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Százhalombatta-Földvár constantly used this naturally 
present material, and clay was of great importance for 
the Vatya people who lived at the site. Tons of it were 
used for the construction of walls and floors, and for 
making household items and some furnishings (e.g. 
hearths, containers, installations) (Fig. 13.2). The versa-
tile use and conscious application of clay was an integral 
part of Bronze Age people’s lives (Sofaer 2015, 15‒16). 
Here, we employ soil micromorphology to add new 
details to our understanding of the socially embedded 
traditions and experience-based mastery of clay use by 
Bronze Age people. This chapter also aims to offer data 
from a temperate-zone tell site in the Carpathian Basin, 
as these sites have not been extensively investigated in 
such depth to date.

Natural clay deposits can contain components 
such as quartz, feldspar, lime, mica and other mineral 
fragments, and also metal oxides, gypsum, mollusc 
shells, and organic matter. Based on plasticity, ‘fat’ 
and ‘lean’ clays can be differentiated. These terms 
refer to liquid limits (fat clays have liquid limits >50, 
are expansive and/or shrink-swell clays, while lean 
clays have <50 liquid limits, and less plasticity due to 
the presence of sand/silt; the type of mineral making 
up the clay contributes greatly to these characteristics; 
Brady 1990). The fatter the clay is, the more it will 
shrink when dried or fired; shrinking, cracking, and 
bending are unfavourable properties for pottery pro-
duction. Such clays need to be tempered to achieve a 
sufficient mixture that is suitable for a given task (e.g. 
wall construction, hearth renovation or vessel produc-
tion). Heat resistance can also be changed by adding 
temper, which is an essential characteristic during 
firing. The type of temper greatly varies depending 
on the product to manufacture. Tempers can be either 
organic (e.g. straw, chaff or manure; Szakmány 2008) 
or non-organic (e.g. sand, grog; ibid.; Kreiter 2007; 
Kreiter et al. 2007).

The Bronze Age tell site of Százhalombatta-Földvár, Hun-
gary has been excavated for nearly twenty years now by the 
international Százhalombatta Archaeological Expedition 
(SAX) project. Scientific methods have been an integral 
part of the research from the beginning (Vicze 2005). One 
of these is archaeological soil micromorphology, which has 
been providing data since 2000 (Kovács 2009; 2012; 2013; 
Kovács et al. 2020). Microscopic examination of undisturbed 
soils and sediments via thin section analysis can be used 
effectively for the differentiation of building materials and for 
the observation of certain steps in construction techniques. 
Silty clay is one of the main construction materials used at 
the tell site. This chapter examines the building material and 
technique of the Vatya Culture. Furthermore, this paper is 
intended to demonstrate the potential of thin section soil 
micromorphology in relation to construction techniques in 
light of the SAX project’s results.

Clay is one of the most extensively used raw materials 
of the prehistoric tell-forming societies of the Carpathian 
Basin. Clay/earthen architecture has been investigated 
worldwide in many sites through archaeological soil 
micromorphology (e.g. Courty et al. 1989; Milek 2012; 
Friesem et al. 2017b; Matthews 1995; 2020; Lisá et al. 
2020; and see Friesem in this volume), with Near Eastern 
tells providing a great source of information at both 
macro- and micro-scale (e.g. Gé et al. 1993; Matthews 
& Farid 1996; Matthews et al. 1996). Clay is a durable 
substance that has long been used in construction (e.g. 
for dwellings, craft areas/workshops), and vast amounts 
of everyday household items are also made of it (pots, 
cups, bowls, loom weights, spindle whorls, etc.). This 
is what we find at the Vatya Culture Százhalombatta-
Földvár tell site in Hungary (Fig. 13.1), dating to the 
Middle Bronze Age (2000/1900‒1500/1450 bc). Over the 
past twenty years of excavation, countless forms of clay 
usage have been identified (Poroszlai 1998; 2000a; 2002; 
Poroszlai & Vicze 2004; Vicze 2013); the inhabitants of 
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2009). Ceramic production is one of the major clay-
consuming activities at Százhalombatta-Földvár. 
Numerous papers have discussed the typological, 
chronological, petrological and technological aspects 
of the ceramics found on the site (e.g. Poroszlai 2000a; 
Sofaer 2006; 2011; Kreiter 2007; Kreiter et al. 2007; Bud-
den 2007; 2008; Budden & Sofaer 2009). The present 
study focuses on other major clay-utilizing activities, 
namely construction of house floors and walls, using 
soil micromorphological analysis.

Our knowledge of Vatya culture houses and 
buildings is mainly about their structure, dimen-
sions and number of rooms (e.g. Bándi 1960; Kovács 
1963; Bándi & Petres 1969; Bóna 1982; 1991; 1992; 
Poroszlai 1988; 1992a,bc; 2000b; Vicze 1992; 2013; 
P. Fischl et al. 1999). Some data are also available 
on the material of the walls and floors. Previously, 

In the Hungarian archaeological terminology 
‘clay’ refers to a very fine grained, yellow soil/sedi-
ment that is used for construction (e.g. Kovács 1963; 
Bóna 1982; Poroszlai 2000c). In soil science, clay is 
defined as the finest sediment, with grain diameters 
of less than 0.002 mm (Stefanovits et al. 1999). There-
fore, for accuracy, in this paper the term ‘silty clay’ 
is used to describe construction materials as they do 
not reach the finest size limits.

