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Boundary Value Problems for the Laplace Equation on

Bounded Convex Domains with Analytic Boundary

By Parousia Rockstroh

In this thesis we study boundary value problems for the Laplace equation on

bounded convex domains with analytic boundary. It is well-established that the solu-

tion of a BVP for the Laplace equation is determined by the Dirichlet and Neumann

boundary data. Indeed, given the Dirichlet and Neumann data for a specified BVP,

the standard representation formula for the Laplace equation can be used to specify

the solution at any point in the interior of the domain. Our approach in this thesis

will be to develop an invertible relation between the Dirichlet and Neumann data for

a given BVP. This will allow us to solve for the unknown boundary data, given the

known boundary data, thereby finding a solution to the Laplace equation.

We begin the thesis by discussing a number of classical techniques for solving the

Laplace equation, along with their respective strengths and weaknesses. Following

this, we introduce a method by T. Fokas that was originally developed in the context

of integrable systems. In recent years this method has been used to analyze and solve

a range of elliptic PDEs in C ∼= R2. A key component of this method is a relation,

known as the global relation, that couples the boundary data for a given BVP. To

date, this relation has primarily been applied to PDEs on polygonal domains. In this

thesis we extend the use of the global relation to more general domains with analytic

boundary.

In Chapter 3 we introduce a new transform, denoted by Fp, that is an analogue of

the Fourier transform on analytic concave curves. This transform naturally arises in

the context of the global relation on domains with analytic boundary. In the remainder

of the chapter we show that the Fp-transform is a bounded operator.

In Chapter 4 we perform a spectral analysis of a differential equation which is

an eigenvalue problem associated to the Fp-transform. In performing this analysis,

we solve a Riemann-Hilbert problem that enables us to reconstruct a solution to the

differential equation that is sectionally analytic in the complex plane. Using this
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sectionally analytic function, we derive an inverse to the Fp-transform.

In Chapter 5 we construct an operator T that allows us to write the global relation

as an operator equation. Using results from the previous two chapters, we show that the

operator T is continuous and bounded below. From this, we conclude that the global

relation defines a map between the Dirichlet and Neumann data that is continuously

invertible. Hence, this allows us to find a solution to the Laplace equation for a given

BVP on a domain with analytic boundary.

Finally, in Chapter 6 we construct a numerical method to find the Neumann data,

given the Dirichlet data, for a specified BVP on a domain with analytic boundary.

This is done by extending a previous method by Fornberg and Flyer, [16], that was

developed for polygonal domains. We run the method on three test cases and discuss

the corresponding convergence properties. We observe that the method is particularly

well-suited for domains where the boundary has low curvature.
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CHAPTER 1

Introduction: The Laplace Equation

1.1 Problem Statement

When dealing with elliptic PDEs on bounded domains in Rn, such as the Laplace

equation:

∆u(x) = 0, x ∈ Ω ⊂ Rn, (1.1.1)

there are a number of different boundary conditions that may be assigned to form

a boundary value problem corresponding to the given PDE. The two most common

types of boundary conditions are the Dirichlet and Neumann:

• Dirichlet: The function u(x) is known for x ∈ ∂Ω.

• Neumann: The normal derivative ∂u
∂n(x) is known for x ∈ ∂Ω, where ∂u

∂n = ∇u ·n,

and n is the outward unit normal on ∂Ω.

Other boundary conditions may arise, such as the Robin boundary condition which

is a combination of the Dirichlet and Neumann conditions, i.e. ∂u
∂n(x) + u(x) is given

for x ∈ ∂Ω. Mixed boundary conditions may also arise in which a Dirichlet condition

is prescribed on part of the boundary while a Neumann condition is prescribed on

the remaining part. In this thesis we will be concerned primarily with Dirichlet and

1
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Neumann boundary conditions.

One often wants to find the Neumann data corresponding to the Dirichlet prob-

lem for an elliptic PDE on a given domain, or similarly the Dirichlet data given the

Neumann data. We give two examples below

• Suppose there is a steady-state distribution of temperature in a domain Ω ⊂ R2

and the temperature distribution on the boundary of the domain ∂Ω is known,

then we may also want to know the heat flux through the boundary. The corre-

spondence between the temperature on the boundary and the heat flux required

to maintain the temperature distribution is given by the correspondence known

as the Dirichlet-Neumann map, which maps the Dirichlet boundary values to

the Neumann boundary values for a given elliptic PDE on the bounded domain

Ω ⊂ R2.

• Suppose that a medium is in a steady state of electrical conduction in a bounded

domain Ω ⊂ R2, and suppose the voltage potential at the boundary and induced

current flux through the boundary of the domain are known. Then we may want

to find the electrical conductivity of the medium in the domain Ω. This is the

central problem of Electrical Impedance Tomography (EIT). In this example,

the Dirichlet condition is given by the voltage potential at the boundary, and

the Neumann condition is the current flux through the boundary. Moreover,

the Dirichlet-Neumann map gives the correspondence between the voltage po-

tential at the boundary and the induced current flux through the boundary. The

Dirichlet-Neumann map is essential in finding the coefficient of the corresponding

elliptic PDE in divergence form (and hence finding the electrical conductivity of

the medium).

In this thesis we are concerned with analyzing the Laplace equation and corre-

sponding Dirichlet-Neumann map associated to the Dirichlet problem given by

 ∆u(x) = 0 for x ∈ Ω

u(x) = f(x) for x ∈ Γ,
(1.1.2)

where Ω ⊂ R2 is a bounded convex region with an analytic boundary Γ = ∂Ω, u ∈

C2(Ω) ∩ C1(Ω̄), and f ∈ C1(Γ) is given (Dirichlet) boundary data on Γ.
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In the remainder of this chapter we will review classical methods for solving the

Laplace equation on bounded domains in R2. In Chapter 2 we will introduce a more

recent method that has been developed for solving the Laplace equation on polygonal

domains in C ∼= R2. This method will provide the theoretical framework that will be

used for the remainder of the thesis.

1.2 Classical Methods

In this section we give a brief summary of several classical methods for solving the

Laplace equation in a bounded domain and comment on the incorporation of the

boundary data into the solution for each case.

1.2.1 Separation of Variables

Perhaps the most common method of solution for the Laplace equation is separation

of variables, which naturally leads to a Fourier series representation of the solution.

The method of separation of variables proceeds as follows:

1. Choose a coordinate system such that the PDE is separable - this will depend

on both the PDE operator and the domain on which the PDE is being solved.

2. Write the (proposed) solution as the product of two functions (each of which is

a function of only one of the variables from the original PDE). Substitute this

back into the original PDE, and separate the variables. This produces two ODEs

- one for each of the variables.

3. Substitute the (proposed) solution into the boundary conditions.

4. One of the ODEs will be a BVP - solve this to determine the eigenvalues and

eigenfunctions for the given problem.

5. Solve the second ODE, and use this to simplify the solution if possible.

6. Use the principle of superposition to write a solution that solves the PDE and

satisfies the given boundary conditions. The solution generally comes in the form
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of a Fourier series such as

u(x, y) =
∞∑

j=−∞

∞∑
k=−∞

ŝj,k e
ijx eiky. (1.2.1)

The method of separation of variables results in a solution that is given in terms

of a Fourier series which naturally incorporates the boundary conditions. This is a

result of the fact that the boundary conditions were used in constructing the series

(i.e., steps 3-4 above). This approach gives a compact way of expressing the solution,

however, since an entirely new series must be constructed every time the boundary

conditions change, it is not an efficient way to study boundary value problems. In

addition, the domain must be ‘nice’ enough to find a coordinate system such that the

PDE is separable and such that the boundary conditions can be used in the solution

(i.e., step 1 above). Hence, for more complex domains it is difficult to use this method

to solve BVPs.

One benefit of separation of variables is that when the solution is sufficiently smooth

and a convergent Fourier series can be constructed for the given PDE and domain,

this leads to an accurate and stable numerical method. These are known as spectral

methods, and they exhibit exponential convergence, [20], [35].

1.2.2 Conformal Mapping

Let Φ(z) = u(x, y)+i v(x, y) be an analytic function in the domain Ω. As a consequence

of the fact that Φ(z) satisfies the Cauchy-Riemann equations, the real and imaginary

parts u(x, y) and v(x, y) are both harmonic, i.e. satisfy (1.1.1), in Ω. Therefore, the

problem of solving the Laplace equation in the domain Ω reduces to the problem of

finding an analytic function that satisfies the desired boundary conditions on ∂Ω.

When the domain is the upper half plane or the unit disk, the process of finding an

analytic function Φ(z) that satisfies the prescribed boundary conditions is simplified.

Thus, we desire a change of variables of the form w = f(z) such that the region Ω

in the z-plane is mapped to the upper half plane or the unit circle in the w-plane.

Further, we require that the function f(z) be analytic and that its derivative df/dz

is never zero. The mapping w = f(z) is known as a conformal map, and has the
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property that angles between intersecting curves are preserved by the transformation.

As a consequence of the fact that f(z) is analytic and its derivative is never zero,

the mapping w = f(z) is univalent, i.e. one-to-one and holomorphic. Hence, the

mapping can be inverted so that for every w ∈ Ω∗ there exists a unique z ∈ Ω such

that z = f−1(w). Moreover, if φ(z) is a function defined on Ω, then it can be mapped

to the domain Ω∗ via the function ψ(w), defined by

ψ(w) = φ(f−1(w)), (1.2.2)

for each w ∈ Ω∗. Furthermore, it can be verified via the Cauchy-Riemann equations

that if φ(z) is harmonic in Ω, then ψ(w) will be harmonic in Ω∗. In addition, the

boundary values of φ(z) on ∂Ω can be mapped to the boundary values of ψ(w) on

∂Ω∗.

The Riemann mapping theorem states that if Ω is a non-empty simply connected

open subset of the complex plane, and is not the entire complex plane, then there

is a bijective holomorphic mapping f : Ω → D from the domain Ω to the unit disk

D, and furthermore, the inverse f−1 : D → Ω is also holomorphic. This guarantees

the existence of a conformal map for any such domain Ω, however, the proof of the

Riemann mapping theorem is non-constructive and in practice it is often difficult to

find such a mapping.

In some special cases a conformal transformation of the form mentioned above can

be constructed. One such case is that of a polygonal domain in which the upper half

plane is mapped to the interior of a polygon while the real axis is mapped to the

boundary. This mapping is called a Schwarz-Christoffel mapping, and is realized

by the function f given by:

f(z) = C1

∫ z

0
(w − x1)α1/π(w − x2)α2/π · · · (w − xn)αn/π dw + C2. (1.2.3)

Here C1 and C2 are constants and α1, . . . , αn represent the interior angles of the poly-

gon. The function f(z) maps the points x1, . . . , xn on the real axis to the corners
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w1, . . . , wn of the polygon, with the correspondences

f(x1) = w1, f(x2) = w2, . . . , f(xn−1) = wn−1, f(∞) = wn. (1.2.4)

For an exposition on the Schwarz-Christoffel mapping along with some numerical

methods for solving the corresponding integrals, see [8]. The Schwarz-Christoffel map-

ping technique is an effective way of solving the Laplace equation in a general polygonal

domain, however it often results in integrals that are difficult to evaluate analytically

or numerically. More generally, the method of conformal mapping is effective in the

cases where a mapping to the upper half plane or unit circle is known, however such

a mapping is only known for a limited number of domains. For further reading on

conformal mapping see [1].

1.2.3 Integral Representation via Fundamental Solution

Consider the BVP for the Laplace equation given by

 ∆u(x) = 0 for x ∈ Ω ⊂ Rn

u(x) = f(x) for x ∈ Γ,
(1.2.5)

where the boundary of the domain Ω is C2. A fundamental solution corresponding

to the operator ∆ is a function Φ(x,y) defined on Rn such that

∆ Φ(x,y) = δ(x− y), (1.2.6)

where δ is the Dirac delta distribution. The fundamental solution for the Laplace

equation is given by

Φ(x,y) =


1

2π ln(|x− y|) for n = 2

1
ωn(n−2)

1
|x−y|n−2 , for n ≥ 3,

(1.2.7)
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where ωn = 2πn/2/Γ(n/2), which is the surface area of the unit sphere in Rn, and Γ is

the gamma function.

If the function u ∈ C2(Ω̄) satisfies the PDE ∆u(x) = 0 for all x ∈ Ω, then Green’s

third identity tells us that u(x) may be expressed as:

u(x) =

∫
Γ

Φ(x− y)
∂u

∂n
(y)− u(y)

∂Φ

∂n
(x− y) dσ(y), (1.2.8)

where Φ(x,y) is a fundamental solution as defined above, dσ(y) is the surface mea-

sure on Γ, and dV (y) is the volume measure in Ω. As before, ∂u/∂n is the normal

derivative, i.e. ∂u/∂n = ∇u · n, where n is the outward pointing unit normal on

Γ. Equation (1.2.8) is referred to as a representation formula. The representation

formula depends only on the Dirichlet and Neumann data, and therefore the solu-

tion of the Laplace equation is completely determined by specifying the Dirichlet and

Neumann conditions for a given BVP. One way of doing this is by finding a Dirichlet-

Neumann map, which can be realized via the Poincare-Steklov operator given

by:

S : u|∂Ω 7→
∂u

∂n
|∂Ω. (1.2.9)

Using the operator S and the representation formula given in (1.2.8), the solution to

the Laplace equation can be written as:

u(x) =

∫
Γ

Φ(x− y)S f(y)− f(y)
∂Φ

∂n
(x− y) dσ(y), (1.2.10)

given sufficient regularity of the Dirichlet data f (in our case, the assumption f ∈

C1(Γ) is sufficient). Therefore, given sufficient regularity for f , finding a well-defined

Dirichlet-Neumann map is equivalent to finding a solution to the Laplace equation for

a given well-posed BVP, [3].

We will now discuss two ways in which the representation formula in (1.2.8) can

be used to find a solution to the Laplace equation for a given BVP. The first relies on

modifying the fundamental solution Φ(x−y) so that the specified boundary conditions

are satisfied. The second relies on finding the unknown boundary data - this approach

is related to the idea of finding a Dirichlet-Neumann map.
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As noted above, the integral in (1.2.8) depends on both u(y) and ∂u/∂n(y) for y ∈

Γ, and hence both the Dirichlet and the Neumann data must be known in order for u to

be a solution of the BVP given in (1.2.5). In some cases this may be circumvented by

constructing a functionG(x,y), known as a Green’s function, which is a modification

of the fundamental solution that satisfies the boundary conditions. In particular, let

ψ ∈ C2(Ω̄) be a harmonic function that satisfies the BVP

 ∆ψ(x) = 0 for x ∈ Ω

ψ(x) = Φ(x− y) for x ∈ Γ,
(1.2.11)

then the function G(x,y) := Φ(x−y)−ψ(x) satisfies the BVP given in (1.2.5). Using

(1.2.8) and G(x,y), the solution u ∈ C2(Ω) ∩ C1(Ω̄) to (1.2.5) can be written as

u(x) =

∫
Γ

∂G

∂n
(x− y) f(y) dσ(y), x ∈ Ω. (1.2.12)

A similar Green’s function can also be constructed for the corresponding Neumann

problem, and takes the form

u(x) =

∫
Γ
G(x− y) g(y) dσ(y), x ∈ Ω, (1.2.13)

where g(x) is the specified Neumann data. When a suitable Green’s function can be

found for a given BVP, this is an effective method for constructing a solution. However,

the Green’s function depends on the shape of the domain Ω and unfortunately is only

known analytically for a limited number of simple domains. For an overview of some

domains for which the Green’s function can be computed analytically, see [9].

Now we will mention another class of methods which allows us to circumvent the

construction of a Green’s function for a given BVP. We introduce the following integral

operator T given by:

T µ(x) =

∫
Γ

∂Φ(x− y)

∂ny
µ(y) dσ(y), x ∈ Ω ∪ Ωc, (1.2.14)

where Φ(x − y) is the (known) fundamental solution given by (1.2.7), µ is a density



CHAPTER 1. INTRODUCTION: THE LAPLACE EQUATION 9

function associated to T , and Ωc = R2 \ Ω. Equation (1.2.14) is known as a double-

layer potential. Similarly, we introduce the integral operator S given by:

S ρ(x) =

∫
Γ

Φ(x− y) ρ(y) dσ(y), x ∈ Ω ∪ Ωc, (1.2.15)

where ρ is a density function associated to the operator S. Equation (1.2.15) is known

as a single-layer potential. We note that the representation formula (1.2.8) is com-

prised of a double- and single-layer potential, for x ∈ Ω, where the densities µ and ρ

correspond to the Dirichlet and Neumann data, respectively. For a given BVP only

either the Dirichlet or Neumann data is specified, and, as previously mentioned, one

way to solve the BVP is to find the unknown boundary data. The Boundary Inte-

gral Equation (BIE) method is a class of techniques that uses the known boundary

data, along with a set of integral relations, to find a density function, µ or ρ, corre-

sponding to the unknown boundary data. Comparing this approach to the Green’s

function method, we note that the integral operators T and S have a similar struc-

ture to equations (1.2.12) and (1.2.13), respectively. However, equations (1.2.12) and

(1.2.13) require the computation of a Green’s function which is suitable for the given

domain, whereas the double- and single-layer potentials use the known fundamental

solution Φ(x− y) as a kernel function. In the Green’s function approach, the Green’s

function must be found for the given domain, whereas in the BIE method, the unknown

density function, µ or ρ, must be found for the specified BVP.

The BIE method proceeds by taking the limit as x approaches Γ in the repre-

sentation formula and its normal derivative. To do this, we first take the limit as x

approaches Γ for the single- and double-layer potentials, which leads to the following

operators:

V µ(x) = − lim
ξ→x∈Γ

∇ξ T µ(ξ) · nx, ξ ∈ Ω (1.2.16)

K µ(x) = lim
ξ→x∈Γ

T µ(ξ) +
1

2
µ(x), ξ ∈ Ω (1.2.17)

S ρ(x) = lim
ξ→x∈Γ

S ρ(ξ), ξ ∈ Ω (1.2.18)

K∗ ρ(x) = lim
ξ→x∈Γ

∇ξ S ρ(ξ) · nx −
1

2
ρ(x), ξ ∈ Ω. (1.2.19)
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It is well-known from classical analysis that the limits in (1.2.16)-(1.2.19) exist for the

Laplace equation, [24], [28]. In particular, if the boundary Γ is C2 and µ and ρ are

continuous, then the limits in (1.2.17)-(1.2.19) exist uniformly for all x ∈ Γ and can

be expressed explicitly as the following integral operators on the boundary:

K µ(x) =

∫
Γ\{x}

∂Φ(x− y)

∂ny
µ(y) dσ(y), for x ∈ Γ, (1.2.20)

S ρ(x) =

∫
Γ\{x}

Φ(x− y) ρ(y) dσ(y), for x ∈ Γ, (1.2.21)

K∗ ρ(x) =

∫
Γ\{x}

∂Φ(x− y)

∂nx
ρ(y) dσ(y), for x ∈ Γ. (1.2.22)

For the operator V , we quote the following lemma (given as Lemma 1.2.2 in [24]) which

gives an explicit representation for the limit in (1.2.16):

Lemma. Let Γ ∈ C2 and let µ be a Holder continuously differentiable function. Then

the limit in (1.2.16) exists uniformly with respect to all x ∈ Γ and all µ with ‖µ‖C1+α ≤

1. 1 Moreover, for dimension n = 2, the operator V can be expressed as a composition

of tangential derivatives and the single-layer potential operator S:

V µ(x) = − d

dσ(x)
S

(
dµ

dσ

)
(x). (1.2.24)

The kernel functions in (1.2.20) and (1.2.22) are given by:

∂Φ(x− y)

∂ny
=

1

2π (n− 1)

(x− y) · ny
|x− y|n

, (1.2.25)

∂Φ(x− y)

∂nx
= − 1

2π (n− 1)

(x− y) · nx
|x− y|n

, (1.2.26)

where n is the dimension of Ω. The integral operators K and K∗ as defined in (1.2.20)

and (1.2.22) are weakly singular in the sense that the kernels (1.2.25) and (1.2.26) obey

1Here ‖ · ‖C1+α denotes the norm on the Holder space C1+α(Γ) = {f ∈ C1(Γ) : ‖f‖C1+α(Γ) <∞}.
The norm ‖ · ‖C1+α is defined by:

‖f‖C1+α := sup
x∈Γ
|∂f(x)|+ sup

x,y∈Γ,x 6=y

|∂f(x)− ∂f(y)|
|x− y|α , ∂ =

d

dσ
. (1.2.23)
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the following bounds for all x,y ∈ Γ:

∣∣∣∣∂Φ(x− y)

∂ny

∣∣∣∣ ≤ C1|x− y|−λ1 , (1.2.27)∣∣∣∣∂Φ(x− y)

∂nx

∣∣∣∣ ≤ C2|x− y|−λ2 , (1.2.28)

where C1, C2, λ1 < n − 1, and λ2 < n − 1 are constants. In the case n = 2, both

kernels in (1.2.27) and (1.2.28) can be extended to a C0-function for y → x, [28].

Furthermore, it is well-established that K and K∗, as defined in (1.2.20) and (1.2.22),

are compact operators, [28].

Taking the limit as x approaches Γ in the representation formula (1.2.8) and its

normal derivative, we get:

u(x) =

(
1

2
I −K

)
u(x) + S

∂u

∂n
(x) (1.2.29)

∂u

∂n
= V u(x) +

(
1

2
I +K∗

)
∂u

∂n
(x). (1.2.30)

These integral equations give a relation between the Dirichlet and Neumann data.

Using these two relations, we can formulate the boundary integral problem for finding

the unknown boundary data in at least two different ways. This is useful as one of the

formulations often has benefits over the other either in terms of analysis or numerical

implementation.

If we consider the Dirichlet problem (1.2.5), i.e., given µ = u|Γ find ρ = ∂u/∂n|Γ,

then we may use either (1.2.29) or (1.2.30) to find the (unknown) Neumann data.

Using the relation (1.2.29), the unknown density ρ (and hence the Neumann boundary

data) may be found by solving the integral equation

S ρ(x) = F1(x), for x ∈ Γ, (1.2.31)

where F1(x) = 1
2 µ(x) + K µ(x) is determined by the Dirichlet data, and therefore

known. Equation (1.2.31) takes the form of a Fredholm integral equation of the first

kind.

Instead of using the relation in (1.2.29), we may use the relation (1.2.30), in which
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case the unknown density ρ (and hence the Neumann boundary data) may be found

by solving the integral equation

1

2
ρ(x)−K∗ ρ(x) = F2(x), for x ∈ Γ, (1.2.32)

where F2(x) = V µ(x) is determined by the Dirichlet data, and therefore known.

Equation (1.2.32) takes the form of a Fredholm integral equation of the second kind,

which is a well-studied class of integral equations, [21], [38]. This shows that for a given

BVP, there is often at least two ways of formulating the boundary integral equations.

In this case, the formulation resulting from (1.2.32) is more amenable to analysis and

numerical implementation.

If we consider the corresponding Neumann problem, i.e. given the Neumann data µ

find the Dirichlet data ρ, then using the relation (1.2.29) results in an integral equation

of the form:
1

2
µ(x) +K µ(x) = G1(x), x ∈ Γ, (1.2.33)

where G1(x) = S ρ(x). Equation (1.2.33) is a Fredholm integral equation of the second

kind, which is the same class as (1.2.32). If we use the relation (1.2.30) for the Neumann

problem, then we get an integral equation of the form:

V µ(x) = G2(x), x ∈ Γ, (1.2.34)

where G2(x) = 1
2 ρ(x − K∗ ρ(x)). Equation (1.2.34) is a hypersingular boundary

integral equation of the first kind. Again we see for the Neumann problem that there

are two ways of formulating the boundary integral equations. In this case, it is more

advantageous to use the boundary integral formulation given in (1.2.33). It is often

the case that for a given BVP one of the boundary integral formulations is more

advantageous to use.

For more general equations, the BIE method often involves integral operators with

strongly singular or hypersingular kernels. In these cases, further analysis is generally

required. For a synopsis of the singular integrals that are encountered when using the

BIE method, see [22].
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1.3 Summary

In this chapter we discussed several ways of solving the Laplace equation on domains

with analytic boundary, each with advantages and disadvantages. The method of

separation of variables gives an algorithmic way of finding the solution to a given BVP

while at the same time leading to an efficient numerical method. However, separation

of variables can only be performed on a limited number of domains and requires a

carefully chosen coordinate system. The method of conformal mapping is also an

effective way of finding a solution to a BVP for the Laplace equation, however, it is

often difficult to find an appropriate conformal map for many domains. Of the methods

presented here, the BIE method is the most versatile as it can be applied to a wide

variety of domains and it naturally leads to a variety of effective numerical methods.

However, the BIE method requires the use of singular integrals, which often requires

further analysis.

In this thesis we will use (and extend) a recent method, known as the ‘Fokas’

or ‘Unified Transform’ method, that can be thought of as a spectral analogue of the

BIE approach. This method uses Green’s second identity to derive a relationship that

couples the Dirichlet and Neumann boundary data. For a given BVP, this relationship

can then be used to find the unknown boundary data. Unlike the conformal mapping

and separation of variables approaches, this method can be used on a diverse set of

domains. To date, the method has successfully been applied to the class of convex

polygons in C ∼= R2, and in this thesis it will be extended to the more general class of

convex domains with analytic boundary in C ∼= R2. This method also has the benefit

of avoiding the use of singular integrals that are needed for the BIE approach. In the

chapter that follows we will introduce and further explore this method.

As a note, we intentionally restrict our attention to the Laplace equation in this

study. It is in keeping with the literature in this field to first perform a thorough

analysis of the Laplace equation before moving to more general elliptic PDEs (e.g., the

Helmholtz and modified Helmholtz equations). There are well-established methods

for extending from the Laplace equation to more general elliptic PDEs for the case

of polygonal domains that will likely carry over for domains with analytic boundary.

These extensions are briefly mentioned in the conclusion as a matter for future study.



CHAPTER 2

The Fokas Method and Global Relation

In the previous chapter we identified three classes of methods for studying the Laplace

equation, and the corresponding boundary conditions, in a bounded domain Ω ⊂ R2.

While all of the methods produce valid solutions in certain cases, as identified, each

method also has limitations. In this chapter we introduce a method that allows us

to deal with more general domains than with separation of variables or conformal

mapping, while at the same time reducing the amount of work needed to find a map

between the Dirichlet and Neumann data. In this chapter we will use this method to

derive some initial results for polygonal domains. This will allow us to introduce the

method in a similar context to what will be covered in this thesis while at the same

time building some ideas that will be used later.

The aforementioned method was originally developed in the context of studying

integrable PDEs. In the 1960s the Inverse Scattering Transform (IST) was developed

for solving the initial value problem for the KdV and non-linear Schrodinger equations.

In subsequent years, the IST was further applied to find soliton solutions to other non-

linear PDEs which admit a “Lax pair formulation”, that is they can be written as

the compatibility condition of two eigenvalue equations. Such equations are called

“integrable”. In [14], Fokas developed the “unified method”, or “Fokas method”,

which extended the Inverse Scattering Transform method from initial value problems

14
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to boundary value problems for non-linear and linear integrable PDEs. This is done by

performing a simultaneous spectral analysis of both parts of the Lax pair for the given

integrable PDE, which involves solving a Riemann-Hilbert problem, and by analyzing a

relation that encodes information about the boundary values of the given BVP, known

as the ‘global relation’. In this thesis we will focus on the latter of these two, i.e. the

global relation.

2.1 The Laplace Equation on a Polygon

In order to illustrate the relevant features of the unified method of Fokas, we will show

how the method can be used to study the Laplace equation on polygonal domains in

R2. In particular, we will briefly explain how the unified method leads to an integral

representation for the solution of the Laplace equation in a polygon. We will then

study a key relationship that holds for the boundary data and discuss how this can be

used to understand the relationship between the Dirichlet and Neumann data. This

relation will be the focus of the thesis.

To be precise, let Ω ⊂ C ∼= R2 be the closed n-sided polygon with corners given

by z1, . . . , zn, where zj ∈ C for each j ∈ {1, . . . , n}. Also, we denote the side from zj

to zj+1 by lj , where zn+1 = z1. The problem that we are concerned with analyzing is

that of the Laplace equation in the polygon with Dirichlet boundary data given by:

 ∆u(z) = 0 for z ∈ Ω ⊂ C

u(z) = f(z) for z ∈ Γ = ∂Ω,
(2.1.1)

where the boundary data, f , for each side is given by u(z) = fj(z) for z ∈ lj . We seek

a solution u ∈ C2(Ω) ∩ C1(Ω̄), and assume fj ∈ C1(lj) for each j ∈ {1, . . . , n}.

Now we introduce some notation. Let z = x+ iy so that the conjugate of z is given

by z̄ = x− iy, and define the partial derivatives ∂z and ∂z̄ by

∂z =
1

2
(∂x − i∂y) and ∂z̄ =

1

2
(∂x + i∂y) . (2.1.2)

We use the notation fz = ∂z(f) and fz̄ = ∂z̄(f) to denote the respective derivatives of
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the function f .

In the unified method of Fokas, we proceed by viewing the Laplace equation as an

integrable PDE. The corresponding Lax pair for the Laplace equation is given by:

µz − iλµ = U(z) and µz̄ = 0, (2.1.3)

where U(z) is defined by U(z) = uz = ux− iuy, and µ = µ(z, λ) with z ∈ Ω and λ ∈ C.

Moreover, the compatibility condition for this system is Uz̄ = uzz̄ = 1
4 ∆u = 0, which

is the analyticity condition for U(z). The particular solution to (2.1.3) can be written

for each side lj as follows:

µj(z, λ) =

∫ z

zj

eiλ(z−z′)U(z′) dz′, j = 1, . . . , n, λ ∈ Sj , (2.1.4)

where zj are the corners of the polygon, z is a point along the segment connecting zj

and zj+1, and Sj := {λ ∈ C : arg(λ) ∈ [− arg(zj−1 − zj), π− arg(zj+1 − zj)]} is the set

of values of λ in the complex plane for which (2.1.4) is bounded. The regions {Sj}nj=1

form a partition of the complex plane and a solution which is analytic for all λ ∈ C

can be defined as follows:

µ(z, λ) = µj(z, λ), λ ∈ Sj , j = 1, . . . , n. (2.1.5)

By performing integration by parts on each of the functions µj(z, λ), we get the

following decay estimate for large λ:

µ(z, λ) = O

(
1

λ

)
, as λ→∞. (2.1.6)

Furthermore, by subtracting the adjacent µj ’s, we get the following relations:

µj+1(z, λ)− µj(z, λ) = eiλz
∫ zj

zj+1

e−iλzU(z) dz, λ ∈ Lj , (2.1.7)

where Lj is the ray Lj := {λ ∈ C : arg(λ) = − arg(zj−zj+1)}, oriented toward infinity.
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We now wish to express the function µ(z, λ) in terms of an integral relation which

is analytic for all λ ∈ C and that satisfies the conditions (2.1.6)-(2.1.7). This takes

the form of a Riemann-Hilbert problem, This is referred to as a Riemann-Hilbert

problem1, and it was shown in [11] and [12] that this problem has a unique solution

which is given by the following Cauchy-type integral:

∂zu =
1

2π

n∑
j=1

∫
Lj

eiλzρj(λ)dλ, where ρj(λ) =

∫
lj

e−iλz
′ ∂q

∂z′
dz′, (2.1.8)

The functions {ρj(λ)}nj=1 are known as spectral functions. As we will see in the

discussion that follows, the spectral functions incorporate information about both the

Dirichlet and Neumann data.

2.1.1 The Global Relation for the Laplace Equation on a Polygon

So far we have shown that the solution to the Laplace equation on a polygon can be

expressed in terms of an integral representation. This integral representation is written

in terms of spectral functions {ρj(λ)}nj=1, which we will now explore further.

It was shown in [10] that the following differential 1-form is associated with the

Laplace equation in C:

η(z, z̄, λ) = e−iλzuz dz. (2.1.9)

The exterior derivative of the differential form η is given by

dη = e−iλzuzz̄ dz̄ ∧ dz. (2.1.10)

Since u satisfies the Laplace equation, i.e. uzz̄ = 0 in Ω, it follows that dη = 0, and

hence η is a closed 1-form. By Stoke’s theorem, we have

∮
∂Ω
η = 0, λ ∈ C. (2.1.11)

1In general, a Riemann-Hilbert problem consists of constructing a piecewise analytic function in the
complex plane, given the behavior of the function on its discontinuities. A more detailed introduction
to Riemann-Hilbert problems is given in Chapter 4.
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Equation (2.1.11) is referred to as the global relation, and it encodes information

about both the Dirichlet and Neumann boundary conditions and depends meromor-

phically on the spectral parameter λ.

For the case of a polygon, (2.1.11) is simply a line integral of η(z, z̄, λ) along each

segment lj , and hence can be expressed as a sum of the corresponding spectral functions

{ρj(λ)}nj=1, i.e.
n∑
j=1

ρj(λ) = 0, λ ∈ C, (2.1.12)

where the spectral functions are defined in (2.1.8).

The relation given in (2.1.12) reduces the study of the global relation to under-

standing the spectral functions {ρj(λ)}nj=1. As we will show, each of the spectral

functions can be written in terms of tangential and normal derivatives, and hence en-

codes information about both the Dirichlet and Neumann data. This in turn allows

us to establish a relationship between the two types of boundary data for a given

BVP. Indeed, it has been shown that the global relation completely determines the

Dirichlet-Neumann map for the Laplace equation in the case of polygonal domains,

[5],[4].

We will now give an example to demonstrate how the global relation can be used to

establish a relationship between the Dirichlet and Neumann data on a square. For the

sake of presentation we will leave the relationship between the Dirichlet and Neumann

data in implicit form. Following the example, we will show how the global relation can

be used to explicitly obatin the Neumann data given the Dirichlet data (or vice-versa).

