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Data. For networks analyses we used published and unpublished sets of compositional data for 410 
copper-based objects under consideration, spanning c. 6200 to c. 3200 BC. These were assembled 
from publications of Pernicka et al. [1, 2], Radivojević et al. [3], Radivojević [4] and UK’s AHRC-
funded “Rise of Metallurgy in Eurasia” project (hosted by the UCL Institute of Archaeology, no. 
AH/J001406/1)[5]. All data originate from the analytical set up of a single laboratory, Centre for 
Archaeometry in Mannheim, Germany, led by Professor Ernst Pernicka. The data from 410 objects are 
presented with a unique laboratory number (given by Centre for Archaeometry) and include the 
following types of materials (Table S1): copper mineral (30 in total), mineral ornament (17 in total), 
production evidence (smelting/casting, 22 in total), metal ornament (99 in total), and metal implement 
(242 in total). The metal implement type some instances contained information on the type of axe, 
included in a separate column (no data labelled as: unk). Besides a unique geographical location 
(given as latitude and longitude in degrees), sites are ascribed the following regional codes: SRB 
(Serbia), W (West Bulgaria), THR (Thrace), RHD (Rhodope), NC (North-central Bulgaria), NE 
(North-east Bulgaria) and BSC (Black Sea Coast).  

Chronological and cultural attribution of studied materials was ascribed based on available relative 
and absolute dating in the area under consideration [1-3, 6-26]. Seven cultural periods were designated 
for this study: Early/Middle Neolithic (Period 1, 6200-5500 BC), Late Neolithic (Period 2, 5500-5000 
BC), Early Chalcolithic (Period 3, 5000-4600 BC), Middle Chalcolithic (Period 4, 4600-4450 BC), 
Late Chalcolithic (Period 5, 4450-4100 BC), Final Chalcolithic (Period 6, 4100-3700 BC) and Proto 
Bronze Age (Period 7, 3700-3200 BC). We would like to emphasise that there is not a general 
consensus on the relative vs. absolute chronology of existing cultural phenomena observed here 
amongst (Balkan) archaeologists; thus, the entries on chronology in Tables S1 and S3 should be taken 
as tentative interpretations based on the latest chronological update in the field.  

Period 1. Early/Middle Neolithic (EN, 6200-5500 BC). This period is represented only with the finds 
belonging to the Neolithic occupation of sites in eastern and western Serbia (proto/Starčevo culture) 
(see Figure 7a, Table S3). The use of malachite at the time of the introduction of agriculture or 
domestication is not uncommon, and similar examples have been documented in the Near East. 
However, the minerals listed here are unique since their function remained unknown, although the 
provenance analyses indicate their origin from local, eastern Serbian sources [18].  
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Table S3. Relative and absolute chronology of malachite and metal-using cultures in the Balkans, 7th – 4th mill BC. 
Green font stands for using copper minerals (e.g. malachite beads), red for metallurgical materials (e.g. metal 
artefacts, slags). The shaded fields indicate the periods and regions covered in this study.  

Period 2. Late Neolithic (LN, 5500-5000 BC). This period is linked with the emergence of 
archaeological cultures that would grow into large metal producing and consuming phenomena (like 
Vinča in Serbia or Karanovo in Bulgaria) during the 5th millennium BC [27]. While Vinča culture 
occupied most of the central Balkans, the Karanovo phenomenon emerged in central Bulgaria and 
expanded significantly in the second half of the 5th millennium BC, including territories from the 
Black Sea coast to Thrace. With settlements rising on river plateaux across the region, exceptional 
craftsmanship in pottery and stone industry started to develop. Copper minerals and malachite beads 
found in settlements and cemeteries at the time became more numerous, although no thermal treatment 
has been recorded prior to c. 5000 BC. In eastern Serbia, the Vinča culture communities commenced 
mining activities in the currently earliest known copper mine, Rudna Glava [28]. Although no metal 
artefacts from this period (or later) were found to compositionally and isotopically match this source, 
there were other mines in otherwise copper-abundant region of eastern Serbia, such as Majdanpek, 
which were particularly prolific during the 5th millennium BC [1]. 