In Hungary, analysis of ‘archaeological clays’ has 
mainly been covered by petrographic studies. Analysis 
of ceramic thin sections is carried out more and more 
frequently (e.g. Kreiter 2007; Gherdán et al. 2007; Szak-
mány & Nagy 2017). A limited number of studies have 
investigated types of clays employed in materials such 
as daub, loom weights, and floors from the Neolithic 
period (e.g. Kovács et al. 2009; Starnini & Szakmány 

Figure 13.1. Százhalombatta-Földvár (Map after Szeverényi & Kulcsár 2012, 289; aerial view photo by Márton Gorka). 
Images: authors.

Figure 13.2. House wall and silty clay floor, wall remains, installation (Site: Százhalombatta-Földvár). Images: authors.

Százhalombatta

Budapest
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in great detail (e.g. composition, building technique) 
via soil micromorphology.

Methods

Thin sections (Table 13.1) were produced by G. Kovács 
at the McBurney Laboratory for Geoarchaeology (see 
French & Rajkovaca 2015 for protocols) and analysed 
using a Nikon Eclipse E200 polarizing microscope at 
20x, 40x, 100x and 200x magnifications. Micropho-
tographs were taken under plane (PPL) and cross 
polarized light (XPL) for the determination and presen-
tation of the various components. The ratio of the coarse 
and fine materials (c:f distribution) was set at 100 µm. 
The proportion of components was estimated by visual 
estimation (Stoops 2003). Observations are shown in 
graphs. Structure was characterized by the coarse:fine 
ratio, the compactness of the layer (porosity) and by 
the level of bioturbation (Table 13.2). Only the most 
common minerals were recorded (quartz, polycrystal-
line quartz, muscovite, glauconite, biotite, chlorite and 
Sarmathian limestone). Inorganic residues of biological 
origin were also noted (e.g. phytoliths; Piperno 1988; 
and spherulites – an indicator of dung; Canti 1997). 
Anthropogenic inclusions comprise both organic (e.g. 
charcoal) and biomineral (bone) and other inorganic 
components (e.g. ceramics, daub, ash, slag), which 
can be associated with particular activities or spaces.

Results and discussion

As noted above, some data were already available on 
Vatya houses prior to the more recent investigations 
of Százhalombatta-Földvár. Here, some results of the 
ongoing SAX project will be presented. Soil micromor-
phological samples from seven Vatya houses (floors 
and walls) were analysed to add details to construction 
techniques and material choices.

Floors
Two main floor types were documented previously, 
and both were identified at Százhalombatta-Földvár: 
the so-called earthen floors and the more obvious clay 
floors (‘clay’ here refers to a very fine grained, yellow 
soil/sediment that is used for construction, e.g. Kovács 
1963; Bóna 1982; Poroszlai 2000c). According to our 
observations, clay floors appear more frequently at 
the site. In some cases, however, it became evident 
that earthen floors were constructed first, and later 
this practice was changed to preparing silty clay 
floors on top of an earlier earthen floor (e.g. houses 
ID 1818 and 3147).

Detection of silty clay floors during the excava-
tion was much easier compared to earthen floors, 

researchers believed that Bronze Age people lived in 
pit houses (Marosi 1930). Once it became evident that 
this was not the case, clay was recognized as a mate-
rial used for floor preparation (Kovács 1963). This 
was observed at the following sites: Aba-Belsőbáránd-
Bolondvár (ibid., 131), Alpár-Várdomb (Bóna 1982, 30, 
33–8), Baks-Homokbánya (P. Fischl et al. 1999, 93), 
Baracs-Bottyánsánc (Bóna 1991, 75; Vicze 1992, 147), 
Bölcske-Vörösgyűrű (Poroszlai 2000b, 124), Kakucs-
Turján (Jaeger et al. 2018, 103), Lovasberény-Mihályvár 
(Kovács 1982, 283), Nagykőrös-Földvár (Poroszlai 
1991, 59; 1992c, 157–8), Solymár-Mátyásdomb (Valkó 
1941, 99), Sárbogárd-Cifrabolondvár (Bándi 1960, 150), 
and Százhalombatta-Földvár (Poroszlai 1992b, 153; 
1993b, 14; 2000c, 104). Earthen floors were registered 
in only two cases: at Százhalombatta-Fölvár, in an area 
bordered by stakeholes and postholes that was used 
for penning (Poroszlai 2000a, 26), and at the Alpár, 
where the interior of a house room was deliberately 
made and used with an earthen floor (Bóna 1982, 36). 
This highlights that the raw material used for flooring 
was not uniform.