2.1.2 An Example

Let the domain Ω be the square of side-length two centered at the origin. We will

analyze the BVP for the Laplace equation where the Dirichlet data is given for each

edge. The corners of the square are given by:

z1 = (1 + i), z2 = −1 + i, z3 = z2, z4 = z1. (2.1.13)

The solution to Laplace’s equation in this domain is given by (2.1.8) with n = 4. For

the sake of symmetry, we assume that the Dirichlet data is the same for each side so
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that u(z) = fj(z) for z ∈ lj and fj = f for each j ∈ {1, . . . , 4}. Similarly, the Neumann

data will be denoted by ∂nu(z) = gj(z) for z ∈ lj , where ∂n is the normal derivative

to the surface at the given point. We also assume that the Neumann data is the same

on all sides so that gj = g for each j ∈ {1, . . . , 4}.

First we note that for the side l3 the presence of the tangential and normal deriva-

tives in the vector field ∂z is particularly apparent. Since l2 is parallel to the real-axis,

the vector field ∂z on this part of the boundary becomes:

∂z =
1

2
(∂x − i∂y) =

1

2
(∂t + i∂n) , (2.1.14)

where ∂t denotes the tangential derivative at the boundary (corresponding to the

Dirichlet data), and ∂n denotes the normal derivative at the boundary (corresponding

to the Neumann data).

We now proceed by writing the spectral functions in terms of the tangential and

normal components. First, we parametrize the sides of the square. The side l3 may be

parametrized by:

z(t) = (t− i), for t ∈ [−1, 1]. (2.1.15)

Each of the respective sides may be similarly parametrized by rotating by e−2πi/4 = −i.

Hence, the parametrizations of the four sides are given by:

l1 : z1(t) = −(t− i), t ∈ [−1, 1], (2.1.16)

l2 : z2(t) = −i (t− i), t ∈ [−1, 1], (2.1.17)

l3 : z3(t) = (t− i), t ∈ [−1, 1], (2.1.18)

l4 : z4(t) = i (t− i), t ∈ [−1, 1]. (2.1.19)

Similarly, the differentials dzj are given by:

dz1 = −dt, dz2 = −i dt, dz3 = dt, dz4 = i dt. (2.1.20)
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We obtain the corresponding vector fields ∂z by rotating by e2πi/4 = i to get:

l1 : ∂z = −1

2
(∂t + i ∂n), (2.1.21)

l2 : ∂z = −1

2
i (∂t + i ∂n), (2.1.22)

l3 : ∂z =
1

2
(∂t + i ∂n), (2.1.23)

l4 : ∂z =
1

2
i (∂t + i ∂n). (2.1.24)

The spectral functions can now be written in terms of the Dirichlet and Neumann data

as:

ρ1(λ) =
eλ

2

∫ 1

−1
ei λt

(
df

dt
+ i g

)
dt (2.1.25)

ρ2(λ) =
ei λ

2

∫ 1

−1
e−λt

(
df

dt
+ i g

)
dt (2.1.26)

ρ3(λ) =
e−λ

2

∫ 1

−1
e−i λt

(
df

dt
+ i g

)
dt (2.1.27)

ρ4(λ) =
e−i λ

2

∫ 1

−1
eλt
(
df

dt
+ i g

)
dt. (2.1.28)

Using the notation

G(λ) :=

∫ 1

−1
exp(−iλt) g dt F(λ) :=

∫ 1

−1
exp(−iλt) df

dt
dt, (2.1.29)

along with the representations of the spectral functions given in (2.1.25)-(2.1.28), the

global relation may be expressed as:

eλG(−λ) + eiλG(−iλ) + e−λG(λ) + e−iλG(iλ)

= −i
[
eλF(−λ) + eiλF(−iλ) + e−λF(λ) + e−iλF(iλ)

]
λ ∈ C. (2.1.30)

This representation of the global relation establishes an explicit relationship between

the Dirichlet and Neumann data. Indeed, the right-hand-side of (2.1.30) is expressed

in terms of the Dirichlet data, which is known, while the left-hand-side is expressed in

terms of the Neumann data, which is unknown. This suggests that the global relation
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is useful for finding the Neumann data. We explore this idea in the discussion that

follows as we return to the setting of the general polygon.

The same procedure outlined in this example can be used to establish a similar

relation to (2.1.30) for a general convex polygon. While this relation is useful, it is

insufficient on its own for determining the unknown Neumann data. For an n-sided

polygon we must find the Neumann data for each of the n sides, which suggests that

n equations similar to (2.1.30) are needed.

For a general n-sided convex polygon let j ∈ {1, . . . , n} be fixed and let mj denote

the midpoint of the jth side and let αj := arg(zj − zj+1). If we multiply the global

relation by eiλmj and make the replacement λ 7→ e−iαjλ, then this generates another

equation that is independent of the original global relation. Performing this process

for each j ∈ {1, . . . , n} generates n independent equations. Using this procedure and

a local parametrization that is symmetric with respect to the midpoint of each edge

of the polygon, Ashton showed, in [5], that the global relation can be written as 2

T (N − iD) = 0, (2.1.31)

where D is a vector that contains the Fourier transform of the Dirichlet data on each

edge of the polygon, similarly N is a vector that contains the Fourier transform of

the Neumann data, and T is a linear operator of the form T = I +K, where I is the

identity and K is a compact operator given by:

KΦj =
∑
k 6=j

eie
−iαj (mj−mk)λΦk(e

−i(αj−αk)λ), 1 ≤ j ≤ n, (2.1.32)

where Φ is an n-dimensional vector (i.e., D or N ). Further, it was shown that (2.1.31)

defines a continuous linear map between the spectral Dirichlet data D and the spectral

Neumann data N , thus establishing a spectral Dirichlet-Neumann map. Indeed, the

operator T can be viewed as a spectral Poincare-Steklov operator for the Laplace

equation on polygonal domains, [5].

Through analysis of the operator T , it was shown that the global relation leads

2Note: The derivation of the operator T is given in more detail in Chapter 5 for the case of a
domain with analytic boundary.
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to a family of well-posed weak problems that can be approximated using Galerkin

techniques. This, in turn, is used to find the entries of the vector N , from which

the Neumann data can be recovered by performing an inverse Fourier transform. In

addition, a number of other numerical methods have been developed that use the

global relation to recover the Neumann data, given the Dirichlet data, on a polygonal

domain, [16], [17], [32], [33]. Motivated by the success of these methods, in this thesis

we will extend the ideas presented here to more general domains that have an analytic

boundary.

2.2 The Global Relation

We now turn our attention to exploring the global relation in a more general frame-

work. In particular, we will derive a global relation that is valid for the domain Ω

(with analytic boundary) given in the boundary value problem (1.1.2). We will also

demonstrate how this can be done for a more general PDEs than the Laplace equation.

Let P (D) be a general linear second-order differential operator with constant co-

efficients of the form

P (D) =
2∑
i=1

2∑
j=1

aij DiDj +
2∑
j=1

bj Dj + C, (2.2.1)

where C ∈ C is a constant. In this case, P (D) is self-adjoint. The symbol of the

operator P (D) is denoted by P (λ), where λ ∈ C2. We will denote the zero set of this

polynomial by ZP = {λ ∈ C2 : P (λ) = 0}. We will further assume that the boundary

of the domain ∂Ω is C2.

The divergence theorem states that for the differential operator P (D) and for

functions ϕ,ψ ∈ C2(Ω̄) we have:

∫
Ω
ψP (D)ϕ− ϕP (D)ψ dV =

∫
∂Ω
F (ϕ,ψ) · n dσ, (2.2.2)

where the term F (ϕ,ψ) depends on ϕ and ψ as well as their derivatives up to order 1,
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and can be computed explicitly by:

Fi =
n∑
j=1

[aij ψDj ϕ− ϕDj(aij ψ)] + bi ϕψ. (2.2.3)

Now we let ϕ = u be a solution corresponding to the operator P (D) and let ψ = e−iλ·x

with λ ∈ ZP . Substituting these values into (2.2.2) gives us:

∫
Ω
e−iλ·x P (D)u− uP (D)

(
e−iλ·x

)
dV =

∫
∂Ω
F (u, e−iλ·x) · n dσ, λ ∈ ZP . (2.2.4)

Clearly P (D)u = 0 since u is a solution corresponding to the operator P (D). Now

considering the second term on the left hand side of (2.2.4), we note that by the chain

rule P (D)
(
e−iλ·x

)
= e−iλ·xP (λ). Since we assumed λ ∈ ZP , it follows that P (λ) = 0

and hence P (D)
(
e−iλ·x

)
= 0. Therefore, the global relation may be written as

0 =

∫
∂Ω
F (u, e−iλ·x) · n dσ, λ ∈ ZP . (2.2.5)

The integral above is over the boundary ∂Ω, and the term F (u, e−iλ·x) is a relation

that couples the boundary data, as can be seen from equation (2.2.3).

In order to make this more concrete, we demonstrate the above result with the

example of the Laplace equation.

Example 1. Consider the Laplace operator which takes the form P (D) = D2, where

D = −i∂. The corresponding symbol associated with this differential operator is

P (λ) =
∑n

k=1 λ
2
k, where λ ∈ Rn. As above, we denote the zero set of this polynomial

by Zp = {λ ∈ Rn : P (λ) = 0}.

Now let ϕ and ψ be functions on Ω with ϕ,ψ ∈ C2(Ω) ∩ C(Ω̄), the divergence

theorem in R2 takes the form of Green’s second identity which states

∫
Ω

(ϕ∆ψ − ψ∆ϕ)dV =

∫
∂Ω

(
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

)
dσ,
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where dσ is the surface measure on the boundary ∂Ω. Now we set ϕ = u, where u is

a solution of the Laplace equation, and set ψ = e−iλ·x, with λ ∈ ZP . This yields the

following expression

0 =

∫
∂Ω
e−iλ·x

(
i(λ · n)u(x) +

∂u

∂n
(x)

)
dσ(x), for λ ∈ Zp. (2.2.6)

The left hand side of the above expression is zero because ∆u = 0 by assumption, and

∆(e−iλ·x) = 0 by the chain rule and the fact that λ ∈ ZP .

Continuing the discussion from Example 1, note that if we take λ = (λ, iλ), and let

x = (x, p(x)), where p(x) is an analytic concave function, then the following transform

naturally arises:

Fp : ϕj → ϕ̃j(λ) =

∫
Γj

e−iλx+λp(x)ϕj(x)[1 + ip′(x)]dx, (2.2.7)

where Γj is a segment of the boundary ∂Ω, and ϕj ∈ L2(Γj). This will be referred to

as the Fp-transform, and can be thought of as a perturbation of the standard Fourier

transform. To see this, set p(x) = 0 in (2.2.7), and the integral reduces to the Fourier

transform over a straight line segment. The Fp-transform will be instrumental in our

analysis of the global relation for domains with analytic boundary, and its study will

occupy much of the first part of the thesis.

We finish this section by noting that the global relation has an intimate connection

to the solution of boundary value problems for the Laplace equation on domains with

analytic boundary. In this thesis we seek to study the BVP for the Laplace equation

given by:  ∆u(x) = 0 for x ∈ Ω

u(x) = f(x) for x ∈ Γ,
(2.2.8)

where Ω ⊂ C ∼= R2 is a bounded convex region with an analytic boundary Γ = ∂Ω,

u ∈ C2(Ω) ∩ C1(Ω̄), and f ∈ C1(Γ) is given (Dirichlet) boundary data on Γ. The

following theorem from [4] makes the connection between the BVP (2.2.8) and the

global relation clear.
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Theorem. Let Ω ⊂ Rn be a bounded, convex domain with smooth boundary Γ. Suppose

there exists a function g ∈ C(Γ) such that

∫
Γ
e−iλ·x[g(x) + i(λ · nx)f(x)]dΓx = 0, λ ∈ Zp (2.2.9)

for a given function f ∈ C(Γ). Then, there exists a solution to the corresponding

BVP for the Laplace equation, i.e. equation (2.2.8), and g corresponds to the unknown

Neumann boundary value.

Therefore, by finding a solution to the global relation, we can solve the corre-

sponding BVP for the Laplace equation. This is the strategy that we employ in this

thesis.

2.3 Summary of Thesis

In this section we will begin by giving a brief summary of the work that is done in

this thesis. Following this, we will give a detailed outline of how the work covered

in Chapters 3-5 can collectively be used to show that the global relation defines a

continuous map between the Dirichlet and Neumann data (i.e., a Dirichlet-Neumann

map), and, moreover, that if the Dirichlet data is given, then the global relation can

be solved for the Neumann data. This will serve as a guide to unify the material in

the first part of the thesis.

2.3.1 Summary of Work

This thesis is structured as follows. In Chapter 3 we formally define and analyze the

Fp-transform. We show that the map Fp : ϕ 7→ ϕ̃(λ) is bounded from L2([−σ, σ]) to

L2([0,∞]), in the case that p(x) is an analytic concave function with p(0) = p′(0) = 0

and x ∈ [−σ, σ]. In Chapter 4, we find an inverse of the transform Fp : ϕ → ϕ̃(λ) by

solving a Riemann-Hilbert problem. Chapters 3 and 4 can be read independently of

the rest of the thesis as they focus solely on the Fp-transform and its inverse.
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In Chapter 5, we derive the global relation for the Laplace equation on a domain,

Ω ⊂ C ∼= R2, with analytic boundary. Similar to (2.1.31), we will show that the global

relation on Ω can be written in the form

T (N − iD) = 0, (2.3.1)

where D is the Fp-transform of the Dirichlet data and N is the Fp-transform of the

Neumann data. The operator T again can be written as T = I + K, where K takes

a similar form to (2.1.32). Since we deal with domains with a curved boundary, the

Fp-transform naturally arises in this context, and we make use of the results from

Chapters 3 and 4 which serve as a basis for analyzing the global relation. We use

properties of the operator T to show that the global relation defines a continuous map

between the Dirichlet and Neumann data and that this relation can be solved to find

the Neumann data, given the Dirichlet data. This argument is outlined in detail in

Section 2.3.2.

Finally, in Chapter 6 we construct a spectrally accurate collocation method for

recovering the Neumann data, given the Dirichlet data, for a specified BVP for the

Laplace equation on a convex domain with analytic boundary. This is done by extend-

ing an existing numerical method developed by Fornberg and Flyer in [16].

2.3.2 Outline of Results in Chapters 3-5

We will now give an outline of how the results in Chapters 3-5 will be used to show

that the global relation defines a continuous map between the Dirichlet and Neumann

data, and that this relation can be solved to find the Neumann data, given the Dirichlet

data. This will serve as a guide for the first part of the thesis.

Let Ω be a convex domain in C with an analytic boundary that is partitioned into

n segments {Γj}nj=1. Let ϕ = (ϕ1, . . . , ϕn) be a complex-valued vector where the jth

component contains the tangential derivative of the Dirichlet data on Γj as the real

part and the Neumann data on Γj as the imaginary part. Let Ψ = (Ψ1, . . . ,Ψn) be

the vector3 that contains the Fp-transform of each of the components of ϕ.

Our study of the operator T , given in (2.3.1), will be based on the following sequence

3In terms of the notation of equation (2.3.1), Ψ = D + iN .
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of maps:

ϕ
A // Ψ

B // TΨ . (2.3.2)

We will now discuss the maps A and B.

1. Our analysis of the map A relies on the following properties which are listed

below.

(a) In Chapter 3, we will show that for any ϕ ∈ L2([−σ, σ]) the map Fp :

ϕ 7→ ϕ̃(λ) is bounded from L2([−σ, σ]) to L2([0,∞]), where p(x) is an

analytic concave function with p(0) = p′(0) = 0, and x ∈ [−σ, σ]. This

result establishes that the map ϕj 7→ Ψj is bounded from L2([−σj , σj ]) to

L2([0,∞]) for each j ∈ {1, . . . , n}. Therefore, the map A is bounded from

L2([−σ1, σ1])× · · · × L2([−σn, σn]) to L2([0,∞])× . . .× L2([0,∞])︸ ︷︷ ︸
n−copies

.

(b) In Chapter 4 we will construct an inverse to the Fp-operator which will be

denoted by F−1
p . This shows that the map A is injective and surjective on

its range, and therefore is an isomorphism.

(c) By the Banach bounded inverse theorem, since the Fp-transform is bounded,

the inverse F−1
p is also bounded.

2. Our study of the map B relies on the following properties which are listed below.

(a) In Chapter 5 we will show that the operator T takes the form T = I +

K, where K is an operator that has a similar form to (2.1.32). Further,

we will show that each component of the operator K can be written as a

composition of F−1
p and a compact operator. Since F−1

p is bounded, and

the composition of a bounded operator with a compact operator gives a

compact operator, it follows that each component of the operator K (and

therefore the operator K itself) is compact.

(b) Since the operator K is compact, it follows that T = I + K is a Fredholm

operator of index zero, [26].

(c) In [4], Ashton proved that the solution to the global relation is unique. This

implies that the operator T is injective.
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It follows from properties 2(b) and 2(c) above that T is a bounded injective linear

operator with closed range. Furthermore, the operator T is bounded below, since every

bounded injective linear operator with closed range is bounded below, [2]. Since T is

bounded below, it is continuously invertible on its range Ran(T ), [2]. This means that

if the Dirichlet data is given, then the global relation can be solved for the Neumann

data. We conclude with the following theorem, which is given as Theorem 5 in Chapter

5.

Theorem. The solution of the global relation (2.3.1) corresponding to the BVP (2.2.8)

exists, is unique, and depends continuously on the Dirichlet data. Moreover, the global

relation can be solved to find the (unknown) Neumann data.

Given that we know the global relation can be solved to find the unknown Neumann

data, we construct a numerical method to do so in Chapter 6.



CHAPTER 3

The Fp-transform

In this chapter we formally introduce the Fp-transform which was mentioned in the

introduction and prove that it is a bounded operator.

Definition 1 (Fp-transform). Let Γ = {z ∈ C : z = x + i p(x), x ∈ [−σ, σ]}, where

0 < σ <∞, and assume p(x) satisfies the following conditions:

• The function p(x) is analytic on the interval [−σ, σ], i.e. p ∈ C∞([−σ, σ]).

• The function p(x) is concave and p(0) = p′(0) = 0.

Then, for ϕ ∈ L2([−σ, σ]), the Fp-transform is defined by:

Fp : ϕ→ ϕ̃(λ) =

∫
Γ
e−iλ z ϕ(z) dz, (3.0.1)

where λ ∈ (0,∞) is real.

We may also write the Fp-transform as

Fp : ϕ→ ϕ̃(λ) =

∫ σ

−σ
e−iλ x+λ p(x) ϕ(x) (1 + i p′(x)) dx. (3.0.2)

29
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Remark 1. As a note, we will specify that Re
(
e−iλx+λp(x)

)
< 0 for the sake of

exponential decay. Hence, the function p(x) must be concave. Alternatively, we may

choose p(x) to be convex, in which case the exponential term takes the form e−iλx−λp(x).

Remark 2. For the sake of proving boundedness, it suffices to assume that p(x) < 0.

However, we additionally assume concavity because this will be needed when proving

results for the global relation in Chapter 5. In particular, in order for a domain Ω

to be convex, each of the segments that forms the boundary, i.e. each Γj for j =

1, . . . , n, must be concave. We will therefore prove the results in this chapter under

the assumption that p(x) is concave.

An example curve on which the Fp-transform may be defined is illustrated in Figure

3.1 below:

Re(z)

Im(z)

Γ

Figure 3.1: An analytic concave curve in the complex plane with p(0) = p′(0) = 0.

As mentioned in the introduction, the Fp-transform can be seen as a perturbation

of the Fourier transform. To see this, set p(x) = 0 and observe that Γ becomes

the segment [−σ, σ], and the Fp-transform becomes the Fourier transform over this

interval.

We will now make a further connection between the Fp-transform and the Fourier

transform. Let Φ(z) be an entire function, and suppose the function ϕ(x) in (3.0.2) is

the restriction of Φ(z) to the curve Γ. Since Φ(z) is entire, Cauchy’s theorem states
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(see Figure 3.2 on the following page):

∫
Γ
e−iλ z Φ(z) dz −

∫ σ+i p(σ)

−σ+i p(−σ)
e−iλ z Φ(z) dz = 0. (3.0.3)

Since ϕ(x) is the restriction of Φ(z) to the curve Γ, we may write the first integral in

the form of (3.0.2) and rearrange to get:

∫ σ

−σ
e−iλ x+i,p(x) ϕ(x) (1 + i p′(x)) dx =

∫ σ+i p(σ)

−σ+i p(−σ)
e−iλ z Φ(z) dz. (3.0.4)

This implies that the Fp-transform of Φ(z) along the curve Γ is equivalent to the

Fourier transform of Φ(z) along the segment [−σ + i p(−σ), σ + i p(σ)].

Re(z)

Im(z)

Γ

−σ + i p(−σ) σ + i p(σ)

Figure 3.2: The curve Γ (oriented counter-clockwise) and the line segment along [−σ +
i p(−σ), σ + i p(σ)] (oriented clockwise) form a closed curve in C in which the function Φ(z)
has no singularity.

We observe the relation in (3.0.4) explicitly in the following example:

Example 2. Let p(x) = −x2, and let

Φ(z) = ez, where z = x+ i y, (3.0.5)

and let ϕ(x) be the restriction of Φ(z) to the curve Γ = {z ∈ C : z = x − i x2, x ∈

[−σ, σ]}. Then the Fp-transform is given by:

ϕ̃(λ) =

∫ σ−i σ2

−σ−i σ2

e−iλz Φ(z) dz, (3.0.6)
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which is the Fourier transform of Φ(z) over the segment [−σ − i σ2, σ − i σ2].

3.1 Idea of Boundedness Proof for Fp-transform

Now we wish to show that the map ϕ 7→ ϕ̃(λ) is bounded from L2(Σ) to L2(Λ), where

Σ := [−σ, σ] and Λ := [0,∞]. (3.1.1)

The idea for the proof is as follows. First we use a bump function to partition the

domain of integration into a neighborhood around the origin and a region away from

the origin. Since the Fp-transform decays exponentially in λ away from the origin,

the estimate for the region away from the origin is straightforward (see (3.2.7)). The

integral over the origin is re-written using the Fourier inversion theorem and estimated

using integration by parts and Young’s inequality. The result that will be proved is

stated in the theorem below:

Theorem 1. The following bound holds for all ϕ ∈ L2(Σ):

‖ϕ̃(λ)‖L2(Λ) . ‖ϕ‖L2(Σ)
1, (3.1.2)

and therefore the operator Fp : ϕ 7→ ϕ̃(λ) is bounded from L2(Σ) to L2(Λ).

The work for proving Theorem 1 occupies the remainder of this chapter and is

organized as follows. In Section 3.2 we partition the domain of integration into a

region containing the origin and a region away from the origin, as mentioned above.

We then show that the integral over the region away from the origin is bounded, and

we establish some additional results that hold for a general analytic and concave p(x).

In Section 3.3, we show that the map ϕ 7→ ϕ̃(λ) is bounded from L2(Σ) to L2(Λ) for the

case where p(x) = −x2n, with n ∈ {1, 2, . . .}. This allows us to develop some results

needed for the more general case. Finally, in Section 3.4, we show that ϕ 7→ ϕ̃(λ) is

1The notation . is used to denote that a function is asymptotically less than or equal to another
function. Specifically, let f and g be functions parametrized by a variable x ∈ X, then f . g if and
only if there exists a constant C > 0 such that f(x) > C g(x) for all x ∈ X.
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bounded from L2(Σ) to L2(Λ) for a general analytic and concave p(x).

3.2 Initial Results for General Analytic and Concave p(x)

We will begin by establishing some initial results for the general case of an analytic

and concave p(x). In subsequent sections, we will start from these results and prove

the estimates for the respective cases.

Assume that ϕ ∈ L2(Σ) and that p(x) in equation (3.0.1) is analytic and concave.

Fix a bump function ρ(x) ∈ C∞c (Σ) with ρ = 1 when |x| < δ/2, and ρ = 0 when

|x| > δ. We may now split the integral operator into a component that contains the

origin and another component away from the origin using the bump function ρ(x):2

ϕ̃(λ) =

∫ σ

−σ
e−iλx+λp(x)ϕ(x)ρ(x)dx︸ ︷︷ ︸

K1 ϕ(λ)

+

∫ σ

−σ
e−iλx+λp(x)ϕ(x)[1− ρ(x)]dx︸ ︷︷ ︸

K2 ϕ(λ)

. (3.2.1)

3.2.1 Estimate for the Operator K2 : L2(Σ)→ L2(Λ)

We will now show that the operator K2 ϕ(λ) is bounded. First, we estimate the

integrand of ‖K2 ϕ(λ)‖2L2(Λ) below:

∣∣∣∣∫ σ

−σ
e−iλx+λp(x)ϕ(x)[1− ρ(x)]dx

∣∣∣∣2
≤
∫ σ

−σ
|ϕ(x)|2 dx

∫ σ

−σ

∣∣∣e−iλx+λp(x)[1− ρ(x)]
∣∣∣2 dx (3.2.2)

= ‖ϕ‖2L2(Σ)

∫ σ

−σ
|e−iλx|2 |eλp(x)|2[1− ρ(x)]2dx (3.2.3)

= ‖ϕ‖2L2(Σ)

∫ σ

−σ
e2λp(x)[1− ρ(x)]2dx (3.2.4)

≤ ‖ϕ‖2L2(Σ)

∫
δ/2<|x|<σ

e2λp(x)dx (3.2.5)

≤ ‖ϕ‖2L2(Σ) (2σ − δ) e2λp(δ/2) (3.2.6)

. ‖ϕ‖2L2(Σ) e
2λp(δ/2). (3.2.7)

2Without loss of generality, we will prove the results in this chapter for functions of the form
ϕ(x) = [1 + i p′(x)]ψ(x), where ψ ∈ L2(Σ). This is done for the sake of having a more compact
notation.
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In the final inequality above, e2λp(δ/2) is bounded since p(x) is concave. Hence, using

the estimates above, we bound ‖K2 ϕ(λ)‖L2(Λ) as follows3

∫ ∞
0
|K2 ϕ(λ)|2dλ . ‖ϕ‖2L2(Σ)

∫ ∞
0

e2λp(δ/2)dλ .δ ‖ϕ‖2L2(Σ). (3.2.8)

3.2.2 The Operator K1 : L2(Σ)→ L2(Λ)

Now we turn our attention to the term K1 ϕ(λ). We are interested in the large λ

behavior so for R > 0 fixed, we have

‖K1 ϕ(λ)‖2L2(0,∞) = ‖K1 ϕ(λ)‖2L2(0,R) + ‖K1 ϕ(λ)‖2L2(R,∞). (3.2.9)

The first term in the expression above can be bounded by applying the Cauchy-Schwarz

inequality to get:

‖K1 ϕ(λ)‖2L2(0,R) .R ‖ϕ‖
2
L2(Σ). (3.2.10)

Hence, we find

‖K1 ϕ(λ)‖2L2(0,∞) .R ‖ϕ‖
2
L2(Σ) + ‖K1ϕ(λ)‖2L2(R,∞), (3.2.11)

and therefore we may focus our attention on the second term in the expression above.

Without loss of generality, we will assume R > 1 throughout.

In the discussion that follows, we will assume ϕ is analytic and has compact support

on Σ, i.e. ϕ ∈ C∞c (Σ), so that ϕ̂ has rapid decay. We will prove the desired estimate

under this assumption, and the result can be extended to a larger class of functions

(i.e., L2(Σ)) using a density argument.

Using the Fourier inversion theorem, ϕ may be written as

ϕ(x) =
1

2π

∫ ∞
−∞

eiyxϕ̂(y)dy, (3.2.12)

3The symbol .A is used to denote that a function is asymptotically less than or equal to another
function, with a constant depending on A. Specifically, let f and g be functions parametrized by a
variable x ∈ X, then f . g if and only if there exists a constant CA > 0, which depends on A, such
that f(x) > CA g(x) for all x ∈ X.
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and hence K1 ϕ(λ) becomes

K1ϕ(λ) =

∫ ∞
−∞

e−iλx+λp(x)ρ(x)

[
1

2π

∫ ∞
−∞

eiyxϕ̂(y)dy

]
dx. (3.2.13)

Owing to the rapid decay of ϕ̂, we can use Fubini’s theorem to interchange the order

of integration to get:

K1 ϕ(λ) =

∫ ∞
−∞

[
1

2π

∫ ∞
−∞

e−iλx+λp(x)ρ(x)eiyxϕ̂(y)dx

]
dy (3.2.14)

=
1

2π

∫ ∞
−∞

[∫ ∞
−∞

e−i(λ−y)x+λp(x)ρ(x)dx

]
ϕ̂(y) dy. (3.2.15)

We define the function H(λ, y) as the inner integral above

H(λ, y) =

∫ ∞
−∞

e−i(λ−y)x+λp(x)ρ(x)dx. (3.2.16)

If |λ− y| ≤ 1, then since p(x) ≤ 0 and ρ(x) has compact support on [−σ, σ], we have

the bound

|H(λ, y)| ≤
∫ ∞
−∞
|ρ(x)|dx . 1

1 + 1
.

1

1 + |λ− y|N
, |λ− y| ≤ 1, (3.2.17)

for any N ≥ 0.

Recall that an analytic concave function can be expressed in the form p(x) =

−c2n x
2n + c2n+1 x

2n+1ψ(x), where ψ(x) is an analytic function, and c2n and c2n+1

are constants. Therefore, it is sufficient to show that K1 ϕ(λ) is bounded for such a

representation of p(x). To this end, we first consider the case p(x) = −x2n, where

n ∈ {1, 2, 3, . . .}. This will allow us to establish some initial results that will be

used in the more general setting. We will then consider the general case p(x) =

−c2n x
2n + c2n+1 x

2n+1ψ(x), and prove an estimate of the form (3.2.17) for the case

|λ − y| > 1. This estimate will allow us to show that K1ϕ is bounded from L2(Σ) to

L2(Λ). Since we have already shown that K2ϕ is bounded from L2(Σ) to L2(Λ), this

will imply that the map ϕ 7→ ϕ̃ is bounded from L2(Σ) to L2(Λ).
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3.3 Estimate for the Case p(x) = −x2n

In this section we will establish the necessary estimates to show that the map ϕ 7→ ϕ̃(λ)

is bounded from L2(Σ) to L2(Λ) in the case where p(x) = −x2n for n ∈ {1, 2, . . .}.

Since in the general case, p(x) is assumed to be analytic4 and concave, this implies

that the first term in the Taylor series expansion will be of the form p(x) ∼ −x2n for

some fixed positive integer n. Hence, the case p(x) = −x2n for n ∈ {1, 2, . . .} is a

first-order approximation of the more general p(x).

3.3.1 Estimate for H(λ, y) with p(x) = −x2n

We will now show that H(λ, y) is bounded in the case where p(x) = −x2n. We use the

change of variable x = ε τ , where ε = λ−1/2n. Note that since λ > 1, this implies that

ε < 1. Using this change of variable H(λ, y) may be written as:

H(λ, y) =

∫ ∞
−∞

e−i(λ−y)ετ e−τ
2n
ρ(ετ) ε dτ. (3.3.1)

Integrating H(λ, y) by parts N = 2n times results in the following:

H(λ, y) =
ε

[−i ε(λ− y)]N

∫ ∞
−∞

e−i(λ−y)ετ d
N

dτN

[
e−τ

2n
ρ(ετ)

]
dτ. (3.3.2)

Applying the product rule for derivatives, we find

dN

dτN

[
e−τ

2n
ρ(ετ)

]
=

N∑
k=0

(
N

k

)
dN−k

dτN−k

[
e−τ

2n
] dk

dτk
[ρ(ετ)] . (3.3.3)

In order to further understand the right-hand-side of equation (3.3.3), we will compute

and re-write dN−k

dτN−k

[
e−τ

2n
]

in the lemma below.

4A function f(x) is analytic on an interval Ω ⊂ R if for every x0 ∈ R a convergent power series can
be written in the form:

f(x) =

∞∑
j=0

aj(x− x0)j ,

where each of the coefficients {aj}∞j=1 are real numbers. This implies the existence of a Taylor series.
Moreover, if the function f(x) is concave or convex, then the index of the first non-zero (and non-
constant) term will be even, i.e. f(x) ∼ a2n(x− x0)2n for some n ∈ {1, 2, . . .}.
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Lemma 1. Let Pm(x) denote a polynomial of order m in the variable x, then

dN−k

dτN−k

[
e−τ

2n
]

= P(N−k)(2n−1)(τ)e−τ
2n
. (3.3.4)

Proof. We will establish the claim by induction, and to simplify notation, let m =

N − k. As a base case, when m = 1 we find:

d

dτ

[
e−τ

2n
]

=
[
1− 2nτ2n−1

]
e−τ

2n
(3.3.5)

= P1 (2n−1)(τ) e−τ
2n
. (3.3.6)

Now suppose the claim holds for a fixed m, then differentiating in τ yields

d

dτ

[
Pm (2n−1)(τ) e−τ

2n
]

=

m (2n−1)∑
k=0

akτ
k

 (−2nτ2n−1) +

m (2n−1)∑
k=1

k akτ
k−1

 e−τ2n
(3.3.7)

=

m (2n−1)∑
k=0

(−2nak)τ
k+(2n−1)

+

m (2n−1)∑
k=1

k akτ
k−1

 e−τ2n
(3.3.8)

=

(m+1) (2n−1)∑
k=0

ãkτ
k

+

m (2n−1)∑
k=1

k akτ
k−1

 e−τ2n
(3.3.9)

=

(m+1) (2n−1)∑
k=0

ckτ
k

 e−τ
2n
, (3.3.10)

for new {ck}
(m+1) (2n−1)
k=0 . The final expression above is a polynomial of order (m +

1) (2n− 1) in τ , i.e.

dm+1

dτm+1

[
e−τ

2n
]

= P(m+1)·(2n−1)(τ)e−τ
2n
, (3.3.11)

and hence the claim is established. �
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Using Lemma 1, equation (3.3.3) may be written as

dN

dτN

[
e−τ

2n
ρ(ετ)

]
=

N∑
k=0

(
N

k

)
[P(N−k)(2n−1)(τ)e−τ

2n
] εkρ(k)(ετ). (3.3.12)

Substituting this back into equation (3.3.2), we find

|H(λ, y)| . ε

|ε(λ− y)|N
N∑
k=0

εk
∫ ∞
−∞

[P(N−k)(2n−1)(τ)e−τ
2n

] ρ(k)(ετ)dτ. (3.3.13)

Note that in the term P(N−k)(2n−1)(τ) e−τ
2n

, the exponential will dominate the poly-

nomial, and will rapidly decay as |τ | → ∞. In addition, ρ(ετ) and all of its derivatives

ρ(k)(ετ) for k ≥ 0 are bounded. Hence, we have

∫ ∞
−∞

P(N−k)(2n−1)(τ) e−τ
2n
ρ(k)(ετ) dτ ≤ ck, for k ∈ {0, 1, . . . , N}. (3.3.14)

Thus, equation (3.3.13) becomes:

|H(λ, y)| . ε

|ε(λ− y)|N
N∑
k=0

εk
∫ ∞
−∞

P(N−k)(2n−1)(τ) e−τ
2n
ρ(k)(ετ)dτ (3.3.15)

≤ ε

|ε(λ− y)|N
N∑
k=0

εkck (3.3.16)

.
ε

|ε(λ− y)|N

(
1− εN+1

1− ε

)
(3.3.17)

.N
ε

|ε(λ− y)|N
(3.3.18)

.
ε

1 + |ε(λ− y)|N
. (3.3.19)

This gives a bound for H(λ, y) which we will use for showing that K1 ϕ(λ) is bounded.
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3.3.2 Estimate for the Operator K1 : L2(Σ)→ L2(Λ)

Now we wish to show that the map K1ϕ is bounded from L2(1,∞) to L2(Σ); in

particular we will show

‖K1ϕ‖L2(1,∞) =

∥∥∥∥∫ ∞
−∞

H(·, y)ϕ̂(y)dy

∥∥∥∥
L2(1,∞)

. ‖ϕ̂‖L2(R) = ‖ϕ‖L2(Σ). (3.3.20)

We will obtain the estimate through a careful application of Young’s inequality. By

establishing the following two estimates:

[A] sup
λ>1

∫ ∞
−∞
|H(λ, y)|dy . 1 (3.3.21)

[B] sup
y∈R

∫ ∞
1
|H(λ, y)|dλ . 1,

Young’s inequality will immediately imply

∥∥∥∥∫ ∞
−∞

H(·, y)ϕ̂(y)dy

∥∥∥∥
L2((1,∞))

. ‖ϕ̂‖L2(R). (3.3.22)

For reference, Young’s inequality can be found in most analysis textbooks such as [31].