Period 3. Early Chalcolithic (EC, 5000-4600 BC). The start of the copper smelting activities is set 
around 5000 BC [3], which corresponds with the earliest known metal artefacts appearing in the Vinča 
culture site of Pločnik in south Serbia, followed by similar finds along the Black Sea Coast and in 
south Bulgaria [29]. Settlements grew in size, particularly along the lower Danube, which was 
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probably the easiest and quickest means of transport for the emerging long-distance trade of 
prestigious commodities, such as spondylus, obsidian, malachite beads and metal artefacts, amongst 
others [30, 31]. Many of these were found in the first organised cemeteries at the time, probably 
designating high status of buried individuals (i.e. Durankulak). The ‘metal effect’ is seen in the 
occurrence of graphite-painted decorations on pottery at the time, possibly imitating one of the most 
desired materials of the 5th millennium BC in the Balkans. Towards the very end of this period, 
archaeologists have recorded the first mining activities in Bulgaria, at the site of Ai Bunar, started by 
the bearers of the Marica culture [32, 33] (Table S3). It grew to be the most important source of 
eastern Balkan region throughout the later 5th millennium BC. 

Period 4. Middle Chalcolithic (MC, 4600-4450 BC). This period is difficult to separate out from what 
appears to be an uninterrupted evolution of metal making cultures in eastern Balkans (Bulgaria) and 
slow disintegration of the Vinča culture in Serbia. It is generally characterised with the rise of two 
large cultural complexes and one culture in northeastern Bulgaria. While northern Vinča culture sites 
were rapidly being abandoned and conflagrated, a few southern ones (like Pločnik) continued to live 
until the very end of the Vinča culture in south Serbia (c. 4450 BC). Some scholars argued that it was 
the late Vinča culture in this region and Gradešnica in west Bulgaria that gave impetus for the 
formation of the Krivodol-Salcuţa-Bubanj Hum (KSBh) I cultural complex [21]. The other large 
cultural complex was formed by the merging of Marica, Karanovo V and Boian Spanţov cultures in 
south Bulgaria and Muntenia, and is known under the name of Kodžadermen-Gumelniţa-Karanovo 
(KGK) VI (Table S3). Varna culture, named after the eponymous burial site with the world’s earliest 
gold objects, occupied the (western) Black Sea coast. This is the time when large tell-sites dotted both 
riverbanks along the lower Danube, but also other regions in Bulgaria (like Karanovo tell-settlement, 
for instance). Metal production enters its peak production, where diversification in copper hammer-
axe design was most likely due to communities seeking for a personal stamp in then fast-expanding 
metalmaking industry.  

Period 5. Late Chalcolithic (LC, 4450-4100 BC). While in some parts of Bulgaria the transition from 
the previous period into this one is hardly recognisable in material culture, the Late Chalcolithic 
period has been supported with absolute dates. The material culture and domestic architecture are 
developing in this period together with the extensive burial evidence for the rising wealth of 
individuals, and hence a potential social stratification and emergence of an elite [34]. A rapid climate 
change towards the end of this period is seen as the major cause of disappearance of any record of the 
communities in the east and central Bulgaria. The disintegration of the communities seemingly started 
with the coming of the steppe population, although the complete cultural caesura must have been a 
combination of several factors [24]. In the west, KSBh cultural complex spreads over a vast space 
between Oltenia and the Aegean (Thassos). The material expression and settling habits differ from the 
developments in the east, with settlements mostly established at higher altitudes or caves. In Serbia, 
this cultural complex borders with the Tiszapolgár culture (Table S3).  

Period 6. Final Chalcolithic (FC, 4100-3700 BC). This period was characterised by the shift in metal-
making industry towards the west of the observed area. Metallurgy intensified in the KSBh IV cultural 
complex, potentially due to the decline of the Thracian mining centres [21]. Evolving domestic 
architecture, settlements established on inaccessible paths, and innovations in pottery making were all 
part of this new phase of the KSBh cultural complex evolution. The mining and metal production was 
revived in eastern Serbia, particularly with the massive production of Jászladány type hammer axes, 
related isotopically to the Majdanpek mine, and culturally to the Bodrogkeresztúr culture [2]. This 
culture emerges east of the Tisza river, with sites dotted along its lowlands and into the Serbian Banat 
[15]; its southern spread is a matter of content, however, the spread of the Jászladány hammer axes 
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indicates strong social and economic ties with area south of Danube. Gold objects occur for the first 
time in this part of the Balkans.  

