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Abstract

Gallium arsenide is piezoelectric, so it is possible to generate coupled mechan-

ical and electrical surface acoustic waves (SAWs) by applying a high-frequency

voltage to a transducer on the surface of GaAs. By combining SAWs with existing

low-dimensional nanostructures one can create a series of dynamic quantum dots

corresponding to the minima of the travelling electric wave, and each dot carries

a single electron at the SAW velocity (∼ 2800 m/s). These devices may be of

use in developing future quantum information processors, and also offer an ideal

environment for probing the quantum mechanical behaviour of single electrons.

This thesis describes a numerical and theoretical study of the dynamics of

an electron in a range of geometries. The numerical techniques for solving the

time-dependent Schrödinger equation with an arbitrary time-dependent potential

will be described in Chapter 2, and then applied in Chapter 3 to calculate the

transmission of an electron through an Aharonov-Bohm (AB) ring. It will be

seen that an important property of the techniques used in this thesis is that they

can be easily adapted to study realistic geometries, and we will see features in

the AB oscillations which do not arise in simplified analytic descriptions.

In Chapter 4, we will then study a device consisting of two parallel SAW

channels separated by a controllable tunnelling barrier. We will use numerical

simulations to investigate the effect of electric and magnetic fields upon the elec-

tron dynamics, and develop an analytic model to explain the simulation results.

From the model, it will be apparent that it is possible to use this device to rotate

the state of the electron to an arbitrary superposition of the first two eigenstates.

We then introduce coherent and squeezed states in Chapter 5, which are ex-

cited states of the quantum harmonic oscillator. Coherent and squeezed electronic

states may be of use in quantum information processing, and could also arise due

to unwanted perturbations in a SAW device. We will discuss how these states



can be controllably generated in a SAW device, and also discuss how they could

then be detected.

In Chapter 6 we describe how to use the motion of a SAW to create a rapidly-

changing potential in the frame of the electron, leading to a nonadiabatic excita-

tion. The nonadiabatically-excited state oscillates from side to side within a 1D

channel on a few-picosecond timescale, and this motion can be probed by placing

a tunnelling barrier at one side of the channel. Numerical simulations will be

performed to show how this motion can be controlled, and the simulation results

will be seen to be in good agreement with recent experimental work performed

by colleagues. Finally, we will show that this device can be used to measure the

initial state of an electron which is an arbitrary superposition of the first two

eigenstates.
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Those who are not shocked

when they first come across

quantum theory cannot pos-

sibly have understood it.

Niels Bohr

1
Introduction

1.1 Quantum information processing

In 1936, Turing [1] laid the foundations for much of modern computer science

when he introduced what is now generally called a Turing Machine (TM). Turing

introduced TMs in order to study the notion of computability. Although this is

a difficult notion to define formally, intuitively a problem is computable if one

can define a series of instructions (i.e., an algorithm) which will result in the

completion of the task if followed. The Church-Turing thesis states that a TM

can perform any computable task, and so Turing Machines have proven to be of

great interest in computer science.

A TM consists of a number of components. Firstly, they have a tape which

can in principle be of infinite length. The tape is divided into a series of cells

each of which can contain a letter taken from some finite alphabet. A head is

able to read and write symbols on the tape, and can also move left and right

along the tape. At any stage in the algorithm the machine is in one of a finite
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number of states, and the behaviour of the system depends upon both the current

state and the symbol read at the current position of the head. Thus, one step

of an algorithm might be of the form: given that the current state is 16, if the

symbol under the head is “A” then move one position left and change to state 23,

whilst if the current symbol is “B” then change it to “C” and change to state 7.

Despite the apparent simplicity of this description, all modern computers can be

thought of as Turing Machines (although a TM may have an unlimited amount

of storage space, so not all TMs are physically realisable). The majority of digital

computers use binary logic and so use an alphabet consisting of only two symbols,

typically labelled 0 and 1.

There exist many problems which could in principle be solved using a conven-

tional computer but would in practice take an impractically long time to solve.

An oft-cited example is finding the prime factors of large composite numbers; the

difficulty of finding such factors is the basis for the widely-used RSA encryption

algorithm [2]. Another problem which is very difficult to solve using classical

computers is the simulation of many-body quantum mechanical systems, because

the computational time required quickly increases with the number of particles

considered. This is because the state of an ensemble of N particles each with m

accessible quantum levels is described by a mN dimensional complex vector, and

so the Hamiltonian is represented as an mN by mN matrix.

One of the main reasons for simulating physical systems (quantum mechani-

cal ones or otherwise) is that it is possible to investigate the effect of a range of

assumptions and abstractions in order to develop a simple model for a seemingly

complicated system. It may also be difficult to probe the system experimentally,

perhaps because the characteristic length or time scales of the problem are dif-

ficult to access. Simulations may also provide information which cannot even

in principle be found experimentally – for example, a simulation of a quantum

system might provide the full wavefunction |ψ〉 whereas any measurable quantity

depends only upon the probability density |〈ψ|ψ〉|2.

None the less, instead of simulating a quantum mechanical system one could

in principle take the quantum system and measure its properties, thereby making

use of quantum mechanical behaviour to acquire the desired information. This

observation led Feynman [3] to suggest the possibility of a general quantum me-
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chanical processor, or quantum computer, which exploits quantum mechanical

phenomena to both store data and perform operations on that data. These ideas

were further developed by Deutsch [4], and quantum algorithms for solving some

problems which are in practice intractable using classical computers have been

developed – for example, Shor’s algorithm [5] for factoring large numbers and

Grover’s algorithm [6] for searching a database. The basic unit of information

in a quantum computer is the quantum bit, or qubit, which is an arbitrary su-

perposition of two quantum states: α|0〉 + β|1〉. Although there have also been

proposals for quantum computation schemes based on d-level quantum systems,

known as qudits, these will not be discussed here. As was remarked upon earlier,

a system of N entangled qubits is extremely difficult to simulate classically be-

cause of the large Hilbert space needed to describe it, but this is also the origin

of the power of quantum computers.

All physical manipulations of quantum states are written as unitary matrices:

single qubit operations are most easily visualised using the Bloch sphere repre-

sentation (see Section (1.1.1)), whilst an example of a two-qubit operation is the

CNOT (controlled-NOT) gate: this gate flips the state of the second (or target)

qubit if the first (or control) qubit is |1〉 whilst leaving it unchanged if the control

qubit is |0〉. This operation can be written in a matrix representation:

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.1)

where the basis is |00〉, |01〉, |10〉, |11〉 (the state |ij〉 corresponds to the first and

second qubits having state |i〉 and |j〉 respectively). DiVincenzo [7] suggested a

set of five criteria which must be satisfied by any realistic implementation of a

quantum processor:

• The existence of a well-defined two-level system, such as the two

spin states of a spin-1
2

particle, which are used to represent the states |0〉
and |1〉.
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• Initialisation: it must be possible to prepare a known quantum state prior

to the quantum computation, such as the ground state.

• Measurement: it must be possible to measure the state of a single qubit.

• Universal set of gates: it must be possible to controllably perform an

arbitrary unitary transformation. It can be shown [8] that single qubit ro-

tations about two orthogonal axes combined with the CNOT gate provides

a universal set of gates.

• Coherence: the system must not be subject to excessive decoherence (for

example, through interactions with the surrounding environment) over the

course of the computation.

From these five criteria it is seen that the development of quantum infor-

mation processing (QIP) is intimately linked to many aspects of fundamental

quantum mechanics. Studying QIP thus not only offers great potential for future

computing devices but is of importance for understanding fundamental quantum

mechanics. This thesis will be concerned with a theoretical and computational

study of electron dynamics in semiconductor nanostructures, and in particular

we will study devices which use acoustic waves travelling across the surface of

GaAs to transport single electrons. The remainder of this chapter will introduce

the properties of these semiconductor devices, as well as examining some further

motivating factors for studying these systems and then explaining the motives

behind using a theoretical approach.

1.1.1 Bloch sphere representation

The Bloch sphere is a convenient geometric representation of a two-level quan-

tum system and so will be used in much of the work that follows. Noting that

global phase factors have no observable effects, an arbitrary two-level state can

be written

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (1.2)

where 0 ≤ θ < π and 0 ≤ φ < 2π define a point on a three-dimensional unit

sphere with the |0〉 and |1〉 basis states at the poles (see Fig. 1.1). θ and φ are
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Figure 1.1: Bloch sphere representation of a two-level system.

the conventional angles in spherical polar co-ordinates. This mapping is possible

because there is a homomorphism between SO(3) and SU(2) (specifically, SU(2)

is a double cover of SO(3), which is the reason why Eq. (1.2) uses θ/2 rather

than θ). The generators of SU(2) are the Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (1.3)

The Bloch sphere description allows us to represent any unitary operation (up to

a global phase change) as a rotation on the Bloch sphere: a rotation through an

angle χ about the unit vector n is given by [8]

Rn(χ) = e−iχn·σ/2 = I cos
χ

2
− in · σ sin

χ

2
(1.4)

where σ = (σx, σy, σz). This also shows that the Pauli matrix σi produces a

rotation about the ith axis of the Bloch sphere. Much of the work in this thesis

will be concerned with solving the time-dependent Schrödinger equation (TDSE),

and the formal solution to the TDSE involves the exponent of the Hamiltonian

(which can be written as a linear combination of the σi). Equation (1.4) will

therefore allow us to easily interpret the time evolution geometrically.
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1.1.2 Unconventional quantum computing

The scheme for quantum computation discussed above requires one to perform

a series of well-defined unitary operations on an initial quantum state. Other

schemes, often referred to as “unconventional” quantum computing, have also

been studied as possible ways of creating a quantum information processor, and

we briefly discuss two such schemes here.

Adiabatic quantum computing

If a quantum system is initially in the ground state of a Hamiltonian which is

then varied with time, it will remain in the instantaneous ground state if the

time evolution is slow enough (i.e., adiabatic) [9]. This is a consequence of the

quantum adiabatic theorem, which will be discussed in more detail in Chapter 6.

Farhi et al. [10] proposed that this fact could be used to solve quantum compu-

tation problems. One begins with a system in the ground state of a Hamiltonian

Hi which is easy to reach, for example by thermal relaxation. The system is

then changed smoothly with time so that the Hamiltonian becomes Hf , where

Hf is carefully chosen to have a ground state which encodes the solution to the

problem being considered. Although the original problem considered in Ref. [10]

was an optimisation problem, Aharonov et al. [11] showed that adiabatic quan-

tum computation is equivalent to standard quantum computation. Experimental

demonstrations of adiabatic quantum computation include solving an optimisa-

tion problem [12], simulating a Heisenberg spin chain [13], implementing Grover’s

algorithm [14] and factoring a composite number [15].

Geometric quantum computing

A major practical problem in building a working quantum computer is decoher-

ence, which can rapidly introduce errors into a calculation. One of the funda-

mental operations in QIP is controllably changing the phase of a quantum state.

Holonomic quantum computation [16] performs a global rotation of a quantum

state vector without locally rotating it as seen in Fig. (1.2). This requires the

adiabatic transport of a state vector around some loop in a curved Hilbert space.
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Figure 1.2: Illustration of “global rotation without local rotation”. The state vector
(shown in red) is adiabatically transported around a closed loop (blue) on the surface
of a sphere in such a way that the angle between the vector and each loop segment is
constant. The final vector Vf is rotated with respect to the initial vector Vi, so a “global
rotation” has occurred. Taken from Ref. [24].

The angle between the state vector and a segment of the loop is constant (so there

is no local rotation) but the final state is rotated with respect to the initial state

(so a global rotation has been performed). This rotation is equivalent to per-

forming a unitary transformation [17]; the transformation depends only upon the

geometric properties of the loop and is independent of the time taken to traverse

the loop. Also, because the transformation is a property only of the geometry of

the loop, it is insensitive to local errors. For example, the spin of an electron may

experience a randomly fluctuating magnetic field from nearby nuclei. Although

this alters the dynamical phase of the electron, it may be possible to counteract

this – for example, by using spin-echo techniques in the case of NMR [18, 19].

The geometric phase acquired is not affected by the fluctuating magnetic field, so

geometric quantum computation is resilient against some of the errors which are

a problem in conventional quantum computing. A number of physical systems

have been considered for implementing a geometric quantum computer, including

the optical manipulation of atoms [20] and ions [21], or solid state systems such

as Josephson junctions [22] and GaAs quantum dots [23].

�



1.2 Classical and quantum physics 8

Both of these unconventional quantum computing schemes rely upon the adia-

batic manipulation of a quantum state. In Chapter 6 it will be seen that the issue

of what exactly constitutes an adiabatic transformation in quantum mechanics

is unclear at present. Some consequences of nonadiabatic evolution will then be

investigated, and it will be seen that nonadiabatic transitions can produce states

which may themselves be useful as a QIP resource.

1.2 Classical and quantum physics

Although quantum mechanics is an extremely successful mathematical theory,

some unresolved issues still exist concerning its physical interpretation. Macro-

scopic objects obey the laws of classical mechanics, which has a number of funda-

mental differences with quantum mechanics. Some of the mathematical structure

of quantum mechanics has direct analogues in classical mechanics – for exam-

ple, some quantum mechanical Hamiltonians can be “derived” (in some sense)

from classical mechanics by promoting the classical degrees of freedom to Her-

mitian operators. Although the correspondence principle [25] states that when

quantum numbers become large the behaviour of quantum systems reproduces

classical physics, it is unclear how to fully describe the transition from quantum

to classical mechanics.

The quantum-to-classical transition is closely related to the so-called measure-

ment problem in quantum mechanics. There are a range of quantum measurement

frameworks which describe different regimes, such as the von Neumann projec-

tive measurement, quantum non-demolition measurements [26] and weak mea-

surements [27]. However, the question of what precisely occurs when a quantum

system is measured is still not fully answered, as exemplified by the Schrödinger’s

cat and Wigner’s friend gedankenexperiments. In general terms, a measurement

must somehow involve the transfer of information from the measured system to

an observer, and by “observer” one normally means a macroscopic classical object

(whether it be some piece of apparatus such as a photodiode or ammeter, or a

person). Thus, understanding the processes that occur when a quantum system

is measured requires an understanding of the interface between the quantum and

classical worlds.



1.3 Semiconductor devices 9

It will be seen in Chapter 5 that Gaussian quantum mechanical wavepackets

possess a number of properties which are very similar to classical particles. Study-

ing Gaussian wavepackets may yet shed light upon the quantum measurement

problem (see Ref. [28] for a review and introduction), and Gaussian wavepackets

also appear frequently in many branches of quantum information processing be-

cause they are the ground state of harmonic oscillators. The theme of studying

Gaussian wavepackets will reappear throughout this thesis, and we will encounter

a number of ways in which they can be created, manipulated and measured.

1.3 Semiconductor devices

Having given some motivation for the study of quantum mechanical systems, we

now turn to the topic of using physical systems to investigate some of the issues we

have raised. It has been proposed that qubits could be made in a range of physical

systems, including devices based on NMR [29, 30], ion traps [31], superconductors

[32], semiconductor devices [33] and linear optics [34]. This thesis will focus on

semiconductor devices, which have a number of advantages compared to other

material systems. Because semiconductors form the basis of almost all modern

electronics there exists a great deal of mature technology to fabricate complicated

semiconductor devices. Also, an important consideration for future QIP devices

is the scalability of the underlying technology – any practical quantum computer

must consist of many qubits, and so it must be possible to scale any physical

implementation from one to many qubits. Again, given the breadth of existing

knowledge concerning the fabrication of semiconductor devices they present an

attractive avenue for QIP research.

The devices we will consider in this work are based upon GaAs/AlxGa1−xAs

heterostructures (where x ≈ 0.3) which have a two-dimensional electron gas

(2DEG) near to the GaAs/AlGaAs interface. A typical example of a heterostruc-

ture is illustrated in Fig. 1.3. These heterostructures are created by molecular

beam epitaxy (MBE), which can deposit atomic monolayers of different sub-

stances onto a wafer. GaAs has a zincblende crystal structure, which consists of

a face centered cubic (f.c.c.) lattice of Ga atoms, with another f.c.c. lattice of As

atoms displaced by (1
4
, 1

4
, 1

4
) from this. AlGaAs has a crystal structure identical to
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Figure 1.3: A typical heterostructure. A 2DEG forms in the grey region.

this, but with some fraction of the Ga sites occupied by Al. The lattice constant

of Al0.3Ga0.7As (5.65564 Å) is almost the same as that of GaAs (5.6533 Å) [35].

This discrepancy is small enough that there is very little mismatch between lay-

ers of GaAs and AlGaAs which would otherwise induce strain into the structure.

This in turn would produce an unwanted electrostatic field due to the piezoelec-

tric nature of GaAs (this piezoelectricity forms the basis for the production of

surface acoustic waves, to be discussed in Section (1.4)).

MBE is also used to selectively dope the AlGaAs with Si where it acts as an n-

type dopant because some of the Si dopants thermally ionise to donate electrons.

These electrons migrate to the interface between the GaAs and AlGaAs layers

– AlGaAs has a larger bandgap than GaAs, so the conduction band in GaAs is

offset to be at a lower energy than the conduction band in AlGaAs. The extra

negative charge that accumulates at the GaAs/AlGaAs interface causes the bands

to bend, creating an approximately triangular well. The Si dopant density is

chosen so that only the lowest eigenstate of this well lies below the Fermi energy

of the electrons confined there, leading to the formation of a two-dimensional
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Figure 1.4: Scanning electron microscope image of a SAW transducer. Image courtesy
of Mike Astley.

electron gas (2DEG). It should be noted that the Si donors are separated from

the 2DEG by an undoped AlGaAs layer, which decreases the scattering between

electrons in the 2DEG and the ionised donors.

1.4 Surface acoustic wave devices

Rayleigh [36] showed that it is possible to create acoustic waves which travel along

the surface of an elastic material; the amplitude of these surface acoustic waves

(SAWs) generally decays approximately exponentially with depth. Because GaAs

is piezoelectric it is possible to generate SAWs in GaAs with an oscillating electric

field. SAWs can be generated in practice by applying a radio-frequency voltage to

an interdigitated transducer deposited on the surface of GaAs; a scanning electron

microscope image of a SAW transducer is shown in Fig. (1.4). The wavelength of

the generated SAW is determined by the spacing of the transducer fingers, and

the SAW wavelength used throughout this work is λ = 1 µm. The speed of SAWs

in GaAs is vSAW ' 2800 m/s, and the relation v = fλ then sets the frequency at

f ' 2.8 GHz.

SAW transducers can be integrated with low-dimensional nanostructures, and

a schematic diagram of a SAW device is shown in Fig. (1.5). The SAW travels

across the surface of the semiconductor and encounters an etched mesa containing

a 2DEG, typically 90 nm below the surface. Surface gates are deposited on the
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Figure 1.5: Illustration of a SAW device (not to scale). Transducers are located at both
ends of the chip and generate SAWs when a radio-frequency voltage is applied to them.
A mesa (shown in blue) is defined by an etch, and gold surface gates are then deposited
on the mesa to define quasi-one-dimensional channels.
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mesa; when a negative voltage is applied to these gates they will deplete electrons

from the 2DEG beneath them. A simple example of a SAW device uses a pair of

gates separated by a narrow gap (a split gate) to create a quasi one dimensional

channel (Q1DC). SAWs can capture electrons from a 2DEG and transport them

through a pinched-off Q1DC, and by tuning the SAW power and split gate voltage

it is possible to ensure that each SAW minimum contains precisely N electrons

for integer values of N . This produces a quantised current I = Nef which leads

to possible metrological applications [37–39]. The combination of a travelling

SAW and a gate-defined channel leads to the formation of a series of dynamic

quantum dots, and the fact that it is possible to carry precisely one electron in

each of these dynamic quantum dots also means that they are a useful system for

studying QIP, as discussed in the following section.

1.4.1 SAW quantum computer

Barnes et al. [40] proposed that SAW devices could be used for quantum infor-

mation processing purposes. Their proposal is based upon using electrons trans-

ported in SAW minima as qubits, using either the spin or charge of the electrons.

In the case of a spin qubit, the spin of an electron transported in a single SAW

channel forms the qubit. It was proposed that single qubit operations could be

performed through the application of local magnetic fields via nanomagnets (the

fabrication of which is demonstrated in Ref. [41]), and two-qubit operations could

be performed by having two parallel SAW channels meet at a controllable tunnel

barrier. At the tunnel barrier the spins of neighbouring qubits would entangle,

and the interaction could be controlled by varying the voltages applied to the

gates defining the tunnel barriers. To read out the spins of the qubits at the end

of the device, two possibilities exist. If a hole gas is fabricated at the end of the

device, thereby forming a lateral np junction, the electrons carried by the SAW

will recombine with the holes in this region generating polarised photons [42].

Gell et al. [43] have measured SAW-mediated light emission from a lateral np

junction, and this work could be extended further to implement the proposal of

Ref. [42]. Alternatively, Elzerman et al. [44] have measured the spin of an electron

confined in a static quantum dot through spin-to-charge conversion. The electron



1.4 Surface acoustic wave devices 14

to be measured is allowed to tunnel onto the dot by lowering a tunnel barrier, and

upon raising this barrier the electron is then trapped in the dot. A perpendicular

magnetic field is also applied to lift the energy degeneracy of the two spin states.

