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We describe the theory of the dynamics of atoms in two-dimensional quasicrystalline optical
lattices. We focus on a regime of shallow lattice depths under which the applied force can cause
Landau-Zener tunnelling past a dense hierarchy of gaps in the quasiperiodic energy spectrum. We
derive conditions on the external force that allow for a “semi-adiabatic” regime in which semiclassical
equations of motion can apply, leading to Bloch oscillations between the edges of a pseudo-Brillouin-
zone. We verify this semiclassical theory by comparing to the results of an exact numerical solution.
Novel features appear in the semiclassical dynamics for the quasicrystal for a particle driven in a
cyclic trajectory around the corner of the pseudo-Brillouin-zone: the particle fails to return to its
initial state, providing a realization of a “spiral holonomy” in the dynamics. We show that there
can appear anomalous velocity contibutions, associated with non-zero Berry curvature. We relate
these to the Berry phase associated with the spiral holonomy, and show how the Berry curvature
can be accessed from the semiclassical dynamics. Finally, by identifying the pseudo-Brillouin-zone
as a higher genus surface, we show that the Chern number classification for periodic systems can be

extended to a quasicrystal, thereby determining a topological index for the system.

I. INTRODUCTION

Quasicrystals[l, 2] are an interesting class of materi-
als, in which the delicate mix of long range order and
lack of translational symmetry provides a setting that
is intermediate between periodic and random systems[3—
5]. Recent work has shown that quasicrystals can lead
to unconventional dynamical[6-10] and topological[11-
16] properties. Novel experimental settings have allowed
these properties to be explored with an unparalleled
level of control in recent years[6, 17, 18] compared to
conventional condensed matter systems. A particularly
flexible setting in which quasicrystals have begun to be
studied([8, 9, 19, 20] is in ultracold gases[21-23]. Here the
interference pattern from overlapping laser beams can
generate a wide variety of potential landscapes[24-27] —
referred to as optical lattices — including a variety of one-
dimensional (1D)[8, 28] and two-dimensional (2D)[19, 29]
quasicrystals, that are essentially free from disorder and
also highly tunable.

The lack of disorder in optical lattices offers an advan-
tage over solid state in allowing for the study of phase co-
herent transport phenomena without scattering[30]. The
classic example is the demonstration of Bloch oscilla-
tions in an optical lattice[31], a phenomenon which has
not been observed for bulk crystalline electrons. The
theory that describes these phenomena is semiclassical
dynamics[32]. This says that under the influence of a
weak external force a particles motion is determined by
the band structure and by the geometrical properties
of its eigenstates encoded in the Berry curvature[33] —
a quantity that is intimately related to the topologi-
cal properties of the band structure[34-36]. The abil-
ity to access these properties cleanly in cold atoms[37]
has been exploited experimentally to measure geomet-
rical and topological features of energy bands of funda-

mental models[38, 39].

Here we explore the nature of semiclassical dynamics
in an optical quasicrystal. We develop this for lattices
of shallow depth, corresponding to the nearly-free elec-
tron limit of solid state terminology. Our approach ex-
ploits the idea that within this limit, and due to the
quasiperiodicity, there is a unending fractal hierarchy of
gaps in the band structure controlled by perturbation
theory[40]. For any finite external force, Landau-Zener
tunnelling will make all but a finite number of these gaps
relevant within the semiclassical dynamics[41]. The re-
sulting theory is closely analogous to that of a periodic
system except that the unconventional rotational sym-
metries — disallowed for periodic systems — can lead to
exotic band structures. As a surprising result of this, we
find a realisation of a spiral holonomy[42, 43], involving
a permutation between bands under an adiabatic cyclic
trajectory. This phenomena is a generalisation of Berry’s
phase[33] and the Wilczek-Zee holonomy[44]. A com-
parison against an exact solution to the time-dependent
Schrodinger equation verifies that the semiclassical the-
ory works well within the shallow-lattice limit. We show
under what conditions Berry curvature effects can ap-
pear for semiclassical dynamics in quasicrystals, at least
within the shallow-lattice limit. Finally we discuss how
these ideas are generalised to arbitrary rotational sym-
metries.

II. MODEL

We consider a two-dimensional optical lattice qua-
sicrystal shown in Fig. la, with potential

5
V(r) = 2VOZCOS(Gj ‘r+96,), (1)

j=1



where Vj sets the overall strength of the potential, G;
are wavevectors given by

G; = £k (cos(2mj/5),sin(271j/5)) , (2)

and 60; are arbitrary phase offsets. This optical lattice
could be generated using standard experimental methods
using a laser arrangment shown in Fig. 1b, consisting of
five mutually incoherent laser standing waves set at an
angle of 27 /5 with respect to one another.

