# Additional file 1 for "Re-formulating Gehan's design as a flexible two-stage single-arm trial" by Grayling 

and Mander

## Survey of studies utilising Gehan's design

In order to assess the number of times Gehan's design has been used in published studies, we performed a survey of the articles that have cited his 1961 paper in the last ten years according to Google Scholar, and additionally searched and reviewed the PubMed Central articles containing "Gehan" over the same time period.

Firstly, Google Scholar (https://scholar.google.co.uk/) was used on September 302018 to identify records citing Gehan's paper from January 12008 onwards (using the 'Custom range' field). Two hundred such records were acquired, which were exported first to Mendeley using the Mendeley Web Importer, and subsequently to a .csv file.

Similarly, PubMed Central was searched on September 302018 in order to identify any articles with a publication date of January 12008 or later that have contained "Gehan" in any field [search: (Gehan) AND ("2008/01/01"[Publication Date] : "2018/09/30"[Publication Date])]. One thousand eight hundred and seventy two records were extracted to an additional .csv file.

Each of the records was reviewed by MJG to determine which identified themselves as having used Gehan's methodology, or a modified version there of. Where any confusion arose around the classification, a decision was made jointly with APM. We provide the results of our survey as Additional file 2.

Ultimately, two records acquired via Google Scholar were found to be duplicates of other citing articles, four to not be published articles (e.g., they were slides from a conference presentation), and one was excluded because its publication date fell outside of the considered range. We were unable to review 20 records; 11 because they were not written in English, and nine because we were unable to retrieve the full article. Of the other records, 52 were identified that used Gehan's design or a modified Gehan design.

## Additional results on the power of Gehan's design

Here, we provide the type-I error-rate, power, and values of $\operatorname{ESS}\left(\pi_{0}\right)$ and $\operatorname{ESS}\left(\pi_{1}\right)$ of the optimised Gehan designs, for additional parameter combinations. Precisely, in Table A1 the results correspond to $\left(\beta_{1}, \gamma, \pi_{1}\right) \in\{0.05,0.1\} \times\{0.05,0.1\} \times\{0.35,0.4,0.45, \ldots, 0.7\}$ with $\pi_{0}=\pi_{1}-0.15$. Similarly, Table A2 corresponds to $\left(\beta_{1}, \gamma, \pi_{1}\right) \in\{0.05,0.1\} \times\{0.05,0.1\} \times\{0.25,0.3,0.35, \ldots, 0.7\}$ with $\pi_{0}=\pi_{1}-0.2$, Table A3 to $\left(\beta_{1}, \gamma, \pi_{1}\right) \in\{0.05,0.1\} \times\{0.05,0.1\} \times\{0.3,0.35,0.4, \ldots, 0.7\}$ with $\pi_{0}=\pi_{1}-0.25$, and Table A4 to $\left(\beta_{1}, \gamma, \pi_{1}\right) \in\{0.05,0.1\} \times\{0.05,0.1\} \times\{0.35,0.4,0.45, \ldots, 0.7\}$ with $\pi_{0}=\pi_{1}-0.3$. In all cases, $\alpha=0.05$, and results are provided for both the original and conservative methods for specifying $\hat{\pi}$ at the end of stage one in Gehan's original $f_{G}$.

We observe that when using the conservative approach to specifying $\hat{\pi}$, in no instance is the optimisation procedure unable to identify a design that controls the type-I error-rate to below 0.05 . However, this is not the case for the original approach, through which the value of $n_{1}$ is frequently too small for a discrete conditional error function (DCEF) to exist which controls the type-I error-rate, particularly when $\pi_{0}$ is large.

In addition, as noted in the main manuscript, there are several instances in which $P\left(\pi_{0}\right) \ll \alpha$. There does not appear to be a clear pattern as to when this occurs, but it does happen more often with the original, rather than conservative, method for specifying $\hat{\pi}$ at the end of stage one.

## Comparison of two-stage group sequential designs with $f_{1}=0$ to Gehan's design

In the main manuscript, we noted that Gehan's design may appear preferable to Simon's designs when the response rate is small, but that a non-optimal two-stage group sequential design may often exist that has similar performance. Here, we elaborate on this point. Consider again the parameters motivated by Dupuis-Girod et al. (2012); $\beta_{1}=0.1, \pi_{0}=0.15, \pi_{1}=0.3, \gamma=0.1, \alpha=0.05$, and $\beta=0.2$.