The Fermi energy of a 2DEG outside a tunnel barrier is tuned to be between the

Zeeman-split levels, so one spin species is able to tunnel from the dot whilst the

other is trapped there. The charge contained in the dot therefore depends upon

the spin of the electron, and the charge state of the dot can be monitored by

measuring the conductance of a 1D channel adjacent to it [45]. The conductance

of such a channel is highly sensitive to changes in electrostatic potential, so if

an electron leaves the dot there is a measurable change in the 1D conductance.

Such a scheme could be incorporated into a SAW spin qubit device to measure

the final spin state of the electrons.

Alternatively, a single electron which can be present in one of two parallel

channels could be used as a charge qubit. The two logical qubit states correspond

to the electron being in one channel or the other. Qubit rotations are performed

in a similar manner to the spin qubit case, by having parallel SAW channels

meet at a controllable tunnel barrier. Depending on which pair of channels meet,

this corresponds to either a single-qubit rotation or a two-qubit rotation between

neighbouring qubits. This scheme is depicted in Fig. (1.6). Region A of the

figure illustrates a two qubit interaction, where two neighbouring qubits meet at

a barrier. The two qubits interact via the Coulomb interaction, but the tunnel

barrier between the channels is large enough to suppress tunnelling across the

barrier. Regions B and C in Fig. (1.6) perform single qubit rotations. Measuring

the final state of the qubits in this scheme is straightforward, as it only requires

measurement of the current exiting each SAW channel. A novel scheme for per-

forming charge-based quantum information processing in SAW devices will also

be presented in Chapter 6.

The coherent manipulation of electrons has previously been demonstrated in a

number of solid state systems, including quantum dots [46, 47] and superconduc-

tors [48, 49]. Bordone et al. [50] have also performed some preliminary numerical

simulations of electron dynamics in two-channel SAW devices. There are two

main advantages to using SAW devices as the basis of a quantum computer.

Firstly, each successive SAW minimum is an independent quantum processor, so
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Figure 1.6: Schematic diagram of two SAW charge qubits. The top two channels form
the first qubit and the bottom two channels form the second. Blue dots represent electron
probability density. Region A: two-qubit interaction. Regions B and C: single qubit
rotation.

given typical SAW operating frequencies of ∼ 3 GHz billions of nominally identi-

cal operations are performed each second. This therefore allows the possibility of

dealing with some error mechanisms by averaging the results from many succes-

sive calculations. Secondly, in principle such devices are reasonably easy to scale,

as incorporating more qubits only requires the fabrication of more parallel SAW

channels.

1.5 Motivation for a theoretical study

Experimental investigations of semiconductor devices have only a limited range

of available probes – for example, when measuring SAW devices one normally

measures the electrical current flowing through a gate-defined channel. This

current may depend upon a multitude of experimental variables, including the

voltages applied to each gate, the SAW amplitude, the temperature of the device,

an externally applied magnetic field, or other parameters which may be either

controllable or uncontrollable. Interpreting the effect of these external parameters

on the quantum mechanical evolution of an electron is thus an extremely difficult

task.

Performing simulations of the electron dynamics in nanostructures by numeri-

cally solving the Schrödinger equation can provide information which is not exper-

imentally accessible, including complete knowledge of the electron wave function.

From the wave function it is possible to calculate the probability that an electron

is to be found in one region or another, which in turn allows one to predict the
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flow of electrical currents. The results of such numerical simulations can thus be

easily compared to experimental results, but the advantage of the simulation is

that it allows one to see the underlying quantum mechanical origins of experimen-

tally accessible quantities. For example, a simulation may show that changing a

gate voltage leads to some particular excitation of the wave function, and hence

a change in the measured current. Performing theoretical simulations in parallel

with experimental measurements is thus an effective route to understanding.

Solving the time-dependent Schrödinger equation numerically with a general

time-dependent potential is a daunting prospect. Typical experimental methodol-

ogy requires measuring how properties of the system change as a function of many

input parameters. In order to compare the simulation results to the measured

data, the simulations need to be performed for thousands of different parameter

values. Given that the timescale for performing a single simulation is of the or-

der of hours, such an investigation requires the use of significant computational

resources. The simulations presented in this thesis therefore rely heavily upon

resources provided by the CamGrid project, which uses the Condor software [51]

to provide a computational cluster of approximately 1000 processors.

1.6 Outline of work

In Chapter 2 the numerical techniques which are used to perform the numeri-

cal calculations in the rest of this thesis will be presented. Finite-differencing

methods will be used to find a suitable representation of the Hamiltonian, and

the Crank-Nicolson algorithm will be used to calculate quantum mechanical time

evolution. These numerical techniques will then be applied to Aharonov-Bohm

rings in Chapter 3; although these have been the subject of theoretical study in

the past, the numerical techniques used in this work can be used to study effects

which only arise in realistic geometries. In particular, we will see the effect of the

Lorentz force upon Aharonov-Bohm oscillations, as well as the effect of gradually

including higher-order interference processes.

Following this, in Chapter 4 we will discuss a SAW device consisting of two

parallel channels separated by a controllable barrier. A detailed numerical inves-

tigation will be performed into the effect of firstly applying an electric field across
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the channels, and secondly applying a perpendicular magnetic field. It will be

seen from the numerical simulations that this leads to coherent oscillation of an

electron wavefunction between the channels, and a theoretical model to explain

this will be developed – the effect of the magnetic field will be included in this

model via an infinitesimal Aharonov-Bohm effect. From this model, it will be

seen that it is possible to perform an arbitrary single-qubit rotation of an elec-

tron in the two-channel SAW device using a geometry similar to a Mach-Zehnder

interferometer.

Chapter 5 will study coherent and squeezed states, which are represented by

Gaussian wavepackets. Although these states have been the subject of much

study in quantum optics, their electronic analogues have received comparatively

little attention. We will discuss how to generate these states in practice in SAW

devices, as well as extending the simulations performed in Chapter 4 to determine

what effect using these states has upon the coherent oscillations in a two-channel

SAW device. The results will show a distinctive pattern for the current from the

two SAW channels, which will be interpreted in light of the theoretical model in

the preceding chapter.

In Chapter 6, we will see that it is possible to use a SAW device to create a

rapidly-changing potential in the rest frame of an electron carried by the SAW;

this leads to a nonadiabatic excitation of the electron. The SAW is used to create

a series of dynamic quantum dots which are weakly coupled to a reservoir via a

tunnelling barrier. The nonadiabatically-excited state oscillates from side to side

within the dot, leading to a prediction of oscillatory behaviour in the tunnelling

current through the barrier. In order to test this idea, the results of numerical sim-

ulations will be compared to experimental measurements performed by Masaya

Kataoka and Mike Astley [52]. The tunnelling current will be seen to depend

upon the coupling between the reservoir and the dynamic dot, as well as upon

the low-energy spectrum of the dynamic dot. Both of these quantities depend

upon the voltages applied to the gates which define the tunnelling region, and the

dot spectrum will also change in a perpendicular magnetic field. Numerical sim-

ulations which account for the effect of the gate voltages will be performed, and

we will find good agreement between the simulations and the experimental data.

The behaviour of the tunnelling-current oscillations in a perpendicular magnetic
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field will be explained using an analytic result for the low-energy spectrum of the

dynamic dot.

We will then discuss potential applications of this tunnel barrier device in

QIP, focussing especially upon using the device to measure the state of an elec-

tron. Numerical simulations will show that the tunnelling current discussed above

provides information about the initial state of the electron: this current depends

upon both the initial electron state and the suddenness of the change in the po-

tential prior to the tunnelling region. In transitioning from an adiabatic to a

nonadiabatic change in the potential, a smooth evolution in the behaviour of the

tunnelling current will be seen. The tunnel barrier device can therefore be used

to probe the initial electron state across a wide parameter space, and it can also

be used to provide an indication of how nonadiabatic the change in potential is.

Finally, Chapter 7 will summarise the work and suggest some potential avenues

for future research.



Hilbert space is a big place

Carlton Caves

2
Numerical Methods

2.1 Introduction

One of the main goals of this work is to calculate numerical solutions of the time-

dependent Schrödinger equation (TDSE). We are interested in the dynamics of

an electron in 2D; the heterostructures discussed in Section (1.3) confine electron

motion in the z direction so we will only consider motion in the 2D plane parallel

to a heterojunction interface. For a single spinless particle, the TDSE is

Hψ(x, y, t) = −~2∇2

2m
ψ(x, y, t) + V (x, y, t)ψ(x, y, t) = i~

∂ψ(x, y, t)

∂t
(2.1)

The formal solution to Eq. (2.1) is

ψ(t) = U(t)ψ(0) (2.2)
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where

U(t) = T exp

(
− i

~

∫ t

0

H(s)ds

)
(2.3)

is the time evolution operator (TEO), and T is the time-ordering operator. To

solve Eq. (2.1) numerically, one must deal with the spatial and temporal deriva-

tives in the Schrödinger equation separately. The techniques that will be used

throughout this thesis will be presented in this chapter, and the methods that

will be used to calculate an appropriate time-dependent potential in realistic SAW

devices will then be discussed. Finally, we will review alternative techniques that

have been used to numerically solve the TDSE and discuss why they are not

well-suited to the problems considered in this work.

2.2 1D diffusion equation

The techniques we will use are best illustrated by considering the 1D diffusion

equation, which shares many similarities with Eq. (2.1). The 1D diffusion equa-

tion for a density u and diffusion constant D is

∂u

∂t
= D

∂2u

∂x2
(2.4)

If u and D in Eq. (2.4) are allowed to be complex, we arrive at the 1D TDSE for

a particle in free space (Eq. (2.1) with V = 0).

We now represent the function u(x, t) by its values at a discrete set of points

xi = x0 + iδx, where δx is the grid spacing and i is an integer. We also discretise

the time domain into steps of length δt, so that tn = nδt. We will then define

uni = u(xi, tn). In the following discussion, either the time or space index of uni

may be omitted for clarity if we are concerned only with the spatial or temporal

variation of u. We next consider the Taylor expansions

u(x+ δx) = u(x) + δx
du

dx
+
δx2

2!

d2u

dx2
+ . . . (2.5)

u(x− δx) = u(x)− δxdu

dx
+
δx2

2!

d2u

dx2
+ . . . (2.6)

(2.7)
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from which we see

d2u(x)

dx2
' u(x+ δx)− 2u(x) + u(x− δx)

δx2
(2.8)

or in the notation introduced above,

d2ui
dx2

' ui+1 − 2ui + ui−1

δx2
. (2.9)

The right hand side of Eq. (2.4) can therefore be written as the product of a

matrix with a vector:

δx2 d2u

dx2
→



−2 1

1 −2 1

1 −2 1

1 −2 1
. . .





u1

u2

u3

u4

...


(2.10)

where only the non-zero elements of the matrix are shown. The matrix form of

the derivative in Eq. (2.10) is known as the finite-differenced representation. We

also need to specify the boundary conditions – we will only be concerned with

Dirichlet boundary conditions, and specifically the so-called hard wall condition

that uL = uR = 0 where the grid is defined such that xi ∈ [xL, xR]. This

condition is imposed by setting the elements of the matrix in the finite-differenced

representation of the differential operator which correspond to the boundaries

equal to zero.

An important factor that must be considered in any numerical solution of a

differential equation is the stability of the chosen algorithm, and we will use a

von Neumann [53] analysis to investigate stability. Although other methods of

stability analysis exist (see Ref. [54] for example), the von Neumann analysis is

relatively straightforward to perform and interpret. This method considers the

evolution of a general Fourier mode of the solution, so we write

unj = ξneikj(δx) (2.11)
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where k is a wavenumber, and ξ = ξ(k) is a complex number referred to as the

amplification factor. By substituting the solution (2.11) into Eq. (2.4), it can be

seen that the time evolution of this Fourier mode is given by the integer powers

of ξ. Thus, if |ξ(k)| > 1 for any value of k, there will be a Fourier mode of

the solution which grows exponentially with time and so the solution scheme is

unstable. The simplest schemes for performing the time discretisation of the 1D

diffusion equation are

un+1
j − unj = D(δt)Lunj (2.12)

un+1
j − unj = D(δt)Lun+1

j (2.13)

where

Lun =
unj+1 − 2ujn + unj−1

δx2
(2.14)

The discretisations (2.12) and (2.13) (respectively called the forward-time and

backward-time schemes) are identical, except for the time step at which the spatial

derivative is taken on the right-hand side of the equation. In general, one will start

with an initial condition u(x, 0) = f(x) at time step n = 0, and then repeatedly

use a rule such as (2.12) or (2.13) to find the solution at subsequent time steps.

There is then an important difference between the forward- and backward-time

schemes: determination of un+1 requires only the multiplication of a vector by a

matrix in the forward-time scheme of Eq. (2.12). However, in the backward-time

scheme of Eq. (2.13) one must solve a system of linear equations to find un+1

which is computationally demanding. Schemes of the former type are known as

explicit schemes, as the solution at time step n+1 is given explicitly by knowledge

of the solution at time step n. In contrast, schemes such as the backward-time

method are known as implicit schemes. From substituting the solution (2.11) into

the 1D diffusion equation, the amplification factor for the forward-time scheme

can be shown to be [55]

ξ(k) = 1− α sin2

(
kδx

2

)
(2.15)
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where α = 4Dδt/δx2. The forward-time scheme is therefore conditionally stable:

|ξ(k)| ≤ 1 if 2Dδt/δx2 ≤ 1. One can similarly determine the amplification factor

for the backward-time scheme; it is

ξ(k) =
1

1 + 4α sin2
(
kδx
2

) (2.16)

Given that α > 0 and sin2 θ > 0 for all θ, ξ(k) ≤ 1 for all values of δx and δt:

the backward-time scheme is unconditionally stable. However, the time evolution

schemes given by Eqs. (2.12) and (2.13) are only first-order accurate in time. The

accuracy can be improved by using the Crank-Nicolson (CN) method [56] which is

both unconditionally stable and second-order accurate in time. The CN method

can be thought of as the average of the forward- and backward-time schemes:

un+1
j − unj =

Dδt

2δx2

[
(unj+1 − 2unj + unj−1) + (un+1

j+1 − 2un+1
j + un+1

j−1 )
]

(2.17)

and then separately grouping the terms that depend upon un+1 and un,

un+1
j − Dδt

2δx2

[
(un+1

j+1 − 2un+1
j + un+1

j−1 )
]

= unj +
Dδt

2δx2
(unj+1 − 2unj + unj−1) (2.18)

The amplification factor for the CN scheme is [55]

ξ =
1− 2α sin2

(
kδx
2

)
1 + 2α sin2

(
kδx
2

) (2.19)

and so the scheme is stable for all δx and δt.

Although the CN scheme is implicit, determining un+1 from un is relatively

straightforward due to the sparse nature of the matrix in Eq. (2.10). Equa-

tion (2.18) can be written as the matrix equation Aun+1 = Bun, where the matrix

A has the tridiagonal form of Eq. (2.10). Such a system of linear equations is

computationally easy to solve using standard library routines.
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2.3 2D Schrödinger equation

We now generalise the previous discussion of the 1D diffusion equation to the 2D

Schrödinger equation. The move from 1D to 2D is straightforward, but introduces

significant computational differences. We discretise the wavefunction ψ(x, y, t) in

a similar fashion to the way we discretised the solution to the diffusion equation

u(x, t): a rectangular grid with spacing δx (δy) in the x (y) direction is used, and

the indexing system is defined by xj = x0 + jδx, yk = y0 + kδy, tn = nδt. We

then write ψnj,k ≡ ψ(x0 + jδx, y0 + kδy, nδt). The components of ∇2ψj,k are the

generalisations of Eq. (2.8):

∂2ψj,k
∂x2

=
ψj+1,k − 2ψj,k + ψj−1,k

δx2 (2.20)

∂2ψj,k
∂y2

=
ψj,k+1 − 2ψj,k + ψj,k−1

δy2 (2.21)

The V ψ term from Eq. (2.1) is replaced by V n
j,kψ

n
j,k, where V n

j,k ≡ V (xj, yk, tn).

If the spatial grid used has N points in the x direction and M points in the y

direction, the discretised wavefunction will then be written as a vector of length

NM . The first N elements of this vector are ψn1,1, ψ
n
2,1 . . . ψ

n
N,1. The elements

N + 1, N + 2 . . . 2N will be ψn1,2, ψ
n
2,2 . . . ψ

n
N,2 and so on. The finite differenced

form of the Hamiltonian H will be represented as an NM × NM matrix which

acts on this vector. Taking for definiteness the case N = 3, M = 4, the product

Hψ is (setting ~ = 2m = 1)

β αx . αy
αx β αx . αy
. αx β . . αy
αy . . β αx . αy

αy . αx β αx . αy
αy . αx β . . αy

αy . . β αx . αy
αy . αx β αx . αy

αy . αx β . . αy
αy . . β αx .

αy . αx β αx
αy . αx β





ψn1,1
ψn2,1
ψn3,1
ψn1,2
ψn2,2
ψn3,2
ψn1,3
ψn2,3
ψn3,3
ψn1,4
ψn2,4
ψn3,4



(2.22)
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where αx = 1/(δx)2, αy = 1/(δy)2 and β = −2(αx + αy) + Vj,k. Elements which

are zero are omitted from the matrix in (2.22).

We also need to ensure that we impose appropriate boundary conditions to

the differential equation. Here we will always impose the Dirichlet boundary

condition that the wavefunction is zero at the boundaries of the region, which

corresponds physically to placing an infinitely high potential barrier around the

computational domain. This is enforced by setting the matrix elements corre-

sponding to positions on any of the boundaries to zero, but in practice we will

always choose a spatial region which is sufficiently large to ensure that the wave-

function is never incident on a boundary. The matrix in (2.22) only has nonzero

elements along 5 bands: the diagonal, those immediately above and below the

diagonal, and those N above and below the diagonal. One must therefore treat

this as a banded matrix with bandwidth 2N + 1, and solving such a system of

equations is computationally much more demanding than solving the tridiagonal

system of equations that arose in the 1D case. For problems involving static po-

tentials this is not a significant problem, but with time-dependent potentials this

algorithm places significant demands on computational resources. However, in the

following section we will describe a modification to the time evolution algorithm

discussed above which simplifies the numerical calculations. Before doing so, we

remark that an alternative method of arriving at the Crank-Nicolson method in

the context of solving the Schrödinger equation is to make use of Cayley’s form

[55] for the TEO,

exp(−iH(δt)/~) ' (I + iH(δt)/2~)−1(I− iH(δt)/2~) (2.23)

and so the wave vectors at time steps n and n+ 1 are related by(
I +

iH(δt)

2~

)
ψn+1 =

(
I− iH(δt)

2~

)
ψn (2.24)

which is clearly of the same form as Eq. (2.18). An important property of Cayley’s

form is that it ensures the TEO is unitary and so probability is conserved.
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2.3.1 Split operator techniques

Split operator techniques can be used to greatly simplify the numerical solution

of partial differential equations [54, 55]. The method relies upon writing a differ-

ential operator as a linear combination of N parts:

Lu = L1u+ L2u+ · · ·+ LNu (2.25)

where we wish to solve a general partial differential equation which is first order

in time,
∂u

∂t
= Lu (2.26)

For each of the Li, we define Ui to be the operator that would perform the time

evolution if Li were the only operator on the right hand side of Eq. (2.26) – that

is, if L = Li then

un+1 = Ui(u
n,∆t). (2.27)

The process for performing a whole time step ∆t for the entire operator in

Eq. (2.25) is then to apply each of the evolution operators Ui in turn:

un+1/N = U1(un,∆t)

un+2/N = U2(un+1/N ,∆t)

· · ·

un+1 = UN(un+(N−1)/N ,∆t)

This technique can be adapted slightly to the form which will be used through-

out this work – the alternating direction implicit technique. The Ui defined pre-

viously now include all the parts of the full operator L but is only required to

be numerically stable for the Li part of the operator (although when using the

Crank-Nicolson method to perform the time evolution all of the operators are

unconditionally stable). Thus, at any stage in the algorithm one of the Li leads

to an implicit set of linear equations whilst the other parts of L are handled

explicitly. The process for performing a whole time step is the same as above,
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except a series of fractional time steps ∆t/N are used:

un+1/N = U1(un,∆t/N)

un+2/N = U2(un+1/N ,∆t/N)

· · ·

un+1 = UN(un+(N−1)/N ,∆t/N)

In the context of solving the TDSE in two dimensions, the Laplacian operator is

split into two parts: L = Lx + Ly where Lx = ∂2/∂x2, Ly = ∂2/∂y2. As only one

of Lx or Ly is implicit at any stage in the algorithm each time step requires the

solution of two tridiagonal systems similar to Eq. (2.10), which is a significantly

faster operation than solving the band diagonal system (2.22).

2.3.2 Magnetic fields

Although Eq. (2.1) includes a time-varying electric potential, it will also be de-

sirable to incorporate a static perpendicular magnetic field into the numerical

simulations. We will use the magnetic vector potential A = (−By, 0, 0) which

leads to the magnetic field B = (0, 0, B). In the presence of a magnetic field (and

taking V = 0 for brevity), the quantum mechanical Hamiltonian for a particle of

charge q is

H =
1

2m
(−i~∇− qA)2 (2.28)

=
1

2m
(−i~∂x + qBy)2 +

1

2m
(−i~∂y)2 (2.29)

2ma2

~2
H = −

(
a∂x +

iqBya

~

)2

− a2∂2
y (2.30)

where in Eq. (2.30) we have introduced the parameter a which has the dimension

of length. Throughout this work, a is typically chosen to be 5 nm. We next

make use of the approximation θ2 ' 2 cosh θ − 2 which follows from the Taylor
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expansion of cosh θ, and note that

cosh(a∂y)ψ(x, y) =
1

2
(ea∂y + e−a∂y)ψ(x, y) (2.31)

=
1

2

(
1 + a∂y +

a2

2
∂2
y . . .

