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Results  A comprehensive list of the most used tools was 
compiled. Each tool is discussed within the context of its 
application domain and in relation to comparable tools of 
the same domain. An extended list including additional tools 
is available at https://github.com/RASpicer/Metabolomics-
Tools which is classified and searchable via a simple con-
trolled vocabulary.
Conclusion  This review presents the most widely used 
tools for metabolomics analysis, categorised based on their 
main functionality. As future work, we suggest a direct com-
parison of tools’ abilities to perform specific data analysis 
tasks e.g. peak picking.
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1  Introduction

Metabolomics has been described as the study of the 
entirety of the endogenous small molecules present within 
an organism, organ, biological tissue or cell (Fiehn 2002). 
After the first occurrences of the term in 1998, the field 
has dynamically grown over the past two decades and is 
now maturing (Kell and Oliver 2016). Due to the diversity 
of classes of metabolites, a number of different analytical 
chemistry techniques are required to sample this phys-
icochemical space, since no single analytical technique 
alone is able to capture the entire metabolome. Instead 
different, often complementary, techniques are used to 
measure specific portions of the metabolome. The three 
most frequently used technologies are: liquid chromatog-
raphy–mass spectrometry (LC–MS), gas chromatogra-
phy–mass spectrometry (GC–MS) and nuclear magnetic 
resonance (NMR). Some alternative and less commonly 
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used platforms include direct injection (DI) and capillary 
electrophoresis- (CE-) mass spectrometry, diode-array 
detector, infrared and RAMAN spectroscopy. The data 
produced from each analytical method requires distinct 
handling and thus different data analysis tools and work-
flows are required.

The majority of metabolomics practitioners’ day-to-day 
activities now consists of a combination of wet and dry lab 
work and only half have dedicated bioinformatics support 
(Weber et al. 2016). It is therefore important that users are 
made aware of the range of tools available for data analysis. 
Tools should also be intuitive, user-friendly and ideally open 
source.

There are, of course, also disadvantage to using open 
source software (Earll 2012). It can contain bugs, as any 
kind of software. Due to the software being open source, 
however, bugs are shallow and can be fixed outside of the 
potentially nontransparent release cycles of close source 
software. Old open source software may not be maintained. 
Closed source commercial software can have the advantage 
of ease-of-use, being well tested and documented, and can 
be tailored to individual users. It too, however, also has dis-
advantages. Unlike open source software, algorithms are 
kept in a “black box” and there is a lack of transparency to 
precisely how analysis is performed. Commercial software 
can also be prohibitively expensive.

This review will therefore focus on tools that are freely 
available to use: open-source, free for non-commercial or 
free to use. Whilst tools written in MATLAB (MathWorks) 
and Mathematica (Wolfram Mathematica: Modern Technical 
Computing) may be freely available to use, tools written in 
these languages will not be focused upon. The open source 
GNU Octave may run MATLAB based software, however 
testing this is beyond the scope of this review.

In this review software are classified into the following 
categories based on their major functionality: Preprocessing, 
Annotation, Post-processing, Statistical analysis, Workflows 
and Other tools. Tools designed for Preprocessing and Anno-
tation will also be further subdivided by the instrumental 
data type they are designed for the analysis of. Preprocessing 
software is split into LC–MS, GC–MS and NMR. Annota-
tion tools are separated into mass spectrometry and NMR, 
with NMR also including quantification. Mass spectrometry 
annotation tools are partitioned by level of annotation pro-
vided into: Level 4: unequivocal molecular formula, Level 
3: tentative candidates and Level 2a: library spectrum match. 
These classifications are based on criteria by Schymanski 
et al. (2014). Software that provide Preprocessing, Anno-
tation and Statistical analysis are classified as Workflows. 
Tools whose main purpose does not fit into any other class 
are included in the Other tools category. Some of the tools 
mentioned may also have other uses that are not mentioned 
in the text of this review.

Despite accounting for an important section of data analy-
sis, tools for pathway analysis will not be included in this 
review. This is because the majority of tools in this area 
are not designed specifically for metabolomics. For an over-
view of methods and software tools for pathway analysis see 
Booth et al.’s (2013) review.

With journals and funding bodies increasing requiring 
data, data deposition is an important final stage of metabo-
lomics data handling. The ISA software suite (Rocca-Serra 
et al. 2010) provides tools for experimental metadata man-
agement. For depositing data to the MetaboLights (Haug 
et al. 2013) repository users must submit experimental meta-
data in the ISA-Tab format. Conversely, users submitting 
metadata to the Metabolomics Workbench (Sud et al. 2016) 
repository must complete an online form or a supplied excel 
template.

As there is a large number of software specifically 
designed for metabolomics data analysis, ~200, only the 
most widely used tools will be included in the text of this 
review. The criteria for inclusion for being considered ‘the 
most widely used’ for the purpose of this review is either 
≥50 citations on Web of Science (as of 08/09/16) or the 
use of the tool being reported in the recent Metabolomics 
Society survey (Weber et al. 2016). Compared to other pre-
vious reviews of metabolomics software tools (Misra and 
van der Hooft 2016; Sugimoto et al. 2012), this review aims 
to supply a greater amount of information about each tool 
included. Whilst including extra information is not possible 
in the body of the review, a more detailed list of tools is 
included in Supplementary Table 1. Additional information 
about each tool includes accepted data input formats, pro-
gramming language written in, dependencies and dates of 
publication and most recent update. As far as the authors are 
aware, no earlier reviews of metabolomics software include 
such extensive information about the included tools. All 
information in the supplementary material is further availa-
ble at https://github.com/RASpicer/MetabolomicsTools. The 
GitHub wiki also further includes tools written in MATLAB 
and Mathematica and tools designed for pathway analysis.

2 � Preprocessing

The majority of freely available software tools for preproc-
essing require MS data to be in an open format e.g. mzML, 
mzXML and netCDF, although some will also accept raw 
data in proprietary formats (see Supplementary Table 1). 
The first stage before preprocessing is thus often conversion 
to an open data format. The majority of vendor software 
that comes shipped with instruments provides the option 
of converting data to the netCDF format (Rew and Davis 
1990). The proteowizard (Chambers et al. 2012) project tool 
msconvert converts from most proprietary formats to mzML 

https://github.com/RASpicer/MetabolomicsTools
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(Turewicz and Deutsch 2010) and mzXML (Pedrioli et al. 
2004). When possible it is recommended that the mzML for-
mat be used, as it uses zlib compression to produce smaller 
file sizes (Martens et al. 2011) compared to mzXML and 
mzData, and it is still under active development, with new 
technologies being incorporated. However, there are still 
more tools that will accept the mzXML and netCDF formats 
as input, as they are older file formats.