We highlight that this potential satisfies the definition
of a quasicrystal[3] in that the minimum number of ba-
sis vectors needed to span its Fourier transform (four)
is more than the dimension of the space (two). These
basis vectors can be chosen as any four of the five vec-
tors G;, Eqn. (2). (The reduction from five to four arises
from the linear dependence >_; G; = 0.) In general, the
eigenstates for the Hamiltonian

= V), (3)

can be found by expanding in a basis of plane wave states
|k + G) where

G = ZniGi, (4)

runs over all possible vectors formed from the four lin-
early independent basis vectors, as n; run over all in-
tegers. For crystalline lattices, G forms the reciprocal
lattice. For the quasicrystal, the key difference is that
this set of vectors fills reciprocal space densely, as shown
in Fig. 2a.

An important assumption we work with throughout
the paper is the shallow-lattice limit

VO < ERv (5)

where Er = h%k?/2m is the recoil energy. In this
limit the band structure and eigenstates for the Hamil-
tonian (3) can be found by applying perturbation the-
ory. Away from lines of degeneracy between free particle
states (Bragg planes), the energy spectrum is given by

_ PR VD
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and the effect of V' is just a second order correction. (We
have used (k|V]k) = 0.) On the other hand, along any
two-fold degeneracy — at the crossing of the free particle
energies for k and k’ say — degenerate perturbation the-
ory must be used. This opens a gap proportional to the
matrix element between the two degenerate states

Agap = 2|(k|VIK'), (7)

with matrix elements given by the Fourier coefficients

View = k|V|K') = / drV(r)e /&K ()
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FIG. 1. (a) The considered quasiperiodic optical lattice po-
tential given by Eq. (1) with V, < 0 and 6; = w/10 for
t=1,...,5. (b) A five-fold arrangement of mutually incoher-
ent beams with wave vectors G;/2 plus coherent reflections.
The imposed five-fold rotational symmetry forces the optical
lattice potential to be quasiperiodic because a five-fold sym-
metry is disallowed in periodic systems.

The only non-zero Fourier coefficients, and therefore non-
zero gaps to first order in V, are those shown in Fig. 2b
corresponding to =G;. These define a region known as
the pseudo-Brillouin zone (PBZ)[45-48].

These gaps represent Bragg scattering processes to first
order in V. To higher orders of perturbation theory, gaps
will open along all lines of degeneracy, corresponding to
effective multiple scattering processes. Therefore the ini-
tial free particle dispersion develops a dense hierarchy of
gaps[40, 41, 49]. However, in the shallow-lattice limit (5)
these gaps in the hierarchy have rapidly decreasing sizes
with order of perturbation theory. Thus, under suitable
conditions, the hierarchy can be truncated in their con-
tributions to physical observables. Indeed we make this
idea explicit in the “semi-adiabatic” limit which we now
define, and which allows access to a description based on
semiclassical dynamics.
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Pseudo-Brillouin-zone

FIG. 2. (a) The set of all combinations of the five principle
wavevectors G; — referred to as the reciprocal lattice — forms a
dense set of points in k-space. The corresponding set of plane
wave states forms the basis for the eigenstates and in the
shallow-lattice limit the free particle dispersion will develop
a hierarchy of gaps proportional to the point sizes shown.
(b) The largest gaps are those along the lines of degeneracy
between the centre and the ten principle wave vectors +G;
which together form a decagonal boundary to a region referred
to as the pseudo-Brillouin-zone.

III. SEMICLASSICAL DYNAMICS

For ordinary periodic systems the equations of semi-
classical dynamics play a fundamental role in our un-
derstanding of numerous transport properties[32, 50, 51].
These allow for a reduction in information from an un-
derlying quantum theory to a pair of classical equations
requiring information about only the band structure and

Berry curvature. Whilst in the setting of cold atoms,
where there is little disorder and where scattering from
interactions can be made weak, they can provide an accu-
rate description of the dynamics over long times[37, 38].

This theory describes the motion of a wavepacket cen-
tred at k in reciprocal space and r in real space under the
influence of an external force F. In solid state this force
arises from the electric or magnetic fields acting on the
electron, whereas, because atoms are neutral, for ultra-
cold atomic gases this force typically arises from tilting or
accelerating the lattice. For a sufficiently weak external
force, such that the typical evolution time is sufficiently
long compared to the inverse of the gap, the wavefunc-
tion will remain in an eigenstate throughout the evolution
and the resulting dynamics will be accurately described
by the semiclassical equations of motion[51, 52]

.1
k= F )
P z%agf{k) ~ (k x 2)0(K). (10)

The first equation describes the trajectory of k through
reciprocal space under the external force F. Whilst the
second relates the motion in real space to the dispersion
relation F(k)[50] and an additional term[53] (often re-
ferred to as the anomalous velocity) proportional to the
Berry curvature (k) defined by[33]

Q(k) = Vk X [i(uk|Vkuk>] . 2, (11)

with uy (r) = e~ Ty (r).

