 2021; Höglinger et al., 2021; Vivash et al., 2020). The difficulties in 

part arise from moderate test-retest reliability for some modalities (Elliott et al., 2020; 

Noble et al., 2019). Reliability may be improved by brain-wide dimension-reduction 

techniques (Duff et al., 2022), but this potentially comes at a loss of anatomical and disease 

specificity. Although studies in FTLD have shown good group differentiation they may fail 

to generalise due to focus on specific phenotypes, small sample sizes from single centres, 

and lack of post mortem confirmation of pathology (Eimeren et al., 2019; Whitwell et al., 

2017).  

Research in potential neuroimaging biomarkers must also consider rapid developments in 

fluid biomarkers relevant to FTLD. Plasma neurofilament light chain has a potential role 

in differentiating people with Parkinson’s disease from other neurodegenerative diseases 

with parkinsonism (Ashton et al., 2021), with higher levels predictive of more rapid 

progression in PSP (Rojas et al., 2016). The ratio between NfL and another plasma 

biomarker, glial fibrillary acidic protein, may be useful in discriminating FTLD-tau from 

FTLD-TDP (Cousins et al., 2022). New cerebrospinal fluid (CSF) biomarkers have been 

show to differentiate corticobasal degeneration from other FTLD-tau (Horie et al., 2022). 

There has also been progress in using plasma biomarkers to distinguish people with 

Alzheimer’s disease from other neurodegenerative diseases (Palmqvist et al., 2021; 

Thijssen et al., 2021, 2020), reducing cost and patient burden compared to current CSF or 

positron emission tomography biomarkers, and relevant for the FTLD syndromes where 

Alzheimer’s disease is a possible underlying pathology. 

Much of the development of biomarkers of heterogeneity and disease progression in FTLD 

has been in genetic forms of FTLD, given the possibility of identifying study participants 

for longitudinal modelling from the presymptomatic stage to disease onset. It is common 

to make the assumption that biomarker models in genetic dementias provide support for 

their sporadic comparators (Jack and Holtzman, 2013). Genetic and sporadic bvFTD show 

similar cross-sectional neuropsychological features (Capozzo et al., 2017; Heuer et al., 

2020), suggesting that measures focused on key symptoms of genetic FTD might be 

applicable to both groups. However, we currently do not have sufficient comparable 

longitudinal data to ensure that longitudinal outcomes overlap. Moreover, 

pathophysiological differences exist between genetic and sporadic variants of FTD (Del 

Campo et al., 2022), and indeed between the genetic form of FTD. Therefore the 
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applicability of biomarker profiles in genetic FTLD to sporadic forms may depend on the 

biological or clinical mechanism being targeted. 

In the next section I will place this conceptual framework for biomarker development in 

the context of the state of the art in treatment trials in FTLD. I will then discuss the current 

role, prospects, and challenges facing researchers of imaging biomarkers in FTLD. 

 

 

Figure 1-4. Two models of biomarker change through clinical disease stage A) Biomarker levels may 

change in the presymptomatic period in a time dependent manner, with detection of abnormal proteins 

possible before structural change and the development of clinical symptoms (From Gordon et al., 2016, 

reprinted with permission from Wiley). B) The brain may compensate in the early stages of disease to 

maintain performance despite build-up of pathology. This may be captured by biomarkers targeting these 

compensatory processes with supra-normal levels (from Gregory et al., 2018, with x-axis relabelled). 
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1.6 Developments in clinical trials in FTLD 

There are currently no approved medications for FTLD, although symptomatic medications 

are often trialled and are beneficial in a proportion of patients (Bluett et al., 2021; Tsai and 

Boxer, 2014). While heterogeneity and comparative rarity of FTLD syndromes pose 

challenges for clinical trial design, the relatively high proportion of familial cases and 

existence of syndromes with rapid progression mean that phase 3 trials in certain cohorts 

are feasible (Boxer et al., 2020). The mechanism of action targeted in current trials in 

carriers of pathogenic FTLD-causing mutations vary, and include: monoclonal antibodies 

aimed at restoring progranulin protein levels in GRN mutation carriers (Jackson et al., 

2021); gene therapy to replace the defective gene using viral mediated gene delivery 

(Arrant et al., 2018); and anti-sense oligonucleotides, which are small molecules designed 

to target messenger RNA and therefore modulate protein expression (Liu et al., 2022). One 

phase 3 trial for GRN mutation carriers recruits asymptomatic participants with raised 

levels of NfL, highlighting the importance of novel biomarkers in presymptomatic and 

early disease. 

Most trials aimed at targeting tau in FTLD have been in PSP, an appealing condition for 

trialists given the high clinicopathological correlation in its classical form (Grossman, 

2021). Candidate agents in trials have included monoclonal antibodies that bind tau (Dam 

et al., 2021; Höglinger et al., 2021), therapies that aim to reduce tau transcription and 

aggregation, and antisense oligonucleotides targeted at the MAPT gene (Przewodowska et 

al., 2021). These trials have so far failed to show clinical benefit, which may be a 

consequence not only of limitations of agents but also due to the clinical profile of the trial 

cohort (Grossman, 2021; Höglinger et al., 2021). One possibility is that the trials start too 

late, once neuropathology is well established. In sporadic neurodegenerative disease, 

particularly in PSP where diagnosis is delayed, there is therefore a need for biomarkers that 

assist early diagnosis to ensure that tau burden is sufficiently mild to respond to 

intervention. Biomarkers that accurately identify less common variants of PSP have the 

potential to increase the population eligible for trials (Street et al., 2021). 

There are grounds for optimism for the prospect of new treatments in FTLD.  We turn next 

to the role of different imaging modalities in supporting this progress, as well as their use 

in diagnosis and prognostication in clinical practice in FTLD. 
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1.7 Structural magnetic resonance imaging in FTLD 

Structural MRI, using T1- and T2- weighted contrasts, are widely used in routine practice 

and in research settings in neurodegenerative diseases. Here I define structural imaging as 

referring to modalities that provide static anatomical information (Symms, 2004), with the 

focus in this thesis on measures of grey matter atrophy rather than structural connections, 

white matter degeneration or markers derived from quantitative susceptibility mapping. 

Atrophy, the loss of brain parenchyma relative to a control population or observed within 

an individual on longitudinal imaging, is a presumed marker of neuropathological change 

in neurodegenerative conditions (Kantarci and Jack, 2004). It is plausible that atrophy is 

the result of multiple complex interconnected processes in neurodegenerative disease. For 

instance, while tau pathology on post-mortem is associated with atrophy observed in vivo 

on structural MRI in PSP and CBS, the effect size of the association is only moderate (Spina 

et al., 2019). 

Patterns of atrophy on structural imaging are associated with particular clinical syndromes 

in FTLD and may point to underlying neuropathology. PSP is associated with 

disproportionate midbrain atrophy, with imaging in the midsagittal plane resembling a 

hummingbird’s beak and head (Kato et al., 2003). Other prominent sites of atrophy are the 

superior cerebellar peduncle, basal ganglia and frontal lobe (Whitwell et al., 2017). The 

structural imaging hallmark of corticobasal syndrome is asymmetric frontoparietal atrophy 

(Whitwell et al., 2017), observed across the different pathological aetiologies of the 

syndrome. The behavioural variant frontotemporal dementia atrophy is commonly found 

in the prefrontal cortex, anterior cingulate and in the insula cortex (Rosen et al., 2002; 

Whitwell, 2019). In semantic variant primary progressive aphasia, atrophy is found in the 

temporal lobes with an anteroposterior gradient and striking atrophy at the temporal poles 

(Hodges et al., 1992). Structural imaging in the non-fluent variant primary progressive 

aphasia is relatively normal, with mild inferior frontal and anterior temporal lobe atrophy 

in the dominant hemisphere (Grossman, 2012). 

Atrophy in FTLD can be quantified to provide objective biomarkers to improve accuracy 

of diagnosis and assess neuropathological correlation. Examples in PSP include the ratio 

between midbrain and pons diameters (Cosottini et al., 2007), and the MR Parkinsonism 

Index (MRPI), which additionally takes into account the middle and superior cerebellar 

peduncles (Quattrone et al., 2008). The MRPI has shown good diagnostic accuracy in 
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differentiating PSP from other pathologies (Grijalva et al., 2022; Illán-Gala et al., 2022). 

The highest accuracy for differentiating PSP and CBD from other pathologies has been 

found with a combination of cortical and subcortical measures (Illán-Gala et al., 2022), 

with regional atrophy also differing between PSP phenotypes (Jabbari et al., 2020).  

Variable accuracy has been found when differentiating FTLD pathologies from 

Alzheimer’s Disease (Bruun et al., 2019; McCarthy et al., 2018) without specific imaging 

markers of FTLD-tau or FTLD-TDP (Whitwell, 2019). Less is known how measures 

derived from structural MRI predict prognosis in FTLD. Brainstem measures have been 

found to be associated with worse outcome in PSP (Cui et al., 2020; Dutt et al., 2016), 

while diffuse atrophy predicts poorer survival in bvFTD (Lee et al., 2017). 

Challenges remain in maximising the use of structural MRI in clinical practice in FTLD. 

Many structural imaging studies are in research cohorts and have focused on differentiating 

participants with neurodegenerative conditions from healthy controls, and therefore fail to 

address questions reflecting true clinical need. Instead, studies need real world cohorts on 

patients using hold out test sets, ideally collected from different sites, to ensure that 

structural biomarkers outperform current clinical practice. In addition, mechanistic 

inference is difficult, given the uncertainty as to the relative contribution of different 

pathological processes in driving atrophy in neurodegeneration. 

1.8 Task-free functional magnetic resonance imaging  

Magnetic resonance imaging can be used not only to map brain structure but also to capture 

activations associated with specific tasks or behaviours. In 1991 John Belliveau and 

colleagues presented work that showed localised increases in blood volume in the visual 

cortex associated with visual stimulation in patients given sequential injections of 

gadolinium (Belliveau et al., 1991). In the same year the first experiments were performed 

which demonstrated the potential utility of the blood-oxygen-level-dependent (BOLD) 

effect (Kwong et al., 1992; Ogawa et al., 1992), a change in neurovasculature in response 

to neural activity detectable as a result of the differential magnetic susceptibility of 

oxygenated and deoxygenated blood.  This approach to imaging, termed functional MRI 

(fMRI), had the advantage of being non-invasive and relatively fast to acquire. The 

foundational work in the field was followed by a proliferation of novel applications, 

methodological advances and technical innovations (Bandettini, 2012).  
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One key development in functional MRI was the discovery that correlations in BOLD 

signal that recapitulate the topographic distribution of task-evoked responses could be 

observed without a stimulus (Biswal et al., 1995). This finding was in keeping with the 

longstanding observation that the brain accounted for a disproportionate amount of energy 

consumption, and that the brain’s metabolic requirements differed little between a task and 

non-task state (Kety and Schmidt, 1948; Sokoloff et al., 1955). Functional MRI could 

therefore provide information about the intrinsic activity of the brain with whole-brain 

coverage and high spatial resolution. Using fMRI to study the brain ‘at rest’ has enabled 

identification of multiple networks of topographically distributed regions which show 

temporally correlated activity (Fox and Raichle, 2007; Yeo et al., 2011). These task-free or 

resting state networks are spatially consistent across subjects (Damoiseaux et al., 2006) 

and correspond to activation maps generated from task-based studies (Smith et al., 2009).  

Multiple approaches have been used to investigate functional connectivity, the statistical 

dependencies (correlation or covariance) between timeseries derived from different regions 

of the brain. In seed-based functional connectivity investigators assess the cross-correlation 

between a chosen region of interest (the seed) and the rest of the brain. Instead data-

reduction techniques may be used to identify large-scale networks (Beckmann et al., 2005; 

Shirer et al., 2012) followed by analysis of correlations within or between these networks. 

Graph theoretical approaches allow interrogation of functional imaging by describing the 

brain as a set of nodes (brain regions) linked by edges representing functional connections 

(Bullmore and Sporns, 2009).  

While canonical approaches to functional connectivity have averaged over the scan 

acquisition time, time-varying fluctuations in connectivity can be also effectively captured 

by functional magnetic resonance imaging (fMRI) (Calhoun et al., 2014; Chang and 

Glover, 2010; Vidaurre et al., 2017). These approaches attempt to model the dynamical 

nature of mind wandering and internal models of the world (Deco et al., 2017; Lurie et al., 

2019), in order to more fully capture the variance associated with task-independent brain 

activity (Killingsworth and Gilbert, 2010). The hypothesis that time-varying large-scale 

network activity is behaviourally important reflects evidence that temporal co-ordination 

of neurons occurs at the microscale (Berkes et al., 2011) and in non-human animal studies 

(Musall et al., 2019).      
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Understanding and mapping involvement of networks and connections in 

neurodegenerative diseases provides a potential explanatory bridge from pathology to 

clinical manifestation. Atrophy patterns in neurodegenerative diseases mirror patterns of 

functional connectivity to selected seed regions in the healthy brain (Seeley et al., 2009). 

Regions with greater numbers of connections are associated with greater atrophy (Crossley 

et al., 2014) and burden of pathological proteins (Cope et al., 2018; Franzmeier et al., 2022). 

One of the earliest identified resting state networks, the default mode network, has been 

suggested to be preferentially targeted in Alzheimer’s Disease (Greicius et al., 2004; Yu et 

al., 2021). Connectivity of the salience network, with cortical hubs at the anterior insular 

and dorsal anterior cingulate cortices, is attenuated in behavioural variant FTD (Dopper et 

al., 2013; Zhou et al., 2010) and associated with the cardinal manifestations of the disease 

(Toller et al., 2018). 

In the last two decades there have been a rapid growth in publications that have investigated 

resting state functional connectivity in neurodegeneration. Despite early optimism 

(Dickerson, 2006; Vemuri et al., 2012) this work has failed to result in direct clinical 

applications and has no proven utility in clinical trials of experimental medicines. Given 

this it is unsurprising that there is scepticism about the benefits of funnelling resources to 

studies of task-free functional MRI in clinical neuroscience (Kullmann, 2020). I will 

discuss three key challenges that limit the translation of task-free fMRI work in 

neurodegeneration into clinical practice. 

In clinical studies using resting state functional MRI it is usually assumed that BOLD signal 

fluctuations correspond to neuronal activity, and that this activity contributes to brain 

function. Although resting state networks have been found to mirror intracortical 

neurophysiological recordings (Shmuel and Leopold, 2008), BOLD signal has neural and 

vascular determinates and is not a direct measure of neural activity (Logothetis, 2008; 

Tsvetanov et al., 2015). Networks derived from functional MRI show only moderate 

correspondence to structural networks (Mišić et al., 2016) with much of the intra- and inter-

individual variation in functional connectivity unexplained. The opaqueness of the 

interpretability of the BOLD signal and connectivity differences is particularly important 

where inconsistent results have been found without a clear link to clinical syndromes, 

disease physiology or underlying pathology. For instance  in PSP and CBS there are diffuse 

connectivity differences from healthy controls (Ballarini et al., 2020; Brown et al., 2017), 

but the direction of change is not consistent across studies (Bharti et al., 2017; Rosskopf et 
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al., 2017). Moreover these differences have not been found to be predictive of regional 

pathological burden at post-mortem (Spina et al., 2019). Were results to be consistent, 

reproducible, and reliably related to other biomarkers it could be argued that the uncertainty 

regarding the neural origins of the BOLD signal could be ignored. Given that this is not 

case, the lack of an underlying ground truth accessible (or testable) by alternative 

methodologies is a concern.  

The second difficulty facing task-free functional MRI research is that the effect sizes for 

associations between complex cognitive phenotypes and functional connectivity in healthy 

populations are small (Marek et al., 2022). The high dimensional datasets and analytic 

flexibility provided by task-free fMRI in the context of even moderate associations risks 

publication of false or inflated results (Ioannidis, 2008). In addition, effects that require 

large numbers of participants to demonstrate are unlikely to be relevant in uncommon 

conditions where imaging acquisition may be challenging. It is plausible to expect stronger 

associations in neurodegeneration than in health or in psychiatric illnesses as a result of the 

gross disruption to brain structure in the former. Choice of analytic technique is important, 

with increases in effect sizes by using multivariate methods (Marek et al., 2022; Yoo et al., 

2019) and time-varying connectivity approaches (Moguilner et al., 2021). 

Subject movement during scanner acquisition can have a substantial impact on 

measurements of task-free functional connectivity (Power et al., 2012; Satterthwaite et al., 

2012), with even small movements affecting BOLD signal. This is of particular concern in 

conditions that cause FTLD, where impairment in attention, executive dysfunction and 

Parkinsonism mean that head motion is greater than in healthy controls. Metrics that 

measure in-scanner motion during fMRI acquisition have important neural correlates 

(Geerligs et al., 2017) and potentially relate to severity and clinical outcomes in 

neurodegenerative conditions. Therefore, simply regressing out motion from measures of 

functional connectivity risks removing important disease effects that are the focus of our 

investigation. A variety of standardised pre-processing pipelines are now available that 

include processes to remove sources of artefact in a principled manner (Esteban et al., 2019; 

Smith et al., 2013a), but these may fail to completely remove all head movement effects in 

high motion individuals. 

These concerns can in part be addressed by rigorous methodology, including careful pre-

processing of data, analysis and hypothesis preregistration, and replication of results in 
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different datasets. They also require considered use of task-free fMRI. Functional changes 

should closely align with changes of symptoms in neurodegeneration, and indeed 

functional network integrity is maintained in the presymptomatic phase in individuals at 

risk of dementia, with increased coupling between functional connectivity and cognition 

close to symptom onset (Rittman et al., 2019; Tsvetanov et al., 2020). This suggests that 

task-free fMRI would likely be poor at differentiating underlying pathologies where there 

is symptomatic convergence. Instead, it may act as an objective and scalable neural marker 

of clinical syndrome, useful in detecting symptomatic onset and prognostication. This is in 

keeping with the tight relationship between neuronal connectivity and cognition 

hypothesised in the neurodegenerative cascade in Figure 1-1. Understanding of the origin 

of functional connectivity patterns in neurodegeneration can be enhanced by comparison 

with other modalities, including markers of atrophy, synapse loss and neurotransmitter 

receptor distributions.  

1.9 Positron emission tomography  

Positron emission tomography (PET) is an imaging technique that uses an injection of a 

radiolabelled ligand to investigate molecular processes of interest in vivo, with a wide range 

of available ligands used both in clinical practice and research settings (Cope et al., 2021; 

Rittman, 2020). Targeted molecular processes in neurodegenerative diseases include 

quantifying regional metabolic activity through [18F]-fluorodeoxyglucose (FDG-PET), 

beta-amyloid (e.g. Pittsburgh compound-B, Klunk et al., 2004), tau neuropathology in both 

Alzheimer's disease and other tauopathies (e.g. AV-1451, Lowe et al., 2016), 

neuroinflammation, synaptic loss, and mapping neurotransmitter receptor densities 

(Hansen et al., 2022).  The variety of potential targets for ligands enables assessment of the 

pathological cascade in neurodegenerative diseases and exploration of different disease 

mechanisms in determining phenotypic heterogeneity, disease progression and survival.  

While the use of PET imaging is most mature in Alzheimer’s disease, with both beta-

amyloid PET (van Dyck et al., 2022) and tau PET (Mintun et al., 2021) used in clinical 

trials, developments in PET imaging in FTLD dementias have shown promise in 

overcoming challenges facing the field, such as the reduced binding affinity and off-target 

binding in first-generation tau PET ligands (Leuzy et al., 2019). In this section I focus on 

radioligands assessed in this thesis, namely markers of synaptic density and 

neurotransmitter receptor distributions, and consider their role as part of multi-modal 

approach to characterising FTLD. 
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Synaptic dysfunction has been proposed as a key mid-stream component in models of 

development of neurodegenerative disease, with toxic proteinopathies and 

neuroinflammation leading to altered synaptic function and density, which in turn cause 

downstream functional effects, even prior to cell death. Synaptic health and plasticity have 

key roles in generating neurophysiological connections (Hebb, 1949; Ramon y Cajal, 

1894), with preclinical and neuropathological studies showing widespread synaptic 

dysfunction and impaired plasticity to be key determinants of impaired brain network 

organisation in neurodegenerative diseases (DeKosky and Scheff, 1990; Spires-Jones and 

Hyman, 2014; Terry et al., 1991), including in FTLD (Bigio et al., 2001; Lipton et al., 

2001). The PET radioligand [11C]UCB-J quantities synaptic density through selective 

binding to the presynaptic vesicle glycoprotein 2A (SV2A) (Finnema et al., 2016). 

[11C]UCB-J binding has been found to be reduced in neurodegenerative diseases, including 

in Alzheimer’s disease (Mecca et al., 2020), Parkinson’s disease (Matuskey et al., 2020) 

and in FTLD syndromes (Holland et al., 2020; Malpetti et al., 2022). Combining this 

marker of synaptic density with imaging measures of function and structure promises 

therefore to provide insight into heterogeneity in FTLD, including the possibility of 

quantifying when therapeutic interventions are likely to be most successful. 

A further factor that is potentially important in accounting for heterogeneity in FTLD 

syndromes is altered neurotransmitter systems, with variable reductions in receptor 

densities or in neurotransmitter levels observed in noradrenaline, dopamine, glutamate, -

aminobutyric acid (GABA), serotonin and acetylcholine (Huber et al., 2022; Murley and 

Rowe, 2018). Post-mortem and fluid biomarker work have found mismatches between 

biochemical assays of neurotransmitter levels and receptor densities (for instance for 

serotonin in FTD, Vermeiren et al., 2016; Yang and Schmitt, 2001), potentially indicating 

compensatory mechanisms important in maintaining functional performance. Quantifying 

neurotransmitters and receptor populations with imaging markers of cell death, synaptic 

density and function enables detailed biophysical modelling across the course of disease 

and assessment of therapeutic interventions (Cope et al., 2021). PET radioligands for 

multiple receptors and neurotransmitter transporters have been used in healthy populations 

and in individuals with neurodegenerative diseases (Finnema et al., 2015; Hansen et al., 

2022). Challenges in designing and interpreting PET imaging as an indirect measure of 

extracellular neurotransmitter levels include uncertainty about target specificity of 

radioligands, high cost of acquiring imaging, and the need to consider the neurotransmitter 
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intrinsic activity to the receptor as well as the possibility of receptor internalisation 

(Finnema et al., 2015). Multi-modal imaging studies have the potential to ensure findings 

from such studies are robust and produce biologically plausible results. 

1.10  Aims and hypotheses of this thesis 

In this thesis I aim to advance understanding of the utility of imaging biomarkers in 

explaining phenotypic heterogeneity and progression in frontotemporal lobar degeneration, 

assessing their use both for clinical practice and to support trials of experimental medicines. 

I focus primarily on task-free fMRI, exploring the determinants of functional connectivity 

and its role as a mediator of clinical syndrome. I explore imaging changes across the disease 

course in FTLD, from predicting symptomatic conversion in presymptomatic carriers of 

FTD-causing mutations to estimating survival in sporadic PSP and CBS. 

I therefore set the following broad objectives: 

• To determine whether task-free fMRI, as a marker of neural activity closely tied to 

cognition in neurodegenerative diseases, a) predicts disease progression and 

survival in FTLD, and b) explains phenotypic diversity in these conditions 

• To determine the relative contribution of atrophy, synaptic change and 

neurotransmitter deficits in maintenance and loss of functional connectivity in 

FTLD, and the interaction between connectivity and its determinants in explaining 

clinical syndromes. 

The specific hypotheses of my thesis are: 

1) Measures derived from task-free fMRI differ between individuals with FTLD 

syndromes and cognitively normal controls, including time-varying network 

measures (chapters 3 and 4), graph metric approaches (chapters 4 and 5), and 

connectivity between large-scale networks (chapter 6). 

2) Large-scale network differences, captured through fMRI, occur in presymptomatic 

individuals at risk of developing FTLD syndromes as they near disease onset and 

predict conversion to symptomatic disease (chapter 3). 

3) fMRI derived time-varying network measures explain phenotypic diversity in 

FTLD syndromes (chapters 3 and 4). 
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4) Reduced synaptic density is associated with reduced functional connectivity in 

FTLD syndromes, with the effect of synaptic loss on cognition moderated by 

connectivity change (chapter 5). 

5) Differences in functional connectivity and network activation in FTLD syndromes 

occur remotely from sites of atrophy and synaptic loss (chapters 4 and 5). 

6) Atrophy, synaptic density loss and distribution of neurotransmitter 

receptors/transporters in combination explain a greater proportion of variance in 

connectivity in FTLD syndromes than individually (chapter 5).  

7) Functional connectivity differences predict survival in FTLD syndromes (chapter 

6). 

8) Functional connectivity improves prediction of survival in FTLD syndrome over 

and above clinical measures, demographics and atrophy (chapter 6). 

In the following chapter I describe the cohorts and neuropsychological and clinical 

assessments used to test these hypotheses. I then discuss image acquisition and pre-

processing, before describing the fMRI analysis techniques used to address my hypotheses. 

I outline relevant data-reduction techniques and discuss statistical modelling of longitudinal 

change. 

Given the limitations of fMRI as an imaging modality as set out above, I adopt various 

approaches to analysis to improve robustness and reliability: 

• Replication of imaging findings from locally collected data in a second, multi-

centre, cohort (Chapters 3 and 4). 

• Preregistration of fMRI analysis pipeline and hypotheses prior to formal testing 

(Chapter 3). 

• Multivariate and data-reduction techniques to identify a small number of features 

that explain variance in the outcome of interest (Chapters 3-6). 

• Cross-validation comparing imaging and clinical biomarkers in their ability to 

predict patient outcome (Chapter 6). 
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2 Study cohorts and methods 

This thesis uses data from participants recruited at the University of Cambridge and from 

two multi-site collaborations, the Progressive Supranuclear Palsy Corticobasal Syndrome 

Multiple System Atrophy Longitudinal Study UK (PROSPECT-M-UK) and the Genetic 

Frontotemporal Dementia Initiative (GENFI). In this chapter I describe participant 

recruitment, neuropsychological and clinical assessment, and imaging acquisition for each 

of these cohorts. A broad overview of the cohorts is provided in Table 2-1. I discuss 

methodological approaches I use in subsequent experiments, in pre-processing and analysis 

of task-free fMRI, and in modelling of longitudinal change in clinical severity and 

predicting survival. Additional methodological details relevant to individual projects are 

described in their respective experimental chapter (Chapters 3-6).  

2.1 Cambridge Centre for Parkinson-plus and the Cambridge 

Centre for Frontotemporal Dementia 

The Cambridge Centre for Parkinson-plus (CCPP) and the Cambridge Centre for 

Frontotemporal Dementia are research centres at the University of Cambridge which also 

provide National Health Service tertiary referral clinics for people suspected to have a 

clinical syndrome associated with frontotemporal lobar degeneration. In this thesis I draw 

on data from multiple studies at the University of Cambridge led by Professor James Rowe 

that have recruited patients since 2007. Key protocols include: The Prospective Evaluation 

of Parkinson Plus and Related Disorders (PrEPPAReD) study; The Pick’s disease and 

Progressive Supranuclear Palsy Prevalence and Incidence study (PiPPIN) (Coyle-

Gilchrist et al., 2016; Murley et al., 2020a); and Synaptic Evaluation in Neurodegenerative 

Research (SENDeR) (Holland et al., 2020). While there is variation in hypotheses and study 

designs of the different protocols, there is overlap in patient phenotyping, clinical and 

neuropsychological assessment, and imaging acquisition. In combination these patient 

cohorts make possible robust testing of the hypotheses set out in chapter 1.   

2.1.1 Participants 

All participants were reviewed by the clinical team at the Cambridge Centre for Parkinson-

plus and the Cambridge Centre for Frontotemporal Dementia. In this thesis I consider 

participants with a diagnosis of a clinical syndrome associated with frontotemporal lobar  
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 CCPP 

(bvFTD) 

CCPP 

(PSP/CBS) 

GENFI 

(datafreeze 

5) 

PROSPECT SENDeR 

Diagnoses bvFTD 

Control 

PSP/CBS 

Control 

Genetic FTD 

and first-

degree 

relatives 

(mutation 

and non-

mutation 

carriers) 

PSP/CBS/ 

Control 

Also recruited 

MSA and 

atypical 

Parkinsonism 

 

PSP/CBS/bvFTD 

Control 

Chapters 

of this 

thesis 

3 4 and 6 3 4 and 6 5 

Years 

recruited 

2008-2020 2007-2022 2012-2019 2015-2019 2018-2022 

Imaging 

sites 

Cambridge 

University 

(Wolfson 

Brain Imaging 

Centre) 

Cambridge 

University 

(Wolfson 

Brain Imaging 

Centre) 

25 research 

centres in 

Europa and 

Canada  

Cambridge 

University, 

University 

College 

London, 

Oxford 

University 

Cambridge 

University 

(Wolfson Brain 

Imaging Centre) 

Modalities 

included in 

this thesis 

Structural 

imaging, 

fMRI 

Structural 

imaging, 

fMRI 

Structural 

imaging, 

fMRI 

Structural 

imaging, fMRI 

Structural 

imaging, fMRI, 

UCB-J PET 

Structural imaging 

Tesla 3 3 1.5-3 3 3 

Echo time  2.86-2.93ms 2.86-2.93ms Median 

2.9ms 

2.93ms 3.6ms 

Repetition 

time 

2-2.3s 2-2.3s Median 2s 2s 9.2ms 

Voxel-size 1.1mm-

1.25mm 

isotropic 

1.1mm-

1.25mm 

isotropic 

Median 

1.1mm 

isotropic 

1.1mm 

isotropic 

0.55x0.55mm 

(interpolated to 

1mmx1mm) 

Functional imaging 

Tesla 3 3 1.5-3 3 3 

Echo time 30ms 30ms 30ms 30ms 30ms 

Repetition 

time 

2-2.5s 2-2.5s 

(chapter 4 2s 

only) 

Median 2.5s 2.5s 2.5s 

Volumes 155-305 140-305 (305 

volumes only 

in chapter 4) 

122-305 

(median 200)  

200 200 

Resolution 3x3x3.5mm/ 

3x3x3.75mm 

3x3x3.5mm/ 

3x3x3.75mm 

(chapter 4 

3x3x3.75mm 

only) 

Median 

3x3x3.5mm 

3x3x3.5mm 3x3x3.5mm 

Table 2-1. Overview of the clinical characteristics and imaging acquisition parameters in the cohorts 

studied in this thesis.  Full details of the acquisition parameters for GENFI are provided in Supplementary 

Table 3.1. bvFTD behavioural variant frontotemporal dementia; PSP progressive supranuclear palsy’ CBS 

corticobasal syndrome, MSA multiple system atrophy 

degeneration, focusing on those who satisfy diagnostic criteria during the disease course 

for progressive supranuclear palsy (Höglinger et al., 2017; Litvan et al., 1996), corticobasal 
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syndrome (Alexander et al., 2014), and behavioural variant frontotemporal dementia 

(Rascovsky et al., 2011). A proportion of participants also registered for post-mortem brain 

donation to the Cambridge Brain Bank. I discuss findings at autopsy for these participants 

in the relevant chapters (chapters 4 and 6). In chapter 6 I also include participants who had 

a final neuropathological diagnosis of progressive supranuclear palsy or corticobasal 

degeneration but may have had an alternative clinical diagnosis at time of scanning. Given 

the heterogeneity in study protocol from which I acquired participant data there is variation 

in frequency and interval for follow-up from baseline scanning session, with most 

participants reviewed on repeat occasions. For analysis of survival in chapter 6 I recorded 

date of death from participants’ NHS Summary Care Record. 

2.1.2 Clinical and neurocognitive assessments 

For the Cambridge cohort I focus in this thesis on widely used and well-validated clinical 

rating scales and carer-rated markers of severity, specifically the Progressive Supranuclear 

Palsy-Rating-Scale (PSPRS), the Addenbrooke’s Cognitive Examination-Revised (ACE-

R), and the Cambridge Behavioural Inventory-Revised (CBI-R). These outcome measures 

have the advantages of being collected for most participants at follow up visits and 

overlapping with the PROSPECT-M-UK assessment protocol.   

The PSPRS (Golbe and Ohman-Strickland, 2007) is a clinician-assessed rating scale 

consisting of motor and non-motor features from participant history and physical 

examination. It shows high inter-rater reliability with linear progression through the disease 

course (Golbe and Ohman-Strickland, 2007) and has been the primary outcome measure in 

clinical trials of therapeutics in PSP (Dam et al., 2021; Höglinger et al., 2021). The first 

iteration of the Addenbrookes’ Cognitive Examination (Mathuranath et al., 2000) was 

designed to provide a short, standardised neurocognitive assessment that overcame 

limitations in the Mini-Mental State Examination (MMSE) (Folstein et al., 1975), which is 

insensitive to early and non-Alzheimer’s dementias (Devenney and Hodges, 2017). It has 

since been updated with the Addenbrooke’s Cognitive Examination-Revised (ACE-R) 

(Mioshi et al., 2006) and the Addenbrooke’s Cognitive Examination III (ACE-III) (Hsieh 

et al., 2013). The Cambridge Behavioural Inventory is an informant-based questionnaire 

that captures cognitive, behavioural, affective, and functional symptoms across 13 domains 

(Wedderburn et al., 2008). The CBI-R is a reduced 45-item version of the full questionnaire 

(Wear et al., 2008).  
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2.1.3 Neuroimaging acquisition 

Participants included in this thesis were scanned at the Wolfson Brain Imaging Centre in 

the University of Cambridge between 2007 and 2022. There is some variation in scanner 

used and imaging acquisition parameters between study protocols, with standardisation 

from 2016 to align with imaging protocols used in the GENFI2 and PROSPECT-M-UK 

studies. All participants were imaged using a 3-Tesla scanner. High resolution T1-weighted 

Magnetization Prepared Rapid Gradient Echo (MPRAGE) structural images were acquired 

with repetition time (TR) of 2-2.3s, time to echo (TE) of 2.86-2.93ms, flip angle 8°-9°, 

voxel size 1.1mm-1.25mm isotropic. Echo-planar imaging was acquired with eyes open in 

a dark bore with TR 2-2.5 secs, TE 30ms, 3x3x3.5mm/3x3x3.75mm voxels, 140-305 

volumes. 

Note that in some chapters only participants scanned under selected protocols are included. 

