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Automated prediction of reaction impurities is useful in early-
stage reaction development, synthesis planning and optimiza-
tion. Existing reaction predictors are catered towards main
product prediction, and are often black-box, making it difficult
to troubleshoot erroneous outcomes. This work aims to present
an automated, interpretable impurity prediction workflow
based on data mining large chemical reaction databases. A 14-
step workflow was implemented in Python and RDKit using
Reaxys® data. Evaluation of potential chemical reactions
between functional groups present in the same reaction
environment in the user-supplied query species can be
accurately performed by directly mining the Reaxys® database
for similar or ‘analogue’ reactions involving these functional

groups. Reaction templates can then be extracted from
analogue reactions and applied to the relevant species in the
original query to return impurities and transformations of
interest. Three proof-of-concept case studies (paracetamol,
agomelatine and lersivirine) were conducted, with the workflow
correctly suggesting impurities within the top two outcomes. At
all stages, suggested impurities can be traced back to the
originating template and analogue reaction in the literature,
allowing for closer inspection and user validation. Ultimately,
this work could be useful as a benchmark for more sophisti-
cated algorithms or models since it is interpretable, as opposed
to purely black-box solutions.

Introduction

Early-stage knowledge of impurities and conditions under
which they may form is crucial for the rapid design of robust,
scalable, and sustainable synthesis pathways for target mole-
cules. This is especially relevant for the pharmaceutical industry
where impurity tolerance is low so as to maximize the safety
and efficacy of the final drug product. Traditionally, for a given
synthesis pathway and target molecule, chemical intuition and
analytical techniques are employed in tandem to conduct
rigorous impurity profiling.[1] However, these approaches can be
time consuming, iterative, and expensive. Prediction of impur-
ities a priori is an attractive option to alleviate some of these

drawbacks and quickly identify or optimize synthesis routes.
Notably, given the development of large chemical reaction
databases such as Reaxys®[2]1 (>148 million substances and
>54 million reactions), leveraging this available chemical data
to make informed predictions is more viable now than ever
before. Therefore, the primary aim of this work is to propose an
automated impurity prediction workflow based on data mining
Reaxys®.

This work is set in the broader context of the field of
Computer-Aided Synthesis Planning (CASP), which has made
strides in the automated discovery and design of chemical
synthesis routes over the past several decades.[3–6] CASP
methods have been classified as encompassing (but not limited
to) three main tasks:[3] i) retrosynthetic analysis, which starts at a
target molecule and works backwards towards simpler precur-
sors to identify suitable synthetic routes; ii) forward reaction
prediction, which starts with precursors and predicts potential
products; and iii) reaction conditions prediction (catalyst,
solvent, temperature etc. required for a reaction to occur).
Impurity prediction can be regarded as a subtask of forward
reaction prediction and involves predicting byproducts of a
reaction given a set of precursors (reactants, reagents, main
products etc.) and may also optionally include reaction
conditions (temperature, catalyst, solvent etc.).

Existing data-driven methodologies for forward reaction
prediction focus primarily on predicting main products based
on reaction data in large chemical databases. Byproducts and
impurities are often deprioritized because examples of negative
and failed reactions are rare in literature.[3] Approaches usually
fall under one of two categories:
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I. Rule/template-based: These methods use manually encoded
reaction/transformation rules[7–11] or automatically extracted
reaction/transformation rules[12,13] from chemical databases
often in the form of reaction templates to predict products.
Recent methods have employed neural network classifiers
and other machine learning (ML) algorithms to prioritize
templates and transformations.[12,13]

II. Rule/template-free: These methods do not rely on rules or
templates, instead leveraging advanced ML techniques such
as graph neural networks[14] and transformer architectures
based on NLP (Natural Language Processing)[15] to suggest
products.
There are also other approaches, such as knowledge

graphs,[16] stochastic block models based on large reaction
networks,[17] and mechanistic ML models using a variety of
descriptors for quantitative reaction prediction.[18–22] A recent
review by Thakkar et al.[4] provides a comprehensive assessment
of all these methods.

Recently, state-of-the-art data-driven methods have gravi-
tated towards black-box models with limited interpretability or
transparency.[15] As a result, it is harder to understand how or
why certain products are predicted, introducing ambiguity in
diagnosing erroneous outcomes. This is further exacerbated by
the relatively little focus given to the underlying data used to
train and test models, which can contain biases,[23–25] and lack
diversity. At present, it can be challenging to pinpoint where
the issues lie: the quality of the underlying data, or the type of
model employed, or both. Although the field is rapidly
progressing to address these drawbacks and challenges,[26,27]

impurity prediction has not yet been explicitly addressed within
this context hence the aim of this work. An automated impurity
prediction workflow that is interpretable and transparent is
possible with data mining. Additionally, the potential and
pitfalls of chemical data in impurity prediction can be high-
lighted clearly and the workflow could serve as a benchmark
when designing, refining, and troubleshooting ML approaches
in the future.

