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Abstract

Epigenetics is the field of biology that studies the changes in organisms due to alteration
of gene expression rather than modification of the DNA sequence itself. DNA methyla-
tion is a well-studied type of epigenetic change, which results in gene silencing and can
be dangerous when occurs at tumor suppressor gene loci. Many techniques have been
developed to map the methylation pattern of individuals at several genetic loci, such
as the HumanMethylation450 BeadChip, the EPIC BeadChip and the whole-genome
bisulfite sequencing. Each of these DNA profiling platforms quantifies methylation
occurrence in different ways, either continuously (rates of methylation intensity) or dis-
cretely (counts of methylated reads). Identifying subgroups of individuals with similar
methylation patterns, as well as those genetic loci that discriminate the subgroups, is a
crucial procedure that helps linking diseases to specific methylation patterns. Clus-
tering analysis and posterior feature selection of the most important genetic loci that
discriminate each subgroup of individuals are the two tools we suggest for achieving
this venture. Clustering DNA methylation data though is not a trivial procedure since
they are platform-specific and not normally distributed.

In this thesis, we propose clustering DNA methylation data based on the data type
(continuous or discrete) by fast model-based clustering methods, while we select the
most important/discriminatory genetic loci by an a posteriori feature selection measure.
Specifically, we apply variational non-Gaussian Dirichlet Process mixture models
because they have infinite number of components that allow model-determination and
are flexible to model any discrete or continuous data type. We also employ Variational
Inference with the “annealing” extension that accounts for poor initialization of the
algorithm, due to its high speed in estimating the model parameters and its scalability
to high-dimensional data. Our real applications on neonatal DNA methylation data
measured in three different ways show that the discrete data types - number of aberrantly
methylated genetic loci (counts) and whether a genetic locus is abnormally methylated
or not (binary) - can be more informative than its continuous version (intensity of
methylation per genetic locus) for revealing the association of artificial conception with
the predisposition of developmental disorders.
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Introduction

There are several conundrums around the biology of life that seem inconceivable but
in reality they do have a reasonable explanation. For example, imagine of having two
identical twins with exactly the same genetic code and one of them develops a disease
that has a genetic component, while the other one is healthy. How is this possible since
both have the same genetic code?

This question can be answered based on a similar example studied in Waterland and
Jirtle [145]. In this example, we consider two twin mice with the same genetic material,
however one is of average size and brown in colour, while the other one is yellow
and obese. How is this feasible? The answer is that a gene called the agouti gene,
which is a colour- and obesity-associated gene in mice, as well as probably related
to specific diseases, is actively expressed in the yellow mouse but silenced in its twin
brown mouse because it is methylated. DNA methylation is a heritable biological
process that changes the expression of genes rather than modifying the genetic code
itself. Epigenetic alterations (modification on top or around the genetic code) can
happen during the differentiation of somatic cells. These alterations are then passed on
to the descendants resulting in a phenomenon called epigenetic inheritance (Lind and
Spagopoulou [77]). For example, Cytosine methylation is a process where methyl groups
bind onto specific DNA segments changing the way the gene is read. Environmental
influences and lifestyle factors such as smoking, diet or physical activity could be
responsible for triggering DNA methylation (Lim and Song [74]).

In the mice example, methylation on the agouti gene results to a normal mouse, while
demethylation to an abnormal mouse. On the other hand, when DNA methylation
occurs at promoter regions of tumor suppressor genes the result can be human cancer
(Esteller [40]). Therefore, there is great need in studying and analyzing methylation
patterns in genes that are associated to deleterious diseases such as atherosclerosis (Dong
et al. [35]) or rare developmental disorders like the Beckwith-Wiedemann Syndrome
(Weksberg et al. [147]). For instance, atherosclerosis is an important inflammatory
process that impairs the quality of life in the aging population. Hence, it is crucial to
possess the knowledge around its formation mechanism for better prevention strategies
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and treatment productions. Additionally, there is high demand in identifying the most
important of the disease-associated genes that when abnormally methylated a disease
predisposition could occur.

Analyzing DNA methylation data with the aim of discovering methylation patterns, for
instance differences in a case/control study or clustering of healthy controls or group of
patients along with the most salient genetic regions where these differences occur, is a
rather challenging procedure. The reason is two-fold: a) the data produced by the DNA
profiling platforms are non-normally distributed and b) each platform measures in a
different way the methylation level. Thus, DNA methylation data are non-Gaussian and
platform-specific. For example, Illumina Infinium HumanMethylation450 BeadChip
platform (450K) and EPIC BeabChip derive methylation rates (beta-intensities per
genetic locus), while whole-genome bisulfite sequencing (WGBS) methylation counts
(methylated reads per genetic locus). For the non-Gaussian part although, there are
mathematical functions like log or logit that usually conform the data to normality
(i.e., M-values in Illumina Infinium arrays). Nonetheless, data transformation may not
always be the solution to ensure normality and thus the need to retain the original
data space could be in demand.

In this thesis, we overcome the challenges of subgroups identification analysis by
providing novel and fast model-based clustering tools for methylation data of bounded
continuous and discrete type. In particular, we identify subgroups of individuals with
similar methylation patterns through non-Gaussian Dirichlet Process mixture models
estimated by variational algorithms. For instance, we propose modelling data from
450K or EPIC by the variational Dirichlet Process Beta mixture and data from WGBS
by the variational Dirichlet Process Binomial mixture. Moreover, we propose doing
posterior selection of the most important genetic loci per subgroup of individuals.
Specifically, we exploit an a posteriori measure that indicates the genetic loci that
are the most important for segregating individuals by methylation patterns. This key
information is useful for discriminating genetic loci in three categories: 1) important
for all the subgroups of methylation patterns, 2) not important for any or 3) exclusively
important for a specific subgroup.

Overall, the reason we work on Dirichlet Process mixtures is due to their infinite
number of components that allows model-determination and to their flexibility in
choosing the appropriate discrete or continuous distribution according to the platform-
specific methylation measure type. In addition, the motive for employing variational
algorithms for inference is because the commonly used Markov chain Monte Carlo
(MCMC) sampling algorithms are non-scalable in large datasets. For example, datasets
produced by the EPIC platform have more than 800K genetic loci reported for each
individual. MCMC could not scale on this example due to the repeated evaluations
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of the likelihood function at each iteration. In cases of considerably lower dimensions,
i.e., 50 or 100 genetic loci, MCMC would also take several days to converge. On the
other hand, Variational Inference is a family of optimization algorithms that scale
well to high-dimensional data and provide fast parameter estimates, considering that
optimization of a posterior distribution is a faster procedure than sampling from it.

This thesis is structured in six chapters. In Chapter 1, we briefly review the basic
concepts of the molecular biology. The intention is to build a concise knowledge around
the mechanism action of DNA methylation and the tools to quantify it, facilitating the
implementation of the statistical analysis.

In Chapter 2, we present the theory of Variational Inference, as well as we derive popular
variational regression models to assist the understanding around the derivation of more
complex models such as those of our interest: the variational Dirichlet Process mixture
models. We also explain the advantage of Dirichlet Process mixtures (infinite number
of components) over the Finite mixtures (fixed and specified number of components) as
model-determination tools. Moreover, we introduce a way to deal with poor initialization
of the variational algorithm, called “annealing”. Finally, we describe the a posteriori
feature selection measure to detect discriminatory subgroups features, i.e., CpG sites,
Differentially Methylated Regions (DMRs) etc.

With regards to Chapter 3, we provide the full mathematical derivation of a substantial
variety of variational Dirichlet Process mixture models as well as some variational Finite
mixture models for reader’s reference. We also introduce appropriate models when
confounding parameters such as age, sex, ethnicity etc. could contaminate the clustering
results. In a nutshell, all the models of this chapter can be used for clustering DNA
methylation data of discrete or continuous type given the DNA profiling platform and
the existence or non existence of confounding parameters. The provision of specialized
models for each type of methylation measurement and discrete models that can take into
account covariates/confounders is a novel contribution in the area of DNA methylation
clustering analysis.

Regarding Chapter 4, we create synthetic scenarios and assess the clustering performance
of three variational Dirichlet Process mixtures that are utilized for the real applications
in Chapter 5. These are the variational Dirichlet Process Beta, Poisson and Bernoulli
mixtures. We also compare their performance to the most commonly used non-
probabilistic clustering algorithms (K-means, Hierarchical clustering and DBSCAN).

In Chapter 5, we perform clustering analysis on real data. More precisely, we analyze
DNA methylation measured in three different ways in a dataset of artificially and
naturally conceived neonates with and without a rare developmental disorder. The aim
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is to find which of the three measures of methylation is more informative in revealing the
association of artificial conception with the predisposition of developmental disorders,
based on the recorded DNA methylation on genetic loci that are parental-specific
(imprinted DMRs). The dimensions of this dataset of neonates is relatively low
(228 neonates × 33 imprinted DMRs), however we prefer using Variational Inference
over MCMC since it completes the inference in seconds, whereas MCMC requires days
to converge.

Finally, in Chapter 6, we summarise the conclusions of the simulation tests and the
real data analysis, discuss the contribution of the proposed models and finish with
directions for future research.



Chapter 1

Overview of DNA Methylation

1.1 Molecular Biology in a Nutshell

Life is by rights the most complex and fascinating mechanism, from the moment a
living organism is created until the time it ceases to exist. Life can be threatened,
enhanced or generally amended in many different ways within the branch of genetics.
Genetics is the biological field that studies genes, genetic variations and heredity in
living organisms (Mather et al. [88]).

In the current chapter, we are interested in modifications on the genetic material and
especially DNA methylation, which is a process that changes the activity of DNA
regions without altering its sequence. In order to comprehend this modification, we first
need to unravel the pieces of a living organism and then define the methylation’s action.
We begin with the definition of cells and their connection to DNA. We briefly explain
the transcription process responsible for the protein production (essential elements to
form life), aiming at highlighting the impact of DNA amendments on the resulted living
creature. Subsequently, we discuss about Cytosine methylation and the contemporary
method called Bisulfite Conversion liable for quantifying the level of methylation. We
then report some of the most popular DNA profiling techniques accompanied by their
main advantages and disadvantages. This molecular biology synopsis is important
for Chapter 5, where real blood samples from neonates with differentially methylated
gene regions are analyzed. Furthermore, due to additional real applications (data from
BLUEPRINT epigenome project, Stunnenberg et al. [127]) on two methylated cell
types of the immune system: a) neutrophils and b) monocytes, an extra short section
is presented at the end regarding their function as white blood cells.
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1.2 Cells and Genetic Material

Cells are the smallest living units of an organism and are categorized into eukaryotic
and procaryotic. Both categories bear three common features: a) a cell membrane
that separates the content of a cell from its environment, b) the cytoplasm, which
is a jelly-like fluid under the membrane and c) the genetic material known as DNA
(DeoxyriboNucleic Acid) where all the information for the cell functions is stored.
Eykaryotic cells, found in plants and animals, possess a core called nucleus as well as
membrane-enclosed organelles, in contrary to prokaryotic which include none of the
above (Vellai and Vida [140]).
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Figure 1.1 DNA double helix. The steps are the base pairs while the nucleobases on
each chain are bonded together via sugar-phoshates.

DNA is made up of atoms that are combined together to form a long spiraling molecule
with two strands, the double helix (Watson and Crick [146]). This helix reminds
a ladder with steps the pairs of four different chemicals (bases or nucleobases), the
Adenine (A) - Thymine (T) couple and the Cytosine (C) - Guanine (G) couple (Chargaff
[24]) (Figure 1.1). A single DNA chain may have length up to 2 meters in human
cells (Annunziato [3]) rendering difficult to package inside the small-scale nucleus. To
achieve fitting, DNA is wrapped around proteins, the histone octamers (Peterson and
Laniel [109]), forming compact packages known as the nucleosomes, with the whole
derived fiber being the chromatin and the overall result formulating the chromosome
(Hammond et al. [53]) (Figure 1.3). In total, humans have 46 chromosomes inside each
one of their cells (Tjio and Levan [139]). During cell reproduction, chromosomes are
paired into 23 chromosome couples (for humans) with one chromosome inherited from
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the mother and the other from the father. The genetic information is written across
these 23 pairs, with the two individuals containing principally the exact same genes at
the same locations. Nonetheless, slight variations that carry brand new information
could exist due to unique mutations on the genetic code.

1.3 Transcription and Proteins

Each cell has a specific activity based on the genes that are expressed. For example,
the liver cells, despite of having the same DNA as muscle cells, read the liver genes
and silence the muscle genes, whereas muscle cells perform the opposite. When a gene
is switched on, an enzyme called RNA polymerase binds to the start of the gene called
promoter region and crosses along the DNA by creating the single chained mRNA
(messenger RNA) out of free bases in the nucleus. This process is known as transcription
(Clancy [26]). mRNA is then set free to the cytoplasm from the tiny pores of the
nucleus and enters the ribosome particle. Ribosome is the protein building machine
that reads by a three-base step the RNA code with the help of tRNAs (transfer RNA).
Each tRNA transfers the appropriate amino acid (20 different variants) according to the
base triplet termed codon, until the whole chain has been read. This is the translation
procedure (Clancy and Brown [27]). Eventually, the ribosome releases a sequence of
amino acids, the peptide chain (Figure 1.2), which gets packed in a compact form to
compose a very specific protein. Proteins are the essential ingredients to form the
living cells, where living cells make up the tissues, tissues the organs and organs - when
combined and set in function - create the living creatures (plants, animals etc.).
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Figure 1.2 The peptide synthesis. The ribosome binds on the mRNA and starts reading
the codons with the help of tRNAs. The incoming tRNA transfers the suitable amino
acid which finally fastens to the growing peptide chain. tRNA is then released empty
(outgoing empty tRNA).



8 Overview of DNA Methylation

To summarize, proteins are the source of life. They have to be produced at the right
time, on the right shape and the right quantity, otherwise mutations may occur. DNA,
as we already mentioned, is responsible for determining when and how these proteins
are produced. Hence, any modifications on or in the DNA influence radically the
proteins and thereby the resulted form of life.

1.4 Epigenetics and Cytosine Methylation

Epigenetics is the study of heritable alterations upon the genes and not within (no
changes on the DNA sequence). This justifies the title “Epi-genetics”, where “epi” is the
greek prefix for “above” meaning modifications above the genetic material. Specifically,
Epigenetics involves non-coding RNA (Morris [100]), histone modification (Strahl and
Allis [126]) and DNA methylation (Moore et al. [99]). In this thesis, we conduct
statistical analysis on the latter with focus on the Cytosine methylation. In Figure
1.3 we observe how histone modification and DNA methylation apply to affect DNA
expression. Special chemical tags (yellow labels) attach to the histone (on the tails)
and onto the double helix (DNA) concluding in alteration in gene expression. Histone
modification defines how tight the double helix folds around the protein resulting in
either expression or silencing of the genes in the wrapping area.

Figure 1.3 The structure of a chromosome pair modified by epigenetic marks (yellow
tags). The chromosome is condensed to chromatin, which chromatin consists of
nucleosomes. Nucleosome is a complex of DNA and histones (proteins). The histones
(purple spheres) can be modified through chemical tags that bind on their tails, leading
to histone modification and therefore alteration in gene expression in the folding DNA
area. DNA methylation is the result of modifications onto the double helix with the
attachment of chemical tags that do not alter the DNA sequence, although they affect
the gene expression.
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In Cytosine methylation, methyl groups are affixed directly to a Cytosine residue that
exists in a CpG site by particular enzymes known as DNA methyltransferases. CpG
stands for Cytosine-phospate-Guanine with phospate (in particular sugar-phospate)
binding the CG pair in the single chain. A CpG site is a region of the DNA where
a Cytosine is followed by a Guanine in the 5’ to 3’ direction. Segments with high
frequency of CpG sites (> 50%) and sequence length greater than 200BP (base pairs)
shape a CpG island (Illingworth and Bird [62]), where the addition of the methyl group
CH3 happens. Adjacent CpG sites are likely to share the same methylation status
and therefore be correlated, whereas as the distance between CpG sites grows the
co-methylation tends to decline (Affinito et al. [1]). Cytosine methylation is normally
encountered in mammals, with approximately 70%-80% of their CpG Cytosines being
methylated (Jabbari and Bernardi [63]) reshaping into 5-methylcytosines (Figure 1.4).
This modification usually happens in the promoter region of a gene, blocking the RNA
polymerase from binding and starting the transcription process. Therefore, the gene is
deactivated (Bird [10]) and the corresponding protein is not produced.

Cytosine 5-Methylcytosine

Image Copyright: Top Tip Bio 

Figure 1.4 Cytosine and 5-methylcytosine after the addition of the methyl group CH3.
On the left the chemical structural formula of Cytosine’s is presented, while on the right,
the original structure is altered by the addition of the methyl-group CH3 (dashed red
circle) at the carbon 5 position, resulting in a methylated Cytosine (5-methylcytosine).

1.4.1 DNA Methylation Levels

DNA methylation on the right levels plays a crucial role in balancing the overall function
of a living creature, for the reason that it silences tissue specific genes from being
expressed in the wrong tissue. In cases the body detects large amounts of unmethylated
DNA, it activates the immune system assuming there is a bacterial infection (bacterial
DNA is mostly unmethylated). Hence, methylation has to exist for reasons of normal
functioning. On the other hand, it can be severely dangerous when methyl groups are
attached to promoter regions of tumor suppressor genes or within the gene, provoking
cancer or likely other negative conditions. Consequently, there is urge to discover
the type of methylation (what genes are prevented from expressing) and the level
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of methylation: hypo- or hypermethylation. Hypomethylation has been accepted as
a cause of oncogenesis (Das and Singal [30]), whilst a global hypomethylation with
gene-specifc areas of hypermethylation can work as an early biomarker of atherosclerosis
(Dong et al. [35]). In general, alteration in the methylation levels is an important
indicator for cancer development and it may also be connected to autoimmune diseases
such as lupus and multiple sclerosis (Wilson et al. [150]). Therefore, aberrant DNA
modification can be responsible for majorly negative consequences on the quality and
life duration of a being.

1.5 Bisulfite Conversion and DNA Profiling

Sodium Bisulfite conversion is the gold standard method for detecting DNA methylation
(Frommer et al. [48]). During this process the unmodified Cytosines are deaminated (hy-
drolysis reaction) to Uracil (Figure 1.5), while the 5-methylcytosines remain unaffected.
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Figure 1.5 Deamination of Cytosine to Uracil. On the right, the structural formula of
Cytosine is presented. A molecule of water H2O breaks Cytosine’s amino group NH2
(hydrolysis reaction) resulting in the structural formula of Uracil on the right. During
the process ammonia, NH3, is released.

Figure 1.6 Bisulfite sequencing protocol that discovers Cytosine methylation. Blue
tags above Cytosines indicate the effect of methylation. Through Bisulfite conversion,
the unmethylated Cytosines transform to Uracils (deamination), while the methylated
remain intact. In the next step, during PCR amplification Uracils covert to Thymines.
Thus, the finally modified chain contains only the methylated Cytosines which are now
detectable.
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PCR amplification (Polymerase Chain Reaction) can follow after Bisulfite conversion
where Uracil is converted to Thymine (Horváth and Vértessy [61]). The Cytosines that
survive the process are the methylated ones (Figure 1.6).

With a focus on finding the DNA methylation pattern in a sample, scientists have to
profile first the CpG islands of the individual across her genome and then implement
the Bisulfite conversion and PCR amplification. Many techniques have been developed
for DNA profiling purposes, which can be roughly categorized into two groups: a)
bisulfite sequencing-based and b) array-based methods (Yang et al. [152]).

1.5.1 Bisulfite Sequencing-based Methods

In this category belong the whole-genome bisulfite sequencing (WGBS) and the reduced
representation bisulfite sequencing (RRBS). WGBS offers coverage of > 90% of the CpG
islands in the whole genome and it has been characterized as the benchmark method
for profiling (Plongthongkum et al. [112], Farlik et al. [42]). RRBS interrogates only
the CpG-rich regions, corresponding to 10 − 20% of the CpGs in the human genome
(Meissner et al. [93], Meissner et al. [94]). DNA methylation is measured in counts for
these techniques and more precisely, in number of methylated reads per CpG, along
with the total number of reads for this region (read depth).

An advantage of WGBS and RRBS is that they are able to detect methylation designs
at single-base resolution (Cokus et al. [28]). RRBS can although show its drawback
when an investigation in CpG-deficient regions is taking place (Yang et al. [152]),
with WGBS excelling due to the whole genome examination. However, WGBS as
well a RRBS are highly expensive per sample and therefore, they remain confined to
small studies. This practically leads to having access in only few number of samples,
incapacitating the credibility of standard statistical tools.

1.5.2 Array-based Methods

The first developed DNA profiling methods were the array-based. In this category
belongs the most widely used profiling platform known as Illumina Infinium Human-
Methylation450 BeadChip (450K), which covers over 480,000 CpGs (Morris and Beck
[101]). A notable improvement to 450K is EPIC BeadChip (EPIC), a complementary
platform to 450K that provides coverage of > 850,000 CpGs, involving more than 90%
of the CpGs in 450K and a further 413,743 CpGs (Pidsley et al. [110]).

To measure the methylation level, both Illumina Infinium array-based methods use a
pair of methylated/unmethylated probes and calculate their intensity individually. The
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DNA methylation intensity can be quantified in two ways: a) the beta-value or beta-
intensity and b) the M-value (Du et al. [36]). Beta-intensity corresponds to the level of
methylation in an interrogated CpG site measured in the [0,1] interval (percentage
of methylation), defined as: Meth/(Meth +Unmeth + 100), where Meth signifies the
intensity of the methylated probe and Unmeth the intensity of the unmethylated probe
(Yang et al. [152]). The M-value corresponds to the log2 ratio of the intensities of
the methylated probe versus the unmethylated probe (Du et al. [36]). In Du et al.
[36], the relationship of the beta-intensity and M-value is easily proven to be a logistic
function (base 2 logarithm), providing a convenient transformation of unrestricted
support range.

In regard to the advantages and disadvantages of the Illumina platforms, both determine
the methylation pattern at single-base resolution using probes on a micro-array, are
cost-effective and simple to analyze (Yang et al. [152]). However, the limited coverage
of genome, especially in 450K, is considered one of the main weaknesses of this
field of profiling techniques. Nonetheless, array-based methods supply scientists with
considerably larger amount of samples compared to Bisulfite Sequencing-based Methods,
thanks to their lower price, increasing the credibility of the results derived by standard
statistical methods.

Technical biases and corrections

Despite of the evident advantages, the analysis of DNA methylation data produced by
array-based technologies presents challenges due to the existence of technical biases.
Wang et al. [142] and Wilhelm-Benartzi et al. [149] introduce explicitly those biases,
along with an analysis framework for corrections. For example, 450K BeadChip has
two different probe types known as Infinium I and Infinium II that lead to a type design
bias (Bibikova et al. [8]). In particular, based on the Dedeurwaerder et al. [32] study,
the beta-intensities generated by Infinium II probes had a smaller range and were less
sensitive to detect extreme methylation values than those obtained from Infinium I,
triggering this type of bias and calling for normalisation/scaling actions.

Wang et al. [142] stress out the importance of pre-processing and normalising the
BeadChip array data for performing a successful analysis. Important steps are the
within-array normalisation and the consideration of batch effects. The within-array
normalisation removes the background noise and corrects for technical dye-based
intensity (red/green) and probe type differences (I/II). There are various techniques to
perform the probe type correction, such as those described in Dedeurwaerder et al. [32]
(peak-based correction) and Teschendorff et al. [134] (BIMQ - Beta-MIxture Quantile
normalisation method). The BIMQ method in Teschendorff et al. [134] is a model-based
strategy that adjusts for differences due to Infinium II and Infinium I beta-intensities.
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BIMQ was reported as the best algorithm for tackling probe design bias, according to
Marabita et al. [86].

The step regarding batch effects accounts for variation that is not caused by biological
difference but by technical variation, i.e., samples collected on different days or by
different facilities, masking this way the true biological signal. Several methods are
proposed to correct for those effects, with ComBat (Johnson et al. [66]) being one of
the most frequently used since it adjusts for multiple confounders if needed and is not
sensitive to outliers in small-sized samples (Sun et al. [129]). Specifically, ComBat uses
empirical Bayes frameworks to adjust for batch effects. In our study of real datasets in
Chapter 5, data normalisation was performed by the BMIQ method, while the batch
correction was performed by ComBat.

1.5.3 Statistical Applications on Methylation Data

With respect to statistical tools for differential DNA methylation analysis, Robinson
et al. [119] report a variety of techniques to find differential sites or regions. For
example, there are advanced statistical methods for differential analysis in bisulfite
sequencing data that exploit the Beta-Binomial model. MOABS (Sun et al. [128]), DSS
(Feng et al. [43]) and methylSig (Park et al. [108]) are some of the packages that are
based on the Beta-Binomial assumptions (given the methylation proportion at a CpG
site, the observations follow a Binomial distribution, while the methylation proportion
varies across the samples, i.e., patients). In array-based data, such as Illumina 450K
and EPIC array, the data for downstream analyses can be either beta-intensities or
M-values as described earlier, with a preference on M-values (Du et al. [36]) because
various statistical tools can be easily applied on them (i.e., limma by Smyth [125]).
For differential methylation tests, Wang et al. [141] suggest non-parametric tests on
beta-intensities (like Wilcoxon test). ANOVA and t-tests are offered on the other hand
in the COHCAP environment (Warden et al. [144]) - a package that applies on both
beta-intensities of array-based data and methylation proportions of bisulfite sequencing
data.

Nonetheless, in this thesis, we are not interested in determining the differentially
methylated regions (DMRs) or sites. In particular, we are focused on clustering
individuals according to their methylation profile in predefined differentially methylated
regions (to be discussed in Chapter 5), seeking out any hidden heterogeneity between
the subgroups. In practice, we do not have any label that permits the stratification
of individuals into groups, besides demographic characteristics that are treated in our
framework as confounding effects. Consequently, we propose an elegant and feasible
way to model this scenario through hierarchical Bayesian mixtures.
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To be specific, we cluster methylation beta-intensities drawn from the 450K and EPIC
platform via mixtures of Beta densities, owing to their bounded [0,1] support range.
In case of M-values, we suggest the mixture of Gaussian densities1. With regards to
WGBS and RRBS, the derived type of data is counts (methylated reads and read
depth). For these DNA related counts the advisable model is Beta-Binomial (Sun
et al. [128]), which we level-up to mixtures when clustering is in demand inducing the
hierarchical Binomial mixture model. This model takes in two parameters: the number
of methylated reads and the read depth, while accounts for overdispersion in binomially
distributed data (Kim and Lee [67]).

1.6 Discussion

In this chapter, we conducted a brief report on the very basic concepts of molecular
biology with the intention to build an elementary knowledge around the action of Cyto-
sine methylation. This thesis aims at revealing sub-populations established by specific
Cytosine methylation patterns (real application in Chapter 5), however its ultimate
purpose is to achieve providing all the necessary background work for constructing
model-based clustering methods; methods that exploit the flexibility of the Bayesian
mixture models and the scalability of Machine Learning inferential algorithms in order
to efficiently cluster discrete data, such as counts or binary, and data with bounded sup-
port range (i.e., [a, b]) in cases logit or log-transformations are not normally distributed
(Changyong et al. [23]). An additional aim is to discover model-based clustering tools
that can simultaneously control for the effect of confounding parameters (i.e., batch
effect, sex etc.). The final objective is to be capable of providing information regarding
the most discriminative features that are responsible for leading the segregation into
the estimated sub-populations.

1Model not described in the thesis, but code provided in the Appendix. More details in Chapter 3.



Chapter 2

Variational Bayes, Mixture Models
and Feature Selection

2.1 Modern Computational Tools for
High-structured Datasets

The process of estimating the parameters of a probabilistic model, known as statistical
inference, constitutes a top discussion topic in Statistics and Machine Learning. Several
algorithms have been proposed capable of making inference in intractable scenarios1

either stochastically such as Markov chain Monte Carlo (Carlin and Chib [19]) or de-
terministically like the Expectation Maximization algorithm (McLachlan and Krishnan
[91]) and Variational Inference (Blei et al. [14]).

MCMC bears a widespread reputation as a family of techniques that generates re-
alizations from the invariant true posterior distribution. It builds a Markov chain
that eventually settles on its equilibrium distribution. This final state distribution
is the posterior from which the algorithm draws samples, proving that MCMC is an
efficient and accurate mechanism to learn the model parameters. The most renowned of
the MCMC algorithms are Metropolis-Hastings (Chib and Greenberg [25]) and Gibbs
sampler (Casella and George [21]) while a wealth of variations exist. Some of them
are Metropolis-adjusted Langevin, Hamiltonian Monte Carlo and non-reversible Zig-
Zag. Metropolis-adjusted Langevin algorithms use Langevin dynamics to propose new
states and Metropolis Hastings to accept or reject the proposals (Roberts and Tweedie
[118]). Hamiltonian Monte Carlo utilizes the Hamiltonian dynamics and the Metropolis
Hastings acceptance step to draw samples from the targeted distribution (MacKay

1The intractable scenario concerns the computation of a complex integral for the derivation of the
marginal likelihood, the most important ingredient to perform models comparison and selection.
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[81], Betancourt [7]) and non-reversible ZigZag omits the rejection step introducing a
considerably faster rejection-free MCMC algorithm (Bierkens and Roberts [9]). Along
with the great advantage of this class of exact sampling methods comes a noticeable
drawback. This is the slow execution and consequently the slow convergence to the
posterior due to the computationally demanding evaluation of the likelihood function
at each one of the possibly high-dimensional observations, rendering this technique
utterly time consuming, especially in cases fast results are in demand (i.e., worldwide
high-structured data analyzed for the evolution of a new pandemic).

To tackle this problematic situation, optimization algorithms widely used in Machine
Learning problems, that scale well to large datasets are usually employed. In this thesis,
we choose to enroll Variational Inference for inferring complex mixture of likelihood
components, due to its significantly rapid convergence to the final estimates compared
to MCMC. The variational algorithm shows a close connection to EM (Expectation-
Maximization) because both follow the same E and M steps, with the difference lying on
the output (Bishop [11]). EM results in point estimates, while Variational Inference in
parameter distributions. The fact the variational method builds a complete information
package is considered an extra advantage over EM which provides only the expected
value skipping important information like variance and shape.

The goal of this chapter is two-fold: a) to survey variational approximations focusing on
the density transform approach (Ormerod and Wand [107]) - probably the most common
version - and b) to set out the theory around the complex family of mixture models
where Variational Inference successfully applies. Both sections compose the foundation
of Chapter 3, where their joint-presentation takes place. In addition, we present a
simple extension to circumvent convergence issues of the optimization algorithm for
non-convex instances, known as “annealing”, while we yield variational pseudocodes for
the topmost regression models (linear regression, linear mixed model, probit regression
and probit mixed model). Finally, we categorize the mixture models in finite and
infinite, where in the former the number of components is fixed, whereas in the latter
the components are infinite by construction allowing model-determination. The last
section is devoted to selection of those features that discriminate one component from
another based on a discriminative accuracy measure proposed by Lin et al. [76].

2.2 Kullback - Leibler Divergence

According to Variational Inference, the posterior probability of the unknown parameters
is approximated by a distribution for which the normalizing constant is a more tractable
probability function. The classical variational theory depends on the minimization of
the Kullback - Leibler divergence (Kullback and Leibler [70]) while one of the most
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common variational algorithms is Mean Field (alternatively, the density transform
approach introduced by Ormerod and Wand [107]). Mean Field is responsible for the
alternative name Variational Inference takes, admitted as Variational Bayes (Ormerod
and Wand [107]). In this thesis, when we refer to Variational Inference we signify the
Mean Field approximation, or alternatively Variational Bayes (VB).

Now, let us consider of having a Bayesian model with θ the model parameters and y
the observed data. The model might also introduce latent variables z which can be
treated as parameters and be absorbed into θ. Hence, it is assumed that θ are all the
unknown parameters of the model. As specified by the Bayes’ theorem, the posterior
distribution is equal to

P (θ ∣ y) = P (y,θ)
P (y)

, (2.1)

where P (θ ∣ y) denotes the posterior, P (y,θ) the joint distribution and P (y) the
marginal likelihood. In the case where the y vector is continuous, the marginal
likelihood on the denominator may be an integral of an intractable form. To deal with
this, an equivalent decomposition is derived for the log-marginal likelihood after the
introduction of an arbitrary distribution function q(⋅) over the parameter space of θ,
which q(θ) will eventually work as a tractable approximation of the true posterior.
The same situation might occur in discrete frameworks with the existence of complex
summations. However, the continuous case is presented solely throughout this chapter,
for the reason that the only difference with the discrete is the replacement of the
integrals by summations.

logP (y) = logP (y)∫ q (θ)dθ

=∫ q (θ) log( P (y,θ) /q (θ)
P (θ ∣ y) /q (θ)

)dθ

=∫ q (θ) log(P (y,θ)
q (θ)

)dθ + ∫ q (θ) log( q (θ)
P (θ ∣ y)

)dθ.

(2.2)

The second term on the right hand side of equation (2.2) is the Kullback-Leibler
divergence of distribution q(⋅) from the posterior distribution. This dissimilarity
function belongs to a wider family of divergences called α-Divergence, also know as
Rényi divergence (Li and Turner [73]), in which the parameter α can obtain values in
R. For α → 0 the KL(q∣∣P ) is retrieved, whilst for α → 1 we obtain KL(P ∣∣q) (when
this divergence is minimized the algorithm is called Expected Propagation, Minka [97]).
KL is not a symmetric function (KL(q∣∣P ) ≠ KL(P ∣∣q)). For instance, from Minka [96],
if the true posterior is a mixture of two univariate Gaussians, q(⋅) tends to capture one
of the posterior’s modes as we reduce the value of α. Conversely, higher α values force
the approximated q(⋅) to cover the entire true distribution without defining the two
modes.
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For the Bayesian variational framework, KL with a→ 0 is utilized because it appears
as a term in equation (2.2). According to Gibb’s Inequality (MacKay [81]),

KL (q∣∣P ) = ∫ q (θ) log( q (θ)
P (θ ∣ y)

)dθ ≥ 0. (2.3)

Substituting KL into the log-marginal likelihood in (2.2), a new inequality arises. This
result introduces a lower bound of the log-marginal likelihood known as Evidence Lower
Bound (ELBO), which is denoted as L(y; q)

logP (y) ≥ ∫ q (θ) log(P (y,θ)
q (θ)

)dθ ∶= L (y; q) . (2.4)

The previous derivation procedure resembles the EM algorithm (Dempster et al. [33])
in the part of exploiting the objective function (ELBO) to make inference. Despite
that, their difference is found in the way θ vector is treated. In Variational Inference,
θ is a random variable vector and therefore prior distributions are imposed upon its
elements, while in the frequentist EM θ is considered fixed with the data being the
only random variables.

Regarding the ELBO, it obtains a more tractable form than the log-marginal likelihood
if the q(⋅) distribution is restricted to a manageable family of distributions. At the same
time, this family should be rich and flexible, aiming at approximating well the true
posterior. The appropriate distribution of the selected family is defined by estimating
its parameters through the minimization of the Kullback-Leibler divergence, which is
equivalent to the maximization of the ELBO. The optimal solution is attained when
q(θ) = P (θ ∣ y) (Ormerod and Wand [107]).

The most common restrictions for the selection of q(⋅) are the use of a parametric
distribution or the factorization of q(⋅) into independent variational distributions of
disjoint parameter groups. In the first case, the ELBO becomes a function of the
assumed distribution’s parameters and optimization techniques are applied to derive
the optimal values. The latter case forms the Mean Field approach, presented in the
next section.

2.3 Mean Field Approximation

The Mean Field approximation is considered to be a nonparametric restriction of
the variational distribution by assuming independence between the parameter groups.
These groups are created after the partition of the parameter vector θ into disjoint
groups θi such that θ = {θi}I

i=1. Then, the q(⋅) distribution is factorized as follows

q(θ) =
I

∏
i=1
qθi
(θi). (2.5)
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For notation simplicity, we omit the distribution subscripts and let the parameter
input define them, i.e., qθi

(θi) = q(θi). The independence restriction has advantages
and disadvantages regarding the accuracy of the approximation. In cases where the
posterior dependence between θi is strong, the Mean Field approach leads to inaccurate
approximation of the true posterior. On the other hand, in weak dependence situations
Variational Bayes is a strong candidate algorithm for deriving considerably accurate
results (Titterington et al. [137]). In general, it is unfortunately not known a priori
what would be the dependence of the parameters in the posterior space, thus strong
assumptions have to unavoidably be made without knowing their effects on the quality
of Variational Bayes. Recent solutions are proposed in Tan and Nott [131] and Smith
et al. [124].

In relation to the form of the variational distributions q(θi), this is defined in two steps.
The first step is the substitution of the product distribution (2.5) into the lower bound
L(y; q) in equation (2.4), and the second is the optimization of it. The general form
of the ELBO in (2.4) is written equivalently as a sum of expected values in equation
(2.6) to facilitate the derivation of Mean Field. The expected values are with respect
to θ ∼ q(θ)

L(y; q) = ∫ q (θ) log(P (y,θ)
q (θ)

)dθ = Eθ [log(P (y,θ)
q (θ)

)]

= Eθ [logP (y,θ)] −Eθ [log q(θ)] .
(2.6)

Two equations hold given the product transform in (2.5) (Blei [12]). The first one is
true due to the probability chain rule and the second one because of the distribution
factorization. After plugging equations (2.7) and (2.8) into (2.6), the new lower bound
is obtained below and indicated as LMF(y; q), where index MF stands for Mean Field,

P (y,θ) = P (y)
I

∏
i=1
P (θi ∣ θ1, ...,θi−1,y), (2.7)

Eθ[log q(θ)] =
I

∑
i=1

Eθi
[log q(θi)], (2.8)

LMF(y; q) = logP (y) +
I

∑
i=1

Eθ [logP (θi ∣ θ1, ...,θi−1,y)] −
I

∑
i=1

Eθi
[log q(θi)]. (2.9)

Having formed the mathematically friendly objective function LMF(y; q), we proceed
with the optimization via the Coordinate Ascent (Luo and Tseng [79]). This will be the
algorithm for determining the optimal parameters throughout the thesis, since we work
with models for which closed form variational updates can be obtained, and the number
of observations is considerably less than millions (see DNA methylation applications
in Chapter 5). Generally, Coordinate Ascent is not quite efficient in massive datasets
such as in analysis of millions of articles in Wikipedia or DNA sequences of millions
of people, considering that demands a pass through the full dataset at each iteration
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(Hoffman et al. [59]). Hoffman et al. [59] introduce a scalable variational method by
using stochastic optimization instead (Robbins and Monro [117]). In this method
inference is based on subsamples of the data (minibatches) and not on the full dataset,
achieving scalability and high speed. Nonetheless, Coordinate Ascent is the commonly
used optimization algorithm in relatively smaller dataset analyses.

In particular, in Coordinate Ascent each parameter is optimized iteratively by holding
the other parameters fixed. If each conditional distribution of the parameters is in the
exponential family and the corresponding variational distribution belongs to the same
exponential family, it is guaranteed that each coordinate can be optimized in closed
form (Blei et al. [14]). The optimization starts with retaining all the parameters fixed
except the jth one, where i = 1, ..., j, ..., I. The Mean Field ELBO in equation (2.9) is
treated as a function of q(θj) (any other term rather than q(θj) is absorbed into the
constant term) and the chain rule is employed, with θj being the last variable in the
list. Note that θ/j denotes all the elements of θ parameter vector excluding θj. The
Mean Field ELBO can now be seen as in equation (2.10)

LMF(y; q) = Eθ [logP (θj ∣ θ/j,y)] −Eθj
[log q(θj)] + constant

= ∫ q(θj)Eθ
/j
[logP (θj ∣ θ/j,y)]dθj − ∫ q(θj) log q(θj)dθj + constant.

