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Abstract

This thesis presents the study of the topological properties in the atomic vibrations in
solids. The state-of-the-art quantum mechanical simulation techniques are presented first
to accurately describe the band structures of electrons and vibrational spectra of nuclei
for topological analysis. Two concepts are introduced to investigate the non-trivial band
crossing in the vibrational spectra. Depending the number of phonon bands and the intrinsic
crystalline symmetry, the topological invariant carried by the band crossing can either be an
integer number for a two-band subspace or an non-Abelian frame charge when at least three
bands are involved. The phonon band crossing formed in a two-band subspace is simply a
replica of topological semimetals in electronic systems, although the intrinsic properties of
phonons, including the preservation of time-reversal symmetry and the accessibility of the
bosonic excitation spectra, indicate that such single-gap topological properties are ubiquitous
in phonons. Taking a step further, when three or more bands are included, these intrinsic
properties provide unique advantages for phonons to fulfill the requirements for multi-gap
topology, rendering phonons as the primary platform to study non-Abelian braiding. The
possible experimental signatures are also described and predicted.
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Chapter 1

Introduction

1.1 A historical note

On August 26, 1735, half a decade before the continuing political turmoil in Russia, the
28-year-old Leonhard Euler presented a paper on the Seven Bridges of Königsberg problem
to the Academy of Sciences in St Petersburg. In this paper, he ascribed the Königsberg
problem to the geometry of position (geometria situs), as “neither geometry, nor algebra, nor
even the art of counting was sufficient to solve it” [1]. He reformulated the problem as a
graph: by replacing the land mass with an abstract node, only the evenness and oddness of
the number of bridges touching the node is relevant. This prefigured the idea of topology,
which is not concerned with the distance or shape, but the integer related to global structures
such as the number of the bridges [2].

The concept of topology was introduced to condensed matter systems in the 1980s [3].
Condensed matter systems represent many-particle systems such as electrons and nuclei that
can be described by quantum mechanics, whose whole foundation is based on the initial
discoveries in the 1920s. Werner Heisenberg first made the breakthrough in his paper in
1925, “Quantum-theoretical reinterpretation of kinematic and mechanical relations” [4], and
after two months Max Born and Pascual Jordan formulated Heisenberg’s theory into matrix
mechanics in their paper “On quantum mechanics” [5, 6]. In the spring of 1926, Erwin
Schrödinger introduced the concept of wave function in his wave mechanics [7, 8]. To find
a relativistic wave equation of the electron, Paul Adrien Maurice Dirac, a Research Fellow
at St John’s College Cambridge, proposed the Dirac equation in two papers published in
1928 [9, 10], forming the basis of all of Chemistry and almost all of Physics [11]. One
year later, Hermann Weyl predicted the massless fermions with a definite handedness based
on a simplified version of the Dirac equation for relativistic particles [12, 13]. In 1937,
the same year when Ettore Majorana introduced the concept of a particle satisfying the
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Dirac equation that is its own antiparticle [14], Conyers Herring found that Weyl fermions
may exist as quasiparticles in the electronic energy bands of solids with certain crystalline
symmetry [15] based on the avoided crossing theorem proposed by John von Neumann and
Eugene Paul Wigner in 1929 [16]. For example, when two bands touch in a nonmagnetic
material without inversion symmetry, the degenerate points act as sources and sinks of the
quantised Berry flux through any local isoenergy surface enclosing the node, where the flux of
the Berry curvature [17] is defined as the Chern number [18] and the point-like degeneracies
are referred to as the Weyl points. Recent years have witnessed a surge of publications on
material candidates with such topological properties in their band structures, based on the
foundation laid by Charles Kane, Eugene Mele and Shou-Cheng Zhang [19–22].

The discovery of phonons occurred in parallel with the development of quantum theory.
In 1900, Lord Kelvin delivered the famous speech on the two “clouds” [23], with the second
problem being the question of the equipartition theorem to the heat capacity that drives
the development of quantum physics [24]. In 1907, Albert Einstein applied Max Planck’s
work on energy quanta [25, 26] to the specific heat of solids, and assumed that the solids
contain a large number of independent quantum harmonic oscillators in three dimensions
with the same vibrational frequency [27]. In 1912, Peter Debye realised that the vibrations
in solids are not independent oscillations of individual atoms, but collective modes similar
to a sound wave, providing better predictions of the specific heat at low temperatures [28].
Based on Dirac’s ideas on second quantisation for quantum many-body states [29], Igor
Tamm introduced the concept of “elastic quanta” of the crystal lattices in 1930 [30], while
Jacov Il’ich Frenkel referred to such excitations as “heat quanta” and “sound quanta” [31,
32]. Shortly afterwards, the concept of phonons was formally introduced in Frenkel’s
book Wave Mechanics: Elementary Theory (1932) [33]. In 1933, the same year when
Schrödinger left Germany and became a Fellow of Magdalen College at Oxford, Hans
Gustav Adolf Hellmann started working on understanding the interatomic forces through
quantum mechanics, dealing with adiabatic nuclear dynamics that form the basis for lattice
dynamics [34]: the research was interrupted when Hellmann was forced to leave Germany
and went to the Soviet Union in 1934 (which eventually proved fatal). In 1954, Max Born
and Kun Huang contributed fundamentally to the field of phonons by publishing the book
Dynamical Theory of Crystal Lattices [35]. In his monumental tome Electrons and Phonons:
The Theory of Transport Phenomena in Solids published in 1960, John Ziman provided a
unified picture in understanding the transport properties of both electrons and phonons [36].
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1.2 Thesis outline

The topic of this thesis is the application of quantum mechanical techniques developed for
studying the intrinsic vibrational properties of solids to understand the topological properties
of phonons. I introduce the concepts of single-gap and multi-gap topologies in band structures
of quasiparticles including electrons and phonons. I demonstrate that, while the single-gap
topology of phonons is analogous to electronic topology, phonons can be a primary platform
to study multi-gap topology because of their intrinsic properties as charge neutral, spinless
bosonic excitations.

In Chapter 2 I describe density functional theory that enables the description of electronic
structures of solids and forms the basis for computing lattice dynamics.

In Chapter 3 I introduce the concept of single-gap topology in electronic topological
semimetals and provide an example of single-gap topology in PbO2 promoted by temperature
effects including electron-phonon coupling and thermal expansion.

In Chapter 4 I extend the idea of topology from electrons to phonons and confirm the
existence of topological phonons in a well-known material family called oxide perovskites. I
show that the topological properties of oxide perovskites can be controlled by light, e.g. the
creation and annihilation of the Weyl points, and the switch between nodal lines and nodal
rings.

In Chapter 5 I discuss the advantages of phonons, compared to electrons, when studying
topological properties on the surface. While degenerate lines in the surface states are hard to
form in electronic systems, I present an example of the formation of degenerate lines in the
phonon surface states of a quasi-one-dimensional van der Waals material SnIP.

In Chapter 6 I give a detailed description of multi-gap topology and its application in
phonons. Multi-gap topology involves at least three phonon bands and can be characterised
by the non-Abelian frame charges carried by the phonon band crossing points. I predict that
a 2D material that was first synthesised decades ago can realise multi-gap topology in the
phonon bands.

In Chapter 7 I show the first material candidate for non-Abelian braiding of phonons
that involves more than three phonon bands. I predict the edge states of multi-gap topology,
and propose that Raman spectroscopy can be used to observe the phonon band inversion
accompanied by non-Abelian braiding.

In Chapter 8 I present a few side projects, including optical properties of rare-earth
doped CsPbBr3, photostriction in halide perovskites, electron-phonon coupling in PdSe2,
photo-induced phase transition in MoTe2, and monolayer fullerene networks.

In the end, in Chapter 9 I summarise the results presented in the thesis and outline my
future research plans based on the thesis.





Chapter 2

Theoretical formalism

In this chapter I present an overview of the quantum mechanical calculations that allow us
to understand the band structures of electrons and vibrational spectra of nuclei. I introduce
the theoretical formalism of density functional theory that forms the starting point of all the
results presented in this thesis. In the latter part of this chapter I explain the approximations
to separate the electronic and nuclear motions, and discuss the computational frameworks to
calculate the vibrational properties of solids.

2.1 Density functional theory

In his letter to Niels Bohr in 1929, Paul Dirac demonstrated that the simple problem of
an electron scattered by a photon is no longer a two-body problem, but an infinite-body
problem, because quantum mechanics plus relativity leads to an infinite sea of particles with
infinite degrees of freedom [37]. This means that solving the quantum mechanical equations
becomes increasingly difficult as the number of particles increases. As summarised by Paul
Dirac in the famous quote [11]:

“The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems
without too much computation.”

Density functional theory represents one of such practical methods of applying quan-
tum mechanics to study the many-electron problem in atoms, molecules and solids and
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is extensively used in condensed matter physics, materials science, chemistry and related
fields [38–40]. To solve Schrödinger’s wave equation for systems with many electrons, a
large number of Slater determinants is required, which is generally too complex to solve
exactly and thus precludes an accurate description of the many-electron wave function even
with the help of modern supercomputers. As an alternative, density functional theory replaces
the many-electron wave function with the electron density n(r) in the real, three-dimensional
coordinate space. With this approach, it is possible to study large and complex systems such
as real materials and biological molecules. Today, density functional theory is one of the
most widely used and versatile methods for studying the electronic structure of matter, and
has enabled many breakthroughs in condensed matter physics, materials science and related
fields.

2.1.1 Many-electron wave function

The nonrelativistic eigenvalue equation of the Hamiltonian for the many-electron wave
function Ψ is the foundation of the theory of electronic structure [40],(

− ℏ2

2m ∑
j

∇
2
j −∑

j,l

ZIe2∣∣r j −RI
∣∣ + 1

2 ∑
j ̸= j′

e2

|r j − r′j|
−E

)
Ψ = 0, (2.1)

where ℏ, m and e are the conventional fundamental constants, r j and RI are positions of the
electrons j and nuclei I respectively, ZI are the atomic numbers of the nuclei, E is the total
energy, and Ψ depends on the positions of N electrons (neglecting their spin),

Ψ = Ψ(r1,r2, ...rN). (2.2)

Equation (2.1) is often called the (time-independent) Schrödinger equation for the many-
electron wave function, and all physical properties depend parametrically on the wave
function Ψ(r1,r2, ...rN), total energy E, and RI . In particular, physically interesting quantities
such as the density n(r) can be obtained by tracing over all other variables:

n(r) = N
∫ ∣∣Ψ(r,r2, ...rN)

∣∣2dr2...drN . (2.3)

Interestingly, density functional theory can be derived from the Schrödinger equation for
the many-electron wave function in terms of the density n(r) and single-particle wave
function φ j(r) based on the Hohenberg and Kohn theorem proposed in 1964 [38] and the
self-consistent Kohn-Sham equations proposed in 1965 [39].
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2.1.2 Hohenberg-Kohn theorem

The Hohenberg-Kohn formulation of density functional theory is a fundamental framework
in quantum mechanics that provides a rigorous and powerful method for describing the
electronic structure of many-electron systems. It was developed by Pierre Hohenberg and
Walter Kohn in 1964 [38].

In the Schrödinger equation for the many-electron wave function, the electronic structure
of a system is described by a wave function that contains all the information about the
system’s electrons. However, solving such Schrödinger equation becomes increasingly
difficult as the number of electrons increases. This limitation led Hohenberg and Kohn to
propose an alternative approach based on the electron density.

The central idea of the Hohenberg-Kohn formulation is that the ground-state electron
density n(r) uniquely determines the external potential energy v(r) of a system and, con-
sequently, all other ground-state properties, which is referred to as the first theorem of the
Hohenberg-Kohn formulation. In other words, the electron density, as an observable in 3D
space, is the fundamental variable in density functional theory, and can be used to describe
the complex physics underlying the interactions between electrons. The first theorem implies
that the ground-state energy is a functional of the density n(r), i.e., E[n(r)].

The second theorem of the Hohenberg-Kohn formulation is known as the Hohenberg-
Kohn variational principle. This means that the ground-state energy E[n(r)], as a functional
of the exact ground state density, corresponds to the minimum of E[n(r)] based on the
minimal principle.

Using the Hohenberg-Kohn formulation, the electronic structure problem can be solved
by finding the electron density n(r) that minimises the total energy of the system. This
is achieved by solving the Kohn-Sham equations, which introduce an auxiliary system of
non-interacting electrons that reproduce the same density as the original interacting system.

2.1.3 Kohn-Sham equations

In 1965, Walter Kohn and Lu Jeu Sham introduced the non-interacting Schrödinger equation
for non-interacting particles, i.e., the Kohn-Sham equations [39]. In the self-consistent Kohn-
Sham equations, the ground-state energy and density can be obtained by calculating the
eigenfunctions φ j(r) and eigenvalues ε j of non-interacting, single-particle equations [39]:(

− 1
2

∇
2
j + veff(r)

)
φ j(r) = ε jφ j(r), (2.4)
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n(r) =
N

∑
j=1

|φ j(r)|2, (2.5)

where the effective external potential veff(r) is split into the external potential v(r), the
Hartree potential due to the average electronic density distribution vH(r), and the exchange-
correlation potential that is the functional derivative of the exchange-correlation energy
vxc(r) = δExc/δn(r):

veff(r) = v(r)+ e2
∫ n(r′)

|r− r′|
dr′+ vxc(r). (2.6)

Equations (2.4)-(2.6) are known as the self-consistent Kohn-Sham equations. Starting from
an approximation for n(r), the effective potential veff(r) can be constructed, then by solving
Eq. (2.4) the eigenfunctions φ j(r) can be obtained, and the density n(r) can be recalculated
from Eq. (2.5). The equations are solved iteratively until the initial and computed n(r) are
the same [41].

Despite that the exact Kohn-Sham wave functions φ j(r) and energies ε j have no “directly
observable meaning” [40], φ j(r) is related to the true physical density n(r), and the highest
occupied ε j (relative to the vacuum) equals the ionisation energy.

It should be noted that how practical the Kohn-Sham equations are entirely depends on
whether the exchange-correlation energy Exc can describe the electron-electron interactions
accurately and efficiently at the same time. A variety of approximations have been proposed.
The simplest approximation for Exc is called the local density approximation (LDA) [39],

ELDA
xc [n(r)] =

∫
drεxc

(
n(r)

)
n(r)dr, (2.7)

where εxc(n) is the the exchange-correlation energy (per electron) of a uniform electron gas of
density n. A next level of approximations are called the generalised gradient approximation
(GGA) [40],

EGGA
xc [n(r)] =

∫
dr f (1)

(
n(r), |∇n(r)|

)
n(r)dr, (2.8)

where f (1)
(
n(r), |∇n(r)|

)
is a suitably chosen function of its two variables.

To simplify electronic structure calculations, the pseudopotential approximation can be
used, which is based on the concept of “additional potential” introduced by Hans Hellmann in
1934 [42]. Because only the valence electrons are chemically active, the effects of the inner
core electrons and the nucleus can be replaced by an effective potential, which significantly
reduces the computational cost while enabling accurate description of the Coulomb potential
outside the core region. One of the most commonly used pseudopotentials is generated
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by the projector augmented wave method [43], which combines the advantages of both
pseudopotentials and all-electron calculations.

Density functional theory has revolutionised computational materials science and quan-
tum chemistry. It provides an efficient and accurate approach to calculate electronic properties,
such as electron density distributions, energies, vibrational force constants, and potential
energy surfaces, for a wide range of systems, from small molecules to complex materials. For
periodic systems such as crystals, the plane-wave basis set is the natural choice. The infinite
number of plane-wave basis functions requires a kinetic energy cutoff, and in combination
with the pseudopotential, a much lower energy cutoff is needed to describe the wave functions
accurately while still achieving computational efficiency.

2.1.4 Wannier functions

In addition to the plane-wave basis sets, localised basis sets can also be used. Based on
the Kohn-Sham framework of density functional theory, the maximally localised Wannier
functions can be constructed from the Bloch functions. The Wannier functions play a
crucial role in the analysis of topological properties. By localising electronic wave functions
onto individual lattice sites, Wannier functions facilitate the description of electronic states
in periodic systems. They serve as a powerful tool to investigate the emergence of non-
trivial band topology, such as characterising the topological invariant and computing the
surface/edge states.

The Wannier functions can be obtained by a unitary transformation from the single-
particle Bloch functions [44–49],

|wnR⟩=V
∫

BZ

dk
(2π)3 e−ik·R

M

∑
m=1

|φmk⟩Umnk, (2.9)

where wnR is a periodic Wannier function labelled by the Bravais lattice vector R (corre-
sponding to the conjugate variable of the crystal momentum k in the Bloch representation),
φmk are the Kohn-Sham orbitals labelled by a band index m and a crystal momentum k, M is
the number of the bands in an isolated group that are separated from all the other lower and
higher bands, and Umnk are unitary matrices that mix Bloch states at k.

The maximally localised Wannier functions can be used as local orbitals to construct
tight-binding Hamiltonian models. This forms the basis to analyse the topological properties
of materials by means of quantities such as the Wannier charge center and surface/edge states
spectrum [50].
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2.2 Lattice dynamics

First-principles calculations provide a powerful approach that enables a detailed understand-
ing of the vibrational properties of solids based on density functional theory. The vibrational
modes, known as phonons, provide insights into the collective behaviour of atomic displace-
ments within a crystal lattice. The phonon frequencies and their corresponding modes of
vibration can be accurately determined from the interatomic force constants by computing the
potential energy surface. This comprehensive understanding of lattice dynamics is crucial for
studying various phenomena in materials, including thermal expansion, heat transport, and
phase transitions, thereby facilitating the design and optimisation of materials with desired
thermal and mechanical properties.

Because the lattice dynamical properties primarily rely on the force constants between
neighbouring atoms in the crystal lattice, studying topological phonons is relatively easier
compared to topological electronic states in terms of obtaining the necessary “tight-binding”
parameters and analysing the resulting eigenvectors. Unlike studying topological properties
in electronic systems that requires complex calculations involving computing the electronic
wave functions and constructing their Wannierised counterparts, the eigenvectors and tight-
binding parameters can be directly obtained from the force constants that can be readily
computed by first-principles calculations, and hence the construction of the corresponding
Hamiltonian is significantly simplified, which makes the tight-binding parameters more
accessible and computationally feasible for topological analysis. This straightforward pro-
cedure enables a systematic analysis of topological phonons, including the study of their
topological invariant and the identification of topologically protected edge or surface states.
Overall, the simplicity of calculating force constants to obtain the necessary input parameters
makes the study of topological phonons more accessible, allowing for a deeper understanding
of their topological properties and their potential applications in various areas of materials
science and condensed matter physics.

2.2.1 Adiabatic approximation

The adiabatic approximation allows the decoupling of the lattice vibrations from the electronic
degrees of freedom, as proposed by Max Born and J. Robert Oppenheimer in 1927 (also
known as the Born-Oppenheimer approximation) [51]. They noticed that the proton mass
is 1836 times larger the electron mass, indicating that electrons move much faster than the
nuclei and can instantaneously follow the motion of the slow nuclei. This motivates the
separation of the electronic and vibrational degrees of freedom.
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Based on this approximation, the lattice dynamics of a system can be determined from
the eigenvalues ε and the eigenfunctions χI:(

−∑
I

ℏ2

2MI
∇

2
I +Φ(R)− ε

)
χI(R) = 0, (2.10)

where MI is the nucleus mass, R is the set of all the nuclear coordinates RI for the nucleus I,
and Φ(R) is the Born-Oppenheimer energy surface corresponding to the ground-state energy
of the electronic system in the field of fixed nuclei with the Hamiltonian

HBO(R) =− ℏ2

2m ∑
i

∇
2
i −∑

i,I

ZIe2∣∣ri −RI
∣∣ + 1

2 ∑
i ̸= j

e2

|ri − r j|
+ ∑

I ̸=J

ZIZJe2∣∣RI −RJ
∣∣ . (2.11)

2.2.2 Harmonic approximation

The ions in solids vibrate around their equilibrium positions ri with displacements ui, where
i ≡ (lκ) with l and κ labelling the unit cells and the atoms in each unit cell respectively.
Under the harmonic approximation, the potential energy surface can be expressed as a
quadratic function of the displacements of the atoms [35]

Φ = Φ0 +
1
2 ∑

i j
∑
αβ

Φ
αβ

i, j uα
i uβ

j , (2.12)

where α and β are the Cartesian indices, Φ0 is the zeroth-order force constant evaluated at
the ionic equilibrium positions, and Φ

αβ

i, j are the second-order force constants which can be
evaluated as the second derivatives of Φ with respect to ionic displacements, or equivalently
as the first derivatives of the atomic force on atom j ≡ (l′κ ′) under an atomic displacement
ui [52, 53]

Φ
αβ

i, j =
∂ 2Φ

∂uα
i ∂uβ

j

=−
∂Fβ

j

∂uα
i
. (2.13)

The calculation of second-order force constants thus amount to computing the first and second
derivatives of its Born-Oppenheimer energy surface. According to the Hellmann-Feynman
theorem [34, 54], when the wave function is exact, the energy gradient is equivalent to the
expectation value of the derivative of the Hamiltonian. Consequently, it can be derived
that the real physical force acting on an ion can be obtained from the partial derivative of
the Kohn-Sham energy with respect to the position of the ion when the wave functions are
very close to exact Kohn-Sham eigenstates [41]. There are two approaches to compute the



12 Theoretical formalism

force constants based on the Hellmann-Feynman theorem, one is the finite displacement
method [55–57], and the other uses density functional perturbation theory [58, 59].

In the finite different method, the force constants are approximated as a small force
caused by a small displacement,

Φ
αβ

i, j ≃−
δFβ

j

δuα
i
. (2.14)

In density functional perturbation theory, the first and second derivatives of Φ are derived
from the Hellmann-Feynman theorem

∂Φ

∂uβ

j

=
∫

∂Vu(r)

∂uβ

j

nu(r)dr, (2.15)

∂ 2Φ

∂uα
i ∂uβ

j

=
∫

∂ 2Vu(r)

∂uα
i ∂uβ

j

nu(r)dr+
∫

∂Vu(r)
∂uα

i

∂nu(r)

∂uβ

j

nu(r)dr, (2.16)

where Vu(r) includes both the electrostatic interactions between nuclei and the electron-
nucleus interaction in Eq. (2.11), and the electron-density response ∂nu(r)/∂uβ

j can be
obtained by linearising Eq. (2.5)

∆n(r) = 2Re
N

∑
j=1

φ
∗
j (r)∆φ j(r) (2.17)

where ∆ is the finite-difference operator, and the variation of the Kohn-Sham orbitals ∆φ j(r)
is calculated from the first-order perturbation theory(

− 1
2

∇
2
j + veff(r)− ε j

)
|∆φ j(r)⟩=−

(
∆veff(r)−∆ε j(r)

)
|φ j(r)⟩ , (2.18)

where ∆veff(r) is the first-order correction to the self-consistent potential veff(r)

∆veff(r) = ∆v(r)+ e2
∫

∆n(r′)
|r− r′|

dr′+
dvxc(n)

dn

∣∣∣∣
n=n(r)

∆n(r), (2.19)

and ∆ε j(r) is the first-order variation of the Kohn-Sham eigenvalue ε j(r)

∆ε j(r) = ⟨φ j(r)|∆veff(r) |φ j(r)⟩ . (2.20)
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2.2.3 Phonon eigenvalues and eigenvectors

Once the second-order force constants are obtained, the dynamical properties of the ionic mo-
tion are then determined by the dynamical matrix D, which plays the role of the Hamiltonian,
and is obtained from the second-order force constants as [36, 60, 61]:

Dαβ

κκ ′(q) = ∑
l′

Φ
αβ

0κ, j√
mκmκ ′

eiq·[R j−R0κ ], (2.21)

where q describes coordinate in the phonon Brillouin zone (rather than the general label
k), and mκ is the mass of atom κ . The eigenvalue equation of the Hamiltonian (dynamical
matrix) is then:

∑
βκ ′

Dαβ

κκ ′(q)eβκ ′
qp = ω

2
qpeακ

qp , (2.22)

where p is the phonon band index, ωqp are the phonon frequencies and eακ
qp are the phonon

eigenvectors in matrix form.
The dynamical matrix D(q) is a 3N×3N matrix, where 3 comes from the three Cartesian

directions and N is the number of atoms in the unit cell. As a result, the eigenvectors eqp are
complex column vectors with 3N elements

eqp =



ex
q1

ey
q1

ez
q1
...

ex
qN

ey
qN

ez
qN


, (2.23)

and can be normalised to 1:

∑
ακ

∣∣eακ
qp

∣∣2 = 1. (2.24)

2.3 Topological analysis

The above sections provide the theoretical frameworks to describe electronic structures and
lattice dynamics, which form the basis to study the topological properties in electronic and
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Fig. 2.1 Theoretical frameworks in Chapters 3−7.

phononic systems. The theoretical frameworks for topological analysis are summarised in
Fig. 2.1, as will be introduced in Chapters 3−7.

Chapter 3 introduces the tools to study topological band crossings in electronic systems,
which depend on the symmetry of specific subgroup of bands. Around the Fermi level, such
crossings occur as a result of the touching of conduction and valence bands (with only one
gap between the two bands). This is why such topological features in semimetallic systems
are referred to as single-gap topology. Three types of topological semimetals (nodal-line/ring
semimetal, Weyl semimetal and Dirac semimetal) are introduced, and their corresponding
symmetry requirements are described. Group-theory analysis is applied to classify their
topological properties, e.g., the nodal lines or rings can be protected by a mirror symmetry,
while the Weyl points can be found in systems that break either spatial-inversion or time-
reversal symmetry. With an electron tight-binding Hamiltonian, topological properties such
as the surface states can be further studied (see Chapter 3).

Chapter 4 applies the same group-theory analysis to phonons as a replica of single-
gap topology in electrons. These topological features are independent of the statistics of
quasiparticles, i.e., topological invariants can be defined on an equal footing in fermionic and
bosonic systems. For example, Chern numbers around the Weyl points can be computed using
the phonon tight-binding Hamiltonian, which can be generated directly from the second-order
force constants, as demonstrated in Chapter 4.
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Chapter 5 extends the idea of single-gap topology from bulk states to surface states. Tools
such as Zak phase analysis are introduced to characterise the topological boundary states.
The Zak phase analysis is also used in helping understand the boundary states of multi-gap
topology in Chapters 6 and 7. However, it is worth stressing here that although the Zak
phase can trace faithfully the boundary states of single-gap topology, the bulk-boundary
correspondence for multi-gap topology has not yet been fully understood.

Chapter 6 provides a detailed theoretical framework to study multi-gap topology. The
concept of non-Abelian frame charges is introduced for systems with at least three bands
and a real Hamiltonian. In contrast to single-gap topology that has only one gap, multiple
gaps are formed between multiple bands. A new topological invariant, the Euler class, is
defined to characterise the multi-gap topological features. The symmetry requirements for
multi-gap topology are also discussed. By varying external stimuli, the non-Abelian frame
charges can be moved around each other in reciprocal space, mimicking the non-Abelian
braiding process in real space. The tools to investigate global topological configurations in
the braiding processes are also incorporated into the theoretical framework introduced in
Chapter 6.

Chapter 7 demonstrates the very first example of non-Abelian braiding of phonons with
both three and four phonon bands. The possible experimental signatures to track the band
inversion accompanied by the braiding are also simulated.





Chapter 3

Single-gap topology in semimetals

Conventionally, materials are classified into insulators and metals depending on whether the
valence and conduction bands touch, i.e., whether the single gap between these two bands
closes. In the transition from insulators to metals, there is an intermediate state where the
single gap only closes at point(s) or along line(s) in momentum space. Recently, it has been
found that such band-crossing points/lines are associated with certain topological invariants.
That is why they are called topological semimetals.

In this chapter, I present the model Hamiltonian for three main classes of topological
semimetals: (i) nodal-line semimetals, (ii) Weyl semimetals, and (iii) Dirac semimetals.
Then I show that a topological semimetallic phase can be realised by closing the single gap
between the valence and conduction bands in a trivial insulator. I find the first example of a
temperature-promoted topological semimetallic phase in an otherwise trivial semiconductor
at low temperatures, β -PbO2. Both thermal expansion and electron-phonon coupling tend to
close the single gap upon increasing temperature, driving PbO2 into a topological semimetal.

This chapter is based on work published in [Bo Peng, Ivona Bravić, Judith L. MacManus-
Driscoll, and Bartomeu Monserrat. Physical Review B 100 (16), 161101(R) (2019)]. My
collaborators Ivona Bravić provided the microscopic mechanisms for strain-induced band
inversion, Judith L. MacManus-Driscoll proposed possible experimental approaches to verify
the prediction and Bartomeu Monserrat conceived the research idea and developed the
computational framework to calculate electron-phonon coupling, while I was responsible for
the rest.

3.1 Classification of topological semimetals

Single-gap topology typically involves two bands: the highest valence band below the
Fermi level and the lowest conduction band above the Fermi level, with only one single
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gap between the two bands. In topological semimetals, the single gap closes at point(s) or
along line(s). Such gap closings are protected by symmetry: as long as the valence and
conduction bands belong to different irreducible representations (irreps), the gap closing is
robust and the two bands will not be gapped. Although such gap closings were studied in
the early days of band theory [15], not until the last decade have their topological properties
been noticed [62, 63]. These topological degeneracies exhibit unique physical properties
such as topologically protected surface states [62] and exotic transport properties [64, 65],
enabling various applications from spintronics [66] to topological quantum computation [67].
In addition, topological semimetals serve as a platform for obtaining various other topological
states, such as topological (crystalline) insulators [68] and Chern insulators [69].

Topological semimetals have diversified classifications including nodal-line semimetal [70,
71], Weyl semimetal [72, 73], and Dirac semimetal [74–76]. For nodal-line semimetals, the
two bands cross each other along one-dimensional line(s); while for Weyl and Dirac semimet-
als, the two bands cross at zero-dimensional points. In this section, I give a simplified
overview of these classes of semimetals.

3.1.1 Nodal-line semimetal

In nodal-line semimetals, the gap closes along line(s) in momentum space. Depending on the
shape of the line(s), they can be further classified into nodal rings and nodal lines. The nodal
lines or rings are protected by certain crystalline symmetries such as mirror or PT (where
P is the spatial inversion symmetry and T is the time-reversal symmetry) [77, 78].