Various materials and techniques are also docu-
mented in the case of walls. At least two main types of 
walls can be differentiated: wattle-and-daub walls and 
beaten clay/earth walls. Remains of wattle-and-daub 
walls have been found at the sites of Alpár-Várdomb 
(Bóna 1982, 33, 34), Baks-Homokbánya (Trogmayer 
1966; P. Fischl et al. 1999, 102), Csongrád Vidre-sziget 
(Szénászky 1977, 18–22), Kakucs-Turján (Jaeger et 
al. 2018, 213), Solymár-Mátyás-domb (Valkó 1941, 
99), Százhalombatta-Földvár (Poroszlai 1996, 11-12, 
2000a, 25), Aba-Belsőbáránd (Kovács 1963, 131), 
Baracs (Vicze 1992, 147), Bölcske (Poroszlai 1993a, 
62), Pákozd (Marosi 1930, 58) and Sárbogárd (Bándi 
1960, 150). Beaten clay walls were noted at Alpár-Vár-
domb (Bóna 1982, 34), Bölcske-Vörösgyűrű (Poroszlai 
2000b, 124), Nagykőrös-Földvár (Poroszlai 1992c, 
157) and Százhalombatta-Földvár (Poroszlai 2000c, 
104). It is very likely that various raw materials 
were used for the different wall types. Diversity is 
well illustrated from Alpár where Bóna (1982, 35) 
recorded the presence of: ‘rammed, hard, brown-
ish-yellow, brown or black walls…’ Examples of 
re-plastering have also been documented in both 
main wall types, e.g. at Baks-Homokbánya (Trog-
mayer 1966, 217), Bölcske-Vörösgyűrű (Poroszlai 
1993a, 62), Sárbogárd-Cifrabolondvár (Bándi 1960, 
150) and Százhalombatta-Földvár (Poroszlai 1992b, 
153). This clearly shows that walls, like floors, were 
also not uniform.

The Vatya houses of Százhalombatta-Földvár 
site provide a unique opportunity to investigate wall 
and floor construction, and their building materials, 
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use (e.g. MS7/2 2002 b in house 3147 or MS9/2 2003 
g in house 3733; Fig. 13.4). Although the silty clay 
floors are very similar in composition, they are not 
from one source (Figs. 13.3 and 13.5; Table 13.2). The 
main difference is the amount of quartz/polycrystal-
line quartz in them. The rest of the components (other 
minerals, anthropogenic inclusions, organic materials) 
do not show a significant difference (Fig. 13.5). Based 
on these inclusions, two main types of silty clay floor 
material can be distinguished: a sandy silty clay floor 
and a less sandy one.

Various clay sources were easily accessible in the 
vicinity of the site that were likely used in the Bronze 
Age, as suggested by provenance analysis (Kalmár 
2005). However, provenance analysis can be rather 
problematic as clay sources can be heterogenic and 
there is a great variety of potential sources. Mapping 
of clay sources and matching them with the ceramic 
material was tested previously (Kreiter 2007; Kreiter 
et al. 2007) but only a local origin could be established. 

simply due to their distinctive yellow colour. Samples 
of seven houses (IDs 127, 1818, 3136, 3147, 3181, 3700, 
3733) were processed and analysed to observe differ-
ences and variations (Figs. 13.3 and 13.4). The very 
fine matrix of the silty clay floors consists mainly of 
mineral matter (clay, quartz, polycrystalline quartz, 
muscovite, biotite, glauconite and chlorite). Quartz 
and polycrystalline quartz occur with higher fre-
quency (Fig. 13.5). The fabric (matrix) of such floors 
is very compact. Anthropogenic components (e.g. 
bone, ash, ceramic fragments) are only occasionally 
present (Fig. 13.5). It seems that silty clays used for 
flooring were not tempered with vegetal matter. 
Although phytoliths are present in small quantities, 
they may be part of the raw material. In some cases, 
larger amounts of organics are detectable (mainly 
in the form of pseudomorphic plant remain voids). 
However, organics appear locally in clusters, and this 
suggests that they entered the clay matter accidentally, 
maybe from the surroundings during application or 

Table 13.1. List of the samples analysed.

Sample 
code

Stratigraphy/
Microlayers Description

Archaeological 
context

MS9/2 2003

Floors and related  
silty clay

g

Silty clay floor layer; passive zone

House 3733

MS13/1 2002

a

House 127c

d

MS27 2004 a, b, c, d
House 3136

MS29 2004 b, c

MS34 2004 g
House 3181

MS35 2004 g

MS32 2004 g

House 1818
MS43/1 2004 d Earthen floor

MS6 2004
b Silty clay floor layer; passive zone

d Earthen floor

MS7/1 2002
c Silty clay floor layer; passive zone

House 3147

d Earthen floor

MS7/2 2002

b Silty clay floor layers; passive zone

c Silty clay matter as building material

d, e, f, g, h Earthen floors

MS5 2004

g Silty clay floor layer; passive zone

h Silty clay matter as building material

i, j Earthen floor

MS13 2004
f Silty clay floor layer; passive zone

k, l Earthen floor

MS8/1 2003 b, c, d, e, f Silty clay floor layers; passive zone; renewals of floor
House 3700