Searching over two-stage group-sequential designs with a maximal allowed sample size of 100 patients, there are 114932 designs that meet the desired type-I error-rate and power. Of these, 10270 have $f_{1}=0$. Amongst these, that with the smallest sample size under $H_{0}$ (the 'null-optimal design with $f_{1}=0$ '), and that with the smallest maximal sample size (the 'minimax design with $f_{1}=0$ '), have the following design parameters

Null-optimal design with $f_{1}=0: n_{1}=7, f_{2}=12, n_{2}=47$,
Minimax design with $f_{1}=0: n_{1}=10, f_{2}=11, n_{2}=38$.
Table A1: Optimal hypothesis tests in Gehan designs using $f_{G}$. A summary of the type-I error-rate, $P\left(\pi_{0}\right)$, and power, $P\left(\pi_{1}\right)$, as well as the expected sample sizes when $\pi_{0}$ and $\pi_{1}, E S S\left(\pi_{0}\right)$ and $E S S\left(\pi_{1}\right)$, are shown for the optimal choices of the $D\left(s_{1}\right)$, for a range of values of $\beta_{1}, \gamma$, and $\pi_{1}$. In all cases, $\pi_{0}=\pi_{1}-0.15$. Blank lines indicate a parameter and method combination for which no design exists that control the type-I error-rate to below the desired level of 0.05 . All values are given to 3 decimal places.

| $\beta_{1}$ | $\gamma$ | $\pi_{1}$ | Original |  |  |  | Conservative |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $\operatorname{ESS}\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $E S S\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ |
| 0.050 | 0.050 | 0.350 | 0.050 | 0.899 | 72.467 | 81.766 | 0.050 | 0.916 | 78.916 | 93.525 |
| 0.100 | 0.050 | 0.350 | 0.049 | 0.875 | 68.306 | 77.161 | 0.050 | 0.892 | 73.268 | 89.495 |
| 0.050 | 0.100 | 0.350 | 0.049 | 0.481 | 19.223 | 20.781 | 0.048 | 0.530 | 21.225 | 24.114 |
| 0.100 | 0.100 | 0.350 | 0.046 | 0.463 | 18.562 | 20.052 | 0.050 | 0.508 | 19.497 | 22.713 |
| 0.050 | 0.050 | 0.400 | 0.050 | 0.868 | 74.100 | 75.210 | 0.050 | 0.900 | 80.629 | 91.950 |
| 0.100 | 0.050 | 0.400 | 0.050 | 0.828 | 68.105 | 69.166 | 0.050 | 0.875 | 75.630 | 89.870 |
| 0.050 | 0.100 | 0.400 | 0.041 | 0.396 | 19.665 | 19.506 | 0.049 | 0.480 | 20.958 | 23.199 |
| 0.100 | 0.100 | 0.400 | 0.046 | 0.395 | 18.359 | 18.248 | 0.048 | 0.477 | 19.900 | 22.848 |
| 0.050 | 0.050 | 0.450 | 0.048 | 0.835 | 76.917 | 71.422 | 0.050 | 0.899 | 85.859 | 93.545 |
| 0.100 | 0.050 | 0.450 |  |  |  |  | 0.050 | 0.848 | 72.541 | 86.593 |
| 0.050 | 0.100 | 0.450 | 0.050 | 0.346 | 20.133 | 18.580 | 0.049 | 0.463 | 21.994 | 23.513 |
| 0.100 | 0.100 | 0.450 |  |  |  |  | 0.049 | 0.452 | 18.983 | 22.078 |
| 0.050 | 0.050 | 0.500 |  |  |  |  | 0.050 | 0.890 | 86.493 | 93.906 |
| 0.100 | 0.050 | 0.500 |  |  |  |  | 0.049 | 0.861 | 78.355 | 89.312 |
| 0.050 | 0.100 | 0.500 |  |  |  |  | 0.049 | 0.444 | 22.151 | 23.688 |
| 0.100 | 0.100 | 0.500 |  |  |  |  | 0.049 | 0.435 | 20.259 | 22.688 |
| 0.050 | 0.050 | 0.550 |  |  |  |  | 0.049 | 0.870 | 82.989 | 91.289 |
| 0.100 | 0.050 | 0.550 |  |  |  |  | 0.049 | 0.822 | 71.128 | 82.993 |
| 0.050 | 0.100 | 0.550 |  |  |  |  | 0.050 | 0.417 | 21.280 | 23.139 |
| 0.100 | 0.100 | 0.550 |  |  |  |  | 0.048 | 0.408 | 18.808 | 21.510 |
| 0.050 | 0.050 | 0.600 |  |  |  |  | 0.049 | 0.885 | 86.593 | 92.661 |
| 0.100 | 0.050 | 0.600 |  |  |  |  | 0.050 | 0.847 | 75.694 | 85.872 |
| 0.050 | 0.100 | 0.600 |  |  |  |  | 0.049 | 0.426 | 22.078 | 23.464 |
| 0.100 | 0.100 | 0.600 |  |  |  |  | 0.049 | 0.398 | 19.855 | 22.152 |
| 0.050 | 0.050 | 0.650 |  |  |  |  | 0.049 | 0.865 | 79.625 | 88.334 |
| 0.100 | 0.050 | 0.650 |  |  |  |  | 0.049 | 0.865 | 79.625 | 88.334 |
| 0.050 | 0.100 | 0.650 |  |  |  |  | 0.047 | 0.421 | 20.750 | 22.692 |
| 0.100 | 0.100 | 0.650 |  |  |  |  | 0.047 | 0.421 | 20.750 | 22.692 |