In chapter 4 I only use images in the Cambridge cohort with 300 volumes, given the 

potential advantage of the longer scan (and therefore increased volume numbers) in 

estimating time-varying connectivity. In chapter 5 imaging acquisition parameters are 

identical to those in GENFI2, since recruitment for scanning with the PET ligand 

[11C]UCB-J began in 2018. In chapter 6 I combine all available imaging data from the 

Cambridge cohort with PROSPECT-M-UK data, and use an empirical Bayesian framework 

called ComBat to account for site effects (Johnson et al., 2007, described further within the 

chapter). 

 I describe synthesis, image acquisition, image reconstruction and kinetic analysis of 

[11C]UCB-J PET imaging in the methods section of chapter 5. 

2.2 GENFI 

The Genetic Frontotemporal dementia Initiative is a multi-site international longitudinal 

observational study of familial frontotemporal dementia, led at University College London 

(UCL) by Professor Jonathan Rohrer. The study co-ordinates research across multiple 

centres, recruiting large numbers of participants despite the rarity of genetic FTD, in order 

to provide mechanistic understanding and develop robust biomarkers of disease onset and 

progression (Rohrer and Boxer, 2021). Since the presence of an autosomal dominant 

mutation allows an individual at-risk of FTD to be identified long before symptom onset, 

participants can be studied both prior to and after disease onset. Given the clinical similarity 
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between sporadic and familial FTD it is plausible that biomarkers and therapies tested in 

GENFI would generalise to sporadic disease (Heuer et al., 2020).  GENFI commenced with 

a pilot phase (GENFI1) in 2012, which was followed by an expanded five-year study 

(GENFI2) in 2015. Data is collated centrally at University College London and made 

available through periodic data freezes. In this thesis I use data from all participants 

included at datafreeze 5, with a latest date of assessment of 31st May 2019.  

2.2.1 Participants 

Participants were recruited from 25 research sites across Europe and Canada. Inclusion 

criteria were that participants must be aged over 18 and have a known pathogenic mutation 

in MAPT, C9ORF72, GRN or TANK-binding kinase 1 (TBK1) or were a first degree 

relative of a mutation carrier. Participants underwent testing for gene status, a standardised 

clinical and neuropsychological testing battery, MRI scanning, blood testing and lumbar 

puncture for cerebrospinal fluid. Where participants were unable or did not consent to all 

components of the full GENFI protocol (e.g., if they were unable to undergo MRI 

scanning), a partial assessment could be performed. Assessments were repeated yearly or 

biannually, with longitudinal data up to 7 years post baseline visit.  

Participants were categorised on two axes: first, depending on their gene status as a 

mutation carrier or non-carrier; second as symptomatic or asymptomatic. If first-degree 

relatives of mutation carriers had not undergone predictive testing, the participant and 

clinical investigators were blinded to their genetic status, with mutation status known only 

to the GENFI team at UCL. Clinicians classified mutation carriers as either symptomatic 

or asymptomatic, with participants deemed symptomatic if symptoms were present, were 

progressive in nature and consistent with a diagnosis of an FTD-related degenerative 

disorder, including amyotrophic lateral sclerosis. Mutation carriers not considered 

symptomatic are termed presymptomatic mutation carriers. 

For the analysis in chapter 3 I include all participants from GENFI datafreeze 5 with usable 

task-free fMRI (prior to exclusions for excess motion), consisting of 198 symptomatic 

mutation carriers, 341 presymptomatic mutation carriers and 329 family members without 

mutation. GENFI datafreeze 5 includes data from a total of 2,264 visits. I took the first 

assessment centre with task-free fMRI imaging to be the baseline visit with analysis of 

longitudinal data including follow-up from this point. 
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2.2.2 Clinical and neurocognitive assessments 

The GENFI assessment consists of a standardised clinical history, physical examination, 

neuropsychological assessment, and informant-based questionnaires (Rohrer et al., 2015). 

Neuropsychological tests used in all stages of GENFI were taken from the Uniform Data 

Set (Morris et al., 2006) and included the Trail Making Tests A and B, Digit Symbol Test, 

Forwards and Backwards Digit Span from the Wechsler Memory Scale-Revised, Letter and 

Category Fluency, a short version of the Boston Naming Test, plus the Mini Mental State 

Examination (MMSE). The severity of behavioural symptoms and functional status was 

assessed using the Cambridge Behavioural Inventory-Revised (CBI-R) and the 

Frontotemporal Dementia Rating Scale (Mioshi et al., 2010). 

The large number of neuropsychological tests performed creates a potential multiple 

comparison problem when comparing imaging-derived metrics with clinical severity. I 

therefore pre-registered neuropsychological tests (Backwards Digit Span, Digit Symbol, 

Trail Making Test B) as outcomes of interest in presymptomatic mutation carriers, and 

focused on these tests plus the MMSE and CBI-R in analysis of longitudinal change in 

severity.  

2.2.3 Neuroimaging acquisition 

Imaging was acquired at each of the GENFI sites, with imaging sequences developed by 

the GENFI Imaging Core team. GENFI imaging acquisitions were standardised from 

GENFI 2 onwards, with some variation in imaging acquisition parameters in the first 

GENFI iteration. In chapter 3 I utilise all images performed up to and including GENFI 

datafreeze 5. Echo-Planar Imaging and MPRAGE were acquired at each site at 3T or 1.5T 

where no 3T scanner was available. Echo-Planar Imaging was acquired with a median TR 

2500ms, TE 30ms, median volume number 200 (range 122-305, upper and lower bound of 

interquartile range 200), in-plane resolution of 3x3mm and slice thickness of 3.5mm. T1 

weighted MPRAGE structural images had a median isotropic resolution of 1.1mm, median 

TR 2s and median TE 2.9ms. Detailed task-free fMRI acquisition parameters for the dataset 

analysed in chapter 3 are provided in the supplementary materials for chapter 3. 

2.3 PROSPECT-M-UK 

The Progressive Supranuclear Palsy Corticobasal Syndrome Multiple System Atrophy 

Longitudinal Study UK (PROSPECT-M-UK) is an ongoing UK-based multi-site 
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longitudinal observational study of people with progressive supranuclear palsy, 

corticobasal syndrome, multiple system atrophy, and with disorders in which parkinsonism 

is a feature but where there is diagnostic uncertainty (atypical parkinsonian syndromes). 

The study aims to improve understanding and diagnosis in these conditions, supporting 

biomarker development and characterising the disease course to inform therapeutic trials. 

The chief investigator for the study is Professor Huw Morris at University College London. 

Recruitment began in 2015 from 7 participating centres in England and Wales. Data is 

collated centrally at University College London and made available through periodic data 

freezes. In chapters 4 and 6 I use data from participants included at datafreeze 2, with a 

latest imaging assessment date of 8th October 2019. Baseline cross-sectional data for 

PROSPECT-M-UK is described by Jabbari and colleagues (Jabbari et al., 2020). 

2.3.1 Participants 

Participants were eligible for inclusion in PROSPECT-M-UK providing they satisfied the 

relevant criteria for PSP (Litvan et al., 1996), CBS (Armstrong et al., 2013),  MSA (Gilman 

et al., 2008), or had clinical parkinsonism but with atypical features for a diagnosis of 

idiopathic Parkinson’s disease. Similarly-aged healthy controls were recruited either from 

relatives or friends of cases or through the Join Dementia Research volunteer registry. 

Patients with PSP, CBS or indeterminate cases were also classified according to the 2017 

Movement Disorders Criteria (Grimm et al., 2019; Höglinger et al., 2017). Those satisfying 

at least ‘possible’ PSP diagnostic criteria were stratified into three broader categories as 

PSP Richardson’s syndrome (PSP-RS), PSP-subcortical (PSP-P with predominant 

parkinsonism, PSP-PGF with progressive gait freezing, or PSP-OM with oculomotor 

features) or PSP-cortical (PSP-F with frontal presentations, PSP-CBS with corticobasal 

features or other focal cortical syndromes) (Jabbari et al., 2020). Assessments were carried 

out at baseline and at 6, 12, 24, and 36 months, with an abbreviated assessment virtually or 

face-to-face at 48 and 60 months. Full assessment included clinical history and physical 

examination, a neuropsychological testing battery, carer-rated questionnaires assessing 

functional and behavioural severity, MRI scanning, eye movement testing, and collection 

of biological samples (blood and cerebrospinal fluid). 

2.3.2 Clinical and neurocognitive assessments 

PROSPECT-M-UK participants underwent extensive clinical and neurocognitive 

assessment. In chapter 4 I use the PROSPECT-M-UK as a replication cohort for results 
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obtained from participants recruited in Cambridge, and in chapter 6 I combined the 

Cambridge and PROSPECT-M-UK cohorts to increase study power. Therefore, in this 

thesis I focus on assessments available for most participants in both study cohorts to reduce 

missing data, namely the PSP-rating-scale, the Addenbrooke’s Cognitive Examination III, 

and the Cambridge Behavioural Inventory-Revised. 

2.3.3 Neuroimaging acquisition 

The imaging protocol across the three imaging centres in PROSPECT-MR mirrors the 

standardised protocol used in GENFI2, with acquisition of volumetric T1, volumetric T2, 

diffusion tensor imaging, task-free fMRI and arterial spin labelling. Imaging was collated 

centrally and released in sequential data freezes. Participants underwent high resolution 3T 

T1-weighted MPRAGE structural imaging (TR 2s, TE 2.93ms, flip angle 8°, voxel size 

1.1mm isotropic). Parameters for echo-planar imaging were TR 2.5 secs, TE 30ms, 

3x3x3.5mm voxels, and 200 volumes.  

2.4 Task-free functional MRI image pre-processing 

Prior to analysis task-free fMRI must be pre-processed. Pre-processing has two primary 

aims: to limit the effect of artefactual sources on the data so that analyses are driven 

predominantly by neural signal, and to allow signal localisation and comparison across 

participants through image registration and normalisation (Caballero-Gaudes and 

Reynolds, 2017; Esteban et al., 2019). The blood-oxygen-level-signal detected in fMRI is 

a combination of neuronal and non-neuronal sources. Non-neuronal factors affecting fMRI 

signal include scanner hardware and environment related noise, such as slow changes in 

low frequency signal over time (drift) due to scanner instabilities (Smith et al., 1999). 

Cardiac and respiratory physiology induces signal changes through effects on head motion 

(Power, 2019; Power et al., 2019, 2017), due to pulsatile changes in cerebrospinal fluid and 

large arteries (Liu, 2016), and through indirect effects including modulation of carbon 

dioxide levels (Wise et al., 2004). Subject head motion creates spurious correlations in a 

distance-dependent manner (Power et al., 2012; Satterthwaite et al., 2012).   

Motion artefact is a particular concern in the cohort of patients I study in this thesis, since 

cognitive impairment and physical disability increase the chance of head motion. However 

propensity to move during scan acquisition has neural correlates (Geerligs et al., 2017) and 

plausibly relates to severity and heterogeneity in neurodegenerative conditions, a 
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hypothesis I test directly for in PSP and CBS in chapter 6. Therefore, removal of movement 

artefact must be done in a principled manner and caution taken over regressing metrics of 

motion (either at the pre-processing stage or during higher level analyses) because of the 

risk of removing the effect of disease on neural-derived signal.  

Through this thesis I use an adapted form of FMRIB Software Library’s (FSL) task-free 

fMRI pre-processing pipeline (Jenkinson et al., 2012; Smith et al., 2013a), based on scripts 

written by my supervisor Dr Timothy Rittman. Dr Rittman pre-processed the images used 

for analysis in chapter 4. I chose this pipeline as it is well validated, widely used (Alfaro-

Almagro et al., 2018; Smith et al., 2013a), and has been applied prior to running analytic 

techniques used in this thesis (Vidaurre et al., 2018, 2017). We extended the pipeline with 

the addition of wavelet despiking to reduce motion artefact (Patel et al., 2014) given higher 

in-scanner movement in participants with neurodegenerative diseases. For initial fMRI 

preprocessing the T1 structural images were cropped to remove non-brain tissue followed 

by brain extraction using FSL’s Brain Extraction Tool (Smith, 2002). I then used FSL’s 

FMRI Expert Tool (Woolrich et al., 2001) with the following steps: motion correction using 

MCFLIRT (Jenkinson et al., 2002); spatial smoothing using a Gaussian kernel of 5mm 

FWHW; grand-mean intensity normalisation of the 4D dataset by a single multiplicative 

factor; and 100Hz high-pass temporal filtering.  

Structured artefacts were removed using independent component analysis (ICA, discussed 

further below) denoising using FSL’s MELODIC together with FMRIB's ICA-based noise 

reduction tool (FIX, Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). FIX classifies the 

components as either neural signal or artefactual, based on labels applied to a training set. 

FIX hand training was performed separately for each chapter in this thesis. I hand-trained 

FIX using a set of at least 10 subjects from each disease group (or mutation in GENFI in 

chapter 3), based on principles and examples outlined by Griffanti and colleagues (Griffanti 

et al., 2017).  Registration to high resolution structural and/or standard space images was 

carried out using FLIRT. Registration from high resolution structural to MNI space was 

then further refined using FNIRT nonlinear registration (Jenkinson et al., 2012). I did not 

use global signal regression, given the potential to remove neural signal and introduce anti-

correlations (Murphy and Fox, 2017). Wavelet despiking was used for further removal of 

motion artefact. This is an algorithmic approach which identifies and removes spikes (Patel 

et al., 2014) in the fMRI timeseries which arise due to brief head movements.  
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2.4.1 Removing participants with increased motion 

Where in-scanner movement is high it may be the case that artefactual correlations and 

activations cannot be removed even with stringent pre-processing. Depending on the 

analytic technique used these participants may bias the whole analysis. One approach that 

has been adopted in high movement populations is to eliminate scans with gross motion 

(Marek et al., 2019; Nebel et al., 2022; Nielsen et al., 2019; Parkes et al., 2018). The extent 

to which this is possible may depend on the number of participants and expected effect size. 

Excluded individuals may be phenotypically different, and so results would not generalise 

to the entire patient population (Nebel et al., 2022; Wylie et al., 2014).  However even if 

artefact could be reliably removed the scans likely have such a poor signal-to-noise ratio 

that they contribute little to a group level analysis (Wylie et al., 2014). 

Various thresholds have been suggested for exclusion of participants or individual volumes 

(Nebel et al., 2022; Parkes et al., 2018). In this these I used thresholds based on mean and 

standard deviation in 408 scans of patients with neurodegenerative conditions and healthy 

aged-matched controls recruited at the Cambridge Centre for Parkinson-plus for four data 

quality indices. These are median and maximum spike percentage (Patel et al., 2014), 

maximum framewise displacement (Power et al., 2012), and maximum spatial standard 

deviation of successive volume difference or DVARS (Smyser et al., 2010). Values are set 

out in Table 2-2. I then used thresholds of between 1 and 1.2 standard deviations above the 

mean, depending on the scan protocol, disease population, and analysis method and 

purpose. In chapters 3 and 6 I use only the three maximal statistics since these appear to 

capture most high movement participants. I additionally perform a sensitivity analysis in 

the GENFI cohort in chapter 3 excluding individuals above a threshold defined within the 

cohort (1.2 standard deviations from the whole group mean for mean framewise 

displacement, giving a value of 0.35mm). 

fMRI motion metric Mean Standard deviation 

Median spike percentage  4.24% 4.06% 

Maximum spike percentage 20.33% 17.10% 

Maximum DVARS 8.17 1.79 

Maximum framewise displacement 2.11mm 5.51mm 

Table 2-2: Mean and standard deviation for metrics of in-scanner motion for task-free fMRI used to derive 

thresholds for excluding high motion participants. 
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2.5 Task-free fMRI analysis 

2.5.1 Identification of large-scale networks through independent component 

analysis 

Temporally correlated large-scale brain networks are a consistent finding in healthy adults, 

across the lifespan, and can be identified by functional magnetic resonance imaging at rest 

(Damoiseaux et al., 2006; Fox and Raichle, 2007; Smith et al., 2009; Yeo et al., 2011). 

Analysis of functional MRI in FTLD syndromes in chapters 3, 4 and 6 depends on 

identification of large-scale networks before further analysis. One way in which this can be 

achieved is to assess correlations across the brain with the BOLD timeseries from 

predefined regions of interest or seeds (Bijsterbosch, 2017). An example would be 

identification of the default mode network using a seed in the posterior cingulate cortex 

(Greicius et al., 2003). The primary disadvantage of this approach is dependency on the 

choice of seeds, risking exclusion of important signals from analysis (Bijsterbosch, 2017). 

Instead, in this thesis I use group independent component analysis as a data-driven means 

to derive components that represent the different brain networks. 

Independent component analysis models a multivariate signal as a linear combination of 

statistically independent components (Beckmann and Smith, 2004; Bijsterbosch, 2017). 

The statistical independence used to ‘unmix’ the original data can be defined and measured 

in multiple ways. In this thesis components are said to be independent where they maximise 

non-Gaussianity, since by the central limit theorem signals become more Gaussian after 

mixing (Beckmann and Smith, 2004; Bijsterbosch, 2017). Independent component analysis 

can be applied to a single fMRI dataset, for instance to separate artefactual from neuronal 

signal, or to data combined from the whole study group. 

Spatial group independent component analysis in chapters 3, 4, and 6 was performed using 

FSL’s MELODIC tool (Beckmann and Smith, 2004). Pre-processed and normalised MRI 

were first cut to the minimum number of volumes of any participant used in the study. I 

then conducted independent component analysis on participants’ temporally concatenated 

datasets. The number of components for analysis can either be chosen a priori or determined 

through an algorithmic method (Beckmann and Smith, 2004). Higher model orders give 

greater fragmentation of networks and the optimal choice of number of components varies 

by study question. In this thesis I use a model order of 30 as a balance between excessive 

network fragmentation (Ray et al., 2013) and predetermining analysis output. To label 
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components I use a semi-supervised method, comparing with template network maps 

provided by other groups (Shirer et al., 2012; Yeo et al., 2011) using cross-correlation and 

goodness of fit measures and subsequent visual inspection.  

While independent component analysis is well recognised as an approach to identify 

networks in analysis of task-free fMRI, it can be applied to other data sources where 

decomposition of multivariate signal into components can aid analysis (see for instance 

Fang et al., 2021; Passamonti et al., 2019). In chapter 5 I use a version of independent 

component analysis on spatially concatenated maps of [11C]UCB-J positron emission 

tomography binding potential to capture patterns of spatial variance in synaptic density 

(further details of methods within chapter 5). Independent component analysis can also be 

applied to higher level features derived from fMRI, such as on correlations between 

networks (Elliott et al., 2018), an approach I use in chapter 6 and discuss further below. 

2.5.2 Within- and between-network connectivity 

To understand the organisation of functional brain networks, it is helpful to examine both 

the strength and configuration of connections within networks and interactions across 

networks. This can be achieved using ICA derived network components. Once components 

have been identified it is possible to derive participant-specific time courses and spatial 

maps for each component. One method to achieve this is dual regression (Filippini et al., 

2009; Kelly, Jr. et al., 2022). In the first stage of dual regression the group component maps 

from the independent component analysis are regressed against each participant’s pre-

processed fMRI to obtain a time course for each subject per component.  In chapters 3 and 

4 I use these timeseries as inputs into a time-varying network analysis (see Dynamic 

network analysis below). In chapter 6 I calculated connectivity between components using 

full Pearson correlation between networks time series (normalised for each subject) 

followed by Fisher r-to-Z transformation using FSLNets (Smith et al., 2013b). I then 

performed a further independent component analysis on these connections (Hyvarinen, 

1999) to identify a small number of components capturing between-network connectivity 

patterns (Elliott et al., 2018). I compared these between-network connectivity components 

with baseline clinical severity, longitudinal rate of change in severity and survival.  Further 

methodological details, including processes to account for site differences and selecting 

number of components, are set out in the methods section in chapter 6.  
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In the second stage of dual regression subject normalised timeseries for each component 

are regressed against each participant’s pre-processed fMRI, this time obtaining 

participant-specific spatial maps per component consisting of beta values. These subject 

maps can then be compared to assess how the size or shape of a network differs between 

groups or covaries with measures of disease severity (within-network covariance). I applied 

dual regression in chapter 5 against [11C]UCB-J positron emission tomography independent 

components (rather than fMRI components) to derive participant-specific maps of spatial 

covariance with the PET maps.  

2.5.3 Graph metric analysis 

Graph theory is a mathematical tool that can be used to characterise structural and 

functional brain networks (Bullmore and Sporns, 2009). Within a graph theoretical 

framework, a brain network consists of nodes or vertices representing brain regions and the 

edges that link them. The edges may be synaptic or axonal connections observed on 

structural imaging or be statistical dependencies between brain regions derived from 

functional imaging. Graph theory has been used to describe disruption to functional brain 

organisation in neurodegenerative conditions (Bullmore and Sporns, 2009; Crossley et al., 

2014; Stam, 2014; Yu et al., 2021) and in combination with other modalities offers 

mechanistic insight into disease pathogenesis and progression (Cope et al., 2018; 

Franzmeier et al., 2022; Rittman et al., 2016b). 

Frequently a threshold is applied to the graph to reduce the effect of weak correlations that 

may artefactual (Bullmore and Sporns, 2009; Zalesky et al., 2012). However the 

characteristics of the network vary depending on the threshold used (van Wijk et al., 2010), 

and so caution is needed in interpreting between-group differences in graph metrics (Yu et 

al., 2021). I adopt three approaches in this thesis to assist interpretation and to avoid the 

perils of arbitrary choices. First, I calculate weighted graph metrics, where the connections 

between nodes are weighted by their strength, which avoids the need to pick arbitrary 

thresholds but does not prevent some measures being affected by overall connectivity 

strength (van den Heuvel et al., 2017; Yu et al., 2021). Second, I report results across a 

range of thresholds, recognising that interpretation can be challenging where there is 

variation. Third, I used normalised graph metrics; thresholded graph metrics are normalised 

relative to random graphs with the same degree distribution, which reduces but does not 

entirely remove results being biased by connectivity strength (van Wijk et al., 2010; Yu et 

al., 2021). 
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Graph metric approaches form part of analysis in chapters 4 and 5 using the Maybrain 

software built by Timothy Rittman (https://github.com/RittmanResearch/maybrain) and 

dependent on Networkx (https://networkx.org/). First, the participants’ pre-processed fMRI 

is parcellated using the relevant atlas. In chapter 4 my analysis uses the Brainnetome 

parcellation (Fan et al., 2016), a data-driven atlas that provides good cortical and 

subcortical coverage. In chapter 5 I used a modified Hammers atlas (Gousias et al., 2008; 

Hammers et al., 2003) with cortical regions masked by a grey matter mask. The Hammers 

atlas is widely used in PET imaging studies and was selected here to allow comparisons 

across modalities. I calculated associations between regions in chapter 4 by taking the 

wavelet cross-correlation between each region using a maximal overlap discrete wavelet 

transform and Daubechies filter performed using the waveslim package in R. I used the 

second band of 4, corresponding to a frequency range of 0.0675-0.125Hz (Achard and 

Bullmore, 2007). In chapter 5 I calculated Pearson correlations between regions, followed 

by Fisher’s r-to-Z transformation. I then derive an association matrix of all region-by-

region associations for each participant, from which graph metrics can be calculated. The 

two methods to quantify associations between regions have relative merits. Graph metrics 

from Pearson correlations have been extensive studied and have been found to be 

statistically robust, but may be more affected by confounds affecting the whole brain and 

capture non-neuronal information (Smith et al., 2011). Wavelet cross-correlation allows 

selection of a band known to have neuronal origins, although neuronal signal may occur at 

higher frequencies (Smith et al., 2013a).  

A large set of metrics can be used to characterise a graph. In this thesis I focus on the 

following metrics: weighted degree, measuring the number and strength of nodal functional 

connections; clustering coefficient, the proportion of triangular connections formed by each 

node over the proportion of all possible such connections; and path length, the average 

shortest topological distance between nodes of the graph. The combination of path length 

and clustering coefficient defines randomness or regularity of the graph, with random 

graphs exhibiting short path length and small clustering coefficient (Watts and Strogatz, 

1998).  

2.5.4 Dynamic network analysis 

Functional connectivity and network activation is most commonly assessed by averaging 

over the scan acquisition time. However the last decade has seen increasing interest in 

approaches that capture time-varying fluctuations in connectivity from functional MRI 

https://github.com/RittmanResearch/maybrain
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(Calhoun et al., 2014; Chang and Glover, 2010; Vidaurre et al., 2017). The clinical 

syndromes of FTLD, deficits in inhibitory and excitatory neurotransmitters integral for 

network integration and segregation (Murley and Rowe, 2018), and imaging and 

pathological features suggest that temporal dynamics are disrupted in these diseases. Time-

varying or dynamic approaches have been found to be more sensitive to capturing variation 

in clinical syndrome than traditional static connectivity analyses (Moguilner et al., 2021). 

Therefore in chapters 3 and 4 I use Hidden Markov modelling (HMM) as a highly 

articulated data-driven approach to directly model the blood-oxygen-level-dependent 

signal of fMRI and characterise transitions between large scale networks (Meer et al., 2020; 

Vidaurre et al., 2018, 2017). Hidden Markov models posit the existence of a finite number 

of hidden states that describe the sequential evolution of observed data (Eddy, 2004; 

Rabiner and Juang, 1986) with the Markovian assumption that the probability of an event 

depends only on the state at the previous time point. Generative modelling of time series 

avoids difficulties associated with alternative sliding window approaches, notably large 

sampling variability from small window size and autocorrelation from overlapping 

windows (Hindriks et al., 2016; Leonardi and Van De Ville, 2015; Lurie et al., 2019). This 

is particularly important when studying temporal dynamics in neurodegeneration, where 

obtaining imaging with acquisition times required for adequate time windows can be 

challenging. Each time point is classified as being in a single state, although the assumption 

of state mutual exclusivity is adjusted through soft probabilistic inference. While the states 

and probability of transitioning between them are defined at the group level, a state time 

course can be estimated for each participant. 

A hidden Markov model can be derived for a set of task-free fMRI time courses provided 

core underlying assumptions are met. In chapter 3 and 4 I adopted an approach presented 

by Vidaurre and colleagues (Vidaurre et al., 2018, 2017, Figure 2-1), where time courses 

for brain networks (or network components) derived from an independent component 

analysis are used as input into the HMM. First, I performed an independent component 

analysis using FSL’s MELODIC tool from the relevant cohort. Participant specific time 

courses for each component were generated by regression of the template maps into each 

subject’s preprocessed fMRI. I assessed components as representing neuronal or artefactual 

signal using the same classification methods outlined in the pre-processing section 

(Griffanti et al., 2017) with reference to canonical network maps (Shirer et al., 2012).   From 

standardised per participant non-artefactual component timecourses a multivariate 
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Gaussian HMM (Vidaurre et al., 2017) with six-eight brain states was inferred for each 

cohort using the HMM-MAR toolbox (https://github.com/OHBA-analysis/HMM-MAR). 

All states shared a common covariance matrix, so that network dynamics were primarily 

driven by changes in signal variance and amplitude (Vidaurre et al., 2021).  

 

Figure 2-1. A schematic representation of the hidden Markov model pipeline used in chapters 3 and 4 Pre-

processed fMRI were concatenated in an independent component analysis of model order 30. Participant 

specific time courses for non-artefactual components were then used to estimate brain states in a hidden 

Markov model. Model metrics were taken forward for further analysis.  

Both number of components from the independent component analysis and number of brain 

states from the HMM must be determined a priori. I chose an independent component 

analysis model order of 30 in chapters 3 and 4. In previous work using HMMs from task-

free fMRI, between 6 and 12 states have been selected for analysis (Meer et al., 2020; 

Quinn et al., 2018; Vidaurre et al., 2018), although as the number of states increases their 

reliability falls (Vidaurre et al., 2018). In chapter 3 I specified six states would be derived 

in registration prior to analysing the GENFI dataset (https://osf.io/27ajq/), and in chapter 4 

I replicated analysis across two datasets using the same number of states. 

The temporal dynamics of HMM states can then be characterised through a small set of 

metrics, namely switching rate (the frequency with which states transitions occur), 

fractional occupancy (the proportion of time a state is active) and the transition matrix 

consisting of transition probabilities (the chance of between state transitions) and 

persistence probabilities (the chance of remaining in the same state). These metrics are then 

taken to higher order analysis to compare between groups, with clinical severity, and with 

longitudinal outcomes. For illustrative purposes I generated mean activation maps by 

weighting component maps by the mean of the state Gaussian distribution.  

https://github.com/OHBA-analysis/HMM-MAR
https://osf.io/27ajq/
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2.6 Modelling clinical progression 

In chapters 3 and 6 I test the hypotheses that imaging collected at a baseline assessment 

predicts longitudinal outcomes in frontotemporal lobar degeneration syndromes. 

Longitudinal outcomes of interest were: first, trajectories of change in neuropsychological 

assessments and clinical and carer-based severity ratings; second, survival time from 

baseline assessment. In this thesis I used linear mixed-effects modelling to derive the 

former, a univariate regression-based model that simultaneously models intercept and 

trajectory at an individual and whole group level (Ghisletta et al., 2015; McNeish and 

Matta, 2018). These models are able to handle incomplete data or where there is variation 

in time points for follow-up assessments (Ghisletta et al., 2015).  Analysis of survival time 

requires statistical techniques that can handle censored data, where the outcome in question 

(death) has not occurred in the follow up period (Clark et al., 2003). Cox proportional 

hazard regression (Cox, 1972) is the most commonly used form of survival modelling and 

can be considered analogous to multiple regression.  I discuss mixed-effects and Cox 

proportional hazard modelling in turn in the following sections. 

2.6.1 Linear mixed-effects models 

A mixed-effects model allows simultaneous estimation of intercepts and coefficients at the 

whole-sample and individual level (Ghisletta et al., 2015; Laird and Ware, 1982). The two 

forms of parameter distinguished by the models can be termed fixed effects and random 

effects, although the statistical literature is not consistent in defining these terms (Gelman, 

2005). In this thesis, when analysing longitudinal change, fixed effects are the mean slopes 

and intercepts for the whole sample, while random effects capture individual variation in 

slopes or intercepts (McNeish and Matta, 2018). Modelling data in this way allows for 

improved estimates for repeat sampling, explicitly estimating variation and avoiding the 

need for averaging (McElreath, 2020). A schematic representation of a linear mixed-effects 

model in Figure 2-2. 
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Figure 2-2. A schematic representation of a linear mixed-effects model. Fixed effects are represented by 

the thick line and thin lines individual variation in estimated slope and intercept (adapted from Ghisletta et 
al., 2015) 

In this thesis all linear mixed-effect model were derived using the R package lme4 (Bates 

et al., 2015). I calculated patient specific yearly rates of change in the relevant clinical and 

neurocognitive scores in each chapter. Neurocognitive assessment was the dependent 

variable in the model, with years from baseline assessment as an independent variable and 

with estimation of individual intercepts and individual change in neurocognitive 

assessment over time (slope), which can be written in Wilkinson-style notation (Wilkinson 

and Rogers, 1973) as follows: 

𝑁𝑒𝑢𝑟𝑜𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 ~ 𝑡𝑖𝑚𝑒 + (𝑡𝑖𝑚𝑒 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) +    

These models were calculated using all participants for each project. 

To assess whether baseline neuroimaging maker (dynamic network component in chapter 

3, between-network connectivity component in chapter 6) predicts neurocognitive decline 

individual estimates of disease progression were taken to a second model as a dependent 

variable, with baseline imaging marker as an independent variable and relevant covariates 

of no interest.  

Including random effects provides a powerful modelling option wherever data is pooled 

across clusters (McElreath, 2020) and therefore can be applicable to cross-sectional as well 

as longitudinal data. In chapter 3 I use scanner site for the GENFI cohort as a random effect 

to improve estimation of site-related variation. In chapter 5 when comparing a graph 
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measure of functional connectivity (weighted degree) with regional synaptic density 

measured with the PET ligand [11C]UCB-J I use a mixed-effects model with crossed 

random effects for region and participant and an effect of [11C]UCB-J binding potential 

slope within each region. This approach captures the effect of individual and regional 

variability in the weighted degree-[11C]UCB-J binding potential relationship. When 

deriving complex models it is important to justify the added complexity by assessing model 

fit (McNeish and Matta, 2018). Therefore I compared models using the anova function in 

R to ensure that inclusion of a random slope for [11C]UCB-J BPND per region improved 

model fit . 

2.6.2 Survival modelling 

Survival data can be formulated in terms of the survival function and the hazard rate (Clark 

et al., 2003).  The survival function S(t) is the probability that an individual has avoided the 

event of interest at time t after baseline assessment. The hazard h(t) is the probability that 

an individual has the event at time t. These functions are interrelated such that one can be 

derived once the other is known. Cox proportional hazard modelling is a regression-based 

approach to survival data that models the relationship between the hazard function and 

covariates (Bradburn et al., 2003), and can be formulated as follows: 

ℎ(𝑡) = ℎ0(𝑡)  ×  𝑒𝑥𝑝{𝐵1𝑥1 + ⋯ + 𝐵𝑝𝑥𝑝} 

where ho is the baseline hazard, {x1, …, xp} are a set of p covariates and {B1, …, Bp} their 

respective coefficients. The exp(Bi) terms are the hazard ratios, with a value greater than 

one indicating that survival time increases with greater covariate value. Cox modelling 

estimates the hazard function nonparametrically, so that no particular statistical distribution 

is assumed for survival times (Bradburn et al., 2003).  

In chapter 6 I used a Cox proportional hazards regression analysis to assess the relationship 

between between-network component score and time from scan until death with age and 

sex as covariates using the R packages survival (Therneau, 2023) and survminer 

(Kassambara et al., 2021) for analysis and visualisation. Given the importance of scanner 

motion as a potential confounder in quantifying connectivity, I additionally report the 

relationship between mean framewise displacement and time from scan until death. 
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2.7 Correcting for multiple comparisons 

At various points in this thesis, I perform multiple statistical tests related to a single 

independent variable. This occurs when comparing to multiple clinical and 

neuropsychological measures of clinical severity (for instance in chapters 3, 4, and 6), when 

performing analysis across large numbers of brain regions (such as comparing UCB-J 

values by region in chapter 5), and when comparing group differences in multiple derived 

imaging measures such as ICA components (chapters 3 and 4).  

