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Abstract

Amethodological framework to assess multi-pollutant personal air quality

exposure for improved health associations

Elizabeth L. Martin

Current assessments link poor air quality to around seven million premature deaths

worldwide annually. However, exposure studies, often utilising measurements from

stationary outdoor instruments from sparse monitoring networks, cannot capture

spatial heterogeneity or the fact that people spend significant fractions of their time

indoors. This failure to assess the actual pollution exposure individuals receive leads

to inaccuracies in pollution-health associations, potentially masking the factors that

drive the observed health responses, resulting in misinformed policies.

To address these limitations, a portable personal air quality monitor (PAM) was

developed, allowing for the assessment of actual personal exposure to key pollu-

tants: CO, NO, NO2, O3, and PM2.5, as well as providing location (GPS) and other

parameters for time-activity assessment.

The work in this thesis develops a framework, which, when applied to large scale

fieldwork studies, is capable of disaggregating personal exposure by source and link-

ing it to health parameters for hundreds of participants. At the core of the frame-

work is a methodology for apportioning personal exposure into pollution generated

by indoor sources and pollution generated by outdoor sources.

This apportionment is achieved by employing a mass-balance model and estimat-

ing values of ventilation rates, indoor loss rates and indoor source characteristics,

collectively referred to as “exposure determinants”.

The framework was applied to data from the AIRLESS project, which involved the

deployment of PAMs to 250 residents of Beijing and the surrounding area. Personal

exposure to NO2, O3 and PM2.5 was found to be lower than that inferred from

measurements from stationary outdoor reference instruments, suggestive of indoor
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losses for these pollutants.

The results show differences between indoor-generated and outdoor-generated ex-

posures, for example, 55% of participants’ exposure to CO was from indoor sources,

compared with 30% of PM2.5. Apportioned exposure metrics, for example indoor-

and outdoor- generated CO, while the same molecule, may be proxies for different

mixtures of pollutants, which may have different health impacts.

As expected, home ventilation rates were higher in the summer than in the winter,

and the overall mean ventilation rate was estimated to be 3.12 hr-1, which is compa-

rable to values found in the literature. Knowledge of the seasonal and demographic

variability of exposure determinants will be crucial in the future modelling of total

personal exposure at the population scale.

This thesis concludes with the construction of a Linear Mixed Effects Model (LMEM),

linking the novel exposure metrics and estimated exposure determinants to a health

marker, in this case Peak Expiratory Flow (PEF). While the associations with per-

sonal exposure and PEF appear minimal in this study (concerns about the accuracy

of self-reported PEF as an indicator are raised), it is expected that this framework

will be of significant value when extended to directly examine the effects of the novel

exposure metrics and estimated exposure determinants on other health parameters.

This will provide insights into the source-related health effects of air pollution to

drive more effective environmental policy.
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Chapter 1

Introduction

1.1 Air pollution epidemiology

1.1.1 A brief history of air pollution epidemiology

A link between poor air quality and health is not a recent discovery. The Greek

physician Hippocrates attributed illness to the quality of the air over 2400 years

ago: “They are likely to have deep, hoarse voices, because of the atmosphere, since

it is usually impure and unhealthy in such places.”56. Similar associations were

made within other early societies. The harmful effects of soot/dust on the skin were

described in the Book of Exodus, Old Testament, during the 13th century BC in

Egypt86.

However it was not understood how the inhaled air interacted with the body, for

example, Aristotle believed that the role of breathing was to cool the heart4. Fol-

lowing Priestley’s discovery of oxygen in 1774108 and Lavoisier’s investigations into

respiration, there was a large increase in research into air quality and epidemiol-

ogy in the late 1700s and early 1800s. The most prominent example was in 1775

when Percivall Pott made the link between air pollution and cancer by observing

a very high incidence of testicular cancer in chimney sweeps resulting in short life

expectancy106.

There was a significant change in public awareness of the health impacts of pollution

after the Great Smog event of 1952 when a thick layer of smog covered London for

four days. This is thought to be the worst air pollution event in the history of the

United Kingdom and had a major effect on environmental research and government
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regulation (the Clean Air Act was introduced in 1956). In the weeks following the

smog event, government medical reports estimated that up to 4,000 people had died

as a direct result of the event152. Figure 1.1152 shows a graph, plotted in 1954, of

how the number of deaths significantly increased with the concentrations of SO2 and

smoke. Figure 1.1 also shows that the number of deaths remained elevated beyond

the period of elevated smoke and SO2 levels, indicating a lag effect of pollution on

health. Recent re-analysis of the data suggests that the total number of fatalities

may have been considerably greater, with estimates of between 10,000 and 12,000

deaths9.

Figure 1.1: The great smog of London: Daily air pollution and death rates during the
Great Smog of London, taken from Wilkins et al.152

Researchers now derive the risks of pollution on health using three main methods:

• Epidemiological approaches including time series analyses from cohort and

panel studies

• Clinical studies involving controlled exposures of normal and susceptible

people

• Toxicology/ laboratory research including animal exposure, in vitro ap-

proaches and genetic approaches

Epidemiological studies examine the health outcomes of large populations within

their natural environment and often involve large sample sizes, allowing researchers
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to analyse data from a diverse range of individuals with different characteristics,

demographics, and susceptibilities. Clinical and laboratory experiments can be used

to investigate mechanisms and establish if there is a causal link.

1.1.2 Statistical methods: LMEMs

The development of Linear Mixed Effect Models (LMEMs) in the late 1900s provided

researchers with a valuable statistical method to draw pollution health associations

from epidemiological data. By incorporating so called fixed and random effects,

LMEMs provide more accurate associations and improve the handling of dependen-

cies within the data.

Fixed effects in LMEMs represent systematic and population-level factors (e.g., age,

sex, pollution levels) that are expected to have an impact on health outcomes.

On the other hand, random effects capture the impact of variables that specific

predictions are not available for, such as genetic differences between participants.

The benefits of LMEMs were identified in an early air pollution study in 1984127,

which applied an LMEM to data from a panel study with a binary outcome: Asthma

attack (yes/no), and compared the results with a simpler statistical approach72.

One major advantage was the ability to use all of the data, including that from

subjects with incomplete data; LMEMs handle missing data by using all available

data to estimate the fixed effects and random effects. The only recorded drawback

of LMEMs in this study was their computationally intensive nature, which is largely

addressed by modern advances in computing. LMEMs are increasingly becoming the

standard tool for investigating associations between pollution exposure and health.

1.1.3 Summary of air pollution epidemiology

Air pollution is known to increase rates of mortality and morbidity globally. Each

year, an estimated 4.5 million deathsa are attributed to the effect of outdoor air

pollution globally43. Emerging evidence shows that breathing polluted air has an

adverse effect on the respiratory system and recent studies link it to every major or-

gan system, including the central nervous, cardiovascular and pulmonary systems132.

This PhD aims to further advance the understanding of air pollution on health.

It focuses on assessing air pollution exposure of epidemiological cohorts, for five

a6.7 million deaths are attributed to the combined effects of indoor and outdoor exposure to
air pollution globally43

3



Introduction

pollutants: CO, NO, NO2, O3 and PM2.5 (PM2.5 are particles with a diameter of

less than 2.5 micrometers). It also demonstrates how an LMEM can be designed

for pollutant-health associations. Ambient concentrations of these five pollutants

have been shown to affect health, and Appendix A.1.3 reviews their previous health

associations. Factors contributing to error in current pollution-health associations

are explored below.

1.2 Factors contributing to error in pollution-health

associations

1.2.1 Misclassification of exposure

The difference between the exposure metrics used when making the pollution-health

association, and the ‘true’ exposure of the population at risk is referred to as mis-

classification of exposure.

Studies restricted to stationary outdoor measurements will not capture total per-

sonal exposure, which in turn results in an inaccurate assessment of the impact that

air pollution has on human health. This is because these studies are not able to

capture the effects of an individual moving between different microenvironments,

and the different concentrations, loss processes and sources within the different mi-

croenvironments. The different pollutant levels in a range of microenvironments

were measured by Chatzidiakou et al. using a UK cohort of 35 participants and

the results are shown in Figure 1.2. Pollutant levels were found to vary between

the microenvironments. The participants kept an activity log, and the study in-

volved development of an automated model to detect the microenvironment of the

participant.
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Figure 1.2: Pollutant levels in a range of microenvironments: Box plots of personal
exposure of 35 UK participants to multiple pollutants in different microenvironments. For each

microenvironment, the left hatched box plot shows the microenvironment classified using
participants’ activity logs and the right solid-colour box plot using the automated model. This
figure was adapted from Chatzidiakou et al.21. The full paper can be found in Appendix A.1.2.

Pollutant concentrations were found to vary across microenvironments.
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1.2.2 Indoor/outdoor ratios to infer indoor exposure for

large populations

People spend most of their time indoors. This was demonstrated with the same UK

cohort from Figure 1.2, and is shown in Figure 1.3.

Figure 1.3: Time budget of microenvironments visited: Time budgets of 37 participants
residing in London, UK and Cambridge, UK. (a and b) box plots of participants’ time budgets in

different static microenvironments and modes of transport classified with activity logs (left,
shaded box plot) and a developed model for activity classification (right, solid-colour box plot).

(c and d) Corresponding scatterplots of mean time (in minutes) spent in visited
microenvironments are shown in a colour scale at the bottom. (e and f) Average diurnal time
budget profile of all participants classified with the activity logs and with the model. This has
been taken from Chatzidiakou et al.21. The cohort spent the majority of their time indoors.

A simple method to estimate indoor pollution exposure is to assume that indoor

pollutant concentrations and outdoor pollutant concentrations are related by a fixed

ratio (indoor-outdoor air quality ratio, abbreviated to I/O ratio). Often studies take

this ratio from literature or calculate it from a subset of their participants126. The

advantage of using a ratio is that it can be applied to accessible outdoor data from

already installed, stationary air pollution monitoring stations. Estimations for large

populations can be made without the requirement of measuring inside every home

or indoor environment. It has been used directly in health studies117;12.

Figure 1.4 shows how the I/O ratio for NO2 and PM2.5 measured in a range of

indoor microenvironments varied over a 24-hour period, evaluated over 6-9 month

periods126.

The I/O ratio for NO2 is seen to increase by a factor of two during core operation
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Figure 1.4: Dynamic variability of I/O ratios: Aggregated or ‘typical’ I/O ratios for NO2

and PM2.5. Evaluated over 6–9 month periods in a school, hospital, office (3 indoor
microenvironments from Mon-Fri only) and 18 apartments (living rooms) in the UK. Both

species show significant I/O variation over the 24-hour period, for a range of microenvironments.
This figure has been taken from Stamp et al.126

hours for the school and hospital microenvironments. These two microenvironments

were mechanically ventilated. The I/O ratio for PM2.5 measured in the apartment

microenvironment shows a strong peak around 19:00–20:00 where the I/O ratio

reaches above 1.5. The I/O ratio is the result of the building as a pollutant modifier

but also of the activity within a building126. The I/O value can exceed 1 when

indoor sources are dominant. In this case, the strong peak around 19:00-20:00 is

attributed to cooking.

This study showed that using a single I/O ratio to infer the indoor concentration of

pollutants likely leads to exposure misclassification due the large variations of I/O

ratios over a 24-hour period as a result of different building operation and occupant

behaviours. Studies have attempted to minimise the effect of occupant behaviour

on the I/O ratio by limiting the participant sample to non-smokers89.
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1.2.3 Correlations between individual pollutant species

In the urban environment, humans are exposed to a range of pollutants. These

pollutant concentrations are often highly correlated due to common sources.

Ignoring pollutant correlations in pollutant-health models can lead to error. For ex-

ample, NO2 and PM2.5 have both been identified as key pollutants with respect to

health (see Appendix A.1.3). The Committee On the Medical Effects of Air Pollu-

tion (COMEAP) have released multiple reports detailing the scientific and method-

ological challenges in interpreting the extent of the independence of the associations

of mortality with concentrations of NO2 and PM2.5
25;26;27. They have carried out

systematic reviews and a meta-analysis of epidemiological studies of long-term av-

erage concentrations of ambient pollutant levels in the outdoor environment. In the

outdoor environment, traffic-related pollution is dominant and NO2 and PM2.5 are

strongly correlated in traffic emissions. COMEAP report that these correlations

(Pearson’s correlation coefficient was found to be as high as 0.85 in one of their

meta-analysis studies17) made it impossible to estimate reliably the effects of the

explanatory variables individually.

These correlations must be considered when making health associations; the ef-

fect of ambient CO concentrations on stroke mortality decreased and became non-

significant when controlling for co-emitted species (PM2.5, NO2, and SO2)
79.

O3 has been found to be anti-correlated with CO, NO2 and PM2.5 in some cities17;133;46;146.

Additionally, the output of the ADMS-Urban model predicted anti-correlation be-

tween NO2 and O3 in London, UK as shown in Figure 1.5.

This anti-correlation of O3 with pollutants such as NO2, as well as positive correla-

tion with temperature, can result in misleading observed O3-health associations17;10.

In Europe, an apparent protective effect of O3 on health has been observed; the Of-

fice for National Statistics in the UK found a negative correlation with COVID-19

mortality and O3 exposure. In this study, exposure to higher ozone was suggested

to act as proxy for living in rural environments36.

1.2.4 Exposure to indoor- and outdoor-generated pollution

Section 1.2.3 showed that correlations between pollutants can lead to error, however,

the co-emission of pollutants from a single source can be used to opportunistically

associate pollution sources and health. Key pollutants can be used as a marker

8
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Figure 1.5: Ozone and nitrogen dioxide urban concentrations: Contour plot of London,
UK showing the annual average NO2 and O3 concentrations predicted by ADMS-Urban model

for 2008. This figure has been taken from the ADMS-Urban website:
http://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html. The NO2 and

O3 concentrations are anti-correlated.

(also referred to as proxy) of the co-emitted mixture of pollutants from a common

source. For example, in the urban ambient outdoor environment, CO is mainly

emitted from vehicle exhaust and therefore has been considered a proxy for all

traffic emitted pollution13;11;114.

Conversely, in the indoor environment, a major source of CO is from cooking. CO

concentrations have been used as a marker of cooking emissions48. Therefore, while

the same molecule, indoor-generated CO is a proxy for a different mixture of air

than outdoor-generated CO.

Indoor and outdoor pollution are not independent due to exchange through ventila-

tion (the relationship between indoor and outdoor air is explored further in Chapter

2). Therefore, the air in the indoor environment (where people spend most of their

9
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time), is made of two “components”: outdoor-generated pollution that has been ven-

tilated indoors, and indoor-generated pollution that has been produced by indoor

sources. As indoor- and outdoor-generated air mixtures are likely different due to

different sources, these two components might be expected to have different health

effects. The measured indoor concentrations of proxy species, such as CO, should

therefore be apportioned into the two components, which should be considered sep-

arately in health models. The results will inform targeted interventions that impact

indoor and outdoor sources of pollution163.

Source-apportionment of PM2.5 is of particular interest to health. Differences in the

elemental composition of PM2.5 between indoor and outdoor environments have been

recorded and have been attributed to factors such as the indoor presence of tobacco

smoke77. Outdoor particles have also been found to contain more crustal elements,

such as Si7. As the elemental composition of indoor- and outdoor-generated PM2.5

are not identical, they are expected to have different toxicities.

Two studies have developed methodologies to source-apportion indoor exposure: Vu

et al.141 source-apportion exposure to NO2 and PM2.5, while Zhang et al.163 have

focused specifically on apportioning exposure to PM2.5.

Vu et al.141 conducted their study in homes in London, UK and found that the

contribution of indoor sources to indoor concentrations to both NO2 and PM2.5 in

London homes was 26–37%. Contribution of indoor sources to indoor concentrations

of both PM2.5 and NO2 was highest around typical cooking times (18:00–19:00).

Zhang et al.163 apportioned indoor- and outdoor-generated PM2.5 measured in homes

in Beijing and Pinggu, China. The contributions of indoor-generated PM2.5 to indoor

concentrations measured in the homes of Pinggu (rural) participants were found to

be 19% and 18% during the winter and summer respectively. In Beijing (urban)

the contributions in winter and summer were found to be 7% and 6% respectively.

Stronger indoor PM2.5 sources were observed in the rural cohort. They commented

that using portable instruments for indoor monitoring would add flexibility to field

campaigns for multiple homes.

Both studies only apportioned indoor air pollution measured in the home environ-

ment, and didn’t consider any other microenvironments. Apportioned total personal

exposure would be more suitable when associating indoor and outdoor sources with

health outcomes. Additionally, both studies involved the deployment of stationary

air quality sensors both inside and outside of participant homes which is burdensome

to researchers.
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1.2.5 Low-temporal resolution of pollution measurements

Health studies often use coarse averages of air pollution exposure, normally averaged

over 24-hours, or instruments with low temporal resolution, for example only sam-

pling daily, or less often. In 2009, the EPA published a report calling for analysis on

the health effects occurring from exposures at sub-daily averaging times for particu-

late matter (PM). They noted that at the time there was insufficient exposure data

for any PM size fraction with health effects to make a causality determination136.

Since publication of the EPA report, sub-daily exposure studies have been conducted

for PM2.5 and have reported respiratory and cardiovascular outcomes within 1-hour

of exposure to a 10 µg/m3 increase in PM2.5
160;125.

Figure 1.6 shows short-lived high-pollution events, referred to as emission events,

in personal CO exposure, likely due to sources such as cooking or smoking. The

black dashed line shows the levels averaged over 24-hour time periods, which would

traditionally be associated with health outcomes.

Figure 1.6: Emission events in personal exposure: Time series of personal CO (blue) and
the mean personal CO level calculated over 24-hour periods (black dashed). This data was

collected as part of the AIRLESS project. Details of the data collection during this project can be
found in Chapter 3. Short-lived high-pollution events are observed in the personal exposure data.

Intense exposures of short duration are likely of particular concern, as elevated lev-

els penetrate into the body and target tissue, which may alter metabolism, overload

protective or repair mechanisms, and amplify tissue responses124. Thresholds, for

example the 90th or 95th percentile over a fixed period, have been used to define

emission events68;102;107 and emission events have been characterised by their fre-

quency or magnitude107. Associations of these emission event metrics, as well as
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other sub-daily exposure metrics, with a range of health endpoints, may give in-

sights into the factors driving the observed health effects of air pollution. It has

been suggested that different exposure metrics may be better suited to different

health endpoints125.

1.3 Aim and objectives of this PhD thesis

The overarching aim of this work is:

• To develop a framework to improve understanding of the effects of

air pollution on health

This thesis develops a methodological framework with the following primary objec-

tives:

• To generate novel exposure metrics from personal air quality moni-

toring data for use as explanatory variables in pollution-health mod-

els

• To estimate the effect of the factors that determine exposure to air

pollution, specifically home ventilation rates, indoor loss rates and

indoor sources

• To develop a methodology to link the novel exposure metrics, and

exposure determinants, with health markers in future studies

12



Chapter 2

A mass-balance model to

understand indoor exposure

The work in this thesis develops a framework capable of generating novel exposure

metrics and estimating the factors that influence exposure. In developed countries,

people spend around 80%-90% of their time indoors85;21. Less data are available

in lower-middle income countries (LMICs), although they indicate a similar trend,

with the majority of time spent indoors45. Therefore it is important to understand

indoor pollution, and how it relates to more routinely measured outdoor pollution.

Figure 2.1 shows indoor and outdoor time series for a participant from the AIRLESS

dataset for three pollutants. The AIRLESS dataset was collected in China, and will

be described in Chapter 3.
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Figure 2.1: Example indoor and outdoor time series: Time series of outdoor (red) and
indoor (blue) for three species: a.) CO, b.) NO2 and c.) PM2.5.

This illustrative example highlights some frequently observed features in indoor

pollutant time series:

• The indoor data for all pollutants feature spikes of high pollution levels that

decay. These will be referred to as indoor emission events

• For CO, excluding the indoor emission events, the indoor data generally follow

closely outdoor concentrations, as seen in Figure 2.1a

• For NO2 and PM2.5, excluding the indoor emission events, the indoor data are

generally lower than the outdoor concentrations but still appear to follow the

overall trend of the outdoor concentrations, as seen most clearly in Figure 2.1b

14
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• All three pollutants are often emitted simultaneously during these indoor emis-

sion events, however not always, for example in the early hours of the 1st De-

cember, emission events are observed in the CO and NO2 time series (Figures

2.1a and 2.1b) but not in the PM2.5 time series (Figure 2.1c)

• There are inter-pollutant differences in the emission features, for example,

the PM2.5 decays the fastest to the concentrations before the emission event

(Figure 2.1c)

These features in Figure 2.1 can be modelled with a mass-balance equation, often

called the continuity equation. The equation can simulate indoor concentrations

of a targeted pollutant using outdoor concentrations, ventilation rates, indoor loss

rates and indoor sources. These factors are collectively referred to as exposure de-

terminants throughout this thesis. This chapter introduces the continuity equation,

followed by a description of the exposure determinants.

Using the solution to the continuity equation as a starting point, the work in this

chapter uses simulated case studies to explore how the application of the continuity

equation to indoor and outdoor measurements can form the basis of a methodology.

This methodology aims to source-apportion indoor exposure into pollution generated

from indoor sources and outdoor sources, and aims to estimate the effects of the

factors that determine exposure to pollution while indoors.

2.1 The continuity equation

If indoor environments are considered to be a single zone in which the air pol-

lutants’ concentrations are assumed homogeneous (uniformly mixed), then a non-

steady state mass-balance equation can be used to represent the rate of change in

indoor pollutant concentration (Equation 2.1).

dIt
dt

= (Ot − It)kvent − Itksink + Ft (2.1)

where:

• Ot is the outdoor concentration of pollutant at time t

• It is the indoor concentration of pollutant at time t

• kvent is the rate coefficient of indoor zone ventilation

15
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• ksink is the rate coefficient of indoor pollutant removal (indoor losses)

• Ft is the production of the pollutant within the indoor zone, per volume of

the zone, at time t

The continuity equation (Equation 2.1) shows that the rate of change in indoor

pollutant concentration can be expressed using three terms.

The first term is the rate of change of the indoor concentration of a pollutant due

to ventilation.

The second term is the rate of change of the indoor concentration of a pollutant due

to indoor loss processes, including chemical reactions and surface deposition. This

term is zero for inert species as they do not react in the time frames considered.

The final term is the emission rate which accounts for the production of the pol-

lutant within the zone (indoor sources). The rate of production of the pollutant

(mass/time) is divided by the volume of the zone, assuming the air in the zone is

uniformly mixed. This results in emission events in indoor time series; see Figure

2.1. For this thesis, peak will refer to the maximum concentration reached during

an indoor emission event.

2.2 The major determinants of indoor pollutant

concentrations

Equation 2.1 showed that the indoor levels of a pollutant are determined by ex-

posure determinants (outdoor pollutant concentrations, indoor sources, indoor loss

processes and ventilation). This section introduces the exposure determinants and

explores how values of these exposure determinants have been estimated in previous

studies. Later in this thesis (Chapters 4 and 5), exposure determinant values will

be estimated for the home microenvironment in China and compared with specific

values measured in homes in China from the literature.

2.2.1 Outdoor pollution concentrations

Outdoor pollutants in the lower part of the troposphere enter indoor environments

via ventilation. The troposphere is dominated by N2, O2 and Ar, with the remain-

ing species constituting less than 1% of the troposphere. Although they are in very
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small concentrations, these trace constituents play a vital role in tropospheric chem-

istry. The concentration of pollutants depends on sources chemistry, and other loss

processes.

In urban outdoor environments, a principal source of air pollutants are road traffic

emissions, and, depending on location and prevailing winds, additional contributions

from power plants, industrial boilers, incinerators, ships and agriculture164.

Figure 2.2 shows the main constituents in diesel and gasoline exhaust.

Figure 2.2: Composition of exhaust: Example pie charts of the main constituents in exhaust
gas from “diesel” combustion using excess air and stoichiometric spark-ignited “gasoline”

combustion. Concentrations are shown as %(V/V). The exact composition of exhaust is fuel- and
engine-dependent. “Emissions” are described in the main text. This figure is taken directly from

Aakko-Saksa et al.1

The “Emissions” sector in this figure includes:

• Carbon monoxide (CO)

• Nitrogen oxides and other nitrogen containing compounds, such as ammonia

(NH3) and nitrous oxide (N2O)

• Particulate matter consisting of elemental carbon, organic compounds, anions

(sulphates, nitrates), and metals

• Hundreds of hydrocarbons, for example benzene and 1,3-butadiene, or green-

house gases, such as methane

• Carbonyl compounds, such as formaldehyde, acetaldehyde, and acrolein

• Polycyclic aromatic compounds, for example, polyaromatic hydrocarbons (PAHs),

nitro-PAHs, and oxy-PAHs
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The last three bullet points are categorised as volatile organic compounds (VOCs).

Road traffic emissions also contain non-exhaust particle emissions from brakes, tyre

wear and re-suspension of road dust84.

O3 is a secondary pollutant in the troposphere. The main source of tropospheric O3

is via photochemical reactions of NOx, VOCs and CO in the presence of sunlight,

however, O3 can then oxidise NO to regenerate NO2. There are many complex non-

linear photochemical reactions which determine the balance between O3, NOx and

VOCs, which are well described in literature41. Factors such as NOx (NOx-limited

regime) or VOCs (NOx-saturated regime) sensitivity, as well as physical processes

such as O3 deposition and stratosphere-troposphere exchange, influence whether O3

is net produced or net destroyed. The correlation between ambient O3 and NO2

has been found to be anti-correlated in some Chinese cities46;146, and correlated in

others146.

Photolysis is a key chemical removal process in the troposphere. Species that are

photolysed include O3, formaldehyde (CH2O), methyl iodide (CH3I), hydrogen per-

oxide (H2O2), NO2 and nitrate (NO3). O3 photolyses to produce O(1D) which can

then react with H2O
75 as shown in the Equation 2.3 to produce OH radicals:

O3

hν(290nm ≤ λ ≤ 336nm)
O2 + O(1D) (2.2)

O(1D) + H2O 2OH (2.3)

OH is a minor product from the photolysis of O3 - more than 97% of the O(1D)

react back again to O3 - however OH is extremely reactive, acting as the dominant

daytime oxidant, and has the ability to remove the majority of trace gases emitted

into the atmosphere. Therefore, OH radicals are nicknamed the “detergents of the

atmosphere”.

Tropospheric pollution concentrations are also affected by outdoor physical pollutant

removal processes, such as dry deposition (the direct removal of gases and aerosol

at the Earth’s surface) and wet deposition (the washout of both vapour phase and

particulate-bound chemicals via rain, fog or snow).

2.2.2 Indoor pollution sources

There are many sources of indoor air pollution. These can include:
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• Fuel-burning combustion appliances

• Tobacco products

• Building materials and furnishings, including asbestos

• Products for household cleaning and maintenance or personal care

• Central heating and cooling systems and humidification devices

Emissions from cooking constitute a significant source of some key pollutants in-

doors, specifically CO, NO2 and particulates. Homes with poorly maintained or

poorly ventilated cooking appliances that burn fossil fuels, and homes that rely on

the burning of biomass fuels are particularly affected154. Cooking fuels have been

classified as polluting and clean, as shown in Figure 2.3.

Figure 2.3: Classification of cooking fuels as clean or polluting, taken from Stoner et al.128

O3 can be generated indoors by electronic devices (such as photocopiers and print-

ers), and, ironically, from some air purification devices61. Fadeyi38 proposed that

the contribution of ozone air purification equipment with a high ozone emission rate

to indoor concentration could easily exceed that of outdoor ozone.

There is increasing evidence that a range of complex products from indoor chemical

reactions (of reaction rates fast enough to compete with ventilation rates) may be

harmful to health18. There is less light indoors, so photolysis reactions are thought to

be less important in the indoor environment compared to the outdoor environment.

The major gaseous indoor reactions are summarised in Figure 2.4.

Much of the research into indoor chemistry to date has been focused on O3 as

it is highly reactive. Indoor O3 reacts with unsaturated organic compounds such

as terpenes, principally on indoor surfaces. These reaction rates are often fast
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Figure 2.4: Indoor reactions: Major reactants, products, and pathways of indoor chemistry,
adapted from Morrison et al.92

enough to compete with typical air exchange rates so can influence indoor air chem-

istry151. This produces a large number of products including stable carbonyls such

as formaldehyde, short-lived oxidised organic species, free radicals, and even sec-

ondary organic aerosols (SOAs)92. O3 also reacts with NOx forming OH which can

initiate oxidation reactions as in the outdoor environment, leading to more oxidative

chemistry indoors18.

As with O3, NO2 reacts on indoor surfaces. Surface conversion of NO2 forms nitrous

acid (HONO)42;88. HONO has been shown to exhibit short and long term health

effects110;67. HONO can react with residual nicotine from tobacco smoke sorbed

to indoor surfaces, forming carcinogenic tobacco-specific nitrosamines (TSNAs)123.

HONO can also be photolysed to form OH and NO3
28. This is included in the

diagram in Figure 2.4.

Particles are produced indoors but are also produced from outdoor sources and ven-

tilate indoors. Particles indoors are impacted by the transport and transformation

processes shown in Figure 2.5.

Larger indoor particles can deposit onto surfaces. Deposited particles can resuspend

and pollute the indoor air during occupant activities. Suspended particles can also

agglomerate forming larger particles via a process called coagulation. This has been

observed when burning four gas rings. The emitted particles agglomerate, causing

a shift in the peak value of particle size distribution over time32.
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Figure 2.5: Particle processes: Transport and transformation processes which impact the
indoor concentration of particulate matter, taken from Thatcher et al.131

Phase changes of PM can be observed through the adsorption of organic substances

or water131. The hygroscopicitya of PM varies with the chemical composition and

particle size91.

2.2.3 Indoor pollutant loss processes

Removal processes such as heterogeneous reactions on surfaces and surface deposi-

tion in the indoor environment have relatively more impact indoors due to much

higher surface area to volume ratios when considering the wall and floor coverings

and furniture. The loss rate of a reactive pollutant (normally h-1) can be evaluated

as the sum of two terms: the surface-to-volume ratio of the indoor space and the

deposition velocity of the species95. Experimentally, indoor loss rates have been

estimated by installing indoor air quality monitors and either recording the loss

rate after artificial elevation of the pollutant166, or by using the I/O ratio for time

periods or environments where there are no indoor sources166;80.

2.2.4 Ventilation

In naturally ventilated buildings there are two main forces that drive air exchange:

wind-driven and buoyancy-driven ventilation. Wind-driven ventilation arises from

the different pressures created by wind around the building and the openings and

cracks that permit flow through the building. Research has been focused on how

these pressure differences vary with building shape, wind direction, and the presence

aHygroscopicity is the tendency of a solid substance to absorb moisture from the surrounding
atmosphere
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of nearby buildings. Buoyancy-driven ventilation occurs as a result of the temper-

ature difference between the interior and exterior78. For example, if the interior is

warmer than the exterior, ground-level openings allow colder denser air to enter the

building. This air is warmed and rises and escapes the building at higher openings,

therefore creating upflow displacement ventilation.

Tracer gas techniques are widely used to measure ventilation rates in buildings. A

tracer gas is a substance used to tag volumes of air and so can be used to infer their

bulk movement121. Ventilation rates in buildings are often measured using tracer

gas techniques by measuring the decrease rate of a tracer gas released and dispersed

uniformly in the space. The technique requires: (a) the space to be open-plan so

airflow occurs only between the specific room and the ambient environment; (b) a

perfect mixing of the tracer gas in the space; (c) the driving forces determining the

air flow rate remaining constant during the experiment.

There are specific requirements for the tracer gas. It needs to be easily measured,

unique or significantly higher than background levels, safe and inert and it must

not affect airflow. Commonly, studies have opportunistically used metabolic CO2

produced from breathing in occupied buildings as a suitable tracer gas because it is

inexpensive, easily measured and is only present in comparatively low concentrations

in the ambient atmosphere31;47. SF6 is another common choice as it is easy to detect

at low concentrations.

Tracer gas methods have recently been extended to public transport to understand

the risk of infection of COVID-19 while travelling. This paper can be found in

Appendix A.1.1. The effect of COVID-19 on ventilation research is explored in

Appendix A.2.1.

2.2.5 Summary of major determinants of indoor pollutant

concentrations

Specific concentrations and rates for the exposure determinants are often difficult

to obtain experimentally outside of the laboratory due to the high variability be-

tween buildings, occupancy behavioural patterns and instrumentation limitations.

