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Abstract 
 HE reprogramming of cellular metabolism is an established hallmark of cancer, which 

enables cancer cells to survive, proliferate, and metastasize even under harsh 

environmental conditions. These cancer-associated metabolic changes can affect several 

pathways one of which is mitochondrial metabolism. The suppression of mitochondrial 

metabolism has been associated with poor clinical outcomes and mitochondrial dysfunction has 

been associated with some hereditary and sporadic forms of cancer that arise from mutations in 

mitochondrial genes. Understanding the mechanisms responsible for cellular transformation 

and subsequent tumour formation in these hereditary, metabolically-impaired tumours could 

link dysregulated mitochondrial function and tumour formation.  

Hereditary mutations and subsequent loss of the mitochondrial TCA cycle enzyme 

fumarate hydratase (FH) leads to Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC), 

an aggressive form of renal cancer associated with poor clinical outcome. The loss of FH 

triggers the accumulation of fumarate, which induces a multi-layer cellular reprogramming that 

contributes to tumorigenesis. Yet, it is unclear how FH loss influences the whole gene 

expression landscape and if the gene expression is regulated on the level of DNA-methylation, 

transcription or translation. In this thesis, I generated the first FH-deficient human renal 

epithelial cell lines using CRISPR/Cas9-based genome editing, and applied proteomics, 

metabolomics, and transcriptomics approaches to investigate how the loss of FH alters these 

cellular layers. First, I confirmed that this model faithfully recapitulates the biochemical and 

phenotypic markers of FH-deficiency as previously reported. Next, I developed a novel multi-

omics tool, SiRCle (Signature Regulatory Clusters) to disentangle this interconnected network 

of signalling cascades. Using SiRCle, I extracted clusters of increased/decreased gene 

expression that are regulated at the level of DNA methylation, transcription, and/or translation, 

and identified which clusters drive which phenotype of FH loss. By mapping the transcription 

factors that drive the genes of each cluster, I identified unique drivers that could be responsible 

for the cellular rewiring after FH loss.  

It is now clear that the tumour microenvironment affects the phenotype of cancer cells, 

and hence that metabolic rewiring becomes essential for tumour cells to strive even under harsh 

environmental conditions. Yet, its effect on FH-deficient cells’ behaviour is currently unknown. 

In this part of the thesis, I used a Tumour Roll for Analysis of Cellular Environment and 

T 
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Response (TRACER), a 3D scaffold that develops oxygen and nutrient gradients similar to 

those observed in tumours. Using TRACER, I show that the main metabolic signature of FH 

loss, which is driven by the high levels of fumarate, is not influenced by the nutrient and oxygen 

gradients generated in this 3D model. Consequently, FH loss is a stronger driver of the 

metabolic signature than environmental cues. Moreover, by applying linear modelling to the 

metabolic profile of the cells over the different layers, I identify specific layer-dependent 

metabolic signatures in FH-deficient cells that are not observed in 2D culture. These results 

imply that in vivo FH loss could undergo previously unacknowledged compensatory metabolic 

changes, which underlines the important role of the microenvironment in dictating the 

phenotype of cancer cells. 
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Introduction 

1.1.  The role of metabolism in cancer 
1.1.1.  The metabolic determinants of tumorigenesis 
During oncogenesis, cells acquire various molecular features that pave the way to malignant 

transformation. These features are known as the “Hallmarks of Cancer“, initially defined as: 

proliferative signalling, insensitivity to growth suppressors, evasion of cell death, uncontrolled 

growth, replicative immortality, sustained angiogenesis, and tissue invasion and metastasis1. 

The “Hallmarks of Cancer” are acquired through multiple mechanistic strategies1 and most of 

these features are thought to arise from mutations in several oncogenes and tumour suppressor 

genes, which are defined as “driver genes”, that regulate the tumorigenic phenotype1–3. This 

view of cancer as a genetic disease dates back to 1914, when Theodor Boveri postulated that 

multiple chromosomal defects could result in cancer4, which formed the basis for the somatic 

mutation theory5. It took until the early 70s when Knudson presented the “two-hit” hypothesis 

to explain the origin of cancer6. He predicted that hereditary cancers harbour an initial germline 

mutation, and that a second mutation acquired somatically (second hit) leads to tumour 

formation6. Yet, detailed analysis of those oncogenes and tumour suppressors suggests that 

many of them play a key role in metabolism7,8, and the reprogramming of metabolism has been 

added to the “Hallmarks of Cancer”2. However, the role of metabolism in cancer is far from a 

recent discovery. Indeed, the rewiring of cellular metabolism in cancer was already explored 

more than 130 years ago by Ernst Freund. He noticed high sugar levels in the blood of cancer 

patients and proposed that reduction in sugar could impact tumour growth10. Almost 25 years 

later, in 1911, the German scientist Wassermann proposed that accelerated proliferation of 

cancer cells increases their oxygen consumption11. Further studies performed just a few years 

later by Eleanor Van Ness Van Alstyne and colleagues12 and William Woglom13 showed that 

increased carbohydrate intake resulted in accelerated rat sarcoma growth. Together, this 

seminal work supported the idea that the usage of nutrients and oxygen is different in tumours. 

A few years after these initial findings, Otto Warburg systematically investigated these 

observations. He observed that cancer cells ferment glucose to lactate, even in the presence of 
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oxygen, while normal cells fully oxidise glucose through the mitochondria14, key “metabolic 

hubs” of the cell15. Based on these findings, Warburg concluded that accelerated glycolysis in 

cancer is caused by a mitochondrial dysfunction16. However, following experiments 

demonstrated that cancer cells maintain part of their oxidative capacity17 and that the complete 

loss of mitochondrial function can be detrimental for cancer cells18–20. These counterintuitive 

findings opened a debate on the role of mitochondrial function in cancer, which is still ongoing21 

and will be discussed in more detail below.  

A century after these seminal discoveries, scientists have chartered the metabolic 

intricacies of cancer and identified multiple “Hallmarks of Cancer Metabolism” (Figure 1), 

which include increased glucose and amino acid uptake, increased demand for nitrogen, and 

the usage of intermediates deriving from glycolysis for NADPH production9. The metabolic 

 

Figure 1: The Hallmarks of Cancer Metabolism. 

The Hallmarks of Cancer Metabolism (yellow boxes) can drive tumorigenesis and can be divided into three 

layers: 1. Oncogene directed nutrient uptake, which includes the usage of opportunistic modes of nutrient 

acquisition and deregulated uptake of glucose and amino acids, 2. Reprogramming of intracellular metabolism, 

which includes the increased demand for nitrogen and the use of glycolysis/TCA cycle intermediates for 

biosynthesis and NDAPH production, and 3. Metabolite-directed changes in cell behaviour and function 

including metabolic interactions with the microenvironment and alterations in metabolite-driven gene 

regulation. Together all these metabolic alterations allow the cell to create new biomass to sustain proliferation 

even under nutrient deprivation and changing microenvironments. Glycolysis (lilac arrows) provides the 

precursors for amino acid, nucleotide and fatty acid (FA) synthesis, and generates energy in form of ATP. The 

TCA cycle (red arrows) generates ATP via oxidative phosphorylation (OXPHOS) and is fuelled by pyruvate, 

glutamine (amino acid, red/yellow arrow), aspartate (amino acid, grey arrow) and by fatty acid oxidation. 

Glutamine is important to regenerate NADH in the oxidative carboxylation (red arrows) and to fuel the fatty 

acid synthesis via reductive carboxylation (yellow arrows). Moreover, aKG which derives from glutamine can 

i d  hi t  d DNA h th l ti  d l t   i  (t i  )  C ll  l  

includes the increased demand for nitrogen and the use of glycolysis/TCA cycle intermediates for biosynthesis 

and NADPH production, and 3. Metabolite-directed changes in cell behaviour and function including 

metabolic interactions with the microenvironment and alterations in metabolite-driven gene regulation. 

Together, all these metabolic alterations allow the cell to create new biomass to sustain proliferation even 

under nutrient deprivation and changing microenvironments. Glycolysis (lilac arrows) provides the precursors 

for amino acid, nucleotide and fatty acid (FA) synthesis, and generates energy in form of ATP. The TCA cycle 

(red arrows) generates ATP via oxidative phosphorylation (OXPHOS) and is fuelled by pyruvate, glutamine 

(amino acid, red/yellow arrow), aspartate (amino acid, grey arrow) and by fatty acid oxidation. Glutamine is 

important to regenerate NADH in the oxidative carboxylation (red arrows) and to fuel the fatty acid synthesis 

via reductive carboxylation (yellow arrows). Moreover, aKG which derives from glutamine can modulate 

histone and DNA methylation and regulate gene expression (turquoise arrows). Cells also synthesise nitrogen-

containing molecules including nucleotides and non-essential amino acids, which are important for cell 

proliferation and requires nitrogen. Different tumour origin, stage and availability of nutrients and oxygen 

shapes the distinct metabolic features in cancer. These metabolic features can be modulated via different 

metabolic routes (arrows).  

Figure 1: The Hallmarks of 
Cancer Metabolism. 

The Hallmarks of Cancer 

Metabolism (yellow boxes) support 

tumorigenesis and can be divided 

into three layers: 1. Oncogene-

directed nutrient uptake, which 

includes the usage of opportunistic 

modes of nutrient acquisition and 

deregulated uptake of glucose and 

amino acids, 2. Reprogramming of 

intracellular metabolism, which 
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rewiring in cancer is important to produce energy, antioxidant power and intermediates for the 

biosynthesis of macromolecules22. Metabolic changes can be associated with the 

reprogramming of intracellular metabolism, oncogene-directed nutrient uptake, and metabolite-

directed changes in cell-function9. The latter can be driven by the microenvironment and/or via 

alterations in metabolite-driven gene regulation9. Given that these “Hallmarks of Cancer 

Metabolism” have been proposed to drive tumorigenesis9, they could replace the need of 

additional somatic mutations for full-blown transformation. An example of this concept is that 

of tumours driven by mutations in key mitochondrial enzymes such as fumarate hydratase (FH), 

succinate dehydrogenase (SDH) or isocitrate dehydrogenase (IDH). In these tumours, 

additional downstream oncogenic mutations thought to induce the “Hallmarks of Cancer”1,3 are 

instead substituted by transforming metabolic changes, as described in the “Hallmarks of 

Cancer Metabolism”9. This aspect will be discussed more in details below.  

Recent evidence showed that metabolic rewiring also plays a crucial role during tumour 

progression and metastasis23–25. For instance, metastasis formation appears to require metabolic 

factors that allow cells to acquire cell-autonomous properties for increased invasiveness and/or 

to overcome the challenging alterations of the microenvironment24. This changing 

microenvironment during tumour growth and progression includes gradients of nutrient and 

oxygen23, which establish within the solid tumour cell populations with distinct metabolic 

configurations depending on the distance from blood vessels or stromal cells, and leads to 

tumour heterogeneity26. Furthermore, the tumour interstitial fluid deriving from different 

regions of the same tumour show distinct metabolic profiles27. Consequently, the metabolic 

reprogramming during tumour progression require both “metabolic flexibility” and “metabolic 

plasticity”23, whereby metabolic flexibility ensures the ability to use different nutrients, whilst 

metabolic plasticity is the ability to process the same nutrient via different metabolic 

pathways23.  

Together, these lines of evidence show that understanding if changes in metabolism are a mere 

consequence of transformation or could have a driving role is crucial. To date, researchers 

hypothesise that further understanding the mechanisms responsible for cellular transformation, 

subsequent tumour formation and progression in hereditary, metabolically impaired tumours 

could provide the link between dysregulated mitochondrial function and tumour formation.  

1.1.2.  The role of mitochondria in cancer 
Mitochondria are important metabolic hubs of a cell: They not only produce energy in 

the form of ATP, but they also coordinate several metabolic pathways required for survival and 

proliferation15. In a recent study from our laboratory, aimed at identifying the metabolic 
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landscape of cancer, we found that the suppression of mitochondrial genes is as a key metabolic 

feature of cancer progression and metastasis28. These results appeared consistent with the initial 

Warburg hypothesis and were further corroborated by other computational studies29–31. 

However, these studies are based on the transcriptomic profile of tumours (TCGA database) 

and do not take into account tumour heterogeneity or the protein landscape, which are important 

to understand the actual phenotype of cancer, as will be discussed in details below. In this 

context, it is also important to note that the complete loss of mitochondrial function can be 

detrimental for cancer cells and that not all tumours exhibit mitochondrial dysfunction18,19. 

Mitochondrial dysfunction can be caused by mutations of nuclear-encoded mitochondrial genes 

or mitochondrial DNA or be secondary to the activation of specific oncogenic cascades and 

environmental cues such as changes in nutrient and/or oxygen availability6,21,32. A key finding 

that puts mitochondrial dysfunction in the driving seat of cancer is that hereditary and sporadic 

forms of cancer can arise from mutations in mitochondrial genes, including FH, SDH and 

IDH32. These mutations of TCA cycle enzymes subsequently lead to the accumulation of 

metabolites that have additional signalling functions, such as fumarate (FH-deficiency), 

succinate (SDH-deficiency) and 2-Hydroxyglutarate (2HG, IDH-mutation)33. The function of 

these metabolites in tumorigenesis is comparable to that of oncogenes and hence they are often 

termed as “oncometabolites”33. This signalling function of intermediates and derivates of the 

TCA cycle has not only been associated with intracellular oncogenic signalling, but also with 

alteration of immune cell effector function34. For example, fumarate has been shown to enhance 

cytokine production in monocytes upon re-stimulation with LPS in trained immunity34,35.  

To sum up, mitochondria play a crucial role in cancer, and cancer formation appears to have 

both genetic and metabolic roots. It is clear that dysfunctional mitochondrial metabolism plays 

a role in the process of tumorigenesis and progression, and there is strong evidence that 

mitochondrial dysfunction could even drive cellular transformation in some circumstances. 

However, the mechanisms underpinning transformation in these metabolically impaired 

tumours are still not fully understood. Unravelling these mechanisms could provide the link 

between dysregulated mitochondrial function and transformation. In this thesis, I will focus on 

the role of FH loss in cancerous transformation. 

1.2.  Fumarate Hydratase mutations in cancer 
The FH gene encodes for both a cytosolic and a mitochondrial enzyme, which differ only in 

their peptide sequence at the N-terminus36. As part of the mitochondrial TCA cycle, FH 

catalyses the reversible hydration of fumarate to malate15 (Figure 2A). Hereditary germline 
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mutations of one allele of FH and the loss of the wild type allele predispose to Hereditary 

Leiomyomatosis and Renal Cell Cancer (HLRCC), a cancer syndrome characterised by benign 

skin and uterine leiomyomas, and papillary type II renal cell carcinoma, an aggressive form of 

renal cell carcinoma (RCC)37,38(Figure 2B). So far, no correlation has been found between the 

site of mutation and clinical outcome in patients39, thus indicating that loss of FH activity and 

not neomorphic functions of the mutant protein is responsible for cellular transformation. 

Noteworthy, sporadic FH loss40,41,42,43 or its transcriptional downregulation44,45,46 have been 

observed in many other tumour types, which shows a key role of FH loss in human cancers 

(Figure 2B).  

The complete loss of the FH gene induces a multi-layer cellular reprogramming that includes 

metabolic rewiring essential for cells to survive the severe mitochondrial dysfunction and 

molecular alterations, which together can promote tumorigenesis47. In detail, we have 

postulated that FH driven tumorigenesis occurs via a cascade of specific steps that contribute 

to cellular transformation47. The first step upon the loss of FH is a compensatory metabolic 

adaptation, which is required to survive the truncation of the TCA cycle. The second step is the 

activation of oncogenic signalling cascades via transcriptional, epigenetic and post-translational 

reprogramming in part dependent on fumarate accumulation (Figure 3). 

 

Figure 2: Fumarate Hydratase in cancer. 

(A) Schematic of the chemical reaction catalysed by 

FH. 

(B) Tissues where sporadic or hereditary loss of FH 

leads to cancer. The sporadic loss of FH has been 

reported in Hereditary Leiomyomatosis and Renal 

Cell Cancer (HLRCC) including skin leiomyomas, 

uterine fibroids, and papillary type II RCC37,38. 

Sporadic loss of FH has also been reported in other 

tumour types such as pheochromocytomas, 

paragangliomas40,41, adrenocortical carcinoma37, 

neuroblastomas42,43, glioma, ependymoma, osteo-

sarcoma, and Ewing’s sarcoma37. Transcriptional 

downregulation of FH was found in sporadic clear 

cell carcinomas44 and in colorectal cancer45, and 

additional evidence suggests the involvement of FH 

mutations in breast, bladder, and testicular 

cancers46. 
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1.2.1.  Compensatory metabolic adaptation in FH-
deficient cells 

The loss of FH leads to a truncated mitochondrial TCA cycle and subsequent mitochondrial 

dysfunction. Since mitochondrial metabolism is involved in fatty acid oxidation, carbohydrate 

metabolism and amino acid synthesis, all processes essential for cell growth and survival48, 

cells need to engage in a series of metabolic adaptations to overcome possible defects in these 

processes (Figure 3 and Figure 4)47. Based on previous findings from the lab, the initial 

response to the TCA cycle impairment is the compensatory switch towards glycolysis, whereby 

glucose is diverted into lactate production49 and the pentose phosphate pathway50, and 

glutamine oxidation is activated49. The latter becomes the main source of carbons for the TCA 

cycle49. Moreover, glutamine oxidation also allows the regeneration of NADH, crucial for 

oxidative phosphorylation (OXPHOS) and the maintenance of mitochondrial membrane 

potential49. In these conditions, fumarate starts to accumulate up to millimolar levels51 and in 

order to release the glutamine-derived carbons from the TCA cycle without further exacerbating 

the accumulation of fumarate, FH-deficient cells engage in the haem biosynthesis and 

degradation pathway, which becomes essential for their survival49. In patient-derived FH-

 
Figure 3: Survival of FH loss and tumorigenesis. 