As the number of comparisons increases there is greater risk that incorrect rejection of the 

null hypothesis occurs. It is important to complete some form of controlling procedure to 

account for the possibility of these Type I errors. However, the relevant outcomes measures 

are typically not statistically independent, and therefore correction for the family-wise error 

rate with the Bonferroni method (where the alpha is divided by the number of comparisons) 

is too strict. In this thesis broadly I use two methods of multiple comparison correction. 

Wherever permutation testing is used it is possible to determine the distribution of the 

maximal statistic and therefore control the family-wise error (FWE) rate (Winkler et al., 

2014), without the requirement for the observations to be independent. For other statistical 

tests I use false-discovery rate (FDR) adjusted p-values using the Benjamini-Hochberg 

method (Benjamini and Hochberg, 1995). Further details are provided in the relevant 

experimental chapters, with p-values denoted FDR/FWE depending on the method of 

correction. 
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3 Network dynamics in sporadic and 

familial frontotemporal dementia 

Preface 

This results from this chapter have been published in Alzheimer’s and Dementia as 

‘Temporal dynamics predict symptom onset and cognitive decline in familial 

frontotemporal dementia’ (https://doi.org/10.1002/alz.12824). Data collection was from 

the research team at the Cambridge Centre for Frontotemporal Dementia over a decade, 

and by a large group of researchers across 25 sites in Europe and Canada for GENFI. I 

designed the analysis strategy with Professor Rowe and Dr Timothy Rittman. I performed 

all preprocessing and analysis. I wrote the manuscript with input from the co-authors of the 

paper. 

Summary 

In this chapter I test the hypothesis that dynamic changes in functional networks predict 

cognitive decline and conversion from the presymptomatic prodrome to symptomatic 

disease in familial frontotemporal dementia. For hypothesis generation I use data from 36 

participants with behavioural variant frontotemporal dementia and 34 controls were 

recruited from the Cambridge Centre for Frontotemporal Dementia. For hypothesis testing, 

I studied 198 symptomatic frontotemporal dementia mutation carriers, 341 presymptomatic 

mutation carriers and 329 family members without mutations. I identified a characteristic 

pattern of dynamic network changes in frontotemporal dementia, which correlated with 

neuropsychological impairment. Among presymptomatic mutation carriers, this pattern of 

network dynamics was found to a greater extent in those who subsequently converted to 

the symptomatic phase. Baseline network dynamic changes predicted future cognitive 

decline in symptomatic participants, and older presymptomatic participants. These findings 

show that dynamic network abnormalities in frontotemporal dementia predict cognitive 

decline and symptomatic conversion, suggesting a potential role of functional MRI in 

stratification and prognostication. 

 

https://doi.org/10.1002/alz.12824
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3.1 Introduction  

Neuropathological and structural changes accumulate over many years prior to the onset of 

symptoms in neurodegenerative diseases (Oxtoby et al., 2018; Rohrer et al., 2015). 

Understanding the timing and consequence of such changes for clinical syndromes is key 

to accounting for heterogeneity in progression and risk-stratifying asymptomatic 

individuals for preventative clinical trials. Our group has previously shown that functional 

network integrity is important in maintaining cognitive performance in individuals at risk 

of dementia (Rittman et al., 2019; Tsvetanov et al., 2020), with the corollary that loss of 

network integrity may herald symptom onset and predict cognitive decline. Genetic 

Frontotemporal Dementias (FTD) provides an opportunity to characterise functional 

networks throughout the course of the disease. Approximately one-third of  patients with 

FTD have a family history in keeping with an autosomal dominant inheritance (Greaves 

and Rohrer, 2019). Mutations in three genes account for the majority of these cases: 

chromosome 9 open reading frame 72 (C9orf72), granulin (GRN) and microtubule-

associated protein tau (MAPT) (Greaves and Rohrer, 2019; Rohrer et al., 2009). The 

resulting phenotypes are heterogeneous, with behavioural variant FTD (bvFTD) the most 

common clinical presentation (Greaves and Rohrer, 2019). 

The co-ordination of neural activity across distributed spatial and temporal scales is 

dynamic (Breakspear, 2017; Shine et al., 2019; Tognoli and Kelso, 2014). Such 

connectivity underpins cognition in health and is affected in psychiatric and 

neurodegenerative diseases (Filippi et al., 2019; Fu et al., 2021; Liégeois et al., 2019). 

While functional connectivity is typically determined by averaging over the scan 

acquisition time, time-varying fluctuations in connectivity can also be captured by 

functional magnetic resonance imaging (fMRI) (Calhoun et al., 2014; Chang and Glover, 

2010; Vidaurre et al., 2017). In the clinical syndromes of FTD, there are deficits in 

inhibitory and excitatory neurotransmitters required for network integration and 

segregation (Murley and Rowe, 2018) which I propose to contribute to changes in temporal 

dynamics in the disease. Subtle changes in time-varying functional connectivity occur in 

presymptomatic mutation carriers (Premi et al., 2019), although their longitudinal 

significance and evolution into the symptomatic phase have not been studied.  

I examined resting state brain dynamics in presymptomatic and symptomatic carriers of 

pathogenic mutation carriers in the Genetic Frontotemporal Initiative (GENFI) using fMRI 
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to determine whether disruption to network dynamics predicts cognitive decline. I used 

Hidden Markov modelling as a highly articulated data-driven approach to model the blood-

oxygen-level-dependent signal of fMRI, an approach which posits the existence of a finite 

number of hidden states that describe the sequential evolution of observed data (Vidaurre 

et al., 2018, 2017). 

I investigated brain state dynamics using hidden Markov models with a two-stage approach 

to ensure replication and refine analytic choices. Hypothesis generation used a cohort of 

patients with mainly sporadic behavioural variant FTD and control participants recruited at 

the Cambridge Centre for Frontotemporal Dementia. I repeated the methodology in GENFI, 

following preregistration of my cross-sectional analysis plan 

(https://osf.io/k64gh/wiki/home/), with the following hypotheses: 1) brain state dynamics 

differ between symptomatic mutation carriers and cognitively normal non-mutation 

carriers; 2) changes in network dynamics correlate with a) neuropsychological deficits and 

b) carer assessed measures of impairment; 3) presymptomatic mutation carriers (versus 

non-mutation carriers) have abnormal network dynamics as a function of proximity to onset 

as denoted by age; and 4) altered network dynamics predict conversion from the 

presymptomatic to symptomatic phase and subsequent cognitive decline in gene mutation 

carriers. In assessing the relationship between network dynamics and age, I considered non-

linear models given evidence that non-linearity is found between disease age and other 

biomarkers (including clinical, neuropsychological, structural imaging, and blood based 

biomarkers) (Staffaroni et al., 2022) in genetic FTD.   

  

https://osf.io/k64gh/wiki/home/
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3.2 Methods 

3.2.1 Participants 

I used datasets from 36 participants with behavioural variant frontotemporal dementia 

(bvFTD) and 34 healthy controls recruited at the Cambridge University Centre for 

Frontotemporal Dementia for hypothesis generation. Clinical assessment included the 

Addenbrooke’s Cognitive Examination-Revised (ACE-R) (Mioshi et al., 2006), Mini-

Mental State Examination (MMSE) (Folstein et al., 1975), Frontal Assessment Battery 

(Dubois et al., 2000), and Cambridge Behavioural Inventory-Revised (CBI-R) (Wear et al., 

2008). 

The Genetic Frontotemporal dementia Initiative (GENFI) includes participants from 25 

research sites across Europe and Canada. Participants were included if they were over 18 

and had a known pathogenic mutation in MAPT, C9ORF72, GRN or TBK1, or were a first 

degree relative of a mutation carrier. 198 symptomatic mutation carriers, 341 asymptomatic 

mutation carriers and 329 family members with usable fMRI (datafreeze 5) were included 

in this study. Details of the GENFI clinical and cognitive assessments are set out in chapter 

2. 

3.2.2 Image acquisition and preprocessing 

Image acquisition for the two cohorts and fMRI preprocessing are described in detail in 

chapter 2. Given the potential sensitivity of estimates of  network dynamics to motion 

(Laumann et al., 2017; Power et al., 2012), I excluded participants 1.2 standard deviations 

above thresholds as defined in chapter 2 for three data quality indices (maximum spike 

percentage (Patel et al., 2014), maximum framewise displacement (Power et al., 2012), 

maximum spatial standard deviation of successive volume difference (Smyser et al., 

2010)).  I excluded 9 participants with bvFTD and 2 healthy controls from the Cambridge 

cohort, and 103 scans from 89 participants in GENFI (20 non-carriers, 21 presymptomatic 

mutation carriers, 48 symptomatic participants). I performed an additional analysis 

excluding participants above 1.2 standard deviations from the whole group mean for mean 

framewise displacement but included in the primary analysis.  

3.2.3 Hidden Markov Models 

I assessed network dynamics in both cohorts through hidden Markov modelling (Rabiner 

and Juang, 1986), as introduced in chapter 2. I performed an independent component 
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analysis using MELODIC (fMRIB Software Library, FSL) from preprocessed fMRI of all 

participants to allow comparison between cohorts. I chose a model order of 30 as a balance 

between excessive network fragmentation (Ray et al., 2013) and predetermining HMM 

outputs,  Six component maps were identified as artefact. Participant specific timecourses 

for each component were generated by regression of the component maps into each 

subject’s preprocessed fMRI.  From standardised per participant non-artefactual 

component timecourses a multivariate Gaussian HMM (Vidaurre et al., 2017) with six brain 

states was inferred for each cohort using the HMM-MAR toolbox 

(https://github.com/OHBA-analysis/HMM-MAR). All states shared a common covariance 

matrix (Vidaurre et al., 2021). Model order was specified in registration prior to analysing 

the GENFI dataset; it has previously been shown that robust behavioural inferences can be 

made through a six-state model (Quinn et al., 2018).  

The temporal dynamics of HMM states can be characterised through a small set of metrics, 

namely switching rate (the frequency with which states transitions occur), fractional 

occupancy (the proportion of time a state is active), and the transition matrix consisting of 

transition probabilities (the chance of between-state transitions) and persistence 

probabilities (the chance of remaining in the same state). Mean activation maps were 

generated by weighting component maps by the mean of the state Gaussian distribution. 

For illustrative purposes I compared these maps with templates maps of canonical static 

functional networks (Shirer et al., 2012). I calculated the mean score within both a binarised 

template map and within a binarised inverse, with goodness of fit being the difference 

between the two. Higher scoring networks were taken to be matching resting state networks 

of positive areas of activation for that state, and strongly negative scores to be the 

corollaries of the negative state activations.  

3.2.4  Statistical analyses 

I adopted a two-stage approach to the analysis, with hypothesis generation in the 

Cambridge dataset followed by full hypothesis testing in GENFI. Prior to the analysis of 

the GENFI dataset I registered the plan for processing and cross-sectional analysis using 

the Open Source Framework (https://osf.io/k64gh/wiki/home/, see appendices), All 

statistical analyses were performed in R (R Core Team, 2018) with the exception of 

permutation testing using FSL’s PALM (“Permutation Analysis of Linear Models”) 

(Winkler et al., 2014). P-values throughout were corrected across relevant tests for a false 

https://github.com/OHBA-analysis/HMM-MAR
https://osf.io/k64gh/wiki/home/
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discovery rate of 5%, except permutation testing where family-wise error correction to 5% 

was performed across all tests and contrasts. 

3.2.4.1 Descriptive statistics 

I compared continuous variables between groups using independent sample t-tests and 

categorical variables with the Chi-Squared test. In GENFI I calculated effect sizes (Cohen’s 

d) for t-test comparisons, since given larger group sizes may result in small differences that 

may be statistically but not clinically significant. 

3.2.4.2 Cambridge 

I compared fractional occupancy and switching rates between groups using a one-way 

analysis of covariance, with age and sex as covariates. For each participant I extracted 

matrices of the 36 transition and persistence probabilities. Given the interdependence of 

these probabilities, I assessed for group differences in a permutation test (5000 

permutations) using FSL’s PALM. Age and sex were included as covariates of no interest. 

3.2.4.3 GENFI  

In GENFI cross-sectional analysis was performed using participants’ latest scan that passed 

motion thresholding, maximising per-participant volume number. Differences in fractional 

occupancy rates and switching rates were assessed using mixed-effects linear models with 

diagnostic group as the main effect, age and sex as dependent variables, and scan site as a 

random intercept using the lme4 package (Bates et al., 2015). Significance values were 

calculated using the Satterwaithe estimate of effective degrees of freedom. Switching rates 

were adjusted to account for small differences in repetition time. Group differences in 

transition/persistence probabilities were calculated as per the Cambridge cohort. 

For contrasts with clinical scores and longitudinal analysis I performed a principal 

component analysis on state fractional occupancies using the alfa.pca (alpha=1) function 

from the Compositional package in R (Tsagris et al., 2016), followed by varimax rotation. 

I selected number of components for analysis using MacArthur’s ‘broken-stick’ criterion 

(MacArthur, 1957). 

3.2.4.4 Network dynamics by age 

In previous GENFI studies, mean family age at symptom onset has been used to estimate 

years until symptom onset, but only in MAPT mutations does this explain a significant 

proportion of variability in age of onset (Moore et al., 2020). Given that component scores 
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did not differ by mutation type, I explored component scores by age as a marker of 

proximity to onset (comparing to family members without mutations, over a similar age 

range). I compared component scores and state occupancies between non-carriers and 

presymptomatic mutation carriers as a function of age, assessing the group by age (linear 

or quadratic) interaction.  

3.2.4.5 Presymptomatic mutation carriers and neuropsychological correlates 

I compared component scores in presymptomatic mutation carriers with pre-registered 

neuropsychological tests (backwards digit span, digit symbol, trail making test) as a 

function of age within a mixed-effects linear model.  

3.2.4.6 Converters 

Mutation carriers who were assessed during longitudinal follow up as moving from the 

presymptomatic to symptomatic phase were classified as converters. I compared 

component scores, state occupancies and neuropsychological scores between converters 

and non-converting presymptomatic mutation carriers at their latest presymptomatic scan 

in mixed-effects linear models with group as the main effect, age and sex as covariates, and 

scan site as a random variable. 

3.2.4.7 Longitudinal cognitive data in symptomatic patients 

A mixed linear model was used to calculate patient specific yearly rates of change in 

clinical and neurocognitive scores (MMSE, CBI-R, backwards digit span, digit symbol, 

trail making test B), as described in chapter 2. Neurocognitive assessment was the 

dependent variable in the model, with years from baseline assessment as an independent 

variable and with estimation of intercept and slope (neurocognitive assessment ~ time + 

(time | ID)). These models were calculated using all GENFI participants. 

To assess whether baseline component scores predict neurocognitive decline individual 

estimates of disease progression (slope) were taken to a second model as a dependent 

variable, with baseline component scores as an independent variable and baseline age, sex, 

and site as covariates of no interest.  

3.2.4.8 Longitudinal cognition in presymptomatic mutation carriers 

I repeated the two-step model for presymptomatic mutation carriers, additionally assessing 

the interaction between baseline component scores and age given that proximity to 
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symptom onset increases the probability that small fluctuations in neurocognitive 

assessment are important.  
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3.3 Results 

3.3.1 Descriptive statistics 

Demographic and clinical characteristics for the two cohorts for participants with a sub-

motion threshold scan are included in Table 3-1 and Table 3-2. In the Cambridge cohort no 

significant differences were observed in age or sex. In GENFI symptomatic participants 

were older than asymptomatic participants and showed marked deficits in 

neuropsychological and informant-based assessment of severity.  

 

Table 3-1 Demographic and clinical characteristics for the GENFI participants.Scores are mean (SD). P 

values minimum threshold of < 0.0001. (NC Non carrier, PSC presymptomatic mutation carrier, Symp 

symptomatic, CBIR Cambridge Behavioural Inventory-Revised, MMSE Mini-Mental State Examination) 

 

 NC PSC Symp NC v Symp NC V PSC 

 n=309 n=320 n=150 

Stat 

(χ/t) P d 

Stat 

(χ/t) P d 

Age (y) 48 (13) 45 (12) 63 (8.2) t=-15 <0.0001 1.3 t=2.5 0.01 0.2 

Gender 

(F/M) 179/197 197/123 67/83 Χ=0.26 0.6  Χ=11 

<0.00

1  

Mutation (n) 

 

 

C9orf72 

109 

 GRN 133  

MAPT 60  

TBK1 7 

C9orf72 

119 

GRN 141 

MAPT 58  

TBK1 2 

C9orf72 

71 

GRN 53  

MAPT 26 

Χ=5 

 

0.06 

  

Χ=0.3 

 

0.9 

  

MMSE 29 (1) 29 (1) 21 (7) t=13 <0.0001 1.9 t=-0.1 0.92 0 

CBIR Total 5 (7) 6 (9) 62 (32) t=-21 <0.0001 -3 t=-1.5 0.1 -0.13 

Trial making 

test B 67 (37) 67 (40) 211 (92) t=-16 <0.0001 -2.4 t=0.13 0.99 0 

Digit 

Symbol 58 (14) 58 (14) 25 (14) t=22 <0.0001 2.3 t=0 1 0 

Backwards 

Digit Span 

Score 4.8 (1.2) 4.8 (1.2) 3.1 (1.5) t=13 <0.0001 1.4 t=-0.54 0.6 -0.04 

Boston 

naming 28 (2) 28 (3) 19 (8) t=13 <0.0001 1.8 t=0.84 0.4 0.07 

Letter 

fluency 41 (13) 41 (13) 17 (12) t=18 <0.0001 1.9 t=0.84 0.4 0.07 

Category 

fluency 23 (6) 24 (6) 11 (6) t=20 <0.0001 2.2 t=-1.5 0.14 -0.12 
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3.3.2 Network dynamics in frontotemporal dementia 

For the Cambridge data, I used temporally concatenated participant timeseries from ICA 

components to fit an HMM with 6 brain states (Figure 3-1A, with labelling in 

Supplementary Figure 3-1 to indicate the most closely matching canonical static network 

for positive and negative activations). Participants with FTD had increased fractional 

occupancy of state 2, whose positive activations constituted the salience network (F=7.8, 

FDR P=0.043). Switching rates between states were reduced in FTD (Figure 3-1C F=6.5, 

P=0.014). A permutation test of persistence and transition probabilities found no group 

differences following correction for multiple comparisons. 

 

Figure 3-1. Network dynamics in the Cambridge dataset (A) Mean activation maps for the six modelled 

states. (B) Fractional occupancy by state, with a post-correction increase in state 2 occupancy in 

frontotemporal dementia (FTD). (C) Switching rates are reduced in FTD in this cohort. 

 Control (n=32) FTD (n=27) Statistic (t/χ) 

Age 67.2 (8.5) 64.3 (7.3) t(57)=1.4 , P=0.16 

Sex (M/F) 14/18 17/11 χ=1.5, P=0.23 

ACER  65 (20)  

FAB  9.3 (4.4)  

CBIR  74.3 (22.3)  

Table 3-2 Demographic and clinical characteristics for the participants recruited at the Cambridge Centre for 

Frontotemporal Dementia and Related Disorders. Scores are mean (SD). (ACER Addenbrookes Cognitive 

Examination-Revised, CBIR Cambridge Behavioural Inventory-Revised, FAB Frontal Assessment Battery) 
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For GENFI data, I used temporally concatenated participant component timeseries to fit an 

HMM with 6 brain states (Figure 3-2A-C, Supplementary Figure 3-1). Comparing 

symptomatic participants with mutation non-carriers, I found that participants with FTD 

had increased fractional occupancy of the state overlapping with the salience network (state 

2, F=32, FDR P=2x10-7) and of state 4 overlapping with the default mode network (F=8, 

FDR P=0.008).  Participants with FTD spent less time than non-carriers in two states with 

inverse activation patterns: state 3 with positive activations in sub-cortical regions (F=17, 

FDR P=1x10-4); and state 5 with positive activations in motor and sensory (somatic, visual 

and auditory) regions (F=15, FDR P=2x10-4). In this cohort switching rates did not differ 

in FTD (F=3.1, P=0.08). 

 

Figure 3-2. Network dynamics in GENFI. (A) Mean activation maps for the six modelled states. (B) 

Fractional occupancy by state, with increased occupancy in states 2 and 4, and decreased occupancy in 

states 3 and 5. (C) Altered transition and persistence probabilities in FTD using a permutation test. Blue 

lines represent significantly decreased transitions in FTD, and red lines significantly increased transitions. 

The figures show the absolute percentage increase or decrease in probability in FTD. 

A permutation test of persistence and transition probabilities found a decreased transition 

probability in FTD from state 2 (salience) to state 3 (subcortical) (t(455)=4.5,  FEW 
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P=0.0002, Figure 3-2C), and decreased persistence probability for state 3 (t(455)=3.7, FWE 

P=0.007). I found an increased persistence probability in FTD for state 2 (t(455)=4.2, FWE 

P=0.002), and increased transition probabilities from state 6 (default mode) to state 2 

(t(455)=4.3, FWE  P=0.0008), from state 5 to state 4 (t(455)=3.2, FWE P=0.046), from 

state 3 to both state 5 (t(455)=4.5, FWE P=0.0002) and state 6 (t(455)=3.3, FEW P=0.04) 

and from state 1 to state 6 (t(455)=4.5, P=0.0002). 

I performed a principal component analysis with varimax rotation on state occupancies for 

each cohort. For the Cambridge dataset two components were selected by MacArthur’s 

criterion, which explained 87% of the variance (Figure 3-3A). Higher scores in the first 

component were associated with more time in states 2 and states 6, and less time in states 

3 and states 5. Higher scores in the second component were associated with less time in 

states 1 and 4, and more time in state 6. Scores were significantly increased for the first 

component in FTD (F=4.1, P=0.046), with the group difference in second component 

scores were not significant (F=3.2, P=0.078). In GENFI one component was selected, 

which explained 68% of the variance (Figure 3-3B).  Higher component scores were 

associated with greater time in states 2, 4 and 6, and decreased time in states 3 and 5. 

Component scores were increased in symptomatic participants (F=21, P=4x10-7). There 

was no relationship between component scores and motion assessment indices in 

symptomatic participants (maximum framewise displacement Pearson’s R=0.047, P=0.57; 

maximum DVARS R=0.042, P=0.61; maximum spike percentage R=0.1 P=0.1).  

 

Figure 3-3. Principal component analysis loadings for state fractional occupancies for the A) Cambridge 

and B) Genfi datasets.The number of components was chosen by Macarthur’s criteria (PCA: Principal 

component analysis, HMM hidden Markov modelling) 
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3.3.3 Network dynamics and clinical correlates in symptomatic FTD 

From Cambridge data, I found that scores for the first component in participants with FTD 

showed an uncorrected association with Addenbrooke’s Cognitive Examination-Revised 

(Figure 3-4A, Std Beta=-0.41, uncorrected P=0.039, FDR P=0.069) and Mini-Mental State 

Examination (Std Beta=-0.43, uncorrected P=0.035, FDR P=0.069). There were no 

significant associations with Frontal Assessment Battery score (Std Beta=-0.55, FDR 

P=0.069) or Cambridge Behavioural Inventory-Revised (Std Beta=-0.01, FDR P=0.96). 

No significant associations were observed with the second component. 

For GENFI I found fractional occupancy component scores for symptomatic participants 

correlated with neuropsychological assessment (Figure 3-4B): digit symbol (Std Beta -0.21, 

FDR P=0.019); trail making test B (Std Beta 0.22, FDR P=0.019); backwards digit span 

(Std Beta -0.21, FDR P=0.019); letter fluency (Std Beta -0.22, FDR P=0.019); Boston 

naming test (Std Beta -0.19, FDR P=0.034); and category fluency (Std Beta -0.21, FDR 

P=0.019). No relationship was found with the Cambridge Behavioural Inventory-Revised 

(Std Beta=0.02, FDR P=0.79) and MMSE (Std Beta -0.15, FDR P=0.082) 

Assessing for differences in slope between non-carriers and symptomatic patients using the 

interaction between component scores and group found significantly steeper slopes in trail 

making test B (interaction Std Beta -0.3, FDR P=0.0004); MMSE (interaction Std Beta 

0.27, FDR P=0.007); and Boston naming (interaction Std Beta 0.25, FDR P=0.011). The 

interaction was not significant for letter fluency (interaction Std Beta 0.14, FDR P=0.14); 

category fluency (interaction Std Beta 0.17, FDR P=0.059); backwards digit span 

(interaction Std Beta 0.13, FDR P=0.18); digit symbol (interaction Std Beta 0.13, FDR 

P=0.11); and Cambridge Behavioural Inventory-Revised (interaction Std Beta -0.01, FDR 

P=0.86) 

In GENFI the behavioural variant frontotemporal dementia and primary progressive 

aphasia accounted for 83% of symptomatic patients, with the remaining patients split 

between twelve other diagnostic labels. Considering three groups (non-carriers, 

behavioural variant FTD and primary progressive aphasia) I found that fractional 

occupancy component scores were higher in both disease groups than in non-carriers (post-

hoc Tukey PPA t=3.4, P=0.0019; bvFTD t=4.5 P<0.0001) but did not differ between the 

clinical phenotypes (t=0.68, P=0.78). 
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Figure 3-4. Fractional occupancy and neuropsychological assessments Component scores showed 

uncorrected association (A) with MMSE and Addenbrookes Cognitive Examination-Revised (ACE-R) in the 

Cambridge dataset and (B) with associations with neuropsychological measures in GENFI. Single subject 

data not plotted to protect genetic anonymity. Significant differences in slope were seen for TMTB, Boston 

naming, and MMSE. (CBIR Cambridge Behavioural Inventory-Revised, TMTB Trail Making Test B, MMSE 

Mini-Mental State Examination, FAB Frontal Assessment Battery) 

3.3.4 Network dynamics and neuropsychological testing in presymptomatic 

mutation carriers 

I assessed whether fractional occupancy component scores correlated with preregistered 

neuropsychological assessments (trail making test B, digit symbol, backwards digit span) 

in presymptomatic mutation carriers.  In presymptomatic mutation carriers component 

scores correlated with trail making test B (Std Beta=0.15, FDR P=0.015) with no 

relationship found in non-carriers (Std Beta=0.01, FDR P=0.92). Moreover, the 

relationship in presymptomatic mutation carriers was modified by age (interaction Std 

Beta=0.13, FDR P=0.043). I found no relationship with component scores and either 

backwards digit span or digit symbol score. 
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3.3.5 Network dynamics in mutation carriers 

I investigated temporal dynamics across all mutation carriers. I hypothesised that fractional 

occupancy could show a non-linear relationship with age, as a proxy marker of proximity 

to symptom onset. I therefore included a quadratic term for age using orthogonalised 

polynomials. Model comparison found that inclusion of a quadratic age term to a linear 

model significantly improved fit for state 2, but not for component scores or other states 

(Table 3-3, Figure 3-5C).  

Table 3-3. Linear v Quadratic model comparison for age against state occupancy and component 

scores for all carriers, presymptomatic carriers and non-carriers. PCA: Principal component analysis 

component. State P values corrected for false discovery rate across states. 

Within a mixed model including age as a quadratic term and with sex and site as covariates 

of no interest, state 2 occupancy showed an uncorrected difference between non-carriers 

and presymptomatic mutation carriers as a function of age (Interaction F=3.8, uncorrected 

P=0.022, Figure 3-5D), results that were not replicated in a purely linear model (F=1.7, 

uncorrected P=0.19). No differences were observed for other states or components scores. 

3.3.6 Network dynamics predict symptomatic conversion 

Fourteen presymptomatic carriers became symptomatic during follow up. I compared these 

converters at their latest presymptomatic visit with imaging with other presymptomatic 

carriers. Converters had significantly worse performance on neuropsychological 

assessment at this visit (backwards digit span F=5.7, P=0.017; backwards digit span score 

F=6.9, P=0.009; trial making test B F=28, P=2x10-7). I found that component scores 

(F=6.1, P=0.014) and state 2 occupancy (F=7.7, FDR P=0.035) were increased in 

converters (Figure 3-5C-D). 

State All carriers Presymptomatic 

carriers 

Non carriers 

 ChiSq P ChiSq P ChiSq P 

State 1 0.03 0.96 0.15 0.70 0.14 0.91 

State 2 8.7 0.020 7.2 0.043 0.03 0.91 

State 3 2.5 0.35 1.3 0.70 0.29 0.91 

State 4 0.0 0.96 0.24 0.70 1.6 0.62 

State 5 1.7 0.39 0.74 0.70 0.01 0.91 

State 6 0.01 0.96 0.23 0.70 1.6 0.62 

PCA 3.5 0.061 3.2 0.073 0.05 0.83 
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Figure 3-5. Changes in network dynamics occur in the late presymptomatic phase. A) State 2 (salience) 

occupancy and (B) component scores significant increased in converters (at their latest presymptomatic scan) 

in contrast to those who have not converted to the symptomatic phase during longitudinal follow up. A non-

linear relationship was observed in state 2 occupancy in (C) all carriers and in (D) presymptomatic mutation 

carriers, in contrast to non-carriers. Regression lines fitted with a generalised additive model, with individual 

data points removed to protect genetic anonymity.  

3.3.7 Network dynamics predict cognitive decline  

I assessed whether higher baseline component scores in symptomatic patients were 

associated with subsequent neurocognitive decline using pre-registered assessments (trail 

making test B (TMTB), digit symbol, backwards digit span) and measures of global 

cognitive and behavioural decline (CBI-R, MMSE). Patients at floor scores for assessments 

were removed prior to deriving linear mixed models (TMTB n=20, backwards digit span 

n=2, digit symbol n=2). Linear mixed models on longitudinal clinical and neurocognitive 

scores indicated an effect of time for all measures in symptomatic participants 

(Supplementary Table 3-2).  

Correcting for age at baseline scan, sex and site, baseline component scores were related to 

the annual rate of clinical progression for MMSE (Figure 3-6A, Std Beta=-0.43, P=0.001). 

The associations with backwards digit span (Std Beta=-0.26, uncorrected P=0.021, FDR 

P=0.054) and TMTB (Std Beta=0.35, uncorrected P=0.035, FDR P=0.059) were not 

significant after correction for multiple comparisons. No significant relationship was found 

with digit symbol (Std Beta=-0.21, FDR P=0.089) or carer-rated severity using the CBI-R 
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(Std Beta=0.16 FDR P=0.18). I found a significant difference in slope between 

symptomatic mutation carriers and non-carriers for MMSE, TMTB and CBI-R (group x 

baseline component score interaction: MMSE Std Beta=-0.66, FDR P=2x10-10; backwards 

digit span Std Beta=-0.23 FDR P=0.11; digit symbol Std Beta=-0.12 FDR P=0.18; trail 

making test B Std Beta=0.58 FDR P=5x10-5; CBI-R Std Beta=0.12 FDR P=0.041).   

 

Figure 3-6. Cognitive decline in symptomatic participants (A) Baseline component scores predict subsequent 

cognitive decline in symptomatic participants in the MMSE, with an uncorrected association with digit span 

and trail making test B. Annualised rates of change in cognitive scores are derived from a mixed linear effect 

model, and taken to a second model to compare with component scores while partialling out covariates. (B) 

Baseline state 2 occupancy predicts subsequent cognitive decline in symptomatic patients in a range of 

clinical and neuropsychological tests. All p-values are false discovery rate corrected (CBIR Cambridge 

Behavioural Inventory-Revised, TMTB Trail Making Test B, MMSE Mini-Mental State Examination) 

I proceeded to investigate whether baseline network dynamics predicted cognitive and 

clinical decline in presymptomatic mutation carriers, hypothesising that the relationship 
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between annualised rate of change in neurocognitive measure and component scores would 

depend on age as a marker of proximity to symptom onset.  

 I found that age significantly modified the relationship between annualised rate of clinical 

progression and baseline component scores for TMTB (Interaction Std Beta=0.21 FDR 

P=0.002), and MMSE (Interaction Std Beta=-0.14 FDR P=0.048). For the TMTB, a 

significant three-way interaction (group x age x component score) implied that baseline 

component score increased the rate of clinical deterioration in older presymptomatic 

mutation carriers, relative to non-carriers or younger carriers (Table 3-4). I did not find any 

significant relationships with digit symbol, backwards digit span or CBI-R. 

Given the difference in state 2 occupancies both in converters and between non-carriers 

and pre-symptomatic mutation carriers, together with the known role of the salience 

network in FTD, I also investigated the relationship between baseline state 2 occupancy 

and longitudinal cognitive decline. Correcting for age at baseline scan, sex and site, 

baseline state 2 occupancy was related to the annual rate of clinical progression for MMSE 

(Figure 3-6, Std Beta=-0.4, FDR P=0.003), backwards digit span (Std Beta=-0.34, FDR 

P=0.008), digit symbol (Std Beta=-0.27, FDR P=0.025) and trail making test B (Std 

Beta=0.4, FDR P=0.025). No relationship was found with carer-rated severity using the 

CBI-R (Std Beta=0.09 FDR P=0.45). I found a significant difference in slope between 

Model Slope ~ comp + cov Slope ~ comp*age + cov Slope ~ comp*age*group 

+ cov 

 Std 

Beta 

t P Std 

Beta 

t P Std 

Beta 

t P 

TMTB -0.13 -1.0 0.75 0.22 3.9 0.0006 0.43 5.1 2x10-6 

Digit 

span 

0.02 0.37 0.75 0.09 1.5 0.17 0..12 1.3 0.19 

Digit 

symbol 

-0.02 -0.31 0.75 -0.02 -0.45 0.66 -0.12 -1.6 0.15 

MMSE -0.05 -0.76 0.75 -0.14 -2.4 0.048 -0.19 -2.1 0.072 

CBIR 0.03 0.50 0.75 0.11 1.7 0.15 0.20 2.0 0.072 

Table 3-4. Two step prediction models for presymptomatic mutation carriers. comp Fractional occupancy 

component, TMTB Trail Making Test B, CBIR Cambridge Behavioural Inventory-Revised, MMSE Mini-Mental State 

Examination 
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symptomatic mutation carriers and non-carriers for all measures except digit symbol and 

CBI-R (group x baseline state 2 interaction: MMSE Std Beta=-0.6, FDR P=3x10-9; 

backwards digit span Std Beta=-0.27 FDR P=0.0498; trail making test B Std Beta=0.57 

FDR P=6x10-6, CBI-R Std Beta=0.12 FDR P=0.17; digit symbol Std Beta=-0.17 FDR 

P=0.079).   