Period 7. Proto Bronze Age (PB, 3700-3200 BC). This period saw the final disintegration of all 
cultural complexes formed during the 5th millennium BC. Small-scale settlements with rare metal 
artefacts are recorded throughout Bulgaria, with new metal tools, like daggers, making the appearance 
for the first time, presumably echoing the Eurasian Steppe influence.  

Each node in our network was followed by the designated time-period in our analyses in order to 
clarify which occupational horizon within a site (node) yielded which type of artefacts. Barring seven 
exceptions (see Table S1), all sites (or nodes) were ascribed a relative cultural affiliation based on the 
current state of research.  

Community structure (modularity) analysis. Our network was built in two discrete steps: 1) we 
grouped the data in ten distinctive chemical clusters (Artefacts Network); 2) placed a connector 
between the sites that contain pairs of artefacts from the same cluster and analysed the final network 
for community structures (Sites Network). In both steps we used the Louvain algorithm [35] to obtain 
community structures (modules) and bootstrapping to test the significance of gained results.  

Artefacts Network – clustering the copper objects by trace element chemistry. For each of 410 
artefacts (Table S1) we used the readings for the following seven trace elements: arsenic (As), 
antimony (Sb), cobalt (Co), nickel (Ni), silver (Ag), gold (Au), and selenium (Se), since they are the 
ones that are commonly thought to survive the hot temperature treatment from the copper ore to the 
copper metal in our case [36-38]. We therefore extracted only these values (presented in Table S1) and 
then performed the following course of actions that led to obtaining the number of chemical clusters in 
our dataset:  

1) transforming several compositional readings in our dataset with zero (0) value into a small positive 
number (0.0001); this number was smaller than the detection limit of any of the analysed elements; 

2) calculating logarithms of all 7 trace elements;  

3) running principal component analyses of the logged values and obtaining principal component 
scores; 

4) determining Euclidean distance between all pairs of artefacts;  

5) designing the Artefacts network with artefacts as nodes and links defined as 1/d2 (d = Euclidean 
distance), and  

6) obtaining the number of chemical clusters after conducting modularity analyses with the Louvain 
algorithm. 

To rationalise this sequence, we will start with justifying the modularity approach to chemical 
clustering. Theoretically, the goal of chemical clustering is to detect groups of copper artefacts whose 
compositional signature (a string of 7 trace elements) is more similar within a group (or a cluster) than 
with compositional signature of copper artefacts - members of other groups (or clusters). In other 
words, the links that join copper artefacts of the same chemical cluster are based on compositional 
similarity, and they are comparatively stronger within a cluster of chemically similar artefacts than the 
links connecting these artefacts to other clusters. Since this compares closely to the definition of 
network modularity [39, 40], we designed the cluster analyses based on the principles of community 
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structure research in networks. There are other methods that can be used for determining the number 
of chemical clustering, however, we developed this one for two main reasons: 

1) it offers a clear criterion for obtaining the number of modules by maximising the value of 
modularity (unlike, for example, hierarchical clustering); 

2) it gives us an option to test the significance of the obtained clustering structure with 
bootstrapping, by using comparison between the value of modularity and the value of 
randomized networks. 
 