Schematics representing the different aspects of FH-deficient cellular reprogramming. The overlap of the 

circles represents potential connections. 
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deficient cells, namely UOK262 cells, glutamine-derived carbons are also shunted into lipid 

biosynthesis via reductive carboxylation52, a biochemical pathway where glutamine leads to the 

synthesis of lipogenic acetyl coenzyme A (acetyl-CoA). Yet, reductive carboxylation has not 

been observed in Fh1-deficient mouse cells49 or fibroblasts53. Lastly, fumarate accumulation 

also alters a set of enzymatic reactions in which it is directly involved as a substrate or a product 

such as the urea cycle, purine nucleotide cycle (PNC), and SDH. As a consequence, the 

accumulation of fumarate in FH-deficient cells leads to the reversal of argininosuccinate lyase 

(ASL) and the accumulation of argininosuccinate51,54, the reversal of adenylosuccinate lyase 

(ADSL) and subsequent accumulation of adenylosuccinate (unpublished data from the lab) and 

inhibition of SDH, which reduces mitochondrial respiration55. 

1.2.2.  The oncogenic signalling elicited by FH loss 
Besides dysregulating metabolic pathways as described above, FH-deficient cells engage in 

fumarate-buffering strategies that include the release of fumarate to the microenvironment56 

and the reversal of fumarate-producing biochemical pathways. The two main events I want to 

discuss in this context are: 1) The competitive inhibition of enzymes that require structurally 

similar metabolites to fumarate such as α-ketoglutarate (aKG) or succinate as substrate or 

product57 and 2) The non-enzymatic chemical reactions of fumarate with freely available 

cysteines, cysteine  residues  of  small  molecules58,59 and  cysteine residues of proteins55 

(Figure 5). Together, these two events have been shown to induce a plethora of oncogenic 

signalling cascades that are thought to support cellular growth and transformation (Figure 3), 

which I discuss in detail below. 

The first type of oncogenic signalling triggered by fumarate is related to its structural 

similarity to succinate and aKG, both involved in mediating reactions catalysed by the 

superfamily of αKG-dependent-dioxygenases (aKGDDs)57,60, enzymes involved in a variety of 

cellular processes including protein hydroxylation, DNA and histone demethylation, and RNA 

modifications57,60. Fumarate can act as a competitive inhibitor of aKGDDs, with important 

biological implications. For instance, the inhibition of aKGDD prolyl-hydroxylases (PHDs) 

stabilises Hypoxia Inducible Factor (HIF)61, leading to the transcription of genes involved in 

the hypoxic response, even at normal oxygen conditions, a phenomenon known as 

pseudohypoxia46. Amongst the HIF target genes are several metabolic enzymes including the 

glucose transporter 1 (GLUT1)61, pyruvate dehydrogenase kinases (PDKs)62,63 and lactate 

dehydrogenase A (LDH-A)64. Together, these enzymes could support the glycolytic shift 

observed in FH-deficient cells, and block the entry of glucose into the mitochondria56. Whilst 

this hypoxic response is known to regulate tumour proliferation, metabolism and 
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angiogenesis65, the role of HIFs in FH deficiency is still debated. Indeed, the genetic deletions 

of both Hif1and Hif2 in Fh1-deficient mice did not prevent carcinogenesis, which suggests that 

HIF proteins are dispensable for tumorigenesis66. Another class of aKGDDs are DNA and 

histone demethylases that fine-tune chemical changes of DNA and histones within the 

 
Figure 4: Metabolic adaptation in FH loss. 

FH loss leads to TCA cycle truncation and fumarate accumulation (highlighted in orange). The disruption of 

the TCA cycle and the inhibition of Succinate Dehydrogenase (SDH, also known as Complex II of the 

respiratory chain) by fumarate reduces mitochondrial respiration. FH-deficient cells shift towards aerobic 

glycolysis, reducing the oxidation of glucose in the mitochondria (lilac arrows). Moreover, glucose is shunted 

into the pentose phosphate pathway (PPP) to maintain redox homeostasis (lilac arrows). To regenerate NADH 

in the mitochondria, FH-deficient cells increase glutamine oxidation and the glutamine-derived carbons are 

further metabolized to fumarate and, through the haem pathway, to biliverdin and bilirubin, which is secreted 

into the medium (red arrows). Additionally, glutamine-derived carbons are used to generate lipogenic acetyl-

CoA via reductive carboxylation (yellow arrows). Fumarate permeates the various intracellular compartments 

and is released into the extracellular milieu. Fumarate accumulation also leads to the aberrant production of 

argininosuccinate via the reversal of the urea cycle enzyme argininosuccinate lyase (ASL) (turquoise arrows). 

Moreover, fumarate leads to the accumulation of adenylosuccinate, likely via the reversal of adenylosuccinate 

lyase (ADSL) within the purine nucleotide cycle (PNC). 

Figure was adapted with permission from Schmidt et. al.47. Copyright 2019 Elsevier. 
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nucleus67,68. The demethylation of cytosine residues on DNA is catalysed by Ten-Eleven 

Translocation (TETs) proteins, which are inhibited upon FH loss69. The inhibition of TETs 

induces a distinct hypermethylation profile in FH-deficient cells and tumours, which triggers 

the suppression of cyclin dependent kinase inhibitor 2A (CDKN2A)70,71 and epithelial to 

mesenchymal transition (EMT)69. The latter is a signature associated with poor clinical outcome 

in cancer patients72, and thought to be triggered via the epigenetic suppression of antimetastatic 

miRNAs, MIR200, in FH-deficient cells69. CDKN2A encodes for p16, which is a known inducer 

of senescence (a permanent growth arrest)73 and it has been discussed that the suppression of 

p16 inhibition might be a way for the cells to overcome fumarate-induced senscence70,71,73. In 

this context, it is important to note that the depletion of the antioxidant glutathione (GSH), a 

small molecule including a cysteine residue that reacts with fumarate, together with the 

profound oxidative stress caused by the disruption of mitochondrial function, could promote 

senescence in FH-deficient cells58. However, given that FH-deficient cells can form tumours, 

the cells must have mechanisms to circumvent senescence. It has been previously discussed 

that fine-tuning of the antioxidant response, which is orchestrated by different oncogenic 

signalling cascades in FH-deficiency (discussed in detail below), could be crucial to overcome 

senescence47. Together with the antioxidant response, the epigenetic silencing of CDKN2A and 

activation of EMT can be beneficial to evade senescence and at the same time promote cell 

migration and invasion.  

The second type of oncogenic signalling is based on the reaction of fumarate with freely 

available cysteines, cysteine residues of small molecules such as GSH58,59 and cysteine residues 

of  proteins55 in  a  process  called  succination  leading to S-(2-succino) cysteine (2SC)74 

(Figure 5). The latter leads to an irreversible, post translation modification (PTM)74,75 which 

can be detected by anti 2SC antibodies and is an established marker of FH loss in cancer 

patients76. Thus far, various proteins have been identified as targets of succination in FH-

deficient cells55, one of which is the Kelch-like ECH-associated protein1 (KEAP1), the negative 

regulator of the antioxidant gene Nuclear Factor Erythroid 2 Like 2 (NRF2). Succination 

inactivates KEAP1, preventing the degradation of NRF2, which in turn mounts a powerful 

antioxidant response77,78 mediated by genes such as haem oxygenase 1 (HMOX), NAD(P)H 

dehydrogenase quinone 1 (NQO1), and glutamate-cysteine ligase catalytic subunit (GCLC)77,78, 

and could be part of the fine-tuned antioxidant response mentioned above. 

Besides KEAP166,78, a multitude of succinated targets have been identified, including iron 

regulatory  protein  2  (IRP2)79,  the  iron-sulfur-cluster  (Fe-S  cluster) biogenesis family of 

proteins55, and mitochondrial aconitase (ACO2)53. IRP2 succination inactivates the protein and 
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Figure 5: Oncogenic signalling via epigenetic, transcriptional and PTM reprogramming. 

Fumarate accumulation leads to a PTM that affects cysteine residues of small molecules/proteins (violet 

hexagons) called succination. The chemical reaction between fumarate and reactive thiol residues of proteins 

is depicted in the grey insert. Succination of KEAP1 induces the NRF2-mediated antioxidant response. One of 

the targets of NRF2 is Haem Oxygenase 1 (HMOX1), which is required for the haem biosynthesis and 

degradation, an essential pathway for the survival of FH-deficient cells. Succination of Iron Responsive 

Element Binding Protein 2 (IRP2) inhibits the translation of ferritin. Subsequent ferritin increase causes a drop 

in free cellular iron. In parallel, ferritin promotes the expression of Forkhead box protein M1 (FOXM1), a pro-

mitotic protein that supports cell growth. Succination of the Fe-S cluster proteins Nfu1, Bola and Iscu impairs 

the Fe-S clusters assembly required by the electron transport chain complex I, contributing to defects in 

mitochondrial respiration. The reduction of iron and the succination of key cysteine residues in its catalytic 

core also inactivates the TCA cycle enzyme Aconitase 2 (ACO2). GSH succination causes the depletion of 

glutathione (GSH) stores, increasing oxidative stress and triggering senescence.  

Fumarate mediates oncogenic signalling via aKGDDs inhibition (grey hexagons). Inhibition of prolyl 

hydroxylases (PHDs) stabilises of the alpha subunit of a family of hypoxia-inducible factors (HIFs). The 

transcriptional response elicited by HIFs promotes aerobic glycolysis via increased expression of the glucose 

transporter GLUT1, and lactate dehydrogenase (LDH-A). HIF triggers the expression of pyruvate 

dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits pyruvate dehydrogenase complex (PDH), 

a gatekeeper of glucose-derived pyruvate in the mitochondria. In the nucleus, fumarate accumulation induces 

a profound epigenetic reprogramming due to the inhibition of DNA demethylases (TETs). Hypermethylation 
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leads to the translation of ferritin causing depletion of freely available iron79. Additionally, 

succination of multiple family members of the Fe-S cluster assembly proteins reduce the 

activity of Fe-S clusters-dependent enzymes such as the respiratory chain complex I (CI)55. 

Aco2 succination and subsequent enzyme inactivation has also been observed in Fh1-/- mouse 

embryonic fibroblasts, potentially preventing the use of glutamine for citrate formation through 

reductive carboxylation53. 

In summary, FH loss results in compensatory metabolic adaptations and fumarate 

accumulation, which elicit a plethora of pro-oncogenic signals that could contribute to 

transformation (Figure 3). Yet, the contribution of metabolic rewiring in the process of cellular 

transformation is still unclear. Moreover, it is not fully understood which of these metabolic 

changes occur at the early phases of transformation or at the later stages of tumour progression. 

One problem to adequately address this question is the definition of tumorigenesis. 

Understanding at which point a cell becomes cancerous is crucial to study the impact of 

metabolic rewiring on tumorigenesis. A way to overcome this issue is to investigate the 

presence of the “Hallmarks of Cancer” by pathway analysis. However, this approach is mostly 

based on transcriptomics data, which are known to correlate poorly with protein abundance, 

which in turn defines the cellular phenotype. Finally, it is emerging that the metabolic 

phenotype of a cell strictly depends on extracellular nutrient cues. Therefore, it is essential to 

assess the impact of the tissue environment on the metabolic rewiring caused by FH loss to 

fully understand the connection between dysregulated metabolism and oncogenesis in vivo.  

1.3.  Cancer phenotype and environmental 
cues 

1.3.1.  Pathway analysis to define the cancer phenotypes 
Technological advances like genome-wide sequencing technologies have led to large 

collections of datasets from tumour specimens80. One of the largest endeavours to 

systematically collect and analyse these data is The Cancer Genome Atlas (TCGA)80. The 

TCGA provides publicly available large-scale genome sequencing data, including DNA 

sequencing (DNAseq), DNA methylation-seq, RNAseq, microRNAseq, Reverse-phase protein 

array (antibody based functional and quantitative proteomics method) and many more80. To 

of miR200 was shown to trigger an epithelial-to-mesenchymal transition (EMT) in FH-deficient cells, and 

hypermethylation of CDKN2A (p16) increases proliferation and helps to overcome senescence. 

Figure was adapted with permission from Schmidt et. al.47. Copyright 2019 Elsevier. 
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find dysregulated groups of genes, bioinformatic tools have been developed to perform 

differential expression analysis between e.g. tumour and healthy tissue and subsequent gene set 

enrichment (GSE) methods81,82. Gene set collections are collections of biological pathways or 

molecular network information about a biological system, such as the Molecular signatures 

database (MsigDB)83. This gene set collection extracted signatures from original research 

publications and imports entire collections such as Gene ontology84 (GO), a hierarchy of 

controlled terms to describe individual gene products, or the Kyoto encyclopedia of genes and 

genomes85 (KEGG)83. Performing GSE methods using these gene sets reduces the data to 

smaller, more interpretable sets of altered signalling pathways or processes81.  

 The different genomic assays capture a narrow view of the complex biological system 

and omits interactions and events that are regulated at multiple levels (e.g. post-transcriptional, 

or post-translational)86. Consequently, several efforts to combine different omics data to unravel 

coherent biological signatures and to make predictions about the phenotype were made86. In 

this context, data scientists have been capitalizing on machine learning approaches to analyse 

cancer data, which has improved the accuracy of survival analysis and diagnosis87. One of these 

approaches are Variational Autoencoders (VAEs), an unsupervised method that provides a 

latent representation of integrated data88. Similar to principal component analysis (PCA), VAEs 

perform dimensionality reduction, but they are not restricted to linear transformation and can 

also model complex non-linear functions and correlate the different input features88,89. For 

cancer data, VAEs have been used for data integration to combine the data types at different 

scales to identify cancer traits, but also to learn compressed representations of the input data by 

learning the underlying distribution of the input data87. For instance, applied to TCGA pan-

cancer RNA-seq data, VAE was able to separate the data according to the underlying cancer 

type90.  

 Given there is no standard method for integrating multi-omics data, and the challenges 

that integration presents, the transcriptome (RNAseq data) is commonly used to perform GSE 

analysis (GSEA). However, since gene expression does not always correlate with protein 

abundance and the cellular phenotype, inferring pathway activities based exclusively on 

transcriptomics data may not be sufficient to predict the phenotype accurately. Indeed, 

translational control of gene expression plays a crucial role during tumorigenesis to support the 

transformed phenotype and ensure the cancer cell function91. Despite observing a general 

increase in global translation rates, which is important for cancer cells to sustain their increased 

proliferation, oncogenic signalling has been observed to induce transcript-specific changes in 

translation91. This oncogenic regulation of translation drives features of cancer, including 
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altered metabolism via the translational control92, coupling nucleotide metabolism with protein 

synthesis92. Another example is the resistance to oxidative stress via eIF4E (eukaryotic 

initiation factor 4E, initiation factor for mRNA translation)-driven oncogenic translation of 

ROS scavengers that fuel tumorigenesis93. Given that translation control is the most 

energetically expensive molecular process in the cell, it is not surprising that it plays a key role 

in cell growth and metastasis in response to environmental changes like nutrient stress94,95. 

Hence, translational regulation allows cancer cells to adapt to environmental stressors such as 

nutrient and oxygen deprivation94,95.  

1.3.2.  The impact of the environment on the metabolic 
phenotype of cancer 
Cancer cells need to survive and adapt to the harsh environmental conditions, including low 

oxygen levels and constrained nutrient availability23, which can be secondary to reduced tumour 

vascularization96. Low oxygen levels have been shown to trigger multiple adaptational 

processes important in cancer. For instance, hypoxia triggers vascularization, which in 

comparison to healthy tissue, has a chaotic, altered structure and function96. Moreover, hypoxia 

leads to increased cell mobility and metastasis, and alters cancer cell metabolism62,97. Changes 

in intracellular metabolism affect also the extracellular milieu through the excretion of 

metabolites such as lactate, which, in turn, can alter tumour microenvironment and cell-cell 

interactions98. This metabolic rewiring is also influenced by the tissue origin, the location, and 

the size of the tumour28,45,99,100, and consequently, it has been argued that some features of 

cancer metabolism observed in 2D cell culture do not fully recapitulate the metabolic changes 

in vivo, and might instead be affected by culture methods and culture media27,101. For instance, 

recent experiments showed that replacing the traditional cell culture media with a media that 

mimics the metabolic content of the tumour microenvironment can significantly affect the 

overall metabolic landscape of cancer cells, and, as a consequence, the sensitivity to anticancer 

drugs that target metabolic enzymes102. These results led to the development of “physiological 

media”, including Gibco Human Plasma-like Media (HPLM) and Plasmax, which recapitulate 

nutrient and metabolite concentrations found in the blood of healthy individuals103. Plasmax 

has been shown to increase colony formation capacity in breast cancer and to differentially 

regulate gene expression103. In line with the fact that environmental cues affect the cancer cell’s 

phenotype, it was shown that the inhibition of certain metabolic routes can suppress oncogenic 

pathways and reverse the tumour phenotype in 3D, but not in 2D cultures104. Moreover, it has 

been shown that within solid tumours, metabolic cooperation arises: For instance, lactate 

secreted by glycolytic cells can be taken up and used by oxidative cancer cells105,106. 
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Consequently, growing cells in 3D culture can better reflect the metabolic features of cancers 

and enable us to understand metabolic cooperation27.  

To shed light on the role of the microenvironment in cancer cell behaviour, a multitude of 

different 3D systems have been generated. In 3D systems, cells are usually cultured in 

aggregates, grown on various scaffold materials or embedded in gels107. Cancer cells cultured 

in aggregates are called tumour spheroids107. They mimic the phenotype of the human tissues 

including cell polarity, apical brush border and receptor-mediated transport107,108. Moreover, 

they recapitulate the gradient of nutrients and oxygen as observed in patient tumours107,108. This 

aspect is pivotal to study cellular metabolism and the metabolic plasticity observed in cancer27. 

A more complex structure compared to spheroids are organoids, which derive from stem cells 

or human tissue grown in an organised network mimicking a specific organ108. The complexity 

of the organoid depends on the developmental potential of the starting stem cells109,110. For 

instance, kidney organoids have been shown to include individual nephron segments into distal 

and proximal tubules, early loops of Henle and glomeruli108,111–113. Importantly, they have been 

already used to mimic renal diseases and study both tumour metabolism and epigenetic 

reprogramming such as histone-modifications108,111–113. Recent evidence showed that renal 

carcinoma organoids could be used as a novel tumorigenesis gene discovery model114. Yet, in 

both systems, spheroids and organoids, the collection of cells from defined areas within the 

tumour model is not possible115. To enable the rapid collection of cells from different areas of 

a 3D tumour model that mimics the cell-to-cell contact and gradients of oxygen and nutrients, 

a Tissue Roll for Analysis of Cellular Environment and Response (also known as TRACER) 

was developed116. This model consists of a permeable biocomposite scaffold strip that is 

populated with cells embedded in collagen116. This strip is wrapped around a mandrel and 

allows the generation of oxygen and nutrient gradients that mimic those observed in a solid 

tumour116. Rapid disassembly allows the analysis of cells grown under different environmental 

conditions whilst preserving the oxygen and nutrient gradients for downstream analyses in a 

layer specific manner116. Using this system, it was shown that cells exhibit spatially-defined 

metabolic signatures, in an oxygen-dependent fashion115. Hence TRACER can spatially 

correlate the different tumour environments to real-time snapshot metabolic signatures.  