Table A2: Optimal hypothesis tests in Gehan designs using $f_{G}$. A summary of the type-I error-rate, $P\left(\pi_{0}\right)$, and power, $P\left(\pi_{1}\right)$, as well as the expected sample sizes when $\pi_{0}$ and $\pi_{1}, E S S\left(\pi_{0}\right)$ and $E S S\left(\pi_{1}\right)$, are shown for the optimal choices of the $D\left(s_{1}\right)$, for a range of values of $\beta_{1}, \gamma$, and $\pi_{1}$. In all cases, $\pi_{0}=\pi_{1}-0.2$. Blank lines indicate a parameter and method combination for which no design exists that control the type-I error-rate to below the desired level of 0.05 . All values are given to 3 decimal places.

|  |  |  | Original |  |  |  | Conservative |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta_{1}$ | $\gamma$ | $\pi_{1}$ | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $\operatorname{ESS}\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $E S S\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ |
| 0.050 | 0.050 | 0.250 | 0.006 | 0.955 | 35.709 | 85.193 | 0.049 | 0.958 | 43.429 | 92.219 |
| 0.100 | 0.050 | 0.250 | 0.016 | 0.924 | 33.969 | 83.088 | 0.049 | 0.925 | 39.944 | 90.499 |
| 0.050 | 0.100 | 0.250 | 0.001 | 0.376 | 13.813 | 21.979 | 0.001 | 0.403 | 15.633 | 23.531 |
| 0.100 | 0.100 | 0.250 | 0.001 | 0.464 | 12.763 | 21.446 | 0.012 | 0.724 | 14.319 | 23.348 |
| 0.050 | 0.050 | 0.300 | 0.049 | 0.958 | 52.961 | 86.330 | 0.050 | 0.959 | 61.160 | 94.102 |
| 0.100 | 0.050 | 0.300 | 0.050 | 0.917 | 49.289 | 81.433 | 0.050 | 0.917 | 54.475 | 90.501 |
| 0.050 | 0.100 | 0.300 | 0.035 | 0.705 | 15.904 | 22.065 | 0.040 | 0.785 | 18.026 | 24.042 |
| 0.100 | 0.100 | 0.300 | 0.009 | 0.562 | 14.833 | 20.829 | 0.037 | 0.778 | 16.391 | 23.517 |
| 0.050 | 0.050 | 0.350 | 0.049 | 0.949 | 62.925 | 81.766 | 0.050 | 0.950 | 68.827 | 93.525 |
| 0.100 | 0.050 | 0.350 | 0.050 | 0.923 | 59.100 | 77.161 | 0.050 | 0.924 | 63.094 | 89.495 |
| 0.050 | 0.100 | 0.350 | 0.021 | 0.592 | 17.416 | 20.781 | 0.049 | 0.755 | 19.230 | 24.114 |
| 0.100 | 0.100 | 0.350 | 0.047 | 0.704 | 16.738 | 20.052 | 0.049 | 0.739 | 17.471 | 22.713 |
| 0.050 | 0.050 | 0.400 | 0.049 | 0.948 | 68.306 | 75.210 | 0.050 | 0.951 | 73.268 | 91.950 |
| 0.100 | 0.050 | 0.400 | 0.047 | 0.916 | 62.651 | 69.166 | 0.050 | 0.920 | 67.427 | 89.870 |
| 0.050 | 0.100 | 0.400 | 0.042 | 0.643 | 18.562 | 19.506 | 0.050 | 0.694 | 19.497 | 23.199 |
| 0.100 | 0.100 | 0.400 | 0.048 | 0.623 | 17.288 | 18.248 | 0.049 | 0.692 | 18.190 | 22.848 |
| 0.050 | 0.050 | 0.450 | 0.050 | 0.959 | 74.100 | 71.422 | 0.050 | 0.967 | 80.629 | 93.545 |
| 0.100 | 0.050 | 0.450 |  |  |  |  | 0.050 | 0.904 | 65.395 | 86.593 |
| 0.050 | 0.100 | 0.450 | 0.041 | 0.570 | 19.665 | 18.580 | 0.049 | 0.669 | 20.958 | 23.513 |
| 0.100 | 0.100 | 0.450 |  |  |  |  | 0.049 | 0.652 | 17.418 | 22.078 |
| 0.050 | 0.050 | 0.500 | 0.050 | 0.921 | 70.768 | 60.625 | 0.050 | 0.962 | 81.857 | 93.906 |
| 0.100 | 0.050 | 0.500 |  |  |  |  | 0.050 | 0.931 | 72.541 | 89.312 |
| 0.050 | 0.100 | 0.500 | 0.047 | 0.468 | 18.818 | 16.250 | 0.049 | 0.644 | 21.193 | 23.688 |
| 0.100 | 0.100 | 0.500 |  |  |  |  | 0.049 | 0.641 | 18.983 | 22.688 |
| 0.050 | 0.050 | 0.550 |  |  |  |  | 0.049 | 0.950 | 78.355 | 91.289 |
| 0.100 | 0.050 | 0.550 | 0.046 | 0.480 | 43.677 | 34.779 | 0.049 | 0.899 | 65.854 | 82.993 |
| 0.050 | 0.100 | 0.550 |  |  |  |  | 0.049 | 0.624 | 20.259 | 23.139 |
| 0.100 | 0.100 | 0.550 |  |  |  |  | 0.047 | 0.589 | 17.593 | 21.510 |
| 0.050 | 0.050 | 0.600 |  |  |  |  | 0.049 | 0.964 | 82.989 | 92.661 |
| 0.100 | 0.050 | 0.600 |  |  |  |  | 0.049 | 0.925 | 71.128 | 85.872 |
| 0.050 | 0.100 | 0.600 |  |  |  |  | 0.050 | 0.606 | 21.280 | 23.464 |
| 0.100 | 0.100 | 0.600 |  |  |  |  | 0.048 | 0.596 | 18.808 | 22.152 |
| 0.050 | 0.050 | 0.650 |  |  |  |  | 0.050 | 0.947 | 75.694 | 88.334 |
| 0.100 | 0.050 | 0.650 |  |  |  |  | 0.050 | 0.947 | 75.694 | 88.334 |
| 0.050 | 0.100 | 0.650 |  |  |  |  | 0.049 | 0.588 | 19.855 | 22.692 |
| 0.100 | 0.100 | 0.650 |  |  |  |  | 0.049 | 0.588 | 19.855 | 22.692 |
| 0.050 | 0.050 | 0.700 |  |  |  |  | 0.049 | 0.964 | 79.625 | 90.451 |
| 0.100 | 0.050 | 0.700 |  |  |  |  | 0.043 | 0.904 | 73.500 | 87.260 |
| 0.050 | 0.100 | 0.700 |  |  |  |  | 0.047 | 0.626 | 20.750 | 23.146 |
| 0.100 | 0.100 | 0.700 |  |  |  |  | 0.047 | 0.614 | 18.750 | 21.950 |