Hence, the nodes of our network for obtaining chemical clusters were artefacts, while we defined links 
using Euclidean distance of the vectors of transformed trace element values. Namely, calculating 
Euclidean distance with the original trace element values proved challenging for two reasons: a) they 
showed lognormal, instead of Gaussian distribution in our case (Fig. 1) and b) they were correlated to 
begin with (Fig. 2a). Starting with the former, the lognormal distribution of our data indicated that 
small values are predominant (Fig. 1), and computing distances between the original data would lead 
to losing information on variation in smaller values. For instance, the difference between the values of 
0.001 and 0.002 would make much smaller contribution in comparison to the difference between the 
values of 100 and 101. Hence, in order to account for these variations on the same scale, or same 
relative differences, we transformed the original values into logarithms. The logarithms of original 
data brought out clearly the correlations between chemical elements, like Sb and As, Au, Ag and Se, 
or Sb with Ag/Au/Se (Fig. 2b). This took us to acknowledging a particular (mathematical) property of 
compositional datasets, known as the constant-sum constraint (CSC), which refers to a constant sum 
of 1 or 100% for all variables in a measured sample [41, 42]. It means that individual variables in the 
compositional data do not vary independently – i.e. if one variable decreases, the proportion of the 
remaining must increase. Such an induced correlation may easily hinder the true relationships among 
variables (in our case trace elements), which is why the next step in our data processing was to 
eliminate these correlations. For this, we ran principal component analysis (PCA), a statistical 
procedure used to reduce the dimensionality of a dataset consisting of a large number of interrelated 
variables, while retaining the variation present in the dataset. The output are uncorrelated variables 
(principal components), ordered in a way that the first few keep most of the variation present in all of 
the original variables [43]. The PCA is the same procedure as eigenvalues decompositions from linear 
algebra. The PCA removed these correlations (Fig. S1), preparing the output, now calculated as 
principal component scores (Table S1), for network analysis. The logarithmic transformation, PCA, 
and visualisation in Figures 1, 2 and S1 were all computed in R (we used the corrplot library for 
correlations in these figures). 

The straight approach to PCA with original compositional data has already been known as fraught 
with difficulties for the reasons mentioned above [41, 42]. Aitchison [41] proposed a way around these 
constraints by arguing that the best way to compute principal components out of restricted types of 
data (e.g. in allometry, or compositional data) is to use logarithms of the original data. This supports 
the treatment of our original data, although it was also in our case evident as a necessity from 
lognormal distribution (Fig. 1). A disadvantage of his approach was in that it could not handle zeros 
(0), which in our case was about to lead to losing a small handful of objects where particular trace 
elements were not detected (or were below the detection limit of the analytical instrument). An 
alternative, however, was to replace zero values with a small positive number, which is what we did 
before transforming the original values into logarithms. Our small positive number was smaller than 
the detection limit of any of the analysed elements (0.0001), as mentioned above. 
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Figure S1. The principal component analysis yielded the uncorrelated variables (compare with Figures 1 and 2). 

In the following step, the principal component scores (Table S1) were used to calculate the Euclidean 
distance between all pairs of artefacts. For this, we followed the rationale below: if 𝑎 is a principal 
component vector of one artefact and 𝑏 is a principal component vector of another artefact, the 
distance between the two artefacts will be defined as Euclidean distance between these two vectors as: 

𝑑 𝑎, 𝑏 = 𝑎!– 𝑏! !
!

!!!

 

Thus, the network we formed has artefacts as nodes and links defined as 1/d2 (d = Euclidean distance). 
The number of clusters was obtained with the Louvain algorithm [35]. We used the original 
implementation of the code written in C++ by E. Lefebvre, and later adapted by J.-L. Guillaume; it is 
also freely available for download on https://sites.google.com/site/findcommunities/ (the current 
version is maintained on  https://sourceforge.net/projects/louvain/).  
 

Louvain method is based on the maximization of modularity Q, which measures the quality a certain 
partitioning of a network and is defined as: 

𝑄 =
1
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where Aij is the weight of the link, ki and kj are weighted degrees (also known as strengths – the sums 
of the weights of all the links coming from that node) of the nodes i and j, m is the half sum of all the 
weights in the network, and δ(ci,cj) is delta function, which will be 1 if the nodes i and j belong to the 
same cluster ci  (cj). Modularity Q can result in values between -1 and 1, and the larger the value, the 
better the partitioning of the network. This is because more links exist between the nodes of the same 
cluster in contrast to the links between the nodes of different clusters. Louvain algorithm includes an 
additional benefit in that it maximizes the partitioning of the entire network (ie level 1) but also 
produces alternative partitioning (level 2, level 3 etc), where modularity reaches a local maximum. 
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Out of two levels of results, one with 6, and the other with 10 clusters, we opted for 10 and tested the 
significance of our results with network randomization (bootstrapping). 

Network randomization (bootstrapping). We performed the bootstrapping in the following way: we 
used the obtained partitioning of the network and then randomized it, keeping only the properties that 
were important (here we only preserved the weights of the links, but we shuffle the nodes they were 
connected to). The result was the unique partitioning of the randomized network and the 
corresponding modularity value. This process was repeated 1000 times, and it yielded the distribution 
of 1000 modularity values in our randomized network, which we then compared with the modularity 
value of our Artefacts Network (Fig. 3a). The calculations were run in Python using the code for the 
Louvain algorithm (written in C++) for obtaining the modularity values. Histograms in Fig. 3 in the 
main text were produced in Gnuplot. 

