
Additional file 1 for “Re-formulating Gehan’s design

as a flexible two-stage single-arm trial” by Grayling

and Mander

Survey of studies utilising Gehan’s design

In order to assess the number of times Gehan’s design has been used in published studies, we performed

a survey of the articles that have cited his 1961 paper in the last ten years according to Google Scholar,

and additionally searched and reviewed the PubMed Central articles containing “Gehan” over the same

time period.

Firstly, Google Scholar (https://scholar.google.co.uk/) was used on September 30 2018 to identify

records citing Gehan’s paper from January 1 2008 onwards (using the ‘Custom range’ field). Two hundred

such records were acquired, which were exported first to Mendeley using the Mendeley Web Importer,

and subsequently to a .csv file.

Similarly, PubMed Central was searched on September 30 2018 in order to identify any articles with

a publication date of January 1 2008 or later that have contained “Gehan” in any field [search: (Gehan)

AND (“2008/01/01”[Publication Date] : “2018/09/30”[Publication Date])]. One thousand eight hundred

and seventy two records were extracted to an additional .csv file.

Each of the records was reviewed by MJG to determine which identified themselves as having used

Gehan’s methodology, or a modified version there of. Where any confusion arose around the classification,

a decision was made jointly with APM. We provide the results of our survey as Additional file 2.

Ultimately, two records acquired via Google Scholar were found to be duplicates of other citing

articles, four to not be published articles (e.g., they were slides from a conference presentation), and one

was excluded because its publication date fell outside of the considered range. We were unable to review

20 records; 11 because they were not written in English, and nine because we were unable to retrieve

the full article. Of the other records, 52 were identified that used Gehan’s design or a modified Gehan

design.
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Additional results on the power of Gehan’s design

Here, we provide the type-I error-rate, power, and values of ESS(π0) and ESS(π1) of the optimised

Gehan designs, for additional parameter combinations. Precisely, in Table A1 the results correspond to

(β1, γ, π1) ∈ {0.05, 0.1} × {0.05, 0.1} × {0.35, 0.4, 0.45, . . . , 0.7} with π0 = π1 − 0.15. Similarly, Table A2

corresponds to (β1, γ, π1) ∈ {0.05, 0.1}×{0.05, 0.1}×{0.25, 0.3, 0.35, . . . , 0.7} with π0 = π1−0.2, Table A3

to (β1, γ, π1) ∈ {0.05, 0.1} × {0.05, 0.1} × {0.3, 0.35, 0.4, . . . , 0.7} with π0 = π1 − 0.25, and Table A4 to

(β1, γ, π1) ∈ {0.05, 0.1}× {0.05, 0.1}× {0.35, 0.4, 0.45, . . . , 0.7} with π0 = π1 − 0.3. In all cases, α = 0.05,

and results are provided for both the original and conservative methods for specifying π̂ at the end of

stage one in Gehan’s original fG.

We observe that when using the conservative approach to specifying π̂, in no instance is the optimi-

sation procedure unable to identify a design that controls the type-I error-rate to below 0.05. However,

this is not the case for the original approach, through which the value of n1 is frequently too small for

a discrete conditional error function (DCEF) to exist which controls the type-I error-rate, particularly

when π0 is large.

In addition, as noted in the main manuscript, there are several instances in which P (π0)� α. There

does not appear to be a clear pattern as to when this occurs, but it does happen more often with the

original, rather than conservative, method for specifying π̂ at the end of stage one.

Comparison of two-stage group sequential designs with f1 = 0 to

Gehan’s design

In the main manuscript, we noted that Gehan’s design may appear preferable to Simon’s designs when

the response rate is small, but that a non-optimal two-stage group sequential design may often exist that

has similar performance. Here, we elaborate on this point. Consider again the parameters motivated by

Dupuis-Girod et al. (2012); β1 = 0.1, π0 = 0.15, π1 = 0.3, γ = 0.1, α = 0.05, and β = 0.2.