(2.10)

The Lagrange multipliers λi (Rockafellar [120]) are therefore applied to the ELBO in
equation (2.10) resulting to (2.11), where LE stands for Lagrangian-equation. The
derivative of equation (2.11) with respect to q(θj) is then set equal to zero as shown
below in equation (2.12)

LE(y; q) = LMF(y; q) −
I

∑
i=1
λi∫ q(θi)dθi, (2.11)

dLE(y; q)
dq(θj)

= 0⇒ Eθ
/j
[logP (θj ∣ θ/j,y)] − log q(θj) − 1 − λj = 0. (2.12)

Thus, we solve equation (2.12) with respect to q(θj) and obtain its optimal form in
equation (2.13) defined as q⋆(θj). This form resembles the behavior of Gibbs sampler
in the sense that the latter collects samples sequentially from the full conditionals,
while VB derives a more manageable and time-saving way to exploit them through
calculation of their expected log values (Ormerod and Wand [107]).

q⋆(θj) = exp{Eθ
/j
[logP (θj ∣ θ/j,y)]} + constant. (2.13)

An equivalent alternative result arises if we picture the Directed Acyclic Graph (DAG)
of the Bayesian model. It follows that instead of using the full conditional of θj , we can
alternatively benefit from the distribution of the parameter given the Markov Blanket
and apply VB (Dechter and Pearl [31]), where Markov Blanket is the set of parents,
co-parents and children of θj node in the DAG. In the equations below, we denote
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Markov Blanket as MBj. Then,

P (θj ∣ θ/j,y) = P (θj ∣MBj). (2.14)

Hence,
q⋆(θj) = exp{Eθ

/j
[logP (θj ∣MBj)]} + constant. (2.15)

The constant term on the right hand side of equation (2.15) refers to the normalization
constant of q⋆(θj).

Concerning the coordinate ascent algorithm, it converges to at least a local maxima and
convexity properties can be used to guarantee it (Boyd and Vandenberghe [17]). The
variational scheme is accomplished iteratively by updating the variational parameters
at each iteration according to the lower bound. The ELBO value levels-up while
proceeding, and therefore the algorithm convergences when the increase in LMF(y; q)
is negligible. More precisely, the algorithm stops when the ELBO value in the current
iteration (Li

MF(y; q)) is equal or almost equal to the ELBO value in the previous
iteration (Li−1

MF(y; q)), indicating that the parameter estimates have already reached
their final value. Therefore, the stopping criterion is the insignificant difference of the
current and previous ELBO (we choose 10−6, however any value > 10−5 retrieves the
same result). In the following, to simplify the notation, LMF(y; q) will be referred as
L(y; q) and the optimal Mean Field q⋆(⋅) as q(⋅).

2.4 Annealing

Association of Variational Inference with poor local optimas is a common argument
regarding algorithm’s drawbacks. It holds that it is affected by the initialization of the
variational parameters leading to non-accurate estimates in cases of poorly selected
initial values (Mandt et al. [84]). Nevertheless, one possible way to deal with this disad-
vantage is through “annealing”. Mandt et al. [84] bring forth a strategy to smooth out
non-convex objectives responsible for trapping the variational algorithm into poor local
optimas. They suggest a complex randomized algorithm called Variational Tempering,
which introduces a temperature latent variable in the model that automatically adjusts
convexity at each iteration. However, in Variational Tempering we have to approximate
by Monte-Carlo a multi-dimensional normalizing constant in order to make inference,
adding extra complexity to the model. Therefore, we figure out instead that simple
deterministic annealing (addition of a constant term at each iteration) can do the job
well enough without having to go through any random tempering variable.

The whole idea lies on the “annealing” of solely the data likelihood and not both priors
and likelihood (unormalized posterior) (Neal [102]). The reason is for preventing the
optimization algorithm getting stuck due to any skewed priors (Mandt et al. [84]).
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The Bayes theorem in equation (2.1) is differentiated to the annealed version by the
introduction of a vector T directly applied to the likelihood

P (θ ∣ y) = P (y ∣ θ)
1/T

P (θ)
P (y)

, (2.16)

where T in particular is a sequence of positive real values starting from value 1
({T ∈ R+ ∣ T ≥ 1}), whilst the length of this sequence depends on the user’s choice - how
slow or fast she desires the annealing to be (Mandt et al. [84]). For instance, if T is
100 elements long the variational algorithm will be initially running for 100 iterations
so as to temper the ELBO and escape convergence to poor local optimas. After the
end of the annealing process, the ELBO retrieves its original form and the variational
algorithm carries on the iterations until it converges to better local optimas thanks to
the optimization guidance from the annealing. Annealing iterations may slightly delay
the convergence due to the extra iteration steps on smoothing the objective function. As
previously explained, the variational algorithm has to complete the annealing iterations
first and then move towards convergence.

In coordinate ascent settings, there is no learning rate as in stochastic gradient algo-
rithms and therefore, the slower we anneal the better in order to achieve good optimal
values (Mandt et al. [84]). A candidate T would be T = {Ti}I

i=1 with Ti ∈ {1, ...,100}
and i = 1, ...,100. High temperatures, as Ti = 100,99,98, ..., result in little likelihood
impact on the posterior (likelihood in the power of 1/Ti), whereas lower temperatures
increase the influence, indicating an inverse relationship. Eventually, T100 = 1 retrieves
the original likelihood form. This is a useful approach in cases likelihood is non-convex,
such as in mixture models, where multi-modalities are present. The annealing on these
scenarios tries to burnish the non-convex effect of the likelihood for a few variational
iterations (in the upper example the annealed iterations are 100), so as to lead the
optimization into the right direction in search of the global optima. An explanatory
scheme is shown below, where the original ELBO function in equation (2.6) is trans-
formed to its annealed version in equation (2.17), defined as LA(y; q). For a given
Ti, the non-concave term (likelihood non-convex, hence log-likelihood non-concave) is
highlighted in (2.17)

LA(y; q) = 1
Ti

⋅Eθ[logP (y ∣ θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

non-concave

] +Eθ [logP (θ)] −Eθ [q(θ)] . (2.17)

During the first iteration, LA(y; q) is almost concave due to the low weight of the non-
concave term logP (y ∣ θ). Variational Inference starts optimizing a smooth function
for a few iterations.
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First annealing iterations 1
Ti

= 1
100 ,

1
99 , ... ∶

1
Ti

⋅Eθ [logP (y ∣ θ)] << Eθ [logP (y ∣ θ)] , thus LA(y; q) almost concave.

As the algorithm proceeds, the weight of the non-concave term is slowly retrieved
and eventually LA(y; q) returns to its original form when 1/T100 = 1. Annealing is
over and the variational algorithm carries on into the right direction until it reaches
convergence.

Last annealing iterations 1
Ti

= ..., 1
3 ,

1
2 , 1 ∶

1
Ti

⋅Eθ [logP (y ∣ θ)]→ Eθ [logP (y ∣ θ)] , thus LA(y; q) → L(y; q) (annealing stops).

2.5 Variational Regression Models

The applicability of Variational Bayes is evident in the class of regression models. The
Mean Field derivation of the simple linear model (single-response and multi-response
case (Brown et al. [18], Bottolo et al. [16])), the linear mixed model (Zhou and Stephens
[158]), the probit (Albert and Chib [2]) and the probit mixed model (Baragatti [5])
yields closed form updates rendering Variational Bayes an attractive algorithm for
rapid regression inference. In the this section, we provide the variational densities
and the Coordinate Ascent pseudocodes for the aforementioned models, as illustrative
examples, in preparation for more complex mixture models presented in Chapter 3.

The notation for the regression analysis is mainly borrowed by Ormerod and Wand
[107], owing to the clarity of it. For convenience, we also use the same notation L(y; q)
for the lower bound in each model. However, each ELBO function is different and
available in the Appendix A. Vectors and matrices are indicated in bold while the
design matrix X has N × p dimensions, with N the number of observations and p the
number of predictors including the intercept. Lastly, all the hyperparameters are fixed
unless it is stated differently.

2.5.1 Linear Regression Model

The linear regression model is mostly known for its simplicity in terms of interpretation
and applicability. For that reason, we are interested in demonstrating the variational
single-response regression model as well as its multi-response version (Brown et al. [18],
Bottolo et al. [16]).
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Bayesian Single-response Linear Model: The likelihood and the conjugate prior
densities for each parameter are

y ∣ β, σ2 ∼ NN(Xβ, σ2IN), (2.18)
β ∼ Np(µβ, Σβ), (2.19)
σ2 ∼ IG (A, B) , (2.20)

where y is a N ×1 vector of response variables that follows an N−dimensional Gaussian,
X is the corresponding design matrix, β is a p × 1 vector of regression coefficients
distributed as a p−dimensional Gaussian and σ2IN the diagonal covariance matrix with
σ2 following an Inverse-Gamma distribution.

The Mean Field approximation of the true posterior is the product of the individual
parameter variational distributions due to β and σ2 which already constitute disjoint
groups in the parameter space (see equation (2.21)). Based on equation (2.15), the
optimal variational densities of β and σ2 are derived in equation (2.22) and (2.23)
respectively. Specifically, the variational density of β is a p-dimensional Gaussian with
variational parameters µq(β) and Σq(β). The subscript q(β) denotes that the parameter
is a variational parameter of q(β), while the subscript β implies the hypeparameter of
the prior P (β). This notation is followed accordingly in all the subsequent regression
models. As for the variational density of σ2, this is an Inverse-Gamma with shape and
scale parameters Aq(σ2) and Bq(σ2) respectively. Note that both variational densities
resemble the usual Gibbs sampling update in an MCMC scheme, with the full conditional
distribution being a conjugate form between the likelihood and the prior.

q(β, σ2) =q(β)q(σ2), (2.21)
q(β) = Np(µq(β), Σq(β)), (2.22)

q(σ2) = IG (Aq(σ2), Bq(σ2)) with fixed Aq(σ2) = A +
N

2 . (2.23)

Algorithm 1 Coordinate Ascent for the Variational Single-response Linear Model
Initialize: Bq(σ2) ∈ R+

Repeat:

Σq(β) = {(
A + N

2
Bq(σ2)

)XTX +Σ−1
β }

−1

µq(β) =Σq(β) {(
A + N

2
Bq(σ2)

)XTy +Σ−1
β µβ}

Bq(σ2) = B +
1
2 {
(y −Xµq(β))

T (y −Xµq(β)) + tr (XTXΣq(β))}
Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6
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The closed form variational equations for each variational parameter are given in
Algorithm 1. Particularly, this pseudocode is the variational scheme for the single-
response linear regression model via Coordinate Ascent, beginning with the initialization
of the common terms in all the equations. Here, this term is the positive scale parameter
Bq(σ2), which is initialized with a positive value (the specific value is user’s choice
according to her prior belief). Then, at each iteration the variational parameters are
updated until the difference between the previous and current ELBO value is close to
zero (our stopping criterion is less than 10−6).

Bayesian Multi-response Linear Model (with multiple predictors): The multi-
response linear model predicts more than one responses (usually correlated), introducing
a matrix of quantitative responses and not a vector as in the singe-response linear model.
This matrix is distributed by the Matrix-Gaussian density (Gupta and Nagar [52]),
which is the generalization of the Multivariate Gaussian distribution to matrix-valued
random variables. The hierarchical Bayesian model is described in a synthetic manner
in Denison et al. [34], while its variational Mean Field scheme, to be presented shortly,
is exclusively product of our work.

The likelihood and priors are

y ∣ β,Σ ∼ MNNq(Xβ, IN , Σ), (2.24)
β ∼ MN pq(µβ, V β, Σβ), (2.25)
Σ ∼ IWq (νΣ, QΣ) , (2.26)

where y is a N × q matrix of multidimensional response variables in (2.24), X is the
corresponding design matrix, Σ the covariance matrix of the responses and IN the
identity covariance matrix between the observations which are assumed independent.
The prior for Σ is an Inverse-Wishart with degrees of freedom νΣ and scale matrix QΣ

(equation (2.26)). The variable β is a p × q matrix of regression coefficients distributed
as a Matrix-Gaussian in (2.25), with expected matrix µβ, covariance matrix between
the predictors V β and covariance matrix between the responses Σβ.

q(β, Σ) =q(β)q(Σ), (2.27)
q(β) = MN pq(µq(β), V q(β), Σq(β)), (2.28)
q(Σ) = IWq (νq(Σ), Qq(Σ)) with fixed νq(Σ) = νΣ +N. (2.29)

Regarding the variational product distribution, this is analogous to the single-response
case in equation (2.21). The joint variational density is given in (2.27), where q(β)
is a Matrix-Gaussian with µq(β), V q(β) and Σq(β) variational parameters (equation
(2.28)). The Mean Field approximated density for Σ is the Inverse-Wishart of (2.29),
with parameters νq(Σ) and Qq(Σ) denoting the degrees of freedom and the scale matrix
accordingly.
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Algorithm 2 Coordinate Ascent for the variational Multi-response Linear Model
Initialize: Qq(Σ) p × p positive definite matrix
Repeat:
Σq(β) = {(νΣ +N)QΣ +Σβ}−1

V q(β) = [XTX +V −1
β ]
−1

µq(β) = V q(β) [XTy(νΣ +N)Qq(Σ) +V −1
β µβΣ−1

β ]Σq(β)

Qq(Σ) =QΣ + (y −Xµq(β))
T (y −Xµq(β)) + tr (XTXΣq(β))

Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6

Algorithm 2 is the iterative scheme for updating the variational parameters of the
multi-response linear model. The common parameter in all the closed form equations
is the variational scale matrix of q(Σ), Qq(Σ), and hence the only one to be initialized
by a p × p positive definite matrix given it is a covariance matrix.

2.5.2 Linear Mixed Regression Model

The linear mixed model is an extension of the single-response linear model that permits
random effects. It is connected to variance components because it allows to have
different variance for each individual, while standard models have the same variance
for all the individuals. The linear mixed model is a method for analyzing dependent
data, such as repeated measurements and longitudinal data (Nelder and Baker [104]).
For instance, they can be used in clinical trials when we test the same subject in
different time points (longitudinal data) or same subject with different treatment
regimes (repeated measurements). Generally, we are mostly interested in mixed models
when analyzing different groups of observations (hospital 1, hospital 2 etc.) or related
individuals (family 1, family 2 etc.) with random intercepts and/or slopes (group
specific).

Bayesian Linear Mixed Regression Model: We specify that we use the same
hierarchical Variance Component model and notation as in Ormerod and Wand [107].
However, several variations can be found in McCullagh and Nelder [89]. The hierarchical
model can be described by a set of equations

y ∣ β,u, σ2
ϵ ∼ NN(Xβ +Zu, R), or y ∣B, σ2

ϵ ∼ NN(CBT , R), (2.30)
β ∼ Np(0, σ2

βIp), (2.31)
u ∣G ∼NK(0, G), (2.32)

σ2
ϵ ∼ IG(Aϵ, Bϵ), (2.33)

σ2
ul
∼ IG(Aul

, Bul
), (2.34)

where y in equation (2.30) is an N × 1 vector of response variables that is distributed
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by an N -dimensional Gaussian, with X the design matrix of the fixed effects β, Z the
design matrix of the random effects u and R the covariance matrix of the model equal
to σ2

ϵIN . The C andB matrices are created for simplification of the model: C = [X Z]
and B = [βT uT ]. In equation (2.31), β is a p × 1 vector of fixed regression coefficients
and u in (2.32) is a K × 1 vector of random effects with K = ∑

l
Kl and l = 1, ..., r.

In equation (2.32), G is the covariance matrix of the random effects equivalent to
blockdiag(σ2

u1IK1 , ..., σ
2
ur
IKr).

To understand better the structure of this random effects model, we consider the
example with the group of hospitals. u is a K × 1 random effect vector comprised
of r sub-vectors (u = [u1,u2, ...,ur]). Each sub-vector, i.e., u1 = [u11, u12, ..., uK1]
corresponds to hospital 1, with elements K1 random effects (random intercept and/or
random slope). Consequently, the design matrix Z is a N ×K blockdiagonal with each
block representing a hospital. The same block structure appears in the G covariance
matrix of u, as shown before.

With regards to the variational approximation of the linear mixed model, the product
distribution that results in a tractable solution is

q(β, u, σ2
u1 , ..., σ

2
ur
, σ2

ϵ ) = q(β, u)q(σ2
u1)...q(σ

2
ur
)q(σ2

ϵ ), (2.35)

with

q(β, u) = Np+K(µq(β,u), Σq(β,u)), (2.36)

q(σ2
ul
) = IG (Aq(σ2

ul
), Bq(σ2

ul
)) , with fixed Aq(σ2

ul
) = Aul

+ Kl

2 and 1 ≤ l ≤ r, (2.37)

q(σ2
ϵ ) = IG (Aq(σ2

ϵ ), Bq(σ2
ϵ )) , with fixed Aq(σ2

ϵ ) = Aϵ +
N

2 . (2.38)

Algorithm 3 Coordinate Ascent for the variational Linear Mixed Regression Model
Initialize: Bq(σ2

ϵ ) and Bq(σ2
ul
) ∈ R+ with l = 1, ..., r

Repeat:

Σq(β,u) =
⎧⎪⎪⎨⎪⎪⎩

Aϵ + N
2

Bq(σ2
ϵ )
CTC + blockdiag

⎛
⎝
σ−2
β Ip,

Au1 + K1
2

Bq(σ2
u1)

IK1 , ...,
Aur + Kr

2
Bq(σ2

ur )
IKr

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

−1

µq(β,u) = (
Aϵ + N

2
Bq(σ2

ϵ )
)Σq(β,u)C

Ty

Bq(σ2
ϵ ) = Bϵ +

1
2 {
(y −Cµq(β,u))

T (y −Cµq(β,u)) + tr (CTCΣq(β,u))}

Bq(σ2
ul
) = Bul

+ 1
2 {µ

T
q(ul)µq(ul) + tr (Σq(ul))} for l = 1, ..., r

Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6
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The variational joint density of β and u in equation (2.36) is a (p +K)-dimensional
Gaussian (since β is p-dimensional and u is K-dimensional) with mean vector µq(β,u)

and covariance matrix Σq(β,u). The variational densities for the random effect variance
σ2
ul

and the fixed effect variance σ2
ϵ are both Inverse-Gamma (equations (2.37) and

(2.38)).

Algorithm 3 presents the variational updates for the linear mixed model, with initial-
ization required for the scale variational matrices of q(σ2

ϵ ) and q(σ2
ul
).

2.5.3 Probit Regression Model

The probit regression model is suitable for the classification of binary data based on
their predicted probability. It belongs to the family of the generalized linear models
(Nelder and Baker [104], McCullagh and Nelder [89]) with probit link function the
cumulative distribution of a standardized Normal, denoted as Φ(⋅). The variational
inference for the probit regression model is applied with the use of auxiliary variables
(Holmes and Held [60]), since Gibbs sampling becomes tractable when these latent
variables are incorporated (Albert and Chib [2]).

Bayesian Probit Regression Model: The probit regression likelihood is alternatively
written as in equation (2.39) after the introduction of the auxiliary variables in (2.41).
It is shown that each binary observation is dependent on the outcome of a continuous
latent variable, which makes Bayesian inference feasible.

P (y ∣ z) = I(z ≥ 0)yI(z < 0)1N−y, (2.39)

where y is a N × 1 vector of independent response variables of either 1 when zn > 0
or 0 when zn ≤ 0, as shown in equation (2.40). The auxiliary variable z in (2.41) is a
normally distributed vector of independent variables denoted as zn, with 1 ≤ n ≤ N ,
fixed covariance matrix IN and mean vector dependent of β. In equation (2.42), β is
a p × 1 vector of regression coefficients which follows a p-dimensional Gaussian with
hyperparameters µβ, Σβ.

yn ∣ zn =
⎧⎪⎪⎨⎪⎪⎩

1 zn > 0
0 zn ≤ 0

, (2.40)

z ∣ β ∼ NN(Xβ, IN), (2.41)
β ∼ Np(µβ, Σβ). (2.42)

Note that in (2.39), I(⋅) is the index function and 1N the N × 1 column vector with all
entries equal to 1.

The factorization of the variational densities that leads to a tractable solution is
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q(β, z) = qβ)q(z), (2.43)

with

q(β) = Np(µq(β), Σq(β)), (2.44)

q(z) = [ I(z ≥ 0)
Φ(Xµq(β))

]
y

[ I(z < 0)
1N −Φ(Xµq(β))

]
1N−y

× NN(Xµq(β), IN). (2.45)

In equation (2.44), the variational posterior of β is a p-dimensional Gaussian with
mean vector µq(β) and covariance matrix Σq(β). Regarding the variational posterior of
z in (2.45), it is now a truncated N -dimensional Gaussian,. For the Gaussian density
part, the variational parameters are the mean linear predictor Xµq(β) and the identity
covariance matrix (independence across zn’s).

Algorithm 4 gives all the closed form variational equations for the distributions’ param-
eters in (2.44) and (2.45). µq(z) is the truncated Gaussian variational parameter. ϕ(⋅)
in µq(z) denotes the probability distribution function of the standard Gaussian.

Algorithm 4 Coordinate Ascent for the variational Probit Regression Model
Initialize: µq(z)

Repeat:
µq(β) = (XTX +Σ−1

β )
−1 (XTµq(z) +Σ−1

β µβ)

µq(z) =Xµq(β) +
ϕ (Xµq(β))

{Φ(Xµq(β))}
y {1N −Φ(Xµq(β))}

1N−y

Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6

2.5.4 Probit Mixed Regression Model

The probit mixed regression effects model can be used in cases where the covariates are
grouped to one or more classification factors. It performs as a multi-level generalized
model and is suitable for binary response variables (Baragatti [5]). As the name
indicates, it combines the probit regression and the random effects models, hence we
borrow the notation from both of them and derive the model from scratch.

Bayesian Probit Mixed Regression Model: The probit mixed likelihood in
equation (2.46) introduces, as in the probit model, the auxiliary variables z shown in
(2.47) which are also dependent on the random effects u specified in equation (2.49),
apart from the fixed effects β shown in equation (2.48).

P (y ∣ z) = I(z ≥ 0)yI(z < 0)1N−y, (2.46)
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z ∣ β,u ∼ NN(CBT , IN). (2.47)
β ∼ Np(µβ, Σβ), (2.48)

u ∣G ∼ NK(0, G), (2.49)
σ2
ul
∼ IG(Aul

, Bul
). (2.50)

Regarding the variational product distribution, this is a combination of the variational
posteriors of the probit and the linear mixed regression model, with the only difference
appearing on the absence of the residual variance σ2

ϵ because the data are Bernoulli
and not normally distributed.

q(β, u, σ2
u1 , ..., σ

2
ur
, z) = q(β, u)q(σ2

u1)...q(σ
2
ur
)q(z), (2.51)

with

q(β, u) = Np+K(µq(β,u), Σq(β,u)), (2.52)

q(σ2
ul
) = IG (Aq(σ2

ul
), Bq(σ2

ul
)) , with 1 ≤ l ≤ r, (2.53)

q(z) = [ I(z ≥ 0)
Φ(Cµq(β,u))

]
y

[ I(z < 0)
1N −Φ(Cµq(β,u))

]
1N−y

× NN(Cµq(β,u), IN). (2.54)

The joint approximated density of (β,u) in equation (2.52) is a multivariate Gaussian
with p+K dimensions (since β is a p×1 vector and u aK×1), with variational parameters
µq(β,u), Σq(β,u). In equation (2.53), the scalar σ2

ul
, related to the variance of the random

effects, is approximated by an Inverse-Gamma with parameters Aq(σ2
ul
), Bq(σ2

ul
). The

variational density of the auxiliary variables z in equation (2.54) is a truncated N -
dimensional Gaussian (independence across the dimensions) with variational mean
vector Cµq(β,u), where C encompasses both fixed and random effects design matrices
C = [X Z].

Algorithm 5 Coordinate Ascent for the variational Probit Mixed Regression Model
Initialize: µq(z) and Bq(σ2

ul
) ∈ R+ with l = 1, ..., r

Repeat:

µq(β,u) =
⎧⎪⎪⎨⎪⎪⎩
CTC + blockdiag

⎛
⎝

Σ−1
β ,

Au1 + K1
2

Bq(σ2
u1)

IK1 , ...,
Aur + Kr

2
Bq(σ2

ur )
IKr

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

−1

×

⎧⎪⎪⎨⎪⎪⎩
CTµq(z) + blockdiag

⎛
⎝

Σ−1
β ,

Au1 + K1
2

Bq(σ2
u1)

IK1 , ...,
Aur + Kr

2
Bq(σ2

ur )
IKr

⎞
⎠
MT
⎫⎪⎪⎬⎪⎪⎭

µq(z) =Cµq(β,u) +
ϕ(Cµq(β,u))

{Φ(Cµq(β,u))}
y {1N −Φ(Cµq(β,u))}

1N−y

Bq(σ2
ul
) = Bul

+ 1
2 {µ

T
q(ul)µq(ul) + tr (Σq(ul))}, for l = 1, ..., r

Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6
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Algorithm 5 presents the Coordinate Ascent scheme for the update of the variational
parameters in equations (2.52)-(2.54). The initialization concerns the mean variational
vector of z, µq(z), which can take any values in the real space (we usually set it equal
to 0 to express our agnostic opinion) and the scale variational parameter of the random
effect variance, Bq(σ2

ul
), which can be any non-negative value.

2.5.5 Summary on Variational Regression Models

In this section, we provided the variational iterative schemes for a variety of regression
models. Specifically, we presented the closed form equations for updating the variational
parameters of the linear regression model (single and multi-response), the linear mixed,
the probit regression and the probit mixed model. The Evidence Lower Bounds are
also calculated for each model and supplied in Appendix A.

As a general conclusion, Variational Bayes can be easily applied to conjugate regression
models and it is a fast alternative to MCMC, which samples iteratively from the
full conditionals, whereas the variational algorithm updates closed form variational
parameters until convergence of the ELBO is reached. In cases of non-conjugate models,
further approaches like Taylor approximations can be exploited to achieve conjugacy,
with a successful example being the Beta mixtures in Chapter 3, Subsection 3.2.1.

2.6 Mixture Models

Mixture models are a useful parametric tool for unsupervised clustering (Fraley and
Raftery [46]), with unsupervised referring to algorithms that try to reveal any hidden
group structures in the data. Mixture models are based on probabilistic principles
while they admit flexibility in choosing the sub-populations’ distribution. A detailed
survey on the theory and applications of mixture models can be found in Titterington
et al. [138] and McLachlan et al. [92]. On the other hand, K-means (MacQueen
et al. [82]) and Hierarchical clustering (Ward Jr [143]) are non-probabilistic and thus
unable to assume a component distribution. Moreover, a mixture model, in contrast
to K-means and Hierarchical, does not exclusively allocate with probability one an
observation into a group (hard clustering). Specifically, for each datapoint, a mixture
model returns a vector of allocation probabilities, called responsibilities, introducing
the level of confidence in assigning this point into each one of the components. For
further information refer to Titterington et al. [138], Lindsay [78] and McLachlan and
Basford [90].

With regards to the number of components in a mixture model, there are cases where
the data model may bear infinite in magnitude sub-distributions instead of finite.
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These are the so-called Dirichlet Process mixture models that live in the large family
of Bayesian non-parametric models, where their infinite dimensional parameter space
can grow with the sample size (Gershman and Blei [49]). For the Dirichlet Process
scenario, schemes like the stick-breaking point or the Chinese restaurant process are
utilized (Teh et al. [133]) to facilitate inference.

The reason we meticulously study mixture models is because they offer an elegant
and applicable way to making inference on DNA datasets regarding the number and
heterogeneity of the hidden groups. For instance, individuals can be allocated into
groups based on their rate of DNA methylation (the rates refer to beta-intensities,
described in Chapter 1, Subsection 1.5.2). In this framework, a mixture model of Beta
distributions could have been an appropriate approach to cluster the subjects, whereas
in cases where methylation counts are recorded, as in Chapter 1, Subsection 1.5.1,
a Poisson mixture model would be more suitable. This flexible choice of parametric
densities distinguishes them from the non-probabilistic K-means and Hierarchical
clustering.

2.6.1 Finite Mixture Models

Mixture models have been attracting the interest of researchers in statistics and machine
learning as clustering tools in unsupervised settings, since McLachlan and Basford
[90] firstly introduced such models as a simple way in determining the hidden number
of groups on a dataset. For an up-to-date work on the theory and methodological
development of mixture models see McLachlan et al. [92].

As regards the literature, the most common type of mixture model for clustering is the
mixture of finite numbers of Gaussian densities. One main reason is that most features
seem to follow a normal shape (height, weight etc.) and therefore, an assumption of a
Gaussian density might not deviate much from the reality. Another complement reason
is the unbounded support range of the distribution, which offers non-restrictions on
the area the observation can live. In addition, Gaussian enjoys a plethora of important
mathematical properties that ease the inference and conclude to intelligible outcomes.

The formulation of the Bayesian multivariate Gaussian mixture model with fixed
number of components can be found in Bishop [11], who introduces the latent allocation
parameter z to facilitate the mathematical derivation.

yn ∣ zn,µm,Λm ∼
M

∏
m=1
ND(yn ∣ µm,Λm)znm , (2.55)

(µm,Λm) ∼ NWD(µ0m,β0m,W 0m,ν0m), (2.56)
zn ∣ π ∼ Categorical(π), (2.57)
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π ∼ Dirichlet(ϕ0), (2.58)

where yn is the nth D-dimensional datapoint distributed as a mixture of M multivariate
Gaussian densities (M fixed), with component specific mean vector µm and precision
matrix Λm. The joint prior density of the mth component’s parameters (µm,Σm) is a
Normal-Wishart, with D dimensions and hyperparameters µ0m (mean vector), β0m

(real valued coefficient of the precision Λm that links it to µm), scale covariance matrix
W 0m and degrees of freedom ν0m. For each yn, a latent variable zn exists comprised
of M × 1 elements, with the M − 1 values being 0 and the one corresponding to yn’s
cluster being equal to 1. Hence, the latent allocation parameter zn can follow a priori
a Categorical distribution with parameter vector π = [π1, ..., πM], while the component
weights π are Dirichlet distributed with concentration parameter ϕ0.

Regardless the flexibility of the Finite mixtures in clustering, the assumption of the
presence of a fixed number of unobserved groups restricts model-determination. One
way to determine the best fitting model could be to compare the performance for
differing numbers of clusters. However, this is time-consuming, especially when the
inferential algorithm requires long time to converge (i.e., in high-dimensional data
structures).

2.6.2 Dirichlet Process

To overcome the problem of model-determination in Finite mixtures with fixed M , a
stochastic process called Dirichlet process (DP) is utilized to introduce the Bayesian
non-parametric Dirichlet Process mixtures, allowing flexibility with respect to the
unknown number of components. An in depth material presentation regarding Dirichlet
Process can be found in Teh [132].

In general, a Dirichlet Process is a distribution over distributions, meaning that every
draw from such a process is a probability distribution. It is named after the Dirichlet
distributed finite dimensional marginal distributions and it is a popular way in clustering
procedures while simultaneously determining the number of components. Elicited from
El-Arini [38], the Dirichlet Process is described as follows.

Let G be DP distributed
G ∼ DP(ϕ,G0), (2.59)

where G0 is a base distribution and ϕ a positive definite scaling parameter. G is a
random probability measure that has the same domain as G0.

In Figure 2.1, we consider a continuous base distribution G0, i.e., a Gaussian (red
curve), while the sampled distribution G is discrete, constructed out of countably
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infinite number of point masses (blue vertical lines). A set is proved to be countably
infinite when it has the same cardinality as the natural numbers N. We claim that
G is DP distributed over B, with parameters ϕ,G0, if for any finite set of partitions
S1 ∪ S2 ∪ ... ∪ Si ∈ B

(G(S1), ...,G(Si)) ∼ Dirichlet (ϕG0(S1), ..., ϕG0(Si)) . (2.60)

At this point, we explain that G0 is the mean distribution of the Dirichlet Process. For
example, for any measurable subset of B, here S1, E[G(S1)] = G0(S1). In regard to
the scale parameter ϕ, it is associated with the DP variance: Var[G(S1)] = G0(S1)(1−
G0(S1))/(ϕ + 1), where high values of ϕ imply low variance and consequently higher
concentration of theG sample densities aroundG0. ConcerningG, there are constructive
ways to build its form such as the Chinese restaurant process, and the stick-breaking
point which exploits the discreteness of G by composing a weighted sum of points
masses (Teh [132], Sethuraman [123]). In this thesis, we focus only on the latter one.

For further ways of G construction refer to Teh [132].

D
en

si
ty

B

G0

G

Figure 2.1 Example of a random sample distribution G from a Dirichlet Process, when
G0 is a univariate Gaussian. G is a discrete random draw from a Dirichlet Process
(blue point masses), while G0 is the Gaussian base distribution of this Dirichlet Process
(red density). x-axis represents the sample space of G, denoted as B.

2.6.3 Stick-breaking Point Representation

The stick-breaking point is a method for constructing the form of the discrete Dirichlet
Process distributed G. In particular, infinite number of point masses are produced
through the stick-breaking scheme to form the G distribution. The point masses of G
sum up to one - requirement for G to be a proper probability function - and hence each
one can work as a mixing weight to a mixture model. Specifically, the mth point mass
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can correspond to the mth component’s mixing weight πm, linking Dirichlet Process to
the infinite mixture models (infinite number of components). However, it is impossible
to represent fully an infinite model on computers and therefore, a high truncation level
M is set instead. Consequently, M components are estimated.

Algorithm 6 Constructive Scheme of π
1. Draw b1 from G0

2. Draw w1 from Beta(1, ϕ)
3. π1 = w1

4. Draw b2 from G0

5. Draw w2 from Beta(1, ϕ)
6. π2 = w2(1 −w1)
7. ...
8. Draw bM from G0

9. Draw wM from Beta(1, ϕ)
10. πM = wM(1 −wm−1)(1 −wm−2)...(1 −w1)

G
(b

m
)

B
b1 b2 b3 b4 ... bm ... bM

π1

π2

π3

π4

πm

πM

Figure 2.2 The resulted discrete form of a Dirichlet Process distribution, denoted as
G, after the stick-breaking point implementation. The points on the x-axis have been
sampled from Beta(1, ϕ) and belong to the support range B of the G(⋅) distribution.
The point masses represent the mixing weights of the Dirichlet Process mixture model.

In Algorithm 6, the constructive stick-breaking point scheme of the mixing weights π
is provided, with πm being the probability mass of the mth component. The goal is to
build the simplex π = [π1, ..., πM] by breaking the [0,1] interval into M sub-intervals.
These sub-intervals are not necessarily equally spaced since their cutting length is
based upon independently sampling wm from Beta(1, ϕ). Therefore, the variable wm

represents the cut length of the mth sub-interval. In parallel, we draw samples bm

from G0 (base distribution), since it shares the same support range with G. These bm
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samples will be the G inputs with mass equal to πm. Figure 2.2 displays an example
form of the G distribution, with the height of the point masses being equal to the
corresponding component weight πm.

The result of this operation is a discrete distribution with respect to the mixing weights
πm and the G0 samples bm

G =
M

∑
m=1

πm(w)δbm , with πm(w) = wm

m−1
∏
k=1
(1 −wk), (2.61)

where δbm = 1 at bm and 0 elsewhere. The distribution over π is often called GEM,
π ∼ GEM(ϕ), with the initials standing for Griffiths, Engen and McCloskey (Pitman
[111]).

2.6.4 Dirichlet Process Mixture Model

The general hierarchical Dirichlet Process mixture model can now be defined under the
stick-breaking point representation

yn ∣ zn,θm ∼
M

∏
m=1

fD(yn ∣ θm)znm , (2.62)

θm ∼ G0, (2.63)
zn ∣ π ∼ Categorical(π), (2.64)

π ∼ GEM(ϕ), (2.65)

where yn in equation (2.62) is the nth D-dimensional datapoint distributed as a mixture
of M f(⋅) discrete or continuous distributions, θm are the model parameters for the
mth component that follow the DP base distribution G0(⋅) (see equation (2.63)), zn

in equation (2.64) is the latent allocation vector for the nth datapoint distributed as
a Categorical and π is the GEM distributed vector of mixing weights (see equation
(2.65)).

2.7 Feature Selection

The next step after the definition of the mixture model is to apply an inferential
algorithm in order to retrieve the true number of components, the mixing weights and
the component variational distributions. Variational Bayes is one of the candidate
algorithms that we successfully employ for this complex task. Given its output, we
propose an extra yet informative step concerning a feature selection scheme per cluster.

Based on Lin et al. [76] and Lin [75], we suggest exploiting the fitted variational
distributions as means to calculate the posterior discriminative accuracy measure. This
measure defines those features that significantly contribute in composing each cluster.
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To apply this feature selection setting, the mixture model with M components and
component specific parameters θm, for m = {1, ...,M} is first estimated and then
presented in the form of

g(y ∣ θ) = π1f1(y ∣ θ1) + ... + πMfM(y ∣ θM), (2.66)

with y being the N×D data matrix, πm the mth variational mixing weight and fm(⋅) the
D-dimensional variational distribution of the mth component. For notation simplicity,
the dependence on the parameters in fm(⋅) will be implicit this point onward, i.e.,
f1(y ∣ θ1) will be presented as f1(y). As f/m we represent the conditional mixture,
which corresponds to all the remaining components (along with their weights) apart
from the πmfm term. For instance, if m = 1

f/1(y) ≡ π2f2(y) + ... + πMfM(y) = g(y) − π1f1(y), (2.67)

with g(y) being the full mixture model.

In addition, after considering equations (2.66) and (2.67), we define a few useful
quantities which facilitate the calculation of the final discriminative measure for the
mth cluster

δm =∫
y

fm(t)f/m(t)dt, (2.68)

∆m =∫
y

fm(t)g(t)dt, (2.69)

dm =
δm

∆m

, (2.70)

and

π̃m(y) =
πmfm(y)
g(y)

. (2.71)

Equations (2.68) and (2.69) remind of a concordance index which naturally measures
the agreement/overlapping of two densities. Scott and Szewczyk [122] discussed about
the closeness (concordance) of two densities based on similarity distances. In particular,
δm and ∆m play the role of similarity measures, with values near 0 indicating non-
agreement of the two densities, whereas higher ones better agreement. Regarding dm in
equation (2.70), it is an index between [0,1] which defines the level of discrimination
of group m from the rest components, with low levels implying good discrimination
and high the opposite. As for π̃m(y) in equation (2.71), it represents the probability of
correctly classifying a data-vector y into the mth component.

Having defined the aforementioned quantities, we move on to calculating the expected
true-positive πm+ and false-positive πm− classification rates
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πm+ =E[π̃m(y) ∣ y ∼ fm], (2.72)
πm− =E[π̃m(y) ∣ y ∼ f/m]. (2.73)

Substituting equation (2.71) into πm+ and πm− and then using the first-order approxi-
mation of the ratio of the two expectations (proofs in the supplementary material of
Lin et al. [76]), the result is

πm+ ≈
E[πmfm(y) ∣ y ∼ fm]
E[g(y) ∣ y ∼ fm]

= τm+ , (2.74)

πm− ≈
E[πmfm(y) ∣ y ∼ f/m]
E[g(y) ∣ y ∼ f/m]

= τm− . (2.75)

High values of τm+ and low of τm− denote good discrimination of the mth component
from the rest M − 1 in the mixture. Hence, they are respectively called true- and
false- positive discriminative threshold probabilities for assigning data-points into the
corresponding cluster. Using trivial algebra, we prove that

τm+ =1 − dm, (2.76)

τm− =
πmδm

∫
y
g2(t)dt − πm∆m

. (2.77)

In cases of intractable integrals in equations (2.76) and (2.77), we use numerical
calculation over the observed data points y. Note that these τm measures can be
computed for each feature dimension separately (or subsets of features). As an example,
τm+(1) would indicate the calculation of the τm+ probability based on the first feature,
while τm+([1, 4, 5]) based on the first, fourth and fifth feature. Therefore, a general no-

tation is τm+(h) and τm−(h), with h ⊆ {1 ∶D} the subset of features.