Additionally, studies involve time-intensive isolated experimental setups. This thesis

develops a methodological framework that can estimate these values for hundreds

of participants without the requirement of setting up indoor and outdoor stationary

pollution monitors.
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2.3 Analytical solution to the continuity equation

The continuity equation is a first-order differential equation that can be solved

analytically for the indoor concentration of the pollutant at time t, if O and F

are considered constants between time=0 and time=t. The analytical solution to

the continuity equation (derived in Appendix A.2.2) is shown below.

It =
Okvent

(kvent+ksink)
+ F

(kvent+ksink)
+ (I0 − Okvent

(kvent+ksink)
− F

(kvent+ksink)
)e−(kvent+ksink)t

(2.4)

Equation 2.4 can be interpreted by considering the steady-state value (ISS). The

analytical solution to the continuity equation contains 3 terms. When in steady-

state, the last term is zero giving:

ISS =
Okvent

(kvent + ksink)
+

F

(kvent + ksink)
(2.5)

By substituting ISS in, Equation 2.4 becomes:

It = ISS + (I0 − ISS)e
−(kvent+ksink)t (2.6)

If there was an instantaneous spike of indoor pollution at t=0, It would decay to

the steady-state value, ISS, with the time constant kvent + ksink.

2.4 Simulated case studies to conceptualise expo-

sure

This section illustrates indoor concentrations of pollutants considering four different

simple scenarios of inert and reactive pollutants in the presence and absence of

indoor sources. In this work, inert is used to refer to a species that is not affected

by indoor loss processes.

The input values are as follows:

• O is the value of the outdoor concentration within each discrete 1-minute

time interval. The outdoor values for each minute are taken from a simple
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representation of an outdoor time series, created by the addition of two sine

functions with a vertical offset. The starting O value is 10 concentration units.

In practice, the outdoor time series is assumed to not be a defined function of

t.

• kvent is given the constant value of 1 hour-1

• ksink is given the constant value of 2 hour-1

• I0 for an inert pollutant is given the starting value of 10 concentration units.

The start value of I0 for a reactive pollutant is 3 concentration units.

• F represents indoor sources. Three instantaneous (minute-long) indoor emis-

sion events at random points in the time series were generated with varying

strength. For all other 1-minute time periods, F is 0.

While it is acknowledged that both ventilation rates (kvent) and loss rate coefficients

(ksink) may vary over time in homes, they are set constant in this simulation for

simplicity. The axis scales of the simulated graphs have been chosen for consistency

across case studies and show a 24-hour period.

2.4.1 Case Study 1: Indoor concentrations of an inert pol-

lutant without indoor sources

Case Study 1 models the indoor concentration, It, of an inert pollutant which is not

affected by chemical loss processes (ksink = 0) without any indoor sources (F = 0).

Therefore, Equation 2.4 becomes:

It = O + (I0 −O)e−kventt (2.7)
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Figure 2.6: Case Study 1: Idealised outdoor time series (red) and generated indoor time
series of an inert pollutant (blue) without indoor emission events. The y-axis scale has been

chosen for consistency across case studies.

Figure 2.6 shows that indoor levels follow outdoor pollutant levels closely, however,

indoor levels are time delayed (lagged) compared with the outdoor levels. This lag

can be approximated as the reciprocal of the ventilation rate, as proved mathemat-

ically in Appendix A.2.3.

This case study assumes that all pollution measured indoors (blue) was produced

by outdoor sources (red) and has ventilated indoors.

2.4.2 Case Study 2: Indoor concentrations of an inert pol-

lutant with indoor sources

Case Study 2 extends Case Study 1 by adding three 1-minute sources (F ) at irregular

intervals of varying magnitude. Equation 2.4 becomes:

It = O +
F

kvent

+ (I0 −O − F

kvent

)e−kventt (2.8)
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Figure 2.7: Case Study 2: Idealised outdoor time series (red) and generated indoor time
series (blue) of an inert pollutant with indoor sources

Figure 2.7 shows that the indoor levels of an inert gas follow the outdoor levels, as

in Figure 2.6, however, in this case study, the inert species has instantaneous indoor

sources which elevate the indoor concentration. The pollutant level then decays at

a rate that is influenced by the ventilation of the indoor space. This will be shown

in Figures 2.11 and 2.12.

For this case study, the indoor level of the pollutant is an accumulation of pollution

that was generated by outdoor sources that ventilated indoors (It(outgen)), and pol-

lution that was generated by indoor sources (It(ingen)). These two components are

shown in Figure 2.8.
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Figure 2.8: Indoor- and outdoor-generated components of total observed indoor
(inert pollutant): Time series showing the indoor concentration of a pollutant (It) and its

components: the pollution generated outdoors (It(outgen)) (light grey) and the pollution
generated indoors (It(ingen)) (dark grey). The solid blue line represents the total observed indoor
concentration of an inert pollutant. The dashed blue line represents the indoor concentration of

an inert pollutant with no indoor sources.

The equations for the two components are as follows:

It(ingen) =
F

kvent
+ (I0(ingen) −

F

kvent
)e−kventt (2.9)

It(outgen) = O + (I0(outgen) −O)e−kventt (2.10)

The components sum to give Equation 2.8.

2.4.3 Case Study 3: Indoor concentrations of a reactive pol-

lutant without indoor sources

Case Study 3 models a reactive pollutant (ksink > 0) without sources (F = 0).

Equation 2.4 becomes:

It =
Okvent

(kvent + ksink)
+ (I0 −

Okvent

(kvent + ksink)
)e−(kvent+ksink)t (2.11)

27



A mass-balance model to understand indoor exposure

Figure 2.9: Case Study 3: Idealised outdoor time series (red) and generated indoor time
series of a reactive pollutant without indoor sources (green)

The indoor level of a reactive pollutant is lower than the outdoor level due to indoor

chemical losses primarily from surface reactions or deposition (for larger particles).

Case Study 3 considers a reactive species with no indoor sources and so it can be

assumed that all pollution measured indoors was produced by outdoor sources and

has been ventilated indoors. It can therefore be renamed It(outgen):

It(outgen) =
Otkvent

(kvent + ksink)
+ (I0(outgen) −

Otkvent

(kvent + ksink)
)e−(kvent+ksink)t (2.12)

When considering long time periods where t → ∞, the last term in Equation 2.12

tends to 0. The equation becomes:

I(outgen) =
Otkvent

(kvent + ksink)
(2.13)

2.4.4 Case Study 4: Indoor concentrations of a reactive pol-

lutant with indoor sources

Finally, in Case Study 4, the same three indoor sources are introduced for the

reactive pollutant. The equation that describes this case study is the full analytical

solution to the continuity equation (Equation 2.4):
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It =
Okvent

(kvent+ksink)
+ F

(kvent+ksink)
+ (I0 − Okvent

(kvent+ksink)
− F

(kvent+ksink)
)e−(kvent+ksink)t

(2.4)

Figure 2.10: Case Study 4: Idealised outdoor time series (red) and generated indoor time
series of a reactive pollutant with indoor sources (green). Case Study 2 is included (blue) (indoor
time series of an inert pollutant) as a visual comparison between a reactive and inert pollutant.

The indoor concentration of the reactive species is lower than outdoor levels (except

during strong indoor emission events), and decays faster than that of an inert species

(the green decays after a peak are steeper than the blue in Figure 2.10). This is

because the total decay rate for the reactive species is the cumulative influence of

ventilation rates and loss rate mechanisms kvent + ksink, as shown in Figure 2.11.

To visualise the difference in the decay rates of inert and reactive pollutants, the

natural logarithms of the decays are plotted in Figure 2.12. The gradient of the line

is −kvent for the inert species and −(kvent + ksink) for the reactive species. For this

case study, kvent is 1 hour-1 and ksink is 2 hour-1.
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Figure 2.11: Illustration of how indoor emission events can be isolated for an inert
and reactive species: a.) Indoor concentrations of pollutants for all four case studies. The
inert case studies are shown on the top plot and the reactive case studies are shown on the

bottom plot. b.) Time series from case studies without indoor sources have been subtracted from
time series with sources. This leaves just the indoor-generated source events. Thick lines have

been used to identify the decaying regions of the emission events.

Figure 2.12: Comparison of the decay rates of indoor emission events for inert and
reactive species: As in Figure 2.11, blue represents an inert pollutant and green represents a

reactive pollutant. a.) Graph of y=e-cx decays where c is the decay rate of the exponential curves
in Figure 2.11b and x takes values between 0-2 hours. This is to allow for easy visual comparison
of the decay rates. b.) The natural logarithm of the data Figure 2.12a. The gradient of the lines

equals -(kvent + ksink). ksink = 0 for the inert pollutant.

For this case study, the indoor level of the reactive pollutant is an accumulation of

pollution that was generated by outdoor sources and ventilated indoors (It(outgen)),

and pollution that was generated by indoor sources (It(ingen)), as shown in Figure

2.13.
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Figure 2.13: Indoor- and outdoor-generated components of total observed indoor
(reactive pollutant): Time series showing the indoor concentration of a reactive pollutant (It)
and its components: the pollution that was generated outdoors (It(outgen)) (light grey) and the
pollution generated indoors (It(ingen)) (dark grey). The solid green line represents the total

observed indoor concentration of an inert pollutant. The dashed green line represents the indoor
concentration of an inert pollutant with no indoor sources. The equivalent components are shown

in faint blue lines for an inert species.

The equations for the two components are as follows:

It(ingen) =
F

kvent + ksink
+ (I0(ingen) −

F

kvent + ksink
)e−(kvent+ksink)t (2.14)

It(outgen) =
Okvent

kvent + ksink
+ (I0(outgen) −

Okvent
kvent + ksink

)e−(kvent+ksink)t (2.15)

2.5 Methods to estimate exposure metrics and

exposure determinants from the application

of the continuity equation to indoor and out-

door data

2.5.1 The ventilation rate of an indoor space

Time-lag between indoor and outdoor levels to estimate kvent (Lag method):

In a scenario where there are no indoor sources of an inert species (Case Study 1),

the ventilation rate of an indoor space can be estimated as the reciprocal of the

lag between the indoor and outdoor concentrations of the inert pollutant. This is

proved mathematically in Appendix A.2.3.
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Constant decay method to estimate kvent: In a scenario where there are indoor

sources of an inert species (Case Study 2), the ventilation rate of the indoor space

can be estimated from the decay after the indoor emission event (the constant decay

method). This method assumes that the indoor sources are instantaneous events

with no additional indoor sources of pollution during the decay, and that the outdoor

level of the pollutant is constant during the decay. Although technically this method

only requires the data points at the beginning and end of the decay, using all data

points in the decay can improve the precision of the kvent value.

2.5.2 The indoor loss rate of a reactive species

Indoor/outdoor (I/O) ratio to estimate ksink: In a scenario where there are

no indoor sources of a reactive species (Case Study 3), ksink can be estimated from

the I/O ratio of the reactive pollutant. If kvent and ksink are considered constants

over a time period, It(outgen) is just a scaled version of Ot.

It(outgen)
Ot

=
kvent

(kvent + ksink)
(2.16)

If kvent is known, ksink can be estimated from the I/O ratio of a reactive species in

the absence of sources of the reactive species.

Constant decay method to extract ksink: In a scenario where there are in-

door sources of a reactive pollutant (Case Study 4), the indoor loss rate of that

pollutant can be estimated by fitting exponential curves to decaying regions of the

indoor emission events (the constant decay method) in the indoor data of a reactive

species. As the exponential decay rate after an indoor reactive pollution spike is the

cumulative effect of ventilation and the indoor loss processes, a known ventilation

rate can be applied to estimate ksink. This method assumes that the indoor sources

are instantaneous events with no additional indoor sources of pollution during the

decay, and that the outdoor-generated component of indoor air of the pollutant is

constant during the decay.

2.5.3 Concentrations of indoor- and outdoor-

generated components of indoor air

Indoor- and outdoor-generated components of indoor pollution for inert

species: For an inert species, the ventilation rate can be applied to outdoor data
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to generate the outdoor-generated component of indoor air. This time series is then

subtracted from indoor data to isolate the indoor-generated component of indoor

air. The components were shown in Figure 2.8.

Indoor- and outdoor-generated components of indoor pollution for reac-

tive species: The ventilation rate and indoor loss rate can be applied to outdoor

data to estimate the outdoor-generated component of indoor air. This time series

is then subtracted from indoor data to isolate the indoor-generated component of

indoor air. The components were shown in Figure 2.13.

2.5.4 Characteristics of indoor emission events

Strong indoor emission events (sources) in the indoor-generated component of indoor

air are of particular interest with respect to health (in this example, “strong indoor

emission events” are defined as over the 90th percentile of the indoor-generated

component). Figure 2.14 shows different characteristics of indoor emission events

which may act as metrics in health models.

Figure 2.14: Characterising indoor emission events: A time series of the indoor-generated
component of indoor air of an inert species is shown in blue. The 90th percentile of the

indoor-generated component is shown with a black dashed line. Quantifiable characteristics of
emission events are indicated.
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2.6 Chapter summary

This chapter introduced the continuity equation, and included a description of the

exposure determinants. It provided simulated case studies to explore how the appli-

cation of the continuity equation to indoor and outdoor measurements can form the

basis of a methodology to source-apportion indoor exposure into pollution generated

from indoor sources and outdoor sources.
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Chapter 3

AIRLESS dataset

This chapter presents the data and previous work performed as part of the “AIR

pollution on cardiopuLmonary disEaSe in urban and peri-urban reSidents

in Beijing” (AIRLESS) project, which took place in China. The methodological

framework outlined in Chapter 2 has been applied to the data from the AIRLESS

project.

3.1 Air quality in China

The majority of air pollution epidemiology studies used cohorts living in Europe and

North America. The work in this thesis develops a methodological framework using

a dataset from China. It is important that epidemiological studies are conducted

in China as inconsistencies between pollution-health associations made in China

compared with developed countries may arise. They may be a result of overlooking

differences in industrial activities, behavioural and socioeconomic factors, as well as

topography. For example, size distributions of outdoor airborne particles have been

shown to vary by country103 and it is likely that their composition may be different

too. Furthermore, studies have found that genetics can influence the health response

to particulate matter158;115;113.

China has experienced rapid industrialisation, urbanisation, and transportation de-

velopment83 which has led to outdoor pollution levels that are consistently well

above the upper limits indicated by the WHO guidelines83;6. Figure 3.1 shows the

differing particulate matter levels in select cities around the world.

The framework developed in this thesis was only applied to data collected in China,
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Figure 3.1: Air pollution around the world: This figure is a visualisation of data from the
2022 World Air Quality Report43, created by VC Elements140. The PM2.5 levels in selected cities
are compared to the WHO ambient guidelines155. The majority of air pollution epidemiology

studies used cohorts living in Europe and North America. The selected cities in these continents
have lower levels of PM2.5 than the Chinese cities.

which restricts the interpretation of results to the context of China. Nevertheless,

the framework has been designed to be applicable to studies with similar designs in

different countries.

3.2 AIRLESS study overview

In 2016, over 150 UK and Chinese scientists joined forces to understand the causes

and impacts of air pollution in Beijing. The research programme“Atmospheric Pol-

lution and Human Health in a Chinese Megacity” (APHH) had the ultimate aim of

informing air pollution solutions and thus improving public health. AIRLESS was
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an APHH project between King’s College London, Imperial College London, the

University of Cambridge and Peking University65. The aim of the project was to

investigate the associations between exposure to multiple air pollutants and changes

in health outcomes with a focus on cardiopulmonary biomarkers in urban and ru-

ral residents in China52. Members of the Jones group focused on developing and

deploying a lower-cost portable sensor platform to measure the concentrations of

pollutants that participants were exposed to. In addition to the personal expo-

sure measurements, comprehensive outdoor reference measurements were collected

as part of the project.

The full protocol for the AIRLESS study can be found at https://acp.copernicus.

org/articles/20/15775/2020/.

3.3 Participant overview

The study was organised as a panel studya , repeated in two seasons, winter (Nov

2016- Jan 2017) and summer (May- June 2017). The participants were recruited

from two locations. The participants of the urban cohort lived close to the Peking

University (PKU) Hospital, Beijing. The rural cohort lived in the Pinggu district

(formerly Pinggu county), an area around 80km east of Beijing52. In total, 251

individuals participated in this study:

• Winter Beijing: 123 participants

• Winter Pinggu: 128 participants

• Summer Beijing: 102 participants

• Summer Pinggu: 116 participants

The following information was collected through a baseline questionnaire after the

participants were enrolled51:

• Demographic information (e.g. gender, age, education, income)

• Current and past domestic energy use patterns (e.g. types of fuels and stoves,

frequency of cooking and heating stove use)

aA panel study is a type of longitudinal research where data is collected from the same individ-
uals repeatedly over a period of time and changes are detected
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• Active and second-hand smoking history (only current non-smokers were re-

cruited)

• Dietary habits (e.g. consumption of alcohol, coffee/tea, sugar beverage drink-

ing, fried food, vegetables)

• Sleep quality

• Daily activity patterns (transportation, exercise, and potential exposure sources)

• Major health conditions, events, and diagnoses of non-cardiovascular outcomes

since the original enrolment

• Regular medication or supplement usage

• Characteristics of their homes (window and door features, floor of building

where they reside)

Figures 3.2 and 3.3 show selected participant statistics for the AIRLESS cohort,

collected using this questionnaire.

Figure 3.2: Age distribution: Stacked histogram of the ages of the participants in the
AIRLESS cohort, split by residence site, N=251. The mean age for the Beijing cohort was 65.7

and the mean age for the Pinggu cohort was 60.7.

The Beijing cohort were mainly retired (108/123), with a few participants work-

ing in education (11/123)(principally employees of Peking University), whereas the

Pinggu cohort mainly worked in the agricultural sector (76/128) and in housekeeping

(16/128). The Beijing cohort had a similar number of male and female participants,

whereas the Pinggu cohort had a higher ratio of females (77/123). Gas was found to
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Figure 3.3: Participant statistics of the AIRLESS cohorts: a.) and b.) Pie charts of
gender breakdown for Beijing and Pinggu respectively. c.) and d.) Pie charts of cooking fuel type
for Beijing and Pinggu respectively. e.) and f.) Pie charts of occupations for Beijing and Pinggu
respectively. Data is for 251 participants, N=123 in Beijing (left) and N=128 in Pinggu (right).
LPG = Liquefied Petroleum Gas. All information displayed was collected using a questionnaire.

be the most common cooking fuel in both cohorts (natural gas for the Beijing cohort

and LPG for the Pinggu cohort); however, there was also a significant fraction of

the Pinggu cohort who relied on biogas (28/123) or biomass (11/123) burning as

their primary cooking fuel.

3.4 Outdoor reference instruments

Two air quality monitoring stations recorded outdoor air pollution levels in prox-

imity to most participants’ residential addresses: one for the urban cohort (Beijing)

and one for the rural cohort (Pinggu). These stations will be referred to as the

“reference instruments”. The Pinggu residents all live within 5 km of the reference

instrument. Most of the Beijing residents live within 5 km of the reference instru-
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ment, as shown in Figure 3.4.

Figure 3.4: Home and reference instrument locations: Maps showing the locations of the
participants’ homes (blue) and the locations of the reference instruments (red). The top left map

shows the homes of all Beijing participants. The top right is zoomed in to show that the
proximity of the majority of the Beijing participants’ homes to the reference instrument. The
bottom map shows the homes of the Pinggu cohort. Maps have been generated from Google

Maps using an API key.

The Beijing reference instrument was located on the PKU campus in the Haidian

district of Beijing. It was on the roof of a six-storey building and was away from di-
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rect emission sources (limited vehicles allowed on the campus). The Pinggu reference

instrument was deployed on the roof of a one-storey building. The data collected at

the reference instruments will be referred to as “outdoor data” for the purposes of

this report. Measurements from these reference instruments in Beijing and Pinggu

have been shown to be a suitable alternative to measurements directly outside peo-

ples’ homes163 when performing source-apportionment. The sampling interval of the

reference instruments was 1 minute. The measurements from these reference instru-

ments are typical of the data previously used to derive personal human exposure

metrics.

Appendix A.3.1 contains the specific technologies used in the reference instruments.

Collection rate of reference air quality measurements

The percentage of minute-resolution outdoor data recorded during the AIRLESS

campaign is shown in Table 3.1.

Percentage of minute-resolution reference data recorded during the AIRLESS Campaign 

Pollutant Winter (7th Nov- 21st Dec 2016) Summer (22nd May- 21st June 2017) 

Beijing Pinggu Beijing Pinggu 

CO 85.90 85.26 84.72 96.40 

NO 95.82 94.91 94.49 95.50 

NO2 99.94 94.85 94.49 95.50 

O3 91.98 94.43 94.56 73.97 

PM2.5 95.83 91.07 94.87 1.66 (99.68*) 
 

Table 3.1: Recorded reference data: A table containing the percentage of minute-resolution
reference data during the AIRLESS field campaign for the five key species. *This value

represents the percentage of reference data after interpolation between hour-resolution data.

The reference instrument in Pinggu only measured PM2.5 at hour-resolution (as

opposed to minute-resolution) during the summer campaign, resulting in a low per-

centage of recorded data. In this thesis, the PM2.5 data collected in Pinggu in the

summer has been estimated between the hourly measurements, for each minute,

using linear interpolation.

3.5 Personal exposure measurements

The assessment of the pollution exposure that individuals receive requires a portable

device, capable of accurately measuring pollutant concentrations.

The Personal Air Monitor (PAM) was used in the AIRLESS study to measure the
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personal exposure of the participants. Each participant was given a PAM for one

continuous week in the winter and one continuous week in the summer. The de-

vice was developed at the Department of Chemistry, University of Cambridge, in

collaboration with Atmospheric Sensors Ltd22. The PAM is an autonomous sensor

platform of multiple sensors for physical and chemical parameters. The combined

cost of the sensors alone is less than £600 and the total cost of the PAM is less than

£2000, making it a “lower-cost” system29 . The sampling interval of the gaseous

pollutants and particulate matter for the AIRLESS project was set to 1 minute. At

this time resolution, a single charge lasts for 20 hours. The data is stored on an

SD card inside the monitor and uploaded through a General Packet Radio Service

(GPRS) to a secure access FTP server.

The air pollution sensors in the PAM are miniaturised, allowing the platform to

be highly portable (around 400g), and small enough to be worn by a participant

during daily life. Electrochemical sensors (ECs) are used to measure gaseous pol-

lutant concentrations and an Optical Particle Counter (OPC) measures Particulate

Matter (PM) concentrations. A table describing the specific electrochemical sensors

and OPC can be found in Appendix A.3.1. Technical descriptions of the operating

principles of the EC sensors and OPC are found in Appendix A.3.2. The PAM

collects temperature and relative humidity (RH) measurements to assess the ther-

mal environment of the participant, as well as auxiliary parameters, such as noise,

acceleration and Geo-coordinated Position System (GPS) data which can be used

for activity assessment.

As the PAM was developed to capture personal exposure of participants, it is impor-

tant that it can accurately measure pollutant levels. RMSE values summarise the

mean difference between measurements from the PAM sensors and certified instru-

ments from a co-location period. Indoor and in-transit co-location deployments in

the UK, China, Germany, and Kenya across seasons have been organised to evaluate

the performance of the PAM under different conditions73. The PAM parameters are

shown in Table 3.2.

It has been demonstrated that the performance of the PAM’s components can be

comparable with the performance of reference instrumentation across a wide range

of conditions, including in indoor environments, diverse outdoor environments and

in static and non-static deployments22.

PAM calibration and validation

To calibrate the PAM for the AIRLESS project, four co-location periods of the PAM

and reference instrument took place in Beijing for 19 days before and after the winter
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Table 3.2: PAM parameters: A table summarising the parameters measured by the PAM,
including the method used and the error associated (for pollutant parameters)22. These RMSE
values were calculated during a deployment in the UK. Due to unavailable measurements, the
PM measurements in the UK could not be corrected for RH effects, which resulted in only a
moderate correlation with the reference instrument22;73. A table containing the names of the

specific electrochemical sensors and OPC can be found in Appendix A.3.1.

and summer campaigns of the AIRLESS project. The calibration parameters were

extracted from these periods with similar environmental conditions and in the same

geographical area in which the monitors had been or were to be deployed.

Figure 3.5: PAM calibration: The time series of the pollutants measured by the PAM (blue)
closely follow the reference instruments (red) in both the calibration (Figure 3.5a) and validation
(Figure 3.5b) periods during the outdoor co-location after the winter campaign. These figures

have been taken from Chatzidiakou et al.22.

The time series of the pollutants measured by the PAM closely follow the reference

instruments in both a calibration (Figure 3.5a) and validation (Figure 3.5b) period.

Collection rate of personal air quality measurements

The percentages of minute-resolution data collected by the participants during the

campaign are shown in Table 3.3.
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Percentage of minute-resolution PAM data recorded by the AIRLESS cohort 

Pollutant Winter  Summer  

Beijing Pinggu Beijing Pinggu 

CO 96.32 95.05 97.77 95.89 

NO 93.98 98.70 88.45 94.89 

NO2 80.26 73.51 84.27 71.83 

O3 80.87 81.70 82.71 84.43 

PM2.5 97.98 92.64 94.39 86.92 
 

Table 3.3: Recorded PAM data: A table containing the percentage of minute-resolution
PAM pollutant data recorded by participants during the AIRLESS field campaign for the 5 key

species. This is after post-processing and calibration.

3.6 Determination of the microenvironment of the

participant

An automated time-activity model is used in this thesis to classify the main mi-

croenvironments visited by the participants20 while carrying the PAM. The model

computes the space-time utilisation distributions of the GPS coordinates for each

participant and classifies the microenvironment and activity using metrics such as

time spent in each location, re-visitation rate and metrics of directional movement

(Figure 3.6). The detected microenvironments are: home, work and transit. A

further step was taken to split the “work” category into “work indoors” and “work

outdoors”, as described in Appendix A.3.3.

Figure 3.6: Time-activity model: A flowchart showing the steps involved in determining the
microenvironment of a participant in the time-activity model.
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Results from this time activity model, and a recent extension to this model (not

applied in this work) have been evaluated against manual time-activity logs kept by

participants20;21.

The time-activity breakdown for the AIRLESS cohort is shown in Figure 3.7 and

shows that the participants across both locations and seasons spend the majority of

their time at home.

Figure 3.7: Results from the time-activity model: Pie charts displaying the proportion of
time that the participants spent in different microenvironments for both seasons and locations.

Participants across all four categories appear to spend most of their time at home.

There are missing location data points in the Pinggu cohort (Figure 3.7). Missing

time-activity assignments were found to be more prevalent during haze events. Haze

events in China have been shown to affect the zenith tropospheric delay (ZTD),

which refers to the amount of time it takes for radio waves to pass through the

Earth’s atmosphere from the GPS satellite to the GPS receiver on the ground.

High atmospheric particle concentrations, such as during haze events, can lead to

scattering and absorption of GPS signals, leading to an increase in ZTD, resulting

in error and missing values150.
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3.7 Health data collection

Biomarkers were collected for each participant on days 0, 3 and 7 between 8:30am-

9am, except for Peak Expiratory Flow (PEF) measurements, which were measured

every morning by each participant and written down in a diary. A full list of the

health measurements is shown in Table 3.4.

Table 3.4: Health measurements: A table containing the measurement plans for health
markers in the AIRLESS study. This table has been taken directly from Han et al.51

Although many health markers were collected during the AIRLESS project, Article

28 of the 2021 Chinese Personal Information Protection Law states that personal

health information is considered sensitive data. At the time of writing this thesis,

only the PEF measurements were therefore available for analysis and presentation.

3.8 Chapter summary

In summary, an automated time-activity model has been applied to the data recorded

by high-performance personal air monitors (PAMs). This has captured the daily

personal exposure of hundreds of participants in China, in a range of microenviron-

ments for five pollutants, as part of the AIRLESS project. Additionally, health and

demographic information have been collected from these participants.
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Chapter 4

Application of the methodological

framework to a large scale

fieldwork study: an example

participant

This chapter demonstrates the specific computational steps involved in applying the

methods outlined at the end of Chapter 2 to the data recorded in the field with low-

cost portable sensor platforms, described in Chapter 3. The methodology is applied

to the data from a single participant from the AIRLESS dataset as a demonstration.

4.1 Assumptions of the methodological framework

In applying the continuity equation to air pollution data, assumptions are being

made (presented in Section 2.1). It is assumed that air pollutant concentrations

are homogeneous (uniformly mixed) within single zones. Below is an assessment

as to whether assumptions are expected to be upheld or broken when applying the

methodology to the AIRLESS dataset.

Firstly, the homes of the AIRLESS participants are unlikely to be single homoge-

neous indoor zones as they are made of different rooms, connected by doors that can

be open to varying degrees. Several studies of ventilation rates have been undertaken

in thousands of households49;54;63. These studies employ a single-zone approach when

conducting the tracer gas method. However, one study by Van Ryswyk et al.139 es-
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timated the bias with the single-zone assumption in measurement of residential air

exchange using the tracer gas method, compared with a “two-zone” set-up. They

concluded that the assumption of a single well-mixed air zone very likely results in

an under prediction of the ventilation rate of around 16%, compared to a two-zone

set-up. This Van Ryswyk study was conducted in Canadian homes with the two

zones on different floors of the houses (often one of the zones was in the basement).

It is likely that there are less differences between different rooms (zones) in the

homes of the AIRLESS cohort as the size of homes in China are smaller than in

Canada (on average 646 square footage compared with 1948 squared footage156),

and many of the AIRLESS population live in single-story flats, instead of in houses

of multiple floors.

Secondly, within rooms, air pollution sources are often localised. The AIRLESS

study did not involve investigations into the mixing or spatial distribution of pollu-

tants. In this work, CO is used as the tracer gas due to the strong indoor sources

as most AIRLESS households rely on LPG, natural gas and bio-gas for domestic

energy use (see Figure 3.3), however cooking stoves are a localised source in the

kitchen, which may not uphold the assumption of a homogeneous single zone. Stan-

dard protocols developed for measuring pollution for household energy projects call

for kitchen concentrations to be measured one horizontal meter from the centre of

stove and at a height of 1.5m112. One study70 evaluated how representative the CO

concentrations at 1.5m are of the kitchen’s average CO concentration. This study

was performed across 5 kitchens in India, and for a total of 70 cooking events. The

kitchen CO concentration was measured by eight CO monitors and, for each moni-

tor, was weighted by the relative volume of kitchen air represented by that monitor.

The median ratio of the eight weighted concentrations to the 1.5m concentration was

0.95, suggesting that the 1.5m location is representative of overall CO concentration

in the kitchen. Although CO measurements at a height of 1.5m may be a good es-

timate of the average CO concentration in the kitchen, it has been speculated that

spatial distribution of CO is sensitive to stove type, for example, a charcoal stove’s

plume likely has greater upward convection whereas the kerosene stove’s plume may

be more likely to be mixed70. On the other hand, CO has a slow removal rate from

the lower atmosphere (the mean residence time of CO in the lower atmosphere has

been estimated to be between 0.3 years and 5 years111) and no known indoor loss

processes, it can be considered inert in these timescales, strengthening the assump-

tion of homogeneous mixing of CO over longer time periods.

Further studies into the spatial distribution of air pollutants in homes and specific
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rooms within homes is limited. It is common for the assumption of homogeneity

to be made in tracer gas and modelling studies49;54;63;70. Some studies use a fan to

achieve homogeneity66.

4.2 Source-apportionment of personal exposure

of an inert species, including the estimation

of ventilation using the tracer gas method

4.2.1 Estimation of ventilation using the constant decay method

As mentioned in the previous section, in this work, CO is used as the tracer gas.

Two possible methods to estimate kvent were outlined in Section 2.4. The constant

decay method has been selected as the preferred method of estimating kvent as there

were strong CO peaks identified in the data. Additionally, the lag is hard to detect

in the data as the variability in the background levels is on the same time scale as

the lag.

CO data from an urban participant is used to demonstrate the individual steps when

estimating the ventilation rate.

Figure 4.1: Real data to illustrate time series features of an inert species: A time
series of outdoor PAM data (grey), indoor PAM data (blue) and outdoor reference data (red).

PAM data was recorded by Participant U143.
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The inert property of CO can be seen in the time series of this example participant;

the outdoor reference closely follows the data recorded indoors by the PAM, with the

exception of the indoor emission events which elevate the indoor CO concentration

to above the outdoor concentration.

Automated code has been developed that can estimate ventilation rates retrospec-

tively from the dataset. Figure 4.2 is a flowchart of the constant decay method,

which is followed by specific computational steps.

i) Remove PAM data recorded outdoors
ii) Detect peaks and troughs
iii) Identify decaying regions
iv) Select data in first decays region

v)   Does decaying 
region pass QA/QC?

i) Fit exponential curve to data
ii) Calculate R2

iii)   Does exponential 
curve decay pass QA/QC?

iv)   Save exponential 
curve coefficients

v)    Has last decaying 
region been analysed?