Estimate A

From (3.3.19), we have

sup
λ>1

∫ ∞
−∞
|H(λ, y)| dy . sup

λ>1

∫ ∞
−∞

ε

1 + |ε(λ− y)|N
dy. (3.3.23)

We make the following substitution

z = ε(λ− y) ⇒ dz = ε dy, (3.3.24)
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which gives us the integral below

sup
λ>1

∫ ∞
−∞

ε

1 + |ε(λ− y)|N
dy = sup

λ>1

∫ ∞
−∞

1

1 + |z|N
dz. (3.3.25)

Since we are assuming |λ− y| > 1, it follows that

sup
λ>1

∫ ∞
−∞

1

1 + |z|N
dz ≤ sup

λ>1

∫ ∞
−∞

1

1 + |z|2
dz . 1. (3.3.26)

This establishes Estimate A.

Estimate B

From (3.3.19), we have

sup
y∈R

∫ ∞
1
|H(λ, y)| dλ . sup

y∈R

∫ ∞
1

λ−1/2n

1 +
∣∣∣(λ1−1/2n − y

λ1/2n

)∣∣∣N dλ, for N ≥ 2. (3.3.27)

For y ≤ 0 the following inequality holds:

1

1 +
∣∣∣λ1−1/2n − y

λ1/2n

∣∣∣N ≤
1

1 +
∣∣λ1−1/2n

∣∣N . (3.3.28)

Hence,

sup
y≤0

∫ ∞
1

λ−1/2n

1 +
∣∣∣(λ1−1/2n − y

λ1/2n

)∣∣∣N dλ ≤
∫ ∞

1

λ−1/2n

1 +
∣∣λ1−1/2n

∣∣N dλ . 1, (3.3.29)

which follows from the simple substitution z = λ1−1/2n.

For y > 0 we can use the substitution

z = λ1−1/2n − y

λ1/2n
. (3.3.30)
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We note that since y > 0 and dz/dλ > 0, λ = λ(z) is well-defined. Further, we have

λ−1/2n dλ =
dz[(

1− 1
2n

)
+ y

2n λ

] . (3.3.31)

This results in the following integral

sup
y>0

∫ ∞
1

λ−1/2n

1 +
∣∣∣(λ1−1/2n − y

λ1/2n

)∣∣∣N dλ = sup
y>0

∫ ∞
1−y

1

1 + |z|N
dz[(

1− 1
2n

)
+ y

2n λ

] .
(3.3.32)

Since y > 0 and λ = λ(z) > 1, we have

1[(
1− 1

2n

)
+ y

2n λ

] ≤ 1

1− 1
2n

, (3.3.33)

and hence

sup
y>0

∫ ∞
1−y

1

1 + |z|N
dz[(

1− 1
2n

)
+ y

2n λ

] ≤ sup
y>0

∫ ∞
1−y

1

1 + |z|N
dz

1− 1
2n

. 1. (3.3.34)

From equations (3.3.26) and (3.3.34), we obtain

sup
y∈R

∫ ∞
1
|H(λ, y)| dλ . 1 for N ≥ 2. (3.3.35)

Summarizing our results, for p(x) = −x2n we have shown the following bounds

sup
λ>1

∫ ∞
−∞
|H(λ, y)| dy . 1 and sup

y∈R

∫ ∞
1
|H(λ, y)| dλ . 1, (3.3.36)

and therefore by Young’s inequality we have

‖K1ϕ‖L2(1,∞) =

∥∥∥∥∫ ∞
−∞

H(·, y)ϕ̂(y)dy

∥∥∥∥
L2(1,∞)

. ‖ϕ̂‖L2(R) = ‖ϕ‖L2(Σ), (3.3.37)

where the final equality is by Parseval’s theorem. This shows that K1ϕ is bounded for

the case p(x) = −x2n. Since we have already established that K2ϕ is bounded, this
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implies that the Fp-transform is bounded from L2(Σ) to L2(Λ), that is

‖ϕ̃‖L2(Λ) . ‖ϕ‖L2(Σ). (3.3.38)

This result was shown for a concave function of the form p(x) = −x2n, in the section

that follows we will use similar methods to show the same bound for a general analytic

concave p(x).

3.4 Estimate for Analytic and Concave p(x)

Now we will assume that p(x) takes the form p(x) = −x2n + x2n+1ψ(x), where ψ(x) is

analytic. By Taylor’s theorem this is the general form of an analytic concave function

up to a constant multiple. We will show that the corresponding integral in equation

(3.2.16), i.e.

H(λ, y) =

∫ ∞
−∞

e−i(λ−y)x−λ(x2n+x2n+1ψ(x))ρ(x)dx, (3.4.1)

is bounded. Using the change of variable x = λ−1/2nτ , we rewrite H(λ, y) as

H(λ, y) =

∫ ∞
−∞

e−i(λ−y)ετe−τ
2n
e−ετ

2n+1ψ(ετ)ρ(ετ)εdτ, (3.4.2)

where ε = λ−1/2n. Integrating H(λ, y) by parts N times yields

H(λ, y) =
ε

[−i ε(λ− y)]N

∫ ∞
−∞

e−i(λ−y)ετ d
N

dτN

[
e−τ

2n
e−ετ

2n+1ψ(ετ)ρ(ετ)
]
dτ. (3.4.3)
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Using the product rule for derivatives, the term A(τ) = e−τ
2n
e−ετ

2n+1ψ(ετ)ρ(ετ) may

be expressed as follows

dN

dτN
[A(τ)]

=
N∑
k=0

(
N

k

)[
dN−k

dτN−k
e−τ

2n

]
dk

dτk

[
e−ετ

2n+1ψ(ετ)ρ(ετ)
]

(3.4.4)

=

N∑
k=0

(
N

k

)
dN−k

dτN−k

[
e−τ

2n
] k∑
m=0

(
k

m

)
dm

dτm

[
e−ετ

2n+1ψ(ετ)
] dk−m

dτk−m
[ρ(ετ)] (3.4.5)

=

N∑
k=0

k∑
m=0

(
N

k

)(
k

m

)
dN−k

dτN−k

[
e−τ

2n
] dm

dτm

[
e−ετ

2n+1ψ(ετ)
]
εk−mρ(k−m)(ετ). (3.4.6)

Now we must deal with the terms B(τ) = e−τ
2n

and C(τ) = e−ετ
2n+1ψ(ετ). By Lemma

1, B(N−k)(τ) is given by

B(N−k)(τ) = P(N−k)(2n−1)(τ) e−τ
2n
. (3.4.7)

Now we will study the behavior of the term C(m)(τ) and derive an estimate for it that

can be used in bounding equation (3.4.6).

Lemma 2. The mth derivative C(m)(τ) takes the form

C(m)(τ) = Pm (2n+1)(τ, ψ(ετ), ψ(1)(ετ), . . . , ψ(m)(ετ)) e−ετ
2n+1ψ(ετ), (3.4.8)

where Pm (2n+1)(τ, ψ(ετ), ψ(1)(ετ), . . . , ψ(m)(ετ)) is a polynomial of order m (2n+1) in

τ with smooth and bounded coefficients on the interval τ ∈ ∆δ,ε := [−δ/ε, δ/ε].

Proof. To deal with the term C(m)(τ), we use Faà di Bruno’s formula for differentiating

compositions of functions. Let g : ∆δ,ε → R and f : R→ R+ be defined by

g(τ) := −ετ2n+1ψ(ετ) and f(y) := ey. (3.4.9)
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Faà di Bruno’s formula states that the derivative (f ◦ g)(m)(τ) is given by:

(f ◦g)(m)(τ) = eg(τ)
∑

(l1,...,lm)
1·l1+...+m·lm=m

(
m

l1, · · · , lm

)
·f (l1+...+lm)(g(τ)) ·

m∏
m=1

(
g(m)(τ)

m!

)lm
.

(3.4.10)

For reference, Faà di Bruno’s formula can be found in Chapter 5 of [34]. Now each

g(m)(τ) may be expressed, using the generalized Leibniz rule, as a polynomial in τ of

the form

g(m)(τ) =
m∑
k=0

(
m

k

)
dk

dτk
(τ2n+1)

dm−k

dτm−k
(ψ(ετ)) (3.4.11)

=
m∑
k=0

(
m

k

) k−1∏
l=0

(2n+ 1− l) τ2n+1−k εm−kψ(m−k)(ετ) (3.4.12)

=

m∑
k=0

Cn,m,k

[
εm−kψ(m−k)(ετ)

]
τ2n+1−k, (3.4.13)

where Cn,m,k :=
(
m
k

)∏k−1
l=0 (2n + 1 − l) is a constant for each summand. Each of the

coefficients of the polynomial in τ in (3.4.13) is given by Cn,m,k
[
εm−kψ(m−k)(ετ)

]
,

which is a constant multiple of the function ψ(m−k)(ετ). Furthermore, we know that

ψ(l)(x), for l ∈ {0, 1, 2, . . .}, is bounded on the interval |x| ≤ δ, i.e.

|ψ(l)(x)| ≤M where x ∈ [−δ, δ], (3.4.14)

where M := max{maxlMl, 1} with Ml := maxx∈[−δ,δ] |ψ(l)(x)| < ∞ for each l ∈

{0, 1, 2, . . . ,m}. Since x = ετ , then the above bound holds for x ∈ [−δ, δ] if and only

if it holds for τ ∈ ∆δ,ε := [−δ/ε, δ/ε].

Since (3.4.10) is a product and sum of polynomials of the form (3.4.13), it will also

be a polynomial in τ with coefficients that are sums and products of terms of the form
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Cn,m,k
[
εm−kψ(m−k)(ετ)

]
. By the discussion above, each of the coefficients

Cn,m,k

[
εm−kψ(m−k)(ετ)

]
(3.4.15)

is smooth and bounded on ∆δ,ε, and therefore any finite sum and product of terms of

this form will also be smooth and bounded on the same interval. Therefore, (3.4.10)

is a polynomial in τ with smooth and bounded coefficients on the interval ∆δ,ε.

Finally, note that the highest order term in τ occurs when (l1, . . . , lm) = (m, 0, . . . , 0).

This yields a term that is order m (2n+ 1) in τ , and hence the polynomial in (3.4.10)

is order m (2n+ 1) in τ .

Combining these results, it follows that the mth derivative C(m)(τ) takes the form

C(m)(τ) = Pm (2n+1)(τ, ψ(ετ), ψ(1)(ετ), . . . , ψ(m)(ετ)) e−ετ
2n+1ψ(ετ), (3.4.16)

where Pm (2n+1)(τ, ψ(ετ), ψ(1)(ετ), . . . , ψ(m)(ετ)) is a polynomial of order m (2n+1) in

τ with smooth and bounded coefficients on the interval τ ∈ ∆δ,ε.

�

Working from equation (3.4.6), and using Lemma 2, we have:

∣∣∣∣ dNdτN [A(τ)]

∣∣∣∣
≤

N∑
k=0

k∑
m=0

(
N

k

)(
k

m

)
|B(N−k)(τ)| |C(m)(τ)| εk−m

∣∣∣ρ(k−m)(ετ)
∣∣∣ (3.4.17)

≤
N∑
k=0

k∑
m=0

CN,k,m e−τ
2n ∣∣P(N−k)(2n−1)(τ)

∣∣ e−ετ2n+1ψ(ετ)

|Pm (2n+1)(τ, ψ(ετ), ψ(1)(ετ), . . . , ψ(m)(ετ))| εk−m
∣∣∣ρ(k−m)(ετ)

∣∣∣ (3.4.18)

=

N∑
k=0

k∑
m=0

CN,k,m e−τ
2n
e−ετ

2n+1ψ(ετ) |F (τ)| εk−m
∣∣∣ρ(k−m)(ετ)

∣∣∣ , (3.4.19)
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where we define

F (τ) := P(N−k)(2n−1)(τ)Pm (2n+1)(τ, ψ(ετ), ψ(1)(ετ), . . . , ψ(m)(ετ)). (3.4.20)

Now we will estimate the exponential term e−τ
2n
e−ετ

2n+1ψ(ετ). Letting C :=

maxx∈[−δ,δ] |ψ(x)| <∞ and recalling that |x| ≤ δ, we find:

e−λ(x2n+x2n+1ψ(x)) ≤ e−λ(x2n+δCx2n) = e−λ((1+δC)x2n) = e−λ(C̃x2n) = e−C̃τ
2n
, (3.4.21)

where C̃ = (1 + δC) > 0. Using this estimate in (3.4.19), yields

∣∣∣∣ dNdτN [A(τ)]

∣∣∣∣ ≤ N∑
k=0

k∑
m=0

CN,k,m e−C̃τ
2n |F (τ)| εk−m

∣∣∣ρ(k−m)(ετ)
∣∣∣ . (3.4.22)

Now we have

|H(λ, y)|

≤ ε

|ε(λ− y)|N

∫ ∞
−∞

N∑
k=0

k∑
m=0

CN,k,m |F (τ)| e−C̃τ2n
εk−m

∣∣∣ρ(k−m)(ετ)
∣∣∣ dτ (3.4.23)

=
ε

|ε(λ− y)|N
N∑
k=0

k∑
m=0

CN,k,m εk−m
∫ ∞
−∞
|F (τ) ρ(k−m)(ετ)| e−C̃τ2n

dτ. (3.4.24)

By Lemma 1 and Lemma 2, we know that F (τ) is the product of two polynomials

in τ with coefficients that are smooth and bounded on the interval ∆δ,ε. Therefore,

F (τ) is itself a smooth polynomial of finite-order on this interval. Furthermore, ∆δ,ε

is also the interval of compact support for ρ(ετ) and hence ρ(k−m)(ετ) as well. Thus,

we may restrict our attention to τ ∈ ∆δ,ε in order to show that the integral in (3.4.24)

is bounded.

Recall that ε = λ−1/2n so that ε → 0 as λ → ∞, and hence even restricted to the

interval ∆δ,ε, we must understand the behavior of the integral in (3.4.24) as |τ | → ∞

(recall δ is fixed). Since F (τ) is a finite-order polynomial with bounded coefficients on

∆δ,ε, the exponential e−C̃τ
2n

will dominate F (τ) and the integrand will decay rapidly
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as |τ | → ∞, and therefore

∫ ∞
−∞
|F (τ) ρ(k−m)(ετ)| e−C̃τ2n

dτ ≤ Ck,m <∞, (3.4.25)

where Ck,m is a constant and the above bound holds for all k,m such that m ≤ k ≤ N .

Following from (3.4.24) and using the bound in (3.4.25), we find

|H(λ, y)| ≤ ε

|ε(λ− y)|N
N∑
k=0

k∑
m=0

CN,k,m Ck,m εk−m (3.4.26)

=
ε

|ε(λ− y)|N
N∑
m=0

C̃N,m εm [re-index] (3.4.27)

.N
ε

|ε(λ− y)|N

(
1− εN+1

1− ε

)
(3.4.28)

.ε,N
ε

1 + |ε(λ− y)|N
. (3.4.29)

This reduces to the same bound that we had for the case p(x) = −x2n, which was

covered in Section 3.3. Applying Young’s inequality in the same manner gives us

‖K1ϕ‖ =

∥∥∥∥∫ ∞
−∞

H(·, y) ϕ̂i(y) dy

∥∥∥∥ . ‖ϕ̂‖ = ‖ϕ‖, (3.4.30)

from which it follows that the map ϕ 7→ ϕ̃(λ) is bounded for the case p(x) = −x2n +

x2n+1ψ(x), which is the form of a general analytic concave function up to a constant

multiple. This completes the proof of Theorem 1.

3.5 Chapter Summary

In this chapter we defined the Fp-transform by:

Fp : ϕ→ ϕ̃(λ) =

∫ σ

−σ
e−i λ x+λ p(x) ϕ(x) (1 + i p′(x)) dx, (3.5.1)

where ϕ ∈ L2([−σ, σ]), and p(x) is a concave function that is analytic on the interval

[−σ, σ], and satisfies p(0) = p′(0) = 0.
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Following this, we proved that the Fp-transform is bounded from L2([−σ, σ]) to

L2([0,∞]). This is summarized in Theorem 1 which we restate below:

Theorem. The following bound holds for all ϕ ∈ L2(Σ):

‖ϕ̃(λ)‖L2(Λ) . ‖ϕ‖L2(Σ), (3.5.2)

and therefore the operator Fp : ϕ 7→ ϕ̃(λ) is bounded from L2(Σ) to L2(Λ).



CHAPTER 4

Inverse of the Fp-transform

Recall, we define the Fp-transform by

Fp : ϕ(λ)→ ϕ̃(λ) =

∫ σ

−σ
e−iλx+λp(x)ϕ(x)[1 + ip′(x)]dx, (4.0.1)

for ϕ ∈ L2(Σ), where Σ = [−σ, σ]. In this chapter we will derive an inverse to the

Fp-transform. This will be done by performing a spectral analysis of the following

differential equation, which is an eigenvalue problem associated with the Fp-transform:

∂µ

∂x
− i λ(1 + i p′(x))µ = ϕ, (4.0.2)

with ϕ → 0 as |x| → ∞, and −∞ < x < ∞. In performing the spectral analysis, we

construct a function that is analytic in specified regions of the complex plane. This

function is used to find the inverse of the Fp-transform. This technique for constructing

an inverse transform follows a method developed by Fokas and Gelfand in [15].

The derivation of the FP -transform is done in several stages, which are outlined

as follows. In Section 4.2 we derive three solutions to the differential equation (4.0.2),

each of which is analytic in a separate region of the complex plane. Sections 4.2.1 - 4.2.2

are devoted to finding the regions for which these solutions are analytic. In Section

49
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4.3.1 we pose a generalized Riemann-Hilbert problem that corresponds to the jump of

the solutions across the respective domains in which the solutions are defined, and in

Section 4.3.2 we appeal to the Cauchy-Pompeiu formula to reconstruct a solution that

is sectionally analytic in the complex plane. For an example where the same method

is used to derive the inverse Fourier transform and the inverse Radon transform, see

Chapter 7 of [1].

Before beginning the derivation of the inverse Fp-transform, we will give a brief

overview of Riemann-Hilbert problems and their use in use their use in deriving inverses

to transforms. The will serve as a guide for the remainder of the chapter.

4.1 Background: Riemann-Hilbert Problems

In this section we will introduce the theory for Riemann-Hilbert problems that will be

used in this chapter. Following this, we will give an example of how a Riemann-Hilbert

problem can be used to derive an inverse to the Fourier transform - this will serve as

motivation for the derivation of the Fp-transform. The material in this section can be

found in standard references including [1] and [36].

Recall, in Section 2.1, we introduced an example of a Riemann-Hilbert problem

that was used to construct a representation formula for the Laplace equation on a

polygonal domain in the complex plane. More generally, a Riemann-Hilbert problem

consists of finding a piecewise analytic function Φ : C \ Γ → C that is discontinuous

across a contour Γ in the complex plane with a jump condition given by:

Φ+(z) = Φ−(z)G(z) + F (z) for z ∈ Γ, (4.1.1)

where Φ+ is the limit of Φ from the right of the contour Γ, and Φ− is the limit from

the left. The functions G : Γ→ C and F : Γ→ C are referred to as jump functions.

4.1.1 Precise Statement of Riemann-Hilbert Problem

We will now give further definitions and explanations to make the definition of a

Riemann-Hilbert problem more precise. We begin by defining the class of contours
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that will be considered for the Riemann-Hilbert problems that we will deal with. The

definition given below can be found in [36], where it is given as Definition 2.1.

Definition 2 (Complete Contour). A curve Γ is said to be a complete contour if Γ

can be oriented so that C\Γ can be decomposed into left and right components. That

is, C \ Γ can be written in the form C \ Γ = Ω+ ∪ Ω−, where Ω+ ∩ Ω− = ∅.

In the definition below, we specify the class of functions that will be used in the

Riemann-Hilbert problems that we consider:

Definition 3 (Sectionally Analytic). Let Γ be a complete contour that divides the

complex plane into regions Ω+ and Ω− which lie to the left and right of the contour

Γ, respectively. A function Φ defined in the complex plane, except possibly along a

complete contour Γ, is said to be sectionally analytic if the following two properties

hold:

• The function Φ(z) is analytic in each of the regions Ω+ and Ω−, except possibly

at z =∞.

• The following limits exist:

Φ+(t) := lim
z→t
z∈Ω+

Φ(z), t ∈ Γ (4.1.2)

Φ−(t) := lim
z→t
z∈Ω−

Φ(z), t ∈ Γ, (4.1.3)

where we assume the limit is taken along a path that is contained entirely in Ω+

or Ω−, respectively, and is not tangent to Γ in each case.

By Definition 3 above, a sectionally analytic function is continuous in the closed

region Ω+ ∪ Γ if the value Φ+(t) is assigned to Γ for all t ∈ Γ. Similarly, a sectionally

analytic function is continuous in the closed region Ω−∪ Γ if the value Φ−(t) is assigned

to Γ for all t ∈ Γ.
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Using the definitions above, we will now give a precise statement of a prototypical

Riemann-Hilbert problem of the type that will be considered in this chapter.

Problem Statement 1 (Riemann-Hilbert Problem). Given a complete contour

Γ in the complex plane, and jump functions G : Γ→ C and F : Γ→ C, find a function

Φ : C \ Γ→ C such that:

• Φ(z) is sectionally analytic, i.e. Φ(z) is analytic for all z ∈ C \ Γ and the limits

Φ+(t) and Φ−(t) defined by (4.1.2)-(4.1.3) exist for all t ∈ Γ.

• Φ(z) is bounded at z =∞, and in particular, the following bound holds:

lim sup
|z|→∞

|z|n|Φ(z)| <∞, (4.1.4)

for some finite integer n.

• Φ(z) satisfies the following jump condition:

Φ+(t) = Φ−(t)G(t) + F (t) for t ∈ Γ, (4.1.5)

The integer n from (4.1.4) above is referred to as the degree of Φ(z) at infinity.

Equivalently, we may say that the function Φ(z) has finite degree n at infinity if

Φ(z) ∼ Cn
1

zn
+O

(
1

zn−1

)
, as z →∞, (4.1.6)

where Cn is a non-zero constant. The requirement that Φ(z) have a finite degree at

infinity can be thought of as a boundary condition at infinity for the Riemann-Hilbert

problem.

We will now introduce an object that will play a fundamental role in the solution
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of Riemann-Hilbert problems. Consider the integral:

CΓ ϕ(z) =
1

2πi

∫
Γ

ϕ(τ)

τ − z
dτ, (4.1.7)

where Γ is a complete contour, and the function ϕ : Γ→ C satisfies a Holder condition.

That is, for all z, τ ∈ Γ, there exist constants C and α ∈ (0, 1] such that

|f(z)− f(τ)| ≤ C‖z − τ‖α. (4.1.8)

We refer to the integral in (4.1.7) as a Cauchy-type integral. It is well-established

that integrals of the form (4.1.7) are analytic away from the contour Γ. Moreover,

Cauchy-type integrals are useful in that they map (Holder-continuous) functions on a

contour Γ to analytic functions in C \ Γ.

The lemma that follows will be used to show that Cauchy-type integrals provide

the solutions to a large class of Riemann-Hilbert problems. This result can be found

in [1], where it is given as Lemma 7.2.1.

Lemma 3 (Plemelj Formulae). Let Γ be a smooth contour, and let ϕ(τ) satisfy a

Holder condition on Γ. Then the Cauchy-type integral CΓ ϕ(z) defined in (4.1.7) has

the limiting values C+
Γ ϕ(t) and C−Γ ϕ(t) as z approaches t ∈ Γ from the left and right,

respectively. These limiting values are defined by the following limits:

C+
Γ ϕ(t) =

1

2
ϕ(t) +

1

2πi
P.V.

∫
Γ

ϕ(τ)

τ − t
dτ, (4.1.9)

C−Γ ϕ(t) = −1

2
ϕ(t) +

1

2πi
P.V.

∫
Γ

ϕ(τ)

τ − t
dτ. (4.1.10)

In equations (4.1.9)-(4.1.10) from Lemma 3 above, the notation P.V.
∫

denotes the

principal value of the respective integral, given by:

P.V.

∫
Γ

ϕ(τ)

τ − t
dτ = lim

ε→0

∫
Γ\Γε

ϕ(τ)

τ − t
dτ, (4.1.11)
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where Γε is the segment of Γ that is centered around t and has radius ε.

Now consider the following problem which is a sub-case of the more general Riemann-

Hilbert problem specified in Problem Statement 1:

Problem Statement 2. Given a complete contour Γ in the complex plane, and jump

function F : Γ→ C, find a function Φ : C \ Γ→ C such that:

• Φ(z) is sectionally analytic and has finite degree at infinity,

• Φ(z) satisfies the following jump condition:

Φ+(t)− Φ−(t) = F (t) for t ∈ Γ. (4.1.12)

By applying the Plemelj formulae (Lemma 3), we observe that the unique solution

to the Riemann-Hilbert problem given in (4.1.12) can be expressed in terms of a

Cauchy-type integral. In particular, if we let ϕ(τ) = F (τ) and let Φ(z) = CΓ F (z)

in equation (4.1.7), then we have:

Φ+(t)− Φ−(t) = C+
Γ F (t)− C−Γ F (t) = F (t). (4.1.13)

The function CΓ F (z) is also sectionally analytic since it is analytic away from Γ. In

addition, by performing a series expansion of CΓ F (z), we find that it is of degree 1 at

infinity. Therefore, the solution of a Riemann-Hilbert problem in the form (4.1.12) can

be expressed in terms of a Cauchy-type integral. This fact will be used in the following

section.

4.1.2 Example: Inversion of Fourier Transform

We will now show how an elementary Riemann-Hilbert problem of the form (4.1.12)

can be used to derive the inverse Fourier transform. Consider the following linear ODE

which is an eigenvalue problem associated to the Fourier transform:

µx − iλ µ = ϕ(x), λ ∈ C, (4.1.14)
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where ϕ(x) → 0 as |x| → ∞ and x ∈ (−∞,∞). We will perform a spectral analysis

of this linear differential equation to construct the inverse for the Fourier transform.

The method in this section was originally developed in [15] and has been used more

recently for more sophisticated problems such as characterizing the Dirichlet-Neumann

map for moving initial-boundary value problems in [13].

We begin by rearranging (4.1.14) to get

∂

∂x

[
e−iλx µ

]
= e−iλx ϕ. (4.1.15)

The following functions are particular solutions to (4.1.15):

µ+(x, λ) =

∫ x

−∞
ϕ(y) eiλ(x−y) dy (4.1.16)

µ−(x, λ) = −
∫ x

−∞
ϕ(y) eiλ(x−y) dy. (4.1.17)

We observe that the solutions µ+ and µ− are analytic in the upper-half complex λ-

plane (i.e., x−y > 0 and Im (λ) ≥ 0) and the lower-half complex λ-plane (i.e., x−y < 0

and Im (λ) ≤ 0), respectively. We may therefore define the following function which is

bounded for all λ ∈ C:

µ(x, λ) =

 µ+(x, λ) if Im (λ) ≥ 0

µ−(x, λ) if Im (λ) ≤ 0.
(4.1.18)

In fact, the function µ(x, λ) is sectionally analytic with Γ = R being a complete contour

that divides the complex λ-plane into the upper-half plane (Ω+) and the lower-half

plane (Ω−).

By subtracting (4.1.17) from (4.1.16), we get the following jump condition across

Γ = R:

µ+(x, λ)− µ−(x, λ) = eiλx ϕ̂(λ), λ ∈ R, (4.1.19)

where ϕ̂ is the Fourier transform defined by:

ϕ̂(λ) =

∫ ∞
−∞

ϕ(x) e−iλx dx, λ ∈ R. (4.1.20)



CHAPTER 4. INVERSE OF THE FP -TRANSFORM 56

Applying integration by parts on equations (4.1.16) and (4.1.17), we find:

µ = O

(
1

λ

)
, as λ→∞. (4.1.21)

Equations 4.1.19 and 4.1.21 define a Riemann-Hilbert problem of the form given in

Problem Statement 2. The unique solution to this problem is given by the following

Cauchy-type integral:

µ(x, λ) =
1

2πi

∫ ∞
−∞

eiζx ϕ̂(ζ)

ζ − λ
dζ, λ ∈ C. (4.1.22)

By comparing the large-λ asymptotics of (4.1.14) and (4.1.22), we will derive an ex-

pression for ϕ(x) in terms of ϕ̂(λ). For large λ, equation (4.1.14) implies:

ϕ(x) = −i lim
λ→∞

(λµ), (4.1.23)

while for large λ, equation (4.1.22) implies:

lim
λ→∞

(λµ) = − 1

2πi

∫ ∞
−∞

eiλ x ϕ̂(λ) dλ. (4.1.24)

Combining equations (4.1.23) and (4.1.24), we arrive at the following formula for ϕ(x):

ϕ(x) =
1

2π

∫ ∞
−∞

eiλ x ϕ̂(λ) dλ. (4.1.25)

Equation (4.1.25) is the inverse Fourier transform. We will use the procedure from

this section as a template for deriving the inverse of the Fp-transform in this chapter.

4.1.3 ∂̄−Problems

We will now introduce a generalization of the Riemann-Hilbert problem that allows for

similar computations with functions that satisfy a generalized definition of analyticity.

First, we introduce the following generalized definition of analyticity:
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Definition 4 (Generalized Analytic Function). Let Φ(z, z̄) be a function defined

in the region Ω ⊂ C. The function Φ(z, z̄) is said to be a generalized analytic function

if:

∂Φ

∂z̄
= f(z, z̄), z ∈ Ω. (4.1.26)

In the case where ∂Φ/∂z̄ = 0, the function Φ is analytic as a consequence of the

Cauchy-Riemann equations.

Correspondingly, we also introduce a generalization of the definition of a sectionally

analytic function below.

Definition 5 (Generalized Sectionally Analytic). Let Γ be a complete contour

that divides the complex plane into regions Ω+ and Ω− which lie to the left and right

of the contour Γ, respectively. A function Φ(z, z̄) defined in the complex plane, except

possibly along a complete contour Γ, is referred to as a generalized sectionally analytic

if the following two properties hold:

• Φ(z, z̄) is a generalized analytic function in each of the regions Ω+ and Ω−, except

possibly at z =∞.

• The following limits exist:

Φ+(t) := lim
z→t
z∈Ω+

Φ(z), t ∈ Γ (4.1.27)

Φ−(t) := lim
z→t
z∈Ω−

Φ(z), t ∈ Γ, (4.1.28)

where we assume the limit is taken along a non-tangential path that is contained

entirely in Ω+ or Ω−, respectively.

This leads to a generalization of the Riemann-Hilbert problem, which will be re-

ferred to as a so-called ∂̄-problem. We make the statement of this problem precise
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below:

Problem Statement 3 (∂̄-Problem). Given a complete contour Γ in the complex

plane, and jump function F : Γ→ C, find a function Φ : C \ Γ→ C such that:

• Φ(z) is a generlized sectionally analytic function,

• Φ(z) has finite degree at infinity,

• Φ(z) satisfies the following jump condition:

Φ+(t)− Φ−(t) = F (t) for t ∈ Γ. (4.1.29)

We will now introduce a formula that plays a similar role to the Cauchy-type inte-

grals in the solution of ∂̄-problems for functions that satisfy the generalized sectionally

analytic condition.