To sum up, studying cancer metabolism using standard 2D culture systems and commercial 

media cannot mimic selective environmental pressures such as nutrient and oxygen gradients 

as present in a tumour. Consequently, to understand the link between dysregulated 

mitochondrial function and tumour formation and progression in a physiological context, novel 

3D culture systems need to be used. Given that the metabolic state of a cells is significantly 



Introduction 
 

15 | 
 

altered by nutritional and environmental cues, it is crucial to understand to what extent the 

metabolic signature of FH loss is affected by these cues. Addressing this question is essential 

to better understand the consequences of FH loss in vivo and could reveal new cascades which 

are not present in 2D cultures.  
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Aims of the study 
 HE reprogramming of mitochondrial metabolism has been associated with poor clinical 

outcome and mutations in some mitochondrial genes lead to hereditary and sporadic 

forms of cancer. Understanding the mechanisms responsible for cellular transformation and 

subsequent tumour formation in these hereditary, metabolically-impaired tumours could reveal 

novel molecular links between dysregulated mitochondrial function and tumour formation.  

Here, I used the loss of FH as a genetic model to investigate this connection. Although fumarate 

accumulation in FH-deficient cells is thought to elicit a multi-layer cellular reprogramming that 

contributes to tumorigenesis, it is still unclear how these signals are integrated and coordinate 

transformation. Recently, it has become clear that the tumour microenvironment affects the 

phenotype of cancer cells and that culturing cells in standard culture media under 2D condition 

does not mimic environmental pressures and can alter the metabolic phenotype. How the signals 

elicited by FH loss are shaped by environmental cues such as oxygen and nutrient availability 

is currently unknown. 

My study is aimed at: 

1) Establish and characterize a non-transformed human model of FH loss. 
 

2) Perform a computational analysis of the consequences of FH loss by integrating 

multiple omics approaches and investigating the regulatory levels (methylation, 

transcription, translation) that induce the FH phenotype. 
 

3) Understand the effects of environmental cues on the hallmarks of FH loss using a 3D 

model. 

  

T 
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Methods 

2.1.  Experimental model and cell culture 
HK2 cells, an immortalised epithelial cell line deriving from the proximal tubule of normal 

human kidney were purchased from ATCC (cat. No. CRL-219). FH+/+ and FH-/- were generated 

using CRISPR/Cas9-based genome editing (detailed in 2.2. Genome editing). Cell culture was 

performed in a sterile environment with sterilised materials. Cells were cultured in an incubator 

at 37°C, 5% CO2 and 100% air moisture with Dulbecco’s modified Eagle’s medium (DMEM, 

Life Technology cat. no. 41966) supplemented with 10% v/v fetal bovine serum (FBS, Gibco 

cat. no. 10270-106). Before sub-passaging, cells were allowed to grow for two to three days 

until 90% confluent. Cell lines were authenticated using STR profiling and routinely tested for 

mycoplasma contamination. 

2.2.  Genome editing: FH-deficient cells 
The single guide RNA targeting the FH gene (exon 4: CCAGTCTGCCATACCACGAG and 

exon 2: GCGCCATAATACTTATCATT) introduced into the lentiCRISPR V2 vector with 

puromycin resistance cassette (Zhang lab, plasmid #52961) was a generous gift of Dr. James 

Nathan laboratory (Cambridge Institute for Medicine (CIMR), Cambridge, UK). For virus 

production, 4 µg CRISPR-vector, 24 µl Lipofectamine 2000 (Life Technology) and 296 µl 

Optimem (Life Technology) were added to the cell culture media of the packaging cells 

HEK293T following the manufactures instructions. After 24 h, media was changed for 24 h 

before the viral supernatant for cell transduction was obtained from the filtered growth media. 

HK2 cells seeded into 6 cm dishes were infected at 60% confluency with 3 ml of neat viral 

supernatant in the presence of 8 mg/ml polybrene for 48 h. Afterwards, the media was replaced 

with selection medium containing 1 µg/ml puromycin for 3 days. Antibiotic-selected cells were 

picked by diluting single-cell clones into a 96-well plate through serial dilution. Then, cells 

were counted and diluted to 1 cell/100 µl, followed by pipetting of 100 µl cell suspension per 

well of a 96-well plate. Clones were expanded for three weeks. In total 22 FH+/+ clones were 

picked and 25 FH-/- clones. The FH expression of all clones was estimated by Western blotting 
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(WB, method details in 2.4.) and epithelial marker expression (method details in 2.5), oxygen 

consumption rate (OCR, method details in 2.6.) as well as fumarate level (method details in 

2.8.) were analysed for 5 FH-/- and 5 FH+/+ clones. To test off target effects a common method 

is the reconstitution of the target gene in the knockout clones, yet often this does not reverse all 

changes since changes induced by e.g. aging cannot be reversed. Hence it is difficult to use this 

principle to evaluate off target effects in this system. To account for changes that could result 

from off target effects, two independent CRISPR clones were used for all downstream 

experiments. In detail, two FH+/+ clones with a different degree of epitheliality and two FH-/- 

clones that had a complete loss of FH protein and high fumarate accumulation, whilst retaining 

decent proliferative capabilities, were selected. 

2.3.  Sanger Sequencing to confirm FH 
knockout 
Primers where designed using Primer3 and Blast. Genomic DNA was extracted using DNeasy 

Blood and Tissue kit (Qiagen cat no. 69504) and the area around exon 2/exon 4 was amplified 

by genomic PCR using Phusion High-Fidelity DNA Polymerase kit (New England Biolabs cat 

no. M0530L) running the following protocol: 
Reaction Amplification  Primer pairs 

Phusion buffer 5x 98°C - 30s 1x Exon 2 (66.1°C annealing) 

fw-ATTCCTCGAACTCCCTGCTC 

rv-GAACCTCTTATTACTCACGAAGC 

10mM dNTPs 98°C – 10s 

XX°C – 30s 

72°C – 2 min 

 

34x 10µM fw primer 

10µM rv primer Exon 4 (70°C annealing) 

fw-AATAGGGGCAAATCTGGGCA 

rv-TGAGGACAGAAAAGATGGC 

0.2µl Phusion DNA 72°C – 5 min 1x 

100ng gDNA target 4°C - ∞  

ad. 20µl ddH2O    
 

Next, the PCR product was purified using the Qiaquick PCR purification Kit (Qiagen, cat no. 

28106) according to the manufacturer’s instructions and quality checked by running samples 

mixed with 3 µl 6x loading dye on 1% agarose gel (1g agarose, 100ml TAE buffer, 10 µl Sybr 

safe dye (Invitrogen, cat no. PINS33102)). Samples were sent with the respective primers for 

Sanger sequencing (Eurofins genomics).  

2.4.  Western blotting (WB) 
Proteins were  extracted using radioimmune precipitation  assay  (RIPA) lysis buffer  (150  mM 
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NaCl, 50 mM Tris, 1 mM EGTA, 1 mM EDTA, 1% (v/v), Triton X-100, 0.5% (w/v) sodium 

deoxycholate, 0.1% (v/v) SDS, pH 7.4) supplemented with 1 µl benzonase per sample. Protein 

concentration was measured by bicinchoninic acid (BCA) assay (Thermo Fisher Scientific), 

according to the manufacturer’s instructions. 25 µg of protein extracts were mixed with Bolt 

loading buffer (Life Technologies cat. no. B0007) with 4% β-mercaptoethanol (Sigma-Aldrich 

cat. no. M6250)) and incubated for 10 min at 70°C. Samples were loaded and run at 200 V for 

30-40 min using Bolt gel 4%–12% Bis-Tris (Invitrogen cat. no. NW04122BOX) and 1x MES 

running buffer (Life Technologies cat. no. B0002). Proteins were transferred onto a 

nitrocellulose membrane using a dry transfer system IBLOT2 (Life Technology), which was 

run for 12 min at 20 V. The membrane was stained for total proteins using the Revert 700 total 

protein kit (Licor, cat.no. 926-11010) according to the manufacturer’s instructions. The image 

was acquired in the 700-channel using Odyssey CLx (Licor). Afterwards, the membranes were 

blocked 30 min at room temperature using blocking buffer (5% milk in 1xTBS). Antibodies 

were diluted in blocking buffer supplemented with 0.01% Tween 20. The membrane was 

incubated in the primary antibodies on a shaking platform at 4°C typically for 16 h or 2 h at 

room temperature. Secondary antibodies were diluted 1:2000 and incubated on a rocking 

platform 1 h at room temperature. Images were acquired and analysed using Odyssey CLx 

(Licor). 

2.5.  RNA extraction and quantitative PCR  
 The RNA was extracted using RNeasy Kit (Qiagen) and the miRNA using the miRCURY 

RNA Isolation Kit (Exiqon), following manufacturer’s instructions. The quantification of the 

RNA was performed using Nanodrop (Thermo Fisher Scientific) following the manufacturer’s 

instructions. Next cDNA was produced via reverse transcription of RNA using Quantitect 

Reverse transcription kit (Qiagen) or miScript PCR kit (Qiagen) using 300 ng total RNA. qPCR 

was performed using Quantitect Syber Green master mix (Qiagen) on a Step One Plus real-time 

PCR system (Life Technology) and experiments were analysed using the StepOne software 

(v2.3). 

Housekeeping genes used for internal normalisation: 
TBP mRNA fw: GAACATCATGGATCAGAACAACA rv: ATAGGGATTCCGGGAGTCAT 

SNORD95 miRNA Qiagen cat no. MS00033726 

SNORD61 miRNA Qiagen cat no. MS00033705 
 

Target genes: 
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2.6.  Oxygen consumption rate (OCR) and 
extracellular acidification rate (ECAR) 
2*103/2.4*103 cells (FH+/+/FH-/-) were seeded into XFe96 cell culture microplate in 100 µL 

standard culture media and incubated overnight. Cells were then washed with 1x PBS and 

675 mL of bicarbonate-free DMEM (Sigma-Aldrich, D5030) supplemented with 25 mM 

glucose, 1 mM pyruvate, 4 mM glutamine and 1% v/v FBS was added. To eliminate residues 

of carbonic acid from the medium, cells were incubated for 30 min at 37°C without CO2 in the 

BioTek Cytation 1/5 (BioTek) and brightfield images where taken during this incubation. OCR 

and ECAR were assayed in a Seahorse XFe96 Analyzer (Seahorse) by a measurement cycle of 

2 min mix, 2 min wait, and 4 min measure at basal condition. The last injection included 100µM 

Hoechst (Thermo, cat.no 33342) in the injection port. After 30 min of incubation fluorescence 

images were taken using the BioTek Cytation 1/5 and images integrated into Wave software 

(Agilent) for OCR and ECAR value normalisation by cell count. 

2.7.  Respiratory chain complex 
measurements  
10*106 cells were harvested by trypsinisation and washed with 1xPBS (4°C). Crude 

mitochondria were extracted on ice using 1.5 mL/6*106 cells of isotonic buffer (containing 0.25 

M sucrose, 10 mM Tris–Cl, pH 7.5, and 0.1 mM phenylmethylsulfonyl fluoride) and 

homogenised using a glass teflon homogeniser. Unbroken cells and nuclei were removed by 

centrifugation at 3000g for 10 min at 4°C. The supernatant containing the mitochondria was 

centrifuged at 13000g for 20 min at 4°C and the pellet was suspended in isotonic buffer and 

aliquots stored at −80°C. Protein quantification was performed as described in 2.4. “Western 

Blotting”. 

To measure the native respiratory complex activity crude mitochondria dissolved in a 1 ml 

complex measurement solution (for details see table below) were measured at 37°C by using a 

E-CADHERIN mRNA fw: TGGAGGAATTCTTGCTTTGC rv: CGCTCTCCTCCGAAGAAAC 

EPCAM mRNA Qiagen cat no. QT00000371,  

NQO1 mRNA Qiagen cat no. QT00050281 

MIR200A miRNA Qiagen cat no. MS0003738 

MIR200B miRNA Qiagen cat no. MS00009016 

MIR200C miRNA Qiagen cat no. MS00003752 
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dual-wavelength spectrophotometer (V550 Jasco Europe, Italy) using the materials and 

protocol described in Ghelli et al117. 
Complex measurement solution:   
Buffer Components Concentration pH  

A 

KH2PO4 50 mM 

7.6 

 

EDTA 1 mM  

BSA 3.5 mg/ml  

B 

KH2PO4 50 mM 

7.6 

 

EDTA 1 mM  

BSA 2.5 mg/ml  

C 
Tris 100 mM 

8.1 
 

Triton X-100 0.1%  

     

Complex Components Concentration Details Measurement settings 

CI 

DCIP 60 µM 

Mastermix 
λ: 600 nm 

εDCIP: 19.1/mm/cm 

Temp.: 37°C  

F: 52.3 

Antimycin A 1 µM 

KCN 0.3 mM 

NADH 200 µM 

Sample 10 µM 

Buffer A Ad. 1 ml 

Rotenone 1 µM Repeat +/- rotenone 

DB 70 µM Start reaction 

CII 

DCIP 80 µM 

Mastermix, incubate 1  

min at 37°C 

λ: 600 nm 

εDCIP: 19.1/mm/cm 

Temp.: 37°C  

F: 52.3 

Antimycin A 1 µM 

KCN 0.3 mM 

Rotenone 1 µM 

ATP 200 µM 

Na-succinate 10 mM 

Sample 20 µM 

Buffer A Ad. 1 ml 

DB 50 µM Start reaction 

K-malonate 5 mM Stop reaction 

CIII 

KCN 0.3 mM 

Mastermix 
λ: 550 nm 

εDCIP: 19.1/mm/cm 

Temp.: 37°C  

F: 52.6 

Cytochrome C 

oxidised 

20 µM 

Sample 10 µM 

Buffer B Ad. 1 ml 

DBH2 50 µM Start reaction 

Antimycin A 1 µM Stop reaction 
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CIV 

Cytochrome C 

reduced  

20 µM 

Mastermix 
λ: 550 nm 

εDCIP: 19.1/mm/cm 

Temp.: 37°C  

F: 52.6 

Buffer B Ad. 1 ml 

Sample 10 µM Start reaction 

KCN 0.3 mM Stop reaction 

CS 

DTNB 100 µM  
λ: 360 nm 

εDCIP: 13.6/mm/cm 

Temp.: 37°C  

F: 73.5 

Acetyl-CoA 300 µM  

Sample 20 µM  

Buffer C Ad. 1 ml  

Oxaloacetate 50 µM Start reaction 

2.8.   Metabolomics: Liquid chromatography–
mass spectrometry (LC-MS) 

2.8.1.  LC-MS sample preparation 
Steady-state metabolomics and carbon tracing experiments were performed using liquid 

chromatography–mass spectrometry (LC-MS) analysis. 5*104 cells (FH+/+) and 6*104 cells 

(FH-/-) were seeded in 6-well plates and incubated overnight for 60% confluency. Afterwards, 

the media of choice was supplemented with stable isotope labelled substrates and added for 24 

h. The cells were placed at ambient oxygen tension (21%) in a standard cell culture incubator 

or at 1% oxygen in a hypoxia chamber (H35 Hypoxystation, Whitley). For carbon tracing 

experiments in the standard culture media either 580 mg/ml U-13C-glutamine (Cambridge 

Isotope Laboratories, cat. no. CLM-1822-SP-PK) was added to glutamine free DMEM (Life 

Technology cat. no. 21969-0.35) supplemented with 10% v/v FBS, or 4500 mg/ml U-13C-

glucose (Cambridge Isotope Laboratories, cat. no. CLM-1396-MPT-PK) and 110 mg/l sodium 

pyruvate were added to glucose and pyruvate free DMEM (Life Technology cat. no. 11966-

025) with 10% v/v FBS. At the experimental endpoint the cells had 80% confluency and one 

well from each condition was used to estimate cell number and cell volume (CASY cell counter, 

Innovatis). For consumption-release experiments the growth factor was estimated by 

additionally counting one well from each condition at the start of the experiment. 

2.8.2.  LC-MS sample extraction 
Intracellular metabolites were extracted by washing the wells 2x with 1xPBS (room 

temperature), placing the plate into a cooling bath (dry ice and methanol) and adding 1 ml of 

metabolite extraction solution (50% v/v methanol, 30% v/v acetonitrile, 20% v/v ddH2O, with 

5 µM d8-valine as the internal standard) per 1*106 cells followed by a 15 min incubation. 
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Afterwards, cells were scraped and transferred into Samples were incubated and mixed in an 

Eppendorf Thermomixer at maximum speed for 15 min at 4°C. Eppendorf tubes and incubated 

at -20°C to further precipitate proteins. Subsequently after, samples were centrifuged at 16000g 

for 10 min at 4°C and the supernatant transferred into autosampler vials and stored at -80°C 

until further analysis. Cell culture medium (extracellular) extracts were prepared by adding 

750 µL of extraction solution to 50 µL of centrifuged cell culture medium, and further 

processed as described for the intracellular extracts. For the derivatisation of D-2HG and L-

2HG, the protocol of Quing-Yun Cheng et all was followed118. In brief, after following the 

standard extraction protocol for intracellular metabolites as described above, 200 µl of each 

sample was dried using the speedvac (Savant SPD121P with the Universal Vacuum System 

UVS400A). Afterwards, the pellet was resuspended in 160 µl derivatisation buffer 

(1.25 mmol/L N-(p-Toluenesulfonyl)-L-phenylalanyl chloride (TSPC) in ACN plus 2µl 

Pyridine), mixed in an Eppendorf Thermomixer at maximum speed for 30 min at RT, and dried 

using the speedvac. Lastly, the pellet was resuspended in 100 µl metabolite extraction solution 

by sonication, centrifuged at maximum speed for 15 min at 4°C, and supernatant transferred 

into autosampler vials for analysis. 

