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Abstract 

Lineage-specific transcription factors have emerged as a promising class of essential genes in cancer. 

The best examples of leveraging this phenomenon in the clinic is targeting the androgen receptor and 

the oestrogen receptor in prostate and breast cancer respectively. Despite the success of these 

therapies, the mechanisms that maintain lineage fidelity in advanced cancer clones, and whether 

lineage factor pathways could be exploited in other cancer types remain poorly understood. Using clear 

cell renal cell carcinoma (ccRCC) as a model, I characterise mechanisms that underlie lineage factor 

dependence in cancer. Using CRISPR/Cas9 loss-of-function screening coupled with in vitro and in vivo 

validation I show that the loss of SMARCB1, a member of the SWI/SNF chromatin remodelling complex, 

confers an advantage to ccRCC cells upon inhibition of the essential renal lineage factor PAX8. SMARCB1 

knockout (KO) leads to large-scale loss of a kidney-specific enhancer program, conversion to a cellular 

state resembling that of rhabdoid tumours, and the re-activation of proliferative pathways. Using a 

second CRISPR/Cas9 screen, I show that these proliferative pathways are underpinned by the 

acquisition of new transcriptional dependencies. These dependencies represent rare essential genes 

across different lineage-specific and oncogenic pathways, a principle validated in a large-scale 

CRISPR/Cas9 screening data set comprising hundreds of cancer cell lines. In summary, dependence on 

tissue-specific lineage factors in cancer can be modulated via epigenetic remodelling. 
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1.1 An introduction to cancer 

 

Cancer is an evolutionary process that describes the conversion of normal cells into a state of 

uncontrolled proliferation and survival. The substrates for this process are genetic and epigenetic 

alterations, caused for example by oncogenic viruses, environmental mutagens, and erroneous cellular 

replication. Broadly speaking tumours can be classified as either benign or malignant, depending on 

whether the tumour is localised or invasive/spreading1. Most cancers can be further classified into 

epithelial (carcinoma), mesenchymal (sarcoma), hematopoietic or neuroectodermal, according to their 

tissue of origin1. Cancer that bears little to no histological resemblance to a tissue of origin is said to be 

anaplastic1. To develop, cancer must acquire traits to overcome significant roadblocks, including but 

not limited to regulated mitogenic signalling, mortality, energetics, immune surveillance, and physical 

space. This is achieved through the manipulation of existing cellular pathways, which are best 

summarised as the hallmarks of cancer2,3. 

 

1.1.1 Sustaining proliferative signalling and evasion of growth suppression  

 

Cell growth and division is a tightly controlled process essential for development and, the turnover and 

homeostasis of adult tissues. It is regulated through the action of growth factors and their cognate cell 

surface receptors, cell-cell contact signalling, and membrane-permeable messengers (such as 

hormones)4.  These pathways can be de-regulated in cancer through hyperactivation, for example, 

activating mutations in BRAF occur in ~40% of melanoma patients, which triggers the constitutive 

activation of the growth-promoting mitogen-activated protein kinase (MAPK) pathway5. Alternatively, 

negative feedback mechanisms which function to dampen mitogenic signalling can be lost in cancer, 

for example, the proto-oncogene rat sarcoma virus (Ras). In its Guanosine-5'-triphosphate (GTP)-bound 

active form, Ras functions to signal via the MAPK pathway. In doing so it hydrolyses the GTP to 
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Guanosine-5'-diphosphate (GDP) and becomes inactive, an example of intrinsic negative feedback. 

Mutations in Ras can interfere with its hydrolytic activity and prevent the reversion to a GDP-bound 

inactive state, thereby becoming constitutively active1,6.  Other examples of growth factor signalling 

that can be co-opted in cancer include the phosphoinositide 3-kinase (PI3K) -AKT, the mammalian 

target of rapamycin (mTOR), patched-smoothened, and canonical and non-canonical Wnt signalling1,4. 

These pathways do not operate in isolation, instead, there is cross-talk and they can be simultaneously 

triggered by the same cell surface receptor/environmental queue1,4. In addition to sustained 

proliferative signalling, cancer cells must overcome strong negative regulators of proliferation, which 

are known as tumour suppressor genes. Tumour suppressor genes tend to be inactivated through loss-

of-function (LOF) mutations; a prototypical example is the gene retinoblastoma protein (RB)2. Alongside 

tumour protein 53 (TP53), RB is a critical arbiter of proliferative, senescence, or apoptotic programs. 

Progression through the stages of the cell cycle (growth 1, synthesis, growth 2, and mitosis) is mediated 

by cyclin dependant kinases and cyclins. In response to mitogenic signalling a cell can progress through 

~2/3 of growth 1 before reaching a restriction point (R point). RB incorporates extracellular and 

intracellular signals to determine whether a cell should progress through the R point and continue the 

cycle4,7. Cancer cells with RB LOF mutations are thus missing a critical gatekeeper of cell-cycle 

progression 7.  

 

1.1.2 Resistance to cell death 

 

In response to certain stimuli, cells can undergo a process of programmed cell death known as 

apoptosis. Apoptosis is a necessary process in the development and also maintenance of healthy adult 

tissue4. In response to various internal and external physiologic stressors, the balance of anti-apoptotic 

proteins (i.e. B-cell lymphoma 2; BCL-2 and BCL-extra-large; BCL-XL) and pro-apoptotic proteins (i.e. 

Phorbol-12-myristate-13-acetate-induced protein 1; NOXA and p53 upregulated modulator of 
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apoptosis; PUMA) can shift to instigate a signalling cascade culminating in caspase-mediated 

proteolysis, cellular disassembly, and eventual phagocytosis8. In the process of tumorigenesis, cancer 

cells are exposed to a range of physiological stresses which can induce apoptosis8. For example, the 

tumour suppressor TP53 can act to sense DNA damage caused by hyperproliferation or defects in the 

DNA repair machinery9. In response to DNA breaks and other chromosomal abnormalities, TP53 

upregulates PUMA and NOXA. PUMA and NOXA bind to anti-apoptotic proteins, which leads to the loss 

of mitochondrial integrity and the release of cytochrome-c. Cytochrome-c is then capable of inducing 

caspase activity and hence cellular degradation9. The most common route to overcome this process is 

via the loss of TP53 tumour suppressor function, indeed TP53 is the most commonly mutated tumour 

suppressor gene in cancer10. 

 

1.1.3 Enabling replicative immortality 

 

Larger, longer-lived animals have a greater number of cells exposed over a longer period to mutagens 

and hence in principle should have a higher risk of acquiring oncogenic mutations and cancer. However, 

in practice, this is not the case11. A study of 15 mammalian species, demonstrated an inverse correlation 

between life span and mutational rate, such that the mutational burden at the end of life was consistent 

between species12. Further, Mice have >1000 times fewer cells and a >30 times shorter life span and 

yet the incidence rate of cancer in aged mice is approximately 90%, whereas in humans it is closer to 

25%11. Larger organisms have evolved mechanisms capable of safeguarding against the heightened 

DNA mutation and cancer risk to reduce the chance of pre-reproductive mortality11. One such 

mechanism is to restrict the number of replicative cycles most somatic cells can undergo before the 

induction of senescence followed by crisis and apoptosis. This is achieved by limiting the expression of 

telomerase, an enzyme responsible for lengthening multiple tandem hexanucleotide repeats 

sequences (telomeres) at the end of chromosomes11,13. Telomeres shorten progressively during 
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sequential cell divisions until they reach a length where they can no longer protect chromosomes from 

end-to-end fusion events. The formation of dicentric chromosomes results in karyotype scrambling, 

senescence and apoptosis4. In order to form a macroscopic tumour, cancer cells need to acquire 

unlimited replicative potential, termed immortalisation. The aberrant expression of telomerase has 

been detected in ~90% of immortalised cell lines, including cancer cells3. To date, a diverse array of 

mechanisms for the reactivation of telomerase have been described, including epigenetic 

modifications, promoter mutations and the induction or suppression of positive and negative regulators 

respectively14. For example, recurrent mutations in the promoter of the telomerase gene (TERT) have 

been reported in melanoma patients, and have since been shown to positively regulate telomerase 

expression in model systems15–17. Similar mutations have been detected in other cancer types, for 

example, mutations in the TERT promoter and 5’UTR have also been described in renal cancer and have 

been associated with telomere length maintenance18.  

 

1.1.4 Angiogenesis 

 

Tumours do not form in isolation, but in a microenvironment populated by vasculature and a host of 

immune and stromal cells19. Similarly, to normal tissue, cancers need vasculature for the delivery of 

nutrients and oxygen as well as the removal of metabolic waste and carbon dioxide1,4. To grow to a size 

beyond approximately 1-2mm3 a tumour needs to generate new vasculature to ensure viable growth 

conditions in an otherwise hypoxic centre20. The generation of new blood vessels (vasculogenesis) and 

the creation of new branches from an already existing blood vessel (angiogenesis) are tightly regulated 

processes that occurs predominantly during embryogenesis. In adults, the generation of new 

vasculature is largely limited to the process of wound healing and the female reproductive cycle3. In 

these instances, angiogenesis is triggered transiently via an ‘angiogenic switch’. The angiogenic switch 

is controlled by a balance of pro and anti-angiogenic factors, for example, vascular endothelial growth 
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factor-A (VEGF-A) and thrombospondin-1 (TSP-1), respectively20. In cancer the angiogenic switch is 

constantly on, supporting the formation of large macroscopic tumours3. For example, ~98% of clear cell 

renal cell carcinomas (ccRCC) have biallelic inactivation of Von Hippel-Lindau syndrome (VHL), which 

leads to the stabilisation of HIF2A protein, which in turn positively regulates the expression of VEGF-

A21. Treatment with the vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor 

sunitinib leads to tumour regression and has been approved as a first-line treatment for metastatic 

ccRCC patients22.  

 

1.1.5 Invasion and metastasis  

 

The spread of cancer from the primary tumour to secondary sites either in the same organ or a 

secondary organ is called metastasis. Metastatic spread is the leading cause of cancer-related deaths 

worldwide, in part because it makes surgical resection very challenging23. Multiple routes towards 

metastasis formation have been described. A simple example, cells disseminate from the primary 

tumour as groups or individual cells, enter the blood or lymphatic vasculature, extravasate at a distal 

site, survive in a foreign microenvironment and establish a secondary growth24. Despite often being 

depicted as a neat multi-step cascade, metastasis is a highly inefficient process, for example only 0.02% 

of melanoma cells injected into the portal vein of mice developed into macro-metastases, and even 

isolated metastatic cell lines suffer extensive attrition during colonisation25,26. A diverse range of cellular 

mechanisms that enable successful metastasis has been described, including actin cytoskeleton 

rearrangement, the co-option of immune cells from the microenvironment and extracellular matrix 

degradation27–29. Despite these efforts, the regulation of metastatic traits remains poorly understood. 

Large-scale bulk and multi-region sequencing efforts have failed to identify driver mutations that are 

specific to cancer metastases23. Nevertheless, specific transcriptional signatures correlate with 

metastasis in several cancer types and cancer cell lines with stable, highly metastatic phenotypes, can 
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be isolated from multiple different human cancers30. Emerging evidence suggests that metastatic traits 

are not acquired through new mutations but rather the expansion or tuning of oncogenic signalling, 

achieved through non-specific epigenetic modifications30 (Figure 1). For example, in ccRCC loss of 

Polycomb repressive complex 2 (PRC2) histone H3 Lys27 trimethylation marks enables the VHL-HIF-

dependant upregulation of chemokine (C-X-C motif) receptor 4 (CXCR4), a potent driver of metastasis31.  

Figure 1 

 

Figure 1|Cell-type specific and genetically activated signalling pathways conspire to drive the 

oncogenic program (left). The output of this collaborative program can be modulated through 

changes in the epigenome, including (a) DNA methylation, (b) covalent histone modifications, (c)  

chromatin accessibility and (d) higher order chromatin changes. These changes are largely unspecific, 

thus the phenotypes that emerge are determined by the active oncogenic program. If a particular 

trait conveys a growth/survival advantage in a particular context, for example a metastatic 

bottleneck, it is selected for. In this way the oncogenic program that facilitated primary tumour 

formation evolves through unspecific epigenetic alterations to enable metastatic spread. Figure 

taken from Patel et al23.  
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1.1.6 Reprogramming Energy/ Metabolism 

 

To facilitate growth, proliferating cancer cells need to generate enough energy to support cell 

replication, satisfy the demands of anabolic macromolecular biosynthesis and establish redox 

homeostasis in the face of elevated reactive oxygen species production1. This is achieved through 

metabolic re-wiring, most often downstream of oncogenic signalling3,32. The prototypical example is the 

Warburg effect32. Under aerobic conditions, cells metabolise glucose to pyruvate (aerobic glycolysis), 

which in turn undergoes oxidative phosphorylation to produce the maximal amount of ATP per glucose 

molecule. In a low oxygen environment, pyruvate produced by glycolysis is instead reduced to lactate 

(anaerobic glycolysis), which can be used as a substrate for the citric acid cycle4. In 1956 Otto Warburg 

observed that even in the presence of oxygen, cancers upregulate anaerobic glycolysis, prioritising 

reducing glucose into lactate, which is paradoxically ~18 less efficient in terms of ATP production than 

complete oxidative phosphorylation32–34. Although a universally accepted rationale for the Warburg 

effect remains elusive, there are multiple possible explanations. In the presence of sufficient glucose, 

the prioritisation and upregulation of anaerobic glycolysis can produce more molecules of ATP in a given 

time frame35. Further, the extra glycolytic intermediates produced can be diverted into biosynthetic 

pathways required for the assembly of new cellular organelles35. 

In addition to glucose metabolism, the increased uptake and utilisation of glutamine is also frequently 

observed in cancer36. Glutamine is imported into the mitochondria, where it is converted into glutamate 

and an ammonium ion by the enzyme glutaminase36. Glutamate can then be further metabolised to α-

ketoglutarate, which can be utilised in the tricarboxylic acid (TCA) cycle for ATP production. Although 

proliferating and cancer cells do use glutamine for energy production, the majority of α-ketoglutarate 

is used for biomass production for cellular replication36. The carbon from glutamine can be utilised for 

the production of amino and fatty acids, and the nitrogen contributes to de novo biosynthesis of 

nucleotides (purines and pyrimidines)36–39.  
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As discussed, changes in metabolic programs downstream of mitogenic and nutrient-sensing signalling 

pathways help support deregulated cell division in cancer primarily through altered energetics and 

biomass production40. However, metabolic re-wiring is not simply a passive consequence of the 

oncogenic programme, certain metabolites can in turn influence signalling dysregulation, so-called 

oncometabolites40. Arguably the best characterised example of an oncometabolite is D-2-

hydroxyglutarate (D-2HG)40. Certain point mutations in the enzyme isocitrate dehydrogenase (IDH), 

most frequently observed in gliomas and leukaemia’s, results in neomorphic activity to produce D-

2HG40–42. D-2HG is structurally similar to α-ketoglutarate, and hence competitively inhibits enzymes 

that use α-ketoglutarate, such as the ten eleven translocation (TET) family of 5-methylcytosine 

hydroxylases and Jumonji (JMJ) family of histone demethylases40,43. High levels of D-2HG affect the 

function of TET and JMJ family members, resulting in CpG island and histone hypermethylation, which 

has been associated with mitogenic signalling and disease progression41,44–47.  

 

1.1.7 Evading Immune Destruction 

 

Over the last two decades, the role of the immune system in the development and maintenance of the 

cancer phenotype has become a major player in modern-day cancer therapeutics48,49. Initially, the role 

of the immune system in the detection and removal of premalignant cells, termed immunosurveillance, 

was described and has since gained experimental support50,51. Cancers raised in immunodeficient mice 

were unable to give rise to tumours in their immunocompetent counterparts, however, the reciprocal 

was true51,52. The incidence of tumorigenesis in response to carcinogens was also increased in 

immunodeficient mice51,52. Further, immunodeficient transplant patients have a drastically higher 

incidence of cancer 53. However, the vast majority of these cancers could be attributed to oncogenic 

viruses, suggesting a role for the immune system specifically in suppressing viral-induced tumours3,53. 

Of note, unlike the immunodeficient mice, Immunosuppressed patients have major deficiencies in B 
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and T cell compartments but are still able to mount an immune response through natural killer cells 

and other innate immune cells, leaving room for interpretation3.  

Despite immunosurveillance, cancers are still able to develop. Beyond the removal of early pre-

malignant cells, the immune system is involved throughout the multistage process of tumorigenesis 

and metastasis and is now leveraged as a new therapeutic paradigm48,49,51. The prevailing theory for the 

involvement of the immune system in cancer – immune editing, is characterised by three phases: 

elimination, equilibrium and escape51. Elimination is the removal of pre-malignant cells through the 

activity of both the innate and adaptive immune systems. Cancer cells with low immunogenicity survive 

elimination and are maintained in a slow-cycling or quiescent state. This is the longest of the three 

phases, possibly lasting years before the development of detectable tumours54. During equilibrium, 

cancer cells acquire new somatic alterations from which immune suppressing traits can be selected. 

The final phase of immune editing, escape, describes the emergence of cancer clones capable of 

circumventing immune suppression and developing into macroscopic tumours51. Multiple escape 

mechanisms have been described; a downregulation of antigen presentation mediated by cell-intrinsic 

or extrinsic adaptions, resistance to immune cell-mediated killing, and finally suppression of immune 

cell activation through the direct expression/secretion of immune-modulatory factors or the 

recruitment of immunosuppressive inflammatory cells55–57. Circumventing immune escape 

mechanisms and the boosting of immune-mediated killing forms the basis of modern-day 

immunotherapy, and holds great promise towards the clinical management of cancer49.  

 

1.1.8 Lineage plasticity in cancer progression and therapy resistance 

 

Although lineage plasticity is not one of the cancer hallmarks put forward by Hanahan and Weinberg, 

it has been widely associated with cancer stem cells, metastatic disease, and more recently as a shared 

pathway towards therapeutic resistance58,59. The best characterised contribution of lineage plasticity in 
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cancer is the epithelial to mesenchymal transition (EMT), which has been reported in a range of cancer 

lineages. The EMT is a normal physiological transition, required during various stages of embryogenesis 

and tissue repair, and wound healing58,60,61. Conventionally, an EMT describes the downregulation of 

epithelial markers (e.g. E-cadherin) and the upregulation of mesenchymal genes (e.g. Zinc Finger E-Box 

Binding Homeobox 1; ZEB1 , SNAIL, and SLUG), towards a state of enhanced migratory and metastatic 

potential1,58. Different EMT programs have been described and cells can exist in primed transitionary 

states along the epithelial to mesenchymal spectrum62–65. The EMT process is readily reversible (i.e. 

mesenchymal to epithelial transition - MET), which in theory is required for metastatic colonisation at 

distal sites58. Interestingly, in a TP53/PTEN mutant model for breast cancer, it was shown that almost 

all founding clones could exist in an epithelial or mesenchymal state, supporting a model whereby most 

tumour cells in a tumour have inherent lineage plasticity66.  Although the exact contribution of the EMT 

to metastasis and cancer progression is a subject for debate, it remains a shared characteristic across 

cancer types that correlates with disease progression58,67.   

Lineage plasticity can also cause resistance to a range of cancer therapeutics, including chemotherapy, 

targeted therapies, and immune therapy59. SNAIL and SLUG expression have been functionally linked 

to chemotherapy resistance in breast and ovarian cancer, through antagonising p53-mediated 

apoptosis and inducing a stem-like state68,69. Similar de-differentiation mechanisms have also been 

shown to confer resistance to MAPK inhibition in melanoma and a hedgehog antagonist in basal cell 

carcinoma, through the activation of alternative pathways which can support cancer cell survival70–73.  

In a mouse model for acquired resistance to adoptive cytotoxic T-cell transfer therapy in melanoma, 

the pro-inflammatory cytokine, tumour necrosis factor (TNF)-α, induced a loss of melanocytic antigens 

through a reversible de-differentiation mechanisms, thereby circumventing T-cell  mediated killing74,75. 

In addition to EMT and de-differentiation, lineage transdifferentiation has also been reported to lead 

to therapy resistance. The histological transformation from adenocarcinoma to high-grade 

neuroendocrine triggers therapy resistance in both prostate and breast cancer patients treated with 

androgen depletion and anti-epidermal growth factor receptor (EGFR) therapy respectively59. The key 
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molecular drivers of this process are RB1 and TP53 mutations, which enable transformation through 

the activity of MYC, AKT-mTOR, and SOX2 signalling59,76–78. Notably, tumours presenting with 

neuroendocrine histology and molecular features (i.e. expression of Chromogranin A; CHGA and 

Synaptophysin; SYP), also have an upregulation of stemness related factors (i.e. SOX2 and HOXA2), 

implying a functional similarity to the aforementioned EMT and de-dedifferentiation based resistance 

mechanisms79.  

 

1.1.9 Summary of the cancer hallmarks 

 

The hallmarks of cancer as described by Hanahan and Weinberg neatly summarises common traits 

required for malignant transformation; the deregulation of mitogenic signalling, resistance to cell 

death, replicative immortality, recruitment of new vasculature, altered metabolism, immune 

escape/co-option, and the colonisation of distal sites3. In accordance with Darwinian evolution, 

hallmark traits are acquired through the selection of certain genomic and epigenetic alterations, which 

provide a growth and survival advantage. The link between DNA mutations and cancer hallmarks has 

been exhaustively demonstrated and has provided sound logic for the rational design of therapeutic 

interventions3. However, despite extensive bulk and multi-regional DNA sequencing, the association 

between some cancer traits and discrete genomic alterations has not been made. Instead, it is 

becoming clear that complex phenotypes in cancer, such as the metastatic cascade, can be controlled 

by heritable epigenetic alterations, such as aberrant enhancer activation and changes in DNA 

methylation23,30. 

Although the above summary focussed largely on cell-intrinsic mechanisms, it is important to consider 

that cancer is not a cell-autonomous disease, but rather requires a compendium of heterotypic 

interactions with a host of accessory cell types, collectively referred to as the cancer organ or the 

tumour microenvironment3. For example, the formation of macroscopic lesions requires the 
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recruitment of endothelial cells for angiogenesis, and certain immune populations have been 

implicated in metastasis by facilitating cancer cell dissemination and intravasation through the 

secretion of various bioactive molecules80,81.  

As mentioned, cancer hallmark traits are selected from genetic and epigenetic alterations. Certain 

enabling characteristics of cancer cells can create more diversity for selection, such as genomic 

instability. Defects in the DNA repair or DNA damage sensing machinery can lead to an increase in the 

number of mutations acquired through successive DNA replications, heightening the chance of 

acquiring an oncogenic alteration3. Similarly, mutations in key epigenetic regulators can destabilise the 

3D architecture of the genome, allowing for suppression of tumour suppressor genes or the activation 

of previously dormant oncogenes82. Both genetic and epigenetic instability are by nature unspecific, 

but by creating heterogeneity they enable the selection of advantageous gene programs to support 

tumour progression and adapt to environmental challenges.   

Although lineage plasticity is not one of the original hallmarks, it has an emerging role in acquired 

resistance across a broad range of therapeutic modalities in several cancer types, in my opinion 

qualifying it has an emerging hallmark59. Alternatively, given the contribution of lineage plasticity to 

other hallmarks (e.g. metastasis and immune evasion) it could be classified as an enabling characteristic 

alongside genomic and epigenetic instability. Irrespective, a better understanding of the molecular 

drivers of lineage infidelity could have far-reaching implications for the design of novel therapeutics 

and the war on acquired resistance83.  

 

1.2 Introduction to kidney cancer 

 

Kidney cancer is the 7th most common cancer in the UK, approximately 13,000 new cases are reported 

annually accounting for 4% of all new cancer cases84. The incidence rate is higher in men compared to 
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women and more economically developed countries compared to their less developed 

counterparts84,85. Over the last decade, the number of kidney cancer diagnoses has increased by ~1/3, 

likely due to the advent and implementation of more sensitive screening approaches84. In line with this, 

the incidence rate appears to have plateaued in the last few years86. In the UK, there are 4,600 kidney 

cancer-related deaths, accounting for 3% of all annual cancer deaths84. Kidney cancer can be broadly 

classified by the cell type of origin; renal cell carcinoma (RCC) arises from the kidney epithelium and 

accounts for ~90% of cases and, transitional cell carcinoma occurs in the renal pelvis and makes up 5-

10% of all kidney cancers87,88. RCC encompasses >10 histological and molecular subtypes, of which the 

most common three are, clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC 

(chRCC)(Figure 2)89,9089,90. In children, kidney cancer accounts for ~7% of all cancer diagnoses. Unlike in 

adults, RCC accounts for a small minority (~1%), instead, the majority of diagnosed paediatric kidney 

cancers are Wilm’s tumours (~90%), clear cell sarcoma (~2-3%), and malignant rhabdoid tumours (~1-

2%)91. 