Lemma 4 (Cauchy-Pompeiu Formula). Let f be a complex-valued C1 function

defined on the closure of a region Ω ⊂ C, then

f(z, z̄) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ +

1

2πi

∫∫
Ω

∂f

∂ζ̄
(ζ)

dζ ∧ dζ̄
ζ − z

. (4.1.30)

For reference, Lemma 4 is given as Lemma 7.4. in [1]. It was also shown in

[1] that the Cauchy-Pompeiu formula provides the unique solution to ∂̄-problems of

the form given in Problem Statement 3. We will make use of the Cauchy-Pompeiu

formula in this chapter for solving a ∂̄-problem associated with finding the inverse of

the Fp-transform.
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4.2 Regions for the ∂̄-Problem

Using the derivation of the inverse Fourier transform in Section 4.1.2 as a template,

we will now perform a similar spectral analysis for the following linear ODE:

∂µ

∂x
− i λ(1 + i p′(x))µ = ϕ, (4.2.1)

with ϕ→ 0 as |x| → ∞, and −∞ < x <∞. Rearranging (4.2.1) gives us

∂

∂x

[
e−iλx+λp(x)µ

]
= e−iλx+λp(x)ϕ. (4.2.2)

The following functions are solutions to (4.2.2):

µ1(x, λ) = eiλx−λp(x)

∫ x

−σ
e−iλy+λp(y)ϕ(y)dy, λ ∈ Ω1 (4.2.3a)

µ2(x, λ) = −eiλx−λp(x)

∫ σ

x
e−iλy+λp(y)ϕ(y)dy, λ ∈ Ω2 (4.2.3b)

µ3(x, λ, λ̄) = eiλx−λp(x)

∫ x

x3

e−iλy+λp(y)ϕ(y)dy, λ ∈ Ω3, (4.2.3c)

where x3 = x3(λ, λ̄) is defined by λI +p′(x3)λR = 0. We observe that since µ3 depends

on λ̄, it will not be analytic in Ω3. However, it satisfies the generalized definition of

analyticity given in Definition 4 from Section 4.1.3. This fact will be used later in the

chapter.

Now we wish to find the regions Ω1,Ω2 and Ω3 in the complex plane where each of

the respective functions µj(x, λ) is bounded. This will yield the following generalized

sectionally analytic function:

µ(x, λ, λ̄) =


µ1 if λ ∈ Ω1

µ2 if λ ∈ Ω2

µ3 if λ ∈ Ω3.

(4.2.4)
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4.2.1 The Regions Ω1 and Ω2

By an application of the Cauchy-Schwarz inequality, in order to show µ1 is bounded, it

is sufficient to show |eiλ(x−y)eλ(p(y)−p(x))| is bounded. This expression can be rewritten

as follows

|eiλ(x−y)eλ(p(y)−p(x))| = e−λI(x−y)eλR(p(y)−p(x)) (4.2.5)

= e−(x−y)[λI+λR R(x,y)], (4.2.6)

where

λ = λR + iλI and R(x, y) :=
p(x)− p(y)

x− y
. (4.2.7)

Since x > y, in order for (4.2.6) to be bounded, the parameter λ must satisfy

λI + λRR(x, y) ≥ 0. (4.2.8)

By concavity, R(x, y) obeys:

p′(x) ≤ R(x, y) ≤ p′(−σ). (4.2.9)

This can be seen in Figure 4.1 below.

(y, p(y))

(x, p(x))

p′(−σ)

Figure 4.1: The concavity of the curve p(x), demonstrating the inequality p′(x) ≤ R(x, y) ≤
p′(−σ).

If λR > 0, then the inequality (4.2.9) implies:

λI + λR p
′(x) ≤ λI + λRR(x, y) ≤ λI + λR p

′(−σ). (4.2.10)
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Further, the condition in (4.2.8) holds if

λI + λR p
′(x) ≥ 0 ⇒ λI ≥ −λR p′(x), for λR > 0. (4.2.11)

If λR < 0, then the inequality (4.2.9) implies:

λI − |λR| p′(−σ) ≤ λI − |λR|R(x, y) ≤ λI − |λR| p′(x). (4.2.12)

Therefore, the condition in (4.2.8) holds if

λI − |λR| p′(−σ) ≥ 0 ⇒ λI ≥ |λR| p′(−σ), for λR < 0. (4.2.13)

The ray for which λI = −λR p′(x) can be expressed as a complex number of the form

λR + iλI = λR − iλR p′(x) (4.2.14)

= λR[1− ip′(x)]. (4.2.15)

If p′(x) is positive, then this ray is in the fourth quadrant of the complex plane since λR

is positive. The ray for which λI = −λR p′(a) can be expressed as a complex number

of the form

λR + iλI = λR − iλR p′(−σ) (4.2.16)

= λR[1− ip′(−σ)]. (4.2.17)

Since λR is negative, this ray is in the second quadrant of the complex plane since

p′(a) is positive.

Putting these facts together, the region Ω1 is defined by:

Ω1(x) =

 λI ≥ −λR p′(x) if λR > 0

λI ≥ |λR| p′(−σ) if λR < 0.
(4.2.18)
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Repeating a similar analysis for the function µ2, we find that the domain Ω2 is defined

by:

Ω2(x) =

 λI ≤ −λR p′(x) if λR > 0

λI ≤ |λR| p′(σ) if λR < 0.
(4.2.19)

4.2.2 The Region Ω3

Now recall x3 = x3(λI , λR) = x3(λ, λ̄) is defined by

λI + p′(x3)λR = 0 ⇒ p′(x3) = − λI
λR

. (4.2.20)

As in the previous cases, in order to show µ3(x, λ, λ̄) is bounded, it is sufficient to show

that the following is bounded:

|eiλ(x−y)eλ(p(y)−p(x))| = e−(x−y)[λI+λR R(x,y)]. (4.2.21)

We will consider the cases x3 < x and x3 > x separately.

If x3 < x, then x > y and in order for (4.2.21) to be bounded, the parameter λ

must satisfy

λI + λRR(x, y) ≥ 0. (4.2.22)

By convexity, R(x, y) obeys:

p′(σ) ≤ p′(x) ≤ p′(x3) ≤ R(x, y) ≤ p′(−σ). (4.2.23)

Hence, for λR < 0 we have

λI + λR p
′(σ) ≥ λI+λR p′(x) ≥ λI + λR p

′(x3)

≥ λI + λRR(x, y) ≥ λI + λR p
′(−σ). (4.2.24)
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Since λI + λR p
′(x3) = 0, by (4.2.23), we have

0 = λI + λR p
′(x3) ≥ λI + λRR(x, y). (4.2.25)

Further, by the inequalities in (4.2.24), we have

0 ≥ λI + λR p
′(−σ) ⇒ λI ≤ |λR| p′(−σ), (4.2.26)

and

λI + λR p
′(x) ≥ 0 ⇒ λI ≥ |λR| p′(x). (4.2.27)

In the case x3 > x, then x < y and a similar calculation shows that (4.2.22)

becomes

λI + λRR(x, y) ≤ 0, (4.2.28)

and we get the following inequalities:

λI ≤ |λR| p′(x), λR < 0 (4.2.29)

λI ≥ |λR| p′(σ), λR < 0. (4.2.30)

Putting the cases x3 < x and x3 > x together we find that the region Ω3 is defined by:

Ω3(x) =

 λI ≤ |λR| p′(−σ) for λR < 0

λI ≥ |λR| p′(σ) for λR < 0.
(4.2.31)

Figure 4.2 below shows the regions Ω1,Ω2, and Ω3 in the complex plane.

4.3 Inverting the Fp-transform

In the previous section we found the regions of the complex plane in which the functions

(4.2.3a) - (4.2.3c) are bounded. This allowed us to define the function µ(x, λ, λ̄) which
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Re(λ)

Im(λ)

λI = −λR p′(−σ)

λI = −λR p′(x)

λI = −λR p′(σ)

Ω3

Ω2

Ω1

µ3 analytic

µ2 analytic

µ1 analytic

Figure 4.2: The regions Ω1,Ω2, and Ω3 are
shown in the complex plane.

is analytic in each of the regions Ω1 and Ω2, and generalized analytic in the region

Ω3. In this section, we will employ the Cauchy-Pompeiu formula to reconstruct the

generalized sectionally analytic function µ(x, λ, λ̄) from its ∂̄-derivatives and jumps

across the boundaries of the regions Ω1, Ω2, and Ω3. This will allow us to construct

the inverse to the Fp-transform.

Recall, from Lemma 4 that the Cauchy-Pompeiu formula states:

f(z, z̄) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ +

1

2πi

∫∫
Ω

∂f

∂ζ̄
(ζ)

dζ ∧ dζ̄
ζ − z

, (4.3.1)

where f is a complex-valued C1 function defined on the closure of a region Ω ⊂ C. In

the case where f is a generalized sectionally analytic function in the regions Ω1, . . . ,Ωn

of the complex plane, the Cauchy-Pompeiu formula becomes

f(z, z̄) =
1

2πi

∑
J

∫
∂Ω

f+(ζ)− f−(ζ)

ζ − z
dζ +

1

2πi

n∑
j=1

∫∫
Ωj

∂f

∂ζ̄
(ζ)

dζ ∧ dζ̄
ζ − z

, (4.3.2)

where J is the set of jumps across overlapping regions and f+ and f− are the left

and right values of f across the jump, respectively. Therefore, in order to apply the
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Cauchy-Pompeiu formula to the function µ(x, λ, λ̄), we must first compute the jumps

across the boundary of each of the regions Ω1, Ω2, and Ω3.

4.3.1 The Riemann-Hilbert Problem

We will now compute the jumps across the boundary of each of the regions Ω1, Ω2,

and Ω3. This will naturally lead to a ∂̄-problem corresponding to each of the jumps

between the functions µ1, µ2, and µ3 over the boundaries of the respective regions.

Using the Cauchy-Pompeiu formula, we will be able to solve the ∂̄-problem which will

allow us to reconstruct the function µ(x, λ, λ̄).

We begin by computing the jump across the ray λ = λR [1− ip′(−σ)]:

µ1 − µ3 = eiλx−λp(x)

∫ x

−σ
e−iλy+λp(y)ϕ(y)dy − eiλx−λp(x)

∫ x

x3

e−iλy+λp(y)ϕ(y)dy (4.3.3)

= eiλx−λp(x)

[∫ x

−σ
e−iλy+λp(y)ϕ(y)dy +

∫ x3

x
e−iλy+λp(y)ϕ(y)dy

]
(4.3.4)

= eiλx−λp(x)

[∫ x3

−σ
e−iλy+λp(y)ϕ(y)dy

]
. (4.3.5)

Recall that x3 is defined such that p′(x3) = − λI
λR

, and since λ = λR [1 − ip′(−σ)], we

have p′(x3) = p′(−σ). Moreover, the function p′(x) is strictly increasing, and hence

it follows that x3 = a on the ray λ = λR [1 − ip′(−σ)]. Therefore, the final integral

(4.3.5) becomes

eiλx−λp(x)

[∫ x3

−σ
e−iλy+λp(y)ϕ(y)dy

]
= eiλx−λp(x)

[∫ −σ
−σ

e−iλy+λp(y)ϕ(y)dy

]
= 0.

(4.3.6)

The jump across the ray λ = λR [1− ip′(σ)] is given by:

µ3 − µ2 = eiλx−λp(x)

∫ x

x3

e−iλy+λp(y)ϕ(y)dy + eiλx−λp(x)

∫ σ

x
e−iλy+λp(y)ϕ(y)dy (4.3.7)

= eiλx−λp(x)

[∫ x

x3

e−iλy+λp(y)ϕ(y)dy +

∫ σ

x
e−iλy+λp(y)ϕ(y)dy

]
(4.3.8)

= eiλx−λp(x)

[∫ σ

x3

e−iλy+λp(y)ϕ(y)dy

]
. (4.3.9)

By a similar argument to the one above, x3 = σ on the ray λ = λR [1− ip′(σ)], and
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therefore

eiλx−λp(x)

[∫ σ

x3

e−iλy+λp(y)ϕ(y)dy

]
= eiλx−λp(x)

[∫ σ

σ
e−iλy+λp(y)ϕ(y)dy

]
= 0. (4.3.10)

Finally, the jump across the ray λ = λR [1− ip′(x)] is given by:

µ2 − µ1 = −[µ1 − µ2] (4.3.11)

= −eiλx−λp(x)

[∫ x

−σ
e−iλy+λp(y)ϕ(y)dy +

∫ σ

x
e−iλy+λp(y)ϕ(y)dy

]
(4.3.12)

= −eiλx−λp(x)

[∫ σ

−σ
e−iλy+λp(y)ϕ(y)dy

]
(4.3.13)

= −eiλx−λp(x)ϕ̃(y). (4.3.14)

Now returning to the original differential equation (4.0.2), consider µ1(x, λ) which can

be written as

µ1(x, λ) = eiλx−λp(x)

∫ x

−σ
e−iλy+λp(y)ϕ(y)dy, λ ∈ Ω1 (4.3.15)

= eiλx−λp(x)

∫ x

−σ

ϕ(y)

−λ(i− p′(y))

d

dy

[
e−iλy+λp(y)

]
dy (4.3.16)

= eiλx−λp(x)

{[
ϕ(y)

−λ(i− p′(y))
e−iλy+λp(y)

]x
−σ
−
∫ x

−σ
e−iλy+λp(y) d

dy

[
ϕ(y)

−λ(i− p′(y))

]
dy

}
(4.3.17)

=
ϕ(x)

−λ(i− p′(x))
− ϕ(−σ)

−λ(i− p′(−σ))
eiλ(x−(−σ))−λ(p(x)−p(−σ))

− eiλx−λp(x)

∫ x

−σ
e−iλy+λp(y) d

dy

[
ϕ(y)

−λ(i− p′(y))

]
dy (4.3.18)

=
ϕ(x)

−λ(i− p′(x))
+O

(
1

λ2

)
. (4.3.19)

As a note, in equation (4.3.18), the term

ϕ(−σ)

−λ(i− p′(−σ))
eiλ(x−(−σ))−λ(p(x)−p(−σ)) (4.3.20)

decays exponentially since (p(x)− p(−σ)) > 0 by concavity, and therefore −λ(p(x)−
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p(−σ)) < 0. Hence,

eiλ(x−(−σ))−λ(p(x)−p(−σ)) → 0 as λ→∞. (4.3.21)

Furthermore, the final term in equation (4.3.18) is O(1/λ2). This justifies (4.3.19).

A similar calculation can be performed for µ2 and µ3, and taken together with

(4.3.19), we find that

µ = O

(
1

λ

)
, as λ→∞. (4.3.22)

Equations (4.3.5), (4.3.9), (4.3.14), and (4.3.22) define a ∂̄-problem for the generalized

sectionally analytic function µ(x, λ, λ̄). Furthermore, from (4.3.19), we deduce that

lim
λ→∞

λµ1(x, λ) = − ϕ(x)

i− p′(x)
, (4.3.23)

and similarly for µ2(x, λ) and µ3(x, λ).

4.3.2 Solving the ∂̄-Problem

Now we wish to solve the ∂̄-problem posed in the previous section. Using the Cauchy-

Pompeiu formula (i.e., (4.3.2)), the unique solution of the ∂̄-problem defined by (4.3.5),

(4.3.9), (4.3.14), and (4.3.22) is given by

µ(λ, λ̄) =
1

2πi

∫
γ1

µ1 − µ3

ζ − λ
dζ +

1

2πi

∫
γ2

µ3 − µ2

ζ − λ
dζ +

1

2πi

∫
γ3

µ2 − µ1

ζ − λ
dζ

+
1

2πi

∫∫
Ω1

∂µ1

∂ζ̄
(ζ)

dζ ∧ dζ̄
ζ − λ

+
1

2πi

∫∫
Ω2

∂µ2

∂ζ̄
(ζ)

dζ ∧ dζ̄
ζ − λ

+
1

2πi

∫∫
Ω3

∂µ3

∂ζ̄
(ζ)

dζ ∧ dζ̄
ζ − λ

,

(4.3.24)

where γ1 = {ζ ∈ C : ζ = ζR [1 − ip′(−σ)], ζR < 0}, γ2 = {ζ ∈ C : ζ = ζR [1 −

ip′(σ)], ζR < 0}, and γ3 = {ζ ∈ C : ζ = ζR [1− ip′(x)], ζR > 0}, and the expressions for

µ1 − µ3, µ3 − µ2, and µ2 − µ1 are given by (4.3.5), (4.3.9), and (4.3.14), respectively.

The respective curves are labelled in Figure 4.3 on the following page.
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Re(λ)

Im(λ)

γ1

γ3

γ2

Ω3

µ3 analytic

Ω2

µ2 analytic

Ω1

µ1 analytic

Figure 4.3: The rays γ1, γ2, and γ3 are shown
in the complex plane.

Using the fact that µ1 − µ3 = 0, µ3 − µ2 = 0, as well as the fact that ∂µ1/∂ζ̄ =

∂µ2/∂ζ̄ = 0, equation (4.3.24) can be simplified to

µ(λ, λ̄) =
1

2πi

∫
γ3

µ2 − µ1

ζ − λ
dζ +

1

2πi

∫∫
Ω3

∂µ3

∂ζ̄
(ζ)

dζ ∧ dζ̄
ζ − λ

. (4.3.25)

Now we wish to compare the large-λ asymptotics of the original differential equation

(4.0.2) with the large-λ asymptotics of the expression for µ(x, λ, λ̄) in equation (4.3.25).

For large λ, (4.3.23) and the corresponding expressions for µ2 and µ3 imply:

−ϕ
(i− p′(x))

= lim
λ→∞

(λµ) (4.3.26)

= − 1

2πi

∫
γ3

µ2 − µ1dλ−
1

2πi

∫∫
Ω3

∂µ3

∂ζ̄
(ζ)dζ ∧ dζ̄ (4.3.27)

=
1

2πi

∫
γ3

eiλx−λp(x)ϕ̃(λ)dλ− 1

2πi

∫∫
Ω3

∂µ3

∂ζ̄
(ζ)dζ ∧ dζ̄. (4.3.28)

The final equality above follows from (4.3.14).

Now we will focus our attention on the final term in equation (4.3.28). Using the

anti-commutative property of differential forms and the fact that the exterior derivative
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of a differential form is given by dω =
∑n

i=1(df/dxi) dxi ∧ dxj , equation (4.3.28) can

be written as

− 1

2πi

∫∫
Ω3

∂µ3

∂ζ̄
(ζ) dζ ∧ dζ̄ =

1

2πi

∫∫
Ω3

d (µ3 dζ) . (4.3.29)

Applying Stoke’s theorem, we have

1

2πi

∫∫
Ω3

d (µ3 dζ) =
1

2πi

∫
∂Ω3

µ3 dζ

=
1

2πi

∫
γ1

µ3 dλ−
1

2πi

∫
γ2

µ3 dλ+
1

2πi
lim
R→∞

∫
CR

µ3 dλ, (4.3.30)

where CR is the arc between γ1 and γ2, as R→∞. The arc CR is shown in Figure 4.4

below.

Re(λ)

Im(λ)

γ1

γ3

γ2

CR

R→∞

Ω3

Ω2

Ω1

Figure 4.4: The arc CR shown in the complex
plane.

On the contours γ1 and γ2, we have µ3 = µ1 and µ3 = µ2, respectively, and

therefore the above expression may be written as:

1

2πi

∫∫
Ω3

d (µ3 dζ) =
1

2πi

∫
∂Ω3

µ3 dζ

=
1

2πi

∫
γ1

µ1 dλ−
1

2πi

∫
γ2

µ2 dλ+
1

2πi
lim
R→∞

∫
CR

µ3 dλ, (4.3.31)
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Collecting terms and returning to equation (4.3.28), we get the following expression:

−ϕ
(i− p′(x))

=
1

2πi

∫
γ3

eiλx+λp(x)ϕ̃(λ) dλ+
1

2πi

∫
γ1

µ1 dλ

− 1

2πi

∫
γ2

µ2 dλ+
1

2πi
lim
R→∞

∫
CR

µ3 dλ. (4.3.32)

Now we will focus our attention on dealing with the term µ3,CR :=
∫
CR

µ3 dλ.

We can parametrize CR by CR = {ζ ∈ C : ζ = Reiθ, tan−1(−p′(−σ)) ≤ θ ≤

tan−1(−p′(σ))} where 0 < R ≤ ∞. Making this substitution, the term µ3,CR becomes

∫
CR

µ3 dζ =

∫ θσ

θ−σ

µ3(x,Reiθ, Re−iθ) iR eiθdθ, (4.3.33)

where θ−σ = tan−1(−p′(−σ)) and θσ = tan−1(−p′(σ)). In equation (4.3.33), the term

µ3 can be written as

µ3(x,Reiθ, Re−iθ) =
1

Reiθ

(
−ϕ(x)

i− p′(x)

)
+O

(
1

R2

)
. (4.3.34)

Now we will evaluate the limit limR→∞ µ3,CR :

lim
R→∞

µ3,CR = lim
R→∞

∫ θσ

θ−σ

[
1

Reiθ

(
−ϕ(x)

i− p′(x)

)
+O

(
1

R2

)]
iReiθ dθ (4.3.35)

=

∫ θσ

θ−σ

lim
R→∞

[
i

(
−ϕ(x)

i− p′(x)

)
+O

(
1

R

)]
dθ (4.3.36)

=

∫ θσ

θ−σ

i

(
−ϕ(x)

i− p′(x)

)
dθ (4.3.37)

= i

(
−ϕ(x)

i− p′(x)

)
∆θ, (4.3.38)

where ∆θ := θσ − θ−σ. Using the above expression, equation (4.3.32) becomes

−ϕ
(i− p′(x))

=
1

2πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ+
1

2πi

∫
γ1

µ1 dλ

− 1

2πi

∫
γ2

µ2 dλ+
1

2π

(
−ϕ(x)

i− p′(x)

)
∆θ. (4.3.39)
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Now we will rotate the integrals over γ1 and γ2 so that they are over the positive

and negative imaginary axes, respectively, instead. Using Cauchy’s integral theorem,

we have:

1

2πi

∫
γ1

µ1 dλ = − 1

2πi

∫ +i∞

0
µ1 dλ+

1

2πi

∫
C1
R

µ1 dλ (4.3.40a)

1

2πi

∫
γ2

µ2 dλ = − 1

2πi

∫ 0

−i∞
µ2 dλ−

1

2πi

∫
C2
R

µ2 dλ, (4.3.40b)

where C1
R is defined by C1

R = {λ ∈ C : λ = Reiθ, π/2 ≤ θ ≤ tan−1(−p′(−σ))} where

0 < R ≤ ∞ and C2
R is defined by C2

R = {λ ∈ C : λ = Reiθ, tan−1(−p′(σ)) ≤ θ ≤ 3π/2}

where 0 < R ≤ ∞. In (4.3.40a)- (4.3.40b) above, we have chosen counter-clockwise

oriented contours for C1
R and C2

R and clockwise oriented contours for the positive and

negative imaginary axes. The arcs C1
R and C2

R are shown in Figure 4.5 below.

Re(λ)

Im(λ)

γ1

γ3

γ2

C1
R

R→∞

C2
R

R→∞

Ω3

Ω2

Ω1

Figure 4.5: The arcs C1
R and C2

R are shown in
the complex plane.
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Now we apply Fubini’s theorem to the term
∫ +i∞

0 µ1 dλ from equation (4.3.40a):

∫ +i∞

0
µ1 dλ =

∫ +i∞

0
eiλx−λp(x)

∫ x

−σ
e−iλy+λp(y)ϕ(y) dy dλ (4.3.41)

=

∫ +i∞

0

∫ x

−σ
eiλx−λp(x)e−iλy+λp(y)ϕ(y) dy dλ (4.3.42)

=

∫ x

−σ

[∫ +i∞

0
eiλ[x−y]+λ[p(y)−p(x)] dλ

]
ϕ(y) dy. (4.3.43)

Focusing on the inner integral we find

∫ +i∞

0
eiλ[x−y]+λ[p(y)−p(x)] dλ

=
1

(p(y)− p(x)) + i(x− y)
lim

A→+i∞

[
eiλ[x−y]+λ[p(x)−p(y)]

]λ=A

λ=0
(4.3.44)

=
1

(p(y)− p(x)) + i(x− y)

[
lim

A→+i∞

(
eiA[x−y]+A[p(y)−p(x)]

)
− 1

]
(4.3.45)

=
1

(p(y)− p(x)) + i(x− y)
[0− 1] (4.3.46)

=
−1

(p(y)− p(x)) + i(x− y)
. (4.3.47)

The last step, i.e (4.3.45)-(4.3.46), follows from the fact that x > y on the interval

[a, x], and hence |exp(iA[x− y])| → 0 as A → +i∞. Therefore, substituting (4.3.47)

back into (4.3.43), we get:

∫ +i∞

0
µ1 dλ = −

∫ x

−σ

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy. (4.3.48)

We can also do the same procedure for the term
∫ 0
−i∞ µ2 dλ from equation (4.3.40b)

to get: ∫ 0

−i∞
µ2 dλ =

∫ σ

x

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy. (4.3.49)

Substituting (4.3.48) back into (4.3.40a) and (4.3.49) back into (4.3.40b) and (4.3.40a)
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- (4.3.40b) into (4.3.39) gives us:

−ϕ
(i− p′(x))

=
1

2πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ+
1

2πi

∫ x

−σ

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy

+
1

2πi

∫
C1
R

µ1 dλ+
1

2πi

∫ σ

x

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy +

1

2πi

∫
C2
R

µ2 dλ

+
1

2π

(
−ϕ(x)

i− p′(x)

)
∆θ, (4.3.50)

which simplifies to

−ϕ
(i− p′(x))

=
1

2πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ+
1

2πi

∫ σ

−σ

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy

+
1

2πi

∫
C1
R

µ1 dλ+
1

2πi

∫
C2
R

µ2 dλ+
1

2π

(
−ϕ(x)

i− p′(x)

)
∆θ. (4.3.51)

We will now focus on the final term in (4.3.51). A calculation similar to (4.3.35)-

(4.3.38) shows that

lim
R→∞

∫
C1
R

µ1 dλ = i

(
−ϕ(x)

i− p′(x)

) (
θ−σ −

π

2

)
(4.3.52)

and

lim
R→∞

∫
C2
R

µ2 dλ = i

(
−ϕ(x)

i− p′(x)

) (
3π

2
− θσ

)
. (4.3.53)

Therefore, (4.3.51) becomes:

−ϕ
(i− p′(x))

=
1

2πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ+
1

2πi

∫ σ

−σ

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy

+
1

2π

(
−ϕ(x)

i− p′(x)

)
(π −∆θ) +

1

2π

(
−ϕ(x)

i− p′(x)

)
∆θ. (4.3.54)

This simplifies to

−ϕ
(i− p′(x))

=
1

2πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ

+
1

2πi

∫ σ

−σ

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy − 1

2

(
ϕ(x)

i− p′(x)

)
. (4.3.55)
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Rearranging to get an expression for ϕ gives us:

ϕ = −(i− p′(x))

πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ

− (i− p′(x))

πi

∫ σ

−σ

ϕ(y)

(p(y)− p(x)) + i(x− y)
dy. (4.3.56)

This can then be written as

ϕ−
∫ σ

−σ

[
−(i− p′(x))

πi [(p(y)− p(x)) + i(x− y)]

]
ϕ(y) dy =

− (i− p′(x))

πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ. (4.3.57)

The left-hand-side of (4.3.57) can be written as an integral operator acting on ϕ. This

allows us to reduce the study of (4.3.57) to the analysis of the given integral operator.

We introduce this integral operator in the definition below.

Definition 6. The integral operator L : L2(Σ)→ L2(Σ) is defined by

Lψ :=

∫ σ

−σ
M(x, y)ψ(y) dy, (4.3.58)

where the kernel M(x, y) is given by

M(x, y) =

[
−(i− p′(x))

πi [(p(y)− p(x)) + i(x− y)]

]
. (4.3.59)

Using Definition 6, (4.3.57) can be written as:

(I − L) ϕ = −(i− p′(x))

πi

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ. (4.3.60)

In the discussion that follows we will study the operator L : L2(Σ) → L2(Σ) by ana-

lyzing the kernel M(x, y). In particular, we will show that the real part of the operator

L is compact. This, in turn, will be used to show that (I − Re (L)) is continuously

invertible on its range. This allows us to solve (4.3.60) for ϕ, thus finding an inverse



CHAPTER 4. INVERSE OF THE FP -TRANSFORM 75

for the Fp-transform.

4.3.3 An Example

We will now give an example where the inverse formula given in (4.3.60) is verified.

Let p(x) be the upper-half of the circle of radius 1/4 that is centered at x = 1/2.

The curve p(x) can be written as:

p(x) =

√
1

4
−
(
x− 1

2

)2

(4.3.61)

=
√
x− x2, (4.3.62)

for x ∈ [0, 1]. The Fp-inverse formula given in (4.3.60) takes the form:

ϕ(x)−
∫ 1

0

 −i+ 1
2

(
1−2y√
y−y2

)
πi [
√
y − y2 −

√
x− x2) + i(x− y)]

 ϕ(y) dy

=
1

πi

(
−i+

1

2

(
1− 2y√
y − y2

)) ∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ. (4.3.63)

If we take the real part of the kernel M(x, y) associated to the operator L : L2([0, 1])→

L2([0, 1]), we find

Re (M(x, y)) =
1

2

1√
y − y2

. (4.3.64)

Using this fact, we may take the real part of both sides of (4.3.63) to get:

ϕ(x)− 1

2π

∫ 1

0

[
1√
y − y2

]
ϕ(y) dy = − 1

π
Re

(∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ

)
. (4.3.65)

Now, we will verify (4.3.65) for ϕ(x) = 1. Starting with the left-hand-side, we compute
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the following integral:

∫ 1

0

[
1√
y − y2

]
1 dy =

[
2
√
−1 + y

√
y log

(√
−1 + y +

√
y
)√

y − y2

]1

0

(4.3.66)

= lim
y→1

2
√
−1 + y

√
y log

(√
−1 + y +

√
y
)√

y − y2

− lim
y→0

2
√
−1 + y

√
y log

(√
−1 + y +

√
y
)√

y − y2
(4.3.67)

= 0− (−π) (4.3.68)

= π. (4.3.69)

Therefore, the left-hand-side is calculated as:

ϕ(x)− 1

2π

∫ 1

0

[
1√
y − y2

]
ϕ(y) dy = 1− 1

2
=

1

2
. (4.3.70)

Now we will focus on the right-hand-side of (4.3.65). We calculate ϕ̃(λ) as follows:

ϕ̃(λ) =

∫ 1

0
e−i λ x+λ p(x) 1 (1 + i p′(x)) dx (4.3.71)

=

∫ 1

0
e−i λ x+λ p(x) i

λ

d

dx
(−i λ x+ λ p(x)) dx (4.3.72)

=
i

λ

∫ 1

0

d

dx

(
e−i λ x+λ p(x)

)
dx (4.3.73)

=
i

λ

[
e−i λ − 1

]
. (4.3.74)

Recall, γ3 is defined by:

γ3 = {λ ∈ C : λ = λR [1− ip′(x)], λR > 0}. (4.3.75)

We will parametrize γ3 with the parameter t ∈ (0,∞) so that:

γ3 = {λ ∈ C : λ = t [1− ip′(x)], t ∈ (0,∞)}. (4.3.76)

With this parametrization of γ3, the integral on the right-hand-side of (4.3.65) can be
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written as:

− 1

π

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ (4.3.77)

= − 1

π

∫ ∞
0

ei t [1−i p′(x)]x−t [1−i p′(x)] p(x)
i
(
e−i t [1−i p′(x)] − 1

)
[1− i p′(x)] t

[1− i p′(x)] dt (4.3.78)

=
1

π i

∫ ∞
0

et (x p′(x)−p(x)) ei t (x+p(x) p′(x))
(
e−t p

′(x) e−it − 1
) dt

t
(4.3.79)

=
1

π i
lim
ε→0

∫ ∞
ε

e
−t
[

1
2

x√
x−x2

]
ei

t
2

[
e
−t
[

1
2

1−2x√
x−x2

]
e−it − 1

]
dt

t
(4.3.80)

=
1

π i
lim
ε→0

∫ ∞
ε

ei
t
2 e
−t
[

1
2

1−x√
x−x2

]
dt

t
− 1

π i
lim
ε→0

∫ ∞
ε

e−i
t
2 e
−t
[

1
2

x√
x−x2

]
dt

t
. (4.3.81)

Taking the real part of the integral above, we can write the right-hand-side of (4.3.65)

as:

− 1

π
Re

(∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ

)
(4.3.82)

=
1

π

∫ ∞
0

sin(t) e
−t
[

1−x√
x−x2

]
dt

t
+

1

π

∫ ∞
0

sin(t) e
−t
[

x√
x−x2

]
dt

t
(4.3.83)

=
1

π
arctan

[√
x− x2

1− x

]
+

1

π
arctan

[√
x− x2

x

]
. (4.3.84)

Now define the function:

f(x) = arctan

[√
x− x2

1− x

]
+ arctan

[√
x− x2

x

]
, (4.3.85)

and observe that the derivative f ′(x) is zero:

f ′(x) =
1

2

1√
x− x2

− 1

2

1√
x− x2

(4.3.86)

= 0. (4.3.87)
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Therefore, f(x) is constant. Evaluating f(x) at x = 1/2, we find:

f

(
1

2

)
= arctan


√

1
2 − (1

2)2

1− 1
2

+ arctan


√

1
2 − (1

2)2

1
2

 (4.3.88)

=
π

2
. (4.3.89)

Substituting this back into equation (4.3.84), we get:

− 1

π
Re

(∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ

)
=

1

π

(π
2

)
=

1

2
. (4.3.90)

This agrees with (4.3.70), which is the left hand side of the relation given in (4.3.65),

thus verifying the relation.

4.3.4 Verification of Inverse Formula

We will now verify the inverse formula given in (4.3.60) for all ϕ ∈ L2(Σ). We will

start by rewriting (4.3.60) as:

∫
γ3

eiλx−λp(x)ϕ̃(λ) dλ = −π
(

ϕ(x)

1 + i p′(x)

)
−
∫ σ

−σ

[
1

[(p(y)− p(x)) + i(x− y)]

]
ϕ(y) dy. (4.3.91)

We will verify this form of the inverse formula.