MS9/2 2003 d Silty clay floor layers; passive zone

3230 Daub and re-plasterings - Daub Wall
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Structure

Context Micro-layer Sample
Horizon  
thickness (cm)

Lower 
boundary

Coarse/fine ratio  
(cf 100 µm) (%) Porosity (%) Bioturbation

Fl
oo

rs

House 127 a (silty clay) MS13/1 2002 1.2 sharp 35/65 15-25 slight/moderate
c (silty clay) MS13/1 2002 0.9 sharp 20/80 5-10 slight
d (silty clay) MS13/1 2002 1.2 sharp 15/85 5-10 no

House 1818 g (silty clay) MS32 2004 3.4 - <5/>95 5-10 slight/moderate
b (silty clay) MS6 2004 2.6 sharp 40/60 5-15 moderate
d (earthen) MS6 2004 3.8 - 30/70 10-20 moderate
d (earthen) MS43/1 2004 1.6 - 10/90 20-30 slight/moderate

House 3136 a (silty clay) MS27 2004 2.5 sharp 5/95 5-10 no/slight
b (silty clay) MS27 2004 0.4 sharp <5/>95 <5 no
c (silty clay) MS27 2004 0.5 sharp 5/95 <5 no
d (silty clay) MS27 2004 0.2 sharp <5/>95 <5 no
b (silty clay) MS29 2004 1.2 sharp 5/95 5-10 moderate
c (silty clay) MS29 2004 3 sharp 20/80 20-30 moderate/high

House 3147 d (earthen) MS7/2 2002 1 sharp 5/95 5-15 slight/moderate
e (earthen) MS7/2 2002 0.7 sharp 5/95 10 slight
f (earthen) MS7/2 2002 0.8 sharp 5/95 10 no/slight
g (earthen) MS7/2 2002 0.8 sharp 5/95 5 no/slight–slight
h (earthen) MS7/2 2002 0.5 sharp 5/95 5-10 moderate
d (earthen) MS7/1 2002 0.5 - 5/95 10-20 slight
i (earthen) MS5 2004 1 sharp 15/85 10-20 moderate
j (earthen) MS5 2004 1 - 5/95 10-20 moderate/high
k (earthen) MS13 2004 1.5 sharp 10/90 10-15 high
l (earthen) MS13 2004 1.2 - 5/95 20-30 slight
g (silty clay) MS5 2004 3.3 sharp 15/85 10-20 slight
h (silty clay, but not floor!) MS5 2004 1.3 sharp 5/95 5-15 slight/moderate
c (silty clay) MS7/1 2002 2.7 sharp 5/95 10-20 slight
f (silty clay) MS13 2004 2.7 sharp 5/95 5-10 slight

House 3181 g (silty clay) MS34 2004 3.5 - 5/95 10-20 moderate
g (silty clay) MS35 2004 0.7 - 5/95 10-20 moderate

House 3700 b (silty clay) MS8/1 2003 2.5 sharp 5/95 5-10 no/slight
c (silty clay) MS8/1 2003 1.4 sharp <5/>95 <5 no
d (silty clay) MS8/1 2003 1.6 sharp 10/90 5 no
e (silty clay) MS8/1 2003 1.6 sharp 30/70 5 no
f (silty clay) MS8/1 2003 1.4 sharp 5/95 5 no
d (silty clay) MS9/2 2003 2.7 sharp 5/95 5-15 slight/moderate

House 3733 g (silty clay) MS9/2 2003 2.1 - 30/70 15-25 slight

W
al

ls

daub ID 3230 4.4 - 5/95 25-30 slight
daub ID3280 2.5 sharp 5/95 30-35 slight
re-plastering 1 0.15 sharp 5/95 5 no
re-plastering 2 0.1 - 5/95 5-15 no
daub ID3294 2.5 - 20/80 30-40 slight
daub ID 3580 3.4 - 5/95 30-35 slight
re-plastering 1 MS10 2004 a 0.1 sharp 0/100 5-10 no
re-plastering 2 0.15 sharp 5/95 5-10 no
re-plastering 3 0.1 sharp 0/100 5-10 no
re-plastering 4 0.15 sharp 5/95 5-10 no
re-plastering 1 MS43/2 2004 b 0.1 sharp 5/95 5 no
re-plastering 2 0.05 sharp 5/95 <5 no
re-plastering 3 2 sharp 5/95 5 no/slight
re-plastering 4 0.05 sharp 10/90 5 no
re-plastering 5 0.15 sharp 5/95 5-10 no/slight
re-plastering 6 0.05 sharp 10/90 5-15 moderate
re-plastering 7 0.15 sharp 5/95 5-15 no/slight
daub MS43/1 2004 e - 10/90 5-10 no
re-plastering 1 0.1 sharp 10/90 5-10 no
re-plastering 2 0.05 sharp 10/90 5-10 no
re-plastering 3 0.2 sharp 10/90 5-10 no
re-plastering 4 0.3 sharp 10/90 5-10 no