2.8.3.  LC-MS sample measurement 
Sample measurement and peak integration was performed by the LC-MS facility of the Frezza 

Laboratory (Ana Sofia Henriques da Costa, Laura Tronci, Efterpi Nikitopoulou and Ming 

Yang). In detail, samples were randomised to avoid bias due to machine drift and processed 

blindly with an injection volume of 5 µl. Pooled samples were generated from an equal mixture 

of all individual samples and analysed interspersed at regular intervals within sample sequence 

as a quality control. 

HILIC chromatographic separation of metabolites was achieved using a Millipore Sequant ZIC-

pHILIC analytical column (5 µm, 2.1 × 150 mm) equipped with a 2.1 × 20 mm guard column 

(both 5 mm particle size) with a binary solvent system. Solvent A was 20 mM ammonium 

carbonate, 0.05% ammonium hydroxide; Solvent B was acetonitrile. The column oven and 

autosampler tray were held at 40 °C and 4 °C, respectively. The chromatographic gradient was 

run at a flow rate of 0.200 mL/min as follows: 0–2 min: 80% B; 2-17 min: linear gradient from 

80% B to 20% B; 17-17.1 min: linear gradient from 20% B to 80% B; 17.1-22.5 min: hold at 

80% B. Metabolites were measured with a Thermo Scientific Q Exactive Hybrid Quadrupole-

Orbitrap Mass spectrometer (HRMS) coupled to a Dionex Ultimate 3000 UHPLC. The mass 

spectrometer was operated in full-scan, polarity-switching mode, with the spray voltage set to 

+4.5 kV/-3.5 kV, the heated capillary held at 320 °C, and the auxiliary gas heater held at 280 °C. 
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The sheath gas flow was set to 25 units, the auxiliary gas flow was set to 15 units, and the sweep 

gas flow was set to 0 unit. HRMS data acquisition was performed in a range of m/z = 70–900, 

with the resolution set at 70,000, the automatic gain control (AGC) target at 1 × 106, and the 

maximum injection time (Max IT) at 120 ms. Metabolite identities were confirmed using two 

parameters: (1) precursor ion m/z was matched within 5 ppm of theoretical mass predicted by 

the chemical formula; (2) the retention time of metabolites was within 5% of the retention time 

of a purified standard run with the same chromatographic method.  

The HPLC separation for TSPC derivatised D-2HG and L-2HG was performed on an Inertsil 

ODS-3 column (250 mm × 2.0 mm i.d., 5 μm, VWR) with a binary solvent system. Solvent A 

was 0.1% formic acid in water (v/v) and solvent B was 50:50 (v/v) ACN and MeOH. The 

chromatographic gradient was run at a flow rate of 0.200 mL/min as follows: 0–3 min: 30% B; 

3-10 min: linear gradient from 30% to 70% B; 10-25 min 70% B; 25-26 min linear gradient 

from 70 to 30% B; 26-40 min: held at 30% B. Samples were randomised and analysed with an 

injection volume of 3 µl. The mass spectrometry detection was performed on a Thermo 

Scientific Q Exactive Hybrid Quadrupole-Orbitrap Mass spectrometer using a full-scan method 

in the negative mode with the spray voltage set to -3.5 kV. The heated capillary was held at 

200 °C, and the auxiliary gas heater held at 250 °C. The sheath gas flow was set to 45 units, the 

auxiliary gas flow was set to 10 units, the sweep gas flow was set to 0 unit and S-lens RF level 

was set to 55. Data acquisition was performed in a range of m/z =135-500, with the resolution 

set at 17,500, the AGC target at 1 × 106, and the Max IT at 50ms. 

Chromatogram review and peak area integration were performed using the software 

Tracefinder 5.0 (Thermo Fisher). Absolute quantification of selected intracellular metabolites 

was calculated by interpolation of the corresponding standard curve obtained from serial 

dilutions of commercially available standards running with the same batch of samples and by 

dividing it by the measured cell volume. For 13C-tracing analysis, the theoretical masses of 13C 

isotopes were calculated and added to a library of predicted isotopes. These masses were then 

searched with a 5 ppm tolerance and integrated only if the peak apex showed less than 1% 

difference in retention time from the [U-12C] monoisotopic mass in the same chromatogram.  

2.8.4.  LC-MS data analysis 
Metabolomics analysis was performed according to the workflow presented in Figure 6. In 

brief, mass isotopologue distribution of metabolites was determined by integration of the 

corresponding peaks and correction for natural abundance was performed using the Accucor 

Package119 (v.0.2.3) and the fractional enrichment was visualised using stacked bar graphs. The 

total pool of metabolites was obtained by applying the “Filtering 80% Rule”, half minimum 
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missing value imputation, and normalising the samples using total ion count normalisation. 

Sample were excluded after performing principal component analysis (PCA) and testing for 

 
 

Figure 6: Flowchart depicing the processing of metabolomics data.  
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outliers based on geometric distances of each point in the PCA score plot as part of the muma 

package120 (v1.4). Afterwards, differential expression analysis was performed. The results were 

visualised as bar graphs, heatmap, or volcano plot. In case of consumption-release experiments 

the pre-processed total pool or the fractional enrichment of each metabolite detected in the fresh 

culture medium (incubated in the absence of cells) were subtracted from the metabolites 

detected in the media samples. This will result in the extracellular metabolite levels that were 

visualised using bar graphs (total pool) or stacked bar graphs (fractional enrichment). In order 

to understand the metabolic flux, the cell volume measured at the timepoint of harvest (CASY 

cell counter, Innovatis) and the cellular growth rate or at least the cellular growth factor has to 

be taken into account.  

2.9.  Proteomics 
1*106 cells for FH-proficient and 1.2*106 cells for FH-deficient clones were seeded on a 10 cm 

culture dishes and incubated for 24 h until ~80% confluency was reached. For the harvest, cells 

were washed twice with 1xPBS and scraped in 500 µl, 4° C 1x PBS supplemented with 

protease- and phosphatase inhibitors. Pellet was obtained by 4 min centrifugation at 3600 g at 

4° C, snap frozen, and stored at -80° C until shipment. 

2.9.1.  Label-free proteomics 
Label-free proteomics measurement was performed by Dr. Alexander von Kriegsheim 

(University of Edinburgh, HTPU and Mass Spectrometry Facility Manager). First, the cell 

pellets were lysed in 50 µl buffer comprised of 200 mM Tris pH 8.5, 10 mM Tris (2-

carboxyethyl) phosphine (TCEP), 20 mM Chloroacetamide and 6 M Guanidine-HCl. Each 

sample was sonicated for 10 s and then incubated at 95°C for 5 min. Protein concentration was 

determined using a modified Bradford assay (Pierce). Proteins were digested for 4 h at 1/200 

substrate/enzyme with LysC (Wako) then diluted 1/10 with water and digested overnight at 

37° C with MS grade trypsin (90057, Thermo Scientific) at protease/protein ratio of 1/100. 

Samples were acidified to 1% TFA final volume and clarified by spinning on a benchtop 

centrifuge (15k g, 5 min). Sample clean up to removes salts was performed using C18 stage-

tips121. Samples were eluted in 25 µl of 80% Acetonitrile containing 0.1% TFA and dried using 

a SpeedVac system at 30°C. Samples were resuspended in 0.1% (v/v) TFA such that each 

sample contained 0.2 µg/ml. All samples were run on an Orbitrap FusionTM LumosTM TribridTM 

or QExactive plusTM mass spectrometer coupled to a uHPLC (Ultimate 3000, RSL-Nano). 5 ul 

of the samples was injected onto an emitter packed with C18 material (35 cm, 75um ID 360 

OD packed with UChorm 1.8um) and heated to 50C. Peptide were separated by a 150 min 
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gradient from 5-40% Acetonitrile in 0.5% acetic acid. Data was acquired as data dependent 

acquisition with following settings. MS resolution 240 k, cycle time 1 s, MS/MS HCD ion-trap 

rapid acquisition, injection time 28 ms (for Lumos) or MS resolution 70k, MS/MS 15k, top 24, 

injection time 45ms (for QExactive plus). 

The data was searched using the MaxQuant 1.6 software suite (https://www.maxquant.org/) by 

searching against the human Uniprot database with the standard settings enabling LFQ 

determination and matching. The data was analysed using the Limma-pipeline122. 

Using this data, I have performed gene set enrichment analysis (GSEA) by recapitulating on 

the gene sets published on the MsigDB82 using the packages fgsea123 (v1.8.0) and GSEABase124 

(v1.44.0). The EMT genset was generated by manually curating the gene list published by 

Taube et al125. Plots were generated using the EnhancedVolcano package126 (v.1.0.1).  

2.9.2.  Succination TMT proteomics 
Succinated protein residues were measured using TMT proteomics by Eva Papachristou and 

Clive D'Santos (CRUK Proteomics Core Facility, Cambridge, UK) according to their standard 

protocol published in Papachristou et. al127. The database search was performed as previously 

described in Petros et. al55. 

The statistical analysis was performed by Chandra Sekhar Reddy Chilamakuri (CRUK 

Bioinformatics Core facility, Cambridge, UK). In detail, peptide intensities were normalised 

using median scaling and protein level quantification was obtained by the summation of the 

normalised peptide intensities. A statistical analysis of differentially-regulated proteins was 

carried out using the qPLEXanalyzer, R-bioconductor package127. Multiple testing correction 

of p-values was applied using the Benjamini-Hochberg method128 to control the false discovery 

rate (FDR).  

Using this data, I have pulled down the information about the position  of  the  modified  

cysteine residue within the protein using uniprot peptidesearch 

(https://www.uniprot.org/peptidesearch/). Next, the differential-succinated proteins 

(Log2FC (FH-/- versus FH+/+)) were normalised for the differential total protein expression by 

substracting the Log2FC of the total proteome from the Log2FC of the corresponding 

succinated protein residue. To check the change induced by this normalisation step I performed 

a correlation analysis (R2 = 0.97). Lastly, these succinated cysteine residues were compared to 

previously reported cysteine residues in human and cysteine residues in mouse that are 

conserved in human129. 

https://www.maxquant.org/
https://www.uniprot.org/peptidesearch/
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2.10.  RNA sequencing  
The mRNA was extracted using RNeasy Kit (Qiagen) following the manufacturer’s 

instructions. Quantification of the RNA was done using the Qubit RNA broad range assay kit 

(Invitrogen, cat.no. Q10210) and the Qubit Fluorometer 3.0 (Invitrogen). The samples were 

prepared in Qubit assay tubes (Invitrogen cat.no. Q32856) according to the manufacturer’s 

instructions. The RNA integrity number (RIN) was determined using the D2200 ScreenTape 

system (Agilent) running the manufacturers RNA protocol using the RNA ScreenTape 

(Agilent, cat.no. 5067-5576). Samples for the “RNA ScreenTape” assay were prepared 

according to the manufacturer's instructions. Only with samples that had RIN values above 8.5 

was proceeded to library preparation. For RNAseq polyA capture library preparation 550 ng 

total RNA (10 ng/µl in ddH2O) was submitted in a randomised plate layout to the CRUK 

Genomics Core facility (Cambridge, UK) for library preparation and sequencing. Library 

preparation was done using the Trueseq stranded mRNA kit (Illumina) and single-read 

sequencing was preformed using the HiSeq 4000 (Illumina). The first sequencing run from 

CRUK Genomics Core facility produced low read coverage, as such they performed a second 

run which resulted in a read depth of approximately 5 million. 

The downstream sequencing alignment, QC and conversion to count data was done by Ariane 

Mora (visiting PhD-student in the Frezza Lab). Quality control (QC) was performed using 

FastQC (v0.11.9, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC130 

(v1.9). Since overrepresented sequences (UD indexes of the Illumina-TruSeq kit) were found, 

trimming was performed using Cutadapt131 (v2.10). Adapters were removed from the reverse 

strand with minimal error tolerance and removing poor quality bases below pfred score of 20 

(-g AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -e 0.05 -q 20,20). Afterwards, 

FastQC and multiQC was re-run, which showed lower over-representation with a shorter 

sequence affecting 0.1% of sequences which was considered sufficient to pass QC. The reads 

were mapped to the human Hg38.18 genome using Hisat2132 (v2.2.1) using at most 5 distinct 

reads (k parameter), allowing a maximum restart of 5 times (--max-seeds and -k 5 -p 10 -q --

max-seeds 5 --rna-strandness "R"). As noted above, there were two runs from the sequencer, 

these bam files were merged and sorted using “merge” and “sort” from samtools133 (v1.10-88). 

To summarise the counts to annotated genes, FeatureCounts134 (v2.0.1) from subread was run 

also using the annotation from GRCh38.100 human genome. In detail, primary reads are 

counted to exons (-F GTF -t exon -T 10 -s 2 -g gene_id –primary).  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Next, I used the Deseq2 (v1.22.2) package135 to compute differentially expressed genes between 

the two conditions (FH-/- versus FH+/+) applying Walds statistics and setting the significance 

level “alpha” for independent filtering to 0.05. Prior to running DEseq2, genes with fewer than 

five reads were removed. Gene IDs from Ensembl were mapped to gene names using 

scibiomart136 (v.1.0.2), a wrapper around the API from BioMart. In case multiple ids were 

mapped to a gene, the gene with the highest log2 fold change was retained. To determine the 

functional enrichment of the change in mRNA expression, GSEA was performed on the gene 

sets published on the MsigDB82 using the packages fgsea123 (v1.8.0) and GSEABase124 

(v1.44.0). The EMT geneset was generated by manually curating the gene list published by 

Taube et al125. Plots were generated using the EnhancedVolcano package126 (v.1.0.1). 

2.10.1.  Alternative isoform regulation 
While featureCounts provides details of changes in expression that occur at the gene level, to 

perform isoform analysis, we used StringTie137–139 to count the reads mapping to different 

transcripts (https://ccb.jhu.edu/software/stringtie/). The merged and sorted Bam files (details in 

2.10 RNA sequencing) were mapped to the GRCh38.100 human genome using StringTie 

(v2.1.4) with parameter -e for downstream use in IsoformSwitchAnalyzeR. Using the -e 

parameter, the primary output of StringTie are tab files which contain details of the assembled 

isoforms from the RNA-Seq data. IsoformSwitchAnalyzeR uses these outputs from StringTie 

to compute the differential usage of isoforms140–144. We used the function 

isoformSwitchTestDEXSeq with alpha 0.05 and dIFcutoff of 0.1 to quantify the mean change 

and significance between FH-/- and FH+/+ at the transcript level.  

2.11.  Bisulfite sequencing 
This experiment was done in collaboration with the Massie Lab (Oncology Department at the 

University of Cambridge) and performed by Sabrina Rossi (PhD-student) and Sara Pita 

(Research assistant). DNA samples (10 ng/µl, 500 ng total) were sheared by S220 Focused-

ultrasonicator (Covaris). The mean dsDNA fragment size of 180-200 bp was checked using the 

Agilent D1000 ScreenTape System (>60% of DNA fragments were between 100 and 300 bp). 

Tissue methylation analysis of a capture-based method targeting 3 million CpGs was performed 

using the TruSeq Methyl Capture EPIC Library Preparation Kit (Illumina) according to the 

manufacturer’s instructions. Sequencing was performed using the HiSeq4000 Illumina 

Sequencing platform (single end 150bp read) using two lanes per library pool. Technical 

replicates were performed for cell line data to assess assay reproducibility (R2 = 0.97). Quality 

https://ccb.jhu.edu/software/stringtie/
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control (QC) was performed using FastQC and MultiQC. The reads were trimmed using 

TrimGalore (v0.4.4) and Cutadapt (v1.8.1) using standard parameters. To extract DNA 

methylation, Bismark (v0.22.1) was used with the bowtie aligner (v2.3.4.1) and the parameters: 

--ignore_3prime 1 –ignore. 

The downstream methylation analysis was performed in collaboration with Ariane Mora 

(visiting PhD-student in the Frezza Lab) (Figure 7). First, MethylSig145–148 (v1.0.0) was used 

to identify differentially methylated regions (DMRs) in the promoter region of known genes 

from the TxDb.Hsapiens.UCSC.hg38 database. Loci with less than 5 counts in either FH+/+ or 

FH-/- were removed prior to running the DMR analysis. The function “diff_methylsig” was 

called on the filtered data, and an approximate squared t was used for the likelihood ratio 

statistic. Next, differentially methylated cytosine (DMC) analysis on the resolution of CpGs 

was performed using the MethylKit149 (v1.14.2). Coverage files were read in using the GRCh38 

genome and the bismark coverage pipeline at the base-pair resolution, using CpG methylation 

context with a minimum coverage set at 10. To improve the test statistic, CpGs were filtered 

and removed when coverage was considered “very high” (top 0.1% of CpGs) or “very low” 

(counts < 10). The function “calculateDiffMeth” (default parameters) was used to calculate 

 
Figure 7: Alluvian plot depicting the methylation analysis workflow. 
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differential methylation at each CpG. Coverage, number of C’s, number of T’s, and percentage 

(number of C’s/ coverage) were recorded for downstream analysis. The DMRs from MethylSig 

and differential CpGs from MethylKit were annotated to genes if they fell within 1000 base 

pairs of the Transcriptional start side (TSS) or overlapped the gene body by 500 base pairs using 

sciepi2gene150 (v1.0.0). The results from MethylSig and MethylKit were annotated to genes 

and merged using scidmg151 (v1.0.0) with the default parameters. In detail, only significant 

(q<=0.1) DMRs with strong concordance to the DMCs (q < 0.1) in terms of direction of 

methylation change (> 60%) were retained. If multiple DMR’s mapped to a single gene yet 

were not concordant in terms of the directionality of change then these were removed. For the 

remaining DMRs the CpG with the highest methylation difference in the direction of change 

was assigned as the methylation value (change and padj) for that gene (i.e. as the driver CpG 

behind the gene’s change in DNA methylation). 

2.12.  SiRCle (Signature Regulatory Clustering) 
model 

This tool was developed in collaboration with Ariane Mora (visiting PhD student). 