By taking advantage of τm+(h) and τm−(h), we can compute the weighted discriminative
threshold probability for classification into the mth component, referred as the aggregate
discriminative accuracy measure

Am(h) = πmτm+(h) + (1 − πm)τm−(h). (2.78)

In equation (2.78), Am(h) is a rate that shows in what extend subset h characterizes
the mth component. Values close to 1 manifest that features h are the only necessary
ones in creating component m. On the contrary, values near zero show lack of h
contribution.

In practice, to find the optimal set of features that discriminate the mth component from
the rest, we have to compute Am(h) for all the possible 2D − 1 subsets (D the number
of features) and select the set that maximizes Am(⋅). In small case scenarios where
D = 2 or 3 or 4, it is feasible to enumerate all the subsets and compute the measure for
each one. On the other hand, when D is large the situation turns difficult. To give an
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instance, if D = 10 all the possible calculations are 1, 024−1 = 1, 023, let alone for higher
feature dimensions (1, 048, 575 subsets for D = 20). On account of that, we alternatively
build a forward selection algorithm that adds sequentially features. In particular, the
algorithm starts at the first iteration by searching the feature that maximizes Am(⋅).
At the second iteration, it keeps the selected feature from the previous iteration and
searches for the second feature that along with the previous feature maximize Am(⋅).
This procedures carries on until the algorithm converges (Algorithm 7). At this point
we highlight two things: a) the maximum Am(h) of the current iteration may be
higher, equal or even lower than the value in the previous iteration but at convergence
the maximum Am(h) needs to be higher than all the previous iterations, and b) the
maximum Am(h) at the convergence point may not necessarily reach the value 1 (100%
discriminative accuracy), but it needs to be the highest possible. Alternative methods
such as Stochastic selection algorithms used for evaluating subsets in regression (Hans
et al. [55]) can be also investigated, when forward selection has slow progression caused
by the high amount of features. However, we exclusively work with forward selection
due to its efficient execution in our applications.

Algorithm 7 Forward Selection of Discriminative Features for the mth Component
Fix:
m ∈ {1,2, ...,M}
Initialize:
h = {1 ∶D} and k = {∅}
Repeat:
1) For l in h: compute Am([l, k]) and select l⋆ = arg maxl∈hAm([l, k])
2) Update h = {h ≠ l⋆}
3) Update k = [k, l⋆]
4) Return Am(k)current

Stop:
∣Am(k)current −Am(k)previous∣ ≤ ϵ, where ϵ = 10−3

The forward selection scheme is presented in Algorithm 7. Specifically, we start by
fixing the component label m for which the discriminative features need to be found.
At next, we initialize the set of features h to consist of all the D features, and finally
we create an empty set k that will store the selected features at each iteration. The
algorithm computes the discriminative accuracy measure Am([l, k]) for each element
of h sequentially and separately (note that the set h is smaller than D after the first
iteration), denoted as l, along with the k set at the current iteration. It then selects
that l element, l⋆, that maximizes the measure. The set h is then updated to contain
all the D features except l⋆. Regarding k, it uploads l⋆ while retaining its previous
values. The algorithm stops when the absolute difference between the current maximum



40 Variational Bayes, Mixture Models and Feature Selection

Am(k) is lower than the previous by a negligible value, like ϵ = 10−3 (convergence). We
choose as stopping criterion the 10−3 difference to avoid overcrowding the optimal set
of features with features that add less than 0.001 improvement in the discriminative
accuracy. The algorithm’s output is the selected k set of features that maximizes the
discriminative accuracy measure for the mth component.

2.8 Summary

In Chapter 2, we presented the theory of Variational Inference with focus on the
Mean Field approximation, also known as Variational Bayes. The optimal general
variational distribution was formed and then derived for popular regression models,
revealing the applicability of this inferential method and preparing the ground for
applications in complex mixture scenarios in Chapter 3. Additionally, we introduced
a simple approach to dealing with poor variational initialization by smoothing out
non-convex lower bounds for a few iterations. Furthermore, we discussed about Finite
mixture models and their utility as model-based clustering tools, which although lack
model-determination. To overcome this issue, we presented the Dirichlet Process,
opening the path to the Dirichlet Process mixture models. Finally, we provided a
measure for component discrimination that exploits the fitted variational distributions
and returns those features that discriminate each component from the rest.



Chapter 3

Variational Mixture Models

3.1 Overview

Having defined Variational Bayes, derived the Mean Field algorithm for a variety of
regression models in Chapter 2 and described the principles of the Finite and Dirichlet
Process mixtures, we have all the necessary tools and knowledge to elaborate the full
Mean Field methodology for notable discrete and continuous mixture models.

Our goal in this chapter is to make available the mathematical implementation for
a wide range of fast model-based clustering tools, due to the demand in determining
the hidden groups of non-normally distributed DNA methylation data, such as beta-
intensities derived from array-based platforms (see Chapter 1, Subsection 1.5.2), or
methylated counts from Bisulfite Sequencing techniques (see Chapter 1, Subsection
1.5.1). Given this chapter, the user will be able to choose the tool that suits better
her data type and straightforwardly program it in a language of her preference. The
mathematical derivations concern both Finite and Dirichlet Process mixtures, however
emphasis is given on the latter due to its ability in automatically determining the
number of clusters.

In general, we analyze models where the likelihood is a mixture of

• Gaussian densities, ideal for data with unrestricted support range
• Beta densities, ideal for data with bounded support range
• Bernoulli/Binomial distributions (with or without confounding parameters such

as sex, age, ethnicity and other demographic factors), ideal for binary data or
counts with known number of independent trials/experiments

• Poisson distributions (with or without confounding parameters), ideal for counts
with unknown/non-fixed number of trials
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Regarding the input data in the aforementioned variational mixture algorithms, these
are an N ×D matrix, with N being the number of samples and D the number of
features. Each row of the input data matrix corresponds to a sample, while each
column to a feature for the specific sample, with all features measured in the same units,
i.e., the level of DNA methylation is recorded for D differentially methylated genomic
regions in N individuals. We also assume that the observations between samples are
independent, as well as the measurements within each sample (features) and therefore,
our variational mixture models are built accordingly. Generally, this is a very strong
assumption, especially when we consider CpGs, and we recognize that it may not be
completely true. However, we do it for computational reasons (Zhang et al. [156]).
Moreover, in our real examples we are working with differentially methylated regions
(DMRs) and CpGs within genes that span the entire genome, hence the assumption of
independence may not be violated. To illustrate our independence assumption, we use
the Beta mixture model. In this model, each sub-population of samples is distributed
as a Beta density with component specific parameters that also vary across the feature
dimensions.

Finite Dirichlet Process
Mixtures with

covariates
without

covariates
with

covariates
without

covariates
Beta - Easy to derive - Main text (3.2.1)

Gaussian - Easy to derive - Appendix (B.3.1)
Bernoulli/Binomial Main text (3.3.2) Main text (3.3.1) Easy to derive Appendix (B.2.2)

Poisson Easy to derive Appendix (B.1.1) Main text (3.3.3) Appendix (B.2.1)
Table 3.1 Mixture models for which the variational derivation is provided either on
the main text or the Appendix B, or it can be straightforwardly derived based on the
provided material. Dash lines imply non supply of the mathematical procedure for the
corresponding model.

In Table 3.1, we arrange all the analyzed mixture models into two main categories:
1) Finite and 2) Dirichlet Process, which further split in two sub-categories: a) with
covariates and b) without covariates. “With covariates” are those models that take into
consideration the occurrence of confounding parameters, i.e., sex, age etc., that may
produce spurious clustering, thus we remove their impact. The “without covariates”
models assume no presence of external factors that can distort the clustering process.
Taking into account covariates is a great novelty and only few algorithms are constructed
to do it (Carvalho et al. [20]).

In this chapter, we provide the complete variational derivation of only a represen-
tative segment of the aforementioned models in order to avoid excessive amount of
technicalities. Regarding “annealing”, the temperature addition that accounts for
poor initialization in Chapter 2, we introduce its easy implementation in only one
of the presented models to circumvent repeating the same procedure (multiplying
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log-likelihood by a constant) and also to maintain clarity on the variational steps in
the original Bayesian model.

Generally, one model from each genre is presented so as to cover all the different
mathematical approaches. Those models are indicated as “Main text” in Table 3.1,
whilst in the Appendix B are stored those with the “Appendix” specification. In our
real application analysis in Chapter 5, we focus on Dirichlet Process mixtures and not
on Finite, since only the former provide model determination. Hence, we mostly omit
the Finite mixture model derivation here and supply it in the Appendix B, although
the variational algorithm can be comfortably derived in accordance with the existing
material. The easily derived variational models, given the knowledge of Chapter 3, are
denoted as “Easy to derive”. Lastly, the dash lines represent continuous models for
which we have not proceeded with the variational implementation, and these concern
cases of existence of covariates. The reason for skipping their derivation is because
there are alternative ways to deal with such scenarios, like clustering the residuals
of an appropriate regression model with predictors the confounding parameters. The
residuals can work as a clear representation of the original data, since they are free
from factors that distort the clustering outcome.

To summarize this chapter, we deliver the variational Finite mixture of Binomial
densities (with “annealing”), the variational Dirichlet Process Poisson mixture when
covariates exist, as well as the Finite Bernoulli mixture with covariates, while we
get started with a detailed derivation of the variational Dirichlet Process mixture of
Beta densities. With regards to the Gaussian mixtures, we choose not to present the
mathematical procedure on the main text because of two reasons: a) it is an extensively
and explicitly discussed model in the literature, especially the multi-variate case (with
dependent features) as presented in Bishop [11], Chapter 10 and b) our main interest is
in providing tools for non-normally distributed data such as DNA methylation values
derived from different DNA profiling techniques. Nonetheless, Gaussian mixtures
may be useful in cases of beta-intensities data that are influenced by covariates (to
be discussed in Section 3.2.2) and therefore, we also present our code version of the
variational Gaussian mixture model with independent features in Appendix B.

3.2 Mixture Models for Continuous Random Vari-
ables

3.2.1 Variational Dirichlet Process Beta Mixture

The Dirichlet Process Beta mixture model is ideal for determining the hidden clusters of
data with bounded support range (Ma and Leijon [80], Lai et al. [71]), e.g. proportions.
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For example, data drawn from array-based DNA profiling platforms, such as 450K and
EPIC, concern proportion of DNA methylation at each CpG. This type of data, called
beta-intensities (Chapter 1, Subsection 1.5.2), is confined to live in the [0, 1] interval and
therefore, Dirichlet Process Beta mixture would have been the first thought of a suitable
model-based clustering method. However, this model assumes independence between
the feature dimensions, an assumption we cannot make for the beta-intensities on the
CpG, because adjacent CpGs show signs of correlated methylation levels (Eckhardt
et al. [37], Maksimovic et al. [83]). Consequently, we suggest implementing the Dirichlet
Process Beta mixture model not directly on methylation levels of individual CpGs, but
on aggregated methylation rates (median beta-intensity) of differentially methylated
regions (DMRs). In this way, the correlation is absorbed within the differentially
methylated region after the aggregation of the correlated beta-intensities, resulting in
relaxation of the association between the DMRs.

In this section, we start by displaying the hierarchical model of the Dirichlet Process
Beta mixture while we carry on with the implementation of the variational inference
procedure which concerns the derivation of all the variational distributions.

With regards to the hierarchical structure, the likelihood and the priors are

y ∣ u,v,z ∼
N

∏
n=1

M

∏
m=1

D

∏
d=1

Beta (ynd ∣ udm, vdm)znm , (3.1)

v ∼
M

∏
m=1

D

∏
d=1

Gamma (vdm ∣ µ0dm, η0dm) , (3.2)

u ∼
M

∏
m=1

D

∏
d=1

Gamma (udm ∣ α0dm, β0dm) , (3.3)

z ∣w ∼
N

∏
n=1

Categorical (zn ∣w) , (3.4)

w ∼
M

∏
m=1

Beta (wm ∣ 1, ϕ0m) , (3.5)

whereN is the number of samples, M the initial number of components (M a high integer
as defined in the stick-breaking point process, Chapter 2) and D the features dimension
of the dataset. In equation (3.1), the random data y is an (N ×D)-dimensional matrix,
with N corresponding to the number of independent samples and D to the number
of independent features. The double independence leads to the factorization of the
likelihood, and given the allocations z the components are independent too. Regarding
the vector of observations y, this is distributed as a mixture of M independent Beta
densities with component specific shape parameters (udm and vdm) that vary across
the features dimension D due to the assumption of independence between the features,
with subscript m indicating the component index and d the specific feature dimension.
The parameters u, v of the Dirichlet Process Beta mixture are D ×M matrices, with
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each element udm and vdm following a priori a Gamma density with hyperparameters
(α0dm, β0dm) in equation (3.3) and (µ0dm, η0dm) in (3.2). The latent allocation variable
z is an N ×M matrix, with each row denoting an M vector for the nth sample, where its
M −1 values are 0 and the one corresponding to the cluster of the yn sample is equal to
1. Thus, z is distributed as a Categorical distribution in equation (3.4), with parameter
w. In respect of w, this is the stick-breaking point vector that consists of M elements
each one following a Beta density with shape hyperparameter ϕ0m (ϕ0 = [ϕ01, ..., ϕ0M])
and is related to the mixing weights of the model - πT = [π1, ..., πM] - via the following
equation: πm = wm

m−1
∏
j=1
(1 −wj) (Chapter 2, Subsection 2.6.3).

A helpful additional way to understand the conditional dependencies of the Dirichlet
Process Beta mixture parameters is the Directed Acyclic Graph in Figure 3.1. The
white nodes correspond to the latent allocation znm, the stick-breaking point wm and
the component specific parameters (udm, vdm), with the subscript m signifying the mth

component, n the nth sample and d the dth feature dimension. Each parameter node
is located within a box that bears the parameter’s dimensions, i.e., znm is the (n,m)
element of the N ×M z matrix. The light grey node corresponds to the observation ynd.
As for the directed arrows, these show the conditional independencies/dependencies
between the variables. In particular, the random data variable y (the N ×D data
matrix with elements ynd) depends on the Beta component specific parameters u and
v, as well as on the latent variable z (arrow edges point on y). On the other hand,
y is conditionally independent of the stick breaking point variable w given the latent
variable z.

yndznm udmwm

vdm

NM ND

DM

M

Figure 3.1 Directed Acyclic Graph of the Dirichlet Process Beta mixture model. The
nodes represent the random variables, the directed edges the conditional dependence
and the boxes the dimensionality of each parameter. The light grey node corresponds
to the variable datapoint ynd.

Mean Field approximation

After the introduction of the hierarchical Dirichlet Process Beta mixture, we proceed to
the mathematical derivation of the Mean Field approximation. The aim is to produce
closed form equations for the variational posterior parameters of u,v,z and w. The
decomposition of the joint approximated posterior density that results in tractable
solutions is
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q (z,w,u,v) = qz (z) qw (w) qu (u) qu (v) , (3.6)

where each variable z,w,u,v bears its own variational distribution. The distribution
indices are omitted for simplicity reasons from this point onward, i.e., qz(z) will be
reported as q(z).

Variational distribution of z

We first consider the derivation of the q(z) distribution. Based on the Mean Field
approximation presented in Chapter 2 and specifically equation (2.13), the optimal
approximated distribution, in its logarithmic form, is given by the expected log-full
conditional of z (equation (3.7)). The expectation is with respect to w,u and v, where
each parameter follows its variational posterior, i.e., w ∼ q(w), u ∼ q(u) and v ∼ q(v).
Therefore, the optimal solution for q(z) depends on moments evaluated with respect
to the variational distributions of the rest variables. The same holds for the optimal
q(w), q(u) and q(v) solutions, leading to the conclusion that the variational update
equations are interlinked and must be solved iteratively (Bishop [11]).

log q(z) ∝ Ew,u,v[logP (z ∣ y,w,u,v)]. (3.7)

The proportionality in equation (3.7) concerns z, thus any terms that do not depend
on z can be absorbed into the normalizing constant. Also, by making use of the
dependencies in the Directed Acyclic Graph in Figure 3.1 (z dependent on w, and y
dependent on z as well as on u,v), equation (3.7) decomposes into

log q(z) ∝ Ew[logP (z ∣w)] +Eu,v[logP (y ∣ z,u,v)]. (3.8)

The next step is to calculate the expected values in equation (3.8). The first expectation
with respect to w, shown in equation (3.9), refers to the log-prior of z, which is a
Categorical distribution with parameter vector w (equation (3.4)). This expectation is
equal to

Ew[logP (z ∣w)] = Ew [log
N

∏
n=1

M

∏
m=1
{wm

m−1
∏
j=1
(1 −wj)}

znm

]

= Ew [
N

∑
n=1

M

∑
m=1

znm{logwm +
m−1
∑
j=1

log(1 −wj)}]

=
N

∑
n=1

M

∑
m=1

znm{Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)]}.

(3.9)

The second expectation with respect to u,v in equation (3.8) corresponds to the
logarithmic likelihood, which is equal to

Eu,v[logP (y ∣ z,u,v)] =Eu,v [log
N

∏
n=1

M

∏
m=1

D

∏
d=1
{ Γ(udm + vdm)

Γ(udm)Γ(vdm)
yudm−1

nd (1 − ynd)vdm−1}
znm

]
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=Eu,v
⎡⎢⎢⎢⎢⎣

N

∑
n=1

M

∑
m=1

D

∑
d=1
znm{ log Γ(udm + vdm)

Γ(udm)Γ(vdm)

+ (udm − 1) log ynd + (vdm − 1) log(1 − ynd)}
⎤⎥⎥⎥⎥⎦

=
N

∑
n=1

M

∑
m=1

D

∑
d=1
znm{Eudm,vdm

[log Γ(udm + vdm)
Γ(udm)Γ(vdm)

]

+ (Eudm
[udm] − 1) log ynd + (Evdm

[vdm] − 1) log(1 − ynd)]}.

(3.10)

Subsequently, we can derive the unormalized optimal log q(z) form by substituting
the expectations (3.9) and (3.10) on the right-hand side of equation (3.8). Any terms
independent of z are discarded, since we initially care to find the posterior without the
normalizing constant, leaving the definition with the normalizing constant at the end.
The resulted log-q(z) is proportional to

log q(z) ∝
N

∑
n=1

M

∑
m=1

znm log ρnm, (3.11)

where we define

log ρnm =
D

∑
d=1

⎧⎪⎪⎨⎪⎪⎩
Eudm,vdm

[log Γ(udm + vdm)
Γ(udm)Γ(vdm)

] + (Eudm
[udm] − 1) log ynd

+ (Evdm
[vdm] − 1) log(1 − ynd)

⎫⎪⎪⎬⎪⎪⎭
+Ewm [logwm] +

m−1
∑
j=1

Ewm [log(1 −wj)] .

(3.12)
In order to de-logarithmize the unormalized log q(z), we have to apply the exponential
function on both sides of (3.11). Thus,

q(z) ∝
N

∏
n=1

M

∏
m=1

ρznm
nm . (3.13)

This is the point where the normalization of q(z) in equation (3.13) is required.
Considering the definition of znm (distributed as a Categorical), where for each n value
the quantities znm are binary and sum to 1 over all m values, we obtain

q(z) =
N

∏
n=1

M

∏
m=1

rznm
nm , (3.14)

with
rnm = ρnm/

M

∑
j=1
ρnj. (3.15)

We observe in equation (3.14) that the functional form of q(z) is a product of N
Categorical distributions, same as the prior P (z ∣w), with variational expected value
for the nth observation and mth component equal to

Eznm [znm] = rnm. (3.16)
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The expected value of the latent allocation znm in equation (3.16) introduces the
responsibilities, variables that we referred to in Chapter 2 as one of the mixture models
advantages. The responsibility rnm reveals what is the probability the nth sample to
belong in cluster m (soft clustering), in contrast to K-means and Hierarchical clustering
which allocate with probability 1 the nth observation into a component (hard clustering).

Variational density of w

The following mathematical derivation concerns the Mean Field density of w, q(w).
Based again on the general equation for the optimal variational form in equation (2.13),
Chapter 2, we have that log q(w) is proportional to the expected log-full conditional of
w with respect to z,u and v. However, given Figure 3.1, w solely depends on z and
therefore, the expectation simplifies to be with respect to z. A more manageable form
is given in equation (3.17) below

log q(w) ∝ Ez,u,v[logP (w ∣ z,y,u,v)]

∝ Ez[logP (z ∣w) + logP (w ∣ ϕ0)]

= Ez[logP (z ∣w)] + logP (w ∣ ϕ0).

(3.17)

The subsequent step is to calculate the expectation in equation (3.17), which includes
the log-prior of z. We then replace the log-prior of w, to finally give rise to the
unormalized log q(w) in equation (3.18)

log q(w) ∝ Ez
⎡⎢⎢⎢⎢⎣

N

∑
n=1

M

∑
m=1

znm{ logwm +
m−1
∑
j=1

log(1 −wj)}
⎤⎥⎥⎥⎥⎦
+

M

∑
m=1
[(ϕ0m − 1) log(1 −wm)

⎤⎥⎥⎥⎥⎦

=
M

∑
m=1

⎡⎢⎢⎢⎢⎣

N

∑
n=1

Eznm[znm]{logwm +
m−1
∑
j=1

log(1 −wj) + (ϕ0m − 1) log(1 −wm)}
⎤⎥⎥⎥⎥⎦

=
M

∑
m=1

⎡⎢⎢⎢⎢⎣

N

∑
n=1

Eznm[znm] logwm + {
N

∑
n=1

M

∑
j=m+1

Eznj
[znj] + ϕ0m − 1} log(1 −wm)

⎤⎥⎥⎥⎥⎦
.

(3.18)
To annihilate the logarithm in equation (3.18) we apply the exponential on both sides
to obtain

q(w) ∝
M

∏
m=1

w

N

∑
n=1

Eznm [znm]
m × (1 −wm)

N

∑
n=1

M

∑
j=m+1

Eznj [znj]+ϕ0m−1
. (3.19)

In equation (3.19), q(w) is proportional to a product of M Beta densities with

δm =
N

∑
n=1

Eznm[znm] + 1,

ϕm =
N

∑
n=1

M

∑
j=m+1

Eznj
[znj] + ϕ0m

(3.20)
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the defined variational parameters. Eznm[znm] is calculated in equation (3.16) and
corresponds to the responsibilities.

Variational density of u and v

Having defined the closed form equations for the variational parameters of q(z) and
q(w) in equations (3.15) and (3.20) respectively, it remains to derive the variational
density q(u) and q(v), where both are Beta shape parameters of the Dirichlet Process
Beta mixture.

The optimal variational density for u is proportional to the expected log-full conditional
of u, where the expectation is with respect to v,z,w. However, due to the conditional
dependencies in Figure 3.1, u is associated only with v and z as co-parents of the data
node y. Similarly, v is connected with z and u through y. Therefore, the unormalized
variational densities of u and v are given in equation (3.21) and (3.22)

q(u) ∝ exp{Ev,z[logP (u ∣ α0,β0) + logP (y ∣ u,v,z)]} , (3.21)

q(v) ∝ exp{Eu,z[logP (v ∣ µ0,η0) + logP (y ∣ u,v,z)]} . (3.22)

Following that, we expand the variational density of u by replacing the log-prior of u
and the log-likelihood. Similar procedure applies to q(v) and therefore, we omit its
derivation details to straightforwardly present the result later on.

The log q(u) is then obtained in equation (3.23), deprived however from its normalizing
constant

log q(u) ∝
M

∑
m=1

D

∑
d=1
[(α0dm − 1) logudm − β0dmudm]

+
N

∑
n=1

M

∑
m=1

Eznm[znm]
D

∑
d=1
{Evdm

[log Γ(udm + vdm)
Γ(udm) + Γ(vdm)

] + (udm − 1) log ynd}.

(3.23)

At this point, we observe that equation (3.23) does not remind any of the known kernels
due to the non tractable expectation term with respect to vdm. Lai et al. [71] prove
that this quantity can be alternatively approximated by a first order Taylor polynomial.
In particular, Evdm

[log[Γ(udm + vdm)/Γ(udm) + Γ(vdm)]], called for simplicity Q(udm),
has a lower bound Q̃(udm) defined as in equation (3.25)

Q(udm) = Evdm
[log Γ(udm + vdm)

Γ(udm) + Γ(vdm)
] ≥ Q̃(udm), (3.24)

with

Q̃(udm) = logudm[Ψ(Eudm
[udm] +Evdm

[vdm]) −Ψ(Eudm
[udm])]Eudm

[udm] . (3.25)
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This Q̃(udm) approximation is then replaced into the expected term with respect to
udm in equation (3.23) and the approximated unormalized logarithmic q(u) is

log q(u) ∝
M

∑
m=1

D

∑
d=1
[{

N

∑
n=1

Eznm[znm][Ψ(Eudm
[udm] +Evdm

[vdm]) −Ψ(Eudm
[udm])]

×Eudm
[udm] + adm − 1} logudm − {βdm −

N

∑
n=1

Eznm[znm] log ynd}udm].

(3.26)
The log-kernel of q(u) now resembles a product of M × D Gamma densities with
variational parameters for each Gamma defined as

αdm = α0dm +
N

∑
n=1

Eznm[znm][Ψ(Eudm
[udm] +Evdm

[vdm]) −Ψ(Eudm
[udm])]Eudm

[udm] ,

βdm = β0dm −
N

∑
n=1

Eznm[znm] log ynd.

(3.27)
A similar result is obtained for q(v), where v is approximated by a product of Gamma
densities too, with Gamma specific variational parameters

µdm = µ0dm +
N

∑
n=1

Eznm[znm][Ψ(Eudm
[udm] +Evdm

[vdm]) −Ψ(Evdm
[vdm])]Evdm

[vdm] ,

ηdm = η0dm −
N

∑
n=1

Eznm[znm] log(1 − ynd).

(3.28)
Variational Expectations

Thus far, we have derived all the variational parameters of the Dirichlet Process
Beta mixture model in equations (3.15), (3.20), (3.27) and (3.28). The next stage is
to calculate the expectations found within these variational equations. Those mean
quantities are with respect to the corresponding variational densities, as we discussed
in the beginning of the variational derivations section, and are easily attained in (3.29).

For example, to compute Eudm
[udm] we exploit the fact that

udm ∼ q(udm) = Gamma(udm ∣ αdm, βdm).

The expected value of udm is then equal to the integral ∫udm
udmq(udm)dudm, which

results in the fraction of the shape variational parameters Eudm
[udm] = αdm/βdm. The

rest expectations can be calculated likewise.

Eznm [znm] = rnm,

Eudm
[udm] =

αdm

βdm

,

Evdm
[vdm] =

µdm

ηdm

,

Eudm
[logudm] = Ψ(αdm) − logβdm,
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Evdm
[log vdm] = Ψ(µdm) − log ηdm,

Ewm [logwm] = Ψ(δm) −Ψ(δm + ϕm),

Ewm [log(1 −wm)] = Ψ(ϕm) −Ψ(δm + ϕm),

Ewm [wm] =
δm

ϕm + δm

.

(3.29)

As for Eudm,vdm
[log[Γ(udm + vdm)/Γ(udm) + Γ(vdm)]] in equation (3.12), this is an

intractable integral with respect to (udm, vdm) and hence, a closed form solution is
not provided. To deal with this obstacle, Lai et al. [71] deploy again a first order
Taylor polynomial, denoted as R̃dm in equation (3.31), to approximate the term. R̃dm

specifically works as a lower bound for the expectation, as indicated in the inequality
(3.30)

Eudm,vdm
[log Γ(udm + vdm)

Γ(udm)Γ(vdm)
] ≥ R̃dm, (3.30)

where

R̃dm =
Γ(Eudm

[udm] +Evdm
[vdm])

Γ(Eudm
[udm])Γ(Evdm

[vdm])

+ [Ψ(Eudm
[udm] +Evdm

[vdm]) −Ψ(Eudm
[udm])]Eudm

[udm]

× [Eudm
[logudm] − logEudm

[udm]]

+ [Ψ(Evdm
[udm] +Evdm

[vdm]) −Ψ(Evdm
[vdm])]Evdm

[vdm]

× [Evdm
[log vdm] − logEvdm

[vdm]] .

(3.31)

Variational Lower Bound

All the necessary variational equations and expectations have now been derived and
we can finally complete the Variational Bayes procedure with the calculation of the
Evidence Lower Bound. The ELBO is the objective function that works as the criterion
for the optimal variational parameters selection. Particularly, it is a function of the
variational parameters that is calculated at each iteration based on the current input
values. When the current ELBO value is negligibly different to the previous (ϵ = 10−6),
the variational algorithm converges to the optimal variational estimates.

Regarding the general form of the Mean Field lower bound, this is given in equation
(2.9), Chapter 2, where θ now contains the Dirichlet Process Beta mixture parameters
{z,w,u,v}. More precisely, the ELBO is equal to the subtraction of the expected log-
joint distribution (including the observations y) and the expected log-variational joint
distribution, where both expectations are with respect to the variational parameters.
These two quantities can be further expanded leading to equation (3.32).
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L(y; q) = Ez,w,u,v[logP (y,z,w,u,v)] −Ez,w,u,v[log q (z,w,u,v)]
= Ez,u,v[logP (y ∣ z,u,v)] +Ez,w[logP (z)] +Ew[logP (w)]
+Eu[logP (u)] +Ev[logP (v)] −Ez[log q(z)] −Ew[log q(w)]
−Eu[log q(u)] −Ev[log q(v)].

(3.32)

Finally, the explicit ELBO form, after substituting the likelihood, the priors and the
variational distributions of the Dirichlet Process Beta mixture model is

L(y; q) =
N

∑
n=1

M

∑
m=1

Eznm[znm] log ρnm −
N

∑
n=1

M

∑
m=1

Eznm[znm] logEznm[znm]

+
M

∑
m=1
[logϕ0m + (ϕ0m − 1)Ewm[log(1 −wm)]]

−
M

∑
m=1
[Γ(δm + ϕm) − Γ(δm) − Γ(ϕm) + (δm − 1)Ewm[logwm]

+ (ϕm − 1)Ewm[log(1 −wm)]]

+
M

∑
m=1

D

∑
d=1
[a0dm logβ0dm − log Γ(a0dm) − adm logβdm + log Γ(adm)

+ (a0dm − adm)Eudm
[logudm] − (β0dm − βdm)Eudm

[udm]]

+
M

∑
m=1

D

∑
d=1
[µ0dm log η0dm − log Γ(µ0dm) − µdm log ηdm + log Γ(µdm)

+ (µ0dm − µdm)Evdm
[log vdm] − (η0dm − ηdm)Evdm

[vdm]].

(3.33)

Algorithm 8 Updating Scheme of the Variational Dirichlet Process Beta Mixture
1: Initialize:

1. Choose the initial number of components M
2. Choose initial values for the variational parameters:
δm, ϕm, αdm, µdm, βdm and ηdm

3. Choose values for the hyperparameters:
ϕ0m, α0dm, µ0dm, β0dm and η0dm

2: Repeat:
1. Calculate the expected values in equations (3.29) and (3.31)
2. Update the variational parameters in equations (3.12), (3.15), (3.20), (3.27) and

(3.28)
3: Stop:

L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6

4: Pre-Final step:
Calculate the posterior mixing weight πm as πm = Ewm[wm]

m−1
∏
j=1
(1 −Ewj

[wj])

5: Final step:
Discard components with almost zero weight
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To summarize the updating scheme for the variational Dirichlet Process Beta mixture
model, we supply Algorithm 8. The algorithm begins with step 1 where we initialize the
number of components M , the variational parameters and the prior hyperparameters
presented in equations (3.1)-(3.5). We then iteratively update the expectations in
equations (3.29) and (3.31), and the variational parameters in (3.12), (3.15), (3.20),
(3.27) and (3.28), until the algorithm converges in step 3 (difference between current
ELBO value and previous value lower than ϵ = 10−6). The pre-final step concerns the
calculation of the variational weights of the components, πm, after substituting the
variational expected value of the stick-breaking point parameter (step 4). At the final
stage, we retain the components with non-zero mixing weight, featuring the ability of
Dirichlet Process in determining the number of clusters in the Beta mixture model.

3.2.2 Bounded Data with Confounding Parameters

In bounded data cases where confounding factors exist, such as beta-intensities measured
in individuals of different group age and sex, the danger of a distorted clustering outcome
lurks. The Dirichlet Process Beta mixture model should then be avoided because it
does not take into consideration the confounding effects.

One alternative approach, that we suggest, is fitting a Beta regression model (Ferrari and
Cribari-Neto [45]) to each feature (in total D) via the betareg package of Zeileis et al.
[154], with covariates the confounding factors (i.e., feature ∼ sex + age). Espinheira
et al. [39] recommend using the standardized weighted residuals (coded as “sweighted2”
in R), which are distributed as a standard Gaussian. As a result, instead of clustering
the original beta-intensities we could exploit the “sweighted2” residuals and apply the
Dirichlet Process Gaussian mixtures on them with dependent features (Bishop [11],
Chapter 10) if features are individual CpG sites, or independent features (Appendix
B, B.3.1) if we consider aggregated beta-intensities such as median CpG methylation
in differentially methylated regions. This way, the influence from any confounding
parameter is vanished and the credibility of the inferential application is ensured.

3.3 Mixture Models for Discrete Random Variables

3.3.1 Variational Finite Binomial Mixture

The Finite mixture of Binomial distributions is a hierarchical model with fixed number
of components and a Beta prior imposed upon the probability parameter of each
sub-population’s Binomial distribution. It is a rational model choice when the aim is
to cluster count data for which the number of trials/experiments is known and the
trials are independent. For example, a suitable application involves data produced by
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Bisulfite Sequencing DNA mapping techniques such as whole genome bisulfite sequencing
(WGBS) and reduced representation bisulfite sequencing (RRBS). Both methods provide
the number of methylated reads (counts) per tested CpG site, along with the site’s
read depth (trials) (Chapter 1, Section 1.5.1). Nonetheless, as it has already been
discussed in the previous section, due to the model structure of independence between
the features in all the studied models in this thesis, we recommend applying the
Binomial mixture on non-adjacent CpG sites (less correlated methylated counts) or on
differentially methylated regions (DMR) which aggregate the correlated methylation
values, reducing this way the dependence between the DMR counts. On a different
note, we stress that the Finite Binomial mixture can successfully apply to binary data
of analogous structure, since the Bernoulli probability function is a sub-case of the
Binomial distribution for number of trials equal to one.

The structure of the current analysis starts with the listing of the likelihood and priors
and progress with the Mean Field derivation of the variational densities as well as
the calculation of the Evidence Lower Bound. We also introduce the way “annealing”
applies to this mixture model, which is a consistent procedure to all the models in
this chapter and the reason we skip introducing it again in the rest of the hierarchical
mixtures. Moreover, the variational expectations involved into the approximated
densities are summarized at the end, in similar manner to the variational Dirichlet
Process Beta mixture framework presented earlier.

In order to begin, we introduce the hierarchical model

y ∣ p,z ∼
N

∏
n=1

D

∏
d=1

M

∏
m=1
[Binomial(ynd ∣ snd, pdm)]znm/Ti , (3.34)

p ∼
D

∏
d=1

M

∏
m=1

Beta(pdm ∣ a0dm, b0dm), (3.35)

z ∣ π ∼
N

∏
n=1
[Categorical(zn ∣ π)]1/Ti , (3.36)

π ∼ Dirichlet(π ∣ ϕ0), (3.37)

where y is the N × D data matrix, with N denoting the total number of samples
(n ∈ {1,2, ...,N}) and D the total number of features (d ∈ {1,2, ...,D}). The samples
(rows of y) are independent as well as the features (columns of y), thus the distribution
of y in equation (3.34) is such that the observations from the same group are distributed
as a Binomial distribution with component specific parameters (snd, pdm) that vary
across the feature dimensions. With regards to index M , this is the fixed number
of components, with m ∈ {1,2, ...,M}. This is different from the Dirichlet Process
mixtures, where the parameter M is the number of components we initialize the model
with in order to eventually do cluster determination (usually the estimated number
of components is <<M). Hence, Finite and Dirichlet Process definitions of M should
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not be confused. In regard to snd, this is the number of non-random trials for the nth

sample and dth feature, while pdm is the random Binomial probability parameter of
the dth feature in the mth cluster. Specifically, pdm is an element of the p matrix with
D ×M dimensions, where pdm follows a priori a Beta density with hyperparameters
(a0dm, b0dm) (equation (3.35)). The latent variable z, as in the Dirichlet Process Beta
mixture, is modelled by a product of N Categorical distributions. However, this time
the parameter vector is π instead of w (equation (3.36)). This happens by reason of
directly modelling the mixing weights π, whereas in the Dirichlet Process mixture we
have to pass through the stick-breaking point representation to eventually derive π. In
equation (3.37), a Dirichlet prior with concentration parameter ϕ0 is imposed upon π
due to the simplex nature of the variable (π = [π1, ..., πM] with ∑M

m=1 πm = 1). Finally,
the annealing is achieved by simply raising the full likelihood (likelihood and prior of
z) in the power of 1/Ti, where Ti is the temperature constant at the ith iteration of the
Mean Field algorithm (Chapter 2, Section 2.4).

To show how annealing interferes in practice, we write explicitly the forms of the
log-likelihood and the log-prior of z in equations (3.38) and (3.39).

logP (y ∣ p,z) =
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm

Ti

[log (snd

ynd

) + ynd log pdm + (snd − ynd) log(1 − pdm)] ,

(3.38)

logP (z ∣ π) =
N

∑
n=1

M

∑
m=1

znm

Ti

logπm, (3.39)

where the constant temperature Ti simply multiplies both probability functions, acting
as a concavity regulator of the non-concave full likelihood (product of equation (3.38)
and (3.39)).

Regarding the conditional dependencies of the model parameters, these can be clearly
illustrated in a Directed Acyclic Graph, as in the Dirichlet Process Beta mixture. In
Figure 3.2, the data variable y depends on the Binomial parameter p and the latent
variable z, whilst it is conditionally independent of the mixing weights π given z.

yndznm pdmπm

NM ND DMM

Figure 3.2 Directed Acyclic Graph of the Finite Binomial mixture model. The nodes
represent the random variables, the directed edges the conditional dependence and the
boxes the dimensionality of each parameter. The light grey node corresponds to the
variable datapoint ynd.

Mean Field approximation

In regards to the inference of the Finite Binomial mixture, we are able to proceed with
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the Mean Field derivation of the parameter distributions having already defined the
hierarchical model. The joint approximated posterior distribution takes a tractable
form when it factorizes into q(π)q(z)q(p).

Variational distribution of z

The log-variational distribution of the latent allocation z, q(z), is proportional to the
expected log-full conditional of z with respect to the remaining variables. However,
based on the dependencies in Figure 3.2, the full-conditional simplifies to the product
of likelihood and prior of z and hence, log q(z) is

log q(z) ∝ E/z [logP (y ∣ p,z) + logP (z ∣ π)]

∝ E/z[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm

Ti

{ynd log pdm + (snd − ynd) log(1 − pdm)}

+
N

∑
n=1

M

∑
m=1

znm

Ti

logπm]

=
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm

Ti

{yndEpdm
[log pdm] + (snd − ynd)Epdm

[log(1 − pdm)]}

+
N

∑
n=1

M

∑
m=1

znm

Ti

Eπm [logπm]

=
N

∑
n=1

M

∑
m=1

znm

Ti

{
D

∑
d=1
yndEpdm

[log pdm] +
D

∑
d=1
(snd − ynd)Epdm

[log(1 − pdm)]

+Eπm [logπm]}.