An effective two-band model Hamiltonian in the momentum space k for a spinless system
can be written as,

H(k) = d0(k)σ0 +d1(k)σx +d2(k)σy +d3(k)σz, (3.1)

where σx,y,z are the Pauli matrices, and σ0 is the identity matrix. Assuming the system has
mirror symmetry on the kx = ky plane and there is a band crossing on the mirror plane,
the crossing bands at k satisfy Ei(k) = Ei+1(k) (i is the band index). Because k has three
variables (kx, ky, kz) to satisfy two equations, i.e., kx = ky and Ei(k) = Ei+1(k), the solution
space must be one-dimensional, which restricts the band crossing to a 1D continuous ring/line
on the mirror-invariant plane [77], as shown in the top panel of Fig. 3.1(a). Similarly, nodal-
line semimetals can also be protected by other crystalline symmetry such as PT . The
iso-energy surface states of nodal-ring semimetals on a semi-infinite slab are a 2D drumhead-
like surface within the projected bulk nodal ring on the surface plane [63, 70], as shown in
the bottom panel of Fig. 3.1(a).
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Fig. 3.1 (a) Nodal-line, (b) Weyl and (c) Dirac semimetals and their corresponding iso-energy
surface states on a semi-infinite slab.

3.1.2 Weyl semimetal

Weyl fermions are massless particles with definite chirality based on the Dirac equation when
the mass term is zero [12]. Their Hamiltonian can be written as

H = vFk ·σ , (3.2)

where vF is the Fermi velocity and its sign ± represents the chirality of Weyl fermions. In
addition to the efforts in finding them in high-energy physics, their analogs, Weyl-fermion-
like quasiparticles, are expected to exist as low-energy excitations of condensed matter
systems [79]. Furthermore, in three-dimensional periodic lattices, Weyl fermions always
appear in pairs of opposite chirality [80, 81]. The compounds hosting such Weyl fermions are
called Weyl semimetals, with the Weyl nodes formed by the crossing of two non-degenerate
bands close to the Fermi level [82–85], as shown in Fig. 3.1(b).

The chirality of the Weyl nodes can be associated with a topological invariant. By
choosing a small spherical manifold enclosing the Weyl node, a Chern number can be defined
as

C =
1

2π

∮
d3k ·Ω(k), (3.3)

where Ω(k) is the Berry curvature. The Weyl nodes act as sinks and sources of Berry
curvature with Chern numbers of ±1, indicating positive and negative monopole charges.
Therefore all Weyl nodes are topologically protected. Unless two Weyl nodes with opposite
chiralities meet each other in momentum space, they cannot be annihilated.

Although the Weyl points are protected by topology rather than symmetry, in the presence
of extra crystalline symmetries, double- or triple Weyl points can emerge. For instance, with
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C4 symmetry, double-Weyl points can be realised with an effective model:

H = kzσz +(kx − ky)
2
σx + kxkyσy, (3.4)

where the Chern number is ±2.
The key features of Weyl semimetals include Fermi arcs on the surface [72, 73, 86–91]

[Fig. 3.1(b)] and negative magnetoresistance [92–94]. Besides being of great interest to
fundamental physics, Weyl semimetals also exhibit high carrier mobilities [94], and may find
substantial applications in electronics, spintronics and thermoelectrics [91, 94, 95].

3.1.3 Dirac semimetal

Similar to Weyl semimetals, Dirac semimetals also have touching bands at discrete points in
the Brillouin zone with linear dispersion. The difference is that in Dirac semimetals the band
crossings are fourfold degenerate, whereas in Weyl semimetals they are twofold degenerate.
The fourfold-degenerate Dirac points can be regarded as two overlapping Weyl points [96],
and Dirac semimetals need extra symmetry to protect the Dirac points from being gapped. It
requires both inversion and time-reversal symmetry, as the former results in E↑(k) = E↑(−k)
and the latter results in E↑(k) = E↓(−k). As a consequence, the energy bands are doubly
degenerate in the entire Brillouin zone. Graphene with SU(2) symmetry is a typical Dirac
semimetal in 2D, and its band-crossing points are near the Fermi level with the Hamiltonian:

H = v(kxσx + kyσy), (3.5)

where both bands are doubly degenerate, as shown in Fig. 3.1(c).
Dirac points are not as stable as Weyl points, e.g., spin-orbit coupling tends to open the

band gap of graphene. To enforce the fourfold degeneracy of the Dirac points, additional
rotation symmetry is needed. For example, in Na3Bi [74, 76], the Dirac nodes, induced
by band inversion, are along the rotation axis with C6v symmetry. Therefore the fourfold-
degenerate Dirac points are protected by the axial rotational symmetry and the 3D Dirac
semimetallic state is realised [74, 96]. Similarly, in Cd3As2 [75, 97–100], the band crossings
are protected by a C4 rotation symmetry around the kz axis. Such protection makes the Dirac
nodes quite robust within a finite range of Hamiltonian parameters. By chemical substitution
in the same crystalline symmetry, new Dirac semimetals can be predicted. For example, by
substituting Na and Bi atoms in Na3Bi, I predict two new Dirac semimetals, Na2MgPb and
Na2CdSn [101], which have been successfully synthesised [102, 103].
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3.2 Topological phase transitions in β -PbO2

In this section I describe the topological phase transitions in an otherwise trivial insulator
driven by gap closing upon external stimuli such as strain and temperature. Using first-
principles calculations, I present the first example of a temperature-promoted topological
phase in β -PbO2, which is a semiconductor at low temperatures. With increasing tempera-
ture, both thermal expansion and electron-phonon coupling contribute towards stabilising a
topologically ordered phase, which is contrary to all known topological materials so far. The
underlying microscopic mechanism is discussed, and can be employed as a guiding principle
to identify other materials in which the topological order is robust at high temperatures, thus
opening the door for practical room-temperature applications of topological matter.

3.2.1 Computational details

First-principles density functional theory (DFT) calculations are performed using the Vienna
ab-initio simulation package (VASP) [104, 105]. The projector-augmented-wave potential is
used with Pb 5d106s26p2 and O 2s22p4 valence states. Hybrid functional methods based on
the HSE06 approximation are adopted [106–108] with 25% of the exact screened Hartree-
Fock exchange incorporated into the semilocal exchange within the generalised gradient
approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) parameterisation [109]. Based
on convergence tests, I use a kinetic energy cutoff set to 500 eV and a Γ-centered 4×4×6
k-mesh to sample the electronic Brillouin zone. The convergence parameters for structural
relaxations include an energy difference within 10−6 eV and a Hellman-Feynman force within
10−4 eV/Å. For the calculation of surface states, Wannier functions for the s orbitals of lead
and the p orbitals of oxygen are generated using the WANNIER90 package [48] combined
with surface Green’s functions as implemented in the WANNIERTOOLS package [50, 110].
The phonon dispersion, thermal expansion within the quasiharmonic approximation, and
the electron-phonon interaction are calculated using the finite displacement method within
the nondiagonal supercell approach [57, 111], using coarse q-point grids of size 4×4×4
to sample the vibrational Brillouin zone. The temperature dependence of band structures is
calculated from vibrational averages along thermal lines [112, 113].

3.2.2 Ground state properties of β -PbO2

Lead dioxide has been one of the most widely used functional oxides since the invention of
the lead-acid battery in 1860 [114]. Figure 3.2(a) illustrates the most stable tetragonal β -PbO2

phase (space group: P42/mnm) in which each Pb atom is at the center of an O octahedral
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Fig. 3.2 (a) Unit cell of the crystal structure of β -PbO2. (b) Electronic band structure of
β -PbO2 calculated using the HSE06 functional. (c) Phonon dispersion of β -PbO2 calculated
using the HSE06 functional.

cage. The subsequent analysis of β -PbO2 is based on first-principles DFT calculations using
the HSE06 screened Coulomb hybrid density functional [106–108]. Compared to semilocal
DFT, typically used for the study of β -PbO2 [115, 116], the HSE06 results show significantly
better agreement with experimental measurements [117, 118], providing a correct description
of the structural, electronic and vibrational properties of this material.

Table 8.1 shows a comparison of the lattice parameters of PbO2 calculated with the
semilocal PBE and the hybrid HSE06 exchange-correlation functionals, and compared to
experimental measurements. The HSE06 lattice parameters are within 0.5% of experimental
reports [119], whereas PBE lattice parameters overestimate the experimental reports by 2.5%
and 1.9% for the a and c lattice parameters, respectively. These results are in agreement with
earlier reports [118].

As shown in Fig. 3.2(b), PbO2 is a semiconductor with the valence-band maximum
(VBM) at the R point and the conduction-band minimum (CBM) at the Γ point. The
calculated indirect band gap of 0.24 eV and direct band gap of 0.34 eV at the Γ point
agree well with previous calculations [118]. These results also agree well with hard X-
ray photoelectron spectroscopy measurements, which indicate that β -PbO2 is an instrinsic
semiconductor, with the metallic behaviour exhibited by some samples arising from a partially
filled conduction band due to oxygen deficiency [114, 120]. Previous DFT calculations using
semilocal exchange-correlation functionals predict that β -PbO2 is a nodal-line semimetal
when spin-orbit coupling is neglected, and becomes a Dirac semimetal in the presence of
spin-orbit coupling [115, 121]. In contrast, using hybrid exchange-correlation functionals
leads to a semiconducting band gap of about 0.23 eV [118], which is consistent with X-ray
photoemission results [120, 122], indicating the latter provides a more accurate description
of the electronic structure of PbO2.

The phonon dispersion in Fig. 3.2(c) shows no imaginary modes, thus indicating that the
experimentally observed structure is stable at all temperatures. This is at odds with earlier
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Table 3.1 Ground state properties of β -PbO2 calculated using the semilocal PBE and the
hybrid HSE06 functionals. The a and c lattice parameters are shown in Å. Eg, A1g, and B1g
are the three Raman-active modes in cm−1. The lowest-frequency Raman peak at 370 cm−1

was probably misidentified in the experiments, which reported a value of 424 cm−1 instead
(see Fig. 1 in Ref. [117])

.

a c Eg A1g B1g
PBE 5.079 3.448 350.0 480.3 579.5

HSE06 4.974 3.365 369.4 518.4 670.2
Experiment 4.961 3.385 370 515 653

DFT calculations using semilocal exchange-correlation functionals [116], but consistent
with the fact that β -PbO2 is the most stable phase under normal laboratory conditions [114].
Furthermore, the HSE06 Raman active modes are in better agreement with the experimental
Raman spectrum [117] than the modes calculated using semilocal DFT, as shown in Table 3.1.

3.2.3 Strain-induced topological phase transitions

The electronic structure of β -PbO2 can be tuned from semiconducting to metallic by small
variations of the lattice constants [118, 123]. Interestingly, the normal band ordering at the
Γ point is inverted under tensile lattice strain, resulting in non-trivial band topology [123].
To illustrate this, I carry out band-structure calculations under different tensile strains.
Figure 3.3(a) presents the band gap at the Γ point as a function of strain in the (a,b) plane
and strain along the c-axis. The strain conditions for which the system has normal band
ordering correspond to trivial insulators with the magnitude of the band gap indicated by the
red-yellow-white colour scale, whereas those with inverted band ordering are marked by the
cyan colouring. Increasing the c lattice constant closes the band gap, leading to a nodal-line
semimetal phase at strains larger than around 1.9% (as will be discussed below). On the
other hand, the band gap is insensitive to the strain in the (a,b) plane. Thus the c-axis strain
is a suitable tuning parameter to control the band topology of β -PbO2.

To rationalise the behaviour of the valence and conduction bands under tensile strain, I
calculate the orbital characters near the Fermi energy. As shown in Fig. 3.4(a), the unstrained
lattice has a normal band ordering at the Γ point with the VBM derived from the 2pxy orbitals
of oxygen, and the CBM predominantly consists of the 6s orbitals of lead that hybridise with
the 2pxy orbitals of oxygen. I also depict the real-space charge densities corresponding to the
respective VBM and CBM at the Γ point in Fig. 3.4(a). The VBM at the Γ point is constituted
of the O 2pxy atomic orbitals which are oriented along the (a,b) plane of the primitive cell.
This feature of the valence band can be seen as the establishment of a quasi-two-dimensional
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Fig. 3.3 (a) Calculated band gap at the Γ point of β -PbO2 as a function of tensile strain. (b)
Effect of tensile strain on the (010) surface states of β -PbO2. A warmer colour represents a
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Fig. 3.4 Electronic structures for (a) unstrained and (b) strained β -PbO2. Charge densities of
the CBM and VBM states (isosurface = 0.008) are presented in (a). (c) The bulk Brillouin
zone and the surface Brillouin zone projected on the (010) surface are shown with two
ring-shaped nodal lines on the (11̄0) and (110) planes connecting the nodal points on the
M-Γ (blue dots) and Γ-Z (red dots) high-symmetry lines. Only one pair of Dirac points along
Γ-Z (red dots) remains once including the spin-orbit coupling.

subsystem in the bulk. Instead, the CBM at the Γ point resembles the diffuse Pb 6s orbital
which has a three-dimensional character. This means that under uniaxial strain along the c
direction the CBM experiences a reduced electron-electron repulsion arising from electrons
of neighbouring atoms (in the c direction) and as a consequence its energy decreases. In
contrast, the aforementioned quasi-two-dimensional character of the valence band remains
invariant under out-of-plane expansion. This leads to a relative shift of the VBM and the
CBM that drives the observed band inversion. This explanation is consistent with the fact
that under in-plane strain, no band inversion can be observed, which underpins the relevance
of the out-of-plane anisotropy of the valence band. In this case, both valence and conduction
band states experience similar stabilisation effects upon expansion and therefore no crossing
occurs. With larger tensile strains, β -PbO2 will revert to the standard behaviour in which
lattice expansion leads to the topologically trivial atomic limit. The other explanation is
based on the ionic bonding in PbO2 with a complete charge transfer from Pb+4 cations to
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O−2 anions, which separates the fully occupied O 2pxy valence states and the unoccupied
Pb 6s conduction states. The strain along c weakens the charge transfer, leading to partial
delocalisation of the transferred charges to O ions. Consequently, the O 2pxy valence states
gain extra energy and are pushed upward, reducing the band gap and eventually leading to
the band inversion.

To explain the formation of nodal lines, I examine the symmetry properties of β -PbO2.
For a fully relaxed unstrained crystal structure, β -PbO2 is a trivial indirect-band-gap semi-
conductor with the minimum direct bandgap at the Γ point. Under tensile strain the band
structure undergoes a band inversion at the Γ point. As shown in Fig. 3.4(b), under a modest
strain of 2.07% in the (a,b) plane and 2.50% along the c-axis [corresponding to point 4⃝ in
Fig. 3.3(a)], the band gap at the Γ point is inverted with a band-inversion energy of 0.11 eV,
and two band-crossing points are observed along the M-Γ and Γ-Z high-symmetry lines.
The crossing points belong to two ring-shaped nodal lines on the (11̄0) and (110) mirror
symmetry planes, as shown in Fig. 3.4(c). In the absence of spin-orbit coupling, for each
mirror plane the inverted band states have mirror eigenvalues −1 and +1 respectively, so
the two crossing bands are disallowed by mirror symmetry to hybridise with each other and
are therefore not gapped [77], forming a nodal line on the mirror plane as explained in the
Section 3.1.1. The two nodal lines on the (11̄0) and (110) planes are identical, which is
similar to transition-metal rutile oxide PtO2 [124]. For comparison, the band crossing on the
Γ-X high-symmetry line is not protected by mirror symmetry and therefore gapped.

To illustrate the strain effect and estimate its magnitude, I calculate the surface states
under tensile strain in Fig. 3.3(b) on the basis of maximally localised Wannier functions [48]
and surface Green’s functions [50, 110]. With an in-plane strain of 1.24% and an out-of-plane
strain of 1.50%, the gap in the surface region decreases to 40 meV, and the conduction band
moves below the Fermi energy due to the moving up of the VBM at the R point [panel 1⃝
in Fig. 3.3(b)]. Under a modest strain of 1.45% and 1.75% in the (a,b) plane and along the
c-axis, a topological phase transition occurs as the conduction band moves slightly below the
valence band at the Γ point [panel 2⃝ in Fig. 3.3(b)]. Further increasing strain leads to the
formation of distinct surface states around the Γ point [panels 3⃝ and 4⃝ in Fig. 3.3(b)]. A
hallmark of nodal-line semimetals is the presence of two-dimensional drumhead-like surface
states connecting the projected Dirac nodal points (the projection of the bulk nodal line onto
the surface plane) [63, 70], as shown in Fig 3.1(a). These surface states with a divergent
density of states can be detected by angle-resolved photoemission measurements [125], and
may induce strong correlation phenomena such as high-temperature superconductivity [126].

I next evaluate the role of spin-orbit coupling in β -PbO2. The crossing bands are
comprised of the 6s states of the lead atoms and the 2pxy states of the light oxygen atoms.
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As a consequence, none of these exhibit strong spin-orbit coupling effects, and the band
structure and surface states with the inclusion of spin-orbit coupling are similar to those
without spin-orbit coupling. Technically, spin-orbit coupling breaks the SU(2) symmetry,
generally gapping the nodal line with only one pair of Dirac points along the Γ-Z line
remaining [see the red dots in Fig. 3.4(c)], as has been previously observed [115]. The
Dirac points are protected by the fourfold screw rotation C̃4z symmetry, which is a fourfold
rotation about the z-axis, followed by a translation by (a/2,a/2,c/2) [124]. Thus the nodal-
line semimetal evolves into a Dirac semimetal with the inclusion of spin-orbit coupling.
Nonetheless, the weak spin-orbit coupling leads to a small gap of only 1.05 meV and the
resulting physics resembles that of a nodal-line semimetal for temperatures over 12.2 K in
which the bands merge due to the temperature-induced broadening.

3.2.4 Temperature-promoted gap closing

The behaviour of β -PbO2 under tensile strain discussed above indicates that, contrary to all
known topological materials, thermal expansion should promote topological order in β -PbO2.
I calculate the thermal expansion coefficients using the quasiharmonic approximation [61], in
which the equilibrium structure at temperature T is determined by minimising the free energy
at that temperature as a function of the (a,b) and the c lattice parameters. All calculations
need to be performed at the HSE06 level of theory to correctly reproduce the dynamical
stability of β -PbO2.

Based on the temperature-dependent volume of β -PbO2, I calculate the change in the
band gap arising from thermal expansion, as shown in Fig. 3.5(a). Thermal expansion leads
to a decrease in the band gap from 0.29 eV at 0 K to 0.21 eV at 600 K. The 0 K band gap
of 0.29 eV is smaller than the static lattice band gap of 0.34 eV due to quantum zero-point
motion, which also leads to lattice expansion. Taking the quantum zero-point motion into
consideration, the calculated lattice constants at 0 K are a = 4.988 Å and c = 3.373 Å. For
comparison, the calculated static lattice constants are a = 4.974 Å and c = 3.365 Å, and the
measured ones are a = 4.961 Å and c = 3.385 Å [117].

I fit a Bose-Einstein oscillator model [127] to the temperature-dependent band gap:

Eg(T ) = A0 +
A1

eω/kBT −1
, (3.6)

where T is temperature, kB is the Boltzmann constant, and (A0,A1,ω) are the fitting parame-
ters. This model correctly reproduces the computational data, as shown in Fig. 3.5(a). The
0 K value is given by A0 = 0.2923 eV, the coupling strength between band gap and volume is
given by A1 =−0.1802 eV, and the effective phonon frequency by ω = 59.80 meV.
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Fig. 3.5 Band gap of β -PbO2 at the Γ point as a function of temperature with contributions
from (a) thermal expansion, (b) electron-phonon coupling, and (c) a combination of both.

In addition to thermal expansion, increasing temperature also enhances electron-phonon
coupling. I calculate the change in the band gap of β -PbO2 arising from electron-phonon
coupling by evaluating the expectation value of the band gap with respect to the nuclear
vibrational density. The expectation value is calculated using a stochastic sampling technique,
accelerated by means of thermal lines [57, 112]. The number of stochastic samples used is
different at each temperature, and is chosen so as to reduce the statistical uncertainty to below
about 5 meV. All calculations are performed at the HSE06 level of theory using a 4×4×4
supercell, and the total number of sampled configurations across all considered temperatures
(0–300 K) is over 300. I fit a Bose-Einstein oscillator model [127] to the change of the
band gap with temperature arising from electron-phonon coupling, as shown in Fig. 3.5(b).
The model can extrapolate the calculated results up to 600 K, a necessary step because the
computational expense of electron-phonon coupling calculations increases with increasing
temperature due to the larger number of configurations that need to be considered at higher
temperatures, making explicit calculations at the higher temperature range prohibitive.

As shown in Fig. 3.5(b), including electron-phonon coupling leads to a 0 K band gap of
0.28 eV, which decreases to 0.17 eV at 600 K. For the Bose-Einstein oscillator fit, the 0 K
band gap value is A0 = 0.2837 eV, the electron-phonon coupling strength has a fitted value
of A1 =−0.2234, and the effective frequency is ω = 47.82 meV, corresponding to a phonon
frequency of 385.45 cm−1.

The overall temperature dependence of the band gap of β -PbO2 is a combination of
thermal expansion and electron-phonon coupling by summing the static band gap and
the band gap changes induced by thermal expansion and electron-phonon coupling. The
combined results are shown in Fig. 3.5(c), and show that the band gap at 0 K has a value of
0.23 eV, compared to a static lattice value of 0.34 eV. With increasing temperature, thermal
expansion and electron-phonon coupling favour the topological phase. Taking both effects
into consideration, a topological phase transition can be induced at 595 K.
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Fig. 3.6 Calculated strain-temperature phase diagram of β -PbO2.

Figure 3.6 demonstrates the evolution of band topology as a function of temperature
including both thermal expansion and electron-phonon coupling contributions, which pro-
mote the topological phase at high temperature. For unstrained PbO2, the band gap closes
above a temperature of 595 K, which is close to the temperature at which β -PbO2 becomes
unstable [114]. Above a strain of 1.26%, the system can be driven into a topological phase
even at 0 K, and in the intermediate strain regime the temperature-promoted topological
phase can be easily tuned to any intermediate temperature. At 0 K the topological phase
appears at a c strain of 1.26%, significantly lower than the required strain of around 1.9%
at the static lattice level [see Fig. 3.3(a)]. This difference is a purely quantum effect arising
from the zero-point motion of the lattice.

The unusual temperature-promoted topological order predicted in β -PbO2 could be
observed experimentally by exploiting the sensitivity of the transition temperature to the
c-axis strain, which would enable the tuning of the transition temperature anywhere in the
range 0–595 K. Both uniaxial tensile strain along the c-axis, or three-dimensional tensile
strain using a stoa-like structure consisting of stylobate (substrate) and column (matrix) with
appropriately matched lattice constants, could be used to scan over the phase diagram of
β -PbO2.

The relatively low melting temperature of β -PbO2 [114] means that it is possible to grow
highly crystalline films. The appropriate substrate and matrix materials can be chosen from
candidates with lattice constants in the appropriate region of the diagram in Fig. 3.3(a). Using
rutile TiO2 as a substrate, with an in-plane lattice constant of a = 4.594 Å, would provide
in-plane compression of β -PbO2 with an associated out-of-plane tension. Epitaxial growth of
structurally analogous SnO2 has been demonstrated on multiple orientations of a columbite



3.3 Conclusions and outlook 29

CoNb2O6 substrate [128]. These substrates could be good starting points for exploring the
topological phase diagram of β -PbO2.

β -PbO2 exhibits intrinsic defects that place the Fermi energy within the conduction
bands [114, 120]. This implies that the energy of the surface states will not coincide with
the Fermi energy, and therefore the topological surface states will coexist with other non-
topological surface states. Nonetheless, this is a common feature of many topological
materials (see e.g. [129, 130]) that, although detrimental for the observation of isolated topo-
logical surface states, it facilitates the use of techniques such as angle-resolved photoemission
spectroscopy for the detection of such states.

3.3 Conclusions and outlook

As long as the symmetry requirements are fulfilled, a topological semimetallic phase can
be induced by closing the gap of a trivial insulator upon external stimuli such as strain and
temperature. With a combination of thermal expansion and electron-phonon couping, β -
PbO2 transforms from a trivial semiconductor at low temperatures to a topological semimetal
at high temperatures. This behaviour contrasts with that of all known topological materials,
most of which cannot hold topological order at high temperatures, with notorious examples
including Chern insulators and topological superconductors which are currently restricted to
few Kelvin at most.

This chapter proposes a microscopic picture of the chemical and physical mechanisms
behind the interplay between topological order and temperature, and therefore provides a
solid platform to search for novel topological materials whose topological order is robust at
high temperatures. Such understanding paves the way for taking topological materials from
the laboratory to technological devices.





Chapter 4

Single-gap topology in phonons

The degenerate points and lines within the single gap are closely related to the crystalline
symmetry, and the relation between the crystalline symmetry and the degeneracy in the
band structures can be extended from electrons to phonons, enabling condensed-matter
physicists to explore the topological properties in the spectra of phonons. Topological
phonons can be explored as a replica of electronic topology, where the topological properties
are formed by two bands that are preferably far away from other bands to mimic single-
gap topology in electronic systems. Compared to electrons, phonons are charge-neutral,
spinless quasiparticles, and can be treated as spinless systems with time-reversal symmetry.
In addition, they are bosonic excitations obeying Bose-Einstein statistics, and the topological
properties in their entire frequency spectra can be accessed.

In this chapter, I firstly give a brief review on previous studies on topological phonons
from a single-gap topology perspective. I then show that topological properties are ubiquitous
in the phonon spectra using oxide perovskites as a representative material family. Most
interestingly, I find that light can be used to drive topological phase transitions in the phonons
of perovskites even without inducing structural phase transitions, providing the very first
example of light-controlled topological phonons in any materials.

This chapter is based on work published in [Bo Peng, Yuchen Hu, Shuichi Murakami,
Tiantian Zhang, and Bartomeu Monserrat. Science Advances 6 (46), eabd1618 (2020)]. My
collaborators Yuchen Hu set up the package to generate tight-binding parameters of the
phonon Hamiltonian, Shuichi Murakami analysed the topological features, Tiantian Zhang
and Bartomeu Monserrat devised the research idea and supervised the project, while I was
responsible for the rest.
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4.1 Recent developments of topological phonons

Topological properties in the band structures have been extended from electrons to other quasi-
particles including phonons [131–135], photons [136], magnons [137], and excitons [138].
Among all these quasiparticles, phonons are of significant importance because they are
intrinsic lattice vibrational modes that are involved in several fundamental states of con-
densed matter, such as conventional superconductivity [139, 140], electric and thermal trans-
port [95, 141–144], carrier thermalisation [145, 146], structural phase transition [147, 148]
and charge density waves [149, 150].

Compared to topological electronic materials where the topological states must be near
the Fermi level for experimental detection, phonons are bosons obeying Bose-Einstein
statistics, and do not have such a restriction. Thus all the band-crossing points in the whole
phonon frequency range can be measured by experimental methods such as inelastic neutron
scattering [151–153] and inelastic X-ray scattering [154]. Another difference is that phonons
are charge-neutral, spinless quasiparticles, and it is hard to break the time-reversal symmetry
of phonons by external magnetic field. Therefore phonons can be treated as spinless systems
with time-reversal symmetry, and it is convenient to apply the topological diagnosis method
in spinless systems [155, 156] to understand the topological properties of phonons.

The first material realisation of topological phonons was predicted in FeSi in 2018 [133],
soon followed by experimental verification using inelastic X-ray scattering [154], which
boosts various studies of different types of topological phonons and their related properties
in real materials [135, 151, 157–169]. As a replica of electronic topology, the concept of
single-gap topology such as nodal lines/rings, Weyl points and Dirac points can be introduced
in phonons.

4.2 Topological phonons in oxide perovskites

Oxide perovskites have gained popularity as a material system in the past decades due to
hosting multiple competing phases including ferroelectric [170], magnetic [171], or super-
conducting [140], and also exotic excitations such as skyrmions [172, 173]. Additionally,
these competing phases are particularly sensitive to external stimuli, including tempera-
ture [174], strain[175], pressure [176], and composition [177]. More recently, theoretical
and experimental evidence has demonstrated that light is yet another means by which it is
possible to control the crystal symmetry of perovskites [178–182]. As topological order is
intimately related to symmetry, the versatility of the perovskite family makes these structures
promising platforms to also explore topological properties. However, most oxide perovskites
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are large-gap insulators (for example BaTiO3, SrTiO3, and PbTiO3), and as a consequence
they exhibit no electronic topological states.

In this section, I demonstrate that the phonon spectrum of multiple noncentrosymmetric
perovskites can host three types of topological states: nodal rings, nodal lines, and Weyl
points; suggesting that topological phonons are pervasive in different structural phases
of oxide perovskites. Using the tetragonal BaTiO3 phase as a prototype, I show that all
these types of topological phonon emerge simultaneously when this phase is stabilised by
photoexcitation. Additionally, topological order can be controlled with the photoexcited
carrier density, driving topological transitions without any associated structural phase change,
including the creation and annihilation of Weyl phonons and switching between nodal-ring
and nodal-line phonons. In contrast, when the tetragonal phase of BaTiO3 is stabilised by
thermal fluctuations, it only exhibits a more limited number of topological states. This is
because the long-range Coulomb interaction leads to a large energy splitting between the
longitudinal and transverse optical phonons (LO-TO splitting), reducing the possibility of
topological degeneracies between these bands. The photoexcitation route eliminates this
problem because photoexcited carriers can screen long-range interactions.

4.2.1 Computational details

Density functional theory (DFT) calculations are performed using the Vienna ab initio sim-
ulation package (VASP) with the projector-augmented-wave potential method [104, 105].
The generalised gradient approximation (GGA) with the Perdew-Burke-Ernzerhof parame-
terisation revised for solids (PBEsol) is used as the exchange-correlation functional [183].
A plane-wave basis set is employed with a kinetic energy cutoff of 800 eV and a 7×7×7
k-mesh during structural relaxation, which is stopped when forces are below 10−3 eV/Å. The
band structure of BaTiO3 is calculated using the HSE06 hybrid functional in the presence
of spin-orbit coupling [106]. Photoexcited carriers are simulated by promoting electrons
from high-energy valence-band states to low-energy conduction-band states. This ∆ self-
consistent field (∆SCF) method introduces non-interacting electron-hole pairs by changing
the occupation numbers of the Kohn-Sham orbitals [147, 184–186], and is computationally
less demanding compared to other approaches like constrained density functional theory
[187] and excited-state force calculations [188]. Nevertheless, it gives consistent phonon
spectra compared with those obtained with constrained DFT [178]. The occupancies are
fixed with a smearing of 0.01 eV.