Table A3: Optimal hypothesis tests in Gehan designs using $f_{G}$. A summary of the type-I error-rate, $P\left(\pi_{0}\right)$, and power, $P\left(\pi_{1}\right)$, as well as the expected sample sizes when $\pi_{0}$ and $\pi_{1}, E S S\left(\pi_{0}\right)$ and $E S S\left(\pi_{1}\right)$, are shown for the optimal choices of the $D\left(s_{1}\right)$, for a range of values of $\beta_{1}, \gamma$, and $\pi_{1}$. In all cases, $\pi_{0}=\pi_{1}-0.25$.
Blank lines indicate a parameter and method combination for which no design exists that control the type-I error-rate to below the desired level of 0.05 . All values are given to 3 decimal places.

|  |  |  |  |  | riginal |  |  |  | servative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta_{1}$ | $\gamma$ | $\pi_{1}$ | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $\operatorname{ESS}\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $\operatorname{ESS}\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ |
| 0.050 | 0.050 | 0.300 | 0.016 | 0.960 | 33.969 | 86.330 | 0.049 | 0.960 | 39.944 | 94.102 |
| 0.100 | 0.050 | 0.300 | 0.038 | 0.918 | 30.903 | 81.433 | 0.045 | 0.918 | 34.451 | 90.501 |
| 0.050 | 0.100 | 0.300 | 0.001 | 0.663 | 12.763 | 22.065 | 0.012 | 0.855 | 14.319 | 24.042 |
| 0.100 | 0.100 | 0.300 | 0.002 | 0.728 | 11.392 | 20.829 | 0.025 | 0.893 | 12.430 | 23.517 |
| 0.050 | 0.050 | 0.350 | 0.050 | 0.951 | 49.289 | 81.766 | 0.050 | 0.951 | 54.475 | 93.525 |
| 0.100 | 0.050 | 0.350 | 0.049 | 0.925 | 46.004 | 77.161 | 0.050 | 0.925 | 49.247 | 89.495 |
| 0.050 | 0.100 | 0.350 | 0.009 | 0.723 | 14.833 | 20.781 | 0.037 | 0.891 | 16.391 | 24.114 |
| 0.100 | 0.100 | 0.350 | 0.043 | 0.843 | 14.102 | 20.052 | 0.041 | 0.873 | 14.703 | 22.713 |
| 0.050 | 0.050 | 0.400 | 0.049 | 0.953 | 59.100 | 75.210 | 0.049 | 0.953 | 63.094 | 91.950 |
| 0.100 | 0.050 | 0.400 | 0.048 | 0.922 | 54.023 | 69.166 | 0.050 | 0.922 | 56.803 | 89.870 |
| 0.050 | 0.100 | 0.400 | 0.047 | 0.830 | 16.738 | 19.506 | 0.049 | 0.864 | 17.471 | 23.199 |
| 0.100 | 0.100 | 0.400 | 0.045 | 0.821 | 15.512 | 18.248 | 0.050 | 0.833 | 15.963 | 22.848 |
| 0.050 | 0.050 | 0.450 | 0.049 | 0.972 | 68.306 | 71.422 | 0.050 | 0.972 | 73.268 | 93.545 |
| 0.100 | 0.050 | 0.450 | 0.049 | 0.908 | 52.998 | 55.904 | 0.050 | 0.908 | 56.757 | 86.593 |