Table 13.2. Summary of micromorphological observations.
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while houses ID 3136, 3147, 3700 and 3733 were 
considered to belong to the less sandy category. In 
the case of those houses classifi ed as sandier, all the 
fl oors (all the renovations) belonged to this category. 
This could indicate that one source was used for a 
long period by the inhabitants of the houses. Out of 
the silty clay fl oors of houses classifi ed as less sandy, 
one of the fi ve fl oors of ID 3700 house (MS8/1 2003 

We assume that local clay was used for building, since 
it was naturally available locally in large quantities, 
and with diff erent compositions. Although at this 
stage of research the exact relationship between the 
various clay sources and the end products cannot be 
established, at least two major construction silty clay 
materials can be diff erentiated. Houses ID 127, 1818 
and 3181 were classifi ed into the sandier category, 

Figure 13.3. Micrographs of silty clay fl oors (PPL/XPL). Images: authors.
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The number of anthropogenic inclusions in the 
fl oor clays is low and does not show great variety (Fig. 
13.5). This suggests that such elements got randomly 
incorporated into the material, during preparation or 
application, as opposed to deliberate placement. 

The most evident result of the soil micromorpho-
logical analysis in relation to silty clay fl oor construction 
was the presence or absence of renewal. Renewal is 

‘e’) was found to belong to the sandier type. A diff er-
ence was found in the case of ID 3136 house as well 
(MS27 2004 vs MS29 2004, Fig. 13.5), but since it was 
not signifi cant, the house was registered in the sandier 
category. Observed fl oor variations within the ‘life’ 
of a given house further confi rm use of diverse clay 
sources, and could also indicate a time separation of 
the renewal activities.

Figure 13.4. Pseudomorphic plant voids (PPL/XPL). Images: authors.

Figure 13.5. Composition of the analysed silty clay and earthen fl oors. Images: authors.

MS7/2 2002 b MS9/2 2003 g

Mineral composition of the silty clay fl oors

Mineral composition of the earthen fl oors

Anthropogenic inclusions of the silty clay fl oors

Anthropogenic inclusions of the earthen fl oorsMineral composition of the earthen fl oors

30–50%

20–30%

10–20%

5–10%

2–5%

<2%

30–50%

20–30%

10–20%

5–10%

2–5%

<2%

30–50%

20–30%

10–20%

5–10%

2–5%

<2%

30–50%

20–30%

10–20%

5–10%

2–5%

<2%



200

Chapter 13

In those cases where multiple fl oor renewals could 
be detected (houses ID 127, 3136 and 3700) the initial 
layers were thinner, and a relatively thick layer closed 
the series (e.g. Fig. 13.7). House ID 3136 is an exception, 
where the renewal horizon was thinner than the initial 
one. In those cases, where the initial thin clay layers 
were c. 0.5–1 cm in thickness, it is hard to believe that 
they would be appropriate for continuous use, therefore 
their appearance in this form raises questions. Further 
investigation of the samples also showed the lack of 
fl oor build-up between the fl oor horizons (Figs. 13.3 
and 13.7). This does not refl ect that the houses were 
uninhabited or kept immaculately clean during the 
Bronze Age. Everyday activities leave various traces. 
Microscopic fi ndings can be trampled into the fl oor mat-
ter, food and waste residues can also remain on the fl oor 
surface even after regular cleaning. The surface also can 
be broken or worn out over time. These are all factors 
that can aff ect the effi  ciency of fl oor renewal. Taking all 
this into account, it seems that prior to fl oor renewal, the 
fl oor surface was scraped clean to get a proper surface 
for new fl ooring. This is further supported by the clear, 
sharp boundaries between the horizons. Unfortunately, 
this activity (construction process) destroyed those 
micro-fi ndings that would help us to detect use of space. 
Nevertheless, it became evident that maintenance – to 
quite a high quality, based on these examples – was an 
important part of Bronze Age life.

considered to be a major activity, when a larger area 
or the entire fl oor surface was re-plastered with silty 
clay, as opposed to renovation, when only specifi c areas 
(worn out or broken) were treated/fi xed by silty clay. 
Houses ID 1818 and 3147 have no trace of silty clay fl oor 
renewal at all (Figs. 13.3, 13.6 and 13.12), while in other 
cases multiple renewals could be detected, e.g. houses 
ID 127, 3136 and 3700 (Figs 13.3 and 13.7). In two houses 
(ID 3181, 3733) the number of fl oor renewals could not 
be stated from thin section analysis, as only one fl oor 
was captured in the sample, which might not be the 
only one. Out of all the investigated houses, house ID 
3700 shows the largest number of renewals: the initial 
silty clay fl oor was renewed four times, making fi ve 
fl oors in total (Fig. 13.7). House ID 127 has two (three 
fl oors in total) while house ID 3136 shows only one 
renewal (two fl oors in total). In the case of the latt er, 
the two analysed samples show a diff erent picture. 
One of them contains only two silty clay horizons (the 
original fl oor and the renewal fl oor), while the other 
shows four clayey horizons (possible fl oor layers?) 
(Fig. 13.3). This might be explained by the character 
of the sampling locations and the position within the 
house. The sample exhibiting the four silty clay layers 
was taken near the pit of the house. At this location 
it seems that more renovation was necessary, to keep 
the pit in shape. In this case, we can see an example 
of local renovation as opposed to renewal.