 I found that age significantly modified the relationship between annualised rate of clinical 

progression and baseline salience network occupancy for trail making test B (Interaction 

Std Beta=0.21 FDR P=0.002), MMSE (Interaction Std Beta=-0.16 FDR P=0.023) and the 

CBI-R (Interaction Std Beta=0.16 FDR P=0.030). For these three measures, significant 

three-way interactions (group x age x state 2 occupancy) implied that baseline state 2 

increased the rate of clinical deterioration in older presymptomatic mutation carriers, 

relative to non-carriers or younger carriers (Table 3-5). I did not find any significant 

relationships with digit symbol or backwards digit span. 

3.3.8 Impact of higher average motion participants on network dynamics 

To ensure that the results of the GENFI cohort were not distorted by participants who 

showed higher motion but were not excluded by the maximum-statistic based criteria, I 

repeated the analyses excluding 28 scans from 27 participants (10 non-carriers, 9 

presymptomatic mutation carriers, 8 symptomatic carriers) who were above 1.2 standard 

deviations from the whole group mean for mean framewise displacement but included in 

the primary analysis.  

Table 3-5. Two step prediction models for presymptomatic mutation carriers v baseline state 2 

(salience state) occupancy. TMTB Trail Making Test B, CBIR Cambridge Behavioural Inventory-Revised, MMSE 

Mini-Mental State Examination 

Model Slope ~ state 2 + cov Slope ~ state 2*age + cov Slope ~ state2*age*group 

+ cov 

 Std 

Beta 

t P Std 

Beta 

t P Std 

Beta 

t P 

TMTB 0.12 1.9 0.26 0.21 3.6 0.002 0.38 4.4 0.0008 

Digit 

span 

0.01 0.16 0.87 0.07 1.2 0.30 0.1 1.1 0.27 

Digit 

symbol 

-0.05 -0.97 0.55 0 0.08 0.93 -0.09 -1.2 0.27 

MMSE -0.07 -1.2 0.55 -0.16 -2.6 0.024 -0.24 -2.7 0.022 

CBIR 0.05 0.8 0.55 0.16 2.4 0.030 0.22 2.2 0.032 



71 

 

I found that component scores differed between symptomatic participants and non carriers 

(F=24.8 P=9x10-7). In symptomatic participants higher component scores were associated 

with digit symbol, trail making test B, backwards digit span and category fluency (Digit 

Symbol Std Beta -0.21 FDR P=0.029; Trail making test B Std Beta 0.21 FDR P=0.029; 

Digit span Std Beta -0.23 FDR P=0.029; Category fluency Std Beta -0.21 FDR P=0.029; 

MMSE Std Beta -0.18 FDR P=0.062 ;CBI-R Std Beta 0.05 FDR P=0.56; Letter Fluency -

0.18 FDR P=0.062, Boston naming Std Beta -0.17 FDR P=0.062). Component scores were 

increased in converters at their latest presymptomatic scan (F=6.2 P=0.013). Baseline 

component scores in symptomatic participants were associated with longitudinal decline in 

MMSE (Std Beta -0.46, FDR P=0.0006) and with uncorrected change in digit span (Std 

Beta -0.28 uncorrected P=0.020, FDR P=0.051) and trail making test B (Std Beta 0.35, 

uncorrected P=0.035, FDR P=0.058). Baseline component scores were associated with 

cognitive decline in older presymptomatic mutation carriers for the MMSE and trial making 

test B (MMSE Interaction Std Beta -0.14 FDR P=0.045; TMTB Std B 0.23 FDR 

P=0.0004). 
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3.4 Discussion  

This study demonstrates that the temporal dynamics of large-scale brain networks are 

disrupted by sporadic and familial Frontotemporal Dementia, with characteristic changes 

in both the symptomatic and late pre-symptomatic phases of disease.  There is an increase 

in salience and default mode network occupancy, and a decrease in proportion of time spent 

in the primary cortices and subcortical regions: a change which correlates with clinical and 

neuropsychological markers of disease severity. Changes in temporal dynamics occur near 

to disease onset and predict the onset and deterioration of the clinical syndrome as 

evidenced by i) the increased component scores of those who subsequently converted to 

the symptomatic phase during follow up, and ii) increased rates of cognitive and clinical 

decline in both symptomatic and older presymptomatic participants with higher component 

scores. 

Functional networks provide an intermediate phenotype to investigate the compensatory 

changes that account for the dissociation between neuropathological progression and 

maintained cognitive performance in presymptomatic neurodegeneration (Gregory et al., 

2017), with coupling between functional connectivity and cognition increasing close to 

disease onset (Klöppel et al., 2015; Tsvetanov et al., 2020). Changes in time-varying 

connectivity predict behavioural traits beyond static functional connectivity or structure 

alone (Liégeois et al., 2019; Vidaurre et al., 2021), suggesting that investigating network 

dynamics can inform our understanding of the transition from the presymptomatic to 

symptomatic phase of neurodegenerative disease. Here I found that while the dynamic 

repertoire is unchanged through much of the presymptomatic period, the onset of change 

indicates future symptomatic decline. This suggests that network dynamics can potentially 

be used both to guide prognosis and as an intermediate marker of success for interventions 

in presymptomatic mutation carriers, adding to existing clinical, blood and other imaging 

biomarkers (Meeter et al., 2017). 

Given that the salience network is selectively targeted in behavioural variant FTD, with 

atrophy of network hubs and reduced functional connectivity (Seeley et al., 2009; Zhou et 

al., 2010; Zhou and Seeley, 2014), the finding of increased salience network occupancy in 

FTD in both cohorts is perhaps unexpected. The salience network is integral to accessing 

other large-scale networks, including executive (Sridharan et al., 2008) and default mode 

networks (Bonnelle et al., 2012). Neuropathological disruption to salience network 
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connectivity may undermine its ability to coordinate network switching, perturbing global 

network dynamics, resulting in increased time spent in a state with positive activations in 

the default mode network and increased time within the salience network itself. Assessment 

of between group differences in transition probabilities provides a potential explanation for 

these changes. I found a reduced frequency of transition from the salience state to the 

subcortical (primarily thalamic) state. Subcortical atrophy is well recognised in FTD, 

notably in the thalamus, and occurs in both sporadic and genetic FTD (Bocchetta et al., 

2018; Lee et al., 2014) including in the presymptomatic phase (Rohrer et al., 2015). These 

findings could suggest that subcortical network integrity influences cortical salience 

network dynamics, echoing previous work describing the role of thalamic degeneration in 

disrupting salience network connectivity in genetic FTD (Lee et al., 2014). 

I found that switching rates were reduced in sporadic behavioural variant FTD, but not in 

familial FTD. While the results from the Cambridge cohort may be a type 1 error, there are 

important between-cohort differences that potentially account for this divergence: resting 

state scans in the Cambridge cohort had on average longer timeseries, enabling more 

precise modelling of network dynamics; increased severity in participants with sporadic 

FTD as demonstrated by higher CBI-R; and variation in clinical phenotypes between the 

two groups. I also found that higher salience network occupancy in older presymptomatic 

mutation carriers predicted decline in trail making test B scores, but not digit symbol or 

digit span. This may be because the trail making test captures distinct aspects of executive 

function (such as set-shifting (Misdraji and Gass, 2010)) that are better predicted by 

disrupted network dynamics, or that the rapid rate of deterioration in trail making test over 

time (Rohrer et al., 2015) mean that changes are more easily captured. 

There are limitations to this study, despite the advantages of cross-sectional replication and 

longitudinal follow-up in GENFI. The hidden Markov model provides a data-driven 

explanation of the data without biological assumptions (Lurie et al., 2019), with resulting 

constraints to its explanatory power. It is possible that a time-varying connectivity approach 

with additional biologically informed constraints could provide further group 

differentiation and refined longitudinal predictions. My approach was not optimised to find 

differences in brain state dynamics between mutation types or by phenotype. Alternative 

methodological choices may reveal such differences, according to different a priori 

numbers of states, focusing on different large-scale networks and modelling subsets of 

patients. In the GENFI cohort the study design necessarily results in a significant age 



74 

 

difference between non-carriers and symptomatic participants. That similar patterns of state 

occupancies were observed in the Cambridge cohort suggests that the results are not 

primarily driven by age differences. This study was also limited by the length of scans 

compared to studies in healthy populations, for example from resting state fMRI using 

Human Connectome Project data where use of hidden Markov modelling shows high levels 

of test-retest reliability (Vidaurre et al., 2017). The imaging protocols in GENFI were 

designed to ensure that they could be tolerated by patients; however the acquisition times 

make assessment of longitudinal subject-specific network patterns inappropriate (Gordon 

et al., 2017). 

In this study I preregistered the use of age as a proxy marker for disease onset, since 

parental/familial age of onset explains little additional variance age at symptom onset in 

GRN and C9orf72 (Moore et al., 2020). There has been growing interest in using latent 

disease age (Staffaroni et al., 2022), which combines clinical measures, fluid biomarker 

data, and atrophy to predict disease onset in presymptomatic mutation carriers. I compared 

the functional disease markers with pre-registered neuropsychological markers given my 

hypothesis that these changes would be most closely associated with markers of executive 

function, to focus on markers available in almost all participants, and to increase 

comparability from the hypothesis generating sporadic cohort to the genetic group. In future 

work it will be important to assess the relationship in time between temporal network 

changes and fluid biomarkers (such as NfL), atrophy, and other clinical measures, such as 

the FTLD-modified CDR. 

I conclude that network dynamics are a critical link between neuropathology and 

symptomatology, heralding symptom onset and correlating with key measures of clinical 

severity. Network dynamics are a promising tool for stratification and prognostication in 

frontotemporal dementia. 
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3.5 Supplementary materials for chapter 3 

 

Supplementary Figure 3-1. Mean activation states for the two cohorts. Mean activation maps for the six 

modelled states in each cohort, with reference to their closest canonical static functional network (DMN default mode 

network, SN salience network, EX Executive, ATT Attention, MOT motor, SEN sensory, VIS visual). 

 

  



76 

 

Scans 

(n) 

Scanner TR 

(s) 

TE Vols Volume 

slices 

Slice 

thickness 

Pixel 

spacing 

FOV T 

88 Philips Achieva 2.2 30 140 36 3.3 2.65\2.6

5 

80*80 3 

197 Philips Achieva 2.2 30 200 38 2.72 2.75\2.7

5 

80*80 3 

73 Philips Achieva 2.5 30 200 42 3.5 3\3 64*64 3 

58 Philips Achieva 2.5 30 200 42 3.5 3\3 64*64 3 

15 Philips Achieva 2.2 30 140 33 3.5 2.3\2.3 96*96 3 

2 Philips Achieva 2.2 30 140 36 3.3 2.5\2.5 96*96 3 

1 Philips Achieva 2.2 30 140 42 3.3 2.5\2.5 96*96 3 

9 Siemens Aera 3 30 200 29 3 3.4\3.4 64*64 1.5 

3 Siemens Allegra 2.2 30 140 36 3.4 3.4\3.4 64*64 3 

36 Siemens Avanto 2.2 30 200 29 3.5 3.5\3.5 64*64 1.5 

1 Siemens Avanto 2.2 30 200 29 3.5 3.7\3.7 64*64 1.5 

47 GE Discovery 2.2 30 140 39 3.3 3.4\3.4 64*64 3 

329 Siemens Prisma 2.5 30 200 42 3.5 3\3 64*64 3 

38 Siemens Prisma 2.5 30 200 42 3.5 3\3 64*58 3 

14 Siemens Prisma 2.2 30 140 36 3.3 3.3\3.3 64*58 3 

1 Siemens Prisma 2.5 30 200 42 3.5 3.3\3.3 64*64 3 

1 GE Signa 2.5 30 200 36 3.5 3\3 64*64 3 

8 GE Signa 3 30 200 40 3.5 3.4\3.4 64*64 1.5 

1 GE Signa 2.5 30 200 45 3.5 3\3 64*64 3 

1 GE Signa 3 30 200 39 3.5 3.4\3.4 64*64 1.5 

123 Simens Skyra 2.5 30 200 42 3.5 3\3 64*64 3 

86 Simens Skyra 2.5 30 200 42 3.5 3\3 64*58 3 

16 Simens Skyra 2.25 30 140 36 3.3 3.3\3.3 64*58 3 

2 Simens Skyra 2.5 30 200 45 3.5 3\3 64*58 3 

2 Simens Skyra 2.5 30 200 42 3.5 3\3 64*60 3 

1 Simens Skyra 2.5 30 200 46 3.5 3\3 64*60 3 

3 Simens Skyra 2.5 30 200 42 3.5 3.4\3.4 64*64 3 

2 Simens Skyra 2.5 30 200 42 3.5 3.4\3.4 64*58 3 

2 Simens Skyra 2.5 30 200 42 3.5 3.1\3.1 64*58 3 

3 Siemens 

Triotrim 

2 30 300 32 3 3\3 64*64 3 
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137 Siemens 

Triotrim 

2.2 30 140 42 3.3 3.3\3.3 64*58 3 

254 Siemens 

Triotrim 

2.5 30 200 42 3.4 3\3 64*64 3 

2 Siemens 

Triotrim 

2.5 30 200 46 3.4 3\3 64*64 3 

1 Siemens 

Triotrim 

2.2 30 140 36 3.3 3.3\3.3 64*60 3 

Supplementary Table 3-1. MRI acquisition parameters of all included GENFI scans. TR=Repetition time, 

TE=Echo time, FOV=Field-of-view, T=Tesla/Field strength 
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Supplementary Table 3-2. Annualised rates of change in clinical assessments. Scores are mean (SD). (TMTB 

Trail Making Test B, CBIR Cambridge Behavioural Inventory-Revised, MMSE Mini-Mental State 

Examination) 

 

  

Neurocognitive/clinical 

assessment 

Annualised rate of change  

Group Symptomatic Presymptomatic 

mutation carriers 

Non-carriers 

TMTB 20 (16) 0.65 (5.6) 0.33 (4.7) 

Digit span -0.05 (0.06) 0.02 (0.06) 0.01 (0.05) 

Digit symbol -1.1 (0.79) 0.54 (0.79) 0.61 (0.69) 

MMSE -2.1 (1.9) -0.04 (0.22) -0.02 (0.18) 

CBI-revised 5.9 (3.7) 0.68 (1.5) 0.52 (0.89) 
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4 Network dynamics in progressive 

supranuclear palsy 

 

Preface 

The work that forms this chapter has been published in Neurobiology of Aging as ‘Altered 

network stability in progressive supranuclear palsy’ (https://doi.org/10.1016/j.ne

urobiolaging.2021.07.007). Data collection was from the research team at the Cambridge 

Centre for Parkinson-plus, and by a large group of researchers across England and Wales 

for PROSPECT-M-UK. Task-free functional MRI preprocessing was performed by my 

supervisor Dr Timothy Rittman, who also calculated regional graph metric and atrophy 

measures. I designed the analysis strategy and completed the analysis. I wrote the 

manuscript with input from the publication’s co-authors. 

Summary 

In this chapter I test the hypothesis that differences in network dynamics explain phenotypic 

diversity in progressive supranuclear palsy, and that these differences relate to signal 

complexity, atrophy, and network topology. I used data from 94 participants with PSP and 

64 healthy controls from the Cambridge Centre for Parkinson-plus and PROSPECT-M-

UK. In both cohorts, I found that PSP increased the proportion of time in networks 

associated with higher cognitive functions. This effect correlated with clinical severity as 

measured by the PSPRS, and with reduced neural signal complexity. Regional atrophy 

influenced abnormal brain-state occupancy, but abnormal network topology and dynamics 

were not restricted to areas of atrophy.  These findings show that a single pathological entity 

can cause variable and remote changes in neural temporal dynamics, leading to a greater 

proportion of time in inefficient brain-states.  

https://doi.org/10.1016/j.neurobiolaging.2021.07.007
https://doi.org/10.1016/j.neurobiolaging.2021.07.007
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4.1 Introduction 

The human brain optimises efficiency by balancing integration and segregation of 

information transfer among neural assemblies. The activity and connectivity of regional 

specialisation is dynamic (Deco et al., 2017; Friston et al., 2012; Honey et al., 2007; Shine, 

2019; Tognoli and Kelso, 2014), even on the suprasecond timescale of functional magnetic 

resonance imaging (Calhoun et al., 2014; Hindriks et al., 2016; Vidaurre et al., 2017). The 

co-ordination of such state transitions depends on the divergent topological properties of 

cortical and subcortical regions (Gu et al., 2015), and may be moderated by the principal 

inhibitory and excitatory neurotransmitters, GABA and glutamate. In the 

neurodegenerative tauopathies, the pattern of spread of tau-pathology is dictated in part by 

the brain’s topology and connectivity (Z. Ahmed et al., 2014; Clavaguera et al., 2009; 

Seeley et al., 2009), leading to reductions in effective information processing and cognition.  

In this chapter I propose that alterations in large-scale network dynamics contribute to 

phenotypic heterogeneity in progressive supranuclear palsy (PSP). I focus on this tau-

associated disease as a demonstrator condition because of its high clinicopathological 

correlation. I extend the work in chapter 3 by testing how regional atrophy, abnormal 

network topology, and signal complexity relate to network dynamics. To quantify signal 

complexity and network dynamics I use task-free functional MRI (fMRI) from the 

Cambridge Centre for Parkinson-plus and PROSPECT-M-UK. 

The clinical features of PSP, together with its established imaging and pathological 

findings, qualify it as a model disease to investigate network dynamics. PSP has prominent 

cognitive and behavioural features, including a dysexecutive frontal syndrome, apathy, 

impulsivity and language impairment, in addition to the movement disorder of axial 

akinetic-rigidity and impaired postural reflexes (Burrell et al., 2014; Steele et al., 1964). 

The disruption to static functional connectivity in PSP (Brown et al., 2017; Gardner et al., 

2013; Rosskopf et al., 2017; Whitwell et al., 2011) affects frontal cortical regions associated 

with cognitive control and behaviour, alongside striatal degeneration and loss of 

dopaminergic and noradrenergic projections from the brainstem to forebrain (Murley and 

Rowe, 2018). The latter are critical to balancing network integration and segregation 

(Shine, 2019), with catecholaminergic deficits related to dynamic connectivity, cognitive 

performance and disease severity (Eldar et al., 2013; Kaalund et al., 2020; Shine et al., 

2018). 
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Network dynamics need to be interpreted in the context of neural complexity (Honey et al., 

2007; McDonough and Nashiro, 2014). Complexity varies with the timescale analysed, 

with the potential for scale dependent relationships between integrative or synchronous 

activity, state switching and complexity (McDonough and Nashiro, 2014; McIntosh et al., 

2014; Wang et al., 2018). This relationship may be due to interference between neural 

complexity and regional phase relationships, decreasing the likelihood of synchrony 

between brain regions (Ghanbari et al., 2015). Alternatively, sufficient signal complexity 

may be required to establish long range dependencies, leading to a positive relationship 

between connectivity and complexity conditional on timescale (McDonough and Nashiro, 

2014; Wang et al., 2018).  

Entropy measures have been successfully applied to assess complexity in the relatively 

short, non-linear and noisy time series typical of fMRI (Grandy et al., 2016; Pincus and 

Goldberger, 1994; Turkheimer et al., 2015). Sample entropy measures the likelihood that 

repeated patterns are present in data: signals with a repetitive structure have lower entropy 

(Richman and Moorman, 2000). Multiscale entropy (MSE) extends sample entropy by 

assessment at multiple timescales, with the advantage that random noise can be 

differentiated from complex signal; random fluctuations increase entropy at fine time 

scales, but with increasing the timescale entropy decreases (Costa et al., 2005).  

Large-scale network dynamics can be quantified by hidden Markov modelling (HMM), as 

described in chapters 2 and 3, in terms of a finite number of mutually exclusive states 

between which the brain switches over time (Vidaurre et al., 2017).   

I used these methods to investigate the impact of PSP on network dynamics, as a function 

of changes in signal complexity, brain structure and functional reorganisation. I examined 

two contemporary but independent cohorts of PSP, and controls, from the Cambridge 

Centre for Parkinson-plus (CCPP) and the UK national PSP Research Network 

(PROSPECT-MR). In each cohort, I analysed HMM and MSE of task-free functional 

magnetic resonance. I then tested whether the network properties in PSP varied as a 

function of disease severity (PSP rating scale) and PSP phenotype (Richardson’s syndrome, 

cortical- and sub-cortical variants).   
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4.2 Methods 

4.2.1 Participants 

Forty-five participants with PSP (possible or probable, according to MDS-PSP criteria 

(Höglinger et al., 2017)) and 27 controls were recruited at the Cambridge University Centre 

for Parkinson Plus (CCPP). 49 study participants with PSP and 37 controls were recruited 

to Progressive Supranuclear Palsy-Corticobasal Syndrome-Multiple System Atrophy-UK 

(PROSPECT-MR) study (Jabbari et al., 2020). Thirty-four participants (28 PSP, 6 controls) 

were removed following assessment of motion and image quality. For both cohorts clinical 

assessment included the PSP rating scale (PSPRS) (Golbe and Ohman-Strickland, 2007) 

and Addenbrooke’s Cognitive Examination (ACE: Addenbrooke’s Cognitive 

Examination-Revised for CCPP (Mioshi et al., 2006), Addenbrooke’s Cognitive 

Examination-III for PROSPECT-MR (Hsieh et al., 2013)). Summary scores and 

demographic details are outlined in Table 4-1. 

PSP is a heterogeneous syndrome with variant presentations other than the classical 

Richardson’s syndrome (Jabbari et al., 2020). The clinical phenotype is related to the 

distribution of tau and focal grey matter loss, allowing us to test whether variation in the 

topographical distribution of disease burden (Ling et al., 2014; Sakae et al., 2019; Tsuboi 

et al., 2005) or atrophy (Jabbari et al., 2020) results in distinct changes in network 

dynamics. In keeping with Jabbari et al, clinical phenotype was categorised as PSP 

Richardson’s syndrome (PSP-RS), PSP-subcortical (i.e. PSP-P with predominant 

parkinsonism or PSP-PGF with progressive gait freezing) or PSP-cortical (PSP-F with 

frontal presentations, PSP-CBS with corticobasal features or other focal cortical 

syndromes). Clinical phenotypes for both cohorts are included in Table 4-1.  

4.2.2 MRI acquisition and preprocessing 

Image acquisition and preprocessing for the two cohorts was as described in chapter 2. For 

the Cambridge cohort I only used echo planar imaging with 305 volumes, given the benefits 

of longer time series in describing time-varying network activity. Given the sensitivity of 

estimates of network dynamics to participant motion (Laumann et al., 2017; Leonardi and 

Van De Ville, 2015; Power et al., 2012), I excluded thirty-three participants (27 PSP, 6 

Control) with greater than 1 standard deviation from the whole sample mean the four data 

quality indices described in chapter 2, and one participant with PSP for incomplete data. 
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Summary measures by group are in Supplementary Table 4-1. I took the average of the four 

metrics post standardization as covariate of no interest in further analyses. 

4.2.3 Structural MRI 

I extracted cortical thickness and subcortical grey matter volumes for 246 nodes of the 

Brainnetome Atlas (Fan et al., 2016) and volumes for four brainstem substructures 

(midbrain, pons, medulla and superior cerebellar peduncle) (Iglesias et al., 2015) using 

Freesurfer 6.0 (Dale et al., 1999). I compared differences between participants with PSP 

and controls in thicknesses and volumes with permutation testing, family-wise error 

correction for multiple comparisons, and a statistical threshold of p<0.05. Age and total 

intracranial volume were included as nuisance variables. I compared network dynamic 

metrics with atrophy measures, focusing on subcortical volumes and frontal cortical 

thicknesses given that neuropathological changes occur earlier and sequentially in these 

regions (Kovacs et al., 2020). 

4.2.4 Hidden Markov Modelling 

To investigate changes in network dynamics in PSP using hidden Markov modelling I 

followed the methodology set out in chapter 2. I chose a model order of 30 for the initial 

independent component analysis. From standardised per participant component 

timecourses a multivariate Gaussian HMM with 8 brain states was inferred using the 

HMM-MAR toolbox (Vidaurre et al., 2017); it has previously been shown that 8 states 

capturing large scale networks can be robustly and reliably inferred (Vidaurre et al., 2018). 

I assessed between-group differences in switching rate and fractional occupancy. Given the 

interdependence of fractional occupancy rates I performed a principal component analysis 

(PCA) to compare with severity measures.  

4.2.5 Multiscale entropy 

To investigate changes in complexity I calculated MSE for the same component timeseries 

used to infer the HMM, adapting LOFT’s Complexity toolkit (Smith et al., 2013b). I 

averaged over a fixed number of timescales (3 scales PROSPECT-MR, 4 for CCPP due to 

the longer time series), and calculated sample entropy on the time series constructed for 

each scale (Costa et al., 2005). MSE is then sum of sample entropy across all timescales. I 

selected pattern length of 1 and pattern matching threshold of 0.35 given evidence that these 

parameters provide robust results (Yang et al., 2018). I took the average MSE calculated 

across the 30 component timeseries for further analyses. I assessed between-group 
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differences and the correlation across-subjects between complexity and fractional 

occupancy. 

4.2.6 Graph measures 

I performed graph theoretical analysis using Maybrain software 

(https://github.com/RittmanResearch/maybrain) and NetworkX (Hagberg et al., 2008),with 

the Brainnetome parcellation, as outlined in chapter 2. In brief, association matrices were 

constructed by taking the wavelet cross-correlation between each region using a maximal 

overlap discrete wavelet transform and Daubechies filter performed using the waveslim 

package in R. The second band of 4 was used corresponding to a frequency range of 0.0675-

0.125Hz (Achard and Bullmore, 2007). 

To test the hypothesis that changes in network dynamics were related to cortical network 

topological remodelling in PSP in response to subcortical tau burden, I focused on graph 

metrics that quantify regional connectivity and small world properties (Bassett and 

Bullmore, 2016; Watts and Strogatz, 1998). I therefore derived the following metrics: 

weighted degree, measuring the number and strength of nodal functional connections; 

clustering coefficient, the proportion of triangular connections formed by each node over 

the proportion of all possible such connections; and path length, the average shortest 

topological distance between nodes of the graph. Small world properties of cortical 

topology enable segregation and integration while minimising the biological costs of 

maintaining connections (Bassett and Bullmore, 2016). If the brain networks lose small 

world characteristics to become more random, it is plausible that network dynamics would 

be altered.  

Path length and clustering coefficient were assessed across the brain, and weighted degree 

in cortical and subcortical regions and between groups. Metrics except for weighted degree 

were binarised after thresholding and normalised against 1000 random graphs with 

identical degree distribution and random connections. A network density threshold of 5% 

was used. I also report results at density thresholds of 1-10% for significant results to ensure 

robustness. 

4.2.7 Statistical approach 

I conducted initial analysis in the two cohorts separately. This was to allow analysis of 

MSE at higher scales in the CCPP cohort, thereby increasing the ability to differentiate 

complex signal from randomness and to contrast with HMM metrics, given that with fewer 

https://github.com/RittmanResearch/maybrain
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than 50 timepoints error of sample entropy estimates may increase (Yang et al., 2018, 

2013). Replication can ensure that results are robust, an important factor given concerns 

that apparent changes in network dynamics from resting state fMRI are attributable to 

analysis techniques, head motion and sleep (Laumann et al., 2017). 

Statistical tests used a general linear model with permutation testing (10000 permutations), 

with family-wise error correction for multiple comparisons and contrasts using FSL’s 

PALM (Winkler et al., 2014) and a statistical threshold of p<0.05. The exceptions were 

moderation analysis, comparisons with graph metrics and direct tests of slope, which were 

performed in R (R Core Team, 2018). Participant motion, age and sex (estimated total 

intracranial volume for contrasts involving measures of volume) were included as nuisance 

variables. 

  



86 

 

4.3 Results 

4.3.1 Demographics 

There were 24 participants with PSP and 22 controls from CCPP with sufficient length 

fMRI (305 volumes) who were not removed following assessment of motion parameters, 

and 42 participants with PSP and 36 controls from PROSPECT-MR. Demographic details 

are outlined in Table 4-1. There were significant differences in age in both cohorts and in 

gender in PROSPECT-MR.   

Table 4-1. Demographic and clinical characteristics of study participants. ACE: Addenbrooke’s Cognitive 

Examination, PSPRS Progressive supranuclear palsy rating scale  

4.3.2 Network dynamics  

CCPP: I used temporally concatenated participant timeseries from ICA components to fit 

an HMM with 8 brain states. Mean activation maps for these states are shown in Figure 

4-1A.  

There was no difference in switching rate between controls and participants with PSP 

(t=0.37, p=0.59). I performed a PCA of fractional occupancy rates, which are collinear and 

compositional. Three components with eigenvalues greater than 1 explained 75% of the 

variance and were taken forward for further analysis. The first component was significantly 

 CCPP: 

Contro

l 

CCPP: PSP t/ χ 

(p) 

PROSPECT: 

Control 

PROSPECT: 

PSP 

t/ χ 

(p) 

Number 22 24  36 42  

Age 

(years) 

64.9 

(9.9) 

70.1 

(6.5) 

t=2.1 

p=0.038 

67.3 

(7.1) 

71.1 

(7.3) 

t=2.4 

p=0.021 

Gender 

(F/M) 

14/8 11/13 χ =1.5 

p=0.23 

26/10 15/27 χ =10.4 

p=0.001 

PSP 

clinical 

phenotype 

(n)  

 PSP-RS = 16 

PSP-subcortical= 

0 

PSP-cortical=8 

  PSP-RS = 25 

PSP-subcortical= 

11 

PSP-cortical=6 

 

ACE 

 

 82 

(11.4) 

 95.7 

(3.4) 

81.3 

(11.6) 

t=6.9 

p<0.0001 

PSPRS  34.9 

(12.5) 

  33.9 

(14.2) 
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more negative in PSP than controls (t=4.0, FWE p=0.0008) (Figure 4-1B). States with the 

highest positive loadings (states 5 and 7) had prominent subcortical and posterior 

activation, while states with the most negative loadings (states 1, 4 and 6) largely 

constituted the executive control and salience networks. 

 

Figure 4-1 Network dynamics in PSP vs controls for the Cambridge cohort A) Mean activation maps for 

the 8 inferred brain states from hidden Markov modelling for the Cambridge cohorts. B) Altered fractional 

occupancy rates in PSP. Results are shown both by differences in states computed within a general linear 

model with a single permutation test and family-wise error correction, and in a principal component analysis 

of fractional occupancy rates. Participants with PSP spent less time in states with subcortical and posterior 

activation, and more time in frontoparietal and salience states. Colours of state names indicate direction of 

principal component loading, and font size scales with their magnitude. C) The component that differed 

between PSP and controls correlated with PSP rating scale among patients  

PROSPECT-MR: Mean activation maps for the 8 HMM inferred PROSPECT-MR brain 

states are shown in Figure 4-2A. States 1-4 were the closest Dice coefficient matches 

(Supplementary Figure 4-1) for both positive and negative maps. There were anatomical 

differences in the mean activation maps between the two cohorts, particularly in identified 



88 

 

anti-correlations, resulting in divergence between designations for positive and negative 

maps. Therefore, I adjudicated matching for the remaining states by visual inspection.  

 

Figure 4-2. Network dynamics in the PROSPECT cohort. A) Mean activation maps for the 8 inferred brain 

states from hidden Markov modelling. B) Altered fractional occupancy rates in PSP. As in the Cambridge 

Figure cohort participants with PSP spent less time in states with subcortical and in motor and sensory 

(somatic, visual) regions activation, and more time in frontoparietal states. C) The component that differed 

between PSP and controls correlated with PSP rating scale among patients. 

There was no difference in switching rate between the two groups, but participants with 

PSP had altered fractional occupancy (see Figure 4-2B). Two components with eigenvalues 

greater than 1 explained 74% of the variance and were taken forward for further analysis. 

Component scores for the second component were significantly lower in PSP (t=3.1, FWE 

p=0.006). States with the most positive loadings (states 5 and 7) had prominent subcortical, 

posterior and motor region activations, while states with negative loadings overlapped with 

executive networks (states 1 and 6).  
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In summary, in both groups participants with PSP spent a greater proportion of time in 

states of activity in executive networks, and away from states of activity in networks with 

posterior and subcortical activations. 

4.3.3 Network dynamics and clinical severity. 

I tested whether the distinct changes in network dynamics in PSP were related to clinical 

severity, as measured by the PSPRS and ACE. 

CCPP: The first fractional occupancy component negatively correlated with the PSPRS 

(r=-0.60, t=-3.1, FWE p=0.022, see Figure 4-1C). There was also a relationship between 

principal component 3 and ACE which was not significant after correction for multiple 

comparisons (r=0.47, t=2.4, uncorrected p=0.03).  

PROSPECT-MR: Component scores for the second fractional occupancy component 

correlated with PSPRS (r=-0.52, t=-3.7, FWE p=0.002, Figure 4-2C). There was also a 

relationship between the second fractional occupancy component and ACE which was not 

significant after correction for multiple comparisons (r=-0.34, t=-2.1, uncorrected 

p=0.046). 

4.3.4 Complexity 

I investigated whether complexity differed between PSP and Controls, to provide further 

insight into temporal dynamics in the disease. 

CCPP:  I calculated MSE for each participant at 4 timescales using the same component 

timeseries used to infer the HMM. MSE was significantly reduced in PSP (t=2.3, p=0.022, 

Figure 4-3A).  

PROSPECT-MR: MSE was calculated over 3 rather than 4 timescales, due to shorter time 

series. In contrast to our locally collected data, I did not find the reduction in MSE in PSP 

to be significant (t=1.1, p=0.27, Figure 4-3D) 

4.3.5 Network dynamics and complexity 

I investigated the relationship between signal complexity and network dynamics. I asked 

whether a) the distinct changes in fractional occupancy were related to complexity and b) 

switching rate related to complexity, and whether these relationships interacted with 

diagnosis. 
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Figure 4-3. Complexity analysis A) and D) I found complexity to be reduced in PSP in the CCPP, but not in 

PROSPECT-MR. B) and E) In PROSPECT-MR but not CCPP multiscale entropy (MSE) correlated 

significantly with switching rate. C) and F) MSE correlated with the fractional occupancy component that 

differed between PSP and controls in CCPP. 