Depending on which level the gene expression is influenced, genes were clustered into 

regulatory groups. Regulatory clusters were created using scircm v1.0.0 (unpublished) using 

the following parameters: rna_padj_cutoff=0.05, prot_padj_cutoff=0.05, 

meth_padj_cutoff=0.05, rna_logfc_cutoff=0.5, prot_logfc_cutoff=0.3, meth_diff_cutoff=10, 

bg_type='P|(M&R)'. In detail, genes were grouped by less than, or greater than the amount with 

one level of redundancy (i.e. only had significant changes in two of the three groupings). The 

only exemption from this rule are genes encoding for non-coding RNA and genes measured at 

the protein level. In these cases, significant changes in one of the three groups were sufficient 

to be assigned to a cluster. This resulted in 24 different flows that were driven by 10 different 

regulatory drivers (e.g. mRNA increase) resulting in 10 individual regulatory clusters. Non-

coding gene annotations were downloaded from GO (http://geneontology.org/) by searching for 

“Non-coding” in the genes and products section, filtering organism for Homo-sapiens and 

choosing “Gene/product (bioentity)”, “Source” and “Type” for customised download.  

2.12.1.  Over representation analysis of the SiRCle clusters 
Over representation analysis (ORA) was performed on each SiRCle clusters using the 

“enrich_GO” function (parameters: keyType = "ENTREZID", OrgDb = org.Hs.eg.db, ont = 

"ALL", pAdjustMethod = "BH", qvalueCutoff = 0.1) of the clusterProfiler package152 (v3.10.1). 

http://geneontology.org/
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The background data as defined in the scircm package “bg_type” were used as the “universe” 

in the “enrich_GO” function, these were all genes that either have a significant change in 

protein, or a significant change in RNA or DNA methylation (bg_type='P|(M&R)'). The output 

data are plotted using the “emapplot” function or the “heatplot” function of the clusterProfiler 

package.  

2.12.2.  Overlaying other omics data onto the SiRCle 
clusters 
To overlay other omics data, the Fisher’s exact test was used to quantify the  likelihood  of  the 

overlaid data falling onto specific regulatory clusters. This analysis's input data are the results 

from scircm and the filtered (e.g. for adjusted p-value, Log2FC) omics data that are overlaid. 

Here we overlay genes with significant changes in succination (calculated using succination 

proteomics where succination may occur at any site, p <= 0.05). Similarly, genes which were 

found to be alternatively spliced from the isoform analysis (2.10.1. Alternative isoform 

regulation) were also overlaid. 

2.12.3.  Transcription factor (TF) analysis based on the 
SiRCle clusters 

To identify potential binding sites of motifs, we downloaded the upstream flanking sequences 

from Ensembl (https://www.ensembl.org/biomart/martview/, human genes GRCh38.p13) for 

the genes in the background dataset of our SiRCle model (+100bp, unique results only). Motif 

position weight matrices (PWM‘s) were downloaded in meme format from the HOCOMOCO 

database (https://hocomoco11.autosome.ru/), using the core dataset from v11. We used fimo 

from the online version of meme suite (v1.3.0, http://meme-suite.org/tools/fimo) to find 

transcription factor (TF) binding sites enriched in our background dataset (Ensembl sequences 

and HOCOMOCO PWMs as input). The output tsv file was used as the input to scimotf153 

(v1.0.0), which in turn identifies common TFs in each SiRCle cluster. We used the following 

parameters for scimotf: RNASeq padj, RNAseq Log2FC, tf_in_dataset=TRUE, fimo_pcol="p-

value", cluster_pcutoff=0.05). The results were filtered to only contain TFs that were uniquely 

assigned to one SiRCle cluster. 

2.12.4.  Integration of VAE into SiRCle 
To assign ranks to genes in SiRCle regulatory groups, we use a Variational Autoencoder (VAE) 

to learn an integrated rank for each gene. There were 2805 genes assigned to SiRCle clusters 

and these were used as the training set of genes. The input values for each gene was the 

methylation difference, Log2FC for RNAseq and proteomics data, and also three replicates of 

https://www.ensembl.org/biomart/martview/
https://hocomoco11.autosome.ru/
http://meme-suite.org/tools/fimo
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the normalised values of the  single clones for RNAseq (normalised using EdgeR’s (v3.30.3, 

https://rdrr.io/bioc/edgeR/man/calcNormFactors.html, TMM method) and proteomics (in total 

27 features, Figure 8). We then used the rcm package (v1.0.0, unpublished) to compute the 

VAE (scivae v1.0.0, unpublished) using three nodes in the latent space, with selu activation 

functions and MMD loss metric. The rcm package assigned three ranks to each gene, one for 

each node in the latent space. These ranks were used to run GSEA using fgsea123 (v 1.14.0, 

10000 permutations, „simpleGSEA“ function) and GSEABase124 with the publicly available 

gene sets from the Molecular Signatures Database (MsigDB)82, namely KEGG, Biocarta, 

Rectome, hallmarks, GO and NEF2L2, as well as the manually curated EMT signature based 

on the gene list published by Taube et al125. 

 

Figure 8: The VAE model. 

The VAE is a machine learning approach that focuses on combining different data types before applying a 

learning algorithm to get a common latent representation of the data. The data input are the methylation 

difference (yellow), RNAseq data (green) including Log2FC and three replicates of the normalised values of 

the single clones, and proteomics data (blue) including Log2FC and three replicates of the normalised values 

of the single clones, which results in a total of 27 different input features. In the encoder the input features are 

reduced into a smaller number of nodes to get a compressed representation into the latent space. Within the 

latent space the VAE tries to learn the distribution of our data (latent variable σ and ∑). The decoder is used 

to decode the latent variables and approximates the observed variable given to our latent space. After the 

decoding the loss will be calculated and in a feedback loop propagated back to ensure as less loss of information 

as possible (loss function). This regularisation applied to the latent space is maximum mean discrepancy 

(MMD), which takes into account the clonal differences and ensures the best fit of the data without overfitting. 

In the end each gene will go through this projection method and the VAE will project the data into a unique 

position in the latent space on three nodes corresponding to x, y, z planes taking into account all our input 

features. 

https://rdrr.io/bioc/edgeR/man/calcNormFactors.html
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2.13.  TRACER  
2.13.1.  Fabrication 
The 3D cell culture system TRACER requires different components to enable assembly of the 

model116: the biocomposite seeding mould, the cell spreader for monoculture, the mandrel, the 

mandrel handle, the tissue securing clip, the 6-well inserts and the 6-layer scaffold strips, which 

all were manufactured together with the Laboratory of Alison McGuigan (University of 

Toronto, Canada) using the material and procedures described by Rodenhizer et al116. Before 

usage, the biocomposite seeding mould, the cell spreader for monoculture, the mandrel handle, 

the tissue securing clip and the 6-well inserts were sterilised by wet autoclaving. The mandrel, 

the 6-layer scaffold strips and standard paper tissue were sterilised by backing around 170°C 

overnight. 

2.13.2.  Seeding, assembly and disassembly 
The TRACER seeding was adapted and optimised based on Rodenhizer et al.116. During this 

process, the best cell number, reproducibility of cell density, and homogeneous distribution 

were assessed using the SRB staining protocol described below (2.13.3. SRB staining). Before 

harvesting the cells, the biocomposite seeding chamber was assembled by placing autoclaved 

paper tissue into a 500 cm2 (Nunc, cat.no.166508) culture dish, soaking them with 1x PBS and 

humidifying it by incubating at 37 °C in the cell culture incubator (Figure 9, Step 1). At the 

same time, the heating pad and 6-well plates filled with 10 ml culture media are placed in the 

incubator and 1x PBS is heated to 37°C. The FH+/+ and FH-/- clones were harvested by 

trypsinisation, filtered through a cell strainer (45 µm, Corning), counted (CASY cell counter, 

Innovatis) and centrifuged for 4 min at 3600 g at room temperature (Figure 9, Step 2). In the 

meanwhile, the collagen hydrogel was prepared by mixing 1 ml PurCol (Sigma, cat.no C7657) 

with 125 µl 10x MEM (1 pot from Gibco, cat. no 194388, supplemented with 22 g NaHCO3, 

ad. 1 l ddH2O) in a 2 ml Eppendorf tube until the solution turns from pink to yellow. Next, 60 µl 

of 0.1 N NaOH are added to neutralise the pH, which turns the solution pink again. The collagen 

hydrogel was stored on ice. Depending on the number of strips needed for the experiment, all 

clones were processed together or if more than a total of 6 strips where required, the step 3-7 

(Figure 9) were repeated for each clone and the cell suspensions were stored at 37°C until 

usage. The cell pellet obtained after centrifugation was resuspended in the collagen solution 

(50*106 cells/ml FH+/+ or 60*106 cells/ml FH-/-, avoid air bubbles), transferred to a 2 ml 

Eppendorf tube and placed on ice (Figure 9, step3). The biocomposite seeding mould was 

placed onto ice and 90 µl of the collagen-cell-suspension was distributed along one lane 
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covering the total length of a strip (Figure 9, step 3). After all lanes are filled, the cell 

suspension is spread evenly within the lanes using a cell spreader (Figure 9, step 4). It is 

important to use a clean cell spreader for each cell type that is seeded. The nitrocellulose 

scaffold  strip is placed onto the lane using tweezers, and the cell suspension will soak in 

(Figure 9, step 5). After all strips are placed on the lanes, they are pressed down using the cell 

spreader to ensure an equal distribution of the cell suspension across the strip (Figure 9, step 6). 

For the collagen to solidify without drying out, the strip is placed in the warm, humidified 

 

Figure 9: Key TRACER seeding, assembly and disassembly steps. The detailed description for the steps 1-
20 can be found in the text. 
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seeding chamber and incubated for 45 min at 37°C in the cell culture incubator (Figure 9, 

step 7). Here it is crucial to keep on time to ensure reproducibility between the batches. Next, 

the seeding mould was placed on a heating pad (37°C) and 1x PBS (37°C) is carefully pipetted 

along the edges of the strip until it is completely soaked and swims off the seeding mould 

(Figure 9, step 8). The strip was picked up using tweezers in a slow, consistent pace to minimise 

the number of cells that remain on the seeding mould (Figure 9, step 9). The slide was 

immediately slided into the prewarmed culture media and similar to the previous step it is 

important to keep a slow consistent pace to reduce the loss of cells (Figure 9, step 10). This 

can be checked under the microscope by looking at the standing strip. At the side that was faced 

down  onto  the  seeding  mould the cells can be observed and should build an even layer 

(Figure 9, step11). Moreover, floating cells that have been lost when sliding the strip into the 

culture media are visible (this should be a small number as indicated in the picture; otherwise 

the strip was excluded from downstream analysis). For the cells to attach and establish cell-to-

cell contacts, the strip was incubated overnight, precisely for 16 h. After this incubation, the 

strips can be used for experiments that do not require the gradient of oxygen and nutrients as 

for instance, the growth curve as described in 2.13.3. “SRB staining”. Otherwise, the 6-well 

inserts are placed in a 6-well plate, overlaid with 10 ml cell culture media and incubated at 37°C 

to warm up (Figure 9, step 12). Next, the rolling handle is attached to the mandrel and layer 6 

facing upwards is placed at the carve of the mandrel (Figure 9, step 13). The strip is rolled 

around the mandrel by applying settled tension using the tweezers that grab the strip at the lines 

(only  at the lines and nowhere else) and  turning  the  mandrel  using  the  rolling  handle 

(Figure 9, step 14). An important quality control for the right tension and rolling is that after 

each full turn of the mandrel, the line on the strip should overlay exactly onto the previous line. 

During this process, the rolling hand need to reposition, which is done by holding the mandrel 

with the tweezer (Figure 9, step 15). Once the strip is completely rolled around the mandrel, 

the end is secured from unrolling by placing the tissue securing clip at the end of layer 1, where 

all lines come together (Figure 9, step 16). Next, the mandrel is held at the top, the rolling 

handle is removed, and the mandrel is stuck into the 6-well insert (Figure 9, step 17). The 

TRACERs are stored in the cell culture incubator for 24 h prior to harvest (Figure 9, step 18). 

For the downstream experiments, the TRACER is unrolled by removing the tissue securing clip 

and pulling on the end of layer 1 (Figure 9, step 19). Next the TRACER layers are cut into 

pieces using scissors and placed into 2ml Eppendorf tubes (Figure 9, step 20).  
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2.13.3.  SRB staining  
To assess the cell seeding uniformity within the strip (inter-batch variability), the 

reproducibility between strips (batch-to-batch variability), and the cell growth (growth curves), 

Sulphonamide B (SRB) staining was performed. In comparison to the MTT-assay (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) described in Rodenhizer et al.116, 

where the dye stains the cells based on the reduction by mitochondrial SDH and 

NADH/NADPH, the SRB stain can also be used for cells that harbour mitochondrial 

dysfunction (like FH-deficient cells) since it binds to the protein constituents of the cells in a 

stoichiometric manner.  

To evaluate inter-batch and batch-to-batch variability the entire strip was placed in a 6-well 

plate containing 4 ml 4°C cold 0.1% trichloroacetic acid (TCA), and incubated for at least 1 h 

at 4°C. For the growth curve, the strips were cut into pieces after finishing step 11 (Figure 9), 

placed into a 24-well plate containing 2 ml cell culture media per well and stored in the 

incubator until harvest. The media was replenished every 24 h. At the harvest, the piece of 

 

Figure 10: Key TRACER steps after SRB staining.  

(A) The detailed description for the steps 1-4 can be found in the text. (B) Example of the quantification 

showing a badly seeded strip (left), an empty strip with perfect distribution of the stain (middle) and the 

comparability of the batches seeded on different days (right). 

 

 



40 | 
 

interest was placed in a 24-well plate containing 1 ml 4°C cold 0.1% TCA, and incubated for 

at least 1 h at 4°C. Once the TCA was removed the plate was stored at 4°C until staining. 

Noteworthy, for the growth curve, all pieces were harvested and stained together. For the 

staining, SRB-solution (0.057% SRB in 1% acetic acid) was added to the strip/pieces and 

incubated at RT for 1 h on a shaking platform. Afterwards, the strips/pieces were washed in 1% 

acetic acid and put to dry on parafilm (Figure 10A, step 1). The dried strips/pieces where stored 

with scotch tape fixed on a plastic pocket (Figure 10A, step 2). To scan the pieces, the scotch 

tape  was  fixed  to  the  scanner  and  images  were  saved as TIF with 600 dpi resolution 

(Figure 10A, step 3). Image analysis was performed using Image J following the published 

protocol116. To ensure that the measurements are comparable between scans, the region of 

interest (ROI) was always set to an area of 0.66 (Figure 10A, step 4). The downstream analysis 

was performed as described previously116 and showed that our seeding is uniform and can be 

used for cell quantification (Figure 10B).  

2.13.4.  Isolation of live cells from the TRACER strip 
To perform downstream experiments such as cell counting, fluorescence-activated cell sorting 

(FACS) or protein extraction, live cells have to be extracted from the strip. The previously 

described assay takes a long time and is based on digesting the collagenase the cells are 

embedded in116. To reduce this time, a new protocol was established that enables the extraction 

of live cells in 25 min when handling 4 strips (24 pieces) at a time. In detail, 800 µl TrypLE 

Express 1x (Gibco, cat.no 12605-010) are pipetted into 2 ml Eppendorf tubes, the TRACER 

roll is disassembled and cut into pieces that are added into the solution. The pieces are incubated 

for 15 min at 37 °C on a thermomixer shaking at 600 rpm. During this period the tubes are 

vortexed 4 times for 3 s. Afterwards, 200 µl FBS (37°C) is added to stop the digest, the strip is 

removed, and the cell mixture is centrifuged for 4 min at 4400 g at RT. If the cells are harvested 

for counting the centrifugation step is skipped and the cells are counted using the CASY cell 

counter (Innovatis). It is important to note that this protocol has been optimised for a cell density 

reached after 24 h of TRACER culture (which equals total amount of 40 h during which cells 

were embedded in the strip) and needs to be optimised for each time point and cell number 

used. The complete extraction of the cells from the strip is controlled by SRB staining and by 

comparing the pieces to an empty strip. 

2.13.5.  RNA extraction and qPCR 
The pieces were harvested into 2 ml Eppendorf tubes containing 350 µl RLT lysis buffer 

(RNeasy Kit, Qiagen) according to Figure 9, step 20, and frozen at -80 °C for at least 1h. Next, 
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the TRACER pieces were removed, and the mRNA was extracted according to the description 

above (2.5 RNA extraction and quantitative PCR). Following the protocol of 2.5. “RNA 

extraction and quantitative PCR”, cDNA was produced using 500 ng total RNA. qPCR was 

performed using TaqMan Fast advanced MasterMix (Thermo fisher, cat.no. 4444557) and 

duplexing Fam and Vic on a Step One Plus real-time PCR system (Life Technology). 

Experiments were analysed using the StepOne software 2.3 and the standard deviation was 

calculated using excel. 
Housekeeping genes used for internal normalisation: 
TBP_Vic  Thermo Fisher, cat.no. HS00427620_m1 

 

Target genes: 
EPCAM_Fam  Thermo Fisher, cat.no. HS00901885_m1 

NQO1_Fam  Thermo Fisher, cat.no. HS01045993_g1 

BNIP3_Fam  Thermo Fisher, cat.no. HS00969291_m1 

 

2.13.6.  LC-MS 
Steady-state metabolomics and carbon tracing experiments were performed using LC-MS 

analysis as described above (2.8. Metabolomics: Liquid chromatography–mass spectrometry 

(LC-MS)). TRACER strips were prepared as described in Figure 9 and the strips were placed 

in DMEM or DMEM supplemented with stable isotope labelled substrates for 24 h (Figure 9, 

step 17). Afterwards, a TRACER from each condition was used to estimate cell number and 

cell volume as described above and 1 ml/25*104 cells metabolite extraction buffer was aliquoted 

for each sample. Media samples were taken and frozen at -80°C before intracellular metabolites 

were collected. To extract intracellular metabolites the strip was unrolled (Figure 9, step 19), 

carefully washed with 1x PBS by dipping the strip into a petri dish and placed onto a metal 

plate on dry ice. The strip was cut into pieces, which were transferred into the corresponding 

Eppendorf tube containing the metabolite extraction buffer and placed into the cooling bath for 

15 min. The strip is removed before the final centrifugation step of the protocol in “2.8.2. LC-

MS sample extraction”. After centrifugation, the supernatant was transferred into a fresh 

Eppendorf tube and the pellet was dried using a speedvac. Afterwards, the pellet was 

resuspended in 1 ml/1*106 cells metabolite extraction buffer, sonicated until completely 

resolved, transferred into autosampler vials, and stored at -80°C until further analysis. 