Figure 2 

 

Figure 2|Three main histological subtypes of RCC. (a) ~75% of RCC are ccRCC. (b-c) ~15% of RCC are 

pRCC, which histologically appear as either (b) basophilic or (c) eosinophilic. (d) ~5% of RCC are 

chRCC. Figure taken from Hsieh et al90. 
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1.2.1 Clear cell renal cell carcinoma 

 

The vast majority (75-85%) of RCC arising in the kidney epithelium is of the clear cell phenotype. The 

‘clear cell’ refers to the accumulation of lipid and glycogen in the cytoplasm of tumour cells, which 

appear as clear droplets. In line with these observations, ccRCC is often considered a metabolic disease 

due to widespread metabolic re-programming and the convergence of disease-causing mutations on 

key metabolic pathways, such as the nutrient-sensing PI3K-mTOR pathway92,93. Marker gene based 

classification (derived from RNAseq of micro dissected kidney structures) and a more recent scRNA-seq 

study have identified the proximal convoluted tubule (PCT) as the most probable origin of ccRCC (Figure 

3)94,95. The majority of RCC cases are sporadic, however, 2-4% are associated with inherited tumour 

syndromes96. The most frequent example of a heritable disease predisposing to ccRCC is the von 

Hippel–Lindau syndrome, which is characterised by the germline inactivation of one allele of the VHL 

gene, increasing the likelihood of the biallelic loss of VHL, which is a hallmark initiating event in ccRCC 

development (discussed below)97. Interestingly, high-grade RCC tumours (including ccRCC) can present 

with rhabdoid and sarcomatoid features. Rhabdoid and sarcomatoid renal carcinoma histologically and 

transcriptionally resemble a de-differentiated state, are resistant to targeted therapies, and correlate 

with poor patient outcome98.  
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Figure 3 

 

Figure 3| A schematic of the nephron. The kidneys, along with the ureter, bladder, prostate (in men) 

and urethra, form the urinary system, which primarily serves to filter metabolic waste, maintain an 

ion balance and regulate water levels in the blood.  The kidney is at the interface between the blood 

and the rest of the urinary system. Electrolytes, fatty acids, amino acids, and other metabolic 

products are either retained and reabsorbed, or they are filtered and excreted by specialised 

structures called nephrons. Upon reaching the kidney, renal arteries divide into incrementally smaller 

vessels to form (a) the glomerulus, a portal exchange microvascular bed, which is in contact with the 

Bowman’s capsule. Pressure from the blood flow forces water and ions (filtrate) out of the blood into 

the nephron via the capsule. The filtrate travels from the capsule into (b) the proximal convoluted 

tubule (PCT), (c) the loop of Henle, and (d) distal convoluted tubule (DCT) before reaching the (e) 

collecting duct. As the filtrate passes along the nephron, nutrients and water are reabsorbed and 

waste products such as urea and ammonia are retained and excreted into the collecting duct, 

through a regulated process of active and passive diffusion. Figure adapted from www.nagwa.com99. 
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1.2.2 Genetics of ccRCC 

 

1.2.2.1 VHL-HIF 

As mentioned previously, ccRCC is characterised by the biallelic inactivation of the VHL gene, achieved 

through point mutations, deletions, and epigenetic silencing100–102. VHL inactivation is a truncal 

mutational event in ccRCC, occurring in >90% of patient tumours. VHL forms a functional E3 ubiquitin 

ligase complex with elongin B/C, cullin 2, and RING-box protein 1 (henceforth known as the VHL 

complex), which can recognise and polyubiquitinate the oxygen degradation domain (ODD) of hypoxia-

inducible factor (HIF)α, targeting it for proteasomal degradation (Figure 4). In the presence of oxygen 

(normoxia), HIFα is hydroxylated on conserved prolines within the ODD domain by prolyl hydroxylase 

domain (PHD)-containing enzymes, which is necessary and sufficient for recognition by the VHL 

complex. Thus, the proteasomal degradation of HIFα only occurs in the presence of oxygen. Whereas 

under hypoxic conditions, or in the event of VHL inactivation, HIFα is no longer prolyl-hydroxylated and 

so is not recognised by VHL. Stabilised HIFα protein can therefore heterodimerise with aryl hydrocarbon 

receptor nuclear translocator (ARNT), translocate to the nucleus, bind to HRE DNA elements, and 

trigger the transcriptional activation of hypoxia-inducible genes (Figure 4)4.  
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Figure 4 

 

Figure 4|The regulation of HIF by VHL. Under normoxic conditions, two proline residues on HIF are 

hydroxylated by prolyl hydroxylases, enabling recognition by the VHL complex, followed by 

ubiquitination and proteasomal degradation. In hypoxic conditions, the proline residues on HIF are 

not hydroxylated and therefore is not recognised by the VHL complex. Non-degraded HIF can 

translocate to the nucleus, functionally dimerise, and bind to HIF responsive DNA elements (HRE) to 

regulate gene expression. Figure adapted from Alberts et al4.  

 

There are two isoforms of HIFα, HIF1α, and HIF2α, which interestingly seem to have antagonistic roles 

in tumour development. HIF1α has been shown to reduce the tumorigenic competence of ccRCC 

models by inhibiting mitochondrial biogenesis and cellular respiration103,104. The HIF1α gene resides on 

chromosome 14 (14q23.2) and may explain, at least in part, the observed frequency of 14q deletions 

in ccRCC, however, this has not been definitively proven104,105. In contrast, there is also evidence that 

HIF1α can promote tumour development, for example through the re-wiring of glucose 

metabolism106,107. Further, the expression of HIF1α protein is detected in ~70% of ccRCC tumours and 

the gene is infrequently biallelically inactivated106. In contrast, HIF2α has been established as a key 

oncogenic driver in ccRCC, by promoting tumour angiogenesis, cellular proliferation and survival, 

metabolic reprogramming, metastasis, and therapy resistance108. This is achieved through the 

regulation of target genes, such as; platelet-derived growth factor (PDGF)-β, transforming growth factor 

(TGF)-a, c-Met, cyclin D1 (CCND1), and stromal cell-derived factor 1 (SDF1) and its receptor CXCR4109. 
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In line with this, inhibition of HIF2α using the small molecule inhibitor PT2977 (Belzutifan) has been FDA 

approved as a therapy for the treatment of VHL-associated tumours arising in the kidney110. 

Interestingly, PT2977 has shown efficacy in the treatment of rarer non-renal VHL-associated tumours 

including central nervous system hemangioblastomas and pancreatic neuroendocrine tumours, 

highlighting the importance of this signalling axis in tumorigenesis110. Currently FDA  approval is 

restricted to VHL-associated tumours in the kidney, pancreas and central nervous system but in the 

future this may be expanded to include additional organs such as the eye110.  

 

1.2.2.2 Copy number and single nucleotide variation 

 

VHL loss is not sufficient to trigger a neoplastic transformation, as evidenced by the long latency of 

tumour initiation in patients harbouring VHL germline mutations (30-40 years) and the observation that 

the loss of VHL in mice models does not lead to tumorigenesis, suggesting that additional genetic 

alterations are required97,111,112.  Genome-wide integrated analysis of copy number variations (CNV) and 

transcriptomics have identified a range of deletions and amplifications, associated with putative 

oncogenes and tumour suppressors113,114. The most frequently observed CNV (~91% of patients), is the 

deletion of a 43 megabase region of chromosome 3p, which contains the putative tumour suppressor 

genes VHL, Polybromo 1 (PBRM1), BRCA1 associated protein-1 (BAP1), and SET domain containing 2 

(SETD2) (discussed below)115. The aforementioned genes are typically inactivated by a loss of 

heterozygosity (LOH) event followed by a somatic mutation in the remaining copy18,116,117. The next 

most frequently deleted region is the loss of 14q (49%), however, the contribution of this CNV to ccRCC 

progression is less clear. The deletion of one copy of HIF1α and L-2-Hydroxyglutarate Dehydrogenase 

(L2HGDH) is thought to underly the selective advantage of 14q loss104,118–120. However, ~25 additional 

genes which are frequently deleted, and whose low expression correlates with a worse prognosis, are 

yet to be experimentally validated105. Whilst 3p and 14q deletions are associated with the loss of 
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putative tumour suppressor genes, the amplification of certain genomic regions is associated with the 

activation of oncogenes100. For example, the amplification of a region containing ~60 genes on 

chromosome 5q35 is observed in ~67% of ccRCC patients100. Multiple lines of evidence have linked 5q 

gains to the increased mRNA expression of Sequestosome 1 (SQSTM1), Enhancer Of Zeste 2 Polycomb 

Repressive Complex 2 Subunit (EZH2), Stanniocalcin 2 (STC2) ,and Versican (VCAN), which have in turn 

been attributed oncogenic functions in ccRCC through in vitro and in vivo mechanistic studies114,121–123. 

Multiple comprehensive genome-wide association studies (GWAS) in ccRCC patient tumours have 

identified susceptibility loci and single nucleotide polymorphisms (SNPs) associated with ccRCC 

incidence and prognosis124–126. For example, the 12p12.1 risk allele was mapped to rs7132434, a 

functional variant in an enhancer for the gene single nucleotide polymorphisms (SNPs), which was 

subsequently shown to increase Basic helix-loop-helix e41 (BHLHE41) expression through enhanced 

(Activator protein 1) AP-1 binding and contribute towards oncogenic signalling through the induction 

of Interleukin 11 (IL-11) expression124,125. Another notable example includes a SNP located in the 

11q13.3 susceptibility locus, situated intergenically flanking myeloma overexpressed gene (MYEOV) 

and CCND1 126. The identified rs7948643 variant impaired the recruitment of HIF2α to a newly identified 

CCND1 enhancer, reducing the risk of developing ccRCC. Interestingly the SNP does not alter the HIF2α 

DNA motif and so likely affects the binding of a co-factor capable of recruiting/ stabilising HIF2α at the 

CCND1 enhancer127.  

 

1.2.2.3 DNA methylation and somatic alterations 

 

DNA hypermethylation correlates with poor patient prognosis in all three major subtypes of RCC.  In 

ccRCC, as mentioned previously, a copy of VHL can be lost through aberrant DNA methylation in ~7% 

of cases100. A further 289 other genes are methylated in at least 5% of tumours, the most significant of 

which include cyclin-dependent kinase inhibitor 2A (CDKN2A; p16), Ubiquinol-Cytochrome C Reductase 
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Hinge Protein (UQCRH), and the wingless-related integration site (WNT) pathway regulators secreted 

frizzled-related protein 1 precursor (SFRP1) and Dickkopf WNT Signaling Pathway Inhibitor 1 

(DKK1)100,128. Interestingly, the epigenetic silencing of SFRP1 and DKK1 correlates with patient outcome, 

although the mechanism remains poorly understood129–131. Abnormal DNA hypermethylation profiles 

have been linked to somatic alterations in the non-redundant histone H3 lysine 36 tri-

methyltransferase, SETD2, which may contribute towards tumorigenesis by introducing intra-tumoral 

heterogeneity, through lineage plasticity and/or genomic instability100,128. In addition to SETD2 

(mutated in 12% of cases), significantly mutated genes in ccRCC include PBRM1 (38%), BAP1 (10%), 

MTOR (8%), KDM5C (5%), ARID1A (3.5%), PTEN (3%), and TP53 (3%) 100,128. Interestingly, PBRM1 and 

BAP1 mutations are largely mutually exclusive, and broadly characterise two major mutational subtypes 

of ccRCC with different prognoses132. The exact contribution of the inactivation of the chromatin 

modifiers, SETD2, PBRM1, BAP1, and KDM5C is yet to be fully elucidated90. MTOR and PTEN mutations 

lead to the dysregulation of the PI3K-AKT-mTOR pathway, a key metabolic signalling cascade, discussed 

in more detail below123. As mentioned previously in the cancer hallmarks section, TP53 is a key tumour 

suppressor gene (TSG), whose loss-of-wildtype-function supports cancer progression. Unlike most 

TSGs, the majority of TP53 mutations are missense single residue substitutions. Collectively these 

mutations are referred to as mutp53, they include alterations that can interrupt canonical target gene 

activation, exert trans-dominant repression over the wild-type counterpart, or confer neomorphic 

activity133. Without biallelic inactivation, which is common for most TSGs (e.g. PBRM1, SETD2, etc), 

mutp53 can exert a range of pro-tumorigenic effects, including metabolic re-wiring to support 

uncontrolled proliferation133.  
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Intra-tumoral genetic heterogeneity  

 

Multiregional sequencing efforts have allowed for the construction of tumour phylogenies, whereby 

ubiquitous mutations form the ‘trunk’ of the tree, and mutations found in some subclones make up the 

‘branches’134. In ccRCC, the inactivation of VHL is a truncal event. By contrast, oncogenic drivers such 

as PBRM1, BAP1, and SETD2 mutations are examples of ‘branched’ or subclonal mutations117,135. In a 

recent study, 1,206 regions from 101 primary ccRCC tumours were profiled using a bespoke panel 

consisting of 110 putative ccRCC driver genes. This analysis revealed seven deterministic evolutionary 

subtypes of ccRCC characterised by specific combinations of driver genes, which correlated with 

different intrinsic tumour properties and clinical outcomes. Within these subtypes the parallel evolution 

of BAP1, PTEN, and SETD2 mutations, and SCNAs (e.g. 14q loss) was observed, emphasising their 

importance in ccRCC development135. Interestingly, the comparison of matched metastatic and primary 

tumours revealed that the cognate metastases harboured fewer subclonal mutations and were 

enriched for SCNAs including  9p21.3 and 14q loss and 8q24.1 gain136,137. Taken together, these studies 

have provided an insight into the genomic architecture of primary and metastatic ccRCC cancers, 

demonstrating the complex and heterogeneous nature of the disease. 

 

1.2.3 Metabolic re-wiring in ccRCC 

 

1.2.3.1 Glucose metabolism 

 

The Warburg effect is an archetypal example of metabolic re-wiring, commonly observed in a range of 

malignancies. In ccRCC, the increased expression of the glucose transporter 1 (GLUT1), as well as 

glycolytic metabolites and enzymes, suggests an upregulation of glucose metabolism for lactate 

fermentation – a hallmark of the Warburg effect138. Further, the expression of fructose-1,6-
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bisphosphatase 1 (FBP1), a negative regulator of glycolysis, is downregulated in ccRCC tissue and its 

exogenous re-introduction inhibits tumour growth in a xenograft model139. The inactivation of VHL and 

de-regulation of HIFα expression is thought to be a critical driver of the glycolytic switch in ccRCC138. 

HIF1α promotes the expression of GLUT1 for enhanced glucose import, as well as the glycolytic 

enzymes hexokinase 1 and 2 and glyceraldehyde 3-phosphate dehydrogenase140–142. Further HIF1α 

upregulates the enzyme lactate dehydrogenase (LDH), increasing the conversion of pyruvate to lactate, 

thus shifting glucose metabolism away from the TCA cycle143,144. Finally, the microRNA miR-210 is highly 

expressed in ccRCC in a HIF1α dependent manor and has been demonstrated to negatively affect 

mitochondrial respiration145–147.  

 

1.2.3.2 PI3K-AKT-mTOR pathway 

 

Two of the most significantly mutated genes in ccRCC are MTOR and PTEN, which are positive and 

negative regulators of the PI3K-AKT-mTOR pathway respectively. In addition, the positive regulator 

PIK3CA and the negative regulator TSC Complex Subunit 1/2 (TSC1/2) are also frequently mutated in 

ccRCC100. In sum, the PI3K-AKT-mTOR pathway is hyperactivated in the majority of ccRCC patients and 

is mutated in approximately 28% of cases22,100,148,149. A simplified overview of the signalling pathway is 

summarised in Figure 5. In response to growth factor binding, receptor tyrosine kinases (RTK) 

dimerization, and transphosphorylation, PI3K is recruited and activated (through phosphorylation) at 

the cell surface. Activated PI3K catalyses the conversion of phosphatidylinositol (4, 5)-biphosphate 

(PIP2) to phosphatidylinositol (3, 4, 5)-triphosphate (PIP3), which in turn triggers the phosphorylation 

and activation of Akt via phosphorylation-dependent kinase (PDK)-1. Activated AKT can activate or 

inhibit a plethora of downstream targets involved in multiple cancer hallmarks. An Important target of 

Akt in ccRCC are TSC1/2. AKT phosphorylates TSC-1/2 thereby inactivating it and preventing the 

hydrolysis of GTP- Ras homolog enriched in brain (RHEB). Constitutively GTP bound RHEB facilitates the 
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assembly and activation of the mTOR Complex 1 (mTORC1), which triggers protein synthesis and cell 

growth via S6 kinase (S6K), 4E-binding protein 1 (4E-BP1) and Eukaryotic Translation Initiation Factor 

4E (eIF4E)150. 

 

Figure 5 

 

Figure 5| A simplified schematic overview of the PI3K-AKT-mTOR signalling pathway. Figure adapted 

from Weinberg1. 

  

1.2.3.3 Lipid and fatty acid metabolism 

 

Alterations to lipid metabolism in ccRCC were first reported in 1987, since then great progress has been 

made towards deciphering the molecular underpinnings138,151. Generally speaking, lipids are utilised 

either as an energy source via β-oxidation in the mitochondria, storage, or as a building block for the 

plasma membrane138. In ccRCC, there is a downregulation of β-oxidation and an upregulation of lipid 

droplet accumulation, which is at least in part mediated through deregulated HIF signalling152–154. For 

example, HIF directly represses the expression of the rate-limiting enzyme carnitine 

palmitoyltransferase (CPT1A), a protein responsible for importing fatty acyl-CoA into the mitochondria 
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for β-oxidation153,155,156. If fatty acyl-CoA is not imported into the mitochondria it is converted back into 

a fatty acid by FAS and elongated and further modified into unsaturated fatty acids, triglycerides, and 

phospholipids (required for the plasma membrane) by stearoyl-CoA desaturase (SCD1)138. The mRNA 

expression of SCD1 is upregulated in ccRCC and the knock-down (KD) of SCD1 protein or treatment with 

a small molecule inhibitor reduces viability in cell models157. Further, there is an accumulation of long-

chain fatty acids in ccRCC, and increased expression of the enzyme Fas Cell Surface Death Receptor 

(FAS) correlates with poor patient outcome155,156,158. Taken together there is a downregulation of β-

oxidation of fatty acids and an upregulation of lipid storage and production of phospholipids for 

membrane synthesis. The synthesis of phospholipids is important for the construction of a new cell 

membrane to support proliferation. The the pro-tumorigenic effect of lipid droplet accumulation is less 

clear, emerging evidence suggests that it may protect against endoplasmic reticulum stress and/or 

scavenge reactive oxygen species (ROS)123,152,159. 

 

1.2.3.4 Amino acid metabolism 

 

The metabolism of key amino acids is de-regulated in ccRCC, namely tryptophan, glutamine, and 

arginine. The upregulation or dependence on pathways involving these amino acids has provided 

potentially interesting opportunities for the design of non-genetic-based therapies138.  

Tryptophan is an essential amino acid that is the substrate for several metabolic pathways, including 

the kynurenine pathway160. In ccRCC the levels of the kynurenine pathway metabolites kynurenine and 

quinolinate and the expression of the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO)-1/2 are 

increased, suggesting heightened tryptophan metabolism through the kynurenine pathway138,161. The 

contribution of tryptophan metabolism to ccRCC pathogenesis is not well understood138. Kynurenine 

and quinolinate have been linked to an immunosuppressive microenvironment in both immune-

privileged sites (e.g. the eyes and testis) and multiple malignancies160,162. In line with this, an IDO-1 
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inhibitor sensitised previously refractory ccRCC tumours to treatment with the immunotherapy 

interferon (IFN)α161.  

Glutamine is important for protein assimilation, lipid synthesis, and energy production and is the 

precursor to glutathione (an antioxidant)36. Multiple studies have demonstrated an increase in 

glutamine metabolism in ccRCC93,155,163. In ccRCC, glutamine is either used in the reductive 

carboxylation pathway to produce fatty acids (an energy source) and L-2-hydroxyglutarate (an 

oncometabolite that influences DNA methylation), or in the oxidized glutathione pathway to scavenge 

ROS, promoting cell survival93,120,155,164.   

Argininosuccinate synthase 1 (ASS1) is the rate-limiting enzyme for the production of arginine from 

citrulline in the production of urea in the urea cycle, an important process for ammonia detoxification 

in the liver and kidney cortex138. Interestingly, in ccRCC ASS1 is frequently lost or downregulated which 

induces a dependence on extracellular arginine, referred to as arginine auxotrophy156,165. The 

competitive growth advantage of becoming arginine auxotrophic is unclear but does present an 

interesting therapeutic opportunity138. Arginine deprivation in a xenograft mouse model of ccRCC 

prevented tumorigenesis165. Arginine depletion as a potential therapeutic is being pursued in a range 

of cancers including hepatocellular carcinoma, non-small cell lung cancer, acute myeloid leukaemia, 

breast carcinoma, non-Hodgkin lymphoma and melanoma, but not currently ccRCC166. Although these 

trials have shown some promise, reactivation of ASS1 may curtail this approach165.  

 

1.2.4 ccRCC Therapy 

 

Patients can be diagnosed with RCC after presenting with flank pain, a palpable abdominal mass, gross 

haematuria, and paraneoplastic syndromes, or incidental detection during a non-invasive radiological 

scan (i.e. CT scan)90. The American Joint Committee on Cancer (AJCC) employs the tumour, node, and 
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metastasis (TNM) framework to classify patients with renal tumours into different stages (I-IV)167. The 

stage of the disease dictates the treatments a patient receives. For example, patients with a tumour 

mass of ≤7cm (T1), no metastases in a regional lymph node (N0), and no distal metastases (M0) are 

classified as stage I disease (T1, N0, M0), whereas patients with tumours >7 cm radiologically localised 

to the kidney are classified as stage II (T2, N0, M0)168. Typically, patients with stage I or II disease receive 

a simple, partial, or radical nephrectomy depending on the size of the tumour168. If early-stage renal 

cancer is comorbid with a terminal disease, arterial embolisation and external beam radiotherapy 

(EBRT) can be added as part of a palliative care regime168. Approximately 42% of diagnoses are stage I 

and 6% are stage II and the respective 5-year survival rates are 95% and 88%90,169. Stage III is classified 

as a T1 or T2 tumour in conjunction with a regional lymph node metastasis (T1/2, N1, M0) or a tumour 

that extends into major veins or perinephric tissues with an intact Gerota’s fascia (a fibrous connective 

tissue that encapsulates the kidneys) with or without a regional lymph node metastasis (T3, N0/1, 

M0)168. Patients with stage III disease are also treated by nephrectomy but in combination with renal 

vein and/or vena cava resection and/or lymph node dissection168. Preoperative embolization and 

preoperative or postoperative EBRT can also be used in conjunction with nephrectomy168. Palliative 

options for patients with a comorbid terminal disease include tumour embolisation, EBRT and, 

nephrectomy168. The annual percentage of stage III diagnoses is 18% and the 5-year survival rate drops 

to 59%90,169. Approximately 18% of diagnoses are stage IV disease, which includes T1, T2, and T3 

tumours, in combination with a regional lymph node metastasis and/or a distal metastasis (T1/2/3, 

N0/1, M1), or a tumour that invades beyond Gerota's fascia with or without detectable regional lymph 

node or distal metastases (T4, N0/1, M0/1)168,169. Depending on the exact TNM classification, stage IV 

patients are treated with radical or cytoreductive nephrectomy in combination with a systemic drug 

regiment168. Although the 5-year survival rate for stage IV renal cancer has improved markedly over the 

last 15 years due to the advent of new therapies, it remains as low as 20%90. Broadly speaking the 

classes of drugs used to treat stage IV disease can be classified as anti-angiogenic treatments, mTOR 

inhibitors, and immune therapies, each of which will be discussed in the following sections168. The above 
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summary provides an illustrative overview of the classification and treatment of renal tumours but is 

by no means exhaustive. Within each disease stage, the TNM classification can be defined beyond the 

aforementioned parameters and available treatments can vary depending on patient-specific variables 

(such as comorbidities).  

 

1.2.4.1 Anti-angiogenic and mTOR inhibitors 

  

Due to the highly vascularised nature of ccRCC tumours (driven by VHL-HIF-VEGF axis), small molecules 

targeting the VEGF RTK receptor (e.g. Sunitinib, Sorafenib, Pazopanib, Axitinib, and Cabozantinib) and 

a monoclonal antibody (Bevacizumab) against the ligand VEGF, have been developed and have shown 

some efficacy in the treatment of metastatic ccRCC170. Sunitinib, pazopanib, and cabozantinib have 

been approved as first-line single agents whereas, axitinib is a second-line single-agent therapy90. 

Sunitinib and pazopanib both significantly improved overall response rate (ORR), progression-free 

survival (PFS), and overall survival (OS) compared to the placebo171,172. Although both RTK inhibitors 

affected patient outcomes similarly, in 11 of 14 health-related quality of life scores pazopanib 

outperformed sunitinib and more patients discontinued pazopanib treatment (24% vs 20%) in part due 

to the higher incidence of liver toxicity173. Cabozantinib is the most recently approved VEGF RTK 

inhibitor (second line -2016, first-line - 2017), compared to sunitinib in a phase II trial, it increased the 

PFS from 5.6 months to 8.2 months174,175. The high frequency of mutations and subsequent 

deregulation of the PI3K-AKT-mTOR pathway led to the application of mTOR inhibitors for the 

treatment of ccRCC. Indeed, Everolimus and Temsirolimus have been approved as monotherapies in 

the second-line setting and as a first line therapy for patients with poor-risk status176,177. The 

combination therapies, bevacizumab and IFNα, and Lenvatinib with Everolimus have also been 

approved as first and second-line therapies in certain ccRCC disease contexts178–180. The development 
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of targeted therapies centred on the VHL-HIF-VEGF and PI3K-AKT-mTOR axes have improved the quality 

of care for metastatic ccRCC patients, however, the impact on the 5-year survival rate is still moderate90. 

 

1.2.4.2 Immune checkpoint therapy 

 

Over the last two decades, great progress has been made towards leveraging the adaptive and innate 

anti-tumour activity of the immune system for therapy49. Arguably the most significant development is 

the discovery of immune checkpoint inhibitors (ICI). The two best described immune checkpoint 

proteins are programmed cell death (PD)-1 and the cytotoxic T-lymphocyte-associated-antigen (CTLA)-

449,181. PD-1 and CTLA-4 are expressed on the surface of T cells, when bound to their respective ligands 

(PD-1 and PD-L1/2, CTLA-4 and CD80/CD86) on antigen-presenting cells or macrophages, they trigger 

a negative feedback cascade, disengaging activated T cells and reducing the amplitude of the 

inflammatory response181. Cancer cells can co-opt this physiological regulatory checkpoint to inhibit the 

anti-tumour immune response in the tumour microenvironment, for example through the ectopic 

expression of PD-L1 and CD80/8649,181. To date, a range of monoclonal antibodies (mAb) targeting PD-

1, PD-L1, and CTLA-4 have been developed which disrupt the immune checkpoint, triggering a larger 

and more sustained anti-tumour immune response49. The only FDA-approved ICI monotherapy in ccRCC 

is the use of nivolumab (anti-PD-1 antibody) as a second-line therapy181. In a phase III clinical trial 

comparing nivolumab to everolimus, nivolumab improved ORR (25% vs 5%) and increased the OS from 

19.6 months to 25 months182. Currently, there is no phase III data to test the activity of nivolumab as a 

first-line single-agent therapy181. Although the moderate increase in OS with nivolumab versus 

everolimus may appear disheartening, it may also not represent the full potential of this therapy181. The 

observed difference in the OS was primarily driven by a small number of patients who responded to ICI 

and survived long term182. Currently, a focus of ongoing research is to increase the proportion of 
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patients who will respond to this potentially curative therapy and uncover biomarkers for affective 

patient stratification181.  