The crystal structures in the dark and under photoexcitation are fully relaxed before
the phonon calculations. The force constants are calculated based on density functional
perturbation theory (DFPT) [59] in a 2× 2× 2 supercell with a 5× 5× 5 k-mesh using
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VASP. The phonon dispersion is then obtained using PHONOPY [52]. Convergence tests
are performed on the supercells with size between 2× 2× 2, 3× 3× 3, and 4× 4× 2, all
confirming the existence of Weyl points in illuminated BaTiO3. The chirality of Weyl
points is computed by employing the Wilson-loop method to calculate the Wannier charge
center flow, i.e., the monopole charge of a Weyl point [189, 190]. The phonon surface
states are obtained using surface Green’s functions as implemented in WANNIERTOOLS

[50]. The finite-temperature phonon frequencies are calculated using a self-consistent ab
initio lattice dynamical method [56, 191, 192] in a 2× 2× 2 supercell, which includes
anharmonic contributions in the free energy of the self-consistent phonon spectrum. The
self-consistent cycle is terminated after 240 iterations when the difference in free energy is
less than 0.2 meV, and the space-group symmetry is enforced on the resulting force constants.
The Born effective charges are calculated using DFPT to obtain the LO-TO splitting in the
phonon dispersion in the dark [193]. Under illumination, the photoexcited electrons screen
long-range interactions and no LO-TO splitting occurs.

4.2.2 Structural phases of BaTiO3

As one of the most studied perovskite materials, BaTiO3 has a cubic ABO3-type crystal
structure at temperatures above 393 K, with the A cation (Ba2+) at the corners and the B
cation (Ti4+) at the center of an octahedral cage of oxygen atoms. Upon cooling, BaTiO3

undergoes an inversion symmetry-breaking phase transition, giving rise to a tetragonal phase
with a deformation along the [001] direction [194]. As shown in Fig. 4.1(a), the phase
transition breaks inversion symmetry by the polar displacements of Ti and O atoms along the
z direction, which changes the space group from Pm3̄m (No. 221) to P4mm (No. 99). With
further cooling, an orthorhombic Amm2 phase appears below 278 K and a rhombohedral R3m
phase follows below 183 K. As a result of these temperature-driven phase transitions, the
room-temperature tetragonal phase exhibits imaginary harmonic phonon modes, as shown in
Fig. 4.1(b). The inclusion of anharmonic vibrations [191] stabilises the tetragonal structure at
300 K, also shown in Fig. 4.1(b).

In addition to temperature, multiple strategies have traditionally been proposed to con-
trol structural phase transitions in perovskites, including strain[175], pressure [171, 176],
and composition [177]. More recently, it has been shown that photoexcitation provides
an alternative route to stabilising multiple perovskite phases [178–182]. Photoexcitation
is relatively economical, and can be easier to control compared to other strategies such as
heating to change temperature, material synthesis to change composition or strain, or external
pressure. Inspired by these recent discoveries, I find that photoexcitation can also stabilise
the imaginary phonon modes of the tetragonal phase of BaTiO3. Figure 4.1(c) shows the
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Fig. 4.1 (a) Crystal structures of the high-temperature cubic phase (No. 221, Pm3̄m) and of
the room-temperature tetragonal phase (No. 99, P4mm) of BaTiO3. (b) Phonon dispersion
of tetragonal BaTiO3 at the harmonic level and at 300 K including anharmonic vibrations.
(c) Ground-state and excited-state potential-energy surfaces along the Γ point phonon mode,
which is imaginary within the harmonic approximation in the dark. (d) Phonon dispersion
of tetragonal BaTiO3 at n = 0.06 e/f.u. (e) Bulk Brillouin zone at n = 0.06 e/f.u. with two
nodal rings on the qx = 0 and qy = 0 mirror planes (orange circles, formed by the 10th and
11th bands), one nodal line along the Γ-Z high-symmetry line (brown line, formed by the
10th and 11th bands), one pair of triple Weyl points at the intersection points between the
nodal rings and nodal line (violet cones, formed by the 10th, 11th and 12th bands), and four
pairs of Weyl points on the qz = π plane (purple and yellow cones, formed by the 10th and
11th bands).

calculated total energy along the imaginary phonon mode of amplitude Q at the Γ point.
The double well potential-energy curve becomes a single well upon illumination, indicating
the stabilisation of the crystal structure. The underlying physics is that changing the carrier
concentration n induced by photoexcitation leads to changes in the potential energy expe-
rienced by the ions, which in turn changes the interatomic force constants and the phonon
dispersion. For 0.04 < n < 0.10 e/f.u., the P4mm phase is not only dynamically stable, but it
is also thermodynamically more stable than the cubic Pm3̄m phase; whereas for n > 0.10
e/f.u., the P4mm phase relaxes to the cubic phase as the latter becomes thermodynamically
more stable [178]. Figure 4.1(d) shows the phonon dispersion with a photoexcited carrier
density of n = 0.06 e/f.u., confirming the dynamical stabilisation of the tetragonal phase.
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Fig. 4.2 (a) Schematic of the photoexcitation process in tetragonal BaTiO3. (b)-(d) Nodal
lines and nodal rings formed by the 10th and 11th phonon branches in the bulk Brillouin
zone for photoexcited carrier concentrations of 0.04 e/f.u., 0.07 e/f.u., and 0.12 e/f.u. The
corresponding phonon dispersions are shown in (e)-(g).

4.2.3 Topological phonons in BaTiO3

As a large-gap insulator, BaTiO3 displays trivial topology in its electronic band structure
[Fig. 4.2(a)]. However, there are three types of topological states in its phonon dispersion,
which are nodal rings, nodal lines, and Weyl points. Since the unit cell of tetragonal BaTiO3

has 5 atoms, there are 15 branches in the phonon spectrum. I focus on the band crossings
formed by the 10th and 11th phonon branches (labelled by increasing energy) because they
exhibit rich topological features including nodal rings, nodal lines and Weyl points. Band
inversion between the 10th and 11th bands along the X-Γ high-symmetry line is protected
by Mx symmetry, which restricts the band crossing to a 1D continuous ring/line on the
mirror-invariant plane [77]. Therefore a nodal ring is formed on the qx = 0 plane. Because of
the existence of an additional C4z symmetry, there is another nodal ring located on the qy = 0
plane, related to the one on the qx = 0 plane by C4z symmetry [orange circles in Fig. 4.1(e)].
The combination of C4z and mirror symmetries also brings out another type of topological
phonon in BaTiO3: an endless nodal line along the Γ-Z direction [brown line in Fig. 4.1(e)].
Intersection points between these two nodal rings and the nodal line form two triple Weyl
points located along the Z’(0,0,-π)-Γ-Z(0,0,π) line. Another topological feature of the band
crossings between the 10th and 11th bands are eight Weyl points on the qz = π plane [purple
and yellow cones in Fig. 4.1(e)].
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4.2.4 Controlling topological phonons by light

As discussed above, both photoexcitation with 0.04 < n < 0.10 e/f.u. and temperatures
between 278-393 K can stabilise the tetragonal phase of BaTiO3, as shown in Figs. 4.1(b) and
(d). However, the main difference is that without photoexcitation, the long-range Coulomb
interaction leads to a large LO-TO splitting [195], which tends to lift band degeneracies, as
shown in Fig. 4.1(b). Consequently, the eight conventional Weyl points and the two triple
Weyl points that I find in illuminated BaTiO3 are not observed in temperature-stabilised
tetragonal BaTiO3 at 300 K. In contrast, under illumination, the photoexcited carriers lead
to a strong free-carrier screening that suppresses the LO-TO energy splitting and facilitates
the appearance of Weyl phonons in tetragonal BaTiO3. Another advantage of the photoex-
citation route is that, as discussed next, it can drive the phononic system between different
topological quantum states, including switching between nodal-ring and nodal-line phonons,
controlling the position of Weyl points in momentum space, and creating and annihilating
these topological states.

As discussed above, changing the photoexcited carrier density brings about not only the
transition between nodal rings and nodal lines, but also the creation of new nodal rings. As
shown in Fig. 4.2(b)-(c), increasing the photoexcited carrier density from n = 0.04 e/f.u. to
n = 0.07 e/f.u. drives the two nodal rings to become two nodal lines, and the corresponding
phonon spectra are shown in Fig. 4.2(e)-(f). Further increasing n to 0.12 e/f.u. (under which
conditions the tetragonal structure becomes cubic) leads to the formation of two nodal rings
around the R point on the qx = 0 and qy = 0 planes, as shown in Fig. 4.2(d) and (g). Thus, by
changing n, nodal rings in the phonon spectra can be created or transformed into nodal lines.

In addition to nodal lines and nodal rings, Weyl phonons are also sensitive to the photoex-
cited carrier concentration n. Fig. 4.3(a) shows the evolution of eight pairs of Weyl points
on the qz = π plane when increasing n from 0.050 to 0.085 e/f.u. (four extra pairs of Weyl
points emerge when 0.0695 < n < 0.0825 e/f.u.). Below 0.050 e/f.u., BaTiO3 exhibits no
Weyl points between the 10th and 11th branches in its phonon spectrum. At about n = 0.050
e/f.u., four pairs of Weyl points are created around the qx = qy and qx =−qy planes [orange
and maroon dots in Fig. 4.3(a)]. As n increases, the Weyl points in each pair with different
chirality move away from each other and head to the qx = 0 and qy = 0 planes [yellow and
purple arrows in Fig. 4.3(a)]. Once n reaches 0.0815 e/f.u, Weyl points meet on the qx = 0
and qy = 0 planes and annihilate in pairs [light yellow and light magenta dots in Fig. 4.3(a)].
In addition, another four pairs of Weyl points of opposite chirality are created around the
qx = qy and qx =−qy planes at n = 0.0695 e/f.u., and annihilate in pairs on the qx = π and
qy = π planes when n reaches 0.0825 e/f.u. [blue and green dots in Fig. 4.3(a)].
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Fig. 4.3 (a) Evolution of the Weyl points on the qz = π plane with increasing n from 0.050 to
0.085 e/f.u. (b) Phonon surface arcs for a phonon frequency of 11.42 THz at n = 0.07 e/f.u.

To have a better understanding of the Weyl phonons in tetragonal BaTiO3, I calculate
the surface local density of states (LDOS) from the imaginary part of the surface Green’s
function [50]. The surface LDOS in Fig. 4.3(b) is calculated along the (001) direction at
11.42 THz and n = 0.07 e/f.u. The four pairs of Weyl points connect via surface arcs crossing
the Brillouin zone boundaries, so that each surface arc starts from one Weyl point with a
positive monopole charge and ends at another with a negative one. Overall, by modulating n
I can control the creation and annihilation of Weyl points, and the length of surface arcs in
tetragonal BaTiO3.

4.2.5 Topological phonons in PbTiO3 and SrTiO3

Multiple types of topological phonons can also be found in other perovskites with the same
P4mm space group, and here I study PbTiO3 and SrTiO3 as additional examples.

PbTiO3

PbTiO3 has a tetragonal P4mm structure for T < 600 K, and a cubic structure above that
temperature. Athough the P4mm phase has the lowest energy in a wide photoexcited density
range n< 0.125 e/f.u. [178], it becomes dynamically unstable when n> 0.05 e/f.u. I calculate
the excited-state phonon dispersion at n = 0.025 e/f.u., as shown in Fig. 4.4(a).

Similar to BaTiO3, PbTiO3 also has nodal rings, nodal lines, and Weyl points between
the 10th and 11th bands. But the triple Weyl points no longer exist as the nodal rings and
the nodal line do not touch. The unique band crossings along the Γ-M high-symmetry line
bring about four nodal rings on the qx = qy and qx =−qy planes protected by Mxy and Mxȳ

symmetries. The endless nodal lines along the Γ-Z and M-A directions are robust as well, as
they are protected by the C4z symmetry.
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Fig. 4.4 (a) Phonon dispersion of tetragonal P4mm PbTiO3 at n = 0.025 e/f.u. (b) Bulk
Brillouin zone at n = 0.025 e/f.u. with four nodal rings on the qx = qy and qx =−qy planes
(orange circles), two nodal lines along the Γ-Z and M-A high-symmetry lines (brown line),
and eight Weyl points located on qz = π plane (purple and yellow cones). All these three
types of topological phonons are composed by the 10th and 11th bands. (c) Phonon surface
arcs for a phonon frequency of 9.63 THz at n = 0.025 e/f.u.

The surface LDOS in Fig. 4.4(c) is calculated along the (001) direction at 9.63 THz with
n = 0.025 e/f.u. Four pairs of Weyl points, created at n = 0.005 e/f.u., connect with each
other via surface arcs crossing the qx = qy and qx =−qy planes. The location of these four
pairs of Weyl points can also be modulated by changing the photoexcitation density until the
lattice becomes dynamically unstable for n > 0.05 e/f.u.

SrTiO3

SrTiO3 has a different phase diagram compared to BaTiO3 and PbTiO3. At low temperatures,
it exhibits a centrosymmetric tetragonal phase of space group I4/mcm, and undergoes a
phase transition to a cubic phase above 106 K. The P4mm phase can only be accessed with
small negative strains [196, 197]. The in-plane lattice constants a and b of P4mm SrTiO3

increase upon photoexcitation. Therefore by fixing a and b to the values in the dark, in-plane
negative strain can be induced in illuminated SrTiO3. This can be realised experimentally by
growing SrTiO3 on an appropriate substrate. As shown in Fig. 4.5(a), after fixing the in-plane
lattice constants a and b and relaxing only the out-of-plane lattice constant c in the P4mm
phase, the tetragonal phase can have a lower energy than the cubic Pm3̄m phase.

P4mm SrTiO3 exhibits imaginary phonon modes in the dark, while adding a photoexcited
charge density of n = 0.09 e/f.u. stabilises the structure, as shown in Fig. 4.5(b). Similarly
to BaTiO3, the P4mm phase of SrTiO3 has two nodal lines on the qx = 0 and qy = 0 mirror
planes and one nodal line along the Γ-Z high-symmetry line in the bulk Brillouin zone. The
intersection points of the three nodal lines form one pair of triple Weyl points. In contrast to
BaTiO3, the four pairs of Weyl points are located on the qz = 0 plane rather than the qz = π

plane. Weyl phonons in SrTiO3 can also be manipulated by photoexcitation, and the critical n
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Fig. 4.5 (a) Relative energy difference between the P4mm and Pm3̄m phases with fixed
in-plane lattice constants a and b, with the energy of the fully relaxed Pm3̄m phase set to be
zero. (b) Phonon dispersion of tetragonal P4mm SrTiO3 at n = 0.09 e/f.u. (c) Bulk Brillouin
zone at n = 0.09 e/f.u. with two nodal lines on the qx = 0 and qy = 0 planes (orange lines),
one nodal line along the Γ-Z high-symmetry line (brown line), one pair of triple Weyl points
at the intersection points between the three nodal lines (violet cones), and four pairs of Weyl
points on the qz = 0 plane (purple and yellow dots).

for the annihilation of the Weyl points on the qx = 0 and qy = 0 planes is 0.105 e/f.u., which
is similar to that in BaTiO3.

4.2.6 Discussion

The existence and coexistence of different types of topological phonons, together with
their tunability by light, can occur in a variety of other structural phases of perovskites
beyond the tetragonal phases investigated above. Furthermore, topological phonons in oxide
perovskites can also be manipulated by other tuning parameters beyond photoexcitation, such
as strain and temperature. Putting these insights together suggests that topological phonons
are ubiquitous in the family of perovskite oxides, which, given their widespread use and
versatility, provide a promising platform for exploring topological phonon physics and its
interplay with other phases.

Given the proposed ubiquity of topological phonons in perovskites, it should be possible
to directly identify them experimentally by looking for “isolated” band crossings, and the
prototype materials detailed above are promising starting candidates. Topological bulk
phonons can be measured by inelastic neutron scattering [151–153] and inelastic X-ray
scattering [154], while the accompanying topological surface states can be detected by high-
resolution electron-energy loss spectroscopy [198]. For light-induced topological phonons,
although it may be difficult to illuminate the sample to maintain a constant photoexcited
carrier density, transient photoexcitation could be used to observe the evolution of nodal
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rings, nodal lines and Weyl points as a function of the time-dependent photoexcited carrier
density.

In terms of phenomena, topological phonons with non-zero Berry curvature may con-
tribute to the recently observed phonon thermal Hall effect in oxide perovskites [199, 200],
as confirmed by a recent study [201]. In addition, novel phonon-phonon and electron-phonon
scattering mechanisms could arise from topological phonons, which may provide new in-
sights on the enhanced superconductivity of SrTiO3 [140, 202]. The emergence of Weyl
phonons may be accompanied by other unique physical properties such as a pseudogauge
field with a one-way propagating bulk mode [136, 203, 204], topological negative refrac-
tion [134], and nonlinear acoustic/optical responses [205, 206], which can offer new routes
for designing novel technologies like light-controlled neuromorphic computing in phononic
systems [207, 208]. This chapter shows that oxide perovskites provide a promising platform
to explore all of these phenomena and applications.

4.3 Conclusion

I find that topological phonons are ubiquitous in oxide perovskites and that photoexcitation
provides a promising route for their manipulation. As examples, the noncentrosymmetric
tetragonal phases of three oxide perovskites (BaTiO3, PbTiO3, and SrTiO3) exhibit topo-
logical nodal rings, nodal lines, and Weyl points in their phonon spectra. Remarkably, I
find that photoexcitation is the only way to obtain Weyl phonons in tetragonal BaTiO3,
since the thermally-stabilised tetragonal phase has a large LO-TO energy splitting in the
phonon spectrum that prevents band crossings. By contrast, photoexcited carriers screen
long-range interactions, suppressing the LO-TO energy splitting and facilitating the band
crossings. I also find that the photoexcited carrier density can be used to tune the creation
and annihilation of Weyl points and nodal rings/lines without any associated structural phase
transitions. Topological phonons in oxide perovskites provide a promising platform to study
physical phenomena ranging from the phonon Hall effect to superconductivity, and may
also offer new technological opportunities such as the realisation of controllable topological
quantum states for neuromorphic computing.





Chapter 5

Surface topology of phonons

Degenerate points/lines in the band structures of crystals have become a staple of the growing
number of topological materials. The bulk-boundary correspondence in single-gap topology
provides a relation between bulk topology and surface states. While line degeneracies of
bulk excitations have been extensively characterised, line degeneracies of surface states are
not well understood.

In this chapter, I show that SnIP, a quasi-one-dimensional van der Waals material with
a double-helix crystal structure, exhibits topological nodal rings/lines in both the bulk
phonon modes and their corresponding surface states. Using a combination of first-principles
calculations, symmetry-based indicator theories and Zak phase analysis, I find that two
neighbouring bulk nodal rings form doubly degenerate lines in their drumhead-like surface
states, which are protected by the combination of time-reversal symmetry T and glide
mirror symmetry M̄y. My results indicate that surface degeneracies can be generically
protected by symmetries such as T M̄y, and phonons provide an ideal platform to explore
such degeneracies.

This chapter is based on work published in [Bo Peng, Shuichi Murakami, Bartomeu
Monserrat, and Tiantian Zhang. npj Computational Materials 7, 195 (2021)]. My collabo-
rators Shuichi Murakami analysed the topological features, Tiantian Zhang and Bartomeu
Monserrat devised the research idea and supervised the project, while I was responsible for
the rest.

5.1 Degeneracies in the bulk and surface bands

Degeneracies in the bulk energy bands of crystals were intensively studied in the early
days of band theory [15]. Recent breakthroughs have shed new light into this old topic by
associating topological invariants with these degenerate points or lines [62, 71, 85]. Among
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the degenerate points, twofold-degenerate Weyl points always appear in pairs that can
be topologically characterised with opposite Chern numbers [72, 73, 88, 89], and fourfold-
degenerate Dirac points have a linear dispersion in both electronic [74, 76, 101, 209–211] and
phononic systems [133, 135]. When the band crossings are one-dimensional in momentum
space, they can form nodal lines, nodal rings or nodal chains, depending on their shape [68, 70,
125, 212–217], and these line crossings are protected by symmetries such as mirror or PT

(where P is the spatial inversion symmetry and T is the time-reversal symmetry) [77, 78].
Recent advances, using both group theoretical analysis and high-throughput calculations, have
enabled a comprehensive understanding of bulk band degeneracies in both electrons [218–
220] and phonons [135].

As a result of the bulk-boundary correspondence, the degenerate bulk points and lines
are associated with topologically protected surface states, including surface arcs associated
with Weyl and Dirac points [86, 87, 221, 222] and drumhead-like flat bands associated with
nodal lines [63, 212]. Similar to bulk band degeneracies, surface states can also exhibit band
crossings in both semi-infinite slabs and finite slabs (with top and bottom surfaces) [223].
Here I focus on semi-infinite systems with only one surface. For Weyl points with Chern
numbers of ±1, the associated helicoid surface states, whose isoenergy contours are Fermi
arcs, form a continuous 2D surface in the energy-momentum space E-k and have no degener-
acy [224], as schematically shown in Fig. 5.1(a). In topological insulators and topological
crystalline insulators, the surface states become degenerate at a single point [129, 225–228],
forming a surface Dirac cone, as shown schematically in Fig. 5.1(b). In principle, two surface
states can also cross along a line in the surface Brillouin zone, as shown schematically in
Fig. 5.1(c). However, like the bulk case, these surface line crossings need to be protected by
additional symmetries [224, 229–232]. While nodal line degeneracies in the bulk states have
been thoroughly explored in a variety of quasiparticle band structures, the degenerate lines
in the surface states have received less attention. The few examples of surface nodal lines
all correspond to electronic band structures [224, 229–233] or artificial systems [234, 235].
It is therefore desirable to identify more candidates in other quasiparticle spectra to fully
understand the role of surface degeneracies.

5.2 Surface nodal line in quasi-1D double-helix crystal SnIP

In this section, I show that SnIP, an inorganic semiconductor with nodal-ring phonons in the
bulk states, exhibits nodal-line surface states in the phonon spectrum using a combination of
first-principles calculations, group-theory analysis and Zak phase analysis. These surface
states are doubly degenerate in a nodal line on the (100) surface. The surface nodal line is
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Fig. 5.1 Different types of the surface states in topological materials. (a) Non-degenerate
helicoid surface states, (b) zero-dimensional degenerate Dirac surface states, and (c) one-
dimensional degenerate nodal-line surface states.

protected by the anti-unitary symmetry ϑ = T M̄y, which is a combination of time-reversal
symmetry T and glide mirror symmetry M̄y. With different surface terminations, two surface
nodal lines can be alternatively obtained on different parts of the (100) surface Brillouin zone,
which can be understood by different Zak phases in the presence of T M̄y symmetry. The
results suggest that similar surface degenerate lines/points will be found in other materials
when there are extra symmetries to protect these surface degeneracies, and phonons can
be a primary platform to study these degeneracies because of the presence of time-reversal
symmetry and the flexibility to study the degeneracies in the entire phonon spectrum.

5.2.1 Computational details

All density functional theory (DFT) calculations here are performed using the Vienna ab-
initio simulation package (VASP) [104, 105]. The generalized gradient approximation (GGA)
is used in the Perdew-Burke-Ernzerhof (PBE) parametrisation for the exchange-correlation
functional with 14 valence electrons (4d105s25p2) for Sn, 7 valence electrons (5s25p5) for I,
and 5 valence electrons (3s23p3) for P. A plane-wave basis with a kinetic energy cutoff of
600 eV and a 7×5×3 k-mesh are used for structural relaxation until the energy difference is
lower than 10−6 eV and the Hellman-Feynman force difference is lower than 10−4 eV Å−1.
The D2 method of Grimme is used to describe the van der Waals interactions between the
double helices [236].

The Hessian matrix and phonon frequencies are calculated based on the finite difference
method using a 2×2×1 supercell with a 3×3×3 k-mesh. The phonon dispersion is obtained
with the PHONOPY code [52, 53]. The convergence of the supercell is checked by comparing
the 2×2×1 and 1×1×2 supercells. The Born effective charges are also computed using a
perturbative approach to account for the splitting between the longitudinal and transverse
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optical phonon modes (LO-TO splitting) near the Brillouin-zone center [193], confirming
that the LO-TO splitting has a minor influence on the topological properties of phonons
because the topological features are far away from the zone center.

To obtain the topological properties of the lattice vibrational modes, WANNIERTOOLS

is used to calculate the distribution of the band-crossing points/lines in the whole Brillouin
zone [50]. The phonon surface states on the (100) surface are computed using the surface
Green’s function.

5.2.2 Crystal structure and phonon dispersion

SnIP is an inorganic semiconductor with a double-helix crystal structure, first synthesised
in 2016, and it can be formed without any templates [237–239]. The strong covalent bonds
along the helices and the weak van der Waals interactions across the helices combine the
electronic properties of inorganic semiconductors, such as high electron mobility [240],
and the mechanical properties of polymers, such as high flexibility [241]. In addition, by
atomic substitution, a large material family with double-helix structures has been predicted
using first-principles calculations, providing a wide range of band gaps between 1 and
2.5 eV [242]. With a tunable band gap and high mechanical flexibility, these quasi-one-
dimensional semiconductors are extremely promising for next-generation devices ranging
from mechanical sensors to optoelectronics [241, 242]. Moreover, they can serve as a material
platform to realise one-dimensional physical models such as the Su-Schrieffer-Heeger (SSH)
model [243] and Majorana quantum wires [244, 245].

Bulk SnIP crystallises in the monoclinic space group P2/c (No. 13) with two double
helices (SnIP)7 in the unit cell with stoichiometry (SnIP)14. The two double helices, alterna-
tively left- and right-hand twisted, are stacked along the a direction. Each double helix is
formed by an inner helical P chain and an outer helical SnI chain, as shown in Fig. 5.2(a).
The (SnIP)7 unit in each SnIP chain winding results in a 7/2 helix. From one phosphorus
(yellow) atom to the next, the turning angle is about ±360◦/7 followed by a translation of
c/7, and the same holds true for the tin (cyan) and iodine (navy) atoms in the SnI helix [246].
The calculated lattice parameters of a = 7.889 Å, b = 9.768 Å, c = 18.422 Å, and monoclinic
distortion β = 110.21◦ match well with the measured ones [237, 239].

The calculated phonon dispersion of SnIP is presented in Fig. 5.2(b). It exhibits wide
bandwiths along the helical direction, corresponding to the Γ-Y, C-Z, B-A and E-D high-
symmetry lines in Fig. 5.2(c), but, by contrast, phonon bands along other high-symmetry
lines, especially those perpendicular to the helices, have a relatively flat dispersion, a result
of the quasi-one-dimensional nature of this material. This is consistent with the fact that SnIP
has strong covalent bonds along the one-dimensional helices but only weak van der Waals-
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Fig. 5.2 Structural and vibrational properties of SnIP. (a) Crystal structure, (b) phonon
dispersion and (c) Brillouin zone of SnIP. The orange region in the phonon dispersion
highlighted in (b) corresponds to the topological features. The phonon DOS is also shown in
(b).

like interactions between the double helices. As a result, SnIP fibers can be macroscopically
bent by up to 90◦ without any significant Raman mode shifts, indicating that SnIP is an
ultrasoft inorganic material and bending the helices has negligible influence on the phononic
properties [241].

There are 42 atoms in the unit cell of SnIP, corresponding to 126 phonon branches. The
calculated atom-projected phonon density of states (DOS) in Fig. 5.2(b) indicates that the low-
frequency modes below 4 THz are mainly vibrations involving the heavier Sn and I atoms,
while those between 4-14 THz are dominated by the motion of the lighter P atoms. There are
14 phosphorus atoms in the unit cell, leading to 42 P-dominated bands in the phonon spectra,
spanning branches 85 to 126. The phonon modes from 4 to 10 THz (branches 85-108) are
more dispersive compared to the almost flat bands between 10 and 14 THz. The two double
helices are related to each other by inversion/glide mirror symmetry, so there always exist
two bands with similar eigenvalues and similar eigenvectors, corresponding to the P atoms
from the two separate P chains, respectively.

Hereafter I focus on the frequency range 4-10 THz because the corresponding phonon
bands are relatively “clean” due to the large mass difference between phosphorus and the
other two elements that separates them from the lower energy bands, and due to the strong
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intrachain vibrations that make them highly dispersive. This makes them an ideal playground
for exploring topological features.

5.2.3 Nodal ring phonons in SnIP

For the phonon modes between 4 and 10 THz, dominated by the vibrations of the relatively
light P atoms, the phonon bands have a large dispersion along the helical direction but are
almost flat along the perpendicular directions, as shown in Fig. 5.2(b). The band folding of
the seven P atoms in a single helical P chain [246] leads to several band crossings near the
Brillouin zone boundary, especially in the flat band regions. After a comprehensive search for
band-crossing points between bands 85-108 (i.e., 4-10 THz), I find that the most promising
band crossings are formed by phonon branches 92 and 93 with clean topological features in
both bulk and surface states. Marked with # 92 and # 93 in Fig. 5.3(b), these two bands cross
along the Γ-Z high-symmetry line.

No. 13 (P2/c)

Γ
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A
E

 q point                                     irreps.