The modularity of the Artefacts Network is 0.3088 and the mean of the distribution of modularities of 
the randomized networks is 0.1012. The latter has the standard deviation of 0.0008, making the value 
of the original network 280 standard deviations larger then the mean of the randomized networks 
values (see Figure 3a). This corresponds to the p value of <0.001, since we randomized the network 
1000 times over.  

Clustering method – consistency with the previous research.  

In the previous study on the provenance of the 5th millennium BC Balkan copper metallurgy, Pernicka 
et al [1, 2] conducted average-link analyses (a type of hierarchical clustering) in order to group more 
than 300 copper artefacts into cohesive clusters. They initially transformed the trace element 
concentration of As, Sb, Ag, Co, Ni, Au, and Se into logarithms and then applied the average-link 
cluster analysis with Euclidean distances using the SAS (Statistical Analysis Software) program 
package. This program uses the cubic clustering criterion [36, 44] as the parameter for determining the 
optimum number of clusters, which is how Pernicka et al. [1, 2] arrived to defining nine chemical 
clusters in their research. They then used discriminant analysis to calculate the probability of each 
sample to belong to the cluster it was assigned to with the average-link procedure, and applied the 
50% rule: where cases (objects) had less than 50% probability of belonging to the assigned cluster, 
they were re-assigned to the cluster they had the highest probability for membership.   

In order to check the consistency of our clustering method (modularity) with the one described above, 
we tested the data from our two largest clusters, cluster 2 and cluster 4 (Table S1), against the trace 
element patterns of the two most prolific prehistoric copper mines in the Balkans, Majdanpek and Ai 
Bunar (Figures S2 and S3). Namely, Pernicka et al. [2, 117, Fig. 20] managed to identify the chemical 
correlation between the Majdanpek mine and their cluster 2 (58 artefacts), and the Ai Bunar mine and 
their cluster 3 (43 artefacts), hence providing support for the argument that these two mines/copper 
deposits were exploited to make the observed sets of copper artefacts from the 5th millennium BC 
Balkans. We performed a similar test by plotting the trace element values of our cluster 2 artefacts 
(161 objects) with the trace element signature of Majdanpek (Fig. S2), and the trace element values of 
our cluster 4 artefacts (129 objects) with the trace element signature of Ai Bunar (Fig. S3). We chose 
these clusters since the former relates mostly to sites in Serbia and western Bulgaria, while the latter 
shows similar preferred associations with the sites in central and east Bulgaria. Also, these clusters (2 
and 4) largely represented expanded versions of Pernicka et al.’s clusters 2 and 3 respectively; we 
were not, however, expecting the exact overlap between these given that we were working with a 
larger dataset than these authors.  
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The plot on figure S2 shows a general consistency of cluster 2 artefacts with the Majdanpek ore field 
(grey), with the notable exception of three samples in total (labels: MA-071499, L354, L355, see 
Table S1). While Ni and Ag values in the Majdanpek ore and cluster 2 artefacts appear most 
correlated in Fig. S2, the greatest fluctuations are noticed in the Sb, Co and Au values. The plot on 
figure S3 also presents a tight pattern of cluster 4 artefacts matching closely the trace element pattern 
of Ai Bunar ores (grey field). The trace element values in this plot are highly correlated, barring As 
and Sb readings.  

Chemical fluctuations can be explained with several factors, both from the perspective of designated 
ore fields or the nature of artefacts making. Namely, when it comes to potential chemical variability in 
the ore fields, noteworthy is that the grey (mine) patterns in figures S2 and S3 stand for the 10th and 
90th percentile of the maximum and minimum recorded trace element values for Majdanpek and Ai 
Bunar. Although it does not mean that the grey patterns are incorrect, there is always a possibility that 
the sample size representing this ore field was not representative to begin with. 