)
ψ(x, y) +

1

2

(
1− a∂y +

a2

2
∂2
y . . .

)
ψ(x, y) (2.32)

=
1

2
(ψ(x, y + a) + ψ(x, y − a)). (2.33)

Similarly, defining γ = iqBya/~,

cosh(a∂x + γ)ψ(x, y) =
1

2
(ea∂xeγ + e−a∂xe−γ)ψ(x, y) (2.34)

=
1

2
(eγψ(x+ a, y) + e−γψ(x− a, y)). (2.35)

Combining Eqs. (2.33) and (2.35) with Eq. (2.30) leads to

2ma2

~2
Hψ(x, y) = 4ψ(x, y)− ψ(x, y + a)− ψ(x, y − a)

−eiqBya/~ψ(x+ a, y)− e−iqBya/~ψ(x− a, y) (2.36)

Equation (2.36) is known as Harper’s equation and has been studied by Hofstadter

[57] in the context of a 2D tight-binding model for a lattice with spacing a. It

should also be noted that when B = 0, Eq. (2.36) reduces to the finite differenced

Hamiltonian arising from Eqs. (2.20) and (2.21). Given this form for the spatial

discretisation of the Hamiltonian, it is then possible to again apply the split

operator techniques of Section (2.3.1) to perform the time evolution.

2.4 Lorentz transformation

Many of the simulations performed later in this thesis can be simplified by noting

that an electron carried by a SAW is well-confined to one SAW minimum which

then traverses a distance on the order of a few microns. The size of the computa-

tional domain can be greatly reduced by Lorentz transforming into the rest frame
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of the SAW minimum which carries the electron, noting that |v| � c where v is

the SAW velocity and c is the speed of light. Using unprimed symbols to repre-

sent quantities in the laboratory frame and primed symbols for the SAW frame

(which moves at a speed v in the x direction relative to the laboratory frame),

the electric potential φ and the components of the magnetic vector potential A

transform as

φ′ = γ(v)φ− γ(v)vAx (2.37)

A′x = γ(v)Ax − γ(v)vφ/c2 (2.38)

A′y = Ay (2.39)

A′z = Az (2.40)

where γ(v) = (1−v2/c2)−1/2 as usual. We will be using v = 2700 ms−1 throughout

this work, so can take γ(v) = 1 and v/c2 = 0. However, even with these approx-

imations Eq. (2.37) for the electric potential differs between the two frames in

the presence of a non-zero magnetic vector potential A, which will need to be

included in the numerical simulations.

2.5 Electric potential

The electric potential experienced by electrons in a SAW device can be written as

the sum of the potential due to the metallic surface gates and the potential due to

the travelling SAW. The typical mode of operation of the SAW devices considered

in this thesis involves using the surface gates to remove all of the charge in the

2DEG beneath them so that 1D channels are formed. The potential due to the

gates is therefore given by the solution to Laplace’s equation, ∇2φ(r) = 0, with

appropriate boundary conditions. A full determination of the SAW potential

requires the simultaneous solution of a wave equation for the mechanical wave

with an equation describing the piezoelectric response of GaAs (Eqs. (2) and (3)

of Ref. [58]), which in general is a difficult numerical problem. However, it will be

seen that it is straightforward to use the calculated result for the SAW potential

in the numerical simulations performed here.
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2.5.1 Gate potential

Davies et al. [59] have demonstrated that it is possible to calculate the bare

electrostatic potential due to voltages applied to an arbitrary pattern of polygonal

surface gates. The method described in [59] uses a Fourier transform to solve

Laplace’s equation with the boundary condition V = 0 on the ungated surface.

Their basic result considers an infinite triangle at a potential Vg with one edge

along the x-axis and an angle 2A at the origin. The potential at the point r due

to this infinite triangular region is then

φ(r) =
Vg
π

arctan
z sinA

(r − x) cosA− y sinA
(2.41)

where r2 = x2 + y2 + z2. The xy plane is taken to be parallel to the plane of

the 2DEG, and z = 0 at the surface and becomes increasingly positive into the

semiconductor.

Equation (2.41) is useful because any simple polygon (one which does not

intersect itself) can be decomposed into disjoint triangles. The process of decom-

posing a polygon into triangles requires one to find so-called “ears” of a polygon.

If an N -sided polygon (or N -gon) has vertices labelled p1, p2, . . . pN , vertex pi is

an ear if the line joining pi−1 to pi+1 lies entirely within the polygon (note that

the terms i±1 are determined modulo N , so pi+N = pi). If vertex pi is an ear, the

triangle with vertices pi−1, pi, pi+1 can be removed to leave an (N − 1)-gon. The

process then continues with successively smaller polygons until the initial polygon

has been entirely converted into triangles. Meisters’ theorem [60] guarantees that

this algorithm will be successful; it states that any polygon with more than 3

sides has at least two ears. Triangles will therefore be removed from the original

N -gon until it is a quadrilateral, which always have two ears. This quadrilateral

will decompose to a further two triangles (for a total of N − 2 triangles in gen-

eral for an N -gon) at which point the algorithm terminates. An example of the

decomposition of a hexagon into four triangles is illustrated in Fig. (2.1).

Given that any triangular gate can be created by superposing three infinite

triangles (due to the linearity of Laplace’s equation) as illustrated in Fig. (2.2),

Eq. (2.41) can therefore be used to calculate the potential due to any polygonal



2.5 Electric potential 31

Figure 2.1: One possible decomposition of a hexagon into four distinct triangles.

Figure 2.2: Three semi-infinite triangles are superposed to create a triangle (the semi-
infinite triangles have been offset slightly for clarity). A voltage −Vg is applied to the
triangles with edges marked 1 (blue) and 2 (red), whilst a voltage +Vg is applied to the
triangle with edges marked 3 (purple). The grey triangle is then at voltage −Vg.

gate. It is also straightforward to obtain analytic expressions for the components

of ∇φ from Eq. (2.41) which will be useful in Section (2.5.3).

2.5.2 SAW potential

Aizin et al. [61] calculated the SAW potential analytically when a metal strip is

placed across the surface of a semiconductor, so the metal partially screens the

electric wave. The presence of the metal on the surface would also affect the

propagation of the mechanical wave, though this is neglected in Ref. [61]. Their

main result is that the electrical wave is approximately sinusoidal away from

the metal strip and is a damped sinusoid under the metal. Rahman et al. [58]
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later used finite-element methods to numerically solve the equations governing

the SAW motion. An important advantage of such techniques is their ability to

incorporate non-trivial geometries – the simulations are for a realistic split gate

geometry with vacuum above the surface of the device. Although this leads to

different behaviour from that found by Aizin et al. [61] for the SAW under the

surface gates, away from the gates the result is qualitatively similar: the SAW is

approximately sinusoidal with amplitude O(10 mV).

As we will only be concerned with the behaviour of electrons in the 1D chan-

nels formed between gates (i.e., not beneath the metal gates) in this thesis, a

sinusoidal travelling wave will be used for the SAW potential. Previous theoreti-

cal work on the dynamics of electrons carried in SAWs (for example, the classical

simulations of Robinson & Barnes [62] and the quantum mechanical simulations

in Refs. [63, 64]) used a sinusoidal potential and were able to well reproduce many

features seen experimentally in the quantisation of SAW currents. Also, Schneble

et al. [65] have shown how to determine the amplitude of the SAW by measuring

the conductance through a quantum dot as a function of the power applied to

the SAW transducer. Using this technique, the typical SAW amplitude in the

experimental device considered in Chapters 4 and 6 was estimated to be ∼50 mV

[66]. The SAW amplitude used in the simulations in this thesis will therefore

generally be a few 10s of mV.

2.5.3 Bicubic approximation

When using the results of Section (2.5.1) to calculate a potential for use in solving

the 2D TDSE, some implementational difficulties arise. Equation (2.41) shows

that calculating the gate potential requires the evaluation of many arctangent

functions, which is a computationally expensive operation. The typical grid spac-

ing used in the simulations will be ∼ 5–10 nm. However, the length scale on which

the potential due to the gates can change is roughly the depth of the 2DEG. As

this depth is 90 nm for the devices considered here, calculating the gate potential

on a grid with a 5 nm spacing is expected to be unnecessary. Also, when working

in the rest frame of the SAW it will in general be necessary to recalculate the

potential due to the gates at each time step.
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Figure 2.3: Scanning electron microscope image of the central region of the device to
be studied in later chapters.

The time needed to calculate the electric potential can be greatly reduced by

using a bicubic interpolation [55]. The gate potential is calculated on a grid which

is relatively coarse compared to that used in solving the TDSE, and which covers

the entire computational domain in the laboratory frame. Given a rectangular

grid cell and the value of a function f(x, y) at each corner, along with the values

of the derivatives ∂f/∂x, ∂f/∂y and ∂2f/∂x∂y, the bicubic interpolation returns

an interpolated value fi at any point within the cell. Two important properties of

the interpolating function used here are that fi = f(x, y) at the grid points, and

that in crossing from one cell to the next both fi and its gradient are continuous.

The algorithm makes no guarantee about the accuracy of the interpolated

function and so we now estimate this accuracy for the central region of the device

which will be studied in Chapters 4 and 6 (see Fig. (2.3)). Ten thousand points

are chosen at random within the central part of the device and the interpolated

potential Vi is calculated at each point. The exact potential V (x, y) is also calcu-

lated at these points, and the maximum relative difference |Vi− V (x, y)|/V (x, y)

is plotted in Fig. (2.4) for a range of grid spacings. The figure shows an ap-

proximately exponential dependence of the error on the grid spacing. An error

of less than 0.01% is achieved using a grid spacing of 10 nm without placing a

significant demand on computational time, so this spacing will be used whenever

the potential due to a gate pattern is calculated.
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Figure 2.4: Error in bicubic approximation for the device depicted in Fig. (2.3).

2.6 Other numerical techniques

As well as the methods that have been described in this chapter, a number of

other techniques exist for numerically solving the TDSE. Finite element methods

(FEMs) have been applied to a range of differential equations [67], and Watan-

abe & Tsukada [68] applied finite element methods to the TDSE with a static

potential. Finite element methods are well-suited to problems which possess a

complicated geometry, rather than the simple rectangular grid used in the ear-

lier derivation of the finite-difference method. However, a rectangular grid will

be seen to be sufficient for all of the problems considered in this thesis, and

the primary advantage of finite-difference methods over FEMs is that they are

substantially simpler to implement.

There are also a number of techniques other than the Crank-Nicolson method

which could be used to calculate the time evolution of a particle obeying the

TDSE. The Crank-Nicolson method is accurate to second order in the time step

[55], and Iitaka [69] derived some related schemes for solving the TDSE which are

accurate to higher order. However, the methods they derive are only conditionally

stable and also do not automatically ensure that the time evolution is unitary.

A higher-order accuracy can also be achieved by using Runge-Kutta methods

to integrate the time derivatives (see, for example, Ref. [70]). Maksym [63] used
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high-accuracy methods based upon the Crank-Nicolson algorithm [71] to calculate

(to an accuracy of better than 1 part in 1010) the transmission of an electron

through a time-dependent barrier and applied the results to investigate current

quantisation in a SAW device. It will later be seen that such high accuracy is

not required for the problems considered in this thesis. Instead, the significant

difficulty in performing the simulations in this work is that the time evolution will

be calculated for thousands of different potentials (due to using many different

gate voltages or magnetic field strengths in a similar manner to experimental

measurements of semiconductor devices). The computation time needed for the

simulations is therefore an extremely important factor, and it was seen that the

alternating direction implicit method introduced in Section (2.3.1) is fast as it

only requires the solution of tridiagonal matrix problems.

It is also possible to accurately represent the TEO as a linear sum of Cheby-

shev polynomials [72]; however, such techniques only give the wavefunction at the

end of the time period considered and calculating the wavefunction at short time

intervals is in practice very difficult. In contrast, methods such as the Crank-

Nicolson algorithm calculate the wavefunction at each time step, and this will

be of great use in interpreting the simulation results. A further disadvantage of

using a Chebyshev polynomial representation is that these techniques are difficult

to adapt to a time-dependent potential.

�

In summary, the choice of finite-difference methods in combination with the

Crank-Nicolson algorithm has a number of advantages for this work. They are

simple to implement, which reduces the likelihood of programming error. These

methods also ensure that the time evolution is unitary and unconditionally stable,

as well as being well-suited to problems with arbitrary time-dependent potentials.

Finally, the problems considered in this thesis have a high-dimensional parameter

space due to the fact that the devices are defined by many surface gates, each of

which will in general have a different voltage applied. It is therefore necessary to

use techniques which require relatively short computation time, and this condition

is satisfied by the finite-difference and Crank-Nicolson methods.
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We choose to examine a phenomenon which

is impossible, absolutely impossible, to ex-

plain in any classical way, and which has in

it the heart of quantum mechanics.

Richard Feynman

3
The Aharonov-Bohm Effect

3.1 Introduction

In this chapter we will introduce the Aharonov-Bohm (AB) effect, which is a

quantum mechanical single-particle interference effect. We will review past the-

oretical and numerical work performed on AB rings in 2D nanostructures, and

see that although the theoretical work we review can reproduce a number of the

features seen in experiments, it does not fully take account of the geometry of

physical AB rings. The numerical methods described in the previous chapter

will therefore be applied to a realistic geometry, and two effects in particular

will be studied: the effect of the Lorentz force, and incorporating trajectories

that transit around the ring multiple times. The investigation of the latter ef-

fect will require the implementation of absorbing boundary conditions in order to

render the problem computationally tractable. Although a number of methods

for imposing such boundary conditions exist, they are typically non-Markovian

and energy-dependent (which restricts their accuracy) and implementing them
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in practice is difficult. We will therefore develop a straightforward implementa-

tion for absorbing boundary conditions in AB rings and similar geometries and

demonstrate its accuracy.

3.2 The Aharonov-Bohm Effect

In Newtonian mechanics, the dynamics of a particle with charge q and mass m

is described in terms of the electric field E and the magnetic field B through

Newton’s second law:

mr̈ = q(E + ṙ ×B) (3.1)

where r is the position vector of the particle. However, in the Lagrangian and

Hamiltonian formulations of classical mechanics, the quantities that enter into the

dynamical equations are the electric (scalar) potential φ and magnetic (vector)

potential A, defined such that E = −∇φ and ∇ × A = B (we assume static

magnetic fields for simplicity). The Lagrangian for this particle is then written

in terms of φ and A:

L =
1

2
m|ṙ|2 − q(φ− ṙ ·A) (3.2)

It had been supposed that the magnetic potential was a purely mathematical

tool until Aharonov & Bohm [73] showed that physically measurable effects can

arise in regions where B is zero if A is non-zero. A charged particle which moves

in a 4-vector potential Aµ = (φ/c,A) acquires a phase S given by

S =
q

~

∫
Aµdxµ =

q

~

∫
(φ(t′)dt′ −A · dx) . (3.3)

The effect of the magnetic potential can best be seen by considering the case

where φ = 0. We consider the case when a wavefunction splits into two equal

parts which each take one of two paths Γ1,Γ2 which enclose a magnetic flux Φ

between them as shown in Fig. (3.1). From Eq. (3.3), the phase acquired in
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Figure 3.1: Geometry for the Aharonov-Bohm effect. Two paths Γ1 and Γ2 form a
closed loop which encloses the magnetic flux Φ.

traversing path i (i = 1, 2) is

Si = − q
~

∫
Γi

A · dx (3.4)

so the phase difference between the two parts of the wavefunction is

∆S = |S2 − S1| =
q

~

∮
Γ

A · dx =
q

~

∫
D

B · dS = 2π
q

h
Φ (3.5)

having converted the line integral to a surface integral using Stokes’ theorem

and recalling that B = ∇ ×A. Γ is the closed loop formed by Γ1 and Γ2 and

Φ is the magnetic flux through Γ (for a uniform magnetic field of magnitude

B this will be Φ = BA where A is the area of the closed loop). There will

therefore be constructive interference when ∆S = 2πn for integer n, whereas

when ∆S = 2π(n+ 1
2
) the two paths destructively interfere and so the probability

of transmission through the ring drops to zero. The conductivity of the ring will

therefore exhibit periodic oscillations as a function of B.

From Eq. (3.5), it follows that the condition for constructive interference is

BA = nh/e (now taking q = e for an electron); Fig. (3.2) illustrates the trajec-

tories corresponding to n = 1 and n = 2. The n = 1 situation arises from two

paths which each traverse one half of the ring, whilst n = 2 corresponds to one of

the paths instead circling the ring one and a half times. Because the higher-order

paths effectively enclose a greater area, the B-period of the conductance oscil-
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lations decreases. The Fourier transform of the magnetoconductance therefore

exhibits a number of peaks (for different values of n) typically referred to as h/ne

oscillations. The presence of the higher-order h/ne oscillations requires phase co-

herence to be maintained over a longer time, and Hansen et al. [74] used this fact

to determine the phase coherence length in an etched GaAs ring by measuring

the amplitude of the first six Fourier peaks.

The AB effect has been experimentally investigated in a number of systems.

The first experiment was performed by Chambers [75], using a metal whisker to

provide the magnetic field. They took great care to ensure that the magnetic

field outside the whisker was zero, so that any effect they measured had to be

due to the magnetic vector potential rather than some effect of a Lorentz force

acting upon the electrons. More recently, Webb et al. [76] examined transmission

through 2D metal rings, whilst Timp et al. [77] and Ford et al. [78] performed

experiments using GaAs heterostructures. The former used etched rings, whilst

the latter used surface gates to define a ring. The Aharonov-Bohm effect is also

relevant in other systems, such as antidots [79] and carbon nanotubes [80]. It

should be noted that many of these experiments are not strictly measuring the

originally proposed Aharonov-Bohm effect, as the charged particles experience a

non-zero magnetic field. This introduces a Lorentz force, and the effect of this

will be discussed in Section (3.5).

Also, AB rings have been of use in studying fundamental aspects of quantum

mechanics. Buks et al. [81] used an Aharonov-Bohm ring with a quantum dot

embedded in one arm to perform a “which path” measurement. A quantum point

contact (QPC) adjacent to the dot was used as a charge detector: the presence

of charge in the dot alters the electrostatic potential in that region, and the

conductance of the QPC is highly sensitive to this [82]. Detecting the presence

of charge in one arm of the ring provides “which path” information and so leads

to a decrease in the AB oscillation amplitude. More recently, Chang et al. [83]

performed similar measurements comparing the effect of performing a which-path

measurement on the h/e and h/2e oscillation amplitudes. They also measured a

decrease in the amplitude of the h/e oscillation, but the effect of the measurement

on the amplitude of the h/2e oscillation is reduced because detecting charge in
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Figure 3.2: Examples of different trajectories in an AB ring. a) two paths each traverse
half the ring, leading to an h/e oscillation. b) One path traverses the ring 1.5 times; if
this interferes with a path traversing half of the ring it will lead to an h/2e oscillation.

one arm does not necessarily provide which-path information in that case (see

Fig. (3.2)).

3.3 Previous theoretical work

Büttiker et al. [84] derived a theoretical result for the transmission through an

AB ring using an S-matrix approach. The geometry they studied consists of a

ring connected to two leads, and they calculate the conductivity of the ring by

considering the transmission and reflection probabilities between the ring and

the leads. The model they use is one-dimensional (i.e. it neglects the fact that

the leads and arms have non-zero width), and assumes that the transmission

probability from the leads into either of the two arms of the ring is equal. This

latter assumption is reasonable for metals, where the effect of the Lorentz force is

smaller than in semiconductors due to the larger effective electron mass in metals.

Vasilopoulos et al. [85] generalised this model to allow for asymmetric scat-

tering into the arms of the ring. The asymmetry is characterised by the ratio of

the transmission amplitudes into either arm; the ratio of these two amplitudes

is denoted λ, so that λ = 1 corresponds to the symmetric case whilst λ = 0

corresponds to injection into only one arm. Figure (3.3) shows the transmission
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Figure 3.3: Results from theoretical model of AB oscillations in Ref. [85] as the flux
enclosed Φ varies, for three values of the symmetry parameter λ described in the text.
Thick line: λ = 1. Thin line: λ = 0.75. Dashed line: λ = 0.5. As the asymmetry is
increased (i.e. smaller λ) the oscillation amplitude decreases.

probability through an AB ring for three values of λ (calculated using Eq. (8) of

Ref. [85]). The transmission probability is periodic in the number of flux quanta

Φ0 = h/e enclosed as expected, and the oscillation amplitude also decreases as λ

is decreased due to incomplete destructive interference – the Lorentz force leads

to preferential injection into one arm. However, the asymmetry will in general

be a geometry-dependent function of B and this is not easily accounted for in a

model of this type.

Szafran & Peeters [86, 87] have performed numerical simulations to determine

the transmission probability through AB rings. They expand the wavefunction

using a basis of Gaussians centered at a series of points, and the locations of these

points determines the geometry of the simulated device. Although this method

can simulate some of the effects arising from a realistic geometry, it can only

consider occupation of the lowest transverse subband. The numerical methods

described in Chapter 2 can take full account of the geometry of the device, which
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will be seen to lead to more complicated structure in the magnetoconductance of

an AB ring.