Applying these equations to a quasicrystal presents a
number of difficulties. The central issue is the interpreta-
tion of k. In a periodic system k is the crystal momentum
and is thereby only defined up to the addition of a recip-
rocal lattice vector. This encourages one to restrict k to
the Brillouin zone, ensuring that each k labels a unique
eigenstate. A similar approach for quasicrystals is in-
appropriate as here the Brillouin zone is infinitesimally
small (since there is no lower limit on the size of a recip-
rocal lattice vector). Instead throughout the following
we essentially use a repeated zone scheme in which k is
allowed to take any value in reciprocal space.

Closely related to the issue of how to interpret k is the
problem of defining E(k) and Q(k) for a quasicrystal.
Our approach to this problem is two-fold. Firstly we
exploit the shallow-lattice limit (as was presented in the
preceding section), within which the spectrum simplifies
to a free particle dispersion which is broken into a dense
hierarchy of gaps. Secondly we use the idea that under
an external force all gaps with a size below a certain
threshold will be essentially removed from the dynamics
due to Landau-Zener tunnelling. With the Landau-Zener
probability for tunnelling through an avoided crossing
between two free particle states, |k — G) and |k — G),
given by[54]

PLZ = e_aAgaP/F (12)
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FIG. 3. In the semi-adiabatic limit (14), the only relevant
gaps for semiclassical dynamics are those along the PBZ
boundary. These are followed adiabatically, whereas the dense
set of smaller gaps are eliminated by Landau-Zener tunnelling.
This idea is illustrated by the energy spectrum E(k) along a
trajectory past the PBZ with a basis truncated to approxi-
mately one hundred elements and Vy/Er = 0.2.

with F = |F|, @ = nx2/4Egd and § = |F - (G —G/)|. For
all gaps that satisfy
Az < Fla (13)

gap

the probability of Landau-Zener tunnelling will go to one,
Pz — 1, and these gaps will be essentially ignored in the
semiclassical dynamics. If the force is also carefully cho-
sen so that the dynamics remain adiabatic with respect
to the remaining gaps, the dynamics will then be accu-
rately described by the semiclassical equations of motion
(9)-(10). With E(k) and Q(k) interpreted as the remain-
ing part of the spectrum which is relevant in the semi-
classical dynamics.

It is important to stress that unlike periodic systems in
which a band structure is always well defined. It is only
within a dynamical picture, and within a certain window
of external forces, that a particular effective band struc-
ture emerges. The connection between the dynamics and
E(k) and Q(k) via semiclassical dynamics is therefore
essential in defining these quantities for a quasicrystal.
It should also be highlighted that semiclassical dynamics
for a quasicrystal is more restrictive than for periodic sys-
tems. This is because we require both adiabaticity with
respect to some gaps (as with periodic systems) and also
non-adiabaticity for others (unlike periodic systems).

These ideas highlight that the particular semiclassical
dynamics found in a quasicrystal will depend on the mag-
nitude of the external force. With increasingly weaker
regimes of force resulting in a growing number of gaps
becoming relevant[41]. Throughout the following we fo-
cus on a particularly simple regime of forcing which we
refer to as the “semi-adiabatic limit”. We define this as
the regime in which the dynamics are adiabatic with re-
spect to the largest gaps — those of order V which form

the boundary of the PBZ, but non-adiabatic with respect
to the gaps of order V2/Egr (as well as all smaller gaps
in the hierarchy), as shown in Fig. 3. Therefore the dy-
namics are semi-adiabatic when F' satisfies

W\ _ F Vo \?
— 20 14
(ER) <<KER < (ER> (14)

The form of E(k) and Q(k) in the semi-adiabatic limit
falls into two cases depending on the location of k in the
PBZ. Away from the boundary of the PBZ, V(r) has
little effect and to leading order one has free particle dis-
persion E(k) = €, with Q(k) zero. Whereas nearby the
boundary, F(k) and (k) are determined by considering
mixing between the free particle states that are degener-
ate there. Along a straight edge, this involves just two
states, whereas at a corner we have the more interesting
case of mixing between five degenerate states. These can
be identified by considering a series of scatterings at a
corner, as shown in Fig. 4. For example, if we consider
k nearby the topmost corner, the state |k) will be cou-
pled to the states |k —G1) and |k+ Gy), and these to the
states |k— Gy — G3) and |k+ G2+ G4) respectively, with
the final two states coupled to each other. The Hamilto-
nian that describes the mixing between these five states
is given by,

Hl(éOI‘neI‘ —
€k VG1 V_G4 0 0
V—G1 k-G, 0 VG,3 0
VG4 O €k+G4 0 V7G2 (15)
0 V_g, 0  ex-gi-Gs Va,

0 0 Vg, VoGs  €k+G21Ga

with Vg, = Voe'di .