The integral on the left hand side of (4.3.91) can be written as follows:

∫
γ3

eiλx−λp(x) ϕ̃(λ) dλ =

∫
γ3

eiλx−λp(x)

∫ σ

−σ
e−i λ y+λ p(y) ϕ(y) dy dλ (4.3.92)

=

∫
γ3

∫ σ

−σ
e−i λ (x−y)+λ (p(y)−p(x)) ϕ(y) dy dλ. (4.3.93)
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We will now write the integral in (4.3.93) as:

∫
γ3

eiλx−λp(x) ϕ̃(λ) dλ =

∫
γ3

∫
Bδ(x)

e−i λ (x−y)+λ (p(y)−p(x)) ϕ(y) dy dλ

+

∫
γ3

∫
[−σ,σ]\Bδ(x)

e−i λ (x−y)+λ (p(y)−p(x)) ϕ(y) dy dλ, (4.3.94)

where Bδ(x) = {y : |x − y| < δ}. The first integral on the right hand side of (4.3.94)

can be written as:

∫
γ3

∫
Bδ(x)

e−i λ (x−y)+λ (p(y)−p(x)) ϕ(y) dy dλ

=

∫
γ3

∫
Bδ(x)

e−i λ (x−y)+λ (p(y)−p(x))

(
ϕ(y)

1 + i p′(y)
− ϕ(x)

1 + i p′(x)

)
(1 + i p′(y)) dy dλ

+
ϕ(x) ei λ x−λ p(x)

1 + i p′(x)

∫
γ3

∫
Bδ(x)

e−i λ y+λ p(y) (1 + i p′(y)) dy dλ. (4.3.95)

We will deal with each of the integrals in (4.3.95) separately. In each case we will

take the limit as δ → 0. For the first integral in (4.3.95), we assume ϕ ∈ C([−σ, σ]).

[Insert proof to arrive at the following result]:

lim
δ→0

∫
γ3

∫
Bδ(x)

e−i λ (x−y)+λ (p(y)−p(x))

(
ϕ(y)

1 + i p′(y)
− ϕ(x)

1 + i p′(x)

)
(1+i p′(y)) dy dλ = 0.

(4.3.96)

Using a density argument, this can be extend to all ϕ ∈ L2([−σ, σ]).

Next, we deal with the second integral in (4.3.95) which we write as follows:

ϕ(x) ei λ x−λ p(x)

1 + i p′(x)

∫
γ3

∫
Bδ(x)

e−i λ y+λ p(y) (1 + i p′(y)) dy dλ

= − 1

i λ

ϕ(x)

1 + i p′(x)

∫
γ3

ei λ x−λ p(x)

∫
Bδ(x)

d

dy

(
e−i λ y+λ p(y)

)
dy dλ (4.3.97)

=
ϕ(x)

1 + i p′(x)

∫
γ3

ei λ x−λ p(x)

[
e−i λ (x+δ)+λ p(x+δ) − e−i λ (x−δ)+λ p(x−δ)

i λ

]
dλ (4.3.98)

=
ϕ(x)

1 + i p′(x)

∫
γ3

1

i λ

[
e−i λ δ+λ (p(x+δ)−p(x)) − e−i λ δ+λ (p(x−δ)−p(x))

]
dλ. (4.3.99)
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We will parametrize the ray γ3 by:

γ3 = {λ ∈ C : λ = t [1− i p′(x)], t ∈ (0,∞)}. (4.3.100)

Using this parametrization, we may write the integrand of (4.3.99) as:

e−i λ δ+λ (p(x+δ)−p(x)) − e−i λ δ+λ (p(x−δ)−p(x))

= e−i δ t e−δ p
′(x) t e(p(x+δ)−p(x)) t e−i p

′(x) (p(x+δ)−p(x)) t

− ei δ t eδ p′(x) t e(p(x−δ)−p(x)) t e−i p
′(x) (p(x−δ)−p(x)) t (4.3.101)

= e−i δ t e−i p
′(x) (p(x+δ)−p(x)) t eδ t [R(x+δ,x)−p′(x)]

− ei δ t e−i p′(x) (p(x−δ)−p(x)) t e−δ t [R(x−δ,x)−p′(x)], (4.3.102)

where

R(x+ δ, x) =
p(x+ δ)− p(x)

δ
and R(x− δ, x) =

p(x− δ)− p(x)

−δ
. (4.3.103)

We note by concavity that for any δ > 0, the following inequalities hold:

R(x+ δ, x)− p′(x) < 0 and R(x− δ, x)− p′(x) > 0. (4.3.104)

Now we will make the substitution τ = δ t in (4.3.102) which gives us:

e−i δ t e−i p
′(x) (p(x+δ)−p(x)) t eδ t [R(x+δ,x)−p′(x)]

− ei δ t e−i p′(x) (p(x−δ)−p(x)) t e−δ t [R(x−δ,x)−p′(x)]

= e−i τ e−i p
′(x)R(x+δ,x) τ eτ [R(x+δ,x)−p′(x)]

− ei τ ei p′(x)R(x−δ,x) τ e−τ [R(x−δ,x)−p′(x)]. (4.3.105)
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Substituting (4.3.105) back into (4.3.99), we evaluate the following limit:

lim
δ→0

∫ ∞
0

1

i τ

[
e−i τ e−i p

′(x)R(x+δ,x) τ eτ [R(x+δ,x)−p′(x)]

− ei τ ei p′(x)R(x−δ,x) τ e−τ [R(x−δ,x)−p′(x)]

]
dτ

=

∫ ∞
0

1

i τ

[
e−i τ e−i [p

′(x)]2 τ − ei τ ei [p′(x)]2 τ
]
dτ. (4.3.106)

Now we make the substitution y = (1+[p′(x)]2) τ and compute the integral in (4.3.106)

as follows:

∫ ∞
0

1

i τ

[
e−i τ e−i [p

′(x)]2 τ − ei τ ei [p′(x)]2 τ
]
dτ =

∫ ∞
0

1

i y

[
e−i y − ei y

]
dy (4.3.107)

= −2

∫ ∞
0

sin(y)

y
dy (4.3.108)

= −π. (4.3.109)

Substituting (4.3.109) back into (4.3.99), we get:

ϕ(x) ei λ x−λ p(x)

1 + i p′(x)

∫
γ3

∫
Bδ(x)

e−i λ y+λ p(y) (1 + i p′(y)) dy dλ

= −π
(

ϕ(x)

1 + i p′(x)

)
. (4.3.110)

Substituting (4.3.110) back into (4.3.94), we get:

∫
γ3

eiλx−λp(x) ϕ̃(λ) dλ = −π
(

ϕ(x)

1 + i p′(x)

)
+ lim
δ→0

∫
γ3

∫
[−σ,σ]\Bδ(x)

e−i λ (x−y)+λ (p(y)−p(x)) ϕ(y) (1 + i p′(y)) dy dλ. (4.3.111)

When |x−y| > δ, the double-integral in the final term of (4.3.111) converges absolutely.

We may therefore apply Fubini’s theorem to switch the order of integration. Doing

so and following a procedure similar to that in Section 4.3.2, we find that the final
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integral in (4.3.111) becomes:

lim
δ→0

∫
γ3

∫
[−σ,σ]\Bδ(x)

e−i λ (x−y)+λ (p(y)−p(x)) ϕ(y) (1 + i p′(y)) dy dλ

= −P.V.

∫ σ

−σ

[
1

[(p(y)− p(x)) + i(x− y)]

]
ϕ(y) dy. (4.3.112)

Therefore, we have:

∫
γ3

eiλx−λp(x) ϕ̃(λ) dλ = −π
(

ϕ(x)

1 + i p′(x)

)
− P.V.

∫ σ

−σ

[
1

[(p(y)− p(x)) + i(x− y)]

]
ϕ(y) dy. (4.3.113)

This verifies the inverse formula given in (4.3.91).

4.4 Analysis of the Kernel M(x, y)

Now we turn our attention to studying the operator L by analyzing the kernel M(x, y).

It is clear from (4.3.59) in Definition 6 that L is a singular integral operator since the

kernel M(x, y) is singular when x = y. Although L is a singular integral operator, we

will show that the real part of M(x, y) is continuous, and therefore non-singular.

In the discussion that follows, we will assume that ϕ is real-valued. We begin

by finding the real and imaginary parts of the kernel M(x, y). Note that the kernel

M(x, y) can be expressed as follows:

M(x, y) =
−(i− p′(x))

πi [(p(y)− p(x)) + i(x− y)]
(4.4.1)

=
[p(x)− p(y)]− p′(x)[x− y] + i([x− y] + p′(x)[p(x)− p(y)])

π ([x− y]2 + [p(x)− p(y)]2)
(4.4.2)

=
[p(x)− p(y)]− p′(x)[x− y]

π ([x− y]2 + [p(x)− p(y)]2)
+ i

[x− y] + p′(x)[p(x)− p(y)]

π ([x− y]2 + [p(x)− p(y)]2)
. (4.4.3)



CHAPTER 4. INVERSE OF THE FP -TRANSFORM 83

Therefore, the real and imaginary parts of M(x, y) are given by:

Re (M) =
[p(x)− p(y)]− p′(x)[x− y]

π ([x− y]2 + [p(x)− p(y)]2)
(4.4.4)

Im (M) =
[x− y] + p′(x)[p(x)− p(y)]

π ([x− y]2 + [p(x)− p(y)]2)
. (4.4.5)

Now we test to see if Re (M) is singular by computing limx→y Re (M):

lim
x→y

Re (M) = lim
h→0

[p(y + h)− p(y)]− p′(y + h) [(y + h)− y]

π ([(y + h)− y]2 + [p(y + h)− p(y)]2)
(4.4.6)

= lim
h→0

−h2

2 p
′′(y) +O(h3)

πh2 (1 + [p′(y) + h
2p
′′(y) +O(h2)]2)

(4.4.7)

= lim
h→0

−1
2p
′′(y) +O(h)

π (1 + [p′(y) + h
2p
′′(y) +O(h2)]2)

(4.4.8)

=
−1

2p
′′(y)

π (1 + [p′(y)]2)
. (4.4.9)

Note that the final expression in (4.4.9) is never singular. Since the singularity in the

kernel M(x, y) occurs only when x = y, it follows that Re (M) is non-singular, and is

in fact continuous.

Now we will compute limx→y Im (M):

lim
x→y

Im (M) = lim
h→0

[(y + h)− y]− p′(y + h) [p(y + h)− p(y)]

π ([(y + h)− y]2 + [p(y + h)− p(y)]2)
(4.4.10)

= lim
h→0

h− h[p′(y)]2 + 3h2

2 p′′(y)p′(y) +O(h3)

πh2 (1 + [p′(y) + h
2p
′′(y) +O(h2)]2)

(4.4.11)

= lim
h→0

1− [p′(y)]2 + 3h
2 p
′′(y)p′(y) +O(h2)

πh (1 + [p′(y) + h
2p
′′(y) +O(h2)]2)

. (4.4.12)

In the final step above, we see that the imaginary part of the kernel M(x, y) is singular,

since the numerator is O(1), while the denominator is O(h).

We now make the following definition:

Definition 7. The integral operator LRe : L2(Σ)→ L2(Σ) is defined by

LRe ϕ :=

∫ σ

−σ
MRe (x, y)ϕ(y) dy, (4.4.13)
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where the kernel MRe (x, y) is given by

MRe (x, y) = Re [M(x, y)] =
[p(x)− p(y)]− p′(x)[x− y]

π ([x− y]2 + [p(x)− p(y)]2)
. (4.4.14)

As we showed above, Re (M(x, y)) is non-singular at x = y and is therefore con-

tinuous in both variables x and y. Since Re (M(x, y)) is a continuous function on a

compact set, i.e. Σ = [−σ, σ], it must attain a maximum. Therefore, we conclude that

MRe (x, y) ∈ L2(Σ × Σ). Furthermore, it follows that LRe (x, y) : L2(Σ) → L2(Σ) is a

Hilbert-Schmidt operator, and hence compact, [30].

Now we wish to show that there exists a solution to the eigenvalue problem LRe u =

λu. We do this by showing the operator LRe is ‘positive’ and apply the Krein-Rutman

Theorem, which shows that the spectral radius r(LRe ) is an eigenvalue with a cor-

responding eigenvector. First, we recall the definition of a positive operator (this

definition is taken from [2]):

Definition 8 (Positive Operator). An operator T : X → Y between two ordered

vector spaces is called positive if Tx ≥ 0 for all x ≥ 0.

In addition, we recall the Krein-Rutman theorem (this is given as Theorem 19.2 of

[7]):

Theorem (Krein-Rutman Theorem). Let X be a Banach space, C ⊂ X a total cone

and T : X → X a compact linear operator that is positive with positive spectral radius

r(T ). Then r(T ) is an eigenvalue with an eigenvector u ∈ C \ {0} such that Tu =

r(T )u.

We use the Krein-Rutman Theorem to prove the following result.

Proposition 1. Let r(LRe ) be the spectral radius of the operator LRe : L2(Σ) →

L2(Σ), then r(LRe ) is an eigenvalue with an eigenvector u ∈ L2(Σ) \ {0} such that

LRe u = r(LRe )u.
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Proof. Since the operator LRe : L2(Σ) → L2(Σ) is compact, if we show that LRe is

positive, then the conditions for the Krein-Rutman Theorem will be satisfied, and the

result will follow.

In order to show that LRe is positive, we will show that the kernel MRe is positive,

and therefore LRe f ≥ 0 for all f ≥ 0. Recall that the kernel LRe can be written as

MRe =
[p(x)− p(y)]− p′(x)[x− y]

π ([x− y]2 + [p(x)− p(y)]2)
. (4.4.15)

We note that the derivative d/dx[arctan(R(x, y))] is given by:

d

dx
[arctan(R(x, y))] =

1

1 +
(
p(x)−p(y)
x−y

)2

p′(x) [x− y]− [p(x)− p(y)]

(x− y)2
(4.4.16)

=
p′(x) [x− y]− [p(x)− p(y)]

(x− y)2 + (p(x)− p(y))2
(4.4.17)

= −πMRe . (4.4.18)

Hence, MRe = − 1
π
d
dx [arctan(R(x, y))]. For fixed y, the function arctan(R(x, y)) mea-

sures the slope of the line between the point (x, p(x)) and (y, p(y)). By concavity,

this is a decreasing function with respect to x, and therefore d
dx [arctan(R(x, y))] is

negative, which implies MRe is positive. Thus, LRe : L2(Σ) → L2(Σ) is positive, and

hence the proposition follows. �

Proposition 1 establishes that the spectral radius, r(LRe ), is an eigenvalue of the

operator LRe : L2(Σ)→ L2(Σ). Now we will show that the spectral radius is less than

1. This will be used to show that the operator (I − LRe ) is invertible on its range.

Proposition 2. r(LRe ) < 1.
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Proof. Let f be a positive function such that

LRe f = λ f, (4.4.19)

where λ = r(LRe ). Without loss of generality, assume
∫ σ
−σ f dx = 1. Then,

∫ σ

−σ
[λ f ] dx = λ

∫ σ

−σ
f dx = λ, (4.4.20)

and hence we have

λ =

∫ σ

−σ
[λ f ] dx =

∫ σ

−σ
[LRe f ] dx =

∫ σ

−σ

∫ σ

−σ
MRe (x, y)f(y) dy dx. (4.4.21)

Using Fubini’s Theorem, we switch the order of integration in equation (4.4.21) to get

∫ σ

−σ

∫ σ

−σ
MRe (x, y) f(y) dy dx =

∫ σ

−σ

[∫ σ

−σ
MRe (x, y) dx

]
f(y) dy. (4.4.22)

Recalling that LRe = − 1
π
d
dx [arctan(R(x, y))], we have

∫ σ

−σ

[∫ σ

−σ
MRe (x, y) dx

]
f(y) dy

=
1

π

∫ σ

−σ

[∫ σ

−σ
− d

dx
[arctan(R(x, y))] dx

]
f(y) dy (4.4.23)

=
1

π

∫ σ

−σ

[∫ σ

−σ
− [arctan(R(x, y))]σx=−σ

]
f(y) dy (4.4.24)

=
1

π

∫ σ

−σ

[
arctan

(
p(−σ)− p(y)

−σ − y

)
− arctan

(
p(σ)− p(y)

σ − y

)]
f(y) dy. (4.4.25)

Now since we assume p(x) is analytic, the gradient is never infinite and therefore
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−π/2 < arctan(θ) < π/2, with strict inequality. Thus we have:

arctan

(
p(−σ)− p(y)

−σ − y

)
− arctan

(
p(σ)− p(y)

σ − y

)
<
π

2
−
(
−π

2

)
= π, (4.4.26)

and hence

1

π

∫ σ

−σ

[
arctan

(
p(−σ)− p(y)

−σ − y

)
− arctan

(
p(σ)− p(y)

σ − y

)]
f(y) dy (4.4.27)

<
1

π

∫ σ

−σ
[π] f(y) dy =

∫ σ

−σ
f(y) dy = 1. (4.4.28)

Therefore,

λ =

∫ σ

−σ

[∫ σ

−σ
MRe (x, y) dx

]
f(y) dy <

∫ σ

−σ
f(y) dy = 1, (4.4.29)

as desired. �

Since LRe : L2(Σ) → L2(Σ) is compact, it follows that the operator (I − LRe ) is

Fredholm as it is a compact perturbation of I. Moreover, the Fredholm alternative

states that precisely one of the following must hold for the operator (I − LRe ):

• Either: A solution of the form (I − LRe )f = 0 exists

• Or: The inverse (I − LRe )−1 exists.

Proposition 2 tells us that r(LRe ) < 1, and this implies that ‖LRe ‖ < 1. Hence, by

the Fredholm alternative, the inverse (I − LRe )−1 exists. Furthermore, the inverse

(I − LRe )−1 can be computed via successive approximation. To see this, we state

Theorem 10.16 of [25] by R. Kress:

Theorem. Let A : X → X be a bounded linear operator in a Banach space X with

spectral radius r(A) < 1. Then the successive approximations:

ϕn+1 := Aϕn + f, n = 0, 1, 2, . . . , (4.4.30)
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converge for each f ∈ X and each ϕ0 ∈ X to the unique solution of ϕ−Aϕ = f .

As an aside, the successive approximations in the theorem above are computed via

the Neumann series, which is given by:

(IX − LRe )−1 =
∞∑
j=1

LjRe , (4.4.31)

where IX is the identity on X.

We summarize the results from this chapter in the following theorem:

Theorem 2. For ϕ ∈ L2(Σ), the inverse of the Fp-transform exists and is computed

by:

ϕ(x) = −(I − LRe )−1

{
Re

[
i− p′(x)

πi

∫
γ3

ei λ x−λ p(x) ϕ̃(λ) dλ

]}
, (4.4.32)

where the integral operator LRe : L2(Σ)→ L2(Σ) is defined by

LRe ϕ =

∫ σ

−σ

[
[p(x)− p(y)]− p′(x)[x− y]

π ([x− y]2 + [p(x)− p(y)]2)

]
ϕ(y) dy. (4.4.33)

Moreover, (I − LRe )−1 exists, is unique, and can be computed via successive approxi-

mation using the corresponding Neumann series.

For future reference, we will denote the inverse of the Fp-transform by F−1
p . In

Chapter 3 we proved that the Fp-transform is bounded from L2(Σ) to L2(Λ). It follows

directly from the Banach bounded inverse theorem that F−1
p is bounded as well. We

state this in the following corollary below.

Corollary 1. The inverse of the Fp-transform, denoted by F−1
p , is bounded.

We will make use of Corollary 1 in Chapter 5.
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4.5 Chapter Summary

In this chapter we performed a spectral analysis of the differential equation:

∂µ

∂x
− i λ (1 + i p′(x))µ = ϕ, (4.5.1)

with ϕ→ 0 as |x| → ∞, and −∞ < x <∞. This is an eigenvalue problem associated

with the Fp-transform. In performing this spectral analysis, we constructed a function

that is analytic in specified regions of the complex plane. We then found the domains

where this function was bounded and posed a ∂̄-problem that corresponded to the

jumps of this solution across the respective domains. By appealing to the Cauchy-

Pompeiu formula, we reconstructed a solution that is a generalized sectionally analytic

function in the complex plane. This allowed us to construct an inverse to the Fp-

transform. The inverse is computed by:

ϕ(x) = −(I − LRe )−1

{
Re

[
i− p′(x)

πi

∫
γ3

ei λ x−λ p(x) ϕ̃(λ) dλ

]}
, (4.5.2)

where LRe : L2(Σ)→ L2(Σ) is the integral operator defined by

LRe ϕ =

∫ σ

−σ

[
[p(x)− p(y)]− p′(x)[x− y]

π ([x− y]2 + [p(x)− p(y)]2)

]
ϕ(y) dy. (4.5.3)

Furthermore, the inverse Fp-transform, denoted by F−1
p , is bounded as a consequence

of the boundedness of the Fp-transform.



CHAPTER 5

The Global Relation for Analytic ∂Ω

In this chapter we will further study the global relation for the Dirichlet problem given

by  ∆u(x) = 0 for x ∈ Ω

u(x) = f(x) for x ∈ Γ,
(5.0.1)

where Ω ⊂ C ∼= R2 is a bounded convex region with an analytic boundary Γ = ∂Ω, and

f ∈ C1(Γ) is given (Dirichlet) boundary data on Γ. In our analysis we will view the

boundary of the domain Ω as inscribed in a polygon. This will allow us to construct

a framework for extending previous results from the polygon to the case of a domain

with analytic boundary. By inscribing Ω in a polygon, this creates a partition of ∂Ω,

and we may consider the boundary data on each of the corresponding segments. In the

first part of the chapter we use this construction to derive an operator T that allows

us to express the global relation in the form

T (N − iD) = 0, (5.0.2)

where D is a vector that contains the transformed Dirichlet data on each segment of

the partition, and N is a vector that contains the corresponding transformed Neumann

data. This reduces the study of the global relation to the study of the operator T . In

90
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the remainder of the chapter we establish properties of the operator T that allow us

to show that the global relation can be solved to find the Neumann data, given the

Dirichlet data, for a specified BVP.

5.1 Derivation of the operator T for domains with ana-

lytic boundary

We begin this section by defining the framework that will be used for analyzing the

operator T . Let {zj}nj=1 be a collection of n points on the curve Γ such that j increases

as the boundary is traversed counter-clockwise, and denote the segment of the bound-

ary connecting zj to zj+1 by Γj . The collection of curves {Γj}nj=1 forms a partition of

the boundary Γ.

Now we will inscribe the region Ω in a polygon which allows us to establish an

analogy with the case of polygonal domains that was discussed in Chapter 2. At the

same time, this provides a convenient framework for later calculations. Given the jth

component of the boundary, Γj , we define the jth edge of the corresponding polygon

so that it is tangent to Γj at the midpoint. We will call this edge lj . This is shown

in Figure 5.1b below. The intersection of the respective lines form the vertices of the

polygon. The region Ω and inscribing polygon are shown in Figure 5.1a.

Ω

l1

ln
Γ1

Γn

(a) An analytic region Ω in red inscribed
in a 6-sided polygon. The segments Γ1 and
Γn of the analytic region and sides l1 and
ln of the polygon are labelled.

Γj

lj

lj−1

lj+1

(b) An edge of the polygon tangent to the
analytic region at the midpoint of segment
Γj .

Figure 5.1: A convex region Ω with analytic boundary inscribed in a polygon.
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In addition, we assume that the region Ω is embedded in C such that the edge of

the polygon corresponding to Γ1 is aligned with the real-axis, and the midpoint of Γ1

is at the origin. This allows us to write the global relation in terms of the Fp-transform

in the discussion that follows.

5.1.1 Derivation of the Operator T

Recall that the spectral functions for a polygonal domain were defined in equation

(2.1.8) from Chapter 2. In this case the integral for each spectral function was taken

over the respective edge of the polygon, i.e. a line segment of length 2σj . Analogously,

In the case of a domain with analytic boundary, the integral for each spectral function

is taken over the curved segment Γj . The spectral functions {ρj}nj=1 are given by:

ρj(λ) =

∫
Γj

e−iλz
∂u

∂z
dz. (5.1.1)

Stoke’s theorem may be applied again, in a manner directly analogous to the polygonal

domain case, to show that the spectral functions satisfy the global relation:

n∑
j=1

ρj(λ) = 0. (5.1.2)

We will now show how the operator T is constructed for the given BVP on the

domain Ω. First, we introduce the local parametrization ψj : [−σj , σj ]→ Γj given by

ψj(τ) = mj + τeiαj(τ), (5.1.3)

where mj is the midpoint with respect to the arclength parametrization of the curve

Γj , and τ ∈ [−σj , σj ], where the length of the curve segment Γj is 2σj . The function

αj(τ) is the angle that the tangent vector makes with the real-axis at the point τ .

Under this parametrization, the angle of the tangent vector at the midpoint of the

curve Γ is given by αj(0).

For a function f : Γj → C, the pullback by ψj is written ψ∗j (f)(τ) = f(ψj(τ)).
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Using (5.1.1), the spectral functions {ρj(λ)}nj=1 can be written as

ρj(λ) =

∫
Γj

e−iλ(mj+τe
iαj(τ))ψ∗j

(
∂u

∂z

)
(τ)eiαj(τ)(1 + iτα′j(τ))dτ. (5.1.4)

Above we used equation (5.1.1) where we set z = mj + τeiαj(τ) and therefore

dz = eiαj(τ) (1 + i τ α′j(τ))dτ. (5.1.5)

The following (pointwise) expression may be used for the directional derivative

∂u

∂z

∣∣∣∣
Γj

=
1

2
e−iαj(τ)

(
∂u

∂t
+ i

∂u

∂n

)∣∣∣∣
Γj

, (5.1.6)

where ∂u/∂t denotes the tangential derivative of u (which is the derivative of the

Dirichlet data) and ∂u/∂n denotes the normal derivative of u (which is the Neumann

data) at each point of Γj . Hence, the directional derivative contains information about

both the Dirichlet and Neumann data on the curve Γj . Now define

ϕj(τ) = ψ∗j (∂u/∂z)(τ). (5.1.7)

In this context, the Fp-transform takes the form:

Fp : ϕj → ϕ̃j(λ) =

∫ σj

−σj
e−iλe

iαj(τ)τϕj(τ)(1 + iτα′j(τ))dτ. (5.1.8)

Let ϕtj denote the tangential component of ϕj and let ϕnj denote the normal com-

ponent of ϕj , i.e.

ϕtj = ψ∗j

(
∂u

∂t

)
and ϕnj = ψ∗j

(
∂u

∂n

)
. (5.1.9)

Using (5.1.6), (5.1.9), and the Fp-transform in the form of (5.1.8), the spectral func-

tions ρj(λ) may be expressed as

ρj(λ) =
e−iλmj

2

[
ϕ̃tj(e

iαj(0)λ) + iϕ̃nj (eiαj(0)λ)
]
. (5.1.10)
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Hence using (5.1.2), the global relation may be written as a sum of the form:

n∑
j=1

e−iλmj
[
ϕ̃tj(e

iαj(0)λ) + iϕ̃nj (eiαj(0)λ)
]

= 0. (5.1.11)

Now if we multiply the above equation by eiλmj for fixed j ∈ {1, . . . , n}, this has the

effect of shifting the region so that the midpoint of the jth side is at the origin of

the complex plane. If we make the substitution λ 7→ λe−iαj(0), this has the effect of

rotating the region so that pj(0) = p′j(0) = 0. This is shown in Figure 5.2 below.

Ω

l1

ln
Γ1

Γn

Im

Re

eiλmn

λ 7→ λe−iαn(0)

Ω

ln

l1
Γn

Γ1

Im

Re

Figure 5.2: Rotation of the region Ω, and corresponding polygon, by eiλmn , where mn is the
midpoint of Γn. The rotation is performed such that the midpoint of Γn is tangent to the
real-axis and the edge of the polygon ln overlaps with the real-axis.

Multiplying equation (5.1.11) by eiλmj for fixed j ∈ {1, . . . , n} and replacing λ with

λe−iαj(0), gives us the following relation:

ϕ̃j(e
−iαj(0)λ) +

∑
k 6=j

eie
−iαj(0)(mj−mk)λϕ̃k(e

−iαj(0)λ) = 0. (5.1.12)

Set Ψj(λ) = ϕ̃j(e
−iαj(0)λ) so that the above expression is now written as

Ψj(λ) +
∑
k 6=j

eie
−iαj(0)(mj−mk)λΨk(e

−i∆jk(0)λ) = 0, (5.1.13)

where ∆jk(0) := αj(0) − αk(0). This transformation has the effect of rotating the
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region Ω so that the midpoint of the segment Γj is tangent to the real-axis of the

complex plane, while fixing the jth component of the equation.

Setting Ψ = (Ψ1, . . . ,Ψn)T , we define the operator T = I + K, where I is the

identity, and K is defined by

(KΨ)j(λ) :=
∑
k 6=j

eie
−iαj(0)(mj−mk)λΨk(e

−i∆jk(0)λ), 1 ≤ j ≤ n. (5.1.14)

The operator T can now be expressed as

(T Ψ)j(λ) = Ψj(λ) +
∑
k 6=j

eie
−iαj(0)(mj−mk)λΨk(e

−i∆jk(0)λ) (5.1.15)

= Ψj(λ) + (KΨ)j(λ). (5.1.16)

Using (5.1.16), we may concisely express the global relation as:

T Ψ = 0. (5.1.17)

Expressing Ψ in terms of the normal and tangential components in the equation above

and multiplying by −i gives us the following expression for the global relation:

T (Ψn − iΨt) = 0, (5.1.18)

where Ψn = (Ψn1 , . . . ,Ψ
n
n )T are the normal components of the Ψj and therefore con-

tains the Fp-transform of the Neumann data, and Ψt = (Ψt1, . . . ,Ψ
t
n)T are the tan-

gential components and therefore contains the Fp-transform of the Dirichlet data.

Equation (5.1.18) gives a concise form for expressing the global relation and allows

us to analyze the global relation (in particular as a map between the Dirichlet and

Neumann data) by understanding properties of the operator T .
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5.1.2 Comparison with the Case of Polygonal Domains

We will now briefly compare the derivation of the operator T in Section 5.1 with the

derivation of the operator T for the case of convex polygonal domains, as given in

[5]. We will do so by outlining several of the similarities and differences in each of the

components of the derivation in the list that follows.

• Spectral Functions: In both cases, the spectral functions for each component

of a domain with analytic boundary and a polygonal domain take the form:

ρj(λ) =

∫
Γj

e−iλz
∂u

∂z
dz. (5.1.19)

In the case of a polygonal domain, the variable z lies along a straight segment

Γj , and as a result, the derivative ∂u/∂z is a constant and can be computed in a

straight-forward manner by performing a fixed rotation to the real axis. In the

case of a domain with analytic boundary, however, the derivative ∂u/∂z takes

the form:
∂u

∂z

∣∣∣∣
Γj

=
1

2

(
∂u

∂x
− i ∂u

∂y

)∣∣∣∣
Γj

, (5.1.20)

where z is parametrized by z(τ) = τ + i p(τ) for some analytic convex p and

τ ∈ [−σ, σ]. As a result, the derivative ∂u/∂z is no longer a constant and can no

longer be computed in such a straight-forward manner.

• Parametrization: In the case of a polygonal domain, the parametrization of

each edge is given by:

ψj(τ) = mj + τeiαj , (5.1.21)

where αj is a constant1 that is fixed for a given edge Γj . If we contrast this with

the parametrization given in (5.1.3), we find that the angle αj now depends on

the parameter τ ∈ [−σ, σ]. The result of this is that the derivative ∂u/∂z can no

longer be expressed as a simple rotation in the complex plane, as was the case for

a polygonal domain with straight edges. Instead, the derivative ∂u/∂z must be

specified at each point along Γj , as is done in (5.1.6). This makes the derivation

1Recall, αj is the angle that the tangent to the edge Γj makes with the real-axis.
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of the operator T more complex than was the case for a polygonal domain. In

particular, the Fourier transform (and classical results pertaining to the Fourier

transform) can no longer be used since the edges are no longer straight. Instead,

we must use the Fp-transform.

• Fp-transform: As mentioned previously, the Fp-transform must now be used

in the case of domains with analytic boundary instead of the Fourier transform,

which was used in the analysis for polygonal domains. Since the Fp-transform is

a new transform that was introduced in this thesis, many of the basic properties

need to be derived (as was done in Chapters 3 and 4) instead of relying on

previously established results (as was the case when using the Fourier transform).

In particular, we need to show that the Fp-transform is bounded as an integral

operator from L2(Σ) to L2(Λ) (as was shown in Chapter 3) and that the inverse

of the Fp-transform exists and is well-defined (as was shown in Chapter 4). The

necessity of these requirements will become apparent in the remainder of this

chapter. In addition, the results that we establish in Section 5.3 is done in a

more general analysis framework than for the polygonal case.

• The Operator T: In both cases, the operator T for polygonal domains and for

domains with analytic boundary have a similar structure. The T operator for

polygonal domains takes the form T = I +K, where K is given by:

KΦj =
∑
k 6=j

eie
−iαj (mj−mk)λΦk(e

−i(αj−αk)λ), 1 ≤ j ≤ n, (5.1.22)

where Φ is an n-dimensional vector that contains the Fourier transform of either

the Dirichlet or Neumann boundary data. Comparing this with the definition of

the operator K for domains with analytic boundary (given in equation (5.1.14)),

we note that the two have a similar structure. The primary difference is that the

operator K for domains with analytic boundary acts on vectors that contain the

Fp-transform of boundary data, and therefore the results from Chapters 3 and 4

are needed for the analysis of the operators K and T .

We will now introduce the function spaces that will be used for the remainder of

the chapter in the analysis of the operator T .
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5.1.3 Function Spaces

In our analysis of the operator T it will be useful to define the function spaces that

will be used. Let ϕ denote the vector

ϕ = (ϕ1, . . . , ϕn). (5.1.23)

Let Σj = [−σj , σj ] and define

Σ := L2(Σ1)× . . .× L2(Σn), (5.1.24)

so that ϕ ∈ Σ. Also let Λ = [0,∞] and define

Λ := L2(Λ)× . . .× L2(Λ)︸ ︷︷ ︸
n−copies

, (5.1.25)

where there are n-copies of L2(Λ) in the product. Let ξ ∈ Σ, we define the following

norm on the space Σ:

‖ξ‖Σ :=

 n∑
j=1

‖ξj‖2L2(Σj)

1/2

. (5.1.26)

Similarly, let Φ ∈ Λ, we define the following norm on the space Λ:

‖Φ‖Λ :=

 n∑
j=1

‖Φj‖2L2(Λ)

1/2

. (5.1.27)

Using this notation, the map ϕ 7→ Ψ is a map from Σ to Λ while the maps Ψ 7→ K Ψ

and Ψ 7→ T Ψ are both maps from Λ to Λ. In the next two sections we will explore

these maps further.
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5.2 Compactness of the Map Ψ 7→ KΨ

We will now show that the map Ψ 7→ KΨ is compact by showing that it takes the form

of a Hilbert-Schmidt operator. This will directly imply that the operator T = I + K

is a Fredholm operator of index zero. From this fact we will derive further results in

Section 5.3.