22 Γ1+ + 22 Γ1- + 24 Γ2+ + 24 Γ2-
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Fig. 5.3 Topological properties of SnIP. (a) Diagnosis process for the single nodal ring around
the Z point using symmetry-based indicator theory for the lowest 92 bands. (b) Phonon band
crossings between branches 92 and 93, and (c) the nodal rings in the bulk Brillouin zone, as
well as their projections on the (100) surface.
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To understand the topological information of the band crossings between branches 92
and 93, I use symmetry-based indicator theories to analyse the degeneracies [151, 155, 156,
247–249]. Because of the existence of a band crossing along the Γ-Z high-symmetry line,
the compatibility condition is broken for the lowest 92 bands, as the compatibility relations
can only be satisfied when the band structures have no (non-accidental) band crossings
along any high-symmetry lines or at any high-symmetry points [155]. So I cannot use
the symmetry-based indicator for space group No. 13. Instead, I need to find a maximal
subgroup of SnIP that simultaneously satisfies the compatibility condition and has a nontrivial
symmetry-based indicator. Among all the subgroups of space group No. 13 (space groups
No. 2, No. 3 and No. 7), No. 2 is the only subgroup which both satisfies the compatibility
condition and has a symmetry-based indicator group: (i) the compatibility condition is
satisfied because the twofold rotation symmetry in No. 13 that protects the band crossing
along Γ-Z is absent in No. 2; (ii) space group No. 2 has a non-trivial symmetry-based
indicator of Z2224 ≡ Z2 ×Z2 ×Z2 ×Z4, as discussed in detail in Ref. [155]. Therefore
I can use Z2224 as indicators to diagnose the topological degeneracy. For space group
No. 2, there are eight high-symmetry points, i.e., high-symmetry points (qa,qb,qc) with
qa,b,c = 0,0.5 (qa,b,c in units of the reciprocal lattice vector 2π/a, 2π/b, 2π/c). I obtain
the irreducible representations (irreps.) at the eight corresponding high-symmetry points Γ

(0,0,0), Z (0,0.5,0), B (0,0,0.5), Y (0.5,0,0), C (0.5,0.5,0), D (0,0.5,0.5), A (0.5,0,0.5), and E
(0.5,0.5,0.5), as shown in Fig. 5.3(a). I then compute the indicator accordingly. The resulting
indicator (0101) implies that there is a single nodal ring around the Z point in SnIP formed
by branches 92 and 93, which is verified by the numerical calculations in Fig. 5.3(c).

I next examine in detail the nodal rings formed by bands 92 and 93. I zoom in on the
phonon dispersion on the Γ-B-D-Z plane in Fig. 5.3(b). The band crossing formed by bands
92 and 93 along the Γ-Z high-symmetry line belongs to the single nodal ring around the Z
point, carrying a quantised π Berry phase. The nodal ring crosses through the Brillouin-zone
boundary around the B-D high-symmetry line, and consequently there are two nodal rings
from two neighbouring Brillouin zones formed around the D point. I also plot the phonon
dispersion around N (−0.01,0.35,0.51), another band-crossing point on the neighbouring
nodal ring, as shown in Fig. 5.3(b). Most interestingly, I find that the two neighbouring nodal
rings projected on the (100) surface have a large overlap, and the two drumhead-like surface
states of the two bulk nodal rings form a doubly degenerate line along B̄-D̄ (as discussed
below).
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5.2.4 Topological surface states of SnIP

The nodal-line surface states are demonstrated by calculating the surface local density of
states (LDOS) from the imaginary part of the surface Green’s function [50]. I first study the
surface along the (100) direction with the termination denoted as surface 1 in Fig. 5.2(a). As
shown in Fig. 5.4(a), along the D̄-Z̄ and Z̄-Γ̄ high-symmetry lines, two separate projections
of the bulk band crossings (marked by navy and cyan arrows) belong to two single nodal
rings from two neighbouring Brillouin zones respectively. The surface states are within the
projections of the two bulk nodal rings, forming two non-degenerate drumhead-like surface
states marked by navy and cyan triangles in Fig. 5.4(a) respectively. The surface states from
the two crossing points along D̄-Z̄ and Z̄-Γ̄ merge with each other at D̄, and result in a doubly
degenerate surface nodal line along B̄-D̄ (green triangle). The surface nodal line ends at the
crossing point of the two projected nodal rings marked by green arrow in Fig. 5.4(a).

Fig. 5.4 Topological surface states of SnIP. (a) Topological surface states of surface 1 along
the (100) direction, as well as the surface arcs for phonon frequencies of (b) 6.410 THz, (c)
6.414 THz, (d) 6.415 THz, and (e) 6.416 THz. (f) Topological surface states of surface 2
along the (100) direction, as well as the surface arcs for phonon frequencies of (g) 6.400
THz, (h) 6.410 THz, (i) 6.415 THz, and (j) 6.420 THz.
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To have a better view of the doubly degenerate surface states along the B̄-D̄ high-
symmetry line, I plot the isofrequency surface arcs for different phonon frequencies in
Fig. 5.4(b)-(e). As shown in Fig. 5.4(b), at the exact frequency of the doubly degenerate
projected bulk band crossings (green arrow) along B̄-D̄ at 6.410 THz, the two surface arcs
(cyan triangle) merge at the projected bulk band crossings. For a phonon frequency of
6.414 THz, the two surface arcs (cyan triangle) move towards each other, forming two arc
crossing points (green triangle) along B̄-D̄ in Fig. 5.4(c). At 6.415 THz, the two arc crossing
points move to the D̄ point until they merge into a single arc crossing point [green triangle
in Fig. 5.4(d)]. Further increasing the phonon frequency eventually leads to two separate
surface arcs as the two arcs no longer touch [navy triangle in Fig. 5.4(f)]. The arc crossing
points on the isofrequency plane belong to the doubly degenerate surface nodal line in the
frequency-momentum space [green triangle in Fig. 5.4(a)].

The surface nodal line in SnIP is protected by the combination of time-reversal symmetry
and glide mirror symmetry ϑ = T M̄y. For systems with time-reversal symmetry T and
any nonsymmorphic spatial symmetry G, the “Kramers-like” degenerate nodal line appears
when (T G)2 = −1, either along the T G invariant lines or on the T G invariant planes,
and a degenerate line can thus be protected by the T G symmetry. This applies to line
degeneracies in both the bulk states [250] and the surface states [229–231]. SnIP has glide
mirror symmetry M̄y = {My | 001

2}, and (T M̄y)
2 = ei2πqz (qz in units of the reciprocal lattice

vector 2π/c). On the (100) surface, both qz = 0 and qz = 0.5 are T M̄y invariant lines, and
(T M̄y)

2 = −1 only occurs when qz = 0.5, corresponding to the B̄-D̄ high-symmetry line.
As a result, the doubly degenerate surface nodal line along B̄-D̄ is protected by the T M̄y

symmetry.
If I change the surface termination [denoted as surface 2 in Fig. 5.2(a)] along the (100)

direction, the doubly degenerate surface states along the B̄-D̄ high-symmetry line in Fig. 5.4(f)
no longer exist in the frequency range 6.410-6.415 THz, but move to the lower-frequency
range 6.384-6.410 THz. The distribution of the surface nodal line changes to the other side
of B̄-D̄, from the purple shaded area in Fig. 5.5(a) to that in Fig. 5.5(b).

The alternation between the distributions of the surface nodal line can be understood
by how T M̄y influences the Zak phase on the (100) surface Brillouin zone. The Zak phase
provides information of the distribution of the doubly degenerate surface states on the (100)
surface, and can be integrated along the (100) direction,

γ(qb,qc) = i
∫

π

−π
∑

ν=occu.
⟨ψ(qν)| ∂

∂qa
|ψ(qν)⟩dqa, (5.1)
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Fig. 5.5 Zak phase analysis. Zak phase of (a) surface 1 and (b) surface 2 along the (100)
direction. The purple and green shaded areas correspond to the total Zak phase γ = 2π and
γ = 0 respectively.

where ψ(qν) is the phonon eigenvector with wave vector q and band index ν . Note that
on the (100) surface Brillouin zone, qb ∥ qy and qc ∥ qz, therefore (qx,qy,qz) is used instead
of (qa,qb,qc) to be consistent with T M̄y. When qz = 0.5, (T M̄y)

2 = −1, and the phonon
eigenvectors can be separated into two mutually related subgroups {ψ1(q)} and {ψ2(q)}
with ψ1(−qx,qy,0.5) = (T M̄y) ·ψ2(qx,qy,0.5), i.e., {ψ1(q)} and {ψ2(q)} are T M̄y related
at constant qy and qz = 0.5. Therefore, for the B̄-D̄ high-symmetry line (qz = 0.5) on the
(100) surface Brillouin zone, the Zak phases for the two subgroups {ψ1(q)} and {ψ2(q)}
are equal to each other, i.e. γ1(qy,0.5) = γ2(qy,0.5). Due to PT , γ1(qy,0.5) = γ2(qy,0.5)
is either 0 or π , which depends on the surface termination (i.e. choice of the inversion
center). When γ1(qy,0.5) = γ2(qy,0.5) = 0, there are no surface states as the total Zak phase
γ = γ1 + γ2 = 0. When γ1(qy,0.5) = γ2(qy,0.5) = π , the total Zak phase γ = 2π , leading to
doubly degenerate surface states. For surface 1, the purple shaded line in Fig. 5.5(a) has a
total Zak phase of 2π with two surface states distributed in this area, while the green shaded
area corresponds to γ = 0 and there are no surface states in this area. For surface 2, the Zak
phase of the purple shaded area and the colourless area swap, as shown in Fig. 5.5(b), and
the distribution of the surface nodal line switches to the new purple shaded area. It should be
noticed that the standard definition of Zak phase is in terms of modulo 2π , and a Zak phase
of 2π is therefore equal to zero under this definition. However, in SnIP, a total Zak phase of
2π corresponds to γ1 = γ2 = π , i.e. two π Zak phases within each subgroup, indicating two
surface states emerging from each subgroup. On the other hand, a total Zak phase of zero
corresponds to two zero Zak phases within each group, leading to vanishing surface states.
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It is worth mentioning that bending SnIP rods does not break the time-reversal and glide
mirror symmetries on the (100) surface of SnIP. Therefore, the degenerate topological surface
states remain unchanged under bending.

5.3 Conclusions and outlook

In summary, I find that double-helical SnIP exhibits nodal-ring phonons in the bulk and
nodal-line phonons on the surface based on first-principles calculations and group-theory
analysis. Benefiting from a quasi-one-dimensional crystal structure, the lattice vibrational
modes of the intrachain phosphorus atoms along the helices are highly dispersive. Due
to the winding of the helix P chain, these phonon bands are folded at the Brillouin zone
boundary, forming single nodal rings across the whole Brillouin zone. The overlap between
the two neighbouring nodal rings on the (100) surface leads to a surface nodal line that is
protected by the combination of time-reversal and glide mirror symmetries T M̄y. Different
surface terminations result in different distributions of the surface nodal line, which can be
understood by different Zak phases in the presence of T M̄y. I demonstrate that, similar to the
bulk nodal lines, the surface nodal lines can widely exist when protected by extra symmetries.
My discoveries may offer opportunities to study the degeneracy of the topological surface
states and their transport properties.

In terms of fundamental physics and applications, topological bulk phonons in double-
helical SnIP may lead to non-dissipative surface phonons, which offer a promising platform
for designing thermal devices. The existence of surface nodal lines also provides opportu-
nities to study surface transport properties for thermoelectric devices. As another example,
the bulk and surface nodal lines/rings in the phonon spectra result in large phonon DOS,
which may also enhance surface superconductivity. Additionally, because of its quasi-one-
dimensional crystal structure, SnIP could also be a promising material platform to investigate
one-dimensional physical models such as the SSH model and Majorana quantum wires. With
its high mechanical flexibility, it is also interesting to investigate the interplay between flexo-
electricity and topology. My work provides a starting point to explore all these phenomena
and applications.





Chapter 6

Multi-gap topology in phonons

Single-gap topologies have been extensively explored, and a large number of materials have
been theoretically proposed and experimentally observed. These ideas have recently been
extended to multi-gap topologies with band nodes that carry non-Abelian charges, charac-
terised by invariants that arise by the momentum-space braiding of such nodes. However, the
constraints placed by the Fermi-Dirac distribution to electronic systems have so far prevented
the experimental observation of multi-gap topologies in real materials.

In this chapter, I show that multi-gap topologies and the accompanying phase transi-
tions driven by braiding processes can be readily observed in the bosonic phonon spectra.
Phonons can carry non-Abelian frame charges at the band-crossing points of their frequency
spectrum, and that external stimuli can drive their braiding. I present a general framework
to understand the topological configurations of phonons from first-principles calculations
using a topological invariant called Euler class, and provide a complete analysis of phonon
braiding by combining different topological configurations. Taking a well-known dielectric
material, Al2O3, as a representative example, I demonstrate that electrostatic doping gives
rise to phonon band inversions that can induce redistribution of the frame charges, leading
to non-Abelian braiding of phonons. This work provides a new quasiparticle platform for
realisable non-Abelian braiding in reciprocal space, and expands the toolset for studying
braiding processes.

This chapter is based on work published in [Bo Peng, Adrien Bouhon, Robert-Jan Slager,
and Bartomeu Monserrat. Physical Review B 105 (8), 085115 (2022)]. My collaborators
Adrien Bouhon and Robert-Jan Slager provided the theoretical description, and Bartomeu
Monserrat supervised the computational part, while I was responsible for the rest.
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6.1 Multi-gap topology

In single-gap topology, topologically inequivalent band structures can be determined using
the band representations at high-symmetry points in the Brillouin zone [248, 251, 252],
an approach that matches the full K-theory result in some scenarios [248, 253]. These
momentum-space constraints have subsequently been compared to real-space constraints, re-
sulting in versatile classification schemes to characterise topological materials by identifying
which of these combinations have an atomic limit [247, 254].

Recent work is uncovering new physics beyond these symmetry-indicated schemes that
depends on multi-gap conditions, where the band-crossing points (nodes) carry non-Abelian
frame charges [67, 255–259]. The non-Abelian frame charges can only be realised in multi-
band systems, and as such is referred to as multi-gap topology, in contrast to the single-gap
topology associated with two-band systems. The nodes carrying non-Abelian frame charges
in multi-band systems can be described by a real Hamiltonian [67, 256–267]. The real
Hamiltonian constraint leads to a real basis of eigenvectors [268, 269] and is fulfilled with the
symmetry requirement of either (i) a combination of C2 rotation symmetry and time-reversal
symmetry T for both spinful and spinless systems, or (ii) a combination of spatial inversion
symmetry P and time-reversal symmetry T for spinless systems. In any multi-band system
with a real Hamiltonian, the band-crossing points carry non-Abelian frame charges. If a
pair of nodes within a gap carry the same frame charge (with the same sign), they cannot
be annihilated when brought together. Conversely, two nodes within the same gap with
opposite frame charges can be annihilated. The stability of the (possibly multiple) pairs
of nodes can be characterised with a new invariant, known as the Euler class, which can
be computed over patches in the Brillouin zone that contain all the nodes of that two-band
subspace. Generically, an Euler class χ indicates the presence of 2|χ| stable nodes (i.e. with
the same charge) within the two-band space over that Brillouin zone patch.

The signs of the non-Abelian frame charges of the nodes within one gap can be converted
through the braiding of nodes belonging to adjacent energy gaps [258, 260, 261, 270], thus
changing the relative stability between pairs of nodes in the same gap. As a consequence, the
braiding of nodes is accompanied with the transfer of stable pairs of nodes from one gap to
an adjacent gap.

To achieve elementary braiding it is necessary to braid one node of an energy gap with
a node of an adjacent gap (the gap immediately above or immediately below in energy).
The motion of the nodes can be driven by modifying the band structure of the material
with the application of external stimuli. In solid state systems, where the band structure
inherits the symmetries of the crystal, braiding involves groups of nodes that are related by
symmetry. Moreover, the braid trajectories usually collapse onto the high-symmetry points
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of the Brillouin zone. As a consequence, the transfer of a stable pair of nodes from one
gap to an adjacent gap is often manifested by a band inversion at one of the high-symmetry
points, and such band inversion provides a very direct signature of the braiding process in
crystalline systems. This phenomenology is rather general, and reciprocal-space braiding
can in principle occur in multi-band systems of any quasiparticle, including electrons and
phonons.

I find that phonons are an ideal platform to study the non-Abelian braiding of band nodes
in the context of multi-gap topology. As a bosonic excitation associated with ionic vibrations,
the entire phonon spectrum is readily accessible to external probes. This contrasts with
fermionic excitations such as electrons, in which the Pauli exclusion principle means that
only band nodes near the Fermi level can be accessed, placing significant restrictions to the
full exploitation of multi-gap topologies. Additionally, phonons are charge neutral, spinless
quasiparticles, and time-reversal symmetry T is hard to break in phonons because they do
not directly couple to magnetic fields. For these reasons, the symmetry requirements of real
Hamiltonians can be easily fulfilled by phonons in a wide range of materials, suggesting that
many will exhibit non-Abelian frame charges in their phonon dispersion. Therefore, I can
extend the study of phonon bands from single-gap topologies to multi-gap topologies.

6.2 Theoretical background

The main purpose of this section is to provide a general framework to review the theoretical
background behind non-Abelian frame charges. The key mathematical objects to study
multi-gap topologies are (i) non-Abelian frame charges, and (ii) a topological invariant called
Euler class, which captures the relative stability of a pair of nodes within the same gap, that
is, whether annihilation of the nodes is possible or not, and that in turn depends on their
trajectory with respect to the nodes of the adjacent gaps.

6.2.1 Non-Abelian frame charges

I start by introducing non-Abelian frame charges in the context of a three-band Bloch
Hamiltonian of a two-dimensional system with C2T symmetry. The spectral decomposition
of the 3×3 Hamiltonian gives

H = ∑
n=1,2,3

|en⟩En⟨en|, (6.1)
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with the ordered eigenvalues E1 < E2 < E3 (which are assumed to be gapped) and the
eigenvectors {|en⟩}n=1,2,3 that can be chosen to be real in an appropriate basis [67]. As a
result, the three real and normalised eigenvectors form a three-dimensional orthonormal
frame (|e1⟩, |e2⟩, |e3⟩) ∈ R3×R3, that is, an orthogonal matrix O(3), or, fixing the handedness
(i.e. the orientation of the frame), a 3D rotation matrix SO(3). For real eigenvectors, the
gauge phase degree of freedom of complex eigenvectors turns into a +/− sign degree of
freedom [67, 261]; specifically, (|e1⟩, |e2⟩, |e3⟩), (|e1⟩,−|e2⟩,−|e3⟩), (−|e1⟩, |e2⟩,−|e3⟩), and
(−|e1⟩,−|e2⟩, |e3⟩) all represent the same state (the orientation of the frame is not preserved
if only one sign flips). Therefore, the order-parameter space of the Hamiltonian can be
expressed as SO(3) modulo the group of π rotations that flip the sign of two eigenvectors,
namely SO(3)/D2 (the dihedral point group D2 = {E,C2,C′

2,C
′′
2} is composed of three

independent and perpendicular π-rotations) [270].
For a band-crossing point (node) in a three-band system, I can define a topological frame

charge by the geometry of the SO(3) rotations encircling the node in momentum space, as
the acquired angle can be calculated by decomposing the 3D rotation matrix around the
encircled node [67, 258, 261, 271]. A closed path in SO(3)/D2 can be characterised by
the fundamental homotopy group π1[SO(3)/D2] = Q, where Q = (±i,± j,±k,−1,+1) is the
quaternion group with i2 = j2 = k2 =−1, i j = k, jk = i, ki= j, and where the charges {i, j,k}
anti-commute [261]. Lifting the SO(3)-frame in the covering spin group Spin(3) = SU(2)
and using the correspondence (−iσx,−iσy,−iσz) 7→ (i,k, j) from the parallel-transported
spin-frames over a base loop l and the quaternion charges, I can assign a quaternion frame
charge to any node formed by the bands within the region bounded by the loop l [261].
The nodes formed by the lower two bands can thus be characterised by the frame charge
±i, and the nodes formed by the upper two bands can be characterised by ± j. A pair of
nodes, one formed by the lower two bands and the other formed by the upper two bands,
can be denoted by ±k as k = i j. The sign of the charges is fixed by (i) the gauge chosen
for the frame at a base point of the loop, and (ii) the orientation of the parallel-transport
over the base loop. The stability of a pair of nodes formed by the same two bands can then
be characterised by −1, because two nodes with the same frame charge cannot annihilate
when brought together, as can be deduced from the algebra of the quaternion charges,
i.e. i2 = j2 = k2 =−1 (note k2 = i · j · i · j = i · j · (− j) · i = i2 =−1). The −1 frame charge
is gauge invariant since (+i)2 = (−i)2, and similarly for j and k. On the other hand, two
nodes with opposite frame charges can be annihilated or created pairwise, with a total frame
charge of (−i)(+i) = (− j)(+ j) = +1.

The quaternion group is non-Abelian, as captured by the non-commutativity of the
charges {i, j,k} and the non-trivial action of their conjugation, e.g. j−1i j =− ji j = j2i =−i.
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Fig. 6.1 Topological configurations (a) before and (b) after the braiding. Squares (circles)
represent the nodes formed by the lower (upper) two bands, and open (closed) symbols
represent the nodes with negative (positive) frame charges. Importantly, the frame charges
of the nodes are unambiguously defined only once a base point, an oriented base loop and
choice of gauge have been fixed.

This indicates the possibility of flipping the non-Abelian frame charge of a node. The frame
charges are defined for a fixed base point with a fixed oriented base loop, and through the
composition of oriented loops, a conjugation operation, say j−1i j =−i, corresponds to the
braiding of a node, i, around a node in an adjacent gap, j [261]. Therefore, the band nodes in
three-band systems can carry a non-Abelian charge, and the sign of the topological frame
charge can be flipped by a braiding process, as schematically shown in Fig. 6.1. Hereafter
I use open (closed) symbols to represent the nodes with negative (positive) frame charges.
Different from the topological invariants formed only by two bands in single-gap topologies,
in three-band systems the frame charge depends on the braiding of the nodes formed by both
the lower two and the upper two bands, which involve all three bands [255]. For clarity, I use
squares (circles) to represent the nodes formed by the lower (upper) two bands. As shown
in Fig. 6.1(a), a node formed by the lower two bands with a frame charge +i (labelled as a
closed square) can circle another node formed by the upper two bands with a frame charge
+ j (labelled as a closed circle), and as a result, the signs of the frame charges are changed
to be −i and − j respectively [labelled as an open square and an open circle in Fig. 6.1(b)].
This process can create an obstruction to annihilate two opposite nodes, e.g. +i and −i in
Fig. 6.1(a), by braiding one node around another node formed by the neighbouring bands, so
the frame charges of the pair of nodes become the same, e.g. the two nodes with the same
frame charge of −i in Fig. 6.1(b).

While the quaternion charges intrinsically unveil the non-Abelian nature of the multi-gap
topology of systems described by a real Hamiltonian, they are cumbersome to use in real
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material band structures because crystal point-group symmetries lead to node multiplicities.
Fortunately, there exists a complementary quasi-two-dimensional topological invariant which
not only simplifies the computation of the topological charges, but also greatly refines the
characterisation of the topological stability of nodes belonging to the same gap. This is the
patch Euler class that I introduce next.

6.2.2 Patch Euler class

In the following, I number the bands from lower to higher energy with En ≤ En+1, and I label
the partial gap between two successive bands n and (n+1) as {∆n} with En ≤ ∆n ≤ En+1.
Similar to the Berry curvature in single-gap topologies, the Euler curvature (Euler form) can
be computed for bands n and (n+1) in gap ∆n [67, 256, 265]:

Eun(k) = ⟨∂k1en|∂k2en+1⟩−⟨∂k2en|∂k1en+1⟩, (6.2)

where |en⟩ and |en+1⟩ are eigenvectors of bands n and (n+1) respectively, and k = (k1,k2)

are the coordinates of the Brillouin zone. Assuming that there is no node connecting the
bands n and (n+1) to other bands on D , the Euler class χn for the bands n and (n+1) over a
patch D of the Brillouin zone is then defined by [67, 256]

χn[D ] =
1

2π

[∫
D

Eun(k)dk1dk2 −
∮

∂D
an ·dk

]
, (6.3)

where ∂D is the boundary of the patch, and with the Euler connection an,i = ⟨en|∂ki|en+1⟩
for i = 1,2.

When integrated over the whole Brillouin zone, the Euler class χn is an integer Z [255,
256, 260, 272, 273], and indicates the presence of |χn| pairs of stable nodes formed by a
two-band subspace. When integrated over a patch D , the Euler class in Eq. (6.3) can either
have integer or half-integer values, indicating the presence of 2|χn| stable nodes within the
patch. For instance, assuming the presence of two nodes within the patch, an Euler class of 0
indicates that the nodes can annihilate [Fig. 6.2(a)], whereas an Euler class of ±1 means that
they cannot annihilate when brought together [Fig. 6.2(b)]. Importantly, the Euler class is
related to the frame charges discussed above: for a patch containing only one node, a patch
Euler class of χ1 =±1/2 (χ2 =±1/2) can be associated to the frame charge ±i (± j) and
such a node is referred to as a linear node [Fig. 6.2(c)], while the value |χn|= 1 indicates the
frame charge is −1 and such a node is referred to as a quadratic node [Fig. 6.2(d)]. Hereafter,
I label a quadratic node of |χn|= 1 as two concentric symbols since it can be interpreted as
the superposition of two linear nodes.
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Fig. 6.2 Patch Euler class for two nodes in the same gap ∆2 (a) with opposite frame charges
and (b) with the same frame charges, as well as the patch Euler class for (c) a linear node
and (d) a quadratic node. I use open (closed) symbols to represent the nodes with negative
(positive) frame charges, and one symbol (two concentric symbols) to represent the linear
(quadratic) node.

The Euler class refines the topological analysis since, contrary to the frame charges, it
keeps track of the stability of an arbitrary number of nodes formed by two bands, taking a
half-integer (integer) value for an odd (even) number of stable nodes. However, this requires
that the two bands under consideration must be disconnected from all the other bands over
the patch. The direct computation of the frame charges remains useful when more than two
bands are degenerate at a single point, which can happen at critical points during a band
inversion.

One interesting feature of the Euler class is that it gives the lower bound of the power-like
dispersion of the bands at a band crossing [262, 265]. More precisely, the number 2|χn| gives
the lower bound of the exponent of the leading term in a Taylor expansion of the energy
eigenvalues at the band crossing. At this stage, a clarification is necessary to distinguish
between electrons and phonons, as the frequencies of the phonon bands correspond to the
square root of the eigenvalues of the dynamical matrix that defines the topology. Interestingly,
the order of band crossings in phonon band structures is almost always doubled, with the
exception of the dispersion of the acoustic bands at Γ corresponding to the Goldstone modes
of the system [264].

Because the gauge sign (±1) of the real eigenvectors is not fixed, the absolute sign of
the topological charges is not uniquely defined. For example, if the gauge signs of the
orthonormal frame of eigenvectors flip from (|e1⟩, |e2⟩, |e3⟩) to (|e1⟩,−|e2⟩,−|e3⟩), the sign
of the patch Euler class χ2 also flips, and similarly for the frame charges. Therefore, the
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sign of the Euler class and of the non-Abelian frame charge is gauge dependent, and for an
individual node taken in isolation this sign has no physical meaning. However, the relative
sign between two distinct nodes is not gauge dependent as it provides information on the
stability of the nodes. Therefore, the Euler class can be computed for different patches,
and the sign of the topological frame charges can be assigned to get a consistent global
topological configuration where the relative signs of all nodes agree with their gauge invariant
relative stability. Such a global picture can be obtained by fixing the gauge globally [265].
For this, I introduce in Sec. 6.2.3 the last conceptual object that is needed, namely the Dirac
string [256].

6.2.3 Dirac strings

Considering two linear nodes in gap ∆n, each band eigenvector forming the nodes {|en⟩, |en+1⟩}
carries a π Berry phase on any loop encircling one node at the time, thus indicating a π

disinclination line connecting the two nodes. The gauge sign of the eigenvectors must then
flip when crossing this line [273]. A Dirac string can be visualised as the line connecting the
two nodes, in analogy with the Dirac string connecting two Weyl nodes in 3D indicating the
winding of the U(1) gauge phase of complex eigenvectors.

The trajectory of the Dirac string is not unique because the gauge signs of the eigenvectors
can be changed (although such a local change does not affect the topological stability of
whether any pair of nodes can be annihilated when merged). Despite the fact that different
Dirac strings can be assigned for the same pair of nodes, the trajectory of a Dirac string
between two nodes is constrained by the gauge freedoms of all other nodes, collectively
leading to what are known as the “Dirac string rules” [256, 262]:

1. All linear nodes formed by the same two bands must be connected by Dirac strings
in pairs, whereas the quadratic nodes can be interpreted as two linear nodes merged
together with an internal Dirac string.

2. The sign of the frame charge of a node in ∆n changes when crossing a Dirac string
connecting two nodes in the neighbouring gaps (∆n−1 or ∆n+1). This can be realised
either by moving the node in ∆n across a fixed Dirac string in ∆n−1 or ∆n+1 [Fig. 6.3(a)]
or by moving a Dirac string in the neighbouring gap across the fixed node [Fig. 6.3(b)].

3. All the Dirac strings connecting the nodes in the same gap can be re-assigned by
changing their start and end nodes. For example, in Fig. 6.4 I can connect node 1 with
node 3 and node 2 with node 4, or connect node 1 with node 2 and node 3 with node 4,
or connect node 1 with node 4 and node 2 with node 3.
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Fig. 6.4 Dirac strings re-assigned by changing the start and end nodes.

By systematically computing the Euler class of every single band crossing, and then
of every pair of band crossings in the same gap, a signed frame charge can be assigned to
every node, as well as the Dirac strings that connect every pair of linear nodes, such that a
consistent global topological configuration can be obtained [262, 265], as discussed in the
next subsection. This procedure works like a puzzle: the sign, i.e. the gauge, of an initial node
is arbitrarily fixed and then the Dirac strings of the neighbouring nodes can be iteratively
assigned in a consistent manner, i.e. under the constraint of the gauge-invariant values of all
the patch Euler classes previously computed.

6.2.4 Global topological configuration

To obtain the global topological configuration, the Brillouin zone needs to be divided into
different patches, each containing a pair of nodes in the same gap, and the patches cover all
the nodes. Then the Euler class is calculated for each patch, which provides information on
the relative stability within each and every pair of nodes.

The relative signs of the frame charges are then specified for all the nodes based on the
patch Euler class calculations, and afterwards all the linear nodes are connected in pairs by
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Dirac strings to make the Euler class for all the patches consistent with each other. Even
within each patch there are two possible configurations: a patch Euler class of ±1 (0) can
either correspond to two nodes with the same (opposite) frame charge(s), or contain two
opposite (same) charge nodes and an extra Dirac string in the neighbouring gap.

I next check whether the assignment of frame charges and Dirac strings is physically
consistent for the global topological configuration. As long as the frame charges and the
Dirac string of one patch are fixed, the rest of the global topological configuration can be
deduced like a puzzle based on the computed Euler class for all the patches and the Dirac
string rules.