| 0.050 | 0.100 | 0.450 | 0.042 | 0.792 | 18.562 | 18.580 | 0.050 | 0.837 | 19.497 | 23.513 |
| 0.100 | 0.100 | 0.450 | 0.048 | 0.723 | 14.598 | 15.067 | 0.050 | 0.806 | 15.528 | 22.078 |
| 0.050 | 0.050 | 0.500 | 0.049 | 0.967 | 68.105 | 60.625 | 0.050 | 0.969 | 75.630 | 93.906 |
| 0.100 | 0.050 | 0.500 |  |  |  |  | 0.050 | 0.937 | 65.395 | 89.312 |
| 0.050 | 0.100 | 0.500 | 0.046 | 0.716 | 18.359 | 16.250 | 0.048 | 0.819 | 19.900 | 23.688 |
| 0.100 | 0.100 | 0.500 |  |  |  |  | 0.049 | 0.799 | 17.418 | 22.688 |
| 0.050 | 0.050 | 0.550 |  |  |  |  | 0.050 | 0.959 | 72.541 | 91.289 |
| 0.100 | 0.050 | 0.550 | 0.043 | 0.604 | 43.194 | 34.779 | 0.050 | 0.909 | 59.799 | 82.993 |
| 0.050 | 0.100 | 0.550 |  |  |  |  | 0.049 | 0.798 | 18.983 | 23.139 |
| 0.100 | 0.100 | 0.550 |  |  |  |  | 0.048 | 0.762 | 16.194 | 21.510 |
| 0.050 | 0.050 | 0.600 |  |  |  |  | 0.049 | 0.974 | 78.355 | 92.661 |
| 0.100 | 0.050 | 0.600 | 0.046 | 0.533 | 43.677 | 30.792 | 0.049 | 0.935 | 65.854 | 85.872 |
| 0.050 | 0.100 | 0.600 |  |  |  |  | 0.049 | 0.788 | 20.259 | 23.464 |
| 0.100 | 0.100 | 0.600 |  |  |  |  | 0.047 | 0.753 | 17.593 | 22.152 |
| 0.050 | 0.050 | 0.650 |  |  |  |  | 0.049 | 0.957 | 71.128 | 88.334 |
| 0.100 | 0.050 | 0.650 |  |  |  |  | 0.049 | 0.957 | 71.128 | 88.334 |
| 0.050 | 0.100 | 0.650 |  |  |  |  | 0.048 | 0.766 | 18.808 | 22.692 |
| 0.100 | 0.100 | 0.650 |  |  |  |  | 0.048 | 0.766 | 18.808 | 22.692 |
| 0.050 | 0.050 | 0.700 |  |  |  |  | 0.050 | 0.973 | 75.694 | 90.451 |
| 0.100 | 0.050 | 0.700 |  |  |  |  | 0.043 | 0.910 | 68.735 | 87.260 |
| 0.050 | 0.100 | 0.700 |  |  |  |  | 0.040 | 0.767 | 19.855 | 23.146 |
| 0.100 | 0.100 | 0.700 |  |  |  |  | 0.039 | 0.741 | 17.637 | 21.950 |

Table A4: Optimal hypothesis tests in Gehan designs using $f_{G}$. A summary of the type-I error-rate, $P\left(\pi_{0}\right)$, and power, $P\left(\pi_{1}\right)$, as well as the expected sample sizes when $\pi_{0}$ and $\pi_{1}, E S S\left(\pi_{0}\right)$ and $E S S\left(\pi_{1}\right)$, are shown for the optimal choices of the $D\left(s_{1}\right)$, for a range of values of $\beta_{1}, \gamma$, and $\pi_{1}$. In all cases, $\pi_{0}=\pi_{1}-0.3$. Blank lines indicate a parameter and method combination for which no design exists that control the type-I error-rate to below the desired level of 0.05 . All values are given to 3 decimal places.