Searching over two-stage group-sequential designs with a maximal allowed sample size of 100 patients,

there are 114932 designs that meet the desired type-I error-rate and power. Of these, 10270 have f1 = 0.

Amongst these, that with the smallest sample size under H0 (the ‘null-optimal design with f1 = 0’), and

that with the smallest maximal sample size (the ‘minimax design with f1 = 0’), have the following design

parameters

Null-optimal design with f1 = 0 : n1 = 7, f2 = 12, n2 = 47,

Minimax design with f1 = 0 : n1 = 10, f2 = 11, n2 = 38.
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Figure A1 depicts the expected sample size (ESS) curves of the above designs, along with the optimised

Gehan designs presented in the main manuscript. Figure A2 contains the conditional expected length

(CEL) curves of the same four designs. We can see that, as noted, it is difficult in this instance to argue

that either of the Gehan designs should be preferred.
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Figure A1: Shows the ESS(π) curves for Gehan’s designs using the original and conservative methods
for specifying π̂ in fG, and Simon’s null-optimal and minimax designs with f1 = 0.

Modifying the interim stopping rule in Gehan’s design

In this section, we describe a logical method by which the interim stopping rule in Gehan’s design could

be modified in order to decrease the probability stage two is commenced. One may hope that this would

increase the efficiency of the design when π0 and π1 are large.

We implement a stopping rule of S1 ≤ f1, with f1 a function of n1 and π0, which we denote by f1(n1).

Precisely, a value α1 is specified, and then f1(n1) is chosen as

argmin
f1∈N+

{P(S1 > f1|n1, π0) ≤ α1}, (0.1)
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Figure A2: Shows the EL(π | S1 > f1) curves for Gehan’s designs using the original and conservative
methods for specifying π̂ in fG, and Simon’s null-optimal and minimax designs with f1 = 0.

8



where P(S1 > f1|n1, π0) = 1 − B(f1|n1, π0). That is, f1 is chosen to ensure the probability stage-two is

commenced when π = π0 is at most α1. Then, n1 can be chosen as the solution to

argmin
n1∈N+

[P{S1 ≤ f1(n1)|n1, π1} ≤ β1], (0.2)

and the n2(s1) and the D(s1) optimised in the same manner as before. In practice, α1 could be chosen

based upon the probability of early termination in a corresponding Simon two-stage design. Note that

setting α1 ≥ 1 reduces the design to Gehan’s original proposal.

As was noted, however, the problem with this approach in practice is that as α1 is decreased the

resulting value of n1 will increase. Consequently, the overall efficiency of the design may not improve.

We demonstrate this here for an example with π0 = 0.3, π1 = 0.5, β1 = 0.05, γ = 0.1, and α = 0.1.

We identified the optimised Gehan designs for α1 ∈ {1, 0.8, 0.7, 0.6, 0.575, 0.5, 0.45, 0.4}, which result in

the unique possible values of f1. The ESS and CEL curves of these designs are given in Supplementary

Figures A3 and A4 respectively. As can be seen, the performance of the original design with f1 = 0, is

not dissimilar to those with f1 ∈ {1, 2, 3}.

Note that an attempt to rectify the above by increasing f1 whilst holding n1 constant is unlikely to

be useful, as the power of the resulting design would be expected to drop markedly.

Design comparison based on Lorenzen et al. (2008)

Here, we focus on design for our motivating scenario based on Lorenzen et al. (2008), for which β1 = 0.05,

π1 = 0.3, π1 = 0.5, and γ = 0.1. In this case, our optimal version of Gehan’s design when using the

original approach to specfiying π̂ in fG has n1 = 5 and

D(0) = 0, D(1) = 0.0480, D(2) = 0.0596, D(3) = 0.1941, D(4) = D(5) = 1,

n2(0) = 0, n2(1) = 20, n2(2) = 18, n2(3) = 8, n2(4) = n2(5) = 0,

P (π0) = 0.092, P (π1) = 0.664,

ESS(π0) = 18.82, ESS(π1) = 16.25.