Start

End

Select data in next
decaying region

Y

Y

Y

N

N

N

Step 1

Step 2

Figure 4.2: Constant decay method steps: Flowchart of the automated code to identify and
characterise the exponential decays of indoor emission events in indoor time series. QA/QC =

quality assurance/quality control.
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Step 1: Identifying decaying regions

1i: The time-activity model, when applied to PAM data, allows for the identification

of periods when the participant was in an indoor environment. Only these data are

retained. If the ventilation of a singular microenvironment is of interest, the specific

indoor microenvironment can be selected at this stage. For this example, participant

data recorded in all identified indoor environments are retained.a

1ii: detects peaks and troughs in the indoor (PAM) time series with an automated

algorithm. Peaks were identified as the rolling maximum within 30 data points and

troughs were identified as the rolling minimum within 15 data points. These de-

tected peaks and troughs for the example participant are shown in Figure 4.3.

Figure 4.3: Peaks and troughs in indoor CO data: A time series of the indoor (PAM) CO
(blue) recorded by Participant U143. Detected peaks (green) and troughs (black) are flagged.

1iii: identifies decaying regions as periods between a peak and the following trough.

1iv: selects the data points during the first identified decaying region.

1v: applies a QA/QC approach to the decaying region. The number of data points

in the decaying region must be over 5 and the vertical range of the decay must be

larger than the (85th percentile)-(15th percentile) range of the time series. This

aims to ensure that no small decays (due to the noise of the data) are analysed.

Additionally, this algorithm assumes a constant O value over the whole decay (see

Step 2i). The drawback of this is that it does not take into account changes in

aFor this dataset, “home”, “work indoor”, “transit” were assumed to be indoor environments.
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outdoor pollution that would affect the rate of the decay. A previous study that used

CO2 as a tracer gas set a limit of 40ppm variation in outdoor CO2 during the decay
40.

If the outdoor CO2 varied more than this during the decay, the decay was rejected.

Similar considerations were made in this work. This QA/QC step additionally

rejects decaying regions where the variation in outdoor CO levels (during and for

the previous hour) was more than 20% of the vertical range of the decay.

All decaying regions that passed Step 1 are indicated in Figure 4.4 by green shading.

Appendix A.4.1 provides a demonstrative case (a 12-hour period), explaining why

certain decays after peaks pass this QA/QC step, and why other do not.

Figure 4.4: Identified decaying regions detected during Step 1: A time series of the
indoor (PAM) CO (blue) recorded by Participant U143, the outdoor (reference) data (red). The

decaying regions that passed through Step 1 are indicated by green shading.

Step 2: Fitting exponential curves

2i: assumes that the indoor (PAM) data points within the decaying region are

decaying exponentially and fits an exponential curve by the general formula:

y = a+ be−cx (4.1)

Where:

• y is It

• a is O, which is assumed to be the mean of the outdoor time series during the
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decay*

• b is I0 (the peak height)

• c is kvent

• x is t

giving Equation 2.7.

*The mean outdoor values are calculated using reference data recorded during the

decay and during the hour before the start of the decay. These mean values are

plotted for all decaying regions that were accepted through Step 1 in Figure 4.5.

Figure 4.5: Mean outdoor levels during decaying regions: A time series of the indoor
(PAM) CO (blue) recorded by Participant U143, the outdoor (reference) data (red) and the

mean* outdoor values (black). *The mean outdoor values are calculated during the decay and
during the hour before the start of the decay and are plotted for the decaying regions.

Two possible fitting methods have been considered to estimate the exponential co-

efficients from the data. The first method fits an exponential curve to the raw

data using a least squares fit. The second method performs a log transformation of

the data, and then linear regression is used to estimate the coefficients. These two

methods produce slightly different coefficients, but the second method is selected as

a weighted fit towards smaller y values is not desirable. This is explored further in

Appendix A.4.2.

Figure 4.6 shows the fit of an exponential curve to the first decaying region in the

example participants’ data.

53



Application of the methodological framework to a large scale fieldwork
study: an example participant

Figure 4.6: Fit of exponential decay to data within a single decaying region: Indoor
CO data measured by the PAM (blue) from 10:20 to 17:00 on 01/12/2016. An exponential curve
has been fitted to the data between the peak and trough. *The mean outdoor value is calculated

during the decay and during the hour before the start of the decay and is plotted for the
decaying region.

2ii: To assess whether the decay can be described by an exponential fit, the natural

logarithm of the decay was compared against the natural logarithm of a modelled

exponential curve using linear regression. The goodness-of-fit of the logged expo-

nential curves was assessed with the r2 value of the fit.

2iii: applies a QA/QC approach to the exponential curve. The estimated venti-

lation rates (c) were retained only if they were positive (so that e−cx decays) and

the r2 was larger than 0.75 indicating that the log of the decay is almost linear,

and that there are no additional strong sources of the pollutant during the decay

(it is assumed that the indoor source is instantaneous (minute-long) as mentioned

in Section 2.4). The resultant curves are plotted in Figure 4.7, and the decay rates

are compared in Figure 4.8.
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Figure 4.7: Fit of exponential decays to data within identified decaying regions: A
time series of the indoor PAM CO concentration (blue) recorded by Participant U143 with

exponential curves that passed QA/QC Step 2iii, fitted to the decaying regions that passed the
QA/QC Step 1v. The indoor PAM data have been plotted at 70% transparency so that the fitted

exponential decays are more visible.

Figure 4.8: Visualisation of estimated ventilation rates: Three plots for visualisation of
the ventilation rates estimated from Figure 4.7. The colours selected in these three plots

correspond to the colours of the exponential decays in Figure 4.7. a.) Simple scatter plot of the
estimated ventilation rates, along with the standard errors. b.) Graph of y = e-cx decays where c
are exponential decay rates and x takes values between 0-3 hours. This is to allow for easy visual
comparison of the decay rates. c.) Natural logarithms of the exponential curves from b. The loss

rates for the fastest and slowest decays have been included in the figure.

2iv: The coefficients of the exponential decays were saved in a table of a relational

database together with other contextual information. This is shown for the example

participant in Table 4.1. For this example, the time section length during which the

decay rate was analysed was set to be 12 hours. Letters of the alphabet are used to
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denote 12-hour time sections in chronological order starting at 6am before data was

recorded, with the letter a. 12-hour time sections starting at 06:00 and 18:00 were

selected to capture differences between night and day.

Table 4.1: Table of coefficients: Table of the coefficients of the exponential curves that were
saved for Participant U143 in Step 2iv, along with additional contextual information. r2 is the
value calculated in Step 2ii. Microenvironment here refers to the mode microenvironment of the

participant during that specific decaying region.

Coefficients and contextual information for all participants were appended as rows

as the algorithm iterated.

4.2.2 Estimation of the outdoor-generated component of in-

door levels of an inert species

The outdoor-generated component It(outgen) for an inert species is the outdoor time

series but with the ventilation rate applied. Ventilation rates may have large tempo-

ral variation driven by changing wind velocities and temperature gradients between

the indoor and outdoor microenvironments. Time sections where no kvent value was

estimated using the constant decay method do not have a 12-hour constant value.

Time sections with one kvent value use this value as their 12-hour constant value.

Time sections with more than one kvent value will use a mean value, calculated using

inverse-variance weighting. This is justified further in Appendix A.4.3. The resul-

tant 12-hour constant kvent values for this participant are in the lower section of

Table 4.2.
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Table 4.2: Calculating ventilation rate for each time section: The top table is the “time
section” and “c” columns from the table in Figure 4.1. The bottom table shows the calculated

kvent values for each 12-hour time section. All values are for Participant U143.

These ventilation rates can then be applied to their respective 12-hour time sections

of the data through the relationship in Equation 2.7 to produce a time series of

It(outgen). This is plotted in Figure 4.9.

Figure 4.9: Applied ventilation rates to outdoor data: A time series of the indoor (PAM)
CO (blue) recorded by Participant U143 and the CO reference data (red). The

outdoor-generated component of indoor air (It(ingen)) is plotted (purple). This has been
generated by applying the ventilation rates shown in Figure 4.2 to their respective 12-hour time

sections. The indoor (PAM) data and outdoor (reference) data have been plotted at 70%
transparency so that It(outgen) is more visible.

To find the indoor-generated component (It(ingen)), the outdoor-generated compo-

nent (It(outgen)) is subtracted from the indoor (PAM) time series.
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4.2.3 Source-apportionment for all time sections for an inert

species

The number of kvent values estimated from the AIRLESS dataset, broken down by

location and season, can be found in Chapter 5, Figure 5.8. 160 out of the 469

time series from the AIRLESS project had no assigned kvent values due to a lack

of indoor CO indoor emission events in the data. Therefore many time sections

had no assigned kvent value. For time sections with insufficient CO indoor emission

events, the It(outgen) (and therefore It(ingen)) time series cannot be generated using

this method. An alternative method can estimate values of It(outgen) and It(ingen) over

coarse time intervals if it is assumed that the last term in Equation 2.7 tends to 0,

and so the time lag between indoor and outdoor data, due to ventilation, is assumed

insignificant. Having made this approximation, the indoor-generated and outdoor-

generated components of CO are plotted in Figure 4.10. The outdoor-generated

time series is assumed to be the same as the outdoor level. The outdoor time series

was subtracted from the indoor PAM data to produce the indoor-generated time

series.

Figure 4.10: Indoor- and outdoor-generated components of CO time series: A time
series of outdoor (PAM) data (grey), the indoor-generated component of the CO (It(ingen))

(black) and the outdoor-generated component of the CO (It(outgen)) (orange). PAM data was
recorded by Participant U143. This participant spent very little time outdoors.

12-hour averages of indoor- and outdoor-generated components of personal exposure

are calculated to be used in pollution-health models. As participants do not spend

all of their time indoors, the following considerations are made:
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For the outdoor-generated component: participants breathe outdoor-generated pol-

lution when outdoors (grey) and when indoors (outdoor-generated component of

indoor air)(orange). Participants are always exposed to outdoor-generated expo-

sure and so the mean of the orange and grey lines represents the outdoor-generated

component of total personal exposure.

For the indoor-generated component: participants are assumed to only breathe

indoor-generated pollution when in an indoor environment. Participants are not

always indoors, so to account for that, the average of the indoor-generated compo-

nent measured indoors (black) must be time-weighted (multiplied by the proportion

of time that the participant is indoors).

The results for this participant for all 12-hour sections are shown in Figure 4.11.

The results for the whole dataset are shown in Chapter 5.

Figure 4.11: Averages of indoor- and outdoor-generated components of total
personal exposure to CO for the example participant: Stacked bar chart showing 12-hour
estimates of the exposure of Participant U143 to indoor-generated and outdoor-generated CO.
Indoor-generated exposure has been time weight adjusted. When a participant is outdoors, it is

assumed that participant is only exposed to outdoor-generated CO.

For the example participant shown in Figure 4.11, the proportion of indoor-generated

to outdoor-generated is generally higher in the day (06:00-18:00) than in the night

(18:00-06:00). Effects like these are quantified for the whole population in Figure

A.8.
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4.3 Source-apportionment of personal exposure

of a reactive species

Figure 4.12 shows that there are evident indoor loss processes for NO2 for Participant

U143 as the indoor level recorded by the PAM is predominantly lower than the

outdoor (reference) level.

The outdoor-generated component of indoor concentrations for a reactive species is

estimated by applying the ventilation rate and indoor loss rate to outdoor data. As

mentioned in Section 4.2.2, many time sections do not have an assigned kvent value.

Therefore the I/O ratio is used for apportionment of a reactive species instead of

using the loss rate and ventilation rate.

Figure 4.12: Real data to illustrate time series features of a reactive species: A time
series of outdoor (PAM) NO2 data (grey), indoor (PAM) NO2 data (blue) and the NO2 outdoor

(reference) data (red). PAM data was recorded by Participant U143.

It is assumed that the I/O ratio remains constant for the 12-hour time sections,

although in reality, it is likely more dynamic. The estimation of the I/O ratio for a

single time section is shown in Figure 4.13 for the example participant.
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Figure 4.13: Single time section of NO2 indoor and outdoor levels: The 13th 12-hour
time section of Figure 4.12 (the time section labelled “m”). The indoor (PAM) NO2 data is blue

and the NO2 outdoor (reference) data is red. PAM data was recorded by Participant U143.

There are three steps to source-apportion the indoor level of a reactive species:

Step 1 The I/O ratio is estimated using time points where there is an absence

of indoor sources. For each time point, the indoor (PAM) data is divided by the

outdoor (reference) data. Only the time points where this results in a number less

than 1 are retained. This removes the strong indoor emission events in the indoor

PAM data (blue) in Figure 4.13. Note, if there is a constant indoor source of the

pollutant (strong enough that that the indoor level is higher than the outdoor level),

time points are not retained past this step. This methodology is not appropriate for

pollutants with strong constant indoor sources of pollution.

Step 2 The remaining values of the indoor (PAM)/outdoor (reference) for this 12-

hour period are plotted in a histogram as shown below (Figure 4.14). The selected

I/O ratio is the mode of the distribution. For this example time section, the I/O

ratio is 0.475.
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Figure 4.14: Indoor/outdoor histogram for single time section: A histogram of every
indoor (PAM)/outdoor (reference) data point larger than 1 for the 12 hours of data being

analysed. Sturges’ breaks are used to bin the data. PAM data was recorded by Participant U143.

Step 3 The outdoor-generated time series is produced by multiplying the outdoor

(reference) data by the optimum I/O ratio as shown in Figure 4.12 (the red time

series is multiplied by the optimum I/O ratio (0.475) to produce the orange time

series).

Figure 4.15: Outdoor-generated component of indoor air for single time section: A
12-hour time series of the indoor (PAM) data (blue), the outdoor (reference) data (red) and the

outdoor-generated time series (orange). PAM data was recorded by Participant U143.

Figure 4.15 shows the outdoor-generated pollution (orange). The blue spikes above

the orange correspond to indoor-generated emission events. This methodology is
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applied to every 12-hour time section for this participant and the results are shown

in Figure 4.16.

Figure 4.16: Outdoor-generated component of NO2 time series: A time series of
outdoor (PAM) NO2 data (grey), indoor (PAM) NO2 data (blue), NO2 outdoor (reference) data

(red), and outdoor-generated NO2 (orange). PAM data was recorded by Participant U143.

The emission events that correspond to indoor-generated pollution (It(ingen)) can

be isolated by subtracting the outdoor-generated pollution (It(outgen)) (orange) from

the PAM indoor measurements (blue). The indoor-generated (black) and outdoor-

generated (orange) components of the indoor PAM measurements are plotted to-

gether in Figure 4.17.
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Figure 4.17: Indoor- and outdoor-generated components NO2 exposure for the
whole of the example participant’s time series: A time series of the indoor-generated NO2

time series (black), the outdoor-generated NO2 time series (orange), and the outdoor (PAM)
NO2 data (grey). PAM data was recorded by Participant U143.

12-hour averages of indoor- and outdoor-generated components of total personal

exposure are calculated in the same way as for an inert species, as in Section 4.2.3.

The results for this participant for all 12-hour sections are shown in Figure 4.18.

Figure 4.18: Averages of indoor- and outdoor-generated components of total
personal exposure to NO2 for the example participant: Stacked bar chart showing

12-hour estimates of the exposure of Participant U143 to indoor-generated and outdoor-generated
NO2. Indoor-generated exposure has been time weight adjusted as it is assumed that

participants, when in an outdoor environment, are only exposed to outdoor-generated NO2.
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For the example participant shown in Figure 4.18, the proportion of indoor-generated

to outdoor-generated is generally higher in the day (06:00-18:00) than in the night

(18:00-06:00).

4.4 Estimation of indoor pollutant loss rates

As mentioned in Section 2.2, indoor reactive and particulate species can have many

fates, including reacting, depositing onto surfaces and transforming into many prod-

ucts. Quantities of indoor loss rates are key exposure determinants and can be used

to model pollution exposure in population-scale studies. The computational steps

to estimate the indoor loss rate, via two methods, are detailed below.

4.4.1 Estimation of the indoor loss rate using the I/O ratio

Using the relationship in Equation 2.16 (repeated below), a constant value of ksink

can be estimated from each 12-hour time section if the corresponding I/O ratio and

kvent for the 12-hour period are known. Methods of estimating the I/O ratio and

kvent for 12-hour time sections were detailed in Sections 4.3 and 4.2.1 respectively.

It(outgen)
Ot

=
kvent

(kvent + ksink)
(2.16)

The results of this are shown in Table 4.3 for each 12-hour time section for the

example participant.

Table 4.3: Estimated indoor loss rates using the I/O ratio method: A table showing
the constant values of kvent and I/O ratio for each 12-hour time section, and the resultant
calculated constant ksink values. All data shown is for Participant U143 and the reactive

pollutant being analysed is NO2.
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4.4.2 Estimation of the indoor loss rate using the constant

decay method

Alternatively, the indoor loss rate can be estimated from the decay rates of indoor

emission events using the constant decay method. The automated steps to iden-

tify and characterise exponential decays were outlined in Figure 4.2. For a reactive

species, the asymptote of the decays is the mean outdoor-generated component dur-

ing the decay. Figure 4.19 shows the indoor PAM data (It), the outdoor-generated

component of indoor air (It(outgen)) and the mean It(outgen) values during identified

decaying regions (calculated from data recorded during the decay and during the

hour before the start of the decay).

Figure 4.19: Mean outdoor-generated component levels during decaying regions: A
time series of the indoor (PAM) NO2 (blue) recorded by Participant U143, the outdoor-generated

component of indoor NO2 (It(outgen)) (orange) and the mean* It(outgen)values (black). *The
mean It(outgen)values were calculated from data recorded during the decay and during the hour

before the start of the decay and are plotted for the decaying regions.

The fitted exponential curves are plotted in Figure 4.20.
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Figure 4.20: Fit of exponential decays to data within identified decaying regions: A
time series of the indoor (PAM) NO2 (blue) recorded by Participant U143 with fitted exponential
curves (red). The exponential curves and decaying regions passed the same QA/QC requirements

as in Section 4.2.1 with fitting exponential curves to inert data to estimate ventilation. The
indoor (PAM) data have been plotted at 70% transparency so that the fitted exponential decays

more visible.

As the decay rates are the cumulative influence of ventilation and indoor loss pro-

cesses, to calculate a value of ksink from these decay rates, a value of kvent must

be subtracted. The value of kvent is assumed constant for each 12-hour section. A

constant kvent value for each 12-hour section was calculated using the methodology

detailed in Section 4.2.2 and the values were tabulated in Figure 4.2. Figure 4.21a

shows the CO exponential decays that were used to infer ventilation rates for 12-

hour time sections. These ventilation rates are plotted for their respective 12-hour

time section in Figure 4.21b. Figure 4.21c is a repeat of Figure 4.20 and allows for

visualisation of the timing of the NO2 decays with respect to the 12-hour time sec-

tions. Figure 4.22 directly compares the CO and NO2 decay rates measured within

the same time section using graphs of y=e-cx. c are exponential decay rates of both

CO and NO2 decays and these plots have been produced for a 2-hour period, for

each time section with at least one NO2 decay.
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Figure 4.21: Comparison of exponential decays in CO and NO2 data: a.) Indoor
(PAM) CO (transparent blue) with exponential decays fitted (dark blue). Ventilation rates are
inferred from the decay rates of the dark blue exponential curves. This plot contains identical

data to Figure 4.7. b.) The 12-hour constant kvent values calculated in Figure 4.2, inferred from
a. c.) Indoor (PAM) NO2 (transparent blue) with exponential decays fitted (green). This plot

contains identical data to Figure 4.20.
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Figure 4.22: Comparison of decay rates in CO and NO2 data: Plots of y=e-cx decays
where c are exponential decay rates, estimated from CO (dark blue) and NO2 (green) time series.
x takes values between 0-2 hours and have been produced for each time section with at least one
NO2 decay. Dotted decays have used the calculated constant kvent value for the time section and
are plotted for time sections where more than one kvent was recorded. The green more frequently
decays faster than the dark blue however there are cases when this is reversed, which result in

negative ksink values.

Occasionally the exponential decays from the CO time series are faster than the

exponential decays in the NO2 series. This results in a negative outputted ksink

value. This may be due to increases in ventilation, for example from opening a

window, which aren’t captured in the assumed constant ventilation rate for the

12-hour section.

4.4.3 Comparison of the indoor loss rate from the two esti-

mation methods

The estimated ksink values for this example participant using the two estimation

methods are plotted in a histogram in Figure 4.23 and are compared for each time

section in Figure 4.24. Section 5.2.2 explores how the differences between the meth-

ods could be investigated.
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Figure 4.23: Distribution of ksink values: A stacked histogram of the values of NO2 ksink
estimated using two different methods: using the I/O ratio method (grey) and the constant decay

method (green) for Participant U143.

Figure 4.24: Comparison of the ksink values estimated for individual time sections:
Time plot comparing the estimated ksink values for NO2 estimated for Participant U143 using 2

methods. One method uses the I/O ratio and kvent value, producing a constant ksink value
(grey). The other method uses the exponential decay rates found in the NO2 data and subtracts

the constant kvent value for that time section (green).

Both of these methods involve application of the constant ventilation rate within a

12-hour time section. An alternative to would be to subtract the ventilation rate

inferred from a synchronised CO decay from the NO2 exponential decay rates in

Figure 4.21. Practically, this synchronised approach has been achieved by selecting

the CO exponential decays and the NO2 exponential decays that have some overlap

in time. This method has pros and cons:

Pros: With this alternative approach, the data being analysed for each ksink value

fall within smaller time ranges compared with subtracting a constant value of kvent

over 12 hours. The time activity model (Section 3.6) computes the space-time
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utilisation distributions of the GPS coordinates (and therefore microenvironment)

for each participant for each minute of their data. Whilst the constant kvent value

approach takes the mode microenvironment computed over the 12-hour period, the

synchronised approach takes the mode microenvironment computed only during

the synchronised exponential decays. Therefore the synchronised approach is more

useful if wanting to compare ksink for a range of microenvironments.

Cons: This alternative method requires synchronised CO NO2 decays. For the

example participant, this would not appear to be a problem as the CO NO2 decays

are often synchronised. However, most participants have fewer indoor emission

events and other reactive pollutants are not as often co-emitted with CO in the

indoor environment, therefore this approach is not suitable for this dataset.

4.5 Characterising indoor emission events

Sections 4.2 and 4.3 detailed how indoor-generated pollution can be isolated from

data recorded indoors by the PAM. These indoor-generated pollution time series

feature indoor emission events where the level of indoor pollutants increased sharply

as a result of an indoor source of pollution eg. cooking or smoking.

The characteristics of these events could provide insights into the sources which can

be used for indoor air quality modelling or health associations. Often the pollution

exposure metrics that are inputted into pollutant-health models are concentrations

averaged over coarse time periods and so the health effect of emission events is lost:

long-term exposure to low pollution concentrations may have a different health effect

than short-term exposure to high pollution levels.

This section demonstrates the methodology to extract some quantifiable character-

istics of indoor emission events. CO indoor-generated data from Participant U143

is used as an example case.

4.5.1 Detection of indoor emission events

In Step 1ii of Section 4.2.1, peaks and troughs were found in the indoor CO time

series for Participant U143. Using the same algorithm, peaks in the indoor-generated

component of indoor air can be found (peaks are defined as the rolling maximum

within 30 data points).
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Strong indoor emission events are of principal interest, so a threshold limit is used.

In the example case the 90th percentile of the indoor-generated CO time series,

calculated across the whole cohort (3495 ppb) is used.

4.5.2 Extraction of the quantity and height of peaks of in-

door emission events

Figure 4.25 plots the events in the indoor-generated data for this example partici-

pant.

Figure 4.25: Peaks of indoor emission events: A time series of the indoor-generated CO
(black) with the peak of indoor emission events (green). The 90th percentile threshold is plotted
as a dashed line. The indoor-generated CO was produced using indoor PAM data recorded by

Participant U143.

For this example, 22 indoor emission events were identified over a week of mea-

surements and the average height was 9653 ppb. The quantity and height of the

peaks of emission events can be obtained for all 12-hour time sections, pollutants

and participants in the AIRLESS cohort, and then linked with health markers using

an LMEM.

4.5.3 Extraction of area under indoor emission events

The areas of indoor emission events have been estimated as the region under the

graph between each data point of the time series as a trapezoid. The dataset contains

periods of missing data and periods where the participant was not indoors. To
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ensure that the algorithm does not approximate trapezoids over large time periods

of missing data or outdoor data, data gaps of over 2 hours are assumed to begin and

end with troughs. This avoids the algorithm overestimating the area of the events.

Figure 4.26 shows the area under the time series, but above the threshold, for the

example participant. The area is estimated in units of (ppb)x(hour).

Figure 4.26: Area under indoor emission events: A time series of the indoor-generated CO
(black). The 90th percentile threshold is plotted as a dashed line. The area under the time series
(estimated using the trapezoid rule) above the 90th percentile threshold shown in orange. The
indoor-generated CO was produced using indoor PAM data recorded by Participant U143.

The total orange area in Figure 4.26 is estimated to be 15684 ppb hour, however this

metric can be obtained for all 12-hour time sections, pollutants and participants in

the AIRLESS cohort, and then linked with health markers using an LMEM.

4.5.4 Extraction of the duration of indoor emission events

A metric of the duration of indoor emission events has been calculated for the data

above the threshold. The duration is given as a percentage and was calculated by

dividing the number of data points recorded by the participant while their indoor-

generated pollutant level exceed the threshold, by the total number of data points

recorded by the participant while they were indoors. This is demonstrated for the

example participant’s indoor-generated CO in Figure 4.27 for the 90th percentile

threshold.
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Figure 4.27: Duration of indoor emission events: A time series of the indoor-generated
CO (black). The 90th percentile threshold is plotted as a dashed line. Along the x-axis are

orange and purple lines indicating whether the data point falls above the threshold or below the
threshold. For this example participant, 24% of the recorded data points exceed the threshold.
The indoor-generated CO was produced using indoor PAM data recorded by Participant U143.

The duration of the indoor emission events above the threshold in Figure 4.27 is

calculated as 24%:

number of data points above threshold

number of data points below threshold
=

2208

9040
= 24% (4.2)

4.6 Chapter summary

This chapter provided an example case of how the continuity equation and method-

ology outlined in Chapter 2 can be applied to PAM and reference data from the

AIRLESS dataset, as described in Chapter 3. The same methodology is applied to

the whole AIRLESS cohort. Key results and insights are presented in Chapter 5.
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Chapter 5

Assessment of personal exposure

of the AIRLESS cohort

Chapter 2 introduced a methodological framework to assess total personal exposure,

which was applied to the data from a single participant from the AIRLESS dataset

in Chapter 4.

This chapter applies this framework to the whole AIRLESS dataset, generating novel

exposure metrics and estimating values of exposure determinants. Key insights and

results are compared with literature values, focusing on results from studies in China

where available.

5.1 Novel exposure metrics from personal air qual-

ity monitoring data

Exposure refers to the extent to which an individual is in contact with air pollutants,

encompassing the duration, frequency, and concentration of their exposure. It is a

measure of the direct interaction between humans and air pollutants.

On the other hand, risk involves the probability and magnitude of adverse health

effects resulting from exposure to these pollutants. Risk integrates not only the

level and duration of exposure but also dose (influenced by the rate of breath-

ing) and factors in the susceptibility of individuals, considering variations in age,

pre-existing health conditions, and genetic predispositions. This thesis considers

exposure. Chapter 7 explains how this work could be extended to consider dose.
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Many pollution-health assessments use exposure metrics from stationary outdoor

instruments, as explored in Appendix A.1.3. Comparison of the novel metrics (gen-

erated by the application of the methodological framework demonstrated in Chapter

4 to the AIRLESS dataset) with the metrics from stationary outdoor instruments

allows for assessment of exposure misclassification.

5.1.1 Personal exposure metrics

Personal monitoring captures the effects of an individual moving between different

microenvironments. Figure 5.1 shows how pollutant concentrations measured by the

PAM varied between different microenvironments. These concentrations have been

broken down by location and season and can be found in Appendix A.5.1.

Figure 5.1: Mean concentration in different microenvironments: Box plots of averages
over 12 hour periods for CO, NO, NO2, O3 and PM2.5 exposure in four different

microenvironments, calculated from personal exposure data recorded by the PAM. The boxes
indicate the quartiles, and the whiskers indicate the minimum and maximum values.

China has published indoor and outdoor air quality standards, which can be found

in Appendices A.5.3 and A.5.2. Due to the different averaging times of the exposure

in this work and the averaging times of the standards, no direct comparisons are

made.
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For NO2, O3 and PM2.5, the levels in the “work outdoor” microenvironments were

generally higher than the other microenvironments. This suggests that the I/O

ratios for these species would be less than one; the indoor pollutant loss processes

dominate over the effects of indoor sources in these microenvironments. I/O ratios

measured in China for these species have been found to be less than one, as shown

in Appendix A.5.4.

The majority of individuals’ time was spent at home (see Figure 3.7), and as a

result, they inhale the greatest portion of all of the key pollutants while being at

home (see Figure 5.2).

Figure 5.2: Time-weighted exposure in different microenvironments: Box plots of
weighted averages over 12 hour periods for CO, NO, NO2, O3 and PM2.5 exposure in four
different microenvironments, calculated from personal exposure data recorded by the PAM.
Averages are weighted using the time proportion spent in each microenvironment. The
participants inhale the greatest portion of all of the key pollutants while being at home

Figure 5.3 compares the ambient levels measured by the reference instrument with

the total personal exposure measured by the participants carrying the PAMs. Figure

5.3 confirms that using ambient pollutant levels as a proxy for personal exposure

can result in exposure misclassification.
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Figure 5.3: Comparison of ambient levels and personal exposure: Density scatter plots,
where each point is the mean value over the time section (time sections in this report are defined
as 12-hour periods, from 06:00-18:00 and then 18:00-06:00). On the y-axis are the values recorded

by the PAM (the personal measurements) and on the x-axis are the values recorded by the
reference instruments. The 1:1 line is shown in black. The association between ambient and
personal exposure deviate from the 1:1 line in different ways for the different pollutants, as

explained in the main text.

In Figure 5.3, for CO and NO, the majority of points are above the 1:1 line. The

average personal exposure to ambient exposure ratios for these species are 1:0.51 and

1:0.65, respectively. As the participants spend most of their time at home (Figure

3.7), the difference between ambient reference instruments and personal measure-

ments suggests that there are sources of CO and NO in the home environment.

The participants breathe more CO and NO than assumed in the pollution-health

models. This suggests that the toxicity of these pollutants may be currently being

overestimated.

In Figure 5.3, for NO2, O3 and PM2.5, the majority of points fall below the 1:1

line. The average personal exposure to ambient exposure ratios for these species

are 1:182, 1:3.22, and 1:1.181, respectively. As the participants spend most of their

time at home (Figure 3.7), the difference between ambient reference instruments and

personal measurements suggests that there are indoor losses for these pollutants in

the home environment. The indoor loss rates for these pollutants are quantified in
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Section 5.2.2. The participants breathe less NO2, O3 and PM2.5 than assumed in

pollution-health models. This suggests that the toxicity of these pollutants may be

currently being underestimated.

5.1.2 Pollutant correlations in personal exposure

As explained in Section 1.2.3, correlations between pollutants can lead to error in

pollutant-health associations. The ambient measurements made by the reference

instruments during the AIRLESS project show correlations and anti-correlations

between pollutants, as shown in Figure 5.4.

Figure 5.4: Ambient correlation matrix: Pearson’s correlation coefficient values for 5 key
species. Coefficients were calculated using 12-hour mean values of the reference data.

However, in the correlation matrix for personal exposure, there are much weaker

correlations between pollutants. This may be a result of indoor sources and indoor

loss processes for these pollutants.
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Figure 5.5: Personal exposure correlation matrix: Pearson’s correlation coefficient values
for 5 key species. Coefficients were calculated using 12-hour PAM mean values.

When considering ambient exposure, using a single pollutant coefficient for NO2

and a single-pollutant coefficient for PM2.5 and adding the results has been shown

to overestimate the combined effects of the two pollutants27 64. As pollutant corre-

lations are lower in personal exposure (Figure 5.5), personal exposure metrics would

produce more reliable links between specific pollutants and their health outcomes.

5.1.3 Source-apportioned total personal exposure metrics

Indoor- and outdoor-generated exposure should be inputted separately into health

models, as explained in Section 1.2.4. Apportioned exposure metrics, for example

indoor-generated CO, while the same molecule, can act as proxy for a different

mixture of air than outdoor-generated CO.