Figure 13.6. Silty clay fl oor and the underlying earthen fl oor of house ID 3147. Images: authors.
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and the number of renewals not only show this practice 
but can be used to assess frequency of maintenance 
and lifespan of the house and, to some extent, use of 
space as well. Intensively used areas (fl oor surfaces), 
and areas where ongoing activity resulted in dirtiness 
or damage to the fl oor, must have been cleaned and 
maintained more frequently. To add a spatial aspect 
to this observation, various locales within the house 
would need to be sampled and analysed.

One of the samples of house ID 3147 showed 
another interesting building technique. In sample MS5 
2004, two silty clay layers could be detected (Fig. 13.8), 
seemingly two fl oors. However, on-site observation 
did not confi rm this, and only one fl oor horizon was 
present in the other samples of the same house (see, 
e.g., Fig. 13.6). The sample with two silty clay layers 
was taken right next to the north-eastern corner of the 
house. It was demonstrated before (house ID 3076; 
Kovács 2009) that walls were erected fi rst and then 
the fl oor material was smoothed up to the wall in a 

Although soil micromorphology is unable to tell 
the time that passed between the preparation of the 
fl oor layers, the observations suggest that houses where 
multiple fl oor renewal was found must have been in 
use for longer time. Such a time-, energy- and raw 
material-consuming activity would not be necessary 
if they were only used for a short time. Good quality 
silty clay fl oors found at the site with a thickness of 
c. 3 cm are most likely able to last for years, so a lower 
frequency of fl oor renewal is proposed. The initial/older 
fl oors are almost always thinner than the youngest 
one of the series. Those fl oors that were not renewed 
are always thicker, similar to the latest renewals. This 
indicates that the 0.5–1 cm thick initial fl oors only 
represent part of the original fl oor and are most likely 
the end result of several cleaning/scraping events. It 
seems that there was a point when the fl oor thinned 
down to such an extent that it could not be further 
used properly, so renewal needed to take place. This 
variation in thickness (see, e.g., house ID 3700, Fig. 13.7) 

Figure 13.7. Silty clay fl oors of 
house ID 3700. Images: authors.
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earthen fl oors is quite similar to the general sediment 
of the site (greyish brown loam/sandy loam), so colour 
change is not so evident. The analysis of the thin sec-
tions enabled closer examination of the earthen fl oors. 
Surface compactness and surface fi nds are the most 
helpful indicators for detecting earthen fl oors during 
excavation. Some examples were already identifi ed by 
traditional archaeological techniques (surface separa-
tion), which were further supported by thin section 
analysis (Fig. 13.10). The investigation of the earthen 
fl oors of houses ID 1818 and 3147 will let us have a 
look at this type of building technique.

Similar to the silty clay fl oors, the material of the 
earthen fl oors is very fi nely structured and compact 
(Table 13.2). Their mineral components are also similar: 
quartz , polycrystalline quartz , muscovite, biotite, glau-
conite and chlorite are present, out of which quartz  and 
polycrystalline quartz  dominate (Fig. 13.5). However, in 
the earthen fl oors these minerals occur with somewhat 
lower frequencies. Besides their colour and the mineral 
component diff erences, the main dissimilarity lies in 
the higher amounts and wider range of anthropogenic 
inclusions. In the earthen fl oors various quantities of 
bone/burnt bone, wood ash, charcoal, ceramic or daub/
plaster fragments are always detectable in the samples. 
These inclusions are very small in size and randomly 
oriented, which suggests non-intentional deposition. 
The general sediment of the site was used to create 
the earthen fl oors, so micro-fragments of everyday 

slight rise, creating a ‘bend’ between the two structural 
elements. This extra silty clay layer seems to be some 
kind of a packing material underneath the ‘bend’ to 
avoid cracking. It served as a small foundation while 
joining the two parts. This kind of building technique 
would defi nitely be benefi cial for sweeping, as the 
joint of the wall and fl oor was in a slight bend rather 
than a ‘crack’. Refuse could not get stuck between the 
fl oor and wall this way. In sum, the silty clay here does 
not represent fl oor renewal, but is part of the building 
technique and maintenance custom.

At house ID 3147, another interesting phenom-
enon was observed. The earthen fl oor and an apparent 
‘renewal layer’ (silty clay material) met along a slope 
(see Fig. 13.9). This layer might have served as some 
kind of a foundation before the fi rst proper silty clay 
fl oor was laid. However, this does not seem to be the 
case, as only one sample exhibited this extra matt er. It 
is more probable that an on-the-spot renovation was 
captured in the sample. 

These examples let us have a glimpse into the 
everyday life, the construction and maintenance habits 
of the Vatya people at Százhalombatt a. Proof of regu-
lar cleaning and maintenance, renovation and fl oor 
renewal preserve the ancient knowledge: Bronze Age 
technologies and know-how become visible under the 
microscope.