 

1.2.4.3 ICI combination therapy 

 

PD-L1 and CTLA-4 have complementary roles in tempering the immune response. CTLA-4 acts at the 

point of T cell activation in the lymph nodes, whereas PD-L1 acts at the level of the tumour183. Combined 

blockade of these tumour checkpoints in melanoma and colorectal cancer models exhibited enhanced 

disease control versus either therapy alone184,185. Of note, in a toxicology study in Cynomolgus 

Macaques, the combination of Ipilimumab and Nivolumab triggered a stronger self-reactive immune 

response compared to a single agent184. A similar increase in toxicity has also been reported in human 

trials186,187. Despite heightened toxicity, the combination of nivolumab and ipilimumab (CTLA-4 mAb) 

significantly improved patient outcomes in the metastatic ccRCC context and was FDA approved in 

2017188,189.  

A second approach that is being investigated is the combination of ICIs with already FDA-approved VEGF 

inhibitors181. The rationale for this approach is  based on preliminary studies correlating VEGF 

expression to immune evasion,  possibly through a reduction in mature antigen-presenting dendritic 

cells or an expansion of the suppressive myeloid compartment189,190. Further, In a phase I clinical study, 

bevacizumab (VEGF mAb) treatment increased infiltration of tumour-specific T cells and in an analogous 

immunotherapeutic approach, bevacizumab in combination with INFα (an immune activator) improved 

PFS compared INFα alone179,191,192. Multiple phase III trials have demonstrated the utility of combining 

immune checkpoint and VEGFR inhibitors. For example, the combination of axitinib plus avelumab was 

evaluated in 886 patients versus sunitinib in the phase III JAVELIN Renal 101 trial, demonstrating 

increased median PFS (HR 0.69, 95% CI 0.56–0.84; P < 0.001) and ORR (51.4% versus 25.7%)193. 

Interestingly, a phase III trial is combining both combination strategies by comparing cabozantinib plus 
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nivolumab plus ipilimumab versus nivolumab plus ipilimumab (NCT03937219). It will be interesting to 

observe how the synergistic/additive efficacy of this drug regiment will stack up against the possible 

side effects. In summary, the combination of ICIs and VEGFR inhibitors has become the new standard 

of care in the treatment of metastatic ccRCC, surpassing the precious gold standard treatment with the 

TKI sunitinib181. However, there is clearly scope to expand the curative effects of ICI blockade to a 

greater subset of patients.  

 

1.2.4.4 Additional therapies 

 

As mentioned previously, the biallelic loss of VHL and the stabilisation of HIF2α is a key oncogenic driver 

in ccRCC. Recently a first-in-class HIF2α antagonist (PT2399) was developed which prevents the 

dimerization of HIF2α and its binding partner HIF1β/ARNT. PT2399 binds to a pocket in the Per-Arnt-

Sim (PAS)-B domain of HIF2α, preventing dimerization and subsequent DNA binding at HREs. Of note, 

PT2399 is a selective HIF2α inhibitor, treatment with PT2399 led to the reduction of HIF2α target genes 

without affecting HIF1α targets194. Treatment with PT2399, and its derivative PT2385, outperformed 

sunitinib in reducing tumour growth in xenograft assays, without causing a reduction in body weight194–

196. A more recently published derivative with increased potency and pharmacokinetics (PT2977) 

received FDA approval in 2021 for the treatment of VHL-associated tumours in the kidney, pancreas, 

and CNS110. Combinations with HIF2α inhibitors are also being explored. PT2385 in combination with 

nivolumab is currently undergoing a phase I safety trial in 50 participants and two trials with PT2977 in 

combination with Lenvatinib and Pembrolizumab or Cabozantinib are currently recruiting197,198. HIF2α 

inhibition resistant tumours (de novo and acquired) have been reported in both pre-clinical models and 

an early phase trial194,199. The dominant route to resistance appears to be a mutation that disrupts drug 

binding, but there is preliminary evidence for the contribution of TP53 mutations194,199,200.  
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As mentioned above, ccRCC tumours exhibit glutamine addiction, which could be targeted 

therapeutically. To date, four early phase clinical trials have been launched testing the small molecule 

inhibitor of glutaminase (CB-839) as a single agent or in combination with either everolimus, nivolumab, 

or cabozantinib (NCT02071862, NCT02071862, NCT02771626, and NCT03428217 respectively). 

 

1.2.4.5 Cautionary statement 

 

It is worth noting that due to the number of trialled small molecules and antibodies, their combinatorial 

application, and utilisation in different disease settings, the current list of regulatory approved 

treatments for ccRCC is rapidly evolving. Therefore, it is likely that the landscape of approved drugs 

presented above could soon be quite different. 

 

1.3 Transcription factors in cancer  

 

Although great progress has been made towards the curative treatment of metastatic ccRCC, there 

remains a clear unmet clinical need. A possible source of novel therapeutics, which have already shown 

some efficacy in ccRCC, are transcription factors (TFs)201. Oncogenic alterations in a range of growth-

promoting signalling pathways converge on TFs as effectors to drive cancer hallmarks202. TFs are 

proteins with an activation or repression domain and a DNA binding domain capable of recognising 

specific nucleotide sequences (DNA motifs)203. Through the recruitment of co-activators TFs can 

regulate RNA polymerase activity in a gene-specific manner204. The activity of TFs is frequently 

dysregulated in cancer through amplifications, deletions, chromosomal rearrangements, and somatic 

alterations which can result in gain or loss of function201,205. Further, TFs can act as key nodes canalising 

the signalling output of a range of hyperactivated cellular pathways and orchestrate complex 
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transcriptional programs through the direct regulation of their pleiotropic target genes206,207. As such, 

TFs represent targetable bottlenecks with potential implications for multiple cancer hallmarks207,208. 

Compared to designing small molecules targeting kinases, it has proven challenging to disrupt the 

protein-DNA or protein-protein activity of TFs202. In part due to the positively charged convex protein-

DNA and the flatter protein-protein interfaces, which contrast to the deep pockets present in enzyme 

active sites209,210. Despite the technical challenges, multiple examples of targeting TFs or other 

transcriptional trans-factors have shown efficacy in the clinic for a range of cancer types202. 

 

1.3.1 Regulation of transcription 

 

Humans are assimilated from a plethora of specialised cell types, and with the advent and widespread 

adoption of single-cell sequencing technologies, new cell types are being continuously described211. A 

specific cell type is defined by the combination of genes expressed, which to a large extent is 

determined by TFs212–214. Approximately 1600 TFs are known or have been predicted based on their 

sequence203. The majority bind to free/accessible DNA, but a distinct class known as pioneer factors, 

can bind nucleosomal DNA and establish de novo gene expression, often through the recruitment of 

histone acetyltransferases (HATs) (discussed below)215,216. The binding sites of TFs are located at gene 

promoters or in intergenic/intronic regions which have cis-regulatory activity – termed enhancers217. 

Enhancers tend to be occupied by multiple TFs and can be > 1 million base pairs away or even on 

different chromosomes from their target gene217,218. At promoters, TFs recruit transcriptional co-

activators (e.g. mediator) and the machinery required for assembling the pre-initiation complex, the 

prelude to elongation and mRNA synthesis216. The initiation and maintenance of mRNA elongation is 

also closely regulated204. For example, cyclin dependant kinase (CDK)7 and CDK9 initiate elongation by 

phosphorylating serine residues in the C-terminal domain of RNA polymerase II219. TFs bound at 

enhancers similarly recruit DNA polymerase, resulting in the bidirectional transcription of unstable 
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enhancer RNA (eRNA), which without being translated influences enhancer maintenance and 

dynamics220. The 3D architecture of the genome is arranged so that enhancers become physically 

juxtaposed to gene promoters through DNA looping, enabling transcriptional regulation221. The 

selection of genes with which discrete enhancers can interact are physically restrained through the 

binding of CCCTC-binding factor (CTCF) and the formation of a cohesin ring221. Looped DNA held in place 

by a cohesin ring is referred to as an insulated neighbourhood, and is the mechanistic basis of higher-

order topologically associated domains (TADs)(Figure 6)222,223. 

 

Figure 6 

  

Figure 6|Insulated neighbourhoods are DNA loops mediated through the binding of CTCF to anchor 

points and the formation of a cohesin ring. This limits the promoters a certain enhancer can 

interact with (upper panel). Deletions, non-synonymous mutations, and aberrant DNA methylation 

can disrupt CTCF binding and the formation of the cohesin ring. This can expand the number of 

target genes of a particular enhancer, sometimes triggering the ectopic activation of an oncogene. 
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Afferent signalling through the actions of TFs can be highly dynamic due to their short protein half-life, 

in part because their activity is frequently coupled to their destruction208. For example, Smad TFs are 

phosphorylated via TGFβ signalling and CDK8/9 activity, simultaneously activating them and enabling 

their recognition by specific ubiquitin ligases for proteasomal degradation224. Given the sheer 

complexity detailed above, the efficient organisation of transcriptional apparatus is paramount for 

timely gene expression. Emerging evidence suggests that TFs, co-activators, DNA polymerase are 

concentrated at gene promoters and enhancers by the formation of condensates through liquid-liquid 

phase separation, enabling the efficient assembly of the pre-initiation complex (PIC)204. 

The genome in eukaryotic cells consists of nucleic acids and associated proteins (histones), collectively 

referred to as chromatin225. Molecules of 147 base pairs of DNA are wrapped around octamers of 

histone proteins, forming nucleosomes, which are in turn are packaged into chromosomes225. Broadly 

speaking, chromatin can exist in two states, one which enables gene activity (euchromatin) and one 

which represses gene expression (heterochromatin)226. Euchromatin and Heterochromatin states are 

determined by how closely the DNA is associated with histones, a closer association prevents non-

pioneering TFs from being able to recognise and interact with their DNA binding motif226. The 

association of the DNA with histones to a large extent is determined by two classes of proteins, histone 

modifiers, and ATP-dependant chromatin modellers226. A large number of covalent histone tail 

modifications (e.g. methylation, phosphorylation, acetylation, ect), which are dynamically laid down 

and removed by chromatin-modifying enzymes, have been described and are the subject of a number 

of excellent reviews227,228. One of the earliest and arguably best characterised examples of histone-

modifying enzymes are HATs. HATs catalyse the acetylation of lysine residues in the histone tail, altering 

the charge of the histone so it repels the negatively charged DNA, loosening the association of the DNA 

with the histone229. Histone deacetylases (HDACs) are capable of removing these acetylation marks (e.g. 

H3K27ac)229. HATs are often referred to as writers because they place epigenetic marks, whereas HDACs 

are ‘erasers’ because they remove them229. The third class of chromatin modifiers, ‘readers’, are 

proteins that are capable of recognising covalent modifications on histone tails. For example, 
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bromodomain (BrD) containing proteins (i.e. bromodomain containing (BRD)7 and BRD9) can recognise 

acylated lysine residues. BrD subunits are found in the SWI/SNF ATP-dependant chromatin remodelling 

complexes, which hydrolyse ATP to physically displace the DNA from the histone, ‘opening up’ the DNA 

region and enabling the recruitment of transcriptional machinery229. In addition to chromatin 

modifications, the DNA itself can be modified without altering the nucleotide sequence229. The 

methylation of the fifth position of the cytosine ring in the CpG dinucleotides by DNA methyltransferase 

enzymes (DNMTs) can alter gene expression in three main ways; methylation at promoters and 

enhancers preventing the binding of TFs, methylation of CTCF loop anchors to prevent CTCF protein 

binding thus altering TADs, and methylation marks can be recognised by chromatin-associated proteins 

(e.g. methyl CpG binding protein 2; MECP2) which can in turn influence gene transcription229–233. 

Collectively these reversible, heritable, and non-genetic determinants of gene expression are referred 

to as the epigenome229. A number of additional well-described epigenetic regulators not discussed 

above are also important for gene regulation, such as polycomb silencing, long non-coding RNA 

(lncRNA), X inactivation, imprinting, histone variants, and bivalent chromatin226,229. 

 

1.3.2 Transcriptional deregulation in cancer 

 

Transcriptional programs are deregulated in cancer through genetic alterations at two levels, trans-

acting (e.g. TFs, co-activators, and chromatin regulators) and cis-acting (e.g. enhancers, promoters and 

insulators)208. With regards to cis-acting alterations, amplifications in MYC and point mutations in TP53 

are two of the most frequent genetic alterations in cancer10. Mutations are also common in chromatin 

regulators, for example, a member of the switch/sucrose non-fermentable (SWI/SNF) chromatin 

remodelling complexes are mutated in ~20% of cancers, including the frequent biallelic inactivation of 

PBRM1 in ccRCC234,235. Translocations can also disrupt transcriptional programs, for example, the 

reciprocal translocation (15;17) which fuses the retinoic acid receptor alpha (RARA) to Promyelocytic 
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leukemia protein (PML), is a driver event in acute promyelocytic leukemia (APML)208,236. The fusion 

PML/RARα oncogene drives tumorigenesis by suppressing the expression of genes essential for 

granulocytic differentiation, through the recruitment of co-repressors (i.e. HDAC, DNA 

methyltransferase (DnmT)1 and Dnmt3a). Treatment with all-trans retinoic acid (ATRA) dissociates 

PML/RARα from the DNA, inducing differentiation and tumour regression in APML236. Mutations in 

trans-acting factors include the aforementioned mutations in the TET promoter that induce an aberrant 

upregulation of the telomerase gene, the translocation of a strong enhancer into the TAD of an 

oncogene, the focal amplification of an enhancer regulating an oncogene and mutations in anchorage 

sites which can disrupt an isolated neighbourhood triggering aberrant activation of an oncogene or 

repression of a TSG237–242. Somatic mutation, disruptive translocation, and aberrant methylation of the 

CTCF-DNA binding region of anchorage sites in insulated neighbourhoods have been described in 

multiple cancer types242 (Figure 6). In a recent study, microdeletions that eliminated boundary sites in 

T cell acute lymphoblastic leukemia (T-ALL) lead to oncogene activation when reproduced in non-

malignant cells242.   

 

1.3.3 Lineage addiction 

 

In recent years, targeting lineage-specific TF networks has emerged as a promising non-genetic 

therapeutic paradigm243. As mentioned, cell identity is predominately determined by TFs through the 

gene regulatory pathways they define. Although approximately half of all TFs are expressed in all cell 

types, the expression of a small fraction of TFs is restricted to discrete cell lineages, referred to as 

master TFs212,213,239. Master TFs tend to be highly expressed and are necessary and sufficient to establish 

the transcriptional programs which underpin cell identity244. They tend to co-bind with other master 

TFs to enhancer elements and in particular to large clusters of enhancers (sometimes referred to as 

stretch or super-enhancers)208. They recruit additional factors and act within insulated neighbourhoods, 
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to drive the expression of tissue-specific genes208,221,244. Cancers show a degree of tissue specificity, and 

the development of different cancer types requires specific chromatin landscapes and combinations of 

driver mutations208. Interestingly, many core transcriptional networks that are important for cell 

identity are maintained in tumorigenesis and members of these networks have been shown to 

represent cellular dependencies in a range of cancer models (Figure 7)243,245–249. The best examples of 

this include targeting the estrogen receptor (ER) in breast cancer and the androgen receptor (AR) in 

prostate cancer, neither of which are commonly mutated250.  

Figure 7 

 

Figure 7|Schematic overview of the interaction between the tissue-specific and genetically activated 

pathways, using ccRCC as an example. Somatic alterations occur in a certain cellular context, which 

determines their oncogenic potential. The cellular context of a specific cell type is determined by a 

small number of master TFs. Abbreviations:- LD: Lineage dependency, All: All-non-RCC cell lines.  

 

The ER and AR are examples of nuclear hormone receptors (NHRs)250. NHRs have a ligand-binding 

domain and a DNA binding domain. The ligand-binding domain enables their interaction with small 

molecules – hormones. When bound to their respective hormone, NHRs can positively or negatively 

regulate gene expression through the recruitment of co-factors251. The nature of the ligand-binding 

domain has made the design of small molecule antagonists far easier than with other TFs202.  

The ER has been established as a key oncogenic driver in ~75% of breast cancers252. Two methods of 

pharmacological inhibition of the ER have shown efficacy, selective oestrogen receptor degraders 



53 

 

(SERDs) and selective oestrogen receptor modulators (SERMs)252. SERMs, such as tamoxifen, interact 

with the ligand-binding domain of the NHR preventing the binding of estrogen. Without bound 

estrogen, the estrogen receptor does not undergo a conformational change enabling the recruitment 

of co-activators and instead recruits co-repressors253. SERDS, such as fulvestrant, also bind to the ligand 

binding domain but instead target the estrogen receptor for protein degradation252.  

The AR regulates gene expression after binding androgen hormones, such as testosterone. Similar to 

the estrogen receptor, the androgen receptor is important for tissue homeostasis and the sex hormone 

response in the prostate254. The binding of androgen to the ligand binding domain of the AR displaces 

bound chaperone heat shock protein 90 (HSP90), enabling the NHR to translocate to the nucleus and 

regulate gene expression255. A number of drugs that interfere with androgen binding to the AR have 

been developed, which have shown efficacy in the clinic256.  

 

1.4 Identifying lineage specific transcription factor dependencies in kidney cancer 

 

The success of NHR based targeted therapies suggests that lineage factor dependencies could be 

exploitable in non-hormone receptor-driven cancers, especially in instances where subclonal 

heterogeneity often leads to rapid resistance to oncogene-targeted therapies, such as in ccRCC. To 

identify candidate TF lineage dependencies in ccRCC, I leveraged the genetic dependency data from the 

collaborative DepMap genome-wide CRISPR-Cas9 pooled screening project and applied a similar 

workflow to Rauscher et al., depicted in Figure 8a257–259. In short, for each TF (~1600), I compared the 

median dependency score (CERES) in RCC cell lines to the median CERES score in all other cell lines from 

all remaining lineages. In this way, a score was assigned to each TF (lineage dependency score – LD 

score) based on how specifically it was a dependency in RCC cell lines (Figure 8b-c). A large negative 

score represents a strong RCC-specific dependency.  



54 

 

Figure 8 

 

Figure 8|Prediction of RCC specific transcriptional dependencies (a) Workflow for generation of 

lineage dependency scores (LD). RCC: all RCC cell lines, All: all non-RCC cell lines. (b) Frequency 

distribution of LD scores for each TF. (c) Ranked plot of LD scores for each TF.  

 

This analysis identified two very strong outlying tissue-specific dependencies, PAX8 and HNF1B. Out of 

the 27 lineages profiled, the co-depletion of paired Box (PAX)8 and hepatocyte nuclear factor(HNF)1B 

was only seen in one additional lineage, endometrial adenocarcinoma (EAC) (Figure 9a). Although the 

depletion of PAX8/HNF1B was relatively weaker in EAC compared to RCC. PAX8 was also specifically 

depleted in ovarian adenocarcinoma and HNF1B was weakly depleted in hepatocellular carcinoma 

(HCC) and cholangiocarcinoma (CCA) (Figure 9a). Notably, the genes Eedothelial PAS domain-containing 

protein 1 (EPAS1; encodes HIF2α) and Krüppel-Like factor 6 (KLF6) also scored (Figure 8b-c). HIF2α is a 

bona fide oncogenic driver, its protein expression is deregulated after the biallelic loss of VHL, a 

mutation that is highly specific to ccRCC10. Recently, our group identified KLF6 as a tissue-specific 

dependency in ccRCC through a stretch/super-enhancer-based ranking approach 260. KLF6 was 

subsequently shown to support ccRCC pathogenesis through the regulation of lipid metabolism and the 

induction of  PDGFB and mTOR signalling260. 
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Figure 9 

 

Figure 9|PAX8 and HNF1B as lineage specific dependencies. (a) box plots of CERES scores for PAX8 

(grey) and HNF1B (purple) for 25 cancer lineages with ≥10 cell lines. (b) Median PAX8 and HNF1B 

RNA expression (TPM) in 54 normal tissues from the GTEx project. (c) Unsupervised UMAP analysis 

of scRNAseq data from fetal human kidney. (d) PAX8 and HNF1B mRNA expression in the cell types 

identified form (c). (e-f) PAX8 and HNF1B mRNA expression superimposed on Unsupervised UMAP 

from (c). (g) Median PAX8 and HNF1B RNA expression (TPM) in 34 cancer tissues from the TCGA 

project. Acknowledgements:- As stated in the Preface, the scRNAseq analysis and plotting for panels 

c-d was performed by S.H using data from Young et al94. 

 

A literature search confirmed that PAX8 and HNF1B both play important roles in renal development. 

Heterozygous mutations in HNF1B are the most common monogenic cause of developmental renal 

disease, including congenital anomalies of the kidney and urinary tract (CAKUT) a frequent cause of 

renal failure in children261,262. The biallelic loss of PAX8 in the developing mouse embryo does not affect 
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renal development, however, the kidneys of PAX8-/+PAX2-/+ mice compared to PAX2-/+ mice have a 

significant reduction in the number of nephrons, poor distal convoluted tubule differentiation, and a 

partial defect in branching morphogenesis 263.  

Further, I confirmed that the co-expression of PAX8 and HNF1B was highly specific in normal and 

neoplastic kidney tissue. Analysis of PAX8/HNF1B mRNA expression in normal tissue from the 

Genotype-Tissue Expression Project (GTEx project; 53 tissue types) showed the specific co-expression 

of PAX8/HNF1B in the fallopian tubes and kidney medulla and cortex (Figure 9b). Looking more closely 

at the kidney, a re-analysis of a scRNAseq study of the developing kidney, showed that the co-

expression of PAX8 and was enriched in the proximal tubule cluster, which is the proposed origin of 

ccRCC (Figure 9c-e)94. Additional functional validation comes from a cellular re-programming study 

which demonstrated that HNF1β and PAX8 in combination with two additional TFs can convert 

fibroblasts into renal tubular epithelial cells, which resemble the proximal tubule epithelium264. Finally, 

using mRNA expression data from the Cancer Genome Atlas (TCGA; 34 cancer types), I confirmed that 

the specific co-expression of PAX8/HNF1B was maintained in cancer arising from the kidney (Figure 9f). 

Taken together, PAX8 and HNF1B are important factors in renal development and tissue homeostasis, 

their expression is maintained in RCC and inhibition of these factors is able to undermine the oncogenic 

program (Figure 10).  

Figure 10 

 

Figure 10|PAX8, HNF1B and KLF6 are members of the core regulatory circuitry of RCC tumours.  
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1.5 Problem statement 

 

Transcriptional lineage factor dependencies are observed across a range of malignancies, making them 

an attractive target class for therapy development. A Lineage targeted approach might be especially 

effective in caners with prevalent subclonal heterogeneity that often leads to rapid resistance to 

oncogene-targeted therapies265. Multi-region sequencing of ccRCC patient tumours revealed seven 

evolutionary distinct molecular subtypes with different combinations of driver mutations135,136,266. To 

date, targeted therapies in ccRCC have only been moderately successful in the clinic, in part due to the 

complex clonal architecture of ccRCC tumours90,267,268. The majority of ccRCC cells lines are dependent 

on the expression of PAX8 and HNF1B and so inhibiting these factors holds great promise as a 

therapeutic paradigm, to make this heterogenous disease more therapeutically tractable (Figure 8a). 

However, the role of lineage factors in cancer and the mechanisms that maintain lineage fidelity in 

advanced cancers remain poorly understood. Further, beyond targeting the NHRs in breast and 

prostate cancer, it is unclear what the long-term consequences and possible resistance mechanisms to 

lineage targeted therapy are. 

The three aims of my PhD are thus as follows: 

Aim 1: to identify regulators of lineage dependence in ccRCC models.  

Aim 2: to characterise the molecular consequence of losing regulators important for safeguarding 

lineage identity. 

Aim 3: uncover the functional relevance of lineage reprogramming in response to lineage targeted 

therapies 

To approach this project, I started by targeting a lineage dependency in a ccRCC model and then used 

a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genetic screen to 

identify genes capable of modulating the proliferative phenotype. Taking forward the most strongly 
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enriched hit from the screen, I profiled the transcriptome and chromatin landscape to determine the 

molecular consequence following the KO of this factor. Finally, I used a second CRISPR/Cas9-based 

genetic screen to determine the functional outcome of the observed reprogramming event.   
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2  

 
Materials and met hods 

Materials and Methods 
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2.1 Cell lines and cell culture 

 

The Human ccRCC cell lines used were 786-M1A and UOK101. 786-M1A cells are the metastatic 

derivatives of 786-O (obtained from American Type Culture Collection - ATCC), and they have been 

previously described31. Renal cancer cells were cultured in RPMI-1640 medium (Sigma) supplemented 

with 1% (v/v) penicillin-streptomycin (P/S) and 10% (v/v) fetal bovine serum (FBS). Human embryonic 

kidney HEK293T cells (obtained from ATCC) were cultured in DMEM medium (ThermoFisher Scientific) 

supplemented with 1% P/S and 10% FBS. Cell line identity was authenticated by short-tandem repeat 

profiling. Cell lines were routinely profiled for mycoplasma using the MycoAlertTM Mycoplasma 

Detection Kit (Lonza, LT07-318).   

2.2 Drug treatment 

 

Doxycycline (Sigma) was diluted in RPM1 medium to a final concentration of 0.1, 0.3, 0.6, or 1µg/ml (as 

specified in results) from a stock concentration of 1mg/ml, before adding to the cells. Doxycycline-

infused media was replenished every 2-3 days depending on the length of the treatment.  