Speaking of the chemical fluctuation of trace element patterns of artefacts against the original ore 
background, the lower readings of As and Sb in copper artefacts (in fig. S3 and partly in fig. S2) may 
imply the possibility of loss during metal extraction or recycling, particularly since the former has 
been known as volatile. The extent of volatility of As during arsenical copper recycling has been hotly 
debated in archaeology and archaeometallurgy, with discussions mostly concentrating on the redox 
conditions of the (s)melt and the compositional threshold below which As in copper becomes less 
volatile [45, 46]. In this light, and given that we are addressing here traces of both As and Sb (in ppm, 
not in percentages), we propose the recycling hypothesis only as an assumption that needs further 
probing. If the loss of As and Sb was indeed related to recycling in our cases, then such practice must 
have occurred within regionally (and potentially culturally) defined spaces. This conclusion follows 
neatly our modularity research, and is also addressed in the main manuscript.  

	
  

Figure S2. Trace element signatures of 161 copper artefacts belonging to cluster 2 (lines) plotted against the trace 
element signature of Majdanpek (grey field), a copper mine in eastern Serbia.  
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The third potential explanation for the observed chemical fluctuations is that both clusters 2 and 4 
reflect chemical signatures of several deposits adjacent to Majdanpek and Ai Bunar respectively. This 
is not improbable given that nowadays the preserved prehistoric mining commonly represents copper 
deposits that survived the later exploitation (and hence destruction) as not economically feasible 
investments in modern terms. While Ai Bunar might represent such a case, the exploitation of 
Majdanpek has only been confirmed through provenance analyses thus far [1], and not through 
verified traces of prehistoric exploitation beyond a few chronologically indistinctive grooved hammer-
stones kept in the Mining Museum in Majdanpek in Serbia. Thus, the best-case scenario for the 
surviving ancient mining is the poor ore quality, which may provide some grounds to presume that our 
two prolific mining sites in Serbia and Bulgaria may be only reflecting the less rich remnants of the 
actual copper mineral vein that had been mined in their vicinity.  

Chronology of the plotted artefacts may also help understand the chemical fluctuations. Cluster 2 is 
dominated by copper artefacts from two distinctive chronological ‘block periods’: 5500-4450 BC and 
4100-3700 BC, while cluster 4 includes mainly artefacts from 4450-4100 BC. The fluctuating pattern 
of cluster 2 artefacts may indicate the use of different ore sources in 5500-4450 BC and 4100-3700 BC 
respectively, although regionally constrained to eastern Serbia. On the other hand, the tight pattern of 
cluster 4 may indicate exploitation of a source in the vicinity of Ai Bunar with lower As and Sb 
content, or Ai Bunar itself followed by extensive recycling that took place within the constrains of the 
cultural / social boundaries of the KGK VI and related cultural complexes. All options presented here 
will be addressed in detail in future research. 

Overall, figures S2 and S3 exhibit noticeable correlation of cluster 2 and cluster 4 artefacts with 
Majdanpek and Ai Bunar. Our clustering method shows good consistency with the cluster analyses of 
Pernicka et al. [1, 2], which along with bootstrapping (Fig. 3a), verifies its reliability. 

	
  

Figure S3. Trace element signatures of 129 copper artefacts belonging to cluster 4 (lines) plotted against the trace 
element signature of Ai Bunar (grey field), a copper mine in central Bulgaria.  

Elements

pp
m

As Sb Co Ni Ag Au Se

1e−04

0.001

0.01

0.1

1

10

100

1000

10000



	
   10	
  

Sites Network – community structure analyses of archaeological sites. In this step, the 
archaeological sites represented nodes, and links between them were based on sharing the same 
chemical cluster for pairs of copper artefacts found in those sites. This relationship was established 
under the assumption that two artefacts belonging to the same chemical cluster could have ended up 
from the places of exploitation or production in two different sites through either direct or indirect 
contact (i.e. various types of intermediaries); we encompass both options under the term ‘supply 
network’. Thus, the link between the sites in out network practically works in the following way: 
artefact A and artefact B from two different sites belong to (chemical) cluster 1, and therefore these 
two sites (nodes) have a link placed between them. If these two sites contain more artefacts from the 
same cluster, the weight of the link is larger. For example: if site i contains artefacts from clusters 
[0,1,1,1,1,2,2,2,3] and site j has artefact from clusters [0,1,1,2,2,8,9], then the weight of the link is 5 
(one for each artefact of the common type). We analysed the final network with Louvain algorithm 
[35] and gained only one level with three distinctive community structures. 