Because the local gauge sign is not fixed, the start and end nodes of the Dirac strings, as
well as the corresponding trajectory, are not unique. Therefore, for a given set of patch Euler
classes, there may be many different (but consistent) global topological configurations. The
difference comes from the local and global gauge choices. However, the different global
topological configurations capture the same physics, for example, whether a pair of nodes
will annihilate or not, which is gauge invariant.

I can apply the same strategy, based on the calculated Euler class and the Dirac string
rules, to obtain the topological configurations during the braiding processes that take place
when the system undergoes a transformation of its band structure, i.e. during a topological
phase transition upon band inversion. However, once the global topological configuration
of the system is known, the topological configuration of any other phases reached upon the
displacement of the nodes and band inversions can be readily predicted by applying the
conversion rules presented above.

In real materials, where the crystal symmetries constrain the movement of the nodes
and often collapse the braid trajectories to the high-symmetry points, these rules need to be
complemented with the crystal symmetry rules contained in the irreducible representations
which dictate when a band crossing can be avoided or not. These concepts are exemplified in
Sec. 6.3, which describes the braiding of phonons in aluminium oxide.

Overall, this establishes a theoretical framework to study non-Abelian braiding of any
quasiparticle with three bands in their spectra, as long as the system has C2T symmetry
so that the corresponding Hamiltonian is real [67]. The theoretical formalism can also be
extended to spinless systems of any dimensions with PT symmetry.

In this section, I describe the calculation of the Euler class for phonon bands using the
phonon eigenvectors that can be obtained from a first-principles lattice-dynamics calculation.
I also explain how to then use the Euler class to derive the global topological configurations
of all the nodes in the multi-band system.
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The key quantity in the theoretical formalism described in the previous section is the
Euler form in Eq. (6.2). Its evaluation requires the eigenvectors of the quasiparticles as
input, and these eigenvectors can be directly calculated from first principles for a range of
quasiparticles. I use phonons as an example quasiparticle to describe how to calculate the
patch Euler class. As discussed earlier, I focus on phonons because (i) their bosonic nature
means the entire spectrum is accessible (in contrast to the restriction to the Fermi energy
in fermionic systems), and (ii) the time-reversal symmetry T is hard to break in phononic
systems.

6.3 Case study: phonon braiding in monolayer Al2O3

In this section, I exemplify the calculation of the Euler class and associated non-Abelian
braiding using first-principles methods. To do so, I explore non-Abelian braiding in the
phonon spectrum of monolayer Al2O3 as controlled by electrostatic doping.

6.3.1 Computational details

first-principles calculations

Density functional theory (DFT) calculations are performed with the Vienna ab initio Sim-
ulation Package (VASP) [104, 105]. The generalised gradient approximation (GGA) with
the Perdew-Burke-Ernzerhof (PBE) parameterisation is used as the exchange-correlation
functional [183]. A plane-wave basis with a kinetic energy cutoff of 800 eV and a 9× 9
k-mesh are used for monolayer Al2O3. The self-consistent field calculations are stopped
when the energy difference between successive steps is below 10−6 eV, and the structural
relaxation is stopped when forces are below 10−3 eV/Å. A vacuum spacing larger than 20 Å
is used to eliminate interactions between adjacent layers. Electrostatic doping is simulated by
introducing extra charges with a compensating background. I keep the lattice constants fixed
upon doping to mimic the material growth on a substrate, and the ionic positions remain the
same upon doping under structural relaxation.

The force constants to determine the phonons are computed using the finite-differences
method in a 3×3 supercell (equivalent to a 3×3 phonon q-mesh) with a 3×3 electronic
k-mesh using VASP. The phonon dispersion and phonon eigenvectors are obtained using
PHONOPY [52, 53]. This is consistent with the fact that no out-of-plane dipole is observed
upon doping, and it is therefore sufficient to use the compensating background charge when
introducing the extra charges, without the need to include a Coulomb cutoff in the vacuum
spacing [274]. I focus on hole doping because imaginary phonon modes are observed upon
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electron doping, indicating that the lattice becomes dynamically unstable in the latter case.
The splitting between the longitudinal and transverse optical phonons (LO-TO splitting) is
neglected because in 2D materials no LO-TO splitting occurs at Γ and only the slope of
phonon bands changes [275], which implies that the nodal structure will remain unchanged.

The phonon band-crossing points for all the bands are calculated using WANNIER-
TOOLS [50]. After obtaining all the nodes in gap ∆n, I divide the 2D Brillouin zone into
different patches, and each patch contains either one node or a pair of nodes in ∆n. Each patch
in the 2D Brillouin zone is sampled with a 30×30 q-mesh, and the phonon eigenvectors
eqn and eq(n+1) are computed at each of the points sampled, and subsequently rotated to the
real basis. The real eigenvectors are then used to calculate the patch Euler class using a
modified version of a publicly available MATHEMATICA code [276], with the calculated real
eigenvectors as input.

Euler class calculations

After obtaining the phonon dispersion and eigenvectors, I need to find all the phonon band-
crossing points in gap ∆n. Then I divide the 2D Brillouin zone into different patches, and
each patch contains either one node or a pair of nodes in ∆n. The phonon eigenvectors eqn

and eq(n+1) are computed on a discretised grid over the patch. The patch for nodes in ∆n

should not overlap with the positions of nodes in the neighbouring gaps ∆n−1 and ∆n+1.
The Euler form in Eq. (6.2) is calculated for all the patches in gap ∆n with the phonon

eigenvectors eqn and eq(n+1) as input. For each band and q-point, the eigenvector is generally
composed of a set of three complex values associated with each atom along the Cartesian
axes. In the presence of C2T symmetry (or PT symmetry) that squares to the identity, there
always exists a unitary transformation under which the dynamical matrix becomes real, and
the associated eigenvectors are then also real. This unitary transformation is obtained through
the Takagi factorisation of the matrix representation of the C2T symmetry, which turns out to
be symmetric [67]. Then, isolating the unitary part of the matrix representation of C2T , the
Takagi factorisation can be readily obtained through singular-value decomposition [266, 277].

Using the real basis I can directly evaluate the expression in Eq (6.3), which is imple-
mented in a publicly available MATHEMATICA code [276]. Alternatively, the patch Euler
class of nodes can be calculated by employing Wilson-loop methods [67, 260]. Because of
the random sign gauge +/− and the presence of the Dirac string with a gauge transformation,
I can smooth the eigenvectors by computing the Berry phase and fixing the position of the
Dirac strings. As a result, the eigenvectors eqn and eq(n+1) vary smoothly away from the
Dirac strings, with both states flipping their signs simultaneously when crossing a Dirac
string. The Berry phase calculations also provide information on the positions and the Berry
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curvature of the nodes, which helps to verify whether the patch contains the node(s) I am
interested in. The gauged eigenvectors can then be used to compute Eq. (6.3) over the patch
D .

After evaluating the relative stability of each pair of nodes, I can assign the frame charges
to all the nodes based on the Euler class of all the patches, as well as the Dirac strings that
connect all the linear nodes. I repeat this procedure until a global topological configuration is
obtained.

6.3.2 Crystal structure and phonon dispersion

Monolayer Al2O3 is predicted to crystallise in a honeycomb lattice [278]. The aluminum
and oxygen atoms are in the same plane, with the oxygen atoms forming a Kagome lattice
in 2D, as shown in Fig. 6.5(a). The calculated lattice constant of 5.842 Å agrees well
with previous calculations [278]. Monolayer Al2O3 belongs to the P6/mmm space group
(No. 191), which has C2 rotation symmetry. In addition, in phonons the time-reversal
symmetry T is automatically satisfied. With C2T symmetry, phonons in monolayer Al2O3

can be described by a real Hamiltonian (dynamical matrix), and consequently I can assign
non-Abelian frame charges to different nodes in any three-band subsystem in the entire
phonon spectrum.

Figure 6.5(b) shows the calculated phonon dispersion. No imaginary phonon modes are
observed, indicating the dynamical stability of monolayer Al2O3. There are 5 atoms in the
unit cell, leading to 15 phonon branches. I focus on the top three bands, i.e. bands 13−15
marked in the blue area between 30 and 35 THz in Figure 6.5(b), because they are isolated
from other phonon bands and are more sensitive to electrostatic doping, thus providing an
ideal platform to explore multi-gap topology and non-Abelian braiding.

6.3.3 Band inversion upon electrostatic doping

Bulk Al2O3 is a well-known dielectric material used in electronic devices. Therefore,
electrostatic doping of monolayer Al2O3 by gate voltage can be easily incorporated into the
existing microelectronics industry. I simulate the phonon spectra of Al2O3 upon electrostatic
doping. As shown in Fig. 6.6, the phonon frequencies of bands 13−15 at the Γ point have
only slight changes upon doping. On the other hand, the highest phonon bands at the K point
with double degeneracy move to much lower frequency with increasing doping concentration,
whereas the frequency of the non-degenerate single band at K remains nearly the same.
Therefore, the band order at K is inverted at −0.14 e/f.u., with the doubly degenerate band
becoming lower than the single band.
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Fig. 6.5 (a) Crystal structure and (b) phonon dispersion of monolayer Kagome Al2O3.
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Fig. 6.6 Evolution of phonon bands 13−15 upon electrostatic doping.
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Such phonon band inversion redistributes the band nodes in two neighbouring gaps ∆13

and ∆14, and consequently induces conversions of the frame charges. The transfer of frame
charges between different gaps is accompanied by the non-Abelian braiding of the nodes.
It is however important to note that the crystalline symmetries of the system constrain the
movements of the nodes over the Brillouin zone with, as a consequence, the collapse of
the braid trajectories onto the high-symmetry points Γ and K. In the next subsections I first
investigate the topological configurations at different doping concentrations individually, and
then obtain the complete picture of the braiding processes upon electrostatic doping.

6.3.4 Frame charges of undoped Al2O3

I first investigate the phonon band-crossing points formed by band 13, 14 and 15 of undoped
Al2O3. To be consistent with the notation introduced in the theoretical background section
(Section 6.2), I use squares to represent single nodes in gap ∆13 formed by bands 13 and 14,
and circles for single nodes in gap ∆14 formed by bands 14 and 15. As shown in Fig. 6.7(a),
a band-crossing point is formed when the two crossing bands belong to different irreducible
representations (irreps), whereas two bands with the same irrep remain gapped. To be
specific, the violet square node along Γ-M formed by bands 13 and 14 [red and blue lines in
Fig. 6.7(a)] is not gapped as the two bands belong to irreps Σ1 and Σ2, but these two bands
have an avoided crossing along K-Γ because in that case they belong to the same irrep Λ4. In
addition, there are two circle nodes at Γ and K formed by bands 14 and 15 [blue and yellow
lines in Fig. 6.7(a)] with 2D irreps Γ

−
6 and K5 respectively.

Figure 6.7(b) shows the positions of all the nodes. I first compute the Euler class for
single nodes, as indicated by patches 1−3 in Fig. 6.7(b). In patch 1, the dark yellow circle at
the Γ point has an Euler class of −1, indicating a quadratic node. This agrees well with the
quadratic dispersion near Γ. Consistent with Section 6.2, I label the quadratic node by a small
circle inside a large circle because it can be viewed as two linear nodes merged together. On
the other hand, the Euler class for the dark green circle in ∆14 at the K point (patch 2) and
the violet square in ∆13 along the Γ-M high-symmetry line (patch 3) is ±1/2, indicating two
linear nodes. Note that for a single node the sign of the Euler class has no physical meaning
due to the +/− sign freedom, but the relative signs of two nodes in the same gap provide
information on their stability. To be consistent with Section 6.2, I use open (closed) symbols
to represent the nodes with negative (positive) frame charges, as shown in Fig. 6.7(b).

I next compute the Euler class for all the patches containing pairs of linear nodes. For
the neighbouring dark green circles in patch 4, χ14 = 0, indicating that these two nodes can
either carry opposite frame charges or have the same frame charge with a nearby Dirac string
in ∆13. For convenience, I connect the neighbouring pair of violet nodes in ∆13 in patch 5
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Fig. 6.7 (a) Phonon band-crossing points and (b) patch Euler class of undoped Al2O3. I use
squares (circles) to represent the nodes formed by the lower (upper) two bands, open (closed)
symbols to represent the nodes with negative (positive) frame charges, and one circle (two
concentric circles) to represent the linear (quadratic) node.

with a violet Dirac string, and assign the same frame charge to the dark green nodes in patch
4. I also connect the pair of dark green nodes with a dark green Dirac string.

I then calculate the Euler class for all the patches containing all neighbouring pairs of
the violet square nodes in ∆13. For patch 5, χ13 = 1, indicating that the two nearest nodes
along Γ-M can either carry the same frame charge or have opposite frame charges with a
nearby Dirac string in ∆14. Because of the presence of a dark green Dirac string in their
neighbouring gap ∆14 that crosses patch 5, I can assign the opposite frame charges to the
violet nodes in ∆13 in patch 5. In patch 6, χ13 = 0, and I can assign the same frame charges
to the corresponding violet nodes as there is a Dirac string in ∆14 crossing patch 6. I then
assign the Dirac strings for the neighbouring violet squares, and obtain the complete global
topological configuration shown in Fig. 6.7(b).
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Finally, I check the consistency of the global topological configuration by computing
the Euler class for patch 7. The calculated χ14 =−3/2 is consistent with the presence of a
quadratic node with χ14 =−1 at Γ and a linear node with χ14 =−1/2.

6.3.5 Frame charges of −0.08 e/f.u.-doped Al2O3

At −0.08 e/f.u., several band inversions take place around the Γ and M high-symmetry
points, as shown in Fig. 6.8(a). Along Γ-M the top two bands with irreps Σ1 and Σ2 start
to be inverted, and the top two bands along K-Γ with irreps Λ1 and Λ4 are inverted as well.
Because these two bands along both Γ-M and K-Γ have different irreps, there are two new
circle nodes in ∆14 formed along these two high-symmetry lines, and I label the nodes along
Γ-M in blue and those along K-Γ in green. In addition, at the M point, bands 13 and 14 are
also inverted, as the band with irrep M+

1 now becomes lower than that with irrep M+
2 . As

a result, the nodes in ∆13 transfer from Γ-M to M-K. These band inversions significantly
change the number and positions of the band nodes in gaps ∆13 and ∆14, and the distribution
of the topological frame charges is completely different from that in undoped Al2O3.

I start the Euler class calculations from the patches containing single nodes. The Euler
class of the quadratic node at Γ and the linear node at K remains the same. All other nodes,
created by the band inversions, are linear nodes as their patch Euler class is ±1/2.

For the magenta square nodes in ∆13 along M-K, the Euler class for the two magenta
patches, containing the first and second nearest neighbours in Fig. 6.8(b), is 1 and 0 respec-
tively. Because there is no Dirac string in ∆14 crossing these two patches, I can assign the
same frame charge for all the nearest pairs of magenta square nodes, while keeping the
second nearest pairs either with the opposite frame charges or with the same frame charge
and a nearby Dirac string in ∆14.

I then calculate the Euler class for pairs of the neighbouring green circles in ∆14, and
obtain χ14 = 1 for all the patches. Because the green circle nodes are far away from the
square nodes in ∆13 (and their Dirac strings), I can safely assign the same frame charge for
all the green circle nodes.

For the blue circle nodes along Γ-M, the patch Euler class for the nearest pair around M
is 0, while the second nearest neighbour of nodes has a patch Euler class of χ14 =−1. Thus I
can assign all the blue circles with the same negative frame charge, with a Dirac string in ∆13

connecting the two magenta square nodes around M. I can also connect the second nearest
neighbours of the blue circle nodes in pairs with the Dirac strings, without influencing the
topological configurations in ∆13.
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Fig. 6.8 (a) Phonon band-crossing points and (b) patch Euler class of −0.08 e/f.u.-doped
Al2O3.

The consistent global topological configuration is summarised in Fig. 6.8(b), which is also
consistent with the conversion of frame charges from undoped Al2O3 to −0.08 e/f.u.-doped
Al2O3 (as discussed later).

6.3.6 Frame charges of −0.10 e/f.u.-doped Al2O3

At −0.10 e/f.u., the top two bands are inverted at M, and the M+
2 band becomes higher than

the M−
4 band [Fig. 6.9(a)]. Consequently the top two bands along Γ-M are fully inverted as

well, as the Σ2 band is the highest all along the Γ-M high-symmetry line. As a result, the
blue circle nodes in ∆14 along Γ-M disappear.

As the inversion of bands 14 and 15 occurs at M, the two nearest blue nodes in ∆14 meet
each other at M. Before they meet at M, one of them must cross the magenta Dirac string in
∆13, which flips the sign of its frame charge. Therefore, the two blue nodes, now with the
opposite frame charge, can annihilate when brought together at M. The Dirac strings of three
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Fig. 6.9 (a) Phonon band-crossing points and (b) patch Euler class of −0.10 e/f.u.-doped
Al2O3.

pairs of the blue nodes now merge into a closed loop connecting the three neighbouring M
points, encircling the K point in the middle. By shrinking the closed Dirac string towards
K, the Dirac string disappears, and this also flips the sign of the frame charges of the three
magenta nodes inside the loop. Consequently, the two nearest magenta square nodes along
M-K now carry opposite frame charges.

To verify this I compute the patch Euler class in Fig. 6.9(b). The calculated Euler class
for the magenta nodes is consistent with the deduction that the two nearest magenta nodes
have opposite frame charges. In addition, as the braiding only takes place around M, the
topological frame charges remain unchanged for other nodes away from M. This is also
confirmed by the Euler class calculations.
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Fig. 6.10 (a) Phonon band-crossing points and (b) patch Euler class of −0.20 e/f.u.-doped
Al2O3.

6.3.7 Frame charges of -0.20 e/f.u.-doped Al2O3

At −0.14 e/f.u., the doubly degenerate band with K5 irrep becomes lower than the K4 band,
and upon further doping the topological configurations remain the same as no additional
band inversion occurs. The phonon dispersion and the corresponding global topological
configuration at −0.20 e/f.u. are shown in Fig. 6.10. The bands are well separated from each
other at this doping density so I can label the irreps more clearly.

I compute the Euler class for all the single nodes first, and the calculated χ14 =−1 at Γ

and χ13 =−1/2 at K indicate a robust quadratic node in ∆14 at Γ and a linear node in ∆13 at
K. I also compute the Euler class for the patch containing two nearest K points, and obtain
χ13 = 0. Therefore I can assign opposite frame charges to the K points, and connect each
pair of them with a Dirac string.
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Fig. 6.11 Phonon spectra (top panel) and topological configurations (middle panel) of
monolayer Al2O3 upon electrostatic doping at (a) −0.06 e/f.u., (b) −0.08 e/f.u., (c) −0.10
e/f.u., (d) −0.12 e/f.u., and (e) −0.14 e/f.u. For the topological configurations in the middle
panel, I use squares (circles) to represent the nodes formed by the lower (upper) two bands,
open (closed) symbols to represent the nodes with negative (positive) frame charges, and one
symbol (two concentric symbols) to represent the linear (quadratic) node. The edge states
along the (100) direction are also shown in the bottom panel, corresponding to the grey area
of the phonon spectra in the top panel.

6.3.8 Complete picture of braiding upon doping

The complete picture, summarised in Fig. 6.11, provides a detailed description of the conver-
sion of non-Abelian frame charge upon electrostatic doping from −0.06 to −0.14 e/f.u.

From the undoped case to a doping concentration of −0.06 e/f.u., the band inversion
between bands 13 and 14 [red and blue lines in Fig. 6.11(a)] becomes stronger along Γ-M,
pushing the violet square nodes along Γ-M closer to the M high-symmetry point.

Further increasing the doping concentration to −0.08 e/f.u. brings the two neighbouring
violet nodes together at M. At M, each neighbouring pair of violet nodes carries the same
frame charge, because the nodes with opposite frame charges must cross the dark green Dirac
string and the charge of one of the pair is flipped. Therefore, the pairs of violet nodes do not
annihilate. Instead, they “bounce” to the M-K high-symmetry lines with each pair carrying
the same frame charge, and I now label them as magenta squares in Fig. 6.11(b) because
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their trajectories change. The inversion between bands 14 and 15 also creates three pairs of
same charged blue nodes and three pairs of same charged green nodes along Γ-M and K-Γ
respectively, indicating that the blue nodes must carry opposite frame charge with the green
nodes so they can be created at the same time at Γ, or be annihilated simultaneously when
brought back to Γ by decreasing the doping concentrations from −0.08 to −0.06 e/f.u.

At −0.10 e/f.u. the nearest pairs of the blue nodes along Γ-M are brought together to M
when the bands are fully inverted at M. During this process, one of the blue nodes in each
pair must cross a Dirac string of the magenta nodes and thus flips its sign. Now that each
nearest pair of the blue nodes near M has the opposite frame charge, they will be annihilated
when meeting at M. As shown in Fig. 6.11(c), at −0.10 e/f.u. the blue nodes and their
corresponding Dirac strings disappear. The disappearance of the blue Dirac string also flips
the sign of the three magenta nodes around the K point inside the Dirac string.

At −0.12 e/f.u., the inversion between bands 13 and 14 further increases, and as a result
the magenta nodes move further from M to K. Similarly, the green nodes move further from
Γ to K. During this process there is no conversion between the frame charges as no nodes
meet together and no adjacent Dirac strings are crossed. As shown in Fig. 6.11(d), the global
topological configuration is nearly the same, except that the magenta and green nodes move
closer to K.

The braiding process ends at −0.14 e/f.u., when all the bands are fully inverted and no
further inversion occurs with increasing doping concentration. When the three magenta
nodes and three green nodes meet at K, there are two open magenta squares, one closed
magenta square, and three closed green circles, as well as the open dark green circle at K.
The two closed green nodes can be braided with one open magenta node and one closed
magenta node so their charges are flipped. Eventually there will be one open magenta square,
two closed magenta squares, one open green circle, two closed green circles, and one open
dark green circle. There are two open and two closed circles in total, so the circles can be
annihilated when brought together at K. The remaining open square and two closed squares
can also recombine to form a closed square. Therefore there is a closed dark green square at
K in the middle of the 2D Brillouin zone in Fig. 6.11(e). The braiding processes around other
K points are similar.

6.3.9 Topological edge states

Despite the fact that the bulk-boundary correspondence for multi-gap topologies has not yet
been fully characterised (and is beyond the scope of this work), I can still investigate the
evolution of the topological edge states of monolayer Al2O3 upon electrostatic doping. The
surface local densities of states (LDOS) are calculated from the imaginary part of the surface
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Fig. 6.12 Topological edge states along the (100) direction for (a) undoped and (b) −0.20
e/f.u.-doped Al2O3.

Green’s function as implemented in WANNIERTOOLS [50]. I first compare the edge states
for undoped and −0.20 e/f.u.-doped Al2O3 in Fig. 6.12.

For undoped Al2O3, the edge states connecting the projections of a pair of bulk nodes in
∆14 at K (dark green circles) are clearly visible, as shown in Fig. 6.12(a). In addition, the
projections of the flat bulk band cross the entire edge Brillouin zone, ending at the projections
of a pair of bulk nodes in ∆14 at Γ (dark yellow circles). The emergence of the edge states
can be understood by computing the Zak phase γ [279]. In ∆13, I obtain γ13 = 0 along the
entire edge Brillouin zone except at Γ̄. In ∆14, γ13 = 0 corresponds to emerging edge states
between the projections of dark green nodes at K, while γ13 = π corresponds to vanishing
edge states.



78 Multi-gap topology in phonons

For −0.20 e/f.u.-doped Al2O3, the flat band has the highest energy, and the projections of
the pair of bulk nodes at Γ (dark yellow circles) are also higher than the projections of other
bulk nodes, as shown in Fig. 6.12(b). The edge states merge from the projections of dark
yellow circles in ∆14 at Γ. The projections of the other pair of bulk nodes at K (dark green
squares) are inverted to lower frequencies, redistributing their non-Abelian frame charges
from ∆14 to ∆13. Similar to the Zak phase in the undoped case, for −0.20 e/f.u.-doped
Al2O3, γ13 = 0 and γ14 = 0 correspond to emerging edge states, while γ13 = π corresponds
to vanishing edge states.

This is consistent with the fact that the oxygen atoms, as the atomic centers, are on
the boundary of the unit cell. The Zak phase measures the displacement between the
Wannier functions and the atomic centers. In Al2O3, a Zak phase of zero indicates that the
phonon Wannier functions occupy the center of the unit cell and are localised away from
the atomic centers on the unit cell boundary, leading to an “anomaly” with localised edge
states [262, 264]. On the other hand, a Zak phase of π indicates that the phonon Wannier
states and the atoms are at the same places on the unit cell boundary, corresponding to
vanishing edge states. While this Z2-quantised Berry phase is a good quantum number for
1D edge states [279] and traces in some gaps the edge states faithfully, it is worth repeating
that a full bulk boundary relation describing topological phases obtained by non-Abelian
processes is still subject to intense research activity.

I also show the evolution of the edge states under phonon braiding upon electrostatic
doping from −0.06 to −0.14 e/f.u. in the bottom panel of Fig. 6.11, which can provide
information on the conversion of non-Abelian frame charges in the bulk states. Because
the bulk nodes are distributed in a narrow frequency range between 31.8−32.8 THz, the
topological edge states are not well-separated from each other.

6.4 Conclusions and outlook

The findings of Section 6.3 suggest a broad relevance to the fields of topology, phonons,
dielectrics, first-principles modelling and information storage.

From a topological perspective, I find that phonons can be a primary platform to study
multi-gap topologies. When studying multi-gap topologies in electronic systems, all three
neighbouring bands must be near the Fermi level, which severely limits the potential material
candidates. On the other hand, phonons do not have the restriction of the Fermi level because
they are bosonic excitations. In addition, the time-reversal symmetry T in phononic systems
is hard to break, making it more convenient to find material candidates with C2T symmetry or
PT symmetry. As phonons can be treated as spinless systems, several existing models can
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be applied, such as the three-band spinless model with a Kagome lattice [262], to phononic
systems. I can also extend the ideas of non-Abelian braiding to other quasiparticles such as
magnons [137] and excitons [138]. An open question is the bulk-boundary correspondence
of multi-gap topologies, and phonon dispersions with fewer, cleaner band crossings, e.g.
phonon systems with only one or two atoms in the unit cell, could provide an ideal platform
for its study.

For the phonon community, this work open a new research direction for these emer-
gent excitations. Traditional studies of phonons mainly involve conventional supercon-
ductivity [139, 140], electrical and thermal transport [95, 141–144], carrier thermalisa-
tion [145, 146], structural phase transition [147, 148] and charge density waves [149, 150].
Here I show that the reciprocal-space braiding of phonon band-crossing points can also
form the basis for next-generation phononic computation. Several strategies could be used
to experimentally verify the non-Abelian braiding of phonons, including inelastic neutron
scattering [151–153], inelastic X-ray scattering [154], and high-resolution electron energy-
loss spectroscopy [198]. Additionally, the first-principles evaluation of the band-inversion
processes can provide references for the experimental observation of the evolution of the
phonon band nodes upon electrostatic doping.

For dielectrics, I provide an experimentally realisable way to control the braiding in a
well-known dielectric material upon electrostatic doping. Monolayer Al2O3 has been widely
used as a gate dielectric in electronic devices [280–283]. Therefore, electrostatic doping of
monolayer Al2O3 can be experimentally feasible and has the potential to be incorporated into
existing devices based on Al2O3, opening the door for studying topology-related phenomena
in this otherwise well-studied material. In addition, electrostatic doping-induced phonon
frequency shifts have been intensively studied in low-dimensional materials, which can be
probed directly using Raman spectroscopy [274, 284]. It is therefore interesting to investigate
how doping or gating redistributes the charge density and how the redistributed charge
couples to the lattice vibrational modes.

For first-principles modelling, the computational techniques described in this article offer
a route to understand non-Abelian braiding of any quasiparticle. The Euler class can be
computed using the eigenvectors/eigenstates of these quasiparticles as input. I offer a detailed
description of all the theoretical background and computational methodology to analyse
the non-Abelian frame charges formed by any three-band subsystems in the spectra of any
quasiparticle, as long as the symmetry requirements are fulfilled. The potential braiding
processes rely on control of band inversion and the corresponding redistribution of non-
Abelian frame charge. Future simulation work could focus on various strategies to control
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the phonon braiding, including nonlinear effects [182, 285–287], anharmonicity [288–291],
and ultrafast pumps [292–295].

Finally, as a further distant and more speculative perspective, the braiding processes
might find use in storing information. The idea is that information may be robust against
perturbations from the environment because the non-trivial frame charges can only become
trivial by unbraiding the non-Abelian frame charges via introducing a third phonon band. In
addition, these non-Abelian frame charges and their braiding can be controlled by electrostatic
doping, offering new opportunities for a conceptually new computation hardware based on
phonons. Moreover, the braiding of multiple nodes takes place simultaneously when these
nodes are related to each other by the space group symmetry, suggesting the possibility
of storing information in the frame charges combining the topological and the symmetry
information together. While such information could be encoded in phonons, this nevertheless
leaves open the exciting question of whether phonons could be suitable to implement quantum
algorithms.



Chapter 7

Non-Abelian braiding of phonons: From
three bands to four bands

Non-Abelian states of matter, in which the final state depends on the order of the interchanges
of two quasiparticles, can encode information immune from environmental noise with the
potential to provide a robust platform for topological quantum computation. As described
in the previous chapter, the band-crossing points for any three-band systems with a real
Hamiltonian carry non-Abelian frame charges, and by inverting the band order, the crossing
points in the same gap or in the adjacent gaps can meet each other in reciprocal space. As
a result, a pair of points with opposite frame charges in the same gap can be annihilated
when brought together while those with the same frame charge in the same gap cannot be
annihilated, and interchanges of points in adjacent gaps flip the frame charges, mimicking
the non-Abelian braiding in real space.

In this chapter, I provide another example of non-Abelian braiding of phonons in mono-
layer silicates. The associated braiding process can be controlled by means of an electric field
and epitaxial strain, and involves, for the first time, more than three bands. Most interestingly,
I propose that the band-inversion processes at the Γ point can be tracked by following the
evolution of the Raman spectrum, providing a clear signature for the experimental verification
of the band inversion accompanied by the braiding process.