Lemma 5. The map Ψ 7→ KΨ is compact.

Proof. Fix j ∈ {1, . . . , n} and assume k 6= j. We may express the Kjk component of

K as follows:

Kjk Ψk(λ) = ei e
−i αj(0)(mj−mk)λ Ψk(e

−i∆jk(0)λ) (5.2.1)

= ei e
−i αj(0)(mj−mk)λ ϕ̃k(e

−i∆jk(0)λ) (5.2.2)

= ei e
−i αj(0)(mj−mk)λ

∫ σk

−σk
e
−i λ

(
τ e
−i∆jk(0)

)
ϕk(τ) (1 + i τα′k(τ)) dτ (5.2.3)

=

∫ σk

−σk
ei e
−i αj(0)(mj−mk)λ e

−i λ
(
τ e
−i∆jk(0)

)
ϕk(τ) (1 + i τα′k(τ)) dτ (5.2.4)

=

∫ σk

−σk
e
−i λ

[
e−i αj(0) (τ eiαk(0)+(mk−mj))

]
ϕk(τ) (1 + i τα′k(τ)) dτ. (5.2.5)

Now we define the integral operator Mjk : L2(Σk)→ L2(Λ) by:

Mjk ϕ(λ) =

∫ σk

−σk
Mjk(λ, τ)ϕk(τ) dτ, (5.2.6)

where Mjk(λ, τ) is the kernel given by:

Mjk(λ, τ) = e
−i λ

[
e−i αj(0) (τ eiαk(0)+(mk−mj))

]
(1 + i τα′k(τ)). (5.2.7)

We will now focus our attention on the kernel Mjk(λ, τ).
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Let

z(τ) = e−i αj(0)
(
τ eiαk(0) + (mk −mj)

)
. (5.2.8)

We can express z(τ) in complex exponential form as

z = |z| ei θ = |z| (cos(θ) + i sin(θ)), (5.2.9)

where θ is given by

θ = arg
(
e−i αj(0)

(
τ eiαk(0) + (mk −mj)

))
. (5.2.10)

Using the concavity of Γj and the convexity of the domain, we see that for k 6= j:

−π + ε < arg
(
e−i αj(0)

(
τ eiαk(0) + (mk −mj)

))
︸ ︷︷ ︸

θ

≤ −ε, (5.2.11)

for some ε > 0. See Figure 5.3 below for a schematic of the setup for this argument.

−ε−π + ε

−σj σj
Re (z)

Γj

Γj−1 Γj+1

Figure 5.3: The jth partition of the convex domain with the corresponding jth polygon edge
in red.

Now we will show that the kernel Mjk(λ, τ) is in L2(Σk) × L2(Λ). In order to do
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this we first establish the following estimate using (5.2.11):

∣∣∣e−i λ z(τ)
∣∣∣ =

∣∣∣e−i λ |z| (cos(θ)+i sin(θ))
∣∣∣ (5.2.12)

=
∣∣∣e−i λ |z| cos(θ)

∣∣∣ ∣∣∣eλ |z| sin(θ)
∣∣∣ (5.2.13)

= eλ |z| sin(θ) (5.2.14)

. e−λ sin(ε). (5.2.15)

Now we will show ‖Mjk(λ, τ)‖L(Σk)×L2(Λ) <∞, and hence that Mjk(λ, τ) ∈ L2(Σk)×

L2(Λ):

‖Mjk(λ, τ)‖L2(Σk)×L2(Λ) .
∫ ∞

0

∫ σk

−σk

∣∣∣∣e−i λ [e−i αj(0) (τ eiαk(0)+(mk−mj))
]∣∣∣∣2 dτ dλ

(5.2.16)

.
∫ ∞

0

∫ σk

−σk
e−2λ sin(ε) dτ dλ (5.2.17)

.
∫ ∞

0
e−2λ sin(ε) dλ (5.2.18)

<∞. (5.2.19)

The inequality in (5.2.17) follows from the estimate derived in (5.2.15), and the inequal-

ity in (5.2.16) follows from the fact that α′k(τ) is continuous and therefore |1+i τ α′k(τ)|

is bounded.

Since Mjk(λ, τ) ∈ L2(Σk) × L2(Λ), it follows that Mjk : L2(Σk) → L2(Λ) is a

Hilbert-Schmidt operator. Therefore, Mjk is a compact operator since every Hilbert-

Schmidt operator is compact, [30]. Now we observe that we can express the integral

operator Kjk : L2(Λ) → L2(Λ) in terms of the operator Mjk : L2(Σk) → L2(Λ) as
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follows:

Mjk ϕk = MjkF−1
p Fp ϕk (5.2.20)

= Mjk F−1
p Ψk. (5.2.21)

That is,

Kjk Ψk = Mjk F−1
p Ψk. (5.2.22)

Since Mjk : L2(Σk) → L2(Λ) is compact and F−1
p : L2(Λ) → L2(Σk) is bounded, this

implies that Kjk = Mjk F−1
p is also compact. Hence, the sum

(K Ψ)j(λ) =
∑
k 6=j

Kjk Ψk(e
−i∆jk(0)λ) (5.2.23)

is also compact. Therefore, the operator K : Λ → Λ is compact, and hence the map

Ψ 7→ K Ψ is compact.

�

It now follows directly from Lemma 5 that the operator T = I +K is a Fredholm

operator of index zero. We summarize this in the theorem below.

Theorem 3. The operator T takes the form T = I +K, where K is compact. There-

fore, T is a Fredholm operator of index zero.

Proof. Using (5.1.15) and (5.2.23), we may express the operator T as

(T Ψ)j(λ) = Ψj(λ) +
∑
k 6=j

Kjk Ψk(e
−i∆jk(0)λ) (5.2.24)

= Ψj(λ) + (K Ψ)j(λ). (5.2.25)
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This takes the form TΨ = (I + K) Ψ. Since K : Λ → Λ is compact, the operator

T = I +K is a Fredholm operator of index zero, [26]. �

As a consequence of Theorem 3, we have that T is a continuous linear operator.

By express equation (5.1.18) as:

T Ψn = i T Ψt, (5.2.26)

we see that the global relation defines a continuous linear map between the transformed

Dirichlet data and the transformed Neumann data, i.e. a Dirichlet-Neumann map. We

will now study the operator further and use properties of it to show that the global

relation can be solved to recover the Neumann data, given the Dirichlet data, for a

specified BVP.

5.3 Summary of Results

In Section 5.1 we constructed the map T = I+K which establishes a relation between

the (transformed) Dirichlet data and the (transformed) Neumann data. In Section 5.2

we proved that the map Ψ 7→ KΨ is compact. As a direct consequence of this fact,

we were able to conclude that T is a Fredholm operator of index zero. We will now

summarize the results that were derived in Chapters 3 and 4. Following this, we will

combine these results to show that the operator T is bounded below and therefore

continuously invertible on its range Ran(T ).

We consider the following sequence of maps:

ϕ
A // Ψ

B // TΨ , (5.3.1)

where ϕ = (ϕ1, . . . , ϕn), and Ψ = (ϕ̃1(e−iα1(0)λ), . . . , ϕ̃n(e−iαn(0)λ)), as defined previ-

ously.

Our study of the operator T is based on the study of the maps A : Σ → Λ and

B : Λ→ Λ. Throughout Chapters 3 and 4 and the present chapter we have explored

several properties of these maps. These properties are summarized below:
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1. The Map A- Our analysis of the map A takes place in two parts:

(a) In Chapter 3 we showed that the map ϕj 7→ Ψj is bounded from L2(Σj) to

L2(Λ) for each j ∈ {1, . . . , n}. This was done by proving:

∫
Λ
|Ψj(λ)|2 dλ .

∫
Σj

|ϕj(τ)|2 dτ. (5.3.2)

This estimate was proved in Sections 3.1 - 3.4. This establishes that the

map A : Σ→ Λ is bounded, i.e.

‖Ψ‖Λ . ‖ϕ‖Σ. (5.3.3)

(b) In Chapter 4 we constructed an inverse, denoted by F−1
p , to the Fp-operator.

This shows that the map A : Σ→ Λ is injective and surjective on its range,

and therefore is an isomorphism.

As an aside, the properties of the map A : Σ → Λ allow us to show that Fp is

bounded below and therefore has closed range. This is done as follows. Since

Fp is bounded, it follows from the Banach bounded inverse theorem that F−1
p is

also bounded. Therefore, the following inequality holds:

‖x‖ = ‖F−1
p Fp(x)‖ .p ‖Fp(x)‖. (5.3.4)

This implies that Fp is bounded below.

2. The Map B- Our analysis of the map B relies on the following properties, which

we state below:

(a) In [4], Ashton proved that the solution to the global relation is unique. This

implies that the operator T is injective.

(b) In Section 5.2, we showed that the map Ψ 7→ KΨ is compact.

(c) Since Ψ 7→ KΨ is compact, it directly follows that T = I+K is a Fredholm

operator of index zero.
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From the results given in the outline above, we derive the following theorem:

Theorem 4. The operator T : Λ → Λ is a bounded injective linear operator with

closed range.

Proof. Since T is a Fredholm operator of index zero, it is bounded and its range,

Ran(T ), is closed. The fact that T is injective is a consequence property 2(a) of the

map B, as stated above. �

The following corollary is a direct consequence of Theorem 4:

Corollary 2. The operator T : Λ→ Λ is bounded below, i.e.

‖Ψ‖Λ . ‖T Ψ‖Λ. (5.3.5)

Proof. Every bounded injective linear operator with closed range in bounded below,

[2]. �

Since the operator T is bounded below, it is continuously invertible on its range

Ran(T ). This means that, given the Dirichlet data, the global relation can be solved

to find the Neumann data.

Recall the following theorem from [4] that was introduced in Chapter 2:

Theorem. Let Ω ⊂ Rn be a bounded, convex domain with analytic boundary Γ. Sup-

pose there exists a function g ∈ C(Γ) such that

∫
Γ
e−iλ·x[g(x) + i(λ · nx)f(x)]dΓx = 0, λ ∈ Zp (5.3.6)

for a given function f ∈ C(Γ). Then, there exists a solution to the corresponding BVP

for the Laplace equation and g corresponds to the unknown Neumann boundary value.
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The converse to this theorem also holds 2, namely, if a solution exists to a given

BVP for the Laplace equation, then a solution also exists to the corresponding global

relation. Therefore, if a given BVP for the Laplace equation is well-posed, then there

exists a solution to the corresponding global relation.

As an aside, we mention that an alternative proof of the existence of the solution to

the global relation can be constructed using properties of the operator T . In particular,

since the range of T is closed, we may apply Banach’s closed-range theorem to get:

Ran(T ) = Ker(T ∗)⊥, (5.3.7)

where T ∗ denotes the adjoint of T , and Ker(T ∗)⊥ denotes the orthogonal compliment

of Ker(T ∗). Furthermore, it can be shown that the known quantity T Ψt from the

global relation (5.2.26) is in Ker(T ∗)⊥, thus proving existence of a solution.

From the results in this section, the following theorem can be derived:

Theorem 5. The solution of the global relation (5.1.18) corresponding to the BVP

(5.0.1) exists, is unique, and depends continuously on the Dirichlet data. Moreover,

the global relation can be solved to find the (unknown) Neumann data.

Proof. The existence of a solution was discussed above, and the uniqueness of the

solution is a consequence of the fact that the operator T is injective. Since the operator

T : Λ → Λ is bounded (and therefore continuous), this implies that the solution of

the global relation depends continuously on the Dirichlet data. Furthermore, since the

operator T is continuously invertible on its range Ran(T ), the global relation can be

solved to find the unknown Neumann data. �

In the chapter that follows we construct a numerical method that uses the global

relation to find the Neumann data, given the Dirichlet data. This work implicitly uses

the fact that a solution to the global relation exists and that the global relation can

be solved to find the Neumann data.

2The converse holds as a consequence of Green’s second theorem.
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5.4 Chapter Summary

In this chapter we derived the operator T that allows us to express the global relation

for a domain, Ω, with analytic boundary, Γ = ∂Ω, in the form:

T (N − i D) = 0, (5.4.1)

where D is a vector that contains the transformed Dirichlet data on each segment of Γ,

and N is a vector that contains the Neumann data on each segment of Γ. Further, we

showed that T takes the form T = I +K where I is the identity and K is an operator

of the form:

(KΨ)j(λ) :=
∑
k 6=j

eie
−iαj(0)(mj−mk)λΨk(e

−i∆jk(0)λ), (5.4.2)

and Ψ is an n-dimensional vector that contains the Fp-transform of the Dirichlet and

Neumann data.

By showing that the operator K takes the form of a Hilbert-Schmidt operator,

we showed that the map Ψ 7→ K Ψ is compact. Since the operator T takes the form

T = I + K, this implies that T is a Fredholm operator of index zero. Using the fact

that T is a Fredholm operator along with properties previously established in the thesis

(i.e., that the map ϕj 7→ Ψj is bounded from L2(Σj) to L2(Λ) for each j ∈ {1, . . . , n}

and the invertibility of the Fp-transform), we showed that the global relation defines

a continuous map between the Dirichlet and Neumann data, and moreover, that if the

Dirichlet data is given, then this relation can be solved to find the Neumann data.



CHAPTER 6

Numerical Implementation

In the previous chapter we showed that the global relation defines a continuously

invertible map between the Dirichlet and Neumann data for a specified BVP for the

Laplace equation on a domain with analytic boundary. In this chapter we will verify

this fact by constructing a numerical method for determining the Neumann data, given

the Dirichlet data, for a specified BVP. This will be done by extending a previous

method that was developed by Fornberg and Flyer, [16], for the Laplace equation on

polygonal domains. The purpose of extending this method is to verify that previous

methods that use the global relation can readily be extended from polygonal domains

to domains with analytic boundary using the ideas developed in this thesis. This is

the first numerical method for domains with analytic boundary that uses the global

relation. As such, it is intended as a preliminary study, and we make more extensive

comments on the implementation of the method as well as future directions for research,

so as to serve as a reference for future work in this area.

The chapter is organized as follows. First, we review some previously developed

numerical methods that have been constructed for polygonal domains. Following this,

we construct a numerical method for domains with analytic boundary and show how it

performs using three test problems. Finally, we discuss the performance of the method

and show that it is particularly well-suited for domains where the boundary has low-

108
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curvature. In addition, we show that the method can also be used to solve BVPs where

mixed Dirichlet and Neumann boundary data are given.

6.1 Background

We will now briefly outline three approaches that use the global relation to find the

unknown boundary data for the Laplace equation. In each case, the method was

developed for the Laplace equation on a polygonal domain.

• In [17], Fulton et. al. express the global relation as

n∑
j=1

ρj(λ) = 0, λ ∈ C, (6.1.1)

where the ρj(λ) are defined by

ρj(λ) =

∫
Sj

e−iλz uz(z) dz, for j = 1, . . . , N, (6.1.2)

where Sj denotes the jth side of the polygonal domain, and uz denotes the deriva-

tive of the solution, u, with respect to the complex variable z. The derivative uz

can be expressed in terms of the tangential and normal derivatives as

uz =
1

2
e−iαj

(
u

(j)
t + i u

(j)
n

)
, (6.1.3)

where u
(
tj) denotes the tangential derivative of u on side j and u

(
nj) denotes the

normal derivative on side j, and αj is the angle the jth side makes with the real

axis. This representation of uz allows the global relation to be expressed in terms

of the Dirichlet data, via the tangential derivative, and the Neumann data, via

the normal derivative.

The boundary data on each side is expanded in a sine-basis. Since the global

relation holds for any value of λ ∈ C, this provides an infinite number of linear

relations that the boundary data must satisfy. By specifying that the global

relation be satisfied at a finite number of λ values, a linear system can be written
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in terms of the known and unknown boundary data. In particular, if each side is

approximated with M basis functions (where M is taken to be even), then M/2

values of λ are chosen along each of the rays l̂j defined by1

l̂j = {λ ∈ C : arg(λ) = π − αj}, j ∈ {1, . . . , N}. (6.1.4)

It has been shown that by selecting λ values this way, the resulting matrix in the

linear system is nearly diagonal.

Choosing M/2 values of λ along each of the rays l̂j for j ∈ {1, . . . , N} yields

N ×M/2 complex equations. It is further specified that the real and imaginary

parts of these equations must be satisfied. This produces a system of N ×M

(real) equations with N ×M unknowns. The system can then be solved for the

coefficients of the unknown boundary data in the given sine-basis. This method

produces an accuracy of order 10−3 to 10−4 with approximately 70 basis functions

per side. In addition, numerical tests suggest that the approximation becomes

better as the number of sides of the polygon increases.

• In [16], Fornberg and Flyer specify that the solution of the Laplace equation,

u(x, y), for a given BVP must satisfy the global relation and Schwarz-conjugate

of the global relation. That is, the following equations must be satisfied:

∮
∂Ω
e−iλz

(
λ
dz

ds
u(s) + un(s)

)
ds = 0, (6.1.5)∮

∂Ω
eiλz̄

(
λ
dz̄

ds
u(s)− un(s)

)
ds = 0, (6.1.6)

where s is the arclength. Again, (6.1.5)-(6.1.6) hold for any value of λ ∈ C,

which provides an infinite number of (linear) relations that the boundary data

must satisfy. Fornberg and Flyer choose values of λ by using Halton nodes2,

which are semi-random points in R2 that avoid clustering. This ensures that

the relations obtained from substituting the λ values into (6.1.5)-(6.1.6) will be

1This choice of λ ∈ l̂j allows the unknowns in the system to be strongly coupled by the global
relation.

2The Halton nodes are a quasi-random deterministic sequence that is formed from coprimes and is
often used in Monte Carlo sampling, [29].
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relatively independent of each other.

The known boundary data is then expanded using the Legendre polynomials as

a basis. If M basis functions are chosen for each of the N sides of the polygon,

then the method entails choosing K ≥ dN2 e ×M values for λ, with a choice of

K = (N + 1) ×M suggested. This creates a system that is over-determined,

which has the effect of regularizing the solution when the system is solved. The

system is then solved for the coefficients of the unknown boundary data in the

Legendre basis.

Conveniently, the relevant integrals in the global relation can be computed in

closed-form. They take the form:

∫ 1

−1
eαtPm(t) dt =

√
2πα

α
Im+ 1

2
(α), (6.1.7)

where each side is parametrized in terms of a new variable t ∈ [−1, 1], Pm(t)

denotes the mth Legendre polynomial, and I denotes the Bessel I function.

Since the integrals in (6.1.7) can be found in closed-form, the corresponding

matrix system can be quickly assembled. Furthermore, the choice of a Legendre

basis causes the numerical method to exhibit spectral convergence.

• In [5], Ashton showed that the global relation for the Laplace equation on a

convex polygonal domain can be written in the form

T (Φn − iΦt) = 0, λ ∈ C, (6.1.8)

where Φn and Φt contain the transformed Neumann and Dirichlet data. This

leads to a Galerkin method which is formulated as follows: Given Φt ∈ X, for

an appropriate space3 X, find Φ ∈ X such that the jth component of T satisfies

T (Φ− iΦt)j(λ) = 0, λ ∈ D, j = 1, . . . , N, (6.1.9)

3For the case of polygonal domains a natural choice is X = Xsym, where Xsym := PWσ1
sym ×

· · ·PWσN
sym and PW

σj
sym is the symmetric part of the Paley-Wiener space PWσj = FL2([−σj , σj ]),

which is the space containing the Fourier transform of functions in L2([−σj , σj ]).
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where D is any set in C that contains an accumulation point. This formulation

leads to the following functional which is to be minimized:

I[Φ] =
N∑
j=1

∫
γj

|T (Φ− iΦt)j(λ)|2 ds(λ), (6.1.10)

where the γj are locally finite and semi-infinite curves in C that cross the negative

real-axis, and ds(λ) is the Lebesgue measure of arclength on each of the respective

curves. Further, it was shown that Φ ∈ X is a minimizer of the functional I[Φ]

if and only if

a(Φ,Ψ) = l(Ψ), ∀Ψ ∈ X, (6.1.11)

where a : X ×X and l : X are the bilinear and linear forms given by

a(Φ,Ψ) = Re
N∑
j=1

∫
γj

(TΦ)j(λ) (TΨ)j(λ) ds(λ), (6.1.12)

l(Ψ) = −Im
N∑
j=1

∫
γj

(TΦt)j(λ) (T Ψ)j(λ) ds(λ). (6.1.13)

A numerical method is created from these results as follows. First, each of the

Φj(λ) is expanded in an appropriate basis {e(j)
J }

M−1
J=0 as

Φj(λ) ≈
M−1∑
J=0

C
(j)
J e

(j)
J (λ). (6.1.14)

Using a : X ×X and l : X and (6.1.11), the following linear system results:

N∑
i=1

M−1∑
I=0

C
(j)
J a(ei,I , ej,J) = l(ej,J). (6.1.15)

This produces a N M × N M linear system of equations which can be solved

computationally to recover the transformed Neumann data.

In [6], Crooks implemented a Galerkin method based on this formulation using a

Legendre basis. Similar to the method of Fornberg and Flyer, this method also
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exhibits spectral convergence.

In this chapter we will extend the method of Fornberg and Flyer to the case of a

domain with analytic boundary and discuss the resulting convergence properties. In

the next section we will go into more detail about how the method is constructed for

the case of domains with analytic boundary.

6.2 A Collocation Method for domains with Analytic Bound-

ary

We will now construct a numerical method for domains with analytic boundary by

extending the ideas of Fornberg and Flyer. In particular, we will use the idea of over-

sampling values of λ using Halton nodes, and we will also use a similar formulation

for the global relation. However, we will use the Fp-transform instead of the Fourier

transform, and we will also try a Chebyshev polynomial basis and compare the results

to the Legendre basis. Since we are not able to directly find the Fp-transform of

the Legendre polynomials we will need to use numerical integration to compute the

relevant integrals.

Equations (6.1.5)-(6.1.6) are a consequence of Green’s second identity and also

hold for domains with analytic boundary. Therefore, we will use this form of the

global relation in our calculations for the numerical method. By reparametrizing with

respect to a new variable t ∈ [−1, 1], we may write equations (6.1.5)-(6.1.6) as:

N∑
j=1

(∫ 1

−1
e−iλzj

(
λ
dzj
dt

u(j)(t) +
dsj
dt

u
(j)
n (t)

)
dt

)
= 0 (6.2.1)

N∑
j=1

(∫ 1

−1
eiλz̄j

(
λ
dz̄j
dt

u(j)(t) +
dsj
dt

u
(j)
n (t)

)
dt

)
= 0, (6.2.2)

where j ∈ {1, . . . , N} denotes the side number of the domain Ω. The Dirichlet and

Neumann data must satisfy the above equations for every value of λ, and hence this

gives us an infinite number of (linear) relations that couple the boundary data. By

choosing a finite number of λ’s for which (6.2.1)-(6.2.2) must be satisfied, we may form
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a linear system in terms of the known boundary data and the unknown boundary data.

6.2.1 Outline of Numerical Method

We will now outline the method in detail. For the sake of presentation, we assume

that the Dirichlet data u(t) is given on each side and that the Neumann data un(t) is

unknown - the method is implemented analogously for other combinations of known

and unknown boundary data on each side (see Section 6.6 for examples). The method

proceeds as follows:

1. Parametrize each side of the domain with a variable t ∈ [−1, 1]. Following this,

use the parametrization to compute dz/dt and ds/dt for each side of the domain

Ω. For the case of a polygon, the quantities dz/dt and ds/dt are constants. In the

case of a domain with analytic boundary, these will be non-constant functions of

the variable t.

2. Specify the number of basis functions for each side in the approximation. We

will denote this number by M .

3. Expand the known and unknown boundary data in the specified basis. We will

denote the specified basis by {Em(t)}∞m=1.

(a) For the known boundary data, the coefficients can be computed directly,

and the expansion will take the form of the sum given below:

u(j)(t) ≈
M∑
m=1

α(j)
m Em(t), j ∈ {1, . . . , N}, (6.2.3)

where u(j)(t) denotes the (known) Dirichlet data on the jth side, and

{α(j)
m }Mm=1 are the coefficients for the known boundary data on the jth side.

(b) The unknown boundary data is expanded in the form of the sum given

below:

u
(j)
n (t) ≈

M∑
m=1

β(j)
m Em(t), j ∈ {1, . . . , N}, (6.2.4)

where u
(j)
n (t) denotes the (unknown) Neumann data on the jth side, and

{β(j)
m }Mm=1 are the (unknown) coefficients for the unknown boundary data.
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4. Setup the linear system - this is done in several steps outlined below.

(a) Choose the values of λ, denoted {λk}Kk=1, where K ≥ dN2 e×M . The values

of λ are chosen as shifted and scaled Halton nodes. The standard Halton

sequence is defined in [0, 1]× [0, 1] ⊂ R2. We shift the sequence by −1/2 so

as to center it at the origin. The points that lie outside of the unit circle are

excluded, and the remainder of the points are indexed by k ∈ {1, . . . ,K}.

We will denote the kth Halton node inside the unit circle by Hk = (ak, bk).

Each of the Hk values is then scaled by a parameter R as follows:

Hk,R = R (ak, bk). (6.2.5)

The Halton nodes are scaled so as to avoid clustering around the origin

(clustering of λ values generally leads to more linear dependence in the

system which decreases the performance of the method).4

(b) Let RD(j) denote the matrix that contains the integrals corresponding to

the Dirichlet data, on the jth side, for the regular global relation. Simi-

larly, RN(j) is the matrix that contains the integrals corresponding to the

Neumann data, on the jth side, for the regular global relation; SD(j) is the

matrix that contains the integrals corresponding to the Dirichlet data, on

the jth side, for the Schwarz-conjugate of the global relation; and SN(j) is

the matrix that contains the integrals corresponding to the Neumann data,

on the jth side, for the Schwarz-conjugate of the global relation.

Form the matrices RD(1), . . . ,RD(N), RN(1), . . . ,RN(N) , SD(1), . . . ,SD(N),

4Despite the fact that the Halton nodes are distributed semi-randomly to avoid clustering in R2 ∼= C,
it is possible that there will still be linear dependence in the system. The number of λ values is
oversampled in order to counter this. The intuition for oversampling is as follows. A square system
contains the least number of equations that can produce a unique solution for a linear system (fewer
equations would result in infinitely many solutions or no solutions). In fact, if there is any linear
dependence in the system (such as due to clustering), a square system will result in a singularity. In
contrast, by including more equations than unknowns, this can only produce a more stable system.
To demonstrate this, consider the worse case in which one of the additional equations is a linear
combination of previous equations. This will not adversely affect the overall stability of the system since
by including an additional equation we are only providing more information from the case of a square
system. In practice, redundant (or mostly redundant) equations automatically end up disregarded,
while those that happen to be independent of each other are utilized when the system is solved. Hence,
oversampling values of λ serves to stabilize the system.
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and SN(1), . . . ,SN(N) where each of the components is computed by:

RD
(j)
k,m =

∫ 1

−1
λk e

−i λk zj dzj
dt

Em(t) dt (6.2.6)

RN
(j)
k,m =

∫ 1

−1
e−i λk zj

dsj
dt

Em(t) dt (6.2.7)

SD
(j)
k,m =

∫ 1

−1
λk e

i λk zj
dzj
dt

Em(t) dt (6.2.8)

SN
(j)
k,m =

∫ 1

−1
ei λk zj

dsj
dt

Em(t) dt. (6.2.9)

The dimension of each of the matrices is K ×M . The components of these

matrices are integrals from the global relation and Schwarz-conjugate of

the global relation. In the case of a polygonal domain, each of the integrals

above is the Fourier transform of the respective basis function. If the basis

functions are chosen to be the Legendre polynomials, the corresponding

Fourier transform can be expressed in terms of the Bessel I function using

(6.1.7). In the case of a domain with analytic boundary, we must use the

Fp-transform, and the relation given in (6.1.7) no longer holds.

(c) Write out the linear system in the form:

B ×



β
(1)
1

...

β
(1)
M
...

β
(N)
1

...

β
(N)
M


= −A×



α
(1)
1

...

α
(1)
M
...

α
(N)
1

...

α
(N)
M


, (6.2.10)

where A is the 2K × (M ·N) matrix given by:

A =

RD(1) . . . RD(N)

SD(1) . . . SD(N)

 , (6.2.11)
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and B is the 2K × (M ·N) matrix given by:

B =

RN(1) . . . RN(N)

SN(1) . . . SN(N)

 . (6.2.12)

5. Solve the (over-determined) linear system for the coefficients of the unknown

boundary data. In Matlab this can be done using the back-slash operator. In

the case of an over-determined system, the back-slash operator computes the

solution to the system by performing a least-squares fit, [27].

6. Expand the unknown boundary data in the specified basis using the computed

coefficients - in this case {β(j)
m }Mm=1, for each j ∈ {1, . . . , N}.

In the discussion above we assumed that the Dirichlet data, u(t), is given on each

side and that the Neumann data un(t) is unknown. The method proceeds analogously

if other combinations of boundary data are given, e.g. the Dirichlet data is given on

even sides and the Neumann data is given on odd sides. We will now further discuss

the points that will be adapted for the case of domains with analytic boundary.

In the case of a domain with analytic boundary, the complex variable z takes the

form:

z = x+ i pj(x), (6.2.13)

for each side of the boundary in the global relation. In the case where pj(x) is a line, the

corresponding integrals in the global relation can be computed directly in closed-form

using the Fourier transform. In the case where pj(x) is an analytic concave function, we

must use the Fp-transform instead of the Fourier transform. As an example, if pj(x) =

x2 − 1 for a given domain, and the jth side is parametrized by zj(t) = t + i (t2 − 1),

then the corresponding integral for RD
(j)
k,m is given by:

RD
(j)
k,m =

∫ 1

−1
λke
−i λk (t+i (t2−1)) (1 + 2t)Pm(t) dt, (6.2.14)

where Pm(t) denotes the mth Legendre polynomial. The integral in (6.2.14) is the

Fp-transform of Pm(t), and is not integrable in closed-form. This is generally the case

when pj(x) is not a linear function. As a result, the integrals in the global relation
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can no longer be computed in closed-form for the Legendre basis, as was the case for

a polygonal domain, and we must rely on numerical integration instead.

Since each of the integrals in (6.2.6)-(6.2.9) can no longer be performed explicitly

with respect to the Legendre basis, we have more freedom to try other bases as the

Legendre polynomials are no longer necessarily the preferred basis. In our implemen-

tation we will also use the Chebyshev polynomials as a basis. This will give us a point

of comparison for the performance of the Legendre polynomials. The Legendre and

Chebyshev polynomials are often used in numerical analysis and can be constructed

by orthonormalizing the set of polynomials {1, x, x2, . . .} on the interval x ∈ [−1, 1]

with respect to the L2-norm and L1-norm, respectively. Hence, the Legendre and

Chebyshev polynomials define an orthonormal basis on the interval [−1, 1].

For reference, the Legendre polynomials are computed using the following the re-

cursion formula:

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− k Pk−1(x), for k = 1, 2, . . . , (6.2.15)

where P0(x) = 1 and P1(x) = x. The coefficients for expansion of a function, f(x), in

the Legendre basis are given by:

ak =
2k + 1

2

∫ 1

−1
f(x)Pk(x) dx, for k = 0, 1, 2, . . . (6.2.16)

The Chebyshev polynomials are computed using the recursion formula

Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, 3, . . . , (6.2.17)

where T0(x) = 1 and T1(x) = x. The coefficients for expansion of a function, f(x), in

the Legendre basis are given by:

a0 =
1

π

∫ 1

−1

f(x)√
1− x2

dx, (6.2.18)

ak =
2

π

∫ 1

−1
f(x)

Tk(x)√
1− x2

dx, for k = 1, 2, . . . (6.2.19)
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We will use the following three metrics in our discussion for comparing the perfor-

mance of the method with the Chebyshev and Legendre bases:

• Convergence rate - The convergence rate will be used as a measure of the

efficiency of the method with the specified basis.

• L1-norm - The L1-norm error will be used as a measure of the closeness of fit

of the approximation to the true solution along the boundary.

• Sup-norm - The sup-norm error will be used as a measure of the overall accuracy

of the method.

In addition to using Chebyshev and Legendre polynomials, we also ran numerical

tests with step-functions. The benefit of a step-function basis is that many of the in-

tegrals in the global relation can be computed in closed-form, which results in a faster

implementation. However, the numerical results for the step-function basis often ex-

hibited a high amount of oscillation that decreased the accuracy of the approximation.

This is discussed further in Section 6.4.4, along with a comparison of the Chebyshev

and Legendre bases.

6.2.2 Notes on Implementation

We will now make several notes on the implementation of the numerical method in

Matlab.

• For the given choices of basis functions, i.e.. Legendre and Chebyshev polyno-

mials, the Fp-transform cannot be computed directly. As a result we must rely on

numerical integration. For our calculations we use the built-in ‘integral()’ function

which performs a numerical integration on a specified function handle. Although

the ‘integral()’ function is efficient, numerical integration is computationally more

costly than if the Fp-transform of the respective basis functions can be computed

directly. Conveniently, the linear system is structured so that each element can be

computed independently. As a result, when the method is being implemented, the

numerical integration calculations can be distributed over several processors so that

they can be performed in parallel. It is straightforward to implement this using the
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built-in ‘parfor’ loop in Matlab. Below is a segment of sample code where this is

implemented.

1 f o r j =1:NumLambdas

2 lam = Lambda( j ) ;

3 par f o r m=0:M−1

4 RD1( j ,m+1) = i n t e g r a l (@( t ) lam .∗Exp1( t , lam ) . . .

5 .∗ dzdt1 ( t ) .∗ l egendreP (m, t ) ,−1 ,1) ;

6 RD2( j ,m+1) = i n t e g r a l (@( t ) −lam .∗Exp2( t , lam ) . . .

7 .∗ dzdt2 ( t ) .∗ l egendreP (m, t ) ,−1 ,1) ;

8 %Repeat f o r RN, SD, and SN

9

10 end

11 end

In the code above, the inner loop is executed using the ‘parfor’ loop in Matlab, which

distributes the calculations over the number of processors available.