The initial stages of data preprocessing are similar for 
LC–MS and GC–MS metabolomics. Typically the pipeline 
consists of peak picking, deconvolution, peak matching and 
peak alignment across samples (Want and Masson 2011). 
The first stage of peak detection can also consist of baseline 
correction, noise reduction and smoothing, depending on 
the algorithm used. Deconvolution is necessary for handling 
overlapping peaks and fragments originating from the same 
metabolite. Prior to alignment, peaks are matched/grouped 
by m/z and retention time. Routinely peak alignment is 
performed using retention times for LC–MS (Zhou et al. 
2012). For GC–MS retention times are generally converted 
into instrument independent retention indices (RI), for com-
parison to existing databases for compound identification 
(Chen et al. 2011), although alignment techniques that do 
not require RI also exist (Domingo-Almenara et al. 2016). 
GCxGC-MS is also becoming an increasingly used analyti-
cal technique and specific software for the preprocessing of 
GC × GC–MS data is required (Winnike et al. 2015).

In NMR metabolomics, signals are generated as free 
induction decay (FID). The spectra must be transformed 
from FID collected in time domain into frequency spectra 
prior to any subsequent analysis (Ellinger et al. 2013). This 
means that the preprocessing of NMR metabolomics data 
differs from MS, with the first stages consisting of zero-
filling, apodization, Fourier transformation and phase cor-
rection (Morris 2017; Ren et al. 2015; Smolinska et al. 
2012; Vettukattil 2015). The other later stages of baseline 
correction, deconvolution, binning, peak alignment, scaling 
and normalisation are same as for MS, although the precise 
algorithms used may vary.

Because of the different nature of LC-MS, GC-MS and 
NMR preprocessing workflows, this section is split into 
three subsections: LC–MS, GC–MS and NMR. Every tool 
referenced in these sections is also included in Table 1. A 
further 41 tools for preprocessing are included in Supple-
mentary Table 1.

2.1 � LC–MS preprocessing

Many of the established preprocessing tools for LC–MS data 
are implemented as R packages, including XCMS (Smith 
et al. 2006), the most used software for LC–MS analysis, 
as reported in a recent survey, with 70% of respondents 
reporting to use it (Weber et  al. 2016). Recent updates 
to these tools mean data analysis from a wider variety of 

Table 1   Software tools commonly used for the preprocessing of metabolomics data

CLI command line interface, GUI graphical user interface

Tool Instrument data type Software type Website References

XCMS LC–MS, GC–MS R Package http://bioconductor.org/packages/release/bioc/html/
xcms.html

Smith et al. (2006)

OpenMS—Fea-
tureFinderMe-
tabo

LC–MS GUI http://ftp.mi.fu-berlin.de/pub/OpenMS/release-docu-
mentation/html/TOPP_FeatureFinderMetabo.html

Bertsch et al. (2010)

MetAlign LC–MS Windows GUI http://www.wageningenur.nl/en/show/MetAlign-1.htm Lommen & Kools (2012)
MS-DIAL LC–MS Windows GUI http://prime.psc.riken.jp/Metabolomics_Software/MS-

DIAL/index.html
Tsugawa et al. (2015)

mzMatch LC–MS R Package http://mzmatch.sourceforge.net/index.php Scheltema et al. (2011)
IDEOM LC–MS Excel Template http://mzmatch.sourceforge.net/ideom.php Creek et al. (2012)
AMDIS GC–MS Windows GUI http://chemdata.nist.gov/dokuwiki/doku.

php?id=chemdata:amdis
Meyer et al. (2010)

MetaboliteDetector GC–MS CLI, GUI http://md.tu-bs.de Hiller et al. (2009)
MET-IDEA GC–MS Windows CLI http://bioinfo.noble.org/download Broeckling et al. (2006)
MeltDB LC–MS, GC–MS Web App https://meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi Kessler et al. (2013)
metaMS GC–MS R Package http://bioconductor.org/packages/release/bioc/html/

metaMS.html
Wehrens et al. (2014)

MSeasy GC–MS R Package https://cran.r-project.org/web/packages/MSeasy/index.
html

Nicolè et al. (2012)

SpectConnect GC–MS Web App http://spectconnect.mit.edu Styczynski et al. (2007)
rNMR NMR R Package http://rnmr.nmrfam.wisc.edu Lewis et al. (2009)

http://bioconductor.org/packages/release/bioc/html/xcms.html
http://bioconductor.org/packages/release/bioc/html/xcms.html
http://ftp.mi.fu-berlin.de/pub/OpenMS/release-documentation/html/TOPP_FeatureFinderMetabo.html
http://ftp.mi.fu-berlin.de/pub/OpenMS/release-documentation/html/TOPP_FeatureFinderMetabo.html
http://www.wageningenur.nl/en/show/MetAlign-1.htm
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/index.html
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/index.html
http://mzmatch.sourceforge.net/index.php
http://mzmatch.sourceforge.net/ideom.php
http://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:amdis
http://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:amdis
http://md.tu-bs.de
http://bioinfo.noble.org/download
https://meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi
http://bioconductor.org/packages/release/bioc/html/metaMS.html
http://bioconductor.org/packages/release/bioc/html/metaMS.html
https://cran.r-project.org/web/packages/MSeasy/index.html
https://cran.r-project.org/web/packages/MSeasy/index.html
http://spectconnect.mit.edu
http://rnmr.nmrfam.wisc.edu
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experimental conditions and technologies is now supported. 
Unsurprisingly, since LC–MS is the most widely used ana-
lytical technique in metabolomics, a far greater number of 
software has been developed for preprocessing LC–MS 
metabolomics data than for GC–MS or NMR.

XCMS now contains 7 different peak detection algo-
rithms (Smith et al. 2006; Du et al. 2006; Treutler and Neu-
mann 2016), including Massifquant (Conley et al. 2014), 
as well as the established matchFilter (Smith et al. 2006) 
and CentWave (Tautenhahn et al. 2008) methods. The Mas-
sifquant (Conley et al. 2014) algorithm is an open-source 
implementation of the TracMass (Döös et al. 2013) algo-
rithm that is designed for isotope trace detection. There are 
also three methods provided for peak grouping and two for 
retention time alignment: loess and obiwarp (ordered bijec-
tive interpolated warping) (Prince and Marcotte 2006).

A growing number of users are adopting a workflow 
based approach for their LC–MS data processing, for exam-
ple XCMS Online (Tautenhahn et al. 2012), Metabolomic 
Analysis and Visualization ENgine (MAVEN) (Melamud 
et al. 2010) MZmine2 (Pluskal et al. 2010), MetaboAnalyst 
(Xia et al. 2015) and metabolomics specific Galaxy work-
flows—Galaxy-M (Davidson et al. 2016) and Workflow4me-
tabolomics (Giacomoni et al. 2014). More detail on these 
tools will be included in the later section—Workflows.