Method Development

An overview

Impurity prediction fundamentally involves assessing how func-
tional groups present in reactants, reagents, solvents and main
products (henceforth referred to as query species) may react
with each other under the specified conditions. It is proposed
that this assessment can be performed by directly mining a
database of analogue reactions, here defined as reactions
involving functional group fragments derived from the query
species. Our source of the original reaction data is Reaxys®,
obtained with Elsevier’s permission. As data in Reaxys® may be
incomplete or contain erroneous information, it is necessary to
prepare the data for this workflow. This involves removing
duplicate reactions and ensuring that reactions are stoichio-
metrically balanced. Extracting reaction templates from the
analogue reactions and applying them to relevant query species

can suggest potential impurities and transformations of interest.
Reaction conditions such as temperature and catalysts can be
leveraged to further filter and only keep the realistic impurities.
In keeping with interpretability, at all points, the suggested
impurities can be traced back to the originating template and
analogue reaction in the literature.

Figure 1 illustrates the proposed workflow for impurity
prediction. The workflow consists of fourteen steps split across
four main modules: I. Data mining, II. Data processing, III.
Impurity prediction and IV. Impurity ranking.

The 14-step workflow is fully automated and was imple-
mented in Python using RDKit,[28] a popular open-source
cheminformatics library that facilitates reaction representation
and manipulation. The workflow was run on a Linux (Ubuntu V
16.04.6 LTS) 32-core server using Ray,[29] an open-source Python
library for distributed computing.

An illustrative case study, and step-by-step guide

To more clearly explain the workflow presented in Figure 1, an
illustrative case study is outlined here, based on paracetamol
(acetaminophen) synthesis, Scheme 1. This is a widely practiced
reaction that involves acetylation of 4-aminophenol (1) with
acetic anhydride (2) to produce paracetamol (3) and acetic acid
(4). Based on impurity studies,[30] and shown in Scheme 1b, a
possible impurity or by-product is 4-acetamidophenyl acetate
(5), which is obtained when 3 is further acetylated by 2 in an
overreaction. The proposed workflow should be able to predict
this impurity and is explained in more detail in the following
sections.

Data mining

The data mining portion of the workflow consists of steps 1 to
4 in Figure 1 and involves mining the Reaxys® database for
analogue reactions. Figure 2 illustrates all these steps in the
context of paracetamol synthesis.

The first step in the workflow is to input query species, here
defined as user-supplied reactants, reagents, solvents, and main
products that may interact with each other, in the form of a

Scheme 1. (a) Reaction scheme for paracetamol synthesis. 4-Aminophenol
(1) is acetylated by acetic anhydride (2) to give paracetamol (3) and acetic
acid (4). (b) Reaction scheme for impurity formation: 4-Acetamidophenyl
acetate (5) is produced through an overreaction of paracetamol (3) with
acetic anhydride (2). Note that reactions are not balanced.
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reaction SMILES (Simplified Molecular-Input Line-Entry System)
string, which is the most widely adopted form of representa-
tion. Reactants, reagents, and solvents are not distinguished in
this step as all query species are assumed to potentially react.
Additionally, distinguishing these species would require a priori
knowledge and would defeat the motives behind reaction
prediction. However, reaction conditions can be optionally
provided separately (e.g., catalyst, temperature, special proc-
esses) if already known. In this case, query species 1–4 are
inputted.

Step 2 involves identifying functional group (FG) fragments
in each user-supplied query species. Approaches in literature
are divided into two general approaches: using manually
curated substructure lists to identify FGs[31–33] or automatic
identification methods.[34] Ertl’s algorithm[34] is a most recent
example of the latter, which automatically extracts FGs iterating
through atoms in a molecule, and is easily implemented in
cheminformatics libraries such as CDK[35] and RDKit.[36] The RDKit
implemented algorithm was thus adapted in this approach to
account for bonded hydrogens as well as the first degree
environment (nearest neighbors) around the functional group.
For instance, 1 contains hydroxyl (OH) and amine (NH2) func-
tional groups (highlighted in blue in Figure 2) which were
expanded to include the aromatic carbons (highlighted in green
in Figure 2), forming FG fragments Car� OH and Car� NH2. These
are henceforth referred to as carrier fragments. It is important
to note that the user can choose to employ higher-degree
environments to capture more molecular context, especially
relevant groups further away that influence reactivity. However,
keeping in mind that there is an inherent trade-off between
template specificity and generalizability, the first-degree envi-

ronment is used in this work. The final output of this step is a
list of carrier fragments that belong to each query species, in
this case: aromatic hydroxyl (belonging to 1 and 3), aromatic
amine (belonging to 1), anhydride (belonging to 2), acetamido
(belonging to 3) and carboxylic (belonging to 4) fragments.