|  |  |  |  |  | riginal |  |  |  | servative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta_{1}$ | $\gamma$ | $\pi_{1}$ | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $\operatorname{ESS}\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ | $P\left(\pi_{0}\right)$ | $P\left(\pi_{1}\right)$ | $E S S\left(\pi_{0}\right)$ | $\operatorname{ESS}\left(\pi_{1}\right)$ |
| 0.050 | 0.050 | 0.350 | 0.038 | 0.951 | 30.903 | 81.766 | 0.045 | 0.951 | 34.451 | 93.525 |
| 0.100 | 0.050 | 0.350 | 0.046 | 0.925 | 28.497 | 77.161 | 0.050 | 0.925 | 30.656 | 89.495 |
| 0.050 | 0.100 | 0.350 | 0.002 | 0.843 | 11.392 | 20.781 | 0.025 | 0.943 | 12.430 | 24.114 |
| 0.100 | 0.100 | 0.350 | 0.014 | 0.889 | 10.557 | 20.052 | 0.005 | 0.895 | 10.972 | 22.713 |
| 0.050 | 0.050 | 0.400 | 0.049 | 0.953 | 46.004 | 75.210 | 0.050 | 0.953 | 49.247 | 91.950 |
| 0.100 | 0.050 | 0.400 | 0.050 | 0.922 | 41.823 | 69.166 | 0.050 | 0.922 | 43.251 | 89.870 |
| 0.050 | 0.100 | 0.400 | 0.043 | 0.909 | 14.102 | 19.506 | 0.041 | 0.935 | 14.703 | 23.199 |
| 0.100 | 0.100 | 0.400 | 0.039 | 0.902 | 12.938 | 18.248 | 0.041 | 0.907 | 13.109 | 22.848 |
| 0.050 | 0.050 | 0.450 | 0.049 | 0.972 | 59.100 | 71.422 | 0.049 | 0.972 | 63.094 | 93.545 |
| 0.100 | 0.050 | 0.450 | 0.044 | 0.908 | 45.518 | 55.904 | 0.050 | 0.908 | 46.466 | 86.593 |
| 0.050 | 0.100 | 0.450 | 0.040 | 0.909 | 16.738 | 18.580 | 0.049 | 0.937 | 17.471 | 23.513 |
| 0.100 | 0.100 | 0.450 | 0.034 | 0.845 | 13.006 | 15.067 | 0.049 | 0.881 | 13.278 | 22.078 |
| 0.050 | 0.050 | 0.500 | 0.048 | 0.969 | 62.651 | 60.625 | 0.050 | 0.969 | 67.427 | 93.906 |
| 0.100 | 0.050 | 0.500 | 0.049 | 0.937 | 52.998 | 51.625 | 0.050 | 0.937 | 56.757 | 89.312 |
| 0.050 | 0.100 | 0.500 | 0.047 | 0.881 | 17.288 | 16.250 | 0.049 | 0.919 | 18.190 | 23.688 |
| 0.100 | 0.100 | 0.500 | 0.048 | 0.840 | 14.598 | 14.125 | 0.050 | 0.894 | 15.528 | 22.688 |
| 0.050 | 0.050 | 0.550 |  |  |  |  | 0.050 | 0.959 | 65.395 | 91.289 |
| 0.100 | 0.050 | 0.550 | 0.048 | 0.743 | 41.250 | 34.779 | 0.050 | 0.909 | 52.891 | 82.993 |
| 0.050 | 0.100 | 0.550 |  |  |  |  | 0.049 | 0.898 | 17.418 | 23.139 |
| 0.100 | 0.100 | 0.550 |  |  |  |  | 0.047 | 0.841 | 14.594 | 21.510 |
| 0.050 | 0.050 | 0.600 |  |  |  |  | 0.050 | 0.974 | 72.541 | 92.661 |
| 0.100 | 0.050 | 0.600 | 0.043 | 0.650 | 43.194 | 30.792 | 0.050 | 0.936 | 59.799 | 85.872 |
| 0.050 | 0.100 | 0.600 |  |  |  |  | 0.049 | 0.904 | 18.983 | 23.464 |
| 0.100 | 0.100 | 0.600 |  |  |  |  | 0.048 | 0.870 | 16.194 | 22.152 |
| 0.050 | 0.050 | 0.650 | 0.046 | 0.565 | 43.677 | 26.478 | 0.049 | 0.957 | 65.854 | 88.334 |
| 0.100 | 0.050 | 0.650 | 0.046 | 0.565 | 43.677 | 26.478 | 0.049 | 0.957 | 65.854 | 88.334 |
| 0.050 | 0.100 | 0.650 |  |  |  |  | 0.047 | 0.872 | 17.593 | 22.692 |
| 0.100 | 0.100 | 0.650 |  |  |  |  | 0.047 | 0.872 | 17.593 | 22.692 |
| 0.050 | 0.050 | 0.700 |  |  |  |  | 0.049 | 0.973 | 71.128 | 90.451 |
| 0.100 | 0.050 | 0.700 |  |  |  |  | 0.048 | 0.910 | 63.440 | 87.260 |
| 0.050 | 0.100 | 0.700 |  |  |  |  | 0.048 | 0.888 | 18.808 | 23.146 |
| 0.100 | 0.100 | 0.700 |  |  |  |  | 0.045 | 0.847 | 16.400 | 21.950 |

Figure A1 depicts the expected sample size (ESS) curves of the above designs, along with the optimised Gehan designs presented in the main manuscript. Figure A2 contains the conditional expected length (CEL) curves of the same four designs. We can see that, as noted, it is difficult in this instance to argue that either of the Gehan designs should be preferred.