Box plots of weighted means show the results of the apportionment for the key

species. The breakdown for season, location and time of day can be found in Ap-

pendix A.5.7.
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Figure 5.6: Exposure box plots: Reference (red), PAM (blue) exposure box plots, generated
from 12-hour mean values. PAM exposure has been source-apportioned into outdoor-generated

(orange) and indoor-generated (black) box plots.

Participants were generally exposed to more NO that was generated by indoor

sources than outdoor sources, however for the other pollutants, the reverse is true.

The exposure of participants to indoor-generated O3 is very low, which is expected

due to limited indoor O3 sources.

The weighted exposure, by percentage, of the AIRLESS participants to the two

components of exposure is shown in Table 5.1. A stacked column of this data can

be found in Appendix can be found in Appendix A.5.5.
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Table 5.1: Percentages of indoor-generated exposure: A table of the percentages of total
personal exposure that was generated by indoor sources. The percentages for specific seasons,

locations and time of data are also included. This data is plotted above in Figure A.8.

The exposure percentages in Table 5.1 appear to show a relatively large percentage

of O3 exposure originating from indoor sources. This effect may arise due to the

very low levels of O3 recorded by the PAM, especially in the winter, as shown in

Appendix A.12. Therefore absolute values of apportioned exposure may be more

useful than percentages as metrics for O3. Additionally, the RMSE of the O3 sensor

in the PAM is 2.7 ppb (see Table 3.2) which is larger than the mean (2.5 ppb),

median (1.0 ppb) and IQR (2.4 ppb) of the estimated indoor-generated exposure.

Therefore the observed large percentage of indoor-generated O3 exposure may be a

result of sensor error.

5.1.4 Source-apportioned PM2.5

Source-apportionment is valuable when applied to PM2.5, as explored in Section

1.2.4. Figure 5.7 shows the diurnal patterns of the reference measurements, the

PAM exposure, and the two components of the PAM exposure. Diurnal plots for all

species are found in Appendix A.5.6.

82



Assessment of personal exposure of the AIRLESS cohort

Figure 5.7: Diurnal plot of apportioned PM2.5: Diurnal plots of the PAM data (blue) and
its apportioned indoor-generated component (black) and outdoor-generated component (orange)
of total exposure to PM2.5, recorded by the PAMs, for the AIRLESS cohort. The diurnal plot of
the outdoor levels recorded by the reference instrument (red) is also included. The plots display
the median, 25th and 75th percentiles and 5th and 90th percentiles. Negative indoor-generated

values were removed before producing these plots.

From the PM2.5 diurnal plots, for both seasons and locations, there appears to be an

indoor source of PM2.5 around 18:00, which may indicate the cooking of an evening

meal. This is an expected feature in the indoor-generated component and is a

positive sign that apportionment has been achieved. Additionally, for both seasons

and locations, the outdoor-generated component appears to be a scaled version of

the reference. This scaling is due to the indoor loss processes which are quantified
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in Section 5.2.2.

Although, to our knowledge, this is the first study to source-apportion total personal

exposure, some of these same AIRLESS participants have had their PM2.5 exposure

in their bedrooms apportioned in a new study conducted by Zhang et. al163. This

subset of the AIRLESS cohort were selected (N=71) using the following criteria:

• A subset of the Beijing residents who lived within 100m of a main road (N=39)

• A subset of the Pinggu residents depending on their primary cooking and

heating methods for heterogeneity (N=32)

Their set-up involved placing PM2.5 monitors inside the bedroom and outside the

house of the participants for 72 hours. 14 houses were fitted with both indoor

and outdoor monitors, however only the data from 12 of the houses were used to

train the model due to malfunction of two of the instruments. The model was then

tested on the other participants’ data, using indoor measurements and reference

instruments (acting as the outdoor measurements). The Zhang et al. methodology

takes a different approach to isolating the indoor-generated portion of the indoor

air. They classify points within sharp rising-edges and sharp falling-decays, where

similar changes are not observed in the outdoor time series, as having indoor origin.

Furthermore, an “absolute threshold” criteria of 4µg/m3 was necessary for classifi-

cation of peaks of smaller magnitude which were not classified as indoor origin by

the method above. Absolute thresholds have not been used in the methodological

framework developed in this thesis as they may cause issues when applying this

method to a dataset/ in countries with different ambient and indoor levels, and

source characteristics.

They found that indoor-generated PM2.5 contributed less to the levels measured

inside the bedrooms than outdoor-generated PM2.5 (between 6% and 19%). The

method used in this thesis found higher contributions of indoor-generated to personal

exposure (between 24.9% and 32%). The Zhang study averaged their data over 15

minute intervals which may mask short term indoor sources, and the indoor levels

were exclusively measured in the bedroom. Both of these factors would be expected

to give lower percentages of indoor-generated pollution and are likely responsible

for the discrepancies between the values reported in the Zhang paper and the values

reported in this thesis. However, both studies found higher contribution of indoor-

generated PM2.5 in the rural location, and both studies found a stronger contribution

of indoor-generated PM2.5 around traditional meal times.
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5.2 Estimated values of exposure determinants

The estimation of the effect of the factors that determine exposure to air pollution,

specifically ventilation rates, indoor loss rates and indoor emission events, and vari-

ations of these determinants with season, location (urban vs rural) and time of day,

will be crucial in the future modelling of total personal exposure at the population

scale. Applying these determinants to outdoor reference measurements (using the

relationship described by the Continuity equation) will produce improved estimates

of indoor exposure, and therefore total exposure of the five key pollutants. Addition-

ally, the resultant modelled indoor levels could be used to infer the concentrations

of products from indoor reactions.

As people spend most of their time at home (Figure 3.7), this section presents the

estimation of these exposure determinants for the home microenvironment.

5.2.1 Ventilation in the home

Ventilation rates are estimated from the AIRLESS dataset using CO as a tracer

gas via the constant decay method. The number of indoor emission events of CO,

and therefore estimated ventilation rates, may be dependent on season or location.

Figure 5.8 displays the number CO decays in the time series of the participant’s

whole week-long deployment from which a ventilation rate was estimated.
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Figure 5.8: Quantity of estimated ventilation rate values: Histograms of the number CO
decays in the time series of the participant’s whole week-long deployment from which a

ventilation rate was estimated. Only the ventilation rates estimated from CO decays while the
participant was in home environment are included. The histograms are split by season and

location. Key statistics are included on the plots. There are many participant time series from
which no ventilation rates were estimated.

In winter there was a higher proportion of CO time series where no ventilation rates

could be estimated. This may be due to the higher indoor level of CO in the winter

due to heating of the homes, therefore leading to less defined peaks in the indoor

CO time series which pass the QA/QC steps of constant decay method algorithm

(Section 4.2.1).

Box plots containing the estimated ventilation rates for the home microenvironment

can be found in Figure 5.9.

86



Assessment of personal exposure of the AIRLESS cohort

Figure 5.9: Home ventilation: Box plots of the estimated ventilation rates for the whole
AIRLESS cohort, estimated when the participants were in the home. a.) split by location, b.)
split by season, c.) split by time of day, with Day=06:00-18:00 and Night=18:00-06:00. The

number of ventilation rates used to produce each box plot is shown on the plot in white writing.

The average ventilation rate estimated for the home environment for the AIRLESS

cohort was 3.12 hr-1. The median value was 1.68 hr-1. The AIRLESS cohort adjusted

doors and windows as they liked. The ventilation rates estimated sit between the

window-open and window-closed measured ventilation rates measured in homes in

China found in literature (Table 5.2), as would be expected. Ventilation rate data

for indoor environments (particularly homes) in China are scarce58;59.

A t-test indicated that the ventilation rates estimated in the summer months were

significantly higher than those estimated in winter (t = 2.662, p = 0.00396). This

is likely due to more opening of doors and windows during these periods. This is

observed in the literature, as shown in Table 5.2.

A t-test indicated that the ventilation rates estimated in Beijing and Pinggu are not

statistically significantly different (t = 0.9618, p = 0.1682), which is in agreement

with the Hou et al.59 who found no significant differences between ventilation in

rural and urban homes in China.

In the questionnaire (see Section 3.3) the participants were asked about some of

the characteristics of their homes. Appendix A.5.10 contains box plots of the es-

timated ventilation rates, separated by door and window features, and the floor of
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Table 5.2: Ventilation values in literature from studies in China: A summary table of
studies which have measured the ventilation rates of home environments in China. Studies
included are Hou (2019)59, Hou (2018)58, Sun (2011)129, Huang (2017)62, Shi (2015)122 and

Cheng (2018)24.

the building where the resident resides.

The air-tightness of buildings has significantly increased since the energy crisis in

the early 1970’s90 and many studies report that it has increased further since the

1990’s because air-tight buildings are more energy efficient and therefore econom-

ically favourable101;87;19. A ramification of this is that indoor air quality may de-

teriorate, compromising the health and comfort of building occupants57. In 2012,

Wargocki148 attempted to find out how much ventilation is needed in existing homes

to reduce health risks by reviewing the published scientific literature investigating

the association between measured ventilation rates and observed health problems.

It was concluded that it is likely that health risks occur when ventilation rates are

below 0.4 air changes per hour (h-1) in existing homes, although it was noted that

there are very few studies on this issue and many of them suffer from deficient ex-

perimental design, as well as a lack of proper characterisation of actual exposures

occurring indoors.

The minimum required air change rates for residential buildings in China were pub-

lished in 2012 by the National Standard of the People’s Republic of China and are

shown in Table 5.3.
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Table 5.3: Chinese ventilation standards: Table of minimum required residential air change
rates in China, published by the National Standard of the People’s Republic of China94

The estimated ventilation rates for the AIRLESS cohort are generally above the

minimum required rates for residential buildings in China. The majority of the resi-

dential building stock in China (around 50 billion m2) do not use mechanical systems

for ventilation, with opening windows and infiltration being the most common ven-

tilation methods. The extent of self-reported window opening has even been used

as a proxy for ventilation in a health study144.

5.2.2 Indoor loss rates in the home

Indoor loss rates have been estimated from the I/O ratio method and are plotted in

Figures 5.10 and 5.11.

Figure 5.10: Indoor loss rates for reactive key pollutants: Box plots for the loss rates in
the home environments of 4 key species: NO, NO2, O3 and PM2.5. The red dot indicated the

mean pollutant loss rate.
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The estimated indoor pollutant loss rate values show that O3 has the strongest

indoor loss rate in the home environment, followed by NO2, PM2.5 and then NO.

There are limited loss rates recorded for these pollutants in homes in literature, and

even less for homes in China. Rates recorded outside of China may not be applicable

to homes in China, for example, about 70% of home floors in American residences

are covered in carpet143, compared with only 10% in Chinese homes120 which would

be expected to have a significant effect on loss rates via surfaces reactions and

deposition.

The literature values of O3 loss rates are also higher than those of the other species.

Indoor O3 loss rates in homes in western countries (mainly the USA) have been

found to range between 2.8 h-1 to 7.2 h-1 151. A study in China recorded slightly

lower loss rates between 1.3 h-1 to 6.0 h-1 across 14 residences80. O3 is principally

removed by surface reactions in the indoor environment, and a literature review has

found that the surface-treated materials may have more impact than the underlying

materials on ozone deposition119.The indoor loss rate of NO2 has been recorded in a

small number of studies. In Chicago, IL, a closed window study estimated the loss

rate of NO2 to range from 0.06 h-1 – 0.47 h-1, with an average value of 0.27 ± 0.12

h-1 166. The NO loss rate was recorded to be 0.04 h-1 ± 0.03 h-1 166.
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Figure 5.11: Indoor loss rates for reactive key pollutants: Box plots for the loss rates in
the home environments of 4 key species: NO, NO2, O3 and PM2.5. The variation between

seasons, location and time of day are included.
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When comparing the median and quartile values, the loss rates of the three gases

are higher in the summer than in the winter. This is generally expected as most

reactions that occur indoors proceed faster as the temperature increases137.

When applying unpaired two-sample t-tests to investigate the differences in the

means of the loss rates during the summer and winter, it was found that the in-

creased loss rate for NO and O3 in the summer is statistically significant (t=3.337, p-

value=0.0009012 and t=6.4366, p-value=2.08x10-10 respectively). Conversely, when

comparing the means of the loss rates of NO2 between the summer and winter,

the loss rate in the winter is higher and this is statistically significant (t=-2.6476,

p-value=0.008332). The difference between the means for PM2.5 was found to be

statistically insignificant (t=-1.757, p-value=0.07923) at the 0.05 significance level.

The indoor pollutant loss rate values recorded in the summer for O3 are notably

higher than in the winter, when comparing both the median and mean. A higher

ambient temperature (T = 30 °C) has been shown to increase the ozone removal

rate in a chamber study by 3 times compared with a cooler ambient temperature

(T = 20 °C)137.

Conversely, the ksink value for PM2.5 is higher in the winter. This was also observed in

homes in London, UK141. It is suggested that this is a result of decreased ventilation

and airflow during the winter (faster deposition and less resuspension). Additionally,

deposition rates of PM2.5 have been reported to be higher at lower temperatures in

a study of airborne biomass particles162.

A second method to estimate ksink was also outlined in Chapter 2. The constant

decay method analysed the loss rate of an indoor emission event in the reactive

species time series. The results of this method, compared to the I/O ratio method,

for the home microenvironment, are shown in Figure 5.12.
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Figure 5.12: Comparison of methods of estimation of indoor loss rates: Stacked
histograms showing the number of ksink values, estimated for the home environment, from the
AIRLESS dataset. The I/O ratio method is shown in grey and the constant decay method is

shown in green. More ksink values were estimated using the I/O ratio method.

The constant decay method produced less values of ksink, although both methods

agree on the most populous bin. The constant decay method for estimation of ksink

results in some negative loss rates. This occurs when the average CO decay rate

of indoor emission events over the 12 hour time-section is larger than the decay

rate of the indoor emission event in the reactive pollutant time series. This was

demonstrated for the example participant in Section 4.4.2. The means of the indoor

loss rates using the two methods are not significantly similar (p = 0.0036). As part

of future work, the statistical analysis of differences in the ksink values from the two

methods, within the same time section, could be conducted using a Bland-Altman

plot. However, as both methods use the same kvent value, care should be taken to

avoid false similarities between the two methods.

Automated estimation of the pollutant loss rates inside homes is key in the mod-

elling total personal exposure for populations. These loss rates result in significant

differences between indoor and outdoor concentrations of the reactive pollutants.
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5.2.3 Characterisation of indoor emission events in the home

Section 4.5 introduced a methodology to characterise indoor emission events in

indoor-generated time series. Indoor emission events in the home can be used to

make inferences about participant behavioural patterns and lifestyles. This valuable

information will be crucial in the future modelling of total personal exposure at the

population scale. Additionally, characteristics of the emission events may be linked

to health outcomes.

Metrics of characteristics (quantity and heights of peaks, duration and area under)

of the indoor emission events were estimated from the AIRLESS dataset. The

correlations between these three metrics are shown in Appendix A.5.8.

Lifestyle inferences can be made from the characteristics of indoor emissions. Below

is a demonstration of how the height of the peaks of indoor emission events in the

home may be able to indicate the cooking fuel that participants use.

In Section 4.5.2, methodology to extract the mean peak height of indoor emission

events was introduced. This methodology has been applied to the whole AIRLESS

cohort. Presented here are the mean peak heights of indoor emission events of CO,

NO2 and PM2.5 (defined using their 90th percentile values, calculated from the whole

AIRLESS cohort, as thresholds) whilst the participant was in the home, for each

12-hour time section. The 90th percentile thresholds for CO, NO2 and PM2.5 are

3485 ppb, 17.61 ppb and 39.99 µg/m3 respectively.

scatter plots to explore associations between the mean peak heights of indoor emis-

sion events of these 3 pollutants are shown in Figure 5.13, split by location (Pinggu

and Beijing).
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Figure 5.13: Peak heights of indoor emission events: scatter plots, where each point is the
mean peak height of indoor emission event for a 12-hour time section. Plots show associations
between 3 pollutants: CO, NO2 and PM2.5. The lines of best fit is shown in red, along with the
gradient and standard error of the gradient. Data is plotted for the Pinggu and Beijing cohorts

separately.

The CO:PM2.5 ratio of the mean peak heights of indoor emission events in the

indoor-generated data differs between locations; the slope between CO and PM2.5

is around 3 times steeper for the Pinggu cohort.

A major short-lived source of PM2.5 pollution in the home is from cooking. Cook-

ing fuel, and the high temperatures in excess of 200◦C that are required for some

traditional Chinese cooking methods, such as stir-, pan-, and deepfrying, generate

over 300 reaction products167.
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The differences in this ratio suggests that cooking produces a different mixture

of pollutants between the urban and rural residents, possibly due to differences

in the cooking fuel used between cohorts. As Figure 3.3 showed, the majority of

Beijing residents used natural gas as their cooking fuel, however, over half of Pinggu

residents used LPG. The same data from Figure 5.13 is now split by the fuel used

by the participants when cooking, and the results are shown in Figure 5.14.

Figure 5.14: CO and PM2.5 peak heights of indoor emission events for different
cooking fuel types: scatter plots, where each point is the mean peak height of indoor emission

event for a 12-hour time section. Plots show associations between CO and PM2.5 for all
AIRLESS participants, separated by the cooking fuel type used by the participant. The lines of

best fit is shown in red, along with the gradient and standard error of the gradient.

The strongest linear relationship between the CO and PM2.5 indoor emission event

heights was found in the LPG users, possibly because LPG burns at a higher temper-

ature than natural gas. A recent systematic review has found that the temperature

used for cooking is positively correlated with the PM concentration74. In China, the

population has been shifting (and is projected to continue shifting) to clean cooking

fuels128, as explored in Appendix A.5.9.

5.3 Chapter Summary

This chapter displayed the capabilities of the developed automated framework to

source-apportion personal exposure and estimate values of the exposure determi-
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nants that affect personal exposure in the AIRLESS dataset. Estimated values

are comparable with those in literature. The methodology can be applied to data

recorded by hundreds of participants during PAM deployments worldwide, to es-

timate these values without the need for deploying stationary monitors inside and

outside of buildings.

97



Chapter 6

Linear mixed-effects modelling for

health associations

Chapter 5 derived the estimated values of novel metrics (source-apportioned per-

sonal exposure and exposure determinants) from the application of the methodology

outlined in Chapter 2 to the AIRLESS dataset. This chapter will demonstrate how

linear mixed effects-models (LMEMs) can be constructed to make associations be-

tween the metrics estimated in Chapter 5 and health endpoints. It is expected that

the results from such models can provide insight into the factors which drive the

observed health responses.

The effect of these novel metrics on Peak Expiratory Flow (PEF) will be investigated.

PEF is a widely used technique to measure lung function as it can be measured by the

participant in their home. Although other health endpoints were collected during the

AIRLESS project (Table 3.4), Article 28 of the 2021 Chinese Personal Information

Protection Law states that personal health information is considered sensitive data.

Therefore, the presentation and analysis of the other health parameters collected

during the AIRLESS project are restricted.

6.1 LMEMs in epidemiological research

Linear mixed-effects models (LMEMs) have become a standard tool for investigating

associations between air pollution and health, as they can account for dependencies

in data23;168;98;44.

It is expected that there are dependencies within the AIRLESS dataset. The AIR-
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LESS study was a longitudinal study, where the individual’s PEF values were mea-

sured over time (the morning of every day that they carried a PAM). Detailed

information on the AIRLESS dataset can be found in Chapter 3. In this dataset,

the PEF values from the same participant may not be independent; a PEF measure-

ment from one participant is expected to be more similar to another measurement

from the same participant, than to one from a different participant. Ignoring de-

pendencies results in overestimating sample size and, therefore, misleadingly small

standard errors. This artificially increases confidence in the outcome coefficients,

which can result in a Type I error (incorrectly rejecting the null hypothesis)100.

In LMEMs, fixed effects are used to capture the systematic and population-level

factors that are expected to have an impact on health markers. In this case, PEF

is expected to be impacted by factors such as age, sex and pollution levels.

Random effects can capture the variability in PEF data that is not explained by

fixed effects but is specific to the participant.

6.2 AIRLESS dataset structure

If the PEF values are dependant on the participant, then the AIRLESS dataset can

be described as a two-level data structure, with the participants at the higher level

(level 2) and the PEF measurements at the lower level (level 1). The two levels of

this dataset are shown in the unit diagram in Figure 6.1, along with some of the

covariates that were measured at each level of the dataset. The dependence of PEF

on the individual participants is mathematically confirmed later in Section 6.4.
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Figure 6.1: AIRLESS data structure: Unit diagram for the AIRLESS dataset, including
some of the covariates recorded at the two levels. This is the proposed unit diagram, assuming
that PEF measurements are dependent on participant, which is mathematically confirmed later

in this chapter.

6.3 Model 1: Empty (linear regression) model

Model 1 fits the PEF data from the AIRLESS dataset as a single-level “empty”

(linear regression) model.

PEFij = β0 + rij (6.1)

Where:

• PEFij refers to a uniquely identified PEF measurement

• β0 is the overall intercept. For the empty model, this is the mean of all PEF

measurements

• rij is the residual

For this empty model, β0 is the mean of the PEF measurements. The deviance was

calculated using the formula:

deviance = −2× log − likelihood (6.2)

Where log-likelihood is a measure of the model’s fit.
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The mean PEF value recorded was 385 L/min, as shown in Table 6.1.

Table 6.1: Model 1 results: A table containing the model outcome statistics from Model 1.
PEF is measured in units of L/min.

6.4 Model 2: Variance-component model

To test whether the PEF values are dependent on the participant, i.e. this dataset

has two levels (with PEF measurement at level 1 and participant at level 2 as

proposed in Figure 6.1), a variance-component model is constructed:

PEFij = β0 + µj + eij (6.3)

Where:

• β0 is the overall intercept, although this is not necessarily the same as the

mean PEF value calculated at the offset. The overall intercept in the variance

component model averages the participant means proportional to the group

size (to the number of measurements per participant).

• µj is the between-participant residual, accounting for variation in PEF between

participants

• eij is the within-participant residual, accounting for variation in PEF within

a single participants measurements

Table 6.2 shows the results of the empty model (Model 1) and the variance-component

model (Model 2) testing for clustering at the participant level (level 2) for 250 par-

ticipants in Pinggu and Beijing in winter and summer.

Table 6.2: Model 2 results: Table containing the results of Model 2 (the variance-component
model). Model 1 is included for comparison. PEF is measured in units of L/min.
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This model shows that around two thirds of the overall PEF variation lies between

participants. Model 2 is compared to Model 1 (an empty linear regression model

that does not take into account two levels of the dataset) to see if it is significantly

better at explaining the dataset. This can be assessed by looking at the reduction

in deviance (D) by calculating the likelihood ratio (LR):

LR = D1−D2 (6.4)

In this case, the LR is calculated to be 2125.92. The resultant LR value is compared

to a chi-squared distribution. The critical value for testing is at the 5% level with

one degree of freedom, taking a value of 3.84 (p>0.001). The LR statistic greatly

exceeds this value and so there is strong evidence for between-participant differences,

therefore, a two-level mixed-effects model is necessary with participant ID as a

random effect.

6.5 Model 3: Random-intercept model with gen-

der as a fixed effect

The variance-component model (Model 2) can explain much of the variation in the

response variable, however, inserting covariates (explanatory variables) in the model

may explain the variation further.

The random-intercept model has two parts. The fixed part includes the overall

model intercept (β0), as well as the slope between the explanatory variable and

the response variable (β1) multiplied by the explanatory variable. The random

part (µj + eij) is random in the sense that these residuals are able to vary to find

the optimum intercept for each participant. In other words, intercepts for each

participant are allowed to vary; however, the gradient of the slopes (the effect of air

pollution on health) is the same across all participants. The parameters that are

estimated in the random intercept model are coefficients (β0 and β1) for the fixed

part and variances (σ2
µ and σ2

e) for the random part.

The variance-component model (Model 2) showed that 64% of the variation in PEF

is explained by differences between participants. However, it is well known that the

explanatory variable gender has a large effect on the response variable PEF81. The

64% variance at the participant level could partly be explained by the participants’

gender. As gender was measured as a binary variable, “female” will act as the
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reference category (baseline) and will be given a value of 0 (whereas male will be

given a value of 1).

Model 3 is:

PEFij =

.

β0 + β1maleij︸ ︷︷ ︸
fixed part

+µj + eij︸ ︷︷ ︸
random part

(6.5)

Where:

• β0 is the overall intercept. Each group (participant) has a line with the same

gradient (β1) fitted to their data points but the overall intercept varies for

each of the lines. β0 is the mean of the intercepts when all other covariates (in

this case gender) are set to their reference categories. Since “female” is the

reference category, the overall intercept corresponds to the average baseline

value of the response variable when considering only females.

• β1 is the overall slope coefficient for gender (the gradient between PEF and

male)

• µj is the between-participant residual, accounting for variation in PEF between

participants (the distance between the group (participant) line and the overall

line)

• eij is the within-participant residual, accounting for variation in PEF within

a single participants measurements due to changes over time (the distance

between the individual data-point and the line for that participant’s data

points)

The results are shown in Table 6.3.

Table 6.3: Model 3 results: A table containing the results of Model 3 (random-intercept
model with gender as a fixed effect). Results from Models 2 and 3 are included. PEF is measured

in units of L/min.

As expected, on average men’s PEF value is higher than women’s; the intercept on

gender is found to be 94.3 L/min.
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To determine whether the effect of gender is statistically significant, the z-ratio for

gender is compared to a standard normal distribution:

z =
β̂1

SE(β̂1)
=

94.293

9.486
= 9.940 (6.6)

The z-test has a critical value for testing at the 5% level of ±1.96. The calculated

ratio exceeds this value and so participant gender has a significant effect on PEF.

Additionally, now that gender has been accounted for as a fixed effect in the model,

the overall intercept has decreased from 385.366 L/min to 344.296 L/min. After

introducing the fixed effect of gender, the baseline level of the response variable

(which corresponds to the reference category, female) decreases. This means that

the average value of the response variable for females is lower when considering the

influence of gender compared to the baseline model without gender as a fixed effect.

6.6 Model 4: Random-intercept model with mul-

tiple fixed effects

Multiple fixed effects can be added simultaneously to the fixed part of the model

(Model 4). The overall slope coefficient between the additional covariates (n) and

the response variable is denoted as βn. The overall intercept (β0) is now the mean

of the intercepts when ALL covariates are set to their reference categories. Level 1

covariates (PEF measurement level, e.g. daily temperature) and level 2 covariates

(participant level, e.g. gender) are included as fixed effects in a random-intercept

model in the same way. The random part of the model remains the same.

For this illustrative case, the selection of the covariates was driven by theory and

included factors known to affect PEF in “Reference Values and Related Factors for

Peak Expiratory Flow in Middle-Aged and Elderly Chinese” by C Ji69.

Temperature and relative humidity were entered as continuous variables, with lags

matching the lags of the pollutant exposure metrics (see Section 6.8).
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Table 6.4: Fixed effects: A table of the fixed effects included in the random-intercept model.

The results from Model 4 are shown in Table 6.5.

Table 6.5: Model 4 results: A table of the results of Model 4 (the random-intercept model
with multiple fixed effects). Results of Models 1 and 2 are included. PEF is measured in units of

L/min. * denotes p<0.05. *** denotes p<0.001

The results fromModel 4 are shown graphically in Figure 6.2. The estimated changes

in Figure 6.2 are plotted with 95% confidence intervals. This is to show the uncer-

tainty in the estimates. A 95% confidence interval is the interval commonly used by

statisticians and indicates that there is a 95% chance that the true effect lies within

the interval. If the interval includes zero, then it suggests that the impact of the

fixed effect on PEF is not different enough from zero to be confident that it reflects
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a real effect (the effect on PEF is not statistically significant).

Figure 6.2: Model 4 fixed effects: Estimated fixed-effect covariates, plotted with 95%
confidence intervals.

Gender, past second-hand smoke exposure (reducing lung function), and using an

electric stove (improving lung function) were found to have statistically significant

effects on PEF. These associations have also been found in the literature165;69. How-

ever, this does not mean that the fixed effects included in the LMEM should be

limited to these fixed effects. Selection criteria of fixed effects for mixed-effects

modelling is an active research topic amongst statisticians. Ultimately, the decision

of which fixed effects to include should be based on a combination of statistical
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significance, model complexity, and subject-matter expertise. As all of these covari-

ates have demonstrated an effect on PEF in previous research69, and the deviance

of Model 4 is lower than that of Model 2, all covariates will be retained in for the

single-pollutant model in Section 6.8.

6.7 Random-slope model

A random-slope model could be used to capture the trajectories of a participant’s

PEF scores over time (i.e. over the week). This is not used in this case be-

cause random-slope mixed-effects models are more prone to over-fitting compared

to random-intercept models when the sample size is limited as in this case. This

study is limited to daily PEF measurements over two week deployments in a sample

of 250.

6.8 Model 5: Linear mixed-effects model for pol-

lution metric-health associations

A range of pollution metrics will be associated with PEF. These metrics are incor-

porated one at a time in the same way as fixed effects in Model 4. The methodology

to derive these metrics can be found in Chapters 2 and 4, and values of these metrics

for the AIRLESS cohort can be found in Chapter 5.

Exposure metrics (for CO, NO, NO2, O3 and PM2.5) :

• Ambient exposure

• Personal exposure

• Indoor-generated exposure

• Outdoor-generated exposure

Exposure determinant metrics:

• Ventilation rate in the home

• Indoor pollutant loss rate in the home (NO, NO2, O3 and PM2.5)
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• Number of emission events in the home (CO, NO, NO2, O3 and PM2.5)

• Area under emission events in the home (CO, NO, NO2, O3 and PM2.5)

• Duration of emission events in the home (CO, NO, NO2, O3 and PM2.5)

Lag

Pollution-health associations are normally evaluated using pollution exposure on the

same day or those within a few previous days. The pollution exposure metrics are

inputted into the single-pollutant model as different time averages to explore the

delayed effects of pollution on health. The lags explored here are as shown by the

timeline below. The same lag is used for temperature and humidity. As values of

the exposure determinant metrics were not measured every day, the delayed effect

of these metrics is not investigated in this thesis.

Figure 6.3: Lag: Timeline showing how the explanatory variable averages were calculated for
this demonstrative case.

Presentation of results

Two ways of presenting the results of Model 5 have been considered.

The first presents the estimated change in PEF (L/min) associated with an in-

terquartile range (IRQ) increase in the exposure metric. Changes in PEF with IQR

increases are presented for all metrics.

The second presents the estimated PEF change (L/min) associated with a specified

unit increase in the metric, which will only be used to present the influence on

PEF of the exposure determinant metrics (Figures 6.4 and 6.6). For this work, the

specified unit increases of the exposure metrics are 1000 ppb increase for CO, a 10

ppb increase for NO, NO2 and O3, and a 10 µg/m3 increase for PM2.5. The specified

unit increase for CO is larger, so the results can be compared on the same axis as

the other pollutants. The benefit of using specified unit increases is that it provides

a straightforward interpretation of how changing pollutant exposure can affect PEF,

particularly useful for policymakers.
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Associations between ambient and personal exposure and PEF

Figure 6.4: Effect of ambient and personal exposure (IQR) on PEF: Estimated changes
with 95% confidence intervals in PEF (L/min) associated with a IQR increases in ambient and

personal exposure to the key air pollutants. All fixed effects shown in Figure 6.2 are adjusted for.
The scale of the y-axis is kept constant across all associations of increases in IQR with PEF.

Figure 6.5: Effect of ambient and personal exposure (unit) on PEF: Estimated changes
with 95% confidence intervals in PEF (L/min) associated with a 1000 ppb increase for CO, a 10
ppb increase for NO, NO2 and O3, and a 10 µg/m3 increase for PM2.5 in ambient and personal
exposure. Ambient data was recorded at reference instruments and personal measurements were

recorded by PAMs (see Chapter 3). All fixed effects shown in Figure 6.2 are adjusted for.
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Associations between indoor-generated and outdoor-generated exposure

and PEF

Figure 6.6: Effect of indoor-generated and outdoor-generated exposure (IQR) on
PEF: Estimated changes with 95% confidence intervals in PEF (L/min) associated with a IQR
increases in indoor-generated and outdoor-generated exposure to the key air pollutants. All fixed

effects shown in Figure 6.2 are adjusted for.