• The code runs (significantly) more efficiently if the Legendre and Chebyshev

polynomials are entered as function handles in Matlab, instead of using the built-in

‘legendreP(m,t)’ and ‘chebyshevT(m,t)’ functions, respectively. The following code

uses the recursive formula given in (6.2.15) to construct the appropriate function

handles in Matlab, which are then stored in a function array:

1 Legendre=c e l l (1 ,M) ;

2 syms t ;

3 Legendre{1}=@( t ) ones ( s i z e ( t ) ) ;

4 Legendre{2}=@( t ) t ;

5

6 f o r j =3:M

7 Legendre{ j}=@( t ) ( (2∗ j +1)∗ t .∗ Legendre{ j −1}( t )−j ∗

Legendre{ j −2}( t ) ) /( j +1) ;

8 Legendre{ j}=matlabFunction ( s i m p l i f y ( Legendre{ j }( t ) ) ) ;

9 end
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The analogous code for the Chebyshev polynomials can be written in a simi-

lar manner by using the recursive relation given in (6.2.17). In Section 6.4.5 we

run numerical tests using these function handles in Matlab to show the increase in

efficiency.

As a note, numerical tests suggest that after M = 20, calculations involving the

Matlab function handles defined in this way begin to loose accuracy. This is a result

of the fact that computations with polynomials that are in expanded form often

loose accuracy due to the fact that calculations are sensitive to perturbations in the

coefficients, [19], [37]. For computations that require more than M = 20 basis func-

tions, the built-in Matlab functions ‘legendreP(m,t)’ and ‘chebyshevT(m,t)’ can still

be used as they retain the desired accuracy, though the calculations are performed

more slowly.

• Each of the rows of the matrices A and B in the linear system need to be scaled5.

This needs to be done since when solving the system with a non-square matrix with

L2-minimization, the rows are not automatically scaled as would be the case in

methods for solving systems with square matrices, e.g. Gaussian elimination. This

significantly reduces the condition number for the matrices in the linear system and

is essential for getting accurate results with this method. The code below scales each

of the rows of the matrices A and B by the l1-norm in Matlab.

1 s c a l e =1./sum( abs ( [A,B] ) ,2 ) ;

2 B = bsxfun ( @times , s ca l e ,B) ;

3 A = bsxfun ( @times , s ca l e ,A) ;

6.3 Test Cases

We will now present three problems on which the numerical method will be tested. In

each test case we will use the harmonic function

u(x, y) = ex cos(y) (6.3.1)

5The author would like to thank Dr. Natasha Flyer for this suggestion.
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to specify the boundary values for the BVP. The harmonic function u(x, y) given in

(6.3.1) is the real part of the entire function Φ(z) = ez, where z = x + i y. By using

the same harmonic function for each of the test cases, this allows us to restrict our

attention to how the performance of the method depends on other factors such as the

geometry of the domain. The results of additional tests with different boundary values

are given in Appendix A for comparison. In our test cases we will specify that the

Dirichlet data is given and that the Neumann data is to be determined. The test cases

are presented below.

1. Consider the domain Ω1 enclosed by the curves Γ = Γ1 ∪ Γ2, where

Γ1 = {z ∈ C : z = x+ i p1(x), x ∈ [−1, 1]} (6.3.2)

Γ2 = {z ∈ C : z = x+ i p2(x), x ∈ [−1, 1]}, (6.3.3)

with

p1(x) = x2 − 1, x ∈ [−1, 1] (6.3.4)

p2(x) = −x2 + 1, x ∈ [−1, 1]. (6.3.5)

The domain Ω1 is shown in figure 6.1 below.
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Figure 6.1: Graph of test domain 1.
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The parametrization of the domain Ω1 is given by:

z1(t) = t+ i(t2 − 1) (6.3.6)

z2(t) = −t+ i(−t2 + 1), (6.3.7)

where t ∈ [−1, 1]. This parametrization ensures that the boundary of the domain is

oriented counter-clockwise. The derivatives dz/dt and ds/dt are given by:

Side 1:
dz1

dt
= 1 + i 2t

ds1

dt
=
√

1 + 4t2 (6.3.8)

Side 2:
dz2

dt
= −1− i 2t

ds2

dt
=
√

1 + 4t2. (6.3.9)

Using the parametrization given in (6.3.6)-(6.3.7), the Dirichlet data on each side

is given by:

Side 1: u(z1(t)) = et cos(t2 − 1) (6.3.10)

Side 2: u(z2(t)) = e−t cos(−t2 + 1). (6.3.11)

The Neumann data is given by:

Side 1: un(z1(t)) =
et
(
sin
(
t2 − 1

)
+ 2 t cos

(
t2 − 1

))
√

4 t2 + 1
, (6.3.12)

Side 2: un(z2(t)) =
et
(
sin
(
t2 − 1

)
+ 2 t cos

(
t2 − 1

))
√

4 t2 + 1
. (6.3.13)

The results for Test Case 1 are presented in Section 6.4.1.

2. Consider the domain Ω2 defined by Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γj = {z ∈ C : z = x+ i pj(x), x ∈ [aj , bj ]}, j = 1, . . . , 4, (6.3.14)
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with the functions {pj(x)}4j=1 defined by:

p1(x) = −1

4
x2 + 1, x ∈ [0, 2] (6.3.15)

p2(x) =

√
25

4
− x2 − 3

2
, x ∈ [−2, 0] (6.3.16)

p3(x) =
1

4
x2 − 1, x ∈ [−2, 0] (6.3.17)

p4(x) = −
√

25

4
− x2 +

3

2
, x ∈ [0, 2]. (6.3.18)

The domain Ω2 is shown in figure 6.2 below.
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Figure 6.2: Graph of test domain 2.

We will use the following (counter-clockwise oriented) parametrization for the

domain Ω2:

z1(t) = (1− t) + i

(
−1

4
(1− t)2 + 1

)
, (6.3.19)

z2(t) = −(1 + t) + i

(√
25

4
− (1 + t)2 − 3

2

)
, (6.3.20)

z3(t) = (t− 1) + i

(
1

4
(t− 1)2 − 1

)
, (6.3.21)

z4(t) = (t+ 1) + i

(
−
√

25

4
− (t+ 1)2 +

3

2

)
, (6.3.22)
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where t ∈ [−1, 1] for each side. The derivatives dz/dt and ds/dt are given by:

dz1

dt
= −1 + i

1

2
(1− t) ds1

dt
=

√(
t

2
− 1

2

)2

+ 1 (6.3.23)

dz2

dt
= −1− i

 t+ 1√
25
4 − (t+ 1)2

 ds2

dt
=

√√√√1− (2 t+ 2)2

4
(

(t+ 1)2 − 25
4

) (6.3.24)

dz3

dt
= 1 + i

1

2
(t− 1)

ds3

dt
=

√(
t

2
− 1

2

)2

+ 1 (6.3.25)

dz4

dt
= 1− i

 t+ 1√
25
4 − (t+ 1)2

 ds4

dt
=

√√√√1− (2 t+ 2)2

4
(

(t+ 1)2 − 25
4

) . (6.3.26)

Using the parametrization given in (6.3.19)-(6.3.22), the Dirichlet data on each

side is given by:

Side 1: u(z1(t)) = e1−t cos

(
(t− 1)2

4
− 1

)
, (6.3.27)

Side 2: u(z2(t)) = e−(1+t) cos

(√
25

4
− (t+ 1)2 − 3

2

)
, (6.3.28)

Side 3: u(z3(t)) = et−1 cos

(
(t− 1)2

4
− 1

)
, (6.3.29)

Side 4: u(z4(t)) = et+1 cos

(√
25

4
− (t+ 1)2 +

3

2

)
. (6.3.30)

The Neumann data is given by:

un(z1(t)) =
et cos

(
(t−1)2

4 − 1
) (

t
2 −

1
2

)√(
t
2 −

1
2

)2
+ 1

−
et sin

(
(t−1)2

4 − 1
)

√(
t
2 −

1
2

)2
+ 1

, (6.3.31)

un(z2(t)) =
1

5
et
(√
−4t2 − 8t+ 21 sin (p2(t))− 2(t+ 1) cos (p2(t))

)
, (6.3.32)

un(z3(t)) =
et sin

(
(t−1)2

4 − 1
)

√(
t
2 −

1
2

)2
+ 1

+
et cos

(
(t−1)2

4 − 1
) (

t
2 −

1
2

)√(
t
2 −

1
2

)2
+ 1

, (6.3.33)

un(z4(t)) =
1

5
et
(√
−4t2 − 8t+ 21 sin (p4(t))− 2(t+ 1) cos (p4(t))

)
, (6.3.34)

where p2(t) and p4(t) are the imaginary components of z2(t) and z4(t), respectively,
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i.e.

p2(t) =

√
25

4
− (t+ 1)2 − 3

2
and p4(t) =

√
25

4
− (t+ 1)2 +

3

2
. (6.3.35)

3. Consider the domain defined by Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γj = {z ∈ C : z = x+ i pj(x), x ∈ [aj , bj ]}, j = 1, . . . , 4, (6.3.36)

with

p1(x) = −1

4
x2 + 1, x ∈ [0, 2] (6.3.37)

p2(x) =
1

2
x+ 1, x ∈ [−2, 0] (6.3.38)

p3(x) =
1

4
x2 − 1, x ∈ [−2, 0] (6.3.39)

p4(x) =
1

2
x− 1, x ∈ [0, 2]. (6.3.40)

The domain Ω3 is shown in figure 6.3 below.
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Figure 6.3: Graph of test domain 3.
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We will use the following (counter-clockwise oriented) parametrization for the

domain Ω3:

z1(t) = (1− t) + i

(
−1

4
(1− t)2 + 1

)
, (6.3.41)

z2(t) = −(1 + t) + i

(
−1

2
(1 + t) + 1

)
, (6.3.42)

z3(t) = (t− 1) + i

(
1

4
(t− 1)2 − 1

)
, (6.3.43)

z4(t) = (t+ 1) + i

(
1

2
(t+ 1)− 1

)
, (6.3.44)

where t ∈ [−1, 1] for each side. The derivatives dz/dt and ds/dt are given by:

dz1

dt
= −1 + i

1

2
(1− t) ds1

dt
=

√(
t

2
− 1

2

)2

+ 1 (6.3.45)

dz2

dt
= −1− 1

2
i

ds2

dt
=

√
5

4
(6.3.46)

dz3

dt
= 1 + i

1

2
(t− 1)

ds3

dt
=

√(
t

2
− 1

2

)2

+ 1 (6.3.47)

dz4

dt
= 1 +

1

2
i

ds4

dt
=

√
5

4
. (6.3.48)

Using the parametrization given in (6.3.41)-(6.3.44), the Dirichlet data on each

side is given by:

Side 1: u(z1(t)) = e1−t cos

(
(t− 1)2

4
− 1

)
, (6.3.49)

Side 2: u(z2(t)) = e−(1+t) cos

(
t

2
− 1

2

)
, (6.3.50)

Side 3: u(z3(t)) = et−1 cos

(
(t− 1)2

4
− 1

)
, (6.3.51)

Side 4: u(z4(t)) = et+1 cos

(
t

2
− 1

2

)
. (6.3.52)
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The Neumann data is given by:

un(z1(t)) =
et cos

(
(t−1)2

4 − 1
) (

t
2 −

1
2

)√(
t
2 −

1
2

)2
+ 1

−
et sin

(
(t−1)2

4 − 1
)

√(
t
2 −

1
2

)2
+ 1

, (6.3.53)

un(z2(t)) = −et sin

(
t

2
− C

)
, (6.3.54)

un(z3(t)) =
et sin

(
(t−1)2

4 − 1
)

√(
t
2 −

1
2

)2
+ 1

+
et cos

(
(t−1)2

4 − 1
) (

t
2 −

1
2

)√(
t
2 −

1
2

)2
+ 1

, (6.3.55)

un(z4(t)) = et cos

(
t

2
− C

)
, (6.3.56)

where C is the constant given by:

C =
17359532051249999

18014398509481984
. (6.3.57)

Since two of the sides for Ω3 (i.e., p2(t) and p4(t)) are linear, we are able to compute

the corresponding integrals in the system directly. The relevant integrals from the

global relation are computed by:

∫ 1

−1
eαjtPm(t) dt =

√
2παj

αj
Im+ 1

2
(αj), j = 2, 4, (6.3.58)

where α2 and α4 are given by:

α2 = λk

[
−1

2
+ i

]
(6.3.59)

α4 = λk

[
1

2
− i
]
. (6.3.60)

In the next section, we will run the numerical method on the three test cases that we

have introduced here and discuss the corresponding convergence results.
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6.4 Results and Discussion

We will now present the results for each of the test cases from the previous section. For

each test case we specify that the Dirichlet data is given and that the Neumann data

is unknown. In each case we show a convergence plot and discuss the performance of

the method.

In our convergence plots and discussion, we use the relative sup-norm error defined

by:

E∞(M) =
‖f − fM‖∞
‖f‖∞

, (6.4.1)

where f is the true solution and fM is the Mth approximation in the specified basis,

and the ‖ · ‖∞-norm is given by:

‖g‖∞ = max
1≤j≤N

{
max
−1≤t≤1

|g(j)(t)|
}
, (6.4.2)

where g(j)(t) is the specified function on the jth side.

6.4.1 Test Case 1

We will now present the numerical results for Test Case 1 from Section 6.3. Recall, for

Test Case 1, the boundary of the domain is given by the curves:

p1(x) = x2 − 1, x ∈ [−1, 1] (6.4.3)

p2(x) = −x2 + 1, x ∈ [−1, 1]. (6.4.4)

In order to run the method, we must specify K, the number of values of λ to be

chosen in the system, and R, the radius of the circle within which the λ values are

taken. We choose these parameters by running numerical tests for a range of R and

K values. In each test we compute the condition number for the matrix B. We use

this as a measure of numerical sensitivity since the system is solved by inverting the

matrix B, and the condition number is a measure of the invertibility of a matrix. The

table below shows the condition number of the matrix B for values of R ranging from
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R = 10 to R = 40 and values of K ranging from K = 25 to K = 50. Each test is run

with M = 15 basis functions.

R = 10 R = 15 R = 20 R = 25 R = 30 R = 35 R = 40

K = 30 544.4730 544.4730 544.4730 544.4730 544.4730 544.4730 544.4730
K = 35 40.2908 40.2908 40.2908 40.2908 40.2908 40.2908 40.2908
K = 40 129.4977 129.4977 129.4977 129.4977 129.4977 129.4977 129.4977
K = 45 114.2604 114.2604 114.2604 114.2604 114.2604 114.2604 114.2604
K = 50 318.0930 318.0930 318.0930 318.0930 318.0930 318.0930 318.0930
K = 55 507.3613 507.3613 507.3613 507.3613 507.3613 507.3613 507.3613

Table 6.1: Condition Number of the matrix B for a range of R and K values with M = 15
basis functions per side

Table 6.1 shows that there is little variation in the condition number of B for

varying values of R, so we choose R = 30. There is, however, variation with respect

to K, and in practice we choose a value of K = 45 for M = 15 basis functions as it

corresponds with the suggested choice of K = (N + 1) ×M , and the corresponding

condition number is relatively lower than for other values of K. In general, for Test

Case 1, we use K = (N + 1)×M for all the values of M tested.

Using these parameters, we run the method to find the coefficients of the unknown

boundary data for Test Case 1. A plot of the Neumann boundary data on each side is

shown below, along with the Legendre approximations for M = 5 and M = 8.
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Figure 6.4: Plot of solution for Test Case 1.
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We note from the plot in Figure 6.4 that the approximation is quite accurate even

for relatively low values of M . In order to quantify this, the convergence plot for Test

Case 1 is shown below.
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Figure 6.5: Plot of error for Test Case 1.

In Figure 6.5 we plot the convergence for the method using both a Legendre and

Chebyshev basis. We will now make several observations about the results for Test

Case 1.

• The error for both the Legendre and Chebyshev bases decreases linearly on a log-

linear plot. This indicates that the method exhibits spectral convergence. For a

numerical method that exhibits spectral convergence, the error can be expressed

as a function of the number of basis functions, M , in the form:

E∞(M) = e−CM , (6.4.5)

where C is the rate of convergence. We compute C by finding the slope of the

best-fit line for the Legendre and Chebyshev error on the log-linear plot. The
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values are given by:

CLeg = 0.1811 (6.4.6)

CCheb = 0.1827, (6.4.7)

where CLeg is the convergence rate for the Legendre basis and CCheb is the con-

vergence rate for the Chebyshev basis. We note that the values of CLeg and

CCheb are quite similar, with the relative difference between the values being

only ∼ .5%.

• Despite the fact that CLeg and CCheb are quite close in value, the Chebyshev

basis produces a noticeably more accurate approximation for every value of M

that is tested for this problem. This suggests that the Chebyshev basis is a better

choice for this test case. We further compare the Chebyshev and Legendre bases

in Section 6.4.4.

• In this test case the method exhibits spectral accuracy and produces an error of

order 10−5 with M = 30 basis functions. We will show later, in Section 6.5, that

for domains with lower curvature, even better convergence rates and accuracy

can be obtained. For a point of comparison, in Appendix B, we run the numerical

method on a sequence of domains defined by:

p(j)
n =

(−1)j

n
x2 +

(−1)j+1

n
, n ∈ {1, . . . , 4}, j = 1, 2. (6.4.8)

These domains are analogous to the one for this test case and have the property

that each successive domain has lower curvature. For each of the successive

domains, the convergence rate improves. A similar set of tests is carried out in

Section 6.5 to show a relation between convergence rate and the curvature of the

domain.

• For the final value of M = 30 in Figure 6.5, the error for the Chebyshev approxi-

mation is E∞(30) = 2.140× 10−6, and the error for the Legendre approximation

is E∞(30) = 4.472× 10−6.
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We will now plot the error against t ∈ [−1, 1] for M = 10 in Figure 6.6.
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Figure 6.6: Plot of error for Test Case 1.

We observe that the method produces a good approximation for the majority of the

t-interval with the error being noticeably higher at the endpoints t = −1 and t = 1.

For larger values of M , the largest errors also tend to be at the endpoints of each

segment of the boundary. This results in a higher overall sup-norm error for both the

Chebyshev and Legendre bases, as reported on the convergence plot in Figure 6.5. In

general, the largest errors tend to be at the endpoints of the t-intervals in all of the

tests that we have run.

We also observe that the error for the Chebyshev and Legendre bases is quite

similar for most of the t-interval, away from the endpoints. Near the endpoints, there

is a more significant difference between the approximations for the two bases, with

the Chebyshev basis giving more accurate results. This results in a lower sup-norm

error for the Chebyshev basis. Additional tests show that for larger values of M , i.e.

M ≥ 10, the Chebyshev basis continues to give a more accurate approximation at

the endpoints of the boundary. The convergence plot in Figure 6.5 reflects this fact,

showing that the Chebyshev basis is roughly a third of an order of magnitude more
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accurate for M ≥ 10.

6.4.2 Test Case 2

We will now present the numerical results for Test Case 2 from Section 6.3. Recall, for

Test Case 2, the boundary of the domain is given by the curves:

p1(x) = −1

4
x2 + 1, x ∈ [0, 2] (6.4.9)

p2(x) =

√
25

4
− x2 − 3

2
, x ∈ [−2, 0] (6.4.10)

p3(x) =
1

4
x2 − 1, x ∈ [−2, 0] (6.4.11)

p4(x) = −
√

25

4
− x2 +

3

2
, x ∈ [0, 2]. (6.4.12)

Performing numerical tests similar to those in Table 6.1 for a range of M values,

we find again that R = 30 and K = (N+1)×M are good choices for the parameters R

and K. Using these choices for R and K, we run the method for Test Case 2 with the

Legendre and Chebyshev bases on a range of M values and show the corresponding

error in the convergence plot below.
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Figure 6.7: Plot of error for Test Case 2.
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We make the following observations about the error plot in Figure 6.7:

• The method again exhibits spectral convergence for Test Case 2. The convergence

rates for the Legendre and Chebyshev bases are given by:

CLeg = 0.3714 (6.4.13)

CCheb = 0.3024. (6.4.14)

• There is a significant difference between the convergence rates for the Chebyshev

and Legendre bases for this test case, i.e. ∼ 18.58% relative difference. This is

due to the fact that the Chebyshev basis exhibits noticeably higher errors for low

values of M , i.e., M < 10. Despite this, for larger values of M , i.e M ≥ 10, the

Chebyshev basis gives a better approximation.

• The convergence rates for both the Legendre and Chebyshev bases are greater

than in Test Case 1, indicating faster convergence. In addition, the error for

each value of M is less than that for Test Case 1. This is observed in the fact

that the method reaches O(10−5) accuracy with M = 30 basis functions in Test

Case 1, while it only requires M = 20 basis functions to reach the same order of

accuracy for Test Case 2. This is due to two factors:

– First, the geometry of the domain is such that each side has lower curva-

ture than the domain for Test Case 1. The dependence of the method on

curvature is further explored in Section 6.5. In general, the method tends

to perform better for domains with lower curvature.

– Second, there are more components that form the boundary of the domain

(i.e., four sides in Test Case 2 versus two sides in Test Case 1). It was

observed in [17] that for polygonal domains the numerical method gave

more accurate results for polygons with more sides. A similar phenomenon

also appears to apply with this numerical method.

• For the final value of M = 20 in Figure 6.9, the error for the Chebyshev approxi-

mation is E∞(20) = 1.8917×10−6 and the error for the Legendre approximation

is E∞(20) = 2.8022× 10−6.
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We will now plot the error against t ∈ [−1, 1] for M = 10 in Figure 6.8.
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Figure 6.8: Plot of error for Test Case 2.

We observe that for the majority of the domain, the error for the Legendre and

Chebyshev bases is quite similar. We will use the L1-norm as a measure of the closeness

of fit of the approximations to the true solution. This, in turn, will allow us to quantify

how close the approximations for the two bases are to each other along the t-interval.

We define the L1-norm error by:

EL1(M) =
1

N

N∑
j=1

(∫ 1

−1
|f (j)(t)− f (j)

M (t)| dt
)
, (6.4.15)

where f (j)(t) is the true solution on the jth side, and f
(j)
M (t) is the Mth approximation

on the jth side. For M = 10, EL1(10) = 1.1319 × 10−4 for the Legendre basis and

EL1(10) = 1.1045×10−4 for the Chebyshev basis. The L1-norm for the two bases is also

close for larger values of M . This indicates that both bases give similar approximations.

As a notable exception to this, for larger values of M , i.e. particularly for M ≥ 15,

the approximation in the Chebyshev basis exhibits lower errors at the endpoints of

each of the segments of the boundary. This results in a lower error in the sup-norm,
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as exhibited in the convergence plot in Figure 6.7.

6.4.3 Test Case 3

In this section we present the numerical results for Test Case 3 from Section 6.3. Recall,

for Test Case 3, the boundary of the domain is given by the curves:

p1(x) = −1

4
x2 + 1, x ∈ [0, 2] (6.4.16)

p2(x) =
1

2
x+ 1, x ∈ [−2, 0] (6.4.17)

p3(x) =
1

4
x2 − 1, x ∈ [−2, 0] (6.4.18)

p4(x) =
1

2
x− 1, x ∈ [0, 2]. (6.4.19)

We again perform numerical tests similar to those in Table 6.1 for a range of M

values and find that R = 30 and K = (N +1)×M are good choices for the parameters

R and K. Using these choices for R and K, we run the method for Test Case 3 with

the Legendre and Chebyshev bases on a range of M values and show the corresponding

error in the convergence plot below.
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Figure 6.9: Plot of error for Test Case 3.
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We make the following observations about the error plot in Figure 6.9:

• Similar to Test Cases 1 and 2, the error for both the Legendre and Chebyshev

bases decreases linearly on a log-linear plot, indicating that the method also

exhibits spectral convergence for Test Case 3. The convergence rates for the

Legendre and Chebyshev bases are given by:

CLeg = 0.7917 (6.4.20)

CCheb = 0.7438. (6.4.21)

• The convergence rates for the Chebyshev and Legendre bases are similar, i.e.

∼ 6.05% relative difference, however, the convergence plot indicates that for

small M , i.e. M < 7, the Legendre basis gives a better approximation. For larger

values ofM , i.eM ≥ 7, the error for the Chebyshev and Legendre approximations

are quite close.

• For this domain two of the sides (i.e., p2(x) and p4(x)) are linear which allows

the corresponding integrals in the global relation to be computed directly. This

allows the computations for the Legendre bases to be performed more efficiently.

Since the Chebyshev and Legendre bases give similar errors for M ≥ 7, the

Legendre basis is a better choice for this test case.

• We observe that the error plot for Test Case 1 exhibits a more consistent pattern

of convergence than for Test Cases 2 and 3. We conjecture that this is due to

the fact that the geometry of the domain is more symmetric for Test Case 1 with

p2(x) being the reflection of p1(x) across the real-axis. In Appendix A we run

additional tests on the same domains with different boundary values and find

similar patterns of convergence for each domain.

• For the final value of M = 15 in Figure 6.9, the error for the Chebyshev approxi-

mation is E∞(15) = 5.7614×10−9 and the error for the Legendre approximation

is E∞(15) = 8.0837× 10−9.
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We will now plot the error against t ∈ [−1, 1] for M = 10 in Figure 6.10.
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Figure 6.10: Plot of error for Test Case 3.

Similar to Test Case 2, the error is similar for both the Chebyshev and Legendre

bases along the t-interval. Indeed, for the plots in Figure 6.10, it is difficult to distin-

guish between the errors for the two bases. Computing the L1-norm errors, we find

that for the Legendre basis EL1(10) = 7.4549 × 10−6, and for the Chebyshev basis

EL1(10) = 7.3345× 10−6. There is a ∼ 1.62% relative difference between the L1-norm

errors for the two bases, which confirms that the Chebyshev and Legendre polynomials

give a similar approximation along the t-interval. For larger values of M , this trend

continues and the relative difference between the L1-norm errors is consistently less

than 3%.

We observe from Figure 6.10 above that for M = 10, the Chebyshev and Legendre

bases also give a similar approximation at the endpoints of the t-interval. This is also

the case for larger values of M as well. The convergence plot in Figure 6.9 reflects this

fact, showing that the sup-norm errors are close for M ≥ 7. As a notable exception

to this, for the final value M = 15, the Chebyshev basis gives a better approximation

at the endpoints, which is reflected in the sup-norm error as shown in the convergence
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plot in Figure 6.9.

6.4.4 Comparison of Basis Functions

Throughout Sections 6.4.1-6.4.3 we used the Chebyshev and Legendre polynomials as

a basis for our numerical method. To date, Legendre polynomials have given the best

approximations in numerical methods involving the global relation, [6], [16], [23]. Our

tests suggest that the Chebyshev polynomials provide a good point of comparison for

the Legendre basis. In general, the convergence properties and errors were similar for

both bases, with the Chebyshev polynomials performing better in some cases. This

indicates that the Chebyshev polynomials are a good alternative to the Legendre basis

in the case of domains with analytic boundary, and are perhaps even preferable. We

will now justify this further by summarizing and comparing the convergence data for

the Chebyshev and Legendre bases for Test Cases 1-3.

Recall, in Section 6.2.1 we specified that the Chebyshev and Legendre bases would

be compared using three metrics: the convergence rate, the L1-norm, and the sup-

norm. In Table 6.2, we summarize the data for each of these metrics. In the table we

record log10 (E∞(M)) and log10 (EL1(M)) for the final value of M tested in each case.

Test Case 1 Test Case 2 Test Case 3
Leg. Cheb. Leg. Cheb. Leg. Cheb.

Conv.
Rate

0.1811 0.1827 0.3714 0.3024 0.7917 0.7438

L1-norm -6.3929 -6.4182 -6.5513 -6.5397 -9.7695 -9.7745

Sup-
norm

-5.3495 -5.6696 -5.5525 -5.7231 -8.0924 -8.2395

Table 6.2: Convergence data for the Chebyshev and Legendre bases.

We will now briefly discuss each of the metrics using the data from Table 6.2, along

with previous observations.

• Convergence Rate - We use the convergence rate as a measure of the efficiency of

the method with the specified basis. For Test Case 1, the relative difference between

the convergence rates for the two bases is less than 1%, indicating similar convergence.

However, as we noted from Figures 6.5 and 6.6, the Chebyshev basis gives a better

approximation near the endpoints of the boundary segments, Γj , which results in
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consistently lower errors as measured by the sup-norm. Therefore, the sup-norm is

a better metric for this test case.

The difference between the convergence rates for the Chebyshev and Legendre

bases for Test Cases 2-3 is considerably greater than for Test Case 1. This is ac-

counted for by the fact that the Chebyshev basis has noticeably higher errors for

low values of M (i.e., M < 10 for Test Case 2 and M < 7 for Test Case 3). If we

adjust for this fact and compute the convergence rates for larger values of M , then

we find that there is a higher amount of agreement between the bases for Test Case 3

while the Chebyshev basis performs better for Test Case 2. For M ≥ 7 in Test Case

3, the Legendre basis has a convergence rate of CLeg = 0.6923, and the Chebyshev

basis has a convergence rate of CCheb = 0.6998. This gives a relative difference of

∼ 1.07%. A similar calculation for Test Case 2 shows that there is a ∼ 6.96% relative

difference between the convergence rates for M ≥ 10, with the method being more

efficient with the Chebyshev basis for these values of M . This can be observed in

the convergence plot in Figure 6.7.

We conclude that the Chebyshev and Legendre bases are comparable for this

metric, with the Chebyshev basis sometimes performing better for larger values of

M .

• L1-norm - We use the L1-norm as a measure of the closeness of fit of the approx-

imation to the true solution. This, in turn, allows us to quantify how close the

approximations for the two bases are to each other. As we saw in Figures 6.6, 6.8,

and 6.10, the error for the two bases exhibited a high amount of agreement (to each

other) for the majority of the t-interval for each Γj , often overlapping so as to be

indistinguishable on the graph. Correspondingly, we consistently found that for each

test case, the L1-errors were quite close in value for the two bases (e.g., less that 3%

relative difference in Test Case 3 for M ≥ 10). This indicates that the two bases give

a similar approximation for most of the t-interval.

To further demonstrate this, we show a convergence plot with the L1-errors for

Test Case 2 in Figure 6.11. We choose Test Case 2 because for lower values of M ,

the Chebyshev and Legendre bases exhibited the greatest differences in the sup-norm

among all the test cases.
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Figure 6.11: Plot of L1-error for Test Case 2.

Figure 6.11 shows that the L1-errors for the two bases are quite close in value,

even for M ≤ 10. This indicates that there is a high amount of agreement between

the two approximations along the interval t ∈ [−1, 1].

We conclude that the Chebyshev and Legendre polynomials are comparable for

this metric, and both give an equally accurate approximation for the majority of the

t-interval for each Γj .

• Sup-norm - We use the sup-norm as a measure of the overall accuracy of the method.

Of the three metrics, the most noticeable differences between the two bases are

exhibited with the sup-norm error. In Test Case 1 the difference between the sup-

norm errors for the two bases was particularly pronounced. As we saw in Figure 6.6,

the Chebyshev polynomials give a considerably more accurate approximation at the

endpoints of each Γj for M = 10. This resulted in a lower sup-norm error for this

value of M . The same trend is also observed for larger values of M , and as a result,

the sup-norm error is consistently a third of an order of magnitude more accurate for

the Chebyshev basis for this test case. This can also be observed for the sup-norm

values given in Table 6.2.

For Test Cases 2-3, the Legendre basis produced lower sup-norm errors for smaller

values of M . However, for larger values of M , the sup-norm errors for the two bases
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were closer with the Chebyshev basis exhibiting lower errors in both test cases. Again,

this was a result of the fact that the Chebyshev basis gave a better approximation

at the endpoints of each Γj . This is also reflected in the sup-norm values in Table

6.2. We conclude that the Chebyshev basis generally gives more accurate results for

larger values of M , and is therefore a better choice based on this metric.

Combining our analysis of the three metrics, we find that the two bases give equally

good approximations for the majority of the t-interval on each Γj . However, the

Chebyshev basis generally gives a more accurate approximation at the endpoints of

each segment of the boundary, which gives more accurate results as measured by the

sup-norm. We therefore propose that the Chebyshev polynomials be used as the default

basis for computations on domains with analytic boundary. A notable exception to

this is when one or more of the sides of the domain is linear, such as in Test Case 3. In

such cases, the Legendre basis is preferred as the relevant integrals can be computed

in closed-form which makes the method more efficient.

Among the bases that we have experimented with, the Chebyshev and Legendre

polynomials give the best convergence rates and lowest errors. In the remainder of this

section, we will briefly mention two other bases that have the potential to be useful in

future implementations.

In addition to the Chebyshev and Legendre polynomials, we also performed pre-

liminary tests with a step function basis. The benefit of using a step function basis is

that many of the integrals in the global relation can be done in closed-form. To see

this, we will approximate u(j)(t) with step functions as follows:

u(j)(t) ≈
M∑
m=1

α(j)
m 1Am , (6.4.22)

Using the approximation given in (6.4.22), the corresponding integral for the Dirichlet

component of the global relation is approximated by the following integrals:

∫ 1

−1
λe−i λ zj

dzj
dt

u(j)(t) dt ≈
∫ 1

−1
λe−i λ zj

dzj
dt

(
M∑
m=1

α(j)
m 1Am

)
dt (6.4.23)

=
M∑
m=1

(∫ 1

−1
λe−i λ zj

dzj
dt

α(j)
m 1Am dt

)
. (6.4.24)
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Now the relevant integrals in the sum given in (6.4.24) can be computed in closed-form

as follows:

∫ 1

−1
λ e−i λ zj

dzj
dt

α(j)
m 1Am dt = α(j)

m

∫ bm

am

λ e−i λ zj
dzj
dt

dt (6.4.25)

= i α(j)
m

[
e−i λ zj(bm) − e−i λ zj(am)

]
. (6.4.26)

As a note, the corresponding integrals for the Neumann boundary data are not

similarly integrable in closed-form, due to the presence of the dsj/dt term. Neverthe-

less, the numerical method runs significantly faster with a step function basis since the

integrals for the Dirichlet data can be computed directly in closed-form.