This chapter is based on work published in [Bo Peng, Adrien Bouhon, Bartomeu Mon-
serrat, and Robert-Jan Slager. Nature Communications 13, 423 (2022)]. My collaborators
Adrien Bouhon and Robert-Jan Slager provided the theoretical description, and Bartomeu
Monserrat supervised the computational part, while I was responsible for the rest.
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7.1 Introduction

Non-Abelian states of matter arise from non-commutative interchanges of quasiparticles [296].
In this process, called braiding, the winding of one quasiparticle around another can encode
information, creating non-Abelian states that are immune from external noise: as long as the
braiding occurs, the information is topologically protected. This process can form the basis
for topological quantum bits (qubits), and a variety of strategies for non-Abelian braiding have
been proposed, including braiding of quasiparticles in intrinsic topological states such as frac-
tional quantum Hall systems [297], and also in symmetry-protected topological states such as
half-quantum vortices in superconductors with p-wave symmetry [298] and Majorana modes
in hybrid systems [299]. Multiple variants of these proposed architectures exist [300, 301],
and experimental evidence has started to emerge in the past few years [302, 303], providing
a proof-of-principle for the existence of non-Abelian quasiparticles. However, multiple diffi-
culties remain in exploiting these quasiparticles for braiding, for example Majorana fermions
are boundary states that have proven challenging to observe [304]. It would therefore be
desirable to find alternative platforms in which non-Abelian braiding exists.

I propose that phonons, which are a bosonic excitation not subject to Fermi-Dirac
statistics, provide a viable platform to observe non-Abelian braiding. I identify a monolayer
silicate as a candidate material, and show that an electric field and epitaxial strain can be
used to induce band inversions which are accompanied by the transfer of nodes between
adjacent gaps, thereby transferring non-Abelian frame charges and non-trivial patch Euler
class. This is achieved through the symmetry-constrained braiding of band nodes, resulting
in a multi-gap topological phase. Different from the braiding in the metamaterial [262],
both three-band and four-band braiding processes can be realised in phonons of monolayer
silicate. I further show that the evolution of Raman peaks can be used to track the band
inversions and the accompanying braiding process, providing a clear experimental signature
to identify multi-gap topology in real materials. Interest in the topological features of phonon
bands has recently grown, but for single-gap topology, phonons have traditionally received
less attention than electrons. The bosonic nature of phonons should make them the prime
platform for the study of multi-gap topology and non-Abelian braiding.

7.2 Non-Abelian braiding of phonons in monolayer silicates

7.2.1 Computational details

First-principles calculations using density functional theory are performed with the Vienna
ab initio Simulation Package (VASP) [104, 105]. The generalised gradient approximation
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(GGA) with the Perdew-Burke-Ernzerhof (PBE) parameterisation is used as the exchange-
correlation functional [183]. A plane-wave basis with a kinetic energy cutoff of 800 eV is
employed, together with a 9×9×1 k-mesh to sample the electronic Brillouin zone. The
self-consistent field calculations are stopped when the energy difference between successive
steps is below 10−8 eV, and the structural relaxation is stopped when forces are below 10−3

eV/Å. A vacuum spacing larger than 20 Å is used to eliminate interactions between adjacent
layers.

The ionic positions with and without electric fields are fully relaxed while the lattice
constants are fixed, corresponding to material synthesis on substrates at fixed strain. When
applying an external electrostatic field, dipole corrections are included to avoid interactions
between the periodically repeated images.

For the phonon calculations, the force constants are evaluated using the finite differences
method in a 3×3×1 supercell with a 3×3×1 electronic k-mesh using VASP. The phonon
dispersion is then obtained using PHONOPY [52]. Convergence tests have been performed
comparing supercells of sizes between 3×3×1 and 6×6×1. In 2D monolayers, no splitting
between the longitudinal and transverse optical phonons (LO-TO splitting) occurs at Γ, and
only the slope of phonon bands changes [275]. Therefore, LO-TO splitting is ignored as it
does not influence the phonon band crossings. The phonon edge states are obtained using
surface Green’s functions as implemented in WANNIERTOOLS [50].

The patch Euler class is obtained by integrating phonon eigenvectors within a patch
around two nodes, and a unitary rotation is applied to make the eigenvectors real. The Euler
class is computed from a pair of bands on a rectangular region that contains the nodes [276].
The frame charges are then assigned to all the nodes, as well as Dirac strings that connect the
frame charges. This process is repeated for all the patches and get the complete topological
configuration.

7.2.2 Silicates

Layered silicates are ubiquitous in soils and minerals throughout the world [305, 306].
The surface layer of silicates consists of a silicon-centered tetrahedron, with the oxygen
atoms forming a coplanar hexagonal Kagome lattice, as shown in Fig. 7.1(a). Physical
models based on the two-dimensional (2D) Kagome lattice exhibit rich phenomenology,
from Dirac fermions to flat bands, and as a result there is much interest in this structural
pattern. The experimental realisation of monolayer Kagome silicates can be dated back to
the 1990s [307], but more recently various synthesis strategies have been developed to obtain
2D Kagome silicate or silica on multiple substrates [308–312]. These developments enable
researchers to study the structural [313–319], vibrational [320–322], electronic [323–325],
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Fig. 7.1 Phonons in monolayer Kagome silicate Si2O3. (a) Crystal structure of monolayer
Kagome silicate Si2O3. (b) Kagome bands of the phonon spectra of 0% and 5% strained
silicate under different electric fields.

mechanical [326, 327], and chemical properties [328] of this material family and to explore
the various physical phenomena associated with 2D Kagome lattices.

7.2.3 Phonon band structure

The monolayer Kagome silicate Si2O3 crystallises in the P6mm space group (No. 183).
Unlike free-standing bilayer silica, monolayer silicate Si2O3 is grown on a substrate, as
shown in Fig. 7.1(a). Using passivating hydrogen atoms to mimic the substrate, I compute the
phonon dispersion of monolayer Si2O3 from first principles. The resulting phonon dispersion
has three groups of Kagome flat bands between 18-36 THz [Fig. 7.1(b)]. Group 1 (orange
region) contains typical Kagome bands with two Dirac bands capped by another flat band,
which belong to bands 10-12 in the full phonon dispersion. Group 2 (green region) consists
of four bands (bands 13-16), with two flat bands capping the Dirac bands in the middle.
Group 3 (navy region) contains bands 17-19, and the flat band is below the Dirac bands. In
the following, I number the bands {Bn}n=1,...,21 from lower to higher frequencies, and I
label the partial gaps between each two successive bands (Bn,Bn+1) as {∆n}n=1,...,20 with
frequencies En ≤ ∆n ≤ En+1 (see Fig. 7.1).

7.2.4 Electric field induced band inversions and braiding

The key discovery of this work is that it is possible to controllably braid Kagome band
nodes in monolayer Si2O3 using strain and/or an external electric field. Interestingly, I find
two types of braiding. The first type involves the three bands in group 1 (orange region) in
Fig. 7.1(b), and represents a realistic proposal for the first material realisation of a multi-gap
phase. The second type of braiding involves four bands in groups 2 and 3, shown in the green
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and navy regions in Fig. 7.1(b), and represents the first proposal of a system that can host
these many-band (more than three) braiding processes.

In the generic braiding process for three bands [180, 258, 260, 262], the frame charges q
associated with the band nodes take values in the conjugacy classes ±q of the quaternion
group Q, where q ∈ {1, i, j,k} satisfying i2 = j2 = k2 = −1, i j = k, jk = i and ki = j.
Specifically, ±i and ± j characterise single nodes in each of the respective gaps (first and
second), whereas ±k represents a pair of nodes in each gap. Finally, −1 captures the stability
of two nodes of the same gap. These charges can be manipulated through the braiding
process of band nodes of different gaps in momentum space to arrive at configurations where
a specific gap features the same charges. This results in an obstruction to annihilation that
can be quantified via a non-trivial Euler invariant over a patch in the Brillouin zone that
contains all the nodes of this band subspace.

As an extension to the three-band setup characterised by the quaternion group, when
more bands are present the above ideas must be generalised to the so-called Salingaros’ vee
groups. The main property of interest for the braiding processes is that nodes of adjacent gaps
reproduce the three-band case and have anti-commuting charges, whereas charges of non-
neighbouring gaps commute. In particular, any stable simple node in a gap is characterised
by the charge q that takes, as before, ±q values, while the charge q2 = −1 indicates a
stable pair of nodes. In other words, these configurations pose an intricate extension of the
three-band case, featuring opposite types of each charge and a charge of −1 in each gap. The
regions where several adjacent gaps (∆n, . . . ,∆n+M) are each hosting a simple node can be
characterised through products of non-Abelian charges (qn · · ·qn+M).

Importantly, the configurations of the nodes are constrained by the crystalline symmetries
of the system, leading to a projection of the braid trajectories on the different high-symmetry
points and lines of the Brillouin zone. The band inversions at these momenta thus readily
indicate the braiding processes. I corroborate the non-Abelian nature of the band inversions
through the direct computation from the first-principle data of the patch Euler classes and the
non-Abelian charges of the nodes transferred across adjacent gaps.

The band order of the Kagome bands can be inverted at different strains and under
different electric fields. I calculate the strain-dependent (from −2% to 8%) phonon dispersion
under electric fields from −0.9 to 2.0 V/Å. No imaginary modes are observed even for 7%
strained Si2O3 under an electric field of 2.0 V/Å, indicating the dynamical stability. In
addition, I distort the crystal structures by creating a rotated Kagome lattice similar to
Ref. [320], and structural relaxation at different electric fields always removes the rotation
distortion. Experimentally it has been found that both monolayer silicate and bilayer silica
can be grown on various substrates with biaxial strains varying from −5.6% to 5.7% [308,
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312, 316, 317, 328, 329]. In addition, theoretical calculations have shown that defect-free
2D silica can be deformed up to a maximum strain of 10.4%, while for defective samples no
abrupt material failure is observed at strains around 7.8-8.1% [327]. Regarding the electric
field, by applying bias voltage between the tip of the scanning tunneling microscopy (STM)
and the sample, a maximum electric field of 1.7 V/Å can be obtained [330]. Therefore, both
the strain and the electric field used in the calculations are experimentally feasible.

The most interesting regime is provided by tensile strain [exemplified with the 5% case
in Fig. 7.1(b)]. Under these conditions, the bandwidth of the three Kagome bands in group
1 decreases, reducing the frequency difference between the three bands at the Γ point. As
a result, experimentally feasible electric fields can be used to drive phonon band inversion
under strain. Similarly, the Kagome bands in groups 2 and 3 become closer at larger strains,
again facilitating electric field manipulation.

Hereafter I focus on phonon dispersions at fixed strains under tunable electric field,
because the strain is fixed by the material synthesis and determined by the substrate, while
the electric field can be tuned using a gate voltage. I only focus on the three groups of
Kagome bands because they are more sensitive to the electric field.

7.2.5 Three-band braiding in group 1

I first study the braiding process of the Kagome bands in group 1 formed by the phonon
branches B10,11,12 at 7% strained silicate. As shown in Fig. 7.2(a), without an electric field,
the Kagome bands at the Γ point are comprised of a single band B10 associated with a 1D
irreducible representation (irrep) Γ1 and a doubly degenerate band B11,12 associated with a
2D irrep Γ5. Away from Γ, the doubly degenerate bands split, each carrying a different 1D
irrep along the Γ-M and K-Γ high-symmetry lines.

Applying an electric field increases the frequency of the non-degenerate band B10

at Γ while reducing the frequency of the degenerate bands B11,12. The B10 vibrational
mode at Γ corresponds to an out-of-plane displacement of silicon atoms and an opposite-
direction displacement of oxygen atoms, and the B11,12 mode consists of both the in-plane
displacements of silicon atoms and the out-of-plane displacements of oxygen atoms. For
the B10 mode, the two types of atoms carry out-of-plane Born effective charges of +1.0 and
−0.5, respectively, and an out-of-plane electric field can enhance the opposite out-of-plane
motions of two types of atoms with opposite signs of Born effective charge, which hardens
the vibrational mode and increases the frequency of B10 at Γ. For the B11,12 mode at Γ,
the out-of-plane electric field increases the out-of-plane distance between Si and O atoms,
leading to weakened interatomic interactions and reduced phonon frequencies. Upon the
electric field, the frequency of the lower B10 increases while the frequency of the higher
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B11,12 decreases, and a phonon band inversion takes place at an electric field of 0.7 V/Å.
As a result, new nodes are formed by the inverted bands with different irreps. For bands
B10 and B11, a node forms near Γ along the K-Γ high-symmetry line as the two bands
belong to different Λ1 and Λ2 irreps. On the other hand, there is no crossing point along Γ-M
because the two bands belong to the same Σ1 irrep. Due to the C6 rotational symmetry of the
system, there are six nodes in total within the gap ∆10 along the different K-Γ lines in the
full Brillouin zone, as indicated by the yellow circles in Fig. 7.2(b). For bands B11 and B12,
six nodes form along Γ-M as they belong to the distinct irreps Σ1 and Σ2, while there is no
crossing point along K-Γ since there the two bands belong to the same irrep Λ1. As a result,
six nodes are created near the Γ point within the gap ∆11 at 0.7 V/Å, as indicated by the cyan
triangles in Fig. 7.2(b).

Further increasing the electric field enhances the phonon band inversion, such that the six
nodes of gap ∆10 (yellow circles) move away from Γ towards the K points, and the six nodes
of gap ∆11 (cyan triangles) move away from Γ towards the M points. At a threshold field
of about 1.8 V/Å, the Λ2 band becomes lower than the other two Λ1 bands over the whole
K-Γ line, and the yellow nodes disappear upon reaching the K point. On the other hand, the
cyan nodes remain in the middle of the Γ-M high-symmetry line even upon applying higher
electric fields.

Throughout this entire process, there is also a nodal point in gap ∆10 at K with a 2D irrep
K3. This band-crossing point remains nearly unchanged with varying electric field.

I now come to the topological characterisation of the above processes. In particular, I
characterise the transfer of nodes from one gap to adjacent gaps with an associated transfer
of patch Euler class and non-Abelian frame charges. Because of the P6mm space group,
the system has C2 rotation symmetry. In addition, in phonons the time-reversal symmetry
is automatically satisfied. Therefore, monolayer Si2O3 has C2T symmetry and its band
nodes at neighbouring gaps can host non-Abelian charges. Although there might be some
defects in monolayer silicate due to the imperfection of the growth processes [319, 320, 324],
the impurities cannot destroy the non-Abelian charges as long as the C2T symmetry is
preserved.

In the following, I label the frame charges and the patch Euler classes according to the
gap to which the nodes they describe belong, i.e. for the nth gap with n ∈ {1, . . . ,20}, I write
the frame charges and the patch Euler classes as {±qn} and χn respectively.

The topological configurations can be determined by the numerical calculation of the
patch Euler class for every single band crossing and for every pair of band crossings of
the same gap. I then show how the original data of the computed patch Euler classes can
be combined with the assignment of Dirac strings to build the non-Abelian topological
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Fig. 7.2 Braiding of phonons in group 1. (a) Kagome bands and (b) their corresponding nodes
in the 2D Brillouin zone formed by phonon branches B10−12 of 7% strained silicate under
electric fields of 0.0 V/Å, 0.7 V/Å, 1.0 V/Å, and 1.8 V/Å. The topological configurations
with nodes in different gaps (different symbols) and Dirac string configurations are shown in
(b). The large blue triangle (at 0.0 V/Å) and the large blue circles (at 0.7−1.8 V/Å) with
dashed boundary at Γ, as well as the large dark red circles with dashed boundary at K (at 1.8
V/Å), are quadratic nodes. Note that crossing a Dirac string in the same gap (same symbols)
does not convert the charge and that moving nodes to the K point ensures that three charges
meet in the extended zone. Hence moving the yellow nodes to K gives stable nodes with
stable Euler class at K upon moving from the third to the last panel in (b). The corresponding
phonon edge states on the (100) edge are shown in (c), with the {0,π}-quantised Zak phases
{γn}n=10,11 for gaps {∆n}n=10,11 indicated by the arrows.
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configuration of the nodes over the whole Brillouin zone. The results are then corroborated
through the direct computation of the non-Abelian charge of nodes located in connected
multi-band subspaces.

Let me illustrate this strategy with the example of group 1 composed of three connected
bands. Focusing on gap ∆10 in 7% strained silicate under an electric field of 1.0 V/Å, I
compute the patch Euler class from the numerically calculated phonon eigenvectors |u10⟩
and |u11⟩, of B10 and B11 respectively, for every single band crossing and for every pair of
band crossings within the gap. In Fig. 7.3(a), where I use the convention that the symbols of
circle and triangle correspond to nodes in gap ∆10 and ∆11 respectively, I draw the patches
that contain a pair of band crossings located at distinct regions of the Brillouin zone, with
the calculated Euler classes indicated for all the patches. The Euler classes of the patches
containing a single band crossing are indicated by the size of the symbols, i.e. the small
circles indicate |χ10|= 0.5 (e.g. the nodes at K) and the large circles with dashed boundary
indicate |χ10|= 1 (e.g. the node at Γ), and I use the convention that the fullness and openness
of the symbols indicate the signs + and − respectively. This can be verified by direct
computation showing that each Euler class of ±0.5 corresponds to a three-band partial-frame
charge q10 =±i ∈ Q, while the Euler class of ±1 corresponds to a three-band partial frame
charge of −1 ∈ Q.

The quadratic nodes can be viewed as two linear nodes merged together. This is explicitly
verified under the breaking of C6 where the double node at Γ splits into two simple nodes.
Thus, for every band crossing and for every pair of band crossings within the gap, the patch
Euler class takes integer values when it indicates an even number of stable nodes, or half-
integer values when it indicates an odd number of stable nodes within the patch, as shown
in Fig. 7.3(a). Since the rotation of a patch by a symmetry of the point group C6v leads to
an equal Euler class, I only need to consider the patches over the irreducible Brillouin zone.
Importantly, the sign of the Euler class on each patch taken separately is gauge dependent,
and similarly for the sign of the frame charges q10. This motivates the puzzle approach,
which focuses on the relative stability of the nodes, because their relative stability is gauge
invariant.

As a next step, I choose one initial patch containing a pair of band crossings, starting
from patch 1 in Fig. 7.3(a) for which I obtain an Euler class of 0, and a signed non-Abelian
charge can be assigned to each crossing. With an Euler class of 0, I can assign opposite
charges to the pair of yellow nodes in patch 1 with no adjacent Dirac string crossing the
patch. The remaining yellow nodes, and the Dirac strings connecting them, are then fixed by
the C6 symmetry. For patch 2, an Euler class of χ10 = 0.5 is compatible with the quadratic
(blue) node of Euler class χ10[Γ] = +1 at Γ and the linear (yellow) node of Euler class
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χ10[Γ-K] =−0.5 along Γ-K. For patch 3, χ10 = 0, and I can assign opposite frame charges
to the yellow node and the dark red node. Similarly, I then assign signed frame charges
to all the other nodes, as well as Dirac strings that connect them. While there are relative
gauge freedoms in doing so, once the charges of the initial patch are fixed, the charges for all
neighbouring patches become fixed by consistency, like completing a puzzle. By repeating
this process for all the patches, the complete topological configuration can be obtained, as
summarised in Fig. 7.3(a). When a node in gap ∆n crosses a Dirac string connecting nodes
residing in neighbouring gap ∆n−1 or ∆n+1, the sign of the charge in ∆n changes. It should
also be noticed that the configurations of the Dirac string are not unique, since moving the
Dirac string flips the gauge sign of the eigenvectors locally. Nevertheless, the requirement of
consistency in the assignment of the signed frame charges, together with the location of the
Dirac strings, eventually guarantees the full indication of the relative stability of the nodes
that is gauge independent.

A similar procedure can be applied to study the topological configurations for 7% strained
silicate under an electric field of 1.8 V/Å. As shown in Fig. 7.3(c), patch 1 in ∆10 contains
a dark red node at K, a quadratic blue node at Γ, and a Dirac string connecting the cyan
nodes in ∆11. With an Euler class χ10 = 0, the dark red node at K must carry the same frame
charge with the blue node at Γ. In addition, patch 2 has an Euler class of 0, indicating that
the neighbouring dark red nodes carry opposite frame charges. For the cyan nodes in ∆11,
there is no nearby Dirac string in ∆10 during the whole braiding process, and their frame
charges remain the same.

Once an initial topological configuration is known, I can determine any future topological
configurations resulting from a band inversion by simply applying the rules of braiding to-
gether with the constraints of the crystal symmetries. Figure 7.2(b) represents the conversion
of the topological configuration through the band inversion within the bands of group 1. I
start with the topological configuration at 0.0 V/Å showing two linear nodes in ∆10 at K
(−q10, open dark red circle) and K’ (q10, closed dark red circle) connected by a Dirac string
(dark red line), and one quadratic node in ∆11 at Γ (large blue triangle with dashed boundary)
with a patch Euler class χ11[Γ] = +1, corresponding to a three-band frame charge q[Γ] =−1
(computed for a base loop encircling the Γ point while avoiding the nodes at the K points).

From the irreps of the bands given in Fig. 7.2(a) I have predicted the formation of symme-
try protected nodes on the Γ-M lines in ∆11 and on the Γ-K lines in ∆10 under the inversion
of the bands at Γ. Figure 7.2(b) shows the complementary topological configurations of the
nodes. It is important to note the relative signs of the charges, which are not accidental.
Imagining the reverse band-inversion process, i.e. from 1.0 V/Å to 0.0 V/Å in Fig. 7.2(b)
while relaxing the C6 symmetry but conserving C2T symmetry, i.e. allowing the nodes to
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Fig. 7.3 Euler class calculations. (a) Patches in the Brillouin zone and their corresponding
Euler class for 7% strained silicate under an electric field of 1.0 V/Å. The Euler class χ10 is
calculated from the phonon eigenvectors of B10 and B11 within the patches. The resultant
patch Euler class in the yellow (patch 1), green (patch 2) and magenta (patch 3) areas are
0, 0.5 and 0, respectively (the patch Euler class χ11 is also calculated, but not shown in the
figure). The large blue circle with dashed boundary at Γ is a quadratic node with the patch
Euler class of 1. (b) 3D band structures in the grey areas of (a), with two linear nodes −
one (cyan triangle) in ∆11 along Γ-M and one (dark red circle) in ∆10 at K, as well as a
quadratic node (blue circle) in ∆10 at Γ. These dispersions are rooted in the stability of Euler
class, meaning that a stable double node produces a quadratic dispersion. (c) Patches in the
Brillouin zone to calculate the Euler class for 7% strained silicate under an electric field of
1.8 V/Å. The patch Euler class in the blue (patch 1) and purple (patch 2) patches are both
0 (the patch Euler class χ11 is also calculated, but not shown in the figure). The large blue
circle with dashed boundary at Γ and the large dark red circles with dashed boundary at K
are quadratic nodes with the patch Euler class of 1. (d) 3D band structures in the grey areas
of (c), with one linear node (cyan triangle) in ∆11 along Γ-M and two quadratic nodes in ∆10
at Γ (blue circle) and K (dark red circle).
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move freely on the C2T symmetric plane where they are pinned. The circles in ∆10 can
be recombined by bringing the yellow nodes of the Γ-K lines to the Γ point. By doing so,
the three filled yellow circles must cross the dashed-line (cyan) Dirac strings and the three
open triangles are crossed by the full-line (yellow) Dirac strings, which implies a flip of their
frame charges. Thus six closed cyan triangles are obtained inside the Brillouin zone, together
with six open yellow circles and two filled blue circles (obtained after splitting the quadratic
node at Γ). The circle nodes recombine, leaving four open circles and six closed triangles.
Braiding two of the open circles with two of the closed triangles, two pairs of circles and
triangles are obtained and can be annihilated, leaving a single pair of closed triangles, i.e. at
the topological configuration at 0.0 V/Å in Fig. 7.2(b).

By moving the nodes in ∆10 (yellow circles) on the Γ-K lines to the K points, the
topological configuration of the fourth panel is obtained in Fig. 7.2(b) with quadratic nodes
at K (χ10[K] = +1) and K’ (χ10[K’] =−1).

Summarising the general philosophy behind the determination of topological phase
transitions in the non-Abelian topological phases protected by C2T symmetry, I first have a
puzzle “game” followed by a braiding “game”.

7.2.6 Four-band braiding in groups 2 and 3

I next focus on the band inversion and the resulting braiding of the phonon bands in groups 2
and 3 under 5% strain, which become connected as the electric field increases. As shown
in Fig. 7.4(a), at a negative electric field of −0.3 V/Å, the two groups of phonon bands are
well-separated. At −0.2 V/Å, the highest band in group 2 (B16) and the lowest band in
group 3 (B17) touch at K, and six nodes [cyan circles in Fig. 7.4(b)] are created along K-Γ as
the two bands belong to the different irreps Λ1 and Λ2 (there are also six nodes created on
the M-K line at 0.0 V/Å, which annihilate in pairs at the M point upon increasing the electric
field, a process that I do not show here). The cyan nodes move towards Γ upon increased
electric field, and touch the Γ point around 0.5 V/Å causing a band inversion at Γ. Instead of
being annihilated, these six nodes bounce back along their original path.

In addition to the cyan nodes formed by B16 and B17, there are also six nodes (purple
squares) formed by B17 and B18, as well as six nodes (yellow triangles) formed by B15 and
B16, along the Γ-M high-symmetry line, see Fig. 7.4(b). They are all created at about 0.5
V/Å near the Γ point, and move towards M with increasing electric field. The yellow nodes
move much faster than the purple ones, which is due to stronger band inversion.

I now discuss the topological features of the band inversion between the bands in groups
2 and 3. Again, the determination of the initial topological configuration (i.e. fixing the frame
charges and the Dirac strings) is achieved through the puzzle construction detailed in the
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Fig. 7.4 Braiding of phonons in groups 2 and 3. (a) Phonon branches B14−18 and their
corresponding nodes of 5% strained silicate under electric fields of −0.3 V/Å, 0.1 V/Å,
0.5 V/Å, and 0.9 V/Å. The panels in (b) show the nodes and their topological charges. As
before, different symbols characterise topological charges in different gaps, whereas open
versus closed symbols indicate the sign of the charge. Dirac strings are drawn as lines. The
large blue triangles and the large red squares at Γ are quadratic nodes. The corresponding
phonon edge states on the (100) edge are shown in (c), with the {0,π}-quantised Zak phases
{γn}n=14,...,17 for the gaps {∆n}n=14,...,17 indicated by the arrows.

previous subsection. The transitions to the other topological configurations upon the band
inversions then follow the rules of (symmetry-constrained) braiding. First, B16 and B17 are
inverted at the K point. The irreps of Fig. 7.4(a) predict the formation of six nodes along the
K-Γ lines and six nodes along the M-K lines (at 0.0 V/Å, not shown here), all in ∆16 and
protected by symmetry. Figure 7.4(b) shows the charges for the nodes in ∆16 (cyan circles),
and for the adjacent quadratic nodes at Γ in ∆15 (χ15[Γ] = +1, large blue filled triangle)
and in ∆17 (χ17[Γ] = +1, large red filled square). Imagining the reverse band-inversion
process from 0.1 V/Å to −0.3 V/Å, while the C6 crystalline symmetry is relaxed but the
C2T symmetry is conserved (i.e. allowing the nodes to move freely on the C2T symmetric
plane). After bringing all the circles to K and K’ they must annihilate, leaving a pair of
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closed Dirac strings (loops) behind. Since one Dirac string marks a flip of gauge sign of the
eigenvectors, the merging of two Dirac strings corresponds to the identity, such that the two
closed Dirac strings can merge and annihilate.

The conversion from the first to second panel in Fig. 7.4(b) follows the creation and the
moving of the nodes on the K-Γ line from K towards Γ. When the nodes in ∆16 (cyan circles)
reach Γ, the band inversion happens between the two doubly-degenerate irreps Γ5 and Γ6.
From the irreps of the bands [Fig. 7.4(a)] I can predict the formation of six nodes (yellow
triangles) on the Γ-M lines in ∆15, six nodes (cyan circles) on the K-Γ lines in ∆16, and six
nodes (purple squares) on the Γ-M lines in ∆17. The corresponding topological configurations
are shown in the third panel of Fig. 7.4(b), from which I can verify that the reversing of the
band inversion by recombining the nodes must lead to the second panel. The linear nodes at
the K point (full and open dark red pentagons) together with their Dirac string (dashed dark
red line) in ∆14 affect the behaviour of the triangle nodes when they reach the M point upon
applying higher electric fields, i.e. these cannot annihilate and instead scatter apart from one
another (not shown here).

Similar to the group 1, the non-Abelian frame charges within the groups 2 and 3, corre-
sponding to the patch Euler class of the single band crossings, can be verified through a direct
computation. While the band inversion in group 1 at Γ is mediated by a triply degenerate
point with a frame charge of q =−1 [262], the band inversion at Γ between group 2 and 3 is
mediated by a quadruple-degenerate point with a total frame charge q = (−1)∗ (−1) = +1.
Even though the frame charge of the quadruple-degenerate node is trivial, because of the
crystalline symmetries it must be formed by the superposition of two quadratic nodes, each
with a non-zero patch Euler class |χ15| = |χ17| = 1, and six linear nodes with the frame
charges ±q16.

7.2.7 Edge states

I also study the evolution of topological edge states with varying electric field by calculating
the surface local density of states (LDOS) from the imaginary part of the surface Green’s
function [50]. Figure 7.2(c) shows the edge states of 7% strained silicate. On the (100) edge
(i.e. the zigzag direction for the Si atoms), there is an edge arc connecting two adjacent
nodes at the neighbouring Γ points. Upon increasing electric field, new band-crossing points
appear around Γ. At 1.8 V/Å, there are two clear projections of the new Dirac cones on
the (100) edge around 17.36 THz. I calculate the Zak phase γ (i.e. the Berry phase along a
non-contractible path of the Brillouin zone which is here quantised to {0,π} by the C2T

symmetry) in gap ∆10 and ∆11 at 0.0 and 1.8 V/Å. As shown in Fig. 7.2(c), a Zak phase
of zero corresponds to the emergence of the edge states, while γ = π leads to vanishing
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edge states. This indicates that the band Wannier states (the Wannier states are the Fourier
transform of the Bloch eigenstates) have their centers (the “band centers”) shifted from the
center of the atomic Wannier states (the “atomic centers”), leading to a charge anomaly and,
following, the localisation of an edge state. Furthermore, the fact that the edge states appear
when the Zak phase is zero simply means that the band centers occupy the center of the unit
cell, while the atomic centers lie on the boundary of the unit cell [262, 264]. Indeed, the Z2

quantised Berry phase is a good quantum number in 1D, which indicates the band center
(i.e. its Wyckoff position) [279].