Fractional occupancy and MSE. In both groups there was a significant relationship 

between MSE and the fractional occupancy component that differed between people with 

PSP and Controls (CCPP r=0.44, t=3.2, p=0.004, Figure 4-3C; PROSPECT-MR r=0.44, 

t=4.2, p=0.0003, Figure 4-3F). We performed a moderation analysis by including an 

interaction between diagnosis and MSE. This did not show any significant differences in 

these relationships by diagnosis. In PROSPECT-MR the slope in controls was driven by a 

single outlier; following outlier removal the relationship between component and 

complexity differed by diagnosis (PROSPECT-MR Δr2 = 0.08, F=9.8, p=0.003). 

Switching rates and MSE: In the CCPP group MSE did not correlate significantly (Figure 

4-3) with switching rate (r=0.25, t=1.6, p=0.11). In the PROSPECT-MR group a significant 

relationship was found (r=0.57, t=6, p=0.0001, Figure 4-3E). Moderation analysis did not 

show any significant group differences in these relationships. 

4.3.6  Network dynamics in PSP versus structure, topology, and clinical 

presentation 

I tested the hypothesis that people with PSP spend a greater proportion of time in inefficient 

states due to cortical remodelling in response to focal disease. Given that distribution of 

atrophy and pathology differ by phenotype, I tested whether network dynamics vary by 

clinical phenotype. Since the two datasets showed overlapping changes in brain state 

occupancy in PSP, I performed a combined analysis to investigate these hypotheses, 
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focusing on fractional occupancy. I assessed whether fractional occupancy components: i) 

relate to frontal cortical thickness and subcortical volumes; ii) relate to regional topological 

remodeling; and iii) differed depending on PSP clinical phenotype. 

I first sought to investigate the distribution of atrophy across the two cohorts. For 

participants with PSP I found significant areas of grey matter atrophy compared to controls 

in the midbrain and subcortical regions defined by the Brainnetome Atlas (Figure 4-4). I 

found cortical atrophy primarily in the frontal lobe and peri-Rolandic regions, but also in 

the temporal and parietal cortex. There were no regional differences when comparing 

participants with PSP between the Cambridge and PROSPECT cohorts. 

 

Figure 4-4. Significant areas of grey matter volume reduction in PSP v controls. Differences in a combined 

analysis across the two cohorts, where regions are nodes of the Brainnetome Parcellation. p<0.05 after 

family-wise error correction for multiple comparisons. There were no regional differences in direct 

comparison of participants with PSP from the two cohorts. 

The two principal components derived from HMM analysis (Figure 4-5A and Figure 4-5D) 

that were taken forward for analysis differed between PSP and controls (component 1 t=2.6, 

p=0.023; component 2 t=-2.8, p=0.014). 

Looking at the PSP group only, component 1 correlated with subcortical volume (r=0.30, 

Δr2 = 0.08, t=2.4, p=0.038), but not frontal cortical thickness (r=0.03, t=0.24, p=0.96, figure 

4C). Steiger’s Z-test of the partial correlation coefficients did not find a significant 

difference between the strength of the correlations with component 1 (Steiger’s Z=1.9, 

p=0.06). Component 2 did not correlate with either frontal cortical thickness (r=-0.20, t=-

1.6, FWE p=0.22), or subcortical grey matter volume (r=-0.19, t=-1.5, p=0.26, Figure 

4-5D).  

I then tested whether changes in brain state occupancy were driven by randomisation of the 

network and connectivity changes in subcortical and cortical regions in response to focal 

atrophy. Component 2 scores correlated negatively with clustering coefficient (r=-0.23, t=-
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2.6, p=0.012, Figure 4-5F, replicated between thresholds 2-10%) suggesting increasing 

randomness of the brain’s network topology. No significant correlation was found with 

path length (r=-0.14, t=-1.4, p=0.14). The relationship between weighted degree and 

component 2 differed between people with PSP and controls in both cortical and subcortical 

regions (cortical F=4, Δr2 = 0.03, p=0.047; subcortical F=4, Δr2 = 0.03, p=0.048) and was 

steeper in participants with PSP (cortical r=-0.31, t=-2.5 p=0.014; subcortical r=-0.34 t=-

2.8 p=0.006) than in controls (cortical r=0, t=-0.02 p=0.98; subcortical r=-0.06 t=-0.44 

p=0.66). No significant relationships were found with component 1.  

 

Figure 4-5. Network dynamics, atrophy and network topology. A) and B) In a combined analysis of the two 

cohorts the first two principal components differed between PSP and controls. Mean activation states with 

PCA loadings >|0.3| are shown. C) and D) Component 1 correlated with subcortical volume but not frontal 

cortical thickness, although with no significant difference in slope. Component 2 did not correlate 

significantly with either frontal cortical thickness or subcortical volume. E and F) Loadings in component 2 

were associated with reduced clustering coefficient and reduced weighted degree in PSP but not controls. No 

relationships were found with component 1. 

Despite the relationships between network dynamics, focal atrophy and topological 

changes, I found no significant difference by clinical phenotype (component 1 F=3.4 

p=0.083; component 2 F=0.57, p=0.82).  
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4.4 Discussion 

The principal results of this study are that (i) the exemplar tauopathy of PSP changes 

network dynamics, with a higher proportion of time spent in frontoparietal activation states; 

(ii) these changes in network dynamics are related to complexity as measured by multi-

scale entropy, (iii) the changes in network dynamics correlated with clinical severity and 

regional atrophy; and (iv) altered network dynamics occur in the context of widespread 

changes to network topology. The effect of PSP phenotypic variance is expressed in terms 

of the relationship between network dynamics, clinical severity and focal atrophy, in 

cortical versus subcortical regions.  

In two independent datasets, people with PSP spent more time in states whose spatial 

distributions mirror executive control networks. Given that in health, occupancy of 

networks associated with higher order cognition correlates positively with cognitive 

function (Vidaurre et al., 2017), these results may seem surprising. Time in these networks 

did not correlate with frontal atrophy but did show a negative relationship with clustering 

coefficient and weighted degree only in PSP. This suggests a loss of small-world properties 

towards greater network randomness (Bassett and Bullmore, 2016; Watts and Strogatz, 

1998), with occupancy of a remodelled and more random network no longer relating to its 

effective functioning. 

PSP causes severe disruption to connectivity between the subcortex/brainstem and cortical 

regions (Brown et al., 2017; Whitwell et al., 2011), changes that may account for my 

finding of reduced time in states with activity in subcortical regions, which correlated with 

subcortical atrophy. So, why do participants with PSP spend more time in executive control 

networks and less time in states representing the default mode network with negative 

activations in regions of the task-positive network? Regional structural network properties 

influence brain state transitions, with access to frontoparietal cognitive control networks 

depending on nodes within weakly connected regions (Gu et al., 2015). These key nodes in 

a dysfunctional random network may no longer effectively determine state transitions, 

causing altered network dynamics in regions remote from the primary pathology. 

Specifically, the results shed light on the interplay in disease between atrophy, remodelling 

of network topology and network dynamics. 

I found that network dynamics in PSP varied by disease severity, both in terms of 

relationship to atrophy and to the PSPRS: the latter is sensitive to disease progression and 
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predicts survival (Bang et al., 2016; Golbe and Ohman-Strickland, 2007). I did not find that 

this dependency translated into differences between PSP phenotypes, although this study 

was powered to only detect large subgroup differences. Nonetheless, given that the intrinsic 

network architecture of the brain present at rest shapes that seen during tasks (Cole et al., 

2014; Smith et al., 2009), and that network structure predict behavioural traits 

(Arbabshirani et al., 2017; Beaty et al., 2018; Meer et al., 2020; Rosenberg et al., 2016), I 

hypothesise that the observed changes in brain state transitions in PSP underpin cognitive 

symptoms of the disease. 

I have shown that measuring complexity provides a complementary method to assess 

temporal dynamics in disease. In the CCPP dataset I found reduced complexity in PSP, 

with the greatest differences seen at the highest scale, indicating a true reduction in 

complexity and not randomness. This result was not seen in PROSPECT-MR, perhaps 

because these images were acquired with fewer time points. I found that complexity 

correlated with both switching rate and fractional occupancy, suggesting that changes in 

global signal influence network dynamics in PSP. This raises the possibility of additional 

aetiological factors to those outlined above, such as the profound neurotransmitter deficits 

which occur early in PSP (Murley and Rowe, 2018) and alter global fMRI signal (Turchi 

et al., 2018) and dynamic connectivity (Shine et al., 2018) in health. 

I used a different model order to infer each HMM for this chapter, with eight states chosen 

rather than six in Chapter 3. This was chosen in order to capture phenotypic variation across 

a single diagnostic entity, rather than identify broad changes that align most closely with 

general cognition as when investigating genetic FTD. This limits the ability to make direct 

comparisons between the HMMs for the different diagnostic entities, including for 

fractional occupancies of individual states. Note however that in performing a principal 

component analysis allows scores from multiple states to be collapsed to a small number 

of scores. Here I observed similar findings, with greater time spent in higher cortical states 

and away from sub-cortical regions. 

There has been controversy as to whether variability in dynamic functional connectivity in 

task-free fMRI represents more than motion (Laumann et al., 2017). I used stringent 

exclusion criteria to limit the impact of movement artefact. A key advantage of this study 

is that results are replicated in two datasets, an important part of the solution to non-

generalizable results in neuroimaging due to low statistical power and analytic flexibility 
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(Poldrack et al., 2017). My approach did however result in significant numbers of 

exclusions, particularly from the CCPP dataset (due to the longer time series). It may be 

that these excluded participants have distinct clinical phenotypes, and therefore the 

conclusions would not apply to all individuals with PSP. Modelling network dynamics via 

an HMM requires forced choices in analysis, notably the number of states inferred. If brain 

states consist of a hierarchy of structures (Vidaurre et al., 2017) it is likely that HMMs can 

provide multiple related solutions. Indeed, this may account for some of the anatomical 

differences observed in the two datasets. I believe that this challenge is best tackled by 

independent replication and relating findings to clinical scores. The findings that properties 

of dynamic connectivity were related to clinical measures is reassuring in this regard. 

Investigating dynamics of large-scale resting state networks offers an intermediate 

phenotype with which to understand clinical syndromes. Through hidden Markov 

modelling I have shown that changes in network dynamics relate to neural signal 

complexity and to phenotypic variance in progressive supranuclear palsy. This approach 

demonstrates how abnormalities in regional atrophy and topological changes correlate with 

brain state transitions, and provides a means to directly test the causes and consequences 

of altered network dynamics.  
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4.5 Supplementary materials for chapter 4 

 

 

Supplementary Figure 4-1. Dice coefficients between binarised A) negative and B) positive CCPP and 

PROSPECT-MR states 
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Control 

included PSP included t (p) 

Control 

excluded 

PSP 

excluded 

Maximum 

spike 

percentage 9.8 (5.9) 13.7 (7.9) -3.2 (0.002) 27.9 (13) 41.6 (16) 

Median spike 

percentage 2.5 (1.3) 2.5 (1.4) -0.02 (0.98) 6 (3.9) 5.6 (4.3) 

Maximum 

framewise 

displacement 0.54 (0.45) 1 (0.95) -3.3 (0.001) 2.1 (2.3) 5.1 (7.1) 

Maximum 

DVARS 
7.3 (1.1) 7.5 (1.1) -0.84 (0.41) 9.7 (0.8) 10.4 (2.3) 

Supplementary Table 4-1. Motion quality metrics for participants. Values are mean (SD) 
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5 Functional connectivity and synaptic 

density in syndromes associated with 

Frontotemporal Lobar Degeneration 

Preface 

This chapter forms part of a manuscript that is currently in revision. Patient recruitment and 

data collection was a collaborative effort by a group of researchers at the Cambridge Centre 

for Parkinson-plus and the Cambridge Centre for Frontotemporal Dementia, particularly 

Negin Holland, George Savulich, Maura Malpetti, and Michelle Naessens. Positron 

emission tomography data was pre-processed by Tim Fryer and Young Hong, who 

provided regional values and non-displaceable [11C]UCB-J binding potential maps. 

Analysis of locus coeruleus integrity was performed by Rong Ye.  I designed and executed 

the analysis strategy with help from Simon Jones and Kamen Tsvetanov. I wrote the text, 

with input from co-authors of the manuscript. 

Summary 

In this chapter I investigate how in vivo synaptic loss in FTLD syndromes, measured using 

the PET ligand [11C]UCB-J, affects behaviour in relation to functional connectivity. I 

further test the contributions of synaptic density, atrophy and neurotransmitter receptor and 

transporter distributions in explaining regional variation in functional connectivity. I show 

that the anatomical distribution of synaptic loss partially overlaps in FTLD syndromes but 

with syndrome-specific effects. I also demonstrate that; [11C]UCB-J binding potential is 

associated with reduced connectivity, with synaptic density predicting measures of 

connectivity over and above grey matter volume; functional connectivity adds to and 

moderates the relationship between synaptic density and clinical severity; neurotransmitter 

receptor/transporter distributions from control populations explain significant additional 

variance in weighted degree in all patients and in PSP alone. For a subset of patients with 

7-Telsa imaging, the relationship between noradrenaline transporter distribution and 

weighted degree is associated with whole locus coeruleus integrity. This work demonstrates 
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the benefit of multi-modal quantification of the biomarker cascade in investigating the 

determinants of clinical heterogeneity in FTLD. 
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5.1 Introduction  

Frontotemporal lobar degeneration (FTLD) pathologies cause heterogenous syndromes 

with partially overlapping clinical features and highly variable correlations between 

neuropathology and phenotypic expression (Murley et al., 2020a; Respondek et al., 2014; 

Rohrer et al., 2011; Seeley, 2017). These conditions are associated with early loss of 

functional independence, considerable care burden and reduced life expectancy (Coyle-

Gilchrist et al., 2016; Murley et al., 2021). There is a pressing need for new therapeutic 

interventions, based on better characterisation and in vivo analysis of the pathogenic 

cascade leading to clinical presentation and progression (Eimeren et al., 2019; Jack et al., 

2010). This cascade includes severe synaptic loss (Holland et al., 2020; Malpetti et al., 

2022), which integrates the toxicity of protein aggregation and inflammation (Hong et al., 

2016; Hoover et al., 2010; Liddelow et al., 2017; Spires-Jones and Hyman, 2014).  

I propose that the severe synaptic loss arising from frontotemporal lobar degeneration 

would impair local and long-range functional connectivity, and consequently affect 

cognition and behaviour. I test this hypothesis with three clinical syndromes associated 

with different types of frontotemporal lobar degeneration; progressive supranuclear palsy 

(PSP), corticobasal syndrome (CBS) and behavioural variant frontotemporal dementia 

(bvFTD). These phenotypic entities show molecular heterogeneity, with 3-repeat and 4-

repeat tauopathies and TDP-43 pathology. By studying these distinct syndromes from the 

FTLD-spectrum, I capture variations in anatomical distribution of synaptic loss to better 

assess its consequence for connectivity and clinical severity.  

The radioligand [11C]UCB-J quantifies synaptic density through selective binding to the 

presynaptic vesicle glycoprotein 2A (SV2A). When used in positron emission tomography 

scanning, it demonstrates a reduction in non-displaceable binding potential in bvFTD 

(Malpetti et al., 2022), CBS and PSP (Holland et al., 2020). [11C]UCB-J non-displaceable 

binding potential correlates with clinical severity and validates the post mortem studies 

(Bigio et al., 2001; Lipton et al., 2001). [11C]UCB-J binding potential is primarily a measure 

of synaptic density rather than synaptic function (Serrano et al., 2022) and is directly related 

to changes in cortical neurophysiological generators in FTLD (Adams et al., 2022). 

Functional connectivity dysfunction may also be explained by cell death and the extensive 

neurotransmitter deficits in FTLD (Murley and Rowe, 2018). Disruption to functional 
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connectivity and network integration in FTLD-disorders aligns closely with symptom onset 

and progression (Rittman et al., 2019; Tsvetanov et al., 2020). 

I therefore aimed to test the overarching hypothesis that differences in synaptic density are 

related to disruption of large-scale brain connectivity and network organisation as measured 

from resting state functional MRI (fMRI). I undertook a multimodal neuroimaging study 

to combine [11C]UCB-J non-displaceable binding potential with resting state functional 

MRI in participants with FTLD-associated disorders and similarly-aged healthy controls. I 

quantified functional connectivity using the graph metric of weighted degree. I predicted 

that synaptic loss would be associated with reduced connectivity, and that reductions in 

synaptic density would explain connectivity loss that is not accounted for by atrophy. To 

further understand the role of neurotransmitter changes in connectivity changes over and 

above synaptic loss, I used (i) PET derived maps of neurotransmitter receptor/transporter 

distributions, and (ii) ultrahigh field MRI imaging of locus coeruleus integrity. To examine 

disease-specific differences in the effect of synaptic loss, I reduced data dimensionality by 

independent component analysis. I predicted that reduced synaptic density would be 

associated with connectivity loss of the same region and the region to which it is connected, 

in such a way as predicts individual differences in cognition. 
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5.2 Methods  

5.2.1 Participants 

Twenty-nine participants with probable progressive supranuclear palsy, Richardson’s 

syndrome (Höglinger et al., 2017), 16 participants with probable corticobasal syndrome 

and probable corticobasal degeneration (Armstrong et al., 2013), and 8 participants with 

behavioural variant Frontotemporal Dementia (Rascovsky et al., 2011) were recruited from 

tertiary clinics at the Cambridge Centre for Parkinson-plus, the Cambridge Centre for 

Frontotemporal Dementia, and National Hospital for Neurology and Neurosurgery at 

Queen Square, London (Holland et al., 2020; Malpetti et al., 2022). 24 healthy volunteers 

were recruited from the UK National Institute for Health Research Join Dementia Research 

(JDR) register. The research protocol was approved by the Cambridge Research Ethics 

Committee and the Administration of Radioactive Substances Advisory Committee. All 

participants provided written informed consent in accordance with the Declaration of 

Helsinki. 

Participants underwent study-specific clinical and neuropsychological assessment 

including the Mini-mental State Exam (MMSE) (Folstein et al., 1975), revised 

Addenbrooke’s Cognitive Examination (ACE-R) (Mioshi et al., 2006), Progressive 

Supranuclear Palsy Rating Scale (PSPRS) (Golbe and Ohman-Strickland, 2007), and the 

Cambridge Behavioural Inventory-Revised (Wear et al., 2008). 

All participants underwent brain imaging with 3-Tesla MRI, including echo-planar imaging 

sequences sensitive to the blood-oxygen-level-dependent signal, and PET scanning with 

[11C]UCB-J ((R)-1-((3-(methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyr-

rolidin-2-one) (Milicevic Sephton et al., 2020). The median interval between scanning 

sessions was 72 days in patients (inter-quartile range 19-181 days) and 194 days in control 

participants (inter-quartile range 32-284 days). Participants with CBS also underwent 

amyloid PET using Pittsburgh compound B ([11C]PiB). Cortical standardized uptake value 

ratio (SUVR; 50–70 minutes post injection; whole cerebellum reference tissue) was 

determined using the Centiloid Project methodology (Klunk et al., 2015). Only participants 

with corticobasal syndrome and a negative amyloid status, as characterized by a cortical 

[11C]PiB SUVR <1.21 (obtained by converting the Centiloid cut-off of 19 to SUVR using 

the Centiloid-to-SUVR transformation (Jack et al., 2017)) are included in the subsequent 

analysis. A subset of 10 participants with PSP also had 7-Tesla imaging including sensitive 
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3D magnetization transfer weighted sequence for imaging of the locus coeruleus (Ye et al., 

2022).  

5.2.2 Image acquisition and processing 

Our group have previously reported our protocol for [11C]UCB-J synthesis, image 

acquisition, image reconstruction and kinetic analysis (Holland et al., 2020). In short, 

dynamic PET analysis was performed on a GE SIGNA PET/MR (GE Healthcare, 

Waukesha, USA) for 90 minutes following [11C]UCB-J injection, with attenuation 

correction including the use of a multisubject atlas method (Burgos et al., 2014) and 

improvements to the MRI brain coil component. Each emission image series was aligned 

to a T1 weighted MRI acquired during the same session (TE = 3.6 ms, TR = 9.2 ms, 192 

sagittal slices, in-plane resolution 0.55 × 0.55 mm [interpolated to 1.0 × 1.0 mm]; slice 

thickness 1.0 mm). A [11C]UCB-J BPND map was derived for each participant from 

dynamic images with correction for partial volume effects using the iterative Yang method 

(Erlandsson et al., 2012). Regional analysis used a modified version of the n30r83 

Hammersmith atlas (http://brain-development.org) with inclusion of segmentation of 

brainstem and cerebellar structures, and non-rigid registration to the T1-weighted MRI of 

each participant. Regions of interest with sufficient grey matter coverage in all participants 

were multiplied by a binary grey matter mask thresholded at >50% smoothed to PET 

resolution. Cerebrospinal fluid partial volume correction was applied to each image of the 

dynamic series. [11C]UCB-J non-displaceable binding potential (BPND) was calculated both 

at the regional and voxelwise level using a basis function implementation of the simplified 

reference tissue model (Wu and Carson, 2002), with centrum semiovale as the reference 

tissue (Koole et al., 2019). For independent component analysis (see below) [11C]UCB-J 

BPND maps were warped to the FSL MNI152 6th generation atlas using parameters from 

the spatial normalisation of the co-registered T1 image with FSL’s FLIRT and FNIRT. 

Normalised maps were smoothed with an 8mm Gaussian kernel. 

Functional MRI imaging was performed with 3-Tesla Siemens Prisma (Siemens 

Healthcare) using echo-planar imaging sensitive to the blood-oxygen-level-dependent 

signal (TR 2.5 secs, TE 30ms, whole brain acquisition, 3x3x3.5mm voxels, 200 volumes). 

fMRI preprocessing followed the pipeline described in chapter 2. I hand-trained FIX using 

a set of 20 subjects. For dual regression analysis data was further smoothed with a 6mm 

FWHM Gaussian kernel. 

http://brain-development.org/
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From volumetric T1-weighted MRI images grey matter volumes were extracted for the 

same regions of the Hammersmith Atlas using SPM12 (SPM12 v7771, Institute of 

Neurology, London, UK) segmentation. Total intracranial volume was calculated via direct 

segmentation using Sequence Adaptive Multimodal SEGmentation (Puonti et al., 2016). 

The Cambridge Centre for Parkinson-plus protocol for 7-Tesla imaging and integrity 

estimation of the locus coeruleus for this cohort of patients is described by Ye et al (Ye et 

al., 2022). In short, the locus coeruleus was imaged using a magnetization transfer weighted 

sequence at high resolution (0.4 × 0.4 × 0.5 mm3). Locus coeruleus integrity was measured 

using an atlas-based segmentation approach from a 5% probabilistic locus coeruleus atlas 

from 29 healthy older adults. The contrast-to-noise ratio was calculated with reference to 

the central pons. 

5.2.3 Statistical analysis 

I tested the relationships between [11C]UCB-J, functional connectivity, grey matter volume 

and cognition in regional and voxelwise analyses. First, I tested whether regional 

[11C]UCB-J BPND explains regional variation in connectivity beyond that accounted for by 

grey matter volume. I then investigated whether including maps of neurotransmitter 

receptor and transporter distribution from publicly available healthy controls would further 

improve prediction of regional connectivity. As a post-hoc analysis, in a subset of 

participants with PSP I tested whether variation in regional functional connectivity 

explained by the distribution of noradrenaline transporters is associated with another in vivo 

marker of noradrenergic function, locus coeruleus integrity. 

I used voxelwise [11C]UCB-J maps to identify patterns of [11C]UCB-J BPND that were 

differentially expressed in neurodegeneration using an independent component analysis 

(Fang et al., 2021). I identified participants-specific maps of functional spatial covariance 

with the [11C]UCB-J components through seed-based dual regression (Filippini et al., 2009; 

Kelly, Jr. et al., 2022). I tested whether variability in functional connectivity to regions 

showing group differences in synaptic density: a) improves modelling of clinical severity 

as assessed through the ACE-R and PSPRS; b) moderates the effect of [11C]UCB-J 

differences on cognition. 

5.2.4 Weighted degree 

Participants’ preprocessed fMRI was parcellated using the modified Hammersmith atlas, 

with cortical regions masked with a grey matter mask. Given the variation in parcel size in 
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the Hammersmith atlas, I sub-parcellated the masked Hammersmith atlas with 163 regions 

of approximately equal volume, such that each sub-parcel could be uniquely identified with 

an atlas region.  Pearson correlations were calculated between nodes, followed by Fisher’s 

r-to-Z transformation. Weighted degree was derived from association matrices using 

Maybrain software (https://github.com/RittmanResearch/maybrain) and Networkx.  I then 

calculated mean weighted degree across the sub-parcellations for each Hammersmith atlas 

region to compare with regional [11C]UCB-J BPND. 

I compared regional values for [11C]UCB-J BPND and weighted degree between participants 

with FTLD-associated syndromes and controls in a linear model with age and sex as 

covariates (plus mean DVARS for weighted degree and total intracranial volume for 

volumetric measures). I further compared differences in these modalities between patient 

groups in a linear model with the same covariates. For both analyses P values were adjusted 

for the false discovery rate across regions.  

I compared regional z scores for weighted degree and [11C]UCB-J BPND using mean values 

and standard deviation from the control participants. P-values (denoted PSA) were 

calculated using a permutation test with 5000 spatial autocorrelation-preserving null 

models (Burt et al., 2020).  

To capture the effect of individual variability in the relationship between weighted degree 

and synaptic density as measured by[11C]UCB-J BPND, I then derived mixed linear effects 

models (separately for patients and control participants) using the lme4 package in R (Bates 

et al., 2015) with crossed random effects for region and participant and an effect of 

[11C]UCB-J BPND slope within each region. I compared models using the anova function 

in R to ensure that inclusion of a random slope for [11C]UCB-J BPND per region improved 

model fit. Age, sex and a marker of fMRI motion (DVARS, Power et al., 2012) were 

included as covariates of no interest. I also included a covariate denoting whether a region 

was cortical or subcortical, to ensure that the relationship between [11C]UCB-J BPND and 

weighted degree was not driven by differences due to the average lower [11C]UCB-J BPND 

in subcortical regions, and a group by cortical/subcortical interaction in the model with all 

participants. We further tested whether inclusion of regional grey matter volume and total 

intracranial volume in the model in patients altered the [11C]UCB-J BPND-weighted degree 

relationship.  

https://github.com/RittmanResearch/maybrain
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5.2.5 Neurotransmitter receptor and transporter maps 

To further understand the nature of residual variation in cortical weighted degree (i.e. 

variation not accounted for by grey matter atrophy or synaptic density), I further tested 

whether neurotransmitter receptor and transporter distributions would account for 

additional variance. I followed the methodology set out by Hansen and colleagues (Hansen 

et al., 2022) using the neuromaps toolbox (https://netneurolab.github.io/neuromaps 

(Markello et al., 2022)). I performed a multiple linear regression with mean weighted 

degree z score averaged from all patients as the dependent variable, with mean [11C]UCB-

J BPND and grey matter volume z scores as independent variables together with regional 

values for the cortical parcels of the Hammersmith Atlas from publicly available 

neurotransmitter receptors and transporter PET maps. Neurotransmitter receptor and 

transporter maps were for the noradrenaline transporter (Ding et al., 2010), D1 receptor 

(Kaller et al., 2017), D2 receptor (Sandiego et al., 2015), GABAA/BZ receptors (Nørgaard et 

al., 2021), mGluR5 receptor (Smart et al., 2019), 5-HT1A receptor (Savli et al., 2012), 5-

HT2A receptor (Beliveau et al., 2017), and the vesicular acetylcholine transporter 

(Aghourian et al., 2017).  

I assessed significance of the model using a permutation test with 5000 spatial 

autocorrelation-preserving null models for each neurotransmitter receptor/transporter map 

(Burt et al., 2020). I then performed a dominance analysis to assess the contribution of each 

neurotransmitter using the R package yhat (Nimon et al., 2008). A dominance analysis 

calculates the incremental validity of each predictor across all submodels of a multiple 

linear regression. The general dominance weights represent an independent variable’s 

average R2 across all submodels, allowing the effect size to be partitioned across the 

predictors (Laguerre, 2021; Nimon and Oswald, 2013). I repeated the analysis for each 

diagnostic group (PSP, CBS and bvFTD) in turn. 

I fitted the same model for each participant with a neurodegenerative disease, to derive 

participant specific standardised coefficients for the noradrenaline transporter. For the 10 

participants with PSP I compared these standardised coefficients with 7-T derived locus 

coeruleus integrity in a linear model with age and total intracranial volume as coefficients 

of no interest. 

https://netneurolab.github.io/neuromaps
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5.2.6 Source-based synaptometry 

I then proceeded to independent component analysis (referred to here as source-based 

synaptometry, analogous to “volumetry”) to identify a small number of statistically 

independent components capturing spatial variation in [11C]UCB-J BPND. Spatially 

concatenated [11C]UCB-J BPND maps were submitted to source-based synapometry using 

the GIFT toolbox (Fang et al., 2021; Xu et al., 2009) with a model order of 10. Components 

were discarded if they represented artefact, captured regions known to be sensitive to 

artefact in fMRI acquisition or were driven by outliers identified using Grubbs’ test 

(Grubbs, 1969).  Component loading values, which represent the degree to which an 

individual expresses a [11C]UCB-J BPND component map, were taken forward to estimate 

association with connectivity providing they were differentially expressed by participants 

with neurodegenerative diseases and controls after correction for false discovery rate with 

p<0.05. Five components satisfying these criteria were included.  In the primary analysis 

presented here partial volume corrected [11C]UCB-J BPND maps were used, with repeat 

source-based synapometry with uncorrected maps performed to ensure robustness of spatial 

distribution of components to atrophy correction. Independent component analysis model 

order was chosen a priori, with additional analysis that components of interest with similar 

spatial distributions could be extracted at alternative model orders. 

5.2.7 Connectivity of [11C]UCB-J BPND components 

I then sought to investigate subject functional spatial covariance with the identified 

[11C]UCB-J BPND components, using a seed-based dual regression approach (Filippini et 

al., 2009; Kelly, Jr. et al., 2022). In the first stage of dual regression I regressed the selected 

[11C]UCB-J BPND components maps into each participant’s fMRI 4-dimensional dataset to 

give participant specific timecourses per component. These timecourses were taken to a 

second regression with the [11C]UCB-J BPND component maps to obtain participant spatial 

maps per component. I assessed the association between [11C]UCB-J BPND loadings values 

and functional covariance per component in a general linear model with age, sex and mean 

DVARS as covariates of no interest using threshold free cluster enhancement with 5000 

permutations using FSL’s randomise tool (Winkler et al., 2014) with family-wise error 

significance level p < 0.05. I then calculated mean beta for each participant’s spatial maps 

from the second stage of dual regression (within a mask defined as regions in controls 

showing significant mean covariance with each [11C]UCB-J BPND component map at 

family-wise error p<0.01) using FSL’s fslmeants function. I compared the association 



108 

 

between [11C]UCB-J BPND loadings and functional covariance scores for each component 

in the whole group and in patients alone using the same covariates of no interest. 

5.2.8 Comparison with clinical scores 

Our group and others have previously shown that [11C]UCB-J BPND values are strongly 

related to markers of clinical severity in neurodegenerative diseases. I sought to understand 

connectivity moderates this relationship and improves prediction of total ACE-R and total 

PSPRS. I therefore performed model selection using stepwise regression with the Bayesian 

information criteria from a baseline model of: 

ACE-R/PSPRS ~ [11C]UCB-J component 1 * fMRI component 1 + … + [11C]UCB-J 

component 5 * fMRI component 5 + Age + Sex + Mean DVARS. 

Age, sex and mean DVARS were considered covariates of no interest and were not stepped 

out of the model.  
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5.3 Results  

5.3.1 Participants 

Demographic details and clinical characteristics for participants are set out in Table 5-1. 

No significant group differences were observed for age or sex. Clinical and 

neuropsychological assessments showed impairment in all patient groups, with expected 

higher average scores on the CBI-R in bvFTD and greater impairment on the PSPRS in 

PSP than bvFTD.  Participants with bvFTD had increased in-scanner motion during fMRI 

acquisition, and therefore I included a metric of motion as a covariate of no interest 

throughout.  

5.3.2 Synaptic density, connectivity, and grey matter 

1.1.1.1 Synaptic density 

There were widespread significant reductions in [11C]UCB-J BPND in patients compared to 

control participants in cortical and subcortical regions, with the largest effect sizes in the 

frontal lobe and basal ganglia (Figure 5-1A). There were no regional differences between-

patient groups, after correcting for multiple comparisons. Uncorrected differences, 

including the frontotemporal cortex for bvFTD vs CBS, are described in Supplementary 

Table 5-1.  

 Control PSP CBS bvFTD Statistic 

(F/2) 

P/Post-hoc tests 

N 24 29 16 8   

Age at 

fMRI 

70.0 (8.4) 70.7 

(8.4) 

67.1 

(5.7) 

65.6 

(10.3) 

1.2 0.31 

Sex (M/F) 16/8 15/14 7/9 6/2 3.5 0.33 

Mean 

DVARS 

5.0 (0.4) 5.2 (0.5) 4.9 (0.4) 5.8 (0.9) 6.0 0.001 

bvFTD < Control p=0.004 

bvFTD < PSP p=0.025 

bvFTD < CBS p=0.0006 

ACE-R 95.8 (2.6) 79.5 

(12.9) 

77.8 

(16.9) 

65.2 

(25.5) 

12.5 

 

1x10-6 

bvFTD < Control p<0.0001 

PSP < Control p=0.0004 

CBS < Control p=0.001 

PSPRS - 33.2 

(10.3) 

27.2 

(11.1) 

17.5 

(12.5) 

5.7 

 

0.006 

PSP < bvFTD p=0.006 

 

CBI-R - 52.4 (34) 37.7 

(19.8) 

90.8 

(32.6) 

8.3 

 

0.0008 

bvFTD > CBS p=0.0005 

bvFTD > PSP p=0.0072 

Table 5-1. Demographic and clinical characteristics for participants. Scores are mean (SD). fMRI functional 

magnetic resonance imaging, DVARS spatial standard deviation of successive images, ACE-R Addenbrooke’s 

Cognitive Examination-Revised, PSPRS Progressive Supranuclear Palsy Rating Scale, CBI-R Cambridge 

Behavioural Inventory Revised 
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Figure 5-1. Regional differences between healthy controls and patients in A) [11C]UCB-J BPND and B) 

weighted degree. All parcels shown are significantly different after FDR-correction for multiple comparisons 

across regions. 