3.4 Absorbing boundary conditions

The numerical methods presented in Chapter 2 use hard-wall boundary condi-

tions. Although this is not a problem if the wavepacket is always well-confined,

for open systems such as AB rings the wavefunction will reach the edge of the

computational domain at some point in the simulation. When it does so it will

reflect off the boundary leading to spurious interference effects, and so this re-

stricts the time over which the electron dynamics can be simulated. Although

this limit can be relaxed by using a larger computational domain, this leads to a

substantial increase in the computational resources required and so may not be

practical. A better solution is to use “absorbing” boundary conditions (ABCs)

which (in the ideal case) have a reflection probability of zero, but implementing

these is non-trivial.

The basic problem with implementing ABCs can be seen by considering the

solution to the 1D Schrödinger equation for a plane wave ψ = exp(−i(ωt− kx)),

which leads to the dispersion relation

~k = ±
√

2m(~ω − V (x)) (3.6)

where we assume a time-independent potential V (x) which varies slowly on the

length scale of the wavelength λ = 2π/k, and the positive (negative) solution

corresponds to a right- (left-) going wave. We then need to transform Eq. (3.6)

back into the space-time domain, which will lead to a differential equation given

that k ⇔ −i∂/∂x, ω ⇔ i∂/∂t when Fourier transforming. The first problem

that arises is that the square root in the right hand side of Eq. (3.6) is not a

rational function and so needs to be approximated before the equation can be

converted into a differential equation (Frensley [88] reviews the problem of bound-

ary conditions in open systems, and in particular Appendix D discusses the time

dependent Schrödinger equation). Shibata [89] uses a linear approximation and

considers only the 1D problem, whilst Kuska [90] instead uses a rational function
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approximation and also generalised to the 2D case. Both of these methods lead to

an energy-dependent reflection coefficient at the boundaries. A further problem

with these methods is that they are non-Markovian – in order to absorb the wave

packet, full knowledge of its past state is required.

Conventional implementations of ABCs gradually remove the wavefunction

from the system at each time step. For an Aharonov-Bohm ring, however, the

wavepacket quickly breaks into separate packets. For example, shortly after the

start of the simulation the wavepacket can be seen to consist of three distinct

components: one portion which reflects from the ring back into the entrance

lead, and one portion in each of the two arms. If the left-moving packet can be

reliably identified it can then be removed from the problem. Although we discuss

only the left lead here, an equivalent description applies to right-moving packets

in the right lead. In order to identify discrete packets in the left lead, we begin

by defining an integrated probability density

Pi =

∫ xB+i(δx)

xB

|ψ(x, y)|2 dx dy (3.7)

where xB is the x-ordinate of the left edge of the domain, δx is the grid spacing

in the x direction and i is an integer. The y integration is performed over the

whole of the computational domain. Starting at i = 0 we calculate Pi+1 − Pi

until i has become large enough that xB + i(δx) reaches the end of the lead.

The condition for identifying a packet is Pi+1 − Pi < ε1, and it was found in

practice that the numerical simulations are more stable if a minimum threshold

is set for the packet by using the condition Pi > ε2. The parameters ε1 and ε2

are both small, typically ∼ 0.01, and the algorithm is illustrated in Fig. (3.4). It

should be noted that this algorithm relies partly upon the fact that in the AB

ring geometry, the part of the wavefunction which reflects back into the left lead

consists only of left-moving components. If a packet is identified in this way it is

removed by setting the wavefunction equal to zero in that region. This scheme is

straightforward to implement, and in Section (3.5) the accuracy of this technique

will be demonstrated.
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Figure 3.4: Illustration of algorithm for implementing absorbing boundary conditions
in the lead of an AB ring, drawn in 1D for simplicity. The bottom panel shows the
probability density as a function of position within the lead, and shows a series of
separate packets. The top panel shows the integrated probability density; the flat regions
in the top panel satisfy the condition for identifying a packet and the grey line marks
the threshold value ε2 (see main text for details). The algorithm will remove probability
weight to the left of the position marked by the arrow.
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Figure 3.5: Central region of the potential used for AB ring device. The dashed circle
has a radius of 311 nm, and so encloses a single magnetic flux quantum in a field of
13 mT.

3.5 Numerical results for AB ring

In this section the numerical techniques developed in the previous chapter will

be used to simulate the transmission of an electron through an AB ring which

is defined by a realistic pattern of surface gates. The potential due to the gates

was calculated using the methods of Section (2.5.1) and the central part of the

potential is plotted in Fig. (3.5). The figure does not show the full extent of the

leads to either side of the ring; the length of leads used will depend upon whether

or not absorbing boundary conditions are used. The lithographic width of the

leads and arms in the gate design used is 100 nm, and the mean radius of the ring

is approximately 310 nm. In typical experiments on AB rings in semiconductors

there may be a high probability of reflection at the lead-ring interface. However,

as the purpose of these simulations is to examine interference due to the AB

effect, the gate voltages used are chosen to minimise the probability of reflection

from the ring.

At the start of the simulation, the wavefunction is localised to the left lead.

The wavefunction perpendicular to the leads is the numerically-determined ground

state of the transverse potential, which is approximately Gaussian. The wave-
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Figure 3.6: Transmission probability through an Aharonov-Bohm ring after 45 ps. Thin
line: non-absorbing boundaries, offset by 0.2 for clarity. Thick line: absorbing bound-
ary conditions. Inset: Fourier transform of the transmission probability. The peak at
73.5 T−1 arises from a trajectory which encloses a single flux quantum in an area of
3.05× 10−13m2.

function parallel to the leads is chosen to also be Gaussian, with a width approx-

imately equal to the transverse width. The wavefunction is then given an initial

speed of 105 ms−1 (equivalent to an energy of 1.9 meV for an electron in GaAs) in

the x direction. The transmission probability after 45 ps is found by integrating

the probability density for x > 1.2 µm. Figure (3.6) firstly shows the trans-

mission probability as a function of B without absorbing boundary conditions,

with 5 µm-long leads. The figure also shows the transmission probability using

the absorbing boundaries described in Section (3.4). The use of ABCs allows

the computational domain to be greatly decreased in size, with leads which are

1.5 µm in length. The transmission probability calculated using ABCs is clearly

in very good agreement with that calculated using non-absorbing boundary con-

ditions (NABCs); the maximum difference in transmission probability between

the two calculations in Fig. (3.6) is 0.009.
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Figure 3.7: Transmission probability through an Aharonov-Bohm ring after 95 ps. In-
set: Fourier transform, showing only the higher-order peaks. The peaks are at integer
multiples of the fundamental frequency (73.5 T−1), corresponding to trajectories which
encircle the ring from two to five times. The peak for the h/e oscillation is not shown.

The Fourier transform of the transmission probability is shown in the inset to

Fig. (3.6). The first peak corresponds to a period of 13.6 mT, which corresponds

to enclosing one magnetic flux quantum in a ring of radius 311 nm, consistent with

the lithographic dimensions of the simulated device. Smaller peaks at frequencies

twice and three times this fundamental frequency are also visible, which arise

from trajectories that perform more than one loop around the ring and so enclose

multiple flux quanta.

Figure (3.7) then shows the transmission probability after 95 ps, calculated

using ABCs. This calculation would have been impractical using NABCs as the

leads would have needed to be significantly longer in order to avoid spurious

effects from reflections from the edge of the computational domain. Increasing

the simulation time allows trajectories which make multiple loops around the ring

to occur, and so this corresponds qualitatively to an experiment with increased

coherence time. Alternatively, multiple loops around the ring are more likely to

occur experimentally if the ring has a smaller radius. For example, Hansen et al.
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[74] and Wright [91] both measured AB oscillations in rings defined by an etch in

similar GaAs heterostructures. The former used a ring with 490 nm radius and

saw up to the n = 6 AB oscillation, whilst the latter used a radius of 2 µm and

saw only the n = 1 and n = 2 oscillations.

The transmission probability in Fig. (3.7) exhibits some features which deviate

from a simple sinusoidal oscillation. Firstly, there is a general trend for the AB

oscillation amplitude to decrease with increasing magnetic field. A similar effect

is also seen in the simulations of Szafran & Peeters [86, 87]. The decreasing

amplitude can be attributed to the fact that as the field is increased, the Lorentz

force increases the transmission amplitude from the entrance lead into one arm

of the ring. The phase acquired along each path S1, S2 in Eq. (3.4) must then be

weighted by the probability density for finding the electron in either arm. The

Lorentz force also leads to an overall increase in the background transmission

probability by decreasing the probability that the incoming electron reflects at

the entrance to the ring, and above a magnetic field of approximately 0.15 T the

transmission probability is greater than at zero magnetic field.

The transmission probability in Fig. (3.7) also shows another deviation from

simple sinusoidal behaviour: higher-frequency components to the oscillation are

clearly visible, as confirmed by the Fourier transform which shows peaks at up to

five times the fundamental frequency of 73.5 T−1. Some of the peaks in the Fourier

transform are also split into two. Yau et al. [92] suggest that this structure in the

Fourier transform can arise from the geometric phase acquired in the presence

of a spin-orbit interaction, but the simulations presented here do not include

spin-orbit effects.

Although Liu et al. [93] have attributed similar features to mixing between

multiple transverse subbands in the arms of the rings, calculations by Tan & Ink-

son [94] showed that the experimental results of Ref. [93] were due to clockwise-

and anticlockwise-travelling states having different orbital radii. The difference

in frequencies seen in the Fourier transform of Fig. (3.7) leads to beating with

an envelope period of 0.17 T, and beating with this period is visible in the trans-

mission probability. The envelope period in the results of Tan & Inkson [94] was

approximately 40 mT for a ring of radius 800 nm with arm width 300 nm. Al-

though it is difficult to compare the results of Tan & Inkson [94] directly to this
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work as they use an analytic form for the potential which does not closely match

the one used here, we can use their result to make an approximate estimate of

the shift in frequencies expected. For the potential used in these simulations the

energy difference between the two lowest transverse subbands is ~ω ' 4 meV. The

mean radius of the ring was previously shown to be 311 nm, and using Eq. (9)

of Ref. [94] the lowest-energy clockwise and anticlockwise states are expected to

produce AB oscillations which differ in frequency by approximately 6%. The

difference in the frequencies for the h/2e oscillation is 4.0%, and for the h/3e

oscillation it is 5.4%. It is thus likely that the splitting seen here does indeed

arise from the difference between clockwise and anticlockwise states.

3.6 Conclusions

In this chapter we used the numerical methods discussed earlier in this thesis

to simulate the transmission of an electron wavepacket through an Aharonov-

Bohm ring. We saw that an important advantage of the techniques used here

is the ability to incorporate all of the effects that arise in a realistic geometry,

including the reduction of the Aharonov-Bohm oscillation amplitude due to the

Lorentz force preferentially injecting the wave packet into one arm of the ring.

The simulations also demonstrate the emergence of the higher-order h/ne (n > 1)

oscillations when the simulation time is increased to enable multiple loops around

the AB ring to be made. Simulating this latter effect was made computationally

tractable by developing a method to handle absorbing boundary conditions which

is straightforward to implement. This enables the size of the computational

domain to be significantly reduced (thereby greatly reducing the time needed to

perform the simulation) without spurious effects arising due to reflection from the

edge of the domain. Another advantage of the techniques used in this chapter

is that they could be extended in a straightforward manner to simulate more

complicated potentials – for example, an AB ring with quantum dots in the arms,

or a ring with an added random background disorder potential. Kvon et al. [95]

suggested that disorder could lead to the suppression of some of the higher-order

peaks, and this could be tested with simulations similar to those performed here.



Time and tide wait for

no man.

Proverb

4
Coherent electron oscillations in SAW

devices

4.1 Introduction

This chapter is concerned with analysing single-electron coherent dynamics in a

SAW device which consists of two parallel channels separated by a controllable

tunnel barrier; such a device is a fundamental component of many SAW-based

quantum information processing schemes. Numerical simulations will be used to

investigate the effect of electric and magnetic fields upon the electron dynamics,

and it will be seen that in both cases the electron oscillates between the two chan-

nels with a field-dependent frequency. A theoretical model will then be developed

to explain the results from the simulations through an analytic calculation of the

time evolution operator. A magnetic field will be incorporated into the model

using an infinitesimal Aharonov-Bohm effect, and by Lorentz transforming into

the rest frame of a SAW minimum the model can be extended to include both
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a transverse electric field and a perpendicular magnetic field. Finally, it will

be demonstrated that it is possible to rotate the state of the electron to any

position on the Bloch sphere by applying a perpendicular magnetic field to a

Mach-Zehnder geometry.

4.2 Description of SAW device

In this chapter we will study electron dynamics in the device depicted in Fig. (4.1),

designed by Masaya Kataoka based upon the proposal in Ref. [40]. The device

consists of two parallel SAW channels, each of which is connected to independent

source and drain Ohmic contacts. The two channels gradually come together

and meet at a narrow gate which defines a controllable tunnelling barrier. In the

vicinity of the barrier the two gates labelled TC and BC in Fig. (4.1) can be used

to control the electric potential in the two channels. After approximately 1 µm

the channels then separate, and the current from each channel can be measured.

Understanding the charge dynamics in this device is of great importance for

both the spin and charge qubit schemes discussed in Section (1.4.1). For charge

qubits, this device could be used to perform a single qubit rotation. Alternatively,

in a spin qubit scheme the frequency of a two-qubit rotation is determined by

the energy γ2/4U , where U is the on-site Coulomb energy and γ is the coupling

energy between neighbouring SAW channels. In Section (4.4.1) it will be seen that

γ also controls the frequency of a single-qubit rotation for a single charge qubit.

An understanding of how to determine and control this coupling experimentally

is therefore needed in order to design a two-qubit spin gate.

4.3 Numerical simulations

The method presented in Section (2.5.1) is used to solve the Laplace equation

to find the potential which arises when voltages are applied to the gate design

shown in Fig. (4.1). This will lead to a realistic potential because the voltages

applied to the the surface gates in an experiment would be sufficiently negative

to completely remove the 2D electron gas, so a self-consistent solution of the

Poisson and Schrödinger equations is not necessary. The potential used will
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Figure 4.1: SEM image of a two-channel SAW device. A transducer (not shown) is
located to the left of the device and generates SAWs which move from left to right. The
gates labeled TC and BC are used to change the electric potential in each channel. The
inset shows a close-up of the barrier region where the two channels meet and tunnelling
between the two channels is possible.

always approximate a double-well potential (corresponding to the two channels),

and throughout this chapter we assume a SAW amplitude of 20 mV [65].

At the start of the simulations, the electron is localised to one SAW minimum

in the top-left entrance lead, away from the tunnel barrier which is centered at

y = 0. The initial wavefunction is the numerically-determined ground state of

this minimum, and the electron is then given a velocity equal to the velocity of the

SAW-defined dynamic quantum dot. It should be noted that all of the simulations

presented here are performed in the rest frame of the SAW, so the dot only has

a non-zero velocity in the y direction due to the orientation of the channel. This

initial state is then evolved for 0.85 ns; after this time the wavefunction has moved

past the barrier region and into the exit leads. Figure (4.2) shows a typical result

from such a simulation; the probability density at a series of different times is

shown, and it is seen that the wavefunction oscillates between the two channels.

The voltages used for the simulation in Fig. (4.2) were chosen so that the po-

tential in the top and bottom SAW channels is the same. An important quantity

of interest is the probability PT (t) that the electron is to be found in the top
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Figure 4.2: Typical result from simulation of two channel SAW device with a relatively
high barrier between the channels. The electron probability density (in blue) is shown
at five different times, and is seen to oscillate between the two channels.

SAW channel at time t, and at the end of the simulation PT is the probability

that the electron exits to the top-right lead. PT (t) is calculated by numerically

integrating the probability density for y > 0, and is plotted in Fig. (4.3) for

a typical calculation (note that different barrier heights are used in Figs. (4.2)

and (4.3)). The probability of the electron occupying the top channel oscillates

with time, and we now proceed to consider the effect of transverse electric and

perpendicular magnetic fields on this oscillation.

4.3.1 Effect of electric field

An electric field is applied across the device by altering the voltages VTC and

VBC applied to the TC and BC gates (see Fig. (4.1)). The difference in the

voltages ∆V = VTC − VBC is applied symmetrically, so that VTC = V0 + ∆V/2,

VBC = V0−∆V/2. Figure (4.4) shows how the probability of the electron exiting

from the top-right lead varies as a function of ∆V and the barrier gate voltage

VB. For the gate voltages used in these simulations, the electron performs ∼ 15

oscillations along the length of the barrier. Due to the time-consuming nature

of these simulations only the case where ∆V > 0 was investigated in detail,

although some simulations were also performed with ∆V < 0 which suggested

that the results are symmetric in ∆V . Changing the gate voltages leads to a

change in the frequency of the oscillation depicted in Fig. (4.3). As the time

for which oscillation between the two channels can occur is fixed by the length
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Figure 4.3: Probability of electron occupying the top SAW channel as a function of time
with a relatively low barrier between the channels. The central ∼ 0.6 ns is the time for
which the electron is able to tunnel at the barrier separating the channels.

of the barrier, this then leads to the periodic oscillation in the final occupation

probability seen in Fig. (4.4).

4.3.2 Effect of magnetic field

A magnetic field was then applied, with no electric field across the device (∆V =

0) and with VB chosen so that the electron performs ∼ 1–3 oscillations between

the channels as it is carried past the barrier. The results from these simulations

are shown in Fig. (4.5). In a similar manner to Section (4.3.1), the electron

oscillates between the two channels as a function of time, and the frequency of this

oscillation depends upon the barrier gate voltage and magnetic field. Comparing

Fig. (4.4) with Fig. (4.5), there is a qualitative similarity in the effect of ∆V and

B upon the oscillations. In order to understand the origin of this similarity, a

model that describes the oscillation process will now be developed.
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Figure 4.4: Results from numerical simulation of electron dynamics in an electric field,
for an electron injected into the top channel. White (black) indicates that the electron
exits from the top (bottom) channel. The number of oscillations performed as the
electron travels along the barrier region is indicated on each of the white contours.

Figure 4.5: Results from numerical simulation of electron dynamics in a perpendicular
magnetic field, for an electron injected into the top channel. White (black) indicates that
the electron exits from the top (bottom) channel. The number of oscillations performed
as the electron travels along the barrier region is indicated on each of the white contours.
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4.4 Theoretical model

4.4.1 Electric field model

In order to determine the basis set to be used in developing a model, the wavefunc-

tion at each time step in the numerical simulations was decomposed into a linear

combination of the instantaneous eigenstates ψi(t). For all of the numerical sim-

ulations that were performed, the wavefunction can be well-represented by a su-

perposition of the first two instantaneous eigenstates – writing ψ(t) =
∑

i aiψi(t),

it was found that a2
0 + a2

1 > 0.99. The coupled SAW channels can be viewed as

a double-well potential: in the limit of an infinitely high barrier between the two

wells the two lowest eigenstates are degenerate if the potential is symmetric, and

the states are also localised to one channel or the other in this limit. These two

localised states will be used as the basis in the model, and denoted as |0〉 and |1〉
for the state localised to the upper and lower channel respectively.

Without loss of generality the zero of energy is chosen so that the basis states

have energy ±ε/2; ε = 0 therefore corresponds to a symmetric potential, whilst

setting ε 6= 0 tips the potential towards one well or the other. This is equivalent

to changing ∆V in the numerical simulations. The coupling between the two

states is 〈1|H|0〉 = 〈0|H|1〉 = −γ/2. The Hamiltonian in the {|0〉, |1〉} basis is

therefore

H =
1

2

(
ε −γ
−γ −ε

)
(4.1)

=
1

2
(εσz − γσx) (4.2)

The time evolution operator is then found by making use of Eq. (1.4) to expo-

nentiate this Hamiltonian:

U(t) =

(
c(t)− iεs(t)/∆ iγs(t)/∆

iγs(t)/∆ c(t) + iεs(t)/∆

)

= c(t)I +
iγs(t)

∆
σx −

iεs(t)

∆
σz (4.3)
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where ∆2 = ε2 + γ2, c(t) = cos(t∆/2~) and s(t) = sin(t∆/2~). By comparing

Eq. (1.4) to Eq. (4.3), we see that this time evolution operator (TEO) corresponds

to a rotation about the axis n ∝ (−γs(t)/∆, 0, εs(t)/∆) with the rotation angle

φ satisfying c(t) = cos φ
2
. The rotation angle after a time T is therefore

φ = T∆/~ (4.4)

Because the time evolution operator in Eq. (4.3) contains only σx and σz operators

the rotation axis can be characterised by the angle χ between the rotation axis

and the polar axis (i.e. the z-axis) of the Bloch sphere, and this angle is given by

sinχ =
nx
|n|

= −γ/∆ (4.5)

The time T for which the electron can tunnel through the barrier is taken to

be 0.6 ns from Fig. (4.3). From Eq. (4.4) the electron oscillates between the

states |0〉 and |1〉 at a frequency ∆/~, so the number of oscillations n is given

by 2nπ=T∆/~. For integer values of n the final state of the electron is |0〉, for

half-integer values the final state is |1〉, and for other values the final state is some

intermediary superposition.

This description assumes that tunnelling between the two channels is com-

pletely suppressed before the electron reaches the barrier region, and that γ is

constant and large enough to allow tunnelling for the length of the barrier region.