Figure 6.7: Effect of indoor-generated and outdoor-generated exposure (unit) on
PEF: Estimated changes with 95% confidence intervals in PEF (L/min) associated with a 1000
ppb increase for CO, a 10 ppb increase for NO, NO2 and O3, and a 10 µg/m3 increase for PM2.5

in indoor-generated and outdoor-generated exposure. All fixed effects shown in Figure 6.2 are
adjusted for.
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Associations between exposure determinants and PEF

Figure 6.8: Effect of exposure determinants (IQR) on PEF: Estimated changes with
95% confidence intervals in PEF (L/min) associated with a IQR increases in exposure

determinants: a) Home ventilation rates; b) Home pollutant loss rates; c) Number of emission
events in the home; d) Area under emission events in the home; e) Duration of emission events in

the home. Methodology to extract these metrics was shown in Section 2.5.4 and was
demonstrated for the example participant in Section 4.5. As for the example participant, the

threshold was selected to be the 90th percentile. All fixed effects shown in Figure 6.2 are adjusted
for. None of the exposure determinant metrics have a significant effect on PEF. The loss rates

were estimated using the I/O ratio method.
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Discussion of the results

Figures 6.6 and 6.7 indicate that increases in indoor-generated NO two days before

a PEF measurement results in a higher PEF score. This is the only metric found to

have a statistically significant effect on PEF. The other metrics have been shown to

have no significant effect on PEF. However, tentative insights may still be inferred

from the output values, which vary between metrics.

Most of the exposure metrics averaged at lag b (just the day before the PEF mea-

surement) had a less positive (or more negative) association with PEF compared

with the other lags, suggesting that the short term effects on PEF should be ex-

plored; lags of less than one day before the PEF measurement should be considered

in future studies.

Although not significant, personal and ambient O3 appear to have contrasting effects

on health. Figures 6.4 and 6.5 show that ambient O3 has a protective effect. Ambient

ozone has been found to have a protective effect on health in the literature17;10. This

observed effect has been attributed to the anti-correlation of O3 with other pollutants

such as NO2 and PM2.5. In this study, personal O3 is shown to have a negative effect

on PEF. This contradiction supports the requirement for personal monitoring of O3

for lung function associations.

6.9 PEF as the response variable

Many of the metrics associated with health in this work are novel (for example,

source-apportioned exposure) or are less commonly associated directly with health

(such as ventilation or indoor pollutant loss rates). So statistically insignificant

associations with PEF are not unexpected given the lack of prior testing or estab-

lished expectations. However, strong associations of ambient levels of PM2.5, NO2

and O3 in China with reduced lung function have been established in the literature.

These associations are explored further in Appendix A.1.3. The lack of statistically

significant associations for these pollutants is surprising.

For example, ambient O3 has been shown to decrease lung function in the literature

(Appendix A.1.3). As ambient O3 is known to decrease lung function, it would be

expected that high ambient O3 would result in lower PEF values. Figures A.13

and A.12 in the Appendix show that ambient O3 is significantly higher in the sum-

mer than in the winter. However, the PEF measurements collected as part of the

AIRLESS study do not change with season, as shown in Figure 6.9. Therefore, the
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reliability of the PEF data is questioned.

Figure 6.9: Seasonal variation of PEF All PEF measurements recorded during the
AIRLESS project, separated by season. PEF does not appear to change between seasons.

During the AIRLESS project, only the first of the participant’s measurements were

supervised by a healthcare professional. As a result, proper lack of technique and

inconsistent effort of the participant may result in unreliable data. This is supported

by the data. On average, the PEF values measured by a participant ranged 27%

from the normal peak flow rate for that participant. The American Lung Associ-

ation report that, in general, a normal peak flow rate can vary as much as 20%3.

The high variability of PEF measurements from the same participant supports that

the reliability of the PEF data collected in AIRLESS study should be questioned.

Other studies have found PEF data unreliable because participants have incorrectly

recorded or even fabricated the PEF score82;71.

A previous study explored associations between ambient O3 and health. They also

found no significant effect of O3 on PEF; however, they did find a significant effect

on other measures of lung function23. It is suggested that a spirometry test could

be considered an alternative method to measure lung function, as these tests are

performed by healthcare professionals in clinical settings.
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6.10 Chapter summary

Despite concerns with using PEF measurements as the response variable, this chap-

ter has demonstrated the construction of an LMEM to derive associations between

exposure and health. Although not significant, ambient O3 levels were found to

have a protective effect on health, whereas personal O3 exposure was found to harm

health, showing that misclassification in exposure can impact health associations. It

is expected that LMEMs, such as the one constructed here, will be of significant value

when extended to directly examine the effects of the novel exposure metrics and es-

timated exposure determinants described in Chapter 5 on other health parameters.

This chapter highlighted areas of consideration when constructing pollutant-health

models, including the selection of fixed effects and exploration into lag.
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Chapter 7

Conclusions

7.1 Interpretation of key findings

The work in this thesis has developed a methodological framework to assess and

source-apportion personal air quality exposure to better understand the health im-

pacts of air pollutants. Thanks to recent technological and computational advance-

ments (particularly the progress in personal air quality monitoring and the devel-

opment of the time-activity model), personal exposure in a range of microenviron-

ments can be captured. However, other factors, such as the source of pollution, or

the ventilation of the home environment may be driving health responses directly

or indirectly. This framework allows for exploration into the associations of such

additional metrics and characteristics with health.

Generation of novel exposure metrics

The first objective of the methodological framework was to generate novel exposure

metrics from personal air quality measurements, for five pollutants. The framework

generated personal exposure metrics. Comparison of personal exposure metrics to

those inferred from measurements from stationary outdoor reference instruments

showed differences; personal NO2, O3 and PM2.5 exposure was found to be lower than

that inferred from the stationary outdoor reference instruments, and for CO and NO,

it was higher. Misclassification of exposure has been demonstrated through these

comparisons, suggesting that personal measurements should be used in pollution-

health models to avoid error in associations. The misclassification of exposure was

attributed to the effects of loss processes and sources of pollution when the par-

ticipants were indoors. Additionally, the five pollutants were less correlated in the

personal exposure metrics than in the data measured by the reference instrument.
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Breaking these pollutant correlations will improve the reliability of the estimated

effects of individual pollutants on health.

Furthermore, the framework source-apportioned total personal exposure into pollu-

tion generated by indoor and outdoor sources. The methodology involved applying

estimated ventilation rates and indoor pollutant loss rates to outdoor data for pe-

riods where the participants were detected to be indoors. This produced estimates

of levels of pollutants which had been generated outdoors but had then ventilated

indoors. These levels were subtracted from the personal measurements for these

periods, retaining the pollution generated by indoor sources. When applied to the

AIRLESS dataset, indoor-generated pollution was found to contribute between 29.7

% and 55.3 % to total exposure, depending on the pollutant. This apportionment

allows for distinct associations between health outcomes of air mixtures from indoor

and outdoor sources. For PM2.5, a higher proportion of indoor-generated pollution

is observed around 18:00 across both summer and winter and in Beijing and Pinggu,

which has been attributed to emissions from cooking an evening meal. These results

indicate that interventions solely targeting ambient air pollutant concentrations will

only solve part of the air pollution problem.

To our knowledge, this is the first automated method developed to source-apportion

total personal exposure.

Estimation of factors that determine exposure to air pollution

The second objective of the methodological framework was to estimate the factors

that determine exposure to air pollution, specifically when the participant is in their

home. People spend most of their time indoors, so these exposure determinants will

be crucial in modelling total personal exposure at the population scale.

Home ventilation rates were estimated using the constant decay method. The av-

erage ventilation rate was found to be 3.18 hr-1 and was higher during the summer

and the day, attributed to more frequent window opening. Most estimated home

ventilation rates were higher than those recommended by the Chinese government

(Table 5.3).

Indoor loss rates were inferred using the I/O ratio. The I/O ratio was calculated for

each participant and each 12-hour time period separately to capture the effects of day

and night. Additionally, the ratio was calculated in the absence of indoor sources. O3

was found to have the strongest indoor loss rate in the home environment, followed

by NO2, PM2.5 and then NO. Seasonal effects were found, particularly for the loss

rate of O3. Indoor loss rates were also estimated using the constant decay method,
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although this method produced less estimated values.

A method of characterising indoor emission events has been developed. The magni-

tude, frequency and area under the event are captured using this framework. This

work showed that not only are quantities of these characteristics expected to be

crucial when modelling exposure at the population levels, but they can also be used

to infer information about the participants, for example, the type of cooking fuel

used.

Linking of the novel exposure metrics, and exposure determinants, with

health markers

The final objective of the framework was to link the novel exposure metrics and ex-

posure determinants with health markers. This work demonstrated the construction

of a statistical method (LMEM) to link pollution exposure with a health marker (in

this case, PEF). Concerns about relying on PEF as a response variable were raised

(Section 6.9), and most associations were not found to be significant. However,

such an LMEM is expected to give insights into the effects of exposure metrics and

estimated exposure determinants when extended to other health endpoints.

7.2 Limitations

The methodologies developed and applied as part of the framework are based on the

continuity equation (Equation 2.1). This equation assumes that the indoor spaces

inhabited by participants are single zones where the air pollutant concentrations are

homogeneous (uniformly mixed). This is not a true representation of indoor air.

The developed source-apportionment methodologies require the estimation of ven-

tilation rates. In this study, ventilation rates are estimated opportunistically from

large influxes in CO concentration from cooking. For the AIRLESS cohort, this is

suitable as the participants mainly relied on LPG and natural gas as their cooking

fuels. This methodology may not be suitable for a cohort primarily using an elec-

tric cooker. Appendix A.5.9 shows the shift in primary cooking fuel in China and

globally. Additionally, this methodology does not consider constant indoor sources

of pollution.
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7.3 Suggested future work

This work estimates exposure metrics, not dose. Dose is a measure of the amount of

pollution that enters the body. Inhalation rates vary between people and can vary

with factors such as age and gender. Additionally, an individual’s inhalation rates

may drastically change with physical activity.

The AIRLESS cohort only represents a subset of the population (including only

current non-smokers over the age of 45). Additionally, although very large for a

personal monitoring study, the sample size remains relatively small, which may

introduce error into pollution health associations. Future work would apply this

framework to other populations.

Only one reference instrument was used in each location to collect outdoor data.

Although measurements from reference instruments in Beijing and Pinggu have

been shown to be a suitable alternative to measurements directly outside peoples’

homes163, future work could explore the use of the ADMS-Urban model to model

outdoor levels outside peoples’ homes. Additionally, the reference instrument used

in Pinggu during the campaign only measured hourly PM2.5. Future work would

investigate the impact of hourly reference data in place of minute reference data on

the results from the framework developed in this thesis.

The exposure metrics estimated by the framework are estimated for each 12-hour

time period. 06:00-18:00 and 18:00-06:00 periods were chosen. Using 12-hour time

periods is an improvement on most studies, which use averages calculated over days

or months. Future work may involve selecting time periods so that daytime included

most daily activities, such as participants cooking their evening meal after 18:00.

This would allow for further insights into the effects of participant activities on

exposure.

A threshold was used to define the events when characterising indoor emission events

(Section 2.5.4). This threshold is arbitrary and should be varied to see if it affects

health associations. The threshold could be specific for a cohort or field campaign

or a concentration previously identified in policy, for example, the indoor air quality

standards for the respective country (for China, these are shown in Appendix A.5.3).

It could also be a level identified as harmful from clinical or laboratory studies.
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7.4 Concluding remark

The developed framework represents an important step in advancing our under-

standing of the effects of pollutants on health by providing the capability of gener-

ating novel exposure metrics and exposure determinants from personal air quality

measurements.
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Academic Output

Air flow experiments on a train carriage
- Towards understanding the risk of air-
borne transmission
Huw Woodward, Shiwei Fan, Rajesh K. Bhagat, Maksim Dadonau, Megan Davies

Wykes, Elizabeth Martin, Sarkawt Hama, Arvind Tiwari, Stuart B. Dalziel, Roderic

L. Jones, Prashant Kumar and Paul F. Linden

Atmosphere, 2021

Abstract: A series of experiments was undertaken on an intercity train carriage

aimed at providing a “proof of concept” for three methods in improving our under-

standing of airflow behaviour and the accompanied dispersion of exhaled droplets.

The methods used included the following: measuring CO2 concentrations as a proxy

for exhaled breath, measuring the concentrations of different size fractions of aerosol

particles released from a nebuliser, and visualising the flow patterns at cross-sections

of the carriage by using a fog machine and lasers. Each experiment succeeded in

providing practical insights into the risk of airborne transmission. For example, it

was shown that the carriage is not well mixed over its length, however, it is likely

to be well mixed along its height and width. A discussion of the suitability of the

fresh air supply rates on UK train carriages is also provided, drawing on the CO2

concentrations measured during these experiments.

Contribution: I spent a week working with the team to develop and conduct a

number of experiments in a train carriage. I contributed in a number of ways: 1)

Contributed to the development of methodology and experimental setup 2) Refur-

bished instruments and uploaded and shared data from the experiments 3) Con-

tributed to the writing-review and editing process.

Relevance: This work employed tracer gas techniques to infer the ventilation of an

indoor space. Aerosol concentrations were measured.
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Figure 7.1: Involvement in air flow study: Snapshot of flow visualisation experiment at end
of carriage during ventilated conditions, as part of the “Air flow experiments on a train carriage -
Towards understanding the risk of airborne transmission” study, taken from Woodward et al.153

The experiments were performed at short notice and during somewhat challenging

conditions during the COVID-19 pandemic (during the August of 2020). The full

published article can be found in Appendix A.1.1.

Automated classification of time-activity-
location patterns for improved estimation
of personal exposure to air pollution
Lia Chatzidiakou, Anika Krause, Mike Kellaway, Yiqun Han, Yilin Li, Elizabeth

Martin, Frank J. Kelly, Tong Zhu, Benjamin Barratt and Roderic L. Jones

Environmental Health, 2022

Abstract: Air pollution epidemiology has primarily relied on measurements from

fixed outdoor air quality monitoring stations to derive population-scale exposure.

Characterisation of individual time-activity-location patterns is critical for accu-

rate estimations of personal exposure and dose because pollutant concentrations

and inhalation rates vary significantly by location and activity. We developed and

evaluated an automated model to classify major exposure-related microenviron-

ments (home, work, other static, in-transit) and separated them into indoor and

outdoor locations, sleeping activity and five modes of transport (walking, cycling,

car, bus, metro/train) with multidisciplinary methods from the fields of movement

ecology and artificial intelligence. As input parameters, we used GPS coordinates,

accelerometry, and noise, collected at 1 min intervals with a validated Personal Air

quality Monitor (PAM) carried by 35 volunteers for one week each. The model

classifications were then evaluated against manual time-activity logs kept by par-

ticipants. Overall, the model performed reliably in classifying home, work, and

other indoor microenvironments (F1-score>0.70) but only moderately well for sleep-

ing and visits to outdoor microenvironments (F1-score=0.57 and 0.3 respectively).
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Random forest approaches performed very well in classifying modes of transport

(F1-score>0.91). We found that the performance of the automated methods signif-

icantly surpassed those of manual logs. Automated models for time-activity classi-

fication can markedly improve exposure metrics. Such models can be developed in

many programming languages, and if well formulated can have general applicability

in large-scale health studies, providing a comprehensive picture of environmental

health risks during daily life with readily gathered parameters from smartphone

technologies.

Contribution: I contributed to the writing-review and editing process.

Relevance: The time-activity model developed in this paper computes the space-

time utilisation distributions of the GPS coordinates for participants and classifies

the microenvironment using metrics such as time spent in each location, re-visitation

rate and metrics of directional movement. The model classifications are evaluated

against manual time-activity logs kept by participants. This thesis uses a simplified

version of the model developed in this paper to classify the individual time-activity-

location patterns of the participants. The model is a key component of the frame-

work developed in this thesis. The full published article can be found in Appendix

A.1.2

Regeneration of the Cambridgeshire Fen-
lands fieldwork
The Cambridgeshire Fens project was set up by the Cambridge Landscape Regenera-

tion Centre. The Centre’s researchers are working to find the best ways of protecting

both the Fen’s ecosystem and its farmers by developing an integrated framework for

the Fens to reconcile food production, reduce carbon emissions, secure water re-

sources, manage flood risk, enrich biodiversity and improve resilience.

Contribution: I contributed to the fieldwork, making decisions on sensor spatial

distribution for carbon emission measurements, setting up equipment, recording the

details of the setup and replacing monitors.

Relevance: This work measured concentrations of ambient species in the rural en-

vironment.

Market research for Open-Seneca
Open-Seneca is a university based project that deploys citizen science air pollution

monitoring networks across developing cities.
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Contribution: I worked in a Development i-Team of seven researchers from across

the University of Cambridge. Our team advised Open-Seneca on sustainable organ-

isational structures that could be adopted in the future. We interviewed govern-

mental bodies, academics and citizen scientists, and evaluated the pros and cons of

different possible legal entities.

Relevance: The results of this work enable Open-Seneca to make more informed

choices regarding their organisational structure, resulting in efficient and organised

deployment of personal air quality sensors.
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Abstract: A series of experiments was undertaken on an intercity train carriage aimed at providing a
“proof of concept” for three methods in improving our understanding of airflow behaviour and the
accompanied dispersion of exhaled droplets. The methods used included the following: measuring
CO2 concentrations as a proxy for exhaled breath, measuring the concentrations of different size
fractions of aerosol particles released from a nebuliser, and visualising the flow patterns at cross-
sections of the carriage by using a fog machine and lasers. Each experiment succeeded in providing
practical insights into the risk of airborne transmission. For example, it was shown that the carriage
is not well mixed over its length, however, it is likely to be well mixed along its height and width.
A discussion of the suitability of the fresh air supply rates on UK train carriages is also provided,
drawing on the CO2 concentrations measured during these experiments.

Keywords: airborne transmission; COVID-19; public transport; ventilation; aerosol dispersion

1. Introduction

The COVID-19 pandemic has resulted in a much decreased capacity on UK rail
services, with physical distancing rules applied for much of the pandemic that force
trains to operate at half capacity or less. According to Department for Transport (DfT)
statistics, following the first UK lockdown, passenger numbers have remained well below
capacity [1]. This is likely due to the large increase in the number of people working
from home resulting in a reduction in passenger numbers during peak hours and people’s
tendency to avoid non-essential travel due to concerns regarding the risk of infection by the
SARS-CoV-2 virus while travelling. Travel by public transport such as rail is perceived by
some commentators as potentially high risk due to the potential of interacting with a large
number of people at the station, the possibility of being in close proximity to other people
during the journey, and the requirement of spending extended periods of time within a
confined space with others.

These concerns may not be entirely unfounded and any train journey inevitably
carries a degree of risk of infection by the SARS-CoV-2 virus, particularly as exposure to
asymptomatic individuals is seen as a major mode of transmission [2]. Infection can occur
via three routes: by contact with infected surfaces, droplet transmission, and airborne
transmission [3–6]. Transmission via surface contact is mitigated by regular cleaning
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of touch points, the use of antimicrobial products that can provide a degree of residual
protection, provision of hand sanitiser in stations, and promotion of regular hand washing.
By “droplet transmission”, we refer to transmission via large droplets exhaled while
coughing or sneezing and also, to a lesser degree, while breathing or talking. Larger
droplets fall to the ground within seconds [7,8]; therefore, enforcing physical distancing
and, with sufficient levels of compliance, wearing masks are effective mitigation strategies
against this transmission route. By “airborne transmission”, we refer to the transmission
of the virus via smaller particles that tend to follow the dominant airflow patterns within
a space and can remain in the air for extended periods of time (minutes to hours). There
exists considerable evidence to suggest that airborne transmission of SARS-CoV-2 is viable [9];
therefore, appropriate mitigation measures should be taken against this transmission route
[3–6,10]. However, mitigation strategies continue to be mainly focused on surface contact and
droplet transmission only.

The risk of airborne transmission is likely to be higher in small spaces such as a train
carriages, especially if ventilation rates are low. In these cases, virus-laden particles exhaled
by an infected person can accumulate and result in high doses for uninfected persons
within the space. In addition to the provision of fresh outdoor air, the risk of airborne
transmission is likely to depend on the airflow patterns within the space. For example,
areas within a space with low airflow velocities could result in an accumulation of infected
air with virus-laden aerosols. Thermal stratification within a space can restrict vertical
mixing of air and result in high concentrations of virus-laden particles in certain zones,
potentially including the breathing zone. Therefore, when assessing the relative risk of
airborne transmission indoors, it is important to have an understanding of both the outdoor
air supply and the airflow patterns within the space. Alternatively, CO2 concentrations
can be measured to provide an estimate of the concentrations of exhaled breath within the
space, and the risk of transmission can be estimated in turn [11–13].

Public transport poses a unique challenge when evaluating the risk of airborne trans-
mission and when seeking to establish suitable mitigation strategies. Firstly, the ventilation
rates for vehicles with some degree of natural ventilation (i.e., windows that can be opened)
can vary significantly depending on the speed of travel and the number of open windows.
The exchange of air when doors are opened to allow passengers to board and alight should
also be considered and also applies to vehicles that are otherwise entirely mechanically
ventilated. Estimating the ventilation rate on buses or trains is, therefore, often difficult.
The problem is compounded by the wide range of carriage types in operation, which all
have different dimensions and ventilation configurations. Secondly, plumes driven by
body heat can have a significant impact on the airflow patterns within vehicles [14–18],
which in turn can vary depending on the number and location of occupants. Of course,
the distribution of the airborne pathogen within the vehicle can depend on the location
of the infectious individual. The heating of surfaces by solar radiation can also affect
airflow within the vehicle on sunny days [14,15,19]. Furthermore, the movement of people
has been shown to have a considerable impact on the mixing of airborne contaminants
indoors [20] and is likely to play a significant role in vehicles, particularly during busy
periods. Finally, buses and trains are long and narrow with few access points. Therefore, it
is often difficult to avoid being in close proximity with other passengers. Furthermore, the
long, narrow shape is likely to cause the airflow patterns within the space to be particularly
sensitive to the location of the air inlet and extract vents.

An understanding of the outdoor air provision in addition to the airflow patterns
within public transport vehicles is, therefore, essential in order to effectively mitigate the
risk of airborne transmission. The literature on airflow patterns within buses and trains is
focused mainly on assessing the thermal comfort of passengers, e.g., [14–19]. In [21,22], res-
piratory droplet transmission within a train carriage is modelled using Reynolds-Averaged
Navier–Stokes (RANS) computational fluid dynamics (CFD). These consider different
ventilation configurations for carriages of high-speed trains in China. The range of dis-
persion of droplets, in addition to their residence time within the carriage, is shown to
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vary significantly for the different ventilation outlet positions considered. CFD studies of
airborne transmission on a bus include [23,24], who demonstrated the sensitivity of the
likelihood of transmission on a bus to the location of the infected person relative to the
extract vent. Considerable effort has been made in understanding and modelling the air-
borne transmission of pathogens within aircraft cabins, e.g., [25–28]. Mazumdar and Chen
[27] used a one-dimensional diffusion model to predict the concentrations of a gaseous
contaminant along the length of an airliner cabin, while [29,30] used a zonal model. In [31],
aerosol droplets were released within the cabin of aircraft, and concentrations were
measured at various locations. It was shown that the very high air recirculation rates
within commercial aircraft are very effective in diluting aerosol particle concentrations.
In [32–34], it was shown that acceleration-induced body forces occurring during both
the climb and descent stages of flight can affect the dispersion of a contaminant and the
resulting exposure of passengers.

While examples of CFD studies of airflow behaviour in vehicles can be found in the
literature, there are few examples of full-scale experiments in public transport vehicles.
In this paper, we outline the experimental procedure for three experiments implemented on
an inter-city train carriage in the UK. These experiments included measuring CO2 generated
by volunteer “passengers”, flow visualisations of artificial smoke released within the
carriage, and the measurement of the concentrations of aerosols released from a nebuliser.
The aim in each case was to improve our understanding of the airflow patterns and aerosol
dispersion within the carriage and to determine the utility of each method. Time for
planning and executing these experiments was limited; therefore, some of the experimental
standards normally expected were not met. For example, we could not perform the desired
number of repeat runs. However, sufficient data were gathered to provide a demonstration
of “proof of concept”, while also providing insights into the airflow behaviour within
the carriage.

2. Materials and Methods
2.1. Carriage Layout and Ventilation

The carriage used for the experiments consists of a passenger saloon and two vestibules
at either end. This carriage layout is similar to other types of intercity carriages running
on the GB rail network, but it is different from a typical carriage on a commuter/regional
network, which are more common and more heavily used. The saloon takes the majority
of the space inside the carriage (Figure 1) and includes 88 seats. The volume of the saloon
is approximately 113 m3, while the volume of the entire carriage is approximately 140 m3.
The majority of seats are in an “airline” configuration, however, some seats face each other
across a table. There is a door at both ends of the saloon, which leads to a vestibule. These
internal doors open automatically when approached but are otherwise shut. Each vestibule
has a door on either side for passenger boarding and alighting, along with a third door for
access to the next carriage.

Figure 1. Schematic of carriage seat layout and experimental layouts for this study. Red circles indicate the position of
passengers for the end experiments (full) and middle experiments (shaded).
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The carriage is mechanically ventilated, and the windows within the carriage cannot
be opened. Two Heating, Ventilation, and Air Conditioning (HVAC) units are located on
the roof, one at each end of the carriage. These units provide a supply of outdoor air to
the saloon and vestibules, drive the flow of conditioned air within the carriage, and can
either heat or cool the air as required. The conditioned air, which is a mixture of outdoor
air and recirculated air, is vented into the saloon from the ceiling along the entire length of
the carriage (Figure 2). The extract vent for each ventilation unit is located on the ceiling at
each end of the saloon. Heaters are located near the floor along each wall of the saloon to
provide additional heating capacity to supplement that the ventilation system.

The carriage ventilation system can be set to operate in several different modes:
automatic heating or cooling and forced cooling or forced heating. The outdoor temperature
was above 30 ◦C during the days of these experiments; therefore, forced cooling was chosen
as the ventilation setting used for each experiment. Forced cooling can be run at several
different cooling rates, from 0% to 100%. A 75% cooling capacity was used, and the desired
temperature within the saloon was set to 21 ◦C at the HVAC control unit. The exact flow
rates of outdoor air provided to the carriage and the flow rates of recirculated air were not
known. However, the design specification of the carriage HVAC system specified a fresh air
supply in the range of 22.5–30 m3 min−1 and a recirculation flow rate of 30–60 m3 min−1.
The heaters remained switched off at all times.

Figure 2. Schematic of carriage ventilation. Air is supplied from the ceiling along the entire length of the carriage. Extract vents
are located at either end of the saloon and in each vestibule. A large proportion of the air is recirculated back into the carriage.

2.2. Outline of Experiments
2.2.1. CO2 Experiment

The objective of the CO2 experiments was to explore the feasibility of using CO2
generated by exhaled breath and CO2 sensors to resolve concentration differences within
the saloon and to observe whether ventilation removed any stratification.

The CO2 experiments involved the generation of CO2 by members of the research
team representing passengers and sitting in the carriage while the ventilation was switched
off, allowing CO2 concentrations to rise before switching the ventilation on and measuring
the decay rate of CO2 at several locations. Six members of the research team acted as
passengers and sat in the carriage for a total of 35 min at a time. The passengers were
arranged to maximise the distance between each passenger while occupying three rows
of seats. This resulted in a staggered formation as shown in Figures 3 and 4, as well as
Figure 1. The ventilation was switched off at the start of the experiment. After 15 min,
the ventilation was switched on and used the 75% forced cooling setting. The passengers
remained in their seats for an additional 20 min before the experiment was stopped. The
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experiments were carried out at two locations within the saloon: the first near the midpoint
of the saloon and the second near the end of the saloon. Both experiments were run twice.

Seven CO2 sensors (K33-LP T, SenseAir AB, Delsbo, Sweden) were placed at various
locations within the carriage (Figures 3 and 4). The sensors were calibrated with a reference
analyser (G2201-i, Picarro Inc., Santa Clara, USA). The percentage error of reading was
within 3% in the range of 0–3000 ppm. These sensors are labelled M1 to M7. Sensors M3
and M5 were placed on the backs of seats at the height of the typical breathing zone for
sitting passengers and in close proximity to the six passengers. M6 and M7 were also
placed at the back of a seat but at a greater distance from the passengers. M4 was placed on
the luggage rack, while M1 was attached to the ceiling. Sensors M1, M4, and M5 were all
located at the same distance along the length of the carriage. For the first experiment near
the midpoint of the carriage, M2 was placed on the back of a seat on the opposite side to
M6, closer to the extract vent. For the experiment at the end of the carriage, M2 was placed
on the luggage rack above M7 and directly below the extract vent.

Figure 3. CO2 experiment set up for middle of carriage. Red circles indicate position of passengers, and blue triangles
indicate position of CO2 sensors.

Figure 4. CO2 experiment set up for end of carriage. Red circles indicate position of passengers, and blue triangles indicate
position of CO2 sensors.

The experiments reported here were performed during the ongoing COVID-19 pan-
demic. The experimental procedure was, therefore, complicated by the necessity to mitigate
the risk of infection from any potentially asymptomatic participating researchers. With this
in mind, the time period during which the passengers were asked to sit in close proximity
with the ventilation off was limited to 15 min. An additional 20 min was allowed with
the ventilation switched on. Due to these relative short time periods, a steady state in
CO2 concentrations was never reached, either during the ventilation off or ventilation on
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period. Furthermore, due to the limited time available on the carriage, only two runs of
each experiment were performed.

2.2.2. Aerosol Dispersion Experiment

The aim of the particle dispersion experiment was to map the aerosol distribution
over adjacent seats during a continuous release of aerosols under the ventilation off and on
conditions. The size of exhaled droplets ranges between 0.01 and 1000 µm [35]; therefore, it
is important to consider the dispersion of different aerosol size fractions. A nebuliser was
used as a source to generate continuous aerosols made up of sodium chloride solution (salt;
1% by weight) at a flow rate of 6 L per minute, which is within the range of the human
breathing rate, typically 5–7 L/min−1 while resting [36]. The use of a nebuliser allowed
us to investigate the significance of droplet mass on dispersion. The aerosol particles
released by the nebuliser had a size range of 0.25 µm to 16.5 µm. Six laser particle counters
(Dylos1700) were used to measure concentrations of fine (PM2.5; aerodynamic diameter
≤ 2.5µm) and coarse (PM10; aerodynamic diameter ≤ 10µm) aerosol particles at different
adjacent seats (Figure 5). These aerosol monitors have been successfully deployed in
previous work [37,38]. As for the CO2 experiments, a 75% forced cooling setting was used
for the “ventilation on” period of these experiments. There were no passengers present
during this experiment; therefore, the effects of body plumes and people movement were
not considered.

Figure 5. Aerosol dispersion experiment setup. The location of the nebuliser is shown by the blue square and the PM
sensors are shown by green triangles.

As part of quality control and assurance process, we carried out co-location measure-
ments over a period of 8 h prior to the experiments in order to assess relative accuracy.
Pearson correlation coefficients (r) greater than 0.93 and 0.87 were observed for PM2.5 and
PM10 , respectively, as observed in Figure A1.

The aerosol monitors were mounted on the back of seats at the typical breathing height of
a sitting passenger (1.2 m above the floor) at various locations near the nebuliser (Figure 5). A to-
tal of six sets of experiments, each for 25 min, were conducted under both “ventilation off”
(indoor cabin temperature, T = 32.3 ± 1.2 ◦C; relative humidity, RH = 39.5 ± 2.9%) and on
(T = 30.8 ± 0.2 ◦C; RH = 40.3 ± 2.5%) conditions. Before each experiment, the ventilation was
switched on for 15 min to clear the accumulated concentrations over the measurement duration
and to reach a stabilised background aerosol concentration level. Another 5 min was allowed
before the start of each experiment after switching the ventilation on or off in order to allow the
carriage flow to reach a quasi-steady-state condition.

The six aerosol monitors located at different locations within a cabin were marked as
B100, B70, S0, S45, F70, and F140; B, F, and S refer to behind, in front, and the same row as the
seat on which the nebuliser was placed, respectively. The nebuliser release faced towards
the “front” direction. The subscript indicates the horizontal distance in cm with respect to
the source (Figure 5). For example, F70 and B70 indicate that these aerosol monitors were
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placed in front of and behind the source seat, respectively, at a distance of 70 cm from the
source (S0). S45 refers to the seat in the same row as S0 at a distance of 45 cm. The monitor
at S0 was placed directly below the nebuliser outlet, within a few centimetres. The nearest
ventilation extract was located behind the nebuliser’s seat.

The following equation was used to normalise the measured aerosol concentrations in
order to understand the aerosol concentrations in relative terms so that the concentration
ranged between 0 and 1.

Cnorm =
Average aerosol concentration at a location

Average aerosol concentration at source
. (1)

The R statistical software (R Core Team, 2019) in the Open-air software package [39]
was used to carry out data processing and statistical analyses.

2.2.3. Airflow Visualisation

The dominant flow patterns across the width and height of the carriage were visualised
both near the middle and the end of the saloon. The locations of the visualised cross-
sections are indicated in Figure 1 by the green dashed lines. Flow pattern visualisation was
conducted by tracing the motion of a neutrally buoyant, inert fog under the ventilation flow.