2.13.7.  Metabolite distribution: Linear modelling 
Metabolomics analysis was performed according to the workflow presented in 2.8.4. “LC-MS 

data analysis”. For the linear modelling, the R base package stats (v3.5.1) (https://www.r-

https://www.r-project.org/
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project.org/) was used. In detail, the normalised total pool metabolomics results were used and 

for each biological replicate the pearson R2 with corresponding p-value was calculated using 

the function “cor.test” (method = "pearson", conf.level = 0.95) . The pearson linear regression 

results of the biological replicates of clones with same FH status (FH+/+ or FH-/-) were pooled 

by calculating the median of the pearson R2 using the function “median” and the adjusted p-

value of the individual p-values by using the “sumlog” function, which aplies the Fisher’s 

method (sum of logs method) as part of the metap package154 (v1.4) . Metabolites that had a 

median pearson R2 > 0.7 were categorised “UP”, whilst metabolites with a median R2 < -0.7 

were  categorised  “DOWN”, otherwise  they  fell into the category “No Linear Change” 

(Figure 11). Additionally, metabolites were excluded from the category “UP” or “DOWN” 

with an adjusted p-value > 0.05 or with a R2 variance > 0.2 (Figure 11). The variance was 

calculated using the R base function “var”.  

  

 
Figure 11: Linear modelling workflow using the LC-MS data. 
 

https://www.r-project.org/
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Results Chapter 1 

3.1.  HK2 cells as a model of FH-deficiency 
The current human models of FH loss, as the HLRCC-derived UOK cells155,156, originate from 

primary or metastatic tumours, which represent an advanced phase of tumour formation. To 

better understand the early steps of transformation, I generated a human model of FH loss in 

non-transformed renal epithelial cells, HK2 cells, an immortalized proximal tubule cell line 

obtained from healthy adult human kidney157. To this aim, I performed CRISPR/Cas9-based 

genome editing of FH and characterized the single-cell clones. In detail, I generated a control 

cell line using an empty vector that expresses SpCas9, hereafter indicated as FH+/+, and an FH-

deficient cell line, hereafter indicated as FH-/-, where the FH protein was depleted by targeting 

FH exon 2 and 4 with two independent sgRNAs (Figure 12A-B, Supplementary Figure 1A-

B). 

3.1.1.  Metabolic rewiring in FH-deficient cells 
To systematically elucidate the metabolic changes upon FH loss, I performed LC-MS-based 

metabolomics of intracellular and extracellular metabolites (Figure 12C-I, Supplementary 

Figure 1C-D). As observed in Fh1-deficient mouse cells69, fumarate reaches millimolar levels 

in the FH-/- clones and it is secreted in the extracellular milieu (Figure 12C-D). This response 

is accompanied by a change of TCA cycle metabolites including the decrease of malate, the 

product  of  the  FH  catalysed  reaction, and  α-ketoglutarate  (aKG),  the  increase  of intra- 

and extracellular  succinate, and  increase  of  argininosuccinate  (Figure 12E,  Supplementary 

Figure 1C), as previously described in other models of FH deficiency49,51. We and others have 

shown that FH-deficient cells increase their glycolytic rate, and instead of fully oxidising 

glucose in the mitochondria, they shunt it into lactate production49. Consequently, glucose is 

replaced by glutamine as the main source of carbons for the TCA cycle49. Confirming these 

observations, I detected a minor increase in lactate release in the FH-deficient clones compared 

to the FH-proficient counterpart and a change in the TCA cycle metabolites (Figure 12E-F). 

To  examine  the  metabolic  rewiring in  more  detail, I  capitalised  on  13Carbon  (13C)  tracing  
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Figure 12: Metabolic adaptation phase after FH loss. 

(A) Schematics of the generation of Fumarate Hydratase (FH) knockout cells using CRISPR/Cas9-based 

genome editing of a human non-transformed epithelial cell line, HK2. (B) FH protein expression measured 

using western blotting (Representative image of n=3, details see Supplementary Figure 1A-B). (C+D) 

Intracellular and extracellular fumarate levels, (E) differential intracellular metabolite levels and (F) 

extracellular lactate measured by LC-MS. (G) Proportion of total pool of m+n fumarate, (H) malate and (I) 

citrate m+5 were measured by LC-MS using U-13C-glutamine in the culture media. Results were obtained from 

three biological replicates and presented as mean ± s.d. after performing total ion count normalisation and 

missing value imputation (for details see 2.8.4 LC-MS data analysis). P-value (p) is calculated using one-way 

ANOVA and the Tukey’s multiple comparison test. 
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experiments158, using uniformly 13C-labelled glutamine (U-13C-glutamine) (Supplementary 

Figure 1D). This metabolite enters the TCA cycle via glutamate, generating aKG enriched of 

5 13C, shifting its molecular weight of 5 Daltons (the aKG thus generated is indicated as mass+5 

dalton (m+5) isotopologue). aKG can then be oxidized within the TCA cycle generating m+4 

succinate, fumarate, and malate, or can undergo reductive carboxylation, generating m+5 

citrate. First, I observed that most of the fumarate is fully labelled (m+4) under these conditions, 

indicating that it derives from glutamine (Figure 12G-H). Patient-derived FH-deficient cells, 

UOK262 cells, use glutamine to generate lipogenic acetyl-CoA via the reversal of isocitrate 

dehydrogenase (IDH) and ACO2 in a process called reductive carboxylation 52. In contrast, this 

reaction was not observed in mouse Fh1-deficient epithelial cells49 or fibroblasts53. Similar to 

the observations made in mouse Fh1-deficient cells49, I did not detect reductive carboxylation 

in our FH-deficient clones (Figure 12I). It has previously been proposed that the lack of 

reductive carboxylation could be due to the inactivation of ACO2 via succination of ACO2 

itself or due to the lack of Fe-S clusters that are integrated into ACO247,53. The higher levels of 

fumarate in our FH-/- cells compared to the UOK262 could lead to the inhibition of ACO2 and 

might explain the suppression of reductive carboxylation.  

To sum up, these results show that FH loss in HK2 cells leads to profound metabolic 

changes and to fumarate accumulation, similar to the observations made in mouse and other 

human FH-deficient cells.  

3.1.2.  Biochemical changes and fumarate buffering 
The aberrant accumulation of fumarate has been implicated in the dysregulation of several 

cellular processes. We recently demonstrated that fumarate affects mitochondrial respiration in 

a multi-pronged fashion55. For instance, fumarate blocks the activity of complex II via product 

inhibition, causing an overall suppression of oxidative phosphorylation (OXPHOS) in FH-

deficient cells55. In accordance with these previous findings, the FH-deficient clones exhibit a 

lower oxygen consumption rate (OCR) compared to the FH+/+ clones (Figure 13A). Moreover, 

I detected a decrease in the activity of respiratory chain complexes performing 

spectrophotometry (Figure 13B) and downregulation of a variety of OXPHOS signatures 

performing GSEA using RNA sequencing data comparing FH-/- versus FH+/+ (Supplementary 

Figure 2). 

Another mechanism through which fumarate can affect mitochondrial bioenergetics is 

succination159. This reaction affects proteins involved in the synthesis of Fe-S clusters, proteins 

required for the proper activity of many enzymes, including complex I and II of the respiratory 
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chain55. In our FH deficient model, I detected an increase in 2SC and in the succination of 

protein residues determined by western blotting (Figure 14A-B, Supplementary Figure 3A). 

Performing succinated proteomics further confirmed the increase in succinated protein residues 

(Figure 14C, Supplementary Figure 3B), yet I did not detect the succination of Fe-S cluster 

assembly family of proteins. Nevertheless, these results confirmed the features of mitochondrial 

dysfunction and increased succination previously described in FH-deficient cells. 

3.1.3.  FH loss promotes oncogenic signalling cascades 
Besides the above-described metabolic reprogramming and fumarate-induced mitochondrial 

dysfunction, FH loss and fumarate accumulation activate a plethora of pro-oncogenic signalling 

cascades, as described in the introduction. To investigate the downstream effects of protein 

succination in our clones, I focused on the well-studied NRF2 stabilisation and subsequent 

activation of an antioxidant response signature66,78. To this end, I applied an enrichment analysis 

on the proteomics and RNA landscape using the NFE2L2.V2 signature160. This analysis showed 

a significant upregulation of the NRF2 pathway in the FH-/- clones on RNA and protein 

expression level (Figure 14D-E). Consistent with this finding, we confirmed the upregulation 

of one of the NRF2 target genes, NQO1, in the FH-/- using qPCR (Figure 14F).  

Fumarate accumulation is also known to inhibit the family of aKGDDs, enzymes 

involved  in  various cellular  processes,  including  protein  hydroxylation,  RNA modifications, 

and DNA and  histone  demethylation47. In  agreement  with  these  findings, I  detected  overall  

 
Figure 13: Impairment of OXPHOS in FH-deficient clones. 

(A) Basal extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of three biological 

replicates measured using Seahorse. (B) Mitochondrial respiratory chain activity of isolated mitochondria 

normalised to protein amount and citrate synthase activity (CS) using spectrophotometry. Results were 

obtained from three to four biological replicates and presented as mean ± s.d., adjusted p-value (p) is calculated 

using one-way ANOVA and the Tukey’s multiple comparison test.  
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Figure 14: Fumarate accumulation results in succination and promotes antioxidant response. 

(A) Intracellular 2SC concentration measured using LC-MS. (B) Succinated protein residues measured by 

western blotting (for image see Supplementary Figure 3). (C) Volcano plot of the detected succinated protein 

residues comparing FH-/- to FH+/+. (D-E) Volcano plot illustrating the expression profile of the antioxidant 

response (GSEA including NFE2L2.V2 signature) on (E) RNA and (E) protein level detected in FH-/- compared 

to FH+/+. (F) NQO1 mRNA levels measured by qPCR. TBP was used as a calibrator for the qPCR analysis. 

Results for A, B, F were obtained from three biological replicates and presented as mean ± s.d. Adjusted p-
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DNA methylation changes with 63% differentially hypermethylated and 24% differentially 

hypomethylated regions (Figure 15A). Hypermethylation suppresses the family of 

antimetastatic MIRNA200, leading to EMT69. Consistently, these miRNAs were suppressed in 

the FH-deficient cells (Figure 15B). This downregulation is in accordance with the enrichment 

analysis of the proteomics and RNAseq data using the manually curated “EMT DOWN” and 

“EMT UP” signatures125, which showed a significant downregulation of a plethora of epithelial 

markers both at the protein and RNA level, when comparing FH-/- versus FH+/+ (Figure 15C, 

Supplementary Figure 2). The decrease of epithelial markers upon FH loss was confirmed by 

qPCR, which showed a consistent decrease of mRNA levels of epithelial markers such as E-

CADHERIN and EPCAM (Figure 15D).  

Overall, these results show that our novel model of FH loss faithfully recapitulates the 

molecular features previously observed in mouse and human FH-deficient cells and tumours.  

3.1.4.  Discussion 
In this Chapter, I have described the generation and characterisation of a novel non-transformed 

human model of FH loss. This model fully recapitulates the biochemical and phenotypic 

features of the previously described FH-deficient human and mouse models. Indeed, I detected 

the accumulation of fumarate and the metabolic hallmarks typical for FH loss. Moreover, I 

detected protein succination, NRF2 activation, DNA hypermethylation, and activation of EMT. 

However, there are also some notable exceptions.  

For instance, I did not detect the succination of KEAP1, ACO2, or the Fe-S cluster 

assembly family members, whilst still observing the downstream activation of the antioxidant 

pathway (ascribed to KEAP1 succination66,78), the lack of reductive carboxylation (previously 

explained by ACO2 succination53), and the decrease in OXPHOS (previously linked to Fe-S 

cluster assembly family succination55). This observation can have multiple explanations: First, 

for the detection of succinated residues, there is no enrichment method, whereas KEAP1 

succination was only detected after enrichment for this protein via pulldown66,78. Therefore, 

other succinated residues could have been missed due to their low abundance. Second, not all 

protein residues in mouse cells are conserved in human cells, yet excluding the cysteine residues 

that are not conserved in human only showed a minor overlap of the succinated proteins129 

(Supplementary Figure 3C). This further supports the problem of detection of succination: 

Given that FH-deficient cells accumulate high levels of fumarate driving succination, 

value (p) is calculated using one-way ANOVA and the Tukey’s multiple comparison test. Results for C, D and 

E were obtained from five biological replicates. Adjusted p-value (p.adj) is calculated using the DESeq2 

package (RNAseq data) or the Limma-pipeline (proteomics data). 
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succination would be expected to occur on most amenable cysteine residues and one would 

expect a substantial overlap of detected succinated sites. Third, given that the cellular pH affects 

the succination reaction129, the succination landscape can also be influenced by the cell-density, 

media acidification and general environmental cues.  

Another difference between the mouse and human model is the lack of hypermethylation of 

MIR200 family members 69 and CDKN2A hypermethylation70,71. Interestingly, whilst in the FH-

 
Figure 15: FH loss induces EMT through inhibition of MIR200 family members. 

(A) Volcano plot of the DNA methylation difference between FH+/+ and FH-/-. (B) miRNA expression 

measured by qPCR normalised to FH+/+ Cl1. SNORD 59 and SNORD 61 were used as calibrators for the qPCR 

analysis. (C) Volcano plots illustrating the expression profile of EMT DOWN (GSEA including EMT DOWN 

signature) on RNA and protein level detected in FH-/- compared to FH+/+. (D) mRNA expression measured by 

qPCR normalised to FH+/+ Cl1. TBP was used as a housekeeping control. Results for A, B and D were 

obtained from 3 biological replicates. Results for B and D are presented as mean ± s.d. Adjusted p-value (p) is 

calculated using one-way ANOVA and the Tukey’s multiple comparison test. Results for C were obtained 

from five biological replicates. Adjusted p-value (p.adj) is calculated using the DESeq2 package (RNAseq 

data) or the Limma-pipeline (proteomics data). 
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deficient cells, this hypermethylation was not detected (data not shown), the downstream 

change in epithelial marker expression and EMT, both ascribed to MIR200 hypermethylation, 

were a key feature of these cells. 

The observation that despite these differences, FH-deficient cells maintain a similar 

phenotype is worth noting. Some of the signalling cascades discussed here are often sustained 

by converging mechanisms, and alternative routes may be explored in the different models to 

elicit those cascades. For instance, the decrease in OXPHOS in FH-deficient cells is not only 

caused by the suppressed synthesis of Fe-S clusters but also via the direct inhibition of SDH-

dependent mitochondrial respiration by fumarate55. Similarly, the EMT is achieved by multiple 

transcriptional mechanisms, and the hypermethylation of MIR200 family members could be 

bypassed by redundant pathways. 

I also noticed important differences when comparing the two FH-proficient clones. In 

comparison to FH+/+ clone 1, FH+/+ clone 8 has decreased epithelial marker expression, which 

underlines an intrinsic heterogeneity of the wild-type population and the possibility that the 

impact of FH loss and downstream transformation may vary depending on the phenotype, rather 

than genotype, of the cell of origin.  

Although these cell lines are a useful tool to investigate the consequences of FH loss, 

they do not appear to be fully transformed. Indeed, the FH-deficient cells grow nearly two-fold 

slower than their FH-proficient counterpart. This paradoxical finding can be explained by the 

fact that these cells may need additional genetic and/or tissue-specific environmental cues to 

become fully transformed. Therefore, studying FH-deficient cells in a more physiological 

context by using a 3D model or performing orthotopic kidney injection could help to understand 

if they can form tumours. Finally, these observations highlight the complexity of biological 

systems and the difficulty to study them using in vitro methods and 2D cultures. The cellular 

origin, age and state (cell-cycle phase and epigenetic organisation), and the environmental cues 

will all play a role in how a single cell will cope with a stressor such as the loss of FH. These 

different factors might also dictate which signalling cascades have the greatest contribution to 

the emerging phenotype. To understand the contribution of the various molecular events (as 

described above) to the FH signature, I developed a computational approach, which will be 

discussed in the next chapter. 
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Results Chapter 2 

3.2.  SiRCle (Signature Regulatory Clustering) 
model 

Given the complexity of gene expression and the plethora of regulators that can impact this 

process, it is not surprising that the novel model of FH deficiency does not preserve all the 

previously observed cascades, despite presenting a similar phenotype. For instance, despite 

observing a change in EMT makers, I could not attribute this expression change to the 

hypermethylation of MIR200 family members as previously described69. Consequently, the 

change in expression of EMT markers could be regulated at a different level in the HK2 model. 

To dissect at which level (methylation, transcription, translation) the gene expression is 

regulated, genes were clustered into regulatory groups based on the level that dictates the 

cellular phenotype (Figure 16). For example, genes corresponding to the dark red flow are 

hypermethylated (methylation status), have downregulated mRNA expression and 

downregulated protein expression, and hence we can assume that increased DNA methylation 

drives (regulation driver) the downstream phenotype. In this case, genes that follow this flow 

are assigned to the cluster “Methylation-driven suppression”, short “MDS” (Figure 16).  

3.2.1.  Regulatory clusters that drive specific cellular 
phenotype 

By sorting the genes into regulatory clusters based on their expression change at the level of 

DNA methylation, mRNA, ncRNA and protein comparing FH-/- versus FH+/+, I observed that 

only some flows are direct (e.g. hypermethylation, lower mRNA expression, lower protein 

expression), whilst there are also flows that are regulated at multiple levels (e.g. 

hypermethylation, high mRNA expression, low protein expression) (Figure 16). Summarising 

the different flows into groups resulted in 12 regulatory clusters, where the methylation-driven 

clusters included the lowest number of genes. To assess if these clusters of genes can be 

associated with the phenotypic changes observed in the FH-deficient cells, I performed over 

representation analysis (ORA) on each cluster. Importantly, 10 out of the 12 clusters were 
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associated with distinct biological signatures (Figure 17). The biological signatures associated 

to each of the 10 clusters are tightly interconnected and have at least one gene in common 

(depicted by the connecting lines), which further shows that clustering the genes based on their 

regulatory level leads to clusters that could drive a distinct part of the cellular phenotype. For 

instance, the “Transcription and Processing Driven Suppression” (TPDS) cluster, which is 

regulated at the transcriptional level (decreased mRNA expression), includes genes that play a 

key role for cytoskeleton organisation and their altered expression profile after FH loss is 

 
Figure 16: Alluvian plot of the SiRCle model. 