5.3.2.1 Weighted degree 

There were widespread significant reductions in weighted degree in patients compared to 

control participants in cortical and subcortical regions, with smaller effect sizes than 

[11C]UCB-J BPND (Figure 5-1B). There were no regional differences between-patient 

groups, after correcting for multiple comparisons. Uncorrected differences (Supplementary 

Table 5-2) were observed in the cerebellar dentate, presubgenual frontal cortex, and the 

anterior temporal lobe.  

5.3.2.2 Weighted degree and synaptic density 

I calculated regional [11C]UCB-J BPND and weighted degree z scores in patients 

standardized to control data. For cortical regions, mean weighted degree z scores correlated 

with mean [11C]UCB-J BPND z scores (Pearson’s r=0.41 PSA=0.026, Figure 5-2A). There 

was no such relationship in subcortical regions (Pearson’s r=-0.02 PSA=0.96). 
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Figure 5-2. Weighted degree and synaptic density in frontotemporal lobar degeneration syndromes Mean 

[11C]UCB-J binding potential in cortical regions in patients is associated with mean weighted degree, with 

z scores calculated relative to control values. B) Variation in strength of the weighted degree-[11C]UCB-J 

relationship in patients derived from the effect of [11C]UCB-J BPND slope within each region, with a stronger 

relationship observed across the cortex and away from inferior frontal, anterior temporal and striatal 

regions. 

I fitted linear mixed-effects models to account for individual variation in the regional 

relationship between [11C]UCB-J BPND and weighted degree. Inclusion of an effect of 

[11C]UCB-J BPND slope within each region improved model fit (2=36, P=2x10-8). 

Weighted degree was associated with [11C]UCB-J BPND in patients (Standardised Beta 

0.20, P=1x10-9) but not in control participants (Standardised Beta 0.0 P=0.96).  The group-

by-[11C]UCB-J BPND interaction in a refitted model with all participants was significant 

([11C]UCB-J BPND*Group Standardised Beta 0.054, P=0.008), with unchanged effect size 

and significance with scanning interval included as a covariate of no interest. In patients, 

assessing the [11C]UCB-J BPND effect within region showed stronger weighted degree-

[11C]UCB-J BPND relationships in temporal, parietal, cingulate and superior frontal regions 

(Fig. 1B). The relationship between [11C]UCB-J BPND and weighted degree remained 

significant (Standardised Beta 0.18, P=2x10-8) with inclusion of regional grey matter 

volumes and total intracranial volume. 
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5.3.3 Synaptic density, connectivity, and neurotransmitter receptor/transport 

distributions 

I tested whether maps of neurotransmitter receptors and transporters distributions explain 

additional variance in cortical weighted degree beyond synaptic density and grey matter 

volume. For weighted degree, averaged for each region across all patients, the inclusion of 

neurotransmitter receptor and transporter maps to synaptic density and grey matter volume 

in a multiple regression model improved fit above spatial autocorrelation-preserving null 

models (adjusted R2=0.59, PSA=0.031, Figure 5-3A). Assessing each diagnosis group in 

turn, neurotransmitter receptor and transporter maps significantly improved fit for PSP 

(adjusted R2=0.59, PSA=0.0058), with no significant improvement above null models for 

CBS (adjusted R2=0.48, PSA=0.44) and bvFTD (adjusted R2=0.55, PSA=0.10). 

 

Figure 5-3. The effect of synaptic density, grey matter volume, and neurotransmitter receptors/transporter 

distributions on connectivity. Using a multiple regression model, neurotransmitter receptors/transporter 

distributions from control populations were fit to weighted degree, partialling out [11C]UCB-J and grey 

matter volumes. A) The significance of the addition of neurotransmitter receptors/transporter distributions 

above [11C]UCB-J and grey matter volume is assessed against null models preserving spatial autocorrelation 

B) Dominance analysis assessing the percentage contribution to the fit of each model, defined as the 

variable’s dominance over the total model R-squared. C) The relationship between noradrenaline transporter 

distribution and weighted degree in the whole model is associated with whole locus coeruleus CNR 

I performed a dominance analysis (Figure 5-3B) to assess the contribution of individual 

maps to model fit. For weighted degree derived from all patients I found that the 

noradrenaline transporter (29% of total explained R2) and D1 receptor (20% of total 

explained R2) were the most important contributors to cortical connectivity. For PSP the 
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strongest contributors were the noradrenaline transporter (28% of total explained R2) and 

the 5-HT1A receptor (17% of total explained R2). 

Given the leading contribution of noradrenaline transporter maps, I took advantage of a 

complementary imaging modality relevant to noradrenergic function available in a subset 

of patients. Specifically, I tested post hoc whether standardised coefficients for 

noradrenaline transporter distribution from the same regression model, fitted for 

individuals with neurodegenerative diseases, was associated with locus coeruleus integrity 

estimated from ultra-high field 7-Tesla MRI. I found that increasing locus coeruleus 

contrast-to-noise ratio was associated with more negative coefficient for noradrenaline 

transporter distribution derived from the multiple regression model (Standardised Beta -

0.62, P=0.019, Figure 5-3C). Given the predominantly presynaptic action of the 

noradrenaline transporter, this direction of effect is consistent with the hypothesis that the 

relationship between functional connectivity and extracellular noradrenaline depends on 

functioning forebrain noradrenergic input related to the integrity of the locus coeruleus. 

5.3.4 Synaptic density, connectivity, and clinical severity 

5.3.4.1 Source-based synapometry 

To investigate how variation in synaptic density influences functional connectivity and 

cognition, I first performed an independent component analysis on concatenated participant 

[11C]UCB-J BPND partial volume corrected maps. One component was discarded as 

representing CSF and another where derivation of the component was not robust to removal 

of an outlier (Grubb’s test G 7.0 P=0.0005). Two further components were not taken 

forward for further analysis as they incorporated regions particularly prone to artefact. Five 

of the remaining components differed between groups (Figure 5-4A-B): component 1 

covering left frontoparietal regions (F(3,71)=8.1  FDR P=0.0006; post-hoc Tukey bvFTD 

< Control P=0.0014, CBS < Control P=0.043, PSP < Control P=0.0005); component 2 with 

high values in the caudate and anterior cingulate (F(3,71)==6.9  FDR P=0.002;  PSP < 

Control P=0.0002); component 3 with spatial extent incorporating the superior frontal lobe 

(F(3,71)==5.8  FDR P=0.002; bvFTD < Control p=0.0008); component 4 covering the 

medial parietal lobe and adjacent parts of the frontal lobe (F(3,71)==5.5  FDR P=0.002; 

post-hoc Tukey CBS < Control P=0.005, CBS < PSP P=0.017); and component 5 with 

peak values at the right superior parietal lobule (F(3,71)==6.8  FDR P=0.001; post-hoc 

Tukey bvFTD < Control P=0.0014, CBS < Control P=0.001, CBS < PSP P=0.0004). 
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Component identification was robust to alternative model order choices (9-14 components, 

mean spatial cross-correlation of matched component: component 1 0.76, component 2 

0.92, component 3 0.95, component 4 0.87, component 5 0.97) and to partial volume 

correction (uncorrected maps with model order 10, cross-correlation of matched 

component 0.87-0.98).  

 

Figure 5-4. Spatial variation in synaptic density and associated connectivity loss. A) [11C]UCB-J 

independent component analysis loadings by group for the five components that show differential expression 

in neurodegeneration. B) [11C]UCB-J component maps (in green) with areas of increased functional 

covariance (in red-orange) significantly associated with increased [11C]UCB-J component loadings. C) 

Connectivity scores, derived from participant-specific functional covariance maps per component, are 

associated with [11C]UCB-J independent component analysis loadings 
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5.3.4.2 Connectivity of UCB-J BPND components 

Dual regression identified participant specific patterns of spatial covariance to each 

[11C]UCB-J BPND component map. Participant covariance maps per component were taken 

forward to assess for voxel-wise associations with [11C]UCB-J BPND component loadings 

in a general linear model with permutation testing. There were significant associations 

between increased [11C]UCB-J BPND loadings and increased functional covariance for all 

components (Figure 5-4B, P<0.05 with family-wise error correction across voxels). I found 

that connectivity differences were observed both at the site of synaptic loss and remotely 

from it. For instance, greater [11C]UCB-J BPND loadings in a component (component 3) 

with high values in superior frontal regions were associated with increased functional 

covariance in the precuneus, posterior cingulate and right angular gyrus. 

I extracted participant component scores by taking the mean beta from participants’ 

component covariance maps within a mask defined as significant areas of average control 

functional covariance with each component. Four of the five components showed 

associations between [11C]UCB-J BPND loadings and functional covariance score (Figure 

5-4C: component 1 Standardised Beta 0.32 FDR P=0.01, component 2 Standardised Beta 

0.36 FDR P=0.01, component 3 Standardised Beta 0.38 FDR P=0.005, component 4 

Standardised Beta 0.23 FDR P=0.054, component 5 Standardised Beta 0.24 FDR P=0.028). 

This association remained significant for the first three components when patients alone 

were included in the model (component 1 Standardised Beta 0.35 FDR P=0.03, component 

2 Standardised Beta 0.38 FDR p=0.034, component 3 Standardised Beta 0.46 FDR 

P=0.003, component 4 Standardised Beta 0.15 FDR P=0.29, component 5 Standardised 

Beta 0.22 FDR P=0.1). 

5.3.4.3 UCB-J BPND, connectivity and clinical severity 

I tested whether inclusion of connectivity component scores to [11C]UCB-J BPND loadings 

improved modelling of clinical severity as measured by the ACE-R and PSPRS. Individual 

functional component scores were not significant predictors of either the ACE-R or the 

PSPRS, whereas [11C]UCB-J BPND component 3 (Standardised Beta 0.65 FDR P=1x10-6) 

and UCB-J BPND component 4 (Standardised Beta 0.38 FDR P=0.017) were significantly 

associated with total ACE-R. Stepwise regression using Bayesian Information Criteria 

determined whether combinations of predictors improved model fit. The final model for 

ACE-R included [11C]UCB-J BPND component 3 and fMRI components 2 and 5 (Figure 

5-5A and Table 5-2), suggesting that participants with frontal synaptic loss and reduced 
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connectivity to frontal, posterior and subcortical regions had greater cognitive impairment. 

The final model for the PSPRS included the fMRI-[11C]UCB-J BPND interaction terms for 

components 2 and 3 (Figure 5-5B and Table 5-3). For both components I found that the 

relationship between UCB-J BPND loading and PSPRS was only present in those with 

higher connectivity scores. 

 

Figure 5-5. Functional connectivity, synaptic density, and clinical severity. [11C]UCB-J  components (in 

green) and distribution of functional covariance (in blue) for components included in final model selected 

using stepwise regression for A) Addenbrooke’s Cognitive Examination-Revised and B) Progressive 

Supranuclear Palsy Rating Scale. The relationship between [11C]UCB-J  component loading and PSPRS was 

seen only in those with higher connectivity scores. 

 

 Std Beta Std Error T value P 

Intercept -0.25 0.15 -1.7 0.1 

fMRI 2 0.29 0.12 2.4 0.019 

fMRI 5 0.29 0.1 2.8 0.007 

UCB-J 3 0.65 0.1 6.6 3x10-8 

Mean DVARS 0 0.12 0 0.99 

Age -0.1 0.1 -0.7 0.47 

Sex 0.47 0.21 2.2 0.03 

Table 5-2. Final model for stepwise regression for ACE-R total. ACE-R: Addenbrooke’s Cognitive 

Examination-Revised, DVARS the spatial standard deviation of successive difference images. 
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 Std Beta Std Error T value P 

Intercept 0.76 0.19 3.9 0.0004 

fMRI 2 -0.25 0.13 -1.9 0.06 

fMRI 3 0.03 0.13 0.2 0.81 

UCB-J 2 -0.28 0.16 -1.8 0.08 

UCB-J 3 -0.45 0.15 -2.9 0.006 

Mean DVARS 0.32 0.14 2.3 0.03 

Age -0.28 0.16 -1.8 0.075 

Sex -0.73 0.25 -2.9 0.006 

fMRI 2 * UCB-

J 2 -0.32 0.13 -2.5 0.015 

fMRI 3 * UCB-

J 3 -0.48 0.13 -3.8 0.0005 
Table 5-3. Final model for stepwise regression for PSPRS total. PSPRS -Progressive supranuclear palsy 

rating scale, DVARS the spatial standard deviation of successive difference images. 

In summary, reductions in synaptic density were associated with reduced functional 

connectivity, and connectivity both adds to and moderates the explanatory effect of 

synaptic density on clinical severity. 
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5.4 Discussion  

There are three principal results of this study.  First, lower synaptic density as measured by 

[11C]UCB-J BPND is associated with lower functional connectivity. Second, functional 

connectivity augments and moderates the relationship between synaptic density and clinical 

severity. Third, the [11C]UCB-J BPND predicts connectivity over and above grey matter 

volume. The profound reductions in synaptic density in frontotemporal lobar degeneration 

occur in partially overlapping distributions, but with disease specific effects. The 

corresponding reductions in functional connectivity are observed both at the site of the 

synaptic loss and remotely from it. The majority of regional variation in functional 

connectivity could be explained by synaptic density, grey matter volume, and 

neurotransmitter receptor/transporter distributions. Leveraging information from multiple 

modalities allows us to estimate the relative contribution of individual determinants of 

connectivity. In my example case, I have found that estimates of noradrenaline contribution 

to connectivity correspond to direct assessment of the locus coeruleus noradrenergic 

system, using a neuromelanin-sensitive sequence at 7T. This study therefore provides 

important mechanistic insights into the multiple and interacting pathogenic processes of 

FTLD that result in diverse clinical syndromes. 

Progressive supranuclear palsy, corticobasal syndrome and behavioural variant 

frontotemporal dementia are severely disabling progressive conditions that significantly 

reduce life expectancy (Coyle-Gilchrist et al., 2016; Murley et al., 2021). To improve 

patient outcomes we require models of the human neurodegenerative pathogenesis as a 

bridge between preclinical studies and experimental medicines in people. This approach 

complements mesoscale mechanistic models of cortical function (Adams et al., 2022, 2021) 

and macroscale whole-brain models of neurodegeneration (Jones et al., 2013; Khan et al., 

2022; Shafiei et al., 2023). Such transitional markers may facilitate the selection and design 

of trials of potential disease modifying agents (Eimeren et al., 2019) . 

The primary finding of an association between lower synaptic density and reduced 

functional connectivity accords with the ubiquitous role of synaptic health and plasticity in 

generating neurophysiological connections, with synaptic change mediating information 

storage and contributing to learning (Hebb, 1949; Ramon y Cajal, 1894). In 

neurodegeneration preclinical and neuropathological studies have shown that synaptic 

dysfunction and impaired plasticity are key determinants of impaired brain network 
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organization and cognitive dysfunction (Spires-Jones and Hyman, 2014), and occur before 

neuronal degeneration (Kaniyappan et al., 2017; Yoshiyama et al., 2007). The in vivo 

associations between synaptic density and markers of connectivity derived are strengthened 

by the concordance across imaging and analytical methodologies. 

The variances in functional connectivity explained by [11C]UCB-J BPND is independent of 

and in addition to that accounted for by grey matter atrophy, demonstrated through partial 

volume correction and by direct inclusion of grey matter volumes in linear models. This 

highlights the distinct contribution [11C]UCB-J PET offers over and above T1-weighted 

MRI in capturing aspects of the neurodegenerative cascade.  The histopathological 

processes that cause atrophy on structural imaging are incompletely characterised, with 

evidence for neuronal and synaptic loss, axon degeneration and cell death being important 

contributory factors (Fung et al., 2020; Planche et al., 2022). Synaptic dysfunction and loss 

may occur without cell death or atrophy (Hoover et al., 2010; Kaniyappan et al., 2017). 

Since [11C]UCB-J BPND is an independent predictor of connectivity and function, 

measuring synaptic density has the potential to improve our understanding of the individual 

role of synaptic loss in cognitive symptoms. 

The distinct proteinopathies underlying frontotemporal lobar degeneration show overlap in 

clinical syndromes and anatomical distribution, while the same pathological entity can 

result in heterogeneous clinical presentations (Murley et al., 2020a; Seeley, 2017). Despite 

the heterogeneity and pleiotropy, synaptic loss and dysfunction is a common feature 

(Taoufik et al., 2018; Wareham et al., 2022)  associated with the direct and indirect toxic 

effects of multiple proteins’ aggregates. I found patterns of synaptic density loss that were 

differentially expressed across the diagnostic labels in a manner in keeping with typical 

neuropathological distributions post-mortem findings (Dickson et al., 2011; Kovacs et al., 

2020), but with regional synaptic loss occurring in a continuum across participants with 

neurodegeneration. For instance I found lower [11C]UCB-J BPND loadings in CBS for 

posterior components, with frontal synaptic loss in all conditions with the largest effect 

sizes in bvFTD. Synaptic dysfunction results in altered cognition and behaviour through 

loss of connectivity, with synaptic loss strongly predicting cognitive function and decline 

(DeKosky and Scheff, 1990; Terry et al., 1991). Here I have shown that functional 

connectivity loss may occur remotely from sites of reduced synaptic density, and that 

connectivity improves prediction and moderates the effect of synaptic density on clinical 
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severity. Indeed, worse cognitive performance was found in those with frontal synaptic loss 

and reduced connectivity with frontal, subcortical and posterior regions.  

Together, these findings provide indirect support for three key hypotheses; first, 

heterogeneous proteinopathies may result in overlapping clinical syndromes due to the 

cognitive effects of connectivity loss resulting from synaptic dysfunction at a single site; 

second, synaptic dysfunction may cause connectivity change at sites of minimal atrophy, 

potentially contributing to the behavioural prodrome in presymptomatic dementias; third, 

brain regions may be implicated in cognitive symptoms in neurodegeneration that are 

remote from atrophy or synaptic loss.  

This work advances on recent studies of fMRI and synaptic PET in psychiatric disease 

(Holmes et al., 2019) and neurodegeneration (Zhang et al., 2023). It is novel in investigating 

a cohort with a heterogeneous distribution of synaptic loss, through adopting a whole-brain 

approach to demonstrate the anatomical effects of synaptic loss on connectivity, by 

combining synaptic density, connectivity and clinical severity in a single model, and in 

testing the additional role of neurotransmitter dysfunction in determining functional 

connectivity to synaptic loss and atrophy. 

There are several limitations to this study. Interpreting connectivity from resting state fMRI 

is made challenging by the low signal to noise ratio, the impact of movement and other 

artefact on measures of connectivity (Power et al., 2012), the indirect neuronal 

interpretability of the BOLD signal (Kullmann, 2020), and the small effect sizes of brain-

behaviour studies in a healthy population (Marek et al., 2022). Yet it is a scalable and 

widely available modality with good spatial localization that provides a neural correlate 

closely connected to behaviour, with network integrity closely aligned with symptom 

development in neurodegeneration (Rittman et al., 2019; Tsvetanov et al., 2020). It is 

therefore a potential outcome biomarker of the consequences of upstream 

neuropathological change. I found that the relationship between connectivity and 

[11C]UCB-J BPND showed regional heterogeneity. The variance in functional connectivity 

not explained by synaptic density raises the possibility for a role for other factors, such as 

the extensive neurochemical deficits observed in FTLD (Murley and Rowe, 2018). This is 

supported by my findings that neurotransmitter receptor/transporter distributions improve 

fit of weighted degree and that derived coefficients of noradrenaline transporter distribution 

are associated with 7-T measured locus coeruleus integrity. These hypothesis generating 
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results do not necessarily mean that noradrenaline is deplete, and are not direct evidence 

that replacement would restore connectivity, as a single neural system has multiple and 

interacting determinants (Hansen et al., 2022) that may be only partially characterised in 

our modelling. They do highlight how combining PET, fMRI and structural imaging 

modalities with clinical and other data allows individualised modelling of 

pathophysiological pathways with implications for developing personalised treatments 

(Iturria-Medina et al., 2020, 2018). 

I leverage the heterogeneity in FTLD to capture variation in the anatomical distribution of 

synaptic loss and explore its consequences but recognise that the small-to-moderate and 

varied group sizes mean that this study may be underpowered to detect small differences 

between disease groups. High motion has a well-recognised confounding effect on 

functional connectivity (Power et al., 2012; Satterthwaite et al., 2012) and was observed in 

participants with bvFTD during resting state fMRI scanning. Despite careful pre-

processing, including ICA denoising and wavelet despiking, together with inclusion of an 

in-scanner movement related parameter as a covariate of no interest in relevant models, it 

remains possible that residual artefact influences the findings. I acknowledge that 

longitudinal and interventional studies are required to demonstrate causality between 

synaptic dysfunction, brain network organisation and clinical severity, and cannot be 

assumed from the statistical associations observed here. Although SV2A expression is 

closely related to synaptic activity and function (Rizzoli and Betz, 2005), [11C]UCB-J BPND 

is considered a measure of synaptic density rather than synaptic function (Serrano et al., 

2022). Given that functional connectivity in fMRI is defined as a statistical dependency, 

with functional activation only indirectly related to neuronal activity, any inferences in my 

study made about synaptic function are necessarily implicit. Nonetheless the findings are 

as expected given the interplay between synaptic loss and dysfunction observed in 

preclinical studies (Spires-Jones and Hyman, 2014). Lastly, this study uses reference tissue 

modelling rather than arterial blood sampling given the challenges of scanning in this 

patient cohort. Our group have previously performed sensitivity analyses to ensure that 

group differences cannot be explained by any bias introduced through reference tissue 

selection (Holland et al., 2020). 

To conclude, I report that reduced synaptic density in multiple frontotemporal lobar 

degeneration syndromes is associated with lower functional connectivity, with connectivity 

moderating the relationship between synaptic density and clinical severity. Synaptic 
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density independently explains variance in connectivity beyond measuring atrophy from 

structural MRI. This study provides in vivo support for preclinical findings and pave the 

way for individualised pathogenic models and personalised treatments.  
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5.5 Supplementary materials for Chapter 5 

Region F value P FDR P Post-hoc tests 

Cingulate gyrus anterior 

part L 6.40 0.003 0.17 

bvFTD < CBS P=0.0027 

Anterior temporal lobe 

medial part L 4.73 0.013 0.17 

bvFTD < CBS P=0.011 

bvFTD < PSP P=0.033 

Pallidum R 4.73 0.013 0.17 PSP < CBS P=0.0175 

Straight gyrus R 4.60 0.015 0.17 bvFTD < CBS P=0.013 

Nucleus Accumbens R 4.60 0.015 0.17 bvFTD < CBS P=0.012 

Posterior orbital gyrus 4.55 0.016 0.17 bvFTD < CBS P=0.011 

Straight gyrus L 4.45 0.017 0.17 bvFTD < CBS P=0.014 

Middle frontal gyrus 4.32 0.019 0.17 bvFTD < CBS P=0.014 

Nucleus Accumbens L 4.30 0.019 0.17 bvFTD < CBS P=0.015 

Cingulate gyrus anterior 

part L 3.94 0.026 0.21 

bvFTD < CBS P=0.023 

Superior frontal gryus L 3.85 0.028 0.21 bvFTD < CBS P=0.023 

Subgenual frontal cortex 

R 3.49 0.038 0.22 

bvFTD < CBS P=0.031 

Hippocampus R 3.42 0.041 0.22 bvFTD < CBS P=0.045 

Subgenual frontal cortex L 3.37 0.043 0.22 bvFTD < CBS P=0.033 

Insula R 3.28 0.046 0.22 bvFTD < CBS P=0.037 

Presubgenual frontal 

cortex L 3.27 0.047 0.22 

bvFTD < CBS P=0.036 

Lateral orbital gyrus 3.23 0.048 0.22  

Superior temporal gyrus 

central part L 3.21 0.049 0.22 

bvFTD < CBS P=0.038 

Parahippocampal and 

ambient gyri R 3.07 0.056 0.22 

 

Fusiform gyrus 3.04 0.057 0.22  

Fusiform gyrus 3.03 0.058 0.22  

Inferior frontal gyrus L 2.83 0.069 0.25  

Substantia nigra R 2.76 0.073 0.25  

Anterior temporal lobe 

medial part R 2.72 0.076 0.25 

 

Superior temporal gyrus 

anterior part L 2.65 0.081 0.25 

 

Anterior orbital gyrus 2.60 0.084 0.25  
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Middle and inferior 

temporal gyrus 2.56 0.087 0.25 

 

Anterior temporal lobe 

lateral part R 2.56 0.088 0.25 

 

Amygdala R 2.49 0.094 0.25  

Subcallosal area L 2.48 0.094 0.25  

Posterior orbital gyrus 2.45 0.097 0.25  

Presubgenual frontal 

cortex L 2.41 0.10 0.25 

 

Superior temporal gyrus 

central part R 2.37 0.10 0.26 

 

Superior frontal gyrus R 2.30 0.11 0.26  

Cuneus L 2.30 0.11 0.26  

Anterior temporal lobe 

lateral part R 2.26 0.12 0.26 

 

Posterior temporal lobe L 2.23 0.12 0.26  

Superior parietal gyrus  L 2.14 0.13 0.26  

Subcallosal area R 2.09 0.14 0.26  

Midbrain 2.07 0.14 0.26  

Medial orbital gyrus 2.06 0.14 0.26  

Inferior frontal gyrus R 2.05 0.14 0.26  

Anterior orbital gyrus 2.03 0.14 0.26  

Middle frontal gyrus 2.03 0.14 0.26  

Medial orbital gyrus 2.02 0.14 0.26  

Lateral remainder of 

occipital lobe L 
2.00 0.15 0.26 

 

Insula L 1.94 0.15 0.27  

Thalamus R 1.78 0.18 0.29  

Caudate Nucleus L 1.77 0.18 0.29  

Medulla 1.77 0.18 0.29  

Caudate Nucleus R 1.75 0.18 0.29  

Cingulate gyrus posterior 

part L 
1.74 0.19 0.29 

 

Middle and inferior 

temporal gyrus 
1.59 0.21 0.33 

 

Thalamus L 1.49 0.24 0.35  

Putamen R 1.42 0.25 0.37  

Superior parietal gyrus  R 1.41 0.25 0.37  

Postcentral gyrus R 1.37 0.26 0.37  
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Inferiolateral remainder of 

parietal lobe 
1.34 0.27 0.38 

 

Postcentral gyrus L 1.31 0.28 0.39  

Pallidum L 1.28 0.29 0.39  

Cuneus R 1.18 0.32 0.42  

Superior temporal gyrus 

anterior part R 
      

 

Cingulate gyrus posterior 

part L 
1.16 0.32 0.42 

 

Lingual gyrus L 1.07 0.35 0.45  

Inferiolateral remainder of 

parietal lobe 
0.94 0.40 0.50 

 

Putamen L 0.92 0.41 0.50  

Pons 0.90 0.41 0.50  

Precentral gyrus L 0.82 0.45 0.54  

Posterior temporal lobe R 0.80 0.45 0.54  

Lateral orbital gyrus 0.76 0.47 0.56  

Substantia nigra L 0.67 0.52 0.60  

Lateral remainder of 

occipital lobe R 
0.65 0.53 0.60 

 

Lingual gyrus R 0.58 0.57 0.64  

Hippocampus L 0.56 0.57 0.64  

Parahippocampal and 

ambient gyri L 
0.52 0.60 0.65 

 

Cerebellum gm L 0.50 0.61 0.66  

Cerebellum dentate L 0.47 0.63 0.67  

Precentral gyrus R 0.42 0.66 0.69  

Amygdala L 0.41 0.67 0.69  

Cerebellum dentate R 0.34 0.71 0.73  

Cerebellum gm R 0.15 0.86 0.87  

Supplementary Table 5-1. Regional differences in [11C]UCB-J BPND between progressive supranuclear palsy, 

corticobasal syndrome and behavioural variant frontotemporal dementia. Post-hoc tests only performed where 

there is an uncorrected group difference in an ANCOVA with age and sex as covariates of no interest. Only 

significant results after Tukey adjusted p-values are shown. There were no post-correction significant 

differences between groups. 
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Region F value P FDR P Post-hoc tests 

Presubgenual frontal 

cortex L 
3.69 0.032 0.85 

 

Cerebellum dentate L 3.62 0.034 0.85 CBS < PSP P=0.045 

Anterior temporal lobe 

lateral part R 
3.33 0.044 0.85 

 

Inferior frontal gyrus L 2.81 0.070 0.85  

Caudate Nucleus L 2.74 0.075 0.85  

Substantia nigra R 2.52 0.091 0.85  

Anterior temporal lobe 

lateral part R 
2.22 0.12 0.85 

 

Middle and inferior 

temporal gyrus 
2.11 0.13 0.85 

 

Inferior frontal gyrus R 1.99 0.15 0.85  

Subgenual frontal cortex L 1.92 0.16 0.85  

Medial orbital gyrus 1.84 0.17 0.85  

Anterior temporal lobe 

medial part L 
1.78 0.18 0.85 

 

Anterior orbital gyrus 1.72 0.19 0.85  

Caudate Nucleus R 1.48 0.24 0.85  

Straight gyrus L 1.46 0.24 0.85  

Cingulate gyrus anterior 

part L 
1.44 0.25 0.85 

 

Posterior orbital gyrus 1.44 0.25 0.85  

Lateral orbital gyrus 1.36 0.27 0.85  

Superior temporal gyrus 

anterior part L 
1.33 0.27 0.85 

 

Presubgenual frontal 

cortex L 
1.31 0.28 0.85 

 

Anterior temporal lobe 

medial part R 
1.30 0.28 0.85 

 

Superior frontal gryus L 1.29 0.28 0.85  

Fusiform gyrus 1.27 0.29 0.85  

Superior temporal gyrus 

central part R 
1.25 0.30 0.85 

 

Lateral orbital gyrus 1.22 0.30 0.85  

Anterior orbital gyrus 1.20 0.31 0.85  

Posterior orbital gyrus 1.16 0.32 0.85  

Subcallosal area L 1.16 0.32 0.85  
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Insula R 1.13 0.33 0.85  

Middle and inferior 

temporal gyrus 
1.04 0.36 0.85 

 

Subgenual frontal cortex 

R 
0.99 0.38 0.85 

 

Posterior temporal lobe L 0.98 0.38 0.85  

Cingulate gyrus posterior 

part L 
0.97 0.39 0.85 

 

Medial orbital gyrus 0.93 0.40 0.85  

Precentral gyrus R 0.89 0.42 0.85  

Cerebellum dentate R 0.87 0.43 0.85  

Middle frontal gyrus 0.86 0.43 0.85  

Superior frontal gyrus R 0.85 0.43 0.85  

Pons 0.85 0.43 0.85  

Hippocampus L 0.81 0.45 0.85  

Putamen R 0.80 0.46 0.85  

Superior temporal gyrus 

central part L 
0.79 0.46 0.85 

 

Cingulate gyrus anterior 

part L 
0.77 0.47 0.85 

 

Precentral gyrus L 0.77 0.47 0.85  

Straight gyrus R 0.76 0.47 0.85  

Cerebellum gm L 0.62 0.54 0.87  

Putamen L 0.62 0.54 0.87  

Cuneus R 0.59 0.56 0.87  

Postcentral gyrus L 0.58 0.57 0.87  

Middle frontal gyrus 0.56 0.58 0.87  

Cuneus L 0.47 0.63 0.87  

Midbrain 0.47 0.63 0.87  

Posterior temporal lobe R 0.46 0.64 0.87  

Lingual gyrus R 0.45 0.64 0.87  

Inferiolateral remainder 

of parietal lobe 
0.45 0.64 0.87 

 

Insula L 0.45 0.64 0.87  

Superior parietal gyrus  L 0.44 0.65 0.87  

Cerebellum gm R 0.43 0.66 0.87  

Hippocampus R 0.42 0.66 0.87  

Amygdala L 0.40 0.67 0.87  



128 

 

Inferiolateral remainder 

of parietal lobe 
0.38 0.69 0.87 

 

Lateral remainder of 

occipital lobe R 
0.36 0.70 0.87 

 

Substantia nigra L 0.35 0.71 0.87  

Cingulate gyrus posterior 

part L 
0.35 0.71 0.87 

 

Nucleus Accumbens L 0.30 0.75 0.87  

Lingual gyrus L 0.29 0.75 0.87  

Pallidum L 0.29 0.75 0.87  

Lateral remainder of 

occipital lobe L 
0.29 0.75 0.87 

 

Postcentral gyrus R 0.26 0.77 0.87  

Superior parietal gyrus  R 0.25 0.78 0.87  

Medulla 0.25 0.78 0.87  

Amygdala R 0.23 0.80 0.87  

Parahippocampal and 

ambient gyri L 
0.22 0.80 0.87 

 

Thalamus L 0.22 0.80 0.87  

Fusiform gyrus 0.21 0.81 0.87  

Nucleus Accumbens R 0.20 0.82 0.87  

Superior temporal gyrus 

anterior part R 
0.17 0.85 0.89 

 

Pallidum R 0.11 0.90 0.93  

Thalamus R 0.08 0.93 0.95  

Subcallosal area R 0.06 0.94 0.95  

Parahippocampal and 

ambient gyri R 
0.02 0.98 0.98 

 

Supplementary Table 5-2. Regional differences in weighted degree between progressive supranuclear palsy, 

corticobasal syndrome and behavioural variant frontotemporal dementia. Post-hoc tests only performed 

where there is an uncorrected group difference in an ANCOVA with age, in-scanner motion and sex as 

covariates of no interest. Only significant results after Tukey adjusted p-values are shown. There were no 

post-correction significant differences between groups. 
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6 Imaging and clinical markers of survival 

in progressive supranuclear palsy and 

corticobasal syndrome 

 

Preface 

This chapter is adapted from a manuscript that is in press in Human Brain Mapping as 

‘Network connectivity and structural correlates of survival in progressive supranuclear 

palsy and corticobasal syndrome.’ Data was collected by a large number of researchers at 

the Cambridge Centre for Parkinson-plus and across the United Kingdom for the 

PROSPECT-M-UK study. I preprocessed the imaging data, designed and executed the 

analysis strategy, and wrote the manuscript with input from co-authors. 