Other freely available software reported in the survey 
(Weber et al. 2016), which are more specifically designed 
for data preprocessing were OpenMS (Bertsch et al. 2010), 
MetAlign (Lommen and Kools 2012) and Mass Spectrom-
etry-Data Independent AnaLysis (MS-DIAL) (Tsugawa 
et al. 2015). OpenMS (Bertsch et al. 2010) is a library for 
LC–MS data analysis. It was originally designed for prot-
eomics, however it now also includes the FeatureFinderMe-
tabo (Kenar et al. 2014) module, specifically designed for 
non-targeted metabolomics data. It incorporates peak pick-
ing, noise filtering, retention time (RT) alignment, metabo-
lite quantification and identification. Isotopes are identified 
using a HiRes (Zhao et al. 2006) generated library. A num-
ber of preprocessing functions are provided by MetAlign 
(Lommen and Kools 2012) including peak-picking, reten-
tion time alignment, noise reduction, baseline correction and 
missing value filling. MS-DIAL (Tsugawa et al. 2015) pro-
vides deconvolution of untargeted data-independent acquisi-
tion (DIA) MS/MS data using the MS2Dec algorithm. An 
algorithm based on the Joint Aligner from MZmine (Pluskal 
et al. 2010) is used for peak alignment.

mzMatch (Scheltema et al. 2011) provides data preproc-
essing of LC–MS data, based upon the PeakML file format. 
It also includes isotopic labelling analysis (Chokkathukalam 
et al. 2013) and probabilistic metabolite annotation (Daly 
et al. 2014). IDEOM (Creek et al. 2012) is an excel template, 
which provides a GUI with implementations of mzMatch 
and XCMS, along with macros for noise-filtering, metabolite 

identification and statistical analysis. It can also interface 
directly with msconvert (Chambers et al. 2012), which con-
verts MS data from vendor formats into the open .mzML 
and .mzXML formats.

2.2 � GC–MS preprocessing

Despite the relative ease of feature annotation, GC–MS 
is a less used analytical technique for metabolomics than 
LC–MS, as it is only able to detect volatile and thermally 
stable compounds and those that can be rendered volatile 
by chemical derivatization. This means that compared to 
LC–MS, far less analytes can be detected. However, the 
advantage of GC–MS is that it is a more robust and repro-
ducible analytical technique with established libraries and 
databases for metabolite identification.

The long-standing AMDIS (Meyer et al. 2010) (Auto-
mated Mass Spectral Deconvolution and Identification 
System) is the most widely used freely available tool for 
GC–MS data processing. Whilst it was originally designed 
for the automatic identification of chemical weapons it is 
applicable to all GC–MS data, including metabolomics. 
Spectra are deconvoluted to extract pure compound peaks 
free of overlapping signals from the total ion chromato-
grams. Pure compound peaks are then matched to a user-
defined target library, using the additional parameters of 
peak shape and retention time. Importantly AMDIS does 
not include spectral alignment, so other software must addi-
tionally be used.

Surprisingly XCMS (Smith et al. 2006) was second most 
widely used open source software for GC–MS analysis in the 
Metabolomics Society survey (Weber et al. 2016), despite 
being primarily designed for LC–MS analysis and having no 
functions specifically for GC–MS analysis.

Gas chromatography–Mass spectrometry specific 
preprocessing software MetaboliteDetector (Hiller et al. 
2009), MET-IDEA (Broeckling et  al. 2006), MeltDB 
(Kessler et al. 2013), metaMS (Wehrens et al. 2014) and 
MSeasy (Nicolè et al. 2012) were also reported to be used 
(Weber et  al. 2016). MetaboliteDetector (Hiller et  al. 
2009) incorporating baseline correction, smoothing, peak 
detection and deconvolution. In Niu et al.’s (2014) com-
parison of peak detection software it scored highly in both 
trials of true peak detection, coming 1st and 2nd respec-
tively. Surprisingly, whilst metAlign (Lommen and Kools 
2012) is designed for the analysis of LC–MS data, it also 
performed well in the same trial. MET-IDEA is designed 
to take AMDIS (Meyer et al. 2010) output as input and 
can quantify the results. It generates a list of mass spectral 
tags from the inputted ion list. A suite of modular tools is 
provided by MeltDB. It includes a number of algorithms 
for peak picking including matchFilter (Smith et al. 2006) 
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and centWave (Tautenhahn et al. 2008) from XCMS and 
MassSpecWavelet (Du et al. 2006), as well as retention 
indices calculation and sum formula annotation.

metaMS(Wehrens et  al. 2014) is based on XCMS 
(Smith et al. 2006) and CAMERA (Kuhl et al. 2012) but is 
adapted for GC–MS analysis. Unlike XCMS, metaMS per-
forms pseudospectra analysis, avoiding the alignment stage 
that can be difficult to execute with GC-MS. In MSeasy 
(Nicolè et  al. 2012), the intensity of each fragment is 
transformed into a relative percentage of the highest mass 
fragment per spectrum. Unsupervised clustering methods 
are then used to group fragments. SpectConnect (Styczyn-
ski et al. 2007) provides feature detection of GC–MS data 
without requiring use of a reference compound library; 
instead the user must supply technical replicates of sam-
ples. Every spectrum is compared to every other spectrum 
using the Gemoda (Jensen et al. 2006) algorithm, which 
finds pairwise similarity of clusters (cliques) using the 
weighted dot product. The most representative spectra for 
each clique are chosen, allowing identification of features 
preserved across samples.

2.3 � NMR data processing

There has been far less development of open source soft-
ware for the analysis of NMR data than for MS. This may 
be in part due to the majority of NMR spectrometers 
being supplied by only a few manufacturers. The Top-
Spin (Bruker BioSpin, Rheinstetten, Germany) software, 
which comes bundled with Bruker instruments, is the 
most widely used software tool for NMR metabolomics 
data preprocessing (Weber et al. 2016). Much of the soft-
ware that is freely available for use is written in MAT-
LAB (e.g. Dolphin (Gómez et al. 2014), FOCUS (Alonso 
et al. 2014) and MatNMR (van Beek 2007)), restricting 
their use to those with access to this costly commercial 
software. However, compiled versions can be free to use, 
without requiring a MATLAB license. Gradually MAT-
LAB based tools are being ported onto freely available 
platforms. Icoshift (Tomasi et al. 2011), a versatile tool for 
the rapid alignment of 1D NMR spectra now has a Python 
implementation (mfitzp/icoshift).

The only open software whose use was reported in the 
Metabolomics Society survey for NMR preprocessing was 
rNMR (Lewis et al. 2009), which uses a regions of interest 
(ROIs) based approach for the analysis of 1D and 2D NMR 
spectra. ROIs can be visually inspected to help aid accu-
rate quantification. The peak lists produced can be directly 
exported to the Madison Metabolomics Consortium Data-
base (Cui et al. 2008) or uploaded to the Biological Mag-
netic Resonance Data Bank (BMRB) (Ulrich et al. 2008) 
for identification.

3 � Annotation

Metabolite identification remains the most time consuming 
stage of metabolomics analysis for many users (Weber et al. 
2016). It is especially difficult to identify LC–MS features. 
Only limited structural information can be obtained from 
mass spectrometry, so it is challenging to identify unknown 
features. This has been partially solved for GC-MS analysis 
where extensive commercial libraries (NIST 2014 Refer-
ence Database) can be used for identification. Because of 
this and due to the different order of the GC–MS analysis 
workflow, there are no tools that specifically designed for 
GC–MS metabolite identification. Therefore, in this review 
tools for annotation will simply be split into the MS and 
NMR categories, depending on which kind of data they are 
designed for.