It would be straightforward to instead allow a smooth variation of γ along the

barrier by considering a series of small time steps, each with a different γ(t),

and then numerically calculating the time-ordered product of the TEOs for each

step. Some calculations were performed with a Gaussian variation of γ(t) with

time, but the results were not significantly different from using constant γ. The

advantage of using a constant value for γ is that it enabled the simple analytic

expressions given by Eqs. (4.4) and (4.5) to be derived, and this will allow a

comparison to be made to the results with a magnetic field in the next section.
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4.4.2 Magnetic field model

The model of electric dynamics in an electric field can be adapted to include the

effect of a perpendicular magnetic field, and for simplicity we begin by setting

ε = 0, and so ∆ = γ. From Eq. (3.3), a particle with charge e moving in a

magnetic field (0, 0, B) acquires an Aharonov-Bohm phase

S = exp

(
−i
∫
eA · dx/~

)
. (4.6)

The magnetic vector potential is chosen to be A = (−By, 0, 0), and the centres

of the two SAW channels are taken to be at y = ±a, where a = 80 nm for the

device geometry depicted in Fig. (4.1). The tunnelling region is split into a series

of N small steps of length dx = v(dt) where v is the SAW velocity, and in each

step the two basis states will acquire different Aharonov-Bohm phases by virtue

of their different y positions – the state |0〉 acquires the phase

S0 = exp (−ieBav(dt)/~) (4.7)

whilst the phase acquired by the state |1〉 is

S1 = exp (ieBav(dt)/~) (4.8)

This description can be thought of as representing the tunnelling region by a

series of consecutive Aharonov-Bohm loops, each enclosing an infinitesimal flux

δΦ as shown in Fig. (4.6).

The diagonal elements of the TEO (4.3) are therefore modified to arrive at

the TEO for a single step dt,

UB(dt) =

(
c(dt)e−iθ is(dt)

is(dt) c(dt)eiθ

)
(4.9)

= Ic(dt) cos θ + iσxs(dt)− iσzc(dt) sin θ (4.10)

where θ = eBav(dt)/~ and c(dt) = cos(γ(dt)/2~), s(dt) = sin(γ(dt)/2~) (this is

the same as the definition of the functions c(t) and s(t) introduced earlier, with
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Figure 4.6: Diagram illustrating the model of the effect of a magnetic field in a two-
channel SAW device. The electron trajectory (blue) forms a series of infinitesimal loops
as it oscillates between the channels. Each loop therefore encloses a magnetic flux (red
arrows) which changes the phase of the states in the two channels.

∆ = γ). As in Section (4.4.1), the TEO is most easily thought of as a rotation

on the Bloch sphere; from Eq. (1.4) the rotation angle φ satisfies c(dt) cos θ =

cos(φ/2) and the rotation axis is n ∝ (−s(dt), 0, c(dt) sin θ).

The time evolution operator for the entire tunnelling region is then

UB(T ) = UB(Ndt) = lim
dt→0

N∏
UB(dt) (4.11)

Rather than evaluating this product directly, however, it is simpler to find ex-

pressions for the orientation of the rotation axis and the rotation angle in the

limit dt→ 0. For the former, we will need to make use of the fact that

lim
x→0+

sinx√
sin2 x+ cos2 x sin2 αx

=
1√

1 + α2
. (4.12)



4.4 Theoretical model 61

Letting x = γ(dt)/2~ and α = 2eBav/γ, the angle χ between the rotation axis

and the polar axis of the Bloch sphere then satisfies

sinχ =
1√

1 + α2
(4.13)

To find the rotation angle, we note that

2 arccos(cos x cos(αx)) ' 2x
√

1 + α2 (4.14)

as x → 0, which follows from a Taylor expansion. The total rotation angle is

then

φtot = Nφ =
γT
√

1 + α2

~
(4.15)

because there are N rotations through the small angle φ and T = N(dt).

Figures (4.7) and (4.8) illustrate the rotation described by Eqs. (4.13) and

(4.15). They show the evolution of the wavefunction on the Bloch sphere as a

function of time for two different rotation angles φtot. Figure (4.7a) and (4.8a)

show the B = 0 case. From Eq. (4.13), the angle between the polar axis and the

rotation axis is π/2 when B = 0 – i.e., the Bloch vector rotates around the x

axis. As the magnetic field is then increased in parts (b-d) of the two figures, the

rotation axis tilts towards the z axis.

From Eqs. (4.13) and (4.15), it is straightforward to calculate the final state

of the electron for a given set of device parameters. The parameter n0 is used to

define the coupling between the two channels; n0 is defined to be the number of

oscillations performed at B = 0, ε = 0 (thus 2n0π = γT/~ from the definition of

n in Section (4.4.1) and making use of the fact that ∆ = γ when ε = 0). With

the wavefunction initialised in the top channel, Fig. (4.9) shows the probability

that the electron is in the top channel after the time T as a function of B and n0.

The crescent-like features in Fig. (4.9) can be understood by considering the

condition required for the rotation angle to be φtot = 2mπ for integer m, which

corresponds to the final state being |0〉. From Eq. (4.15) this occurs when 2mπ =

2n0π
√

1 + α2, which for successive values of m leads to the white crescent-shaped

features of Fig. (4.9) given that α ∝ B.
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Figure 4.7: Bloch sphere representation of oscillation between parallel channels (φtot =
2π). The pink circle illustrates the trajectory on the Bloch sphere and the red arrow
indicates the final state. a) 0 mT, b) 16 mT, c) 28 mT, d) 36 mT.
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Figure 4.8: Bloch sphere representation of oscillation between parallel channels (φtot =
π). The pink circle illustrates the trajectory on the Bloch sphere and the red arrow
indicates the final state. a) 0 mT, b) 14 mT, c) 22 mT, d) 31 mT.
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Figure 4.9: Results from analytic model of electron dynamics in a magnetic field. The
electron is initially in the state |0〉; the colour scale shows the probability that the final
state is then |0〉. The tunnel coupling is set by n0, the number of oscillations performed
at zero magnetic field.
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We finally remark that there is very good agreement between the results from

the numerical simulations in Fig. (4.5) and the results from the model in Fig. (4.9).

There is an approximately exponential scaling between the barrier gate voltage

in Fig. (4.5) and the tunnel coupling in Fig. (4.9): as the barrier gate is made

more negative, tunnelling is expected to be exponentially suppressed.

4.4.3 Equivalence of models via Lorentz transform

As was discussed briefly in Section (4.3.2) and can be seen from a comparison of

Figs. (4.4) and (4.5), the magnetic field B and the electric field provided by the

gate voltage difference ∆V had similar effects upon the simulation results. The

theoretical model developed in this chapter allows the reason for this to be un-

derstood by Lorentz transforming from the laboratory frame S to the rest-frame

S ′ of the SAW. The Aharonov-Bohm phases introduced into the operator (4.9)

vanish in S ′: there is no motion in the x direction and so A · dx = 0. How-

ever, the electric potential V ′ in frame S ′ is modified from the electric potential

in V due to the non-zero magnetic vector potential: V ′ = γvV − eγvvAx where

γv = (1 − v2/c2)−1/2. The Lorentz transformation also changes the element of

proper time: dt′ = dt/γv. This leads to the result that a magnetic field B in

frame S is equivalent to setting ε = 2veBa in frame S ′ (the factor of 2 arises

because the energies of the two states were defined to be ±ε/2). Indeed, it can

be verified that Eqs. (4.5) and (4.4) are the same as Eqs. (4.13) and (4.15) upon

substituting this value for ε.

Given the manifestly covariant nature of the quantum mechanical phase ac-

quired in the presence of an electromagnetic 4-potential it is perhaps not surpris-

ing that this equivalence between electric and magnetic fields should exist. The

Lorentz transformation of the electromagnetic 4-potential underlies the form of

the classical expression for the Lorentz force, so the models developed in this chap-

ter illustrate an interesting connection between the infinitesimal Aharonov-Bohm

phase and the Lorentz force [96]. It is also possible to use this observation to de-

termine the effect of applying both a magnetic and electric field – Section (4.4.1)

considered the situation where B = 0, ε 6= 0 whilst Section (4.4.2) considered
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B 6= 0, ε = 0. In order to generalise the model to allow both B 6= 0 and ε 6= 0,

one needs only to replace ε by ε+ 2veBa in the results derived in Section (4.4.1).

4.5 Single-qubit rotations

In quantum optics, the Mach-Zehnder interferometer (MZI) is a prototypical

single-particle interference device [97]. The MZI consists of two beamsplitters

and is illustrated in Fig. (4.10). Although the original interferometer used beams

of photons, solid state devices operating in the Quantum Hall regime have been

fabricated and measured [98, 99] and thus constitute electronic analogs of the

original MZI. Rodriquez et al. [100] proposed that a SAW device could also be

used as an electronic MZI, using a gate design similar to that shown in Fig. (4.11).

The barriers labeled 1 and 3 in Fig. (4.11) each operate in a similar manner to

the single barrier in Fig. (4.1), and are equivalent to optical beamsplitters in

the optical MZI. The model discussed in Section (4.4) can therefore be used to

completely describe the dynamics of an electron in this device by allowing the

coupling γ to vary with time and then calculating the time-ordered product of a

series of TEOs each having the form of Eq. (4.3).

As was shown in Section (4.4.3), applying a perpendicular magnetic field is

equivalent to changing ε. Therefore, in a magnetic field the time evolution at a

weak barrier (regions 1 and 3 of Fig. (4.11)) will be some combination of σx and

σz rotations, as described by Eq. (4.3). When the barrier is large, the channels

are decoupled so γ = 0 (region 2 of Fig. (4.11)). The evolution will then be only

a σz rotation because from Eq. (4.5) the rotation axis will be aligned with the z

axis of the Bloch sphere. As an example, the three barrier regions are taken to all

have length 0.135 µm and the value of n0, which defines the coupling strength, is

set to 0.5, 0 and 1 respectively for the three barrier regions. The strength of the

perpendicular magnetic field was 50 mT, so setting n0 to 0.5 no longer gives a

π/2 rotation (and similarly n0 = 1 is no longer a π rotation). These parameters

are comparable to those used earlier for the single-barrier device. Figure (4.12)

shows the evolution of the Bloch vector with time and illustrates that the three

regions correspond to either a combined σx and σz rotation or a pure σz rotation.

With a fixed external magnetic field, it is therefore possible to rotate a single
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Figure 4.10: Mach-Zehnder interferometer. Particles are injected from the source S
and encounter beam splitters (blue dashed lines) and mirrors (blue solid lines). One
arm of the interferometer is subject to a phase change Φ which leads to interference
patterns at the detectors D1 and D2.

Figure 4.11: Proposed gate design for a SAW Mach-Zehnder interferometer (courtesy
of M. Kataoka). Two parallel channels are separated by a series of controllable barriers.
Barriers 1 and 3 couple the two channels together, whilst barrier 2 (contacted via an
air bridge) is large and decouples the channels.
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Figure 4.12: Evolution of the Bloch vector for a SAW MZI; see text for device parame-
ters. The labels 1-3 refer to the three different regions marked in Fig. (4.11). The time
evolution is shown by the pink trajectory and the red arrow indicates the final state.

qubit to any point on the Bloch sphere by controlling the tunnel couplings with

the applied gate voltages.

4.6 Conclusions

In this chapter, the results from detailed numerical simulations of electron dy-

namics in a two-channel SAW device were presented. The potential used in the

simulations was calculated from a realistic gate design using the method from Sec-

tion (2.5.1), and a narrow barrier gate was used to control the coupling between

the two channels. The simulations showed that the electron oscillates coherently

between the two channels, and the frequency of this oscillation depends upon

the voltages applied to the gates around the tunnelling region (which created a

transverse electric field) and also upon the strength of a perpendicular magnetic

field. The behaviour in an electric field was modelled analytically using a two-

level Hamiltonian, and the model was extended to include the effect of a magnetic

field via an infinitesimal Aharonov-Bohm effect. Using this model, it was shown

that using gates to define a Mach-Zehnder-like geometry in combination with a

magnetic field enables the state to be rotated to any position on the Bloch sphere.



Let your rapidity be that of

the wind, your compactness

that of the forest.

Sun Tzu

5
Coherent and squeezed states

5.1 Introduction

In this chapter we will discuss the dynamics of Gaussian wavefunctions in a har-

monic potential. The ground state of the harmonic potential V = 1
2
mω2x2 is

a Gaussian centered at x = 0 with wavefunction ψ0(x) = A exp(−mωx2/2~)

(where A is a normalisation constant). We will consider two classes of excited

states: those which are displaced from x = 0, and those with a standard deviation

not equal to that of the ground state. These two types of state are known respec-

tively as coherent and squeezed states; although coherent and squeezed photonic

states have been the subject of much study in quantum optics, their electronic

counterparts have received comparatively little attention.

The chapter will begin with a discussion of the mathematical properties of

coherent and squeezed states. A number of applications in quantum information

processing have been suggested for the photonic states, and similar applications

may exist for electronic states. It is also of great importance to consider how



5.2 Wigner distribution 70

these states might be generated in a SAW device, both intentionally and unin-

tentionally. It is often assumed, both in this thesis and in other work, that an

electron is in a well-prepared state prior to performing some series of coherent

manipulations. In practice, electrons in solid state devices are subject to uncon-

trollable perturbations due to interactions with the environment. Although it is

difficult to completely characterise such perturbations, their effects will include

changing the width or position of 1D channels. Understanding the effect of such

perturbations is thus crucial for any study of electron manipulation in SAW de-

vices, and it will be seen that examining coherent and squeezed states leads to

a useful framework for interpreting the effects of these perturbations. Numerical

simulations will then be used to investigate the factors affecting the controllable

generation of coherent states using electrons carried in a SAW; it will be seen that

the SAW amplitude is a crucial factor in this. We will finish by determining the

effect that using coherent and squeezed states has upon the coherent oscillations

in a two-channel SAW device discussed in the previous chapter.

�

Before describing the dynamics of a general Gaussian wavefunction in a harmonic

potential, we begin by introducing a mathematical tool which will be of use in

the later discussion: the Wigner distribution.

5.2 Wigner distribution

The Wigner distribution for a wavefunction ψ(x) is defined as [101]

fw(p, q) =
1

2π~

∫ ∞
−∞

eips/~
〈
q − s

2

∣∣∣ψ〉〈ψ∣∣∣q +
s

2

〉
ds (5.1)

where q and p are conjugate variables – q is a position co-ordinate and p is the

momentum conjugate to that co-ordinate. If the q or p dependence is integrated
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out of fw, one finds ∫ ∞
−∞

fw(p, q)dp = |ψ(q)|2 (5.2)∫ ∞
−∞

fw(p, q)dq = |ψ(p)|2 (5.3)

which are the co-ordinate and momentum probability distributions respectively.

This motivates the interpretation of fw as a quasiprobability distribution in phase

space, although fw can be negative so it can not be strictly interpreted as a

probability distribution. The Wigner distribution for a quantum particle is the

analogue of the phase-space trajectory of a classical particle, and it will be used

in the description of Gaussian states in the remainder of this chapter.

5.3 Gaussian in a harmonic potential

In general, it is not possible to analytically determine the quantum-mechanical

time evolution of an arbitrary state in an arbitrary potential. However, the

evolution of a Gaussian wavefunction in a harmonic potential is amenable to a

straightforward theoretical analysis. A general Gaussian wavefunction can be

written

ψ(x, t) = N exp

(
−β(t)(x− x0(t))2 +

i

~
p0(t)(x− x0(t)) +

i

~
γ(t)

)
(5.4)

where N is a normalisation constant, x0(t) and p0(t) are time-dependent quanti-

ties which give the mean position and momentum of the wavefunction, γ is a phase

factor and β(t) is related to the standard deviation σ of the Gaussian (β = 1/2σ2).

It can be shown [101] that for the harmonic potential V (x) = 1
2
mω2x2, these

quantities satisfy

x0(t) = x0(0) cos(ωt) +
p0(0)

mω
sin(ωt) (5.5)

p0(t) = p0(0) cos(ωt)−mωx0(0) sin(ωt) (5.6)

β(t) = a
β(0) cos(ωt) + ia sin(ωt)

iβ(0) sin(ωt) + a cos(ωt)
(5.7)
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Figure 5.1: Wigner distributions for coherent and squeezed states. The black circular
contours indicate classical trajectories of different energies, and the light grey circle
shows the Wigner distribution of the ground state. a) Wigner distribution for a coherent
state (dark grey circles) for a state with an initial x displacement at four times. b)
Wigner distribution for a squeezed state (dashed ellipses). The state oscillates between
the two ellipses, and so the width of the x projection oscillates between being greater
than and less than the ground state.

where a = mω/2~. (The evolution of the time-dependent phase γ(t) is unimpor-

tant for the purposes of the current discussion.) From Eq. (5.7) it is clear that

if β(0) = a (corresponding to a standard deviation equal to that of the ground

state) then β(t) = a for all t. If either of x0 or p0 is non-zero, the mean position

and momentum of the wavefunction then oscillate sinusoidally with time, in close

analogy to a classical particle in a harmonic potential. The Wigner distribution

of a state with non-zero x0(0) and p0(0) = 0, β(0) = a is plotted in Fig. (5.1a).

A state such as this is known as a coherent state.

Alternatively, if x0(0) = p0(0) = 0 but β(0) 6= a then the average position

and momentum of the state remain zero for all time, but the width of the state

oscillates as a function of time. From Eq. (5.7), it is possible to show that the

standard deviation oscillates periodically between two values σmin and σmax such

that σmax/σmin = β(0)/a. The Wigner distribution for such a state is shown in

Fig. (5.1b); the two dashed ellipses in the figure are known as quadrature-squeezed

states and have reduced uncertainty in one of p or q.
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5.4 Coherent and squeezed states

Coherent states

Coherent states were first investigated by Schrödinger [102] in an attempt to

find a quantum system which exhibited essentially classical behaviour. We saw

in Section (5.3) that displacing a Gaussian wavefunction from the centre of a

harmonic potential leads to a trajectory for the mean position which is the same

as that for a classical particle; this is a manifestation of Ehrenfest’s theorem [103].

None the less, coherent states remain quantum mechanical in nature, and Glauber

[104] showed how to describe them in terms of quantum mechanical operators.

Coherent states can be generated by applying the displacement operator D(α) to

the vacuum state |0〉. The displacement operator is defined as

D(α) = exp
(
αa† − α∗a

)
(5.8)

where α is a complex number which sets the magnitude of the displacement, a†, a

are the creation and annihilation operators and a|0〉 = 0. The coherent state |α〉
is then defined as |α〉 = D(α)|0〉. Coherent states are also eigenstates of a, and

have been the subject of much study in optics because they well describe the light

created by a laser above threshold [105] (this is when the output is dominated by

stimulated rather than spontaneous emission). The overlap between two different

coherent states is [106]

〈α′|α〉 = exp(−|α− α′|2) (5.9)

Thus, although different coherent states are not strictly orthogonal, for suffi-

ciently large α−α′ the two states are effectively orthogonal. Consequently, Ralph

et al. [107] have suggested using a pair of coherent states | ± α〉 with α ≥ 2 as

a qubit. More recently, Lund et al. [108] have suggested that with suitable error

correction, states with α = ±1.2 have a sufficiently small overlap to be useful in

quantum computation. A coherent state can be written as a superposition of the
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Figure 5.2: Overlap pn = 〈n|α〉 (from Eq. (5.10)) between a coherent state and the
eigenstates of the harmonic oscillator, for α = 1.2 (blue crosses) and α = 2 (red
circles).

eigenstates |n〉 of a harmonic oscillator:

|α〉 =
∞∑
n=0

αn
e−|α|

2/2

√
n!
|n〉 (5.10)

The value of α is related to the distance by which the wavefunction is displaced

from the origin: the co-ordinate representation of a coherent state is [101]

〈x|α〉 = N exp

−mω
2~

[
x−

√
2~
mω

α

]2
 (5.11)

where N is a normalisation constant. Using ~ω = 2 meV as a representative

energy spacing in SAW devices, the centre of the state is therefore displaced by

34α nm so α = 2 and α = 1.2 correspond to displacements of 68 and 41 nm

respectively. A displacement of this magnitude should therefore be achievable in

practice, and Figure (5.2) shows the coefficients pn = 〈n|α〉 for these two values

of α.
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Figure 5.3: Schematic gate design for generating a coherent state. 1) The electron
is initially in a 1D channel. 2) The channel shifts suddenly to one side, leaving the
electron displaced from the centre of the channel. 3) The electron oscillates from side
to side. (Two such channels are depicted)

Electronic coherent states could be generated in SAW devices using a gate

design similar to that shown in Fig. (5.3). The electron is initially confined in a

SAW minimum travelling along a Q1DC, and the channel then shifts to one side.

If this shift is gradual then the electron will adiabatically follow the changing

potential [9] and remain in an instantaneous eigenstate. However, if there is

a sudden change in potential the electron will be displaced to one side of the

channel and then oscillate from side to side. Exactly what is meant by a “sudden”

change in the potential will be examined carefully in Chapter 6, where we will

discuss experimental evidence demonstrating that the nonadiabatic excitation of

an electron in a SAW device is feasible.