Summary 

In this chapter I test the hypothesis that the magnitude and distribution of connectivity 

changes in PSP and CBS predict the rate of progression and survival time, using data from 

the Cambridge Centre for Parkinson-plus and PROSPECT-M-UK. In PSP and CBS, I 

identify between-network connectivity components that (i) differ from controls, (ii) are 

associated with disease severity, and (iii) predict survival and rate of change in clinical 

severity. A transdiagnostic component predicts survival beyond demographic and motion 

metrics, but with lower accuracy than an optimal model that included clinical and structural 

measures. Cortical atrophy enhances the connectivity changes that were most predictive of 

survival.                  
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6.1 Introduction 

Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are characterised 

by short average survival, but with significant variability in individual outcome (Chiu et 

al., 2010; Coyle-Gilchrist et al., 2016). There is a pressing need to accurately predict 

survival time, to aid clinical management, assist stratification for clinical trials and to 

identify potential protective factors associated with better prognosis (Eimeren et al., 2019). 

Functional connectivity is a promising candidate to improve prognostication given the 

close association between functional organisation and changes in cognition with aging and 

neurodegeneration (Chan et al., 2014; Rittman et al., 2019; Tsvetanov et al., 2020).  

I tested the overarching hypothesis that widespread changes in connectivity predict a poor 

prognosis in PSP and CBS. Large-scale brain networks can be identified by functional 

magnetic resonance imaging at rest (Beckmann et al., 2005; Biswal et al., 1995; 

Damoiseaux et al., 2006; Yeo et al., 2011). Altered functional organisation, representing 

dysfunctional neurons and networks, may be a more sensitive measure of underlying 

disease state than regional atrophy or cross-sectional performance on standardised clinical 

tasks. In neurodegenerative conditions network segregation is associated with maintained 

cognitive performance in the presence of pathology (Ewers et al., 2021; Tsvetanov et al., 

2020), with loss of network integrity and large scale network change occurring at the point 

of symptom onset (Rittman et al., 2019). It is therefore plausible that greater network 

disruption would imply poor longitudinal outcome. Resting state connectivity in 

neurodegeneration is influenced by inflammation (Passamonti et al., 2019), synaptic loss 

(Zhang et al., 2023), pathological protein (Cope et al., 2018; Franzmeier et al., 2022), white 

matter disease (McColgan et al., 2017), neurotransmitter deficits (Borchert et al., 2019; 

Klaassens et al., 2019), metabolism (Sheline and Raichle, 2013), and cell death (Hampton 

et al., 2020). Identifying connectivity markers of survival would enable in vivo mechanistic 

testing of the importance of different components of the neurodegenerative cascade for 

outcome. 

A challenge when assessing the impact of connectivity on survival is that even in healthy 

controls, individual connections show poor reproducibility and vary on repeat scanning 

(Lynch et al., 2020; Noble et al., 2019). However, multivariate data-driven approaches to 

identify a small number of features, such as independent component analysis, significantly 

improve robustness of connectivity estimates (Elliott et al., 2018; Marek et al., 2022). This 
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is important when considering the clinical syndromes of PSP and CBS, which are 

heterogenous with overlapping clinical features (Höglinger et al., 2017; Murley et al., 

2020a) that explain only a proportion of variability in outcome (Murley et al., 2021). 

Connectivity changes in these conditions are diffuse (Ballarini et al., 2020; Brown et al., 

2017), in keeping with brain-wide synaptic loss observed in vivo (Holland et al., 2020) and 

at post-mortem (Bigio et al., 2001; Lipton et al., 2001). I therefore investigated the utility 

of functional connectivity to predict outcome for individual diagnostic groups and 

transdiagnostically, adopting a whole brain approach rather than focusing on individual 

connections. 

Data reduction techniques to identify common patterns of connectivity change may not 

give the most sensitive survival predictors. Machine learning approaches may be more 

successful in identifying predictors, but standard machine learning tools need to be 

modified when estimating time to death given the presence of censored data resulting from 

including individuals alive at the end of a follow-up period (Spooner et al., 2020). The 

Partial Least Squares regression for Cox models (Bastien, 2008; Bastien et al., 2015, 2005; 

Bertrand and Maumy-Bertrand, 2021) provides a promising approach that is adapted to 

explain maximal variance in survival, identifies patterns using all features, and is suitable 

for high dimensional data.  

I therefore used these methods to test whether connectivity changes are associated with 

poorer prognosis in PSP and CBS. I quantify connectivity through resting state functional 

MRI and compare the predictive value of connectivity with clinical metrics and structural 

imaging. To assess generalisation, I used k-fold cross validation for data from two cohorts 

of PSP, CBS, and controls: from the Cambridge Centre for Parkinson-plus (CCPP) and the 

UK national PSP Research Network (PROSPECT-MR). I tested the following hypotheses: 

i) between-network connectivity differs between participants with neurodegeneration and 

controls; ii) more extensive changes in connectivity predict faster clinical deterioration and 

shorter survival; and iii) changes in connectivity provide additive information to predict 

prognosis beyond clinical and structural imaging measures. 
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6.2 Methods 

6.2.1 Participants 

I recruited 146 participants with MDS-PSP criteria probable or possible PSP (Höglinger et 

al., 2017), 82 participants with the clinical phenotype of corticobasal syndrome (Armstrong 

et al., 2013), and 90 age-matched healthy controls from the Cambridge Centre for 

Parkinson-plus (CCPP) and the Progressive Supranuclear Palsy-Corticobasal Syndrome-

Multiple System Atrophy-UK (PROSPECT-MR) study (Jabbari et al., 2020). Clinical 

assessments for the two cohorts included the PSP rating scale (PSPRS) (Golbe and Ohman-

Strickland, 2007), the Cambridge Behavioural Inventory-Revised (CBIR) (Wear et al., 

2008) and the Addenbrooke’s Cognitive Examination-Revised (ACER) (Mioshi et al., 

2006). 49 participants with PSP, 11 participants with CBS and 9 healthy controls were 

excluded following assessment for motion (see below). I recorded survival and longitudinal 

neurocognitive assessments for participants up to 12 years from baseline imaging, with date 

of death recorded from participants’ NHS Summary Care Record. Demographic details and 

summary scores for included participants are described in Table 6-1. 

27 included participants with a clinical diagnosis of PSP proceeded to autopsy, with a 

predominant neuropathological diagnosis of PSP in 26, and 1 predominant argyrophilic 

grain disease. 16 of the included participants with corticobasal syndrome donated their 

brain. As expected in CBS, the underlying neuropathology was heterogenous with a final 

pathological diagnosis of corticobasal degeneration (n=6), Alzheimer’s disease (n=5), 

mixed corticobasal degeneration/progressive supranuclear palsy (n=1), progressive 

supranuclear palsy (n=2), Pick’s disease (n=1) and multiple system atrophy (n=1). 

6.2.2 MRI acquisition and preprocessing 

MRI acquisition and preprocessing were as outlined in chapter 2. A subset of 48 

participants (20 PSP, 17 CBS, 11 Controls) also had repeat imaging during the disease 

course (Table 1), with primary analysis from the baseline visit. Since in-scanner participant 

motion in resting state fMRI has the potential to bias connectivity estimates (Power et al., 

2012), I excluded individuals above thresholds taken as 1.2 standard deviations above the 

whole sample mean as defined in chapter 2 (maximum spike percentage (Patel et al., 2014) 

maximum framewise displacement (Power et al., 2012), and maximum spatial standard 

deviation of successive volume differences (Smyser et al., 2010)). Given that motion has 

relevant neural correlates (Geerligs et al., 2017) and likely relates to severity and survival 
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in PSP and CBS, I did not include it as a covariate of no interest in the primary analysis but 

additionally report the effect of adding mean framewise displacement to predictions of 

survival and progression, included it in the baseline model when comparing predictors of 

survival in disease, and report the association of in-scanner motion with survival. Summary 

motion indices by group for included participants are in  Supplementary Table 6-1. 

6.2.3 Structural parcellation 

I derived subcortical volumes and cortical thickness for parcels of the Brainnetome Atlas 

(Fan et al., 2016) using Freesurfer 7.1.0 (Dale et al., 1999). Subcortical volumes were 

adjusted for total intracranial volume by deriving residuals from linear regression between 

parcel volume and total intracranial volume (Voevodskaya et al., 2014). Volumes and 

thicknesses were averaged over the forty-eight larger regions and gyri to reduce number of 

features for model fitting. I additionally calculated volumes for four brainstem structures 

(medulla, pons, midbrain, and superior cerebellar peduncle) (Iglesias et al., 2015). 

6.2.4 Between-network connectivity 

 

Figure 6-1. Pipeline for assessment of relationship between large-scale network connectivity and severity, 

progression and survival. Schematic representation of pipeline to derive independent components of 

between-network connectivity to compare with outcome measures in PSP and CBS (PSP: Progressive 

Supranuclear Palsy, CBS: Corticobasal Syndrome, fMRI: functional Magnetic Resonance Imaging, ICA: 

Independent Component Analysis, ACER: Addenbrooke’s Cognitive Examination-Revised, PSPRS: 

Progressive Supranuclear Palsy Rating Scale, CBIR – Cambridge Behavioural Inventory Revised). 
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To identify between-network connectivity patterns I employed the pipeline used by Elliot 

and colleagues (Elliott et al., 2018) (Figure 6-1). I adopted this approach as it captures 

multivariate large-scale connectome patterns with improved test-retest reliability, which is 

important in these heterogenous conditions where widespread connectivity change and 

synaptic loss (Holland et al., 2020) suggest that isolated connections are unlikely to be 

reliably related to survival.  I performed independent component analysis with a model 

order of 30 using FSL’s MELODIC on preprocessed fMRI from patients and controls. 

These components were matched with their closest Yeo network (Yeo et al., 2011) using 

cross-correlation against template maps and subsequent inspection. Components were 

selected if they were non-artefactual and were a constituent of a Yeo network or overlapped 

with the thalamus. I did not include the Yeo limbic network given the influence of artefact 

and similarity to noise signal at 3-Tesla fMRI (Omidvarnia et al., 2021), and excluded 

inferior and ventral visual cortical regions due to the challenges in this region of 

differentiating BOLD signal from venous artefact (Boyd Taylor et al., 2019; Kay et al., 

2019; Tsvetanov et al., 2015; Winawer et al., 2010). I then extracted component time series 

by regression of participant’s preprocessed fMRI against the component maps, with time 

series for the chosen components taken forward for further analysis. Connectivity between 

components was calculated by full Pearson correlation between networks followed by 

Fisher r-to-Z normalization using FSLNets (Smith et al., 2013b). I adjusted for scanner and 

site differences through an empirical Bayes framework using ComBat (Johnson et al., 2007; 

Yu et al., 2018). I compared the adjusted between-component connectivity between patient 

groups and healthy controls in a linear model with age and sex as covariates of no interest, 

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to control the false 

discovery rate. 

I then performed a further independent component analysis (Hyvarinen, 1999) to identify 

a small number of components capturing between-network connectivity patterns. I set a 

maximum model order of four since even in a large dataset only four components could be 

robustly inferred (Elliott et al., 2018), using split-half reproducibility of imaging 

component weights across subjects to determine the final number of components (Elliott et 

al., 2018). 

6.2.5 Statistical approach - Severity, progression and survival 

I took baseline imaging component scores for further analysis to compare between groups 

and correlate with severity, progression and survival. Age and sex were included as 
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covariates of no interest in all models. Cross-sectional analyses were performed using 

assessments at the earliest scanning date. P values were adjusted for multiple comparisons 

adjusted across components and neuropsychological tests (false discovery rate p < 0.05), 

with the corrected P value reported unless stated otherwise. All statistical analyses and 

visualization were performed in R (version 4.1.0) (Gu et al., 2014; Mowinckel, 2018; R 

Core Team, 2018). 

To compare component scores between groups I performed a multivariate analysis of 

covariance. I compared clinical and neuropsychological markers of severity with scores for 

components of interest within a linear model, and test whether the disease groups differ in 

their component-neuropsychological measure relationship through a refitted model 

including a group-by-component interaction.  

A linear mixed-effect model was used to calculate annual rates of changes in clinical and 

neuropsychological scores for participants with longitudinal data using the R package lme4 

(Bates et al., 2015), as described in chapter 2. Neuropsychological score was the dependent 

variable with years from baseline assessment as an independent variable. The model 

estimated a random intercept and slope to account for individual variability. The individual 

estimated slopes were included as a dependent variable in a second model with baseline 

connectivity component scores as predictors. Models were repeated with mean framewise 

displacement as a covariate of no interest. To assess whether connectivity components 

improve model fit for clinical progression (for PSPRS, CBIR and ACER) beyond baseline 

severity, I performed stepwise regression using the Akaike information criteria (AIC). In 

the initial model estimated slope was the dependent variable, with the two connectivity 

components, baseline clinical score, and total grey matter volume as independent variables. 

Age, sex, motion, and total intracranial volume were covariates of no interest, and not 

stepped out of the model. 

I used a Cox proportional hazards regression analysis to assess the relationship between 

component score and time from scan until death with age and sex as covariates, an approach 

that enabled me to include participants alive at the end of the assessment period. Given the 

importance of scanner motion as a potential confounder in quantifying connectivity, I 

additionally report the relationship between mean framewise displacement and time from 

scan until death. 
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6.2.6 Partial Least Squares for Cox Models 

I proceeded to compare different potential predictors of survival in PSP and CBS. An 

independent component analysis finds statistically independent connectivity changes, but 

these may not be the best survival predictors. I therefore used partial least squares for Cox 

models (Bastien et al., 2015, 2005; Bertrand and Maumy-Bertrand, 2021) to maximize 

covariance of the predictor to censored survival data. This finds broad connectomic patterns 

most predictive of survival and likely to improve reliability beyond focusing on individual 

connections.  

I used a transdiagnostic approach with partial least squares regression for Cox models 

performed with all baseline patient scans as a single group. I derived models with different 

predictors to determine indicators of survival: connectivity patterns; structural imaging 

measures; and clinical scores. The partial least squares for Cox models approach also 

allows component scores to be calculated where there is missing data for clinical 

assessments, based on a modified non-linear partial least squares algorithm where iterative 

regressions are performed with the available data (Bastien et al., 2005; Bertrand and 

Maumy-Bertrand, 2021). 

To determine the best survival predictors, I used 20 repeats of 5-fold cross-validation 

comparing: a baseline model (age, sex and mean framewise displacement); the baseline 

model combined with connectivity; the baseline model with structural measures of atrophy; 

the baseline model together with clinical scores (PSPRS, CBIR, ACER); the baseline model 

with clinical scores and structural measures; the baseline model with clinical scores and 

connectivity; and a full model with all predictors. For each model the number of 

components was chosen which maximised cross-validation performance. I compared 

models using i) concordance index (Harrell, 1982), the proportion of pairs of participants 

where the hazards predicted by the model accord with observed survival and ii) area under 

the curve for survival data (Heagerty et al., 2000).  

On a post-hoc basis I repeated model comparison with PSP and CBS individually. I 

compared the same models as in our transdiagnostic assessment, with the addition of a 

combination of the baseline model with clinical scores and a composite of thalamic, pontine 

and midbrain volume, given the risk of overfitting with higher feature number to participant 

ratio in these subgroups. 
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6.2.7 Baseline atrophy and longitudinal connectivity change 

I tested whether baseline focal atrophy influenced the longitudinal change in connectomic 

predictors of survival for the subset of patients with repeat imaging. I first derived partial 

least squares connectivity component scores for scans after the baseline visit. I tested the 

relationship between connectivity and time from baseline imaging session in a linear 

mixed-effect model with partial least squares connectivity component score as the 

dependent variable, time from baseline scan as a fixed effect and a random intercept for 

each participant. I then refitted the model including an interaction term with time from 

baseline imaging and focal atrophy (mean cortical thickness or subcortical volume). 

I proceeded to perform mediation analysis using the mediation (Tingley et al., 2014) 

package in R using bootstrapping with 100,000 draws, with the partial least squares 

connectivity component as mediator, mean cortical thickness or mean subcortical volume 

as predictors and age, sex and the remaining atrophy marker as covariate of no interest. 
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6.3 Results 

6.3.1 Participants 

I report results from the analysis from 97 participants with PSP, 71 participants with CBS 

and 81 healthy controls, after data quality control. Demographic details at the baseline scan 

are in Table 6-1. There were no significant differences in age or sex, with mean time to 

death under 3 years from baseline imaging in both diseases.  

Table 6-1. Demographic details for participants at baseline scan. Continuous values are mean (SD). Group 

comparison used F or t-test for groups with continuous data and chi-squared for binary variables. (ACER: 

Addenbrooke’s Cognitive Examination-Revised, PSPRS: Progressive Supranuclear Palsy Rating Scale, 

CBIR: Cambridge Behavioural Inventory Revised) 

6.3.2 Between-network connectivity 

Between-network connectivity differences between patient groups and healthy controls are 

presented in Figure 6-2A-B. Connectivity was lower in patients than controls for most 

 Control (n=81) PSP (n=97) CBS (n=71) F/t/χ2 p 

Scans (n) 94 118 88 -- -- 

Longitudinal 

imaging (n) 

11 20 17   

Age (years) 68.5 (6.4) 70.1 (7.2) 67.9 (6.4) 2.1 0.12 

Sex (F/M) 46/35 43/54 42/29 4.5 0.11 

Number deceased -- 70  40 -- -- 

Time to death 

(years) 

-- 2.8 (1.8) 2.8 (2.0) 0.07 0.95 

3-year survival 

(from scan) 

-- 42/87 (48%) 28/53 (53%) 0.12 0.73 

PSPRS 

n (%) 

-- 35.3 (14.9) 

85 (88%) 

33.2 (15.8) 

50 (70%) 

-0.74 0.46 

CBIR 

n (%) 

-- 44.4 (33.2) 

67 (69%) 

42.9 (25.8) 

62 (87%) 

-0.30 0.76 

ACER 

n (%) 

-- 80.5 (14.3) 

84 (87%) 

75.2 (17.2) 

66 (93%) 

-2.0 0.048 



139 

 

between-network connections, with significant reductions in connectivity in patients 

between sensorimotor and dorsal attention network regions and between default mode 

network and frontoparietal network components after correction for multiple comparisons. 

Connectivity was significantly increased from the ventral attention network to dorsal 

attention and sensorimotor components. 

 

Figure 6-2. Between network connectivity in PSP and CBS. Differences in between-network connectivity 

between all patients and controls (A and B), CBS and controls (C and D) and PSP and controls (E and F). 

Red links represent lower connectivity in patient groups, and blue links relatively increased connectivity 

versus controls. The bottom figures show only connections that show uncorrected significant differences (p 

< 0.05) between group differences beyond age and sex, with connections that remain significant after 

correction for multiple comparisons outlined in black. 

 Broadly similar connectivity differences from controls were observed in CBS (Figure 

6-2C-D) and PSP (Figure 6-2E-F). Comparing the disease groups, I found uncorrected 

greater reductions in connectivity in CBS predominantly in posterior components 

(including to regions of the dorsal attention network), with lower connectivity in PSP 

between the thalamus and a dorsal attention network component and between sensorimotor 

and visual regions (Figure 6-3). There were no significant differences between PSP and 

CBS after correction for multiple comparisons.  
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Figure 6-3. Differences in between-network connectivity between PSP and CBS. Red links represent lower 

connectivity in CBS, and blue links lower connectivity in PSP. B) Only connections that show uncorrected 

significant differences (p < 0.05) between group differences, after adjusting for age and sex, are shown 

6.3.3 Connectivity relates to clinical severity 

I took the between-network connections to an independent component analysis to capture 

broad patterns of connectivity to compare with clinical severity and progression. I found 

that using 4 components maximised split-half reproducibility of component weights. 

Scores for the first component were decreased in both participants with PSP and CBS 

versus controls (Figure 6-4A F=12.9 FDR P=2x10-5; PSP v Control Tukey-adjusted 

P=2x10-5; CBS V Control Tukey-adjusted P=0.0002). Scores for the second component 

were decreased in CBS compared to controls, with no significant difference between either 

PSP and controls or between disease groups (F=8.1 FDR P=0.01; PSP v Control Tukey-

adjusted P=0.2; CBS V Control Tukey-adjusted P=0.014). In Component 1 the disease state 

was associated with predominantly decreased connectivity but with increased connectivity 

between task-positive, motor and subcortical regions (Figure 6-4C). Lower scores in 

component 2, as observed in CBS, were associated with relatively increased connectivity 

between the default mode, dorsal attention and motor networks and decreased connectivity 

within these networks. 
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Figure 6-4. Between network connectivity and clinical severity in PSP and CBS. A) Components were 

identified in PSP and CBS which differ between patients and controls, shown in B. Connections represent the 

correlation between component score and edge, so that for higher scoring subjects red indicates stronger 

connections and blue weaker. C) Component scores correlate with clinical severity (DMN: Default Mode 

Network, DAN Dorsal Attention Network, VAN Ventral Attention Network, FPN Frontoparietal Network, TN 

Thalamic Network, Vis Visual, ACER: Addenbrooke’s Cognitive Examination-Revised, PSPRS: Progressive 

Supranuclear Palsy Rating Scale, CBIR – Cambridge Behavioural Inventory Revised) 

I considered the components that differed from controls in either disease group in 

subsequent analysis. Component 1 scores were associated with the PSP rating scale (Figure 

2C Std Beta=-0.31 FDR P=0.0007) and the CBIR (Std Beta=-0.29 FDR P=0.002), with 

similar but weaker associations found with component 2 (PSPRS Std Beta=-0.19 FDR 

P=0.031; CBIR Std Beta=-0.22 FDR P=0.020). The relationship between ACER and 

component scores differed between disease group, with a significant interaction 

(Component 1xdiagnosis Interaction Std Beta=0.49 FDR P=0.003, PSP Std Beta=0.36 CBS 

Std Beta=-0.14, Component 2xdiagnosis Interaction Std Beta=0.55 FDR P=0.0025, PSP 

Std Beta=-0.21 CBS 0.33), demonstrating the cognitive profile associated with greater 

posterior network involvement in CBS. 

6.3.4 Connectivity and disease progression 

I tested whether baseline component scores were associated with subsequent decline in 

neuropsychological assessments. Linear mixed-effect models indicated an effect of time 
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for all measures (Supplementary Table 6-2). I found that baseline component 1 score was 

associated with rate of progression in the PSPRS (Figure 6-5A Std Beta=-0.36 FDR 

P=0.0006) and that baseline component 2 score was associated with greater rate of decline 

in the ACER (Std Beta=0.26 FDR P=0.015). The implications of lower baseline component 

1 score on ACER varied by disease, with lower scores associated with faster decline only 

in PSP (Component x diagnosis interaction Std Beta=0.57 FDR P=0.008, PSP Std 

Beta=0.36 CBS Std Beta=-0.23). The relationships with component 1 remained significant 

when mean framewise displacement was included in the model (PSPRS-Component 1 Std 

Beta=-0.36 FDR P=0.003; ACER-Component 2 Std Beta=0.22 FDR-corrected P=0.060 

uncorrected P=0.030; ACER-Component 1 x diagnosis interaction FDR P=0.014). Lower 

component 2 scores were also associated with an uncorrected increase in the rate of change 

of CBIR, including with adjustment for motion and baseline severity (Std Beta=-0.21 

uncorrected P=0.046 FDR corrected P=0.091). 

I used stepwise regression to investigate if connectivity components were included in the 

best model of progression when incorporating baseline severity and total grey matter 

volume. For the PSPRS, component 1 was included in the final model, with component 2 

in the final model for ACER, and both components for the CBIR. Between-network 

connectivity differences were associated with more rapid decline in severity beyond 

baseline clinical scores and global atrophy.  

6.3.5 Connectivity and survival 

I found that lower component 1 score was a significant predictor of survival using Cox 

proportional hazards regression (Figure 6-5B Component 1 hazard ratio 0.72 CI 0.58-0.88 

P=0.001; Component 2 hazard ratio 0.83 CI 0.68-1.0 P=0.052) in a model including age 

and sex as covariates. Component 1 remained a significant predictor with mean framewise 

displacement included in the model (Component 1 hazard ratio 0.72 CI 0.59-0.89 P=0.002; 

Component 2 hazard ratio 0.87 CI 0.71-1.1 P=0.19), an important consideration given that 

increased mean framewise displacement was associated with poorer survival in the whole 

cohort prior to exclusion for data quality (Supplementary Figure 6-1). Significance 

remained with further addition of total grey matter volume and total intracranial volume to 

the model (Component 1 hazard ratio 0.74 CI 0.60-0.91 P=0.005; Component 2 hazard 

ratio 0.89 CI 0.72-1.1 P=0.26). The diagnosis by component interaction was not significant 

for either component. 
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Figure 6-5. Connectivity predicts longitudinal survival in PSP and CBS. Component scores at baseline scan 

are associated with rate of change of severity (A) and are significantly associated with survival in a Cox 

proportional hazards model (B). For illustration survival curves are shown by component score divided into 

high, medium and low scoring tertiles. 

6.3.6 Comparing transdiagnostic models to predict survival 

I proceeded to investigate the optimal predictors of survival in patients with PSP and CBS. 

Since the most important connectivity changes for determining outcome may differ from 

the patterns of changes most common in disease, I used partial least squares (PLS) for Cox 

models to maximise covariance between predictor and survival.   

I identified a connectivity component with covariance maximised to predict survival 

(Figure 6-6A), with worse survival related to relatively increased connectivity between 

task-positive regions, from the thalamus to sensorimotor regions and from the default mode 

network to visual regions, representing loss of segregation between these large-scale 

networks, with decreased connectivity elsewhere. I found component scores differed 

between patient groups and controls (PSP v Controls t=3.8 Tukey-adjusted P=0.0006; CBS 

v Control t=3.6 P=0.001), with no difference between PSP and CBS (Figure 6-6C t=0.1 

P=0.99). I also identified two structural components predictive of survival (Figure 6-7). 

The highest absolute weights for the first component were for the thalamus, pons and 

midbrain, with significant contributions from limbic and frontotemporal cortical regions. 

Lower scores in the second component, associated with worse survival, were for 
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participants with thalamic and brainstem atrophy but relatively preserved cortical 

thickness. The highest component weight in a clinical component was for the PSPRS 

(Supplementary Table 6-3). 

 

 

Figure 6-6. Identifying a transdiagnostic component predictive of outcome. I used Partial Least Squares 

Regression for Cox Models to find a component (A) that maximised the covariance between connectivity and 

censored time to death. Connections represent PLSR weights, so that for higher scoring subjects red indicates 

stronger connections and blue weaker. This component did not differ between participants with PSP and 

those with CBS (C). Using 5-fold cross-validation with outcome assessed using concordance analysis, I found 

that connectivity provided additional information above patient’s demographic information and inpatient 

motion, but with a combination of structural, clinical and baseline metrics providing the best predictive 

accuracy (D). (DMN: Default Mode Network, DAN Dorsal Attention Network, VAN Ventral Attention 

Network, FPN Frontoparietal Network, TN Thalamic Network, SM Sensorimotor) 
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Figure 6-7. Partial least squares regression weights for structural components predictive of survival. Map 

thresholded so that all coloured parcels are significant predictors of survival (FDR adjusted P<0.05). 

I compared transdiagnostic predictive models of survival using repeat 5-fold cross-

validation to a baseline model consisting of age, sex and mean framewise displacement 

from the fMRI scanning session, since the latter is predictive of survival (Supplementary 

Figure 6-1). I found that combining connectivity with the baseline model showed moderate 

improvement in predictive power, but that this was outperformed by both the combined 

baseline and structural model and the baseline and clinical models (Figure 6-6D-E 

Baseline: mean concordance 0.59, mean iAUC 0.58; Baseline + Connectivity: mean 

concordance 0.61, mean iAUC 0.59; Baseline + Structure mean concordance 0.67, mean 

iAUC 0.67; Baseline + Clinical mean concordance 0.68, mean iAUC 0.64). The best 

performing model combined baseline, structural and clinical metrics, while including all 

predictors in a single model worsened concordance (Baseline + Structural + Clinical mean 

concordance 0.68, mean iAUC 0.69; Baseline + Connectivity + Clinical mean concordance 

0.65, mean iAUC 0.63; Full model mean concordance 0.68, mean iAUC 0.68). In all 

models including structural features best performance was with two PLS components, with 

one component for all other models. 

To consider the potential impact of multiple collinear structural features we tested a further 

model with baseline and clinical measures, and the sum of volumes from the thalamus, 

pons and midbrain. We chose this model on a post-hoc basis to test whether cross-validation 
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performance is potentially substantially reduced by overfitting given the moderate-large 

number of collinear structural features. However, this post-hoc model showed only a 

modest improvement in performance over other models (mean concordance 0.7; mean 

iAUC 0.69). 

We further tested survival predictors in each diagnostic group individually. In PSP, for a 

component derived using PLS regression with all predictors, highest weights were for the 

PSPRS, pons, midbrain, and thalamic volumes and bilateral superior temporal gyri 

thicknesses. In CBS largest component weights were for the PSPRS, right thalamus, pons, 

midbrain, with hippocampal atrophy also predictive of poor survival. In addition, in CBS 

connectivity between posterior networks (posterior default mode network, dorsal attention, 

and visual) were also weighted highly. In both PSP and CBS best model performance was 

with baseline and clinical predictors, together with the composite thalamic, pons and 

midbrain volume (PSP mean concordance 0.68, mean iAUC 0.68; CBS mean concordance 

0.72 mean iAUC 0.69). 

6.3.7 Focal atrophy and its relationship to connectivity 

Since connectivity was only a moderate survival predictor, I investigated whether 

connectivity change may be driven by focal pathology. I considered the relationship with 

connectivity and cortical and subcortical atrophy, given that subcortical parcels had high 

loadings in the best survival model. 

For individuals with longitudinal scanning, I found PLS component connectivity score 

increased over time (t=2.7 P=0.01), with higher component scores indicating worse 

survival. The rate of increase was greater in those with low cortical thickness ( Figure 6-8A 

Cortical x years interaction t=-4.9 P=0.0002), but not those with reduced subcortical 

volume ( Figure 6-8B interaction t=1.3 P=0.20). I then considered whether connectivity 

changes as identified in the partial least squares regression may mediate the effect of 

atrophy on survival. I found that the connectivity component was a significant mediator of 

the effect of cortical atrophy on survival (average direct effect -0.15 years P=0.51, average 

mediated effect -0.30 years P=0.012, proportion mediated 67%), in contrast to the 

significant average direct effect of subcortical atrophy (average direct effect -0.84 years 

P=0.0007, average mediated effect -0.26 years P=0.057, proportion mediated 24%).
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Figure 6-8. Connectome predictors of survival and regional atrophy Baseline cortical atrophy (A) and not 

subcortical volume (B) is associated with longitudinal changes in connectivity predictive of survival. C) 

Connectivity may mediate a significant proportion of the survival effect of cortical atrophy, while subcortical 

atrophy has a significant direct effect not mediated by connectivity. (* P<0.05, ** P<0.01) 

In summary I have found that cortical rather than subcortical atrophy accelerates the 

connectivity changes most predictive of survival. However, the effects of subcortical 

atrophy on survival (primarily thalamic, pontine and midbrain) are predominantly not 

mediated by changes in between-network connectivity.  
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6.4 Discussion 

In this study of two independent cohorts, I have found that functional connectivity and focal 

atrophy predict disease trajectory for people with PSP and CBS, including their rate of 

progression and survival. There are connectivity changes associated with shorter time to 

death that are shared between the diseases, but these provide less robust predictions than 

simple clinical and structural imaging metrics. In the most accurate model for survival 

prediction, the greatest weights were for the PSPRS and thalamic, midbrain and pontine 

volume. Cortical rather than subcortical volume at baseline was associated with subsequent 

progressive change in the functional connectivity that was predictive of survival. In 

contrast, the prognostic value of subcortical atrophy on survival is largely independent of 

the changes in network connectivity. 

I found patterns of connectivity and structural change associated with poor survival that 

were shared between PSP and CBS. This is in keeping with the clinical, molecular, and 

pathological overlap between the diseases (Höglinger, 2018; Murley et al., 2020a), and 

implies the existence of common pathways important in determining survival. 

Commonality in survival predictors across diagnoses may arise through convergence in 

pathological involvement of structures important for survival. In my study thalamic, 

pontine and midbrain atrophy were key transdiagnostic survival predictors. Shared survival 

predictors may also occur at a network level (Seeley, 2017), with similar patterns of 

network connectivity relevant to survival occurring in PSP and CBS despite difference in 

distribution of pathology. The accumulation of connectivity differences associated with 

poor survival over longitudinal imaging suggests active network change in the presence of 

pathology, rather than the identified patterns solely representing pre-existing cognitive 

reserve (Stern et al., 2020). 

The relationship between network connectivity and clinical severity is in keeping with 

findings that connectivity changes are closely associated with cognitive status in aging 

(Chan et al., 2014) and in presymptomatic carriers of dementia-causing mutations (Rittman 

et al., 2019; Tsvetanov et al., 2020). The whole brain approach adopted here shows that 

connectivity changes that predict survival similarly represent disruption to functional 

organisation rather than simply connectivity loss. Between-network connectivity was 

predominantly decreased in participants with CBS and PSP, with increased connectivity 

also occurring across network hierarchies (Gotts et al., 2020; Margulies et al., 2016). 
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Greater connectivity increased scores of a component with covariance maximised to predict 

survival, notably between task-positive multimodal networks, from the thalamus to 

sensorimotor regions and from the default mode network to visual regions. The finding that 

relative regional increases in connectivity contribute to poor survival supports studies 

demonstrating an association between increased connectivity of higher cognitive networks 

in health and poor cognitive function (Chan et al., 2014; Geerligs et al., 2017), and suggests 

that these connectivity differences indicate network inefficiency rather than compensatory 

changes. Cell death and the widespread cortical synaptic loss in PSP and CBS (Holland et 

al., 2020) may cause loss of segregation between distinct networks, such as the dorsal and 

ventral attention networks, with network segregation important in maintaining performance 

on cognitive tasks despite pathological change (Ewers et al., 2021; Tsvetanov et al., 2020). 