Genes are clustered into the regulatory clusters („Regulation“) following the flows (lines) through the alluvian 

plot, which results in clusters dependent on which level (methylation status, mRNA landscape, protein 

landscape) gene expression is influenced and hence the regulation is driven („Regulation driver“). The total 

number of genes placed in each cluster is labelled on the flows that result in the cluster.  
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predicted to be caused by suppressing their transcription (Figure 17). This cluster includes 

genes such as EPCAM, which has previously been  associated  with  the  EMT  signature  

 

Figure 17: Emapplots of the ORA results shows phenotypic changes of FH loss.  

ORA performed on each regulatory cluster resulted in biological pathways that are altered comparing FH-/- 

versus FH+/+. The dot size corresponds to the number of genes found in the cluster that are part of the biological 

pathway. The colour of the dot shows the p-adjusted value (p.adj) of the ORA. The connecting lines (grey) 

show that the biological pathways have genes in common. 

 



54 | 
 

(Figure 15, Supplementary Figure 4A). Another interesting example is the opposingly 

regulated cluster “Transcription and Processing Driven Enhancement” (TPDE), which includes 

genes associated with mitochondria and metabolism that are predicted to be altered in FH loss 

by enhancing their transcription (Figure 17). Reassuringly, this includes genes such as HMOX1 

an enzyme of the Haem biosynthesis and degradation pathway and NRF2 target gene, which 

had been previously shown to be essential for survival in FH-deficient cells49 (Supplementary 

Figure 4B). 

Next, I wanted to elucidate which genes per cluster are most differentially regulated 

upon FH loss. To do so, a VAE was used to compress the data into three nodes to learn an 

integrated rank for each gene within a cluster using all genes that were assigned to a cluster as 

the training data. Additionally, the VAE enabled the different features such as the differential 

expression in the different detection methods (Bisulphite sequencing, RNAseq, Proteomics) 

and the gene expression differences between the individual clones to be taken into account. 

This analysis resulted in three ranks for each gene corresponding to the three nodes in the latent 

space of the VAE. In comparison to the feature correlation of the input data selection, which 

shows that the different data types cluster best with each other even for the different clones than 

showing good inter-data correlation (Supplementary Figure 5A), the latent space of the VAE 

captured  the  data  separation  based  on  the  underlying omics datasets (Supplementary 

Figure 5B-C). Reassuringly, this approach captured and separated the different clusters 

resulting from our SiRCle method (Figure 18A). Using the VAE gene ranking, the key genes 

of a cluster can be identified. For instance, looking at the top ten and bottom ten genes of each 

node in the TPDE cluster shows a direct correlation between mRNA expression and 

downstream protein expression, whilst increased hypermethylation does not affect the increased 

mRNA expression (Figure 18B). Next, I used the ranked list of genes to perform GSEA for the 

TPDE cluster, which includes genes predicted to be expressed due to enhanced transcription 

and showed that these genes play a role in the “Hallmarks_mTORC1_ Signalling“ pathway 

when ranking the genes of the TPDE cluster per node 0 (Figure 18C). The 

mammalian/mechanistic target of rapamycin complex 1 (mTORC1) and the associated 

signalling pathways regulate numerous cellular processes implicated in proliferation, 

mitochondrial metabolism, and cell growth161. The mTORC1 associated pathways are in line 

with the observation that genes in the TPDE cluster affect mitochondria morphology and 

metabolism. Moreover, amongst the targets of the mTORC1 pathway detected in the TPDE 

cluster are metabolic enzymes such as PHGDH, ASNS (Glutamine-Dependent Asparagine 

Synthetase) and SHMT2 (mitochondrial Serine Hydroxymethyltransferase 2) (Figure 18C), 
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which is consistent with the ORA results that assigned multiple metabolic pathways to be 

altered in the TPDE cluster. 

Conventional methods that perform ORA or GSEA based on transcriptomics data only, 

fail to capture on which level the expression change is taking place and if this change is 

translatable into the phenotype present on the protein landscape. The SiRCle method overcomes 

this by using all available information to generate a model of the data, which can be applied to 

a multitude of biological datasets. Together, these results show that the concept of “Signature 

Regulatory Clustering” (SiRCle) can be used to disentangle at which level a cellular phenotype 

 
Figure 18: Gene ranking using the VAE model and TF analysis. 

(A) Dotplot of the genes in the latent space of the VAE colour coded for the regulatory clusters. (B) Heatmap 

of nodes’ top/bottom ten genes of the TPDE cluster. (C) Correlation plot comparing mRNA expression versus 

protein expression of the Log2FC comparing FH-/- versus FH+/+. Genes included are part of the „Hallmark 

MTORC1 Signalling“ pathway, which was enriched in GSEA ranking for node 0 of TPDE. (D) TF plot of 

unique TFs that are predicted by motif analysis to drive genes in the cluster TPDE. The dot size corresponds 

to the percentage of genes of the cluster that are targeted by the TF. The colour of the dot shows the p-adjusted 

value (p.adj). The connecting lines (grey) shows the number of common genes the connected TFs regulate. 
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is altered and at which level a phenotype must be targeted to block/revert a specific 

phenotypical trait.  

3.2.2.  Transcription factors that could drive the 
regulatory clusters 

To investigate which transcription factors (TFs) drive the SiRCle clusters, I used motif analysis 

of the gene flank (100 bp upstream of TSS) and identified groups of enriched motifs within the 

clusters based on the Fisher’s exact test. I found several TFs for each cluster that are uniquely 

driving a group of genes within the associated cluster. For clusters that are regulated at the level 

of transcription, TF analysis can predict which factors drive the expression change on the 

mRNA landscape. Moreover, methylation changes on the DNA can alter the binding ability of 

TFs and hence influence the expression landscape. We identified a set of TFs in the TPDE 

cluster that could drive the changes in gene expression involved in mitochondria morphology 

and metabolism observed in FH-deficiency (Figure 18D). Some genes are regulated by 

multiple TFs as depicted by the connecting lines (grey lines Figure 18D). Importantly, several 

TFs that drive the genes in the TPDE cluster, such as PBX3, ATF2 and ETV4 are detected at 

the RNA level in the samples (data not shown).  

Given that TF activation is not just a matter of TF expression, but TFs are often regulated 

via phosphorylation or other mechanisms, it is important to validate this finding with wet-lab 

studies such as Chip-Seq. The advantage of performing the regulatory clustering prior to the 

TF analysis is that we can exclude TFs that are predicted to regulate genes in clusters regulated 

at the level of translation (e.g. TMDE, TMDS), since TFs regulate targets at the level of 

transcription. TFs are known to drive a plethora of genes and the regulatory clustering can 

dissect which of these TF target genes are actually regulated by the TF and hence which 

phenotypical change is driven by the TF. In turn, it also allows the user to understand which TF 

target genes are altered at other levels of regulation (e.g. translational regulation) independent 

of the TF itself. 

3.2.3.  Multi-omics data integration 
Given that a protein's function can be influenced by alternative splicing or PTMs such as 

phosphorylation or succination, I wanted to understand whether genes' activity in a regulatory 

cluster are altered via either of those mechanisms. To quantify the likelihood of the overlaid 

data falling onto a specific regulatory cluster, I used the Fisher’s exact test. Succination plays a 

crucial role in FH deficiency and has been shown to affect many proteins in the FH-/- clones 

(Figure 14). Interestingly, I found that proteins belonging to the TMDE cluster are significantly 

enriched to contain succinated proteins (Figure 19A). TMDE is associated with genes that play 
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a crucial role in RNA biology processes, including nuclear export/import processes and mRNA 

processing (Figure 17). Amongst the associated succinated proteins are proteins involved in 

nuclear export/import processes such as NPM1 (Nucleophosmin 1), NUP153 (Nucleoporin 

153) and NUP50 (Nucleoporin 50). This result could hint at a feedback loop that alters the 

protein function, and hence affects the pathways associated with TMDE. This means, despite 

the upregulation of the proteins in a certain pathway predicted for the TMDE cluster using ORA 

or GSEA, the processes the pathway is usually driving might not be altered due to succination. 

RNA processing pathways are differentially regulated comparing FH-/- versus FH+/+ and 

the expression of genes involved in these pathways are regulated at the translational (TMDE) 

and methylation (MDS-ncRNA) level (Figure 17). To understand if the alternative spliced 

isoform expression is altered, differential transcript analysis using StringTie and 

IsoformSwitchAnalyzeR was performed. A plethora of genes were assigned to isoform 

switching in FH-deficient cells, indicating altered functionality (Figure 19B). Overlaying these 

genes onto the SiRCle clusters, showed that alternative splicing affects genes of the TPDE 

cluster involved in mitochondria and metabolism (Figure 19A). Amongst those alternative 

isoforms, I found genes known to be crucial in FH-deficient cells such as NQ01, but also genes 

involved in mitochondria morphology and metabolism, namely CHCHD6 (Coiled-Coil-Helix-

Coiled-Coil-Helix Domain Containing 6, Mitochondria), ASNS and PHGDH. The latter two are 

part of the MTORC1 signalling, where we observed enhanced gene expression for several 

members of the pathway (Figure 18C). I also found that upon FH loss, alternative isoforms of 

EEF1E1 and TXNRD2, both members of the MTORC1 signalling pathway, are expressed. 

Intriguingly, MTOR is also alternatively spliced in FH-deficient cells in two protein-coding 

isoforms (decreased usage of ENST00000376838 with -17% and increased usage of 

ENST00000361445 with +15%), which further shows that this key bioenergetics pathway is 

affected via alternative splicing occurring at the regulatory level of transcription (TPDE).  

Observing the landscape of genes affected by succination showed that the majority of 

succinated proteins are associated with transcription, translation, cytoskeleton and metabolism 

(Figure 19C). Interestingly, succination is detected on a plethora of Heterogeneous nuclear 

ribonucleoproteins (HNRNP) a family of RNA-binding proteins (RBPs) that are crucial for 

alternative splicing, mRNA stabilization, and transcriptional and translational regulation162. 

This result could explain, on the one hand, the increase in different isoform usage upon FH loss 

and, on the other hand, the change in RNA biology regulated at the translational level (TMDE). 

To sum up, overlaying post-translational modification data, isoform expression data or 

other biologically relevant data over the SiRCle model can further explain how the genes of the 
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individual clusters are regulated.  

3.2.4.  Discussion 
Inferring signalling pathway activity from gene expression data is a common approach to study 

cancer biology. Often, the most differentially activated pathways are followed up by studying 

the possible underpinning molecular mechanisms. Yet, these findings are often not confirmed 

in patient samples. This is also what I experienced in the novel model of FH-deficiency: For 

instance, I observed the loss of epithelial markers as a consequence of FH loss without being 

able to detect the upstream mechanistic alteration that had been ascribed to drive these changes, 

such as the epigenetic suppression of MIR200. Given the complexity through which a signalling 

 
Figure 19: Overlay of succination and alternative isoform information. 

(A) SiRCle plot showing the different clusters and the overlay. (B) Volcano plot of the differential isoform 
expression comparing FH-/- versus FH+/+. (C) Heatmap of protein succination divided into pathways. 
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pathway can be regulated, it is not surprising that each patient, cellular model and even the 

severity of e.g. FH loss can alter via which mechanisms a signalling pathway is regulated. In 

turn this also implies that there is an interplay of multiple mechanistic cascades that result in 

the differential activation of a pathway and potential downstream phenotypical hallmarks of a 

disease. 

 Another problem researchers in the field recently started to discuss is the (mis)use of 

GSE methods, such as GSEA, to study cancer and infer the differentially regulated pathways 

only basing the analysis on transcriptomics data163. Ultimately, the protein expression profile 

determines the phenotype of a cell and hence inferring pathway activity solely based on 

transcriptomics data might be misleading. Indeed, it was hypothesised that pathway based 

methods may be effective because pathway gene sets overlap with genes regulated by TFs and 

not because the transcriptomics landscape is translated into the protein landscape163. In turn, 

this shows that GSE methods do not predict the pathway activity, but reflect the changes in TF 

activity that regulated the genes of a pathway163. The SiRCle method overcomes this limitation 

by using an integrated rank from methylation, transcriptome and proteome analyses for GSEA 

as opposed to using the mRNA response alone. 

In this chapter I have introduced SiRCle, a novel approach to overcome these 

challenges, and I applied this model to dissect if the gene expression after FH loss is influenced 

at the level of methylation, transcription or translation and to understand if this is translated into 

phenotypical changes in FH-deficient cells. Importantly, I could show that SiRCle helps to 

disentangle at which level the gene expression is influenced, and more importantly, if it 

translates into the phenotype present at the proteome level. For instance, I found that in this FH-

deficient model, the cytoskeletal markers, such as EPCAM, are predicted to be regulated via 

transcriptional suppression independent of hypermethylation. Moreover, combining SiRCle 

with TF analysis, PTM data or alternative splicing data gives the ability to further dissect the 

intricate network of gene regulation. Although overlaying the succination data onto the SiRCle 

clusters revealed several clusters affected by succination, this could not capture the overall 

cellular pathways succinated proteins are involved in, since succination proteomics is a small 

data set. The overlay of a small dataset onto the SiRCle clusters can help to understand if a 

cluster is significantly altered, yet one should also consider checking the general biological 

impact of e.g. this PTM since this gives an additional type of information. In other words, with 

SiRCle one can understand at which level the genes are regulated, but for small datasets and 

PTMs one needs to also consider that genes while regulated at different levels, thus falling into 

several SiRCle clusters, may share the same PTM such as succination. Succination has been 
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found to affect proteins of the TMDE cluster that are involved in nuclear export/import 

processes and some correspond to the nuclear pore complex. The nuclear pore complex consists 

of nucleoporins (NUPs), which can form disulphide bonds in oxidative environments164 that 

eventually control the molecular crowding barrier of the nuclear pore in a redox-sensitive 

manner165. Mutation analysis of cysteine residues of NUPs revealed that mutations lead to 

mislocalisation for several NUPs, whilst mutations of NUP153 in the 21 cysteines of the zinc 

finger region (C585-C874) leads to the loss of adaptive crowding control165. In the FH-/- clones 

we observed succination of NUP153 (C404) and NUP50 (C151), which have not been tested 

by mutation studies to alter crowding or to mislocalise. It is tempting to speculate that 

succination could alter the molecular transport of RNA species through the nuclear pore 

complex. 

Investigating the succination landscape has revealed that succination affects a plethora 

of proteins associated with transcriptional regulation and alternative splicing after FH loss. 

Indeed, I detected a multitude of alternatively spliced isoforms that are found in FH-deficient 

cells, which is in line with the recent finding of an alternative splicing signature in papillary 

renal cell carcinoma166. Moreover, the SiRCle model detected multiple RNA biology pathways 

to be altered in the clusters TMDE and MDS-ncRNA. In particular, the succination of HNRNP 

family members, key regulators of splicing162 that have previously been implicated in different 

types of cancers167, could drive the observed changes after FH loss. Previous analysis of the 

TCGA data showed that HNRNPs are differentially expressed in KIRP (kidney renal papillary 

carcinoma) in comparison to normal tissue, and that protein expression was increased for most 

of the HNRNPs in RACA (renal cancer) using “The Human Protein Atlas” database167. 

Moreover, HNRNPs were associated with cancer-related pathways, which showed that 

HNRNPF, HNRNPH2, HNRNPU and HNRNPUL1 are more likely to be implicated in those 

cancer related processes167. Interestingly, we detected succination of HNRNPF, HNRNPL, 

HNRNPM and HNRNPU, two of which have been tightly related to oncogenic changes in 

tumorigenesis. Finally, amongst these regulated cancer-related pathways are 

“MTORC1_Signalling”, “HEME-Metabolism” and other metabolic processes167. This could 

explain the increase in alternative splicing of MTOR targets and potentially of MTOR itself. 

Noteworthy, mTOR signalling pathways have a close interplay with alternative splicing in 

cancer168 and the isoform mTORβ (ENST00000376838.5/MTOR-202) that is an activated form 

of mTOR has been shown to promote cell proliferation and tumorigenesis169. In our FH-

deficient cells, I detected a decrease of 17% in the mTORβ variant, whilst the full length mTOR 
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transcript (ENST00000361445.8/MTOR-201) was 15% increased. It would be interesting to 

investigate the role of this transcript switch of mTOR in our cellular model. 

Together, these results show that SiRCle is a novel tool to dissect the interconnected 

landscape of gene expression regulation and combining it with TF analysis, PTM data and 

isoform expression can reveal novel regulatory cascades and connections. Additionally, this 

approach can disentangle at which level a cellular phenotype is altered and hence modifiable 

via genetic or pharmacological approaches, which can be applied to a multitude of biological 

datasets. Although the SiRCle analysis revealed an enormous complexity and interconnection 

between the levels of regulation, this does not take into account how external environmental 

cues can impact on this regulation. This question can be addressed by multi-omics analyses of 

cells exposed to varying levels of nutrient and oxygen using the 3D model that I will describe 

in the next chapter.  
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Results Chapter 3 

3.3.  Towards the generation of a 3D model of 
FH loss (TRACER)  

The loss of FH causes the accumulation of fumarate, which elicits a variety of signalling 

cascades triggered at the epigenetic, transcriptional, and translational level. Thus far, most of 

these findings were made by culturing cells in commercial media under atmospheric oxygen 

conditions. Given that the metabolic rewiring and fumarate accumulation has been described to 

directly impact the downstream signalling cascades, I wanted to understand if environmental 

cues such as oxygen and nutrient concentrations influence the hallmarks of FH loss. To shed 

light on the role of the microenvironment in FH-deficiency, I recently capitalised on a novel 

3D scaffold, a Tumour Roll for Analysis of Cellular Environment and Response (also known 

as TRACER), which consists of a permeable strip as a scaffold populated with cells and then 

wrapped around a mandrel (Figure 20A)170. This device allows the generation of oxygen and 

nutrient gradients that mimic those observed in a solid tumour and can be rapidly disassembled 

allowing the analysis of cells grown under different environmental conditions. In the next 

chapters I will describe how I took advantage of TRACER as a 3D model of FH loss. 