(3.40)

In equation (3.40), we present the unormalized log q(z). If we now define as log ρnm

the expression inside the brackets on the right-hand side, we obtain

log ρnm =
D

∑
d=1
yndEpdm

[log pdm] +
D

∑
d=1
(snd − ynd)Epdm

[log(1 − pdm)] +Eπm [logπm] ,

(3.41)
concluding with

log q(z) ∝
N

∑
n=1

M

∑
m=1

znm

Ti

log ρnm. (3.42)

In equation (3.42), after the definition of ρnm, the unormalized q(z) reminds the kernel
of a product of N Categorical distributions. In order for q(z) to be a proper product
of Categorical probability functions, the variational parameter of z, also known as
responsibility (here will be denoted as r, like on the Dirichlet Process Beta mixture),
has to be constrained into the [0,1] interval and have ∑M

m=1 rnm = 1. Moreover, each
responsibility rnm should be raised in the power of 1/Ti due to the log property. Hence,
rnm = (ρnm/∑M

j=1 ρnj)
1/Ti .

The normalized variational log-distribution of z is
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log q(z) =
N

∑
n=1

M

∑
m=1

znm log rnm, (3.43)

revealing that z is approximated by a Categorical product with variational parameter
r (N ×M matrix)

z ∣ π ∼
N

∏
n=1

Categorical(zn ∣ r). (3.44)

Variational distribution of π

Regarding the approximated posterior distribution of the mixing weights, this is
proportional to the expected log-full conditional of π with respect to the remaining
parameters, which expands to the product of z prior and prior of π based on the
dependencies in the Directed Acyclic Graph shown in Figure 3.2. Therefore, the
unormalized log q(π) can be as

log q(π) ∝ E/π [logP (z ∣ π) + logP (π)]

∝ E/π [
N

∑
n=1

M

∑
m=1

znm logπm +
M

∑
m=1
(ϕ0m − 1) logπm] ,

=
M

∑
m=1
(

N

∑
n=1

Eznm[znm] + ϕ0m − 1) logπm.

(3.45)

In equation (3.45), log q(z) resembles the log-kernel of a Dirichlet distribution if we
define as ϕm the expression inside the parenthesis

ϕm =
N

∑
n=1

Eznm[znm] + ϕ0m. (3.46)

In particular, the variational distribution of π is a Dirichlet with parameter vector ϕ
(M -dimensional), where its elements are formalised in equation (3.46)

π ∼ Dirichlet(π ∣ ϕ). (3.47)

Variational distribution of p

Thus far, we have retrieved the closed form variational parameters for the random
variables z and π. The last derivation refers to the Binomial probability parameter
p. Particularly, the Mean Field log q(p) is proportional to the expected annealed
log-likelihood and log-prior of p, where the expectation is with respect to z. By
substituting the necessary distributions, we attain the approximated posterior of p
deprived from its normalizing constant

log q(p) ∝ E/p [logP (y ∣ p,z) + logP (p)]

∝ E/p[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm

Ti

{ynd log pdm + (snd − ynd) log(1 − pdm)}

+
D

∑
d=1

M

∑
m=1
{(a0dm − 1) log pdm + (b0dm − 1) log(1 − pdm)}
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=
M

∑
m=1

D

∑
d=1
{

N

∑
n=1

Eznm[znm]
Ti

ynd log pdm +
N

∑
n=1

Eznm[znm]
Ti

(snd − ynd) log(1 − pdm)

+ (a0dm − 1) log pdm + (b0dm − 1) log(1 − pdm)}

=
M

∑
m=1

D

∑
d=1
{(

N

∑
n=1

Eznm[znm]
Ti

ynd + a0dm − 1) log pdm

+ (
N

∑
n=1

Eznm[znm]
Ti

(snd − ynd) + b0dm − 1) log(1 − pdm)}.

(3.48)

On the right-hand side of equation (3.48), if we set the expressions in the two parentheses
as

adm = a0dm +
N

∑
n=1

Eznm[znm]
Ti

ynd,

bdm = b0dm +
N

∑
n=1

Eznm[znm]
Ti

(snd − ynd),
(3.49)

we obtain the kernel of a log-product of D ×M Beta densities. Thus, we conclude that
the normalized variational distribution of p is a Beta product with a and b parameters
(D ×M matrices), whose elements are defined in equation (3.49)

p ∼
D

∏
d=1

M

∏
m=1

Beta(pdm ∣ adm, bdm). (3.50)

Variational Expectations

The next step after the derivation of the Mean Field equations in (3.41), (3.46) and
(3.49) is to calculate the variational expectations involved in them. We then provide
in equation (3.53) the approximated posterior estimates of the mixing weights for the
Finite Binomial mixture model. To give an instance of the calculations regarding the
expectations, the expected value of log pdm (pdm is the Binomial probability parameter
of the dth feature in the mth component) is found by solving the following tractable
integral

Epdm
[log pdm] = ∫

pdm

log pdmq(pdm)dpdm = Ψ(adm) −Ψ(adm + bdm), (3.51)

where q(pdm) ∼ Beta(pdm ∣ adm, bdm) and Ψ(⋅) the digamma function. The remaining
expectations are computed accordingly with respect to the corresponding variational
distributions.

Eznm[znm] = rnm,

Eπm[logπm] = Ψ(ϕm) −Ψ(
M

∑
m=1

ϕm) ,

Epdm
[log pdm] = Ψ(adm) −Ψ(adm + bdm),

Epdm
[(1 − pdm)] = Ψ(bdm) −Ψ(adm + bdm)

(3.52)



3.3 Mixture Models for Discrete Random Variables 59

and
πm =

ϕ0m +∑N
n=1 Eznm[znm]

Mϕ0m +N
. (3.53)

Variational Lower Bound

Having produced all the necessary closed form equations (variational parameters and
variational expectations), we move forward to finding the explicit form of the Evidence
Lower Bound. The Mean Field ELBO for the Finite Binomial mixture can be computed
by subtracting the expected log-variational distributions from the expected log-joint
distribution (including the data variable y), where the expectations are with respect to
the variational parameters (see equation (3.54) below).

L(y; q) = Ez,π,p[logP (y,z,p,π)] −Ez[log q(z)] −Eπ[log q(π)] −Ep[log q(p)]
= Ez,π,p[logP (y ∣ z,p) + logP (z ∣ π) + logP (π) + logP (p)]
−Ez[log q(z)] −Eπ[log q(π)] −Ep[log q(p)].

(3.54)

The ELBO is derived explicitly in equation (3.55), after replacing the Finite mixture
likelihood, the priors and the variational distributions.

L(y; q) =
N

∑
n=1

M

∑
m=1

Eznm[znm] log ρnm −
N

∑
n=1

M

∑
m=1

Eznm[znm] log rnm

+ logC(ϕ) − logC(ϕ0) +
M

∑
m=1
(ϕ0m − ϕm)Eπm[logπm]

+
D

∑
d=1

M

∑
m=1
{log Γ(a0dm + b0dm) − log Γ(adm + bdm) − log Γ(a0dm) − log Γ(b0dm)

+ log Γ(a0dm) + log Γ(b0dm) + (a0dm − adm)Ep[log pdm]

+ (b0dm − bdm)Ep[log(1 − pdm)]},

(3.55)
with C(⋅) being the inverse multivariate beta function that works as a normalizing
constant for the Dirichlet distribution.

To summarize the Variational Bayes process for the Finite Binomial mixture, we
provide Algorithm 9. We start by fixing the number of components, initializing the
variational parameters and setting the hyperparameters according to our prior belief.
We afterwards let the algorithm calculate the expectation terms in (3.52) in order
to update the variational parameters in equations (3.41), (3.46) and (3.49). The
Mean Field scheme stops when the ELBO value at the current iteration is negligibly
different to the previous (< 10−6). The final step concerns the estimation of the
approximated posterior weights for the M components, a step that comes in contrast
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to the Dirichlet Process mixture where the algorithm discards the components with
almost zero estimated weight (Algorithm 8).

Algorithm 9 Updating Scheme of the Variational Finite Binomial Mixture
1: Initialize:

1. Pre-Fix the number of components M to some value (usually a high one, i.e 100
or lower when we have reason to believe the true number of components should
be considerably less - this way the algorithm’s convergence speed is increased)

2. Choose initial values for the variational parameters:
ϕm, adm and bdm

3. Choose values for the hyperparameters:
ϕ0m, a0dm and b0dm

2: Repeat:
1. Calculate the expected values in equations (3.52)
2. Update the variational parameters in equations (3.41), (3.46) and (3.49)

3: Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6

4: Final step:
Calculate the posterior mixing weight πm as in equation (3.53)

3.3.2 Variational Finite Bernoulli Mixture with Covariates

The Bernoulli mixture is a special case of the Binomial mixture when the number of trials
is one and therefore, an ideal model for grouping binary data. A possible application
concerns DNA methylation data extracted from EPIC and 450K platform arrays (beta-
intensities per CpG site). In particular, the beta-intensities are aggregated within
known from the literature differentially methylated regions (DMRs) and subsequently
transformed into binary (through simple data transformations1), with 0 corresponding
to non-significantly methylated DMR and 1 to significantly.

In this section, we upgrade this model-based clustering of dichotomous variables to Finite
Bernoulli mixture with covariates. This is a technique that takes into consideration
the presence of confounding parameters, when we have reasons to believe that factors
taint the outcome (samples of different sex, age group etc.). In a nutshell, we perform
regression and clustering together which has not been attempted before according to

1Consider for simplicity a case/control experiment. One way to aggregate is to calculate the median
of the methylation levels across CpGs for each sample and each DMR. Then, for each DMR, if the
median methylation level of the sample is outside of the confidence healthy individuals interval, which
is created by looking at the median methylation level across the healthy individuals, then the specific
DMR takes value 1 otherwise it takes 0 value. In practice, 0 and 1 correspond to the outcome of a
non-parametric test of the median methylation level for each case versus all the controls.
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our knowledge. The knowledge we have is that for continuous random variables we
can use the Beta regression residuals, which are normally distributed, to clear the
confounding effects (Subsection 3.2.2). However, for discrete random variables, this is
more difficult since there is not a unique definition of residuals and their distribution.
Therefore, we need a model with both regression and clustering skills. For the Binomial
version with covariates, we simply set the number of trials (> 1), while we multiply the
binomial coefficient to the likelihood in equation (3.56).

The analysis begins with the strategy that eases the Bayesian inference (Pólya-Gamma
augmentation, Polson et al. [113]) and proceeds with the exposition of the hierarchical
model (likelihood and priors). The final part concerns the Mean Field derivation.

The likelihood of the Finite Bernoulli mixture without covariates is

y ∣ p,z ∼
N

∏
n=1

M

∏
m=1

D

∏
d=1

Bernouli[(ynd ∣ 1, pndm)]znm, (3.56)

where y, similarly to the Finite Binomial mixture, is the N ×D data matrix and z the
N ×M latent allocation. Regarding the Bernoulli probability parameter p, this is an
array of N ×D ×M dimensions, allowing each sample to have also unique probability
parameter. This construction facilitates the introduction of covariates in the model
and we shortly explain the reason.

In the case where covariates exist, the expected value of the dth feature for the nth

sample, which is equal to the probability parameter pndm = E(ynd), depends on the xn

covariates. x is an N ×L matrix (L the number of covariates/confounding effects) and
β is the L×D ×M covariate coefficients array with βdm elements. This dependence on
the covariates can be expressed through the logit function as

logit(pndm) = ψndm↔ pndm =
exp(ψndm)

1 + exp(ψndm)
, where ψndm = xT

nβdm. (3.57)

Hence, the mean value pndm is now a function of the linear predictor ψndm in equation
(3.57). We point out that the new variable ψndm varies across the samples due to the
sample specific covariate values (xn). Therefore, the Bernoulli probability parameter
p, which is a function of ψ (N ×D ×M matrix), also has to be sample specific by
definition (equation (3.56)) when confounding parameters are considered.

The new likelihood with covariates is given in equation (3.58) below.

P (y ∣ p,z) =
N

∏
n=1

M

∏
m=1

D

∏
d=1

⎧⎪⎪⎨⎪⎪⎩
[ exp(xT

nβdm)
1 + exp(xT

nβdm)
]

ynd

[1 − exp(xT
nβdm)

1 + exp(xT
nβdm)

]
ynd−1⎫⎪⎪⎬⎪⎪⎭

znm

=
N

∏
n=1

M

∏
m=1

D

∏
d=1
{ [exp(xT

nβdm)]
ynd

[1 + exp(xT
nβdm)]

}
znm

.

(3.58)
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However, the functional form of equation (3.58) does not permit Bayesian inference
with respect to βdm (Bishop [11]). Specifically, when multiplying the likelihood by the
prior of βdm (i.e., a multivariate Gaussian) in order to determine the posterior of βdm

the resulted kernel does not remind of any known distribution and therefore, we are
required to find the normalizing constant (computation of a complex integral).

To tackle this issue, Polson et al. [113] prove that quantities similar to the fraction
in equation (3.58) are equivalent to a manageable equation that leads to a tractable
Bayesian solution. The key is the introduction of a new variable whose role is to work
as intermediary step to facilitate conjugate inference (closed form for the posterior
of the regression coefficients β). This augmented variable is defined as ω and has
the same dimensions as y (N ×D) (see equation (3.64) and its explanation below for
details).

[exp(ψ)]a

[1 + exp(ψ)]b
= 2−b exp(κψ)

∞

∫
0

exp(−ωψ2/2)P (ω)dω, (3.59)

where κ = a − b/2, ψ a random variable (which coincides to the linear predictor in our
case) and P (ω) = PG(ω ∣ b,0) the Pólya-Gamma prior distribution of ω (Polson et al.
[113]). Moreover, they showed that if ω follows a priori a PG(ω ∣ b, 0) then its posterior
is PG(ω ∣ b,ψ) with mean value

Eω[ω] =
b

2ψ tanh(ψ/2) = b

2ψ (
exp(ψ) − 1
1 + exp(ψ)) . (3.60)

The likelihood of the Finite Bernoulli mixture model with covariates can now be written
equivalently as in equation (3.64), after defining the following values

b = 1, (3.61)
and = ynd, (3.62)
κnd = ynd − 1/2. (3.63)

Then,

P (y ∣ β,z) =
N

∏
n=1

M

∏
m=1

D

∏
d=1
{1

2 exp (xT
nβdmκnd)

×
∞

∫
0

exp(−1
2ωnd(xT

nβdm)2)PG(ωnd ∣ 1,0)dωnd}
znm

,

(3.64)

where znm the latent component allocation variable of the nth sample into the mth

group (znm = 0 or 1). Regarding the augmented variable ω, this is an N ×D matrix
whose elements ωnd are independent across rows and columns, as in y. ω marginalises
out and now the likelihood obtains a tractable form for Bayesian inference on β.

The complete likelihood of the Finite Bernoulli mixture with covariates (joint distri-
bution of observed y and augmented ω) in equation (3.65) implies that each element
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ωnd of ω is distributed a priori as a mixture of Pólya-Gamma densities. However,
the Pólya-Gamma parameters for each M component are fixed to (1,0) and therefore,
the mixture for the augmented variable simplifies to a single prior for ωnd in equation
(3.66).

P (y,ω ∣ β,z) =
N

∏
n=1

M

∏
m=1

D

∏
d=1
{2−1 exp (xT

nβdmκnd − ωnd[xT
nβdm]2/2)}

znm

×
N

∏
n=1

D

∏
d=1

M

∏
m=1
{PG(ωnd ∣ 1,0)}znm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pólya-Gamma mixture

,
(3.65)

P (y,ω ∣ β,z) =
N

∏
n=1

M

∏
m=1

D

∏
d=1
{2−1 exp (xT

nβdmκnd − ωnd[xT
nβdm]2/2)}

znm

×
N

∏
n=1

D

∏
d=1
PG(ωnd ∣ 1,0).

(3.66)

Having defined in equation (3.66) the final form of the joint distribution of (y,ω), we
proceed with imposing prior distributions on the model parameters β,z and π

β ∼
D

∏
d=1

M

∏
m=1
NL(βdm ∣ µ0dm,S0dm), (3.67)

z ∣ π ∼
N

∏
n=1
[Categorical(zn ∣ π)], (3.68)

π ∼ Dirichlet(π ∣ ϕ0), (3.69)

where β is an L ×D ×M regression coefficients array, independent across the feature
dimensions D and the components M , whereas correlation is allowed between the
covariates. Thus, βdm is assumed to follow a priori an L-dimensional Gaussian with
mean array µ0dm and covariance array S0dm. The latent variable z and the mixing
weights π are distributed as a Categorical and a Dirichlet distribution respectively,
similarly to the Finite Binomial mixture.

yndznm βldm

ωnd

πm

NM ND

ND

LDMM

Figure 3.3 Directed Acyclic Graph of the Finite Bernoulli mixture model with covariates.
The nodes represent the random variables, the directed edges the conditional dependence
and the boxes the dimensionality of each parameter. The light grey node corresponds
to the datapoint ynd.

To facilitate the understanding of the connections between the random variables of the
Finite Bernoulli mixture with covariates, we illustrate the Directed Acyclic Graph in
Figure 3.3. The data variable y is dependent on the augmented variable ω, while ω is
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independent of the rest of the parameters. Based on the figure, we assist the Mean
Field derivation of the posterior distributions. The joint approximated posterior is a
factorization of the form q(π)q(z)q(β)q(ω).

Variational distribution of z

In the context of the log-variational distribution of z, this is proportional to the expected
log-joint distribution of (y,ω) and the log-prior of z, given the parameter dependencies
in Figure 3.3. The expectation is with respect to the remaining parameters.

log q(z) ∝ E/z [logP (y,ω ∣ β,z) + logP (z ∣ π)]

∝ E/z[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {xT
nβdmκnd − ωnd(xT

nβdm)2/2} +
N

∑
n=1

M

∑
m=1

znm logπm]

=
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {xT
nEβdm

[βdm]κnd −Eωnd
[ωnd]Eβdm

[(xT
nβdm)2]/2}

+
N

∑
n=1

M

∑
m=1

znmEπm [logπm]

=
N

∑
n=1

M

∑
m=1

znm{
D

∑
d=1
xT

nEβdm
[βdm]κnd −

D

∑
d=1

Eωnd
[ωnd]Eβdm

[(xT
nβdm)2]/2

+Eπm [logπm]}.

(3.70)
To recognize the kernel of the log q(z) in equation (3.70), we follow the same procedure
as in the previously discussed mixture models. We define the expression inside the
brackets as log ρnm, with the unormalized log-q(z) reminding now a Categorical product
kernel.

log ρnm =
D

∑
d=1
xT

nEβdm
[βdm]κnd −

D

∑
d=1

Eωnd
[ωnd]Eβdm

[(xT
nβdm)2]/2 +Eπm [logπm] .

(3.71)
However, in order to have a proper Categorical distribution, we impose the constraint
rnm = ρnm/∑M

j=1 ρnj, where rnm is the responsibility variable and therefore, the varia-
tional log-Categorical density is

log q(z) =
N

∑
n=1

M

∑
m=1

znm log rnm. (3.72)

Variational distribution of π

At next, we derive the variational mixing weights distribution. The derivation and
result is identical to the variational Finite Binomial mixture,

log q(π) ∝ E/π [logP (z ∣ π) + logP (π)]
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∝ E/π [
N

∑
n=1

M

∑
m=1

znm logπm +
M

∑
m=1
(ϕ0m − 1) logπm]

=
M

∑
m=1
(

N

∑
n=1

Eznm[znm] + ϕ0m − 1) logπm,

(3.73)

where log q(π) in equation (3.73) is proportional to a product of Dirichlet distributions,
with variational parameter vector ϕ and ϕm elements obtained as

ϕm =
N

∑
n=1

Eznm[znm] + ϕ0m. (3.74)

Variational distribution of β

The next Mean Field approximated distribution is q(β). Its unormalized form is
proportional to the expected summation of the log-joint of (y,ω) and the log-prior of β.
The expansion of this expectation with respect to the remaining variational parameters
leads to a product of D ×M L-dimensional independent Gaussian densities

log q(β) ∝ E/β [logP (y,ω ∣ β,z) + logP (β)]

∝ E/β[
N

∑
n=1

M

∑
m=1

D

∑
d=1
znm {xT

nβdmκnd − ωnd[xT
nβdm]2/2}

+
D

∑
d=1

M

∑
m=1
{−1

2[βdm −µ0dm]TS0
−1
dm[βdm −µ0dm]}]

∝
M

∑
m=1

D

∑
d=1
{−1

2β
T
dm (

N

∑
n=1

Eznm[znm]Eωnd
[ωnd]xT

nxn +S0
−1
dm)βdm

+ (
N

∑
n=1

Eznm[znm]κndxn +µ0
T
dmS0

−1
dm)βdm},

(3.75)

with variational mean array and covariance given in the set of equations (3.76).

Sdm = {S0
−1
dm +XTEzm[zT

m]EΩ[Ω]Y }
−1
,

µdm = Sdm {S0
−1
dmµ0dm +X

TEzm[zT
m]κ} ,

(3.76)

with
Ezm[zm] = diag(Ez1m[z1m], ...,EzNm

[zNm]),

EΩ[Ω] = diag(Eω1[ω1], ...,EωN
[ωN]).

(3.77)

Variational distribution of ω

As for the latent parameter ω and based on Figure 3.3, the augmented variable is
associated with the data variable y as a parent node. Hence, the log-variational density
of ω is proportional to the expected log-joint of (y,ω) and the log-Pólya-Gamma prior
of ω. The explicit form of the normalized log q(ω) is
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log q(ω) =
N

∑
n=1

D

∑
d=1
{−1

2ωn

M

∑
m=1

Eznm[znm]Eβm
[(xT

nβm)2]

+ log PG(ωn ∣ 1,0)}. (3.78)

Thus, by applying the exponential function on the log q(ω) in equation (3.78) we attain
that q(ωnd) is a Pólya-Gamma

q(ω) =
N

∏
n=1

D

∏
d=1

PG(ωnd ∣ 1, cnd), (3.79)

with variational parameter

cnd =

¿
ÁÁÀ M

∑
m=1

Eznm[znm]Eβdm
[(xT

nβdm)2], (3.80)

where
Eβdm

[(xT
nβdm)2] =(xT

nEβdm
[βdm])2 +xT

n Cov(βdm)xn. (3.81)

The variational mean value of ωnd, given equation (3.60), is

Eωnd
[ωnd] =

1
2cnd

tanh(cnd/2). (3.82)

Variational Expectations

After the definition of the closed form variational equations of the Finite Bernoulli
mixture model with covariates, we calculate the variational expectations and posterior
mixing weights by conditioning on the corresponding variational distributions.

Eznm[znm] = rnm,

Eπm[logπm] = Ψ(ϕm) −Ψ(
M

∑
m=1

ϕm) ,

Eβdm
[(xT

nβdm)2] = (yT
nEβdm

[βdm])2 + yT
n Cov(βdm)yn,

Eβdm
[βdm] = µdm,

Eωnd
[ωnd] =

1
2cnd

tanh(cnd/2),

(3.83)

and
πm =

ϕ0m +∑N
n=1 Eznm[znm]

Mϕ0m +N
. (3.84)

Variational Lower Bound

The final step concerns the Evidence Lower Bound calculation. The ELBO function for
the Bernoulli mixture model with covariates can be found by subtracting the expected
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log-variational distributions from the expected log-joint distribution of (y,ω,z,β,π).

L(y; q) = Ez,π,β,ω[logP (y,ω,z,β,π)] −Ez[log q(z)] −Eπ[log q(π)]
−Eβ[log q(β)] −Eω[log q(ω)]

= Ez,π,β,ω[logP (y,ω ∣ z,β) + logP (z ∣ π) + logP (π) + logP (p)]
−Ez[log q(z)] −Eπ[log q(π)] −Eβ[log q(β)] −Eω[log q(ω)].

(3.85)

The explicit form after the substitution of the distributions is

L(y; q) =
N

∑
n=1

M

∑
m=1
{

D

∑
d=1

Eznm[znm]κndx
T
nEβdm

[βdm] +Eznm[znm]Eπm[logπm]}

−
N

∑
n=1

M

∑
m=1

Eznm[znm] log rnm −
N

∑
n=1

D

∑
d=1
{log [exp(cnd) + 1] + 1

2cnd} +
1
2 lDM

+ 1
2

N

∑
n=1

M

∑
m=1
{−[Eβdm

[βdm] −µ0dm]TS0
−1
dm[Eβdm

[βdm] −µ0dm]

+ log ∣ Sdm ∣ − log ∣ S0dm ∣ −tr (S0
−1
dmSdm)}

+ logC(ϕ) − logC(ϕ0) +
M

∑
m=1
(ϕ0m − ϕm)Eπm[logπm].

(3.86)

Finally, we summarize this model section with Algorithm 10, where we present the
Variational Bayes scheme for the Finite Bernoulli mixture with covariates. The steps
are similar to Algorithm 9 for the Finite Binomial mixture (without covariates), owing
to the Finite components’ structure of the model. The variational algorithm stops
when the ELBO value has converged.

Algorithm 10 Updating Scheme of the Variational Finite Bernoulli Mixture with
Covariates
1: Initialize:

1. Fix the number of components M
2. Choose initial values for the variational parameters:
ϕm,µdm and Sdm

3. Choose values for the hyperparameters:
ϕ0m,µ0dm and S0dm

2: Repeat:
1. Calculate the expected values in equations (3.83)
2. Update the variational parameters in equations (3.71), (3.74) and (3.76)

3: Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6

4: Final step:
Calculate the posterior mixing weight πm as in equation (3.84)
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3.3.3 Variational Dirichlet Process Poisson Mixture with Co-
variates

There are cases where clustering count data with unknown number of non-independent
trials is in demand. In such scenarios, Binomial mixture cannot be used and thus,
alternative model-based tools are employed. A suitable mixture model is the Poisson
mixture and especially the Dirichlet Process Poisson mixture with covariates. This
is a clustering method that automatically determines the number of groups while
taking into account the presence of confounding parameters. To give an example, for
individuals that differ by sex and age, the number of significantly affected CpG sites -
in terms of aberrant methylation - within a differentially methylated region (DMR) is
recorded. In this case, the CpG counts could be modelled by a Dirichlet Process Poisson
mixture with covariates and not a Dirichlet Process Binomial mixture model with
covariates, since the CpG methylation values within a DMR are correlated, violating
the Binomial’s condition of independence between the experiments (here CpGs within
a DMR).

In this section, we begin with the proper construction of the model in order to include
the covariates/confounders whilst we carry on with the presentation of the hierarchical
structure. It is also worth mentioning that the Dirichlet Process Poisson mixture
with covariates coincides with the Dirichlet Process Negative Binomial mixture with
covariates when we fix the over-dispersion parameter. The reason is the Gamma prior
imposed upon the sub-population’s Poisson mean value. For a Negative Binomial
model with random over-dispersion, we could utilise the Pólya-Gamma representation
presented in the previous section.

The Poisson model parameter λndm, which is linked to the mean value of the nth sample
for the dth feature dimension in the mth sub-population, can be parametrized by a
linear predictor ηndm (equation (3.87)), so as to consider the occurrence of confounding
factors (ηndm includes the sample specific covariates along with their component and
feature specific coefficients)

λndm = exp(ηndm), with ηndm = xT
nβdm. (3.87)

The Dirichlet Process Poisson mixture likelihood given the confounding variables xn

can be written as

P (y ∣ η,z) =
N

∏
n=1

D

∏
d=1

M

∏
m=1
[ynd!−1exp(ηndm)ynd exp(− exp(ηndm))]

znm

=
N

∏
n=1

D

∏
d=1

M

∏
m=1
[ynd!−1exp(ηndmynd) exp(− exp(ηndm))]

znm
.

(3.88)



3.3 Mixture Models for Discrete Random Variables 69

However, the likelihood form in equation (3.88) does not resemble a known distribution,
complicating this way the Bayesian inference. To overcome this obstacle, we refer
to Bartlett and Kendall [6] and Prentice [114] who prove that if the mean Poisson
value λndm follows a Gamma density (as it would have been originally the case in a
Bayesian framework, if covariates were not considered), then the linear predictor ηndm

is shown to be distributed as a Gaussian distribution with mean value log(ynd) and
scalar variance y−1

nd, where ynd is the datapoint of the nth sample at the dth feature (see
equation (3.91)).

λndm ∼ Gamma(λndm ∣ andm, bndm), then:

ηndm = log(λndm) ∼ N(ηndm ∣ log(andm) + log(bndm), a−1
ndm) for large andm.

(3.89)

By setting bndm = 1 and andm = ynd

P (λndm ∣ ynd,1) =
λynd

ndm

Γ(ynd)
exp(−λndm), (3.90)

and with the change of variable formula

P (ηndm ∣ ynd,1) = P (λndm = exp(ηndm) ∣ ynd,1)
∂ exp(ηndm)
∂ηndm

= 1
Γ(ynd)

exp(ηndmynd) exp(− exp(ηndm))

≈ N(ηndm ∣ log(ynd), y−1
nd).

(3.91)

This Gaussian approximation in (3.91) transforms the Dirichlet Process mixture likeli-
hood into

P (y ∣ η,z) ≈
N

∏
n=1

D

∏
d=1

M

∏
m=1
[ynd

−1y
1/2
nd (2π)−1/2 exp(−1

2ynd [xnβdm − log ynd]2)]
znm

≈
N

∏
n=1

D

∏
d=1

M

∏
m=1
[y−1/2

nd (2π)−1/2 exp(−1
2ynd [xnβdm − log ynd]2)]

znm

.

(3.92)

After the definition of the approximated likelihood in equation (3.92) that facilitates
the Bayesian inference with respect to the β regression coefficients, we present the
prior distributions of the model parameters β,z and w

β ∼
D

∏
d=1

M

∏
m=1
NL(βdm ∣ µ0dm,S0dm), (3.93)

z ∣w ∼
N

∏
n=1

Categorical (zn ∣w) , (3.94)

w ∼
M

∏
m=1

Beta (wm ∣ 1, ϕ0m) , (3.95)
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where β is the L ×D ×M covariates coefficients array, with L denoting the number of
predictors. Each element βdm follows a-priori an L-dimensional Gaussian, with mean
array µ0dm and covariance array S0dm (similarly to the Finite Bernoulli mixture with
covariates). The latent allocation variable z and the stick breaking point variable w
are defined equivalently as in the Dirichlet Process Beta mixture model.

In Figure 3.4, we provide the links between the model parameters in a Directed Acylic
Graph. Based on the conditional dependencies in this graph, we can derive the Mean
Field approximated posterior distribution. This joint variational distribution takes a
tractable form when q(z,w,β) = q(z)q(w)q(β).

yndznm βldmwm

NM ND LDMM

Figure 3.4 Directed Acyclic Graph of the Dirichlet Process Poisson mixture model
with covariates. The nodes represent the random variables, the directed edges the
conditional dependence and the boxes the dimensionality of each parameter. The light
grey node corresponds to the variable datapoint ynd.

Thus far, we have familiarized ourselves with the variational derivation of the latent
allocation variable z, the stick-breaking point w and the covariates coefficients β
due to the predecessor mixture models. Therefore, we avoid explaining in detail the
Variational Bayes steps in the Dirichlet Process Poisson mixture with covariates and
simply display the final form of the variational distributions as well as the Evidence
Lower Bound closed form equation.

Variational distribution of z

In regard to the variational derivation of z,

log q(z) ∝ E/z [logP (y ∣ η,z) + logP (z ∣w)]

∝ E/z[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {−
1
2ynd [(xnβdm)2 − 2xnβdm log ynd]}

+
N

∑
n=1

M

∑
m=1

znm {logwm +
m−1
∑
j=1

log(1 −wj)}]

= E/z[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {−
1
2ynd {Eβdm

[(xnβdm)2] − 2xnEβdm
[βdm] log ynd}}

+
N

∑
n=1

M

∑
m=1

znm{Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)]}],

= E/z[
N

∑
n=1

M

∑
m=1

znm{−
1
2

D

∑
d=1
ynd {Eβdm

[(xnβdm)2] − 2xnEβdm
[βdm] log ynd}

+Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)]}]. (3.96)
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The unormalized log q(z) in equation (3.96) is the logarithmic kernel of an N product
of Categorical densities. If we define the expression inside the brackets as log ρnm

log ρnm = −
1
2

D

∑
d=1
ynd {Eβdm

[(xnβdm)2] − 2xnEβdm
[βdm] log ynd}

+Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)] ,
(3.97)

and normalize log q(z) by setting rnm = ρnm/∑M
j=1 ρnj, we obtain the variational dis-

tribution of z in equation (3.98), which is a log-product of N Categorical densities

log q(z) =
N

∑
n=1

M

∑
m=1

znm log rnm. (3.98)

Variational distribution of w

In respect of the variational derivation step for the stick-breaking point w, this is
equivalent to the corresponding one in the Dirichlet Process Beta mixture (Chapter
3, Subsection 3.2.1). The variational q(w) results in a product of Beta densities in
equation (3.99), with variational shape parameters given in equation (3.100).

log q(w) ∝ E/w [logP (z ∣w) + logP (w)]

∝ E/w [
N

∑
n=1

M

∑
m=1

znm {logwm +
m−1
∑
j=1

log(1 −wj)} +
M

∑
m=1
(ϕ0m − 1) log(1 −wm)]

=
M

∑
m=1
{

N

∑
n=1

Eznm[znm] logwm + (
N

∑
n=1

M

∑
j=m+1

Eznj
[znj] + ϕ0m − 1) log(1 −wm)} ,

(3.99)

δm = 1 +
N

∑
n=1

Eznm[znm],

ϕm = ϕ0m +
N

∑
n=1

M

∑
j=m+1

Eznj
[znj].

(3.100)

Variational distribution of β

The Mean Field posterior density of β, in its logarithmic form, is proportional to the
expected summation of the log-likelihood after the Gaussian approximation (equation
(3.92)) and the log-prior of β

log q(β) ∝ E/β [logP (y ∣ η,z) + logP (β)]

∝ E/β[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {−
1
2 log ynd −

1
2 log 2π − 1

2ynd [xnβdm − log ynd]2}

+
D

∑
d=1

M

∑
m=1
{− l2 log(2π) − 1

2 ∣ S0m ∣ −
1
2 [βdm −µ0dm]

T
S0
−1
dm [βdm −µ0dm]}]
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∝ E/β[
D

∑
d=1

M

∑
m=1
{

N

∑
n=1

znmynd log yndxnβdm −
1
2

N

∑
n=1

znmyndβdm
Txn

Txnβdm

− 1
2βdm

TS0
−1
dmβdm +µ0

T
dmS0

−1
dmβdm}]

= E/β[
D

∑
d=1

M

∑
m=1
{(

N

∑
n=1

znmynd log ynd +µ0
T
dmS0

−1
dm)βdm

− 1
2βdm

T (
N

∑
n=1

znmyndxn
Txn +S0

−1
dm)βdm}]

=
D

∑
d=1

M

∑
m=1
{(

N

∑
n=1

Eznm[znm]ynd log ynd +µ0
T
dmS0

−1
dm)βdm

− 1
2βdm

T (
N

∑
n=1

Eznm[znm]yndxn
Txn +S0

−1
dm)βdm}.

(3.101)

Equation (3.101) indicates that log q(β) is a logarithmic kernel of D ×M multivariate
Gaussian distributions with variational covariance and mean array defined as

Sdm = {
N

∑
n=1

Eznm[znm]yndxn
Txn +S0

−1
dm}

−1

,

µdm = Sdm {
N

∑
n=1

Eznm[znm]ynd log ynd +µ0
T
dmS0

−1
dm} .

(3.102)

Variational Expectations

Based on the variational distributions, we compute the expectations within the varia-
tional equations and the approximated posterior mixing weights in equation (3.104)

Eznm[znm] = rnm,

Ewm [logwm] = Ψ(δm) −Ψ(δm + ϕm),

Ewm [log(1 −wm)] = Ψ(ϕm) −Ψ(δm + ϕm),
Ewm [wm] =

δm

ϕm + δm

,

Eβdm
[βdm] = µdm,

Eβdm
[(xnβdm)2] = (yT

nEβdm
[βdm])2 + yT

n Cov(βdm)yn

(3.103)

πm = Ewm[wm]
m−1
∏
j=1
(1 −Ewj

[wj]). (3.104)

Variational Lower Bound

The Evidence Lower Bound is finally computed in closed form and it is a function of
the variational parameters of the Dirichlet Process Poisson mixture when covariates
exist. The general ELBO function for this model is given in equation (3.105) while the
explicit result is obtained in (3.106).
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L(y; q) = Ez,π,β[logP (y,z,η,π)] −Ez[log q(z)] −Eπ[log q(π)] −Eβ[log q(β)]
= Ez,π,β[logP (y ∣ z,w) + logP (z ∣ π) + logP (π) + logP (β)]
−Ez[log q(z)] −Eπ[log q(π)] −Eβ[log q(β)].

(3.105)
The explicit result is

L(y; q) =
N

∑
n=1

M

∑
m=1

Eznm[znm] {log ρnm −
1
2 log ynd −

1
2ynd(log ynd)2 −

1
2 log 2π}

−
N

∑
n=1

M

∑
m=1

Eznm[znm] log rnm +
M

∑
m=1
[logϕ0m + (ϕ0m − 1) log(1 −wm)]

−
M

∑
m=1
{log Γ(δm + ϕm) − log Γ(δm) − log Γ(ϕm) + (δm − 1) logwm

+ (ϕm − 1) log(1 −wm)}

+
D

∑
d=1

M

∑
m=1
{−1

2 log ∣ S0m ∣ −
1
2
[Eβdm

[βdm] −µ0dm]
T
S0
−1
dm [Eβdm

[βdm] −µ0dm]

+ 1
2 log ∣ Sm ∣ +

l

2 −
1
2tr (S0

−1
mSm)}.

(3.106)

Algorithm 11 Updating Scheme of the Variational Dirichlet Process Poisson Mixture
with Covariates
1: Initialize:

1. Choose the initial number of components M
2. Choose initial values for the variational parameters:
δm, ϕm,µdm and Sdm

3. Choose values for the hyperparameters:
ϕ0m,µ0dm and S0dm

2: Repeat:
1. Calculate the expected values in equations (3.103)
2. Update the variational parameters in equations (3.97), (3.100) and (3.102)

3: Stop:
L(y; q)current − L(y; q)previous ≤ ϵ, where ϵ = 10−6

4: Pre-Final step:
Calculate the posterior mixing weight πm as πm = Ewm[wm]

m−1
∏
j=1
(1 −Ewj

[wj])

5: Final step:
Discard components with almost zero weight

In conclusion, we provide in Algorithm 11 the variational scheme for the Dirichlet
Process Poisson mixture model with covariates. This is similar to the updating
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procedure of the Variational Dirichlet Process Beta mixture in Algorithm 8, due to the
automatic cluster determination structure through Dirichlet Process.

3.4 Summary

In this chapter, we provided the full Mean Field procedure for four mixture models
that apply to a plethora of different DNA methylation data types such as beta-
intensities extracted from array-based platforms, methylated reads (counts) given by
Bisulfite Sequencing techniques, or even binary data that refer to significantly or non
significantly methylated DNA regions. Moreover, two of the models that we presented
were accordingly structured to consider the existence of factors that distort the clustering
outcome (covariates). Regarding the four models, these were the variational Dirichlet
Process Beta mixture, the Finite Binomial mixture, the Finite Bernoulli mixture with
covariates and the Dirichlet Process Poisson mixture with covariates. In the variational
Finite mixture of Binomial distributions, we also introduced the simple implementation
of “annealing”. Furthermore, due to the non-conjugate nature of most of the presented
models, we used the Taylor approximation in the Dirichlet Process Beta mixture to
achieve conjugacy, the Pólya-Gamma augmentation in the Finite Bernoulli mixture with
covariates and the Gaussian approximation in the Dirichlet Process Poisson mixture
with covariates. At this point we warn that the Dirichlet Process Bernoulli mixture
with covariates, after the Pólya-Gamma augmentation, will increase the burden of the
MCMC algorithm due to the extra parameter ω, since it has the same dimensions as
the datapoints y. On the other hand, the Variational Inference will manage to handle
well computationally-wise the inference for this model due to its scalability skill.