Under the existing Metabolomics Standards Initiative 
(MSI) metabolite identification criteria, for a metabolite to 
be identified (Level 1), it must be compared to an authentic 
chemical standard analysed in the same laboratory, using the 
same analytical techniques as the experimental data (Salek 
et al. 2013). Thus whilst many metabolomics software pur-
port to offer metabolite identification, they can only provide 
putative annotation (Level 2). Levels 3 and 4 are putatively 
characterised compound classes, and unknown compounds 
respectively.

Alternative criteria proposed by Schymanski et al. (2014) 
splits MS metabolite identification into five confidence lev-
els. Whilst Level 1 remains unchanged compared to the orig-
inal MSI criteria, levels 2–5 are different. Probable structure 
(Level 2) annotation requires either a library spectrum match 
(2a) or diagnostic evidence (2b). Tentative candidate(s) 
(Level 3) are for when there is evidence for more than one 
candidate structure, with inadequate information to nar-
row identification down to a single structure. Annotation of 
unequivocal molecular formula (Level 4) requires the use of 
spectral information for unambiguous assignment.

As many metabolites are not commercially available, they 
cannot be identified to Level 1. The highest level of identi-
fication that can be achieved for these metabolites is Level 
2, which is also topmost identification that can be attained 
using software for identification. Software that provides 
annotation for Levels 3 and 4 is also available. Software 
for MS identification will thus be classified by the level of 
identification provided by Schymanski et al. criteria: Level 
4: unequivocal molecular formula, Level 3: tentative can-
didates and Level 2a: library spectrum match. This crite-
rion was chosen over the original MSI criteria as it provides 
clearer classification of metabolite annotation assignment 
confidence.

For NMR identification, the MSI guidelines have also 
been criticised (Everett 2015). Features can be identified 
with high confidence using database matching to authentic 
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reference compounds (Dona et al. 2016; Everett 2015), not 
requiring spectra from an authentic reference standard to be 
analysed using the same NMR spectrometer. As there are far 
less tools for NMR metabolite identification than for MS, 
there will be no further classification subdivision and all 
software in this category will be included in NMR metabo-
lite identification and quantification.

All of the annotation software included in the text are also 
listed in Table 2. Further information about all software can 
be found in Supplementary Table 1, along with 27 additional 
tools not included in body of the review.

3.1 � Mass spectrometry

3.1.1 � Level 4: unequivocal molecular formula

A number of different ionisation products must be identi-
fied for the annotation of features in LC–MS data: adducts, 
isotopes, neutral losses and fragments. Adducts or pseu-
domolecular ions are the most commonly observed ions 
in mass spectrometry, due to reactions of metabolites 
with solvents and metal ions (Keller et al. 2008). It is also 
important to consider that one or more natural isotopes 
may be present in every metabolite (Draper et al. 2009). 
Despite electrospray ionization (ESI) being commonly 
considered a soft ionisation technique, some metabolites 
will fragment with neutral losses. This fragmentation has 

been utilised for MS/MS. However, for MS1 mode data 
it is important to consider the non-specific fragmentation 
that occurs.

When there is insufficient evidence to assign a structure 
to a feature, but adequate information to unambiguously 
assign a molecular formula, assignments are classified as 
Level 4 under Schymanski et al.’s (2014) criteria. Molecu-
lar formula annotation with adduct, isotope and fragment 
information is appropriate for low quality MS/MS data and 
MS data lacking retention time information.

CAMERA is the mostly widely tool used to annotate 
ionisation products and is in top 5% most downloaded 
packages in Bioconductor. It can interface directly with 
XCMS to annotate adducts and common neutral losses. 
The MZedDB (Draper et al. 2009) database can also be 
accessed directly from R, allowing for automatic annota-
tion of potential adducts and molecular formulas.

Empirical (or sum) formula annotation provides the 
relative proportions of the elements in a molecule. Rdisop 
(Bioconductor—Rdisop) determines a ranked list of poten-
tial sum formula of features from high resolution MS data 
using their exact mass and isotopic patterns. SIRIUS (sum 
formula identification by ranking isotope patterns using 
mass spectrometry) (Bocker et al. 2009) resolves the for-
mula of a compound from its fragmented features using 
PubChem (Kim et al. 2016).

Table 2   Software tools commonly used for metabolite annotation

CLI command line interface, GUI graphical user interface

Tool Annotation level Software type Website References

CAMERA Level 4 R Package http://bioconductor.org/packages/release/bioc/html/CAM-
ERA.html

Kuhl et al. (2012)

MZedDB Level 4 Web App http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html Draper et al. (2009)
Rdisop Level 4 R Package http://bioconductor.org/packages/release/bioc/html/Rdisop.

html
–

SIRIUS Level 4 CLI, GUI https://bio.informatik.uni-jena.de/software/sirius Kim et al. (2016)
MI-PACK Level 3 CLI http://www.biosciences-labs.bham.ac.uk/viant/mipack Weber and Viant (2010)
PUTMEDID-LCMS Level 3 CLI http://www.mcisb.org/resources/putmedid.html Brown et al. (2011)
ProbMetab Level 3 R Package http://labpib.fmrp.usp.br/methods/probmetab Silva et al. (2014)
MetAssign–mzMatch Level 3 R Package http://mzmatch.sourceforge.net/index.php Daly et al. (2014)
MetFrag Level 2a Web App http://c-ruttkies.github.io/MetFrag Ruttkies et al. (2016)
CFM-ID Level 2a CLI, Web 

App
https://sourceforge.net/projects/cfm-id/ Allen et al. (2014)

FingerID Level 2a Web App https://github.com/icdishb/fingerid Heinonen et al. (2012)
MAGMa Level 2a Web App http://www.emetabolomics.org/magma Ridder et al. (2013)
MyCompoundID Level 2a Web App http://mycompoundid.org/mycompoundid_IsoMS Li et al. (2013)
BATMAN NMR R Package http://batman.r-forge.r-project.org Hao et al. (2012)
Bayesil NMR Web App http://bayesil.ca Ravanbakhsh et al. (2015)
MetaboMiner NMR CLI http://wishart.biology.ualberta.ca/metabominer Xia et al. (2008)
SpinAssign NMR Web App http://prime.psc.riken.jp/?action=nmr_search Chikayama et al. (2010)
COLMAR NMR Web App http://spin.ccic.ohio-state.edu/index.php/colmar Zhang et al. (2009)

http://bioconductor.org/packages/release/bioc/html/CAMERA.html
http://bioconductor.org/packages/release/bioc/html/CAMERA.html
http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html
http://bioconductor.org/packages/release/bioc/html/Rdisop.html
http://bioconductor.org/packages/release/bioc/html/Rdisop.html
https://bio.informatik.uni-jena.de/software/sirius
http://www.biosciences-labs.bham.ac.uk/viant/mipack
http://www.mcisb.org/resources/putmedid.html
http://labpib.fmrp.usp.br/methods/probmetab
http://mzmatch.sourceforge.net/index.php
http://c-ruttkies.github.io/MetFrag
http://cfmid.wishartlab.com
http://sourceforge.net/projects/fingerid
http://www.emetabolomics.org/magma
http://mycompoundid.org/mycompoundid_IsoMS
http://batman.r-forge.r-project.org
http://bayesil.ca
http://wishart.biology.ualberta.ca/metabominer
http://prime.psc.riken.jp/?action=nmr_search
http://spin.ccic.ohio-state.edu/index.php/colmar
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3.1.2 � Level 3: tentative candidates

Assignment of tentative metabolite candidates does not 
necessarily require MS/MS data to be available. It can be 
performed either by manually searching online metabolite 
databases (HMDB (Wishart et al. 2013), METLIN (Smith 
et al. 2005), KEGG (Kanehisa et al. 2004, etc.) or automati-
cally using dedicated software tools including: MI-PACK 
(Weber and Viant 2010) and PUTMEDID-LCMS (Brown 
et al. 2011). Transformation mapping is used by metabolite 
identification package (MI-PACK) (Weber and Viant 2010) 
to putatively annotate metabolites by their interconnectivity 
in the KEGG database (Kanehisa et al. 2004).