Whilst we will focus on the semi-adiabatic limit
throughout the rest of the paper, essentially all the re-
sults we discuss can be simply extended to a regime in
which the force is tuned to a different set of gaps. Gen-
erally if one chooses the force according to

Vb 2(n+1) r ‘/0 2n
— — — 16
(ER> < Yo < B (16)

the situation described for the semi-adiabatic case is al-
tered by replacing the set of principle wavevectors G;
with a set of ten vectors G/ associated with nth order
scatterings. This set is found by taking the smallest mag-
nitude wavevectors from the set of all nth order combina-
tions of G; (these will necessarily have the same ten-fold
symmetry), and will have phases 6] equal to the sum of
the n phases associated with the n wavevectors G;. One
can then define a corresponding nth order PBZ defined
by the set of perpendicular bisectors to G}, along with a
similar matrix to H°™°" in (15) describing the dynamics
nearby a corner.
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FIG. 4. Local to the topmost corner the state |k) is coupled
to four other states (each marked with a point), with the mix-
ing between these described by the Hamiltonian H°™" as in
Eq.(15). The off-diagonal couplings are represented by ar-
rows and the corresponding phases 6; have been included. As
discussed in Sec. VI A each phase is gauge dependent how-
ever since the couplings form a closed loop the total, ~, is
gauge invariant which allows for non-trivial Berry phase and
curvature.

IV. BLOCH OSCILLATIONS

An immediate result of the above discussion is that,
within the semi-adiabatic limit, a constant external force
will drive Bloch oscillations in a manner closely analogous
to those in periodic systems. The possibility of Bloch os-
cillations in a quasicrystal was first identified in a number
of numerical studies[6, 55]. There the Bloch oscillations
were found to be quasiperiodic whereas, within the semi-
adiabatic limit defined here, it is possible to have ap-
proximately periodic oscillations if the force is directed
along certain high symmetry directions. For arbitrary
directions, the resulting evolution can be highly compli-
cated, as indeed is also the case for periodic crystals[37].
An interesting difference for quasicrystalline Bloch oscil-
lations is that, as the force is reduced, new gaps in the
hierarchy will become relevant and new Bloch oscillation
periods will appear. This point will remain true for arbi-
trarily small forces and therefore quasicrystalline Bloch
oscillations contain a much richer structure.

The prediction of Bloch oscillations can be used to test
the validity of the semi-adiabatic approximation by com-
paring against an exact numerical solution of the time
dependent Schrodinger equation, which takes the form

thOiax = exax + Z Ve, ak-a;, (17)
G;
in a basis of free particle states
) = Y ax-clk—G), (18)
Ge{G}

where the sum is over the reciprocal lattice, ey
h?[k|? /2m is the free particle dispersion and Vg, = Vye
are the couplings due to the potential.
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FIG. 5. Comparison between the semiclassical approximation
and the exact numerical result of the mean velocity v, for
a trajectory along the high symmetry direction shown inset
and with the parameter values Vo /Er = 0.01, F/kEr = 4.5 X
107°, and where vg = fik/m is the recoil velocity. The results
demonstrate approximately periodic Bloch oscillations, while
the match between the exact and semiclassical results can be
improved by going to smaller Vy/ERg.

We have solved (17) numerically, choosing our numer-
ical basis large enough so that our results for the mean
velocity have converged for any given set of parame-
ters. The comparison between these exact results and the
semiclassical dynamics is shown in Fig. 5. The results of
this comparison suggest that the semiclassical approxi-
mation should remain valid up to roughly Vy/ER =~ 0.01,
with the external force that satisfied the semi-adiabatic
limit the closest found to be F/kEr = 4.5 x 107°. Be-
yond this value of V) / Er the window of allowed values for
F' that satisfy (14) becomes so narrow that it becomes
impossible to choose a single value that satisfies both
limits adequately. The signal of this breakdown is the
appearance of new oscillation frequencies corresponding
to previously neglected higher order gaps.

Observing these Bloch oscillations experimentally re-
quires that the relatively long evolution times needed
within the semi-adiabatic limit do not exceed the typ-
ical lifetimes of the atomic gases used, which are of the
order of a few seconds. For the parameter values found
numerically (Vo/Er = 0.01 and F/kEr = 4.5 x 107°)
the time T to complete a single Bloch oscillation is given
by T = 2 x 10*h/Eg. For 23Na and 8"Rb this takes the
values of T' =~ 0.1s and 1s, and could therefore be quite
challenging experimentally.