Overall, this chapter contributed in comprehending the inferential procedure of Varia-
tional Bayesian mixtures, as well as in straightforwardly facilitating the Mean Field
derivation of Finite and Dirichlet Process mixture models for continuous and discrete
random variables.



Chapter 4

In Silico Experiments

4.1 Overview

The mixture models are probabilistic clustering techniques that belong to a broader
class of clustering tools, called unsupervised learning methods. Unsupervised methods
are those algorithms that cluster unlabeled datapoints based on sets of features. With
the intention to incorporate the advantages of speed and scalability in the clustering
procedure of the mixture models, we introduce the variational mixtures, which are
models learned via Variational Inference.

In this chapter, we implement variational mixtures of continuous and discrete random
variables in order to test their clustering performance prior to real applications. In
particular, we create various synthetic scenarios of bounded continuous data, binary
and counts and apply the variational Dirichlet Process Beta mixture model, the
variational Dirichlet Process Poisson mixture model and the variational Dirichlet
Process Bernoulli mixture model respectively (all these models include the “annealing”).
We omit applications using the variational Gaussian mixture (logistic transformed
beta-intensities: M-values - values of unrestricted support range, see Chapter 1, section
1.5.2). There reason is that it is a widely discussed model in the literature and therefore,
plenty of useful materials are available such as the work of Bishop [11] and Blei and
Jordan [13]. Moreover, our focus is on presenting models for non-normally distributed
data for the cases logarithmic transformation is not successful to conform them to
normality. For instance, there can be scenarios where the log-data are still skewed, or
sometimes are even more skewed than the original and thus a Gaussian assumption
cannot be the solution (Changyong et al. [23]). In such cases, it is better to retain the
original data to avoid any non-relevant inference on the log-transformed ones.
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Additionally, in this chapter, we compare the clustering accuracy of the tested variational
mixtures with fast state-of-the-art unsupervised clustering tools such as K-means
(MacQueen et al. [82]), Hierarchical cluster analysis (Johnson [65]) and Density-Based
Spatial Clustering of Applications with noise (DBSCAN) (Ester et al. [41]). In the
current analysis, we exclude applications and comparisons to Markov chain Monte
Carlo algorithms due to their well-known difficulty in scaling to large datasets, as
the ones simulated here. For instance, Zhang et al. [155], similarly with us, propose
a Dirichlet Process Beta mixture model for clustering methylation beta-intensities.
Although they employ Gibbs sampling to learn the model parameters, their clustering
procedure is considerably time-consuming and non-scalable (only a handful of CpGs
can we analysed), in contrast to the variational Dirichlet Process Beta mixture model
presented here. In general, we mainly wish to compare rapid unsupervised techniques
to the Variational Bayes algorithm and particularly algorithms extensively used in
genetics due to their simplicity, speed and applicability. In general, we point out that
the Markov chain Monte Carlo sampling algorithm in Finite mixture models is known
as Reversible Jump MCMC and the reader may refer to Richardson and Green [116].

In summary, this chapter is divided in continuous and discrete synthetic applications
along with the feature selection per component (Lin et al. [76]) at the end of the chapter.
The feature selection step is an a posteriori procedure that exploits the variational sub-
population distributions of the mixture model to discover the features that discriminate
the components, based on the accuracy measure introduced in Chapter 2, equation
(2.78). Regarding the applications, the continuous cases concern the variational Dirichlet
Process Beta mixture, while the discrete cases the variational Dirichlet Process Poisson
mixture and the variational Dirichlet Process Bernoulli mixture. For convenience, this
point onward we shall refer to the aforementioned variational mixture models with the
acronyms VB-DPBM (Variational Bayes Dirichlet Process Beta mixture), VB-DPPM
(Variational Bayes Dirichlet Process Poisson mixture) and VB-DPBerM (Variational
Bayes Dirichlet Process Bernoulli mixture). As a further note, Principal component
Analysis (PCA) is used for dimensionality reduction purposes that solely aids the
graphical representation.

4.2 Unsupervised Clustering

With regards to K-means and Hierarchical cluster analysis, these are two non-probabilistic
clustering algorithms applied to unsupervised settings. They are easy in implementation
and therefore commonly used in genetics/genomics applications for determining the
hidden grouping underlying the examined samples. Despite of their versatility, they
carry a serious drawback: the pre-definition of the number of components. One usual
approach to deal with this obstacle is to run them for a set of different and specified
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number of groups, recording the Sum of Squared Errors (SSE) which measures the
squared distance of each observation from the centroid of the cluster. However, this
selection measure cannot always ensure straightforward results, especially when the real
categories overlap or are hard to distinguish. Alternative objective functions can be
reviewed in Kodinariya and Makwana [69], however these do not significantly differen-
tiate from the SSE perspective. Fränti and Sieranoja [47] discuss about the suitability
of the Centroid Index over SSE which lacks communication of the result’s significance.
The Centroid Index denotes how many centroids are incorrectly located. Nonetheless,
in any index selection, either SSE or Centroid Index, the issue lies in restarting the
K-means algorithm several times to test for the optimal number of clusters. This is
a time-consuming and probably non-scalable action on high-dimensional structures.
Consequently, the need to employ automatic methods for clustering is deemed essential.

An alternative non-probabilistic method that does not require pre-determination of the
number of clusters, as opposed to K-means and Hierarchical clustering, is DBSCAN,
which is one of the most cited unsupervised data clustering algorithms, proposed by
Ester et al. [41] in 1996. DBSCAN clusters together datapoints that are close to each
other (nearby neighbors) and form high-density regions, whereas marks as outliers
points that have distant neighbors and mostly lie alone. In order for DBSCAN to
accomplish its clustering procedure, it necessitates two parameters: a) the radius of a
dense region (definition of neighborhood) and b) the minimum number of datapoints
that form this dense region. The minimum number of datapoints can be arbitrarily
chosen according to the user’s tolerance towards noise, i.e., on large datasets it would
be sensible to be more lenient by increasing the minimum number. Regarding the
radius parameter, this should not be chosen randomly given that too small values may
lead to not assigning most points into groups, due to the strict restriction of a narrow
neighborhood, labelling them as noise, while large values may merge together nearby
clusters returning considerably less number of clusters than the original. Empirical
techniques for choosing a proper radius value are therefore employed, as discussed in
Ester et al. [41] and Schubert et al. [121]. For instance, we can set an appropriate radius
based on the “knee” in the K-Nearest-Neighbor (KNN) distance plot. DBSCAN overall,
despite of automatically determining the number of clusters, is a distribution-free
method and thus it lacks providing the sub-population’s distribution, which is essential
in applying the a posteriori discriminative feature selection by Lin et al. [76].

To achieve having the extra information of the estimated sub-population’s distribution,
while simultaneously requiring no prior knowledge about the true number of components,
we employ variational Dirichlet Process mixture models. Mixture models are flexible
on choosing the component’s distribution with respect to the data type, in contrary
to K-means, Hierarchical clustering and DBSCAN which are non-probabilistic and
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fit regardless all type of data. As a consequence, the non-probabilistic models return
solely cluster assignments for the datapoints and mean cluster vectors, in contrast
to the variational Dirichlet Process mixture algorithm where the output is: a) the
cluster allocation, b) the responsibilities (how strong is our belief that a given datapoint
belongs to a specific cluster), c) the sub-population’s distribution and d) the parameter
estimates for each one of the sub-populations’ distributions.

4.3 Bounded Continuous Synthetic Data

To test the variational Dirichlet Process Beta mixture model performance, we build an
R function that simulates bounded continuous data by Beta mixtures with independent
observations across the samples and across the features (model definition in Chapter 3,
equation (3.5)). The component specific Beta parameters u and v (shape variables)
are randomly selected. For example, the udm element of u is generated by a uniform
distribution with parameters (10,20), similarly to vdm. The reason we choose large u
and v parameters for our simulations is to ensure each sub-population is modelled by a
convex Beta density, since the non-convex Dirichlet Process Beta mixture likelihood is
a combination of convex sub-distributions (Zhang et al. [155]). Moreover, we decide
on this random manner of selection and not by manually fixing the model parameters,
because both (u,v) are matrices of high dimensions. To give an example, for a dataset
of three clusters and 200 features, we would have to pre-specify M ×D = 600 elements of
the u matrix ourselves (M is the number of components and D the number of features),
which is a rather needless and time-demanding action. In regard to the input variables
of the simulation function, the user is able to set effortlessly the number of samples
N , the number of features D and the mixing weights π = [π1, ..., πm, ..., πM] with πm

representing the probability of a draw to belong to themth sub-population/component1.

4.3.1 Clustering Bounded Continuous Data

Bounded data, as the name states, are the points living in a restricted support range,
i.e., [0, 1] or generally [a, b]. Beta distribution could easily be treated as an appropriate
mechanism to catch the behavior of such data owing to its confined [0,1] nature,
which can be easily generalized to any compact domain. For example, if the random
variable y lies between [−1, 1] then the transformed (y+1)/2 can be modelled by a Beta
density. When it comes to clustering bounded continuous data, a Dirichlet Process
mixture of Beta densities is an ideal probabilistic technique, which can be upgraded to
variational Dirichlet Process Beta mixture after the addition of Variational Bayes for
rapid inference.

1The software for each simulation is part of the thesis besides the code for the variational mixture
models.
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Hyperparameters and Initialization

Regarding Variational Bayes, initialization of the variational parameters as well as
specification of the priors’ hyperparameters is required. For the variational Dirichlet
Process Beta mixture in Chapter 3, Section 3.2.1, the stick-breaking point hyperparam-
eter ϕ0 = [ϕ01, ..., ϕ0M] is given the same small value 0.01 for each one of its elements
in order to offer little prior weight to the existence of each cluster, so that any cluster
that survives during the Variational Bayes iterations is supported by the data. With
respect to udm and vdm parameters of the mth Beta density of the dth feature, these are
identically distributed as Gamma densities with set of hyperparameters (α0dm, β0dm)
and (µ0dm, η0dm), respectively. To choose values for those Gamma hyperparameters,
we depend on Ma and Leijon [80] who set the constraint of α0dm, β0dm, µ0dm and
η0dm > 0.6156 to guarantee β0dm and η0dm are greater than zero, as already holds for
α0dm and µ0dm.

In regard to the initialization of the algorithm, according to Corduneanu and Bishop
[29] the possibility of being trapped to local optima renders the choice of the initial
variational parameters critical. In case the initial variational mean cluster vectors
are close to each other, the optimization algorithm may not be able to differentiate
between the components, resulting in slow convergence and cancellation of many
components. This situation could occur because the mixing weights [π1, ..., πM] are
constantly updated (in each variational iteration) and a component that is hard to
find its place - in terms of significantly changing weight after each iteration and not
keeping a more consistent behavior - may be subsequently discarded. To tackle this
issue, Corduneanu and Bishop [29] initialized the cluster means of a Gaussian mixture
model through K-means clustering.

In our analysis, we avoid initializing by K-means the cluster means in the Dirichlet
Process Beta mixture model as well as in the rest models (Dirichlet Process Poisson and
Bernoulli mixture) because of the annealing ploy, discussed in Chapter 2, Section 2.4.
Annealing is a solution for overcoming the impact of poor starting values. Therefore, the
variational parameters of the Dirichlet Process Beta mixture (αdm, βdm, µdm, ηdm, ϕm)
are simply initialized by the corresponding hyperparameters, i.e., αdm is initialized by
α0dm etc. For higher safety, we choose to slightly differentiate the stick-breaking point
variational parameter per component (ϕ = [ϕ1, ..., ϕM]) by adding little (i.e., ϵm < 0.001)
yet different values in each one of the elements. This way we hint the algorithm to
start from rather dissimilarly weighted clusters. The initial number of components is
usually set to a high number (we recommend M = 100) after the stick-breaking point
process (Chapter 2, Section 2.6.3). However, for computational and time reasons in
the simulation study, or when we have a notion to some degree of the possible number,
we set a lower value of 25, 20 or even 10. The choice solely depends on the researcher.
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We generally encourage to initialize with a reasonably high integer which although is
not meaninglessly increasing the convergence time.

Simulation Scenarios
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Figure 4.1 Variational density estimation by VB-DPBM for the one dimensional
continuous bounded dataset (D = 1), with 10K samples (N = 10K) and two clusters
(M = 2) with mixing weights [0.4,0.6]. The x-axis represents the support range of the
Beta distribution. The solid lines denote the two fitted (weighted) components.

To begin with the simulation study, we first generate a low-dimensional example in
terms of feature size, with only one feature (D = 1), 10K number of samples (N = 10K)
and true number of components equal to two (M = 2). The true model parameters can
be found in Table 4.1, where π is the mixing weights vector and (u,v) the component
specific shape parameter vectors, with π = [π1, π2], u = [u1, u2] and v = [v1, v2].

Truth VB-DPBM
Estimates

Divergence
π 0.4 0.6 0.402 0.598 0.002 0.002
u 2 5 1.990 5.500 0.010 0.500
v 5 2 4.660 2.100 0.340 0.100

Table 4.1 The true and VB-DPBM model parameters of the one dimensional continuous
bounded dataset (D = 1) with N = 10K and number of components M = 2. π are the
mixing weights, u and v the shape parameters of the Beta mixture. The divergence of
the variational estimates from the corresponding true values is also given at the third
column.

By applying the VB-DPBM model, we obtain the fitted component specific parameters
in Table 4.1 and the fitted component densities in Figure 4.1. In the table, we observe
that VB-DPBM manages to correctly determine two clusters with mixing weights
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pretty close to the truth. In particular, the estimated weights are 0.402 and 0.598, with
the truth being 0.4 and 0.6 respectively. As for the shape parameters u and v, the
estimated values are considerably close to the true ones with the highest divergence
found on u2 = 5.5, which only differentiates by 0.5 units from the true value (see
Estimates Divergence column). By using the estimated parameters in Table 4.1, we fit
the component densities in the data histogram as displayed in Figure 4.1. Based on the
figure, VB-DPBM handles well the bimodality of the simulated dataset by successfully
claiming two clusters (two distinct solid lines).
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Figure 4.2 Two-dimensional variational density plots (Principal Component Analysis
is used to present the plots in two dimensions) of two different synthetic continuous
bounded datasets: (a) the number of samples is N = 1K, the number of features is
D = 200 and number of components M = 3 with mixing weights [0.5,0.3,0.2], (b)
the number of samples is N = 2K, the number of features is D = 200 and number
of components M = 5 with mixing weights [0.1,0.15,0.125,0.250,0.375]. VB-DPBM
paints the clusters in different colours, with the corresponding variational mixing weight
given on the right of each graph. The marginal component distributions, given the
Principal Component, are also displayed at the margins.

The next simulation concerns two bounded continuous datasets of higher feature
dimensions. Specifically, the first synthetic dataset has N = 1K samples, D = 200
features and M = 3 number of components with mixing weights [0.5,0.3,0.2]. The
second dataset has N = 2K samples, D = 200 features and M = 5 components with
weights [0.1,0.15,0.125,0.250,0.375]. The component specific parameters (u and v)
are not provided, because these are high-dimensional 200 × 3 and 200 × 5 matrices
for the first and second scenario respectively, and consequently we avoid to overflow
here. However, we mention that each udm and vdm element of the corresponding matrix
is generated randomly from a uniform distribution with hyperparameters (10,20),
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resulting in overlapping clusters of low or medium level. Our anticipation now is to test
how well VB-DPBM performs on these two cases. We implement the variational model
on each synthetic dataset and depict in 2D plots (Figure 4.2) the clustering allocation
based on the full feature dimensions (all D = 200 features).

Subfigure 4.2a corresponds to the 2D density plot of the first synthetic dataset of
N = 1K,D = 200 and M = 3, while Subfigure 4.2b to the second, with N = 2K,D = 200
and M = 5. According to the clustering accuracy measure, the datapoints in both cases
are 100% correctly clustered, hence VB-DPBM successfully retrieves the true number
of components in both synthetic scenarios, as well as the mixing weight estimates (true
density plots same to the variational, therefore omitted). The percentage of variance
that PC1 and PC2 explain together in both plots (see labels on x and y axis) has no
impact on the clustering results. We remind that the variational algorithms apply to
the full datasets and not the first two principal components, thus the 2D graphs serve
only as 2D spaces where we colour the clusters estimated on the full feature space.

4.3.2 Mixing Weights Evolution

High interest revolves around the Dirichlet Process and its inclusion in the mixture
models, since it helps in the detection of the number of components. In the stick-
breaking point implementation, we ought to pre-fix an integer of clusters and then
let the variational algorithm conclude to a set of proposed groups. On that account,
an interesting question arises about the evolutionary scheme of the mixing weights π
during the Variational Bayes iterations and especially, about the collapse of clusters
with zero importance.

To answer this question, we simulate one bounded continuous dataset ofN = 1K,D = 200
and M = 7 components with mixing weights [0.05,0.1,0.115,0.135,0.15,0.175,0.275].
The component-specific simulation parameters are randomly selected in accordance with
the introductory paragraph of Section 4.3 and the Hyperparameters and Initialization
section 4.3.12. We then apply the VB-DPBM algorithm and finally record the clustering
evolution at different iterations. This process is analytically depicted in Figure 4.3. In
particular, VB-DPBM is initialized with 20 components while at iteration 5 (Subfigure
4.3a) it has already cancelled out half (10 components). At iteration 50 (Subfigure
4.3b) and up until 150 runs (Subfigure 4.3c) the method removes two extra components
implying that only a few are left to be discarded, given the slow removal rate. Eventually,
the algorithm converges at iteration 200 (Subfigure 4.3d) and to seven clusters with
the estimated weights coinciding to the true ones (100% match).

2Our aim is to assess the clustering performance (mixing weights and correct allocation of observa-
tions) and not the parameters of each component’s distribution.
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(d) Iteration 200: Convergence
Figure 4.3 Clustering evolution of the VB-DPBM algorithm at different iterations.
The synthetic dataset has N = 1K, D = 200 and true M = 7 with mixing weights
[0.05,0.1,0.115,0.135,0.15,0.175,0.275]. The initial number of components is 20. The
clustering results are depicted at: (a) Iteration 5, (b) Iteration 50, (c) Iteration 150
and (d) Iteration 200 (convergence). Each cluster bears its own colour, point shape
and estimated mixing weight at each iteration (displayed on the right of each graph).

For further understanding, we provide a second course of action that pictures the
evolution of the mixing weight estimates per VB-DPBM iteration. For this purpose, we
simulate a new bounded continuous dataset with less clusters (for simplicity reasons).
Particularly, the synthetic dataset is described by N = 10K samples, D = 200 features,
M = 4 components and cluster weights [0.4, 0.3, 0.2, 0.1]. In Figure 4.4, the x-axis hosts
the VB-DPBM iterations whilst the y-axis represents the 15 clusters the algorithm has
been initialized with (M = 15). When the variational algorithm begins (iteration 0 at
the x-axis), all clusters are initialized by low and similar mixing weights (1/15 each one
- light violet vertical colour at x = 0). As the algorithm progresses (iteration 1, 2 etc.),
the 15 clusters update their mixing weight (interchange colours of white - purple) up
until iteration 200, where only four of them increase (non white colour; white denotes
zero percentage) and retain their colour trace (coloured rows of blue and purple hue),
indicating convergence of VB-DPBM to four clusters. Convergence is determined when
the increase in the ELBO value is negligible (see Chapter 2, Section 2.3 for details
on the variational Mean Field algorithm). The resulted component indices are “1”,
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“4”, “3” and “14” with estimated mixing weights [0.4,0.3,0.2,0.1] respectively (100%
correctly clustered data).
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Figure 4.4 Mixing weights’ evolution in VB-DPBM iterations. The simulated bounded
continuous dataset includes N = 10K samples, D = 200 features and number of
components M = 4 with mixing weights [0.4, 0.3, 0.2, 0.1]. Colour intensity corresponds
to the component’s probability level at each iteration, i.e., white colour implies 0 weight
while dark blue weight of 0.4.

4.3.3 Comparison to Standard Methods

In the previous section, visual testing supplied a clear indication of the clustering
performance of the VB-DPBM algorithm. However, to obtain concrete results of
the performance, we have to quantify the achievement in multiple simulated data
scenarios by exploiting a clustering measure. A rational approach would have been to
treat the unsupervised algorithms as supervised problems when the ground truth is
known, and apply the conventional classification indices (accuracy, F1 score (Goutte
and Gaussier [51]) etc.). Nonetheless, despite of knowing the truth in our synthetic
scenarios, we are still unable to exploit these measures due to the labelling problem in
the variational Dirichlet Process mixtures, as well as in K-means, Hierarchical clustering
and DBSCAN. More precisely, the VB-DPBM algorithm for example assigns randomly
the labels to the components, i.e., in Figure 4.4 the final components have labels “1”,
“3”, “4”and “14”, creating confusion when trying to match these tags with the ground
truth where labels are normally given in a sequential manner {1,2,3,4}. Moreover,
all the unsupervised clustering methods that do not require pre-determination of the
number of components cannot ensure they will find the exact same number of clusters.
For instance, if VB-DPBM retrieves five clusters instead of the correct number four
then it is infeasible to calculate the conventional classification measures that require
same number of clusters as well as same labelling.
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To deal with this situation, we need a measure that computes the accuracy of clustering
regardless of the actual labelling, as long as the members of a cluster are allocated
together. An astute way is to find which estimated labels correspond to which true ones
so as to produce the highest clustering accuracy. To give an example, suppose we have
the true label vector for 12 datapoints [1,1,2,2,2,2,3,3,4,4,4,4] and the estimated
vector viaVB-DPBM, [14,14,4,1,11,2,4,4,14,11,11,11]. We therefore create the
confusion matrix of those two vectors in Table 4.2.

True labels
1 2 3 4

14 2 0 0 1
11 0 0 0 3
4 0 1 2 0
1 0 2 0 0

VB-DPBM
labels

2 0 1 0 0
Table 4.2 Confusion matrix of true versus VB-DPBM component labels in a toy
example with 12 datapoints. The grey boxes denote the counts of the correctly
clustered datapoints.

In Table 4.2, we observe that the only two datapoints with true label “1” have been
clustered as label “14” by the VB-DPBM algorithm. Thus, we figure out that the
true label “1” corresponds to VB-DPBM label “14”, having so far two datapoints
that have been successfully allocated together. Regarding the four datapoints with
true label “2”, VB-DPBM manages to allocate together two of them under the VB-
DPBM label “1”, while the two left have been assigned different labels (VB-DPBM
labels “4” and “2”). Hence, we count two datapoints (the highest count) as correctly
clustered under the true label “2”. Similarly, we count those datapoints that have been
successfully assigned together into the rest true clusters “3” and “4”. Those counts are
highlighted in grey boxes in Table 4.2. Eventually, the accuracy measure is calculated as
(2+2+2+3)/12 = 0.75, indicating 75% clustering accuracy of the VB-DPBM algorithm.
This procedure can be straightforwardly executed by the Python function of Han [54]
that uses the Hungarian algorithm to solve this bipartite graph (Asratian et al. [4]).

The next step, given this accuracy measure, is to compare the clustering performance
of the VB-DPBM model with the non-probabilistic K-means, Hierarchical clustering
and DBSCAN.

Regarding the principal advantage of the VB-DPBM model, this is its scalability to
high dimensions (sample-wise and feature-wise). Hence, we are interested in checking
the algorithm’s clustering behaviour in two synthetic scenario sets: a) when the
number of samples exponentially grow, while the number of features is fixed at D =
100 (Table 4.3) and b) when the sample size is relatively low (N =200), while the
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feature dimensions increase by one extra digit each time (Table 4.5). In the first set
of simulations, the synthetic data have seven clusters M = 7 with mixing weights
[0.05, 0.1, 0.115, 0.135, 0.15, 0.175, 0.275], whereas in the second set M = 3 with weights
[0.6,0.2,0.2].

Correctly clustered %
Samples VB-DPBM K-means Hierarchical DBSCAN
N=1M 100 (7) 81.66 (5) - 99.80 (7)
N=100K 100 (7) 81.64 (5) - 99.23 (7)
N=10K 100 (7) 81.79 (5) 99.67 (7) 99.17 (7)
N=1K 100 (7) 81.50 (5) 100 (7) 97.40 (7)

Table 4.3 Clustering performance of VB-DPBM, K-means, Hierarchical clustering and
DBSCAN on four bounded continuous synthetic of increasing sample size (N = 1K to
N = 1M), fixed number of features D = 100 and number of components M = 7 with the
mixing weights being [0.05, 0.1, 0.115, 0.135, 0.15, 0.175, 0.275]. The rates represent the
percentage of correctly clustered observations and the values inside the parentheses the
determined number of components (except K-means and Hierarchical where the number
of clusters is fixed by the Elbow method). Dash line denotes algorithm’s inability to
scale in such large sample scenarios.

In Table 4.3, the VB-DPBM model manages to cluster without error the bounded
continuous data of all the different sample sizes of 1K, 10K, 100K and 1M. Specifically,
for the N = 1M case, VB-DPBM requires only 55 minutes to converge, while the Markov
chain Monte Carlo algorithms would take several days/weeks. K-means, Hierarchical
clustering and DBSCAN converge faster than VB-DPBM, as expected, due to the
considerably lower amount of parameter estimations (non-probabilistic algorithms
whereas VB-DPBM probabilistic). Given that K-means and Hierarchical clustering do
not determine the number of clusters, we select a candidate number by the SSE analysis
(Elbow method, Marutho et al. [87]). K-means seems to perform satisfactory on this
dataset, however not as successfully as VB-DPBM, with average accuracy almost 82%
and five clusters being determined by the SSE analysis instead of seven, in all the
different sample size cases. Hierarchical analysis is precise in the lowest two samples
(N = 1K and 10K) yet in the greater sample size scenarios is unable to scale and returns
no results (dash lines). DBSCAN presents high accuracy in every case, with the peak
value 99.8% achieved in N = 1M. Overall, VB-DPBM wins over all three clustering
methods by constantly performing 100% accuracy.

To re-enforce these results, we populate the simulations in each scenario by changing
the seed 20 times (in R: set.seed(x) with x = 123,124, ... etc.) in order to end up
with 20 simulations per sample size case. The mean clustering performance is recorded
along with the standard deviation in Table 4.4. This indicates the consistency and
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superiority of the VB-DPBM algorithm - highest accuracy and lowest variance in all
sample sizes.

Correctly clustered %
Samples (20 in each) VB-DPBM K-means Hierarchical DBSCAN
N=1M 99 (3.10) 82.25 (3.68) - 98.90 (3.70)
N=100K 98.25 (3.20) 81 (4.45) - 98 (4.90)
N=10K 98 (3.37) 82 (5.80) 97 (3.89) 97.20 (4.98)
N=1K 97 (3.41) 82.50 (3.55) 96.30 (6.33) 96.40 (4.55)

Table 4.4 Mean clustering performance of VB-DPBM, K-means, Hierarchical clustering
and DBSCAN based on 20 bounded continuous simulations for each sample size category
(N = 1K to N = 1M), fixed number of features D = 100 and number of components
M = 7 with the mixing weights being [0.05,0.1,0.115,0.135,0.15,0.175,0.275]. The
main values correspond to the mean clustering accuracy - based on the 20 simulations
in each scenario - of each algorithm. The value inside the parenthesis is the standard
deviation.

Correctly clustered %
Features VB-DPBM K-means Hierarchical DBSCAN
D=100K 80 (2) 70.50 (5) 79 (5) 82 (4)
D=10K 100 (3) 76.50 (4) 99.50 (4) 95.50 (3)
D=1K 99 (3) 98 (3) 98 (3) 94 (3)
D=100 100 (3) 80 (2) 80 (2) 92.50 (2)
D=10 99 (3) 74.50 (4) 93 (4) 85 (4)

Table 4.5 Clustering performance of VB-DPBM, K-means, Hierarchical clustering
and DBSCAN on bounded continuous synthetic data of varying dimensions (D = 10
to D = 100K), fixed sample N = 200 and components M = 3 with mixing weights
[0.6,0.2,0.2]. The rates correspond to the accuracy of the algorithm in correctly
clustering the simulated datapoints and the values inside the parentheses to the
determined number of components (except K-means and Hierarchical where the number
of clusters is fixed by the Elbow method).

In regard to the performance of the clustering techniques in simulated datasets of small
number of samples and escalating number of features, we refer to Table 4.5. We notice
that VB-DPBM is accurate by correctly clustering 99% and 100% of the datapoints
in all the cases with varying feature number between D = 10 and D = 10K. For the
same cases, Hierarchical clustering and DBSCAN perform sufficiently well by both
obtaining accuracy more than 94% in the datasets of D = 1K and D = 10K, whilst for
the lower feature scenarios D = 10 and D = 100 Hierarchical achieves 93% and 80%
respectively, whereas DBSCAN 85% and 92.5%. We comment here that DBSCAN
retrieves three components - as many as the true number - in the 10K case, albeit
the clustering performance is not 100% (= 95.5%). This shows that some samples
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have been allocated into the wrong cluster, however the true number of components
is retained. For example, in the cluster with true mixing weight 60%, the algorithm
assigned correctly 55.5% and the remaining 4.5% was incorrectly allocated into the
second cluster of true weight 20%, falsely changing it into 24.5%. The third and
last cluster remained intact at 20%. Thus, the correctly clustered samples reach the
percentage of 55.5% + 20% + 20% = 95.5%. Similar is the explanation for all those cases
of three components, yet with clustering performance < 100%.

In principle, high clustering accuracy is associated with higher chances to retrieve the
true number of clusters, however it is not necessary the true number of clusters will be
determined. To illustrate this, accuracy 100% means the true amount of components,
i.e. 10, is determined. An accuracy of 95% would denote that 5% of the data are
incorrectly clustered. If the estimated components were 10 (as the truth), then this 5%
would have been falsely allocated into one of the 9 wrong clusters. On the other hand,
if the estimated components were 11 then this 5% would create a cluster of its own.

π

Truth 0.6 0.2 0.2
VB-DPBM 0.6 0.4

Table 4.6 The variational component weights for the synthetic bounded continuous
dataset in Table 4.5 of D = 100K, N = 200 and true M = 3 with mixing weights
[0.6,0.2,0.2] that corresponds to VB-DPBM clustering accuracy 80%. The true weights
are also given.

Regarding the discussion of the rest of the results in Table 4.5, K-means has the
less efficient performance in D = 10 and D = 10K with accuracy 74.5% and 76.5%
respectively. However, for the middle datasets of D = 100 and D = 1K it performs
similarly to Hierarchical clustering. With respect to the highest feature size D = 100K,
the four algorithms seem to differentiate only little with accuracies in the range of
70 − 82%. Nevertheless, the best performance is achieved by DBSCAN with accuracy
82% and immediately follows VB-DPBM with 80%. The rest two methods attain
values between 70 and 79%. Regarding VB-DPBM in the D = 100K, we notice that it
determines two instead of three clusters, thus we inspect in Table 4.6 the variational
allocation that returned less number of components. In this table, we display the three
true mixing weights of the D = 100K and N = 200 synthetic dataset of Table 4.5, as well
as the corresponding VB-DPBM estimated weights. VB-DPBM correctly estimates the
component with 0.6 weight, while merges into one the two components with weight 0.2,
returning a mixing coefficient of 0.4. Consequently, VB-DPBM mis-clusters 20% of the
datapoints, confirming the accuracy level of 80% it reaches for this dataset.
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4.4 Discrete Synthetic Data

For the discrete simulations, we generate count data from Poisson mixtures and binary
data from Binomial mixtures when the number of trials is one. Both mixture simulations
assume independence across the features and across the samples as in the synthetic
Beta mixture data in Section 4.3. Specifically, we follow the same simulation technique
as in Section 4.3, by randomly generating the model parameters. In particular, for
the count mixture datasets, we simulate component specific Poisson data, with the
Poisson parameter λdm being generated from a uniform with hyperparameters (10,20).
λdm is the parameter of the dth feature in the mth component (see model structure
in Appendix B, Section B.2.1). Regarding the binary mixture datasets, we simulate
component specific Bernoulli data, with the probability parameter pdm being generated
from a uniform (0.01, 0.99) so as to ensure it lives between [0,1] (see model definition
in Chapter 3, Section 3.3.1). The number of features and samples, and the mixing
weights values are function’s inputs.

4.4.1 Clustering Count Data

Count data is a type of data in which the observations are non-negative integers
{0, 1, 2, 3, 4, ...} and represent occurrences of a particular characteristic, i.e., number of
methylated CpG sites (counts) in a DNA region like DMR (Differentially Methylated
Region). When the counts are accompanied by the number of independent trials and
the aim is to find the hidden clusters structure, the Dirichlet Process Binomial mixture
model can be applied. In cases where the numbers of trials are not independent and
unknown, Dirichlet Process Poisson mixture could be a better clustering choice. In this
count simulation study, we implement the variational Dirichlet Process Poisson mixture
(VB-DPPM) on count data with non-fixed trials. This hierarchical model also takes
into account the overdispersion of the data due to the Gamma prior on the Poisson
parameter λ (model structure in Appendix B, Section B.2.1). In our applications, we
fix the overdispersion by choosing the hyperparameters of this Gamma prior. To fully
account for the randomness of the over-dispersion, the hierarchical Dirichlet Process
Negative Binomial mixture model with random overdispersion should be employed
instead (see details in Miao et al. [95]).

Hyperparameters and Initialization

Prior to the VB-DPPM application on the simulated counts, we need to set the
hyperparameters of the hierarchical Dirichlet Process Poisson mixture model. The
hyperparameter vector ϕ0 = [ϕ01, ..., ϕ0M], which is related to the stick-breaking point
w and therefore the mixing weights π, is similarly fixed as in the Dirichlet Process
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Beta mixture by a low value (each element of the ϕ0 vector is set as 0.01) to promote
the support from the data. The hyperparameters (a0dm, b0dm) of the Gamma prior on
λdm, where λdm is the parameter of the dth feature in the mth Poisson component, are
set to 1 to avoid extremely large values of λdm.

In regard to the initialization, because of the annealing addition the performance of the
VB-DPPM algorithm is thinly affected by any selection of initial values. Hence, and to
avoid extra complexity, we initialize the variational parameters with the corresponding
hyperparameters. With respect to the stick-breaking point variational parameter of
the mth component ϕm, this is initialized by the corresponding hyperparameter ϕ0m by
adding also up a small, yet component specific value, facilitating the distinction of the
clusters. For instance, ϕm is initialized by ϕ0m + ϵm, with ϵm < 0.001.

Simulation Scenario

In this part, we challenge the power of VB-DPPM by applying it on a synthetic large
count dataset of N = 10K samples, D = 100 features and M = 3 clusters with mixing
weights: [0.2,0.3,0.5]. In Figure 4.5, the true clustering (Subfigure 4.5a) and the
fitted VB-DPPM clustering (Subfigure 4.5b) is displayed in two principal components.
The visual comparison shows the accurate performance of VB-DPPM by correctly
revealing three clusters with estimated mixing weights [0.200, 0.301, 0.499] (see weights
in Subfigure 4.5b).
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Figure 4.5 Comparison of true density plot with VB-DPPM density plot in two-
dimensions (Principal Component analysis is used to present the clustering in two
dimensions) of a count simulated dataset of N = 10K, D = 100 and true M = 3
with mixing weights [0.2,0.3,0.5]. Clusters are: (a) the true ones and (b) the VB-
DPPM ones. The cluster weight of each group is given on the right, along with the
corresponding colour and datapoint symbol.
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4.4.2 Comparison to Standard Methods

Correctly clustered %
Samples VB-DPPM K-means Hierarchical DBSCAN
N=1M 94.12 (7) 77.25 (5) - 77.50 (5)
N=100K 93.81 (6) 77.05 (5) - 75.80 (5)
N=10K 99.98 (7) 85 (5) 72.50 (3) 57.77 (4)
N=1K 100 (7) 100 (7) 100 (7) 68.10 (5)

Table 4.7 Clustering performance of VB-DPPM, K-means, Hierarchical clustering
and DBSCAN on four count synthetic data of escalating sample size (N = 1K to
N = 1M), fixed number of features D = 100 and components M = 7 with mixing
weights [0.05, 0.1, 0.115, 0.135, 0.15, 0.175, 0.275]. The rates represent the percentage of
correctly clustered observations and the values inside the parentheses the determined
number of components (except K-means and Hierarchical where the number of clusters
is fixed by the Elbow method). Dash line denotes algorithm’s inability to scale in such
large sample scenarios.

After the graphical comparison with the ground truth, we provide extra simulation
tests with the rates of correctly clustered datapoints via the VB-DPPM algorithm,
alongside the performance of K-means, Hierarchical clustering and DBSCAN. Similar
simulation frameworks are created and evaluated as in the VB-DPBM applications
in Section 4.3.3. Specifically, the first set of scenarios in Table 4.7 refers to synthetic
count datasets with M = 7, D = 100 and increasing number of samples (N = 1K to
N = 1M), whilst the second in Table 4.8 to small sample-wise datasets (N = 200) with
M = 3 and increasing number of features (D = 10 to D = 100K).

The evaluation of the clustering methods in Table 4.7 conveys dominance of the
VB-DPPM algorithm in all the different sample sizes, with the accuracy level being
higher than 93%. K-means performs efficiently in the two lower datasets (N = 1K
and N = 10K), whereas its accuracy lowers down to approximately 77% in the larger
scenarios. Hierarchical clustering is faultless in N = 1K, however in N = 10K has poorer
performance with rate 72.5%. In the large-scale scenarios, Hierarchical cannot scale
and thus produces no results (dash lines). Concerning DBSCAN, it generally presents
inferior performance on these synthetic datasets compared to the rest of the methods,
by even reaching the low level of 57.77% on the N = 10K case.

Regarding the clustering evaluation in multiple feature scenarios in Table 4.8, VB-DPPM
is once again the winning algorithm. It specifically reaches 100% in the high-feature
datasets, while it drops to 80% in D = 10 with five estimated clusters instead of three.
However, K-means, Hierarchical and DBSCAN perform less efficiently than VB-DPPM
on the same small synthetic dataset, with the highest accuracy amongst three to be
obtained by K-means (78%).



92 In Silico Experiments

Correctly clustered %
Features VB-DPPM K-means Hierarchical DBSCAN
D=100K 100 (3) 100 (3) 100 (3) 99.50 (3)
D=10K 100 (3) 100 (3) 100 (3) 99 (3)
D=1K 100 (3) 70 (5) 98.50 (5) 96 (3)
D=100 97.50 (4) 77 (4) 98 (4) 78 (2)
D=10 80 (5) 78 (4) 73.50 (4) 70 (2)

Table 4.8 Clustering performance of VB-DPPM, K-means, Hierarchical clustering
and DBSCAN on count synthetic data of escalating feature dimensions (D = 10
to D = 100K), fixed sample N = 200 and components M = 3 with mixing weights
[0.6,0.2,0.2]. The rates correspond to the accuracy of the algorithm in correctly
clustering the simulated datapoints and the values inside the parentheses to the
determined number of components (except K-means and Hierarchical where the number
of clusters is fixed by the Elbow method).

Counts with Confounding Parameters

In the previous simulated scenarios, the datasets are exempted from confounding
parameters, such as sex, age, ethnicity etc., that may affect the clustering credibility.
For that reason, we arbitrarily choose to generate a set of synthetic scenarios of counts,
with two confounding parameters L = 2, D = 1K features and varying sample sizes
N = 100 to N = 100K (Table 4.9) in order to assess the clustering performance of the
VB-DPPM with covariates (Chapter 3, Section 3.3.3) and the VB-DPPM without
covariates. The aim is to show the superiority of VB-DPPM with covariates over the
plain VB-DPPM when confounding factors exist.