Step 3 involves finding analogue species that contain any of
the identified carrier fragments. For this, a subset of the Reaxys®
database (circa 17 million reactions) was extracted and the
carrier fragment identification algorithm in step 2 was applied
to every species contained in the Reaxys® data after canon-
icalization, leading to a carrier fragment database for faster
querying (For more details, refer to Section S1 of the Supporting
Information). Thus, for each carrier fragment, a list of analogue
species that contains it can be retrieved. For instance, 3-
aminophenol is an analogue species that contains both
aromatic amine (at the meta position instead of para) and
hydroxyl carrier fragments present in 1, the query species. More
than 1.9 million analogue species were obtained in this step.

In step 4, analogue reactions that only contain the
aforementioned analogue or query species are extracted from
the Reaxys® data. More specifically, all reactants and reagents in
these reactions are required to be analogue or query species,
ensuring that reactions between designated carrier fragments
are possible. For instance, Figure 2a involves hydroquinone
(analogue species, containing the aromatic amine carrier frag-
ment) and acetic anhydride (query species) as reactants, and
acetic acid (query species) as a reagent. The reader is referred
to the Section S1 in the Supporting Information for more details
on definitions of species roles in this work. The final result is a
list of 243,600 analogue reactions, ready to be processed in the
next portion of the workflow.

Figure 1. An illustration of the developed workflow for automated impurity prediction based on data mining. Fourteen steps are split across four modules: I.
Data mining, II. Data processing, III. Impurity prediction and IV. Impurity ranking.
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Figure 2. Steps 1 to 4 of the impurity prediction workflow with illustrative examples on the paracetamol synthesis. (a) to (c) represent valid analogue
reactions, with Reaxys® IDs indicated on the left.
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Data processing

The data processing portion of the workflow consists of steps 5
to 8 (refer to Figure 1), and involves processing the analogue
reactions obtained in step 4 for template generation. Figure 3
illustrates all these steps in the context of paracetamol syn-
thesis, giving relevant examples.

Step 5 is the pre-processing, cleaning and filtering the
obtained analogue reactions. There are several potential issues
with representing reactions extracted from Reaxys®, which have
also been discussed in a recent review on transformation and
structure data curation.[23] Firstly, as is the case in Figure 3b,
invalid reactants, reagents and/or products may be present.
These are species that have names but are either missing a
SMILES representation and structure or contain an erroneous
SMILES representation and structure when parsed by RDKit. In
the case of the latter, valence errors are commonplace and in
the case of the former, the species may be too complex or
generic to identify an appropriate SMILES. These reactions are
incomplete and are removed, together with reactions that are
missing reactants and products. Additionally, analogue reac-
tions may be missing all reaction conditions, which we define
as encompassing reagents, solvents, catalysts, temperature,
pressure, process (e.g., pyrolysis) and reaction time. In all these
cases, the analogue reaction is of limited use, and is removed.
This leaves circa 134,000 reactions, or 55% of the original
analogue reaction set with valid reactants, reagents, products,
and guaranteed to contain at least one of the previously
mentioned reaction conditions as is the case in Figure 3a.

Step 6 resolves the issue of incomplete reaction structures
that can be found in Reaxys®. As mentioned previously, some
reaction records are imbalanced when directly taken from
Reaxys®, due to missing species on the right-hand-side (RHS)
and left-hand-side (LHS). Completely balanced reactions are
needed to ensure that all possible products (including by-
products) are present and that all reactant atoms can be traced
to product atoms. Relatively few reports exist in the literature
that aim to complete reaction structures, with notable recent
approaches relying on transformers[37] and Condensed Graph of
Reactions (CGR).[23]

Here, in keeping with interpretability, a balancing algorithm
is implemented that considers the atom balance between the
RHS and LHS. When there is an atom surplus on the RHS,
reactants, reagents and solvents that address this surplus are
added to the LHS. Likewise, when there is an atom surplus on
the LHS, compatible small help species are added to the RHS.
Help species are taken from a library of compounds ranging
from water to small carboxylic acids and alcohols. For instance,
Figure 3c contains an atom surplus on the RHS that matches
acetic anhydride which is initially listed as a reagent in Reaxys®.
Introducing acetic anhydride as a reactant creates an atom
surplus on the LHS that can be balanced with a molecule of
help species acetic acid on the RHS, thus properly balancing the
reaction. In some cases, for instance in Figure 3d, the atom
surplus on the RHS is caused by an untraceable group that
cannot be resolved by reactants, reagents, or solvents on the
LHS. These reactions are erroneous, missing important species

and are removed. In cases where multiple candidate species
can meet the atom surplus on either side of the reaction, an
atom-to-atom mapper (detailed in step 7) is used to identify the
most suitable species. A more detailed visualisation of the
balancing algorithm is given in the Supporting Information
Section S2.