2.3 Plasmids 

 

The plasmids used in this study are listed in Table 1. Derivatives of gifted plasmids were generated by 

restriction enzyme cloning. The Broad institute tool 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) was used to design sgRNAs 

(Table 1) and standard methods were used for cloning into pKLV2. Sequences for shRNA were taken 

from FellMann et al (Table 2) and the restriction enzymes, EcoRI-HF and XhoI, were used for cloning 

into the miRE vectors269 .  
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Table 1 

 

 

Table 1| Plasmids used in this study. 

 

Table 2 

 

Table 2 | sgRNA constructs 

 

Table 3 

 

Table 3 | shRNA constructs 
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2.4 Lentiviral transduction 

 

The plasmid of interest (table 3) and the viral packaging plasmids psPAX2 and pMD2.G were co-

transfected into HEK293T cells using Fugene 6 (Promega E269A) according to the manufacturer’s 

protocol. Viral supernatants were harvested 48h following transfection and filtered through a 0.45μM 

PVDG sterile filter. One day prior to transduction 2.5×105 cells were seeded on a 6-well plate. 

Immediately before transduction, the medium was changed to RPMI containing 6-8µg/mL Polybrene 

(Millipore). Fresh or frozen viral supernatant was added to the cells accordingly. 24h after transduction 

the media was changed to fresh RPMI. Antibiotic selection media were added two days post-

transduction: 4µg/ml puromycin (Invivogen), 800µg/ml hygromycin (Invivogen), or 25µg/ml blasticidin 

(Invivogen). 

 

2.5 Immunoblotting 

 

Cell pellets were washed once with ice-cold PBS and lysed with RIPA lysis buffer (Sigma) containing 1x 

protease inhibitor cocktail (Sigma): cells were incubated on ice for 30m and vortexed every 10m, 

followed by centrifugation at 14,000 RPM at 4°C. The protein lysate (supernatant) was collected and 

quantified using the PierceTM BCA protein assay kit (Thermo Scientific), before being stored at -80°C. 

For Immunoblotting, 10µl of protein (15-30µg) was added to 4µl of loading buffer (Invitrogen, NuPAGE) 

and 1 of β-mercaptoethanol (Sigma) and topped up to a total volume of 20µl with H2O. Samples were 

boiled at 95°C for 5m and then centrifuged for 20s. Following centrifugation, samples were loaded onto 

a polyacrylamide gel alongside a precision plus protein standards kaleidoscope ladder (BIO-RAD) and 

run at 80V for 15m followed by 100V for 2h. Proteins were transferred onto a PVDF membrane 

(Millipore) for approximately 2-3h at 100v. The membrane was subsequently blocked in 5% milk 

(dissolved in 0.1% PBS-Tween, PBST) for 1h. For immunoblotting, primary antibodies were diluted in 
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5% milk and incubated overnight with the membrane at 4°C. Membranes were washed three times 

with PBST before incubation with the secondary anti-mouse (DAKO, cat no. P 0447, 1:10,000) or anti-

rabbit antibodies (DAKO, cat no. P 0448, 1:10,000) conjugated to horseradish peroxidase (HRP) for 2h. 

Membranes were washed three times with PBST and were developed with LuminataTM Classico 

Western HRP substrate (Millipore) using a film processor. The following primary antibodies were used: 

PAX8 (Santa Cruz, cat no. Sc-81353.,1:250), HNF1β (Atlas, cat no. HPA002083, 1:5000, β-actin (Abcam, 

cat no. ab8227, 1:20,000), SMARCB1/SNF5 (Bethyl laboratories, cat no. A301-087A, 1:2500). 

 

 

2.6 Reverse transcription and quantitative polymerase chain reaction (qPCR) 

 

Cells were pelleted at 500g for 3m and stored at -80°C before processing. RNA was extracted using the 

RNeasy Mini Kit (Qiagen), according to the manufacturer’s instructions. Reverse transcription- 

polymerase chain reaction (PCR) was performed using the High-Capacity complementary DNA (cDNA) 

Reverse Transcription Kit (Thermo Scientific) to generate cDNA from 500ng of RNA. The StepOnePlusTM 

Real-Time PCR instrument (Thermo Scientific) was used with TaqMan reagents (Thermo Scientific). 

Samples were run in triplicate, normalised to the housekeeping gene TATA-box binding protein (TBP), 

and analysed using the double delta Ct method. Taqman probes used: PAX8 (Hs00247586_m1) and TBP 

(Hs00427620_m1). 

 

2.7 In vitro proliferation assays 

 

6x103 786-M1A cells were seeded in triplicate on a 24-well cell culture plate and analysed using the 

IncuCyte ZOOMTM instrument (Essen Bioscience). Bright-field images were acquired in 9 independent 



64 

 

locations within each well every 2 hours. Confluency was measured by applying a predefined cell-

specific mask to each image, which distinguished the cells from the background. For competition assays, 

dsRED/eGFP was used to gate all cells expressing an shRNA, and BFP/eGFP/mCherry was used to 

measure the abundance of two co-cultured cell populations. The proportion of the competing cell 

populations was measured by flow cytometry on an LSR Fortessa (BD Biosciences) and compared to 

day 0. The following gating approach was used: FSC-A, FSC-W, SSC-A to distinguish single cells from 

debris, and then dsRed (561nm, 610/20nm), mCherry (532nm, 610/20nm), BFP (405nm, 450/50nm) or 

GFP (488nm, 515/20nm), venus (488, 530/30) channels for discriminating between cell populations. 

 

2.8 Fluorescent activated cell sorting and analysis 

 

Fluorescent activated cell analysis was performed using a BD LSRFortessa flow cytometer. FlowJo 

software (BD Biosciences) was used to analyse flow cytometry data and generate plots. Fluorescent 

activated cell sorting was carried out by the Flow Cytometry Core Facility at the Cambridge Institute for 

Medical Research. 

 

2.9 RNA-seq 

 

Cells were seeded 24h before as four replicates per condition in 6 well plates. The medium was 

aspirated, and the cells were lysed on ice in buffer RLT (RNeasy Plus Mini Kit Qiagen). Total RNA was 

extracted using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s instructions. RNA quality 

was determined using Agilent RNA Nano 6000 kit (Agilent 5067-1511) and RNA concentration was 

determined using a NanoDrop 1000 Spectrophotometer. Library preparation was performed using the 

QuantSeq 3 mRNA-Seq Library Prep Kit FWD for Illumina and PCR Add-on Kit for Illumina (Lexogen), 
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with 300ng input RNA. The size of the final libraries was determined using the Agilent 4200 TapeStation 

System using the high sensitivity D1000 reagents (5067-5592). The concentration of the libraries was 

determined using the Qubit Flex Fluorometer (Thermo Fisher). The libraries were pooled in equimolar 

concentrations and submitted for deep sequencing on the Illumina HiSeq4000 platform (SE50). The 

processing of the FASTQ files to a read count table was performed on the BlueBee® Genomics Platform. 

In short, reads were trimmed using Bbduk (v35.92) from the bbmap suite, aligned with STAR aligner 

(v2.5.2a) to hg38, and counted using HTSeq-count (v0.6.0). Differentially expressed (DE) genes were 

determined from the read counts table using DESeq2 (v1.26.0)270. The custom rhabdoid signature was 

generated using common DE genes upon SMARCB1 re-introduction in TTC1240 and G401 cell lines, 

which satisfied log2FC < -0.5 and padj < 0.05271. The top 500 up and downregulated genes with a padj < 

0.05 upon SMARCB1 knockout (KO) were used to generate gene signatures for validation with CCLE 

expression data. The ARID1A KO signature was generated using the top 500 upregulated genes after 

ARID1A KO in MCF7 luminal breast cancer cells272. The NE signature was generated by taking the top 

500 varimax PCA loadings along a principle component which simultaneously separated NEPC from 

CRPC and normal prostate tissue, and SCLC from normal lung and LUAD tissue273.  Gene set enrichment 

analysis with custom and mSigDB (v7.2.1) signatures was performed using the R package ClusterProfiler 

(v3.14.3)274. Data wrangling and presentation (MA plots) were achieved using the R packages Tidyverse 

(v1.3.0) and ggpubr (v0.4.0) respectively. 

 

2.10 ATAC-seq 

 

786-M1A cells were treated with 0.6μg/ml doxycycline for 6 days before harvesting at 70% confluency. 

On the day of harvest, cells were trypsinized, counted, nuclei extracted, and 50,000 cells were used for 

the ATAC-seq protocol as previously described275. ATAC libraries were generated with the Illumina 

Nextera DNA library preparation kit (FC-121-1030) and purified for amplification with the minElute PCR 
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purification kit (Qiagen 28004). The libraries were amplified for a total of 8-12 cycles using custom 

Nextera PCR primers and NEBNext PCR master mix (NEB M0541S). The amplified libraries were purified 

using Agencourt AMPureXP reagents (A63880), profiled on the Agilent 4200 TapeStation System using 

the high sensitivity D5000 reagents (5067- 5589), pooled in equimolar concentrations, and submitted 

for sequencing on the Illumina HiSeq4000 platform (SE50). 

 

2.11 ATAC-seq analysis 

 

Adapters and low-quality bases (quality < 20) were trimmed from read ends using cutadapt (version 

2.10)276. Reads were mapped to hg38 using BWA (version 0.7.17)277. Low quality reads (mapping quality 

< 20) and reads mapping to ENCODE blacklisted regions and regions other than chr1-22, chrX and chrY 

were removed using deepTools2278,279. Reads were corrected for Tn5 offset (+ve strand: +4bp, -ve 

strand: -5bp). Peaks were called using MACS2 (version 2.2.7.1) with the following parameters “-f BAM 

–bdg -g 2913022398 –nomodel –nolambda –shift -100 –extsize 200”280. A consensus peak file for DE 

analysis was generated by extending peak summits to a fixed 501bp window, ranking called peaks by 

their qvalue, and iterating down the list, removing any overlapping peaks with a lower qvalue. This 

produced a consensus peak file containing the coordinates of the most significant peak called at a 

particular locus. The read count table was generated by extending reads to the modal length of 250bp 

and counting the number of uniquely mapped reads falling within consensus peaks using RSamtools 

(v2.2.3). Peaks were filtered for –log10(q)<20 and differentially accessible (DA) peaks (FC+/-2 and 

padj<0.001) were determined using DESeq2270. Homer (v4.11) was used for de novo and known motif 

enrichment analysis on +/- 50bp flanking the summits of DA regions, compared to a set of high 

confidence unchanged regions281. The R package ChIPseeker (v1.22.1) was used to determine genomic 

annotations for peaks. To determine the correlation between gene expression and epigenetic changes, 
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sequentially larger windows around LA and HA peaks were created with GenomicRanges (v1.38.0), and 

a hypergeometric based test (pHyper) was used to determine whether genes captured within these 

windows were significantly enriched for down or up-regulated genes, respectively. EAseq (v1.111) was 

used to determine genes that fell within these windows (GColoc function) and to create a set of 

matched controls (Controls function)282. For data visualisation, EnhancedVolcano (v.1.4.0) was used for 

volcano plots and EAseq (v1.111) was used for genomic tracks, heatmaps, and metagene plots282. 

 

2.12 scRNAseq analysis 

 

The expression count matrix for CD45 negative fetal kidney samples 4834STDY7002876, 

4834STDY7002881, 4834STDY7002886 were downloaded from Young et al and were processed as 

follows94. (1) Cells with reads mapping to <1500 distinct mRNA transcripts or expressed >20% 

mitochondrial genes were removed. (2) Normalisation was performed with SCTransform283. (3) 

Integration anchors (n=3000) were identified using the function FindIntegrationAnchors and batch 

correction was performed using the Seurat function IntegrateData 

(normalisation.method=”SCT”)284,285. (4) The first 30 principal components were used to calculate 

UMAPs and clustering was achieved using the FindNeighbors and FindClusters (resolution=0.3) 

functions. The clusters were biologically annotated based on the expression of published marker 

genes286–288. (5) Clusters that expressed less than 15 marker genes and the immune marker CD45 were 

filtered out. (6) UMAP and violin plots were made using the R packages Tidyverse, Rcolorbrewer and 

ComplexHeatmap.  

 



68 

 

2.13 Animal studies 

 

All animal protocols were approved by the Home Office (UK) and the University of Cambridge Animal 

Welfare and Ethical Review Body (PFCB122AA). Five to seven-week-old athymic female nude mice 

(Charles River Laboratories) were injected subcutaneously with 500 000 cells in each flank, using 100µL 

of 1:1 phosphate buffered saline (PBS)/Matrigel Matrix (BD) solution. The tumour growth was 

measured by calliper and tumour volume was calculated as follows, V= (length x width2) x 0.5. 

 

2.14 Pooled CRISPR-Cas9 screening 

 

Cells were transduced with a lentiviral library at a low multiplicity if infection (MOI; <0.3) to ensure 

1000x sgRNA representation. An MOI of <0.3 was used so that >85% of cells had a single sgRNA 

integration. After 48h following transduction, the cells expressing the integrated library were selected 

with puromycin or hygromycin for 5 days. For doxycycline naïve cells, the screen was initiated after 

antibiotic selection by supplementing the medium with 0.6μg/ml doxycycline to induce the expression 

of Cas9, otherwise, the screen was considered to have started 24h post-transduction. Cells were 

cultured for 17-21 days after screen initiation and two replicates at various time points were collected 

for each condition. For time points that required FACS, enough cells to ensure >130x coverage were 

harvested, otherwise, >500x coverage was maintained. Day 17 of the chromatin regulator screen was 

the only time point that required sorting. Given that the primary focus of this screen was to look for 

enriched hits and that the initial coverage was ~1000x, an sgRNA coverage of 130x was tolerated. 

Genomic DNA was isolated using the QIAamp DNA mini kit (Qiagen 51304) and libraries were created 

by amplifying the cassette containing the sgRNAs using KAPA HiFi HotStart ReadyMix (Roche) and 

custom primers adapted from for pKLV2289. Libraries were purified using Agencourt AMPure XP 
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(Beckman-Coulter A63880) beads, profiled using the Agilent 4200 TapeStation System using the high 

sensitivity D1000 reagents (5067-5592), quantified using the Qubit dsDNA HS assay kit (Thermo), and 

pooled in equimolar concentrations for sequencing on the Illumina HiSeq4000 platform (SE50). FASTQ 

files from sequencing were aligned to the sgRNA library and counted, using the command mageck count 

(v0.5.9), which tolerated no mismatches. Raw fold changes from normalised counts were calculated for 

each sgRNA construct for each gene, compared to Day 0 or the plasmid library. The top performing 3 

sgRNAs (depleted or enriched depending on context) for each gene averaged across the experimental 

screen arm (i.e. P81/2 for the TF screen) were used to calculate the final beta scores (normalised FC) for 

each gene. Beta scores were calculated using mageck mle (v0.5.9) with the normalisation method set 

to median and permutations set to 1000. 

2.15 The encyclopedia of DNA elements (ENCODE) analysis 

 

DNAse I hypersensitivity profiles for cell lines (n=97), adult primary cells and tissues (n=125), and 

embryonic tissues (n=282) were downloaded from SCREEN (https://screen.encodeproject.org/), with 

chromatin accessibility annotations (open/closed) determined for each of the 926,535 candidate cis-

regulatory regions (cCREs) identified by the ENCODE project. For clustering, the top 250,000 most 

variable regions across samples were selected to generate a pairwise Pearson correlation matrix. To 

identify clusters, samples were first ranked based on the number of additional samples with which they 

highly correlated (Pearson’s correlation coefficient (PCC)>0.6). Starting with the top-ranked sample, all 

samples which correlated (PCC>0.6) were identified and labelled as cluster 1. These samples were then 

removed from the matrix, the matrix was re-ranked and cluster 2 was identified by the same means. 

This process was repeated until the size of the cluster dropped below a cut-off of five samples. This 

resulted in 21 clusters, incorporating 376/504 samples. Clusters were given a biological annotation 

based on their sample composition, and clusters that could not be annotated were removed (n=1). 

Cluster-specific cis-regulatory regions were defined as peaks that were present in 80% of cluster 
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samples and appeared in no more than two additional clusters. Overlap analysis between cluster peaks 

sets and +/-25bp flanking the summit of DA regions from this study was performed using the R package 

ChipPeakAnno, requiring a stringent 100% overlap.   

 

2.16 Cancer cell line encyclopedia (CCLE) 

 

Mutational and gene expression data were downloaded from the DepMap portal 

(https://depmap.org/portal/download/). Differential expression analysis with raw RNA-seq counts was 

performed as above. Biallelic inactivation of the essential gene VHL is a truncal initiation event in ccRCC, 

RCC cell lines were considered ccRCC if they had a ‘damaging’ or ‘other non-conserving’ mutation in 

VHL, which also corresponded with resistance to VHL KO (CERES > -0.5). To prioritise functionally 

relevant mutations in ARID1A and SMARCB1, ‘damaging’ or ‘other non-conserving’ with a TCGA or 

COSMIC hotspot were considered.  

 

2.17 DepMap analysis 

 

Dependency data for 990 cell lines were downloaded from the DepMap portal 

(https://depmap.org/portal/download/). Where appropriate, centred CERES scores were calculated 

using the scale function in R.  
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2.18 Pan-cancer Lineage dependency (LD) analysis 

 

Genome-wide CRISPRcas9 genetic dependency data for 946 cell lines was downloaded from the 

DepMap project (www.depmap.org/portal/)257,290. The list of ~18000 genes was filtered for ~1600 TFs, 

as defined by Lambert et al203. The Lineage of a cell line was defined by their lineage annotation (e.g. 

skin) and lineage subtype annotation (e.g. melanoma). Of the 81 defined lineages (e.g. skin_melanoma), 

56 were removed because they were underrepresented (<10 cell lines). A lineage dependency score 

(LDscore) for each TF in each lineage context was calculated according to: LDscore = mean(CERES)lineage x - 

mean(CERES)remaining lineages. The LDscore was a measure of how specific a particular transcriptional 

dependency was to a certain lineage context; a larger negative score denotes a stronger and more 

specific dependency. Simultaneously, the Kruskal Wallace statistical test in conjunction with a 

Benjamini Hochberg correction was implemented to derive a corresponding p-value for each LDscore. To 

define putative core regulatory circuitry (CRC) for each of the 25 lineages, three levels of filtering were 

applied. (1) Based on the distribution of maximum LDscores for each TF, a cut-off of LDscore <-1.2 and a p-

value < 0.05 was implemented. The distribution of maximum LDscores was plotted by selecting the lowest 

possible LDscore for each TF (Figure 49b). For example, PAX8 and HNF1B had the most negative LDscore in 

the RCC lineage context, and so these scores were used. (2) Examples of LDs that were strong cellular 

dependencies were selected by filtering for putative LDs for which the majority (>50%) of cell lines in 

their respective lineage had a CERES score of ≤ -0.5. (3) Putative LDs which were pan-cancer 

dependencies but were more strongly depleted in a particular lineage were also removed. This was 

accomplished by using a plot of the distribution of the median CERES score across all cell lines for each 

putative LD. Based on the bimodal distribution of the data, a cut-off medianCERES >-0.2 was identified. 

(Figure 51b). After filtering, CRC predictions were available for 10/25 lineages. To identify lineage-

resistant cell lines within each of the 10 lineages, a distribution of the averaged CERES scores of LDs in 

each cell line of their respective lineage was plotted (Figure 52a-d). Based on the bimodal distribution 

of the data, a cut-off of average CERES score > -0.45 was used to identify lineage-resistant cell lines.  
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A permutation-based statistical method was used to identify acquired transcriptional dependencies or 

lack of dependencies in lineage resistant versus lineage sensitive lines within each lineage. (1) Compute 

the observed effect size using Cohen’s D (lineage resistant vs lineage sensitive) relative to each TF. (2) 

Create a permuted dataset by randomly dividing cell lines into sensitive and resistant whilst maintaining 

the original number of observations for each of the two categories. (3) Compute the effect size with 

the permuted data. (4) Repeat steps 2 and 3 1000 times. (5) For each t ∈ seq(0,max(| observed effect 

size|), by = 0.001), estimate the false discovery rate (FDR) associated to the threshold t:  

 

The numerator is the mean (over the 1000 permutations) number of false positives (features with 

absolute effect size > t). The denominator is the number of observed features with absolute effect size 

> t. (6) The smallest t for which FDR(t)<0.1 was used as a threshold to call significant features. 

2.19 Statistical analysis 

 

Statistical analyses were performed in R. Kruskal-Wallis was used for competitive proliferation assays 

and comparison of dependency data between subtypes. For Kaplan-Meier curves of tumour free 

progression, the logrank test was used. The hypergeometric distribution (phyper) test was to measure 

the significance of ATAC/DNAse I, gene set, and genomic region overlaps. Pearson correlation was used 

for correlation analysis. For all tests, a p-value of q-value  of <0.05 was considered significant. 
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3.1 Introduction 

 

The advent of CRISPR-Cas9 genome editing has had far reaching implications for molecular biological 

research and medicine. The ability to efficiently edit the genome, with less off-target activity than 

previously available methods, has expediated mechanistic study and enabled the design of complex 

experiments, such as pooled loss-of-function genetic screening, henceforth known as CRISPR-cas9 

screening291,292. To date there are many different screening protocols with various advantages and 

disadvantages, but each has the same core tenants. A simple example: a cell line expressing Cas9 is 

transduced at a low MOI with a library of vectors containing a single sgRNA construct targeting a gene, 

cells are passaged for approximately 12 doubling events and the relative abundance of sgRNAs at the 

end of the screen is compared to day 0 by next generation sequencing (NGS). Collaborative efforts from 

the Sanger and Broad institutes have leveraged the power of genome-wide CRISPR/Cas9 screening 

(~18,000 genes) to create a dependency map of almost a thousand cancer models to date257. Whilst 

the wealth of this data set cannot be overstated, there remains an opportunity for more nuanced 

mechanistic applications for CRISPR/Cas9 screens, which are difficult to scale. To look for resistance 

mechanisms to lineage factor therapy, I performed a CRISPR/Cas9 screen in 786-M1A cells to uncover 

genes capable of modulating the dependence of ccRCC lines on PAX8 (Figure 11). The screen had two 

arms, a control with wild type PAX8 expression, and an experimental with PAX8 suppressed. The 

primary aim of the screen was to identify genes specifically enriched in the experimental arm, and 

hence compensated for PAX8 loss.  Due to the complex nature of the screen a smaller, more focused 

library was required. An sgRNA library targeting chromatin regulators was selected because they are 

key developmental mediators and have been shown to modulate the efficiency of cellular re-

programming events293–295. 
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Figure 11 

 

Figure 11| A schematic of a pooled CRISPR-Cas9-based loss of function screen using an sgRNA library 
targeting chromatin regulators to identify genes capable of modulating the dependence of ccRCC 
cell lines on PAX8 inhibition. 

 

 

3.2 Main 

For the experimental arm, I selected two shRNAs that could effectively suppress PAX8 expression 

(Figure 12a-b). For the control arm, a non-targeting shRNA against renilla was used. I used shRNAs for 

two reasons: (1) a KD more closely mimics the action of a drug than a CRISPR-cas9 KO, which is relevant 

when screening for resistance mechanisms for potential therapy, and (2) they suppress protein 

expression faster and so establish a PAX8 KD background before library selection has begun (Figure 

12c). In line with genome-wide screening data, both PAX8 shRNAs triggered a strong proliferative 

phenotype in renal cancer cells (786-M1A) but not in Hela cells which do not express PAX8 (Figure 12d-

e)296.  Confirming no phenotype in Hela cells suggested that the proliferative effect was due to the KD 

of PAX8 protein instead of an off-target effect297,298. 
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Figure 12 

 

Figure 12| (a) Western blot of PAX8 expression in 786-M1A cells expressing doxycycline-inducible 
shRNAs targeting PAX8 (PAX81/2) or renilla control (Ctrl). Cells were treated with 0.6µg/ml doxycycline 
for three days. (b) Relative PAX8 mRNA expression as determined by qRT-PCR in 786-M1A cells 
treated with 0.6µg/ml doxycycline for three days. (c) Western blot time course of PAX8 expression 
in 786-M1A cells expressing a doxycycline-inducible shRNAs. Cells were treated with 0.6µg/ml 
doxycycline. N to be determined. (d) Confluency-based cellular proliferation assay, with 786-M1A 
cells expressing inducible shRNAs. ‘Dox +’ cells were pre-treated with 0.6µg/ml doxycycline for 3 days 
before assay start. Three technical replicates per condition. Error bars are SD. PAX8 shRNA combined 
for statistical test by Kruskal- Wallis. (e) Confluency-based cellular proliferation assay, with Hela cells 
expressing inducible shRNAs. ‘Dox +’ cells were pre-treated with 0.6µg/ml doxycycline for 3 days 
before assay start. Three technical replicates per condition. Error bars are SD. PAX8 shRNA combined 
for statistical test by Kruskal- Wallis.   

 

To ensure efficient Cas9 activity, we selected a single cell clone with tight dox-inducible control of Cas9 

expression and high genome editing efficiency (Figure 13a-b). Similar to the parental cells, the selected 

clone, 786-M1A-C6, was sensitive to PAX8 suppression (Figure 13c-d). The shRNAs were fused to a 

fluorescent reporter, which allowed me to monitor expression and select for cells that maintained PAX8 

KD throughout the experiment (Figure 13e)269. The strong selective pressure against PAX8 KD produced 

fast growing ‘escaped cells’ with normal PAX8 expression, and in a screen would result in the non-
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specific amplification of random sgRNAs. Without sorting, this unspecific bias would have made the 

screen difficult to interpret.  