Correctly clustered %

Features
VB-DPPM
with covariates

VB-DPPM

N=100K 85.80 (4) 42 (5)
N=10K 85.20 (4) 40 (5)
N=1K 84.70 (4) 60.20 (4)
N=100 73 (2) 70 (2)

Table 4.9 Clustering performance of VB-DPPM with covariates and VB-DPPM without
covariates, on count simulations where confounding parameters exist. The performance
is tracked for increasing sample sizes, with fixed features D = 1K, number of components
M = 3 with mixing weights [0.2, 0.3, 0.5] and number of confounding parameters L = 2.

In Table 4.9, the VB-DPPM with covariates performs sufficiently well in clustering
the large-scale count datasets (N = 1K to N = 100K) by reaching accuracy between
84% and 86%. Regarding the mis-clustered 14 − 16%, this is due to the extra fourth
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component that VB-DPPM estimates, while the true number is three. In contrast, the
VB-DPPM without covariates shows poor performance in the same scenarios, with
accuracy levels between 40 − 60% and estimated number of components four or five,
instead of three. However, both methods perform similarly on the simulated dataset of
low number of samples N = 100, with VB-DPPM with covariates reaching 73% and
VB-DPPM without 70%. In conclusion, this simulation study shows that VB-DPPM
with covariates needs to be preferred over the plain VB-DPPM when confounding
factors are present.

4.4.3 Clustering Binary Data

Binary are the data that can take on only two possible states. An appropriate
distribution to model such type of data is Bernoulli, a sub-category of the Binomial
distribution when the number of trials is one. In this analysis, our interest lies
on uncovering hidden clusters based on binary variables and therefore, a suitable
probabilistic method is the Dirichlet Process mixture of Bernoulli distributions. This
hierarchical model is also known as Dirichlet Process Beta-Binomial mixture (with fixed
number of trials at one) due to the Beta priors imposed upon the Bernoulli parameter
matrix p of dimensions M ×D, with pdm referring to the probability of success of the dth

feature in the mth component (model hierarchy in Chapter 3, Subsection 3.3.1). The
randomly drawn pdm from a Beta distribution provides conjugate Bayesian inference
and also contributes to capturing the overdispersion in the data.

Hyperparameters and Initialization

The inferential procedure for the Dirichlet Process Bernoulli mixture involves Variational
Inference and therefore, the VB-DPBerM is applied (model in Chapter 3, Subsection
3.3.1). The hyperparameters of the prior distributions are specified as well as the
variational parameters. In particular, the Beta prior on pdm has hyperparameters a0dm

and b0dm, which are both given the value 1 (uniform distribution) so as to express
equally favourable values for pdm. For the hyperparameter vector ϕ0 = [ϕ01, ..., ϕ0M]
of the stick-breaking point w prior, we set a low value 0.01, as in the VB-DPBM and
VB-DPPM, in order to assign low weight on the initial clusters and let the data to
gradually determine the mixing coefficients.

Regarding the variational parameters initialization, we straightforwardly give initial
values equal to the hyperparameters. For example, adm is initialized by a0dm and bdm by
b0dm. With regards to ϕ = [ϕ1, ..., ϕM], each element is initialized by the corresponding
ϕ0m with the addition of the low component specific value ϵm < 0.001 to help the
distinction of the clusters.
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4.4.4 Comparison to Standard Methods

Having already seen the process of visually evaluating the clustering performance
of the variational Dirichlet Process mixtures, we move directly to quantitative com-
parisons of VB-DPBerM with standard non-probabilistic methods. Similar simu-
lation scenarios to VB-DPBM and VB-DPPM are constructed in order to assess
VB-DPBerM in multiple cases. To recap the scenarios structure, we firstly simulate
binary datasets of increasing sample size (N = 1K to N = 1M), with fixed number
of features D = 100 and number of components equal to M = 7 with mixing weights
[0.05,0.1,0.115,0.135,0.15,0.175,0.275] (Table 4.10). The second set of scenarios in-
cludes synthetic binary datasets of growing feature size (D = 10 to D = 100K), fixed
sample size N = 200 and three components M = 3 whose mixing weights are [0.6, 0.2, 0.2]
(Table 4.11).

Correctly clustered %
Samples VB-DPBerM K-means Hierarchical DBSCAN
N=1M 96 (7) 88 (8) - 90.86 (7)
N=100K 96 (7) 86.67 (8) - 85.50 (8)
N=10K 95 (6) 98 (7) 98 (7) 93 (7)
N=1K 95 (6) 83.70 (6) 97 (7) 90 (6)

Table 4.10 Clustering performance of VB-DPBerM, K-means, Hierarchical cluster-
ing and DBSCAN on binary synthetic data of varying sample size (N = 1K to
N = 1M), fixed number of features D = 100 and components M = 7 with mixing
weights [0.05,0.1,0.115,0.135,0.15,0.175,0.275]. The values represent the percentage
of correctly clustered observations. Dash line denotes algorithm’s inability to scale in
such large sample scenarios.

In Table 4.10, we observe that VB-DPBerM is overall the most consistent clustering
algorithm for the synthetic binary scenarios with seven clusters, by successfully obtaining
accuracy of 95% in the lower sample sizes: N = 1K, N = 10K and 96% in the high-scaled
ones: N = 100K and N = 1M. Hierarchical clustering is accurate at N = 1K and N = 10K
with clustering performance at 97 − 98%, however, as before, it cannot scale at the
higher sample sizes and thus no results are returned. DBSCAN and K-means have on
average close performance that varies between 84 − 91%. In regard to the small sample
sizes and escalating feature dimensions in Table 4.11, VB-DPBerM is undoubtedly the
most suitable algorithm, given those synthetic binary datasets, with accuracy level
at 100% in all scenarios, except the small dataset of D = 10 where it lightly drops to
97%. Hierarchical clustering and DBSCAN present similar clustering performance with
accuracy levels between 80 and 90% in the middle scenarios D = 100 and D = 10K,
while at D = 10 and D = 100K both reach higher than 90% rates. K-means is the
clustering algorithm with the most unstable performance, since it reaches higher than
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98% in the external datasets of low and high number of features (D = 10 and D = 100K),
whilst in the middle cases the accuracy level fluctuates between 66 and 72%.

Correctly clustered %
Features VB-DBerPM K-means Hierarchical DBSCAN
D=100K 100 (3) 100 (3) 100 (3) 98.42 (3)
D=10K 100 (3) 72 (5) 83 (2) 82 (4)
D=1K 100 (3) 66 (5) 85 (4) 84.2 (4)
D=100 100 (3) 69 (5) 82 (4) 80.3 (4)
D=10 97 (3) 98 (2) 95 (4) 90 (4)

Table 4.11 Clustering performance of VB-DPBerM, K-means, Hierarchical clustering
and DBSCAN on binary synthetic data of varying dimensions (D = 10 to D = 100K),
fixed sample size N = 200 and components M = 3 with mixing weights [0.6,0.2,0.2].
The rates correspond to the accuracy of the algorithm in successfully clustering the
simulated datapoints.

4.5 Further Simulation Analysis

In the previous sections, we created individual simulation scenarios of various data
structures (small and high sample and feature sizes) to assess the clustering performance
of the probabilistic variational Dirichlet Process mixtures. In this section, we are
interested in evaluating the performance of VB-DPBM, VB-DPPM and VB-DPBerM
in synthetic bounded continuous, count and binary data respectively, with specific
dimensions that resemble the dataset sizes of our real applications in Chapter 5. The
reason is to further evaluate those probabilistic methods in similar scenarios to the
real datasets, aiming at increasing the credibility of modeling DNA methylation data
by variational Dirichlet Process mixtures. More precisely, we simulate 20 synthetic
datasets from each data type (bounded continuous, counts, binary) of N = 200 samples,
D = 40 features and M = 4 clusters with mixing weights [0.3,0.3,0.3,0.1]. We then
apply the appropriate variational method, VB-DPBM, VB-DPPM or VB-DPBerM,
as well K-means, Hierarchical clustering and DBSCAN and track the accuracy rate.
Eventually, we report in Table 4.12 the average value based on the 20 replicates, along
with the corresponding standard deviation.

In Table 4.12, we compare column wise the clustering rates. In the bounded continuous
simulations, VB-DPBM performs accurately by clustering correctly 100% of the data-
points in all the 20 replicates. Second in row comes DBSCAN with average accuracy
95.8% and 5.56 standard deviation, then K-means with 93.7% and 6.02 standard
deviation and Hierarchical with 83.1% and the considerably high standard deviation of
10 units. In the counts simulations, VB-DPPM reaches again the highest performance
of 95.3% with the lowest deviation of 5.60, while second arrives K-means with 93.5%
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and 5.82 standard deviation. Hierarchical and DBSCAN fall behind with accuracy
around 72%, which is a result of high fluctuations of the accuracy rates (standard
deviation of 10 to 12 units). Regarding the binary simulations, VB-DPBerM has on
average the highest accuracy rate of 91.2% with K-means diverging by only 1.2%, while
the variability is relatively similar (around 5.40 − 5.50). Hierarchical obtains 85.2%
average clustering performance and DBSCAN 80.6%, with their standard deviation
reaching high levels (between 10 and 11).

Correctly clustered %

Methods
Bounded

continuous
Counts Binary

VB-DPBM 100 (0)
VB-DPPM 95.30 (5.60)
VB-DPBerM 91.20 (5.50)
K-means 93.70 (6.02) 93.50 (5.82) 90 (5.44)
Hierarchical 83.10 (10) 71.35 (11.37) 85.20 (10.78)
DBSCAN 95.80 (5.56) 72 (10) 80.60 (11.02)

Table 4.12 Average clustering performance of VB-DPBM, VB-DPPM, VB-DPBerM,
K-means, Hierarchical clustering and DBSCAN based on 20 simulations in each data
type category: bounded continuous, counts and binary. All the synthetic scenarios
concern N = 200 samples, D = 40 features and number of components M = 4 with
mixing weights [0.3,0.3,0.3,0.1]. The values correspond to the mean accuracy of each
algorithm in clustering the corresponding data type. The value inside the parenthesis
is the standard deviation.

In conclusion, based on these simulations, we have evidence that the variational Dirichlet
Process mixtures are appropriate candidates for the DNA methylation applications in
Chapter 5, given their successful performance in synthetic datasets with dimensions
similar to those of the real datasets.

4.6 A posteriori Feature Selection

Having applied the variational Dirichlet Process mixture models on simulated scenarios
and tested their clustering performance, we proceed with the final step that concerns
the selection of the discriminative features per component. For this selection, we require
the fitted component distributions so as to apply the discriminative measure from
Chapter 2, equation (2.78).

For illustrative purposes and to ease the understanding around this a posteriori selection
step, we simulate a new bounded continuous dataset in Table 4.13 of N = 1K samples,
three clusters, M = 3, with mixing weights [0.6,0.2,0.2] and only D = 3 features. The
aim is to implement the VB-DPBM model and obtain the discriminative set of features
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for each of the three components. The fitted component distributions are utilized to
calculate the feature selection measure Am(h) in equation (2.78). We recall that m is
the index of the mthcomponent and h the set of features used to compute the measure.
For each component, we record the value of Am(h) for all the feature combinations,
intending to choose the set h which corresponds to the highest value.

Discriminative accuracy
Features combinations → {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

Component 1 0.749 0.795 0.757 0.825 0.917 0.804 1
Component 2 0.999 0.998 0.998 0.999 0.994 0.999 1
Component 3 0.658 0.918 0.827 0.851 0.870 0.975 1

Table 4.13 Feature selection per component after the implementation of VB-DPBM
on a synthetic dataset of N = 1K,D = 3 and M = 3 with mixing weights [0.6,0.2,0.2].
The discriminative measure Am(h) is calculated for each feature combination within
the cluster.

In Table 4.13, the ultimate discriminative accuracy values (100%) are attained in the
full dimensions {1,2,3} for all three components. Nonetheless, we look whether the
next in sequence accuracy values are high enough. For component 1, the next high
accuracy is achieved by the set {1,3}. In component 2, all the sets of features are
individually important to discriminate this component from the rest, hence we select
the smallest in size set which also bears the highest value. This is feature {1} with
discriminative accuracy 0.999. Regarding component 3, the next highest accuracy is
reached by the set of {2,3}.

To summarize, feature {1} seems to discriminate component 2 per se and also component
1 in conjunction with feature {3}. As for component 3, this can be discriminated by
the information provided by {2, 3}. In this toy example, we found that each component
had a different set of discriminative features, however, the joint set includes all three
dimensions resulting in no feature reduction.

The challenging part though arises when the number of features is considerably high
and therefore, selection is required to reduce the feature space complexity. For this
framework, we generate a synthetic binary dataset of sample size N = 1K, M = 3 with
mixing weights [0.6,0.2,0.2] and D = 1K. We then apply the VB-DPBerM algorithm
which successfully determines three clusters with accuracy 97%. The reason we choose
to work on binary scenarios for this illustrative application is because of the sparse
structure the binary data usually suffer from, i.e., numerous dimensions with mostly
zero values and hence negligible contribution.

Regarding the previous three-dimensional toy example, it was feasible to enumerate
all the possible combinations of feature dimensions (23 − 1 = 7). For the 10K-feature
data in our new simulated study, this number is unattainable and thus, the forward
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method is recruited as discussed in Chapter 2, Section 2.7. Table 4.14 demonstrates
the iterative forward selection scheme of features in the synthetic binary dataset. Each
component column contains the discriminative accuracy Am(h) values per iteration.
The convergence value (current value differs from previous by less than 10−3 units) is
framed in grey colour and corresponds to the selected set of features. Component 1 is
defined by nine features and components 2 and 3 by 10 each one. Overall, the total
number of unique features is 26, which corresponds to 97.4% feature reduction, leaving
space to only the informative ones.

Discriminative accuracy
Iteration Component 1 Component 2 Component 3

1 0.706 0.689 0.544
2 0.779 0.778 0.584
3 0.807 0.818 0.615
4 0.831 0.843 0.641
5 0.892 0.923 0.684
6 0.966 0.951 0.817
7 0.976 0.960 0.893
8 0.981 0.986 0.960
9 0.994 0.986 0.996

10 0.994 0.993 0.995
11 - 0.993 0.995

Number of important features
per component

9 10 10

Number of important features
in total

26 out of 1K

Table 4.14 Forward selection of features per component based on the discriminative
measure Am(h). The coloured boxes denote the convergence value of the measure. The
selected number of features for each component, as well as the total important features,
are given in the end. The data concern a binary simulated dataset of N = 200,D = 1K
and M = 3 with mixing weights [0.6,0.2,0.2], modelled by VB-DPBerM.

Thereafter, we graphically assess the clustering performance of the significantly reduced
binary dataset (Dsel = 26 features). Our hope is to retrieve the true number of
clusters (M = 3) and accurate mixing estimates in relation to the ground truth
(weights: [0.2,0.3,0.5]). Figure 4.6 shows the clustering performance of VB-DPBerM
in the synthetic dataset of N = 1K, M = 3 and Dnew = 26. For reasons of graphical
representation, we illustrate the two logistic principal components. Logistic Principal
Component Analysis is a dimensionality reduction tool for multivariate binary data
(Lee et al. [72]). The figure communicates the achievement of VB-DPBerM in correctly
clustering the datapoints into three clusters of mixing weights 0.19,0.29 and 0.52, by
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exploiting only 26 out of the 1K features. The clustering accuracy reaches the 98%
level displaying effective feature selection by the Am(h) measure.
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Figure 4.6 Clustering performance of VB-DPBerM on a synthetic binary dataset of
M = 3 clusters with mixing weights [0.2,0.3,0.5], N = 200 and Dsel = 26 features
selected by the discriminative measure Am(h) (the original D was equal to 1K). For
reasons of graphical representation in two dimensions, the logistic Principal Component
Analysis is employed. Each cluster bears a distinct colour and shape point. The
estimated mixing weights are given on the right hand side of the graph.

4.7 Summary

In this chapter, we assessed the clustering power of the continuous and discrete
variational mixture models in synthetic datasets. In particular, we evaluated the
clustering performance of the variational Dirichlet Process Beta mixture, the variational
Dirichlet Process mixture of Poisson distributions and the variational Dirichlet Process
Bernoulli mixture. The VB-DPBM, VB-DPPM and VB-DPBerM easily scaled on large
datasets, both sample and feature wise, providing speedy and notably accurate results
in scenarios of N >>D and D >> N . Clustering comparisons to the non-probabilistic K-
means, Hierarchical cluster analysis and DBSCAN boosted the confidence for preferring
the variational Dirichlet Process mixture models for clustering bounded continuous
data as well as counts and binary data. Regarding the occurrence of confounding
parameters, a simulation study clearly recommended using methods which take those
factors into account such as the variational Dirichlet Process Poisson mixture model
with covariates. Finally, we showed that selection of the discriminative features per
component via the Am(h) measure offered a practical way in a posteriori revealing the
salient features for each component and overall reducing the dimensions without loss
of information.



Chapter 5

Analysis of DNA Methylation Data

5.1 Overview

This chapter is focused on the analysis of real molecular datasets related to DNA
methylation and specifically, Cytosine methylation. In particular, we seek to unearth
the hidden clusters of individuals based on their methylation profile, as well as to
specify those DNA regions (here DMRs) whose degree of methylation is responsible for
discriminating each cluster from the rest of the groups. The general aim is to identify
clinically relevant subgroups for the early prognosis or diagnosis of diseases.

Regarding feature discrimination, several methods have been developed to do selection
of features that are important for all the subgroups simultaneously, such as in Tadesse
et al. [130] and in Kim et al. [68]. In the former paper, clustering is achieved through a
Bayesian Finite multivariate Gaussian mixture model which is inferred by the Reversible
Jump Markov chain Monte Carlo, while the latter does the clustering via a Bayesian
Dirichlet Process multivariate Gaussian mixture model inferred by the split-merge
Markov Chain Monte Carlo algorithm of Jain and Neal [64]. In both papers, the
variable selection is accomplished with the addition of a latent binary variable that
indicates which features contribute or not in the overall group structure. On the other
hand, Raftery and Dean [115] use Finite mixture models for the clustering part while
they do variable selection by comparing in pairs models of nested subsets of features
through approximate Bayes Factors. Despite the usefulness of these works in selecting
important features, they lack feature discrimination per cluster. Consequently, we
decide to use the discriminative measure of Lin et al. [76] (Chapter 2, Section 2.7) to
determine whether there are features and specifically methylated DNA regions (iDMRs)
that may be significant for specific clusters and not necessarily for all. Particularly, the
algorithm provides three types of information: 1) features that are not important for
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any cluster, 2) features that are important for all and 3) features that are important
for some but not for the other clusters.

For the purpose of this chapter, we analyze blood samples of artificially and naturally
conceived neonates recorded with the Beckwith-Wiedemann syndrome (congenital
disorder related to overgrowth, Weksberg et al. [147]) and without the syndrome
(control group). For each blood sample, the examined features are established imprinted
Differentially Methylated Regions (iDMRs). Imprinted genes are those expressed only
in one of the two parental chromosomes (Ferguson-Smith [44]), while DMRs are regions
in the genome with different methylation patterns among multiple samples (patients,
cells, tissues etc.) (Neidhart [103]). Therefore, in our analysis, looking at iDMR level
rather than CpG works as a dimensionality reduction technique, which also promotes
the relaxation of correlation between the methylation values at different iDMRs due
to the aggregation of the correlated methylation values of sequential CpGs within an
iDMR.

For the dataset of neonates (samples) and iDMRs (features), we derive three measures,
each of which carries similar information but expressed differently. Concerning the first
measure, the median of the methylation beta-intensities across the CpGs within an
iDMR is calculated for each iDMR and each individual. In the second measure, for
each CpG site, individuals with methylation level below or above the controls median
methylation level ± 3 standard deviations (SDs) confidence interval are considered as 1
(significantly affected CpG) and those inside the 3SDs confidence interval are considered
as 0 (non-significantly affected CpG). Then the number of significantly affected CpGs
per iDMR is counted. Regarding the third measure, for each iDMR, individuals with a
median methylation level below or above the controls median ± 3 standard deviations
(SDs) confidence interval are considered as 1 (significantly affected iDMR) and those
inside the 3SDs confidence interval are considered as 0 (non-significantly affected iDMR).
We acknowledge the relatively low dimensionality of the dataset (228 neonates × 33
iDMRs) by reporting that this was the only available set of data at the moment of
the study meeting the desirable requirements for the purpose of this analysis. Further
implementations of the same models can be conducted in the future for larger available
datasets of similar nature.

The goal in analyzing the same data of the same cohort but from three different per-
spectives is to discover which of these three measures is more informative in revealing
the association of aberrantly methylated artificially conceived newborns with rare de-
velopmental disorders, as well as in indicating potential onset of another developmental
disorder in the future, given the recorded methylation in certain iDMRs. For this
reason, we start by analyzing each data type separately (median beta-intensities defined
as “beta methylation data” from now on, number of affected CpGs per iDMR defined as
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“count methylation data” and significantly/non-significantly modified iDMRs defined as
“binary methylation data”) to eventually end up to a consensus of the three analyses.
In particular, we cluster each dataset based on the appropriate variational Dirichlet
Process mixture model and then do iDMR selection by Lin et al. [76] to retain only
the total discriminative iDMRs. Subsequently, we implement our variational models
on the reduced iDMR datasets and derive the final clusters for each dataset. As a last
step, we apply the discriminative measure again to perform iDMR discrimination per
cluster.

5.2 Applications on DNA Methylation in Neonates

The current analysis is based on blood samples of 228 neonates, with 22 bearing a rare
developmental disorder called Beckwith-Wiedemann Syndrome (BWS) - responsible
for overgrowth such as macroglossia (Weksberg et al. [147]), while the rest neonates
are recorded as BWS free. Moreover, an extra factor is considered regarding their
way of conception. 78 neonates have been conceived naturally (20 of them have the
disorder), whereas the remaining 150 (two of them with the disorder) are conceived
artificially through Assisted Reproductive Technologies (ART) (Zegers-Hochschild et al.
[153]). For each neonate, 33 of the most known imprinted differentially methylated
regions (iDMRs) as defined in Monk et al. [98] and also reported in Ochoa et al. [106]
are studied. The analysis of methylation at iDMRs is the standard methodology for
clinical molecular analysis of congenital disorders worldwide (Ochoa et al. [106]). For
each iDMR, the number of CpGs defining the region and their location in the genome
can be found in Table 1 in Ochoa et al. [106]. The number of CpGs per iDMR varies
between 5 and 76.

In order to perform a methylation profiling at imprinted regions in a cohort of newborns
naturally conceived and newborns conceived by ART procedures, with and without
Beckwith-Wiedemann Syndrome, we combined multiple public available datasets from
methylation array platforms (450K and EPIC array). For these datasets, we analysed
only those probes that overlap with imprinting regions and are common between the two
platforms (984 probes). To avoid a batch effect caused by differences between platforms,
each array-specific dataset was individually processed and then merged together. For
validity reasons, we prove later that the platform/array is not a confounding parameter
in the clustering procedure. After filtering by quality parameters, DNA methylation
data is filtered by 33 iDMRs1 (Ochoa et al. [106]).

The raw data are available in the GEO with accession number GSE166531 and
GSE131433, corresponding to Ochoa et al. [106] and Novakovic et al. [105] respectively.

1iDMRs covered by at least five probes/CpGs.
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Regarding the data pre-processing (flowchart in Figure 5.1), the IDAT data files from
450K and EPIC are analysed separately by the Bioconductor R package ChAMP (Chip
analysis Methylation Pipeline by Tian et al. [136]), where the files are filtered by
their intensity value and probes with detection p-value < 0.01 are removed. Further
filtering removes probed CpGs that fall near an SNP, align to multiple locations with
bwa or come from the X and Y chromosomes (Zhou et al. [157]). For the extracted
beta-intensities, the NAs are discarded and the rest are imputed by the KNN (K-
nearest neighbors algorithm). The imputed data are then normalised by the BMIQ
filtering method (Teschendorff et al. [135]). In the normalised data the batch effect is
predicted by the SVD method (Singular Value Decomposition) and the batch correc-
tion is performed by ComBat (Hansen et al. [56]). The obtained beta-intensities are
then used to create the three previously discussed measures: a) median beta-intensity
per iDMR2 (“beta methylation data”), b) number of significantly affected CpGs per
iDMR (“count methylation data”) and c) significantly/non-significantly affected iDMR
(“binary methylation data”).

I
Methylation signature process (with ChAMP R package (Tian et al., 2017}) 

Eguzkme Ochoa; Una Gerontogianni,· Sunwoo Lee 

(This flowchart 1s created by Sunwoo Lee) 

sequencing IDAT data files from lnfinlum Human 

data - Methylation 450K and EPIC Bead Chip Array 

Detection P value cut off= 0.01 
Data loading 1) SNPs filtering (probed CpG falls near a SNP are removed) 

2) multiH1t filtering (probes align to multiple locations with bwa removed) 
3) XY filtering (probes from X and Y chromosomes are removed)

Raw data -beta-intensity extracted 

1-------------QC (CpGs overview) 
Data Imputation 1) NA filtering (NA values removed) 

2) for the rest KNN imputation

Imputed data 
'---�1----_-_-_-_-_: _________ QC (MOS & density plot) 

Normalisation Filtering method: BMIQ (correcting the bias of typ 2 probe values) 

Normalised data 

Batch-effect prediction Prediction method: SVD (The singular value decomposition method) 

Batch-effect 
correction 

Not significant 

Methylation analysis 

Significant 
Combat 

Filtered data 

1) Minimum number of probes = 5 
2) Beta: Median methylation level (MML) calculated 
3) Binary: MML :t 35D ii: 1, MML :t 35D < 1 =0 
4) Counts: count the number of 1 per DMR 

Heatmap 

Figure 5.1 Data pre-processing flowchart of the real methylation data.
2Median of the CpG beta-intensities within an iDMR.
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Regarding the choice of neonates for this analysis, testing methylation on newborns
(fixed 0 age) and not children or adults of differing age results in fixing the confounding
parameter age, as well as the sex factor given we do not have serious evidence (to our
knowledge and according to the results in this due course analysis) that methylation
at birth - at least in iDMRs - can be significantly affected by the newborn’s gender.
Generally, confounding factors have to be adjusted to prevent any chance of unavoidably
clustering based on the grouping provided by them rather than the iDMR methylation
level. For these real neonate data we are able to confidently apply our “variational
Dirichlet Process mixture models without covariates” given we have already accounted
for the sex and age covariates. Nonetheless, we could alternatively use the proper model
with covariates specified in Chapter 3 in case of un-adjusted influencing parameters,
i.e., methylation data of individuals with different age.

For each one of the three measures (“beta methylation data”, “count methylation data”
and “binary methylation data”) we choose not to apply the commonly used Gaussian
mixtures due to their unrestricted support range. We conversely apply the appropriate
variational Dirichlet Process mixture model based on the data type. Specifically,
the “beta methylation data” are modelled by the variational Dirichlet Process Beta
mixture (VB-DPBM), the “count methylation data” by the variational Dirichlet Process
Poisson mixture (VB-DPPM) and the “binary methylation data” by the variational
Dirichlet Process Bernoulli mixture (VB-DPBerM). At this point, we stress again
that the three mixture models assume that methylation values between different
iDMRs are independent. Generally, we are confident that claiming independence
between methylation levels of different iDMRs is not a strict violation, considering
that dependence is mostly present amongst the level of methylation in CpGs within an
iDMR.

For clarification, in the subsequent analyses “Platform” is a categorical variable referring
to the 450K and the EPIC arrays, “Sex” indicates the newborn’s gender whilst “Status”
is a categorical variable denoting the BWS cases and controls as follows

• case: neonate with BWS conceived naturally (20 in total)
• case-ART: neonate with BWS conceived through ART (2 in total)
• ctrl: neonate without BWS conceived naturally (58 in total)
• ctrl-ART: neonate without BWS conceived through ART (148 in total).

5.2.1 Beta Methylation Data

The first instance of data to be analyzed deals with the median beta-intensities per
iDMR. The data are bounded in [0,1] and therefore, the VB-DPBM algorithm is
employed for clustering. The structure of the analysis starts with the implementation
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of the VB-DPBM on the dataset with all the iDMRs, then follows the selection of the
total discriminative iDMRs and ends with the implementation of the VB-DPBM on
the dataset with only the discriminative iDMRs. The reason we proceed with this
two stages procedure is to reduce the noise in the data due to the participation of
non-discriminative iDMRs, and form the final clusters based only on the important
iDMRs. We clarify that each heatmap in this chapter, bears the same labelling for
the clusters, i.e., C1, C2 etc., but the clusters are dataset specific. For example, C1
in Figure 5.2 is different than C1 in Figure 5.4 and thus we let the caption of each
figure or table to define the dataset that each specific group label corresponds to.
In Figure 5.2, the beta methylation data with all the iDMRs are clustered in four
groups. Cluster C1 contains neonates with hypomethylation records (blue colour) in
their KCNQ1OT1:TSSDMR. We observe that these neonates are the ones with the
BWS disorder (“Status” column), showing that the algorithm successfully revealed
the cases of BWS based solely on the methylation level of their iDMRs and especially
KCNQ1OT1:TSSDMR. The rest three clusters, C2, C3 and C4, that contain newborns
without the BWS, do not straightforwardly show differences in the methylation pattern.

Another observation is made with respect to the “Platform” variable. C1 contains
only the 450K array data and C2, C3 the EPIC data, implying the possible existence
of a platform effect that may lead to clustering based on the platform instead of the
methylation level. To ensure that the “Platform” does not have an impact on the
analysis, we remove it by clustering the residuals from the Beta regression model with
fixed covariate the “Platform” variable (Ferrari and Cribari-Neto [45]) (we vectorize
the beta methylation data and run the R betareg function by Zeileis et al. [154]).
The extracted “sweighted” residuals, which are proved to be normally distributed
(Espinheira et al. [39]), are free from the platform effect and thus are used to find the
hidden clusters according to the methylation level. Specifically, on the Beta regression
residuals with all the iDMRs we implement the variational Dirichlet Process Gaussian
mixture algorithm (with independent features, Appendix B, Subsection B.3.1), defined
as VB-DPGM for simplicity, and obtain the clusters in Figure 5.3 (note that the
residuals are scaled for graphical reasons solely, such that 0 residual values correspond
to 50% methylation and -4 and 4 residuals to 0% and 100% respectively). The clustered
residuals heatmap shows great similarities with the one for the original beta methylation
data with all the iDMRs (Figure 5.2). Both agree in clustering by 99.56% (rate of data
points that have been identically assigned together in the two clusterings, described in
Chapter 4, Section 4.3.3), determining four clusters with similar methylation patterns.
This result hints against the platform effect. In order to validate this outcome, we
check whether the coefficient of the “Platform” covariate in the Beta regression we
applied before is statistically non-significant. Eventually, the platform coefficient is
0.008 and has p-adjusted value equal to 0.679 > 0.05. This is strong evidence of non-
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Figure 5.2 Clustered heatmap of the beta neonatal methylation intensities via the
VB-DPBM. The x-axis represents the iDMRs (33 in total), while y-axis the samples (228
neonates). The colour scale of the beta-intensities starts from blue (0% methylation),
continues to white (50% methylation) and ends up to red (100% methylation). On the
left of the x-axis, the Clusters column shows the group in which the observations have
been allocated to, in different colour (mixing weights are displayed on the right of the
heatmap for each cluster). Status and Platform are also given for each cluster. The
clusters are presented in an increasing mixing weight sequence (smallest cluster on top,
largest at the bottom).
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Figure 5.3 Clustered heatmap of the residuals from the Beta regression on the beta
neonatal methylation intensities. The residuals are re-scaled for graphical reasons
such that 0 values correspond to 50% methylation and −4,4 to 0%,100% methylation
respectively. The clustering is achieved via the VB-DPGM. The x-axis represents the
iDMRs (33 in total), while y-axis the samples (228 neonates). The colour scale of the
residuals starts from blue (0% methylation), continues to white (50% methylation) and
ends up to red (100% methylation). On the left of the x-axis, the Clusters column
shows the group in which the observations have been allocated to, in different colour
(mixing weights are displayed on the right of the heatmap for each cluster). Status is
also given for each cluster. The clusters are presented in an increasing mixing weight
sequence (smallest cluster on top, largest at the bottom).
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Figure 5.4 Clustered heatmap of the beta neonatal methylation data -via the VB-
DPBM- only for the discriminative iDMRs. The x-axis represents the reduced in
number iDMRs (14 in total), while y-axis the samples (228 neonates). The colour scale
of the beta-intensities begins with blue (0% methylation), carries on with white (50%
methylation) and ends up to red (100% methylation). The Clusters column displays
the three neonates’ groups in different colours (mixing weights are given on the legend).
Status is also laid out for each cluster. The clusters are presented in an increasing
mixing weight sequence (smallest cluster on top, largest at the bottom).
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significant platform effect. Therefore, we carry on the analysis based on the original
beta methylation data and not the residuals, since the data source (450K or EPIC)
appears to have no confounding effect.

Number of clusters Percentage of agreement (%)
All iDMRs 4

79.82
Discriminatory iDMRs 3

Table 5.1 Number of clusters in the beta methylation dataset with all the iDMRs
and with only the discriminatory ones. The percentage of agreement, based on the
measure described in Chapter 4, Section 4.3.3, is also calculated. Rate equal to 100%
indicates common clusters (all data points are identically allocated in the full and
reduced dataset), while the opposite (values close to 0%) implies completely different
clusters.

Returning to Figure 5.2 and the clusters of the original beta methylation data with all
the iDMRs, we observe that C2, C3 and C4 do not visually show clear distinction in
terms of methylation patterns. Hence, by selecting the discriminative iDMRs via the
Lin et al. [76] discriminative measure (Chapter 2, forward selection algorithm 7) and
applying again the VB-DPBM algorithm on the reduced dataset, we aim at finding
clusters with different methylation patterns.

In Figure 5.4, the final clusters of the beta methylation data with only the discriminative
iDMRs (names on the x-axis) are three in total, instead of four as in the case with
all the iDMRs (Figure 5.2). The agreement in clustering between the clusters derived
from all the iDMRs and only from the discriminative is equal to 79.82% (Table 5.1).
Since the clustering agreement is relatively high (almost 80%, implying relatively low
cluster differentiation after the iDMR reduction) and the number of iDMRs is already
considerably reduced from 33 to 14 (see discriminative iDMRs on the x-axis in Figure
5.4), we decide not to decrease further the feature number and stop at 14 discriminative
iDMRs. Therefore, we proceed with the description of the three final clusters: C1
includes 9.7% of the total neonates, with all of them having the BWS disorder, while
C2 and C3, contain 44.7% and 45.6% of the total neonates, that are BWS free.

Cluster Control Case Control-ART Case-ART
C1 - 90.90 - 9.10
C2 24.50 - 75.49 -
C3 31.73 - 68.27 -

Table 5.2 Frequencies (%) of Status categories (Control, Case, Control-ART, Case-
ART) per VB-DPBM cluster of the beta methylation dataset that contains only the
discriminative iDMRs (see Figure 5.4).

Table 5.2 exhibits the frequencies of the BWS cases and controls (both ART and
non-ART) per cluster. C1 consists in the majority of naturally conceived neonates
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with BWS and C2, as well as C3, are mostly comprised of neonates conceived by ART
without BWS.

Having retrieved the three final clusters in the beta methylation data with only
the discriminative iDMRs, we apply again the discriminative measure and find the
important iDMRs per the final clusters. In Table 5.3, the discriminative iDMRs
are given with order of addition, as well as accuracy level3. In particular, C1 is
almost exclusively formed due to the hypomethylation of the KCNQ1OT1:TSS-DMR
that provides discriminative accuracy 91.7%, validating our speculations about the
importance of this imprinted region based on the heatmap in Figure 5.2. Specifically,
significant hypomethylation of the KCNQ1OT1:TSS-DMR works as a diagnostic for the
BWS (Weksberg et al. [148]), leading to the conclusion that we have correctly selected
this iDMR as the most important for C1, since C1 is the cluster of neonates with BWS.
However, if we want to reach a higher discriminative accuracy, we can include also one
more iDMR, the SNRPN:Int1-DMR2, whose methylation (medium level) adds a 7.77%
in the discrimination of C1, given the KCNQ1OT1:TSS-DMR involvement.

Discriminative
iDMRs

C1 C2 C3

KCNQ1OT1:TSS-DMR ✓1 (0.917)
SNRPN:Int1-DMR1 ✓1 (0.727)
SNRPN:Int1-DMR2 ✓2 (+0.077) ✓1 (0.605)
ZNF331:alt-TSS-DMR2 ✓2

ZNF331:alt-TSSDMR1 ✓2 (+0.384) ✓6 (+0.066)
L3MBTL1:alt-TSS-DMR ✓5

GNASNESP:TSS-DMR ✓3 (+0.205)
SNU13:alt-TSS-DMR ✓4

Table 5.3 Cluster discrimination by specific iDMRs, for each cluster of the beta
methylation dataset with only the discriminative iDMRs. The check mark denotes
the discriminative iDMR, the subscript next to the checkmark defines the entrance
sequence (the forward selection order) of the corresponding iDMR and the number in
the parenthesis shows the discriminative accuracy level we reach after the selection
of this iDMR (only for the first selected iDMR). Subsequent selections display their
addition on the accuracy by the “+” sign. iDMRs with no addition serve as intermediate
steps for reaching higher accuracy at the next forward iterations. The last added iDMR
signifies convergence of the forward selection algorithm at 10−3.

Regarding C2, the primary iDMR whose methylation level discriminates this cluster
from the rest is the SNRPN:Int1-DMR2, with accuracy 60.5%, while the ZNF331:alt-
TSSDMR1 increases the discriminative accuracy by 38.4%. As for C3, the first added

3We denote that the last added iDMR per cluster is the one corresponding to convergence of the
forward selection algorithm at 10−3 units.
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iDMR is the SNRPN:Int1-DMR1 with 72.7% contribution in the discrimination, whilst
four more are added with the ZNF331:alt-TSS-DMR2, L3MBTL1:alt-TSS-DMR and
SNU13:alt-TSS-DMR not increasing the discriminative accuracy per se, however their
presence is important to reach the final total accuracy of 99.8%. As for the methylation
pattern of these two clusters, we cannot find bold methylation differences between
them by looking at the heatmap in Figure 5.4 (similar methylation colours).

Discriminative iDMRs
of C2 and C3

Wilcoxon test: p-value

SNRPN:Int1-DMR1 0.235
SNRPN:Int1-DMR2 0.959
ZNF331:alt-TSS-DMR2 <0.001
ZNF331:alt-TSSDMR1 <0.001
L3MBTL1:alt-TSS-DMR <0.001
GNASNESP:TSS-DMR <0.001
SNU13:alt-TSS-DMR <0.001

Table 5.4 Wilcoxon rank sum test for the difference in mean beta-intensities between C2
and C3, per discriminative iDMR of C2 and C3. P-values < 0.001 indicate significant
methylation difference between the two clusters for this iDMR.

Consequently, to understand the partition mechanism for C2 and C3, we perform the
Wilcoxon sum rank test on each of the discriminative iDMRs of these two clusters.
From Table 5.4, we have strong evidence (p-value < 0.001) that all the C2 and C3
discriminative iDMRs have different mean methylation between these two clusters,
except the SNRPN:Int1-DMR1 and SNRPN:Int1-DMR2. Therefore, even if the heatmap
does not display differentiations on the methylation pattern, the VB-DPBM algorithm
manages to discriminate C2 and C3 based on mean differences in specific discriminative
iDMRs. However, it is not straightforward which of the control groups (C2 and C3) is
more damaged in terms of iDMR alterations.