Squeezed states

Squeezed states can be created by applying the squeezing operator S(ζ) to the

vacuum state, where

S(ζ) = exp

(
1

2
(ζ∗a2 − ζ(a†)2)

)
(5.12)

ζ is generally referred to as the squeezing parameter, and a squeezed state is

written as |ζ〉 = S(ζ)|0〉. In contrast to Eq. (5.8) which was an exponent of

a linear function of the ladder operators, Eq. (5.12) involves the exponent of

a quadratic function of the ladder operators. Because of this, squeezed light
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Figure 5.4: Schematic gate design for generating a squeezed state. 1) The electron is
initially in a channel with subband spacing ~ω1. 2) The channel suddenly changes in
width. 3) The standard deviation of the transverse wavefunction no longer matches
that of the instantaneous ground state, so the wavefunction is now squeezed.

states are experimentally difficult to produce as non-linear optical interactions

are required [109]. In contrast to the optical case, creating a squeezed electron

wavefunction in a SAW device requires only that the width of the SAW channel

vary with position: if the electron is initially in the ground state of a SAW

minimum in a channel with confinement energy ~ω1 which then suddenly changes

to ~ω2, the electron wavefunction will be squeezed. A schematic gate design for

performing this process is shown in Fig. (5.4).

The co-ordinate representation of squeezed states was found by Rai & Mehta

[110] to be

〈x|ζ〉 =
N√

1− 2θ
exp

(
−mω

2~
2θ + 1

2θ − 1
x2

)
(5.13)

where

θ =
ζ∗ tanh(2|ζ|)

2|ζ|
(5.14)

The overlap between two different squeezed states (i.e., between two Gaussians

with standard deviations σ1 and σ2) is

∫ ∞
−∞

ψ∗1ψ2dx =

√
2σ1σ2

σ2
1 + σ2

2

'
√

2σ2

σ1

(5.15)

where the approximation holds when σ2
1 � σ2

2. Following the discussion in Sec-

tion (5.3), taking σ1 and σ2 to be the extremal standard deviations of a squeezed
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Gaussian wavefunction gives an overlap of
√

2β(0)/a. The two extremal states

between which a squeezed Gaussian oscillates with time can thus be made ap-

proximately orthogonal for suitable β(0), and Gottesman et al. [111] therefore

suggested (in the context of quantum optics) that these states could be used as a

qubit. To achieve an overlap of 1%, for example, requires that β(0) = (5×10−5)a.

For a typical ground state of an electron in a SAW device, the standard deviation

is σ ' 100 nm and so this choice of β(0) requires an initial standard deviation of

0.7 nm, which is unattainable for the devices considered in this work.

There are uses of squeezed states which do not require the states to be as

strongly squeezed as this, however. There is a wide range of applications for

squeezed light, many of which make use of the fact that the fluctuations in the

amplitude or phase of the electromagnetic field can be reduced. Caves [112]

proposed that squeezed light could be used to aid in the detection of gravity

waves, and this idea was further developed by Pace et al. [113]. Xiao et al. [114]

later demonstrated that squeezed light could be used to enhance the signal-to-

noise ratio of interference fringes in a Mach-Zehnder interferometer. It has also

been suggested that squeezed light could be a useful resource for the teleportation

of coherent states [115]. There has been little study of how to generate squeezed

electronic states, but it is possible they may prove to be a useful resource for

performing experiments analogous to those performed with squeezed light. Aside

from their potential applications, it is also important to understand under what

conditions squeezed electronic states are generated as the undesired squeezing

of an electronic state presents a potential source of error for other QIP schemes

based on electron dynamics.

5.5 Practical generation of coherent states

Figure (5.3) illustrated the essential principle behind using a SAW device to

generate a coherent state: the electron must travel along a 1D channel which

suddenly shifts sideways without a significant change in confinement energy (as

this might also lead to squeezing). If the shift in potential is slow, the electron

adiabatically follows the potential and will remain in an instantaneous eigenstate.

It will now be shown that it is therefore also necessary to consider the amplitude



5.5 Practical generation of coherent states 78

of the SAW potential, as this affects the abruptness of the change in potential

experienced by the electron. Throughout this section the co-ordinate system used

is defined so that the SAW travels along the x axis. The direction of SAW travel

will also be referred to as the longitudinal direction, and the transverse direction

is perpendicular to this.

When an electron is carried along a gate-defined channel by a SAW, it will in

general experience a time-varying electric field parallel to the direction of SAW

motion which depends upon the pattern of the gates and the voltages applied to

them. The dynamics of the electron then change depending upon the magnitude

of this electric field relative to the electric field created by the SAW. There are

three regimes of interest, depicted in Fig. (5.5). If the channel is approximately

flat, so the longitudinal electric field from the gates can be neglected, the electron

simply moves along the channel at the SAW velocity. If there is a large positive

electric field (an “uphill” potential), the velocity of the electron is decreased

relative to the SAW velocity, whilst if there is a large negative electric field (a

“downhill” potential) the velocity of the electron is increased. This can be seen in

Fig. (5.6), which plots the average electron position (determined from numerical

simulations) for the three cases. We ignore the possibility that the electric field

is large enough to overcome the SAW confinement, as this lies outside the regime

in which SAW devices are typically operated.

If the longitudinal channel potential is flat, it is difficult to generate a sudden

change in the transverse potential experienced by the electron. The characteristic

minimum length scale of features that can be created in the potential at the 2DEG

using surface gates is approximately equal to the depth of the 2DEG which is

90 nm in this work – this length scale corresponds to a time of ∼ 30 ps at the

SAW velocity. However, Fig. (5.6) shows that when the longitudinal potential is

not flat the electron velocity can become greater than the SAW velocity, effectively

leading to a more rapid change in the potential.

The consequences of this for the generation of coherent states is shown in

Figs. (5.7) and (5.8), which show the results of simulating electron motion with

two different SAW amplitudes. We now use a gate design similar to that shown

in Fig. (5.3), except multiple gates are used so that the potential in the three

regions of the figure can be independently controlled. The voltages applied to the
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Figure 5.5: Potential along the centre of the Q1DC with gate design shown in the inset.
The two left gates are both at -1 V throughout, and the two right gates are at -0.8 V
(red curve), -1 V (black curve) and -1.2 V (blue curve). The potentials are calculated
along the dashed line (1 µm in length) shown in the inset.

Figure 5.6: Average x position of an electron carried in a SAW along a Q1DC. The
three lines correspond to the three potentials plotted in Fig. (5.5).
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Figure 5.7: Average position of an electron carried by a SAW along a kinked channel,
with a SAW amplitude of 35 mV. The position varies smoothly with time. Thick line,
left axis: average x position. Thin line, right axis: average y position.

gates are chosen so that the potential in region 2 of Fig. (5.3) is lower than region

1. The electron thus experiences a “downhill” potential as it is carried along the

channel, similar to the red line of Fig. (5.5). With a SAW amplitude of 35 mV

(Fig. (5.7)), the electron accelerates around the time ∼ 0.1 ns but the change

in potential is insufficiently abrupt to excite the electron into a coherent state.

However, reducing the SAW amplitude slightly to 31.5 mV (Fig. (5.8)) leads to

greater acceleration, and the average position of the electron then oscillates with

time. The direction of oscillation is approximately parallel to the angled part of

the channel, and so in this instance the amplitude of the x oscillation (∼ 25 nm)

is greater than that of the y oscillation (∼ 5 nm). It should be possible to change

the relative amplitudes of these oscillations by changing the angle between the

different sections of the channel. The slight decrease in the oscillation amplitude

at later times in Fig. (5.8) is due to an essentially classical effect: there is a slight

increase in the potential experienced by the electron in region 3 of Fig. (5.3) due

to the gate design used, leading to a slight reduction in the kinetic energy.

5.6 Effect upon two-channel oscillation

Having shown how coherent states may be generated in a SAW device, it is now

pertinent to ask how they could be detected experimentally. We therefore now

repeat the numerical simulations that were first seen in Chapter 4 of electron
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Figure 5.8: Average position of an electron carried by a SAW along a kinked channel,
with a SAW amplitude of 31.5 mV. The position oscillates after approximately 90 ps.
Thick line, left axis: average x position. Thin line, right axis: average y position.

oscillation between two parallel SAW channels separated by a tunnelling barrier,

but now using coherent and squeezed initial states. This will model the effect of

changing either the position or width of a 1D channel, which might arise in an

experiment from an unwanted perturbation. An alternative scheme for measuring

an electron which oscillates from side to side in a SAW channel will be presented

in Chapter 6.

Figure (5.9) shows the central region of the simulated device. The electron

oscillates between the two channels as a function of time, and the frequency of

this oscillation is altered by changing the voltage applied to the gates labelled

“TC” and “Barrier”. A full discussion of this effect can be found in Chapter 4.

Setting the TC voltage to -700 mV creates a symmetric double-well potential,

and changing the TC voltage then leads to a transverse electric field. For the

gate voltages used here, ~ω ' 2 meV in the entrance leads to the left of the

tunnel barrier. As discussed in Section (5.4), a displacement of ∼40 nm (so that

α = 1.2) is then sufficient to generate approximately orthogonal states which

could be used as a qubit.

The ground state of a SAW minimum in the (top) entrance lead is determined

numerically and then displaced laterally by 40 nm. The probability that the

electron occupies the top channel (and so exits to the top-right of the device) is

calculated by numerically solving the time-dependent Schrödinger equation and

plotted in Fig. (5.10). Similarly, to simulate the effects of a squeezed state, the
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Figure 5.9: SEM image of the simulated device, which consists of two parallel SAW
channels separated by a narrow barrier. The importance of the gate labelled TC is
discussed in the text.

numerically-determined ground state is reduced in width without altering the

mean position. The reduction in width that can be simulated numerically is

limited in practice by the computational grid size – the grid spacing must be

much less than the length scale over which the wavefunction changes appreciably.

Figure (5.11) shows the simulation results for a wavefunction which has had the

standard deviation reduced to 40% of the ground state standard deviation. (From

Eq. (5.13), this corresponds to a squeezing parameter ζ = 0.459.)

In both Figs. (5.10) and (5.11), at any given TC voltage the probability that

the electron occupies the top channel after being carried past the tunnel barrier

exhibits complicated oscillatory behaviour as a function of the barrier voltage.

A second-order Butterworth filter [116] is therefore applied to separate the low-

and high-frequency behaviour. Some of the features seen in Fig. (5.10) can be

simply explained by considering the behaviour of the instantaneous eigenstates

and eigenenergies in the tunnelling region as a function of the gate voltages. We

define the energy difference of two eigenstates to be ∆ij = |Ei − Ej| where Ei

is the eigenenergy of state |i〉. A wavefunction which is a linear superposition of

two states will have an oscillating probability density, and the frequency of this

oscillation is ωij = ∆ij/~. From Eq. (5.10), a coherent state can be written as a

Poissonian superposition of the eigenstates of a harmonic oscillator. Figure (5.2)

shows that for a displacement of α = 1.2, the probability |pn|2 of occupying

an eigenstate with n > 5 is less than 1%. Most of the dynamical behaviour

should therefore be understandable from a consideration of the first six eigen-

states. These eigenstates are plotted in Fig. (5.12), and it should be noted that
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Figure 5.10: Simulation results for an initial state displaced laterally by 40 nm, with
parts (b)-(d) showing the data after applying a second-order Butterworth filter as a
function of the barrier voltage. The colour scale in a) and b) shows the probability of
remaining in the SAW dot at the end of the simulation. In c) and d) the low-frequency
background has been removed and the colour scale shows the variation in probability
with respect to the background. a) Simulation results. b) Low frequency (< 500V −1).
c) High frequency (> 500V −1). d) Higher frequency (> 1500V −1).
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Figure 5.11: Simulation results for an initial state squeezed in width to 40%, with parts
(b)-(d) showing the data after applying a second-order Butterworth filter as a function
of the barrier voltage. The colour scale in a) and b) shows the probability of remaining
in the SAW dot at the end of the simulation. In c) and d) the low-frequency background
has been removed and the colour scale shows the variation in probability with respect
to the background. a) Simulation results. b) Low frequency (< 200V −1). c) Higher
frequency (> 200V −1). d) High frequency (> 400V −1).

for all of the simulations performed here only the states |0〉 and |1〉 have a lower

energy than the highest point of the barrier.

The low-frequency behaviour in Fig. (5.10b) is very similar to the oscillations

seen for a two-level system in the previous chapter, and arises from oscillation

between the |0〉 and |1〉 states. The linear combinations |0〉 ± |1〉 (we neglect a

normalisation constant for brevity) are localised to one side of the barrier or the

other, and in a similar manner the probability density for the states |3〉 ± |5〉 in

Fig. (5.12) is almost entirely localised to either the upper or lower channel.

As the |0〉 and |1〉 states can be thought of as the symmetric and antisymmetric

superpositions of two approximately Gaussian states which are localised to one
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Figure 5.12: Contour plots of first six eigenfunctions at the centre of the SAW two-
channel device. The grey line indicates the position of the tunnel barrier, and each plot
shows a region which is 270× 500 nm.
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Figure 5.13: Expected behaviour of oscillations between symmetric and antisymmetric
combinations of states |3〉 and |5〉 in Fig. (5.12).

or other of the channels, the energy difference ∆01 depends upon the overlap

of these localised states. Changing the TC voltage will significantly change the

penetration of the two localised states into the tunnel barrier, so ∆01 will be

sensitive to changes in the TC voltage. Although similar considerations apply to

the energy difference ∆35, the states |3〉 and |5〉 are higher in energy than the

barrier and so the dependence of ∆35 on the TC voltage will be weaker than that

of ∆01. Following the results in Section (4.4), the probability of remaining in

the upper channel after a time T has elapsed is expected to be roughly P35 '
sin2(∆35T/~). The energy difference ∆35 was found for the entire range of voltages

from a numerical calculation of the eigenenergies, and P35 is plotted in Fig. (5.13)

for a tunnelling region of length T = 0.6 ns. The figure shows a set of oscillations

which are qualitatively similar to those seen in Fig. (5.10d), and in particular

the weak dependence on TC voltage (relative to the |0〉 ↔ |1〉 oscillation) is

reproduced.

The amplitude of these high-frequency oscillations in the simulation is an order

of magnitude less than the low-frequency behaviour arising from the |0〉 ↔ |1〉
oscillation. From Eq. (5.10), |〈α = 1.2|n = 5〉|2 = 0.01 so it is expected that

the |3〉 ↔ |5〉 oscillation be of much lower visibility. The superpositions |2〉 ± |4〉
correspond to a state which oscillates between the two channels as in the |0〉 ↔ |1〉
case but with an added oscillation parallel to the direction of SAW motion (i.e.,

the overall behaviour is to oscillate diagonally). The extra oscillation parallel to
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the SAW direction does not affect which channel is occupied, and so for these

states the behaviour is found to be essentially identical to the |0〉 ↔ |1〉 case.

Although the results for a squeezed state shown in Fig. (5.11) show some fea-

tures which are broadly similar to those for the coherent state, the high-frequency

behaviour shows more complex structure, and at present we have no simple phys-

ical description to offer for this. It is an open question whether or not plots

such as those in Figs. (5.10) and (5.11) would be experimentally distinguishable

given that the detailed structure in these plots is of relatively small amplitude.

In practice, an experimental study would examine how such oscillations depend

upon multiple gate voltages which change either the displacement or the width

of the initial state, and it is likely that this would reveal differences between the

two situations.

5.7 Conclusions

The focus of this chapter was an examination of coherent and squeezed states,

which are excited states of the quantum harmonic oscillator which have a Gaus-

sian wavefunction. These excited states might arise either due to a deliberate

manipulation of an electron or an unwanted perturbation due to interaction with

the environment. After reviewing the mathematical properties of these states

some applications were discussed, and we saw that coherent states are a poten-

tially useful resource in QIP. We then discussed how an electronic coherent state

could be generated in a SAW device; this requires a sudden change in the poten-

tial experienced by the electron. The amplitude of the SAW was found to be a

crucial factor – if the amplitude is too large the electron adiabatically follows the

SAW minimum and remains in an instantaneous eigenstate. We then examined

the effect that using coherent and squeezed states has upon the coherent oscil-

lation of an electron between two parallel SAW channels separated by a tunnel

barrier. This led to a modification of the results from the previous chapter, and

the general behaviour was understood by considering how the spectrum of the

double-well potential of such a device depends upon the voltages applied to the

gates around the barrier region.
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He that breaks a thing to find

out what it is has left the

path of wisdom.

Gandalf

6
Nonadiabatic dynamics

6.1 Introduction

This chapter will present a technique that can be used to create and measure

nonadiabatic electron dynamics in a SAW device. After reviewing what the no-

tion of adiabaticity means in quantum mechanics, the SAW device which will

be studied in this chapter will be described. The device uses SAWs to carry

an electron in a dynamic quantum dot past a tunnelling barrier. If the electron

experiences a rapidly-changing potential it will be nonadiabatically excited, and

the subsequent tunnelling current through the barrier can be used as a probe of

this motion.

The energy spacing in a typical SAW dot is ∼ 1 meV, and a linear super-

position of two states with this energy spacing will oscillate with a time period

of ∼ 4 ps. Probing picosecond motion in semiconductor devices is extremely

challenging, as it requires experimental parameters (such as gate voltages) to

be pulsed on a picosecond timescale which is beyond typical experimental band-
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widths. Also, Rahman et al. [117] showed that applying short voltage pulses

(∼ 100 ps duration) to gates will generate surface acoustic waves which could in-

troduce unwanted effects in experiments on double dots such as those performed

by Hayashi et al. [46] and Gorman et al. [47]. The technique introduced here

does not require such pulses, instead taking advantage of the motion of a SAW

to create a time-varying potential.

We will perform numerical simulations of the SAW device, and the simulation

results will be seen to be in good agreement with experimental data. The simu-

lations will explain the effect that changing the gate voltages around the barrier

region has upon the measured tunnelling current, as well as explaining the effect

of a perpendicular magnetic field. We will finally show that the tunnel barrier

device could also be used to provide information about the initial state of the

electron before the tunnelling region.

6.2 Adiabaticity in quantum mechanics

Adiabatic evolution is often associated with thermodynamic processes: in that

context, it means a process which happens infinitesimally slowly so that the

energy of the system does not change. One can extend this definition to quan-

tum mechanics to consider quantum mechanical systems with Hamiltonians that

change slowly with time, as follows.

We begin by considering the time-dependent Schrödinger equation for a time-

dependent Hamiltonian H(t),

i~
∂ψ(t)

∂t
= H(t)ψ(t) (6.1)

where we neglect the spatial dependence of H and ψ for notational brevity. We

then define the unitary operator U(t) that diagonalises the instantaneous Hamil-

tonian H(t),

U−1(t)H(t)U(t) = D(t) (6.2)

so that D(t) is diagonal, and we also define ψ′(t) such that

U(t)ψ′(t) ≡ ψ(t) (6.3)
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Substituting Eqs. (6.2) and (6.3) into Eq. (6.1),

i~
∂(Uψ′)

∂t
= i~

(
U
∂ψ′

∂t
+
∂U

∂t
ψ′
)

= HUψ′ (6.4)

i~
∂ψ′

∂t
= Dψ′ − i~U−1∂U

∂t
ψ′ (6.5)

where Eq. (6.4) has been left-multiplied by U−1 to arrive at Eq. (6.5). If H only

changes slowly with time, then U and U−1 will also change slowly and the second

term on the right hand side of Eq. (6.5) can be neglected. In this limit (given that

D is diagonal by definition) if the initial state ψ(0) is an eigenfunction of H(0)

then ψ(t) will be an eigenstate of H(t) for all time. Conversely, if the Hamiltonian

(and therefore the time evolution operator) change sufficiently quickly with time

then the time evolution will be nonadiabatic: the wavefunction will be excited

into a linear superposition of the instantaneous eigenstates of the system.

The requirement that H “changes slowly with time” is often encoded in the

requirement that [118] ∣∣∣∣∣ 〈Em(t)|Ėn(t)〉
Em(t)− En(t)

∣∣∣∣∣� 1 (6.6)

where En and |En〉 are the instantaneous eigenvalues and eigenstates of a time-

varying Hamiltonian. However, there has been much recent debate over whether

this condition is sufficient in general [118–123] and Du et al. [124] have demon-

strated experimentally that nonadiabatic effects are possible even if the above

condition is satisfied. It is therefore worthwhile to develop new techniques that

can probe nonadiabatic quantum behaviour.

Studying nonadiabatic quantum dynamics is also of interest more generally

for the problem of electron transport in low dimensional systems. The Landauer-

Büttiker formalism [125, 126] is often used to calculate the conductance through

constrictions, and assumes that all incoming and outgoing waves are at the Fermi

energy. However, nonadiabatic effects may lead to scattering which would invali-

date this assumption. Similarly, the Kubo-Greenwood formalism [127] involves a

first-order perturbation expansion to solve the time-dependent Schrödinger equa-

tion and neglects higher order processes. Payne [128] used a one dimensional

potential of changing width as a description of a Q1DC, and showed that exci-
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Figure 6.1: Bloch sphere representation used in this chapter.

tation into higher states is inevitable regardless of the rate at which the channel

width is changed. Tang [129] then investigated the transmission probability of a

wavepacket through a Q1DC using numerical simulations and found that nona-

diabatic excitations led to a small deviation from the Landauer-Büttiker result.

Thus, although nonadiabatic effects are often neglected in standard theory they

may be needed for a complete description of low dimensional transport.