Using the conservative approach instead, we find

D(0) = 0, D(1) = 0.0480, D(2) = 0.0839, D(3) = 0.3345, D(4) = 0.3920, D(5) = 0.4656,

n2(0) = 0, n2(1) = 20, n2(2) = n2(3) = 19, n2(4) = 20, n2(5) = 18,

P (π0) = 0.100, P (π1) = 0.767,

ESS(π0) = 21.19, ESS(π1) = 23.69.
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Figure A3: Shows the ESS(π) curves for Gehan’s designs using the conservative method for specifying
π̂ in fG, with differing values of α1. The lines are labelled in the form α1 (f1/n1).
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Figure A4: Shows the EL(π | S1 > f1) curves for Gehan’s designs using the conservative method for
specifying π̂ in fG, with differing values of α1. The lines are labelled in the form α1 (f1/n1).
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Suppose that once more we desire 80% power, then these modified Gehan designs are again unable to

provide that required. Therefore, as in the main manuscript, we search for the maximal γ such that

P (π1) ≥ 0.8. Completing this search, for the original method, we find that γ = 0.0805 gives a design

with n1 = 5 and

D(0) = 0, D(1) = 0.0437, D(2) = 0.0534, D(3) = 0.2784, D(4) = D(5) = 1,

n2(0) = 0, n2(1) = 33, n2(2) = 31, n2(3) = 15, n2(4) = n2(5) = 0,

P (π0) = 0.099, P (π1) = 0.810,

ESS(π0) = 28.44, ESS(π1) = 24.53.

Whilst for the conservative method we find that γ = 0.0943 gives a design with n1 = 5 and

D(0) = 0, D(1) = 0.0546, D(2) = 0.1201, D(3) = 0.2291, D(4) = 0.3819, D(5) = 0.8016,

n2(0) = 0, n2(1) = n2(2) = n2(3) = n2(4) = 23, n2(5) = 21,

P (π0) = 0.099, P (π1) = 0.812,

ESS(π0) = 24.13, ESS(π1) = 27.22.

We now assess whether the optimal Gehan designs have better statistical characteristics than Simon’s

designs. Therefore, note that in this case Simon’s designs are

Null-optimal : f1 = 5, n1 = 15, f2 = 12, n2 = 17,

Minimax : f1 = 3, n1 = 12, f2 = 11, n2 = 16.

Thus, the conservative approach based Gehan design actually has a smaller maximal sample size than

Simon’s null-optimal design, and the same maximal sample size as the minimax design. To examine the

required sample sizes of these designs further, we present their ESS curves in Figure A5. Here, the Gehan

designs are again more efficient at low values of π because of their smaller value of n1. Moreover, the

Gehan design based on the original approach is the most efficient when π = π1. However, there is a large

region around π = 0.3 in which the Gehan designs are expected to require a substantially larger number

of participants.

Our next consideration is again whether the Gehan designs estimate π to a better precision than

Simon’s designs when we do not stop for futility at the end of stage one. In Figure A6 we therefore

compare the four CEL curves. Here, the CEL curve for the Gehan design with the conservative approach

is always below the curves for Simon’s designs. Thus, in the case where we anticipate a high response

rate, when this Gehan design is expected to required fewer patients, it may be considered better than
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Figure A5: Shows the ESS(π) curves for Gehan’s designs using the original and conservative methods
for specifying π̂ in fG, and Simon’s null-optimal and minimax designs.

13



the null-optimal and minimax Simon designs.

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00
π

E
L

(π
 | 

S
1 

>
 f

1)

Null−optimal  Minimax  

Gehan, original   Gehan, conservative   

Figure A6: Shows the EL(π | S1 > f1) curves for Gehan’s designs using the original and conservative
methods for specifying π̂ in fG, and Simon’s null-optimal and minimax designs.
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