Recognition of earthen fl oors during excavation 
is not as easy as silty clay fl oors. The material of the 

Figure 13.8. Silty clay fl oor of house ID 3147 and the 
underlying ‘extra’ silty clay layer. Images: authors.
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was pre-treated, ‘sieved’, inorganic and non-degraded 
organic materials were sorted out and then with some 
compression the floor was prepared.

A series of earthen floors could be observed in 
only one case: house ID 3147. This shows that the 

life were obviously incorporated into the floor matter. 
The fine structure and the lack of macro-findings (e.g. 
ceramic sherds or larger bone fragments) show that 
some conscious treatment of the sediment took place 
prior to building. In our opinion, the raw material 

Figure 13.10. Microphotographs of earthen floors (PPL/XPL). Images: authors.

Figure 13.9. Silty clay floor of house ID 3147 and its local renovation (PPL/XPL). Images: authors.
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practice was stopped, and the entire fl oor was plastered 
with silty clay (Fig. 13.11, horizon ‘b’).

The sample of house ID 1818 shows a similar tech-
nique. The initial earthen fl oor (Fig. 13.12, horizon ‘d’) 
was changed for a silty clay one (Fig. 13.12, horizon ‘b’). 
In this case, neither of the two fl oors was renewed. There 
is another diff erence to be noted here. On the surface of 
the initial earthen fl oor, fl oor build-up (a burnt horizon) 
could be detected. On top of this was the silty clay fl oor 

above-described building and maintenance technique 
(renewal of fl oors) was in practice regardless of fl oor 
type (silty clay and earthen fl oors). During excavation, 
the exact number of renewals could not be counted. 
Only the presence of a multi-layered surface could be 
documented. Five earthen fl oors could be identifi ed 
in the prepared thin section (Fig. 13.11, ‘d–h’ micro-
layers), which indicates that earthen fl oors were in 
use for a prolonged period. But for some reason this 

Figure 13.11. Microphotographs 
of earthen fl oors. Images: authors.
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Clay is very heavy, and without tempering it 
cannot be easily applied for watt le and daub construc-
tion. Since clay shows a high degree of shrinkage and 
expansion due to heat or water absorption/addition, 
temper needs to be added to reduce structural weak-
nesses, such as cracking. Heavy clay that needs to be 
applied vertically on a wooden frame can be more 
successful when it is lightened with some organics 
(such as plant matt er and dung). With the added organ-
ics, clay becomes more plastic as well (Kruger 2014). 
When temper is mixed into the clay, air bubbles also 
get caught in the mixture. This not only lightens the 
material, but also enhances its insulating properties. 
Both the pseudomorphic plant remain voids and the 
air bubbles (pores in general) can be eff ectively studied 
under the microscope. The micrographs of the daub 
show that pores are randomly oriented, and they are 
parallel closer to the surface (Fig. 13.14). Their shape 
is also diff erent: roundish on the inside while elon-
gated towards the surface. This nicely shows the way 
of application. First, the mixture is applied in a lump 
(rounded voids) and only the surface is smoothed to 
create an even surface (elongated void shapes). The 
fi ne re-plasterings show the same kind of elongated 
void spaces, if there are any voids in them. Voids 
appear rather occasionally in them, as there is limited 
mixing in their case.

Although soil micromorphology cannot add 
time aspects to the re-plasterings, the number of them 
identifi ed in thin section indicates relative frequency: 
the more re-plastering present, the more frequently 
maintenance took place. Based on the available data, 
multiple re-plasterings are present: two, four, and 
seven times in the analysed samples. The multiple 
renovations clearly indicate continuous and conscious 

prepared. This observation seems to be contrary to the 
fi ndings of the silty clay fl oors, where cleaning and 
scraping of the surface was said to be a prerequisite 
for the adhesion of the new fl oor layer. This example 
shows that variation could occur. An explanation can 
only be guessed at this stage: individuality, necessity, 
or maybe an exception. Based on the results available 
so far, earthen fl oors always preceded silty clay ones.

Walls
At Százhalombatt a, the majority of wall remains found 
are made of watt le and daub. Thin section analysis 
allows us to add details to existing knowledge. Wall 
and fl oor matt er, and their building techniques, can be 
compared to trace similarities and diff erences.

As with fl oors, walls were mainly prepared from 
silty clay. However, diff erences can be instantly spott ed 
when looking at the micrographs (Figs. 13.3 vs 13.13 and 
13.5 vs 13.15; see also Fig. 13.14). Due to the added tem-
per, a large amount of organic matt er in the case of daub 
material can be identifi ed. In thin section, this is shown 
by the large number of vegetal voids (pores left after the 
decay of organic matt er) and phytoliths. Consequently, 
porosity is enhanced, as opposed to the compact nature 
of the silty clay fl oors. The addition of organic temper 
was only practised in the structural elements of the wall. 
Maintenance of walls was also observed in a series of fi ne 
plastering layers (Fig. 13.13) on the surface of the daub. 
Similar to the fl oors, these layers do not contain vegetal 
tempering (Fig. 13.15); their composition and structure 
are most similar to the silty clay fl oors. They are very 
fi ne grained, compact, and contain quartz , polycrystal-
line quartz , mica (muscovite), biotite and some chlorite. 
The number of anthropogenic inclusions is very low, 
and they do not show great variation.