Unfortunately, there are several issues with the accuracy of the numerical method

with a step function basis. For low values of M the method gives a good approximation,

however, for higher values of M there is a high amount of oscillation with the frequency

and amplitude of the oscillation increasing as M increases. In Figure 6.12 below we

plot the M = 8 and M = 10 approximations in the step function basis along with a

standard interpolation.
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Figure 6.12: Plot of solution for step function basis with M = 8 and M = 10.
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In this numerical test we used the harmonic function

u(x, y) = x y (6.4.27)

so that there is less oscillation in the true solution ∂u/∂n, thus allowing us to focus

on the oscillations in the approximation that are an artifact of the step function basis.

We observe from Figure 6.12 that for M = 8 the approximation is relatively close to

the true solution (given in blue). The approximation for M = 10, on the other hand,

has a higher amount of oscillation with an increased amplitude. For larger values of

M , the amplitude and frequency of the oscillation increases. This is typical of the

numerical tests that we have run with a step function basis. We note, however, that

it may be possible to increase the accuracy of the method by choosing the evaluation

points at the zeros of the Chebyshev polynomials (i.e., Chebyshev nodes) or other

points that will minimize the oscillation. Chebyshev nodes are often used to reduce

oscillations in approximations to continuous functions by polynomial interpolation,

[18], and may also help to reduce the oscillation in approximating the solution ∂u/∂n.

We will experiment with this further in future work.

In addition, we also performed initial tests with the basis {Q(j)
m (t)}Mm=1 which is

defined on the jth side of the boundary ∂Ω and is given by:

Q(j)
m (t) = ei zj(t)

d

dt

[
tm e−i zj(t)

]
(6.4.28)

= mtm−1 − i dzj
dt

tm, (6.4.29)

where j ∈ {1, . . . , N}. This basis has the feature that the Fp-transform of each of

the basis functions can be computed in closed-form. However, there are additional

terms in the global relation, i.e. dzj/dt for the Dirichlet part and dsj/dt for the

Neumann part, that do not allow the relevant integrals in the global relation to be

integrated directly. Tests using numerical integration suggest that the method also

exhibits spectral convergence with this basis, although the convergence rate is less

than for Chebyshev and Legendre polynomials. We mention this basis because it will

likely prove useful for other applications that involve the Fp-transform.
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6.4.5 Runtime of Numerical Method

In Section 6.2.2 we mentioned two adaptations that make the numerical method more

efficient. Recall, these adaptations were a parallel computing implementation and

the use of polynomial function-handles instead of the corresponding built-in Matlab

functions. In this section we will show how each these adaptations affects the runtime

of the numerical method. This will be done by running the numerical method under

three configurations which are listed below:

• Configuration 1: Numerical integration of the basis functions without the use

of parallel computing and using the built-in Matlab function ‘legendreP(m,t)’.

• Configuration 2: Numerical integration of the basis functions with the parallel

computing implementation on 4 processors and using the built-in Matlab function

‘legendreP(m,t)’.

• Configuration 3: Numerical integration with the parallel computing implemen-

tation on 4 processors and using polynomials for Legendre{m}(t) as function-

handles in Matlab.

We will test how each of the adaptations mentioned above affects the runtime

of the numerical method by running the program under Configurations 1-3 on the

domain and boundary conditions given in Test Case 2. In Figure 6.13 on the next

page, the runtime is plotted on a regular graph as well as a log-linear graph for each of

the configurations. Each of the computations are performed with the Legendre basis.

Similar runtimes are also exhibited for the Chebyshev basis. Each of the tests is run

on a standard desktop computer with a 2.41 GHz Intel Pentium quad-core processor.
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Figure 6.13: Plot of runtime vs. number of basis functions for Test Case 2 under three config-
urations, using a Legendre basis.
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In Table 6.3 below we list the runtimes for M = 20 basis functions for each of the

configurations.

Configuration Time (sec.) Time (hrs./min.) log10(Time (sec.))

1 9763.01 3 hrs. 12 min. 4.06
2 3148.00 61 min. 32 sec. 3.57
3 92.48 1 min. 53 sec. 2.05

Table 6.3: Runtime for Configurations 1-3

The increase in efficiency for each of the successive configurations is apparent from

Figure 6.13, as well as the data in Table 6.3. Indeed, the runtime for Configuration 1

is two orders of magnitude faster than that for Configuration 3. In future implementa-

tions we will experiment with using Gauss-Legendre and Clenshaw-Curtis integration.

These numerical integration techniques use Legendre and Chebyshev polynomials, re-

spectively, to approximate the integrand of the relevant integral, and often perform

faster than standard numerical integration methods. Furthermore, since the integrals

from the global relation have smooth integrands (in each case the integrand is an expo-

nential multiplied by a Chebyshev or Legendre polynomial), the Gauss-Legendre and

Clenshaw-Curtis integration methods will converge quickly.

Finally, we note that in our implementation, 4 processors were used in Configura-

tions 2-3. For real-world applications in Engineering and Physics, significantly more

computational resources will likely be available which will increase the performance

even further.

6.5 Dependence on Curvature

In this section we will test the hypothesis that the curvature of the domain affects

the rate of convergence of the numerical method. This will be done by running the

method on a series of domains with decreasing curvature. Each of the domains that we

consider will be formed from two circular arcs, one forming the top half of the domain

and the other forming the bottom half of the domain. Since each of the segments that

forms the boundary of these domains has constant curvature, this will allow us to more

precisely understand the relationship between the curvature of the boundary and the

convergence of the numerical method. In particular, we will use these experiments to
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derive a relation between the curvature of the domain and the convergence rate of the

method. For comparison, we also include additional tests on a series of domains with

non-constant curvature in Appendix B.

We will now define five domains on which the numerical method will be tested. For

each domain we also give the radius of curvature and curvature. Recall the relation:

R =
1

κ
, (6.5.1)

where R is the radius of curvature and κ is the curvature.

• Domain A: The boundary of Domain A is given by the curves:

pA1 (x) = −
√

25

16
− x2 +

3

4
, x ∈ [−1, 1], (6.5.2)

pA2 (x) =

√
25

16
− x2 − 3

4
, x ∈ [−1, 1]. (6.5.3)

The radius of curvature for Domain A is R = 5/4, and the curvature is κ = 4/5.

• Domain B: The boundary of Domain B is given by the curves:

pB1 (x) = −
√

4− x2 +
√

3, x ∈ [−1, 1], (6.5.4)

pB2 (x) =
√

4− x2 −
√

3, x ∈ [−1, 1]. (6.5.5)

The radius of curvature for Domain B is R = 2, and the curvature is κ = 1/2.

• Domain C: The boundary of Domain C is given by the curves:

pC1 (x) = −
√

9− x2 +
√

8, x ∈ [−1, 1], (6.5.6)

pC2 (x) =
√

9− x2 −
√

8, x ∈ [−1, 1]. (6.5.7)

The radius of curvature for Domain C is R = 3, and the curvature is κ = 1/3.



CHAPTER 6. NUMERICAL IMPLEMENTATION 150

• Domain D: The boundary of Domain D is given by the curves:

pD1 (x) = −
√

16− x2 +
√

15, x ∈ [−1, 1], (6.5.8)

pD2 (x) =
√

16− x2 −
√

15, x ∈ [−1, 1]. (6.5.9)

The radius of curvature for Domain D is R = 4, and the curvature is κ = 1/4.

• Domain E: The boundary of Domain E is given by the curves:

pE1 (x) = −
√

25− x2 +
√

24, x ∈ [−1, 1], (6.5.10)

pE2 (x) =
√

25− x2 −
√

24, x ∈ [−1, 1]. (6.5.11)

The radius of curvature for Domain E is R = 5, and the curvature is κ = 1/5.

In Figure 6.14 we plot the error for the numerical method for each of the test do-

mains given above and note the trend that results. In each case we will assign boundary

values using the harmonic function u(x, y) = ex cos(y), and we use a Chebyshev basis.
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Figure 6.14: Plot of error for Domains A-E.
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It is apparent from Figure 6.14 that the convergence rate for each of the successive

test cases improves. A similar trend is also observed in Appendix B for domains with

non-constant (but also decreasing) curvature. In order to quantify these observations,

we record the convergence rate and error for the final value of M tested, denoted by

Mfinal, for each of the test cases in this section. These values are given in Table 6.4

below.6

Domain R κ Convergence Rate log10(E∞(Mfinal))

A 5/4 4/5 -0.1981 -5.70
B 2 1/2 -0.5575 -10.15
C 3 1/3 -0.7923 -11.81
D 4 1/4 -0.8923 -12.23
E 5 1/5 -1.046 -13.02

Table 6.4: Curvature data for Domains A-E

In Figure 6.15 below we plot the convergence rate against the curvature (κ) and

observe that there is a linear relation.
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Figure 6.15: Plot of convergence rate vs. curvature for Domains A-E.

By performing a least-squares regression, we find the following relation between

6In this section we will express the error as E∞(M) = exp(CM) so that the convergence rate, C,
is negative. This is done so that the graph of convergence rate vs. curvature will have a positive slope.



CHAPTER 6. NUMERICAL IMPLEMENTATION 152

the convergence rate and the curvature of the domain:

C = 1.354κ− 1.261, (6.5.12)

where C denotes the convergence rate. The R-squared value for this regression is

98.75%, which indicates that the linear model is a good fit for the data.

This gives a good heuristic for understanding how the curvature of the domain

affects the convergence rate of the method. Furthermore, we conclude that the nu-

merical method is particularly well-suited for domains for which the boundary has low

curvature. Indeed, even for a domain for which the curvature is κ = 1/2, the method

produces an accuracy of order 10−10 with less than M = 20 basis functions.

It is important to note that there are a number of other factors that will also affect

the convergence rate of the method. Among these are the number of components in

the domain, the symmetry of the domain, and the regularity of the given boundary

data. In addition, if the curvature of the domain is non-constant then this will also

alter the relation between curvature and convergence (though, in general, we expect

that the convergence rate will continue to improve as the curvature decreases, for an

example see Appendix B).

6.6 Mixed Boundary Conditions

Thus far we have shown that the numerical method developed in this chapter works

for the Dirichlet problem on domains with analytic boundary - that is, given the

Dirichlet data on each side of a domain, we have used the method to find the (unknown)

Neumann data. We will now show that the numerical method can also be used for

boundary value problems where mixed boundary data is given. That is, if the Dirichlet

data is given on a subset of the sides, and the Neumann data is given on the remainder

of the sides, then the numerical method can be used to find the unknown boundary

data for each side. We will demonstrate this by solving two boundary value problems

where mixed boundary conditions are given.

In our tests we will use the domain for Test Case 2 for the first boundary value

problem and the domain from Test Case 3 for the second boundary value problem. We
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specify the boundary problems below and show the corresponding convergence plots.

In each case, the harmonic function u(x, y) = ex cos(y) is used to specify the boundary

values.

• BVP I Recall, the domain for Test 2 was given by:

p1(x) = −1

4
x2 + 1, x ∈ [0, 2] (6.6.1)

p2(x) =

√
25

4
− x2 − 3

2
, x ∈ [−2, 0] (6.6.2)

p3(x) =
1

4
x2 − 1, x ∈ [−2, 0] (6.6.3)

p4(x) = −
√

25

4
− x2 +

3

2
, x ∈ [0, 2]. (6.6.4)

We will solve the Laplace equation on this domain with Dirichlet data specified

on the odd sides and Neumann data specified on even sides. This is shown in

Figure 6.16 below.
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Dirichlet

Neumann

Neumann

Figure 6.16: Plot of domain for BVP I.

The corresponding convergence plot for BVP I is given in Figure 6.17 on the

following page. We use the Chebyshev polynomials as a basis since they produce

a more accurate approximation (as measured by the sup-norm) for larger values

of M .
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Figure 6.17: Error plot for BVP I.

Comparing the convergence plot in Figure 6.17 with Figure 6.7 from Section

6.4.2, we find that the method produces a similar pattern of convergence to the

case where the Dirichlet data is specified on all sides for this domain. In fact, a

further comparison of the data shows that for low values of M (i.e., M ≤ 10), the

mixed BVP produces lower errors than the analogous Dirichlet problem. This

results in a faster convergence rate for the mixed BVP. The convergence rate as

well as the error for the final value of M = 20 are given in Table 6.5.

• BVP II Recall, the domain for Test 3 was given by:

p1(x) = −1

4
x2 + 1, x ∈ [0, 2] (6.6.5)

p2(x) =
1

2
x+ 1, x ∈ [−2, 0] (6.6.6)

p3(x) =
1

4
x2 − 1, x ∈ [−2, 0] (6.6.7)

p4(x) =
1

2
x− 1, x ∈ [0, 2]. (6.6.8)

We will solve the Laplace equation on this domain with Dirichlet data specified

on the even sides and Neumann data specified on odd sides. This is shown in

Figure 6.18 on the following page.
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Figure 6.18: Plot of domain for BVP II.

The corresponding convergence plot for BVP II is given in Figure 6.19 below.

Again, we use the Chebyshev polynomials as a basis for the method since they

produce a more accurate sup-norm approximation for larger values of M .
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Figure 6.19: Error plot for BVP II.
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Comparing the convergence plot in Figure 6.19 with Figure 6.9 from Section

6.4.3, we find that the method produces a similar convergence pattern to the

case where the Dirichlet data is specified on all sides for this domain. Similar to

BVP I, we find that for this test the errors are as accurate as for the Dirichlet

problem. Indeed, for the final value of M = 15, the error is lower for the mixed

BVP than for the Dirichlet problem, as shown in Table 6.5.

For comparison, the convergence rates and sup-norm errors for the two tests above,

as well as for the corresponding Dirichlet problems from Sections 6.4.2 and 6.4.3, are

given in Table 6.5 below. In the table, Mfinal denotes the final value of M that was

tested in each case. The data for the Chebyshev basis is reported for each entry.

Domain I denotes the domain for BVP I, and similarly, Domain II denotes the domain

for BVP II.

Conv. Rate log10 (E∞(Mfinal))
Dirich. Mixed Dirich. Mixed

Domain
I

0.3024 0.3493 -5.7231 -5.7372

Domain
II

0.7438 0.7349 -8.2395 -8.5674

Table 6.5: Convergence data for mixed boundary value tests.

We observe from the data in Table 6.5 that for mixed boundary value problems,

the method exhibits similar convergence properties to the analogous Dirichlet problem

on the specified domain. For both BVP I and BVP II, the sup-norm error for Mfinal

is the same order of magnitude for both the Dirichlet and mixed BVPs. Indeed, in

both cases, the error is lower for the mixed BVP than for the Dirichlet problem. For

BVP I, we note that for lower values of M , the method gives more accurate results for

the mixed BVP than for the analogous Dirichlet problem on the same domain. This

is reflected in the fact that the convergence rate for the mixed BVP is higher than for

the Dirichlet BVP. Hence, the method actually performs better for the mixed BVP

problem on this domain.

We conclude that the method is also effective for solving boundary value problems

where mixed data is given, and the convergence properties are similar to those for the

analogous Dirichlet problem.
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6.7 Summary and Discussion

In this chapter we have constructed a numerical method that uses the global relation

to find the unknown boundary data for a specified BVP for the Laplace equation

on a domain with analytic boundary. This was done by extending the method of

Fornberg and Flyer, found in [16], which was developed for polygonal domains. Similar

to the original method, we observed spectral convergence when using the Legendre

polynomials as a basis.

Unlike the case of polygonal domains, the relevant integrals in the global relation

cannot be computed in closed-form with the Legendre basis. This is due to the fact

that the Fp-transform of the Legendre polynomials, in general, cannot be computed

in closed-form when p(x) is not a linear function. As a result, we had more freedom to

experiment with other bases. In particular, we found that the Chebyshev polynomials

were a good point of comparison. We found that the Chebyshev polynomials gave

an approximation that was very similar to the Legendre basis (as measured by the

L1-norm) for each segment of the boundary Γj . However, in every case we found that

for larger values of M , the Chebyshev polynomials gave a better approximation at the

endpoints of each Γj . This resulted in a more accurate approximation as measured

in the sup-norm. We therefore recommend that the Chebyshev polynomials be used

as the default basis when computing on domains with analytic boundary. A notable

exception to this is when one or more of the sides is linear. In this case, the Legendre

polynomials are the preferred basis as the relevant integrals in the global relation can

be computed directly, resulting in a more efficient implementation.

In order to counter the additional computational cost of numerical integration, we

devised several strategies for decreasing the runtime of the method. In particular,

by exploiting the structure of the system, we were able to use parallel computing

to reduce the computational runtime. We also note that since the system can be

constructed in parallel, this is an ideal method for applications in engineering and

physics where a larger amount of computational resources are likely to be available. In

Section 6.4.5, we observed that our implementation was able to run on Test Case 2 in

∼ 2 minutes with a standard desktop computer. It is likely that with even marginally

more computational resources, the method will be able to run in a matter of seconds
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on problems similar to those in this chapter.

Additionally, we found that the method is more efficient for domains with lower

curvature. This was shown in Section 6.5 by comparing the convergence rates for a

series of domains with decreasing curvature. Since each of the domains was formed from

circular arcs (which have constant curvature), we were able to derive a relation between

the curvature of the domain and the convergence rate for the corresponding Dirichlet

problem. We found for this case that the convergence rate increased linearly as the

curvature of the domain decreased. This gives us a rough heuristic for understanding

the relation between curvature and the convergence rate of the numerical method.

Hence, we conclude that the method is particularly effective for domains with low

curvature.

The method developed in this chapter gives a practical demonstration of the fact

that the global relation for the Laplace equation on domains with analytic boundary

can be solved to find the Neumann data, given the Dirichlet data. Hence, the tests in

this chapter confirm Theorem 5 from Chapter 5. To the author’s knowledge, this is

the first numerical method for domains with analytic boundary that uses the global

relation. As we have seen, it is an effective method for computation on such domains,

exhibiting spectral convergence with the use of Chebyshev and Legendre polynomials.

We anticipate the method will be useful in practical applications due to the potential

for parallel implementation. Further research is required to adapt the method so that

it is equally efficient on domains with higher curvature.



CHAPTER 7

Conclusion

In this thesis we studied the boundary value problem given by:

 ∆u(x) = 0 for x ∈ Ω

u(x) = f(x) for x ∈ ∂Ω,
(7.0.1)

where u ∈ C2(Ω) ∩ C1(Ω̄) and f ∈ C1(Γ) is given (Dirichlet) boundary data on ∂Ω.

If both the Dirichlet and Neumann data associated to (7.0.1) are known, then the

solution to the BVP can be written using a standard representation formula. There-

fore, we focused our attention on developing a method to find the unknown Neumann

data. This was done by means of the global relation, which couples the Dirichlet and

Neumann data for the Laplace equation, and is given by:

∫
∂Ω
e−iλ·x

(
i(λ · n)u(x) +

∂u

∂n
(x)

)
dσ(x) = 0, for λ ∈ Zp, (7.0.2)

where Zp = {λ ∈ R2 : ∆(λ) = 0}. To date, in the context of elliptic PDEs in C ∼= R2,

the global relation has primarily been used for the analysis and solution of boundary

value problems on polygonal domains [5], [12], [17]. To extend the global relation

to more general domains with analytic boundary, we introduced the Fp-transform,

159
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defined by:

Fp : ϕ 7→ Fp(ϕ)(λ) =

∫ σ

−σ
e−i λ x+λ p(x) ϕ(x) (1 + i p′(x)) dx, (7.0.3)

where p(x) is an analytic concave function that satisfies p(0) = p′(0) = 0.

In the first part of the thesis, we focused on the analysis of the Fp-transform and

proved the following the properties:

• The map ϕ → Fp(ϕ)(λ) is bounded from L2([−σ, σ]) to L2([0,∞]). This was

shown in Chapter 3 by proving the estimate:

∫ ∞
0
|ϕ̃(λ)|2 dλ .

∫ σ

−σ
|ϕ(x)|2 dx. (7.0.4)

• For ϕ ∈ L2([−σ, σ]), there exists an inverse to the Fp-transform, and it is given

by:

ϕ(x) = −(I − LRe )−1

{
Re

[
i− p′(x)

πi

∫
γ3

ei λ x−λ p(x) ϕ̃(λ) dλ

]}
, (7.0.5)

where γ3 = {λ ∈ C : λ = t [1 − i p(x)], t ∈ (0,∞)}, and the integral operator

LRe : L2([−σ, σ])→ L2([−σ, σ]) is defined by:

LRe ϕ =

∫ σ

−σ

[
[p(x)− p(y)]− p′(x)[x− y]

π ([x− y]2 + [p(x)− p(y)]2)

]
ϕ(y) dy. (7.0.6)

Moreover, by the Banach bounded inverse theorem, since the Fp-transform is

bounded, it follows that F−1
p is also bounded. The derivation of the inverse

formula was done in Chapter 4.

Following our study of the Fp-transform, in Chapter 5 we derived an operator T

that allowed us to express the global relation in the form:

T (Ψn − iΨt) = 0, (7.0.7)

where Ψn is a vector that contains the Fp-transform of the Neumann data, and Ψt is
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a vector that contains the Fp-transform of the Dirichlet data. Using results from the

literature and the first part of the thesis, we established the following properties for

the operator T :

• The operator T takes the form T = I+K, where K is a compact operator. This

implied that T is a Fredholm operator of index zero. The proof of this result

followed from the convexity of the domain Ω and the fact that F−1
p is bounded.

• The operator T is bounded below. This followed from the fact that T is a

Fredholm operator of index zero along with the injectivity of the operator T .

From these properties, we derived the following result:

• A solution of the global relation (7.0.7) corresponding to the BVP (7.0.1) exists,

is unique, and depends continuously on the Dirichlet data. Moreover, the global

relation can be solved to find the (unknown) Neumann data.

Thus, the work presented in this thesis establishes that the global relation can be

used to recover the Neumann data for a specified BVP for the Laplace equation on a

domain with analytic boundary. More generally, this work extends the Fokas method

and global relation to more general domains than those that have been considered to

date. In so doing, it opens a new approach for the study of boundary value problems

for the Laplace equation, and other elliptic PDEs, on domains with analytic boundary.

Finally, in Chapter 6, we constructed a numerical method by extending the method

of Fornberg and Flyer found in [16]. Through our study of the numerical method, we

observed the following:

• The method exhibits spectral convergence when using either the Chebyshev or

Legendre polynomials as a basis. Furthermore, we found that the method was

particular effective on domains for which the boundary has low curvature.

• The Chebyshev basis tends to produce lower errors in the sup-norm due to the

fact that it gives a more accurate approximation at the endpoints of each segment

of the domain. We therefore recomend that the Chebyshev polynomials be used

as the default basis for future implementations.

• The method is equally effective for solving BVPs where mixed Dirichlet and

Neumann boundary data is given.
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• Through the use of parallel computing, the runtime of the numerical method can

be improved significantly.

To the author’s knowledge, this is the first numerical method that uses the global

relation on domains with analytic boundary. Furthermore, the work done in Chapter

6 demonstrates that the ideas developed in this thesis allow previously constructed

numerical methods, that use the global relation, to readily be extended to more general

domains.

We conclude by mentioning an area for future research. In this thesis we studied

the Laplace equation on domains with analytic boundary. The next step would be

to extend the results derived here to more general elliptic PDEs. We mention the

following BVP as an example:

−∆u(x) + β2 u(x) = 0, x ∈ Ω (7.0.8)

u(x) = f(x), x ∈ ∂Ω, (7.0.9)

which corresponds to the modified Helmholtz equation if β is real, and the Helmholtz

equation if β is imaginary. Similar to the Laplace equation, the global relation for this

BVP is given by:

∫
∂Ω
e−iλ·x

(
i(λ · n)u(x) +

∂u

∂n
(x)

)
dσ(x) = 0, for λ ∈ Zp, (7.0.10)

where Zp = {λ ∈ R2 : P (λ) = 0}, and P (D) is the symbol of the operator correspond-

ing to the PDE given in (7.0.8), i.e. P (D) = D2 + β2, where D = −i ∂. The set Zp

can be described by a local parametrization as:

λ1 =
β

2

(
k − 1

k

)
and λ2 = i

β

2

(
k +

1

k

)
for k ∈ C, (7.0.11)

where λ = (λ1, λ2). The corresponding exponential term in the Fp-transform is written

as:

e−iλ·x = e−i(λ1 x+λ2 p(x)), (7.0.12)

and the analysis proceeds in a similar manner. The corresponding operator T , denoted
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by T (β), can be written in the form:

T (β) = T (0) +K(β), (7.0.13)

where T (0) is the operator for the Laplace equation, and K(β) = T (β) − T (0). By

showing that K(β) : Λ → Λ is compact, this will imply that T (β) is a compact

perturbation of T (0), and a similar procedure to the analysis for the Laplace equation

can be applied. We therefore propose that the methods developed in this thesis be

used to study the Helmholtz and modified Helmholtz equations in future research.



APPENDIX A

Additional Test Cases

In this Appendix we run the numerical method on the domains for Test Cases 1 and

3 from Chapter 6 using two different sets of boundary data. These additional tests

are included so that the performance of the numerical method can be compared for

boundary values other than those used in Chapter 6. Recall, the domains for Test

Cases 1 and 3 are given by:

• Domain 1: The boundary of Domain 1 is given by the curves:

p1(x) = x2 − 1 (A.0.1)

p2(x) = −x2 + 1. (A.0.2)

• Domain 3: The boundary of Domain 3 is given by the curves:

p1(x) = −1

4
x2 + 1, x ∈ [0, 2] (A.0.3)

p2(x) =
1

2
x+ 1, x ∈ [−2, 0] (A.0.4)

p3(x) =
1

4
x2 − 1, x ∈ [−2, 0] (A.0.5)

p4(x) =
1

2
x− 1, x ∈ [0, 2]. (A.0.6)

164
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We will run tests by assigning boundary data using the two harmonic functions

given below.

• Function A: The harmonic function A is given by:

uA(x, y) = x y. (A.0.7)

• Function B: The harmonic function B is given by:

uB(x, y) = cosh(x) cos(y). (A.0.8)

In each of the numerical tests that follows, we will specify that the Dirichlet data is

given and that the Neumann data is to be determined. We will run each of the tests

with both the Chebyshev and Legendre bases.

A.1 Domain 1

We will now present the convergence results for Domain 1 with the boundary data

specified by the harmonic functions uA(x, y) and uB(x, y).

A.1.1 Test 1A

In this test case, we will assign boundary data on Domain 1 using the harmonic function

uA(x, y). The Dirichlet data on each side for this test case is given by:

Side 1: u(z1(t)) = t (t2 − 1) (A.1.1)

Side 2: u(z2(t)) = −t (−t2 + 1). (A.1.2)
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The Neumann data is given by:

Side 1: un(z1(t)) =
2 t
(
t2 − 1

)
√

4 t2 + 1
− t√

4 t2 + 1
(A.1.3)

Side 2: un(z2(t)) =
t√

4 t2 + 1
−

2 t
(
t2 − 1

)
√

4 t2 + 1
. (A.1.4)

Below is a convergence plot for the harmonic function uA(x, y) on Domain 1.
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Figure A.1: Plot of error for Test Case 1A.

A.1.2 Test 1B

In this test case, we will assign boundary data on Domain 1 using the harmonic function

uB(x, y). The Dirichlet data on each side for this test case is given by:

Side 1: u(z1(t)) = cosh(t) cos(t2 − 1) (A.1.5)

Side 2: u(z2(t)) = cosh(−t) cos(−t2 + 1). (A.1.6)
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The Neumann data is given by:

Side 1: un(z1(t)) =
sin
(
t2 − 1

)
cosh(t)

√
4 t2 + 1

+
2 t sinh(t) cos

(
t2 − 1

)
√

4 t2 + 1
(A.1.7)

Side 2: un(z2(t)) =
sin
(
t2 − 1

)
cosh(t)

√
4 t2 + 1

+
2 t sinh(t) cos

(
t2 − 1

)
√

4 t2 + 1
. (A.1.8)

Below is a convergence plot for the harmonic function uB(x, y) on Domain 1.
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Figure A.2: Plot of error for Test Case 1B.

In both Test Case 1A and Test Case 1B, we observe a similar convergence pattern to

that found in Test Case 1 in Chapter 6 where the harmonic function u(x, y) = ex cos(y)

was used to assign boundary data.
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A.2 Domain 3

We will now present the convergence results for Domain 3 with the boundary data

specified by the harmonic functions uA(x, y) and uB(x, y).

A.2.1 Test 3A

In this test case, we will assign boundary data on Domain 3 using the harmonic function

uA(x, y). The Dirichlet data on each side for this test case is given by:

Side 1: u(z1(t)) = (1− t)
(

1

4
(t− 1)2 − 1

)
, (A.2.1)

Side 2: u(z2(t)) = −(1 + t)

(
t

2
− 1

2

)
, (A.2.2)

Side 3: u(z3(t)) = (t− 1)

(
1

4
(t− 1)2 − 1

)
, (A.2.3)

Side 4: u(z4(t)) = (t+ 1)

(
t

2
− 1

2

)
. (A.2.4)

The Neumann data is given by:

un(z1(t)) =
4 t3 − 3 t2 + 3 t+ 11

8

√(
t
2 −

1
2

)2
+ 1

, (A.2.5)

un(z2(t)) =
2
√

5 (t+ 1)

5
−
√

5
(
t
2 −

1
2

)
5

, (A.2.6)

un(z3(t)) =
−t3 + 3 t2 + 9 t− 11

8

√(
t
2 −

1
2

)2
+ 1

, (A.2.7)

un(z4(t)) =

√
5
(
t
2 −

1
2

)
5

− 2
√

5 (t+ 1)

5
. (A.2.8)



APPENDIX A. ADDITIONAL TEST CASES 169

Below is a convergence plot for the harmonic function uA(x, y) on Domain 3.
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Figure A.3: Plot of error for Test Case 3A.

A.2.2 Test 3B

In this test case, we will assign boundary data on Domain 3 using the harmonic function

uB(x, y). The Dirichlet data on each side for this test case is given by:

Side 1: u(z1(t)) = cosh(1− t) cos

(
1

4
(t− 1)2 − 1

)
, (A.2.9)

Side 2: u(z2(t)) = cosh(−1− t) cos

(
t

2
− 1

2

)
, (A.2.10)

Side 3: u(z3(t)) = cosh(t− 1) cos

(
1

4
(t− 1)2 − 1

)
, (A.2.11)

Side 4: u(z4(t)) = cosh(t+ 1) cos

(
t

2
− 1

2

)
. (A.2.12)
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The Neumann data is given by:

un(z1(t)) = −
cosh(t− 1) sin

(
(t−1)2

4 − 1
)

√(
t
2 −

1
2

)2
+ 1

−
sinh(t− 1) cos

(
(t−1)2

4 − 1
) (

t
2 −

1
2

)√(
t
2 −

1
2

)2
+ 1

,

(A.2.13)

un(z2(t)) = −
2
√

5 sin
(
t
2 −

1
2

)
cosh(t+ 1)

5
−
√

5 sinh(t+ 1) cos
(
t
2 −

1
2

)
5

, (A.2.14)

un(z3(t)) =
cosh(t− 1) sin

(
(t−1)2

4 − 1
)

√(
t
2 −

1
2

)2
+ 1

+
sinh(t− 1) cos

(
(t−1)2

4 − 1
) (

t
2 −

1
2

)√(
t
2 −

1
2

)2
+ 1

,

(A.2.15)

un(z4(t)) =
2
√

5 sin
(
t
2 −

1
2

)
cosh(t+ 1)

5
+

√
5 sinh(t+ 1) cos

(
t
2 −

1
2

)
5

. (A.2.16)

Below is a convergence plot for the harmonic function uB(x, y) on Domain 3.
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Figure A.4: Plot of error for Test Case 3B.

Again, in both Test Case 3A and Test Case 3B, we observe a similar conver-

gence pattern to that found in Test Case 3 in Chapter 6 where the harmonic function

u(x, y) = ex cos(y) was used to assign boundary data.
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Curvature Test Cases

In Section 6.5 of Chapter 6 we studied the relation between the curvature of the

boundary of the domain and the convergence rate of the numerical method. In our

discussion, we used a set of domains that were formed from circular arcs so that the

boundary of each domain would have constant curvature. In this appendix, we perform

a similar numerical test with domains that have non-constant curvature. We give a

series of four domains below for which the curvature of the boundary decreases for

each successive domain.

• Domain A: The boundary of Domain A is given by the curves:

pA1 (x) = x2 − 1, x ∈ [−1, 1], (B.0.1)

pA2 (x) = −x2 + 1, x ∈ [−1, 1]. (B.0.2)

• Domain B: The boundary of Domain B is given by the curves:

pB1 (x) =
1

2
x2 − 1

2
, x ∈ [−1, 1], (B.0.3)

pB2 (x) = −1

2
x2 +

1

2
, x ∈ [−1, 1]. (B.0.4)
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• Domain C: The boundary of Domain C is given by the curves:

pC1 (x) =
1

3
x2 − 1

3
, x ∈ [−1, 1], (B.0.5)

pC2 (x) = −1

3
x2 +

1

3
, x ∈ [−1, 1]. (B.0.6)

• Domain D: The boundary of Domain D is given by the curves:

pD1 (x) =
1

4
x2 − 1

4
, x ∈ [−1, 1], (B.0.7)

pD2 (x) = −1

4
x2 +

1

4
, x ∈ [−1, 1]. (B.0.8)

In Figure B.1 below we show the convergence plot for the numerical method on

each of the Domains A-D.

0 5 10 15 20 25 30
Num Basis Functions

10-12

10-10

10-8

10-6

10-4

10-2

100

Er
ro

r

Num Basis Functions vs. Error

Domain A
Domain B
Domain C
Domain D

Figure B.1: Plot of error for Domains A,B,C, and D.

We observe that for each of the successive domains the convergence rate improves.

This confirms the results from Section 6.5 on domains with non-constant curvature.
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