Lasers (30 mW; 520 nm) were fitted with Powell lenses in order to form a diverging
laser sheet and then mounted and aligned in order to illuminate the fog across a carriage
cross-section. In order to enhance visualisation, the lights in the carriage were switched off,
and plastic blackout sheets were used to cover the windows. Initially, the ventilation within
the carriage was switched off. A section of the carriage approximately 2 m in length was
isolated by using curtains before being filled with non-toxic, artificial, and theatrical smoke
consisting of 70% water and 30% glycol droplets of size ranges between 5 and 10 µm. Once the
carriage section was suitably filled, the plastic sheets were removed, and two passengers sat on
either side of the aisle such that the illuminated cross-section of the carriage passed over their
shoulders and heads (see Figure 6). Once in position, the flow generated by the body plumes
of the passengers was allowed to develop before the ventilation was switched on (75% forced
cooling). The flow was visualised until the fog was dispersed to a degree that visualisation was
no longer effective. Typically, this allowed a minute or two of visualisation.

           
       A section of the carriage isolated with curtains 

           
          Passengers under observation 

Figure 6. Schematic of the flow visualisation setup. A 2 m long section of the carriage was isolated
using curtains and filled with inert smoke. Once the section was filled with smoke, the curtains were
removed, allowing passengers to enter the section and sit across the aisle from each other on seats
illuminated with laser lights. The body heat of the passengers produce thermal plumes, andventilation
was subsequently switched on. Cameras were used to record the movement of the tracer smoke along
with the dominant flows.
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3. Results
3.1. CO2 Experiment

Figure 7 shows the CO2 measured by all sensors over the period beginning at the start
of the first experiment and ending at the end of the last experiment. The figure includes
uncontrolled periods in between experiments. The dashed lines indicate the beginning of
each experiment when the ventilation was switched off, the time at which the ventilation
was switched on, and the end of the experiment when the passengers were permitted to
move from their seated positions. The first two experiments, conducted before 1330, were
at the middle of the saloon (Figure 3), while the second two experiments, after 1430, were
at the end of the saloon (Figure 4).

The period of each experiment is evident from the increase in CO2 concentrations
when the ventilation was switched off, followed by the rapid decrease in concentrations
when the ventilation was switched on. These periods are also indicated by the dashed
vertical lines. It is also evident that a steady-state was not reached at any point.

It is useful to see the data shortly before the beginning of each experiment as they highlight
a limitation, which is that concentrations varied significantly between the start point of each
experiment. No effort was made to control the period up to the beginning of each experiment.
Therefore, the number of people present prior to each experimental run could vary in addition
to the time period and ventilation setting used between each experiment, resulting in a variation
in the initial CO2 concentrations at the beginning of each run. This variation is evident when
considering the concentrations at the start of the first and second run for both the middle and
end experiments. Concentrations were lower at the start of the second run in both cases as
these began shortly after the period of forced ventilation from the first run, which resulted in
a significant decrease in concentrations. These differences in initial conditions are reflected in
the concentration trends observed during the experiments. For example, the rate of increase
in CO2 was greater for the second run in both cases as the initial concentrations were lower.
Despite the higher rate of increase, concentrations were generally still lower after 15 min, with
no ventilation for the second runs.

Figure 7. CO2 measurements for all sensors between the start of the first experiment and the end of the last experiment.
The first two experimental runs were conducted near the middle of the carriage, while the last two were conducted near the
end of the carriage and an extract vent. Following “Middle Run 2”, the occupancy of the carriage reduced to zero, resulting
in a large drop in CO2. Passengers returned to the carriage shortly before 14:30, resulting in an increase in CO2.
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A large decrease in concentrations was observed over the lunch period, between 1330
and 1420, during which time the saloon was empty, and the ventilation was set to automatic
mode. At 1420, some people returned to the carriage and sat near the senors, from which
point there was a sharp increase in concentrations. The maximum number of people in the
saloon at any given time was six.

Figure 8 shows the concentrations for the sensors placed at breathing zone height for
sitting passengers. The highest concentrations were generally observed for M5 located
between two rows of passengers, with the concentrations here consistently above those at
M7 and M3. The distance between M3 and M5 is 0.8 m. Once ventilation was switched
on at 900 s (15 min), the concentrations began to decrease at each location. The rate of
decrease was highest for M6 (the sensor furthest from the nearest extract vent) for all
experiment runs. For the experiment at the middle of the saloon, a much lower rate of
decay was observed for M2 (the sensor closest to the nearest extract vent) despite being
located further from the CO2 source. In fact, for the first run, an increase in concentrations
was observed for M2. This suggests that the CO2 generated by the passengers travelled
towards the nearest extract vent, shown in Figures 3 and 4; when the ventilation was
switched on, the elevated CO2 at M6 quickly diluted, while the reduction due to dilution
at M2 was countered by elevated concentrations advected by air flow from the direction of
the passengers. The rates of decay for the M3, M5, and M7 sensors are higher at the middle
of the carriage than compared to the end. This suggests that the effective ventilation rate is
higher at the middle of the carriage, at least initially.

Figure 8. CO2 concentrations for sensors placed within breathing zone for (a) middle run 1,
(b) middle run 2, (c) end run 1 and (d) end run 2. Red dashed lines show time at which venti-
lation is switched on.

Figure 9 shows the concentrations for sensors placed at different heights at the same
location along the length of the saloon. For the experiment at the middle of the carriage,
this constituted M1 (ceiling), M4 (luggage rack), and M5 (breathing zone) only. Here, no
significant difference was observed between M1 and M4, however, M5 showed consistently
higher concentrations. A similar picture was observed for M1, M4, and M5 at the end of
the saloon. At the end of the saloon, M2 was located directly above M7. In this case, M2
showed higher concentrations than M7, indicating that there may be stratification during
the unventilated period. Once the ventilation was switched on, the concentrations at the
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two locations quickly converged, suggesting that the ventilation was effective at mixing
the air vertically.

The steady-state was not reached for these experiments; threrefore, we were unable
to draw firm conclusions based on the absolute differences in concentrations between
locations as it was unclear to what extent these differences would have converged given
sufficient time. However, it seems likely that the concentration at certain locations would
have remained higher than others. For example, it is likely that the steady-state concentra-
tion for M6 would have been significantly lower than for all other sensors based on the
trends observed in Figure 8. This suggests that the saloon was not well mixed along its
length despite the supply of recirculated air throughout the saloon, but it was well mixed
over its height.

Figure 9. CO2 concentrations for sensors placed at different heights for (a) middle run 1, (b) middle
run 2, (c) end run 1 and (d) end run 2. Red dashed lines show time point at which ventilation is
switched on.

3.2. Aerosol Dispersion

Figure 10 shows the normalised mean concentrations measured for the aerosol released
from the nebuliser during the ventilation off and on periods at each location. During the
unventilated period, the PM10 concentration dropped off very quickly from the source
location by a factor of nearly nine between S0 and the next nearest monitor, S45. The relative
decrease was much greater than that observed for PM2.5 concentrations, which decreased
by 40% between these two locations. This highlights the difference in the dispersion of
the smaller and larger particles. During this unventilated period, there were no advective
flows present within the carriage, and the dilution of the aerosol occurs due to diffusion
and small scale turbulent mixing. Due to their greater mass, the larger aerosol particles
are not dispersed as effectively as the smaller particles under these conditions. The low
relative humidity in the carriage and the use of salt solution to generate the aerosols will
have resulted in evaporation, resulting in a decrease in droplet size, which will also have
contributed to the difference observed between the size fractions as some of the initially
larger droplets reduced in size and became attributed to the smaller size fraction.

Switing on the ventilation resulted in a significant reduction in concentrations at all
locations (see Table A1); mixing was increased due to advection and increased turbulence
within the carriage. The largest relative decrease of 72% was observed at S0 for the coarse
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aerosol, highlighting the effectiveness of the ventilation in driving the dilution of these
larger particles. However, the normalised concentrations of the fine particles remained
greater than those of the coarse particles at each location away from the source, indicating
the more effective mixing of the finer fraction.

When the ventilation was switched on, higher concentrations were observed for both
the coarse and fine fraction in the “backward” direction than compared to the “forward”
direction. This suggests that the prevailing flow was directed in the “backwards” direction.
This was the direction towards the nearest extract vent in the saloon, as also observed from
the CO2 measurements.

Finally, the concentrations at S45, which was located at the seat next to the source,
were only marginally greater than those at B70 located on the next row. This suggests that,
over these short length scales, the degree of mixing across the width of the saloon was
similar to that along its length.

Figure 10. Spatial distribution of averaged normalised (a,b) fine and (c,d) coarse aerosol particle
concentrations at each location under unventilated and ventilated conditions.

3.3. Flow Visualisation

Figures 11–14 show still images of the flow visualisation experiment at the middle and
end of the carriage, respectively. Red arrows are used to indicate the direction of persistent
air flow. Videos of these flow visualisations are available in the Supplementary Materials
for which the airflow patterns are clearer.

During the unventilated period, the body plumes rising from the two passengers
are clearly visible in the video footage for both the middle and end cases. In the middle
of the carriage, there were no other persistent flows present other than some turbulent
mixing. At the end of the carriage, there was a weak but persistent downward flow from
the ceiling above the passenger on the right. This flow in turn forced the body plume
from the passenger on the right to rise at an angle towards the centre of the carriage. This
downward flow may have been due to an asymmetry in the body plumes generated by the
two passengers.

In the middle of the carriage, when the ventilation was switched on, a strong down-
ward jet was observed to flow from the ceiling inlet vents (Figure 2). This downward flow
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was sufficiently strong to extend between the two passengers and beyond the lower edge
of the image, acting as an air curtain between the passengers. The body plumes rising from
the two passengers continued to drive an upward flow while the ventilation was switched
on, causing significant upward acceleration.

At the end of the carriage, when the ventilation was switched on, the flow patterns
were very different compared to those observed in the middle of the carriage. In this case,
only a very weak downward jet was observed to flow from the inlet vents, extending only
a few centimetres into the space, while a persistent upward flow was observed across the
remaining cross section of the carriage. In this case, the passengers were sat directly below
the extract vents. The dominant upward flow is driven by the suction of these vents.

Figure 11. Snapshot of flow visualisation experiment at the middle of carriage during unventilated
conditions. Red arrows indicate direction of persistent air flow.

Figure 12. Snapshot of flow visualisation experiment at middle of carriage during ventilated condi-
tions. Red arrows indicate direction of persistent air flow. Yellow lines indicate location of inlet and
extract vents.
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Figure 13. Snapshot of flow visualisation experiment at end of carriage during unventilated condi-
tions. Red arrows indicate direction of persistent air flow.

Figure 14. Snapshot of flow visualisation experiment at end of carriage during ventilated conditions.
Red arrows indicate direction of persistent air flow. Yellow lines indicate location of inlet and
extract vents.

4. Discussion

Given that only six people were used for the CO2 experiments, relatively high concen-
trations were measured in the carriage. While the steady-state was not reached during the
CO2 experiments, it is clear from Figures 8 and 9 that concentrations near the passengers
(M3, M5, and M7) converge towards a value of around 800 ppm. Given that the carriage
has a seated occupancy of 88, the concentrations are likely to be considerably higher in
a busy carriage. CIBSE recommends an outdoor air flow rate for buildings of 10 L s−1

person−1 (Ls−1p−1) [40]. When achieved, this ensures that CO2 concentrations are un-
likely to exceed 1000 pmmin a well-mixed space (concentrations above which have been
related to adverse health impacts [41]). The ventilation flow rate was not known for these
experiments, and it is not clear how the provision of fresh air provided by the 75% forced
cooling setting used for these experiments compares with that provided by the automatic
function of the ventilation system during normal service. While ventilation rates can be
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estimated from CO2 decay curves or steady-state concentrations (e.g., [42]), these estimates
depend on a well mixed assumption, which is not the case for the CO2 experiments here.
However, the design specification of the HVAC system placed the minimum and maximum
ventilation rates, that is, the rate of supply of fresh air, at 22.5–30 m3 min−1. During nor-
mal operation, the exact rate varies within these limits in response to temperature senors;
however, the system does not react directly to the occupancy of the carriage. Taking the
carriage volume of 140 m3, this equates to 9.6–12.9 air changes per hour (ACH). If we
assume a carriage at half seating occupancy, holding 44 passengers, this works out as 8.5 to
11.4 Ls−1p−1. For a carriage at full seating occupancy, these values will be halved. In a
recent review by the National Engineering Policy Centre (NEPC), values as low as 4 to 6
ACH were given for the provision of outdoor air to certain UK rail carriages [43]. Assuming
the same carriage volume of 140 m3 and an occupancy of 44 passengers, this works out
as 3.5 to 5.3 Ls−1p−1, which is significantly lower than that recommended by CIBSE for
buildings, but comparable to the ASHRAE recommended flow rates for commercial aircraft
of 3.5 Ls−1p−1 (ASHRAE Standard 161). However, for a busy carriage, the air flow rate per
person will be significantly lower.

Train carriages are not required to meet the same ventilation standards as indoor
spaces in buildings. Ventilation systems on train carriages tend to be optimised for energy
efficiency and passenger comfort rather than air quality. To minimise the energy consump-
tion of HVAC systems on trains, much of the air supply is recirculated air rather than
outdoor air that usually requires a higher degree of heating or cooling in order to maintain
passenger comfort. The provision of outdoor air by these HVAC systems can, therefore,
be low, and the recirculation of air could result in the dispersion of virus-laden particles
throughout the space. While the recirculated air will be passed through a filter within
the HVAC unit, most filters are too coarse to remove smaller viral particles [44]. Unlike
aircraft, which are fitted with High Efficiency Particle Arrestance (HEPA) filters [28], this
is not a requirement for train carriages. It is not clear from the experiments performed in
this study what effect the recirculation of air has on the risk of transmission. For trains,
European Union (EU) regulations and those adopted by the UK’s Rail Safety and Standards
Board specify that CO2 concentrations should not exceed 5000 ppm (EU regulation No
1302/2014); however, there are no further requirements regarding indoor air quality. Given
that CO2 concentrations, together with the occupancy and HVAC filter efficiency, can be
directly related to the risk of airborne transmission [11–13], the absence of more stringent
regulations may be a cause for concern in terms of mitigating airborne transmission in ad-
dition to general air quality considerations. Further investigation is required to determine
the efficacy of the HVAC filter in removing viral-laden particles from the air.

Within the context of the current COVID-19 pandemic, it should be noted that the risk
of airborne transmission relative to that via droplets or contaminated surfaces is still not
well understood. However, it is by now clear that airborne transmission is a significant
component, as is now acknowledged by the World Health Organization [45]. The degree
to which increasing the fresh air supply rate within a space reduces the risk of airborne
transmission depends on the airflow structures within the space [46], the main factor being
what proportion of the additional fresh air supplied reaches the breathing zone. However,
given the experiments presented here suggesting that the carriage is well mixed along the
vertical direction, it is likely that an increase in fresh air supply will result in a reduction in
transmission risk. To what extent and whether adjusting the ventilation rates is a sensible
measure remain outstanding questions that require further research. Train operators in
the UK have taken practical measures currently available towards minimising the risk
to passengers while travelling during the pandemic. These measures include the use of
antimicrobial surface treatment, encouraging passengers to sit as far as possible from others,
and enforcing mask wearing at all times. Furthermore, the risk of airborne transmission
is limited by the short time periods typically spent in train carriages relative to other
environments, for example, in buildings. It is also worth noting that public transport will,
on the whole, have lower viral emission risk factors as most people tend to be passive while
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travelling rather than talking or exercising, which increase viral emissions considerably [47].
For these reasons, while we have compared the fresh air supply rates on train carriages to
those recommended for buildings to provide context, we are not necessarily suggesting that
equivalent rates are necessary or practical for train carriages. It is also for these reasons that
the risk of infection on an individual basis on a train carriage is likely to be low. However,
given the large number of passengers who travel by rail every day, the contribution to the
population level “R” rate may be significant and justifies further investigation.

The experiments revealed the complexity of the airflow patterns and, therefore, the
dispersion of particles within the carriage saloon. Significant differences were observed
in the CO2 concentrations within the saloon along its length. Therefore, we can conclude
that the air within the saloon is not well mixed along its length, at least not while the
train is stationary or while travelling at steady speed. Maximising the physical distance
between passengers along the length of the carriage is, therefore, likely to be an effective
strategy at reducing the risk of airborne transmission. A downward jet observed in the
flow visualisation at the middle of the saloon may act as an air curtain along the aisle;
however, the aerosol concentrations measured at S45 were similar to those measured on
the row behind the source. This suggests a similar degree of mixing in both directions in
the absence of passengers. therefore, it seems that, in the case of a busy carriage where
physical distancing is not possible, there is not much of advantage to either sitting across
the aisle on the same row or sitting one row ahead of or behind another passenger.

The ventilation seemed effective at removing any stratification of CO2 concentrations;
therefore, it may be appropriate to consider the saloon as well mixed throughout its
height. The airflow visualisations also demonstrated the importance of considering the
convective plumes generated by the body heat of the passengers. These were clearly
visible both when ventilation was on and off and may have a significant effect on the
initial trajectory of exhaled droplets in addition to the general flow patterns within the
saloon, particularly when occupancy is high. The experiments also demonstrate the
sensitivity of the airflow to the location of the extract vents. Both the CO2 and aerosol
particle dispersion experiments showed a strong bias in dispersion towards the nearest
extract vent. Furthermore, significantly different flow patterns were observed at the
end and middle of the saloon. The dominant upward flow observed at the end of the
saloon is due to the suction of the extract vents that were positioned directly above.
The different flow behaviour between the middle and end of the saloon, along with the
large differences in CO2 measured along its length, suggests that the risk of airborne
transmission may vary depending on the seating positions of the passengers and the
location of any infected passenger.

The aerosol dispersion experiments demonstrated the importance of considering
particle size or mass. Measurements suggested a slightly higher degree of dilution for
the fine fraction of particles than for the coarse fraction; however, both size fractions
were dispersed effectively. This, along with the large decrease in CO2 measured with
distance from passengers, suggests that physical distancing, where possible, is likely to be
an effective strategy for reducing the risk of airborne transmission, particularly from larger
droplets. The size and mass of viral-laden droplets can cover a wide range [35]. Therefore,
it is important to understand the dispersion behaviour for the full range of exhaled droplet
sizes (0.01–1000 µm). In these experiments, only the difference between two size ranges
was considered. Ideally, a more advanced particle counter would be used to achieve insight
into a broader range of particle sizes. Furthermore, while CO2 is a useful indicator of
exhaled air, its measurements do not provide insight into dispersion of larger droplets.

There are several limitations to the experiments presented here. First, only a lim-
ited number of runs were performed for each experimental method. Second, it was not
always possible to allow sufficient time to reach a steady-state during and in between
experiments. These limitations were due to the short time period available on the train.
Finally, as the experiments took place during the COVID-19 pandemic, the time spent
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on the carriage was limited in order to mitigate the risk of transmission between those
undertaking the experiments.

Despite these factors, the utility of the methods used has been demonstrated for
full scale experiments. They have also shown the complexity of the airflow within an
intercity train carriage and have provided some useful insights into flow behaviour within
the saloon. It is clear that simple approaches such as using the Wells–Riley equation
[48], which assumes a well-mixed space, are unlikely to provide accurate estimates of the
probability of infection. It is also worth noting that an intercity carriage is likely to represent
the simplest case in relation to airflow and droplet dispersion. In this case, journey times
tend be longer; therefore, passengers are more likely to remain seated for longer periods
of time, there are fewer occurrences of boarding and alighting, and the carriage doors
do not open directly into the saloon. This is not the case for regional trains in which the
increase in people’s movement, increase in the frequency of stops, carriage accelerations,
and decelerations in addition to the exchange of air when doors are opened are likely
to significantly increase the complexity of the problem. In order to fully understand the
implications of these insights to the risk of airborne transmission in addition to their
relevance for different ventilation settings and carriage occupancy, a high fidelity model
such as CFD may be required. The data gathered here will prove useful for comparison
with and provide confidence in future CFD simulations. Furthermore, the experiments
have provided useful insights for the development of a 1D advection–diffusion model
which is currently work in progress. An alternative approach for understanding the risk of
airborne transmission on the carriage is to deploy CO2 sensors within the carriage while in
service; the measurements can be used to estimate transmission risk [13].

5. Conclusions

The experiments presented in this paper were performed at short notice and during
somewhat challenging conditions during the COVID-19 pandemic (during the August of
2020). Therefore, they do not represent a comprehensive analysis of the airborne trans-
mission on the carriage; nevertheless, they are a rare example of experiments conducted
at full-scale on an operational train carriage. Three experiments were performed on a
stationary intercity train carriage using a single ventilation setting (75% forced cooling).
The data obtained consisted of CO2 measurements of exhaled air, measurements of aerosol
particles from a nebuliser, and flow visualisations of fog illuminated using lasers. All three
experiments were successful in providing useful insights into the flow and dispersion be-
haviour on the carriage and also demonstrated the “proof of concept” for these methods for
full-scale experiments. For example, it was found that the carriage saloon is not well mixed
along its length; however, it is likely to be well mixed along its height and width. This is
useful information for the rail operator when considering suitable seating restrictions to
enforce physical distancing. Based on the findings reported here, it is recommended that in
order to mitigate the risk of airborne transmission, mask wearing should be encouraged
on intercity train carriages, and any practical measures available to encourage physical
distancing between passengers during periods of low occupancy should be implemented.
While some of the insights may seem intuitive, there is value in their verification. These
findings will inform further experiments that are planned.

The suitability of the fresh air supply rates on UK train carriages is also discussed by
drawing on the CO2 concentrations measured during these experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12101267/s1, Video S1: center of carriage; Video S2: end of carriage.
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Figure A1. Correlation matrix of aerosol monitors during the co-location campaign.
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Table A1. Mean and standard deviation concentrations (µ g m−3) of fine and coarse aerosol concen-
trations and normalised concentrations at different distances from the source under ventilation off
and on conditions.

S0 B100 B70 S45 F70 F140

PM10 Off 1701 ± 511.9 77 ± 16 91 ± 19 194 ± 45 88 ± 18 66 ± 18

Cnorm(%) 100 6 7 13 6 5

PM10 On 483 ± 134 48 ± 7 61 ± 10 74 ± 18 39 ± 6 31 ± 3

Cnorm(%) 100 13 16 19 11 8

PM2.5 Off 369 ± 216 55 ± 12 65 ± 14 143 ± 34 67 ± 14 49 ± 13

Cnorm(%) 100 26 33 60 35 23

PM2.5 On 283 ± 67 38 ± 6 48 ± 8 58 ± 14 32 ± 5 25 ± 3

Cnorm(%) 100 16 20 23 13 11
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Abstract 

Background: Air pollution epidemiology has primarily relied on measurements from fixed outdoor air quality moni-
toring stations to derive population-scale exposure. Characterisation of individual time-activity-location patterns is 
critical for accurate estimations of personal exposure and dose because pollutant concentrations and inhalation rates 
vary significantly by location and activity.

Methods: We developed and evaluated an automated model to classify major exposure-related microenvironments 
(home, work, other static, in-transit) and separated them into indoor and outdoor locations, sleeping activity and five 
modes of transport (walking, cycling, car, bus, metro/train) with multidisciplinary methods from the fields of movement 
ecology and artificial intelligence. As input parameters, we used GPS coordinates, accelerometry, and noise, collected 
at 1 min intervals with a validated Personal Air quality Monitor (PAM) carried by 35 volunteers for one week each. The 
model classifications were then evaluated against manual time-activity logs kept by participants.

Results: Overall, the model performed reliably in classifying home, work, and other indoor microenvironments 
(F1-score>0.70) but only moderately well for sleeping and visits to outdoor microenvironments (F1-score=0.57 and 
0.3 respectively). Random forest approaches performed very well in classifying modes of transport (F1-score>0.91). We 
found that the performance of the automated methods significantly surpassed those of manual logs.

Conclusions: Automated models for time-activity classification can markedly improve exposure metrics. Such 
models can be developed in many programming languages, and if well formulated can have general applicability in 
large-scale health studies, providing a comprehensive picture of environmental health risks during daily life with read-
ily gathered parameters from smartphone technologies.

Keywords: Portable sensor technologies, Multi-pollutant personal exposure, Automated time-activity classification

Background
Ambient air pollution is a leading environmental risk fac-
tor for chronic disease and millions of premature deaths 
every year worldwide [1]. Much of this evidence comes 

from epidemiological studies conducted in western coun-
tries where networks of outdoor reference monitoring 
stations have been used to provide indications of the 
effects of ambient air pollution on population health [2]. 
Recent studies focused on a global analysis of estimated 
source contributions to outdoor air pollution and related 
health effects using updated emissions inventories, satel-
lite and air quality modelling, and relationships between 
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air quality and health at global, regional, country, and 
metropolitan-area scales [3].

However, as individuals move between different, highly 
heterogeneous microenvironments that are mainly situ-
ated indoors, outdoor static measurements become 
potentially poor metrics of actual personal exposure [4], 
leading in many cases to bias and error in health estima-
tions [5]. Adding to the complexity of measuring per-
sonal pollutant concentrations, physical activity levels, in 
turn, affect the dose of inhaled air pollution. For exam-
ple, while a comprehensive review of the literature found 
the highest exposure to particulate matter when travel-
ling by car compared with cycling [6], the highest whole 
trip doses were in fact experienced by cyclists [7] because 
their higher physical activity levels resulted in greater 
amounts of pollutant received by the body through larger 
volumes of inhaled air [8].

Accounting for individual mobility and activity patterns 
is therefore critical for improved exposure and dose esti-
mations. Such information has been commonly collected 
with different self-reported questionnaires [9] which 
often introduce participant error and missing data [10, 
11] and increase the participation burden (i.e. time and 
effort required to complete) [12]. A growing number of 
studies have taken advantage of increasingly widespread 
sensor technologies, such as geographical positioning 
system (GPS) sensors in smartphones, to improve the 
accuracy of indirect air pollution exposure assessment in 
large-scale health studies by tracking people’s time-loca-
tion patterns [13–16].

Time-activity patterns and modes of transport cannot 
be derived from the GPS raw data directly without fur-
ther data processing. Only a few studies aim to classify 
time-activity patterns during daily life using GPS tracking 
data (smartphone-based or handheld devices), in some 
cases combined with temperature, light or motion sen-
sors [17–24] to develop primarily rule-based models and/
or random forest (RF) learning techniques for a small 
number of participants over a few days.

In a previous paper [25], we developed, deployed and 
comprehensively evaluated the performance of a highly 
portable air pollution sensor platform (PAM) for per-
sonal exposure assessments in health studies. We now 
aim to present a methodological framework as the basis 
of an approach that automatically classifies and integrates 
time-activity patterns in personal exposure assessments. 
This work is toward an overarching aim of capturing total 
personal multi-pollutant dose in unprecedented detail 
and, together with medical outcomes, identifying under-
lying mechanisms of the detrimental effects of specific 
air pollutants on health. While we use auxiliary param-
eters collected with a custom-made sensor platform as 
inputs, such parameters can be readily collected with 

smartphone technologies, making this method transfer-
able to large-scale health studies.

Conceptual structure of the time activity model
We developed a model to classify major exposure-rel-
evant microenvironments (home, work, other static, in 
transit) and subclassified them into indoor and outdoor 
locations, sleeping activities and five modes of transport 
(walking, cycling, car, bus, train/metro) using two open-
source software components, R [26, 27] and Post-
greSQL [28, 29]. The input parameters for this model 
(GPS coordinates, noise and accelerometry) were col-
lected with the PAM [25] (S1). Information on data man-
agement, post-processing and sensor performance can be 
found in Chatzidiakou et al., 2019 [25] and in S1.

The PAM has been previously deployed in a number of 
health studies to monitor the thermal parameters (tem-
perature and RH) and personal exposure of participants 
to multiple pollutants at high spatial and temporal reso-
lution [30, 31] including carbon monoxide (CO), nitric 
oxide (NO), nitrogen dioxide (NO2 ), ozone (O3 ) and size 
segregated particulate matter (PM). However, pollutant 
measurements1 and thermal parameters were not used 
as predictors in this model in order to make this meth-
odology generally applicable to other studies and also 
transferable to different geographical settings and vary-
ing seasons.

The model can be conceptualised as a series of six con-
secutive steps, as shown in Fig. 1, to classify major micro-
environments, activities and modes of transport (shown 
in red font), combining rule-based algorithms (blue) and 
artificial intelligence (AI) methods (purple) summarised 
in Table 1.

Step 1 aims to identify the home location with a sim-
ple rule-based algorithm to effectively reduce the vol-
ume of the data that will be processed with a Lagrangian 
home-range estimation method [32, 33] in Steps 2 and 
3. In that way we effectively reduce the volume of data 
because such methods generally require higher compu-
tation power to implement more complex geometric or 
probabilistic models2. We adopt an existing technique 
[34] developed in the field of ecology and extend its 
use to human mobility studies. It combines the robust-
ness of geometric estimators with the simplicity of 

1 with the exception of the larger fraction of PM for sleeping activity
2 Geometric estimators aim to delineate the spatial extent of an individu-
al’s movement by constructing polygons (called hulls) of all visited places. 
Probabilistic estimators create the probability density (called utilisation dis-
tribution) that an individual is found at a given point in space and represent 
the density of use of space. Widely used geometric methods are convex hull 
methods while the most common probabilistic methods are kernel density 
methods to analyse animal territory and movement [32].
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probabilistic methods to identify important place-marks 
and fully characterise exposure-relevant behavioural pat-
terns of how the individual uses their activity space.

Step 4 and Step 5 employ rule-based algorithms to 
interpolate missing observations, separate indoor from 
outdoor static microenvironments and classify sleeping 
activity. Finally, in Step 6 we classify modes of transport 
observations with RF [35], the use of which is considered 
best practice in travel mode classification [36]. To assist 
the classification, we perform trajectory analysis [37] to 

extract useful metrics of movement. Important predictor 
variables for RF model development were selected with 
an automated method [38] suitable for high-dimensional 
data (see Table 1).

Additional to the above main R software environ-
ment packages that form the backbone of the model, we 
used for spatial analysis and visualisation: sp [39, 40], 
rgdal [41], raster [42], gpclib [43], OpenStreetMap [44], 
ggplot2 [45] and ggmap [46], rayshader [47]; for time-
series analysis, data manipulation and visualisation: 

Fig. 1 Flow chart of the time activity model

Table 1 Summary of AI methods integrated into the time-activity model

AI method R implementation Outputs

Home-range method that combines geometric and probabilistic 
estimators

Time Local Convex 
Hull (T-LoCoH) [34]

Polygon (hull) geometry gives information on direc-
tional movement vs. static clusters (Step 2). Visitation 
rate and duration of visit enable classifications based on 
behavioural patterns of the individual (Step 3).

Trajectory analysis Adehabitat LT [37] Segmentation of movement with the Lavielle method [57]

Predictor selection for Random Forest (RF) classification with three-
step elimination process based on data-driven thresholds for high 
dimensional datasets

VSURF [38] Predictor variables for RF models collected with the PAM 
(movement, noise, GPS information) and baseline ques-
tionnaire (common modes of transport), and extracted 
from spatial analysis

RF classification of the mode of transport with the 10-fold evaluation 
method

RandomForest [65] Probabilistic classification for each mode of transport
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openair [48], dplyr [49], plot3D [50]; and for clustering 
and classification: caret [51], dbscan [52].

The model development steps are described in detail 
below and illustrated using information from one repre-
sentative participant over a period of one week.

Step 1: Rule‑based algorithm for home location 
identification to reduce computational demand 
of the time‑activity model
The rationale of this simple algorithm relies on com-
mon behavioural patterns of most people in western 
settings, who tend to spend most of their nighttime at 
home (Fig. 2b). This assumption holds particularly in this 
study but it can be readily adjusted to shift workers who 
may be at home at different times. We identified periods 
when the PAM was in the base-station - the dock used 
by participants to charge the PAM at home - (as indi-
cated by the input voltage of the unit) and when the local 
time was between 02:00-04:00 AM; therefore, making it 
more likely that the participant was at home. Due to GPS 
errors, these points tended to be displaced around the 
home location as illustrated in Fig. 2c, often falling out-
side the GIS building boundaries.

A clustering algorithm (in this case k-means in R) was 
applied to this data subset to determine whether the scat-
tered points formed a single cluster for each participant. 
For a few participants, multiple clusters were detected 
hence home could not be determined in this step (for 
example, due to sleeping in multiple locations or lack of 
satellite reception during the selected period) and for 

these participants home was subsequently classified in 
Step 2 as the location where the participant spent most 
of their time.