PUTMEDID-LCMS (Brown et al. 2011) is a Taverna 
based tool, which provides modules that form a workflow for 
putative metabolite annotation. Correlation analysis is first 
performed, followed by the annotation of isotopes, adducts, 
dimers, etc. The Manchester Metabolomics Database built 
from HMDB (Wishart et al. 2013), KEGG (Kanehisa et al. 
2004), LMSD (Sud et al. 2007), BioCyc (Caspi et al. 2016) 
and DrugBank (Wishart et al. 2006) is then used for putative 
annotation.

Implemented in R, both MetAssign (Daly et al. 2014) 
and ProbMetab (Silva et al. 2014) use Bayesian approaches 
to putatively annotate peaks. MetAssign is a probabilistic 
putative metabolite identification algorithm, implemented in 
mzMatch (Scheltema et al. 2011) that uses Bayesian cluster-
ing to assign posterior probabilities to the likelihood of the 
annotation. Features originating from the same metabolite 
are clustered and annotated as adducts, fragments and iso-
topes. ProbMetab calculates the likelihood of the assignment 
of each compound to the target feature using biochemical 
information, mass accuracy and isotopic carbon pattern if 
available. The model then uses Gibbs sampling to calcu-
late the posterior probabilities. Metabolites are then directly 
mapped to pathways, which can optionally be visualised in 
Cytoscape (Shannon et al. 2003).

3.1.3 � Level 2a: library spectrum match

A number of online databases, for ESI-MS/MS, MSn and 
GC–MS, contain spectra acquired using authenticated 
chemical standards that can be used for performing library 
spectrum matches. For an extensive review of mass spectral 
and fragmentation trees see Vaniya and Fiehn (2015). The 
freely accessible mzCloud (mzCloud—advanced mass spec-
tral database), METLIN (Smith et al. 2005) and MassBank 
(Horai et al. 2010) databases all contain authenticated MS/
MS spectra. Unlike the other spectral databases MassBank 
allows for the automatic upload of user-generated data to the 
database, using either the Mass++ (C++) or RMassBank 
(Stravs et al. 2013) (R) software.

Both ESI-MS/MS and GC–MS spectra acquired using 
authenticated chemical standards are present in the HMDB 
(Wishart et al. 2013). Whilst the commercially available 
NIST 2014 Reference Database historically contained only 
GC–MS spectra, it now also contains ESI-MS/MS spectra.

A number of software also perform automatic database 
matching, allowing the user to search multiple MS/MS 
database simultaneously. Competitive fragment modeling 
for metabolite identification (CFM-ID) (Allen et al. 2014) 
annotates ESI-MS/MS. Single energy - competitive frag-
ment modeling (SE-CFM) is used to predict MS/MS spectra 
at three collision energies: 10 V, 20 V and 40 V. MS/MS 
spectra can be searched against the HMDB (Wishart et al. 
2013) or KEGG databases (Kanehisa et al. 2004) for metab-
olite identification. FingerID (Heinonen et al. 2012) uses 
kernel methods to predict a large set of molecular properties 
for MS/MS matching, searching the PubChem (Kim et al. 
2016), MassBank (Horai et al. 2010) and METLIN (Smith 
et al. 2005) databases. MAGMa (Ridder et al. 2013) gener-
ates hierarchical trees in silico for automatic annotation of 
LC-MSn data, using candidates from PubChem (Kim et al. 
2016) and HMDB (Wishart et al. 2013). MetFrag (Ruttkies 
et al. 2016), another in silico fragmentation tool, has recently 
been updated to allow users to search a wider selection of 
databases to identify candidate molecules to generate topo-
logical fragments from. Users can also select filtering crite-
ria by inclusion or exclusion of substructures and elements.

The MyCompoundID.org (Li et  al. 2013) database 
encompasses 8021 endogenous human metabolites from 
HMDB (Wishart et  al. 2013) and 375,809 predicted 
metabolites from the evidence-based metabolome library. 
It includes an automated MS/MS search program (Huan 
et al. 2015) that searches a spectral database created using 
in silico fragmentation prediction, as well as an MS search 
program. Batch searches can be performed using a CSV of 
a peak list generated from LC–MS/MS spectral analysis. 
There are also a number of tools for the identification of spe-
cific chemical groups including DnsID (Huan et al. 2015) for 
dansylate labelled metabolites, PEP (Tang et al. 2014) search 
for di/tripeptides and IsoMS for isotopic labelling studies.

3.2 � NMR metabolite identification and quantification

Compared to the pure reference standard, the majority of 
chemical shifts of metabolites are within 0.03 ppm for 1H 
NMR and 0.5 ppm for 13C NMR (Dona et al. 2016). Due to 
this low deviation, it has been suggested that for a metabo-
lite to be considered ‘identified’, matching to an authen-
tic compound in a database would be sufficient, provided 
specific guidelines are followed (Everett 2015). Databases 
that contain NMR spectra from authentic chemical stand-
ards of metabolites include Human Metabolome Database 
(HMDB) (Wishart et al. 2013), BMRB (Ulrich et al. 2008) 
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and Birmingham Metabolite Library (BML-NMR) (Ludwig 
et al. 2012). However, despite the consistency of chemical 
shifts, it remains challenging to identify metabolites that are 
present at only low levels or which have overlapping signals 
between multiple metabolites.

NMR is inherently a far more quantitative technique 
than MS (Emwas 2015). The signal intensity of a feature is 
directly proportional to the molar concentration of the mol-
ecule (Bharti and Roy 2012; Smolinska et al. 2012). How-
ever, NMR has limitations in resolution due to the overlaps 
of signals. This is especially a problem in biofluids, as they 
are complex mixtures of many compounds and it can be 
challenging to decipher the molecular concentration for each 
metabolite (Ellinger et al. 2013). Frequently, the “landmark 
peak” method is used to determine molecular concentration, 
although this is not suitable for all 1H NMR features, as 
not all metabolites will have landmark peaks in 1D spectra 
(Ellinger et al. 2013). Instead spectral libraries, in conjunc-
tion with mathematical modelling, are used.