Figure A1: Shows the $\operatorname{ESS}(\pi)$ curves for Gehan's designs using the original and conservative methods for specifying $\hat{\pi}$ in $f_{G}$, and Simon's null-optimal and minimax designs with $f_{1}=0$.

## Modifying the interim stopping rule in Gehan's design

In this section, we describe a logical method by which the interim stopping rule in Gehan's design could be modified in order to decrease the probability stage two is commenced. One may hope that this would increase the efficiency of the design when $\pi_{0}$ and $\pi_{1}$ are large.

We implement a stopping rule of $S_{1} \leq f_{1}$, with $f_{1}$ a function of $n_{1}$ and $\pi_{0}$, which we denote by $f_{1}\left(n_{1}\right)$. Precisely, a value $\alpha_{1}$ is specified, and then $f_{1}\left(n_{1}\right)$ is chosen as

$$
\begin{equation*}
\underset{f_{1} \in \mathbb{N}^{+}}{\operatorname{argmin}}\left\{\mathbb{P}\left(S_{1}>f_{1} \mid n_{1}, \pi_{0}\right) \leq \alpha_{1}\right\}, \tag{0.1}
\end{equation*}
$$



Figure A2: Shows the $E L\left(\pi \mid S_{1}>f_{1}\right)$ curves for Gehan's designs using the original and conservative methods for specifying $\hat{\pi}$ in $f_{G}$, and Simon's null-optimal and minimax designs with $f_{1}=0$.
where $\mathbb{P}\left(S_{1}>f_{1} \mid n_{1}, \pi_{0}\right)=1-B\left(f_{1} \mid n_{1}, \pi_{0}\right)$. That is, $f_{1}$ is chosen to ensure the probability stage-two is commenced when $\pi=\pi_{0}$ is at most $\alpha_{1}$. Then, $n_{1}$ can be chosen as the solution to

$$
\begin{equation*}
\underset{n_{1} \in \mathbb{N}^{+}}{\operatorname{argmin}}\left[\mathbb{P}\left\{S_{1} \leq f_{1}\left(n_{1}\right) \mid n_{1}, \pi_{1}\right\} \leq \beta_{1}\right] \tag{0.2}
\end{equation*}
$$

and the $n_{2}\left(s_{1}\right)$ and the $D\left(s_{1}\right)$ optimised in the same manner as before. In practice, $\alpha_{1}$ could be chosen based upon the probability of early termination in a corresponding Simon two-stage design. Note that setting $\alpha_{1} \geq 1$ reduces the design to Gehan's original proposal.

As was noted, however, the problem with this approach in practice is that as $\alpha_{1}$ is decreased the resulting value of $n_{1}$ will increase. Consequently, the overall efficiency of the design may not improve. We demonstrate this here for an example with $\pi_{0}=0.3, \pi_{1}=0.5, \beta_{1}=0.05, \gamma=0.1$, and $\alpha=0.1$. We identified the optimised Gehan designs for $\alpha_{1} \in\{1,0.8,0.7,0.6,0.575,0.5,0.45,0.4\}$, which result in the unique possible values of $f_{1}$. The ESS and CEL curves of these designs are given in Supplementary Figures A3 and A4 respectively. As can be seen, the performance of the original design with $f_{1}=0$, is not dissimilar to those with $f_{1} \in\{1,2,3\}$.

Note that an attempt to rectify the above by increasing $f_{1}$ whilst holding $n_{1}$ constant is unlikely to be useful, as the power of the resulting design would be expected to drop markedly.

## Design comparison based on Lorenzen et al. (2008)

Here, we focus on design for our motivating scenario based on Lorenzen et al. (2008), for which $\beta_{1}=0.05$, $\pi_{1}=0.3, \pi_{1}=0.5$, and $\gamma=0.1$. In this case, our optimal version of Gehan's design when using the original approach to specfiying $\hat{\pi}$ in $f_{G}$ has $n_{1}=5$ and

$$
\begin{aligned}
D(0) & =0, D(1)=0.0480, D(2)=0.0596, D(3)=0.1941, D(4)=D(5)=1, \\
n_{2}(0) & =0, n_{2}(1)=20, n_{2}(2)=18, n_{2}(3)=8, n_{2}(4)=n_{2}(5)=0, \\
P\left(\pi_{0}\right) & =0.092, P\left(\pi_{1}\right)=0.664, \\
E S S\left(\pi_{0}\right) & =18.82, E S S\left(\pi_{1}\right)=16.25 .
\end{aligned}
$$

