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Sustainability, as applied in archaeological research 
and heritage management, provides a useful perspec-
tive for understanding the past as well as the modern 
conditions of archaeological sites themselves. As often 
happens in archaeological thought, the idea of sus-
tainability was borrowed from other areas of concern, 
particularly from the modern construct of develop-
ment and its bearing on the environment and resource 
exploitation. The term sustainability entered common 
usage as a result of the unstoppable surge in resource 
exploitation, economic development, demographic 
growth and the human impacts on the environment 
that has gripped the World since 1500. Irrespective of 
scale and technology, most human activity of an eco-
nomic nature has not spared resources from impacts, 
transformations or loss irrespective of historical and 
geographic contexts. Theories of sustainability may 
provide new narratives on the archaeology of Malta 
and Gozo, but they are equally important and of 
central relevance to contemporary issues of cultural 
heritage conservation and care. Though the archae-
ological resources of the Maltese islands can throw 
light on the past, one has to recognize that such 
resources are limited, finite and non-renewable. The 
sense of urgency with which these resources have to 
be identified, listed, studied, archived and valued is 
akin to that same urgency with which objects of value 
and all fragile forms of natural and cultural resources 
require constant stewardship and protection. The idea 
of sustainability therefore, follows a common thread 
across millennia.

It is all the more reason why cultural resource 
management requires particular attention through 
research, valorization and protection. The FRAGSUS 
Project (Fragility and sustainability in small island 
environments: adaptation, cultural change and col-
lapse in prehistory) was intended to further explore 
and enhance existing knowledge on the prehistory 
of Malta and Gozo. The objective of the project as 

designed by the participating institutional partners 
and scholars, was to explore untapped field resources 
and archived archaeological material from a number 
of sites and their landscape to answer questions that 
could be approached with new techniques and meth-
ods. The results of the FRAGSUS Project will serve to 
advance our knowledge of certain areas of Maltese 
prehistory and to better contextualize the archipela-
go’s importance as a model for understanding island 
archaeology in the central Mediterranean. The work 
that has been invested in FRAGSUS lays the founda-
tion for future research.

Malta and Gozo are among the Mediterranean 
islands whose prehistoric archaeology has been 
intensely studied over a number of decades. This 
factor is important, yet more needs to be done in the 
field of Maltese archaeology and its valorization. 
Research is not the preserve of academic specialists. 
It serves to enhance not only what we know about 
the Maltese islands, but more importantly, why the 
archipelago’s cultural landscape and its contents 
deserve care and protection especially at a time of 
extensive construction development. Strict rules and 
guidelines established by the Superintendence of 
Cultural Heritage have meant that during the last two 
decades more archaeological sites and deposits have 
been protected in situ or rescue-excavated through a 
statutory watching regime. This supervision has been 
applied successfully in a wide range of sites located in 
urban areas, rural locations and the landscape, as well 
as at the World Heritage Sites of Valletta, Ġgantija, 
Ħaġar Qim and Mnajdra and Tarxien. This activity 
has been instrumental in understanding ancient and 
historical land use, and the making of the Maltese 
historic centres and landscape.

Though the cumulative effect of archaeological 
research is being felt more strongly, new areas of 
interest still need to be addressed. Most pressing are 
those areas of landscape studies which often become 

Foreword

Anthony Pace
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Foreword

FRAGSUS Project, will bear valuable results that will 
only advance Malta’s interests especially in today’s 
world of instant e-knowledge that was not available 
on such a global scale a mere two decades ago.

FRAGSUS also underlines the relevance of 
studying the achievements and predicaments of past 
societies to understand certain, though not all, aspects 
of present environmental challenges. The twentieth 
century saw unprecedented environmental changes 
as a result of modern political-economic constructs. 
Admittedly, twentieth century developments cannot 
be equated with those of antiquity in terms of demog-
raphy, technology, food production and consumption 
or the use of natural resources including the uptake 
of land. However, there are certain aspects, such as 
climate change, changing sea levels, significant envi-
ronmental degradation, soil erosion, the exploitation 
and abandonment of land resources, the building and 
maintenance of field terraces, the rate and scale of 
human demographic growth, movement of peoples, 
access to scarce resources, which to a certain extent 
reflect impacts that seem to recur in time, irrespec-
tively of scale and historic context. 