As with preprocessing the majority of researchers use 
commercial software for NMR metabolite identification 
and quantification, with Chenomx NMR Suite (Chenomx, 
Edmonton, Canada) and AMIX (Bruker BioSpin, Rhein-
stetten, Germany) being the most popular (Weber et al. 
2016). Unfortunately many innovations in metabolite identi-
fication in NMR data, such as AutoFit (Mercier et al. 2011), 
are available only with commercial software.

Many of the freely available tools for NMR metabolomics 
provide both metabolite identification and quantification, 
with identification and quantification often being performed 
simultaneously. The BATMAN (Hao et al. 2012) and Bayesil 
(Ravanbakhsh et al. 2015) software were both reported to 
be used in the Metabolomics Society survey (Weber et al. 
2016). BATMAN (Bayesian automated metabolite analyser 
for NMR spectra) (Hao et al. 2012) provides a Bayesian 
model for the deconvolution of 1H NMR spectra and a Monte 
Carlo Markov Chain algorithm to automate metabolite quan-
tification. Metabolites can automatically be identified using 
a list with user-defined chemical shifts and relative inten-
sity signals for quantification. Bayesil (Ravanbakhsh et al. 
2015) is designed to supply automatic spectral processing 
and identification of serum, plasma and cerebrospinal fluid 
1D 1H NMR spectra. A reference compound with known 
concentration is then used for absolute quantification. How-
ever, samples must be prepared and spectra must be acquired 
in a specific way, limiting the use of this software.

Alternative tools include MetaboMiner (Xia et al. 2008), 
SpinAssign (Chikayama et al. 2010) and COLMAR (Zhang 
et  al. 2009). MetaboMiner performs semi-automated 
metabolite quantification of 2D TOCSY (TOtal Correlated 
SpectroscopY) and HSQC (Heteronuclear Single Quantum 
Coherence) spectra. SpinAssign contains a database of 
>1700 13C-HSQC peaks, corresponding to 270 metabolites 

that can be queried for 1H and 13C chemical shifts, with 
the percentage match for each putative assignment being 
calculated. The overlap between the peak of the interest and 
the reference peak is calculated as the uniqueness score. 
Complex mixture analysis by NMR (COLMAR) (Zhang 
et al. 2009) provides three web-servers for the analysis of 
covariance-NMR (2D) spectra of complex mixtures, which 
calculate NMR covariance spectra from the raw input, 
decompose 2D covariance TOCSY spectra into reduced sets 
of non-redundant 1D cross sections and match traces to the 
spectral databases, containing spectra from BMRB (Ulrich 
et al. 2008) and HMDB (Wishart et al. 2013), for metabolite 
identification.

4 � Post‑processing

Prior to many kinds of statistical analysis metabolomics 
data must be further wrangled, using post-processing meth-
ods, which are alternatively called data pretreatment. These 
methods encompass data filtering, imputation, normalisa-
tion, centering, scaling and transformation. Data can be 
filtered by applying thresholds to parameters such as sig-
nal-to-noise ratio or the minimum percentage of samples a 
feature must be detected in (consensus features) to remove 
features which are not found in a minimum number of sam-
ples (Alonso et al. 2015). Up to 40% of metabolomics data 
can be comprised of missing values (Armitage et al. 2015), 
with a number of causes (Gromski et al. 2014). Imputation 
is used to ‘fill in’ missing values. Differences in metabolite 
concentration between samples can be caused by variations 
in total sample amount and not actual biological variation. 
It is therefore important to normalise data to minimise the 
effect of this variation (Wu and Li 2016). Scaling and trans-
formation can change the emphasis to different aspects of the 
data to enable deciphering of biological information (Grom-
ski et al. 2014; van den Berg et al. 2006).

There are many different techniques for imputation 
(Gromski et al. 2014; Shah et al. 2015), normalisation (Wu 
and Li 2016) and scaling (Gromski et al. 2014; van den Berg 
et al. 2006) and it can be difficult to ascertain the optimal 
method. Reviews of all of these methods have found there is 
no ‘ideal’ method that is appropriate for all data, with effects 
being context dependent (Craig et al. 2006; Di Guida et al. 
2016; Gromski et al. 2014; van den Berg et al. 2006; Wu and 
Li 2016). It is therefore recommended that users try multiple 
methods to find those that adapt best to their data properties.

The bulk of tools for metabolomics post-processing are 
available as R packages. This means that both post-process-
ing and the subsequent stage of data processing—statistical 
analysis, can be performed in the same environment. Some 
tools combine both of post-processing and statistical analy-
sis, including the metabolomics (De Livera et al. 2012) and 
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muma (Gaude et al. 2013) packages. A list of tools for post-
processing can be found in Table 3.

5 � Statistical analysis

After post-processing, data from both MS and NMR studies 
will be in the form of a matrix of signal intensities. As data 
from both types of experiment are in the same format, data 
matrices, the most commonly used techniques are appropri-
ate for both data types. The unsupervised method principal 
components analysis (PCA) is generally used as an initial 
exploratory technique. Other supervised methods: partial 
least squares (PLS) regression (or projection to latent struc-
tures), partial least squares-discriminant analysis (PLS-DA) 
and orthogonal partial least squares (OPLS) are also used. 
However these techniques have been criticized as they can 
lead to overfitting (Szymańska et al. 2012; Westerhuis et al. 
2008), although validation techniques can be used to evalu-
ate this. More recently other methods are being more widely 
used as alternatives to PLS-DA (Gromski et al. 2015): prin-
cipal component-discriminant function analysis (PC-DFA), 
support vector machines and random forests.

Univariate analyses are also applied, with ANOVA (anal-
ysis of variance) and t-tests, along with their non-parametric 
equivalents, being the most widely used (Weber et al. 2016). 
As these statistical methods are used in many fields, they can 
be found implemented in many general statistical analysis 
software applications that are not specifically designed for 
metabolomics analysis. The R programming language and 
environment is designed to provide statistical computing and 
graphics and the majority of statistical analysis methods are 
implemented in R packages.

An additional statistical technique that is exclusive to 
NMR is statistical correlation spectroscopy (STOCSY) 

(Cloarec et al. 2005), which is designed specifically to iden-
tify biomarkers from NMR data. STOCSY takes advantage 
of the multicollinearity of the intensity variables in a set 
of 1D NMR spectra to generate a pseudo-two-dimensional 
NMR spectrum that displays the correlation among the 
intensities of the various peaks across the whole sample. It 
is particularly good for the identification of metabolites in 
complex mixtures, such as urine.

Examples of software for metabolomics statistical analy-
sis can be found in Table 4.

6 � Workflows

Unlike the previously mentioned software, workflows pro-
vide multiple interconnected tools, encompassing all stages 
of analysis: preprocessing, annotation and statistical analy-
sis. These software are designed for ease-of-use, allowing 
users to perform the entirety of their analysis using a single 
tool, rather than having to use separate tools for each stage of 
the analysis. They also increase data processing and analy-
sis reproducibility. The majority of workflows are provided 
as web-apps and are primarily designed for the analysis of 
LC–MS data. The scope of workflows varies a lot, with some 
including a lot of in-house software and others being work-
flow management systems, combining existing tools into 
workflows. Extra information about each software included 
in this section can be found in Table 5. An extra seven work-
flows are also included in Supplementary Table 1.