Figure 13 

 

Figure 13| (a) Western blot analysis of Cas9 expression in 786-M1A doxycycline-inducible Cas9 
single-cell clones. Cells were treated with 0.6µg/ml doxycycline for 3 days.  (b) Western blot analysis 
of BRD9 expression in 786-M1A clone 6 (786-M1A-C6), expressing sgRNA targeting BRD9 or a non-
targeting control. Cells were treated with 0.6µg/ml doxycycline for 5 days. (c-d) Confluency-based 
cellular proliferation assay, with 786-M1A Cas9 clone 6 (786-M1A-C6) cells expressing inducible 
shRNAs. ‘Dox +’ cells were pre-treated with 0.6µg/ml doxycycline for 3 days before assay start. Three 
technical replicates per condition. Error bars are SD. PAX8 shRNA combined for statistical test by 
Kruskal- Wallis. (e) Escaper assay with 786-M1A-C6, showing the percentage of cells expressing the 
fluorophore dsRed as a measure of shRNA expression. Three technical replicates per condition. Error 
bars are SD. 

 

The screen was run for 17 days to allow for sufficient time for sgRNA selection and to ensure enough 

non-escaped cells for sorting. Time points were also collected on days 0, 5, and 11 for quality assurance. 

Over 98% of sgRNAs and all 837 genes were represented at the start of the screen (Figure 14a). To test 

whether the screen selection occurred as it should, I measured the change in sgRNA abundance for 
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genes classified in the DepMap project as ‘essential’ or ‘non-essential’. As expected, there was a 

negative selection for known essential genes and no selection for non-essential genes (Figure 14a-c)257.  

Figure 14 

 

Figure 14| (a) Pie chart of percentage sgRNA constructs and genes represented at day 0 of the 
chromatin regulator CRISPR-Cas9 screen. (b-c) Beta scores of essential (n=188) and non-essential 
genes (n=14) at time points throughout the screen for the control arm (b) and experimental arm (c). 

 

The most enriched PAX8 KD condition (P81/2)-specific hit from the screen was SWI/SNF Related, Matrix 

Associated, Actin Dependent Regulator Of Chromatin (SMARC)B1, a member of the SWI/SNF chromatin 

remodelling complex, which has a key role in chromatin landscape maintenance in development and 

tissue homeostasis (Figure 15a-c)299,300.  SMARCB1 sgRNAs were enriched in both PAX8 shRNA 

conditions, reducing the chance that SMARCB1 was enriched in response to an shRNA off-target effect 

(Figure 15d). Three additional SWI/SNF complex members were also specifically enriched in the PAX8 

KD condition, of which AT-Rich interaction Domain 1A (ARID1A) showed the strongest enrichment 

(Figure 15e).  
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Figure 15 

 

Figure 15| (a-e) Changes in sgRNA abundance over time, measured by calculating beta scores using 
the top 3 three enriched sgRNAs per gene relative to day 0, from two technical replicates. Highlighted 
points have a beta score <-0.5 or >0.5 and an adjusted p-value < 0.05. (a) The beta scores for the ctrl 
arm of the screen versus the pooled experimental arm (P81/2). (b-c) Distribution of beta scores at day 
17, for the control arm (b) and the pooled experimental arm (c). The bin containing the beta score 
for SMARCB1 is labelled. (d) The beta scores for each of the experimental arms of the screen. (e) The 
beta scores for the ctrl arm of the screen versus the pooled experimental arm, filtered for SWI/SNF 
complex members.  

 

ARID1A and SMARCB1 inactivation have recently been shown to reduce the sensitivity of breast cancer 

cells to oestrogen receptor inhibition, supporting my findings in a second cancer type272,301. 

Interestingly, unlike ARID1A, and in contrast to its effect in our screen, SMARCB1 is a prototypical pan-

cancer essential gene (Figure 16a-b)257. SMARCB1 is a strong dependency in RCC cell lines but was not 

depleted in the control arm of the screen, suggesting 786-M1A-C6 cells were better able to tolerate its 

loss (Figure 15a and Figure 16c). The second strongest hit from the screen after SMARCB1 was Mediator 
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Complex Subunit 12 (MED12), a mediator for enhancer-bound transcription factors and the 

transcription apparatus at gene promoters (Figure 15a,d)302. However, MED12 sgRNAs were only 

significantly enriched in one PAX8 shRNA condition (P82) and not the other (P81), and so was not 

followed up.  

Figure 16 

 

Figure 16| (a) Genetic dependency data for 946 cell lines from the DepMap project. Distribution of 
CERES scores for the gene SMARCB1 and an example non-essential gene (Cyclic Nucleotide Binding 
Domain Containing 1; CNBD1). Statistical testing using Kruskal-Wallis. (b) Genetic dependency data 
from the DepMap project (n=946). Distribution of CERES scores for ARID1A and an example non-
essential gene (CNBD1). Kruskal-Wallis test. (c) Genetic dependency data for renal cell carcinoma 
lines (n=21) from the DepMap project. Distribution of CERES scores for SMARCB1 and an example 
non-essential gene (CNBD1). Kruskal-Wallis test. 

 

We validated the results from the screen by competitive cellular proliferation assays, using one PAX8 

shRNA (P81) and two additional SMARCB1 sgRNAs (S11/2) (Figure 17a). Acute PAX8 KD/SMARCB1 KO 

(P81/2S11/2(A)) resulted in a proliferative rescue but the cells appeared to grow less stably and were 

sensitive to passaging (Figure 17b).  
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Figure 17 

 

Figure 17| (a) Western blot analysis of PAX8 and SMARCB1 expression in 786-M1A-C6 cells 
expressing combinations of sgRNAs (ctrl or S11/2) and inducible shRNAs (ctrl or P81/2). Cells were 
treated for 6 days with 0.6µg/ml doxycycline. (b) Competitive proliferation assays, using 786-M1A 
Cas9 clone 6 (786-M1A-C6) cells expressing combinations of sgRNAs (Ctrl or S11/2) and inducible 
shRNAs (Ctrl or P81/2), competed against cells with a PAX8 KD (P81/2). Three technical replicates per 
condition. Doxycycline was added at day 0. Error bars are SD. Statistical testing using Kruskal-Wallis. 

 

Given time (~1 month, mid-term, MT) they began to grow more robustly (Figure 18a). Using FACS of 

the fluorescent marker attached to the PAX8 shRNA, we were able to maintain a PAX8 KD state and 

validated by western blot that the SMARCB1 KO was maintained (Figure 18b). SMARCB1 loss thus 

provides an immediate proliferative advantage to PAX8 KD cells but with a significant stability trade-off 

that can be selected against over time. Over a period of ~2-3 months (long-term, LT) the P81S11/2(LT) 

cells maintained a similar growth phenotype but cells without SMARCB1 KO (P81Ctrl) also adapted to 

PAX8 suppression (Figure 18c-d). Critically, despite a partial proliferative rescue, a selective pressure to 

regain PAX8 suppression was maintained in P81Ctrl(LT/MT) cells but not their SMARCB1 KO 

counterparts, as evidenced by the gradual loss of PAX8 shRNA expression in P81Ctrl(LT/MT) cells (Figure 

18e-f).  
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Figure 18 

 

Figure 18| (a) Competitive proliferation assays, using 786-M1A Cas9 clone 6 (786-M1A-C6) cells 
expressing combinations of sgRNAs (Ctrl or S11/2) and inducible shRNAs (Ctrl or P81/2), competed 
against cells with a PAX8 KD (P81/2). Three technical replicates per condition. were pre-treated for ~1 
month with doxycycline before the start of the assay (midterm, MT). Error bars are SD. Statistical 
testing using Kruskal-Wallis. (b) Western blots of PAX8 and SMARCB1 expression for 786-M1A-C6 
cells expressing combinations of sgRNAs (ctrl or S11/2) and inducible shRNAs (ctrl or P81), cultured for 
~1month (MT) on 0.6µg/ml doxycycline, compared to acutely (A) treated cells. (c) Western blots of 
PAX8 and SMARCB1 expression for 786-M1A-C6 cells expressing combinations of sgRNAs (ctrl or 
S11/2) and inducible shRNAs (ctrl or P81), cultured for ~2-3 months (MT) on 0.6µg/ml doxycycline, 
compared to acutely (A) treated cells. (d) Competitive proliferation assays, using 786-M1A Cas9 clone 
6 (786-M1A-C6) cells expressing combinations of sgRNAs (Ctrl or S11/2) and inducible shRNAs (Ctrl or 
P81/2), competed against cells with a PAX8 KD (P81/2). Three technical replicates per condition. were 
pre-treated for ~2-3 months with doxycycline before the start of the assay (midterm, MT). Error bars 
are SD. Statistical testing using Kruskal-Wallis. (e-f) Escaper assay with 3 technical replicates using 
786-M1A-C6 cells, showing the percentage of cells expressing the fluorophore dsRed as a measure 
of PAX8 shRNA expression for cells pre-cultured on doxycycline for (e) ~1 month (MT) or (f) ~2-3 
months, normalised to day 0. Cells were sorted at the beginning of the assay to ensure a starting 
point of 100% dsRed. Error bars are SD. 
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Tumour growth in vivo was totally abrogated by PAX8 KD (P81(A)), partially rescued for P81Ctrl(LT) cells, 

and completely rescued for P81S11(LT) cells. P81S12(LT) cells, on the other hand, showed only weak 

tumorigenicity (Figure 19).  

Figure 19 

 

Figure 19| Kaplan-Meier analysis of tumour-free survival in athymic mice, after subcutaneous 
injection of the following 786-M1A-C6 cell lines; Ctrl.Ctrl(A), P81Ctrl(A), P81Ctrl(LT), P81S11(LT) and 
P81S12(LT). Acute cells were treated with 0.6µg/ml doxycycline for 3 days prior to injection. Long 
term cells were maintained on 0.6µg/ml doxycycline. Four mice were injected with 5x105 cells in both 
flank per condition. Logrank test. Acknowledgment:- As stated in the Preface, the mouse work was 
completed by V.C, J.G and A.S. Analysis and plotting was my own work.  

 

Histological analysis revealed marked changes in the morphology of P81Ctrl(LT) and P81S11/2(LT) cells 

compared to the control tumours. Ctrl.Ctrl(A) tumours exhibited the expected high-grade ccRCC 

phenotype with sarcomatoid dedifferentiation, whereas tumours arising from P81Ctrl(LT) and 

P81S11/2(LT) cells showed high-grade undifferentiated histology, with large regions of necrosis and an 

appearance of neuroendocrine differentiation (Figure 20). In accordance with the in vitro observations, 

there were regions of detectable sarcomatoid histology reminiscent of Ctrl.Ctrl(A) tumours in P81Ctrl(A) 

tumours, providing evidence of PAX8 KD escaped cells in vivo (Figure 20). Unlike the in vitro findings, 

potential escaped cells were detectable in one of the P81S11(LT) but not P81S12(LT) (Figure 20). 
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Figure 20 

 

Figure 20| Haemotoxylin and Eosin (H&E) staining of tumours from Figure 19. Tumours were 
harvested at day 47 after subcutaneous injection. (a) Examples of high-grade ccRCC with sarcomatoid 
dedifferentiation. (b) high-grade undifferentiated histology with neuroendocrine differentiation. (c) 
Regions of necrosis. Acknowledgments:- As stated in the Preface, the mouse work was completed by 
V.C, J.G and A.S. Analysis and plotting was my own work. 

 

To expand our study to additional ccRCC models, we took a systematic approach and identified VHL 

mutant ccRCC cell models which have a non-synonymous SMARCB1 (n=3) or ARID1A (n=1) mutation 

from the cell line encyclopaedia (CCLE) and compared their PAX8 inhibition sensitivity to their 

SMARCB1/ARID1A wild type counterparts (n=13) using loss-of-function data from DepMap257,303. We 

chose to use VHL mutant renal cancer lines because VHL inactivation is a highly specific truncal event 
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in ccRCC10. Damaging non-synonymous VHL mutations were determined based on resistance to KO, as 

VHL is a known essential gene. SMARCB1 and ARID1A mutations were prioritised if they were annotated 

as a TCGA/COSMIC hotspot or predicted as ‘damaging’. In line with the findings from our screen, 

SMARCB1/ARID1A mutant lines showed strong resistance to PAX8 KO compared to their WT 

counterparts (Figure 21). However, there were also two VHL mutant cell lines that showed similar 

resistance to PAX8 KO but did not have a SMARCB1, ARID1A or any SWI/SNF mutation, indicating that 

PAX8 inhibition resistance can arise through several mechanisms.  

Figure 21 

 

Figure 21| PAX8 centred CERES dependency score for VHL-mutant RCC lines from the DepMap 
project, which are either WT (n=13) or mutant for ARID1A (n=1) or SMARCB1 (n=3). Kruskal-Wallis. 

 

In line with this, PAX8 depletion in UOK101 cells, another VHL mutant ccRCC cell line, resulted in the 

quick emergence of a resistant population which maintained the essential status of SMARCB1 (Figure 

22a-b). One month’s culture on doxycycline resulted in resistant P81Ctrl cells, partially resistant P81S12 

cells which had selected against the SMARCB1 KO, and P81S11 cells which had maintained a SMARCB1 

KO but had not adapted to PAX8 KD. 
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Figure 22 

 

Figure 22| (a) Western blot of PAX8 and SMARCB1 expression in UOK101 cells, expressing a 
combination of sgRNAs (ctrl or S11/2) and an inducible shRNA targeting PAX8 (P81). Acute (A) cells 
were pre-treated with 0.6µg/ml of doxycycline for three days and midterm (MT) cells were cultured 
on 0.6µg/ml doxycycline for ~1month. (b) Competitive proliferation assay with UOK101 cells 
expressing a combination of sgRNAs (ctrl or S11/2) and a PAX8 inducible-shRNA (P81), cultured for ~1 
month on doxycycline (MT), competed against cells with a PAX8 KD. To establish a PAX8 KD to 
compete against, doxycycline was added 3 days before starting the assay. Three technical replicates 
per condition. Error bars are SD. 

 

3.3 Summary 

 

Several factors were associated with lineage factor independence in ccRCC, two of the top 5 enriched 

hits from the screen were SWI/SNF complex members, which are critical epigenetic developmental 

mediators. SMARCB1 and ARID1A have also been implicated in resistance to tamoxifen treatment in 

luminal breast cancer, generalising these findings to another cancer type. SMARCB1 was the strongest 

hit from the screen, the KO of which  was capable of rescuing PAX8 loss both in vitro and in vivo, through 

a process that initially introduced instability but provided a substrate for the rapid selection of pro-

proliferative traits. Naturally occurring SMARCB1 mutations in patient-derived ccRCC lines provide 

resistance to PAX8 KO in the DepMap data, expanding these observations to additional RCC models. 

This data set contained two cell lines that overcame PAX8 sensitivity without a detectable SWI/SNF 

mutation, implicating multiple routes to adaptation. This was validated by the emergence of resistance 
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in P81Ctrl(LT) cells for both 786-M1A-C6 and UOK101 cells, in a SMARCB1 independent manor. Notably, 

despite an increase in proliferation, the emergence of shRNA ‘escapers’  was observed for 786-M1A 

P81Ctrl(LT) cells, suggesting an incomplete de-coupling from PAX8 pro-tumorigenic signalling.   
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4  
SMARCB1 inactivation promotes large scale chromatin remodelling and cellular instability 
SMARCB1 Inactivation Promotes Large-Scale 

Chromatin Remodelling and Cellular Instability 
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4.1 Introduction 

 

SMARCB1 is a subunit of the SWI/SNF chromatin remodelling complexes299. The SWI/SNF complexes 

were originally described in yeast as a multi-subunit protein complex capable of regulating the 

expression of inducible genes involved in mating-type switching and growth on sucrose medium, 

through the ATP-dependant mobilisation of nucleosomes, thereby enabling the binding of 

transcriptional activators to DNA304–309. To date, three mSWI/SNF complexes have been described: the 

BRG1/BRM-associated factor complexes (BAFs), the polybromo-associated BAF complexes (PBAFs), and 

the non-canonical BAF complexes (ncBAFs; Figure 23)310–313. SMARCB1 is a core subunit in BAF and PBAF 

but not the more recently described ncBAF complex314.  

Figure 23 

 

 

Figure 23| Schematic of subunit composition of mammalian BAF, PBAF and ncBAF complexes. Purple, 
cyan, and dark grey highlighted subunits have complex specificity, whereas light grey subunits are 
shared by two or more complexes. Red represents SMARCB1. Abbreviations :- A6A:ACTLA6A, Act:B-
actin, ATPase:SMARCA2/4, B7:BCL7A/B/C, DPF:DPF1/2/3, D1/2/3:SMARCD1/D2/D3, SB1:SMARCB1, 
SC1/2:SMARCC1/C2, G1:GLTSCR1/1L. Schematic adapted from Michel et al., 2018. 

 

Interestingly SWI/SNF complex members are the most commonly mutated chromatin regulator in 

cancer and one of the most frequently mutated tumour suppressors overall, mutated in ~20% of human 

cancers234,315. SMARCB1 is mutated in >98% of Malignant rhabdoid tumours (MRT) and atypical teratoid 

rhabdoid tumours (AT/RT), which are aggressive paediatric tumours that occur predominately in the 
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kidney or soft tissue and central nervous system respectively316–318. MRT and AT/RT tumours have very 

stable genomes and biallelic loss of SMARCB1 if often the only detectable mutation, suggesting that 

SMARCB1 loss alone is sufficient for tumorigenesis in the right context319–323. To understand the role of 

SMARCB1 in PAX8 inhibition resistance, we performed RNA sequencing (RNA-seq) and Assay for 

Transposase-Accessible Chromatin using sequencing (ATAC-seq) to measure changes in the 

transcriptome and chromatin accessibility upon SMARCB1 loss. 

4.2 Main 

 

The pre-processing of the RNAseq FASTQ sequencing files passed quality control measures, as 

determined by FASTQC and the percentage of uniquely mapped reads (~80%). To assess replicate 

quality, I plotted a pairwise Pearson correlation heatmap with hierarchical clustering and a PCA plot 

(Figure 24a-b). All sample replicates correlated highly, with the exception of P81S11-R4. This sample was 

removed before running DEseq2 to determine differentially expressed genes. On a per-sample basis, 

Ctrl.Ctrl(A) and P81Ctrl(A) cells clustered and the SMARCB1 KO conditions clustered. Within the 

SMARCB1 KO cluster, the P81S11(A) and P81S12(A) samples were more closely related to their long-term 

equivalents, as opposed to clustering by time point. Of note, P81S12(A/LT) cells were more closely 

related to Ctrl.Ctrl(A)/Ctrl.P81(A) cells than P81S11(A/LT) cells.  
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Figure 24 

 

Figure 24| (a) Heat map of pair-wise Pearson correlation coefficient matrix with hierarchical 
clustering, for normalised RNAseq samples. (b) PCA plot of RNAseq normalised expression data, using 
the first two principal components.  

 

Using DEseq2 I detected differentially expressed (DE) genes across conditions, with more gene 

expression changes in the P81S11/2(A/LT) conditions compared to P81Ctrl(A) (Figure 25a). To draw 

biological insights from the DE genes I performed gene set enrichment analysis (GSEA), to look for up 

and downregulated signalling pathways. I opted to use GSEA instead of a hypergeometric-based 

pathway overlap approach because it does not require defining an arbitrary cut-off for DE genes and is 

more sensitive to subtle transcriptional changes324,325. GSEA draws on a database (MsigDB) of nine 

major collections of gene sets, hallmarks, and Collection 1-8 (C1-8). To gain an initial overview of 

signalling changes I used the hallmarks collection, which is a summary of well-defined biological states 

or processes, assimilated from gene sets in C1-C8 that have coherent expression. In accordance with 

the proliferative phenotype, we found that acute SMARCB1 loss triggered an increase in proliferative 

gene signatures (MYC_V1, MYC_V2, G2M, E2F), which increased over time (P81S11/2(A) vs P81S11/2(LT) 

(Figure 25b). The hallmark apoptosis signature was also reduced in the comparison between acute and 
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long-term SMARCB1 KO, supporting the observation that SMARCB1 simultaneously triggers heightened 

proliferation and instability, and over time clones that can tolerate SMARCB1 loss are selected for 

(Figure 25b).  

Figure 25 

 

Figure 25| (a) MA plots of RNA-seq differential expression analysis from 786-M1A-C6 cells. Gene 
expression fold change was calculated relative to shRen/sgNTC (Ctrl.Ctrl ) cells. Highlighted points 
have a FC >1.5 or <(-1.5) and p.adjust < 0.05. (b) Gene set enrichment analysis (GSEA) using the 
hallmarks collection from mSigDB, for different comparisons as indicated on the left. Highlighted 
points (purple/cyan) have a p.adjust < 0.05. 

 

For the ATACseq experiment, the pre-processing of FASTQ files passed quality control and all replicates 

were highly correlated (Figure 26a). I detected ~72,000 high confidence peaks in total across conditions, 

with control and P81Ctrl(A) having a similar number of peaks and P81S11/2(LT) having substantially less 

(Figure 26b). The sample clustering of ATACseq samples bore a strong resemblance to the RNAseq 

experiment; Ctrl.Ctrl(A) and P81Ctrl(A) clustered and the SMARCB1 KO samples clustered, and 

P81S12(LT) cells correlated more highly with the Ctrl.Ctrl(A)/P81Ctrl(A) cluster than P81S11(LT) (Figure 

26a,c).  
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Figure 26 

 

Figure 26| (a) Heat map of a pair-wise Pearson correlation coefficient matrix with hierarchical 
clustering, for all ATACseq samples using normalised counts across a consensus list of all peaks 
merged across conditions. (b) Total number of called peaks per condition. Q value < 0.01. Error bars 
are SD. (c) PCA plot of ATACseq normalised count data for a consensus list of all peaks merged across 
conditions, using the first two principal components. 

 

I performed differential expression analysis using the list of high confidence consensus peaks, to identify 

differentially accessible (DA) regions between samples. Compared to Ctrl.Ctrl(A) cells the number and 

magnitude of lower accessibility (LA) regions were far greater for the SMARCB1 KO cells than P81Ctrl(A) 

cells (Figure 27a-c). In contrast, for the same comparison, I detected a similar number of higher 

accessibility (HA) regions for P81Ctrl(A) and P81S12(LT) cells and approximately four times more for 

P81S11(LT) (Figure 27a-c). In line with the correlative analysis, P81S11(LT) cells had a greater number of 

both LA and HA regions compared to P81S12(LT) cells.  
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Figure 27 

 

Figure 27| Volcano plots showing differentially accessible ATAC-seq regions for Ctrl.Ctrl(A) vs 
P81Ctrl(A), P81S11(LT) and P81S12(LT). Highlighted points satisfy FC >2 or <(-2) and p.adjust < 0.001. 

 

Despite differences, there was a large proportion of common differentially accessible regions in the 

SMARCB1 KO conditions compared to the control, 18,414 in total, 13892 of which had lower 

accessibility and 4522 higher accessibility (Figure 28a-b).  
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Figure 28 

 

Figure 28| (a) Heatmaps showing normalised ATAC-seq signal +/- 2kb centred on summits of 
differentially accessible (DA) regions, defined by Ctr.Ctrl vs P81S11/2 (FC >2 or <(-2), p.adjust <0.001). 
Top panels show the average signal for higher accessible and lower accessible regions. (b) Tukey plot 
of normalised counts across samples from (a) for high and low accessibility peak sets, defined by 
Ctrl.Ctrl vs P81S11/2 (LT) (FC >2 or <(-2), p.adjust <0.001). For boxplots, the centre line shows the 
median, the box bounds represent the first and third quartiles and the whiskers extend to the highest 
and lowest values, no further than 1.5 × IQR. 

 

Given that the chromatin landscape informs gene expression, for quality assurance purposes, I 

measured the correlation of open chromatin and transcriptional changes. Due to the complex 3D 

architecture of the DNA-chromatin complex, if the DA region is not located at the transcriptional start 

site (TSS) of a gene (i.e. cis-regulatory region), It is very challenging to determine which gene it may 

affect326. However, on a population level, the probability that a cis-regulatory region interacts with a 

gene depreciates the further it is from the TSS327–329. I leveraged this principle by creating sequentially 

larger windows around HA and LA regions and tested whether they were significantly enriched for the 

TSS of up and downregulated genes respectively. As a control, I created matched sets of peaks from 

the ~72,000 high confidence consensus peak list with similar genomic attributes. As expected, the 
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changes in chromatin accessibility correlated well with gene expression changes and depreciated the 

larger the genomic window used (Figure 29a-b). Specific illustrative examples include the CXCL14 loci 

for the correlation of HA regions and upregulated gene expression, and the KCNK3 loci for LA region 

and downregulated gene expression equivalent (Figure 29c-f). 
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Figure 29 

 

Figure 29| (a-b) Correlation of ATAC-seq peak and transcriptional changes, for (a) Ctrl.Ctrl(A) vs 
P81S11/2(LT) and (b) Ctrl.Ctrl(A) vs P81Ctrl(A). Left y-axis, the ratio of the number of down/up-
regulated genes found within windows created around LA/HA regions compared to the number of 
expressed genes (universe) also found within the same genomic windows. Left y-axis, p-value, 
hypergeometric test. Matched Ctrl peaks for lower and higher accessible regions were generated 
from the consensus list of all peaks merged across conditions. (c) An example region of gained ATAC-
seq signal in the CXCL14 locus for P81Ctrl(A) and P81S11/2(LT) compared to Ctrl.Ctrl(A) cells. (d)  
Normalised CXCL14 mRNA expression as determined by RNAseq for Ctrl.Ctrl(A), P81Ctrl(A) and 
P81S11/2(LT) cells. P-values calculated by DEseq2. Error bars are SD. (e) An example region of lost 
ATAC-seq signal in the KCNK3 locus for P81Ctrl(A) and P81S11/2(LT) compared to Ctrl.Ctrl(A) cells. (f) 
Normalised KCNK3 mRNA expression as determined by RNAseq for Ctrl.Ctrl(A), P81Ctrl(A) and 
P81S11/2(LT) cells. P-values calculated by DEseq2. Error bars are SD. 
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To begin to understand the significance of the large-scale changes in the genome observed, I first 

annotated the differentially accessible regions based on their location in the genome and found that 

the majority were intronic and intergenic and that there was a statistically significant 

underrepresentation of promoter annotations (Figure 30a-b). Without the accompanying chromatin 

Immunoprecipitation sequencing data for histone marks such as H3K27ac and H3K4me1 it was not 

possible to determine whether these regions are enhancers and so for the purpose of this work will be 

classified as cis-regulatory regions217. 