V. SPIRAL HOLONOMY

A surprising result of semiclassical dynamics of qua-
sicrystals in the semi-adiabatic limit is found by consid-
ering a cyclic variation of the momentum around a corner
of the PBZ. Such dynamics could be induced for example



FIG. 6. A cyclic trajectory around a corner of the PBZ leads to the surprising result of a spiral holonomy[42] in which after a
cyclic variation of the parameter k the system fails to return to its initial eigenstate. This result appears in two ways: (left)
the geometry of the path encircling the corner and (right) as transitions between the two lowest bands (of the Hamiltonian in

Eq. (15)) at a corner.

by applying a force that changes in direction with time in
such a way that the net impulse imparted vanishes, such
that one expects the momentum to return to its initial
value. In this case we find that a eigenstate does not re-
turn to its original form. Instead, the system is left in a
different energy eigenstate, orthogonal to its initial state.
(Naturally, this result will have a direct impact on how
we understand the Berry phase and Berry curvature in
later discussions.)

The origin of this phenomena can be attributed to
the geometry of the PBZ. Consider following the set of
Bragg scatterings, as depicted on the left of Fig. 6, along
one cyclic path around a corner in which the momentum
changes direction by 27 to encircle the corner just once.
After this single cycle, the wavepacket finishes at a differ-
ent corner of the PBZ. Although the net external impulse
is zero, the set of Bragg scatterings are imbalanced in
such a way that there is a net momentum transfer from
the quasicrystalline lattice. It is only after performing
a second 27 cycle that the particle returns to its initial
location. This unusual geometrical property manifests in
the band structure local to a corner, given by Eq. (15)
and as shown on the right in Fig. 6. This appears as a
series of transitions between the two lowest bands which
finishes in a different band to which it started. Such be-
haviour is referred to as a “spiral holonomy”[42, 43]. We
emphasise that the appearance of this phenomena is a
necessary consequence of working in the semi-adiabatic
limit for the quasicrystal.

To our knowledge, similar phenomena to what we see
here — the key feature being a change in energy level after
a cyclic parameter variation — have been described only in
two, very different, settings for energy bands. One setting
concerns the 2D surface states of a 3D Weyl semimetal.

Here there appears a helicoidal band structure around
the projection of the Weyl point[56], that is at the edges
of the Fermi arcs of the surface metal[57, 58]. The other
setting concerns energy bands in lossy (non-Hermitian)
systems. These can show “exceptional points” at which
the (complex) energy eigenvalue has a square root sin-
gularity between two energy levels as a function of a 2D
parameter that results in the state returning to itself after
two cycles[59, 60]. The energy level structure in both ex-
amples can be naturally thought of in terms of Riemann
surfaces.

VI. BERRY PHASE, BERRY CURVATURE AND
CHERN NUMBER

Topological and geometrical properties of the energy
bands of crystalline systems are of a central interest in a
large amount of fascinating recent research. Naturally
some of these ideas have been extended to quasicrys-
talline systems[11, 12] with these works focusing on tight-
binding models. Here we exploit our description based
on semiclassical dynamics, to explore two fundamental
quantities: the Berry phase and curvature. In the follow-
ing we will focus on the properties nearby a corner of the
PBZ as it is here where the Berry phase and curvature
can be non-zero.

A. Berry Phase

The usual consideration for the Berry phase asks what
geometrical phase is acquired for a cyclic parameter vari-
ation. However, as discussed in Sec. V, a cyclic trajec-



tory that encircles the corner of the PBZ returns to an
orthogonal state and in this case the Berry phase cannot
be defined. However for a trajectory that encircles the
corner twice, the state does return to its initial form. It
is this situation which address here.

We can find the Berry phase for a two-fold trajectory
by using a simple argument based on the phase acquired
after a series of Bragg scatterings between the edges of
the PBZ. In the local band structure picture of Fig. 6,
as a certain state |k) adiabatically traverses an avoided
crossing into a state |k’), it acquires a phase equal to that
of the matrix element which opened that gap between
these states, (k'|V|k). For a path that encircles the cor-
ner twice, five such adiabatic crossings are traversed —
one for each scattering in Fig. 6 — each contributing one
of the five phases 6;. Therefore the Berry phase acquired
for this trajectory is given by

v = Zei. (19)

A caveat to this argument is that the second order gaps
that are irrelevant far from the corner open into a first
order gap as they approach the centre, as shown in Fig.
7c. Therefore this argument only applies to trajectories
that remain sufficiently far from the corner. For the band
structure shown in Fig. 7c¢ in which Vy/Er = 0.02, a
radius of approximately 0.1x would be sufficient, with
this distance reducing for smaller V;/Fg.