Step 7 involves atom-to-atom mapping to establish a one-
to-one correspondence between reactant and product atoms.
Each product atom is mapped to a corresponding reactant
atom by way of a common index number. This is important for
later steps to extract reaction centres and generate templates.
There are many atom-to-atom mapping tools that are available
publicly such as NameRXN,[38] ChemAxon Standardizer,[39]

Indigo,[40] Reaction Decoder Tool (RDT)[41] and IBM
RXNMapper.[42] Specifically, RXNMapper is based on transformer
models relying on NLP, which is template-free, and a recent
benchmarking study[43] identified it as the most accurate tool
(83.4% accuracy on a cleaned dataset published by Jaworski
et al.[44]). Therefore, RXNMapper was utilized to map the
remaining reactions. If some species are completely unmapped
(due to multiple candidate species present after step 6), they
are removed from the relevant reactions, which are then
processed by steps 6 and 7 again. In some cases such as
Figure 3f, due to complex species, the balanced reaction SMILES
string length passed in exceeded the maximum sequence
length that the mapper could cope with, resulting in errors.
These reactions are removed, together with any imbalanced
reactions that could not be balanced with help species in step
6. The final set of 64,499 reactions are fully balanced and
mapped, ensuring every product atom can be traced back to a
reactant atom.

Finally, in step 8, reaction centres of the remaining analogue
reactions are obtained to ensure that they are within
designated carrier fragments. The reaction centre constitutes all
atoms that change in connectivity from reactants to products.
For each mapping index number, corresponding atoms in
reactant and product are compared with respect to eight
criteria: atom SMARTS, atomic number, degree, formal charge,
aromaticity, number of bonded hydrogens, number of radical
electrons, and nearest neighbour identities (bond order and
atomic number). If there are differences, that atom is part of the
reaction centre. Additionally, the reaction centre must lie within
carrier fragments of analogue species; this implies that relevant
carrier fragments are reacting with each other and could lead
to sensible impurities when applied to query species. For
instance, in Figure 3g, atoms 8, 4 and 6 (highlighted in red) are
identified as the reaction centre since they change with respect
to the eight criteria. Atom 8 lies within the aromatic hydroxyl
carrier fragment (highlighted in green), whilst atoms 4 and 6 lie
within the anhydride carrier fragment (highlighted in green), so
this is a reaction of interest. On the other hand, Figure 3h is
invalid as the reaction centre, notably atoms 1 and 9 (aldehyde,
circled in red) are outside the two valid aromatic hydroxyl
fragments. The aldehyde involved is not a valid carrier fragment
as it is not present in any query species. Other examples include
reactions that don’t contain a reaction centre or feature any
changes in connectivity for example in the case of isomerism.
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Figure 3. Steps 5 to 8 of the impurity prediction workflow (data processing) with illustrative examples on paracetamol synthesis. (a) to (g) are analogue
reactions discussed in the text, with Reaxys® IDs indicated on the left. A tick or a cross is indicated on the right, representing a valid (kept) and invalid
example (filtered out) respectively.
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These types of reactions are removed, leaving a set of 17,504
analogue reactions that are guaranteed to feature interactions
between carrier fragments.

Impurity prediction

The impurity prediction portion of the workflow consists of
steps 9 to 11 in Figure 1, and involves generating and applying
templates to suggest impurities. Figure 4 illustrates all these
steps in the context of paracetamol synthesis, giving relevant
examples.

Step 9 refers to template generation. Existing template-
based workflows generate reaction templates from reaction
centres, expanding around them to the nearest neighbours.[12,45]

However, in this work, as carrier fragments already incorporate
this knowledge, and involved carrier fragments can be
determined based on the reaction centre, templates can be
directly generated. For instance, in Figure 4a, atom 8, which is
part of the reaction centre, belongs to the aromatic hydroxyl
carrier fragment. Likewise, atoms 4 and 6 belong to the
anhydride carrier fragment. Thus, the template can be gen-
erated with the aromatic hydroxyl and anhydride carrier frag-
ments on the LHS, and corresponding product atom fragments
on the RHS. Mapping indices are preserved, with the template
reflecting acetylation of the aromatic hydroxyl carrier fragment.
In cases where the reaction centre involves multiple carrier
fragments in the same molecule, the Bellman-Ford algorithm
implemented in RDKit is used to compute the shortest path
between fragments, and a larger representative fragment is
generated as part of the template. More details on template
generation are provided in the Supporting Information Sec-
tion S3.