If a single cluster was identified, a spatial elliptical zone 
(“buffer zone”) was created around each home microen-
vironment by extracting the centroid coordinates and 
the individual spread distances ( δLon and δLat) (Fig. 2c). 
Any spread is expected to depend on contextual factors 
(such as building construction characteristics and GPS 
signal quality) and was typically found to range from 60m 
to 500m( [23, 24]. Data points within that spatial zone 
(Fig. 2c) were classified as home and were separated into 
indoor and outdoor in Step 4.

Step 2: Stationary locations and movement patterns 
from space‑use metrics
The remaining observations (i.e. those not belonging 
within the home spatial zone) were analysed with the R 
package T-LoCoH [34] (Table 1) to distinguish between 
movement and static activities. The strength of this tech-
nique is that it models space-use (Step 2) and time-use 
(Step 3) simultaneously. It does that by employing a scal-
ing that relates distance and time in reference to an indi-
vidual’s characteristic velocity (time-scaled distance). 
Previous studies have found that such estimators that 
incorporate a temporal component with individual-spe-
cific parameters generally perform better than traditional 
estimators [53]. We first used the extracted geomet-
ric features to classify static clusters and directional 

Fig. 2 Graphical flow chart of home identification of the time-activity model. (a) Map of the raw GPS data (blue) collected from a representative 
participant carrying a personal air quality monitor over a week. (b) 3D density plot of participant’s time budget projected on a map. “Home” location 
has the highest point density (i.e. most time spent). (c) A spatial elliptical zone created with a rule-based model to identify “home” that included 
indoor (red) and outdoor (blue) micro-environments (separated in Step 4). The spread distances ( δLon and δLat) around the centroid are often larger 
than the GIS footprints of the buildings (grey) and depend on multiple factors. Map data from Google Maps 2021 (a and b) and OpenStreetMap(c)
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movement following the workflow illustrated in Fig.  3 
and described below:

• Figure 3a: Defining nearest neighbours with the 
adaptive method. GPS data were first converted to 
a conformal (Universal Transverse Mercator) projec-
tion because it preserves local angles and represents 
shapes accurately and without distortion for small 
areas. The algorithm begins by identifying a set of 
nearest neighbours around each point (Fig. 3a) based 
on their time-scaled distance. Participants did not 
utilise areas in a uniform pattern, but rather selected 
areas based on their individual activities, resulting 
in heterogeneous coverage of both dense and sparse 
areas. To account for these patterns, the selection 

of nearest neighbours [34] was performed with the 
adaptive method ( α-NN).3

• Figure 3b: Geometry of the enclosing polygons. 
Each parent point and its nearest neighbours were 
bound together with a minimum convex polygon or a 
hull (Fig. 3b). Hulls are the building blocks of the sub-
sequent analysis and have different properties (point 
density and shape) which in turn provide important 

Fig. 3 Example graphical flow of space-time utilisation distribution analysis (step 2) implemented with the T-LocoH package in R. (a) First, nearest 
neighbours were identified with the adaptive method ( α-NN) (b) Minimum convex polygons (hulls) were then produced from these α-NN (c) Hulls 
were merged by point density to create density isopleths (utilisation distributions) to characterise space intensity use. (d) Hulls were merged by the 
eccentricity of the bounding ellipse to create elongation isopleths to characterise movement and were projected on a map (Google Maps 2021)

3 The adaptive method specifies that the sum of the distances of all nearby 
points around each parent point is less than or equal to α . Essentially, this 
method adjusts the size of the circles that enclose nearest neighbours based 
on the frequency of use of each area. In regions with more data, smaller cir-
cles can be constructed resulting in a higher resolution of space-use metrics. 
Because α is defined empirically, we used an automated method to find a suit-
able value for each participant [34].
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information on the use of space. The eccentricity of 
the ellipse bounding a hull is a good approximation 
of its shape, which specifies whether an individual is 
in movement or stationary. For example, a bounding 
ellipse with an eccentricity value close to zero resem-
bles a circle and indicates areas where the individual 
was stationary for an extended period, resulting in 
a dense cluster of points similar to the red cluster 
presented earlier in Fig.  2c. In contrast, elongated 
bounding ellipses have an eccentricity value close to 
one because they enclose nearest neighbours that 
form linear segments indicating areas of directional 
movement.

• Figure 3c and d: Defining areas with similar poly‑
gon geometry. Depending on the research ques-
tion, hulls can be sorted by a selected property, 
and then merged together to form isopleths that 
connect areas with the same numerical value of 
that property. In the example of Fig. 3c, areas that 
are used by the participant with the same inten-
sity were merged to produce traditional utilisation 
distributions. When hulls with similar eccentric-
ity values are merged as shown in Fig.  3d, similar 

movement patterns are connected in a single isop-
leth ranging from the highest elongation hull value 
close to 1 (cyan) capturing points in movement to 
the lowest elongation value close to 0 (red) indicat-
ing dense clusters of GPS points. In this way, simi-
lar movement patterns are grouped into a single 
isopleth. Isopleths typically contain 95% of the total 
points excluding outliers that occur frequently and 
could skew the results [34].

Figure  4 illustrates these extracted geometric features 
in 3D (top) and 2D (bottom) maps. The graphs show that 
both the eccentricity of the enclosing ellipses (Fig.  4a) 
and the number of nearest neighbours (Fig. 4b) provide 
strong discriminatory power to separate directional 
movement from static locations (Fig.  4c) with suitable 
thresholds.

Step 3: Behavioural patterns from time‑use metrics
In the previous step, we constructed hulls using the time-
scaled distance between GPS points. The time-scaled dis-
tance distinguishes points that are far away in time even 
though they may be close in Euclidean space. Therefore, 

Fig. 4 Selected features for the classification of static clusters and directional movement are shown in 3D (top) and projected on maps (bottom) 
in a colour and size-scale. (a) The eccentricity and the perimeter-to-area ratio of the enclosing ellipse provide information on hull geometry and 
directional movement. (b) Dense clusters of nearest neighbours were constructed in areas used more frequently. (c) Final classification of static 
clusters and in-movement location based on thresholds of these features
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the hulls are local not only in space but also in time ena-
bling the characterisation of behavioural patterns with 
two important temporal features: the duration of visit 
and the revisitation rate over 12 hours to capture diurnal 
patterns of human behaviour.

The scatterplot of Fig.  5b shows that, based on the 
revisitation rate and duration of visit, seven distinct clus-
ters were identified and projected on a map in Fig.  5a. 
Overall, three main categories can be identified: clusters 
which were visited often and for extended time periods 
(Clusters 1 and 2), clusters where the participant spent 
limited time (Clusters 3 and 4), and finally clusters visited 
once during the week but for longer time (i.e. more than 
an hour as in Clusters 4, 5, 6 and 7).

These extracted time-use metrics assisted the auto-
mated classification. Cluster 1 (Fig. 5b) could be classified 
as home (if it had not been classified as such in Step 1) as 
shown in Fig.  5d. The cluster visited frequently and for 
extended time periods and was classified as work (in this 
example Cluster 2).

Cluster 4 was classified as in-movement, not only based 
on the hull metrics in Step 2, but also based on the low 
duration of visit as shown in Fig.  5b. Within Cluster 4, 
differences in revisitation rates (as illustrated by the 
size of points in Fig. 5c) can be used to distinguish daily 

commuting routes. For example, points between home 
and work have been revisited 3 times compared with 
points south of work that have only been visited once.

Finally, details on locations visited for extended periods 
but less often, (Clusters 3,5,6 and 7) could be retrieved 
from GIS maps and common behavioural patterns. 
For example, Cluster 3 in proximity to home had short 
but frequent visits within the spatial zone of the over-
ground station and could be classified as waiting for the 
train (Fig. 5e). Contrary, Cluster 7 was only visited once 
but had a high duration of visit and together with the 
GIS information could have been classified as a second-
ary workplace location (Fig. 5f, KCL Waterloo Campus) 
.Both subclassifications were confirmed by the manual 
diary entries. Although this approach shows the capa-
bilities of the model, it is beyond the scope of this work 
to subclassify each microenvironment and they were, 
therefore, all grouped as other but with a unique identi-
fier (Fig.  5d). Currently, services such as Google Places 
API have the ability to return information on places of 
interest.

Overall, the technique illustrated here provides a simul-
taneous analysis of spatial and temporal patterns to sepa-
rate static locations from directional movement and infer 
behavioural patterns on the use of space of the individual.

Fig. 5 Flow chart of the time activity model (a) Map of seven distinct clusters identified based on temporal information contained in the isopleths. 
(b) Scatterplot of the visitation rate (over 12h) vs the duration of visit (average points per visit). The dashed black line indicates the threshold in 
the duration of visit that discriminates between static locations from directional movement. (c) Map of time-use metrics during the participation 
week. The colour scale indicates the total minutes spent in each location while the size of the points corresponds to the number of visits. (d) Final 
classification of static locations into three microenvironments (“home”, “work”, “other”) and in movement based on spatiotemporal behavioural 
patterns of the individual. (e and f ) Subclassifications of “other” visited microenvironments derived from GIS information and behavioural patterns
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Step 4: Separating indoor from outdoor 
microenvironments
GPS signal loss is common in indoor microenvironments, 
such as in the underground metro system, in urban areas 
with tall buildings and structures, or when the monitor is 
static in an indoor microenvironment for extended peri-
ods. In such cases, a large percentage of geo-coordinated 
observations may be missing. While this percentage will 
vary between deployments, in our sample it was found to 
be ∼ 40%. A rule-based algorithm was developed to inter-
polate the missing locations using previous- and last-
known locations and PAM auxiliary parameters as inputs 
(S2, Fig. A1), and in this way classify indoor microenvi-
ronments with limited GPS satellite reception.

Once missing observations were largely accounted for, 
each static microenvironment (home, work, other) was 
classified as indoor or outdoor with a rule-based algo-
rithm (Fig.  1) formulated on the hypothesis that abrupt 
changes in acceleration and GPS signal quality are indica-
tive of transitions between microenvironments. The algo-
rithm used participant-specific thresholds of these two 
parameters to classify indoor and outdoor microenviron-
ments and is visualised in Fig. 6 using data from a single 
participant-day.

Figure 6 presents the time-series of selected parameters 
(acceleration, number of satellites) to develop the indoor-
outdoor separation algorithm (Fig.  6b and c), the cor-
responding map (Fig. 6f ) with indoor (red) and outdoor 
(blue) classifications, as well as a 3D map of the number 
of satellites transmitting to the PAM receiver (Fig.  6g). 
Higher numbers of satellites are typically seen outdoors 
due to signal blockage in indoor environments (Fig.  6c 
and g).

We have included the manual diary logs, ozone lev-
els measured with the PAM (Fig.  6e and h) and the 
time-derivative of RH as indirect ways to confirm the 
performance of the algorithm. During daytime, ozone 
levels are consistently very low indoors as shown in the 
3D map in Fig. 6h (for example, locations A, B and C) 
due to the high reactivity and depletion on indoor sur-
faces, the limited solar radiation and the lack of indoor 
sources [54]. They are also significantly reduced dur-
ing certain modes of transport (for example, B to C) 
for similar reasons. Finally, we have previously shown 
in a controlled experiment that fast changes in RH can 
flag rapid environmental changes as a person moves 
between different microenvironments [25]. There-
fore, the time-derivative of RH could be used to flag 

Fig. 6 Identifying transitions between indoor and outdoor microenvironments. (a) Time series of manual activity logs. Grey shaded areas indicate 
periods flagged as outdoor microenvironments with the rule-based algorithm. (b and c) Participant-specific thresholds (black dashed lines) of 
two parameters collected with the PAM (acceleration and number of visible satellites) were used to flag transitions between microenvironments. 
(d and e) In addition to manual logs, sudden changes in RH and ozone levels were used to evaluate the performance of the algorithm indirectly 
(f ) Corresponding map of indoor (red) and outdoor (blue) microenvironments classified with the rule-based algorithm (g) 3D map visualising the 
number of satellites transmitting to the PAM GPS receiver. (h) 3D map of PAM ozone levels
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the indoor-outdoor transition with high time precision 
(Fig. 6d).

The evaluation of the model with a single par-
ticipant-day so far shows a high level of agreement 
between the algorithm predictions (grey shaded areas) 
and the manual activity logs (black line) shown in 
Fig.  6a. Additionally, the sharp spikes in the deriva-
tive of RH (Fig.  6d), and the rapid changes in ozone 
concentrations (Fig. 6e) further support that the rule-
based model can discriminate between indoor and 
outdoor microenvironments well. Full evaluation is 
presented in Section 3.

Step 5: Characterisation of sleeping activity
The indoor home microenvironment was subdivided 
into sleep and non-sleep periods with a rule-based model 
(Fig.  1) based on the hypothesis that participants sleep 
when background noise levels and movement are the 
lowest. Additionally to the accelerometer showing that 
the PAM was stationary (Fig. 7), relative changes in the 
larger fractions of particulate matter were used as an 
indicator of movement in the room because larger par-
ticles would be expected to resuspend during periods of 
physical activity of the occupants [55]. The time deriva-
tive of PM10 was used to detect these changes of concen-
trations (Fig. 7). While in this case we use a specialised 
optical particle counter, such information on participant 

movement could have been collected with widely used 
wearable sensors (such as smartwatches). Participant-
specific statistical thresholds were set for these three 
parameters to detect sleep activities followed by a 
smoothing filter over a 10 min rolling window applied on 
the binary classification to remove small disruptions.

Figure 7 shows that in this example there is an excellent 
agreement between manual activity logs (grey shaded area 
projected from time series) and algorithm-based classifi-
cation (line segments highlighted in red) with a marginal 
overprediction of sleep because the algorithm cannot sep-
arate downtime before sleep from actual sleeping activity 
as recorded in the diary. This rule-based model for sleep is 
evaluated using the whole dataset in Section 3.

Step 6: Classification of transit modes
The periods classified as in transit were classified into, 
in this case, five modes of transportation. First, we cre-
ated and selected predictor variables for the RF models 
which were trained and evaluated with a k-fold method 
as described below:

Trajectory analysis and segmentation
In-transit observations for each participant were grouped 
into individual commuting events (journeys). Stops were 

Fig. 7 Illustrative time series waterfall plot of selected PAM parameters used to classify sleep activity with a rule-based algorithm. 
Participant-specific thresholds (black dashed lines) were set for microphone and accelerometer levels and for the time-derivative of PM10 . Red line 
segments show time periods that the model classified as “sleep” while the blue line segments indicate non-sleep activities. Manual activity logs are 
presented for comparison as a time-series and as a grey shaded area
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part of a journey if the participant stayed in a static loca-
tion for less than 20 min (see Fig.  8a, otherwise a new 
journey was defined). Each journey was assigned to a 
“regular trajectory” [56] i.e., a continuous curve connect-
ing successive locations of an individual recorded at reg-
ular intervals.

During a single journey, people are likely to change 
their mode of transport (for example, walking to the 
metro and then taking the train). To account for that, 
each trajectory was partitioned into smaller segments 
based on changes in patterns of movement data with the 
Lavielle method [57] implemented in the adehabitat LT 
package in R [37]. To illustrate this method, one journey 
is selected as a case study, partitioned automatically into 
two segments (Fig.  8b). These two segments of the tra-
jectory are plotted on a map (Fig. 8c) by colour and pro-
jected on GIS (Fig. 8d) to retrieve information on public 

transport infrastructure and road networks. Because 
the points of the second segment fall on the railway net-
work (magenta line in Fig.  8d), Segment 2 corresponds 
to a train ride. Manual activity logs of the participant are 
presented in Fig. 8e where a timing error in the activity 
entry in the transition between walking and train is indi-
cated by both the GIS information and the speed derived 
from the distance between successive points.

Variable selection for RF
After all participant trajectories were segmented and pro-
jected on the GIS system, we had 60 variables that could 
be potentially used as predictors for the classification:

• 31 variables collected with the PAM: hour of the day, 
GPS coordinates and GPS diagnostic information 
(i.e., visible satellites), and extracted features from the 

Fig. 8 Flow diagram of movement analysis implemented in adehabitat LT package in R. (a) Map of commuting events (journeys) of one participant 
during a typical day. The colour scheme indicates the time of day. (b) Segmentation of one trajectory (journey 18:28 in orange in a) using the 
Lavielle method identified two segments in the data. (c) The corresponding map of the trajectory in colour scale to differentiate the two segments. 
(d) Projection of segment 2 on the GIS system retrieved from Openstreetmap. The GPS points (blue) overlap with the railway infrastructure shown in 
magenta. (e) Corresponding map of the participant manual diary logs of that journey (see subsection 3.1). Visual inspection shows a delay in diary 
input that would result in small errors in model evaluation



Page 11 of 21Chatzidiakou et al. Environmental Health          (2022) 21:125  

accelerometer and microphone measurements which 
could have been collected with a smartphone (See 
full list Additional files, Table A1).

• 3 variables collected with the questionnaire: car 
and bicycle ownership and frequency of public 
transport use.

• 19 movement-phase metrics: Extracted with spatio-
temporal clustering and trajectory analysis including 
absolute and relative angle of movement, Euclidean 
distance between consecutive points (speed), PAR of 
hulls etc. (See full list Additional files, Table A2)

• 7 variables retrieved from projecting the data on GIS: 
highway, railway, sidewalk, cycleway, busway and bus 
and train stops.

Variable selection for the classification was implemented 
using RF in the VSURF package [38] in R which is suit-
able for high dimensional datasets. This strategy does 
not depend on specific model hypotheses but is based on 
data-driven thresholds to make decisions. VSURF suc-
cessively eliminates predictor variables in three steps: 
(1) starting with the preliminary elimination and ranking 
where all 60 variables were ranked by sorting the score 
of Variable Importance (VI) averaged over 50 RF runs. 
(2) In the second step, a nested collection of RF was con-
structed to select variables that led to the smallest out-
of-the-bag (OOB) error. (3) Among those retained in the 
previous step, final variables for prediction were selected 
by constructing an ascending sequence of RF models and 
testing the variables in a stepwise manner. A variable 
was retained only if the decreased OOB error was sig-
nificantly greater than the average variation obtained by 
adding noisy variables (Fig.  9)(calculated threshold here 
= 0.01).

The most important predictor variables retained with 
this method make intuitive sense: for walking and train 
the most important predictor was distance travelled, for 
cycling and driving it was the ownership of a bike and a 
car respectively, while for the bus it was the use of pub-
lic transport (Fig. 9). This indicates that an equally valid 
approach would be to manually select and evaluate pre-
dictor variables based both on data-driven thresholds 
and hypothesis testing. Finally, we found that param-
eters extracted from GPS data with spatial and move-
ment analysis methods (T-LOCOH and adehabitat LT) 
were more important predictors than raw PAM variables 
stressing the importance of appropriate feature extrac-
tion to optimise machine learning techniques.

RF development
Sensitivity tests were conducted for determining the 
maximum tree depth and number of trees. The RF was 

evaluated with a k-fold cross-validation method [58], 
which is a robust method for estimating the accuracy of 
a model. The dataset was split randomly into 10 mutually 
exclusive datasets of equal size. Then, on each iteration 
a new RF was trained independently on 9 subsets and 
evaluated on the remaining 1 subset of data, and this pro-
cedure was repeated 10 times. The final prediction error 
rate was calculated as the average performance metric of 
the 10 models. The advantage of this method is that all 
observations are used for both training and validation, 
and each observation is used for validation exactly once.

Evaluation of the time activity model
This section firstly describes the participant sample and 
recruitment procedures before comparing manual activ-
ity logs with model classifications.

Collection of activity logs for time‑activity model 
evaluation
A convenience sample of 37 participants (office workers) 
were recruited (Additional Files, Fig. A2) via email lists 
and other methods. Participants were recruited from 
London, a megacity population ∼ 9M and Cambridge, a 
relatively small UK city population ∼125K, to allow eval-
uation of the model in different urban settings. One Lon-
don and one Cambridge participant were excluded from 
the analysis due to incomplete diary entries ( < 24h).

Upon enrolment, participants were briefed on the 
aims of the study, gave informed consent and filled in a 
standardised questionnaire of baseline information on 
exposure-relevant lifestyle (including e.g. car ownership), 
personal and demographic factors. The age distribution 
of the 35 participants ranged from 18 to 65 years, and 
were all in employment (Additional Files, Table A3).

Each participant was provided with a PAM [25] and 
was asked to carry it for at least one week typical of their 
normal activities.The average deployment time was 9 
days with a minimum of 3 and a maximum of 20 days. 
Participants were informed that the monitors utilised 
GPS technology and were reassured that this informa-
tion would not be accessed in real-time, but only used at 
the end of the study to analyse overall spatial and tem-
poral relationships of anonymised data. No action was 
required by the participants to operate the PAM, other 
than to place it in its base-station overnight for charging 
and data transmission [25].

While carrying the PAM, they were asked to keep 
activity diaries using commercial smartphone apps 
[59, 60]. Smartphones were provided on request. The 
time-activity diary was semi-structured with some ini-
tial activities inserted in the diary as an example (e.g. 
“sleeping”). Participants were encouraged to fill in addi-
tional activities according to their lifestyles. At the end 
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of the study, diary entries of the time-activity-loca-
tion patterns were retrieved from their smartphones. 
Other than a personalised report of their own expo-
sure profiles as feedback (see example Additional Files, 
Fig. A3), they did not receive compensation for their 
participation.

Overall, the participants reported 665 time-activity 
entries. These entries were assigned to two core catego-
ries: location and activity. Classifications were derived 
from the diaries by grouping similar entries together 
(e.g. supermarket, grocery, food shopping). Three 
exposure-related classifications were developed for the 
category location and eight classifications for activity 
(Additional Files, Table A4). These were integrated into 
the measurement dataset by labelling each data point of 
the time series with a numerical classifier. Activity logs 
were checked manually to identify periods of obviously 
erroneous entries, such as (a) being at two locations 
simultaneously; or (b) contradictory activities (e.g., 
sleeping and cycling) which were removed ( ∼ 5% of the 
activity logs).

Aggregated participants’ time budgets
Over 1.26M observations of PAM measurements at 20 
sec time resolution were retained for the analysis (data 
capture rate 85%) and were averaged over 1-minute, 
resulting in N obs ∼422K of which ∼91% had an associated 
manual log.

The aggregated time budgets and diurnal time-activity 
patterns of the participants are shown in Fig. 10. Average 
minutes per day spent in different microenvironments 
and modes of transport classified with the model show 
an excellent agreement with the activity logs (Fig. 10a-b), 
with strong linear correlation (Fig. 10c-d). In this study, 
the participants spent most of their time indoors at 
home (59.2%, min-max: 29.1%- 89.4%) or at work (16.2%, 
min-max: 0.0%- 41.2%), together accounting on aver-
age   75.4% of the total time budget. Time spent in other 
indoor static locations accounted for 9.3% (min-max: 
0.0%-31.3%). Visits to outdoor microenvironments occu-
pied only a small portion of the participants’ time budget 
at 0.4% (min-max: 0.0%-3.9%). Travelling accounted for 
5.2%, (min: 0.1% - 11.8%).

Fig. 9 Variable importance plots selected with the VSURF package in R for each mode of transport



Page 13 of 21Chatzidiakou et al. Environmental Health          (2022) 21:125  

The diurnal time budget aggregated among all partici-
pants captured by the model (Fig.  10f ) agreed with the 
manual activity logs (Fig. 10e). The model overpredicted 
other static but underpredicted work possibly because 
participants had multiple work microenvironments but 
the model classified only the primary cluster as work 
(visited often and for extended time periods) as shown 
in Step 3. Regardless, the model managed to capture 
the participants’ time-activity patterns well. Their pat-
terns followed wider socio-economic patterns of adults 
in employment with distinctive commuting events dur-
ing “rush hour” at 9:00 am and after 5:00 pm when par-
ticipants returned home and stayed there until 6:00 am 
(Fig. 10f ).

Evaluation of the time‑activity model with confusion 
matrices
The model performance was evaluated against the man-
ual classifications. Figure  11 visualises the confusion 
matrices for the binary classifications of different visited 
microenvironments and modes of transport.

Confusion matrices represent counts from predicted 
and actual values. The True Negative (TN) (blue, bot-
tom right) shows the number of negative examples clas-
sified accurately. Similarly, True Positive (TP) (blue, top 

left) indicates the number of positive examples classified 
accurately. A False Positive (FP) (orange, top right) value 
corresponds to the number of actual negative examples 
classified as positive; and a False Negative (FN) (orange, 
bottom left) value is the number of actual positive exam-
ples classified as negative. We examined the accuracy (the 
overall effectiveness of the classifier), the sensitivity (the 
ability of the model to identify positive labels), the speci-
ficity (the ability of the model to identify negative labels) 
and the precision (the proportion of positive labels that 
are correctly classified) of the model. We included the F1 
score, which is an overall good measure that combines 
precision and sensitivity and is a particularly useful indi-
cator of model performance when there is a large number 
of actual negatives. The range of these metrics is 0 to 1 
(or 0 to 100%). The greater the value, the better is the per-
formance of the model.

The model performed well in classifying home 
(Fig. 11a) with balanced FP and FN classifications (home: 
sensitivity: 96%, specificity: 85%, precision: 90%, F1: 93%, 
accuracy: 91%). Other indoor static locations (Fig.  11d) 
were reliably identified with a small percentage of FP 
(indoor: sensitivity: 95%, specificity: 99%, precision: 86%, 
F1: 90%, accuracy: 98%). Sleep and the work microenvi-
ronment (Fig. 11c) were classified reasonably well though 

Fig. 10 Participants’ time budgets. (a and b) Boxplots of participants’ time budgets in different static microenvironments and modes of transport 
classified with activity logs (left, shaded boxplot) and the model (right, solid-colour boxplot). (c and d) Corresponding scatterplots of mean time 
(in minutes) spent in visited microenvironments are shown in a colour scale at the bottom. (e and f ) Average diurnal time budget profile of all 
participants classified with the activity logs and with the model
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only 26 out of 35 participants reported going to work 
(sleep: sensitivity: 79%, specificity: 80%, precision: 57%, 
F1: 66%, accuracy: 80%, work: sensitivity: 70%, specificity: 
95%, precision: 72%, F1: 71%, accuracy: 90%).

The model overpredicted travel behaviour (Fig.  11b) 
and visits to outdoor static microenvironments (Fig. 11c) 
as shown by the relatively large number of observations 
classified as FP. Only 10 participants out of 35 reported 

a small fraction of time spent in outdoor static locations. 
As a result, while the accuracy and specificity for these 
activities were high (>96%), the precision and F1 score 
were lower (F1 travel: 66% and F1 outdoor static: 30%). A 
possible explanation is that logging short-duration trips 
and visits to outdoor locations might interfere with the 
ongoing activity and were therefore not recorded but 
were nevertheless detected by the model.

Fig. 11 Fourfold displays of confusion matrices to visualise the performance of the space-use model. Model predictions were compared against 
participant logs and assigned to one of four classes represented by a quarter of a circle as shown in the legend. The size of each quarter is 
proportional to the counts of observations belonging to that class. Blue quarters indicate correctly classified positive and negative labels while 
orange quarters correspond to erroneous classifications. Quantitative evaluation metrics are displayed under each fourfold plot for each visited 
micro-environment. (a-f ) Microenvironments and activities identified with a composite model of rule-based algorithms and spatio-temporal 
movement analysis. (g-l) Modes of transport classified with an RF model applied to True Positive and True Negative transit observations
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For this reason, periods where both the spatiotem-
poral-use estimator and the participant diary logs 
reported travel were retained to create a good train-
ing dataset amounting to a total of 790 trips (Nobs = 
12670). The RF models had an excellent performance 
with sensitivity> 87%, specificity> 96%, precision>91%, 
accuracy>95% and F1 >91% (Fig. 11g-l).

Qualitative evaluation of the time‑activity model
Despite the overall good performance of the model in clas-
sifying static microenvironments and modes of transport, 
we nevertheless detected inconsistencies between manual 
logs and model classifications. The first part uses a repre-
sentative case-study participant to illustrate such incon-
sistencies originating either from limitations of the model 
itself or errors in the manual activity logs. The second part 
aims to understand the implications of these inconsisten-
cies for the overall personal exposure estimations by com-
paring the resulting personal concentrations in different 
microenvironments classified with either one of the two 
methods for all participants and in doing so to demonstrate 
how automated models such as the one presented here can 
enhance air pollution health studies by providing a com-
prehensive picture of air pollution health risks in daily life.

Proof‑of‑concept for an example case‑study participant
The case study shows a representative largely sedentary 
office worker who commuted via cycling and walking to 
work and visited other indoor and outdoor microenvi-
ronments (Fig.  12). The visual inspection of the maps in 
Fig. 12a and b indicates that the model performance sur-
passes manual classification mostly due to small timing 
errors as the participant may have had difficulty docu-
menting the precise time of microenvironment transitions. 
For example, a walking trip through the park is errone-
ously classified as work microenvironment (timing error 2, 
Fig. 12a). The diary was less likely to specify visits to out-
door microenvironments compared with the model (mis-
classified other outdoor static, Fig. 12a).

Figure  12c presents the time series of one typical day. 
The participant commuted to work on foot at around 09:00 
am, stayed there until 19:00 pm and walked back home 
choosing a different route this time. While both methods 
adequately captured the participant’s time-activity pat-
terns, the manual activity model had some missing obser-
vations and timing errors. In both trips a clear spike in all 
pollutants’ levels was noticed: PM2.5 reached maximum 

daily concentrations during the morning walk while NO2 
reached maximum daily concentrations during the evening 
walk (Fig. 12c). The participant spent the rest of the even-
ing cooking, resting and visiting a nearby indoor environ-
ment on foot before returning home for the night. Indoor 
PM2.5 levels at home were higher than in the work environ-
ment consistent with indoor emission sources during even-
ing cooking activities.

Personal concentrations in visited microenvironments
Figure 13 visualises the concentrations in different micro-
environments visited by all 35 participants (Nobs ∼ 422K) 
classified both with the manual logs and the model. The 
distribution of concentrations of individual pollutants 
in each microenvironment was visualised with boxplots 
(Fig. 13a). On the left-hand side, the hatched boxplot shows 
observations classified with the manual activity logs while 
the solid-colour boxplot shows observations classified with 
the automated model.

The corresponding scatterplots of the mean concentra-
tions in each microenvironment are shown in Fig. 13f-k in a 
colour scale. Most points fall on the one-to-one line indicat-
ing that classifying microenvironments with either one of the 
two methods resulted in insignificant differences between 
estimated concentrations. Other out was the most poorly 
classified microenvironment (Fig.  11e) possibly because 
the whole dataset contained less than 20 participant-hours 
reported to be spent outside (Fig. 10a). Figure 13f-k shows 
that mean concentrations estimated for other out microenvi-
ronments had the highest deviation from the one-to-one line 
particularly for ozone and particulate matter (PM2.5 ). The 
model overpredicted mean ozone concentrations compared 
with the activity logs. Because higher ozone levels are gen-
erally expected to be seen outdoors (Fig. 6e) due to higher 
levels of photochemistry, the model classifications likely out-
performed the manual activity logs.

Travelling in particular occupied only a small fraction of 
the total time budget (on average 5.2% of the participants’ 
time, Fig. 10a), but is a significant site of exposure (Fig. 13). 
Because the sample of this study is small, some caution 
must be applied to the interpretation and the generalisabil-
ity of that finding. Participants in both cities covered large 
spatial distances (Fig. 14). Cambridge participants covered 
a smaller spatial area compared with the London partici-
pants and primarily used active modes of transport (walk-
ing, cycling). In line with previous research [61], it seems 
that vehicle users (car and bus) are exposed to significantly 

(See figure on next page.)
Fig. 12 Comparison of manual logs and automated time activity model for one case study participant. Colour-coded maps illustrating visited 
microenvironments and modes of transport during a week of a representative participant. (a) Classifications according to the activity log. (b) 
Classifications according to the automated activity model. Google maps 2021. (c) Time series of the manual activity log, model classifications and 
selected PAM parameters for one typical day
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Fig. 12 (See legend on previous page.)
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Fig. 13 Boxplots and scatter plots of personal exposure of 35 UK participants to multiple pollutants in different microenvironments. (a-e) For each 
activity, the left hatched boxplot shows entries classified with participants’ activity logs and the right solid-colour boxplot with the automated 
model. (f-k) Mean concentrations of individual pollutants in visited microenvironments are shown in a colour-scale in scatter plots. The 1:1 line is in 
black
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higher NO concentrations than cyclists or pedestrians 
(Fig.  13b), who appear to be exposed to higher NO2 and 
O 3 levels(Fig. 13c-d). While this study is only a snapshot of 
exposure in transit, it seems that maximum air pollution 
levels (in this case NO) were encountered when travelling 
in major traffic arteries (for example M25 in the greater 
London area Fig. 14d) or the central bus station (Fig. 14e) 
and in areas where traffic is routinely static (i.e. bridges in 
London, Fig. 14f). Confirming previous research [62], the 
highest exposure to particulate matter (PM2.5 ) was encoun-
tered by commuters using the train/metro system(Fig. 13e).