It is important to highlight that each of the phases
¢; in the previous argument are gauge dependent since
each is equal to the phase of the matrix element (k'|V k)
which is changed by redefining the phases of the each
basis element, |k) — e*?<|k). However their total, v, is
gauge invariant, as can be seen by looking at the struc-
ture of the off-diagonal couplings in (15). As shown in
Fig. 4, this set forms a closed loop in reciprocal space
which ensures that any gauge transformation leaves the
sum around this loop invariant.

When the Berry phase for a two-fold trajectory is w
(e.g. Zle 0; = m), it is possible to make a connection to
the physics of graphene. For graphene it is well known
that the two lowest bands have a linear dispersion at
Dirac points located at the corners of the Brillouin zone,
each of which is associated with a w-Berry phase. A
very similar situation happens in our model — here the
m-Berry phase is also associated with a linear band touch-
ing, however here between the second and third bands at
a corner of the PBZ (this is because the lowest two bands
are essentially joined by the spiral holonomy, cf. Fig. 6
and 7). It is also well known that the linear dispersion
(with associated m-Berry phase) can lead to interesting
phenomena such as inelastic backscattering and unusual
reflection properties from a potential barrier in graphene.
Since these phenomena are purely a result of this partic-
ular dispersion we expect similar phenomena to appear
in our model.

B. Berry Curvature

In the current section we will explore the properties
of the Berry curvature of the Hamiltonian H;°™" from
Eq. (15) which describes mixing at a corner of the PBZ.
However, first we outline some general properties of the
Berry curvature based on symmetries of the system and
use these ideas to derive a condition on the phases #; to
allow for non-zero Berry curvature. A symmetry which
is present here is time reversal symmetry, which results
in Q(k) being an odd function of k. The presence of in-
version symmetry would also mean that (k) must be an
even function of k and therefore both symmetries would
result in zero Berry curvature. To determine whether
such a point of inversion exists for the quasiperiodic po-
tential (1), we search for a point R such that

V(R+r)=V(R-r). (20)

It is straightforward to show that this equality is equiv-
alent to the following set of equations

G;,-R+6; =0 mod . (21)

By taking the sum of these and using the property

i G, =0, (22)
=1

one can show that the following equation must hold

5
> 6;=0 mod 7. (23)
=1

If this final equality fails to hold, the assumption that
there exists an R such that V(r) satisfies (20) must be
incorrect: there cannot exist a point of inversion symme-
try and the Berry curvature can be non-zero. The sum
in Eq. (23) is just equal to the previously found Berry
phase (19). Thus, the results are consistent: if the Berry
phase (19) is zero or m then the Berry curvature must be
zero. The fact that the Berry phase can be equal to 7
(and therefore non-zero) whilst the Berry curvature must
be everywhere zero is entirely analogous to the situation
in graphene in which the Berry curvature is zero every-
where except at the Dirac points where it is singular.

It is simple to find the exact form of the Berry curva-
tures Q") (k) for each of the five bands, labelled by n,
of (15) by using standard numerical methods[61]. One
proceeds in precisely the same way as for periodic sys-
tems (by relating the phase acquired around an infinites-
imal plaquette to the curvature enclosed), the only dif-
ference for the quasicrystal is that this is carried out
for an effective band structure that emerges within the
semi-adiabatic limit. There is however a subtlety here in
that calculating the Berry curvature for (15) one assumes
adiabaticity with respect to all gaps in the band struc-
ture. For the lowest band, there are gaps of order VZ/Er
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FIG. 7. Berry curvature and band structure local to the cor-
ner of the PBZ for the two lowest bands of the Hamiltonian
H™ in Eq. (15), with Vo/Er = 0.02 and v = /2. The
separate Berry curvatures (a) Q) for the first band and (b)
Q@ for the second band, show sharp peaks along the five
lines of near degeneracy shown in Fig. 6 and in (c) the band
structure past a corner. (d) For the sum QM) 4+ Q®) these
cancel leaving a single smooth peak which integrates to give
the Berry phase associated with a two-fold loop.

(cf. the discussion on the spiral holonomy of Sec. V and
Fig. 6), which would be tunnelled past non-adiabatically
in the semi-adiabatic limit. Therefore, although H™""
was motivated by the semi-adiabatic limit, in order to
calculate the Berry curvature we must work outside of
this regime. The Berry curvature calculated here is sim-
ply that associated with adiabatic transport for the band
structure described by Hmer.