The Zak phase for the given edge termination can be predicted from the bulk topology.
The Zak phase at a fixed gap is given (modulo 2π) by the parity of the number of Dirac strings
that are crossed by the straight path of integration perpendicular to the edge axis, i.e. for the
(100) edge these are the paths lk∥ ∈ {k⊥(b1 −b2)+ k∥(b1/2+b2/2)|k⊥ ∈ [0,1]} at a fixed
k∥ ∈ [0,1], with k∥ the coordinate of the horizontal axis in Fig. 7.2(c) and Fig. 7.4(c) [262].

Figure 7.4(c) shows the topological edge states of 5% strained silicate on the (100) edge.
Besides the edge arc that connects two adjacent nodes at the neighbouring Γ points around
26.45 THz, there is also a new edge arc connecting two adjacent nodes around 25.90 THz
located at neighbouring K points with 2D irrep K3. Under an electric field of 0.9 V/Å, extra
edge arcs emerge near Γ at 25.97 THz. The arc connecting K3 moves downwards upon
increasing electric field and is robust. For the four-band braiding processes, the Zak phase
argument fails, as the Zak phases γ14−17 in Fig. 7.4(c) do not show a consistent behaviour. I
stress that, apart from effective Zak phase diagnoses [262], the full multi-gap bulk-boundary
correspondence remains an open question. Hence, I take here a “spectator” view by directly
visualising the edge states but without addressing the fundamental mechanisms behind them.

7.2.8 Experimental signature: Raman spectra

I finally propose that the band-inversion processes described above can be directly observed
experimentally by following the evolution of the Raman spectrum of the material. All
the relevant modes are Raman-active. I calculate the evolution of the Raman spectrum
associated with the modes involved in the two braiding processes described in Figs. 7.2
and 7.4. Figure 7.5(a) shows the two Raman modes of the three Kagome bands in group 1.
Without an electric field, B10 at Γ, with 1D irrep Γ1, belongs to the Raman-active A1 mode
at 583.1 cm−1. B11 and B12 at Γ, with 2D irrep Γ5, correspond to the E2 mode, and are also
Raman-active at 604.1 cm−1. The Raman peak of the E2 mode is stronger than that of the A1

mode. With increasing electric field, the frequency of the stronger E2 mode decreases, until
reaching the critical field of 0.7 V/Å, where its phonon frequency of 592.7 cm−1 becomes
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(a) (b)

Fig. 7.5 Raman signature. Simulated Raman spectra (A.U. = arbitrary units) for (a) 7% and
(b) 5% strained monolayer silicate Si2O3 under various electric fields.

lower than that of the weaker A1 mode (594.0 cm−1). Further increasing the electric field
enlarges the frequency difference between the two Raman-active modes.

For the two Raman modes involved in the braiding processes between groups 2 and 3, the
band inversion between the Raman modes with different intensities is also clearly visible. As
shown in Fig. 7.5(b), both the E2 and E1 modes, corresponding to the 2D irreps of Γ5 and Γ6

respectively, are Raman-active, and the E1 peak with a higher frequency of 893.2 cm−1 has a
stronger intensity. Although the frequencies of both the stronger E1 mode and the weaker E2

mode become lower as the electric field increases, the frequency of the E1 mode decreases
much faster than that of the E2 mode. As a result, the two bands invert at 0.5 V/Å.

These calculations show that Raman spectroscopy can be a promising tool for characteris-
ing the band-inversion processes and the accompanying non-Abelian braiding of phonons in
2D materials such as monolayer silicate. Alternatively, inelastic neutron scattering [151–153]
and inelastic X-ray scattering [154] can be used to observe the bulk band crossings directly,
while high-resolution electron energy-loss spectroscopy [198] can be used to observe the
topological surface states.

7.3 Conclusion

I show that the phonon bands in layered silicates provide a versatile platform to observe
new multi-gap topologies. I find that under experimentally feasible strain and/or external
electric-field conditions, the phonon bands can exhibit the required braiding processes to
induce multi-gap topological phases characterised by non-Abelian frame charges and Euler
class. Given the feasibility of the proposed material and experimental setup, this study
provides an impetus to investigate phonon bands, and this material realisation in particular,
to experimentally observe multi-gap topology.



Chapter 8

Side projects

In addition to the main project of topological phonons, I have also done a series of side
projects, including:

(a) Tunable emission of Nd-doped CsPbBr3. This section is based on work published in
[Yujun Xie*, Bo Peng* (contributed equally), Ivona Bravić, Yan Yu, Yurong Dong, Rongqing
Liang, Qiongrong Ou, Bartomeu Monserrat, and Shuyu Zhang. Advanced Science 7, 2001698
(2020)]. My collaborators Yujun Xie synthesised the nanocrystals and measured the optical
properties, Ivona Bravić provided the microscopic mechanisms for strain-induced changes in
exciton oscillator strength, Bartomeu Monserrat supervised the theoretical part, and Shuyu
Zhang supervised the experimental part, while I was responsible for the ab initio calculations.

(b) Tunable photostriction of halide perovskites through energy dependent photoexcita-
tion. This section is based on work published in [Bo Peng, Daniel Bennett, Ivona Bravić, and
Bartomeu Monserrat. Physical Review Materials 6 (8), L082401 (2022)]. My collaborators
Daniel Bennett verified the results with ABINIT, Ivona Bravić provided the group-theory
analysis, and Bartomeu Monserrat supervised the project, while I was responsible for the
rest.

(c) Photo-induced phase transition in monolayer MoTe2. This section is based on work
published in [Bo Peng, Hao Zhang, Weiwen Chen, Bowen Hou, Zhi-Jun Qiu, Hezhu Shao,
Heyuan Zhu, Bartomeu Monserrat, Desheng Fu, Hongming Weng, and Costas M Soukoulis.
npj 2D Materials and Applications 4, 14 (2020)]. My collaborators Bartomeu Monserrat
provided the microscopic mechanisms for Peierls-like phase transition, Desheng Fu applied
the Landau theory, and Hao Zhang devised the research idea and supervised the project,
while I was responsible for the rest.

(d) Phonon-assisted electronic states modulation of few-layer PdSe2 at terahertz frequen-
cies. This section is based on work published in [Ziqi Li*, Bo Peng* (contributed equally),
Miao-Ling Lin, Yu-Chen Leng, Bin Zhang, Chi Pang, Ping-Heng Tan, Bartomeu Monserrat,
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and Feng Chen. npj 2D Materials and Applications 5, 87 (2021)]. My collaborators Ziqi Li
synthesised the samples and measured the optical properties, Bartomeu Monserrat supervised
the theoretical part, and Feng Chen supervised the experimental part, while I was responsible
for the ab initio calculations.

(e) Photocatalysis and stability of monolayer fullerene networks. This section is based
on work published in [Bo Peng. Journal of the American Chemical Society 144 (43), 19921
(2022)] and [Bo Peng. Nano Letters 23(2), 652 (2023)].

8.1 Tunable emission of Nd-doped CsPbBr3

In collaboration with experimentalists, I perform first-principles calculations to understand the
optical properties of Nd-doped CsPbBr3. My experimental colleagues prepare neodymium
(III) (Nd3+) doped CsPbBr3 nanocrystals (NCs) through the ligand-assisted reprecipita-
tion method at room temperature with tunable photoemission from green to deep blue. A
blue-emitting nanocrystal with a central wavelength at 459 nm, an exceptionally high pho-
toluminescence quantum yield of 90%, and a spectral width of 19 nm is achieved. My
first-principles calculations reveal that the increase in photoluminescence quantum yield
(PLQY) upon doping is driven by an enhancement of the exciton binding energy due to
increased electron and hole effective masses, and an increase in oscillator strength due
to shortening of the Pb-Br bond. Putting these results together, I demonstrate that B-site
composition engineering is a reliable strategy to further exploit the perovskite family for
wider optoelectronic applications.

8.1.1 Accurate description of the band gap of CsPbBr3

I first compare the band gaps in the presence of spin-orbit coupling calculated by the PBEsol
functional [183], the hybrid HSE functional [106–108], and many-body perturbation theory
in the G0W0 and QPGW frameworks [331–335]. As shown in Table 8.1, the PBEsol band
gap of 0.33 eV is much smaller than the experimental band gap, because DFT severely
underestimates the single-particle band gap. The HSE band gap increases to 0.87 eV but is
still much smaller than the experimental value. The calculations suggest that the QPGW can
describe the system much better. To compare the calculated band gap using a static lattice
with experimental data measured at finite temperatures, I use a finite-temperature correction
∆T of 0.45±0.06 eV, taken from previous work [336]. The band-gap renormalisation at
finite temperatures mainly comes from structure distortions that result in changes to metal-
halide-metal bond angles and metal-halide bond lengths. The band gap is thus estimated to
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Table 8.1 Calculated band gaps (eV) of CsPbBr3 using PBEsol, HSE, G0W0 and QPGW . The
measured value is also included for comparison.

PBE HSE G0W0 QPGW EQPGW
g +∆T Experiment

0.33 0.87 1.16 1.89 2.34 2.41

be Eg = EQPGW
g +∆T = 2.34 eV, where EQPGW

g is the QPGW band gap calculated for the
static lattice. The estimate agrees with measured band gaps. Due to quantum confinement in
nanocrystals, which is being neglected in our first-principles bulk calculations, the measured
photoluminescence peak increases to 2.41 eV.

In subsequent calculations with Nd dopands I use the PBEsol band structure with a scissor
shift to raise the unoccupied DFT eigenstates, as PBEsol correctly captures the band-gap
trend with doping and the orbital character of the band-edge states.

8.1.2 Dopant-induced band-gap blueshift

Fig. 8.1(a) shows the normalised photoluminescence (PL) and absorbance spectra of doped
CsPbBr3 NC solutions. As the doping ratio increases, both the absorption onset and the PL
peak exhibit a continuous blueshift. Using first-principles methods, I calculate the band gap
of CsPbBr3 as a function of doping concentration, and Fig. 8.1(b) shows that the resulting
band-gap blueshift is in good agreement with the experimental trend. In the calculations I
include all of structural effects, many-body effects, spin-orbit coupling and thermal effects
using state-of-the-art many-body GW calculations and also including a correction to account
for thermal effects. Despite including all these terms, there is still a disagreement in the value
of the band gap compared to experiment, which is due to quantum-confinement effects in
NCs.

To rationalise the effect of B-site doping of Nd3+ ions on the optical properties of
CsPbBr3, I calculate the electronic structure of bulk pristine and Nd3+-doped CsPbBr3. The
calculated band structure of pristine CsPbBr3 is shown in Fig. 8.2(a). A direct band gap
of 2.34±0.06 eV is obtained at the R-point of the Brillouin zone, which agrees well with
the experimental photoluminescence peak at 2.41 eV when considering the weak quantum-
confinement effect present in the NCs. The valence-band maximum (VBM) results from
the antibonding interaction between Pb 6s and Br 5p orbitals, leading to a destabilised
state with respect to the isolated Pb 6s and Br 5p states. This interaction results in an
isotropic delocalised state along the Pb-Br vertices of the lattice with nodes on the Pb-Br
bond [Fig. 8.2(b)]. The conduction-band minimum (CBM) consists of empty Pb 6p states
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Fig. 8.1 (a) Normalised PL and absorbance spectra of CsPbBr3:xNd3+ NC colloidal solutions
with different Nd/(Nd+Pb) doping ratios: PL emission (solid line, excitation at 365 nm) and
UV-visible absorbance spectra (dashed line). The inset shows the corresponding images of
luminescent CsPbBr3:xNd3+ NC colloidal solutions under UV excitation. (b) Broadening of
the band gap with the increasing Nd doping ratio.

that hybridise to build a bonding and stabilised conduction-band minimum with respect to
the atomic orbitals [Fig. 8.2(b)].

The band-structure calculations with Nd dopants at Pb sites show that the band gap
increases with increasing doping concentration. Fig. 8.2(c) depicts the electronic structure
of CsPbBr3:xNd3+ (x = 12.5%), in which the band gap increases from 2.34 eV to 2.59 eV.
When Pb is replaced with Nd, the formation of the valence band described above is perturbed,
giving a band that mostly resembles the energetically lower lying isolated Br 5p orbitals.
This is shown in Fig. 8.2(d) by the VBM with dominant Br contributions, by the change
in dispersiveness towards a more localised state compared to the pristine case, and by the
change in the spatial charge distribution of the VBM. Similarly, the periodic overlap of the
CBM Pb 6p orbitals is perturbed, which leads to a destabilisation of the conduction band
towards the atomic 6p levels. The simultaneous stabilisation of the VBM and destabilisation
of the CBM results in the observed band gap increase.

After a systematic theoretical study on the individual contributions as well as the inter-
play between electronic effects, spin-orbit coupling, and structural effects including lattice
contraction and octahedral distortion, I demonstrate that the blueshift is dominated by elec-
tronic effects. As an example, at 12.5% doping, the electronically-induced blueshift is 0.24
eV, structural relaxation leads to a redshift of 0.08 eV, and spin-orbit coupling results in a
blueshift of 0.09 eV, leading to an overall blueshift of 0.25 eV. This microscopic understand-
ing provides new insights to guide further experimental studies of composition engineering
in colloidal CsPbX3 NCs, and provides a framework for further study of doping effects in
other material systems.
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Fig. 8.2 (a) Calculated band structure of pristine CsPbBr3. The orbital characters are plotted
as a fat-band structure showing Pb 6s, 6p and Br 4p orbitals. (b) Partial charge densities of
the VBM and the CBM of pristine CsPbBr3. (c) Calculated band structure of CsPbBr3:xNd3+

(x = 12.5%). The orbital characters are plotted as a fat-band structure showing Pb 6s, 6p and
Br 4p orbitals, as well as Nd 5d orbitals. (d) Partial charge densities of the VBM and the
CBM of Nd3+-doped CsPbBr3.

8.1.3 Enhanced photoluminescence quantum yield

My experimental colleagues also find that the PLQY is significantly enhanced upon doping.
In addition, the dominant mechanism is the increased radiative recombination kr, and I
perform first-principles calculations on the defect-free system to understand how kr increases
with doping.

I identify two microscopic mechanisms to explain the increase of kr with increasing
doping observed experimentally. The first mechanism is associated with the flattening of the
valence and conduction bands upon doping [Fig. 8.2(c)], increasing the electron and hole
effective masses. According to the Wannier-Mott model, larger effective masses lead to
stronger spatial confinement of the exciton and to an increase in its binding energy.
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The second mechanism is associated with the doping-driven decrease in the Pb-Br bond
length. The lowest-energy bright exciton is dominated by the electron-hole pair at the band
edges, implying that photoexcitation leads to a transfer of an electron along the Pb-Br bond
towards the Pb ion, while the hole remains delocalised over both elements. This suggests
that decreasing the Pb-Br bond length pushes the system towards a brighter state, leading to
an increase in the kr. To demonstrate the lattice-contraction mechanism, I conduct exciton
oscillator-strength calculations for the pristine system, but using the smaller primitive cell
parameters that correspond to those of the 12.5% Nd-doped system. As expected, I find that
the oscillator strength of the first bright exciton increases by 67.2% with respect to the fully
relaxed pristine perovskite, proving that lattice contraction is one of the key factors driving
the increase in kr. This is due to the increase in the overlap between the wave function of
electron and hole states that form the exciton. Based on first-principles calculations, I show
that the PLQY of defect-free CsPbBr3 can be further enhanced by lattice contraction.

8.1.4 Summary

In summary, I demonstrate that the band gap tunability is mostly driven by dopant-induced
electronic changes, while the increase in PLQY is associated with increased exciton binding
energy driven by dopant-induced electronic changes and enhanced exciton oscillator strength
driven by dopant-induced structural changes. This microscopic understanding opens new
possibilities for B-site composition engineering in colloidal CsPbX3 NCs.

8.2 Tunable photostriction of halide perovskites

Halide perovskites exhibit giant photostriction, that is, volume or shape changes upon
illumination. However, the microscopic origin of this phenomenon remains unclear and
there are experimental reports of both light-induced lattice expansion and contraction. I
establish a general method, based on first-principles calculations and molecular orbital theory,
which provides a microscopic picture of photostriction in insulators based on the orbital
characters of their electronic bands near the Fermi level. For lead-halide perovskites, I
find that different valence states have different bonding characters, leading to opposing
strengthening or weakening of bonds depending on the photoexcitation energy. The overall
trend is that light induces lattice contraction at low excitation energies, while giant lattice
expansion occurs at high excitation energies, rationalising experimental reports.
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8.2.1 Photostriction in halide perovskites

Photostriction is the process of non-thermal deformation of materials under illumination. It
has been well studied in ferroelectric materials such as SbSI [337] and oxide perovskites [338–
340] due to promising applications in microactuators, sensors, and photonic devices [341].
These studies reveal that the driving mechanism behind photostriction can have different
microscopic origins. For example, in polar materials the photoexcited carriers screen the
polarisation, which can change the internal electric field, inducing the converse piezoelectric
effect [342–344]. By contrast, in non-polar materials, the introduction of electron-hole pairs
under illumination can cause changes in atomic bonds that lead to lattice deformations [341].

The recent discovery of giant photostriction in halide perovskites [345–347] has been
shown to boost the power-conversion efficiency of perovskite-based solar cells [347], to influ-
ence phase segregation [348, 349] and moisture degradation [350], and also provides insights
into the observed light-induced intensity changes of photoluminescence [351, 352]. Addi-
tionally, photostriction could offer new pathways to use halide perovskites in optomechanical
devices [345, 346].

The microscopic origin of photostriction in halide perovskites remains unclear. It is
still debated whether the giant lattice expansion of up to 1.4% under illumination can be
induced by electronic excitation alone [346, 347, 353–356]. In addition, both light-induced
lattice expansion and contraction have been observed in experiments: the giant lattice
expansion is observed when the sample is illuminated by light sources such as a halogen
lamp and a standard 1-sun source with excitation energies much greater than the band
gap [346, 347, 355], whereas lattice contraction occurs at an excitation energy of just 0.04 eV
above the band gap [356]. The observations of both lattice contraction and expansion, and
the large magnitude of the volume changes, call for a better understanding of the microscopic
mechanism behind photostriction in halide perovskites.

8.2.2 Microscopic mechanism

In this work, I introduce a physically intuitive method to understand photostriction in semi-
conductors and insulators using a combination of electronic structure theory and molecular
orbital theory, based on the nature of the orbital characters near the band edges. Motivated by
contradictory experimental results in lead-halide perovskites, I study the effect of photoex-
cited carriers on the volume of cubic CsPbX3 (X = Cl, Br, I), and demonstrate that exciting
electrons from valence bands with different orbital characters leads to tunable photostriction.
When electrons are promoted from the strong antibonding states in the top valence band to
the weaker antibonding conduction states, the lattice is contracted as a result of an overall
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weakened antibonding interaction. On the other hand, when electrons are promoted from the
deeper, non-bonding valence bands to the antibonding conduction states, the antibonding
interaction increases and leads to lattice expansion. I reproduce the maximum experimentally
reported lattice expansion of 1.4% at a photoexcited carrier density of 0.8−0.9 electrons per
formula unit (e/f.u.) that requires photoexcitation energies of 3−4 eV above the band gap.
These findings pave the way to photocontrollable optoelectronic properties in lead-halide
perovskites – a desirable feature for technological applications.

To understand how bonding character affects photostrictive behaviour, I first consider
excitation processes between the VB and CB states. Based on the irreducible band represen-
tations (irreps), these excitations are allowed by symmetry. The fundamental band gap of
the system is located at the R point, which belongs to the point group Oh. The valence-band
maximum (VBM) arises from the antibonding hybridisation of Pb 6s orbitals and Br 4p
orbitals (irrep. R+

1 ), and the CBM corresponds to an antibonding state of Pb 6p orbitals (irrep.
R−

4 ). Selection rules demand that optical excitations in systems with inversion symmetry
are allowed only when the two irreps of the electronic states have opposite parities, denoted
with the descriptors even (+) and odd (−) in our notation. In this case, the VBM and the
CBM have opposite parities, making the optical excitation dipole-allowed. Despite both
being antibonding states, the antibonding interaction in the VBM is stronger than that in the
CBM because the former has a larger overlap between the Pb 6s states and the Br 4p states
compared to the relatively isolated 6p states around the Pb atoms in the CBM. As a result,
the symmetry-allowed bright excitation from the VBM to the CBM redistributes an electron
from a strong antibonding state to a weaker antibonding one, which consequently leads to a
reduced antibonding interaction and to lattice contraction.

To verify this picture computationally, I selectively excite electrons from the VB to the
CB within the ∆ self-consistent-field (∆SCF) approach and calculate the resulting relaxed
volume, as shown by the orange curve in Fig. 8.3(b). I start by only exciting electrons near
the minimum band gap at the R point, leading to small photoexcited carrier densities (n ≲ 0.3
e/f.u.). In this regime I observe lattice contraction. Exciting additional electrons from the
VB to the CB at k-points that are increasingly away from the minimum band gap at R (with
a corresponding increase in the photoexcited carrier density n ≳ 0.3 e/f.u.), involves the
excitation from weakened antibonding states and leads to diminished lattice contraction.
Continuing in this fashion, the antibonding interaction becomes so weak that exciting these
states to the relatively stronger antibonding CB states results in lattice expansion [not shown
in Fig. 8.3(b). The results of this computational experiment confirm the bonding picture for
excitations between the VB and the CB.
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Fig. 8.3 (a) Selective excitation of the antibonding VB state and the non-bonding VB-1 state
at the band gap of CsPbBr3. Evolution of the lattice constant of CsPbBr3 (b) with increasing
photoexcited carrier density n upon selective excitation, and (c) with increasing electron/hole
doping concentration n that populates/depopulates the CB/VB states.
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To further explore the relative strength of the antibonding interactions in the VB and
CB states, I calculate the evolution of the lattice constant upon doping, considering both
the population of the CB states (electron doping) or the depopulation of the VB states
(hole doping). As shown in Fig. 8.3(c), when populating the CB states, the lattice expands,
indicating an enhanced antibonding interaction. Similarly, the decreased lattice constant
when depopulating the VB states demonstrates a weakened antibonding strength. The relative
strength of the VB and CB states can be estimated from the slope of the corresponding red
and blue curves in Fig. 8.3(c). The decrease of lattice constant by depopulating the VB states
is faster than the increase of lattice constant by populating the CB states, indicating that the
antibonding strength of the VB is stronger than that of the CB. Therefore the average lattice
constant decreases, as demonstrated by the yellow curve in Fig. 8.3(c).

I next consider excitations from the VB-1 states. These non-bonding states do not
contribute to the bonding-antibonding interaction, and therefore the depopulation of these
states has a negligible effect on the lattice constant. On the other hand, the optical transition
populates the conduction bands of antibonding orbitals, increasing the interaction between
the delocalised Pb 6p orbitals and enhancing the repulsion between Pb atoms. Consequently,
selective excitation from VB-1 to CB results in lattice expansion.

To verify this picture computationally, I selectively promote electrons from the VB-1
to the CB using the ∆SCF method. I highlight that this computational experiment does not
correspond to a physically realisable photoexcitation process because band overlaps and
energy conservation may dictate that electrons from the VB should also be excited for a given
photoexcitation energy, but it is a convenient model to isolate the role of the VB-1 band. The
results are shown by the violet curve in Fig. 8.3(b), confirming the lattice expansion from the
bonding picture.

For completeness, I also consider excitations from the VB and VB-1 bands to the CB+1
band in Fig. 8.3(b). However, the character of the CB+1 band is similar to that of the CB
band, so the results are largely independent of the conduction bands into which electrons are
excited.

Overall, the combined analysis based on molecular orbital theory and first-principles
calculations shows that the nature of photostriction is dominated by the changes in the valence
states from which electrons are excited rather than the conduction states into which they are
excited.

8.2.3 Overall effects

Having established the role of different bands in the photostriction response of CsPbBr3

by (unphysically) exciting electrons from and to selected bands only, I next combine our
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Fig. 8.4 Photostriction of CsPbBr3 with and without spin-orbit coupling as a function of
photoexcited carrier density.

results to rationalise experimental photostriction reports. I use the ∆SCF method to create
photoexcited configurations with fixed carrier densities. To achieve a given photoexcited
carrier density, I promote the necessary number of electrons from the valence bands, starting
from the VBM state and then promoting electrons with decreasing energy, and simultaneously
populate the conduction bands starting from the CBM state and then occupying states with
increasing energy. The final configuration corresponds to a steady out-of-equilibrium state
with electrons populating the lowest energy conduction bands and holes populating the
highest energy valence bands.

To achieve this configuration experimentally, it is necessary to use photon energies at
least up to the largest energy difference between the highest occupied conduction band and
the lowest unoccupied valence band, and in the following this maximum energy difference
is called as the excitation energy. To promote the required number of electrons to achieve
a given photoexcited carrier density, it is also necessary to use appropriate fluences. The
maximum reported carrier densities can be realised by an experimentally feasible fluence of
about 10 mJ/cm2 [357, 358].

The volume of CsPbBr3 as a function of photoexcited carrier density is depicted in
Fig. 8.4. For carrier densities below n ≲ 0.245 e/f.u. (corresponding to excitation energies
below 4.40 eV), only strong antibonding VB states are excited, leading to an overall lattice
contraction. For higher carrier densities (excitation energies exceeding 4.40 eV), electrons
from the VB-1 band start to be promoted, emptying the non-bonding VB-1 states and
populating the antibonding conduction states. Therefore, the antibonding interaction is
significantly enhanced, resulting in stronger repulsion between the Pb atoms which causes
the lattice to expand.
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I obtain the maximum experimentally observed uniform strain of 1.4% at a photoexcited
carrier density n ∼ 0.8−0.9 e/f.u. (corresponding to an excitation energy of 5.5−6.0 eV).

I then discuss the role of spin-orbit coupling (SOC) in photostriction. The inclusion of
SOC has a dramatic effect on the electronic structures of halide perovskites [359]. SOC
splits the triply degenerate (sixfold degenerate when considering spin up and down) CBM
state at the R point into a doubly degenerate CB state and a fourfold degenerate CB+1
state [360]. This spin-orbit splitting decreases the CB energy and increases the CB+1 energy,
reducing the G0W0 band gap to 1.46 eV. Despite these SOC-driven changes to the band
structure, the general microscopic mechanisms and resulting photostriction as a function of
photoexcited carrier density remain largely unchanged, as shown in Fig. 8.4. The robustness
of the results with respect to the inclusion or exclusion of SOC arises because the band
characters are similar between the two situations. However, this may not be true in other
materials, especially when SOC induces band inversion between orbitals, and should be
carefully checked.

The complete picture, summarised in Fig. 8.4, shows that, at lower carrier densities
(corresponding to low excitation energies) there is light-induced lattice contraction, while at
larger carrier densities there is lattice expansion. These results allow me to rationalise the
various experimental findings. It has been reported that by using halogen lamps or a standard
1-sun source with photoexcitation energies far above the band gap, lattice expansion of up
to 1.4% can take place [346, 347, 355], but that a much smaller excitation energy of just
0.04 eV above the band gap induces compressive strain [356]. This study of the microscopic
mechanism for photoexcitation in these materials explains the origin and conditions for both
types of photostriction, providing a unified picture for the various experimental reports.

8.2.4 Summary

I provide a comprehensive microscopic description of photostriction in lead-halide per-
ovskites starting from a simple consideration of the orbital characters of their band structure.
When exciting from strong antibonding states in the top valence band to the weaker antibond-
ing conduction states, lattice contraction results from a weakened antibonding interaction. In
contrast, for larger excitation energies that promote electrons from the deeper, non-bonding
valence bands to the antibonding conduction states, the resulting enhanced antibonding inter-
action leads to lattice expansion. The overall effect is that light induces lattice contraction at
low excitation energies, while lattice expansion occurs at higher excitation energies. These
findings help to rationalise the experimental observation that lattice expansion of up to 1.4%
can be induced by light of energy far above the band gap [346, 347, 355], while excitation
energies close to the gap induce compressive strain that contracts the lattice [356]. The ability
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to control photostriction via the excitation energy may offer new opportunities for solar cells,
light-emitting diodes, and memory devices with ultrafast control of their optical properties.
More generally, this approach illustrates the important role that the orbital characters of
the electron bands can play in photoexcited phenomena. The combination of molecular
orbital theory and first-principles calculations should be generally applicable to understand
photoinduced phenomena in other systems.

8.3 Photo-induced phase transition in monolayer MoTe2

In the photo-induced topological phase transition in two-dimensional MoTe2 [361], the
system undergoes changes in temperature, strain, electronic excitation, chemical state, and
lattice-vibrational modes triggered by laser irradiation. The transition may depend on one
of these factors or on a combination of them. Consequently, experimental optimisation of
these factors is time consuming and costly. Instead, I exploit computational techniques to
model the quantum behaviour of MoTe2 and investigate the microscopic mechanism virtually.
This approach allows me to quickly explore the vast degrees of freedom to identify the most
possible mechanism, and to accomplish this at a small cost compared to experiments.

I reveal the underlying physics by simulating atomic displacements in the excited state
to see whether (and how) a phase transition may be triggered [147]. By promoting valence
electrons from high-lying valence band states to low-lying conduction band states, I calculate
the potential-energy surfaces along the phonon eigenvectors at different excitation energies.
And by comparing the potential-energy surfaces at different excitation energies, I identify
the correct microscopic mechanism.

The photo-induced phase transition can be triggered by photoexcited carriers alone that
soften multiple lattice-vibrational modes. These softenings lead to structural symmetry
breaking within sub-picosecond timescales (Fig. 8.5), which is shorter than the timescale of a
thermally driven phase transition. The transition is predicted to be triggered by photons with
energies over 1.96 eV. The microscopic picture of the phase transition is analogous to a Peierls
distortion, with a red shift of the conduction bands that are occupied upon photoexcitation
that lowers the overall energy of the system. Therefore, the transition mechanism under laser
irradiation can be explained without introducing other factors such as local heat, thermal
strain and Te vacancies.
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Fig. 8.5 potential-energy surface at different excitation energies along the eigenvectors of (a)
E′′, (b) E′, and (c) A′′

2 modes, and their corresponding structures (d)-(f) at the minima of the
potential-energy surface at 2.63 eV.