Figure 30 

 

Figure 30| (a) Stacked bar plots of genomic annotations for LA and HA regions from comparisons, 
Ctrl.Ctrl(A) vs P81Ctrl(A), P81S11(LT) and P81S12(LT) (FC >2 or <(-2), p.adjust <0.001). (b) Percentage 
of regions annotated as a promoter in the consensus list of all peaks merged across conditions (dark 
grey) and lower and higher accessible regions from (Fig. 15). Two-tailed hypergeometric test. 

 

Next, I performed motif analysis for the differentially accessible peak sets. As expected, the PAX motif 

was highly enriched in the LA set using both known and de novo motif analysis for P81S11/2(LT) and 

P81Ctrl(A) (Figure 31a-e).  
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Figure 31 

 

Figure 31| (a-b) Ranked plots of DNA motif analysis, either de novo or using a database of known 
binding motifs for LA regions from Ctrl.Ctrl(A) vs P81S11/2(LT). (c) Examples of the top two scoring 
motifs from de novo motif analysis of LA regions from Ctrl.Ctrl(A) vs P81S11/2(LT). (d-e) Ranked plots 
of DNA motif analysis, either de novo or using a database of known binding motifs for LA regions 
from Ctrl.Ctrl(A) vs P81Ctrl(A).  

 

Unlike the LA regions, the most significantly enriched HA motifs for P81Ctrl(A) and P81S11/2(LT) differed. 

For P81Ctrl(A) cells the most enriched motif was TEAD, whereas for P81S11/2(LT) it was the CTCF/BORIS 

motif, which strikingly was detected in 63% of HA peaks versus 7.24% of background peaks. (Figure 32a-

e).  
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Figure 32 

 

Figure 32| (a-b) Ranked plots of DNA motif analysis, either de novo or using a database of known 
binding motifs for HA regions from Ctrl.Ctrl(A) vs P81S11/2(LT). (c) Example of the top scoring motif 
from de novo motif analysis of HA regions from Ctrl.Ctrl(A) vs P81S11/2(LT). (d-e) Ranked plots of DNA 
motif analysis, either de novo or using a database of known binding motifs for HA regions from 
Ctrl.Ctrl(A) vs P81Ctrl(A). 

 

4.3 Summary 

 

In the context of PAX8 KD, SMARCB1 KO promotes an unstable cellular state that can result in apoptosis 

but also provides an opportunity for the selection of proliferative traits. Over time clones that were 

able to tolerate the loss of SMARCB1 or have adapted, emerge and apoptotic programs are 

downregulated. Changes in the transcriptional program exerted by the loss of SMARCB1 are associated 

with large-scale epigenetic reprogramming, characterised predominately by the loss of accessibility at 

regions enriched for the PAX motif. This is in line with previous reports, demonstrating that SMARCB1 

maintains enhancers and that the SWI/SNF complex has a role in regulating lineage-specific enhancer 

programs271,330,331. Interestingly, newly acquired HA regions were strongly enriched for the CTCF/BORIS 
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motif, which has been linked to the formation of undifferentiated rhabdoid tumours, the maintenance 

of a naive pluripotent stem cell state, and metastasis314,332–334.   
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5  
Reprogra mmi ng to resist 

Reprogramming to Resist 
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5.1 Introduction 

 

Upon SMARCB1 loss, large-scale cis-regulatory reprogramming was observed. Specifically, the loss of 

regions enriched for the PAX8 motif, a key mediator of renal development, and a gain in accessibility at 

regions enriched for the CTCF-BORIS motif, which has been associated with the maintenance of a naive 

pluripotent stem cell state333,334. These data suggest SMARCB1 may promote resistance to PAX8 

inhibition through a loss of renal differentiation. To test this hypothesis, I initially focused on changes 

in the cis-regulatory program as opposed to gene changes because they show a stronger lineage 

specificity than gene expression programs335. Using DNAse hypersensitivity I profiles from the ENCODE 

project, spanning a range of cell lines and primary and developmental tissues, I defined sets of key 

regulatory regions which showed strong tissue specificity. This collection was then used to functionally 

annotate the DA accessible peak sets from my experiment. Guided by the overlap I ran targeted GSEA 

analysis using custom signatures and a public collection of cell-type specific gene signatures to validate 

these findings on a transcriptional level.  

 

5.2 Main 

 

First, I downloaded 504 DNAase I hypersensitivity open chromatin profiles from the ENCODE project, 

spanning a range of adult and developmental cell types, and clustered the samples into tissue-specific 

clusters (Figure 33a-b). I implemented a clustering approach summarised in Fig. 20a. In short, pair-wise 

Pearson correlation coefficients were calculated for each sample, a cut-off of PCC>0.6 was used to 

define samples as ‘connected’, clusters were derived by prioritising the most connected samples and 

hence the largest clusters. This approach uses an extensively validated method for calculating 

correlation between samples and attempts to explain the data according to the principle of parsimony. 
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Using a minimum cluster size of five, 368/504 samples clustered into 21 groups. Of the 21 clusters, 20 

were easily annotated by the tissue of origin, based on the sample composition (Figure 33b). The cluster 

which could not be annotated was removed from further analysis. Figure 33 

 

Figure 33| (a) Schematic of Pearson correlation coefficient-based method used to cluster ENCODE 
DNAse I hypersensitivity profiles. Samples include; cell lines (n=97), adult primary cells and tissues 
(n=125), and embryonic tissues (n=282).  (b) tSNE plot based on the top 250,000 most variable 
regions of 376 DNAse I hypersensitivity profiles from the ENCODE project, including cell lines, primary 
tissue, and embryonic tissue. Clusters were identified by clustering method from (a) and labelled 
based on sample composition.  

 

I derived cluster-specific peak sets using the workflow outlined in Figure 21a. The guiding principles 

used to define the arbitrary cut-offs were: (1) a cluster-specific peak should be commonly ‘open’ in a 

cluster (in ≥80% samples), (2) discrete adult tissues can arise from similar evolutionary trajectories, 

therefore the same peak can appear in multiple clusters (≤3 clusters), and (3) a certain complexity (i.e. 

peak set size) should be maintained to ensure an accurate result from downstream overlap analyses 

(set sizes ranged from 10157-31419 peaks) (Figure 34a). Using the cluster-specific peak sets, I ran an 

overlap analysis with the differentially accessible ATA-seq regions. Similar to the motif analysis, the 
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kidney-specific clusters were most enriched for the lower accessibility peaks sets for both P81Ctrl and 

P81S11/2 (Figure 34b).  

Figure 34 

 

Figure 34| (a) Schematic of method used to derive cluster specific peak sets for each cluster. (b) 
Ranked plots of overlap analysis between cluster-specific peak sets generated from LA regions 
defined by Ctrl.Ctrl(A) vs P81S11/2(LT) and Ctrl.Ctrl(A) vs P81Ctrl(A). The same matched controls from 
Fig 17 were used, see materials and methods for more information.  

 

However, the global loss of signal at these peak sets was substantially greater for P81S11/2 compared to 

P81Ctrl, suggesting that SMARCB1 loss triggers a widespread loss of renal epithelial epigenetic identity 

(Figure 35a-b). Of note, the renal specific signal was less for P81S12 compared to P81S11 (Figure 35a-b). 
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Figure 35 

  

Figure 35| (a) Heatmaps showing normalised ATAC-seq signal +/- 2kb centred on peak summits for 
the ENCODE adult kidney cluster region set. (b) Metagene plots of normalised ATAC-seq signal +/- 
2kb centred on peak summits for the ENCODE adult kidney cluster region set. 

 

The loss of renal identity was supported by specific genomic loci harbouring known proximal tubule 

marker genes as defined by single-cell RNA-seq (scRNA-seq) experiments. For example, there was a loss 

of ATAC-seq signal at kidney cluster-specific peaks in the  Cadherin-6 (CDH6) and Solute Carrier Family 

16 Member 7 (SLC16A7) loci, which was concordant with a reduction in mRNA expression (Figure 36a-

d)336. 
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Figure 36 

 

Figure 36| (a) An example region of lost ATAC-seq signal in the CDH6 locus overlapping with kidney 
cluster specific regions, for P81Ctrl(A) and P81S11/2(LT) cells compared to Ctrl.Ctrl(A) cells. (b)  
Normalised CDH6 mRNA expression as determined by RNAseq for Ctrl.Ctrl(A), P81Ctrl(A) and 
P81S11/2(LT) cells. P-values calculated by DEseq2. Error bars are SD. (c) An example region of lost 
ATAC-seq signal in the SLC16A7 locus overlapping with kidney cluster specific regions, for P81S11/2(LT) 
compared to Ctrl.Ctrl(A) cells. (d) Normalised SLC16A7 mRNA expression as determined by RNAseq 
for Ctrl.Ctrl(A), P81Ctrl(A) and P81S11/2(LT) cells. P-values calculated by DEseq2. Error bars are SD. 

 

The higher accessibility peaks for P81S11/2 overlapped most strongly with an induced pluripotent stem 

cell (IPS)/progenitor cluster, which was not significantly enriched in the P81Ctrl HA regions (Figure 37a). 

Unlike the loss of renal identity signal, the gain of the IPS/progenitor signal was moderate and did not 

represent the adoption of the whole program but rather specific aspects (Figure 37c-e). P81S12 showed 

a greater gain in IPS/progenitor signal than P81S11 cells. The strongest overlapping peak set for P81Ctrl 

HA regions belonged to a fibroblast cluster (Figure 37a). Interestingly the ENCODE adult kidney cluster 

correlates highly with the fibroblast clusters, which suggests that PAX8 may be a critical differentiator 
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between kidney and fibroblast lineages. In line with this, PAX8 in combination with HNF1B, HNF4a, and 

EMX2 can reprogram fibroblasts into renal tubular epithelium264. 

Figure 37 

 

Figure 37| (a) Ranked plots of overlap analysis between cluster-specific peak sets generated from HA 
regions defined by Ctrl.Ctrl(A) vs P81S11/2(LT) and Ctrl.Ctrl(A) vs P81Ctrl(A). The same matched 
controls from Fig 17 were used, see materials and methods for more information. (b) Metagene plots 
of normalised ATAC-seq signal +/- 2kb centred on peak summits for the ENCODE IPS/progenitor 
cluster region set. (c) Heatmaps showing normalised ATAC-seq signal +/- 2kb centred on peak 
summits for the ENCODE IPS/progenitor cluster region set. (d-e) Example regions of gained ATAC-
seq signal overlapping with IPS/progenitor cluster peaks, for P81S11/2(LT) cells compared to 
Ctrl.Ctrl(A) cells. 
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The global loss of the renal epithelial signal in conjunction with the gain of discrete modules from the 

IPS/progenitor cluster at the chromatin accessibility level supports the notion that SMARCB1 may 

maintain a lineage-differentiated cellular state.  

To test this at the gene expression level, I used the molecular signatures database (mSigDB) cell-type 

specific signature collection (C8), supplemented with a signature that we derived from SMARCB1 re-

introduction experiments in rhabdoid tumour cell lines (Figure 38)271.  

Figure 38 

 

Figure 38| Schematic overview of the generation of a SMARCB1 mutant rhabdoid cancer signature.  
 

The two most significantly downregulated signatures in the SMARCB1 KO lines were from renal 

proximal tubules, the proposed origin of ccRCC (Figure 39a)90. The loss of renal transcriptional identity 

followed a similar pattern to the epigenetic changes: PAX8 KD alone showed a negative enrichment for 

the proximal epithelial signature C4 but failed to reach significance (p<0.05) and P81S11/2(A) showed 

significant downregulation of the signature which reduced further over time (P81S11/2(LT)) (Figure 39b-

c). Similarly, PAX8 KD alone induced a positive enrichment of the rhabdoid signature, but significance 

(p<0.05) was only reached when SMARCB1 was also knocked out (Figure 39d-e).  
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Figure 39 

 

Figure 39| (a) Volcano plot of GSEA with cell-type specific transcriptional signatures from mSigDB 
collection 8, for the comparison Ctrl.Ctrl(A) vs P81S11/2(LT). highlighted points (purple/cyan) have a 
p.adjust < 0.05. (b) Kidney proximal tubule C4 signature normalised enrichment scores (NES) from 
GSEA, for Ctrl.Ctrl(A) vs P81Ctrl(A), P81S11/2(A) and P81S11/2(LT). (c) GSEA plot of kidney proximal 
tubule C4 signature for Ctrl.Ctrl(A) vs P81S11/2(LT). (d) Rhabdoid signature normalised enrichment 
scores (NES) from GSEA, for Ctrl.Ctrl(A) vs P81Ctrl(A), P81S11/2(A) and P81S11/2(LT). (e) GSEA plot of 
rhabdoid signature for Ctrl.Ctrl(A) vs P81S11/2(LT). 

 

Up and down-regulated signatures derived from my RNA-seq data, kidney proximal tubule signatures, 

and the rhabdoid signature were also similarly positively and negatively enriched in the SMARCB1 

mutant ccRCC cell lines in the CCLE data set, suggesting that a similar mechanism accounts for the PAX8 

inhibition insensitivity in these models (Figure 40).  
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Figure 40 

 

Figure 40| (a) Ridge plot of GSEA result from the comparison of ccRCC CCLE lines, SMARCB1 wild 
type vs mutant from Fig.10, using the rhabdoid, proximal tubule C3/C4 and up and down-regulated 
genes from Ctrl.Ctrl(A) vs P81S11/2(LT). 

 

PAX8 inhibition resistance was associated with changes in the cellular lineage state towards rhabdoid 

de-differentiation, suggesting the possibility that the role of PAX8 in supporting ccRCC growth had been 

replaced by some other transcriptional lineage factors. We therefore performed a second CRISPR 

screen targeting known and predicted TFs using the P81S11/2(LT) cell lines (Figure 41).  

Figure 41 

 

Figure 41| (a) A schematic of a pooled CRISPR-Cas9-based loss of function screen using an sgRNA 
library targeting transcription factors to identify new dependences in P81S11/2(LT) vs Ctrl.Ctrl(A) cells. 

 

The screen passed our quality control measures, essential genes were depleted, and non-essential 

genes were neither enriched nor depleted (Figure 42a-b). We identified three new dependencies which 
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had no phenotype in the control cells: interferon regulatory factor 2 (IRF2), Basic Helix-Loop-Helix E40 

(BHLHE40), and zinc finger NFX1-type containing 1 (ZNFX1) (Figure 42c-e). All of which were expressed 

in cells prior to SMARCB1 loss (Figure 42f-h). IRF2 is a member of a TF family which regulates Toll-like 

receptor (TLR) signalling, hematopoietic differentiation, and the expression of IFNs and their target 

genes337,338.  

Figure 42 

 

Figure 42| (a-b) Beta scores of essential (n=67) and non-essential genes (n=74) at time points 
throughout the screen for the control arm (a) and experimental arm (b). (c-d) Changes in sgRNA 
abundance over time, measured by calculating beta scores using the top 3 depleted sgRNAs per gene 
relative to plasmid, from two technical replicates. Highlighted points have a beta score <-0.5 or >0.5 
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and an adjusted p-value < 0.05. (c) The beta scores for the control arm (Ctrl.Ctrl(A)) of the screen 
versus the pooled experimental arm (P81S11/2(LT)). (d) The beta scores of each experimental arm, 
P81S11(LT) vs P81S12(LT). (e) Ranked plot of the ratio between the beta scores for the control arm 
versus the pooled experimental arm (ratio = P81S12(LT)beta - Ctrl.Ctrl(A)beta). (f-h) Fold change in mRNA 
expression versus Ctr.Ctrl cells for the genes (f) IRF2, (g) BHLHE40 and (h) ZNFX1. P-values were 
calculated using DEseq2. Erro bars are SD. 

 

Similar to the role of PAX8 in renal development and ccRCC, IRF2 plays an important role in cancers 

originating from the plasma cell lineage and thus the acquired dependence on IRF2 in this context 

represents the co-option of a regulatory module from another lineage (Figure 43a-b). In line with IRF2’s 

role in regulating IFNs, compared to P81Ctrl cells there is a strong increase in the interferon-alpha gene 

set from the hallmarks collection in P81S11/2 cells (Figure 43c).  

Figure 43 

 

Figure 43| (a) Genetic dependency data from the DepMap project for the gene IRF2. Centered CERES 
dependency scores across 25 lineages, with ≥ 10 cell lines per lineage. (b) Genetic dependency data 
from the DepMap project. IRF2 centred CERES dependency score of multiple myeloma (MM) cell 
lines (n=21) versus cells from all other lineages (n=767). Kruskal-Wallis test. (c) GSEA plot of 
interferon-alpha response signature from mSigDB hallmarks collection, for P81Ctrl(A) vs P81S11/2(LT). 
Abbreviations:- CCA: cholangiocarcinoma, ALL: acute lymphoblastic leukaemia, AML: acute myeloid 
leukaemia, EWS: Ewing sarcoma, BRC: breast carcinoma, BRDC: breast ductal carcinoma  , Gli: 
Glioma, CRC: colorectal adenocarcinoma, ESCC: esophageal squamous cell carcinoma, GA: gastric 
adenocarcinoma, RCC: renal cell carcinoma, HCC: hepatocellular carcinoma, LMT: lung 
mesothelioma, NSCLC: non-small cell lung cancer, SCLC: small cell lung cancer, NHL: non-Hodgkin 
lymphoma, OA: ovarian adenocarcinoma, EPC: exocrine pancreatic cancer, NB: neuroblastoma, MM: 
multiple myeloma, Mel: melanoma, RMS: rhabdomyosarcoma, UATN: upper aerodigestive tract 
neoplasm, BC: bladder carcinoma, EAC: endometrial adenocarcinoma. 
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BHLHE40 is a ubiquitously expressed stress-responsive transcription factor that is important in several 

physiological responses including differentiation, tumorigenesis, and response to hypoxia339. The 

mutation of VHL and the stabilisation of HIF2α protein is a key tumorigenic event in ccRCC, and HIF2α 

perturbation RNA-seq has placed BHLHE40 downstream of HIF2A signalling340. In line with this, 

BHLHE40 dependency shows tissue specificity for RCC and there is strong up regulation of HIF2α 

signalling in P81S11/2 cells compared to P81Ctrl cells (Figure 44a-c). In the DepMap cohort approximately 

half of the VHL mutant ccRCC lines are sensitive to BHLHE40 KO, and interestingly, this includes all the 

SMARCB1 mutant lines (Figure 44d). Further, when considering PAX8 resistant lines with a SMARCB1 

mutation and PAX8 sensitive lines, there is a negative correlation between PAX8 and BHLHE40 

dependency (Figure 44e).  

Figure 44 

 

Figure 44| (a) Genetic dependency data from the DepMap project for the gene BHLHE40. Centered 
CERES dependency scores across 25 lineages, with ≥ 10 cell lines per lineage. (b) Genetic dependency 
data from the DepMap project. BHLHE40 centred CERES dependency score of RCC cell lines (n=23) 
versus cells from all other lineages (n=765). Kruskal-Wallis test. (c) GSEA plot of custom HIF2A target 
genes, for P81Ctrl(A) vs P81S11/2(LT). See materials and methods for more information. (d) VHL-
mutant ccRCC DepMap cell lines ranked by BHLHE40 centred CERES dependency score. SMARCB1 
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and ARID1A mutant cell lines from Fig.10. (e) Correlation of BHLHE40 and PAX8 centred CERES scores 
for PAX8 sensitive and SMARCB1 mutant VHL-mutant ccRCC cell lines. Abbreviations:- CCA: 
cholangiocarcinoma, ALL: acute lymphoblastic leukaemia, AML: acute myeloid leukaemia, EWS: 
Ewing sarcoma, BRC: breast carcinoma, BRDC: breast ductal carcinoma  , Gli: Glioma, CRC: colorectal 
adenocarcinoma, ESCC: esophageal squamous cell carcinoma, GA: gastric adenocarcinoma, RCC: 
renal cell carcinoma, HCC: hepatocellular carcinoma, LMT: lung mesothelioma, NSCLC: non-small cell 
lung cancer, SCLC: small cell lung cancer, NHL: non-Hodgkin lymphoma, OA: ovarian 
adenocarcinoma, EPC: exocrine pancreatic cancer, NB: neuroblastoma, MM: multiple myeloma, Mel: 
melanoma, RMS: rhabdomyosarcoma, UATN: upper aerodigestive tract neoplasm, BC: bladder 
carcinoma, EAC: endometrial adenocarcinoma. 

 

ZNFX1 is a ubiquitously expressed, IFN stimulated SF1 helicase capable of detecting viral dsRNA341. 

Unlike IRF2 or BHLHE40, dependence on ZNFX1 is not associated with a particular lineage. Instead, 

there is a small number of cell lines across multiple lineages which show a strong dependence on ZNFX1, 

including TUHR10TKB, one of the three SMARCB1 mutant CCLE ccRCC lines (Figure 45).  

Figure 45 

 

Figure 45| (a) Genetic dependency data from the DepMap project. ZNFX1 centerd CERES 
dependency scores across 25 lineages, with ≥ 10 cell lines per lineage. Abbreviations:- CCA: 
cholangiocarcinoma, ALL: acute lymphoblastic leukaemia, AML: acute myeloid leukaemia, EWS: 
Ewing sarcoma, BRC: breast carcinoma, BRDC: breast ductal carcinoma, Gli: Glioma, CRC: colorectal 
adenocarcinoma, ESCC: esophageal squamous cell carcinoma, GA: gastric adenocarcinoma, RCC: 
renal cell carcinoma, HCC: hepatocellular carcinoma, LMT: lung mesothelioma, NSCLC: non-small cell 
lung cancer, SCLC: small cell lung cancer, NHL: non-Hodgkin lymphoma, OA: ovarian 
adenocarcinoma, EPC: exocrine pancreatic cancer, NB: neuroblastoma, MM: multiple myeloma, Mel: 
melanoma, RMS: rhabdomyosarcoma, UATN: upper aerodigestive tract neoplasm, BC: bladder 
carcinoma, EAC: endometrial adenocarcinoma. 
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5.3 Summary 
 

ENCODE DNAse I hypersensitivity profiles for 368 samples were grouped into 21 clusters, 20 of which 

could be annotated based on their sample composition. A collection of cluster-specific peak sets were 

derived using stringent specificity measures which also maintained a high degree of peak set 

complexity. Overlap analysis between the ENCODE collection and LA regions from Ctr.Ctrl(A) versus 

P81Ctrl(A) and P81S11/2(LT) showed an enrichment for the adult kidney cluster peak set, in line with 

PAX8’s role as a key renal lineage factor. Interestingly, SMARCB1 KO in addition to PAX8 KD resulted in 

the widespread loss of kidney epigenetic identity, whereas PAX8 KD alone triggered a more moderate 

reduction. HA regions from Ctrl.Ctrl(A) versus P81S11/2(LT) overlapped most strongly with the 

IPS/progenitor peak set. This overlap was characterised by the gain in discrete modules as opposed to 

activation of the complete IPS/progenitor program. Instead of the IPS/progenitor cluster, the HA 

regions from Ctrl.Ctrl(A) versus P81Ctrl(A) were enriched for a fibroblast peak set, specifically 

associating SMARCB1 loss with the undifferentiated phenotype. GSEA analysis on the accompanying 

transcriptional data supported the loss of renal identity and the gain of an undifferentiated state when 

SMARCB1 is lost in conjunction with PAX8. PAX8 KD alone resulted in a similar trend but failed to reach 

significance for both the downregulation of renal identity and the upregulation of a rhabdoid 

undifferentiated state. An alternative strategy starting with RNAseq data could have been to implement 

a network-based approach to identify key regulators of cell-type specific transcriptional programs that 

show enhanced lineage specificity, but this would likely have missed the more subtle gain in 

IPS/progenitor signal as we did not observe a complete program switch206,342,343. 

To understand how the loss of differentiation promoted proliferation after the KD of PAX8, I performed 

a second loss-of-function genetic screen using a library of sgRNAs targeting TFs. IRF2, ZNFX1, and 

BHLHE40 were specifically depleted in SMARCB1 KO lines compared to PAX8 sensitive control cells. The 

newly acquired dependencies fit into three categories: acquisition of a lineage dependency from 
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another lineage (IRF2 from plasma cells), expansion of the already in place core oncogenic program 

(VHL-HIF2α), and acquisition of a rare pan-cancer dependency (ZNFX1) (Figure 46).  

Figure 46 

 

Figure 46| Schematic overview of three SMARCB1 mediated mechanisms to overcome lineage factor 
inhibition. 

 

In summary, SMARCB1 is a key regulator of the renal cis-regulatory and transcriptional programs, which 

defines the context in which PAX8 is required for tumour growth. SMARCB1 KO promotes resistance to 

PAX8 suppression through a mechanism that resembles dedifferentiation that facilitates the co-option 

of previously dispensable transcriptional regulators.  
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6     ..The Discussi on 
The Discussion 
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6.1 Lineage plasticity as a resistance mechanism 

 

Transcriptional lineage factor dependencies are observed across a range of malignancies and as such 

are an attractive class of targeted therapies. However, the mechanisms which maintain lineage fidelity 

during cancer development and the response to long term lineage factor inhibition are poorly 

understood. Here I demonstrate that SMARCB1, an essential gene and SWI/SNF complex member, 

conveys resistance to PAX8 inhibition in ccRCC, through a process of dedifferentiation. In this context, 

SMARCB1 maintains the kidney-specific cis-regulatory program, its inactivation results in the loss of 

kidney transcriptional and epigenetic identity, altering the cellular context, and removing the 

requirement for PAX8 mediated signalling. These findings are in line with trans-gene re-introduction 

experiments in paediatric rhabdoid tumours. In MRT and AT/RT cell lines the exogenous expression of 

SMARCB1 results in the preferential gain of cis-regulatory elements within the proximity of 

developmental genes, and the resolution of bivalent promoters, which are an important developmental 

switch271,331. A lineage-tracing study placed the origin of MRTs in the neural crest to mesenchyme 

developmental trajectory and showed that the re-introduction of SMARCB1 in patient-derived 

organoids triggered the induction of differentiation towards the mesenchyme344. Further, the KD of 

SMARCB1 in embryonic stem cells (ESCs) impairs neural development in a directed differentiation assay, 

by reducing accessibility at neural stem cell-specific regions334. Taken together, SMARCB1 plays an 

important role in the maintenance of enhancer programs during development.  