Using the conservative approach instead, we find

$$
\begin{aligned}
D(0) & =0, D(1)=0.0480, D(2)=0.0839, D(3)=0.3345, D(4)=0.3920, D(5)=0.4656 \\
n_{2}(0) & =0, n_{2}(1)=20, n_{2}(2)=n_{2}(3)=19, n_{2}(4)=20, n_{2}(5)=18 \\
P\left(\pi_{0}\right) & =0.100, P\left(\pi_{1}\right)=0.767 \\
E S S\left(\pi_{0}\right) & =21.19, E S S\left(\pi_{1}\right)=23.69
\end{aligned}
$$



Figure A3: Shows the $\operatorname{ESS}(\pi)$ curves for Gehan's designs using the conservative method for specifying $\hat{\pi}$ in $f_{G}$, with differing values of $\alpha_{1}$. The lines are labelled in the form $\alpha_{1}\left(f_{1} / n_{1}\right)$.


Figure A4: Shows the $E L\left(\pi \mid S_{1}>f_{1}\right)$ curves for Gehan's designs using the conservative method for specifying $\hat{\pi}$ in $f_{G}$, with differing values of $\alpha_{1}$. The lines are labelled in the form $\alpha_{1}\left(f_{1} / n_{1}\right)$.

Suppose that once more we desire $80 \%$ power, then these modified Gehan designs are again unable to provide that required. Therefore, as in the main manuscript, we search for the maximal $\gamma$ such that $P\left(\pi_{1}\right) \geq 0.8$. Completing this search, for the original method, we find that $\gamma=0.0805$ gives a design with $n_{1}=5$ and

$$
\begin{aligned}
D(0) & =0, D(1)=0.0437, D(2)=0.0534, D(3)=0.2784, D(4)=D(5)=1, \\
n_{2}(0) & =0, n_{2}(1)=33, n_{2}(2)=31, n_{2}(3)=15, n_{2}(4)=n_{2}(5)=0, \\
P\left(\pi_{0}\right) & =0.099, P\left(\pi_{1}\right)=0.810 \\
E S S\left(\pi_{0}\right) & =28.44, E S S\left(\pi_{1}\right)=24.53 .
\end{aligned}
$$

Whilst for the conservative method we find that $\gamma=0.0943$ gives a design with $n_{1}=5$ and

$$
\begin{aligned}
D(0) & =0, D(1)=0.0546, D(2)=0.1201, D(3)=0.2291, D(4)=0.3819, D(5)=0.8016 \\
n_{2}(0) & =0, n_{2}(1)=n_{2}(2)=n_{2}(3)=n_{2}(4)=23, n_{2}(5)=21 \\
P\left(\pi_{0}\right) & =0.099, P\left(\pi_{1}\right)=0.812 \\
E S S\left(\pi_{0}\right) & =24.13, E S S\left(\pi_{1}\right)=27.22
\end{aligned}
$$

We now assess whether the optimal Gehan designs have better statistical characteristics than Simon's designs. Therefore, note that in this case Simon's designs are

$$
\begin{array}{r}
\text { Null-optimal : } f_{1}=5, n_{1}=15, f_{2}=12, n_{2}=17 \\
\text { Minimax : } f_{1}=3, n_{1}=12, f_{2}=11, n_{2}=16
\end{array}
$$

Thus, the conservative approach based Gehan design actually has a smaller maximal sample size than Simon's null-optimal design, and the same maximal sample size as the minimax design. To examine the required sample sizes of these designs further, we present their ESS curves in Figure A5. Here, the Gehan designs are again more efficient at low values of $\pi$ because of their smaller value of $n_{1}$. Moreover, the Gehan design based on the original approach is the most efficient when $\pi=\pi_{1}$. However, there is a large region around $\pi=0.3$ in which the Gehan designs are expected to require a substantially larger number of participants.

Our next consideration is again whether the Gehan designs estimate $\pi$ to a better precision than Simon's designs when we do not stop for futility at the end of stage one. In Figure A6 we therefore compare the four CEL curves. Here, the CEL curve for the Gehan design with the conservative approach is always below the curves for Simon's designs. Thus, in the case where we anticipate a high response rate, when this Gehan design is expected to required fewer patients, it may be considered better than


Figure A5: Shows the $E S S(\pi)$ curves for Gehan's designs using the original and conservative methods for specifying $\hat{\pi}$ in $f_{G}$, and Simon's null-optimal and minimax designs.
the null-optimal and minimax Simon designs.


Figure A6: Shows the $E L\left(\pi \mid S_{1}>f_{1}\right)$ curves for Gehan's designs using the original and conservative methods for specifying $\hat{\pi}$ in $f_{G}$, and Simon's null-optimal and minimax designs.