Anthony Pace
Superintendent of Cultural Heritage (2003–18).

peripheral to the attention that is garnered by prom-
inent megalithic monuments. FRAGSUS has once 
again confirmed that there is a great deal of value 
in studying field systems, terraces and geological 
settings which, after all, were the material media in 
which modern Malta and Gozo ultimately developed. 
There is, therefore, an interplay in the use of the term 
sustainability, an interplay between what we can learn 
from the way ancient communities tested and used the 
very same island landscape which we occupy today, 
and the manner in which this landscape is treated in 
contested economic realities. If we are to seek factors 
of sustainability in the past, we must first protect its 
relics and study them using the best available meth-
ods in our times. On the other hand, the study of the 
past using the materiality of ancient peoples requires 
strong research agendas and thoughtful stewardship. 
The FRAGSUS Project has shown us how even small 
fragile deposits, nursed through protective legislation 
and guardianship, can yield significant information 
which the methods of pioneering scholars of Maltese 
archaeology would not have enabled access to. As 
already outlined by the Superintendence of Cultural 
Heritage, a national research agenda for cultural herit-
age and the humanities is a desideratum. Such a frame-
work, reflected in the institutional partnership of the 
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This chapter sets the scene in terms of the geology and 
present-day climate, vegetation and soils of the Maltese 
Islands. Geology and faulting has had a huge influence 
on topography, soils and vegetation, and in turn on the 
nature of human use and exploitation of the islands. 
All of these themes are further developed below (and 
in FRAGSUS Volumes 2 and 3), giving time-depth to 
the sequences of climatic, environmental and landscape 
changes throughout the Holocene.

1.1. Previous work 

The geological formations of Maltese Islands received 
little attention from scholars before the nineteenth 
century ad, in common with other parts of Europe. 
Nonetheless, ancient Greek authors made the first 
surviving references to fossils found elsewhere in the 
Mediterranean (e.g. Xenophanes of Colophon, born 
about 570 bc and Origen, ad 185–254). A number of 
early advances in the stratigraphic study of geology 
were made by British scholars such as Smith (1769–
1839), following the incorporation of Malta into the 
British Empire in 1800, when the focus and expertise 
on geological stratification commenced. Commander 
Thomas Abel Brimage Spratt made the first compre-
hensive geological descriptions of the islands, including 
the identification of chert outcrops (Spratt 1843, 1854). 
He was followed by John Murray who produced a 
review of the geology of the islands in 1890 (Murray 
1890). His work was focused on oceanic sedimentation, 
an expertise he gained on the Challenger Expedition 
(1872–6) and his interpretations demand respect, 
even if they are not entirely correct. Murray’s work 
stimulated John Henry Cooke, an expatriate teacher 
of English, to produce a series of detailed and highly 
considered studies on individual geological features 
(Cooke 1891, 1893a–c, 1896a–c). They included the only 
accurate, comprehensive macroscopic investigation of 
the chert outcrops of the Maltese Islands (Cooke 1983b), 

which was considered very high-quality research at the 
time. They presented a high level of detail and largely 
accurate interpretation in contrast to more generic 
geological work of the time (Zammit Maempel 1977; 
Gatt 2006a & b, and references therein). 

Research on the geology of the Maltese Islands con-
tinued during the twentieth century, when researchers 
focused on a range of features. A typical example was 
Hobbs (1914), who interpreted and described many 
of the faults and structures of the islands. In addition, 
substantial detailed information on the structure of 
the islands is contained in the study of water resources 
by Morris (1952) and Newbery (1968). The recent 
long-term research of Martyn Pedley is of particular 
significance as he has observed and published on the 
full spectrum of Maltese geology (Pedley 1974, 1975, 
1978, 1993, 2011; Pedley et al. 1976, 1978, 2002). This 
includes a modern geological map of the Maltese 
Islands (Pedley 1993) which is still the basis of the pres-
ent official geological maps published by the Maltese 
Government (https://continentalshelf.gov.mt/en/Pages/
Geological-Map-of-the-Maltese-Islands.aspx). Pedley’s 
work and that of other contemporary workers, laid 
the foundations for the modern study of the geology, 
geomorphology and palaeoenvironment of the islands 
(Pedley & Bennett 1985; Pedley et al. 2002; John et al. 2003; 
Magri 2006; Föllmi et al. 2008; Gruszczynsk et al. 2008; 
Baldassini & Di Stefano 2015; Galea 2019; Scerri 2019; 
and references therein). More recently there has been a 
focus on the now submerged continental shelf around 
the Maltese Islands associated with pre-Holocene 
archaeological and palaeoenvironmental investigations 
around the coasts (Hunt 1997; Micallef et al. 2013; Foglini 
et al. 2016; Harff et al. 2016; Prampolini et al. 2017). 