We plot the Berry curvature of (15) for the lowest two
bands as well as their sum in Fig. 7 since generally the
dynamics here will visit both bands. A striking feature of
the separate Berry curvatures Q1) and Q) are the five
sharp peaks associated with the near degeneracy between
the two bands. As discussed above, their relevance to
the semiclassical dynamics in the semi-adiabatic regime
is obscured due to transitions between the bands. On the
other hand, their sum Q) +Q(?) is highly relevant within
the semi-adiabatic limit and can be cleanly mapped out
from the semiclassical dynamics. To do so one can sim-
ply perform two evolutions, one for the particle starting
in each of the two bands and then summing the separate
anomalous velocities as shown in Fig. 8. Numerically this
procedure works well up to the same parameter values
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FIG. 8. (Top) Due to transitions between the two lowest

bands local to a corner (cf. Eq. (15) and Fig. 6) the sepa-
rate anomalous velocities associated with the Berry curvature
(Eq. (10)) are obscured. (Bottom) Whereas their sum can be
cleanly extracted (as described in the text) and matches well
with the expected Berry curvature (see Fig. 7c). The param-
eters used are the same as those used in Fig. 5.

used in the Bloch oscillations discussion and will there-
fore require similar evolution times experimentally.

Aside from its appearance in the semiclassical dynam-
ics, the Berry curvature is fundamentally related to the
Berry phase via a surface integral over the region en-
closed by the cyclic trajectory for which the Berry phase
is defined. Making a similar statement here is subtle
since for a generic trajectory one encounters transitions
between the bands which means the separate adiabatic
Berry curvatures are insufficient to describe the semi-
adiabatic Berry phase. Nevertheless for the two-fold tra-
jectory discussed in Sec. VI A one can associate the Berry
phase here to the integral of the sum of the Berry cur-
vatures by comparing two situations. The first in which
the two-fold loop is traversed semi-adiabatically and a
second in which two separate single loops are performed
adiabatically on each band. The only difference between
these two situations is found local to the near degenera-
cies between the two bands. In the first case no phase
is acquired past these avoided crossings and in the sec-
ond, whilst a phase is acquired for each separate band,
these will cancel for the total phase from both trajecto-
ries. The result is that the semi-adiabatic Berry phase v



acquired on a two-fold trajectory (which is related to the
phases 6; via (19)) is equal to the surface integral of the
sum of the separate adiabatic Berry curvatures,

y = / / s 4 ). (24)

This result is easily confirmed numerically by integrat-
ing over the peak in the summed Berry curvatures from

Fig. 7.

C. Chern Number

Naturally one might imagine extending the surface in-
tegral of the Berry curvature in (24) over the entire PBZ,
to obtain a topological invariant akin to the Chern num-
ber for the periodic case. However, one may well question
whether such a topological invariant exists for the qua-
sicrystal, since the PBZ does not have the same topol-
ogy as the BZ of conventional periodic systems which is
a torus. Nevertheless, despite the differing topologies of
the PBZ and conventional BZ, a topological invariant still
exists for the PBZ. The PBZ is orientable (no subset is a
Mobius band) and closed (since all edges are identified).
These two conditions of the manifold (closed and ori-
entable) are sufficient to allow the existence of the Chern
number[62] defined by the integral of the Berry curvature
over the PBZ.

Although the particular topology of the PBZ does not
directly affect the Chern number, it is nevertheless inter-
esting to ask what this topology is for the PBZ. In order
to identify this, two pieces of information are needed: the
orientability and the Euler characteristic x[63]. We al-
ready know that the PBZ is orientable (which means it
is a g-holed torus, where g is the genus), and the Eu-
ler characteristic is found from the number of vertices,
v, edges, e, and faces, f, using x = v — e + f. For the
decagonal PBZ, these are v = 2, e = 5, f = 1, giving
X = —2, and using x = 2 — 2¢ (for orientable surfaces)
gives g = 2. We therefore identify the decagonal PBZ
as a two-holed torus. Interestingly the association of a
regular polygon with identified edges to a higher genus
manifold also appears in the study of billiards in rational
polygons[64]. There the straight line billiard trajecto-
ries are interpreted as curved trajectories on this mani-
fold. Surprisingly this situation is closely related to the
straight line k-space trajectories in our model for con-
stant external force (cf. Sec IV).

VII. GENERALISATIONS

A. Semiclassical Dynamics in Solid State
Quasicrystals

The semi-classical approach we have presented in
Sec. III is very general. The only assumption it relies on
is that the hierarchy of gaps can be clearly separated in

terms of their sizes. For this condition to be satisfied two
criteria must be met: the first is that the Fourier com-
ponents of the potential must fall off sufficiently quickly
(in our case only ten were non-zero). The second is that
these components must also be sufficiently weak so that
higher order effective couplings can be neglected (here
this meant working in the shallow-lattice limit). Both
conditions can be satisfied in an optical lattice setting,
since the potentials are often formed by a small number
of standing waves and the lattice depth is freely tunable.