Three additional SWI/SNF complex members were enriched in the chromatin screen, BCL7C, BCL7B, 

and ARID1A. Interestingly, in two recent studies, ARID1A inactivation was linked to resistance to 

tamoxifen and fulvestrant therapy in ER positive luminal breast cancer272,301. In a cohort of ~1,900 

breast cancers, mutations in ARID1A were enriched in the hormone and metastatic setting and 

correlated with worse disease outcome272,345. This was causally validated by two independent CRISPR 

screens which demonstrated enrichment of sgRNAs targeting ARID1A in tamoxifen and fulvestrant 
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treated MCF7 luminal breast cancer cells272,301. ARID1A KO reduced chromatin accessibility at the 

binding sites of master regulators of the luminal cell fate, enabling a switch from a luminal to basal 

transcriptional state301. Importantly, a similar luminal to basal identity switch was also observed 

histologically in breast cancer patients who have become refractory to hormone therapy346. 

Mechanistically, ARID1A inactivation may promote resistance through the impaired recruitment of 

HDAC1 and subsequent deacetylation at particular genomic loci, enabling the binding of bromodomain 

containing proteins (e.g. BRD4) and the subsequent activation of pro-proliferative programs272. In line 

with this, BET inhibitors show selective efficacy in an ARID1A mutant breast cancer model272.   

In addition to ARID1A, SMARCB1 was also enriched in both tamoxifen/fulvestrant resistance CRISPR 

screens, implying that similar mechanisms may govern the dependence of breast and renal epithelial 

cancers on lineage factor signalling272,301. Although SMARCB1 and ARID1A are both SWI/SNF complex 

members, there is evidence that their loss triggers resistance to lineage therapy by overlapping but 

distinct mechanisms. Both the inactivation of SMARCB1 in renal cancer and ARID1A in breast cancer led 

to the loss of tissue-specific epigenetic identity301. However, SMARCB1 facilitated the conversion into 

an undifferentiated rhabdoid-like state, whereas ARID1A seemed to enable the transdifferentiation of 

luminal cells into a state which transcriptionally resembled basal-like breast cancer derived from 

myoepithelial cells of the outer layer of the breast duct301,347. GSEA for the comparison Ctrl.Ctrl(A) vs 

P81S11/2(LT) using an ARID1A KO signature, showed no statistically significant enrichment, further 

suggesting that SMARCB1 and ARID1A likely mediate resistance through alternative routes (Figure 47a). 

This may in part be explained by the subunit composition of the SWI/SNF complexes. SMARCB1 is a 

core component of both BAF and PBAF complexes whereas ARID1A along with ARID1B is specifically 

found in the BAF complex (Figure 47b)348.  
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Figure 47 

 

Figure 47| (a) Schematic of subunit composition of mammalian BAF, PBAF and ncBAF complexes. 
Purple, cyan and dark grey highlighted subunits have complex specificity, whereas light grey subunits 
are shared by two or more complexes. Red represents SMARCB1. Schematic adapted from Michel et 
al.,314. (b) GSEA plot of ARID1A KO up regulated gene signature (see materials and methods) for 
Ctrl.Ctrl(A) vs P81S11/2(LT). Abbreviations:- SB1:SMARCB1, G1:GLTSCR1/1L.  

 

The loss of SMARCB1 inhibits the targeting of both BAF and PBAF complexes to the DNA without 

destabilising complex stability271. This is thought to enable the activity of the ncBAF complex that has 

been linked to the pathogenesis of RTs and the maintenance of a naïve pluripotent stem cell 

state271,314,331,333. The KO of SMARCB1 in stem cells or the reintroduction of SMARCB1 in RT cell models 

has been strongly associated with a respective gain or loss of accessibility at regions enriched for the 

CTCF motif271,314,331,333,334. In SMARCB1 null RTs, ncBAF localises to genomic regions enriched for the 

CTCF motif, and the pharmacological depletion of BRD9 (a ncBAF specifying subunit) inhibits cell growth 

in vitro314. In MCF7 breast cancer cells, the inactivation of ARID1A resulted in substantial changes in 

chromatin accessibility, but there was no enrichment for the CTCF motif272,301. This could suggest that 

SMARCB1 KO may promote resistance through the activity of the ncBAF complex, whereas ARID1A KO 

likely promotes resistance through the genomic redistribution of still functional canonical PBAF 

complexes.  

In this study, the resistance to PAX8 inhibition in ccRCC cells was concomitant with marked histological 

changes which resembled NE differentiation, a morphology not commonly seen in ccRCC. Instead, 

molecular features of NE differentiation are detected in a subset of different cancer types and in 
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association with advanced disease, including hormone therapy resistant prostate cancer and EGFR 

inhibition resistant lung cancer59,76,273. Recent studies in both lung and prostate cancer, have strongly 

associated the development of NE dedifferentiation with the concomitant inactivation of RB1 and TP53 

59. 

In a Pten-/- driven mouse model for prostate adenocarcinoma, the addition of an RB1 KO facilitated the 

emergence of hormone resistant tumours which exhibited neuroendocrine histology, an up regulation 

of the stemness related factor SRY-related HMG-box (Sox)2 and the epigenetic regulator Ezh2, and 

harboured acquired Trp53 mutations78. The upregulation of both Sox2 and Ezh2 expression was 

validated using transcriptomic data from prostate cancer patients, and the treatment with an EZH2 

inhibitor was able to resensitise Trp53/Rb1 KO cells to antiandrogen therapy78. In a parallel study 

published at the same time, the dual knockout of TP53 and RB1 in human prostate cancer cells led to 

the development of antiandrogen therapy resistance, an upregulation of neuroendocrine and basal cell 

markers, and stemness related factors (e.g. SOX2), as well as a downregulation of luminal markers77. 

The luminal to basal switch bears an interesting similarity to acquired tamoxifen resistance in breast 

cancer, where the underlying molecular drivers are different301,346. The reintroduction of functional 

TP53 and RB1 reversed the widespread molecular changes and restored enzalutamide (antiandrogen 

therapy) sensitivity, confirming that resistance was mediated by TP53/RB1 mutations instead of simply 

the outgrowth of a resistant clone under drug selection77. The knock down of SOX2 was also able to 

restore sensitivity to enzalutamide and reduced expression of basal and neuroendocrine markers, 

suggesting it is a key driver of castration resistant prostate cancer77. Taken together, RB1 and TP53 are 

key drivers of NE-based androgen therapy resistance in prostate cancer, their inactivation facilitates 

resistance through the upregulation of SOX2 possibly mediated through the action of the chromatin 

modifier EZH2.  

Unlike resistance to anti-androgen therapy, the development of NE morphology and resistance to EGFR 

inhibition in lung cancer requires additional stimuli to TP53 and RB1 loss. RB1 KD in NSCLC cells already 
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harbouring inactivating TP53 mutations was not sufficient to generate resistance to EGFR therapy (e.g. 

erlotinib) in vitro or in vivo349. Further, in a leave-one-out analysis, MYC and BCL-2 overexpression, AKT 

overactivation and, TP53 and RB1 mutation were required to produce neuroendocrine tumours from 

normal lung epithelium, whereas in BCL-2 was dispensable for the transformation of prostate 

epithelium76.  

Similar to hormone signalling in breast cancer and PAX8 signalling in RCC, members of the SWI/SNF 

complex are important mediators of AR signalling in prostate cancer350. Both SMARCE1 and Actin-like 

(ACTL)6A are directly important for the AR-mediated activation of target genes such as kallikrein related 

peptidase(KLK)3, Transmembrane protease serine 2 (TMPRSS2) , FKBP5, and KLK2351–353. The inhibition 

of either SMARCE1 or ACTL6A led to the transcriptional downregulation of AR target genes and 

supressed cell growth in androgen dependant prostate cancer cells351–353. Interestingly, alterations in 

the SWI/SNF complex subunit composition have also been linked to neuroendocrine differentiation and 

therapy resistance in prostate cancer. A cohort of ~600 prostate cancer patients with whole-exome 

sequencing (WES) and mRNA expression data, including 56 CRPC-NE cases, were used to explore the 

contribution of the SWI/SNF complex to NE differentiation and hormone therapy resistance354. Unlike 

in breast cancer, no recurrent mutations in SWI/SNF complex members were observed. Instead, there 

were detectable changes in the mRNA expression of discrete complex members specifically in CRPC-NE 

patients, such as ACTL6B, Double PHD Fingers 1 (DPF1), SS18L1, and SMARCA4354. ACTL6B, DPF1, and 

SS18L1 are found in a neuron-specific SWI/SNF complex, in line with the neuroendocrine 

phenotype355,356. Further, immunoprecipitation of the SWI/SNF subunit SMARCC1 followed by mass 

spectrometry, showed a specific interaction with NK2 homeobox 1 (NKX2.1) in CRPC-NE cells compared 

to adenocarcinoma cells354. NKX2.1 is an important developmental regulator in parts of the brain and 

is expressed in CRPC-NE patient samples357,358. However, the pathogenic contribution of neuronal 

developmental markers and neural SWI/SNF complex members is unclear. In contrast, there is stronger 

evidence linking SMARCA4 activity to disease progression. SMARCA4 expression is upregulated in both 

CRPC and NE-CRPC compared to PRAD. In line with this, high SMARCA4 protein expression correlated 
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with shorter overall survival, and KD of SMARCA4 inhibited proliferation of LNCaP cells and the 

androgen resistant C4-2 cells354. The exact contribution of upregulated SMARCA4 expression to this 

process in unclear. High expression of SMARCA4 did not always correspond with the expression of 

neuronal markers but correlated more closely with SOX2 expression, leading the authors to posit that 

SMARCA4 may be being incorporated into an embryonic stem cell-specific SWI/SNF complex (esBAF), 

which includes SMARCA4, ACTL6A, and SMARCC1 subunits but not their paralogs354,358. Taken together, 

these studies provide evidence for the non-genetic reprogramming of the SWI/SNF repertoire during 

disease progression, changes in the expression of individual subunits can result in significant cellular 

outcomes, including the development of NE hormone-resistant prostate cancer. 

In summary, resistance mechanisms to lineage-targeted therapy seem to converge on SWI/SNF 

complex members through genetic and non-genetic dysregulation. Changes in the subunit composition 

and the genomic redistribution of SWI/SNF complexes change the cellular context, removing the need 

for the original lineage factors and enabling the selection of new transcriptional programs to drive 

proliferation.  

 

6.2 Acquired transcriptional dependencies replace PAX8 signalling 

 

SMARCB1 KO initially triggers a state of instability that can result in cell death but also acts as a substrate 

for the selection of new transcriptional modules to support proliferation. The new dependencies 

experimentally uncovered fall into one of three categories: (1) the co-option of another lineage specific 

program (IRF2), (2) the expansion of the core oncogenic signalling pathway (BHLHE40) and (3) the 

acquisition of a rare, lineage agnostic module (ZNFX1). Likely the newly acquired modules are not purely 

stochastic but are rather opportunistic. BHLHE40, ZNFX1 and IRF2 are all highly expressed in control 

cells, therefore, given the correct evolutionary drive and a permissive chromatin context, it is likely they 

have an increased chance for selection.  
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The acquisition of new transcriptional dependencies in P81S11/2(LT) cells is analogous to what has been 

demonstrated in AR insensitive prostate cancer models and more generally in neuroendocrine 

differentiation. In a prostate cancer model, a CRISPR-cas9 screen identified the gene, conserved 

chromatin remodeling and assembly factor (CHD1), as capable of conferring resistance to enzalutamide 

treatment359. CHD1 is a chromatin regulator important for maintaining open chromatin in pluripotent 

stem cells, is one of the most frequently mutated genes in prostate cancer, and the expression of CDH1 

negatively correlates with the outcome of anti-androgen treatment360–362. An in vivo genetic screen in 

enzalutamide resistant  LNCaP/AR cells with a CHD1 knockdown, using a library of bioinformatically 

prioritised TFs, revealed newly acquired transcriptional dependencies359. Enzalutamide resistant 

LNCaP/AR cells with a CHD1 knockdown had become sensitive to the inactivation of Nuclear Receptor 

Subfamily 3 Group C Member 1 (NR3C1), POU Class 3 Homeobox 2 (POU3F2), T-box (TBX)2, and nuclear 

receptor subfamily 2 group F member 1 (NR2F1), all of which had previously been implicated in anti-

androgen therapy resistance359. Interestingly, transcriptomic and immunofluorescent profiling of ~20 

enzalutamide-resistant xenografts derived from LNCaP/AR CHD1 KD cells, revealed a heterogenous 

expression of the acquired dependencies. Most tumours exhibited an upregulation of NR3C1, whereas 

the upregulation of NR2F1, TBX2, and POU3F2 was less consistent and was sometimes observed 

without concurrent NR3C1 upregulation359. Heterogenous phenotypes associated with lineage 

plasticity and acquired resistance to targeted lineage therapy is an emerging theme and will be 

discussed in the next section. 

The concept of acquired transcriptional dependencies has also been more generally associated with NE 

differentiation. Using an elegant unsupervised PCA based approach, Balanis et al. defined a common 

NE gene signature which they used to identify tumours and cancer cell lines that transcriptionally 

resembled NE differentiated tumours273. This study re-discovered known NE cell lines as well as 

previously undescribed NE cell lines and tumours. Unexpectedly, the NE cell lines and tumours bore a 

strong resemblance to haematological malignancies. Using available drug sensitivity and pooled shRNA 

screen data, the authors confirmed that haematological and NE malignancies showed strongly 
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overlapping drug and genetic dependency profiles273. These data demonstrate a switch from a set of 

canonical lineage dependencies (i.e. the AR in prostate cancer) to the co-option of new transcriptional 

programs to support cell growth. Interestingly, the resemblance of NE differentiated tumours to 

haematological malignancies is reminiscent of the acquired sensitivity to the depletion of IRF2 in 

P81S11/2(LT) cells. Further, the NE transcriptional signature identified by Balanis et al. is strongly 

upregulated in the transition from P81S11/2(A) to P81S11/2(LT) cells (Figure 48). These data in 

combination with the observed histological changes suggest that the SMARCB1-mediated mechanism 

of PAX8 KD resistance in 786-M1A is similar to the NE transition seen in both lung and prostate cancer.Figure 

48 

 

Figure 48| GSEA plot of Neuroendocrine gene signature (see materials and methods) for P81S11/2 (A) 
vs P81S11/2(LT).  

 

6.3 Heterogeneity and lineage plasticity 

 

As mentioned, lineage plasticity in response to targeted therapy can lead to variable outcomes. In this 

study, there were multiple layers of heterogeneity. Firstly, the differing effects of SMARCB1 KO on the 

development of PAX8 KD resistance in ccRCC cell models. In 786-M1A cells, SMARCB1 inactivation 

promoted a dedifferentiation-like mechanism enabling the co-option of new transcriptional programs 

to compensate for PAX8 loss. However, in VHL mutant UOK101 cells, SMARCB1 loss was highly 

detrimental to the emergence of PAX8 resistant clones. UOK101 P81Ctrl(LT) cells grew faster than the 

SMARCB1 mutant UOK101 P81S11/2(LT) cells (Figure 22b). Further, in the population of UOK101 

P81S11(LT) cells, there was a selection of escaped SMARCB1 WT clones, visible as a partial recovery of 
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the SMARCB1 protein band on the WB (Figure 22a). The SMARCB1 escaped UOK101 P81S12(LT) cells 

also grew faster than UOK101 P81S12(LT) cells in which there was no recovery of SMARCB1 protein 

(Figure 22a-b). These data suggest that in certain contexts SMARCB1 KO is not able to render ccRCC cell 

lines PAX8 insensitive but instead there are alternative preferential routes to resistance.  

Heterogeneity was also seen within the PAX8 insensitive SMARCB1 KO 786-M1A cells. P81S11(LT) cells 

were highly tumorigenic, whereas most P81S12(LT) grafts failed to give rise to tumours (Figure 19). The 

P81S11(LT) cells also showed a greater loss of renal epigenetic and transcriptional identity and bore a 

stronger epigenetic resemblance to IPSCs, than their P81S12(LT) counterparts (Figures 35, 37, 39). The 

only difference between P81S11(LT) and P81S12(LT) cells is the sgRNA used to target SMARCB1. In the 

literature, there is evidence for specific hotspot mutations which occur in different domains of 

SMARCB1 which may have different functional consequences363,364. However, both sgRNAs (S11/2) in 

this experiment recognised sequences in the first exon (and hence the same domain) of the SMARCB1 

gene and were both highly efficient at knocking out SMARCB1 protein expression (Figure 18c). Further, 

all nine sgRNA targeting SMARCB1 were enriched in the original PAX8 KD resistance screen and there 

was no correlation between the most highly enriched constructs in the P81 condition versus the P82 

condition. This suggests that in this model, the genomic location of the induced SMARCB1 mutation is 

not important, provided it leads to a non-functional protein.  Instead, it appears as though there are 

multiple possible phenotypic outcomes to SMARCB1 KO, which is in agreement with the widespread 

changes to the chromatin landscape (Figure 28). Despite the variable in vivo and in vitro phenotypes 

between P81S11(LT) and P81S12(LT) cells, they showed highly correlative transcriptional dependencies 

in the TF CRISPR screen (Figure 42c). Given that the largest disparity in the phenotypes between 

P81S11(LT) and P81S12(LT) cells was in their tumorigenic capacity, it would be interesting to repeat the 

TF screen in an in vivo setting to see if this reveals different TF sensitivity profiles between the two 

SMARCB1 KO clones. 
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Heterogenous phenotypes associated with lineage plasticity and therapy resistance have been reported 

in multiple breast and prostate cancer models. As mentioned previously, in a PTEN-/- driven mouse 

model of metastatic prostate cancer, the concurrent inactivation of TP53 and RB1 leads to NE 

differentiation and castration resistant tumour growth78. The degree of luminal (KRT8) versus 

neuroendocrine (SYP) markers varied markedly within castration resistant tumours78. Brainbow lineage 

tracing revealed that these tumours were often derived from a single clone, and therefore the observed 

variability was not due to a polyclonal architecture78. Similar variability was seen in a patient-derived 

CRPC-NE organoid model, immunohistochemical staining for  SOX2, SYP, and various SWI/SNF subunits 

varied throughout the organoid, suggesting that cells undergoing lineage plasticity cells can exist in 

various states354. Interestingly, the co-expression of specific SWI/SNF subunits correlated with the 

relative expression of SYP and SOX2 markers, providing further evidence for the importance of specific 

SWI/SNF complex repertoires in maintaining different cellular states354. In support of this observational 

data, a study in breast cancer by Nagarajan et al. generated two ARID1A KO MCF7 luminal breast cancer 

cell lines which were resistant to tamoxifen treatment272. In one ARID1A KO clone, a strong shift in H4 

acetylation status due to reduced HDAC1 binding was observed. This in turn led to BRD4 recruitment 

and bromodomain and extra-terminal motif (BET)-dependent growth. The second clone exhibited a 

similar reduction in HDAC1 recruitment but showed very little change in H4 acetylation status, 

suggesting an alternative (possibly BRD4 independent) ARID1A mediated resistance mechanism272.  

 

 

 

 

 



129 

 

6.4 Targeting PAX8 in ccRCC 

 

Despite ~300 TFs being associated with a disease state, currently only a handful have been successfully 

drugged203. Targeting transcription factors using small molecules has proved very challenging, in part 

because they are predominantly intrinsically disordered and lack easily druggable binding pockets (like 

enzymatic active sites)210,365. They have two main targetable interfaces, the DNA-protein interaction 

surface which tends to be convex and highly positively charged, and the protein-protein interaction 

surface which are typically flatter and do not have deep pockets210,365. In contrast targeting nuclear 

hormone receptors is considerably less challenging because they have a well folded ligand binding 

domain365.  

Despite the technical challenges, there are examples where non-hormone receptor TFs have been 

successfully targeted. For example, TFs often require protein-protein interactions (PPIs) to become 

transcriptionally active, chemically disrupting these interactions has shown efficacy in certain 

instances209. A good example of this is the HIF2α inhibitor PT2385 which targets the PASB 

heterodimerisation domain of HIF2α, blocking the interaction with its binding partner ARNT194. Similar 

approaches with co-activators/repressors or attempts to destabilised/stabilise the TF depending on the 

context have also shown efficacy for certain TFs in particular disease settings and are the subject of a 

number of excellent reviews202,209,210. An interesting recent development are bifunctional molecules, 

known as PROTACS209. PROTACS have a ligand that binds to an E3 ligase, which is also attached to a 

second ligand capable of recognising a specific protein. In this way, they can functionally link a TF to a 

ubiquitin ligase, triggering ubiquitylation and subsequent proteasome-mediated degradation366. 

PROTACS are interesting because they do not have to functionally inhibit a particular process of a TF 

(i.e. DNA binding or PPIs) in order to target them for degradation209. In theory, this provides more 

possible binding sites and hence more opportunity for the targeting of new TFs209,366. To date, as a proof 

of principle, PROTACS have largely been used in contexts where there are well validated binding sites 
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and hence were often already drugged209. Going forward there is likely to be a large amount of 

development around the design and application of PROTACS, which will expand the catalogue of 

targetable TFs202202,209,366.  

The inactivation of PAX8 has a very strong effect on cellular growth both in vitro  and in vivo  in a number 

of ccRCC models, making it an attractive therapeutic target (Figure 12d, 19)367,368. In line with the 

hypothesis that lineage programs are fundamental vulnerabilities in the majority of tumour cells despite 

heterogenous driver mutations, the catalogue of PAX8 sensitive ccRCC cells contains an almost full 

complement of ccRCC driver gene mutations (e.g. VHL, PBRM1, BAP1, SETD2, KDM5C, TP53 and PTEN). 

Given the importance of PAX8 in kidney organogenesis, it would be reasonable to expect acute on-

target toxicity to a systemic PAX8 therapy263,369. However, the inactivation of PAX8 in a mouse embryo 

does not lead to embryonic lethality or the malformation of the kidneys263. PAX8 and PAX2 co-operate 

during renal development, and it appears that functional PAX2 can compensate for the loss of PAX8263. 

Therefore, a PAX8 based therapy may have a favourable on-target toxicity profile. Like most targeted 

treatments, a significant challenge for a PAX8 based therapy is likely to be acquired resistance265. In a 

relatively short time frame (~1-2 months) PAX8 sensitive ccRCC cell lines were able to adapt to PAX8 

suppression in vitro, without a SMARCB1 mutation (Figure 18a-d). Given the kinetics, it is likely that 

resistance emerged through cellular plasticity and adaption, rather than selection for an acquired 

somatic alteration. Whether or not a similar adaptation is possible in vivo, or requires optimised high 

growth factor in vitro conditions, remains to be tested.  

As discussed, there are multiple molecular drivers capable of inducing a state of lineage plasticity in 

response to targeted therapies59,370. However, whilst lineage plasticity engenders therapeutic 

resistance, it can also expose cells to newly acquired druggable dependencies. For example, an ARID1A 

mutant, tamoxifen/ fulvestrant resistant breast cancer model acquired sensitivity to a BET inhibitor and 

pan-cancer cells exhibiting a NE transcriptional signature acquired dependence on a  BCL2 inhibitor 

which is an approved therapy to treat chronic lymphoblastic leukemia273,371. Perhaps more interesting, 



131 

 

are drugs that can re-sensitise tumours to lineage-targeted therapies, such as EZH2 inhibitor treatment 

that could re-sensitise Trp53-/-Rb1-/-CRPC-NE cells to androgen depletion78. This raises an interesting 

concept; an understanding of the molecular logic that governs lineage switching and plasticity in cancer, 

could aid in the design of therapies which maintain lineage fidelity and can be used in combination with 

lineage targeted agents. An approach such as this could improve the therapeutic potential of targeting 

PAX8 by decreasing the likelihood of lineage-resistant clones from emerging. Further, drugs capable of 

enforcing lineage fidelity may have applications in a range of anti-cancer therapies including 

chemotherapy, immune therapy, RTK inhibitors, and other targeted therapies83,372,373. 

 

6.5 Future work 

 

6.5.1 Supporting experiments and open questions  

 

In this study, it was demonstrated that SMARCB1 KO could convey resistance to PAX8 inhibition in the 

RCC cell line 786-M1A. In support of this, I showed that SMARCB1 mutant ccRCC cell lines in the 

DepMap project were refractory to PAX8 KO and transcriptionally resembled P81S11/2(LT) cells. This link 

would be strengthened further, by inducing PAX8 insensitivity through SMARCB1 KO in another ccRCC 

model, for example, LM1 cells. LM1 cells have a typical clear cell phenotype, and so a transition to a 

state histologically resembling NE differentiation would be particularly striking374. 

As mentioned previously, the biallelic loss of VHL is highly specific to ccRCC and the re-constitution of 

VHL leads to degradation of HIF2A and growth arrest in xenograft models of ccRCC375. The active 

epigenetic and transcriptional programs in renal proximal tubule cells provide a context in which VHL 

mutations are tumorigenic. The KO of SMARCB1 compromises proximal tubule identity and facilitates 

re-programming in ccRCC models, which raises an interesting question, are SMARCB1 KO cells still 
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sensitive to the reintroduction of VHL? The acquired dependence on the HIF2A target gene BHLHE40 

in P81S11/2(LT) cells would suggest that this may still be the case. However, the dependence of 

P81S11/2(LT) cells on BHLHE40 is relatively weak, and so it remains possible that even with a VHL 

reintroduction, P81S11/2(LT) cells are still tumorigenic. The VHL re-introduction phenotype only occurs 

in 786-M1A cells in an in vivo setting, therefore, to answer this question a subcutaneous in vivo tumour 

growth assay with Ctrl.Ctrl and P81S11/2(LT) cells with either an empty vector or VHL reintroduction 

would be required.  