Step 10 corresponds to template application and impurity
prediction. As template species are carrier fragments, they can
be aligned with respective query species, causing the desired
transformation into impurities based on the atom mapping. In
Figure 4b, the aromatic hydroxyl carrier fragment corresponds
to either query species 3 (i) or 1 (ii), whilst the anhydride
fragment corresponds to 2. Applying the template to respective
query species leads to impurity 5 and 4-aminophenyl acetate as
well as acetic acid in both cases. Therefore, each analogue
reaction can lead to one or more impurity reactions via a
template depending on carrier fragments in the template and
combinations of possible query species containing these carrier
fragments.

However, templates are not always successfully applied. In
Figure 4c, two aromatic hydroxyl carrier fragments are involved
within the same analogue species whilst query species 1 only
contains one. This causes the template application to fail as
there are too many reacting fragments. In other cases, involved
carrier fragments in the same analogue species may be too far
apart, resulting in the final fragment unable to be aligned with
the query species. After accounting for template failure, 9,980
reactions remain, 4.2% of the original analogue reaction set.

Finally, suggested impurities and impurity reactions are
cleaned and filtered in step 11. This includes removing

duplicate impurity reactions from the same analogue reaction,
impurity reactions that do not have a transformation of interest
(as is the case in Figure 4d, which suggests query species again),
impurity reactions containing radicals, and self-reactions (with-
out reagents and catalysts). This leaves 9,355 reactions or 4% of
the original set.

Impurity ranking

The impurity ranking portion of the workflow consists of steps
12, 13 and 14 in Figure 1, and aims to rank suggested impurities
considering reaction conditions, relevance scores and number
of hits. Figure 5 illustrates only steps 12 and 13 in the context
of the paracetamol synthesis, giving relevant examples. The
reader is referred to Results and Discussion for more details on
step 14.

Step 12 involves calculating Morgan fingerprint similarities
between analogue and query species in suggested impurity
reactions. This is based on the understanding that the most
relevant analogue reactions will contain analogue species that
not only consist of common reacting carrier fragments
respective to query species but are also highly similar when
comparing overall respective molecular structures. Fingerprints
can capture a wider molecular context, at the expense of
interpretability. In particular, ECFP (Extended Connectivity
Fingerprints) or Morgan fingerprints[46] encode heavy atoms in
circular layers up to a specified diameter, and are widely
employed.[47] In this case, for each analogue reaction, 1024-bit
ECFP4 fingerprints (radius of 2) were used to characterize
molecules, and dice similarities[48] were computed between
analogue reactants, reagents and respective query species in
the suggested impurity reaction using bespoke RDKit functions.
These similarities were averaged, with the final value reflecting
the relevance of the analogue reaction with respect to each
suggested impurity reaction, as shown in Figure 5a. The choice
of using dice similarity was driven by the fact that it was easy to
implement for circular fingerprints in RDKit and also by the fact
that it is one of the best similarity measures alongside the
Tanimoto index, cosine coefficient and Soergel distance, as
verified by Bajusz et al.[48]

Step 13 is a crucial step and attempts to account for
reaction conditions in filtering away unrealistic impurities. All
impurity reactions (including main product) are assessed,
with respect to the three metrics: i) max relevance, which
indicates the highest relevance score across all analogue
reactions that suggest the reaction, ii) number of hits, which
indicates the number of analogue reactions that suggest the
reaction, replicated across the temperature range indicated
for each reaction record (if present) and iii) temperature
range, which is identified by the 5th–95th percentile of the top
10% most relevant analogue reactions that suggested the
reaction.

The user can specify a temperature range, but if this is
absent, an assumption is made that impurity reactions should
occur within the calculated temperature range for the main
product. To this end, records that are missing temperature were
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Figure 4. Steps 9 to 11 of the impurity prediction workflow with illustrative examples on paracetamol synthesis. (a) to (d) are analogue reactions discussed in
the text, with Reaxys® IDs indicated on the top. A tick or a cross is indicated on the right, representing a valid (kept) and invalid example (filtered out)
respectively.
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Figure 5. Steps 12 and 13 of the impurity prediction workflow with illustrative examples on paracetamol synthesis. (a) to (d) are analogue reactions discussed
in the text, with Reaxys® IDs indicated on the top. A tick or a cross is indicated on the right, representing a valid (kept) and invalid example (filtered out)
respectively.
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not considered and were removed. It is also assumed that
impurity reactions that require special processes (pyrolysis,
gasification, enzymatic, bacterial, irradiation, sonication, electro-
chemical and others) and catalysts, if not specified by the user,
are invalid. Solvents, pressure, and reaction time are also
important conditions to consider but this is relegated to future
work.