Discussion
Mobile sensor deployments can provide a picture of the 
rapidly changing and highly granular personal concen-
trations in a way that has not been possible before. This 
paper demonstrated a methodological framework that 
expands the capabilities of validated sensor platforms 
[25] with advanced computational methods to integrate 
time-activity patterns in personal exposure estimations.

Implementation of the model in different ways 
and programming languages
The parameters used in the time-activity model as pre-
dictors can be collected with smartphones making the 
method applicable more widely than with the specific 

sensor platforms. The model is readily extendable to 
include outputs from wearable biosensors in smart-
phones, such as heart and respiratory rate.

We employed multidisciplinary tools from the fields 
of movement ecology and AI and extended their use in 
human mobility studies to build a composite model that 
automatically classifies major time-activity location pat-
terns of static spatial clusters and five modes of trans-
port. We developed the model in R, an open-source free 
software environment, but equivalent algorithms can be 
developed in other programming languages that have 
similar capabilities for spatial and statistical analysis, 
such as Python.

Limitations
There are certain caveats with the methodology employed 
to develop and evaluate the time-activity model. First, a 
high rate of false positives was detected for outdoor and 
in-transit microenvironments, although these activi-
ties generally take up a small percentage of participants’ 
time. We hypothesise that this is not due to limitations in 
the model’s accuracy, but a limitation of manual activity 
logs employed in the evaluation. Even the most compli-
ant participants may have difficulty correctly document-
ing the precise time of microenvironment transitions, as 

Fig. 14 Transportation modes and relative exposure to air pollution of 35 participants plotted on maps. (a) Cambridge and (b) London visualising 
modes of transport (c -f ) Relative exposure to pollution (in this case NO) in Cambridge and London respectively shown in a colour-scale. Map data 
Google 2021
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it might interfere with the ongoing activity. Secondly, due 
to the increased participation burden, the sample size 
of 35 participants was relatively small; however, previ-
ous research on time-activity patterns and transporta-
tion mode classification has reported that a sample size 
of around 30 participants is adequate to provide robust 
estimations of activity patterns [24, 63].

Main findings
The model had an overall good performance: the clas-
sification for static microenvironments had an F1-score 
for home of 0.93; for work of 0.71; for other indoor static 
of 0.9. The RF model for transportation mode classi-
fication had an excellent performance (F1 > 0.88). We 
found that the difference in concentrations of multiple 
pollutants in the nine microenvironments classified 
with either model or activity log was insignificant com-
pared with the large spatial and temporal variation of 
personal exposure concentrations during daily life.

In line with previous research, street-level modes of com-
muting were associated with the highest levels of NO2 and 
O 3 concentrations [61], in-vehicle trips (car and bus) were 
associated with marked exposure to NO [61] while the 
metro was associated with the highest exposure to PM 
[62]. These noticeable variations in concentrations between 
different microenvironments result in diverse personal 
exposures emphasising the potential for exposure misclas-
sification when purely ecological (home location-based) 
exposure estimations are used in epidemiological research.

Future work
The next step involves the application of the model on 
larger health panel studies [30, 31] of hundreds of par-
ticipants to characterise the exposure of vulnerable sub-
groups of the population in diverse geographical settings. 
As physical activity may lead to differing doses for simi-
lar exposures, future work aims to capture total personal 
multi-pollutant dose in unprecedented detail addressing a 
major gap in air pollution epidemiology. We will further 
investigate whether physical activity levels may be reliable 
physical, psychological, social, and cognitive health indi-
cators for elderly and chronically ill cohort participants.

More importantly, as the pollution mixture inhaled 
during different activities likely originates from differ-
ent emission sources, it may contain different chemi-
cals with varying potential toxicity [64]. Therefore, 
neglecting the activity component in air pollution 
dose-health relationships might lead to erroneous con-
clusions regarding the toxicity of air pollutants. The 
time activity model enables the dissagregation of total 
personal exposure into different microenvironment-
specific exposures from diverse emission sources and 

chemical sinks. Together with advanced source appor-
tionment methods of personal exposure, future work 
aims to explore source-specific health effects.

Conclusions
Novel sensor technologies and computational tech-
niques such as those demonstrated here have advantages 
over traditional time-activity-location diaries, which are 
laborious, prone to error and involve a limited num-
ber of participants. Collecting a wealth of time-activity 
information in unprecedented detail can increase our 
understanding of air pollution exposures and exposure-
related behaviours that may be harmful to human health. 
Because individuals may have different susceptibilities 
to environmental exposures, together with the advanc-
ing field of “-omics”, this work builds towards providing 
comprehensive personalised advice to the individual to 
reduce their environmental health risks based on their 
unique health requirements and lifestyle.
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A.1.3 The health effects of outdoor air pollution

This appendix gives an overview of the literature including major studies and previ-

ous systematic meta-analyses. The appendix focuses on the associations that have

been made between outdoor pollution and health. For the reasons mentioned in

Section 3.1, studies of Chinese cohorts based in China, where possible, will be a

focus. Four pollutants (PM2.5, NOx, O3 and CO) are introduced and their health

effects are reviewed. These pollutants have been identified by the United States

Environmental Protection Agency (EPA) as “pollutants that harm your health and

the environment”135.

Particulate Matter

Particulate matter (PM) are tiny particles of solid or liquid suspended in the air.

They are classified by their diameter, with PM2.5 referring to PM with a diameter

of less than 2.5 micrometers. Figure A.1 provides a comparison of the size of PM2.5

with the cross-section of a human hair.

Figure A.1: The size of PM2.5: Visual comparison of the diameter of PM2.5 with respect to
the diameter of a human hair. It has been created by the EPA and can be found on the website:

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics

Small particles are of particular interest with respect to health as they have the

ability to penetrate deep into the lungs, enter the alveoli on the bronchioles, and

even pass through the air-blood barrier into the blood stream96, as shown in Figure

A.2.

A strong connection between PM2.5 and mortality has been established. The land-

mark “Harvard Six Cities” published in 1993 found that the risk of death in high

polluted areas, across six US cities was 26% higher in high polluted areas than in

low polluted areas35, and that mortality was strongly associated with the levels of
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Figure A.2: Deposition of particles in the lungs: The predicted fractional deposition of
atmospheric particles in the respiratory system as a function of particle diameter. Fine particles

exhibit a tendency to penetrate deeper into the tracheobronchial (green) and alveolar (red)
regions of the respiratory tract. Reproduced by Dr Andrea Di Antonio, from Oberdorster et al.99

fine particles, as shown in Figure A.3. In 2006, Laden et al. conducted an eight-year

follow-up study during a period of decreased PM2.5 levels (1990-1998) and observed

that the decline in air pollution was linked to reduced mortality risk.

Figure A.3: Harvard six cities study: Mean values are shown for the measures total
particles (diameter of less than 10 micrometers) and fine particles (PM2.5). Mortality was more
strongly associated with the levels of fine particles than with the levels of total particles. P

denotes Portage, Wisconsin; T Topeka, Kansas; W Watertown, Massachusetts; L St. Louis; H
Harriman, Tennessee; and S Steubenville, Ohio. This figure is taken from Dockery et al.35

More recently, Sharma et al. published a systematic review on the health effects

associated with PM2.5
118, made between 2015–2019. The review focuses on mortality

and morbidity in turn.
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The mortality section shows that exposure to PM2.5 in China is consistently linked

to deaths of various medical classifications including lung cancer, cardiovascular and

respiratory deaths. A 10 µg/m3 increase in 2-day moving average PM2.5 concentra-

tion on total mortality corresponded to a 0.17% (95% CI 0.10%-0.23%) increase at

a national level in 160 Chinese communities between 2013 and 201476. If PM2.5

concentrations in China had met the WHO interim target in 2013, the avoidable

excess deaths in 2013 in China have been modelled to have been between 279,000

and 898,000134.

The morbidity assessment in the Sharma et al. review showed that short-term ex-

posure to PM2.5 in China is consistently linked to respiratory disease, derived by

analysis of hospital admission figures. In Beijing, a 10 µg/m3 increase in PM2.5 con-

centration was associated with a 0.82% (95% CI: 0.38%–1.26%) increase in COPD-

related hospital admission during the period of 2013-201776.

Outside of China, emerging stand-alone studies conducted in the United States are

revealing the diverse health effects of PM2.5. Exposure to PM2.5 has recently been

linked to neuropsychiatric disorders, such as anxiety109, and has also been suspected

to influence structural brain development in childhood30.

Nitrogen Oxides

Vehicle emissions are a major outdoor source of Nitric Oxide (NO) and Nitrogen

Dioxide (NO2). High-temperature fuel combustion results in N2 in the air oxidising

to NO, which further oxidises to NO2. NOx is a description of the sum of NO and

NO2. NO is not considered to be hazardous to health at typical ambient conditions,

however, it plays a key role in the formation of tropospheric ozone and so is of

interest with regard to health.

In the lungs NO2 reacts with water forming both nitric (HNO3) and nitrous (HNO2)

acids, which damage the lung cells55. NO2 is understood to detrimentally affect

people’s respiratory function globally161;130;17 and within China16;44. He et al.53

linked NO2 exposure to respiratory deaths from data from across China from 2013-

2015. Per 10 µg/m3 increase in NO2, they estimated a 0.57% (95% CI: -0.04%-

1.18%) increase in non-accidental mortality for the previous day NO2.

However, the cardiovascular effects of ambient NO2 exposure have been found to be

both insignificant and sensitive to modelling choices53;157.

Ozone

In the troposphere, ozone (O3) is a secondary pollutant, produced by the reaction

between NOx and VOCs in the presence of solar radiation. Outdoor sources of VOCs
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include vehicle emissions and industrial activities. Natural vegetation emissions of

certain VOCs (e.g. isoprene) also contribute to O3 formation, especially on the

regional scale39;14;15.

O3 is a powerful oxidant. When inhaled, it oxidises the first layer of cells in the

airway surface, including the airway epithelial cellsa . This releases reactive oxygen

species which cause further oxidative damage to the airway8;33.

Exposure to ambient O3 in China has been shown to have respiratory effects. It

decreased lung functionb (an IQR increase in 5-day moving average of O3 was asso-

ciated with a 3.7% (95% CI: -7.1%- -0.2%) decrease in FEV1) and increased airway

inflammationc (an IQR increase in 5-day moving average of O3 was associated with

a 25.3% (95% CI: 3.6% - 51.6%) increase in FeNO) among healthy young adults23.

Wang et al. estimated 186,000 (95% CI: 129,000-237,000) respiratory deaths at-

tributable to O3 exposure in China on a 5-year average145.

Additionally, cardiovascular health effects have been associated with ambient O3

exposure in China for example increases in blood pressure levels of middle-aged and

older adults97. Wang et al. attributed 125,000 (95% CI: 42,000-204,000) cardiovas-

cular deaths in China to O3 exposure on a 5-year average basis145.

Carbon Monoxide

Carbon monoxide (CO) is a product of incomplete combustion. The greatest outdoor

sources of CO to outdoor air are cars, lorries, buses and other vehicles and machinery

that burn fossil fuels.

CO binds strongly to haemoglobin, modifying its conformation and reducing its

capacity to transfer oxygen, affecting the function of different organs which consume

high levels of oxygen especially the heart5. A nationwide time-series analysis of cities

in China from 2013 to 2015 found robust evidence linking short-term exposure to

ambient CO and increased cardiovascular disease mortality, especially from coronary

heart disease. This study is currently the largest study done in a low- or middle-

income country (LMIC)79.

aThe airway epithelial plays a critical role in maintaining the conduit for air and plays a key
role in the removal and neutralisation of potential harmful substances in inhaled air2

bLung function was measured as the forced expiratory volume in a second (FEV1)
cAirway inflammation was measured as the fractional exhaled nitric oxide (FeNO)
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A.2 Chapter 2 supplementary information

A.2.1 Advancements in understanding of ventilation as a

result of the COVID-19 pandemic

At the start of the pandemic, it was assumed that the SARS-CoV-2 virus was prin-

cipally spread via contaminated surfaces. This assumption seemed validated by

research, published in March 2020, which reported that coronavirus SARS-CoV-2

can remain viable and infectious on surfaces for days138. However, Goldman ac-

cused studies of using virus concentrations which exceeded those typically found

in droplets50. Other researchers were making similar conclusions to Goldman and

the scientific understanding about the virus transmission changed. It is now under-

stood that contact and airborne transmission is possible, however, the respiratory

(droplet) route is likely to be the principal method of transmission; COVID-19

aerosol droplets from speaking can remain suspended in stagnant air for up to 9

hours34. As demonstrated mostly for influenza viruses, environmental factors that

may affect airborne virus survival include ventilation, temperature, humidity, pH

and ultraviolet radiation104 149.

Ventilation of indoor spaces has therefore become an important research topic which,

coupled with shorter peer review times for papers related to coronavirus37, has

resulted in many recent advancements and publications in this area. This includes

the expansion of tracer gas methods from buildings to public transport. A “proof

of concept” study showed that these methods can be applied to a train carriage,

using CO2 as the tracer gas and as a proxy for exhaled breath153. This paper can

be found in Appendix A.1.1.

A.2.2 Deriving the Analytical Solution of the Continuity

Equation

dIt
dt

= (Ot − It)kvent − Itksink + Ft

dIt
dt

= Otkvent − It(kvent + ksink) + Ft

As the AIRLESS data was recorded at discrete sampling intervals (1 minute), for

each interval, Ot and Ft are assumed to be constant. They become O and F .
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Therefore P = Okvent + F , where P is a constant,

dIt
dt

= P − It(kvent + ksink)

To solve this first order differential equation the integrating factor = e
∫
(kvent+ksink)dt

is used giving:

e(kvent+ksink)t
dIt
dt

= Pe(kvent+ksink)t − It(kvent + ksink)e
(kvent+ksink)t

e(kvent+ksink)t
dIt
dt

+ It(kvent + ksink)e
(kvent+ksink)t = Pe(kvent+ksink)t

Integration step

e(kvent+ksink)tIt = P

∫
e(kvent+ksink)t + c

e(kvent+ksink)tIt =
P

(kvent + ksink)
e(kvent+ksink)t + c

It =
P

(kvent + ksink)
+ ce−(kvent+ksink)t

At t=0, I0 =
P

kvent+ksink
+ c, which rearranges to c = I0 − P

kvent+ksink
and therefore:

It =
P

(kvent + ksink)
+ (I0 −

P

(kvent + ksink)
)e−(kvent+ksink)t

Substituting in P gives the analytical solution.

A.2.3 Proof that the lag between the outdoor pollution and

the indoor pollution is approximated as the reciprocal

of the ventilation rate

A simple simulated case will be used. It will be assumed that outdoor air pollution

levels infiltrate indoors at a constant rate, where Ot = t.

The solution to the continuity equation for this case:

It = Ot + (It−1 −Ot)e
−kvent (A.1)
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The target expression, with the indoor pollutant concentration being identical to

the outdoor concentration but with a time lag (λ), can be written as:

It = Ot + λ (A.2)

If we consider two adjacent time points, these expressions can be combined, to give:

Ot + λ = Ot + (Ot−1 + λ−Ot)e
−kvent (A.3)

Which can be simplified to:

λ = (λ− 1)e−kvent (A.4)

and then rearranged to:

λ =
−1

ekvent − 1
(A.5)

ek can be approximated, for small values of kvent, using the Taylor series expansion:

ex = 1 + x− x2

2
+

x3

3
− ... ≃ 1 + x (A.6)

And therefore, the lag (λ) can be approximated as −1
kvent

.

To show this simulated case, a graph has been produced, where the starting value

of the indoor concentration is 150, and the value of kvent is 0.1 hr -1. The lag can be

seen to settle at around a value of 10.
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Figure A.4: Time series of simulated outdoor and indoor pollutant concentrations to show that
the lag between these time series can be approximated as 1

kvent

A.3 Chapter 3 supplementary information

A.3.1 Specific sensors in the PAM and reference instrument

Table A.1: A table of the specific sensors in the PAM and reference instrument

A.3.2 Workings of EC senors and the OPC

Electrochemical Sensors measure gaseous pollutant concentrations. In most

conventional electrochemical sensors, the are 3 electrodes: working, reference and

counter electrodes. These sensors work using the amperometric principle of opera-

tion involving a working electrode made of a material that reacts with the target

species in the sample. When a voltage is applied across the working electrode, a
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current flows between the electrode and the sample, which is proportional to the

concentration of the target species. The current is then measured and used to de-

termine the concentration of the species. The reference electrode is made of a stable

material with known electrochemical potential that is used as a reference point for

measuring the potential of the working electrode. The counter electrode does not

participate in the sensing reaction, but facilitates the transfer of electrons to or from

the working electrode; it completes the circuit. The electrochemical sensors in the

PAM include a 4th electrode, an auxiliary electrode, which only measures temper-

ature. It is used to correct for the temperature dependence of the cell potentials

during post-processing105.

Optical Particle Counters (OPC) measure Particulate Matter (PM) concentra-

tions. The OPC used in the PAM is a miniaturised, commercially available particle

counter (Alphasense OPC-N2). It works by first drawing in a sample of the air

using a fan. The sample arrives into an optical volume, where it is illuminated by

a laser, causing the particles to scatter light. The scattered light is detected by a

photo-detector, which is used to infer the size. Particles are binned by diameter,

and an algorithm is applied to calculate the PM1, PM2.5, and PM10 fractions. This

work only focuses on the PM2.5 fraction as the PM1 measurements are less reliable

(particles with diameter < 0.38µm are not able to be detected using this OPC) and

the fraction between PM10 and PM2.5 are expected to be less relevant for health

outcomes (PM2.5 penetrates deeper into the lungs96). Additionally, PM2.5 is tradi-

tionally the fraction of focus in pollution health studies, allowing for comparisons

with previous work.

A.3.3 Splitting “work” into “work indoors” and “work out-

doors”

A different method was applied for the two seasons. For the winter season, the

difference in temperature recorded by the PAM and reference instrument was used

to determine whether the participant was indoors or outdoors, with a temperature of

at least 5◦C higher than the reference instrument indicating that the participant was

indoors. The thermal conditions measured during the deployments can be found in

Appendix A.3.4. For the summer campaigns, differences in reference and PAM O3

levels were used, with an O3 concentration of at least 5ppb lower than the outdoor

levels indicating that the participant was in the indoor environment.
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A.3.4 Thermal conditions during deployment

The outdoor ambient temperature during both campaigns was measured at the

reference instrument monitoring sites. During the winter campaign, it ranged from

-9◦C to 16◦C and during the summer, it ranged from 15◦C to 41◦C.

Temperature data collected by the PAM also aids when assessing the microenviron-

ment of the participant, see Section 3.6. In the winter, the Beijing residents were

exposed to an average temperature of 20◦C and the Pinggu residents were exposed

to an average temperature of 11◦C. In the summer, both cohorts were exposed to

an average temperature of 25◦C.

The mean RH value recorded by the PAM 46% in the winter and 55% in the summer.

A.4 Chapter 4 supplementary information

A.4.1 Demonstrating Step 1v on a 12-hour period of data

Figure A.5: Step 1v: The left-hand plot shows a 12-hour period of the CO data recorded by
Participant U143. The 12-hour period selected is from 7th Dec-8th Dec 2016. The peaks and

troughs are indicated. This plot is a subplot of Figure 4.3. Each peak has be labelled from A-G.
The right-hand plot shows the decaying region identified during Step 1 (pale green region), and
also includes CO data recorded by the Reference instrument during the same period (red). Only
the decaying region after peak F passed Step 1v. On the right-hand side are the reasons why

certain decaying regions following peaks passed Step 1v, and why others didn’t.
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A.4.2 Two methods of extracting coefficients of decays in

data

The first method fits a curve to raw data, where it is assumed that the error in

the data is a percentage error. This can be described as a multiplicative error, for

example an error of 2% typically means 2/100 times the y value: larger values have

larger associated absolute error. In contrast, the second method takes the natural

logarithm of the raw data. The product rule can be used to show that the error now

becomes an additive error (as opposed to a multiplicative error):

ln(y × error) = ln(y) + ln(error) (A.7)

As a result, the errors are now independent of the magnitude of y, and therefore

the residuals for all the data points in the decay become uniform. In practice this

results in less of a skewed weighting towards the smaller y values when applying the

fit than in the first method.

In this work, the second method is used. This is because a weighted fit towards

smaller y values is not desirable.

A.4.3 Inverse-variance weighting

Inverse-variance weighting is used to calculate the 12 hour mean. This method

recognises that raw residuals for small groups are unreliable and therefore pulls

them towards the overall average. The formula for this is shown below:

Inverse-variance weighted mean =

∑n
i=1 (σ

2
i )

−1
xi∑n

i=1 (σ
2
i )

−1 (A.8)

Where:

• σi is the variance (=
√∑

(xi−x̂)2

N
)

• xi is a sequence of independent observations

• x̂ is the ordinary mean of the observations (=
∑

xi

N
)

• N is the number of observations
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A.5 Chapter 5 supplementary information

A.5.1 Pollution concentrations in different microenviron-

ments, separated by location and season
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Figure A.6: Pollution concentrations in different microenvironments, separated by
location and season: Box plots of averages over 12 hour periods for CO, NO, NO2, O3 and
PM2.5 exposure in four different microenvironments, calculated from personal exposure data

recorded by the PAM, separated by location and season.

A.5.2 Outdoor air quality standards in China

National standards of ambient air quality were introduced in China in 1982 (GB

3095-82). Over the last 40 years, these standards have been revised and replaced,

with a full second revision issued in 2012 (GB 3095-2012), shown in Table A.2.
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Table A.2: Ambient air quality standards, China: A table of the current ambient air
quality standards for CO, NOx, NO2, O3 and PM2.5 (GB 3095-2012). These are four of the key
pollutants, although the standards extend to other pollutants. Only the standards for Class 2 are
included. Class 1 is applied to special areas of environmental protection such as natural reserves
and national parks. Class 2 includes all other areas, including residential areas and so it more

applicable to health. The standards were published in units of µg/m3. The gas data in this thesis
are presented in ppb, and therefore the ambient standards have been converted into ppb,

assuming 20◦C and 1atm.

These current Chinese air quality standards are higher than the interim targets set

by the World Health Organisation (WHO)93 155.

The full revision was followed by China implementing its Air Pollution Prevention

and Control Action Plan (APPCAP) from 2013 to 2017, which included tightening

standards for industrial emissions, reducing coal consumption, and decreasing the

number of heavily polluting vehicles on the roads. Some regions have a relatively

high proportion of cities which are meeting the standards as a result. These regions

are encouraged to aim for more stringent air quality targets to further improve local

ambient air quality147.

Still, the proportion of cities reaching the set standards remains low despite seeing

a reduction in emissions as a result of the APPCAP, and O3 and PM2.5 have be-

come key pollutants restricting the ambient air quality in China from reaching their

standards147.

A.5.3 Indoor air quality standards in China

In 2002, indoor air quality standards in China were published and they came into

effect in 2003. They apply to residencies and office buildings. They are compared

to the WHO indoor air quality standards in Table A.3.

Although these indoor air quality standards for China exist, there is no specific
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Table A.3: Indoor air quality standards, China: A table of the current indoor air quality
standards for CO, NO2, O3 and PM10 (GB/T 18883-2002). These are four of the key pollutants.

Standards have been set for other species and physical properties such as temperature and
ventilation. The pollutant standards were published in units of µg/m3. The gas data in this

report are presented in ppb, and therefore the standards have been converted into ppb, assuming
20◦C and 1 atm. The 2021 WHO indoor air quality standards are included for comparison.

benchmark or regulation about how indoor air quality should be evaluated and

intervened for improvement116.

A.5.4 I/O ratios in China

O3 is reactive in the indoor environment. As a result, and due to limited sources

in the indoor environment, the I/O ratio for O3 is normally less than one61. O3

I/O ratios varied between 0.21 – 1.00 in student dormitories in China, with the

large range attributed to window opening conditions159. A study across residential

buildings in Nanjing, China recorded O3 I/O ratios O3 in a room with no O3 sources

(no photocopying devices, air purifiers or kitchen disinfectant devices) of between

0.06 and 0.62 depending on the season and door opening conditions61.

Although NO2 also reacts indoors, its I/O ratio value can be higher than 1. Hu

et al.60 reviewed NO2 I/O ratios from different countries around the world. Their

results, for the home microenvironment are shown in Figure A.7. NO2 ratio values

were found to be higher in Pakistan, Egypt, and Bangladesh (median I/O values of

1.66, 1.54 and 1.54 respectively), particularly in rural kitchens during the winter,

which was attributed to considerable indoor sources and low ventilation rates. 11 of

the reviewed studies were conducted in homes in China. Over 750 I/O values were

recorded in Chinese homes and the median was 0.98.

PM2.5 I/O ratios measured in Chinese homes tend to be less than 1169;142, suggesting

that loss processes, such as deposition, dominate, however the strength of indoor

PM2.5 sources have been shown to significantly affect the I/O ratio: the range of

PM2.5 I/O ratio values from a study conducted in Chinese residential buildings

were between 0.73–0.75 for a room with sources and between 0.41–0.46 for a room
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Figure A.7: Median NO2 I/O ratio values in residential buildings in countries
worldwide: A world map comparing the median I/O ratio values measured in studies performed
worldwide. The median I/O values are larger than 1 for some countries, indicating dominant
NO2 sources in the home microenvironment. This figure has been taken from Hu et al.60

without169. Additionally, a study comparing four residential dwellings with different

building envelope air tightness levels in China obtained a range of 0.167-0.867. The

lowest I/O ratio was recorded for a home with high air-tightness and few indoor

sources142.
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A.5.5 Exposure, by percentage, to the two components of

exposure

Figure A.8: Source-apportioned percentages of exposure: Stacked percentage column
plots of the apportioned total personal exposure measured by the PAMs during the AIRLESS
project. The percentages for specific seasons, locations and time of data are also included.

A.5.6 Exposure diurnal plots

The diurnal plots for the four exposure types (reference, personal, and the two

components of personal exposure) for PM2.5 is found in Chapter 5. The equivalent

plots for the other key species are shown below.
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Figure A.9: Dirunal plots of source-apportioned CO Diurnal plots of the
indoor-generated (black) and outdoor-generated (orange) portions of total exposure to CO,

recorded by the PAMs, for the AIRLESS cohort. The diurnal plot of the outdoor levels recorded
by the reference instrument (red) is included for comparison. The plots display the median, 25th

and 75th percentiles and 5th and 95th percentiles. Negative indoor-generated values were
removed before producing these plots.

Figure A.9 shows that for CO, the outdoor-generated component of indoor air has a

very similar diurnal shape to that recorded by the reference instrument. The indoor-

generated diurnal plot shows that indoor sources are stronger in the winter time.

Additionally, across both seasons and locations, the indoor-generated component

appears strongest around mealtimes, with a peak around or just before midday, and

a peak in the evening around 6pm. Indoor-generated CO appears particularly strong

for the Pinggu cohort during the winter.
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Figure A.10: Diurnal plots of source-apportioned NO Diurnal plots of the
indoor-generated (black) and outdoor-generated (orange) portions of total exposure to NO,

recorded by the PAMs, for the AIRLESS cohort. The diurnal plot of the outdoor levels recorded
by the reference instrument (red) is included for comparison. The plots display the median, 25th

and 75th percentiles and 5th and 90th percentiles. Negative indoor-generated values were
removed before producing these plots.

As with CO, the outdoor-generated component of indoor air has a very similar diur-

nal shape to that recorded by the reference instrument. However for NO, the indoor-

generated component is less defined around mealtimes. The outdoor-generated and

outdoor (reference) components in the summer are stronger in the early hours of the

morning. NO reacts rapidly with O3, however, O3 is depleted during the nighttime,

allowing a build up of NO, until photolytic activity recommences at sunrise.
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Figure A.11: Diurnal plots of source-apportioned NO2 Diurnal plots of the
indoor-generated (black) and outdoor-generated (orange) portions of total exposure to NO2,

recorded by the PAMs, for the AIRLESS cohort. The diurnal plot of the outdoor levels recorded
by the reference instrument (red) is included for comparison. The plots display the median, 25th

and 75th percentiles and 5th and 90th percentiles. Negative indoor-generated values were
removed before producing these plots.

The outdoor-generated components of the previous two pollutants had very similar

diurnal shape to that recorded by the reference instrument. Figure A.11 shows that

NO2 shares the general diurnal shape, however the outdoor-generated component

has smaller magnitude. This is attributed to NO2 being more reactive in the indoor

environment. Additionally, strong indoor sources can be seen around mealtimes for

the Winter Beijing cohort.
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Figure A.12: Diurnal plots of source-apportioned O3 Diurnal plots of the
indoor-generated (black) and outdoor-generated (orange) portions of total exposure to O3,

recorded by the PAMs, for the AIRLESS cohort. The diurnal plot of the outdoor levels recorded
by the reference instrument (red) is included for comparison. The plots display the median, 25th

and 75th percentiles and 5th and 90th percentiles. Negative indoor-generated values were
removed before producing these plots.

Figure A.12 shows very low exposure to indoor-generated O3. The outdoor-generated

follows the same diurnal shape as the outdoor reference data however is much lower,

indicating that O3 has a strong indoor sink.

A.5.7 Exposure box plots

Box plots for exposure to reference, personal and apportioned personal exposure can

be found in Chapter 5 for all key species. Figure A.13 shows the exposures broken

down by season, location and time of day.
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Figure A.13: Exposure box plots Reference (red), PAM (blue) exposure box plots, generated
from 12-hour mean values. PAM exposure has been source-apportioned into outdoor-generated

(orange) and indoor-generated (black) box plots. Box plots have been produced for both seasons,
locations and times of day.

Season: For all pollutants except for O3, higher exposures were recorded in the

winter season. Generally across both seasons for all pollutants, participants were ex-

posed to more outdoor-generated pollution than indoor-generated pollution (orange

higher than black), except for NO. This may be due to the low levels of ambient NO

during the summer. Ambient O3 (measured by the reference instruments) is much

higher in the summer than in the winter as expected, however, this difference is less

pronounced in the other O3 exposure metrics.

Location: The exposure metrics were generally across location, with NO and NO2

exposure (by all exposure metrics) measuring slightly higher in Beijing than in

Pinggu.

Time of day: Ambient O3 (as measured by the reference instruments) is higher

during the day than during the night, however, as with the summer winter break-

down, this difference is less pronounced in the other O3 exposure metrics. Indoor-

and outdoor-generated exposure for all species does not appear to change signif-

icantly between day and night. The selected day and night cut-off times do not
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coincide with participants being awake and asleep or with other participant be-

haviours; many participants may cook after 6pm for example. This may explain the

absence of expected differences in the indoor-generated exposures between day and

night.

A.5.8 Indoor emission event correlations

Figure A.14: Correlation matrix of the characteristics of indoor emission events
Pearson correlation coefficients plots of the three characteristics (quantity and heights, duration
and area under) of the indoor emission events, extracted for the whole AIRLESS dataset, for the

five key pollutants.

A.5.9 A shift in primary cooking fuel

In China, the population has been shifting (and is projected to continue shifting) to

clean cooking fuels in both urban and rural cohorts as shown in Figure A.15. The

estimated trends for different global regions are shown in Figure A.16, showing that

some other global regions are not expected to make such a dramatic transition.

The primary cooking fuel used by the AIRLESS cohort in 2016-2017 was shown in

Chapter 3, Figure 3.3. The majority of urban participants used natural gas, where

as LPG, biomass and biogas were the most common methods in the rural cohort.

The primary fuel use of the AIRLESS urban and rural participants appear to be

representative of urban and rural populations in China more generally.
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Figure A.15: Estimated (posterior median) percentage of the population using a polluting fuel
as their primary cooking fuel in China, with 95% uncertainty intervals (shaded). Figure has been

taken from Stoner et al.128

Figure A.16: Estimated (posterior median) percentage of the global population mainly cooking
with polluting fuels in each region, with 95% uncertainty intervals (shaded). Figure has been

taken from Stoner et al.128
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A.5.10 Home ventilation and building characteristics

Figure A.17: Ventilation and window and door characteristics: Box plots of the
ventilation rates estimated in participants’ homes, separated by the window and door

characteristics in the participants’ homes.
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Figure A.18: Ventilation and floor level: Box plots of the ventilation rates estimated in
participants’ homes, separated by the floor of the building where the participant resides.
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