Galaxy (Afgan et al. 2016) provides a biological work-
flow platform, allowing for integration of multiple software 
tools into complete analytical workflows. Although it was 
originally created for genomics analysis, it is being increas-
ingly used as a general bioinformatics workflow manage-
ment system. Workflow4metabolomics (Giacomoni et al. 

Table 3   Software tools for the post-processing of metabolomics data

CLI command line interface

Tool Instrument data type Software type Website References

batchCorr LC–MS R Package https://gitlab.com/CarlBrunius/batchCorr Brunius et al. (2016)
crmn LC–MS, GC–MS R Package https://cran.r-project.org/web/packages/crmn/ Redestig et al. (2009)
EigenMS LC–MS CLI https://sourceforge.net/projects/eigenms Karpievitch et al. (2014)
KMDA MS R Package https://cran.r-project.org/web/packages/KMDA/ Zhan et al. (2015)
metabolomics MS, NMR R Package https://cran.r-project.org/web/packages/metabolomics/ De Livera et al. (2012)
metabomxtr LC–MS, GC–MS R Package https://www.bioconductor.org/packages/release/bioc/

html/metabomxtr.html
Nodzenski et al. (2014)

Metabnorm NMR R Script https://sourceforge.net/projects/metabnorm Jauhiainen et al. (2014)
MetabR LC–MS R Script http://metabr.r-forge.r-project.org/ Ernest et al. (2012)
MetNorm LC–MS, GC–MS, NMR R Package https://cran.r-project.org/web/packages/MetNorm/ Livera et al. (2015)
MSPrep LC–MS R Package https://sourceforge.net/projects/msprep/ Hughes et al. (2014)
muma MS, NMR R Package https://cran.r-project.org/web/packages/muma/ Gaude et al. (2013)

https://gitlab.com/CarlBrunius/batchCorr
https://cran.r-project.org/web/packages/crmn/
https://sourceforge.net/projects/eigenms
https://cran.r-project.org/web/packages/KMDA/
https://cran.r-project.org/web/packages/metabolomics/
https://www.bioconductor.org/packages/release/bioc/html/metabomxtr.html
https://www.bioconductor.org/packages/release/bioc/html/metabomxtr.html
https://sourceforge.net/projects/metabnorm
http://metabr.r-forge.r-project.org/
https://cran.r-project.org/web/packages/MetNorm/
https://sourceforge.net/projects/msprep/
https://cran.r-project.org/web/packages/muma/


	 R. Spicer et al.

1 3

 106   Page 10 of 16

2014) and Galaxy-M (Davidson et al. 2016) are Galaxy-
based workflows for the analysis of metabolomics data. 
Workflow4metabolomics (Giacomoni et al. 2014) encom-
passes analysis workflows for LC–MS, GC–MS and NMR 
data, although its LC–MS workflow is the most comprehen-
sive, providing preprocessing, statistical analysis and metab-
olite annotation. Implementations of the XCMS (Smith et al. 
2006), CAMERA (Kuhl et al. 2012) and ropls (Thévenot 
et al. 2015) packages are included for these analyses. A com-
plete workflow is not available for NMR analysis, however 
Bruker bucketing and integration, normalisation and statisti-
cal analysis are provided. Galaxy-M (Davidson et al. 2016) 
is designed for the analysis of LC–MS and DIMS metabo-
lomics data, providing preprocessing, statistical analysis 
and annotation. Like Workflow4metabolomics, Galaxy-M 
includes installations of XCMS and CAMERA, with MI-
PACK (Weber and Viant 2010) additionally available. Also 
included are a number of imputation, normalisation and fil-
tering methods.

XCMS Online (Tautenhahn et  al. 2012) is an online 
implementation of XCMS (Smith et al. 2006) that includes 
additional features to incorporate the entire LC–MS data 
analysis workflow. It differs from XCMS by providing 

convenient predefined parameters sets for different instru-
ment setups, PCA and univariate statistical analysis and a 
direct link to the METLIN (Smith et al. 2005) database for 
putative metabolite annotation. Pathway analysis and data 
integration with proteomics and transcriptomics data are 
also supported.

MetaboAnalyst 3.0 (Xia et al. 2015) provides a suite 
of tools for metabolomics analysis of both MS and NMR 
data, mainly focused on statistical, enrichment and pathway 
analysis. It contains eight independent analysis modules 
composed of three main categories: exploratory statisti-
cal analysis, functional analysis and advanced methods for 
translational studies. Only basic support is provided for the 
processing of raw data, using the XCMS algorithms for peak 
picking, grouping and retention time alignment, with only 
the most commonly used parameters supported.

Metabolomics Analysis and Visualisation ENgine 
(MAVEN) (Melamud et  al. 2010) provides preprocess-
ing, putative metabolite assignment and identification of 
significant differences between datasets. Peaks are picked, 
smoothed and grouped, followed by retention time align-
ment. Peak quality scores are reported to enable to user 
to identify high quality peaks. Metabolite Automatic 

Table 4   Software tools for the statistical analysis of metabolomics data. CLI - command line interface

Tool Instrument data type Software type Website References

Ionwinze LC–MS R Package https://sourceforge.net/projects/ionwinze Kokubun and D’Costa (2013)
MetabolAnalyze MS, NMR R Package https://cran.r-project.org/web/packages/MetabolAnalyze Nyamundanda et al. (2010)
metabolomics MS, NMR R Package https://cran.r-project.org/web/packages/metabolomics/ De Livera et al. (2012)
MetaboLyzer MS, NMR CLI https://sites.google.com/a/georgetown.edu/fornace-lab-

informatics/home/metabolyzer
Mak et al. (2014)

mQTL.NMR NMR R Package https://www.bioconductor.org/packages/release/bioc/
html/mQTL.NMR.html

Hedjazi et al. (2015)

muma MS, NMR R Package https://cran.r-project.org/web/packages/muma/ Gaude et al. (2013)
ropls MS, NMR R Package https://www.bioconductor.org/packages/release/bioc/

html/ropls.html
Thevenot et al. (2015)

Table 5   Workflows for the analysis of metabolomics data

GUI graphical user interface

Tool Instrument data type Software type Website Reference

Workflow4metabolomics LC–MS, GC–MS Galaxy http://workflow4metabolomics.org Giacomoni et al. (2014)
Galaxy-M LC–MS Galaxy https://github.com/Viant-Metabolomics/

Galaxy-M
Davidson et al. (2016)

XCMS Online LC–MS, GC–MS Web App https://xcmsonline.scripps.edu/landing_page.
php?pgcontent=mainPage

Tautenhahn et al. (2012)

MetaboAnalyst 3.0 LC–MS Web App http://www.metaboanalyst.ca Xia et al. (2015)
MAVEN LC–MS GUI http://genomics-pubs.princeton.edu/mzroll/

index.php
Melamud et al. (2010)

MAIT LC–MS R Package https://www.bioconductor.org/packages/
release/bioc/html/MAIT.html

Fernández-Albert et al. (2014)