6.3 Notation and Bloch sphere

Much of the discussion in this chapter will centre upon potentials that are either

harmonic or can be well approximated as harmonic. As a main focus of the

discussion is the manipulation of quantum states, we will begin by defining some

notation in the Bloch sphere representation. The nth eigenstate of a potential

will be written |n〉, and in particular the first two eigenstates will be labelled

|0〉 and |1〉. Also, we define two particular linear combinations of these states:

|Lo〉 = (|0〉 − |1〉)/
√

2 and |Ro〉 = (|0〉 + |1〉)/
√

2. The |0〉 and |1〉 states will

be placed on the z axis at the poles of the Bloch sphere, so the |Lo〉 and |Ro〉
states are located at opposite points on the x axis. σx and σz rotations in the

{|0〉, |1〉} basis can therefore be thought of as σz and σx rotations respectively in

the {|Lo〉, |Ro〉} basis. This notation is summarised in Fig. (6.1). Another set

of important states will be denoted by |L〉 and |R〉, defined as α|0〉 ± β|1〉 with
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|α|2 + |β|2 = 1. The probability density of the |L〉 and |R〉 states will be displaced

towards either the left or right of the dot, but the two states are not orthogonal

unless |α| = |β| = 1/
√

2.

6.4 Creating & probing nonadiabatic dynamics

In this section we will describe the main features of the model for creating and

measuring nonadiabatic excitation. A 1D potential well is used to represent a

quantum dot (Fig. (6.2a)), and to the right hand side of this dot is a time-varying

barrier (Fig. (6.2b)) which couples the dot to a reservoir. The barrier height is

quickly lowered to excite nonadiabatic motion, and Fig. (6.2c) and Fig. (6.2d)

show how the numerically-calculated probability density evolves with time for

the cases of weak and strong dot-reservoir coupling respectively. In both cases

the wavefunction oscillates from side to side at a frequency which is dependent

upon the shape of the potential well. The first two eigenstates of the potential

are plotted in Fig. (6.2e), and the |L〉 and |R〉 states arising from two linear com-

binations of these two states is shown in Fig. (6.2f). For the calculation presented

in Fig. (6.2) this pair of states can be written 0.92|0〉±0.38|1〉 (there is negligible

excitation into higher states), although we emphasise that the precise value of the

coefficients is unimportant to this description. The important property of the |L〉
and |R〉 states is that the |L〉 state has essentially no overlap with the barrier

and so has a much lower tunnelling rate than the state |R〉. The probability that

the wavefunction remains in the dot as a function of time therefore exhibits a

series of steps (shown in Fig. (6.3)) as the electron oscillates from side to side.

The frequency of the oscillation depends upon the energy difference ∆E between

the |0〉 and |1〉 states of Fig. (6.2e), and this can be controlled by changing the

shape of the dot. For a fixed tunnelling time, changing the oscillation frequency

is therefore expected to lead to an oscillatory behaviour in the probability that

the wavefunction remains in the dot after the barrier height is raised to decouple

the dot from the reservoir.

To summarise, this description consists of two key features. Firstly, a rapidly-

changing potential is used to nonadiabatically excite an electron into a state which

is displaced to one side in a quantum dot. Secondly, this leads to a probability
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Figure 6.2: Nonadiabatic model. a) 1D potential defining a quantum dot adjacent to
a reservoir. b) Variation of barrier height with time. c) and d) Time evolution of the
probability density for a high tunnel barrier (c) and a low tunnel barrier (d); brighter
colours indicate a higher probability density. e) First two eigenstates of the potential
in (a). f) States with probability density displaced towards the left |L〉 and right |R〉 of
the dot.
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Figure 6.3: Probability P of electron being in the dot of Fig. (6.2a). For the first
and last 10 ps the barrier completely suppresses tunnelling. In the middle 40 ps the
wavefunction oscillates from side to side; when it is at the right hand side of the dot
the wavefunction tunnels out at a greater rate than when at the left side.

density which oscillates from side to side at a frequency which can be controlled

by changing the shape of the dot. If one side of the dot is then coupled to a

reservoir, this dynamical behaviour leads to a tunnelling probability which also

oscillates with time.

6.5 Description of experimental device

In order to verify that the technique discussed in Section (6.4) can be used to

create and probe picosecond motion, Masaya Kataoka and Mike Astley [52] have

performed a series of measurements on the device shown in Fig. (6.4), and all of

the experimental data that will be shown in this chapter was provided by them.

The device consists of two parallel channels separated by a tunnelling barrier. The

voltages applied to the gates defining the top channel are sufficiently negative to

completely deplete the 2DEG there, so when a SAW is applied a series of dynamic

quantum dots move along the upper channel. The voltage applied to the gate at

the entrance to the upper channel is chosen to ensure that each SAW minimum

carries a single electron. The gates around the lower channel are only weakly
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Figure 6.4: Scanning electron microscope image of two-channel SAW device. The inset
shows the barrier region and the seven gates around it. A transducer to the left of the
device (not shown) generates SAWs which travel from left to right, and the regions at
the four corners are contacted with independent Ohmic contacts.

defined, so there is a quasi-1D reservoir connecting the lower-right 2DEG to the

lower channel, and this reservoir extends to the barrier region. Figure (6.5) shows

a typical potential landscape around the barrier, calculated using the method

from Section (2.5.1). The entrance gate to the lower channel is pinched off, so

no SAW current flows in this channel. Due to the presence of electrons in the

lower channel we expect the SAW to be strongly screened there, and it will be

assumed that the SAW has negligible amplitude in the lower channel. Each of the

SAW-defined dynamic quantum dots in the upper channel therefore constitutes a

quantum dot as shown in Fig. (6.2a), whilst the reservoir in that figure is provided

by the lower channel. It should be noted that although all of the data shown here

has the electron tunnelling from a SAW dot in the top channel into a reservoir in

the bottom channel, similar results were seen when the roles of the two channels

were reversed.

The tunnelling region is defined by the seven gates shown in the inset to

Fig. (6.4). The three gates that define the top channel will be referred to as TL

(top-left), TC (top-centre) and TR (top-right). Similarly, the three gates on the

bottom channel will be referred to as BL, BC and BR, and the two channels
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Figure 6.5: Potential arising from the gate design in Fig. (6.4). The top channel is
depleted and has electrons injected into it by a SAW (not shown), travelling from left
to right. The bottom channel is weakly defined and so forms a 1D reservoir connecting
to the bottom right region. Brighter colours correspond to higher potential.

are then separated by the barrier gate. The voltage on the barrier gate will be

denoted Vbar, whilst the voltages on the other six gates will be labelled VTC , etc.

6.6 Modelling the experimental device

The experimental device will be modelled using a simple 1D potential. Although

a 2D description might be more desirable, such an approach has some difficulties.

The probability weight that tunnels out of the dot needs to be drained into a

reservoir, which requires either absorbing boundary conditions or an extremely

large computational domain. It is difficult to implement the former without

introducing some inaccuracy, and as it is anticipated that we may be interested

in very small variations of the tunnelling rate such a technique is undesirable.

The alternative of using a large domain is impractical, as it greatly increases the

computational resources required. Another difficulty with the 2D simulations is

the length of time they take: in Section (6.8) we will present results for around

30,000 gate voltages. The 2D simulations presented in Chapter 4 take around 1–2

hours each, whereas the 1D simulations to be presented here each take no more

than a few minutes. It is therefore extremely desirable to investigate a 1D model,

which we will see is sufficient to capture the essential details of the physics.
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The main goal of the later sections will be to perform simulations that can

be easily compared to the experimental data. It is therefore best to have as

few adjustable parameters in the simulation as possible. Therefore, only two

gates from the device shown in Fig. (6.4) will be considered: the barrier and TC

gates. By varying the voltages applied to these two gates as a function of time

it is possible to generate a potential that is qualitatively similar to the potential

that arises due to the full gate design in Fig. (6.4). Considering only these two

gates allows the number of parameters that need to be tuned in the simulation

to be greatly reduced. The reservoir is included in the model by extending the

computational domain outside of the dot for a few tens of microns; this ensures

that any part of the wavefunction that leaves the dot simply propagates away

and does not interfere with the wavefunction that remains in the SAW dot. This

represents the fact that in the experiment, any probability weight leaving the

dot enters the quasi-1D reservoir in the lower channel and is then drained to an

Ohmic contact at the bottom-right of the device.

When the SAW carries electrons (assumed to be in the ground state of the dot

at the start of the simulation) from the entrance lead into the barrier region, the

electron receives a nonadiabatic perturbation in the x direction due to a rapidly

changing potential. Although it is possible that the gate geometry causes such an

effect, the experimental results that will be discussed in Section (6.8) suggest that

the perturbation is most likely due to an impurity potential. The main source

of impurities is the randomly located ionised donors in the donor layer. This

disorder will randomly make the barrier potential depicted in Fig. (6.5) weaker

or stronger at different positions. As tunnelling through a barrier is typically

exponentially sensitive to both barrier height and width, the dominant tunnelling

contribution will therefore arise from the weakest part of the barrier. In order

to approximate the changing barrier potential in the model, in the simulations

the barrier gate voltage will be varied in time as follows. At the start of the

simulation, a voltage of -0.5 V is applied to the barrier gate which ensures that

the SAW dot is decoupled from the reservoir. The voltage is linearly decreased to

some fixed voltage over 10 ps (see Fig. (6.2b)). This change will later be seen to

be sufficiently rapid to be nonadiabatic, so induces a transition from the initial

|0〉 state. The barrier gate voltage is then held constant for 40 ps during which
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time the electron can tunnel into the reservoir. Finally, the barrier gate voltage

is raised back to -0.5 V, again decoupling the SAW dot from the reservoir.

The exact form of the potential due to disorder is unknown, and due to its

random nature it will be impossible to quantify exactly for a given experimental

device. It is possible, however, to estimate the relevant length and energy scales of

the potential arising due to disorder. The relevant length is the minimum distance

from the 2DEG to the dopants. In the device considered here this distance is the

thickness of the spacer layer, 40 nm. Given the SAW velocity of 2800 m/s this

length scale corresponds to a time of 14 ps. A reasonable energy scale to use is

the Coulomb potential arising from a point charge; at a distance of 40 nm this is

2.8 meV in GaAs. For comparison, we can use the results from Section (2.5.1) to

calculate the change in potential at the 2DEG due to modifying the barrier gate

voltage in the manner described above. The barrier gate voltages applied in the

central 40 ps of the simulation will be of the order of -0.1 V. Given the initially

applied voltage of -0.5 V, this is found to correspond to a ∼ 5 meV change in

the height of the barrier potential. Having the barrier gate voltage change from

-0.5 V in a 10 ps time is therefore not an unreasonable way to account for the

effect a nearby charged impurity has on the barrier potential.

6.7 Other experimental considerations

In order for the proposed effect to be experimentally visible, the electron must

remain in a coherent superposition for a time comparable to (or greater than)

the 40 ps tunnelling time. One potential mechanism which would prevent this

occurring is incoherent thermalisation. The experimental data in the following

sections was taken at a temperature of 270 mK, corresponding to an energy of

23 µeV. This energy is very much smaller than the difference in energy between

the two states, ∆E, and so thermal effects can be neglected. Another possi-

ble decoherence mechanism is electron-phonon interaction. As ∆E � kT , only

spontaneous phonon emission needs to be considered. Phonon emission from a

quantum dot is greatly suppressed relative to bulk systems due to dots possess-

ing a quantised spectrum, an effect sometimes known as the “phonon bottleneck”

[130]. Typical scattering times due to acoustic phonon emission in GaAs quantum
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dots have been calculated to be in the range of 100 ps – 10 ns (see, for example,

Refs. [131, 132]). Also, Hayashi et al. [46] have observed coherent charge oscil-

lations in a GaAs double quantum dot with a coherence time of approximately

1 ns. It is therefore expected that spontaneous phonon emission can be neglected

given that the timescales considered here are a few 10s of picoseconds.

6.8 Gate voltage data

Figure (6.6) shows how the measured output current from the top SAW channel

depends upon the voltages applied to the TC and TL gates depicted in Fig. (6.4).

As the TC gate is made more negative the output current drops, because the

electron is pushed closer to the tunnel barrier. The change in the tunnelling

current appears to be fairly smooth, which is what one typically expects from

tunnelling. However, oscillations are revealed if a smoothly-varying background

contribution to the current is removed using a filter. The experimental data was

taken by sweeping the TC voltage for each TL voltage, and so the filtering was

performed in the TC direction. A second-order Butterworth bandpass filter [116]

was used; the slowly-varying contribution is removed by filtering out frequencies

below 21.4 V −1, and noise above a frequency of 685.7 V −1 was also removed. The

oscillations revealed after this filtering are shown in Fig. (6.6). The crescent-like

features are of an unknown origin, but we see a set of oscillations in TC voltage

that vary only very weakly as the TL gate is changed.

This behaviour is consistent with the model described earlier: as the TC gate

voltage is swept, the confinement potential (and so the frequency of oscillation

between the |L〉 and |R〉 states) is changed. Figure (6.3) showed that the oc-

cupation probability of the SAW dot exhibits a series of steps as a function of

time, which is due to the very different tunnelling rates of the |L〉 and |R〉 states.

Once the smoothly-varying contribution has been filtered out, the maxima in

the filtered current flowing from the top channel seen in Fig. (6.6) correspond

to situations where the final state of the wavefunction is |L〉 whilst the minima

correspond to the final state being |R〉.
Figure (6.6) shows that the oscillations change only very weakly as the TL

voltage is changed: although this gate could have a small effect on the confinement
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Figure 6.6: Behaviour of measured current with TC and TL voltage. Top: Output
current Itop from the top channel. Bottom: Oscillations in the current ∆Itop appear
when a slowly-varying contribution is removed from Itop. The origin of the curved
feature around -0.3 V in TL voltage is unknown.
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potential in the barrier region, it is further from the barrier region than the TC

gate so should have a much-reduced effect (the TC oscillation period is of the

order of 10 mV, whereas the TL range in Fig. (6.6) is ∼ 0.3 V). This also implies

that the dominant tunnelling contribution arises around the centre of the barrier

region, as discussed in Section (6.6).

We next consider the behaviour of the oscillations as the barrier gate voltage is

swept. Figure (6.7) shows the experimental data, again after filtering (frequencies

below 35 V −1 and above 900 V −1 were removed). The oscillations move to a more

negative TC voltage when the barrier gate is made more negative. This behaviour

is reproduced in the results from the simulation; these results are also shown in

Fig. (6.7) for comparison. The probability of remaining in the dot after the end

of the tunnelling region can be calculated from the dynamical simulations. As

in the experiments, a low-frequency background contribution is present and this

was removed with a high-pass filter with a cutoff frequency of 18.75 V −1. Making

the barrier gate more negative increases the confinement of the SAW dot, and

thus increases the side-to-side oscillation frequency. However, making the TC

gate more negative weakens the confinement. If the barrier were not present

(making the channel quasi-harmonic) a more negative TC voltage would increase

the confinement energy. However, the anharmonicity introduced by the presence

of the barrier means a more negative TC voltage has the opposite effect, as is clear

from the behaviour of the oscillations in the simulation. Intuitively, this can be

understood by considering the fact that making the TC gate more negative will

not only change the shape of the dot but also effectively corresponds to weakening

the barrier because the dot is raised in energy.

There is good agreement between the behaviour of the oscillations in the sim-

ulation and in the experimental data. In both cases, the oscillations have similar

periods in TC and barrier voltages. The variation in probability of remaining in

the SAW dot in the simulation (∆p ' 0.05) corresponds to an expected oscillation

of 0.4 pA in the measured current, which is larger than the measured value of

0.1 pA. However, we expect the oscillation amplitude achieved in the simulation

to be an upper bound on what is observed experimentally: for example, deco-

herence mechanisms will act to decrease the experimentally-observed oscillation

amplitude.
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Figure 6.7: Behaviour of oscillations with TC and barrier voltage. Top: experimental
data. Bottom: result from simulations, showing filtered probability ∆p of remaining in
the SAW dot.

The simulation results also explain why only a limited number of oscillations

are visible. If the tunnelling rate is too large, the probability of remaining in

the SAW dot drops to zero and so no oscillation in the final current is possible.

Conversely, if the tunnelling rate is too small there will no tunnelling current

to measure. The former case corresponds to the right-hand region of Fig. (6.7),

whilst the left-hand region corresponds to the latter. Although this leads to

a window of gate voltages in which the oscillating tunnelling current can be

measured, the nonadiabatic excitation will still occur for a range of gate voltages

outside this window.

6.9 Magnetic field data

Another parameter that can be varied experimentally is the strength of a per-

pendicular magnetic field; this is of interest because a magnetic field can be

used to change the single-particle energy spacing (and thus the frequency of the

side to side oscillation) in a dot. We begin by discussing how the eigenenergies
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Figure 6.8: Darwin-Fock spectrum for the first few eigenstates of a circular quantum
dot with energy gap ~ω = 1 meV.

of a radially symmetric 2D quantum dot change in a perpendicular field. The

eigenenergies of such a dot are described by the well-known Darwin-Fock spec-

trum [133, 134]. With a potential V (r) = 1
2
mω2

0r
2 (where r2 = x2 + y2) and a

perpendicular magnetic field of magnitude B, the eigenenergies are

En,l = ~ωc
[
b

(
n+

1

2

)
+
b|l| − l

2

]
(6.7)

where n = 0, 1, 2, 3 . . . and l = 0,±1,±2 . . . are the usual quantum numbers,

b =

√
1 +

4ω2
0

ω2
c

(6.8)

and the cyclotron frequency is ωc = eB/m. The first few eigenenergies for a dot

with ~ω0 = 1 meV are plotted in Fig. (6.8).

The above result for a radially symmetric dot has been generalised by Madhav

& Chakraborty [135] to the case of an elliptical dot described by the potential
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the energy levels of the elliptical dot in a magnetic field are then given by

En′
x,n

′
y

=

(
n′x +

1

2

)
α1β1~
m

+

(
n′y +

1

2

)
α2β2~
m

(6.15)

where n′x, n
′
y are integers which label the eigenstate. For comparison with the

Darwin-Fock spectrum, Fig. (6.9) shows the first few eigenenergies of an elliptical

dot with ~ωy = 0.67 meV, ~ωx = 1 meV. The spectrum is broadly similar to

the Darwin-Fock case, with the most obvious difference being that some of the

degeneracies at zero field are lifted.

Figure (6.10) shows the experimental data for how the oscillatory tunnelling

current behaves in a magnetic field. In the device, the y confinement is provided

by the SAW potential whilst the x confinement is provided by the gates. The

energy gap corresponding to the side-to-side oscillations discussed in Section (6.8)

is therefore ∆E = E1,0 − E0,0; these two eigenenergies are indicated with arrows

in Fig. (6.9). The dark crescent-shaped features in Fig. (6.10) correspond to

voltages where an integer number of oscillations have been performed by the

electron along the length of the barrier (this is when the final state is towards

the right of the dot and next to the barrier, thereby decreasing the current from

the top channel). These crescents therefore map out contours of constant energy

gap ∆E.
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Figure 6.9: Part of the spectrum for an elliptical dot, from Eq. (6.15). Black arrows
indicate the states with energy E0,0 and E1,0 as described in the text.

Figure 6.10: Behaviour of oscillations in magnetic field. White dashed lines show the
fit from the analytic model described in the text.
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In order to compare the experimental data to Eq. (6.15), we assume a sinu-

soidal SAW potential of amplitude 20 mV [65] and Taylor expand about a SAW

minimum to determine that ~ωy ' 0.67 meV. We then assume a linear relation-

ship between the TC gate voltage and ωx. The three dark crescents in Fig. (6.10)

correspond to N , N + 1 and N + 2 oscillations in the time for which tunnelling

can occur. Along with the parameters that relate the TC voltage to ωx, N and

this tunnelling time are used as fitting parameters.

The result of the fit is shown by the white lines superimposed on the data

in Fig. (6.10). There is good agreement with the experimental data, and in par-

ticular the changing curvature of the different crescents is very well reproduced.

The fit suggests that the three dark crescents arise from 8, 9 and 10 oscillations

in a time of 43 ps. The magnetic field data therefore provides independent con-

firmation of the theoretical description in Section (6.8) – for comparison, the

simulation in Fig. (6.2c) shows 8 oscillations in 40 ps.

6.10 Choice of potential

It should be noted that one can consider changing the time-dependent potential

in a different manner to that discussed earlier, as the time and voltage scales cho-

sen are somewhat arbitrary. For example, rather than having a constant barrier

height for the central 40 ps the barrier could change slowly with time, or there

may be multiple points where the electron can tunnel from the SAW dot. The

simulations presented here deliberately focus on the simplest possible case, but

the same qualitative features were found to be reproduced for a range of param-

eters. One important quantity is the energy difference between the |0〉 and |1〉
states, as this sets the oscillation period. For the potentials used here this energy

difference is typically ∼0.8 meV, but using potentials with energy splittings in

the range 0.5–1 meV led to no qualitative difference in the behaviour of the os-

cillations. The number of oscillations performed is important, however. If many

(� 10) oscillations occur, the visibility of the oscillations is poor as the differ-

ence in tunnelling current between performing N and N + 1 oscillations becomes

very small. On the other hand, having only a few oscillations occur requires a

tunnelling region which is much shorter than the ∼100 nm used here, which is
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unlikely in practice. Although the actual tunnelling duration in the experiment

may not be 40 ps, this value is reasonable and illustrates the important features

of the model. Some other experimental considerations are briefly discussed in the

appendix to this chapter.

6.11 Effect of squeezing

The simulations presented to model the experimental data in this chapter assume

that the electron was initially in the ground state prior to the nonadiabatic ex-

citation. However, in Chapter 5 we examined the effect of using squeezed and

coherent states upon the oscillations discussed in Chapter 4 and found that this

could lead to new dynamical behaviour. In Section (6.12) we will investigate the

effect of using an initial arbitrary linear combination of the |0〉 and |1〉 states. It

was seen earlier in this chapter that the |L〉 and |R〉 states oscillate from side to

side in a similar manner to coherent states, and in this section we will briefly in-

vestigate the effect of squeezing the initial wavefunction (i.e., changing its initial

width).