When randomizing the network, we cut each link and randomly reconnected it to a different node 
while saving only the information of the degree of each node for this type of network. We took into 
consideration, for instance, that the link with weight 5 is actually 5 links. We repeat the randomization 
procedure 1000 times. The modularity of the original network (Sites Network) was 0.276, which is 57 
standard deviations larger from the mean of the modularities of the randomized network (0.078 ± 
0.004) (Figure 3b). Geographical coordinates of archaeological sites/nodes (Table S1) were used 
solely for illustrative purposes in this paper. Visualisation of Sites Network (Figures 4-7) was 
produced in Python from scratch, using Matlibplot package and the background map with kind 
permission of Prof. M. Milinkovic (University of Belgrade, Serbia). The Sites Network is the final 
outcome of our network design, and the only one whose modularity we discuss in the article. 

Since some of the observed sites (nodes) were active throughout multiple time-periods, and we wanted 
to observe their position in each of them, we regarded the same site in a different period as a separate 
node (site-period), and added the chronological span to the site name for easier navigation through 
results (see Table S2). Most importantly, apart from chemical cluster number we did not use any 
archaeologically relevant information in our network. In total, we have 79 sites and 93 site-periods. 
The sites (nodes) that appear in more than one period are listed below (Figure S4): 

- Ai Bunar   4600-4450 BC, 4100-3700 BC 

- Belovode 5500-5000 BC, 5000-4600 BC, 4600-4450 BC 

- Durankulak 5000-4600 BC, 4600-4450 BC, 4450-4100 BC, 3700-3200 BC 

- Goljamo Delcevo 4600-4450 BC, 4450-4100 BC 

- Gomolava 5000-4600 BC, 4600-4450 BC 

- Hotnica 4450-4100 BC, 3700-3200 BC 

- Pločnik 5500-5000 BC, 5000-4600 BC, 4600-4450 BC 

- Smjadovo 4450-4100 BC, 3700-3200 BC 

- Tell Ruse 4600-4450 BC, 4450-4100 BC 

- Zlotska pecina 4100-3700 BC, 3700-3200 BC 

 



	
   11	
  

 

 

 

 
 

 

 

 

 

 

 

 

Figure S4. The sites (nodes) that exist throughout multiple time periods. Pločnik, Zlotska pecina and Goljamo Delcevo 
change the module over the observed time frame (c. 6200 to c. 3200 BC). 

 

 
 
The importance of archaeological sites (nodes). We initially tested the importance of our nodes with 
three different node centrality measurements: degree centrality (based on number of links each node 
includes), PageRank [47] and betweenness centrality [48]. All three yielded meaningful results for 
determining the importance of the specific archaeological sites. The degree centrality of the node (in 
this case weighted degree or strength) tells us with how many other sites the observed site had some 
kind of communication. The PageRank takes into account how important the observed sites are. 
However, given that our network is not directed, these two properties appear significantly correlated 
(see Figure S5), and hence both presented similar results for our study. On the other hand, the 
betweenness centrality is defined as a number of shortest paths that go through an observed node. In 
order to calculate it we defined the weights as 1/w or 1/w2, where w is the weight in the original 
network; this procedure ensured that if there were more connections between the sites, it was easier to 
travel between them. Once we compared the betweenness centrality and the PageRank we observed 
that barring the large difference for nodes of smaller PageRank values, the more important nodes were 
still more important by both measures (see Figure S6). Also, the betweenness centrality measure is not 
very robust and by removing only one artefact from the original input, the values change substantially, 
although again the more important nodes still come out the same. To conclude, using any of the 
importance measure yielded very similar results, which is why we give all three in Table S2. For the 
purpose of illustration in our maps (size of the nodes) we opted for PageRank; these are, again, not 
robust, which is why we use them only for visualisation. 
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Figure S5. PageRank vs. weighted degree (strength). The two measures are strongly correlated, as expected in 

undirected networks, which makes both useful for measuring the importance of the site (node). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. PageRank vs. betweenness centrality. Please note that except for the values with small PageRank, the two 
measures are correlated, which makes both suitable for measuring importance of the site. 
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