MZmine 2 LC–MS GUI http://mzmine.github.io/ Pluskal et al. (2010)

https://sourceforge.net/projects/ionwinze
https://cran.r-project.org/web/packages/MetabolAnalyze
https://cran.r-project.org/web/packages/metabolomics/
https://sites.google.com/a/georgetown.edu/fornace-lab-informatics/home/metabolyzer
https://sites.google.com/a/georgetown.edu/fornace-lab-informatics/home/metabolyzer
https://www.bioconductor.org/packages/release/bioc/html/mQTL.NMR.html
https://www.bioconductor.org/packages/release/bioc/html/mQTL.NMR.html
https://cran.r-project.org/web/packages/muma/
https://www.bioconductor.org/packages/release/bioc/html/ropls.html
https://www.bioconductor.org/packages/release/bioc/html/ropls.html
http://workflow4metabolomics.org
https://github.com/Viant-Metabolomics/Galaxy-M
https://github.com/Viant-Metabolomics/Galaxy-M
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
http://www.metaboanalyst.ca
http://genomics-pubs.princeton.edu/mzroll/index.php
http://genomics-pubs.princeton.edu/mzroll/index.php
https://www.bioconductor.org/packages/release/bioc/html/MAIT.html
https://www.bioconductor.org/packages/release/bioc/html/MAIT.html
http://mzmine.github.io/
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Identification Toolkit (MAIT) (Fernández-Albert et  al. 
2014) provides a wrapper of XCMS (Smith et al. 2006) and 
CAMERA (Kuhl et al. 2012) for user-friendly LC–MS data 
analysis. Additionally standard statistical analysis - t-tests, 
ANOVA, PCA and PLS and metabolite annotation via the 
2009/07 version of HMDB (Wishart et al. 2013) are also 
supplied.

MZmine 2 (Pluskal et al. 2010) is the second most used 
software for LC-MS data preprocessing (Weber et al. 2016), 
but it also encompasses an entire analysis workflow. Since its 
initial release, it now includes the GridMass (Treviño et al. 
2015) algorithm for feature detection of high resolution liq-
uid chromatography - mass spectrometry (HRLC-MS) data. 
As of 2017 there are a total of 4 peak detection approaches 
included in the toolkit. The RANSAC (random sample con-
sensus) or Join aligner algorithms are used for peak align-
ment (Pluskal et al. 2010). Post-processing, metabolite iden-
tification and statistical analysis are additional functions that 
are also provided.

7 � Other tools

Some software cannot be easily classified into the previ-
ously mentioned categories as they provide other function-
alities. These tools relate to improving experimental design 
and optimising parameters, both instrumental and software 
based. There are tools designed to optimise feature detection 
of LC–MS(/MS) data, requiring the user to perform experi-
ments in a specified way (Mahieu et al. 2014; Neumann et al. 
2012). In addition there are tools for estimating the required 
sample size for achieving sufficient power (Nyamundanda 
et al. 2013). Tools classified as Other tools do not have a 
standardised place in the analysis pipeline and where they 
fit into the pipeline depends on their functionality. Fourteen 
tools are classified as Other Tools and are included in the 
supplementary material.

8 � Future prospects

This review presents the most widely used tools for metabo-
lomics analysis, categorised based on their main functional-
ity. As it is beyond the scope of this review, there has been 
no direct comparison of tools, resulting in a ranked list of 
the ‘best’ tools to perform a specific data analysis task e.g. 
peak picking. In future it would be beneficial for systematic 
reviews, comparing large numbers of freely available tools 
designed for specific tasks in metabolomics data analysis, 
using benchmarked datasets containing only known metab-
olites. Whilst there have been some reviews comparing 
the accuracy of peak picking of a number of software for 
LC–MS and GC–MS, these reviews have mostly focused on 

commercial software (Rafiei and Sleno 2015), have not opti-
mised software parameters (Coble and Fraga 2014) or have 
not used MS/MS data (Lange et al. 2008). This is especially 
important for NMR-based metabolomics where no such 
review has yet been conducted.

OMICtools (Henry et al. 2014) is a manually curated 
metadatabase of tools for the analysis of omics data, con-
taining both commercial and open source software. Whilst 
it provides a lot of useful information about software beyond 
its functionality, including computer skills required, licens-
ing, programming languages and interfaces, it does not 
containing other information that a user will require when 
deciding which tools to use, such as input formats. It is also 
missing a lot of the most recently released software.

Ms-utils (ms-utils.org—Software List) provides a list of 
tools for mass spectrometry data analysis, but it is mainly 
focused on proteomics. The Fiehn lab website (Metabo-
lomics—Fiehn Lab) and the metabolomics society web-
page (Metabolomics Society: Metabolomics Software and 
Servers) also contain lists of metabolomics software. How-
ever, again these are not comprehensive lists, which are not 
updated to include the mostly recently released tools. Sup-
plementary Table 1 of this review and https://github.com/
RASpicer/MetabolomicsTools includes a comprehensive list 
of tools, along with details of their functionality, operating 
systems they run on and installation requirements. However, 
this does not include all tools for metabolomics analysis and 
more tools are constantly released.

In the CASMI (Critical Assessment of Small Molecule 
Identification) (Schymanski and Neumann 2016) compe-
tition, teams compete in a series of challenges to identify 
as many small molecules as possible. The Best Automatic 
Structural Identification categories directly compare tools 
small molecule identification. In 2016 the categories were 
split into in silico fragmentation only and tools used along 
with additional information e.g. retention time. MS-FINDER 
(Tsugawa et al. 2016) and CFM-ID (Allen et al. 2014) were 
used by the teams who came 1st and 2nd respectively in the 
Full Information category and IOKR (Brouard et al. 2016) 
and fingerID (Heinonen et al. 2012) were used by the two 
top teams in the in silico fragmentation category.

Ideally a novel database of software for metabolomics 
data analysis would be created. This should allow users to 
manually add their newly released tools to inform the com-
munity about them. It should include specifically which 
tools are maintained i.e. automatically acquiring when the 
last update time, as well as important information such as 
input formats and skill level required.

A new database could also help to address the lack of 
compatibility between tools. Currently in metabolomics 
there is a major problem of interoperability between tools 
for the different steps of data analysis: the output of one tool 
not being an acceptable input format for other tools for the 

https://github.com/RASpicer/MetabolomicsTools
https://github.com/RASpicer/MetabolomicsTools
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subsequent stages of analysis. There can also be incompat-
ibility between dependencies and required software versions. 
By directly reporting compatible tools, the database could 
help users with this issue.

Tool harmonisation is also being improved by efforts 
to containerise tools, such as those by the PhenoMeNal 
consortium (PhenoMeNal) and the BioContainers initia-
tive (Leprevost et al. 2017). Creating containers for tools 
(or Dockerising (Docker)) isolates them and their depend-
encies in terms of installation, which removes incompat-
ibility between tools caused by dependencies and varying 
versions. Because the usual practice is to deposit built con-
tainer images with explicit versions into publicly available 
online container registries (such as Docker Hub or quay.
io), older versions of a container used in past analysis can 
always be retrieved to reproduce it, with the same analysis 
tools with exactly the same versions used as the original 
analysis (provided this was done through a container). This 
improves both the accessibility of tools and reproducibility 
of data analysis.
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