Figure 13.12. Earthen and silty 
clay fl oor in the northern part of 
house ID 1818. Images: authors.
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into practices in individual houses, and numerical 
data can also be added.

Conclusions

Clay was a very important material in the life of the 
Bronze Age Vatya people at Százhalombatta tell site, 
similar to what is seen at the tells of the Near East. 
Besides pottery production, clay was one of the major 
raw materials of construction. Soil micromorphological 

maintenance, and might even be evidence of aesthetic 
need. Since no systematic analysis of wall plasters has 
so far been conducted from this site, in this study we 
can only highlight the existence of such a practice. 
The number of re-plasterings present in the analysed 
samples most likely under-represents the actual ‘full’ 
series, but even with these limited results it seems that 
walls were more frequently maintained (renewed or 
renovated) than floors. The practice of maintenance 
can thus be presented, and this can be broken down 

Figure 13.13. Daub (left) and series of re-plastering layers (right) in thin section (PPL/XPL). Images: authors.
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Soil micromorphological observations of construction techniques at Százhalombatta-Földvár

and snail/shell fragments were observed. The analysis 
showed that various clay sources were used: sandy and 
less sandy ones. Since the composition of the naturally 
occurring clay deposits is greatly varied, it is not pos-
sible to determine the exact locale of the clay sources 
used during the Bronze Age. However, it can be stated 
that clay sources of different characteristics were con-
sciously used for production and construction purposes. 
In the case of floor and wall clays, the major difference 
observed was the addition of temper in walls. Various 

analysis of floors and walls provides insights into the 
building techniques and technical knowledge of Vatya 
settlers. Floors and walls prepared from silty clay have a 
very fine matrix, and only occasionally contain anthro-
pogenic inclusions. Floor matter is highly compacted, 
while daub walls are highly porous in structure. The 
mineral composition of the silty clay raw material is 
very similar in floors and walls. Larger quantities of 
quartz, polycrystalline quartz, and small quantities 
of muscovite, glauconite, biotite, chlorite, limestone 

Figure 13.14. Inner structure and surface of daub fragment in thin section (PPL/XPL). Images: authors.
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Chapter 13

demonstrated that some of the silty clay fl oors were 
scraped clean prior to renewal for bett er adhesion. As 
a consequence, indicators of use of space have been 
removed, so observations on this aspect cannot be 
made in these cases. Although thin section analyses are 
not suitable for time determination, they can indicate 
frequency. Floors were less often renewed or renovated 
compared to walls. Besides silty clay fl oors, earthen 
fl oors were identifi ed, even a series of them in one of 
the houses. Earthen fl oors were later plastered with 
silty clay. We found that in cases where an earthen fl oor 
preceded a silty clay fl oor, no renewal of the silty clay 
fl oor occurred. Floor repair, scraping and renewal, and 
multiple wall re-plasterings do not only show the exist-
ence of technical construction knowledge, but reveal 
much more about the Bronze Age community. Maybe 
it is not an exaggeration to propose that the described 
repetitive activities (regular maintenance) signal needs 
for cleanliness even in prehistory. It would be hard to 
believe that such activities only indicate individual 
needs and not socially accepted norms. The results 
contribute several, new details to our understanding of 
Vatya domestic architecture, technology and lifestyle. 
The ongoing excavation and parallel micromorpho-
logical examinations will certainly further enrich our 
existing knowledge.

mixtures were prepared by adding mainly vegetal 
matt er during wall construction, as opposed to fl oor 
building, where no temper was detected, as weight was 
not a concern. The mixture used for wall re-plastering 
also lacked tempering, and clay was applied to the daub 
surface as a thin clay mass. A solid thick silty clay layer 
(3–5 cm) was found to be appropriate for trampling as 
a fl oor. All this refl ects that the members of the local 
Vatya community were aware of the properties of the 
clay raw material in their surroundings. They made 
thoughtful decisions in choosing the most appropriate 
clay source for specifi c activities. This selection of raw 
material was indicated by the observed diff erences 
in fl oor clay types (sandy vs less sandy fl oors). The 
repetitive use of the same kind of silty clay material 
during the life of a house is probably due to there being 
one source or similar sources. Thin section analysis 
showed that Vatya people had the routine knowledge 
of transforming raw material into applicable mixtures 
of varied purposes. This centuries-old knowledge of 
generations was shaped over many experiments and 
was well-known and adapted to local circumstances.

Furthermore, observations of various building 
techniques could be made through microscopic analy-
sis. These are the repetitive wall plasterings, fl oor 
renovations and fl oor renewals, for example. It was 

Figure 13.15. Composition of daub and re-plastering. Images: authors.
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