Lineage plasticity in response to environmental pressures (including therapy) can lead to sensitivity to 

the inhibition of certain chromatin regulators, such as EZH2 and BRD978,307 . It would be interesting to 

test whether these vulnerabilities are re-producible in P81S11/2(LT) cells. Whilst it is possible to choose 

and validate specific targets and drugs, it could be more fruitful to perform an unbiased genetic screen 

in Ctrl.Ctrl(A) and P81S11/2(LT) cells. The convergence of drug vulnerabilities on chromatin modifiers 

could suggest a targeted screening approach, that could even be performed in vivo. Alternatively, a 

totally unbiased genome-wide library targeting ~18000 genes could be used in vitro. Either approach 

may identify specific vulnerabilities for the design of new therapeutics to address lineage fidelity and 

provide insights into the regulators of states acquired through plasticity. 

The marked difference in the tumorigenic potential of P81S11(LT) and P81S12(LT) cells is at odds with 

their highly correlated TF dependency profiles (Figure 42d). This could be for several reasons; the critical 

difference between P81S11(LT) and P81S12(LT) cells is not captured in the TF sgRNA library, the 

difference is masked by redundancy, or the phenotype of differentiating TF dependencies can only be 

seen in an in vivo context. To partially address this question, the TF genetic screen could be performed 

in vivo, and a genome-wide screen could be performed in vitro. The question of redundancy is difficult 

to address in a systematic manner, whilst combinatorial sgRNA libraries do exist, they generally do not 

account for redundancy that exceeds two factors and the complexity of the library can quickly become 
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very large377. A stratified combinatorial screening approach based on differentially expressed genes in 

P81S11(LT) and P81S12(LT) cells could help to address this technical limitation.  

Resistance to PAX8 suppression without an additional genomic alteration was achieved in vitro within 

a reasonably short time period (Figure 18a-d). However, whether a similar adaption is possibly in vivo 

where the growth conditions are arguably more challenging, remains to be seen. To maintain a 

consistent PAX8 KD over time, escaped cells that had regained PAX8 expression were FACS sorted out 

of the population based on a fluorescent marker, which is not possible in vivo. Instead, a PAX8 KO cell 

line re-constituted with dox-inducible PAX8 cDNA would be a more suitable system. Following 

subcutaneous injection, mice could be fed a dox supplemented diet until tumours are established, at 

which point dox can be removed and the kinetics of adaption can be measured by bioluminescence 

signal or tumour volume measurements. This model could also be used to test whether acute SMARCB1 

KO can convey resistance to PAX8 inhibition in vivo.  

 

6.5.2 Generalisability of the study - an experimental approach 

 

SMARCB1 was enriched in two independent tamoxifen/fulvestrant resistance screens in a luminal 

breast cancer cell line272,301. These data suggest that SMARCB1 inactivation can convey resistance to 

lineage factor inhibition in multiple tissue contexts. Therefore, it would be interesting to extend the 

findings from this study beyond RCC to additional cancer types, both epithelial and non-epithelial. For 

example, targeting melanocyte inducing transcription factor (MITF) in melanoma, IRF4 in multiple 

myeloma and HAND2 in neuroblastoma, in conjunction with a SMARCB1 KO. 
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6.5.3 Generalisability of the study - an informatic approach 

 

The occurrence of de novo PAX8 KO resistant cell lines, identified in the DepMap project, may suggest 

a similar pattern is observable in other lineage contexts (Figure 21). Identifying additional groups of cell 

lines that have become decoupled from their lineage-specific transcriptional program would be useful 

to further probe the importance of the SWI/SNF complex in lineage plasticity and possibly identify 

additional drivers. In the next section, I will detail an informatic based approach to build a foundation 

to push the concepts identified in this work forward and potentially generalise them to different cancer 

types. 

Using the workflow detailed in Figure 49a, I made predictions for core regulatory circuitry in 25 lineages 

represented in the DepMap data. In short, for each lineage I compared the dependency core (CERES 

score) for each transcription factor against the CERES score for the same TF in cell lines pooled from all 

other lineages, to create a lineage dependency (LD) score for each TF in each lineage context (see 

materials and methods). To visualise the distribution of LD scores, I plotted a histogram and a ranked 

plot of the maximum possible LDscore (most negative score) for each TF (Figure 49b-c). For example, 

PAX8 and HNF1B had the most negative LDscore in the RCC lineage context, and so these scores were 

used.  Whereas MYOD1 and PAX3 had the strongest LD score in the rhabdomyosarcoma context, and 

so for these TFs, those scores were used. As expected, the distribution of the LDscores was such, that for 

most TFs there was no specific dependency in a particular lineage, instead, there was a rare set of TFs 

which showed very strong specificity (Figure 49b). 
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Figure 49 

 

Figure 49| (a) Workflow for generation of lineage dependency scores (LD) for each TF in each lineage 
context. Lineage x: selected lineage context, Remaining: cells lines for all other lineages. (b) 
Frequency distribution of the maximum possible LD (i.e. most negative) score for each TF. For 
example, PAX8 has the strongest lineage specific dependency score in RCC and so the PAX8 LD score 
in the RCC context is plotted here. (c) Ranked plot of the maximum possible LD (i.e. most negative) 
score for each TF.  

 

To make predictions for lineage-specific TF programs (termed core regulatory circuitry - CRC), for each 

TF, in each lineage context, I used an LDscore cuff-off  (< -1.2, guided by the distribution of scores in 

Figure 49b) and a P-value cut-off (P<0.05) (Figure 50a). Using this approach, CRC predictions were made 

for 17 out of 25 lineages. In line with previous reports, the size of the CRC varied greatly between 

lineages368. Hematopoietic lineages (acute lymphoblastic leukaemia -ALL, acute myeloid leukaemia -

AML, non-Hodgkin lymphoma -NHL, multiple myeloma -MM) and a neuroectoderm lineage 

(neuroblastoma -NB) had the largest CRC ranging from 11 to 26 members (Figure 50a). Whereas, 

epithelial cancers, sarcomas, and melanomas tended to have smaller CRC, ranging from 1 to 8 members 

(Figure 50a). The relative cellular dependence on individual members of CRC also varied within lineages. 

In some instances, cells depended strongly on the lineage factor, for example, PAX8 in RCC, MITF in 

melanoma, and homozygous transcription factor 3 gene (TCF3) in MM (Figures 9a, 50b-c). In contrast, 

the dependence on TCF3 in ALL and NHL is considerably weaker (Figure 50c). Some of the putative CRC 

members were pan-lineage dependencies that were particularly depleted in certain lineages. These 
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genes had a low median CERES score across all cell lines, the best example of this was RELA (Figure 

50d). RELA was depleted in all 17 lineages but preferentially in MM (Figure 50e).  

Figure 50 

 

Figure 50| (a) Dot plot of the median CERES score across cell lines in a particular lineage, for putative 
lineage specific TF dependencies after filtering (LDscore ≤ -1.2, P<0.05). (b) Box plot of CERES scores 
for the gene MITF across all lineages with identified specific dependencies (n=17). Highlighted 
lineage, Mel, is the lineage for which MITF was identified as a specific dependency. (c) Box plot of 
CERES scores for the gene TCF3 across all lineages with identified specific dependencies (n=17). 
Highlighted lineages – ALL, NHL and MM - are the lineages for which TCF3 was identified as a specific 
dependency. (d) A ranked plot of the median CERES scores across all cell lines (across all lineages) for 
TFs identified as lineage specific. (e) Box plot of CERES scores for the gene RELA across all lineages 
with identified specific dependencies (n=17). Highlighted lineage, MM, is the lineage for which RELA 
was identified as a specific dependency. Abbreviations:- ALL: acute lymphoblastic leukaemia, AML: 
acute myeloid leukaemia, EWS: Ewing sarcoma, BRC: breast carcinoma, CRC: colorectal 
adenocarcinoma, GA: gastric adenocarcinoma, RCC: renal cell carcinoma, SCLC: small cell lung 
cancer, NHL: non-Hodgkin lymphoma, OA: ovarian adenocarcinoma, NB: neuroblastoma, MM: 
multiple myeloma, Mel: melanoma, RMS: rhabdomyosarcoma, UATN: upper aerodigestive tract 
neoplasm, BC: bladder carcinoma, EAC: endometrial adenocarcinoma. 

 

I decided to apply a second round of filtering on the putative CRC members to focus the analysis on 

strong cellular dependencies and remove any pan-lineage dependencies, to create lineage networks 

that were comparable to PAX8 and HNF1B in ccRCC. To filter for strong cellular dependencies, the 
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distribution of the LD CERES scores did not provide an obvious guide, so I opted for a conservative cut-

off; >50% of cell lines within a lineage had to have a CERES score of ≤ -0.5 for a respective putative LD 

(Figure 51a).  

Figure 51 

 

Figure 51| (a) Frequency distribution of the median CERES scores for each identified lineage 
dependency from figure 50a in their respective lineage. (b) Frequency distribution of the median 
CERES scores for each identified lineage dependency from figure 50a across cell lines in their 
respective lineage. (c) Dot plot of the median CERES score across cell lines in a particular lineage, for 
prospective lineage specific TF dependencies after three successive rounds of filtering (1) LDscore ≤ -
1.2, P<0.05, (2) ≥ 50% of cell lines with the lineage have a CERES score of ≤ -0.5 for a prospective LD 
and (3) the median CERES score of LD across all cell lines ≥ -0.2. (e) Bar plot of the median CERES 
score across cell lines and LDs in each lineage.  

 

This ensured that strong dependencies were selected whilst accounting for the possibility that there 

are de novo resistant cell lines. To remove pan-lineage dependencies I once again plotted the 

distribution of median CERES scores across all cell lines for putative CRC members (Figure 51b).  A cut-

off of median CERES ≥ -0.2 separated the bimodal distribution, removing pan-lineage dependencies, 

like RELA. After filtering I was able to detect strong, lineage-specific dependencies in 10 of the original 
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25 lineages, including haematological, epithelial and neuroectodermal malignancies, sarcomas and 

melanomas (Figure 51c; Table 4).  

Table 4 

 

Table 4 | CRC predictions 

The number of CRC members across cancer lineages after filtering was more comparable, ranging from 

1 to 4 members (Figure 51c). Ranking of the 10 lineages by how strongly they depended on their 

respective lineage factors, revealed a substantial range, possibly suggesting that some lineages may 

respond better to lineage factor targeting (Figure 51d). The most dependent lineages were 

rhabdomyosarcoma (RMS) and RCC, and the least dependant lineages were melanoma and NB.  

Having identified 10 lineages encompassing a range of malignancies with strong and specific 

transcriptional dependencies, I next sought to uncover examples of de novo resistance to lineage factor 

inhibition. A histogram of cell line dependency scores for their respective LDs revealed a strongly 

bimodal distribution (Figure 52a). I confirmed the deviation of the distribution of LD CERES scores from 

a normal Gaussian distribution using a quantile-quantile (Q-Q) plot and the Shapiro-Wilk statistical test 

(Figure 52a-b). The smaller of the two populations is centred close to a CERES score of 0 and therefore 

likely represents a small fraction of cell lines that are resistant to lineage factor inhibition. The larger of 
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the populations, accounting for most cell lines, is centred around a CERES score of -1 (essential gene 

status) and so represents cell lines sensitive to lineage factor inhibition. The plot from Figure 52a 

considers each lineage factor in each lineage separately, which means for lineages with >1 LD, the same 

cell line will appear more than once in the distribution. If the LDs are averaged within lineages across 

the same cell line and the distribution is re-plotted, a similar bimodal distribution is seen (Figure 52c-

d). However, it does not deviate as strongly from a normal distribution, suggesting that when there are 

multiple strong LDs, a cell line can become resistant to one whilst maintaining its dependence on others. 

Nonetheless, in both instances, it is readily possible to identify lineage factor resistant cell lines. Using 

the distribution of LD CERES scores as a guide, I applied a cut-off (avgCERES score for LD > -0.45) to 

identify resistant cell lines in each of the 10 lineages (Figure 52e). Remarkably, there were examples of 

lineage-resistant cells in all 10 lineages.  

 

 

Figure 52 
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Figure 52| (a) Frequency distribution of the CERES score for each LD from figure 38e, in each cell line 
of their respective lineage. (b) A Q-Q plot comparing the distribution of the scores from (a) to a 
theoretical gaussian distribution. The area shaded in grey indicates the 95% confidence interval 
under the null. (c)  Frequency distribution of the CERES score for each LD from table 4, in each cell 
line of their respective lineage. For lineages which contain >1 LD, an average is taken across LDs in 
each cell line. (d) A Q-Q plot comparing the distribution of the scores from (c) to a theoretical 
gaussian distribution. The area shaded in grey indicates the 95% confidence interval under the null. 
(e) Box plot of the average CERES score of each LD in their respective lineage. Sensitive and resistant 
lines are identified using the cut off identified in (a) and (c), average CERES > -0.45. Abbreviations:- 
ALL: acute lymphoblastic leukaemia, AML: acute myeloid leukaemia, EWS: Ewing sarcoma, RCC: renal 
cell carcinoma, NHL: non-Hodgkin lymphoma, NB: neuroblastoma, MM: multiple myeloma, Mel: 
melanoma, RMS: rhabdomyosarcoma, EAC: endometrial adenocarcinoma. 

 

As a preliminary analysis to demonstrate the utility of this approach, with the aid of a collaborator (D.S), 

a permutation-based statistical method (see materials and methods) was applied to look for changes 

in the genetic dependencies of resistant cell lines. Based on the concepts developed in this project, 

lineage-resistant cell lines can acquire dependencies on new TFs (i.e. IRF2) and possibly lose 

dependence on chromatin regulators important for maintaining differentiated transcriptional programs 

(e.g. SMARCB1 and ARID1A).  

The dependence on LDs defines whether a cell line in a lineage is sensitive or resistant, therefore re-

discovering LDs would serve as a sanity check for this analysis. Resistant cell lines should have a 

statistically significant acquired lack of dependence on LDs. Using a widely accepted FDR cut-off of 0.1, 

we were able to re-discover 7/19 LDs in 7/10 lineages (Table 5).  
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Table 5 

 

Table 5 | Results from the lineage resistant acquired dependence / lack of dependence analysis, using 
a list of TFs, filtered for FDR <0.1. Acknowledgments:- As stated in the Preface, the permutation 
based statistical test used to identify changes in dependency profiles was performed by D.S. 

 

The low recovery rate of LDs is likely because the number of cell lines within each lineage is not 

sufficient to account for heterogeneity in LD dependence, therefore we can only detect LDs for which 

most resistant cell lines have acquired independence. This is supported by the fact that it was possible 

to recover LDs for all lineages with one LD (4/4), and only 3 out 6 lineages with multiple LDs. This may 

suggest that an FDR cut-off of 0.1 is too stringent for a data set of this size. However, to reduce the cut-

off would increase the chance of detecting random noise in the data instead of biological signal. 
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Despite the limitations of the data set size, it was possible to detect instances of both acquired 

dependencies and lack of dependencies in lineage-resistant cell lines. As an illustrative example of the 

latter, TP53 KO is enriched in MITF-dependant cells, in line with its role as a TSG, but in MITF-

independent cells, the enrichment is less strong (Figure 53a).  

Figure 53 

 

Figure 53| (a) Box plot of the CERES score of lineage sensitive and resistant cell lines from the 
melanoma lineage for TP53 KO. FDR calculated using permutation-based statistics. (b) Stacked bar 
plot representing the proportion of TP53 mutations in lineage sensitive and resistant cell lines from 
the melanoma lineage. (c) Box plot of normalised TP53 gene expression (transcripts per million -TPM) 
in lineage sensitive and resistant cell lines from the melanoma lineage. (d) Stacked bar plot 
representing the proportion of RB1 mutations in lineage sensitive and resistant cell lines from the 
melanoma lineage. (e) Box plot of the CERES score of lineage sensitive and resistant cell lines from 
the rhabdomyosarcoma lineage for MYC KO. FDR calculated using permutation-based statistics. (f) 
Box plot of normalised MYC gene expression (transcripts per million -TPM) in lineage sensitive and 
resistant cell lines from the rhabdomyosarcoma lineage. Abbreviations:- Mel: melanoma, RMS: 
rhabdomyosarcoma. 

 

As mentioned previously, the inactivation of TP53 is an important event in neuroendocrine 

differentiation and has been shown to increase the efficiency of reprogramming epithelial cells into 

IPSCs378–380. The reduced CERES score for TP53 in MITF-independent melanoma cells suggests it may 
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already be downregulated or inactivated, thereby facilitating a transition to a MITF independent state. 

In line with, this there is an increase in the proportion of TP53 mutations in MITF -independent cells 

(47% vs 28%) and a reduction in TP53 mRNA expression (Figure 53b-c). Unlike neuroendocrine 

differentiation and lineage plasticity in prostate cancer, there were no detectable RB1 mutations 

concomitant with TP53 in the lineage resistant melanoma cell lines, possibly suggesting a different 

reprogramming mechanism (Figure 53d).  

RMS cells resistant to PAX3 or both PAX3 and MYOD1 KO had an enhanced dependence on MYC 

compared to lineage-sensitive lines (Figure 53e). MYC (c-MYC) has a role in cellular reprogramming, the 

maintenance of pluripotency, and the control of cell fate decisions381. Most famously MYC is one 

‘Yamanaka factors’, the retroviral introduction of OCT3/4, SOX2, KLF4 and MYC can induce the 

transformation of fibroblasts into induced pluripotent stem cells (iPSCs)382. Another MYC family 

member, N-MYC, is expressed highly in neuroendocrine resistant prostate cancer and the exogenous 

overexpression of N-Myc in a Pten-deficient mouse model induces androgen deprivation therapy 

resistance and increases the incidence of neuroendocrine differentiation383–385. The enhanced 

dependence on MYC raises the interesting possibility that PAX3/MYOD1-independent cell lines have 

enhanced MYC activity which promotes lineage factor resistance. In line with this, MYC trends towards 

higher expression in lineage-resistant cell lines (Figure 53f). However, the difference does not reach 

statistical significance, possibly due to the very small sample size and subsequently low statistical power 

(sensitive lines n= 6, resistant lines n=4). Further, there are two lineage-sensitive cell lines with higher 

MYC expression, suggesting MYC expression alone may not be sufficient to promote lineage resistance. 

It is, therefore, possible that a small sample size cannot account for heterogenous phenotypes 

associated with higher MYC expression. It would be interesting to inhibit PAX3/MYOD1 in the MYC high 

and low expression lineage sensitive lines and compare their propensity to adapt over a longer time 

frame than the DepMap CRISPR screen (~20 days).  
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In acute lymphoblastic leukaemia (ALL) a subset of cell lines that were resistant to the inhibition of the 

lineage factors Early B-Cell Factor 1 (EBF1) and PAX5 but not Runt-related transcription factor (RUNX1), 

were identified (Figure 54a). To replace EBF1 and PAX5, the resistant cell lines had acquired a 

dependence on the transcriptional output of BAF Chromatin Remodeling Complex Subunit BCL11B 

(BCL11B), ETS Proto-Oncogene 1 (ETS1), and GATA Binding Protein 3 (GATA3) (Figure 54b). Given the 

challenge of rediscovering LDs, it was remarkable to detect three newly acquired dependencies in ALL. 

This finding suggested two possible scenarios, either there is a highly probable singular route to lineage 

independence in ALL or, the resistant and sensitive cell lines represent different subtypes of ALL with 

related but discrete developmental origins that were not distinguished in the DepMap annotations. To 

test the second scenario, I performed differential expression analysis with lineage-sensitive and 

resistant ALL cell lines, coupled with GSEA using the collection of cell-type-specific signatures (C8). The 

most highly enriched signatures in the resistant cell lines belonged to T cells, whereas the most 

negatively enriched signatures belonged to B cells (Figure 54c). This is in line with literature describing 

two discrete subtypes of ALL, one derived from a B cell developmental trajectory (B-ALL) and the other 

from a T cell developmental trajectory (T-ALL)386. The ALL lineage resistant (T-ALL) cells are dependent 

on the T cell-specific TFs GATA3 and BCL11B whereas the sensitive cells are dependent on the B cell-

specific factors EBF1 and PAX5386,387. Both B-ALL and T-ALL cell lines are sensitive to the inactivation of 

RUNX1, which is important for the generation of HSCs, a common ancestor in both B and T cell 

development386.  
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Figure 54 

 

Fig. 54| (a) A box plot of the CERES scores for ALL LDs in ALL cell lines, separated into sensitive 
(purple) and resistant (cyan) cell lines according to figure 39e. (b) A box plot of the CERES scores for 
transcriptional dependencies specific to the lineage resistant ALL cell lines. (c) Volcano plot of GSEA 
with cell-type specific transcriptional signatures from mSigDB collection 8, for the comparison ALL 
lineage sensitive vs ALL lineage resistant cell lines. highlighted points (purple/cyan) have a p.adjust < 
0.05.  

 

In addition to looking for changes in the genetic dependency profiles between resistant and sensitive 

lines, using mRNA expression data it was also possible to measure changes in the transcriptional 

programs. As an example, differential expression analysis between lineage resistant and sensitive 

neuroblastoma cell lines, coupled with GSEA using the hallmarks collection, revealed a very strong 

upregulation in the EMT signature (Figure 55a). Recent molecular characterisation of primary 

neuroblastoma tumours identified a high-risk molecular subtype with a mesenchymal-like gene 

expression profile, which strongly overlapped with highly aggressive mesenchymal glioblastoma388. In 

a Zebrafish model, the transition from an adrenergic to mesenchymal state in neuroblastoma was 
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functionally associated with the mutational inactivation of ARID1A either through a non-synonymous 

mutation or large chromosomal deletion389. However, the lineage-resistant neuroblastoma cells 

identified in this analysis did not have a higher proportion of ARID1A mutations or a lower expression 

of ARID1A mRNA, suggesting that in this context there are multiple mechanistic drivers for the 

mesenchymal transition. (Figure 55b-c).  

Figure 55 

 

Figure 55| (a) GSEA plot of the hallmarks EMT signature neuroblastoma lineage sensitive vs lineage 
resistant cell lines. (b) Stacked bar plot representing the proportion of ARID1A mutations in lineage 
sensitive and resistant cell lines from the neuroblastoma lineage. (c) Box plot of normalised ARID1A 
gene expression (transcripts per million -TPM) in lineage sensitive and resistant cell lines from the 
neuroblastoma lineage. (d) GSEA plot of ARID1A KO up regulated gene signature for neuroblastoma 
lineage sensitive vs lineage resistant cell lines. Abbreviations:- NB: neuroblastoma. 

 

The identification of ten lineages with specific transcriptional dependencies featuring de novo lineage 

factor resistance provides an interesting base to expand the concepts developed in this study as well 

as identify additional molecular drivers. The occurrence of de novo lineage factor resistance in the 

absence of lineage factor inhibition is likely the result of lineage plasticity in response to 

microenvironmental stressors. This is supported by reports of lineage plasticity in response to multiple 

treatment modalities including chemotherapy, MAPK targeted therapy and immunotherapy, as well as 

environmental queues such as hypoxia and inflammation59,68–71,74,75,390–392. A preliminary analysis of the 

data set implicated MYC, TP53, and an EMT in independence from lineage factor signalling. Going 

forward there is a need for a more comprehensive molecular dissection of lineage independence. For 
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example, the transcriptomic profiling can be expanded to additional lineages beyond NB and include 

more signatures. Further, a systematic approach for identifying recurrent mutations could be 

implemented, and other publicly available modalities (e.g. reverse-phase protein array, RNA splicing, 

DNA methylation, microRNA expression, and drug sensitivity data) can be incorporated into the 

analysis303.  Finally, it would be interesting to systematically measure changes in SWI/SNF subunit mRNA 

and protein expression, to determine if there are re-producible changes in the subunit repertoire during 

the transition to a lineage independent state, similar to what has been reported in prostate cancer354. 
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Transcriptional lineage factors are a prominent class of essential genes in cancer. Beyond targeting 

NHRs in breast and prostate cancer, the mechanisms that maintain lineage fidelity during 

carcinogenesis, and whether lineage factor pathways could be broadly exploited for cancer therapy 

remain poorly understood. In this study, I used clear ccRCC as a model to characterise the mechanisms 

that underlie lineage factor dependence in cancer. Through CRISPR/Cas9 loss-of-function screening I 

found that loss of SMARCB1, a member of the SWI/SNF chromatin remodelling complex, can confer an 

in vitro growth advantage and rescued tumorigenesis in ccRCC cells upon inhibition of the essential 

renal lineage factor PAX8. PAX8 resistant cells (P81S11/2(LT) and P81Ctrl(LT) cells) formed tumours with 

features of neuroendocrine histology, which is commonly seen in castration-resistant prostate cancers 

but not in ccRCC. Profiling of the transcriptome and epigenome showed that SMARCB1 inactivation 

triggered large-scale cis-regulatory changes, a loss of kidney-specific epigenetic identity, acquisition of 

a cellular state resembling that of RTs, and activation of proliferative programs. The reactivation of 

proliferative pathways after PAX8 inhibition was achieved through the adoption of new transcriptional 

dependencies on IRF2, BHLHE40, and ZNFX1. The newly acquired dependencies fit into three 

categories: acquisition of a lineage dependency from another lineage (IRF2 from plasma cells), 

expansion of the already in place core oncogenic program (VHL-HIF2α), and acquisition of a rare pan-

cancer dependency (ZNFX1). Finally, using a large-scale CRISPR/Cas9 screening data set comprising 

hundreds of cancer cell lines, I identified examples of de novo lineage factor resistant cell lines even in 

the absence of a specific lineage factor targeted therapy. Lineage resistant cell lines showed common 

changes in dependency profile, such as acquired dependency/lack of dependency on MYC and TP53 

respectively. In this context, it is likely that lineage-resistant cancer clones develop in response to 

environmental or therapeutic stressors. Thus, the principles governing lineage plasticity should be 

taken into consideration when designing novel lineage factor-targeted and other cancer therapies.  
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