Functional brain organisation at rest relates to task-based network changes (Cole et al., 

2016, 2014). Altered connectivity between multimodal networks at rest in PSP and CBS 

may indicate task-based network dysfunction, with behavioural and cognitive 

consequences relevant for disease progression (Lansdall et al., 2019; Murley et al., 2021).  

Cortical atrophy and cortical network connectivity are interconnected, demonstrated by the 

finding that ‘epicenter’ regions of maximal atrophy can be used as seeds to select functional 

networks associated with neurodegenerative disease (Seeley et al., 2009; Zhou et al., 2012). 

These findings support this observation, suggesting that connectivity change potentially 

mediates the survival effects of cortical atrophy. Since greater network segregation is 

associated with attenuated accumulation of neuropathology (Steward et al., 2023), a vicious 

circle may arise where greater pathology causes network dysfunction that is cognitively 

detrimental, which itself results in a faster rate of pathological spread. The largest effects 

on connectivity for structural measures were for the thalamus, pons and midbrain. The 

importance of thalamic atrophy may be surprising given that in PSP cortical pathology 

defines the later stage of PSP tauopathy (Kovacs et al., 2020) while in CBS cortical rather 

than thalamic atrophy is a major imaging correlate (Boxer et al., 2006; Whitwell et al., 

2010). The thalamus, pons, and midbrain contain fibres and nuclei important in diverse 

neuronal systems (Roy et al., 2022), including in core motor functions that have been linked 

to survival in PSP and CBS (Glasmacher et al., 2017; Murley et al., 2021). While 

thalamocortical connections have been shown to be disrupted in primary tauopathies 

(Whitwell et al., 2011) this data suggests that the majority of the effect of subcortical 

atrophy on survival is not mediated by disruption to between-network connectivity. Instead, 
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the contribution of subcortical atrophy to survival is relatively independent of cortical 

atrophy or connectivity.  

The differential effects of subcortical and cortical atrophy on survival show the importance 

of different methodologies in selecting survival predictors, and the ability to recognise 

regional effects. Connectivity components were included as significant predictors of 

survival and longitudinal change in clinical/neuropsychological assessments beyond total 

grey matter volumes. Stepwise regression and standard regression models are not well 

suited to large number of collinear structural features, with differential regional effects 

identified by partial least squares regression. I also used post-hoc selected regions to show 

that collinearity is not significantly worsening cross-validation performance, and to 

determine how regional atrophy (as a marker of pathology) predicts longitudinal 

connectivity change. 

My work highlights some of the barriers that limit between-network connectivity from 

resting state functional MRI as a dementia biomarker. Network connectivity satisfies 

criteria for a biomarker of progression, anticipating clinical deterioration with a 

mechanistic rationale for a causal relationship (Eimeren et al., 2019). Yet even when 

adopting a methodology designed to increase reliability, the failure of connections to appear 

repeatedly in imaging means that results are insufficiently robust to provide accurate single-

subject survival predictions or to operate as an intermediate endpoint for clinical trials 

(D’Esposito, 2019). I selected a small number of independent components to assess 

between-network connectivity, but this approach may fail to identify important functional 

connectivity or activation patterns relevant for survival. There are a range of alternative 

approaches to analysing functional data, including graph metric, dynamic connectivity, 

voxel-wise, and gradient based analyses which may also capture characteristic differences 

predictive of survival. Further work is needed to determine whether these methods are more 

robust and with better test-retest reliability in neurodegenerative conditions with diffuse 

connectivity change and synaptic loss. One important consideration is the relevance of 

brainstem and thalamic structures in survival in PSP and CBS. Estimates of functional 

connectivity in these regions are affected by high physiological noise and other analytic 

approaches may be considered (Beissner et al., 2014). 

There are other limitations to this study. I found that in-scanner motion itself predicts 

survival in PSP and CBS. Despite adopting a principled preprocessing pipeline and not 
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including motion confounds as a regressor in higher-order regressions (Geerligs et al., 

2017), there is an inevitable compromise between over-zealous preprocessing removing 

connectivity indicative of poor survival, and the failure to remove spurious connectivity 

deriving from motion (Power et al., 2012). To reduce the risk of motion biasing our 

assessments of connectivity I excluded significant numbers of participants, so it is possible 

that our conclusions do not apply to the excluded members of the cohort. I have used cross-

validation to assess the accuracy of our survival predictions across sites but have not tested 

results in a third, out-of-sample, cohort that varies by scanner and protocol (Yu et al., 2018). 

Although I present data from a sizeable cohort of participants, increasing study power 

would allow for model fine-tuning and to compare machine learning approaches. I found 

only uncorrected differences between PSP and CBS and differential effects of connectivity 

on cognitive performance. I adopted an approach to analysis designed to detect diffuse 

changes in connectivity that might be associated with poor survival. Alternative 

methodological choices, such as completing analysis only with patient groups, may better 

capture between-group differences and be useful to test if these differences are important 

in predicting survival. Recent developments (Horie et al., 2022) in fluid biomarkers may 

help improve in vivo prediction of pathological aetiology in tauopathies, which has the 

potential to assist prognostication.  

In conclusion, between-network functional brain connectivity predicts clinical 

deterioration and survival in PSP and CBS, with prediction in terms of cross validation and 

in terms of future changes after baseline scanning. However, functional connectivity 

provides less accurate predictions of survival than simpler measures of focal subcortical 

atrophy and baseline clinical severity.    
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6.5 Supplementary materials for chapter 6 

 

 

Supplementary Figure 6-1. Mean framewise displacement from resting state functional MRI is a significant 

predictor of survival in both PSP and CBS. Here all participants are considered prior to any exclusion for 

excess motion. 
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  Supplementary Table 6-1. Motion parameters by group at baseline scan 

 

   

 Control PSP CBS F p 

Mean framewise 

displacement 

0.19 (0.12) 0.18 (0.13) 0.26 (0.22) 7.5 0.0007 

Median spike 

percentage 

3.9 (2.6) 3.5 (2.5) 3.5 (3.5) 0.5 0.59 

Max spike 

percentage 

14.2 (9.0) 18.3 (11.2) 13.8 (10.4) 5.2 0.006 

Max DVARS 7.8 (1.1) 7.9 (1.1) 7.6 (1.3) 1.1 0.33 

 

Supplementary Table 6-2. Fixed effects for mixed linear models for different neuropsychological tests. t 

and p-values for the years terms calculated using Satterthwaite’s method 

 Intercept years t P 

ACER 80.1 -4.3 -8.2 4x10-12 

CBIR 42.2 8.0 5.1 5x10-6 

PSPRS 32.6 6.8 10.6 2x10-11 
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Predictor PLSR standardised 

coefficients 

P value 

PSPRS 0.20 3.1 x 10-8 

CBIR 0.10 5.1 x 10-4 

ACER -0.056 0.058 

Age 0.067 0.013 

Supplementary Table 6-3. PLSR coefficients for a one component PLSR Cox model 
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7 Discussion 

In this thesis I have assessed imaging changes throughout the disease course in the 

syndromes associated with frontotemporal lobar degeneration. Here, I relate findings to the 

aims and hypotheses outlined in section 1.10, highlighting common themes across chapters. 

I discuss how focal changes to structure in FTLD result in widespread disruption to 

functional networks, how imaging biomarkers can be used to improve predictions of 

prognosis across the disease course, and the benefits of using functional connectivity as an 

explanatory tool and intermediate outcome measure. I comment on the utility and limits of 

task-free fMRI in neurodegenerative conditions. The chapter ends with an overview of the 

developments required to introduce advanced imaging biomarkers in supporting precision 

medicine and trials of experimental therapeutics in FTLD. 

7.1 A summary of key findings 

7.1.1 Diffuse network changes occur in FTLD and correlate with severity. 

Using various methodological approaches, I have found that functional networks are 

disrupted in FTLD syndromes. In sporadic and familial FTD, and in PSP, functional 

network dynamics are altered, with increased time in heteromodal large-scale networks, 

and a decrease in proportion of time spent in the primary cortices and subcortical regions. 

In PSP and CBS, I found reductions, compared to healthy controls, in weighted degree 

across cortical and subcortical regions, and reduced connectivity between multiple large-

scale networks. 

While network disruption is diffuse in FTLD syndromes, there is variation in network 

involvement associated with phenotypic heterogeneity across diagnostic entities. In FTD 

the largest change in network dynamics was in occupancy of the salience network. Patterns 

of atrophy in behavioural variant FTD mirror the salience network (Seeley et al., 2009), 

changes which correlate with post-mortem pathological change in the insular cortex 

(Pasquini et al., 2020).  Attenuation in salience network connectivity (Dopper et al., 2013; 

Zhou et al., 2010) is associated with the cardinal social and behavioural dysfunction of 

bvFTD (Toller et al., 2018). In CBS there were uncorrected greater reductions in 

connectivity in posterior components, including the dorsal attention network, which has 
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been found to be a focus of network localisation in meta-analyses of task-free fMRI studies 

(Darby et al., 2019). 

Network disruption is associated with clinical severity. In PSP, scores on a network 

dynamic component correlated with the standard multidomain rating scale, the PSPRS. In 

sporadic and familial FTD time-varying network markers from hidden Markov modelling 

were associated with executive dysfunction and cognitive impairment. Broad changes in 

between-network connectivity were associated with severity in both PSP and CBS, with an 

interaction in the relationship between greater posterior connectivity change and diagnosis 

for cognitive impairment measured by the ACE-R.  

These results demonstrate the advantages of adopting whole brain approaches to analyses 

of neurodegenerative disease, rather than regional- or edge- level analyses. In healthy adults 

brain-behaviour effect sizes are larger with multivariate techniques (Marek et al., 2022) 

and these relationships are more likely to be detected using methods that assess significance 

across the whole brain (Noble et al., 2022). It is plausible that outcomes such as survival, 

or rating scales and neuropsychological assessments that capture highly varied functions 

and cognitive domains, would be associated with widespread (rather than focal) disruption 

to brain function. Considering both temporal and spatial information in a time-varying 

analysis of functional networks provides an effective technique to characterise brain-wide 

functional change in FTLD, in keeping with the finding that dynamic functional 

connectivity improves group classification in dementia (Moguilner et al., 2021).  While 

alterations to analyses may be needed to capture different features of a syndrome, such as 

motor, behavioural, executive, or visuospatial impairment, all are likely best captured by 

methods that consider the whole brain.  

7.1.2 Connectivity loss both co-localises and occurs remotely from atrophy 

and synaptic loss. 

Functional connectivity differences in the FTLD syndromes occur both at the site of 

structural change and remotely from it. In chapter 4 I showed that subcortical atrophy in 

PSP is associated with dynamic network dysfunction of both cortical and subcortical 

regions. In chapter 5 regional variation in synaptic density spatially covaried with 

functional connectivity in topographically distinct regions, with frontal synaptic loss 

associated with reduced connectivity in posterior hubs of the default mode network. In 
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chapter 6 cortical atrophy at baseline predicted future accumulation of disparate between-

network differences. 

These results demonstrate that clinicoanatomical convergence (Seeley, 2017) can arise at a 

network level, with regionally distinct pathological change involving a single network. 

Therefore, although two pathologies (e.g. 3-R or 4-R tauopathy) may preferentially affect 

different brain regions, they can both cause behavioural and executive disturbance by 

involvement of relevant networks (e.g. salience or frontoparietal networks). Using hidden 

Markov modelling I have shown that regional pathology causes global perturbation in non-

stationary brain dynamics. This is in keeping with the observation that certain brain nodes 

are key in orchestrating brain state changes (Gu et al., 2015), with pathology in distinct 

regions causing similar changes to brain dynamics. Convergence in clinical symptoms may 

only be temporary (Murley et al., 2020a), since pathological processes would then follow 

different regional patterns and involve different networks. Task-free fMRI, in combination 

with other imaging modalities, is therefore useful in understanding when clinical symptoms 

might be predictive of outcome. 

7.1.3 Imaging biomarkers predict outcomes across the disease course. 

A key motivation in biomarker research in neurodegeneration is to enhance understanding 

of the factors that determine outcome and to improve prognostication, both to support 

clinical practice and in a trial setting. In chapters 3 and 6 I tested the ability of imaging 

markers to predict disease outcomes at different stages of the disease course. In chapter 3 I 

showed that dynamic network changes are associated with conversion to symptomatic 

disease and cognitive decline in familial FTD. In chapter 6 I found that in PSP and CBS, 

both structural and functional imaging metrics were associated with faster rate of clinical 

decline and shorter survival, with best predictions of survival combining clinical and 

structural imaging metrics.  

These findings provide mechanistic insight. In presymptomatic patients in familial FTD 

hyperconnectivity has also been observed (Lee et al., 2019), with increased coupling 

between functional connectivity and cognition close to symptom onset (Tsvetanov et al., 

2020), suggestive of early compensatory processes (Figure 1-4, (Gregory et al., 2017)). 

Network integrity is relatively maintained in presymptomatic patients prior to network 

breakdown in the symptomatic phase (Rittman et al., 2019). This thesis adds the finding 

that large-scale network disruption occurs around the point of symptom onset. Given the 
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difficulties in determining clinically when someone has entered the symptomatic stage of 

familial FTD (Moore et al., 2020), characterising large-scale network changes typical of 

disease provides a useful objective marker. In PSP and CBS thalamic, pontine, and 

midbrain atrophy predict poor survival, potentially a consequence of the central role of the 

these structures and their connections in varied core functions (Hwang et al., 2017; Roy et 

al., 2022; Sherman, 2016).  

The cross-validation in chapter 6 is informative as to biomarker utility in predicting 

outcome (functional imaging v structural imaging v clinical metrics). There are multiple 

contributory factors that account for between-network connectivity being only a moderate 

predictor of survival in PSP and CBS. Functional MRI has poor signal-to-noise ratio from 

subcortical and brainstem structures (Beissner et al., 2014). It may be that the connectivity 

of these regions is important in survival. This is suggested by the poor prognosis associated 

with subcortical atrophy and with clinical features associated with subcortical disease, such 

as falls and dysphagia (Glasmacher et al., 2017). I found that between-network connectivity 

was a mediator of cortical rather than subcortical atrophy.  

Consideration of the neurodegenerative cascade in Figure 1-1 offers further insight. 

Connectivity loss in regions or networks important for an outcome would be prognostically 

relevant if associated with future disturbance in the same system in a manner that worsens 

symptoms. Connectivity change that occurs in synchrony with symptom development 

would not be predictive of outcome (correlating rather than anticipating outcome, using the 

framework in Figure 1-3). Correlative but non-predictive changes have been found in PSP 

using longitudinal imaging over a 6 month time frame (Brown et al., 2017). Multi-modal 

imaging may be helpful to differentiate associative and anticipatory measures, if we 

construct disease models that estimate when prognostically important networks become 

affected. In chapter 3 I showed that large-scale changes in dynamic network activation are 

non-linear. Prognostic accuracy of functional connectivity (and other imaging makers) may 

be greater for moderate rather than severe change, or instead when peak compensatory 

processes can be detected (Gregory et al., 2017). 

In sections 7.2 and 7.3 I discuss the clinical situations in which biomarkers predictive of 

outcome may be useful, and the challenges of implementing task-free fMRI in a trial or 

clinical setting. 
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7.1.4 Transdiagnostic analyses demonstrate shared imaging features in 

FTLD. 

A common finding across the chapters of this thesis are shared imaging phenotypes in the 

syndromes associated with FTLD in multiple modalities. Using [11C]UCB-J positron 

emission tomography, I found partially overlapping distributions of reduced synaptic 

density, but with disease specific effects. With task-free fMRI, large-scale network 

dynamic differences in familial FTD from non-carriers were observed across mutations and 

between those with behavioural predominant symptoms and primary progressive aphasia. 

The primary component of dynamic network change in familial FTD showed similarities 

with the pattern I found in PSP, recognising that differences in model order choices limit 

the ability to make direct comparisons of fractional occupancy for individual states. 

Between-network connectivity differences from controls were broadly comparable in PSP 

and CBS. 

This is not to argue that differences are not found depending on the diagnostic label – indeed 

I describe some such differences above. Other choices of analysis may bring these to the 

fore. For instance, I would expect to find differences from task-free fMRI in familial FTD 

between PPA and bvFTD by focusing on specific states, perhaps with a higher model order 

(Reyes et al., 2018). But crucially, transdiagnostic analyses demonstrate overlap in disease 

physiology and determinants of outcomes. PSP and CBS share the same between-network 

connectivity survival predictors, suggesting convergence in factors that influence survival, 

in keeping with transdiagnostic approaches in FTLD using clinical metrics (Murley et al., 

2021). In chapter 5, I show how synaptic loss results in associated topographical 

distributions of connectivity loss across diagnostic labels, with similar consequences for 

cognition and clinical severity. These findings imply that therapies, such as to limit synapse 

loss, could be applied across the FTLD spectrum. I discuss how transdiagnostic approaches 

can lead to precision medicine and support novel trial designs below.  

7.1.5 Functional connectivity and modelling the neurodegenerative cascade. 

The utility of a biomarker can be considered and assessed against its usefulness in clinical 

medicine by the criteria described in Figure 1-3 (Eimeren et al., 2019), or by whether it 

allows us to test hypothesis relevant to neurodegenerative pathogenesis or treatment. In 

chapter 6 I use both approaches; between-network connectivity is a less accurate predictor 

of survival than clinical and structural measurements, with the observed changes in 
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connectivity associated with cortical (versus subcortical) atrophy. In chapter 5 functional 

connectivity acts both as an explanatory biomarker and as an outcome measure. Synaptic 

loss, atrophy, and neurotransmitter receptor/transporter distributions explain non-

overlapping variance in functional connectivity. Functional connectivity both adds to and 

moderates the effect of synaptic loss on survival. 

In health there is divergence between network patterns derived from structural imaging and 

from task-free fMRI (Honey et al., 2009; Mišić et al., 2016). Structural connectomes 

partially predict their functional counterparts with variable overlap (Mišić et al., 2016). 

Moreover a structural connectome can be associated with multiple configurations of 

functional networks (Deco et al., 2017; Honey et al., 2007; Vidaurre et al., 2017), even 

within short scanning windows and in a single subject (Poldrack et al., 2015). Functional 

connectivity, a statistical dependency between two brain regions, is determined by complex 

direct and indirect influences and does not imply causality or influence (Friston, 1994).  

Similarly, I have shown that in neurodegeneration structural changes (cell loss or synapse 

loss) partially but incompletely explain functional network differences. Modelling 

functional connectivity as a dependent variable allows us to test other important factors that 

may explain variance. In chapter 5 I show the importance of noradrenaline transporter 

distributions, beyond structural determinates, to functional connectivity loss in FTLD. That 

the strength of the connectivity-noradrenaline transporter distribution relationship is 

associated with locus coeruleus integrity provides validation for this methodology and 

shows how it may be possible to limit number of modalities when characterising brain 

change in disease. It does not follow from these results that noradrenaline is necessarily 

deplete, given the complexity of determinants of any neural system (Hansen et al., 2022). 

A further challenge in using functional connectivity as an outcome measure is ascertaining 

which connectivity changes observed at rest relate to behaviour and cognition, particularly 

given that task-induced changes in functional connectivity show differential effects and 

improve predictions of phenotype (Greene et al., 2020, 2018). 

How do we further improve modelling of functional changes from task-free fMRI? Using 

diffusion tensor imaging enables characterisation of the structural connectome and the 

relationship with functional connectivity (Honey et al., 2009, 2007; Mišić et al., 2016), 

important in FTLD where there are extensive structural connectivity changes (Mahoney et 

al., 2015; Whitwell et al., 2011). Direct measurement of neurotransmitter deficits in 
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individual patients (e.g. using MR spectroscopy or PET ligands) would provide more 

precise information about the effects of pathology than from using transporter/receptor 

maps from healthy populations. Whole brain modelling which considers causal pathways, 

interactions, non-linear effects, and regionally distant effects of structural change on 

function may explain a larger proportion of variance (Jancke et al., 2022). In additional, 

there remains the possibility of unaccounted for artefactual influences on connectivity. 

Delineating these components is important to maximise use of task-free fMRI as an 

intermediate outcome or endpoint. 

7.2 The utility of task-free fMRI in neurodegeneration 

In the introductory chapter I discussed doubts regarding the merits of research using task-

free fMRI in neurological diseases or in understanding brain-behaviour relationships 

(Kullmann, 2020). Drivers of this scepticism included the limited clinical applications of 

fMRI (including task-based fMRI) and uncertainty as to the relationship between the blood-

oxygen-level-dependent signal and neuronal activity (Kullmann, 2020). The effect sizes of 

brain-behaviour relationships are small (Marek et al., 2022), which in combination with 

high degree of freedom in analysis risks unreproducible research (Carp, 2012; Ioannidis, 

2008; Poldrack et al., 2017). Subject motion results in spurious and systemic increases in 

correlation without careful pre-processing (Power et al., 2012; Satterthwaite et al., 2012), 

a problem made more challenging in FTLD where motion itself predicts survival (chapter 

6).  

Despite these problems, which are variably surmountable, I suggest that task-free fMRI 

remains a useful research tool where appropriately targeted. In keeping with the model of 

the neurodegenerative cascade introduced in chapter 1, task-free fMRI is best considered a 

near-cognition imaging marker. It is not therefore plausible to suggest that it would be 

helpful in determining the underlying pathology of a clinical presentation, or to detect very 

early accumulation of pathology long before symptom onset. In keeping with the 

hypothesised utility of task-free fMRI, I have shown that it can act as an upstream outcome 

marker of neuropathological change (chapter 5), can predict important outcomes for 

patients with FTLD (chapters 3 and 6), and can support understanding of how various 

physiological changes in neurodegeneration result in behavioural and cognitive symptoms. 

Functional MRI also has advantages over other biomarkers of function and neural activity, 
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such as magnetoencephalography; it is scalable and widely available, with excellent spatial 

resolution including for subcortical structures. 

Task-free functional MRI should therefore not be discarded as a research tool, although its 

limitations must be recognised and taken into consideration when designing analysis 

strategies.  Key requirements for obtaining robust results include formal pre-registration of 

analysis plans, the use of external or hold-out datasets for validation, and full reporting of 

analyses, including those that did not produce significant results (Poldrack et al., 2017).  

There are significant challenges in using task-free fMRI in clinical practice or a clinical 

trial setting. Pre- and post-processing is complex and would require technical innovation to 

implement (see Leuthardt et al., 2018 for an example of how this might be achieved). In 

chapters 3 and 4 I have shown that results can be replicated across sites, albeit with 

research-grade scanning and harmonisation of acquisition protocols. Collaboration and 

benchmarking research are also required to develop analysis and pre-processing standards 

that could theoretically support task-free fMRI use in trial settings (Bijsterbosch et al., 

2021; Botvinik-Nezer et al., 2020).  

A more fundamental problem is that the effect sizes of task-free fMRI changes may be too 

small to use in clinical practice. In chapter 6, although between-network connectivity was 

associated with poor survival in PSP and CBS, it did not improve survival predictions 

beyond clinical and structural imaging metrics. Assessment of biomarker utility needs to 

replicate true clinical practice as closely as possible. For instance, it would be of interest to 

compare the predictive power of task-free fMRI changes in presymptomatic familial FTD, 

as described in chapter 3, with clinical predictions of time to disease onset. Only with such 

data can we test if effect-sizes are sufficiently large to support clinical practice and trials of 

experimental medications, or to determine if task-free fMRI should primarily remain a 

research tool to probe disease mechanisms in neurodegeneration. 

There are promising experimental advances in task-free fMRI that may help overcome 

these challenges and provide additional insights into the neurodegenerative cascade in 

FTLD. Developments include functional MRI with millisecond temporal precision (Toi et 

al., 2022), potentially allowing exploration of rapid brain dynamics and testing of causal 

relationships, presuming such methods can be applied to humans. Spatial precision and 

mapping of mesoscale brain functions in humans has been shown to be possible with ultra-

high field functional MRI (Jia et al., 2021). However sequence acquisition currently 



163 

 

requires longer scanning times than at 3-Tesla and it may be that using optical pumping 

magnetometers for magneto-encephalography mean that the latter is a better option for 

detailed spatial and temporal resolution of the whole brain in neurodegeneration (Qin and 

Gao, 2021). Low demand tasks during fMRI scanning, such as movie watching, provide a 

richer and better defined array of brain states than resting state acquisition protocols (Meer 

et al., 2020). 

Novel computation modelling techniques allow prediction of disease spread through the 

brain (Iturria-Medina et al., 2014; Oxtoby et al., 2018; Pandya et al., 2019), comparison of 

different components of the neurodegenerative cascade to ascertain their relative 

importance (Meisl et al., 2021), and characterisation individual disease profiles by 

combining multiple modalities (Khan et al., 2022). I have showed how functional 

connectivity may be used as an outcome marker to quantify contribution of synaptic 

density, atrophy, and neurotransmitter deficits to function. This approach uses parcellation 

and modelling of the connectome defined at the group level. Individualised representations 

of functional connectivity are possible from task-free fMRI (Poldrack et al., 2015; Wang 

et al., 2015) and may assist in characterising participant variability in disease (Bijsterbosch 

et al., 2021), including when assessing longitudinal change.  

In the next section I place the work in this thesis, together with developments such as 

described here, in the context of precision medicine and supporting clinical trials. 

7.3 Towards precision medicine and supporting clinical trials 

Throughout this thesis I have emphasised shared features and heterogeneity in the clinical 

syndromes associated with FTLD. I have leveraged heterogeneity to understand disease 

mechanisms and combined patients across diagnoses to detect transdiagnostic outcome 

predictors. This is not to suggest that diagnostic labels should be abandoned, or that 

diagnostic entities should be further sub-divided in a finer-grained classification system. 

Debates on the relative merits of ‘lumping’ and ‘splitting’ in disease nosology tend to 

highlight scenarios when these respective approaches are beneficial (Höglinger, 2018; Ling 

and Macerollo, 2018). Transdiagnostic disease modelling and biomarker design can 

accommodate both perspectives and is essential for the development of precision or 

personalised medicine.  
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Precision medicine in neurodegeneration refers to the use of clinical, genetic, and imaging 

and fluid biomarker information to generate a complete risk profile of a patient with 

dementia, and to tailor treatment accordingly (Kosik, 2015; Schork, 2015). This approach 

is motivated by the complex multifactorial nature of neurodegenerative diseases. Focusing 

on single disease factors is likely a contributor to the (at best) small-moderate effect sizes 

found in trials of disease-modifying therapies (Khan et al., 2022). Traditional large-scale 

phase III studies are inefficient at detecting subgroups who may respond most effectively 

to a treatment, relying on post-hoc analysis (Schork, 2015).  Patient-customised treatments 

are most advanced in oncology, but examples exist of design, manufacture, and delivery of 

tailored drugs for single rare neurodegenerative diseases such as Batten’s disease (Kim et 

al., 2019). Figure 7-1 provides a schematic representation of how precision medicine might 

be developed and applied in a clinical setting for patients with FTLD syndromes. There are 

varying degrees to which trial design might be personalised, from using biomarkers in 

inclusion criteria to select and assess patients at tightly defined disease stages (see for 

instance Mintun et al., 2021), to drawing inferences from commonalities in multiple N-of-

1 studies. 

 

Figure 7-1. A schematic representation of personalised approach to medicine in FTLD. The 

neurodegenerative cascade is characterised using multiple imaging and other biomarkers, with modelling of 

disease processes leading to individualised treatment. Longitudinal biomarker assessment is used for 

feedback and refining treatment.  
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How realistic is personalised medicine in dementia care? In the NHS patients with 

neurodegeneration have long and growing waits for review and diagnosis in memory clinics 

(Royal College of Psychiatrists, 2022). Access to different imaging modalities is variable, 

with a proportion of memory services performing no imaging at all (Cook et al., 2020). 

Clinicians in the majority of memory services are unable to view scans (Cook et al., 2020). 

Personalised medicine requires significant upfront and on-going costs, even with growing 

availability of genetic sequencing and affordable wearable technologies to collect health 

data (Schork, 2015). Acquisition of multiple biomarkers, including repeated imaging, is 

challenging in dementia, and may be refused by patients, particularly if they do not lead to 

treatments which substantially improve quality of life. Given that wholescale reform would 

be needed for these approaches to be implemented, developments are most likely in specific 

trial settings. I discuss two such scenarios, namely trials in presymptomatic patients and 

basket trials in FTLD, particularly for symptomatic management. 

As discussed in chapter 1, pathophysiological processes in dementia start many years 

before disease onset. A potential therapeutic needs to be aimed at the right target at the 

optimum point in the disease course, which may be in the asymptomatic or prodromal phase 

of the disease (Sperling et al., 2011). There is particular interest in presymptomatic trials in 

familial dementias, given the possibility of identifying trial participants and the 

development of targeted genetic treatments. Novel imaging and fluid biomarkers have a 

crucial role in this group for both inclusion criteria and as outcome measures, where relying 

on clinical or neuropsychological tests would require unfeasibly large numbers of 

participants (Staffaroni et al., 2022). For instance, a trial in a genetic variant in FTD might 

use neurofilament light chain, neuropsychological performance, and brain volume to 

predict proximity to onset and as endpoints. Dynamic network changes in FTD may 

improve disease age modelling and act as secondary endpoints. Progress is needed in 

identifying presymptomatic individuals in sporadic FTLD, with large population databases 

such as the UK Biobank providing insight into this group (Street et al., 2022; 

Swaddiwudhipong et al., 2022). Presymptomatic patients are more likely to be able to 

tolerate collection of multiple and repeated biomarkers and combination therapies, which 

would allow precision targeting of trial treatments. 

Transdiagnostic characterisation of the FTLD syndromes emphasises the possibility of 

basket trials, where multiple diseases are included in a single trial design (Boxer et al., 

2020; Woodcock and LaVange, 2017). Possible trials include those for symptoms common 
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in multiple FTLD syndromes, such as apathy, or for common mechanistic targets, such as 

tau or inflammation. This approach increases the recruitment population for these rare or 

uncommon conditions, with results that would be applicable to a larger patient cohort. Here 

greater biomarker use is essential to ensure that disease mechanisms or molecular 

aetiologies are shared between trial participants. An example trial for noradrenaline 

replacement in FTLD syndromes could use combination imaging, including 7-Tesla 

imaging to assess locus coeruleus integrity, structural and synaptic PET imaging to select 

patients with sufficiently mild disease to benefit from treatment, and functional imaging to 

refine selection and as an intermediate outcome marker. A clinical trial setting allows more 

resource intensive biomarker selection, although results could not then be easily applied in 

clinical practice. Trialists may consider multiple staged trials, with an initial stage with 

higher numbers of biomarkers followed by a stage using biomarkers selected as more 

readily available for ‘real-world’ populations. For instance, blood or CSF biomarkers of 

synaptic degeneration (Ashton et al., 2019) may be used instead of the PET ligand, 

presuming a similar cohort is selected.  

To progress to greater use of imaging biomarkers in clinical trials and precision medicine 

in FTLD we need to advance understanding of the factors that dictate imaging change, 

extending the work of this thesis. How neurodegenerative processes cause atrophy, as 

observed on structural imaging, is only partially understood (Fung et al., 2020; Planche et 

al., 2022). Consequently, structural imaging findings in experimental drug trials in 

dementia can be difficult to explain. Drugs that remove amyloid in Alzheimer’s disease 

have in some studies been associated with greater rates of atrophy than in placebo groups 

(Cummings, 2019), including lecanemab (Swanson et al., 2021). It is uncertain whether 

similar effects might be observed in FTLD, impacting on the use of structural MRI as a 

trial endpoint. 

Significant work is also required to progress imaging modalities apart from volumetric MRI 

in a clinical trial setting, particularly in characterising longitudinal imaging changes 

(Sperling, 2011). I have shown in chapter 6 how longitudinal task-free fMRI can be used 

to understand how atrophy determines functional connectivity. Effect sizes of longitudinal 

fMRI in early PSP appears too small for clinical trial use (Brown et al., 2017). It is possible 

larger effect sizes might be seen in FTLD syndromes with a greater proportion of cortical 

pathological burden, given the low signal-to-noise ratio in brainstem regions (Beissner et 

al., 2014), or by using participant specific connectomes. Integrating data across modalities 
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captures greater information about an individual patient’s biology (Calhoun and Sui, 2016; 

Khan et al., 2022; Uludağ and Roebroeck, 2014). However, care is needed to ensure that 

common effects of artefact are not amplified in multi-modal imaging studies. Given the 

complexities of inference and analysis when using multiple sequences, I suggest that pre-

registered approaches with strong theoretical grounding are essential if modalities are to be 

combined to support personalised brain models in FTLD syndromes.  

One incentive for developing precision medicine in neurodegeneration is that experimental 

drug trials are frequently biased to white Western populations (Padala and Yarns, 2022), 

resulting in uncertainty as to whether effects replicate in other ethnicities. Theoretically, 

personalised medicine may support trials in under-represented groups, helping to direct 

treatment to individual risk factors and remove concerns that trial participants are ‘guinea 

pigs’ (Schork, 2015), a particular concern for groups that have been historically mistreated 

by research (Buseh et al., 2013; Wolinetz and Collins, 2020). An important caveat is that 

biomarker development has also often excluded the same groups. This is evidenced in racial 

disparities in biomarkers for Alzheimer’s disease pathology, with lower rates of positive 

PET and cerebrospinal fluid biomarkers in African American participants with a clinical 

diagnosis of mild cognitive impairment or Alzheimer’s disease (Garrett et al., 2019; Morris 

et al., 2019). Biomarkers must be designed and tested in diverse groups to improve 

dementia care for all patients.   

7.4 Conclusions 

I have shown how imaging biomarkers are useful in understanding heterogeneity in 

phenotypic presentation and progression in syndromes associated with frontotemporal 

lobar degeneration. Adopting transdiagnostic approaches to analyses provides insight into 

how heterogeneity arises, enhanced by combining multiple modalities in single studies. 

Task-free fMRI has a role in mechanistic understanding of disease mechanisms and in 

predicting progression throughout the disease course, but its usefulness in clinical settings 

is limited by low signal-to-noise ratio and small-moderate effect sizes. I have sketched a 

path for how we progress to personalised medicine and support trials in presymptomatic 

patients. These developments will be essential to introduce new symptomatic and disease-

modifying treatments to improve outcomes for patients, families, and carers. 
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