For example, in Figure 5b the main product temperature
range for paracetamol synthesis was calculated as 1–64 °C and
no catalysts or special processes were specified. In the case of
Figure 5c, the impurity reaction is deemed valid it occurs within
(overlaps with) the temperature range of the main product
(ambient temperatures are assumed here to be 20 °C), and does
not require special processes or any catalysts. On the other
hand, the impurity reaction shown in Figure 5d is invalid
because it requires pyrolysis and the identified temperature
range 339–359 °C is far higher than the expected main product
temperature range. Further examples of invalid reactions are
shown in the Supporting Information Figure S5. The final step,
which includes ranking the filtered impurity reaction list is
elaborated in more detail in Results and Discussion and
respective case studies.

Results and Discussion

The workflow highlighted in Method Development was applied
to three case studies of increasing complexity: paracetamol
synthesis (see the Paracetamol Case Study section), agomelatine
synthesis (see the Agomelatine Case Study section) and
lersivirine synthesis (see the Lersivirine Case Study section).
With steps 1 to 13 elaborated previously, the final step of the
workflow involves ranking the condition-filtered impurity reac-
tion list by maximum relevance and number of hits. Impurities
with only one hit were removed, as this was judged to be
insufficient justification.

Paracetamol case study

Key results for the paracetamol case study are shown in
Figure 6, which illustrates the query reaction inputted to the
workflow, the main product reaction and the top two ranked
impurity reactions. Relevant carrier fragments are highlighted in
green throughout.

As shown in Figure 6b, the reaction yielding main product 3
is ranked highest in maximum relevance score (1.0) and also
has the greatest number of hits (12180), as expected given the
exact match to the query reaction. The main impurity high-
lighted in literature is 5 due to an overreaction of 3 with 2. After
accounting for the main product temperature range of 1–64 °C,
the desired impurity reaction leading to 5 is ranked second in
Figure 6c, with a maximum relevance score of 0.87 and 830 hits.
The analogue reaction (2390306) with the maximum relevance
score has been shown repeatedly throughout the workflow in
Figures 2a, 3a, 3e, 3g, 4a, 4b, 5a, 5c.

The impurity reaction ranked first features an acetylation
of just the aromatic hydroxyl group, although this can be
questioned due to the I) the likely reduced concentrations of
starting material 1 after formation of main product 3 and II)
the lower nucleophilicity of alcohols relative to amines,
shown by the reduced hits (830 against 12180 for 3). It is
important to note that the workflow is designed such that all
potential impurities are suggested without consideration of
yields or concentrations of reacting species. Consideration of
these factors would be challenging and require more data
than is currently available in reaction databases. However,
temperature ranges for both the main product and impurities
can be ascertained, and therefore could indicate potential
design spaces for optimization to minimise impurity forma-
tion.

Agomelatine case study

Agomelatine (N-[2-(7-methoxy-1-naphthyl)ethyl]acetamide) rep-
resents a new class of antidepressants.[49] There are several steps
to its synthesis, see Scheme 2, where the first contains
significant impurities as reported by Liu et al.[49] The synthesis
involves hydrogenation of (7-methoxy-1-naphthyl)acetonitrile
(6) forming an amine main product (intermediate) 11. The
workflow should be able to predict both the disubstituted
impurity 13 and the ethylated impurity 12.

As a point of reference, a comparison was drawn to existing
state-of-the-art reaction predictors widely adopted by the
community such as ASKCOS and IBM RXN. Results can be seen
in Figure S6 in the Supporting Information; in both cases, the
correct impurities were not suggested.

Results from the proposed workflow are shown in Fig-
ure 7. In addition to specifying the main product reaction
outlined in Scheme 2 (query species 6, 7, 9, 10 and 11),
catalyst 8 was also supplied to aid in reaction condition
filtering. As shown in Figure 7b, the reaction yielding main
product 11 via hydrogenation is ranked highest in maximum
relevance score (1.0) and also has the greatest number of hits

Scheme 2. Reaction scheme for agomelatine synthesis. (7-methoxy-1-
naphthyl)acetonitrile (6) reacts with hydrogen (7) with Raney nickel (8) as
the catalyst in ammonia (9) and ethanol (10) to form the hydrogenated
amine main product (intermediate) (11). The disubstituted compound (13) is
formed as the main impurity, and the amine group of the intermediate can
also be ethylated giving impurity (12). Note that reactions are not balanced.
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Figure 6. Summary of results for paracetamol case study: (a) Query reaction; (b) Main product reaction; (c) Top two ranked impurity reactions based on
maximum relevance. Each reaction is captioned with a box containing the max relevance score with associated Reaxys® ID in brackets, number of hits and
temperature range. The literature-identified impurity reaction is ranked second and is boxed in green. Relevant carrier fragments are highlighted in green.
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(1546), as expected. The most relevant analogue reaction
(Reaxys® ID 3986739) is an exact match. After accounting for
the main product temperature range of 13.0–60 °C, the

desired impurity reaction leading to disubstituted impurity
13 (and ammonia as a smaller by-product) is ranked first in
Figure 7c with a maximum relevance score of 0.77 and only 9