In order to introduce squeezing in the simplest way possible, an infinitely high

potential barrier was placed at x = −0.5 µm when the initial ground state was

calculated numerically. In Fig. (6.4) the tunnelling barrier is centered at x = 0

and the edge of the TC gate is at x = −0.4 µm, so placing a hard barrier at

x = −0.5 µm should have a fairly small effect on the initial state of the electron.

The effect of the hard barrier will be to make the initial wavefunction slightly

narrower than the width of the ground state of the potential used in the dynamical

simulation. The simulation of Fig. (6.7) was then repeated, and the results are

shown in Fig. (6.11). The figure shows the filtered probability ∆p of remaining

in the SAW dot, with the filtering applied both as a function of TC and barrier

voltages (the simulated data shown in Fig. (6.7) was filtered only as a function

of TC voltage). The main oscillations from earlier are still visible, but some

new features also appear. After filtering as a function of barrier voltage, extra

“ripples” can be seen on top of the main oscillations. Similar features were seen in

Chapter 5 and were attributed to the introduction of higher-frequency temporal

oscillations involving higher eigenstates. Filtering the results as a function of TC
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Figure 6.11: Behaviour of oscillations with TC and barrier voltage, showing filtered
probability ∆p of remaining in the SAW dot. Top: after filtering as a function of barrier
voltage. Bottom: after filtering as a function of TC voltage. The arrow indicates the
Y-shaped splitting described in the text.

voltage leads to the emergence of a new feature: a Y-shaped splitting around

VTC = −0.05 V, Vbar = −0.035 V (indicated by an arrow in the figure) is present.

It should be noted that these features are an order of magnitude smaller than

those seen in the simulation in Fig. (6.7). Thus, even if the electron were not

initially in the ground state in the experiment, it is unlikely that these features

would be experimentally visible given the noise level in the experimental data.

The detection of a squeezed initial state in this experiment may therefore re-

quire control over the state of the electron prior to the tunnelling region – for

example, by using a channel that varies in width (similar to the design shown in

Fig. (5.4)). Such an experiment may lead to observation of the distinctive features

in Fig. (6.11), and this would be an interesting topic for future measurements.

6.12 Use as a measurement device

In the first part of this chapter, the electron was assumed to be in the ground state

at the start of the simulations. The gate voltages defining the tunnelling region

were then altered, which led to a set of oscillations in the tunnelling current from
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the SAW dot. However, more generally one might want to first perform some

unitary transformation on the electron and then measure its state. We will see

in this section that the tunnel barrier device could be used in performing such a

measurement, as the probability of remaining in the SAW dot after the tunnelling

region is strongly dependent upon the initial electron state.

In the simulations that follow, the gate voltages defining the tunnelling region

will be fixed and the probability of remaining in the SAW dot after the tunnelling

region for different initial states will be calculated. The gate voltages used in

these simulations are Vbar = −35 mV, VTC = −105 mV, although we note that

the results presented below were found to be qualitatively similar across a range

of gate voltages used in the calculation of Fig. (6.6). The initial states |ψi〉
considered here are arbitrary linear combinations of |0〉 and |1〉, and so can be

parameterised by the Bloch angles θ and φ:

|ψi〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (6.16)

As in Section (6.6), the barrier gate voltage is initially sufficiently negative to

suppress tunnelling from the dot. The barrier voltage is then decreased linearly

over 10 ps to the final value of -35 mV. The initial barrier gate voltage used

previously was -500 mV; changing the barrier gate voltage from this value to

-35 mV led to the excitation of nonadiabatic dynamics. Two initial barrier gate

voltages will initially be considered here: -225 mV and -400 mV. It will be seen

that in the former case the potential change is approximately adiabatic, whilst in

the latter the change is nonadiabatic.

Figure (6.12) shows the probability P of remaining in the SAW dot after

it has passed the tunnelling region for the approximately adiabatic change in

potential. At any fixed value of φ, increasing θ from 0 to π decreases |〈ψi|0〉|2

whilst |〈ψi|1〉|2 increases. This leads to a monotonic decrease in P because |1〉
is higher in energy than |0〉 and so has an increased probability of tunnelling

from the dot. To understand the behaviour of P as a function of φ, we focus

on states with θ = π/2 for three values of φ: φ = 0 (|ψ〉 = |0〉 + |1〉), φ = π/2

(|ψ〉 = |0〉+ i|1〉) and φ = π (|ψ〉 = |0〉 − |1〉). The normalisation factor of 1/
√

2

is omitted for brevity. The time evolution of the probability density for these
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Figure 6.12: Probability P (plotted on the colour scale) of remaining in the SAW dot
after the barrier region for different initial states defined by the Bloch angles θ, φ for a
small (approximately adiabatic) change in the dot potential.

three states is shown in Fig. (6.13). The states with φ = 0 and φ = π oscillate

from left to right in the initial 10 ps, performing approximately 2.5 oscillations

whilst the barrier height changes. The φ = 0 state is initially displaced towards

the right hand side of the dot, and so is at the left side (away from the barrier)

when the barrier is low enough to allow tunnelling into the reservoir. This leads

to an increased probability of remaining in the dot after the tunnelling region.

Conversely, the φ = π state is next to the barrier after the initial 10 ps and so

a significant probability weight tunnels out immediately after the initial 10 ps

leading to the decrease in P seen in Fig. (6.12) at θ = π/2, φ = π.

The simulations were repeated with the barrier height changing over 12 ps

rather than 10 ps, corresponding to approximately 3 oscillation periods. At the

start of the tunnelling region the situation above is thus reversed – the φ = 0

state is next to the barrier and the φ = π state is away from it. The effect of

this is to translate the data in Fig. (6.12) by π in the φ direction (noting that φ

is defined modulo 2π); this confirms the above interpretation that the important

factor is whether the probability density is situated towards the left or the right

of the dot when tunnelling commences.
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Figure 6.13: Time evolution of the probability density for a small change in barrier
height, for three different initial states and a small (approximately adiabatic) change in
the dot potential. The initial state is θ = π/2 and a) φ = 0, b) φ = π/2, c) φ = π. The
same colour scale is used for all three plots. The white lines show the time at which the
barrier height ceases to change.

Next, we consider a large initial barrier gate voltage so the change in potential

over the initial 10 ps is nonadiabatic. The resulting behaviour of P is shown

in Fig. (6.14), and the time evolution for the three initial states at θ = π/2

with φ = 0, π/2, π is shown in Fig. (6.15). As before, for the states which are

initially displaced from the centre of the dot, approximately 2.5 oscillations are

performed in the first 10 ps. An important factor in determining the extent of

the nonadiabaticity is the overlap of the electron state with the instantaneous

eigenstates at 10 ps. At this time the dot is centered at ∼ −0.1 µm, which is to

the right of the initial dot position. As the φ = π state is at the right hand side

of the dot after 10 ps it has a large overlap with the instantaneous ground state

and so is subject to a smaller nonadiabatic excitation. Conversely, the φ = 0

state is at the left side of the dot after 10 ps and so is subject to a much larger

nonadiabatic excitation, as is clear from Fig. (6.15a). Increasing the time over

which the barrier height changes from 10 to 12 ps again leads to a π translation

in the φ direction, as discussed earlier.
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Figure 6.14: Probability P (plotted on the colour scale) of remaining in the SAW dot
after the barrier region for different initial states defined by the Bloch angles θ, φ for a
large (nonadiabatic) change in the dot potential.

Figure 6.15: Time evolution of the probability density for a small change in barrier
height, for three different initial states and a large change in the dot potential. The
initial state is θ = π/2 and a) φ = 0, b) φ = π/2, c) φ = π. The same colour scale
is used for all three plots. The white lines show the time at which the barrier height
ceases to change.
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Figure 6.16: Probability P of remaining in the SAW dot for a range of initial barrier
gate voltages: a) -250 mV, b) -275 mV, c) -300 mV, d) -325 mV, e) -350 mV, f) -
375 mV. A larger initial barrier voltage leads to a more sudden change in the potential.

Finally, Fig. (6.16) shows the behaviour of P for a range of initial barrier gate

voltages between the two values discussed above. The figure shows a smooth

transition from the approximately adiabatic change in Fig. (6.12) to the strongly

nonadiabatic change in Fig. (6.14). The results from an experiment may lie

anywhere between these two extremes, and so by comparing experimental results

to this sequence of plots it should be possible to gain some knowledge of how

adiabatic the change in potential is.

6.13 Conclusions

In this chapter we have proposed a novel technique for producing and probing

nonadiabatic dynamics in SAW devices. The motion of the SAW is used to create

a rapidly-changing potential in the frame of a SAW-defined dynamic quantum

dot; this rapid change in the potential creates an excited state which is displaced
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from the centre of the dot. The subsequent dynamical behaviour involves an

oscillation from side to side, and if the electron is able to tunnel from one side of

the dot into a reservoir this leads to an oscillatory tunnelling probability. Because

the tunnelling time is fixed by the device design, changing the frequency of this

oscillation leads to an oscillation in the total current which tunnels from the

dynamic quantum dot. Data from experimental measurements were presented,

and numerical simulations based on the above description were used to explain the

measurement results. The dependence of the measured tunnelling current upon

the voltages applied to the gates around the tunnelling barrier was reproduced in

the simulations, and the behaviour of the measurements in a magnetic field was

explained using an analytic result for the spectrum of an elliptical dot.

We then considered how the tunnelling current depends upon the initial state

of the electron. Using a wavefunction which had been reduced in width (see

also the discussion on squeezed states in Chapter 5) led to the appearance of

extra features in the tunnelling current, and it would be interesting to study

the controllable creation of such features in a future experiment. Finally, we

performed simulations to investigate the effect of using an arbitrary superposition

of the lowest two eigenstates as the initial state. It was seen that measuring the

tunnelling current gives some information about the initial state of the electron,

and the dependence of the tunnelling current on the initial state varied depending

upon how sudden the change in the potential was. Such a measurement might

therefore be a useful way to determine how rapidly the potential changes in an

experimental device.
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Appendix: Elimination of other models

Although the model presented in this chapter gives a good qualitative description

of the experimental data, one can also consider other possible origins of the

observed oscillations. We will now briefly discuss some alternative possibilities

and explain why they do not match the data; a full discussion of these effects is

presented in Ref. [136].

Quantised states in 1D channel

The density of states in a Q1DC has a sharp peak at the bottom of each subband.

Consequently, it may be possible to see a series of peaks in the current from the

SAW dot as it passes resonantly past these levels in the neighbouring reservoir.

However, the oscillations as a function of TC voltage were found to be highly

insensitive to changes in the voltages applied to the three gates defining the

bottom channel (BL, BC and BR) (see Fig. 4 of Ref. [136]). This indicates that

the source of the oscillations depends only upon the properties of the SAW dot

and the barrier, and not upon the properties of the one-dimensional reservoir.

Crosstalk

The current transported in SAW devices is highly sensitive to interference between

the SAW wave and any other electromagnetic wave – for example, either reflected

SAWs [137] or free-space waves [37] which can modulate the effective voltage

applied to surface gates. This is because the process whereby SAWs capture

electrons depends critically upon the electric field at a specific point in the channel

[62]; the location of this point will change depending upon the relative phase

between the SAW and any wave interfering with it. This effect can be eliminated

by pulse modulating the signal applied to the SAW transducer [138] and so this

interference can be ruled out as a possible origin of the oscillations.
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Barrier impurity

The tunnel barrier is not expected to be perfectly smooth; impurities in the barrier

region may permit resonant tunnelling when the SAW dot is at particular energies,

or the probability of tunnelling through the barrier may be a non-monotonic

function of energy. Either of these scenarios could lead to oscillatory behaviour

in the tunnelling current. Although it is difficult to completely eliminate these

possibilities, it is extremely unlikely that a set of impurities would lead to the

four or five approximately periodic oscillations over a wide range of gate voltages

seen in Fig. (6.7).
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The beginning of knowledge

is the discovery of something

we do not understand.

Frank Herbert

7
Conclusions

The primary goal of this thesis was to use numerical simulations to study methods

for the creation and measurement of different types of coherent electron dynamics

in surface acoustic wave devices. After summarising the work discussed in this

thesis, this chapter will conclude by suggesting some potential avenues for future

research.

7.1 Summary of work

The focus of the numerical techniques used throughout this work was to solve the

time-dependent Schrödinger equation with a general time-dependent potential.

We chose in Chapter 2 to use finite-differencing methods to discretise the spatial

part of the Schrödinger equation, and used the Crank-Nicolson method to perform

the time evolution. These numerical techniques were then used in Chapter 3 to

simulate the transmission of an electron through an Aharonov-Bohm ring. This

demonstrated an important property of the numerical techniques we chose to use:



7.1 Summary of work 120

it is straightforward to apply them to devices with an arbitrary geometry, and

so the simulations can be used to study effects which are not always included in

analytic models. This enabled us to see how the Lorentz force leads to a decreasing

AB oscillation amplitude as the magnetic field strength is increased. We also

developed a straightforward implementation of absorbing boundary conditions

which enabled the emergence of higher-order interference paths to be studied.

In Chapter 4, we studied a device consisting of two parallel SAW channels

separated by a narrow tunnelling barrier. The simulations demonstrated that

an electron will oscillate between these channels at a frequency which can be

controlled with the voltages applied to the gates around the tunnelling region.

The oscillation frequency also changed upon the application of a perpendicular

magnetic field. An analytic model based upon a two-level system was developed

to explain these results; the two basis states used are each localised to one of the

two SAW channels. A perpendicular magnetic field was included in the model

via the infinitesimal Aharonov-Bohm effect. The model then allowed the effect

of a transverse electric field in combination with a perpendicular magnetic field

to be calculated. Finally, it was shown that it is possible to create an arbitrary

superposition of the two basis states by using a geometry similar to that of a

Mach-Zehnder interferometer. The results of this chapter are potentially of use

in SAW-based QIP schemes – the two-channel device could be used as a single

charge qubit or two spin qubits. In the former case the results from this chapter

directly describe single-qubit rotations. In the latter case a two-qubit operation

could be performed using the device we discussed; understanding the two-qubit

operation requires an understanding of how to control the oscillation frequency

of a single electron.

Chapter 5 introduced coherent and squeezed states, which are two classes

of excited state in a harmonic oscillator described by a Gaussian wavefunction.

Coherent states have the same standard deviation as the ground state of a har-

monic potential, but they are displaced away from the centre of the potential.

Conversely, squeezed states are located at the centre of the potential but have

a standard deviation which differs from that of the ground state. Coherent and

squeezed light states have been the subject of much study in quantum optics,

and we then saw that electronic coherent states could be a useful resource in
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QIP. They can also be used to understand some of the effects that unwanted

perturbations may have upon an electron carried by a SAW. This motivated an

investigation of how to create coherent states in a SAW device, which can be

achieved by suddenly changing the potential which the electron experiences. The

amplitude of the SAW is an important factor, because if the SAW amplitude is

too large the electron adiabatically remains in the instantaneous ground state.

The velocity of the electron can change when a SAW of sufficiently low amplitude

encounters a sloped potential; this leads to a more rapid change in the potential in

the frame of the electron and thus to excitation out of the ground state. We then

simulated the effect of using coherent and squeezed states in the two-channel

device studied in the previous chapter. That chapter showed how the current

flowing from the two channels depends upon the voltages applied to gates around

a tunnelling barrier; using a coherent or squeezed state modifies these currents,

and this might be a useful way to detect the creation of such states.

Chapter 6 presented a technique for creating and measuring states which

oscillate from side to side in a dynamic quantum dot. These states can be created

by using the motion of a SAW to create a rapidly (i.e., nonadiabatic) changing

potential in the frame of the dot, and the tunnelling current through a barrier

next to the dot is then used to probe this motion. An experimental device which

is able to test these ideas was first described and then used as the basis for

numerical simulations. Good agreement was seen between the simulations and

measured data; the simulations then led to an explanation of how the measured

data reflected changes in the properties of the dynamic dot as a function of gate

voltages and perpendicular magnetic field. We then calculated how the tunnelling

current changes when an arbitrary superposition of the first two eigenstates is used

as the initial state. It was found that measuring the tunnelling current provides

information about both the initial state of the electron and how rapid the change

in potential was, and this could be of use in determining under what conditions

a nonadiabatic quantum transition occurs.
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7.2 Future work

7.2.1 Aharonov-Bohm rings

An important property of the techniques that were used to study transmission

through an Aharonov-Bohm ring in Chapter 3 was that they can be easily adapted

to more complicated potentials. Kvon et al. [95] suggested that disorder in AB

rings could lead to the suppression of some interference effects arising from multi-

ple trajectories around the ring. Randomly ionised donors are a significant source

of disorder in semiconductor devices, and the results from a calculation of disor-

der such as those performed by Stopa [139, 140] could be incorporated into the

AB ring simulations performed in this thesis.

7.2.2 Two-channel oscillations

Chapter 4 investigated the coherent oscillation of an electron in a two-channel

SAW device. The parameters governing charge oscillation also relate to a two-

qubit operation using spin qubits [40], and as spin coherence times in GaAs

are generally much greater than charge coherence times it is likely that spin

manipulation will be the subject of future experimental work. It would therefore

be useful to extend the simulations of electron charge in a SAW to also include

the spin degree of freedom. It is in principle straightforward to include a Zeeman

term in the finite-differenced Hamiltonian, but this leads to a significant increase

in the computational resources required and so would require further work.

An alternative method to coherently transfer a quantum particle from one

potential well to another has been proposed by Greentree et al. [141], which they

label “coherent transfer by adiabatic passage” (CTAP). The proposal uses three

quantum dots, each of which has a single accessible state labelled |1〉, |2〉, |3〉. The

dots are separated by controllable tunnelling barriers as shown in Fig. (7.1). It is

shown in Ref. [141] that it is possible to completely transfer the initial state |1〉
to state |3〉 with no probability of occupying state |2〉 in the central dot. This is

achieved through a counter-intuitive sequence of changing the interdot couplings

with time: a pulse to lower the barrier between dots 2 and 3 is applied, followed
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Figure 7.1: Illustration of system and pulse sequence for CTAP. a) Three dots each
have a single accessible level |i〉 (i = 1 . . . 3) and are separated by controllable barriers.
b) Counter-intuitive pulse sequence required for CTAP. The coupling between dots 2
and 3 is switched on first (blue curve), followed by the coupling between dots 1 and 2
(red curve).

by a pulse to lower the barrier between dots 1 and 2. This leads to a highly robust

transfer from state |1〉 to |3〉, whereas if the pulses are applied in the intuitive

order complete transfer from |1〉 to |3〉 is only possible if the pulses are very

carefully chosen. It should be possible to achieve such a time-varying potential

with a SAW device consisting of three channels separated by narrow controllable

barriers, and the simulations developed in Chapter 4 could be extended to aid

in designing such a device. CTAP could then potentially be a useful method to

controllably and coherently transfer electrons between different SAW channels.

7.2.3 Coherent and squeezed states

It was proposed in Chapter 5 that the generation of coherent and squeezed states

could be achievable in a SAW device. An interesting theoretical goal would

be to study potential uses of electronic coherent and squeezed states in more

detail, to fully determine what analogies can be drawn with the well-established

field of quantum optics. Although the controllable generation of these states

was discussed, part of the motivation for studying coherent and squeezed states

was that they could arise in an experiment due to unwanted perturbations. As

discussed in Section (7.2.1), a realistic disordered potential could be incorporated
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into the numerical simulations performed in this thesis which would then allow

the effect of some unwanted perturbations to be investigated.

7.2.4 Nonadiabatic dynamics

It was suggested in Chapter 6 that the tunnel barrier device could be used as

a measurement apparatus to measure the state of an incoming electron. An in-

teresting future experiment would be to design a device which can controllably

inject a single electron in an arbitrary state and then measure it with a tunnel

barrier. As this would be experimentally challenging, a worthwhile starting point

would be to restrict the desired set of initial states to those which are control-

lably displaced from the centre of the entrance channel. This would require a

simpler gate design than that needed to prepare an arbitrary initial state, and

the results from simulations similar to those performed in Chapter 6 would allow

interpretation of the measured results.

The tunnel barrier device could also be used to study the interaction between

two nonadiabatically-excited electrons. As well as being an interesting study of

fundamental quantum mechanical behaviour, such interactions might have ap-

plication in quantum information processing. A possible device to study this is

shown schematically in Fig. (7.2), and would consist of two parallel channels each

of which generates the side-to-side oscillating state discussed in Chapter 6. The

channels would then be separated by a controllable barrier which allows the in-

teraction between the electrons to be changed. After the interaction region each

channel would then need to couple to a reservoir in order to be measured using

the method outlined in Section (6.12). Although the work in this thesis focussed

on single-electron dynamics, Giavaras et al. [142] numerically simulated in 1D

the interaction between an electron carried in a SAW minimum and an electron

trapped in a static quantum dot. It should be possible to adapt the method used

there to study the two-electron interaction discussed above.
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Figure 7.2: Schematic illustration of device to probe electron-electron interaction. The
arrow indicates the direction of SAW motion. 1) Two neighbouring electrons are brought
together. 2) The electrons interact via a direct Coulomb interaction. 3) The barrier
between the two channels is raised to halt the interaction. 4) Each electron passes a
tunnel barrier which allows measurement.
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