8.4 Phonon-assisted electronic states modulation of PdSe2

Information technology demands high-speed optoelectronic devices, but going beyond the
one terahertz (THz) barrier is challenging due to the difficulties associated with generating,
detecting, and processing high-frequency signals. In collaboration with my experimental
colleagues, I show that femtosecond-laser-driven phonons can be utilised to coherently
manipulate the excitonic properties of semiconductors at THz frequencies. Combining
ultralow-frequency Raman spectroscopy with first-principles calculations, I identify the
unique probe-energy-dependent features of electron-phonon interactions in layered PdSe2.
Two distinctive types of coherent phonon excitations could couple preferentially to different
types of electronic excitations: the intralayer (4.3 THz) mode to carriers and the interlayer
(0.35 THz) mode to excitons. This work provides new insights to understand the excited-state
phonon interactions of 2D materials, and to achieve future applications of optoelectronic
devices operating at THz frequencies.

Figure 8.6(a) demonstrates the calculated phonon dispersion of eight-layer PdSe2, show-
ing this configuration to be dynamically stable. The phonon occupation number Nph is
obtained from the Bose-Einstein distribution function at 300 K. The calculated displacement
patterns in Fig. 8.6(b) confirm that the higher frequencies around 4.3 THz (144.6 cm−1) are
dominated by intralayer vibrations of Se atoms, whilst the low-frequency modes below 1
THz (33.3 cm−1) are dominated by interlayer vibrations of both Pd and Se atoms.
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Fig. 8.6 Lattice dynamics and electron-phonon coupling in PdSe2. (a) Calculated phonon
dispersion spectrum of eight-layer PdSe2. (b) Displacement patterns of the intralayer and
interlayer modes. (c) Partial charge density of the electronic states that couple most strongly
to the corresponding atomic displacements. Electronic structure modulated by (d) intralayer
mode at 4.30 THz and (e) interlayer mode at 0.30 THz.

The strength of electron-phonon coupling is estimated using a frozen-phonon approach
along the normal modes with frequencies around 4.3 and 0.35 THz at the Γ point. It is
found that there are two modes with much stronger coupling strength than their neighbouring
modes. As shown in Fig. 8.6(d), the high-frequency intralayer mode at 4.30 THz significantly
modulates the high-lying conduction bands around 3 eV. This is because the high-lying
conduction bands come from the intralayer orbitals along the Pd-Se bonds [Fig. 8.6(c)], and
only strong intralayer displacements can influence their wave function. By contrast, the
interlayer mode of 0.30 THz strongly couples with the highest valence bands. These bands,
consisting mainly of dz2 orbitals of Pd and pz orbitals of Se, are the dominant hole states in the
formation of the A exciton. The dz2 orbitals of Pd and pz orbitals of Se, oriented along the out-
of-plane direction, are extremely sensitive to the interlayer breathing mode, which strongly
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couples to their charge distribution [Fig. 8.6(c)]. The calculated electron-phonon dynamics
are consistent with the observed ultrafast periodic modulation in the broadband pump-probe
experiments, in which the high-energy carriers are more sensitive to the intralayer mode,
while the A exciton is more sensitive to the interlayer mode.

In conclusion, these findings provide a guidance for the future development of THz
frequency optoelectronic devices that based on layered PdSe2. Furthermore, the observed
vibrational phenomena combined with theoretical calculations provide an intuitive picture
for exciton–phonon and electron–phonon interactions in 2D layered materials, which is
supported by the ultralow-frequency Raman spectroscopy with frequencies down to 5 cm−1.

8.5 Monolayer fullerene networks

Recent attempts to synthesise layers of connected buckyballs, i.e. C60 molecules linked
by carbon−carbon bonds, have obtained different arrangements of cluster cages through
the formation of bonds between neighbouring C60 molecules [362, 363]. The obtained
allotropes include a few-layer rectangular structure in which each C60 molecule has four
neighbouring buckyballs and a monolayer hexagonal structure in which each C60 cage
binds to six neighbours, namely, a few-layer quasi-tetragonal phase (qTP) and a monolayer
quasi-hexagonal phase (qHP) respectively. Great efforts have been devoted to stabilising the
linking bonds between neighbouring cluster cages by introducing magnesium atoms to form
a quasi-2D fullerene network with strong intralayer covalent bonds [362] because Mg atoms
tend to promote covalent bonds [364, 365]. To aid exfoliation, the Mg ions that hold the C60

cages together can be then replaced by large organic ions, which can be removed afterwards
by hydrogen peroxide, leading to pure, charge neutral fullerene networks in 2D [362, 366].

8.5.1 Monolayer fullerene networks as photocatalysts for water splitting

Photocatalytic water splitting can produce hydrogen in an environmentally friendly way
and provide alternative energy sources to reduce global carbon emissions. Recently, 2D
fullerene networks have been successfully synthesised in monolayer and few-layer forms [362,
363], offering new material candidates for photocatalysis because of their large surface
area with abundant active sites, feasibility to be combined with other 2D materials to
form heterojunctions, and the C60 cages for potential hydrogen storage. However, efficient
photocatalysts need a combination of a suitable band gap and appropriate positions of the
band edges with sufficient driving force for water splitting.



8.5 Monolayer fullerene networks 113

Fig. 8.7 Band alignment of different phases of C60 monolayers, as well as their free-energy
diagram for a hydrogen reduction reaction at pH = 0 and room temperature.

In this side project, I employ semilocal density functional theory and hybrid functional
calculations to investigate the electronic structures of monolayer fullerene networks. I find
that only the weakly screened hybrid functional, in combination with time-dependent Hartree-
Fock calculations to include the exciton binding energy, can reproduce the experimentally
obtained optical band gap of monolayer C60. All the phases of monolayer fullerene net-
works have suitable band gaps with high carrier mobility and appropriate band edges to
thermodynamically drive overall water splitting, as shown in Fig. 8.7. In addition, the optical
properties of monolayer C60 are studied, and different phases of fullerene networks exhibit
distinct absorption and recombination behaviour, providing unique advantages either as an
electron acceptor or as an electron donor in photocatalysis.

8.5.2 Stability and strength of monolayer polymeric C60

Ever since the discovery of C60 [367], the formation mechanism and stability of the fullerene
molecules are far from completely understood [368–371]. When forming structural units of
C60 clusters in a 2D plane, it is unclear whether ordered structures of monolayer polymeric
C60 are stable under ambient conditions such as strain and temperature. Unfortunately, only
qHP C60 has been obtained as monolayers, while all the qTP C60 flakes are few-layer [362].
These results raise doubts regarding the stability of monolayer fullerene networks.

Recent first-principles calculations have investigated various structural phases of mono-
layer C60 with different bonding characters [372–377]. The mechanical stability of several
phases has been confirmed [372, 373, 376]. More recently, the thermal stability of monolayer
C60 has been addressed using molecular dynamics simulations, showing that both qTP and



114 Side projects

qHP C60 monolayers can remain stable at temperatures near 800 K [378], which is partially
consistent with the experimental result that monolayer qHP C60 does not decompose at
600 K [362]. However, previous analysis based on mechanical and thermal stability cannot
explain why the qTP monolayers have not yet been exfoliated experimentally. Furthermore,
the dynamic stability of monolayer fullerene networks with respect to lattice vibrations,
which indicates whether the crystal structure is in a local minimum of the potential-energy
surface [379–382], is still unexplored. Additionally, the thermodynamic stability of different
phases, which energetically classifies the stability (especially at finite temperatures) [383–
395], remains unknown. Because of such knowledge gaps, several questions need to be
answered to understand the phase stability of monolayer fullerene networks: (i) Are qTP and
qHP C60, as pure carbon monolayers without extra Mg or organic ions to bind the C60 cages
together, dynamically stable? (ii) What is their relative stability in a thermodynamic aspect?
(iii) Can the calculated mechanical strength support their phase stability?

In this side project, I investigate the mechanical, dynamic and thermodynamic stability
of monolayer qTP and qHP C60 by using first-principles calculations. Structural relaxation
obtains two crystal structures of the quasi-tetragonal phase: a quasi-1D monolayer and a
tightly bound monolayer (denoted as qTP1 and qTP2 respectively). I show that the qTP1
monolayer, albeit being thermodynamically stable at all temperatures above 380 K, possesses
low dynamic and mechanical stability due to its weak bonding perpendicular to the straight
chains of C60 buckyballs. On the other hand, although qTP2 fullerene might be the ground-
state structure with the lowest Gibbs free energy at 0 K and exhibits good dynamic and
mechanical stability, it is only thermodynamically stable with respect to qTP1 C60 at low
temperatures. Instead, monolayer qHP C60 should be experimentally accessible owing to
their dynamic and mechanical stability, in spite of its lowest thermodynamic stability among
all three phases. The relative thermodynamic stability of monolayer fullerene networks is
summarised in Fig. 8.8. In addition, qHP C60 has the highest strength under various strains
(hydrostatic, uniaxial and shear) because of the closely packed crystal structures.

These results are in line with the experimental findings. It has been reported that fullerene
monolayers can only be isolated experimentally for the honeycomb structure qHP, whereas the
obtained rectangular structure qTP is few-layered [362]. Although qTP2 C60 is thermodynam-
ically favoured over qTP1 C60 at low temperatures, clearly qTP1 C60 is thermodynamically
more stable than the other two phases at all temperatures above 150 K. However, thermo-
dynamic stability of qTP1 C60 does not guarantee high dynamic stability in the presence of
interchain (out-of-plane) vibrations perpendicular to the quasi-1D chains. In addition, the
low moduli and strength of qTP1 C60 originated from the chain crystal structures, in addition
to its low shear resistance, indicate that qTP1 C60 cannot be intrinsically resilient under
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Fig. 8.8 Relative thermodynamic stability of monolayer fullerene networks, one-dimensional
fullerene chain and zero-dimensional fullerene molecule, with the Gibbs free energy F of
monolayer qTP2 C60 set to zero to compare the relative stability.

deformation. Moreover, monolayer qTP1 C60 is thermodynamically less stable than 0D C60

molecule for temperatures between 120 and 380 K. These results indicate the plausibility
that monolayer qTP1 fullerene network can be further split into individual 1D chains or
0D molecules by thermal fluctuations, interchain acoustic vibrations, or external strains.
In contrast, qHP C60 is both dynamically and mechanically more stable with respect to
qTP1 C60. Therefore, monolayer polymeric C60 has so far only been exfoliated from the
quasi-hexagonal bulk single crystals. These results indicate that a systematic analysis of me-
chanical, dynamic and thermodynamic stabilities is necessary to rationalise the experimental
data.





Chapter 9

Conclusions and outlook

This thesis discusses a range of topological properties in both the band structures of electrons
and in particular vibrational spectra of nuclei. First, I discuss the concept of single-gap
topology in electronic systems, i.e. topological semimetals, and present the very first example
of temperature-promoted topological semimetallic phase in an otherwise trivial insulator at
low temperatures in Chapter 3. Then I demonstrate the phonon counterparts of electronic
topology where Weyl and nodal-line/ring phonons can be viewed as a replica to topological
semimetals and predict the very first material family with light-controlled topological phonons
in Chapter 4. In Chapter 5, I show that phonons have their own advantages as charge neutral,
spinless bosonic excitations in terms of the preservation of time-reversal symmetry and the
accessibility to the entire spectra, enabling the feasibility of finding line degeneracy on the
surface of semi-infinite slabs. I then introduce the concept of multi-gap topology, and explain
why phonons are an ideal platform to study such topology and the associated non-Abelian
braiding compared with the electrons in Chapter 6. In Chapter 7, I propose the very first
material candidate with non-Abelian braiding involving both three and four phonon bands,
and study the possible experimental signatures. I also summarise a few side projects that I
have done during my PhD in Chapter 8, including optical properties and photostriction in
halide perovskites, photo-induced phase transition in monolayer MoTe2, electron-phonon
coupling in few-layer PdSe2, and various chemical/physical properties of monolayer fullerene
networks such as photocatalysis and thermodynamic stability.

In this final chapter I outline my research plans in the future that are derived from this
thesis.
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9.1 Non-Abelian braiding of nodal lines

Non-Abelian braiding of nodal lines, based on previous studies on braiding of nodal points,
holds potential for advancing our understanding of multi-gap topology. Building upon the
foundation laid by the braiding of points on a 2D plane, the braiding of nodal lines in a 3D
space aims to explore the rich phenomenology arising from different dimensions. The extra
dimension in 3D can be viewed as another tuning parameter rather than external stimuli such
as electric fields or strain. In that sense, the braiding can take place as a function of the wave
vector in the 3D momentum space, enabling the characterisation of entire braiding processes
in one material sample by one single measurement.

One possible research direction involves extending the implications from high-energy
physics to condensed matter systems. Investigating the creation and annihilation of points of
intersection between the nodal line and the 2D plane can provide insights into fundamental
principles of non-Abelian frame charges.

Another intriguing avenue for research lies in the study of higher-dimensional general-
isations of non-Abelian braiding. By considering higher-dimensional nodal objects, such
as nodal surfaces or higher-dimensional analogues of nodal lines, it is possible to explore
the emergence of higher-order topological phases and the corresponding braiding operations.
This research could unveil new avenues for controlling and manipulating quantum infor-
mation, paving the way for the development of topological quantum computing and other
advanced technologies.

9.2 Light-switchable topological phases

Future research directions in investigating light-switchable topological phases can further
advance the understanding of topological properties out of equilibrium. A starting point can
be the two-Fermi level approach by fixing the number of electrons and holes in the excited
state Kohn-Sham equation. The manipulation of topological properties can be realised
through the controlled tuning of photoexcitation.

One important avenue is to study both-single gap and multi-gap topology upon photoex-
citation. The two-Fermi level approach allows for the exploration of how carrier density and
electronic temperature can give rise to distinct structural and topological phases, enabling the
design of materials with tailored topological properties that can be switched on and off by
light.

Moreover, future research in this field can focus on developing theoretical frameworks
and computational methods that accurately capture the non-equilibrium dynamics to study
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the complex interplay between light and topology in both electrons and phonons. This
involves refining existing models and algorithms to incorporate the dynamics of light-matter
interactions and the time-dependent nature of excitations. By combining first principles sim-
ulations with sophisticated light-matter coupling theories, deeper insights can be gained into
the mechanisms governing light-induced topological phase transitions and devise strategies
to engineer and control these phases.
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Leijtens, Anna Osherov, Vladimir Bulović, Henry J. Snaith, David S. Ginger, and
Samuel D. Stranks. Photo-induced halide redistribution in organic-inorganic perovskite
films. Nature Communications, 7(1):11683, 2016.

[353] Hsinhan Tsai, Wanyi Nie, and Aditya D. Mohite. Response to Comment on
“Light-induced lattice expansion leads to high-efficiency solar cells”. Science,
368(6488):eaba6295, April 2020.

[354] Nicholas Rolston, Ross Bennett-Kennett, Laura T. Schelhas, Joseph M. Luther, Jef-
frey A. Christians, Joseph J. Berry, and Reinhold H. Dauskardt. Comment on “Light-
induced lattice expansion leads to high-efficiency perovskite solar cells”. Science,
368(6488):eaay8691, April 2020.



148 References

[355] Yang Zhou, Lu You, Shiwei Wang, Zhiliang Ku, Hongjin Fan, Daniel Schmidt,
Andrivo Rusydi, Lei Chang, Le Wang, Peng Ren, Liufang Chen, Guoliang Yuan,
Lang Chen, and Junling Wang. Giant photostriction in organic-inorganic lead halide
perovskites. Nature Communications, 7(1):11193, 2016.

[356] Yongtao Liu, Anton V. Ievlev, Liam Collins, Nikolay Borodinov, Alex Beliani-
nov, Jong K. Keum, Miaosheng Wang, Mahshid Ahmadi, Stephen Jesse, Kai Xiao,
Bobby G. Sumpter, Bin Hu, Sergei V. Kalinin, and Olga S. Ovchinnikova. Light-
ferroic interaction in hybrid organic-inorganic perovskites. Adv. Optical Mater.,
7(23):1901451, December 2019.

[357] J. Faure, J. Mauchain, E. Papalazarou, M. Marsi, D. Boschetto, I. Timrov, N. Vast,
Y. Ohtsubo, B. Arnaud, and L. Perfetti. Direct observation of electron thermalization
and electron-phonon coupling in photoexcited bismuth. Phys. Rev. B, 88:075120, Aug
2013.

[358] Shaohua Zhou, Changhua Bao, Benshu Fan, Hui Zhou, Qixuan Gao, Haoyuan Zhong,
Tianyun Lin, Hang Liu, Pu Yu, Peizhe Tang, Sheng Meng, Wenhui Duan, and Shuyun
Zhou. Pseudospin-selective floquet band engineering in black phosphorus. Nature,
614(7946):75–80, 2023.

[359] Claudine Katan, Nicolas Mercier, and Jacky Even. Quantum and dielectric confine-
ment effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev.,
119(5):3140–3192, March 2019.

[360] Michael A. Becker, Roman Vaxenburg, Georgian Nedelcu, Peter C. Sercel, Andrew
Shabaev, Michael J. Mehl, John G. Michopoulos, Samuel G. Lambrakos, Noam
Bernstein, John L. Lyons, Thilo Stöferle, Rainer F. Mahrt, Maksym V. Kovalenko,
David J. Norris, Gabriele Rainò, and Alexander L. Efros. Bright triplet excitons in
caesium lead halide perovskites. Nature, 553(7687):189–193, 2018.

[361] Suyeon Cho, Sera Kim, Jung Ho Kim, Jiong Zhao, Jinbong Seok, Dong Hoon
Keum, Jaeyoon Baik, Duk-Hyun Choe, K. J. Chang, Kazu Suenaga, Sung Wng
Kim, Young Hee Lee, and Heejun Yang. Phase patterning for ohmic homojunction
contact in MoTe2. Science, 349(6248):625, August 2015.

[362] Lingxiang Hou, Xueping Cui, Bo Guan, Shaozhi Wang, Ruian Li, Yunqi Liu,
Daoben Zhu, and Jian Zheng. Synthesis of a monolayer fullerene network. Na-
ture, 606(7914):507–510, 2022.

[363] Elena Meirzadeh, Austin M. Evans, Mehdi Rezaee, Milena Milich, Connor J. Dionne,
Thomas P. Darlington, Si Tong Bao, Amymarie K. Bartholomew, Taketo Handa,
Daniel J. Rizzo, Ren A. Wiscons, Mahniz Reza, Amirali Zangiabadi, Natalie Fardian-
Melamed, Andrew C. Crowther, P. James Schuck, D. N. Basov, Xiaoyang Zhu,
Ashutosh Giri, Patrick E. Hopkins, Philip Kim, Michael L. Steigerwald, Jingjing
Yang, Colin Nuckolls, and Xavier Roy. A few-layer covalent network of fullerenes.
Nature, 613(7942):71–76, 2023.

[364] Daniele Pontiroli, Matteo Aramini, Mattia Gaboardi, Marcello Mazzani, Alessandra
Gorreri, Mauro Riccò, Irene Margiolaki, and Denis Sheptyakov. Ionic conductivity in
the Mg intercalated fullerene polymer Mg2C60. Carbon, 51:143–147, 2013.



References 149

[365] Masashi Tanaka and Shoji Yamanaka. Vapor-Phase Growth and Structural Characteri-
zation of Single Crystals of Magnesium Doped Two-Dimensional Fullerene Polymer
Mg2C60. Crystal Growth & Design, 18(7):3877–3882, July 2018.

[366] J. Michael Gottfried. Molecular soccer balls connected to make a 2D material. Nature,
606:470–471, 2022.

[367] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. C60: Buckmin-
sterfullerene. Nature, 318(6042):162–163, 1985.

[368] H. W. Kroto. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70.
Nature, 329(6139):529–531, 1987.

[369] Harold Kroto. C60, fullerenes, giant fullerenes and soot. Pure and Applied Chemistry,
62(3):407–415, 1990.

[370] Nancy S. Goroff. Mechanism of fullerene formation. Acc. Chem. Res., 29(2):77–83,
February 1996.

[371] J. J. Bernal, P. Haenecour, J. Howe, T. J. Zega, S. Amari, and L. M. Ziurys. Formation
of Interstellar C60 from Silicon Carbide Circumstellar Grains. The Astrophysical
Journal Letters, 883(2):L43, 2019.

[372] Raphael M. Tromer, Luiz A. Ribeiro, and Douglas S. Galvão. A DFT study of the
electronic, optical, and mechanical properties of a recently synthesized monolayer
fullerene network. Chemical Physics Letters, 804:139925, 2022.

[373] Linfeng Yu, Jinyuan Xu, Bo Peng, Guangzhao Qin, and Gang Su. Anisotropic optical,
mechanical, and thermoelectric properties of two-dimensional fullerene networks. J.
Phys. Chem. Lett., 13(50):11622–11629, December 2022.

[374] Danwen Yuan, Hanqi Pi, Yi Jiang, Yuefang Huand Liqin Zhou, Yujin Jia, Gang
Su, Zhong Fang, Hongming Weng, Xinguo Ren, and Wei Zhang. Highly in-plane
anisotropic optical properties of fullerene monolayers. arXiv:2207.11366, 2022.

[375] Bo Peng. Monolayer fullerene networks as photocatalysts for overall water splitting.
J. Am. Chem. Soc., 144(43):19921–19931, November 2022.

[376] Penghua Ying, Haikuan Dong, Ting Liang, Zheyong Fan, Zheng Zhong, and Jin Zhang.
Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene
networks using quantum mechanical calculations and machine-learning molecular
dynamics simulations. Extreme Mechanics Letters, 58:101929, 2023.

[377] Haikuan Dong, Chenyang Cao, Penghua Ying, Zheyong Fan, Ping Qian, and Yanjing
Su. Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene:
A comparative study against bulk phase fullerene. arXiv:2208.03982, 2022.

[378] L.A. Ribeiro, M.L. Pereira, W.F. Giozza, R.M. Tromer, and Douglas S. Galvão.
Thermal stability and fracture patterns of a recently synthesized monolayer fullerene
network: A reactive molecular dynamics study. Chemical Physics Letters, 807:140075,
2022.



150 References

[379] Bo Peng, Hao Zhang, Hezhu Shao, Zeyu Ning, Yuanfeng Xu, Gang Ni, Hongliang
Lu, David Wei Zhang, and Heyuan Zhu. Stability and strength of atomically thin
borophene from first principles calculations. Materials Research Letters, 5(6):399–407,
November 2017.

[380] Oleksandr I. Malyi, Kostiantyn V. Sopiha, and Clas Persson. Energy, phonon, and
dynamic stability criteria of two-dimensional materials. ACS Appl. Mater. Interfaces,
11(28):24876–24884, July 2019.

[381] Dongbao Luo, Ketao Yin, and Richard Dronskowski. Existence of BeCN2 and Its
First-Principles Phase Diagram: Be and C Introducing Structural Diversity. J. Am.
Chem. Soc., 144(11):5155–5162, March 2022.

[382] Ioanna Pallikara, Prakriti Kayastha, Jonathan M Skelton, and Lucy D Whalley. The
physical significance of imaginary phonon modes in crystals. Electron. Struct.,
4(3):033002, 2022.

[383] Pasquale Pavone, Stefano Baroni, and Stefano de Gironcoli. α↔β phase transition in
tin: A theoretical study based on density-functional perturbation theory. Phys. Rev. B,
57:10421–10423, May 1998.

[384] Pasquale Pavone. Old and new aspects in lattice-dynamical theory. Journal of Physics:
Condensed Matter, 13(34):7593–7610, 2001.

[385] Akira Masago, Koun Shirai, and Hiroshi Katayama-Yoshida. Crystal stability of α-
and β -boron. Phys. Rev. B, 73:104102, Mar 2006.

[386] Michiel J. van Setten, Matthé A. Uijttewaal, Gilles A. de Wijs, and Robert A. de Groot.
Thermodynamic stability of boron: The role of defects and zero point motion. J. Am.
Chem. Soc., 129(9):2458–2465, March 2007.

[387] Ralf Peter Stoffel, Claudia Wessel, Marck-Willem Lumey, and Richard Dron-
skowski. Ab initio thermochemistry of solid-state materials. Angew. Chem. Int.
Ed., 49(31):5242–5266, July 2010.

[388] R. F. Zhang, Z. J. Lin, Ho-Kwang Mao, and Yusheng Zhao. Thermodynamic sta-
bility and unusual strength of ultra-incompressible rhenium nitrides. Phys. Rev. B,
83:060101, Feb 2011.

[389] Volker L. Deringer, Ralf P. Stoffel, and Richard Dronskowski. Thermochemical
Ranking and Dynamic Stability of TeO2 Polymorphs from Ab Initio Theory. Crystal
Growth & Design, 14(2):871–878, February 2014.

[390] Volker L. Deringer, Ralf P. Stoffel, and Richard Dronskowski. Vibrational and
thermodynamic properties of GeSe in the quasiharmonic approximation. Phys. Rev. B,
89:094303, Mar 2014.

[391] Mary Anne White, Anthony B. Cerqueira, Catherine A. Whitman, Michel B. Johnson,
and Tadashi Ogitsu. Determination of phase stability of elemental boron. Angew.
Chem. Int. Ed., 54(12):3626–3629, March 2015.



References 151

[392] Jonas Nyman, Orla Sheehan Pundyke, and Graeme M. Day. Accurate force fields and
methods for modelling organic molecular crystals at finite temperatures. Phys. Chem.
Chem. Phys., 18(23):15828–15837, 2016.

[393] Jonathan M. Skelton, Lee A. Burton, Fumiyasu Oba, and Aron Walsh. Chemical and
lattice stability of the tin sulfides. J. Phys. Chem. C, 121(12):6446–6454, March 2017.

[394] Ioanna Pallikara and Jonathan M. Skelton. Phase stability of the tin monochalcogenides
SnS and SnSe: a quasi-harmonic lattice-dynamics study. Phys. Chem. Chem. Phys.,
23(35):19219–19236, 2021.

[395] Christopher J. Bartel. Review of computational approaches to predict the thermody-
namic stability of inorganic solids. Journal of Materials Science, 57(23):10475–10498,
2022.




	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 A historical note
	1.2 Thesis outline

	2 Theoretical formalism
	2.1 Density functional theory
	2.1.1 Many-electron wave function
	2.1.2 Hohenberg-Kohn theorem
	2.1.3 Kohn-Sham equations
	2.1.4 Wannier functions

	2.2 Lattice dynamics
	2.2.1 Adiabatic approximation
	2.2.2 Harmonic approximation
	2.2.3 Phonon eigenvalues and eigenvectors

	2.3 Topological analysis

	3 Single-gap topology in semimetals
	3.1 Classification of topological semimetals
	3.1.1 Nodal-line semimetal
	3.1.2 Weyl semimetal
	3.1.3 Dirac semimetal

	3.2 Topological phase transitions in -PbO2
	3.2.1 Computational details
	3.2.2 Ground state properties of -PbO2
	3.2.3 Strain-induced topological phase transitions
	3.2.4 Temperature-promoted gap closing

	3.3 Conclusions and outlook

	4 Single-gap topology in phonons
	4.1 Recent developments of topological phonons
	4.2 Topological phonons in oxide perovskites
	4.2.1 Computational details
	4.2.2 Structural phases of BaTiO3
	4.2.3 Topological phonons in BaTiO3
	4.2.4 Controlling topological phonons by light
	4.2.5 Topological phonons in PbTiO3 and SrTiO3
	4.2.6 Discussion

	4.3 Conclusion

	5 Surface topology of phonons
	5.1 Degeneracies in the bulk and surface bands
	5.2 Surface nodal line in quasi-1D double-helix crystal SnIP
	5.2.1 Computational details
	5.2.2 Crystal structure and phonon dispersion
	5.2.3 Nodal ring phonons in SnIP
	5.2.4 Topological surface states of SnIP

	5.3 Conclusions and outlook

	6 Multi-gap topology in phonons
	6.1 Multi-gap topology
	6.2 Theoretical background
	6.2.1 Non-Abelian frame charges
	6.2.2 Patch Euler class
	6.2.3 Dirac strings
	6.2.4 Global topological configuration

	6.3 Case study: phonon braiding in monolayer Al2O3
	6.3.1 Computational details
	6.3.2 Crystal structure and phonon dispersion
	6.3.3 Band inversion upon electrostatic doping
	6.3.4 Frame charges of undoped Al2O3
	6.3.5 Frame charges of -0.08 e/f.u.-doped Al2O3
	6.3.6 Frame charges of -0.10 e/f.u.-doped Al2O3
	6.3.7 Frame charges of -0.20 e/f.u.-doped Al2O3
	6.3.8 Complete picture of braiding upon doping
	6.3.9 Topological edge states

	6.4 Conclusions and outlook

	7 Non-Abelian braiding of phonons: From three bands to four bands
	7.1 Introduction
	7.2 Non-Abelian braiding of phonons in monolayer silicates
	7.2.1 Computational details
	7.2.2 Silicates
	7.2.3 Phonon band structure
	7.2.4 Electric field induced band inversions and braiding
	7.2.5 Three-band braiding in group 1
	7.2.6 Four-band braiding in groups 2 and 3
	7.2.7 Edge states
	7.2.8 Experimental signature: Raman spectra

	7.3 Conclusion

	8 Side projects
	8.1 Tunable emission of Nd-doped CsPbBr3
	8.1.1 Accurate description of the band gap of CsPbBr3
	8.1.2 Dopant-induced band-gap blueshift
	8.1.3 Enhanced photoluminescence quantum yield
	8.1.4 Summary

	8.2 Tunable photostriction of halide perovskites
	8.2.1 Photostriction in halide perovskites
	8.2.2 Microscopic mechanism
	8.2.3 Overall effects
	8.2.4 Summary

	8.3 Photo-induced phase transition in monolayer MoTe2
	8.4 Phonon-assisted electronic states modulation of PdSe2
	8.5 Monolayer fullerene networks
	8.5.1 Monolayer fullerene networks as photocatalysts for water splitting
	8.5.2 Stability and strength of monolayer polymeric C60


	9 Conclusions and outlook
	9.1 Non-Abelian braiding of nodal lines
	9.2 Light-switchable topological phases

	References