Surprisingly these conditions could also be satisfied for
a solid state quasicrystal, as a number of ARPES stud-
ies on various icosahedral and decagonal solid state qua-
sicrystals have demonstrated that these have an almost
free electron-like dispersion[45, 65, 66]. Of course disor-
der plays a key role in these materials, likely obscuring
the semiclassical dynamics. However there are situations
— like in quantum oscillations — where semiclassical dy-
namics remain highly relevant. Indeed, related ideas to
those presented here were already used in Ref. 41 to
explain quantum oscillations in incommensurate charge
density waves. The nature of the quantum oscillations
in our model presents an interesting open question, the
answer to which could be of relevance to the properties of
icosahedral and decagonal solid state quasicrystals which
share the same rotational symmetry.

B. Higher Rotational Symmetries

Many of the novel results presented here can be sim-
ply extended to systems with arbitrary rotational sym-
metries. These include the spiral holonomy, the possi-
bility of non-trivial Berry phases and curvature, and the
identification of a Chern number. Essentially these only
depend on the overall geometry of the PBZ, so that as
long as a PBZ can be well defined one can ask such ques-
tions. We discuss generalised PBZ’s which are regular
2n-sided polygons, with integer n > 4. The results will
naturally split into two cases for odd or even n. With
the model studied throughout this paper given by n =5
and therefore an odd case.

For the spiral holonomy, the same geometrical picture
used in Sec. V and shown in Fig. 6 to find the number
of cycles around a corner before returning can be applied
here. For odd n, the trajectory visits only n of the to-
tal 2n corners before returning and therefore completes
(n —1)/2 cycles (e.g. in our case n = 5 and 2 cycles
were required). Whereas for even n, the trajectory visits
all 2n corners, resulting in a total of n — 1 cycles before
returning to the initial state. For example, if n = 4 (e.g.
an octagonal PBZ), the state will require three cycles
around a corner before returning and will therefore visit
three bands local to the corner. Three cycles also im-
plies a chirality, since going clockwise or anti-clockwise
produces different results.

An interesting difference between odd and even n ap-
pears by asking whether one can find non-zero Berry cur-
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FIG. 9. Same as Fig. 4 but for a PBZ with eight sides. Here
the couplings again form a closed loop meaning the total phase
is gauge invariant, however the sum is now zero and therefore
the Berry phase and curvature are also zero.

vature. The odd case is essentially the same as the five-
fold case in this respect. Half the corners are coupled
in such a way that the off-diagonal terms again form a
closed loop allowing for non-zero Berry curvature. How-
ever in the even case, all 2n corners couple (this is related
to how the state visits all 2n corners in the spiral holon-
omy), forcing the Berry curvature to be the same at all
corners. If time-reversal symmetry is present, Q(k) must
be an odd function of k, and the only possible Berry cur-
vature at a corner is zero. Therefore for even n it is not
possible to have non-trivial Berry phases or curvature
whilst time-reversal symmetry is preserved.

Finally, the Chern number classification can be easily
extended, since for all n the PBZ is both orientable and
closed, and therefore the Chern theorem applies. The
genus can then be found by calculating the Euler char-
acteristic. For odd n, the PBZ is found to have genus
(n —1)/2, while for even n it has genus n/2. With the
difference between odd and even cases again arising from
how the corners are coupled — for odd n there are two
vertices while for even n there is only one vertex. There-
fore for all n, integrating the Berry curvature over the
whole PBZ provides a topological invariant — the Chern
number.

VIII. CONCLUSION

We have demonstrated that for a two-dimensional
shallow-lattice optical quasicrystal, it is possible to iden-
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tify a regime in which the dynamics is accurately de-
scribed by the semiclassical equations of motion. By
comparing the prediction of Bloch oscillations against an
exact numerical solution we determined the maximum
potential depth allowed in order for the semiclassical de-
scription to apply and related this to experimental pa-
rameters.

A surprising result was the appearance of a spiral
holonomy around a corner of the PBZ — a phenomena
which has been described in a few, very different, set-
tings for energy bands. We also demonstrated that it is
possible to have non-trivial Berry phase and curvature
at a corner — with both having an unconventional struc-
ture due to the spiral holonomy. A method of extracting
the Berry curvature from the semiclassical dynamics was
provided and its overall properties were related to time
reversal and inversion symmetries. By identifying the
PBZ as topologically equivalent to a higher genus sur-
face, we showed that the Chern number classification for
periodic systems can be extended to the PBZ of a qua-
sicrystal, thereby determining a topological index for the
system.

We highlight that the semiclassical approach can be
applied to a generic quasicrystal and can be applicable in
solid state quasicrystals with a nearly-free-electron dis-
persion which have been observed experimentally. We
have also extended the findings of the spiral holonomy,
Berry curvature and Chern number to systems with arbi-
trary rotational symmetries by relating these to the prop-
erties of the PBZ. We show that Berry curvature effects
appear for certain ‘odd’ arrangements but disappear for
‘even’ arrangements.
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