3.3.1.  Hallmarks of FH loss are robust to environmental 
changes 

Using TRACER, I first assessed cell proliferation. Reassuringly, both FH+/+ and FH-/- 

clones proliferate within the strip (Figure 20B-C, Supplementary Figure 6A). I then assessed 

the expected activation of the hypoxic response in the innermost layers of TRACER. Culturing 

the clones for 24 h leads to the expression of the HIF target gene BNIP3 and metabolite markers 

of hypoxia, such as 2HG and lactate, in a layer-dependent manner (Figure 20D-F). Together, 

this data confirms the validity of TRACER to mimic the effects of hypoxia.  

Next, I assessed the behaviour of the metabolic hallmarks of FH loss, such as the 

accumulation of fumarate and the previously reported metabolic rewiring (Figure 20G, 

Supplementary Figure 6B). As in 2D cultures, I observed the accumulation of fumarate, 

succinate , and 2SC, whilst malate levels decreased. These changes were  consistent  across the 



64 | 
 

 

 
Figure 20: Introduction to the 3D Model TRACER and quality controls. 

(A) Schematics of the oxygen-impermeable mandrel, the basis of the structure around which the biocomposite 

strip (violet) populated with cells is rolled. This strip is permeable to oxygen and nutrients, and allows cell 

migration through the different layers. After wrapping the strip around the mandrel, a gradient of nutrients and 

oxygen establishes. For the layer-by-layer analysis the strip can be quickly disassembled. (B) Growth curve of 

the clones cultured on the biocomposite strip and (C) quantification of cell amount at the time point of harvest  
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TRACER layers and independent of the gradient of nutrient and oxygen, showing that the 

metabolic defects caused by FH loss are not affected by oxygen or nutrient levels. To 

understand if this oxygen- and nutrient-independent fumarate accumulation also triggers 

downstream oncogenic signalling cascades, such as EMT or antioxidant response, I performed 

qPCR  of  the  main  targets as identified in our previous RNAseq and proteomics results 

(Figure 20H-I). In line with the hallmark FH-deficient metabolic signature over the TRACER 

layers, the expression of the antioxidant response target NQ01 and the epithelial marker 

EPCAM are not altered by oxygen or nutrient levels, which confirms that the molecular 

signature of FH loss is robust to environmental changes. 

3.3.2.  Linear model of the TRACER metabolite 
distribution reveals metabolic defects 

Besides assessing the specific metabolic signature of FH loss, I wanted to determine whether 

oxygen and nutrient availability could affect other properties of FH-deficient cells. To this end, 

I performed semi-quantitative LC-MS analysis of 129 metabolites of five independent 

TRACER roles for each of the clones (Supplementary Figure 6C). Reassuringly, I detected a 

correlation between the two FH+/+ and the two FH-/- clones, but at the same time I observed 

reduced  correlation  when  comparing  the  different  TRACER  layers of the same clone 

(Figure 21A, Supplementary Figure 6C). This result indicates that the gradient of nutrient 

and oxygen influences the metabolic landscape of cells in a layer-specific manner, whilst not 

altering the hallmarks of FH loss. 

To elucidate the behaviour of the metabolic signature in response to the TRACER 

gradients, I applied linear modelling to the metabolite distribution over the layers 

(Supplementary Figure 6D). A metabolite that accumulates in a linear manner 

(median R2 > 0.7) is labelled “UP”, whilst the one that decreases linearly across the layers 

(median R2 > -0.7) is labelled “DOWN”. If there is no linear metabolite distribution, the 

metabolite is assigned to “No Linear Change”. Moreover, metabolites that follow a linear 

distribution (“UP” or “DOWN”) but have a sample variance > 0.2 and/or a median R2 adjusted 

p- value > 0.05  are  excluded.  Following   this  approach,  I  sorted  the  129  metabolites   into 

obtained via SRB staining. (D) BNIP3 mRNA expression measured by qPCR. (E-F) Intracellular metabolites 

(E) 2HG and (F) lactate and (G) the metabolic FH-deficient signature measured using LC-MS. (H) NQO1 and 

(I) EPCAM mRNA expression measured by qPCR. B and C are obtained from 8-10 biological replicates. D, 

H and I were obtained from three biological replicates. TBP was used as a housekeeping control. E, F and G 

are obtained from 5 biological replicates. All replicates are presented as mean ± s.d. P-value (p) is calculated 

using one-way ANOVA and the Tukey’s multiple comparison test. 
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Figure 21: Layer-dependent metabolic signature in the TRACER. 

(A) Correlation matrix comparing the patterns of 129 metabolites. (B) Alluvian plot of the metabolites that 

follow a linear pattern in FH+/+ and/or FH-/- cells highlighting metabolites distribution driven by oxygen and 

nutrients gradients (green), by FH-proficiency (blue) and by FH loss (red). 
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behavioural patterns to understand which metabolites accumulate/decrease in a linear manner 

with the gradient of oxygen and nutrients, and selected metabolites that change linearly in at 

least one of the conditions (FH+/+ or FH-/-) (Figure 21B). The metabolites that follow the same 

linear distribution in FH+/+ and FH-/- represent metabolites affected by the nutrient and oxygen 

gradients independent of the FH status (green, Figure 21B). As expected, I observed a linear 

increase of pyruvate and lactate (Supplementary Figure 6E) across the layers, which is likely 

due to increased aerobic glycolysis under reduced oxygen availability. Additionally, this results 

further strengthen the validity of the TRACER to mimic physiological conditions given that the 

lactate accumulation is detected intracellularly, whilst in 2D cultures increased lactate 

production under hypoxia can mostly be detected as lactate released into the media.  

Together, these results show that the TRACER, combined with linear modelling, is a 

powerful tool to investigate how the extracellular microenvironment affects the metabolic 

landscape of cells.  

3.3.3.  D-2HG production is limited under physiological 
conditions in FH-deficient cells 

Using this combined approach of TRACER and linear modelling, I then focused on metabolic 

features that are differentially altered in FH+/+ (blue) and FH-/- (red) cells (Figure 21B). I 

observed that 2HG accumulates linearly in FH+/+ cells, consistent with its putative role as a 

hypoxia marker, but not in FH-/- cells. To investigate whether this unexpected behaviour is 

caused by oxygen levels independently of the nutrient availability, I performed 2D 

metabolomics experiments comparing hypoxia (1% oxygen) versus normoxia (Figure 22A-B). 

Similar to the observations made in the TRACER, I detect an FH-deficient signature that is 

independent  of  hypoxia  (Figure 22A). Yet, some  metabolites  are sensitive to hypoxia 

(Figure 22B). Noteworthy, 2HG and aKG are increased under hypoxia in both FH-/- and FH+/+ 

clones (Figure 22B-D), whilst in the TRACER we only detected a linear metabolic 

accumulation of 2HG in FH+/+ clones (Figure 21B, Figure 22E). This result is in line with the 

aKG pattern in FH-/- over the TRACER layers (Figure 22F), which is not due to nutrient 

deprivation since the glutamine level across the TRACER layers is consistent between FH+/+ 

and FH-/- and does not change with the gradient of nutrients and oxygen (Figure 22G). As 

discussed above, 2HG is a metabolic marker of hypoxia and has been previously shown to 

accumulate under hypoxic conditions to facilitate the physiological adaptation to hypoxic 

stress171. Its production can be carried out via enzymes that convert aKG into the enantiomers 

L-2HG or D-2HG, including LDH and MDH, and PHGDH171, respectively (Figure 22H). This 

conversion is based on enzyme promiscuity to catalyse this side reaction in addition to their 
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primary reaction and is favoured under low oxygen levels171. Moreover, acidification (lower 

pH), as often observed in hypoxic cells, has been connected to stimulate 2HG production171. I 

 
Figure 22: D-2HG is produced in FH-deficient cells and limited under physiological conditions. 

(A-B) Volcano plots of 2D differential metabolomics results comparing FH-/- versus FH+/+ (A) and hypoxia 

versus normoxia (B). (C-D) Intracellular metabolite levels of cells cultures in 2D under normoxia and hypoxia 

measured using LC-MS. (E-G) Intracellular metabolite levels of the TRACER measured using LC-MS. (H) 

Schematics of D-2HG and L-2HG production. (I) Volcano plot of differential metabolomics analysis of 

derivatised 2HG comparing hypoxia versus normoxia in 2D cultures measured using LC-MS. (J) Protein 

expression measured via TMT proteomics comparing FH-/- versus FH+/+. 
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first performed 2HG derivatisation followed by mass spectrometry to understand which isomer 

is produced under these conditions. This approach revealed that under hypoxia D-2HG 

accumulates in FH-deficient cells, whilst in FH+/+ clones it is L-2HG (Figure 22I). This result 

is in accordance with an increase in PHGDH protein expression in FH-/- clones (Figure 22J). 

PHGDH is an enzyme of the serine biosynthesis pathway and has previously been shown to 

produce D-2HG171.  

In summary, here I showed that in 2D cultures under hypoxia 2HG accumulates in FH+/+ 

and FH-/- cells. However,  this change is underpinned by different metabolic routing, with 

MDH/LDH likely giving rise to L2HG in FH+/+ cells and PHGDH to D-2HG in FH-/- cells. 

Furthermore, the TRACER revealed that under more physiological 3D culture conditions, 2HG 

does not increase drastically in FH-/-. Together, this revealed a potential role of PHGDH in FH-

deficiency and how the function is altered under physiological environment compared to 

standard cell culture. 

 3.3.4.  Discussion 
During the process of tumour initiation and progression, cancer cells are exposed to harsh 

environmental conditions such as hypoxia and nutrient depletion, which are known to affect the 

metabolic landscape of a cell. Most of the studies carried out in FH-deficient cells were 

performed in 2D cultures exposed to atmospheric oxygen and non-limiting nutrients, potentially 

limiting their relevance to the human disease. To understand if environmental cues such as 

oxygen and nutrient concentrations influence the hallmarks of FH loss, I applied a novel 

analysis pipeline to the 3D model TRACER. 

I observed that changes in oxygen or nutrient levels do not affect fumarate accumulation 

or the more general metabolic signature of FH loss. This result shows that FH loss is robust to 

environmental changes and the results obtained in 2D culture can predict cellular changes due 

to FH loss in patients. Indeed, most of the molecular signatures that we had previously identified 

in mouse and human cells recapitulate those obtained from human tissues. Additionally, I 

observed that, independently of the FH status, lactate accumulates across the TRACER layers 

in a linear manner, which is likely due to increased aerobic glycolysis under reduced oxygen 

availability. Interestingly, I also observed a linear accumulation of several amino acids, such as 

methionine, lysine, leucine/isoleucine, arginine, kynurenine and tryptophan, across the 

TRACER layers. This change was independent to the FH status and hence likely due to the 

nutrient and oxygen gradients. It has been previously proposed that under hypoxia the catabolic 

process of autophagy enables the breakdown of protein and lipid cells to generate nutrients that 

compensate for the energetic defect caused by impaired mitochondrial function172. It is tempting 
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to speculate that the FH+/+ cells might undergo mitophagy, a specific form of autophagy of the 

mitochondria that has been linked to BNIP3 expression173. Yet, given that BNIP3 does not 

increase in the FH-/- cells across the TRACER, it is possible that the amino acids accumulation 

in FH-/- is not due to autophagy/mitophagy. 

Investigating the general metabolic response to the combined gradient of oxygen and 

nutrients using linear modelling revealed a layer-dependent metabolic reprogramming that 

would have been difficult to detect using traditional 2D cultures or other 3D systems such as 

spheroids. For instance, D-2HG increases in 2D cultures under hypoxia in FH-deficient cells, 

whilst in the TRACER system this increase is negligible. Since reductive carboxylation is 

impaired in the HK2 FH-/- cells, it is likely that D-2HG is produced by PHGDH171, which 

showed increased expression in these cells. Noteworthy, PHGDH is alternatively spliced in the 

FH-deficient cells and part of the mTOR response we detected using the SiRCle model. There 

is not much known about the different functions of PHGDH isoforms, but it has been shown 

that different levels of PHGDH protein expression potentiate cancer cell dissemination and 

metastasis in breast cancer174. The increase in PHGDH protein expression could be important 

to regenerate GSH via serine/glycine synthesis175, which is crucial since GSH biosynthesis has 

been observed to be increased in FH-deficiency due to increased oxidative stress caused by 

GSH succination58. Moreover, PHGDH is a target of NRF2 and mTORC1, both pathways that 

I have discussed in this thesis to be dysregulated in the FH-/- cells. Given the many regulators 

of mTORC1, such as growth factors and nutrient sensing (e.g. amino acids)161, and the many 

pathways it is known to target, it is hard to draw any conclusions here. Yet, it is important to 

investigate mTOR regulation based on the alternative splicing signatures I observed (Results 

Chapter 2) and understand its connection to the PHGDH expression in the future. It was recently 

shown that PHGDH protein expression plays a role in cancer cell dissemination and 

metastasis174. Moreover, PHGDH coordinated serine synthesis has been connected to the one-

carbon metabolism and to reduce the serine-derived incorporation of nucleotides of one-carbon 

units176. Given that the mitochondria play a key role in one-carbon metabolism and that the 

nucleotide biosynthesis is altered in FH-deficient cells (Figure 21B), it would be important to 

further understand the role of serine biosynthesis in this system. Finally, why 2HG production 

is impaired in the FH-/- cells in the TRACER remains unclear. It is possible that when nutrient 

and oxygen are scarce, the diversion of glucose towards serine catabolism via PHGDH is 

limited allowing a higher glycolytic flux. It will be interesting to investigate what are the 

biochemical determinants of this possible metabolic diversions 
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Perspectives 
 HIS study presents a novel human FH-deficient cell model based on non-transformed 

human epithelial kidney cells. The extensive cellular characterisation and comparison to 

other models highlight the hallmarks of FH loss. My findings expand the current understanding 

of the gene expression landscape underlying the epigenetic, transcriptional and translational 

rewiring after FH loss, as well as the metabolic rewiring in physiological environment. 

 These results raise critical points regarding the current analysis methods used to 

elucidate the signalling pathways responsible to activate oncogenic cascades during the process 

of tumorigenesis. Indeed, I could show that upon FH loss the cellular rewiring occurs at 

different regulatory levels and the phenotype-defining protein expression does not always 

correlate with the transcriptional or methylation landscape. These results enable a deeper 

understanding of the regulatory origin via which a signalling pathway is induced. It is important 

to mention that my study is not devoid of limitations and more experiments are required to 

improve our understanding of the transformation process induced by mitochondrial dysfunction 

such as FH loss. 

My findings also expand the general understanding of FH loss and the downstream 

metabolic and oncogenic rewiring. It is clear that tumour microenvironment affects the 

phenotype of cancer cells and that metabolic rewiring is essential for tumour cells to strive even 

under harsh environmental conditions. However, the impact of nutrient and oxygen deprivation 

on FH-deficient cells’ behaviour was unknown. Here I assessed for the first time the impact of 

nutrient and oxygen gradients on the metabolic and oncogenic rewiring after FH loss. My work 

demonstrated that the metabolic signature of FH loss is robust to environmental cues, which is 

in line with the conservation of this signature between cellular models and in vivo tumours. I 

have also observed metabolic changes that occurred only under the combined deprivation of 

oxygen and nutrients. More work is needed  to further understand the inderpinning molecular 

drivers of these changes and how to target these potential metabolic liabilities. 

In conclusion, my study presents a comprehensive characterisation of a novel model of 

FH loss and elucidated which of the emerging phenotypes is regulated via hypermethylation, 

transcriptional rewiring, translational control and/or PTMs. Moreover, I have shown that the 

T 
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main metabolic hallmarks of FH loss are independent of environmental conditions under which 

cells are grown. Although further investigations are needed to fully understand the impact of 

the different oncogenic pathways in the tumorigenesis of HLRCC, my study presents several 

novel approaches to dissect the metabolic and gene expression landscapes of FH loss that can 

be harnessed to find liabilities during tumorigenesis.  

In the future, I will apply the SiRCle model also to other datasets, e.g. TCGA data, to 

dissect the different regulatory patterns across different tissues. At the same time I will perform 

further experiments validating the alternative splicing signature after FH loss. In order to further 

understand the role of PHGDH in serine biosynthesis and 2HG production I will use PHGDH 

inhibitors and U-13C-Glucose labelling to further dissect this metabolic axis in light of FH loss. 
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Supplementary Figures 
 

  

 
Supplementary Figure 1: Metabolic adaptation phase after FH loss.   

(A + B) FH protein expression measured using western blotting (A) and quantified (B). (C) Extracellular 

succinate measured by LC-MS. (D) Heatmap of the key metabolite signature of FH loss measured by LC-MS. 

(E) Schematics of the U13-C-Glutamine labelling distribution in the TCA cycle. Results for B and C are 

presented as mean ± s.d. Adjusted p-value (p) is calculated using one-way ANOVA and the Tukey’s multiple 

comparison test. 
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Supplementary Figure 2: FH-deficient RNA signature. 

Volcano plot illustrating the profile of the different gene sets (colour coded) after performing GSEA analysis 

on the pooled signatures comparing FH-/- versus FH+/+. Results were obtained from five biological replicates. 

Adjusted p-value (p.adj) is the result of the GSEA analysis. 
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Supplementary Figure 3: Fumarate accumulation results in succination. 

(A) 2SC modification on protein residues measured using western blotting (B) Heatmap of succinated protein 

residues measured via TMT proteomics comparing FH-/- to FH+/+. (C) Hyphe plot showing commonly 

succinated proteins detected in Fh1-deficient mouse cells, human FH-deficient cells and our novel FH-

deficient HK2 clones.  
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Supplementary Figure 4: Heatplot of the ORA results. 

Heatplot of the ORA results for the genes in the (A) TPDS cluster and (B) TPDE cluster. 
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Supplementary Figure 5: The VAE model quality. 

(A) Correlation matrix of a representative selection of the VAE input features. (B) Correlation matrix of the. 

VAE input features and the nodes of the latent space (C) Scatterplot of the three nodes of the VAE latent space 

colour coded by methylation difference (left), RNA Log2FC (middle) and protein Log2FC (right). 
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Supplementary Figure 6: TRACER  

Growth curve of the individual clones. (B) Intracellular fumarate levels measured using LC-MS. (C) PCA plots 

of the LC-MS results colour coded for the clones (left), the biological replicates (middle) and the TRACER 

layer (right). (D) Schematics of the Pearson linear modelling. (E)  Intracellular lactate levels measured using 

LC-MS. Results for A, B and E are presented as mean ± s.d. Adjusted p-value (p) in B and E is calculated 

using one-way ANOVA and the Tukey’s multiple comparison test. 
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