At this point, for the beta methylation data with the 14 discriminative iDMRs, we
test the agreement in clustering between the VB-DPBM algorithm and the three
non-probabilistic clustering methods, discussed in Chapter 4. Particularly, these are
K-means, Hierarchical clustering and DBSCAN, and the agreement with the VB-DPBM
is only 56%, 55% and 54% respectively. We then do comparisons only between the three
non-probabilistic clustering methods and notice they do not agree in high degree either
(approximately 50% concordance) in their clustering. Therefore, we conclude that the
current dataset with the beta-intensities per discriminative iDMR is a challenging
data type to conduct analysis on. We therefore proceed to the analysis of the count
and binary methylation data, aiming at finding more informative and robust results
regarding the clustering and the methylation pattern of each cluster.
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5.2.2 Count Methylation Data

The second instance of data to be analyzed in this section concerns counts and specifically
the number of significantly affected CpGs (alteration in normal methylation level) per
iDMR. A suitable probabilistic clustering technique for this type of data is the VB-
DPPM algorithm. More precisely, the VB-DPPM models the probability of events
occurring in an interval such as the number of abnormally methylated CpGs sites within
the iDMR. We prefer the variational Dirichlet Process Poisson mixture model over the
variational Dirichlet Process Binomial mixture model (Appendix B, Subsection B.2.2)
because the CpGs within an iDMR are not independent as the Binomial experiment
would require.

In this section, we start the analysis by clustering the count methylation data with
all the iDMRs present. Specifically, Figure 5.5 displays the six clusters in which the
dataset is split, with C3 appearing to be the group of neonates that records the most
significantly altered CpG sites compared to the rest of the groups, especially in the
KCNQ10T1:TSS-DMR. The cluster C3 contains again all those newborns with the
BWS phenotype, revealing the success of the VB-DPPM in clustering together the
BWS cases. At this point we highlight the “Sex” column on the left of the figure
which visually indicates the allocation of the two genders into each cluster. Table 5.5
quantifies this allocation.

Cluster Female Male
C1 3% 4%
C2 5% 3%
C3 5% 6%
C4 6% 8%
C5 9% 11%
C6 72% 68%

Table 5.5 Allocation of female and male neonates (in %) into the VB-DPPM clusters
of the count methylation dataset.

In particular, females and males appear to be almost homogeneously assigned into the
clusters. Given the Chi-squared test, we have strong evidence that gender is not a
confounding parameter (Chisq.test = 1.33, p-value= 0.93), therefore the clustering is
driven by the methylation profile and not the sex of the newborn. Regarding the rest
of the clusters, C1, C2, C4, C5 and C6 refer to BWS free neonates and each one shows
different levels of CpG alteration. The platform effect (EPIC, 450K) has been a priori
removed from the count methylation dataset, during the construction of the counts,
and there is no need for extra actions. Specifically, the median beta-intensities of the
BWS controls from the EPIC array are used as reference level to declare a CpG site of
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Figure 5.5 Clustered heatmap of the affected CpG counts in neonates, via the VB-
DPPM. The x-axis bears the iDMRs (33), while y-axis the samples (228 neonates).
The colour scale of the counts starts from blue (zero CpGs affected within iDMR),
scales up to white (around 25 CpGs affected) and concludes to red (> 40 altered CpGs).
Clusters column on the left of x-axis displays the variational clusters in different colour
(mixing weights are also given on the right). Status and Sex are shown for each cluster.
The clusters are presented in an increasing mixing weight sequence (smallest cluster on
top, largest at the bottom).
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Figure 5.6 Clustered heatmap of the affected CpG counts in neonates -via VB-DPPM-
only on the discriminative iDMRs. The x-axis corresponds to the iDMRs (26), while
y-axis the samples (228 neonates). The colour scale of the counts begins with blue
(zero CpGs affected within iDMR), rises up to white (around 25 CpGs affected) and
concludes to red (> 40 altered CpGs). Clusters column on the left of x-axis shows the
clusters in different colour (mixing weights and cluster indices are given on the legend).
Status and Sex are displayed for each cluster too. The clusters are presented in an
increasing mixing weight sequence (smallest cluster on top, largest at the bottom).
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each neonate - either from 450K or EPIC platform - significantly or not significantly
affected and thus, this contrast automatically adjusts the effect of the confounder.

Clustering on Discriminative iDMRs

As a subsequent analysis step, we clean the count methylation data by selecting the
iDMRs that discriminate each cluster from the rest. We then join the discriminative
iDMRs for each cluster into one set and apply the VB-DPPM algorithm again on the
reduced dataset (only with the discriminative iDMRs). The clustering is displayed in
Figure 5.6, where the final number of clusters is five instead of six (six was in Figure
5.5). The concordance between the clusters based on all the iDMRs (Figure 5.5) and
those based only on the discriminative (Figure 5.6) is 90.35% (Table 5.6), denoting
that the removal of the noisy iDMRs is not changing considerably the clustering results.
Therefore, we conclude at not reducing further the number of iDMRs and retain the
clustering results in Figure 5.6 for further analysis.

Number of clusters Percentage of agreement (%)
All iDMRs 6

90.35
Discriminatory iDMRs 5

Table 5.6 Number of clusters in the count methylation dataset with all the iDMRs and
with only the discriminatory ones. The percentage of agreement, based on the measure
described in Chapter 4, Section 4.3.3, is also calculated. Rate equal to 100% indicates
common clusters (all points are identically allocated in the full and reduced dataset),
while the opposite (values close to 0%) implies considerably differing clusters.

Cluster Control Case Control-ART Case-ART
C1 - - 100 -
C2 12.50 - 87.50 -
C3 - 90.90 - 9.10
C4 26.92 - 73.07 -
C5 30.12 - 69.87 -

Table 5.7 Frequencies (%) of Status categories (Control, Case, Control-ART, Case-
ART) per VB-DPPM cluster of the count methylation dataset that contains only the
discriminative iDMRs (see Figure 5.6) .

Concerning the allocation of the neonates into the final clusters, as in the beta methy-
lation data analysis, one of the five groups incorporates 9.7% of the total neonates
(cluster C3) that also bear the rare developmental BWS disorder and have been ei-
ther naturally or artificially conceived. These newborns also seem to have the most
aberrantly methylated CpG sites per iDMR (white coloured samples in C3). The
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four remaining clusters refer to BWS controls neonates (ART and non-ART) whose
iDMRs have gradually less affected sites, with decreasing order: C2, C1, C4 and finally
C5. The distribution of controls and cases within each group is provided in Table 5.7.
Cluster C3 consists mostly of BWS neonates conceived naturally, whereas C1, C2, C4
and C5 mainly of newborns without BWS that have been conceived through ART.

To assist in picturing the gradient of methylation alterations, we set the clusters in
order of modification degree, starting from low to high - C5, C4, C1, C2 and C3. The
cluster C3, with the highest alteration, consists of neonates with the BWS disorder,
ascertaining again the success of the VB-DPPM algorithm in clustering together the
BWS cases. The interest although is captured on the clusters of neonates without
the BWS disorder who are also mainly conceived by ART (C5, C4, C1 and C2). In
particular, we easily observe in the heatmap (Figure 5.6) this gradient of modifications
for the controls groups that goes as follows:

1. C5: 72.8% neonates with negligible CpG alteration in all iDMRs
2. C4: 11.4% neonates with little CpG alteration in few iDMRs
3. C1: 2.2% neonates with some CpG alteration in some iDMRs
4. C2: 3.5% neonates with higher CpG alteration in some iDMRs.

Subsequently, this pattern manifests that neonates that have been artificially conceived,
and do not have the BWS phenotype, may still have recorded some abnormal methyla-
tion on a few of their iDMRs, implying possible association of ART with potentially
ongoing imprinting disorders.

Responsibilities

On a different note, we present here the superiority of the variational mixture models
at providing a confidence level regarding the allocation of each neonate into a cluster.
As we have discussed in Chapter 2, Section 2.6, mixture models allow a sample to be
assigned into each cluster with a probability resulting in a vector of responsibilities.
In Figure 5.7, we illustrate the responsibilities table in a heatmap form for the count
methylation dataset. In this heatmap we can straightforwardly see that the BWS
neonates of C2 and the controls of C1 and C3 are almost exclusively assigned into
their cluster (red colour). Regarding C4 and C5, there are a few BWS-free neonates
conceived by ART who slightly exchange participation between these two clusters and
therefore are less confident to belong to only one (not exclusively allocated into their
main cluster but have some probability to belong to the other too). This result supplies
further information on a neonate level for future investigation. However, since the
amount of those neonates is low, we proceed our analysis by assigning them into the
cluster they are more probable to belong (final clusters in Figure 5.6).
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Figure 5.7 Heatmap of the responsibilities produced by the VB-DPPM for the count
methylation dataset. Each row represents a neonate while the columns the final clusters
(those in Figure 5.6). The color scale corresponds to the probability of a neonate to
belong in each cluster (responsibilities). Red color denotes high probability (close to 1
or exact 1) and black low (close to 0 or exact 0). The Status column is also given.

Final Cluster Discrimination

Here we present and discuss the iDMRs that drive the discrimination of the five final
clusters illustrated in Figure 5.6.4 Table 5.8 presents the discriminative iDMRs along
with their contribution into each cluster, and Figure 5.8 displays the proportion of
methylation alteration for each of the discriminative iDMRs, grouped by the five
clusters.

In particular, based on the information provided by both Table 5.8 and Figure 5.6, we
enlist the most important iDMRs (first added) for each cluster separately, alongside
their methylation alteration:

• For C1: SNRPN:Int1-DMR2 is an imprinting region associated to Prader–Willi
syndrome (PWS) (Cassidy et al. [22]) and discriminates C1 by 96.3%. The
neonates in this cluster have proportion of significantly affected CpGs in this
iDMR between 0 − 16%, with median proportion at 8%.

4These iDMRs are not necessarily the most affected ones. It could be that an iDMR is significantly
affected in one sub-population but unaffected in another leading the separation into two sub-populations
for example.
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• For C2: SNRPN:Int1-DMR2 is again the most salient and discriminates C2 by
94.9%. The neonates in this cluster have 0% (median) affected CpGs in this
iDMR. Only few neonates have up to 4%.

• For C3: KCNQ1OT1:TSS-DMR is the diagnostic region for BWS and discrimi-
nates C3 by 89.5%. All neonates have 70−80% of their CpGs significantly affected
for this iDMR.

• For C4: INPP5F:Int2-DMR discriminates C4 by 80.6%. These neonates have
0% CpGs affected for this iDMR, apart from an outlier newborn.

• For C5: MEST:alt-TSS-DMR is a diagnostic region for the Silver-Russell syn-
drome (SRS) (Wollmann et al. [151]) and discriminates C5 by 66%. Neonates
have 0% (median) affected CpGs in this iDMR.

Discriminative
iDMRs

C1 C2 C3 C4 C5

GRB10:alt-TSS-DMR ✓3 ✓5 (+0.021)
PEG10:TSS-DMR ✓2 (+0.015) ✓2 (+0.010) ✓2 (+0.022)
MEST:alt-TSS-DMR ✓10 (+0.092) ✓3 (+0.014) ✓1 (0.660)
INPP5F:Int2-DMR ✓3 (+0.006) ✓1 (0.806)
KCNQ1OT1:TSS-DMR ✓1 (0.895)
MEG3:TSS-DMR ✓7 (+0.002) ✓6 (+0.002)
NDN:TSS-DMR ✓9

SNRPN:Int1-DMR1 ✓2 (+0.002)
SNRPN:Int1-DMR2 ✓1 (0.963) ✓1 (0.949) ✓4 ✓4 (+0.001)
ZNF331:alt-TSS-DMR2 ✓2 (+0.016)
ZNF331:alt-TSSDMR1 ✓8 ✓4 (+0.001)
GNAS-AS1:TSS-DMR ✓6 (+0.001) ✓5 (+0.032)
GNAS-A/B:TSS-DMR ✓5 ✓6 (+0.015) ✓3 (+0.012)

Table 5.8 Cluster discrimination by specific iDMRs, for each cluster of the count
methylation dataset with only the discriminative iDMRs. The check mark denotes
the discriminative iDMR, the subscript next to the checkmark defines the entrance
sequence (the forward selection order) of the corresponding iDMR and the number in
the parenthesis shows the discriminative accuracy level we reach after the selection
of this iDMR (only for the first selected iDMR). Subsequent selections display their
addition on the accuracy by the “+” sign. iDMRs with no addition serve as intermediate
steps for reaching higher accuracy at the next forward iterations. The last added iDMR
signifies convergence of the forward selection algorithm at 10−3.

General Discussion on Discrimination

SNRPN:Int1-DMR2 is not significantly altered methylation-wise in C2 and is lightly
altered for C1. This could be a hint for possible risk of PWS onset for the artificially
conceived neonates of C1 and maybe avoidance of this risk for C2. Nonetheless, C1
and C2 are comprised of only a little number of neonates, thus this assumption should
be investigated deeper. On the other hand, KCNQ1OT1:TSS-DMR is still righteously



5.2 Applications on DNA Methylation in Neonates 119

the main one responsible for discriminating C3 - the cluster of BWS cases - due to
the high number of significantly affected CpGs compared to the rest of the clusters.
One interesting observation concerns the additional selection of the GNAS-A/B:TSS-
DMR and GNAS-AS1:TSSDMR for C3 (Table 5.8). GNAS-A/B and GNAS-AS1 are
imprinting regions that work as diagnostics for PHP1b - a disorder that causes lack
of response to parathyroid hormone (a hormone that manages vitamin’s D, calcium’s
and phosphorous’ levels in the blood, Mantovani et al. [85]). These diagnostic iDMRs
are detected within C3 in Figure 5.6 as two regions wherein some neonates present
relatively high number of affected CpGs (see also boxplots for these regions in Figure
5.8). This result could potentially indicate the existence or progression of the PHP1b
disorder amongst some of the neonates with BWS.

Moreover, in Figure 5.8 we notice that the discriminative PEG10:TSS-DMR which
is a diagnostic region for the Silver-Russell syndrome (SRS) (Wollmann et al. [151])
appears to be affected to some light extent (50% of the neonates have 2.5 − 7.5%
affected CpGs with median proportion of affected CpGs 5%), potentially implying that
artificially conceived neonates without the BWS may still have recorded some abnormal
methylation in diagnostic regions for SRS that could hint potential risk of onset.

GNAS−A/B:TSS−DMR

SNRPN:Int1−DMR2 ZNF331:alt−TSS−DMR2 ZNF331:alt−TSSDMR1 GNAS−AS1:TSS−DMR

KCNQ1OT1:TSS−DMR MEG3:TSS−DMR NDN:TSS−DMR SNRPN:Int1−DMR1

GRB10:alt−TSS−DMR PEG10:TSS−DMR MEST:alt−TSS−DMR INPP5F:Int2−DMR

C1 C2 C3 C4 C5
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Figure 5.8 Boxplots of proportion of affected CpGs per discriminative iDMR, grouped
by the clusters retrieved from the count methylation analysis. The iDMR is the title of
each subplot and the clusters correspond to those in Figure 5.6, thus the boxplots have
been coloured accordingly. In each iDMR plot, the clusters that are discriminated by
the corresponding iDMR are highlighted in red on the x-axis. The scale of values on
the y-axis is free for better resolution (fixed scale returns distorted resolution).



120 Analysis of DNA Methylation Data

Comparison to Standard Clustering Tools

At this point and having completed the count methylation data analysis, we conduct an
extra test with respect to the robustness of our results. Specifically, we compare the final
five clusters from the VB-DPPM implementation with the clusters derived by K-means,
Hierarchical clustering and DBSCAN. In contrast to the beta methylation analysis
in Section 5.2.1, here the count analysis by VB-DPPM coincides in the clustering
performance by 83% with DBSCAN, 85% with K-means and 82% with Hierarchical
clustering. In conclusion, the analysis on count methylation data has been more
informative and robust than on the beta methylation data, presenting explicitly the
methylation modification level in each cluster and the potential association of ART
with imprinting disorders (Novakovic et al. [105]) such as SRS and PHP1b.

5.2.3 Binary Methylation Data

The last analysis on the set of neonates is with regard to the binary methylation measure
that refers to significantly or non-significantly affected iDMRs for each neonate. The
binary nature of the data indicates the selection of a probabilistic clustering algorithm
with binary support range such as the VB-DPBerM.

In this section, we start again the analysis by clustering via the VB-DPBerM the binary
dataset with all the iDMRs. In Figure 5.9, we observe that the total number of clusters
is nine, with the C1 to C7 showing aberrant methylation on specific iDMRs and C8
on most of the iDMRs, whereas C9 mainly appears with no alterations (non-affected
iDMRs). However, to highlight important characteristics of the data, we find and
remove the iDMRs with no discrimination ability, then we apply again the VB-DPBerM
on the reduced dataset and obtain the final clusters in Figure 5.10.

Clustering on Discriminative iDMRs

Figure 5.10 presents the clusters based only on the discriminative iDMRs. The number
of clusters drops from nine to three while the percentage of clustering agreement
between the full dataset (all iDMRs) and the one with only the discriminative iDMRs
is 85.53% (Table 5.9). Since the concordance rate is relative high (> 85%) and the
number of iDMRs has been considerably reduced from 33 to 15 (see x-axis in Figure
5.10), we decide to stop any further feature reduction and continue the analysis based
on C1, C2 and C3 in Figure 5.10.

In regard to the allocation of the newborns into the three clusters, we have strong
evidence this is not driven by the sex differences (Chisq.test = 0.36, p-value= 0.83; see
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also Table 5.10) but by their methylated iDMRs as depicted in the clustered heatmap
in Figure 5.10.

Number of clusters Percentage of agreement (%)
All iDMRs 9

85.55
Discriminatory iDMRs 3

Table 5.9 Number of clusters in the binary methylation dataset with all the iDMRs
and with only the discriminatory ones. The percentage of agreement, based on the
measure described in Chapter 4, Section 4.3.3, is also calculated. Rate equal to 100%
indicates common clusters (all points are identically allocated in the full and reduced
dataset), while the opposite (values close to 0%) implies considerably differing clusters.

Cluster Female Male
C1 1% 2%
C2 19% 18%
C3 80% 80%

Table 5.10 Allocation of female and male neonates (in %) into the VB-DPBerM clusters
of the binary methylation dataset that contains only the discriminative iDMRs (see
Figure 5.10).

In particular, C1 includes 1.3% of the total neonates, whose abnormal methylation
is reported on their GNASNESP:TSSDMR. C2 is comprised of 18.9% of the total
neonates, who present multiple significantly affected iDMRs, contrarily to C3 where the
79.8% of the samples refer to neonates with non important alteration in their iDMRs
(grey colour).

Cluster Control Case Control-ART Case-ART
C1 33.33 - 66.66 -
C2 11.62 46.51 37.20 4.65
C3 28.57 - 71.42 -

Table 5.11 Frequencies (%) of Status categories (Control, Case, Control-ART, Case-
ART) per VB-DPBerM cluster of the binary methylation dataset that contains only
the discriminative iDMRs (see Figure 5.6) .

At this point, we stress out the low dimensionality of the real datasets under study.
Updated conclusions may be revealed in larger sizes. However, we proceed with the
discussion based on these results. Regarding the frequencies of the BWS cases and
controls into the three clusters, C1 is a control group and especially a cluster of
artificially conceived neonates, same as C3. Nonetheless, the interest is captured in
C2. In the previous beta methylation and count methylation data analyses, neonates
with BWS were all uniquely clustered in one cluster, while the newborns without
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Figure 5.9 Clustered heatmap of the binary methylation data. Clustering achieved
by the VB-DPBerM. The x-axis stores the iDMRs (33 in total), while y-axis the
samples (228 neonates). The binary values are either grey (coded by 0, denoting
non-significantly affected iDMR) or black (coded by 1, implying significantly affected
iDMR). The Clusters column shows the data clusters in different colours (mixing
weights are displayed on the right of the heatmap for each cluster). Status and Sex are
also given for each cluster.
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Figure 5.10 Clustered heatmap of the binary methylation data -via the VB-DPBerM-
only for the discriminative iDMRs. The x-axis represents the reduced iDMRs (15 in
total), while y-axis the samples (228 neonates). The binary values are either grey
(coded by 0, denoting non-significantly affected iDMR) or black (coded by 1, implying
significantly affected iDMR). The Clusters column displays the three neonates’ clusters
in different colours (mixing weights and cluster indices are given on the legend). Status
and Sex are also provided for each cluster.
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BWS in different ones. Here, C2, which is the cluster with the most affected iDMRs,
encompasses both neonates with and without BWS (Table 5.11). Particularly,

• 51.16% are neonates with BWS
• 48.82% are neonates without BWS (with the majority conceived by ART)

Based on these results, we could suspect that neonates who have been mostly conceived
by ART seem to have enough number of significantly altered iDMRs in order to be
grouped along with the cases of BWS who have a lot of alterations. To enforce this
conclusion, we apply the discriminative measure again, for each of the three clusters, so
as to discover which iDMRs are important in discriminating C3, as well as C1 and C2.
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Figure 5.11 Heatmap of the responsibilities produced by the VB-DPBerM for the binary
methylation dataset. Each row represents a neonate while the columns the final clusters
(those in Figure 5.10). The color scale corresponds to the probability of a neonate to
belong in each cluster (responsibilities). Red color denotes high probability (close to 1
or exact 1) and black low (close to 0 or exact 0). The Status column is also given.

Finally, we present the responsibilities heatmap for the binary methylation dataset
in Figure 5.2.3. We observe that the neonates of C1 and C2 have been exclusively
allocated into their cluster (red colour). Concerning the neonates of C3, these are
controls conceived by ART and are primarily allocated into C3 (big red rectangular);
however these neonates have also a non-zero but low probability to belong in C2 too
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(grey rectangular), where C2 is the cluster of BWS cases. Nevertheless, this probability
is considerably lower, therefore we are quite confident to keep those neonates into their
main cluster (C3).

Discriminative
iDMRs

C1 C2 C3

GRB10:alt-TSS-DMR ✓2 (+0.018) ✓2 (+0.030)
HTR5A:TSSDMR ✓8 (+0.002) ✓7 (+0.027)
IGF2:Ex9-DMR ✓5

KCNQ1OT1:TSS-DMR ✓1 (0.700) ✓1 (0.685)
SNRPN:Int1DMR1 ✓6 (+0.002) ✓8 (+0.002)
ZNF597:TSSDMR ✓5 ✓6 (+0.003)
GNASNESP:TSS-DMR ✓1 (0.978) ✓4 (+0.017) ✓4 (+0.015)
GNASXL:TSSDMR ✓7 (+0.028)
SNU13:alt-TSS-DMR ✓3 (+0.012) ✓3 (+0.011)

Table 5.12 Cluster discrimination by specific iDMRs, for each cluster of the binary
methylation dataset having removed the non-discriminatory iDMRs. The check mark
denotes the discriminative iDMR, the subscript next to the checkmark defines the
entrance sequence (the forward selection order) of the corresponding iDMR and the
number in the parenthesis shows the discriminative accuracy level we reach after the
selection of this iDMR (only for the first selected iDMR). Subsequent selections display
their addition on the accuracy by the “+” sign. iDMRs with no addition serve as
intermediate steps for reaching higher accuracy at the next forward iterations. The
last added iDMR signifies convergence of the forward selection algorithm at 10−3 units.

Final Cluster Discrimination

Here we present and discuss the iDMRs that drive the discrimination of the three final
clusters illustrated in Figure 5.10. Table 5.12 presents the discriminative iDMRs along
with their contribution into each cluster, and Figure 5.12 displays the proportion of
neonates with significant alteration in each of the discriminative iDMRs, grouped by
the three clusters.

• For C1: GNASNESP:TSS-DMR is a PHP1b associated iDMR and discriminates
C1 by 97.8%. The neonates in this cluster are all significantly affected in this
iDMR.

• For C2: KCNQ1OT1:TSS-DMR is the diagnostic region for BWS and discrimi-
nates C2 by 70%. 53% of the neonates in this cluster are significantly affected in
this iDMR.

• For C3: KCNQ1OT1:TSS-DMR is the most important here too and discriminates
C3 by 68.5%. All neonates in this cluster are not affected in this iDMR (0%).
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Figure 5.12 Plots of proportion of affected samples per cluster (binary methylation
analysis), within the discriminative iDMR. The iDMR is the title of each subplot and
the clusters correspond to those in Figure 5.10, thus the points have been coloured
accordingly, as well as given shapes cluster-wise. In each iDMR plot, the clusters that
are discriminated by the corresponding iDMR are highlighted in red on the x-axis. The
scale of values on the y-axis is free for better resolution (fixed scale returns distorted
resolution).

General Discussion on Discrimination

The irregular methylation of GNASNESP:TSS-DMR in C1 neonates could imply that
newborns without BWS may still bear the possibility of developing the PHP1b disorder.
However, this is a result based solely on a very small sample size (C1 contains only
three neonates) and cannot be taken for granted. As for KCNQ1OT1:TSS-DMR, it
discriminates by rights C3 and C2 since in the former newborns are BWS free with
unaffected methylation in this iDMR, whereas in the latter the neonates are BWS cases
and are considerably affected in this genomic region. For the C2 cluster, there is one
more interesting discriminative iDMR, the GRB10:alt-TSS-DMR, which is associated
to the SRS. The abnormal methylation record of this iDMR in neonates with BWS,
and in neonates conceived artificially without BWS (both newborn types clustered in
C2) could hint over existence or onset of the SRS disorder in BWS cases or controls
conceived by ART.
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Comparison to Standard Clustering Tools

To finish the binary analysis, we compute the agreement of our clustering results with
K-means, Hierarchical clustering and DBSCAN. In particular, the VB-DPBerM clusters
coincide with the ones suggested from K-means by 88.2%, from Hierarchical by 90%
and from DBSCAN by 95%, signifying robust clusters. In summary of the binary
methylation results, we have reasons to assume that artificially conceived neonates
without the BWS phenotype who although have significantly affected iDMRs, like
the GRB10:alt-TSS-DMR and the GNASNESP:TSS-DMR, may present high risk of
developing imprinting disorders in the future such as SRS or PHP1b. Moreover, neonates
with BWS may have or be prone to develop extra imprinting disorders (SRS and/or
PHP1b), based on irregular methylation records on the same GRB10:alt-TSS-DMR
and GNASNESP:TSS-DMR iDMRs.

5.3 Consensus Results

Having performed each analysis separately (beta methylation data, count methylation
data and binary methylation data), we decide to summarise the results of the most
informative ways of analysing DNA methylation - binary and counts - in order to create
a consensus that could open discussion regarding the risk of onset of developmental
disorders and the association of ART with abnormal DNA methylation in iDMRs5.
Following this, we comment upon the common discriminative iDRMs in both analyses.

Risk groups

iDMR alteration Binary analysis Count analysis
Signalling C1, C2 C1, C2, C3, C4

Non-signalling C3 C5
Table 5.13 Level of iDMR alteration in the clusters of the binary and count analysis.
The signalling and non-signalling clusters are supplied per analysis.

We begin by grouping in Table 5.13 the clusters of each analysis (counts and binary6)
into two categories. The first one is called “Signalling” and accommodates clusters
wherein the neonates have some or many iDMRs abnormally methylated and there is
signal of high aberrant methylation. The second one is called “Non-signalling” and
includes clusters wherein the neonates have little or none iDMRs aberrantly methylated

5This work is not a hypothesis testing. It is more like a descriptive analysis of the summarised
clustering results with the intention to capture potential patterns of ART association with imprinting
disorder and provoke discussion for further investigations.

6The clusters refer to the final clusters based on only the discriminative iDMRs for each analysis.
Specifically, for the count methylation analysis, C1 to C5 correspond to the clusters in Figure 5.6 and
for the binary methylation analysis C1, C2 and C3 to the clusters in Figure 5.10.
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(low signal). This grouping is based on the earlier discussion made in each analysis
separately.

Predicated on Table 5.13, we define three groups of neonates according to their allocation
into “Signalling” or “Non-signalling” clusters in each of the two analyses. For instance,
if a newborn is assigned into C2 in the binary analysis and into C3 in the count analysis
(both “Signalling” clusters) then this neonate is placed into the High Risk group in Table
5.14. For this newborn, we would expect to have some aberrantly methylated iDMRs
given the two methods agreed to allocate it into “Signalling” clusters. This could hint
the predisposition or existence of an imprinting disorder for this neonate. Therefore,
these three risk groups could also be associated with low, medium or high signalling
concerns of potential risk for onset of a rare developmental disorder or predisposition
to develop one.

Here we provide the definition for each group:

• The high risk category is defined as the group of neonates who have been allocated
into “Signalling” clusters in both analyses. Specifically, these are the newborns
that in the binary methylation analysis were assigned into C1 or C2 (high signal)
AND in the count methylation analysis into C1, C2, C3 or C4 (high signal).

• The moderate risk category is defined as the group of neonates who have been
allocated into a “Signalling” cluster in one analysis, while in the other into a
“Non-signalling”. These are the newborns that in the binary analysis were assigned
into C1 or C2 (high signal) AND in the count analysis into C5 (low signal), OR
in the count analysis into C1, C2, C3 or C4 (high signal) and in the binary into
C3 (low signal).

• The low risk category is defined as the group of neonates who have been allocated
into “Non-signalling” clusters in both analyses. These are newborns that in
binary analysis were assigned into C3 (low signal) AND in the count analysis
into C5 (low signal).

Table 5.14 exhibits the distribution of the three risk levels within the BWS cases and
controls. We notice that all cases of BWS are allocated into the high risk category,
as we normally expected, whilst neonates without BWS (controls/controls-ART) are
mainly assigned within the low risk category (82.8%/73.6%). Nonetheless, controls,
and especially conceived by ART, seem to occupy a place into the moderate and high
risk categories too (18.9% and 7.4% respectively) potentially insinuating probable
association of ART with the onset or predisposition of rare developmental imprinting
disorders (based on recorded methylation patterns in their imprinted regions).
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Controls Controls-ART Cases (ART/non-ART)
High Risk 6.9% (4) 7.4% (11) 100% (22)

Moderate Risk 10.3% (6) 18.9% (28) 0% (0)
Low Risk 82.8% (48) 73.6% (109) 0% (0)

Table 5.14 Allocation rates of risk levels within the naturally and artificially conceived
neonates (Controls/Controls-ART), as well as neonates with BWS (Cases). The risk
levels are regarding the significance of aberrantly affected iDMRs, associated to the
potential onset of imprinting disorders (High Risk, Moderate Risk and Low Risk).
The allocation percentages are computed column wise (given Status category). The
parentheses include the number of newborns in each category.

Common discriminative iDMRs

Finally, we append the common discriminative iDMRs (regardless of being first con-
tributors or not in the discrimination of a cluster) in the count and binary methylation
analysis, along with information on their methylation profile for the clusters they
discriminate, provided by Figure 5.8 and Figure 5.12:

• GRB10:alt-TSS-DMR:
– Binary: C1 → 25% affected neonates and C3 → 0% affected neonates
– Counts: C3 → 9 − 20% affected CpGs for 50% of the neonates (those in the

interquartile range) and C5 → 0% except two neonates with 4 − 9%
• KCNQ1OT1:TSS-DMR:

– Binary: C2 → 53% affected neonates and C3 → 0% affected neonates
– Counts: C3 → 70 − 80% affected CpGs for 50% of the neonates

• SNRPN:Int1DMR1:
– Binary: C2 → 7% affected neonates and C3 → 0% affected neonates
– Counts: C1 → 0 − 6% affected CpGs for 50% of the neonates (those in the

interquartile range).

In a nutshell, three discriminative iDMRs are common in the count and binary analyses.
GRB10:alt-TSS-DMR (associated with SRS) appears to be rather affected methylation-
wise in some clusters of neonates, and not significantly affected in others (both analyses).
On the other hand, KCNQ1OT1:TSS-DMR (diagnostic region for BWS) has significantly
aberrant methylation (both analyses), whereas SNRPN:Int1DMR1 appears in both
with low alteration. These results, along with the risk groups, can open the path for
inputs and further discussion from experts in the field of imprinting disorders.

5.4 Summary

The analyses of the same data and same birth cohort by three different measures (beta
methylation data, count methylation data and binary methylation data) revealed the
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importance of approaching the same problem from multiple perspectives achieving
more robust conclusions, while giving preference to the most informative approaches.
In the beta methylation data, the clustering algorithm managed to cluster together
neonates with the BWS disorder predicated on their hypomethylated iDMRs (mainly
KCNQ1OT1:TSS-DMR). However, the rest two clusters of newborns without the BWS
were not easily distinguishable in terms of methylation alteration, rendering this version
the least informative to deduce further results. In the binary methylation data, the
algorithm identified a subgroup of controls (mostly conceived by ART) with a profile of
imprinting alterations close to cases with congenital imprinting alterations, indicating
possible association of ART with imprinting disorders (Hattori et al. [58]). In the count
methylation data, our method determined five clusters with four of them in controls.
The counts of affected CpGs allowed to detect a gradient of alterations in imprinting
regions of neonates without the BWS who were mostly conceived artificially, implying
potential risk of an imprinting disorder development.

In conclusion, our variational Dirichlet Process mixture models demonstrated success-
ful performance as clustering tools for methylation applications in birth cohorts, as
illustrated in this chapter. The consensus results of the informative binary and count
analysis showed inclination towards the possible impact of ART as aggravating factor
for imprinting disorders onset (Hattori et al. [58]). The discriminative iDMRs that
appeared in both analyses were the diagnostic region for BWS and two more iDRMs
(one associated with SRS outcome) that could be meaningful for additional studies
within the framework of the imprinting disorders.



Chapter 6

Conclusions and Discussion

In this final chapter, we summarize the conclusions of this thesis - especially the real
data analysis presented in the previous chapter - and discuss the utility of our proposed
approaches, along with directions for future work. Overall, this doctoral research
presents novel toolkits for analyzing DNA methylation data measured in different
ways due to the specific platform used or tailored transformed for the aim of the
analysis. Moreover, it includes advanced methods for clustering discrete methylation
data affected by confounding parameters such as sex, age, ethnicity etc. The adjustment
for confounding effects has only been made for continuous methylation data (beta-
intensities) by modelling the beta regression residuals instead of the original data.
However, cluster analysis for discrete DNA methylation measurements that accounts for
confounding effects has never been accomplished before due to the difficulty in specifying
the residuals’ distribution. This is the motive that inspired us to build model-based
clustering algorithms that allow for confounding parameters into an internal regression
process, avoiding the specification of the residuals’ distribution. In this respect, the
regression-clustering algorithms presented in this thesis are an important addition to
the literature. Furthermore, one more valuable contribution of this work concerns the
adoption of the second step analysis that follows the model-based clustering inference.
This is the posterior selection of those features - here genetic loci - that are most
important for segregating individuals into groups.

6.1 Summary

To test the performance and applicability of the proposed methods, we performed
simulation tests for the models employed in our real analysis chapter. The conclusions
from the simulations tests and the real data applications are briefly summarised below.
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Chapter 4 showed that the models we derived for the DNA methylation cluster anal-
ysis - the variational non-Gaussian Dirichlet Process mixture models - were capable
of clustering successfully both discrete and bounded continuous synthetic datasets.
Specifically, the variational Dirichlet Process Beta mixture model and the variational
Dirichlet Process Poisson and Bernoulli mixture models were rarely dropping below
90% in clustering accuracy when applied to data scenarios with low feature size and
high sample size. The same high level of accuracy was also observed in applications
with datasets of high feature and low sample size, showing that our tools are robust
regarding the different specification of the number of features and samples. On the
other hand, the commonly used non-probabilistic K-means, Hierarchical clustering
and DBSCAN were generally less consistent and more prone to less accurate results
on the same simulated scenarios. Moreover, the implementation of the a posteriori
feature selection measure of Lin et al. [76] on simulated scenarios of high feature size
demonstrated that the reduction of the features’ dimension does not affect the clustering
process, since the simulated number of clusters is retrieved. This result indicates that
the selected features carry enough amount of information for the clustering structure.

Regarding Chapter 5, the analysis of real data from artificially and naturally conceived
neonates with and without the Beckwith-Wiedemann Syndrome (BWS) showed that the
number of affected CpGs per iDMR (count methylation data) and the significantly or
non-significantly affected iDMRs (binary methylation data) were more informative ways
to measure DNA methylation compared to the aggregated beta-intensities per iDMR
(beta methylation data). The two former measures clearly revealed the methylation
pattern in each subgroup of neonates, as well as allowed to detect an upward trend
of methylation alterations in neonates without the BWS who were mostly conceived
artificially, implying potential risk of an imprinting disorder development. The consensus
results of the count and binary methylation data analysis opened the path for discussions
regarding the higher risk of an imprinting disorder onset when artificial reproductive
technologies are present; however the results are not unequivocal and further studies
need to be performed on higher datasets.

6.2 Discussion

Our proposed clustering tools, apart from the DNA methylation applications, can be
applied to any scenario that aims to cluster data of identically distributed features
(i.e., all features are assumed to be Beta distributed, or Poisson, or Binomially) and
for which the requirement of independence between features is met. In principle, our
models bear certain fine characteristics which render them attractive as clustering tools.

In brief, they are:
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• flexible
– for each data type we propose the appropriate Bayesian hierarchical model

(Poisson, Binomial, Bernoulli, Beta, Gaussian)
– in each sub-population (cluster) the cluster-specific parameters are also

feature-specific (we allow features to have different mean and variance
within the same cluster)

• self-determining
– each model determines automatically the number of components without

the need of pre-fixing the right number
• informative

– each observation (i.e., neonate) has a probability to belong to each cluster
(soft clustering) yielding a level of confidence for the allocation, as opposed
to standard tools like K-means and Hierarchical clustering which assign
completely into one cluster (hard-clustering)

– each sub-population has its own estimated distribution (variational distri-
bution) and hence, further analyses can be made in each cluster regarding
mean, variance, shape of distribution etc.

• scalable
– each model is learned via variational algorithms that easily apply to high

dimensional datasets and provide fast results, in contrast to MCMC methods
• regulatory

– they regulate/account for the impact of confounding parameters (we sup-
ply these models separately defined as “variational mixture models with
covariates”)

• instrumental
– they benefit the application of the discriminative accuracy measure owing

to the fact that each sub-population is modelled by a specific distribution.
This discriminative measure helps at selecting those features that lead the
segregation into the sub-populations.

Regarding the “regulatory characteristic”, the utility and advantage of the “variational
mixture models with covariates” is the permission for cluster-specific effects of the
confounding parameters. More precisely, the effect of the covariates (confounding
parameter) is not global; each sub-population is allowed to receive at different level
this effect. For example, the influence of gender may be higher in some groups than
others, hence our proposed methods will account for that.

Potential applications

The Bayesian clustering tools we propose could possibly be handy tools in the single-cell
RNA sequencing workflow. Current pipelines (Seurat R package, latest version Hao
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et al. [57]) apply graph-based methods like the unsupervised Louvain algorithm (Blondel
et al. [15]) in order to cluster cells based on their gene expression1. We suspect that
our model-based methodologies could efficiently apply to these type of data (number
of gene reads) with the extra advantage of allowing the allocation of a cell into all
clusters with some probability rather than hard clustering into one group with no
level of confidence. Moreover, each group of cells would be modelled by an estimated
distribution and thus, this information would launch the selection process of those
“meta-genes” (principal components of genes) that discriminate the groups.

Computational performance

For our clustering tools, we enhance the algorithm’s convergence speed by adopting
mainly a vectorised code scheme (bypass redundant iterative executions - “for loops”).
To give a basic example, for a dataset of 10K samples and 1K features the variational
method converges in less than 2 minutes compared to a less vectorised code that will
add a few more minutes.