Figure 7. Summary of results for agomelatine case study: (a) Query reaction; (b) Main product reaction; (c) Top two ranked impurity reactions based on
maximum relevance. Each reaction is captioned with a box containing the max relevance score with associated Reaxys® ID in brackets, number of hits and
temperature range. The literature-identified impurity reactions are both suggested and boxed in green. Relevant carrier fragments are highlighted in green.
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hits. The low number of hits suggests the potential difficulty
in generating an adequate training set for conventional ML
approaches to successfully predict this impurity. This also
illustrates the importance of the maximum relevance score in
identifying the most relevant impurities, in contrast to
number of hits which need not always be reliable.

The interpretability of the workflow is demonstrated as
the associated analogue reaction (1073006) with the highest
relevance score is shown in Figure 8a together with the
extracted template in Figure 8b and suggested impurity
reaction leading to disubstituted impurity 13 in Figure 8c.
Even though the analogue species differs slightly with
respect to query species 6 (aromatic chlorine is present and
ether is missing), the reaction also requires 10 and 8,
featuring conjugation and hydrogenation of two acetonitrile
carrier fragments that lead to 13 as well as ammonia.

Similarly, ethylated impurity 12 is suggested in the
impurity reaction ranked second in Figure 7c, with a
maximum relevance score of 0.73 and 113 hits. Analogue
reaction 662951, which has the corresponding highest
relevance score is shown in Figure 9a, together with the
extracted template in Figure 9b and the suggested impurity
reaction in Figure 9c.

Another important feature of the workflow is the ability
to trace relevant analogue reactions that were removed for a
certain reason. For instance, Scheme 3 shows the analogue
reaction (Reaxys® ID 192530) leading to a similar ethylated
impurity with a higher relevance score of 0.76 compared to
the analogue reaction after condition filtering shown in
Figure 9 which has a relevance of 0.73. Despite this, the

reaction was removed due to a missing temperature record.
Thus, the interpretability in each step facilitates the diagnosis
of blind spots in the workflow and highlighting of missing
data.

Lersivirine Case Study

The final case study involves synthesis of lersivirine (5-{[3,5-
diethyl-1-(2-hydroxyethyl)-1-pyrazol-4-yl]oxy}isophthalonitrile),
a drug for HIV treatment. The final stage of the synthesis has
been outlined by Codina et al., see Scheme 4.[50] 5-(2-oxo-1-
propanoylbutoxy)isophthalonitrile (14) reacts with 2-hydrazi-
noethanol (15) to yield lersivirine (17) and water (18). The
impurity reaction involves esterification of lersivirine by etha-
noic acid (19), forming impurity (19). This impurity was also
detected in an experimental set-up in the CARES lab in
Singapore.

Figure S7 in the Supporting Information shows the impurity
results using ASKCOS and IBM RXN; in both cases, the desired

Figure 8. Most relevant analogue reaction leading to formation of disubstituted impurity 13: (a) Balanced, mapped analogue reaction. Reaxys® ID is shown,
along with reaction conditions, and relevance score on the left; (b) Extracted template from reaction; (c) Impurity reaction suggested by template application,
captioned with a box containing the max relevance score with associated Reaxys® ID in brackets, number of hits and temperature range. Relevant carrier
fragments are highlighted in green in (a), (b) and (c), and atoms involved in the reaction centre are highlighted in red in (a) and (b).

Scheme 3. Reaction scheme of a highly relevant (0.76) ethylation reaction
that forms impurity 12 and was filtered out due to missing temperatures.
Relevant carrier fragments are highlighted in green, and atoms involved in
the reaction centre are highlighted in red.
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impurity was not suggested. Figure 10 illustrates the results of
the workflow when inputting the main product reaction in
Scheme 4 (query species 14, 15, 16, 17, 18). The reaction
yielding main product 17 is ranked highest in maximum
relevance score (0.91) with 139 hits as expected. After
accounting for the main product temperature range of 20–
50 °C, the desired impurity reaction (boxed in green) that leads
to esterified impurity 19 (and 18 as a smaller by-product) is
ranked second in Figure 10c with a maximum relevance score
of 0.71 and 331 hits.