Code availability

On the subject of code availability, the reader can find the code in https://github.com/
Lina-Ger/VBmixtures for most of the presented models, along with dataset simulators
for testing and the corresponding discriminative accuracy forward selection algorithm.
All the algorithms are implemented in R, however someone can straightforwardly
translate the available code to any language of preference due to the clarity of the
implementation.

6.3 Future Research Directions

With respect to future directions, we plan to develop a user-friendly R package for
variational model-based clustering via mixture models for discrete and continuous
distributions. This package will include all the proposed models together with the
discriminative feature selection. The user will be merely responsible for feeding the
function with the dataset and selecting the type of model (Beta/ Gaussian/Poisson
Dirichlet Process mixture etc.). For better performance, the user will be allowed to
tune the initial variational values and set the model hypeparameters (or proceed with
the default).

On another direction, we would like to investigate further the results on the real
neonate dataset in Chapter 5. Particularly, this would concern implementation of our
clustering algorithms on larger datasets (in terms of more iDMRs as well as larger

1Instead of the actual genes, clustering is applied on the gene principal components (PCA), referred
as “meta-genes”.

https://github.com/Lina-Ger/VBmixtures
https://github.com/Lina-Ger/VBmixtures
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cohorts of artificially and naturally conceived neonates) with the aim to reveal a
stronger association of ART with imprinting disorders. Ideally, we would also wish to
discover the existence of cluster-specific phenotypes that co-drive the segregation of the
sub-populations apart from occurrence or not of the Beckwith-Wiedemann syndrome.

Furthermore, we would like to check the performance of our variational non-Gaussian
Dirichlet Process mixture models with covariates, presented in Chapter 3, on DNA
count or binary methylation data that are affected by confounding parameters (i.e.,
datasets with both neonates and adults of different sex). Specifically, we would suggest
to cluster the count methylation data by our “variational Dirichlet Process Poisson
mixture with covariates” and the binary by our “variational Dirichlet Process Bernoulli
mixture with covariates”. Moreover, we aspire to cluster real data produced not only
by Illumina platforms but by whole-genome bisulfite sequencing techniques. This
implementation would concern our variational Dirichlet Process Binomial mixture
model (presented in Appendix B).

A further interesting venue would be to study the problem of clustering data where
N << D while the features are highly correlated. In particular, we would try to
parametrise the feature covariance matrices by latent factors - factor analysis is a
method that accounts for the correlation in multi-dimensional data. This way the
features would collapse into independent factors and we would be able to cluster
the reduced feature-wise dataset based on the variational factor analysers mixtures
proposed by Ghahramani and Beal [50].
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Appendix A

A.1 Variational Lower Bound in Regression Models

We derive and present the Evidence Lower Bounds (ELBO), denoted as L(y; q), for
the variational regression models in Chapter 2, Section 2.5. Note that all the lower
bounds are with respect to the corresponding variational parameters.

A.1.1 Single-response Linear Regression Model

The model is presented in subsection 2.5.1. The variational ELBO is

L(y; q) = −N2 log(2π) − N2 Eσ2[logσ2]

− 1
2
Aq(σ2)

Bq(σ2)
{(y −Xµq(β))

T (y −Xµq(β)) + tr (XTXΣq(β))}

− 1
2 log ∣Σβ∣ −

1
2
(µq(β) −µβ)

T Σ−1
β (µq(β) −µβ)

+A logB − log Γ(A) − (A + 1)Eσ2[logσ2] −B
Aq(σ2)

Bq(σ2)
+ 1

2 log ∣Σq(β)∣

−Aq(σ2) logBq(σ2) + log Γ(Aq(σ2)) + (Aq(σ2) + 1)Eσ2[logσ2] +Aq(σ2),

(A.1)

where Eσ2[logσ2] = logBq(σ2) −Ψ(Aq(σ2)), since σ2 ∼ IG(Aq(σ2), Bq(σ2)).

A.1.2 Multi-response Linear Regression Model

The model is presented in subsection 2.5.1. The variational ELBO is

L(y; q) = −Nq2 log(2π) − N2 EΣ[log ∣Σ∣]

− 1
2tr{(νΣ +N)Qq(Σ) (y −Xµq(β))

T (y −Xµq(β))}



A.1 Variational Lower Bound in Regression Models 147

− νΣq

2 log(2π) − log Γq(
νΣ

2 ) −
νΣ

2 log ∣QΣ∣

− νΣ + q + 1
2 EΣ[log ∣Σ∣]

− q2 log ∣V β∣ −
p

2 ∣Σβ∣

− 1
2tr{Σ−1

β (µq(β) −µβ)TV β(µq(β) −µβ)} +
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(νΣ +N)
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2 log ∣Qq(Σ)∣

+ (νΣ +N) + q + 1
2 EΣ[log ∣Σ∣],

(A.2)

where EΣ[log ∣Σ∣] =
D

∑
d=1

Ψ (νΣ+N+1−d
2 )+D ln 2+ln ∣Qq(Σ)∣, since Σ ∼ IWq (νq(Σ), Qq(Σ)).

A.1.3 Linear Mixed Regression Model

The model is presented in subsection 2.5.2. The variational ELBO is

L(y; q) = −N2 log(2π) − N2 Eσ2
ϵ
[logσ2

ϵ ]
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(A.3)
where Eσ2

ϵ
[logσ2

ϵ ] = logBq(σ2
ϵ ) −Ψ(Aq(σ2

ϵ )), since σ2
ϵ ∼ IG(Aq(σ2
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A.1.4 Probit Regression Model

The model is presented in subsection 2.5.3. The variational ELBO is

L(y; q) = yT log Φ(Xµq(β)) + (1N − y)T log(1N −Φ(Xµq(β)))

− 1
2(µq(β) −µβ)T Σ−1

β (µq(β) −µβ) +
1
2 log ∣Σq(β)∣ −

1
2 log ∣Σβ∣.

(A.4)

A.1.5 Probit Mixed Regression Model

The model is presented in subsection 2.5.4. The variational ELBO is

L(y; q) = yT log Φ(Cµq(β,u)) + (1N − y)T log(1N −Φ(Cµq(β,u)))

− 1
2(µq(β) −µβ)T Σ−1

β (µq(β) −µβ) +
1
2 log ∣Σq(β,u)∣ −

1
2 log ∣Σβ∣

+
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logBul
− log Γ(Aul

) − (Aul
+ Kl

2 ) logBq(σ2
ul
) + log Γ(Aul

+ Kl

2 )}

− N2 log 2π − 1
2
(µq(z) −Cµq(β,u))

T (µq(z) −Cµq(β,u)) .
(A.5)



Appendix B

In this appendix, we present the variational derivation of the Finite and Dirichlet
Process mixtures, as indicated in Chapter 3, Table 3.1. In particular, we exhibit the
priors and the log-prior distributions and then we derive the variational distributions,
along with their logarithmic version (necessary for the ELBO calculation). In all the
subsequent models, y is the N ×D matrix of observations, where N is the number of
samples and D the number of features. The model parameters for each model are either
D ×M matrices, denoted by the dm subscript, or M vectors by the m subscript. M
implies the number of components (this M is fixed and specified in the Finite mixture
models or is a truncated number in the Dirichlet Process mixture models due to the
stick-breaking point assumption). We also supply code snippets at the end for reader’s
reference.

B.1 Mean Field Finite Mixture Models

Here, we provide only the equations for the variational Finite Poisson mixture to avoid
repetition, since the rest Finite mixtures in Table 3.1 are denoted as “easy to derive”.

B.1.1 Variational Finite Poisson Mixture

y∣λ,z ∼
N

∏
n=1

D

∏
d=1

M

∏
m=1
[Poisson(ynd∣λdm)]znm . (B.1)

The likelihood is

P (y∣λ,z) =
N

∏
n=1

D

∏
d=1

M

∏
m=1
[λdm

ynd

ynd! exp(−λdm)]
znm

. (B.2)

The log-likelihood is

logP (y∣λ,z) =
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm [ynd logλdm − λdm − log ynd!] . (B.3)

The Categorical prior on the latent allocation is
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P (z∣π) =
N

∏
n=1

M

∏
m=1

πznm
m . (B.4)

The log-Categorical prior is

logP (z∣π) =
N

∑
n=1

M

∑
m=1

znm logπm. (B.5)

The Dirichlet prior on the mixing weights is

P (π) = C−1(ϕ0)
M

∏
m=1

π
(ϕ0m−1)
m , with C−1(ϕ0) =

Γ(
M

∑
m=1

ϕ0m)
M

∏
m=1

Γ(ϕ0m)
. (B.6)

The log-Dirichlet prior is

logP (π) = − logC(ϕ0) +
M

∑
m=1
(ϕ0m − 1) logπm. (B.7)

The Gamma prior on the model parameter is

P (λ) =
D

∏
d=1

M

∏
m=1

b0dm
a0dm

Γ(a0dm)
λdm

(a0dm−1) exp(−b0dmλdm). (B.8)

The log-Gamma prior is

logP (λ) =
D

∑
d=1

M

∑
m=1
[a0dm log b0dm − log Γ(a0dm) + (a0dm − 1) logλdm − b0dmλdm] . (B.9)

The variational derivation of the latent allocation is
log q(z) ∝ E/z [logP (y∣λ,z) + logP (z∣π)]

∝ E/z [
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {ynd logλdm − λdm − log ynd!} +
N

∑
n=1

M

∑
m=1

znm logπm]

=
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {yndEλdm
[logλdm] −Eλdm

[λdm] − log ynd!}

+
N

∑
n=1

M

∑
m=1

znmEπm [logπm]

=
N

∑
n=1

M

∑
m=1

znm{
D

∑
d=1
yndEλdm

[logλdm] −
D

∑
d=1

Eλdm
[λdm] −

D

∑
d=1

log ynd!

+Eπm [logπm]}.

(B.10)
Equation (B.10) reminds the logarithmic kernel of a Categorical density after we set
the expression inside the brackets as log ρnm

log ρnm =
D

∑
d=1
yndEλdm

[logλdm] −
D

∑
d=1

Eλdm
[λdm] +Eπm [logπm] , (B.11)

concluding with

log q(z) ∝
N

∑
n=1

M

∑
m=1

znm log ρnm. (B.12)
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In order for q(z) to be equal and not just proportional to a Categorical density the
variational parameter of z (here will be denoted as r) should be constrained to belong
in the [0,1] interval and have

M

∑
m=1

rnm = 1. Hence, rnm = ρnm/∑M
j=1 ρnj. The variational

log-Categorical density is

log q(z) =
N

∑
n=1

M

∑
m=1

znm log rnm. (B.13)

The variational Categorical density is

q(z) =
N

∏
n=1

M

∏
m=1

rnm
znm . (B.14)

The variational derivation of the mixing weights is

log q(π) ∝ E/π [logP (z∣π) + logP (π)]

∝ E/π [
N

∑
n=1

M

∑
m=1

znm logπm +
M

∑
m=1
(ϕ0m − 1) logπm]

=
M

∑
m=1
(

N

∑
n=1

Eznm[znm] + ϕ0m − 1) logπm.

(B.15)

Equation (B.15) is the kernel of a Log-Dirichlet density if we set the parenthesis
expression, except from the −1 term, as ϕm

ϕm =
N

∑
n=1

Eznm[znm] + ϕ0m. (B.16)

The variational log-Dirichlet density is

log q(π) = − logC(ϕ) +
M

∑
m=1
(ϕm − 1) logπm. (B.17)

The variational Dirichlet density is

q(π) = C−1(ϕ)
M

∏
m=1

π
(ϕm−1)
m . (B.18)

The variational derivation of the model parameter is

log q(λ) ∝ E/λ [logP (y∣λ,z) + logP (λ)]

∝ E/λ[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {ynd logλdm − λdm} +
D

∑
d=1

M

∑
m=1
{a0dm log b0dm

− log Γ(a0dm) + (a0dm − 1) logλdm − b0dmλdm}]

=
M

∑
m=1

D

∑
d=1
{

N

∑
n=1

Eznm[znm]ynd logλdm −
N

∑
n=1

Eznm[znm]λdm

+ (a0dm − 1) logλdm − b0dmλdm}

=
M

∑
m=1

D

∑
d=1
{(

N

∑
n=1

Eznm[znm]ynd + a0dm − 1) logλdm
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− (
N

∑
n=1

Eznm[znm] + b0dm)λdm}. (B.19)

Equation (B.19) is the kernel of a Log-Gamma density with

adm = a0dm +
N

∑
n=1

Eznm[znm]ynd,

bdm = b0dm +
N

∑
n=1

Eznm[znm].
(B.20)

The variational log-Gamma density is

log q(λ) =
D

∑
d=1

M

∑
m=1
[adm log bdm − log Γ(adm) + (adm − 1) logλdm − bdmλdm] . (B.21)

The variational Gamma density is

P (λ) =
D

∏
d=1

M

∏
m=1

bdm
adm

Γ(adm)
λdm

(adm−1) exp(−bdmλdm). (B.22)

The Evidence Lower Bound (ELBO) is

L(y; q) = Ez,π,λ[logP (y,z,λ,π)] −Ez[log q(z)] −Eπ[log q(π)] −Eλ[log q(λ)]
= Ez,π,λ[logP (y∣z,λ) + logP (z∣π) + logP (π) + logP (λ)]
−Ez[log q(z)] −Eπ[log q(π)] −Eλ[log q(λ)].

(B.23)
The explicit ELBO form is

L(y; q) =
N

∑
n=1

M

∑
m=1

Eznm[znm] log ρnm −
N

∑
n=1

M

∑
m=1

Eznm[znm] log rnm −
N

∑
n=1

D

∑
d=1

log ynd!

+ logC(ϕ) − logC(ϕ0) +
M

∑
m=1
(ϕ0m − ϕm)Eπm[logπm]

+
D

∑
d=1

M

∑
m=1
[a0dm log b0dm − log Γ(a0dm) + (a0dm − adm)Eλdm

[logλdm]

− adm log bdm + log Γ(adm) + (bdm − b0dm)Eλdm
[λdm]].

(B.24)

The variational expectations and posterior estimates of the mixing weights are

Eznm[znm] = rnm,

Eπm[logπm] = Ψ(ϕm) −Ψ(
M

∑
m=1

ϕm) ,

Eλdm
[logλdm] = Ψ(adm) − log bdm,

Eλdm
[λdm] =

adm

bdm

,

πm =
ϕ0m +∑N

n=1 Eznm[znm]
Mϕ0m +N

.

(B.25)
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B.2 Mean Field Dirichlet Process Mixture Models

Here, we present the variational Dirichlet Process mixture models of Table 3.1. In
particular, the variational Dirichlet Process Poisson mixture model and the variational
Dirichlet Process Binomial mixture model. The variational Dirichlet Process Gaussian
mixture with independent features is given in R code version.

B.2.1 Variational Dirichlet Process Poisson Mixture

y∣λ,z ∼
N

∏
n=1

D

∏
d=1

M

∏
m=1
[Poisson(ynd∣λdm)]znm . (B.26)

The likelihood is

P (y∣λ,z) =
N

∏
n=1

D

∏
d=1

M

∏
m=1
[λdm

ynd

ynd! exp(−λdm)]
znm

. (B.27)

The log-likelihood is

logP (y∣λ,z) =
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm [ynd logλdm − λdm − log ynd!] . (B.28)

The Categorical prior on the latent allocation (stick-breaking point representation) is

P (z∣w) =
N

∏
n=1

M

∏
m=1
[wm

m−1
∏
j=1
(1 −wj)]

znm

. (B.29)

The log-Categorical prior is

logP (z∣w) =
N

∑
n=1

M

∑
m=1

znm[logwm +
m−1
∑
j=1

log(1 −wj)]. (B.30)

The Beta prior on the mixing weights is

P (w) =
M

∏
m=1

ϕ0m(1 −wm)(ϕ0m−1). (B.31)

The log-Beta prior is

logP (w) =
M

∑
m=1
[logϕ0m + (ϕ0m − 1) log(1 −wm)] . (B.32)

The Gamma prior on the model parameter is

P (λ) =
D

∏
d=1

M

∏
m=1

b0dm
a0dm

Γ(a0dm)
λdm

(a0dm−1) exp(−b0dmλdm). (B.33)

The log-Gamma prior is

logP (λ) =
D

∑
d=1

M

∑
m=1
[a0dm log b0dm − log Γ(a0dm) + (a0dm − 1) logλdm − b0dmλdm] . (B.34)

The variational derivation of the latent allocation is
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log q(z) ∝ E/z [logP (y∣λ,z) + logP (z∣w)]

∝ E/z[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {ynd logλdm − λdm − log ynd!}

+
N

∑
n=1

M

∑
m=1

znm {logwm +
m−1
∑
j=1

log(1 −wj)}]

=
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {yndEλdm
[logλdm] −Eλdm

[λdm] − log ynd!}

+
N

∑
n=1

M

∑
m=1

znm{Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)]}

=
N

∑
n=1

M

∑
m=1

znm{
D

∑
d=1
yndEλdm

[logλdm] −
D

∑
d=1

Eλdm
[λdm] −

D

∑
d=1

log ynd!

+Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)]}.

(B.35)

Equation (B.35) reminds the logarithmic kernel of a Categorical density after we set
the expression inside the brackets as log ρnm (excluding log y)

log ρnm =
D

∑
d=1
yndEλdm

[logλdm] −
D

∑
d=1

Eλdm
[λdm] +Ewm [logwm] +

m−1
∑
j=1

Ewm [log(1 −wj)] ,

(B.36)
concluding with

log q(z) ∝
N

∑
n=1

M

∑
m=1

znm log ρnm. (B.37)

In order for q(z) to be equal and not just proportional to a Categorical density, the
variational parameter of z will be constrained to belong in the [0, 1] interval and have
M

∑
m=1

rnm = 1. Hence, rnm = ρnm/∑M
j=1 ρnj.

The variational log-Categorical density is

log q(z) =
N

∑
n=1

M

∑
m=1

znm log rnm. (B.38)

The variational Categorical density is

q(z) =
N

∏
n=1

M

∏
m=1

rnm
znm . (B.39)

The variational derivation of the mixing weights is

log q(w) ∝ E/w [logP (z∣w) + logP (w)]

∝ E/w [
N

∑
n=1

M

∑
m=1

znm {logwm +
m−1
∑
j=1

log(1 −wj)} +
M

∑
m=1
(ϕ0m − 1) log(1 −wm)]

=
M

∑
m=1
{

N

∑
n=1

Eznm[znm] logwm + (
N

∑
n=1

M

∑
j=m+1

Eznj
[znj] + ϕ0m − 1) log(1 −wm)} .

(B.40)
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Equation (B.40) reminds the kernel of a Log-Beta density if we set

δm = 1 +
N

∑
n=1

Eznm[znm],

ϕm = ϕ0m +
N

∑
n=1

M

∑
j=m+1

Eznj
[znj].

(B.41)

The variational log-Beta density is

log q(w) =
M

∑
m=1
{log Γ(δm + ϕm) − log Γ(δm) − log Γ(ϕm) + (δm − 1) logwm

+ (ϕm − 1) log(1 −wm)}.
(B.42)

The variational Beta density is

q(w) =
M

∏
m=1

Γ(δm + ϕm)
Γ(δm)Γ(ϕm)

wm
(δm−1)(1 −wm)(ϕ1−1). (B.43)

The variational derivation of the model parameter is

log q(λ) ∝ E/λ [logP (y∣λ,z) + logP (λ)]

∝ E/λ[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {ynd logλdm − λdm} +
D

∑
d=1

M

∑
m=1
{a0dm log b0dm

− log Γ(a0dm) + (a0dm − 1) logλdm − b0dmλdm}]

=
M

∑
m=1

D

∑
d=1
{

N

∑
n=1

Eznm[znm]xnd logλdm −
N

∑
n=1

Eznm[znm]λdm

+ (a0dm − 1) logλdm − b0dmλdm}

=
M

∑
m=1

D

∑
d=1
{(

N

∑
n=1

Eznm[znm]ynd + a0dm − 1) logλdm

− (
N

∑
n=1

Eznm[znm] + b0dm)λdm}.

(B.44)

Equation (B.44) is the kernel of a Log-Gamma density if we set the two parentheses as

adm = a0dm +
N

∑
n=1

Eznm[znm]xnd,

bdm = b0dm +
N

∑
n=1

Eznm[znm].
(B.45)

The variational log-Gamma density is

log q(λ) =
D

∑
d=1

M

∑
m=1
[adm log bdm − log Γ(adm) + (adm − 1) logλdm − bdmλdm] . (B.46)

The variational Gamma density is

P (λ) =
D

∏
d=1

M

∏
m=1

bdm
adm

Γ(adm)
λdm

(adm−1) exp(−bdmλdm). (B.47)
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The Evidence Lower Bound (ELBO) is

L(y; q) =Ez,w,λ[logP (y,z,λ,w)] −Ez[log q(z)] −Eπ[log q(w)] −Eλ[log q(λ)]
=Ez,π,λ[logP (y∣z,λ) + logP (z∣w) + logP (w) + logP (λ)]
−Ez[log q(z)] −Eπ[log q(w)] −Eλ[log q(λ)].

(B.48)
The explicit ELBO form is

L(y; q) =
N

∑
n=1

M

∑
m=1

Eznm[znm] log ρnm −
N

∑
n=1

M

∑
m=1

Eznm[znm] log rnm −
N

∑
n=1

D

∑
d=1

log ynd!

+
M

∑
m=1
[logϕ0m + (ϕ0m − 1) log(1 −wm)]

−
M

∑
m=1
{log Γ(δm + ϕm) − log Γ(δm) − log Γ(ϕm) + (δm − 1) logwm

+ (ϕm − 1) log(1 −wm)}

+
D

∑
d=1

M

∑
m=1
[a0dm log b0dm − log Γ(a0dm) + (a0dm − adm)Eλdm

[logλdm]

− adm log bdm + log Γ(adm) + (bdm − b0dm)Eλdm
[λdm]].

(B.49)

The variational expectations and posterior estimates of the mixing weights are

Eznm[znm] = rnm,

Ewm [logwm] = Ψ(ϕm) −Ψ(δm + ϕm),

Ewm [log(1 −wm)] = Ψ(δm) −Ψ(δm + ϕm),

Eλdm
[logλdm] = Ψ(adm) − log bdm,

Eλdm
[λdm] =

adm

bdm

,

πm = E[wm]
m−1
∏
j=1
(1 −E[wj]).

(B.50)

B.2.2 Variational Dirichlet Process Binomial Mixture

y∣p,z ∼
N

∏
n=1

D

∏
d=1

M

∏
m=1
[Binomial(ynd∣snd, pdm)]znm . (B.51)

The likelihood is

P (y∣p,z) =
N

∏
n=1

D

∏
d=1

M

∏
m=1
[(snd

ynd

)(pdm)ynd(1 − pdm)(snd−ynd)]
znm

. (B.52)

The log-likelihood is
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logP (y∣p,z) =
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm [log (snd

ynd

) + ynd log pdm + (snd − ynd) log(1 − pdm)] .

(B.53)
The Categorical prior on the latent allocation (stick-breaking point representation) is

P (z∣w) =
N

∏
n=1

M

∏
m=1
[wm

m−1
∏
j=1
(1 −wj)]

znm

. (B.54)

The log-Categorical prior is

logP (z∣w) =
N

∑
n=1

M

∑
m=1

znm[logwm +
m−1
∑
j=1

log(1 −wj)]. (B.55)

The Beta prior on the mixing weights is

P (w) =
M

∏
m=1

ϕ0m(1 −wm)(ϕ0m−1). (B.56)

The log-Beta prior is

logP (w) =
M

∑
m=1
[logϕ0m + (ϕ0m − 1) log(1 −wm)] . (B.57)

The Beta prior on the model parameter is

P (p) =
D

∏
d=1

M

∏
m=1

Γ(a0dm + b0dm)
Γ(a0dm)Γ(b0dm)

pdm
(a0dm−1)(1 − pm)(b0dm−1). (B.58)

The log-Beta prior is

logP (p) =
D

∑
d=1

M

∑
m=1
[log Γ(a0dm + b0dm) − log Γ(a0dm) − log Γ(b0dm)

+ (a0dm − 1) log pdm + (b0dm − 1) log(1 − pdm)].
(B.59)

The variational derivation of the latent allocation is
log q(z) ∝ E/z [logP (y∣λ,z) + logP (z∣w)]

∝ E/z[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {ynd log pdm + (snd − ynd) log(1 − pdm)}

+
N

∑
n=1

M

∑
m=1

znm {logwm +
m−1
∑
j=1

log(1 −wj)}]

=
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {yndEpdm
[log pdm] + (snd − ynd)Epdm

[log(1 − pdm)]}

+
N

∑
n=1

M

∑
m=1

znm{Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)]}

=
N

∑
n=1

M

∑
m=1

znm{
D

∑
d=1
yndEpdm

[log pdm] +
D

∑
d=1
(snd − ynd)Epdm

[log(1 − pdm)]

+Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)]}.

(B.60)
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Equation (B.60) is the logarithmic kernel of a Categorical density after we set the
expression inside the brackets as log ρnm

log ρnm =
D

∑
d=1
yndEpdm

[log pdm] +
D

∑
d=1
(snd − ynd)Epdm

[log(1 − pdm)]

+Ewm [logwm] +
m−1
∑
j=1

Ewm [log(1 −wj)] ,
(B.61)

concluding with

log q(z) ∝
N

∑
n=1

M

∑
m=1

znm log ρnm. (B.62)

In order for q(z) to be equal and not just proportional to a Categorical density, the
variational parameter of z (here will be denoted as r) will be constrained to belong
in the [0,1] interval and have

M

∑
m=1

rnm = 1. Hence, rnm = ρnm/∑M
j=1 ρnj. The variational

log-Categorical density is

log q(z) =
N

∑
n=1

M

∑
m=1

znm log rnm. (B.63)

The variational Categorical density is

q(z) =
N

∏
n=1

M

∏
m=1

rnm
znm . (B.64)

The variational derivation of the mixing weights is

log q(w) ∝ E/w [logP (z∣w) + logP (w)]

∝ E/w [
N

∑
n=1

M

∑
m=1

znm {logwm +
m−1
∑
j=1

log(1 −wj)} +
M

∑
m=1
(ϕ0m − 1) log(1 −wm)]

=
M

∑
m=1
{

N

∑
n=1

Eznm[znm] logwm + (
N

∑
n=1

M

∑
j=m+1

Eznj
[znj] + ϕ0m − 1) log(1 −wm)} .

(B.65)
Equation (B.65) reminds the kernel of a Log-Dirichlet density if we set

δm = 1 +
N

∑
n=1

Eznm[znm],

ϕm = ϕ0m +
N

∑
n=1

M

∑
j=m+1

Eznj
[znj].

(B.66)

The variational log-Dirichlet density is

log q(w) =
M

∑
m=1
{log Γ(δm + ϕm) − log Γ(δm) − log Γ(ϕm) + (δm − 1) logwm

+ (ϕm − 1) log(1 −wm)}.
(B.67)

The variational Dirichlet density is

q(w) =
M

∏
m=1

Γ(δm + ϕm)
Γ(δm)Γ(ϕm)

wm
(δm−1)(1 −wm)(ϕ1−1). (B.68)
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The variational derivation of the model parameter is

log q(p) ∝ E/p [logP (y∣p,z) + logP (p)]

∝ E/p[
N

∑
n=1

D

∑
d=1

M

∑
m=1

znm {ynd log pdm + (snd − ynd) log(1 − pdm)}

+
D

∑
d=1

M

∑
m=1
{(a0dm − 1) log pdm + (b0dm − 1) log(1 − pdm)}

=
M

∑
m=1

D

∑
d=1
{

N

∑
n=1

Eznm[znm]ynd log pdm +
N

∑
n=1

Eznm[znm](snd − ynd) log(1 − pdm)

+ (a0dm − 1) log pdm + (b0dm − 1) log(1 − pdm)}

=
M

∑
m=1

D

∑
d=1
{(

N

∑
n=1

Eznm[znm]ynd + a0dm − 1) log pdm

+ (
N

∑
n=1

Eznm[znm](snd − ynd) + b0dm − 1) log(1 − pdm)}.

(B.69)
Equation (B.69) reminds the kernel of a Log-Beta density if we set the two parentheses
as

adm = a0dm +
N

∑
n=1

Eznm[znm]ynd,

bdm = b0dm +
N

∑
n=1

Eznm[znm](snd − ynd).
(B.70)

The variational log-Beta density is

logP (p) =
D

∑
d=1

M

∑
m=1
[log Γ(adm + bdm) − log Γ(adm) − log Γ(bdm)

+ (adm − 1) log pdm + (bdm − 1) log(1 − pdm)].
(B.71)

The variational Beta density is

P (p) =
D

∏
d=1

M

∏
m=1

Γ(adm + bdm)
Γ(adm)Γ(bdm)

pdm
(adm−1)(1 − pm)(bdm−1). (B.72)

The Evidence Lower Bound (ELBO) is

L(y; q) =Ez,w,p[logP (y,z,p,w)] −Ez[log q(z)] −Eπ[log q(w)] −Ep[log q(p)]
=Ez,π,p[logP (y∣z,p) + logP (z∣w) + logP (w) + logP (p)]
−Ez[log q(z)] −Eπ[log q(w)] −Eλ[log q(p)].

(B.73)
The explicit ELBO form is

L(y; q) =
N

∑
n=1

M

∑
m=1

Eznm[znm] log ρnm −
N

∑
n=1

M

∑
m=1

Eznm[znm] log rnm

+
M

∑
m=1
[logϕ0m + (ϕ0m − 1) log(1 −wm)]
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−
M

∑
m=1
{log Γ(δm + ϕm) − log Γ(δm) − log Γ(ϕm) + (δm − 1) logwm

+ (ϕm − 1) log(1 −wm)}

+
D

∑
d=1

M

∑
m=1
{log Γ(a0dm + b0dm) − log Γ(adm + bdm) − log Γ(a0dm) − log Γ(b0dm)

+ log Γ(a0dm) + log Γ(b0dm) + (a0dm − adm)Ep[log pdm]

+ (b0dm − bdm)Ep[log(1 − pdm)]}.

(B.74)

The variational expectations and posterior estimates of the mixing weights are

Eznm[znm] = rnm,

Ewm [logwm] = Ψ(ϕm) −Ψ(δm + ϕm),

Ewm [log(1 −wm)] = Ψ(δm) −Ψ(δm + ϕm),

Epdm
[log pdm] = Ψ(adm) −Ψ(adm + bdm),

Epdm
[(1 − pdm)] = Ψ(bdm) −Ψ(adm + bdm),

πm = E[wm]
m−1
∏
j=1
(1 −E[wj]).

(B.75)

B.3 Code Snippet

Here, we provide a code snippet with our main R function for the variational Dirichlet
Process Gaussian mixture model with independent features. This is a frame of reference
for the reader to help her understand the general code structure of the variational
algorithm in mixture models.

B.3.1 Variational Dirichlet Process Gaussian Mixture (inde-
pendent features)

The main variational function is given with its inputs and outputs defined.



#### safe computation of logsumexp (included in the main function)	
# inputs: 
  ## y: scalar	
# output: 
  ## lse: safe log sum exp value	
logsumexp <- function(y) 
  {	
  # Computes log(sum(exp(x))	
  a <- max(y)	
  lse <- log(sum(exp(y-a))) + a	
  j <- which(!is.finite(lse))	
  if (length(j) > 0) {lse[j] <- a}	

  return(lse)	
}	

#### main function for variational  DP GaussianMix (independent across dimensions)	
# inputs: 
  ## X: NxD data matrix	
  ## M: number of initial components	
  ## alpha/beta: DxM Gamma initial variational matrices for the variance of 

the Gaussians	
  ## m/s2: DxM Gamma initial variational matrices for the mean of the 

Gaussians	
  ## p/q: 1xM initial variational vectors for the stick-breaking point Beta 

parameter 
  ## phi_0: an 1xM vector for the stick-breaking point Beta parameter 
  ## alpha_0/beta_0: DxM Gamma hyperparameter matrices for the variance of 

the Gaussians	
  ## m_0/s2_0: DxM Normal hyperparameter matrices for the mean of the 

Gaussians	
  ## T: the temperature vector for the annealing part (pre-define)	
  ## max_iterations: maximum number of VB iterations	
  ## epsilon: threshold to achieve convergence	
# output: 
  ## alpha/beta: DxM Gamma variational matrices for the variance of the 

Gaussians	
  ## m/s2: DxM Gamma variational matrices for the mean of the Gaussians	
  ## p/q: 1xM variational vectors for the stick-breaking point Beta parameter	
  ## r: NxD variational matrix for the latent allocation z	
  ## L: ELBO values	
  ## w: weight values in each iteration (for evolution purposes)	
  ## printL: print the ELBO values and difference to the previous one	

avb_dpgm <- function(X, M, alpha, beta, m, s2, p, q, alpha_0, beta_0, 
m_0, s2_0, phi_0, T, max_iterations=iter, epsilon=1e-4, 

printL=FALSE)	
{	
  # define the dimensions according to the dataset	
  X <- as.matrix(X)	
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  D <- ncol(X)	
  N <- nrow(X)	

  # initial objects to receive the variational results	
  # initial ELBO	
  L <- rep(-Inf, max_iterations)	

  # initial weights in each iteration	
  w <- matrix(1/M, ncol= M, nrow = max_iterations)	

  # initial weights in final iteration	
  pi <- rep(0, M)	

    ### AVB scheme	
    for (i in 2:max_iterations) 
      {	

      # calculation of expectations contained into the variational parameters	
E.mu <- m
V.mu <- s2
E.logsigma2 <- log(beta) - digamma(alpha)
E.inv_sigma2 <- alpha/beta
E.loglambda <- digamma(p) - digamma(p + q)
E.log1_lambda <-  digamma(q) - digamma(p + q)

      # calculation of terms found in the variational equations	
      N.E.logsigma2 <- matrix(colSums(E.logsigma2, na.rm=TRUE),  nrow=N, 

ncol=M, byrow=TRUE)	
      N.E.inv_sigma2 <- matrix(colSums(E.inv_sigma2, na.rm=TRUE),  nrow=N, 

ncol=M, byrow=TRUE)	
E.log1_lambdaj <- c(0, cumsum(E.log1_lambda)[1:(M-1)])
N.E.log1_lambdaj <- matrix(E.log1_lambdaj, nrow=N, ncol=M, byrow=TRUE)
N.E.loglambda <- matrix(E.loglambda, nrow=N, ncol=M, byrow=TRUE)
log.2pi <- matrix(log(2*355/113), nrow=N, ncol=M)

      inv_s2.x2 <- (X^(2)) %*% E.inv_sigma2	
      inv_s2.x.m <- X %*% (E.inv_sigma2 * E.mu)	
      inv_s2.s2 <- matrix(colSums(E.inv_sigma2 * V.mu), ncol=M, nrow=N, byrow 

= TRUE)	
      inv_s2.m2 <- matrix( colSums(E.inv_sigma2 * (E.mu)^(2)), ncol=M, 

nrow=N, byrow = TRUE)	

D.X_m <-  inv_s2.x2 - 2 * inv_s2.x.m + inv_s2.s2 + inv_s2.m2

      log_rho <- N.E.loglambda + N.E.log1_lambdaj - (D/2) * log.2pi - (1/2) * 
N.E.logsigma2 - (1/2) * D.X_m	

      # the usefulness of logsumexp function	
      S <- apply(log_rho, 1, logsumexp)	
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      log_r <- log_rho - S	

      # the variational parameter of z	
      r <- apply(log_r, 2, exp)	
      # trick to avoid zero values	
      r <- (r + 10^-9)^ Tinv[i] 

      # term into p,q variational parameters	
      Ns <- colSums(r, na.rm=TRUE)	

      # the stick-breaking point variational parameters	
      p <- 1 + Tinv[i] * Ns	
      q <- phi_0 + Tinv[i] * (rev(cumsum(rev(Ns))) - Ns)	

      # term into alpha,mu variational parameters	
r.colSums <- matrix(Ns, nrow=D, ncol=M, byrow=TRUE)

      # first Gamma variational parameter for the variances of the Gaussian 
mixture	

      alpha <- alpha_0 + (1/2) * r.colSums *Tinv[i]	

      # calculation of terms conatined into the second Gamma variational 
parameter	

      x2.r <- t(X^(2)) %*% r	
x.r.m <- (t(X) %*% r) * E.mu
Ns.m2 <- r.colSums * (E.mu)^2
Ns.s2 <- r.colSums * V.mu
N.x_m <- x2.r - 2 * x.r.m + Ns.m2 + Ns.s2
# second Gamma variational parameter for the variances
beta <- beta_0 + (1/2) * N.x_m *Tinv[i]

      # variational Gaussian variance for the means of the Gaussian mixture	
      s2 <- ((1/s2_0) + Tinv[i]* E.inv_sigma2 * r.colSums)^(-1)	

     # variational Gaussian mean for the means of the Gaussian mixture	
      m <- s2 * ((m_0/s2_0) +  Tinv[i]* E.inv_sigma2 * (t(X) %*% r))	

      # the stick-breaking point parameter	
      lambda <- head(p, M-1) / (head(p, M-1) + head(q, M-1))	
      lambda <- c(lambda, 1)	

      # the variational weights after the stick-breaking point computation	
      for (k in 1:M)	
      {	

pi[k] <- lambda[k] * prod(head(1-lambda, k-1))	
      }	

      # the variational weights in each iteration	
      w[i, ] <- round(pi,3)	
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      # update the expectations contained into the ELBO	
E.mu <- m
V.mu <- s2
E.logsigma2 <- log(beta) - digamma(alpha)
E.inv_sigma2 <- alpha/beta
E.loglambda <- digamma(p) - digamma(p + q)
E.log1_lambda <-  digamma(q) - digamma(p + q)

      ## ELBO 
      # each term into the ELBO has been calculated individually 
      l1 <- sum (r * Tinv[i] *log_rho)	
      l2 <- sum(log( phi_0) + (phi_0 - 1) * E.log1_lambda )	
      l3 <- - (D * M /2) * log(2 * 355/113) - (1/2) * (sum( log(s2_0)) + 

sum(s2_0^(-1) * ((E.mu - m_0)^(2) + V.mu)))	
      l4 <- sum(alpha_0 * log(beta_0)) - sum(lgamma(alpha_0)) - sum((alpha_0 

+ 1) * E.logsigma2) - sum(beta_0 * E.inv_sigma2)
l5 <- - sum(r * log(r))

      # useful names for terms in l6	
      log_g.p.q <- lgamma( p + q)	
      log_p <- lgamma(p)	
      log_q <- lgamma(q)	

      l6_1 <-  - sum(log_g.p.q) + sum(log_p) + sum(log_q)	
      l6_2 <-  - sum((p -1) * E.loglambda ) - sum((q -1) * E.log1_lambda)	
      l6 <- l6_1 + l6_2	

      l7 <- (D * M /2) * log(2 * 355/113) + (1/2) * sum(log(V.mu)) + M*D/2	
      l8 <- - sum(alpha * log(beta)) + sum(lgamma(alpha)) + sum((alpha + 1) * 

E.logsigma2) + sum(beta * E.inv_sigma2)

      # Total ELBO calculation	
      L[i] <- l1 + l2 + l3 + l4 + l5 + l6 +l7 +l8	

      # print ELBO value and difference with the previous one	
      if (printL) { cat("Iter:\t", i, "\tELBO:\t", L[i], "\tELBO_diff:\t", 

L[i] - L[i-1], "\n")}	

      # test if ELBO decreases	
      if (L[i] < L[i - 1]) { message("Warning: ELBO decreases\n"); }	

      # test convergence with epsilon threshold	
      if (abs(L[i] - L[i - 1]) < epsilon) { break }	

      # test VB needs more iteration to converge	
      if (i == max_iterations) {warning("VB did not converge\n")}	
    }	
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  object <- structure(list(alpha=alpha, beta=beta, m=m, s2=s2, p=p, q=q, r=r, 
L=L[2:i], w=w))	

  return(object)	
} 
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