Analogue reaction 63199, which has the corresponding
highest relevance score is shown in Figure 11a together with
the extracted template in Figure 11b and the suggested
impurity reaction in Figure 11c.

The impurity reaction ranked first in Figure 10c features
esterification of 15, which, like the paracetamol case study,
could be questioned due to its reduced concentrations after
formation of main product 17.

Figure 9. Most relevant analogue reaction leading to formation of ethylated impurity 12: (a) Balanced, mapped analogue reaction; (b) Extracted template from
reaction; (c) Impurity reaction suggested by template application, captioned with a box containing the max relevance score with associated Reaxys® ID in
brackets, number of hits and temperature range. Relevant carrier fragments are highlighted in green in (a), (b) and (c), and atoms involved in the reaction
centre are highlighted in red in (a) and (b).

Scheme 4. Reaction scheme for final stage of lersivirine synthesis. 5-(2-oxo-1-propanoylbutoxy)isophthalonitrile (14) reacts with 2-hydrazinoethanol (15),
yielding lersivirine (17) and water (18). Impurity (19) is formed due to esterification of lersivirine by ethanoic acid (16). Note that reactions are not balanced.
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Figure 10. Summary of results for lersivirine case study: (a) Query reaction; (b) Main product reaction; (c) Top two ranked impurity reactions based on
maximum relevance. Each reaction is captioned with a box containing the max relevance score with associated Reaxys® ID in brackets, number of hits and
temperature range. The literature-identified impurity reaction is suggested and boxed in green. Relevant carrier fragments are highlighted in green.
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Conclusions

This work aims to present an automated impurity prediction
workflow based on data mining large chemical reaction
databases that is interpretable and transparent. Existing
reaction predictors are catered towards main product reac-
tion, and impurity prediction has rarely been tackled explic-
itly. Additionally, many predictors are black-box and not easy
to interpret. To this end, an automated and modular 14-step
workflow was developed using Python and RDKit, split into
four modules: I. Data mining, II. Data processing, III. Impurity
prediction and IV. Impurity ranking. Based on user-supplied
query species, carrier fragments expanded from functional
groups are extracted, and a list of analogue species for each
fragment is retrieved. Analogue reactions containing these
analogue species are retrieved by data mining Reaxys®, are
cleaned, balanced and used to extract templates. Application
of these templates to query species can suggest impurity
reactions which are further filtered by reaction conditions
and ranked by fingerprint similarity (relevance) as well as
number of hits.

The workflow was successfully applied to three case
studies: paracetamol synthesis, agomelatine synthesis, and
lersivirine synthesis. In all cases, literature-identified impur-

ities were suggested within the top two outcomes, and each
analogue reaction could be traced to a Reaxys® reaction
record. Additionally, highly relevant rejected reactions could
be retrieved together with the reason for their removal.

Nonetheless, there are potential changes in future work
that could be made to improve the functionality of the
reported tool. While impurity awareness is important, it
would be more useful to understand yields of impurities
depending on concentrations of starting materials (e. g.,
distinguishing between major and minor impurities). Addi-
tionally, the workflow assumes that Reaxys® data is inherently
correct which may not always be true, and it is also sensitive
to missing condition data such as temperature. On average,
only 50–60% of final analogue reaction lists contained a
temperature record, which can lead to removal of important
impurities (although this did not adversely impact results in
the case studies). Consideration of the effects caused by
other reaction components and conditions such as solvents,
pressure and reaction times would also improve the quality
of the suggested outcomes. Ultimately, there is a need to
apply the workflow to a larger variety of case studies to
assess how well it copes with reactions featuring more
complex chemistries and multiple steps (e. g., ring forming,
ring breaking, regioselective reactions, protective and depro-

Figure 11. Most relevant analogue reaction leading to formation of esterified impurity 19: (a) Balanced, mapped analogue reaction; (b) Extracted template
from reaction; (c) Impurity reaction suggested by template application, captioned with a box containing the max relevance score with associated Reaxys® ID
in brackets, number of hits and temperature range. Relevant carrier fragments are highlighted in green in (a), (b) and (c), and atoms involved in the reaction
centre are highlighted in red in (a) and (b).
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tective group interactions). Assembling an exhaustive list of
case studies where impurities are known from literature
remains a challenge, requiring both manual and text mining
approaches. However, this would allow for the use of the
top-k accuracy metric (fraction of samples for which, given
the reactants and main products, the recorded impurities are
among the top-k predictions) to evaluate the proposed
workflow in a statistically significant manner. Regardless, this
work can serve as a benchmark and as an example for how
well-curated prior reaction data can aid in the development
of more sophisticated algorithms for reaction prediction with
easily interpretable results.
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