1.2. Geography

Malta is made up of a small group of three principal 
islands – Malta, Gozo, Comino, and a number of minor 
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Malta and Gozo are the largest islands (respec-
tively 245.86 sq. km and 67.1 sq. km), while Comino 
and Cominotto, which are found in the narrow channel 
between the main islands, are smaller at 2.8 sq. km 
and 0.1 sq. km (9.9 ha), respectively. The Maltese 
Islands lie at the centre of the Mediterranean Sea, with 
a southeast–northwest orientation, between Sicily 
and the North African coast (Fig. 1.1). They are far 
from any mainland, located c. 96 km south of Sicily, 
about 300 km east of Tunis and 290 km north of the 
Libyan coast (Cassar et al. 2008; Schembri, P.J. 2019). 
In spite of their small size, these islands occupy a very 

islets and rocks (Fig. 1.1), with a total land surface 
of 316.75 sq. km. It is characterized by high hills or 
plateaux (Ta’ Dmejrek on Malta is 253 masl and Ta’ 
Dbieġi on Gozo is 187 masl) separated by deeply 
incised valleys which are characteristically orientated 
southwest–northeast. Much of the remaining non-ur-
ban landscape is dominated by agricultural land with 
terraced fields on hilly ground to the north of Malta 
and on Gozo. Although past water bodies have been 
reported on the surface of the islands, there are today 
no lakes, rivers or permanent streams, and only some 
springs and coastal wetland areas. 

Figure 1.1. The location of the Maltese Islands in the southern Mediterranean Sea with respect to Sicily and North 
Africa (P. Chatzimpaloglou).
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as the ‘Pelagian Block,’ represents the foreland margin 
of the African continental plate and consists of massive 
marine carbonate deposits (Pedley 1974). Extensional 
tectonics and the associated uplifting in the central parts 
of the Pelagian Block as a result of the development of 
the Pantelleria Rift System in the Late Miocene gave rise 
to what today are the Maltese Islands to the northeast 
and the island of Lampedusa to the southwest of the 
rift (Reuther & Eisbacher 1985; Dart et al. 1993; Galea 
2007, 2019). This rifting also resulted in deep trenches 
(grabens) between the Maltese and Lampedusa islands, 
accounting for the deep water to the east and southeast 
of Malta in an otherwise shallow sea.

Inevitably, the location of the Maltese Islands in 
this broader geological environment has shaped the 
type of rock formations found on them. Maltese rocks 
are composed almost entirely of shallow to medi-
um-depth marine sedimentary formations, mainly of 
the Oligo-Miocene age (c. 30–5 ma bp) with a variety 
of scattered freshwater and terrestrial deposits of lim-
ited extent and rare brackish and marine deposits of 
Quaternary age. The Oligo-Miocene marine sediments 
are most comparable with the mid-Tertiary carbonate 
limestones occurring in the Ragusa region of Sicily 
to the north, in the Pelagian Islands and in the Sirte 
Basin of Libya to the south (Pedley et al. 1978; Schem-
bri 1994). There are five main rock formations, which 
are present in a simple succession with a number of 
hiatuses (Oil Exploration Directorate 1993; Pedley et al. 
1976, 2002; Zammit Maempel 1977; Galea 2019; Scerri 
2019). These, starting from the bottom, are: a) the Lower 
Coralline Limestone, b) the Globigerina Limestone, c) 
the Blue Clay, d) Greensand and e) the Upper Coral-
line Limestone (Figs. 1.2 & 1.3; Table 1.1). The Lower 
Coralline Limestone, Globigerina Limestone, and 
Upper Coralline Limestone are in turn composed of 
a number of members.

significant location within the broader Mediterranean 
region (Stoddart 1999). Their location in the Sicilian 
Channel, the main navigational seaway connection 
between the eastern and western Mediterranean, with 
the presence of exceptional natural harbours, gave the 
Maltese Islands an indisputable strategic importance 
(Blouet 1984; Pedley et al. 2002). 

1.3. Geology

It is difficult to distinguish when exactly the basin 
which contains the Maltese Islands began to form. Some 
authors place this at 150 million years (when Pangea 
began to break into continents), whilst others suggest 
100 million years ago (when Europe split from North 
America and started moving towards North Africa) 
(Pedley 1974; Puglisi 2014). Regardless of exactly when 
this occurred, the progressive approach of the European 
and African continents transformed the intermediate 
zone (Tethys seaway) between them, the forerunner 
of the present day Mediterranean Sea, and created the 
foundations of the central Mediterranean where the 
Maltese Islands are located. This, however, was not 
a simple process, but included a variety of complex 
movements and caused many stresses to the continents’ 
margins. Moreover, the oceanic crust at the margin 
of the African continental plate that has subducted 
beneath the Eurasian plate brought up ocean sediments 
and slivers of ocean crust to form mountainous coasts 
or islands, with associated volcanism and orogeny 
(Pedley 1974; Galea 2007; Puglisi 2014). The African 
plate is still moving towards the Eurasian plate today. 
The Maltese Islands have a key position in this envi-
ronment as they lie in what was originally a shallow 
sea (depth below 200 m) at the junction of the western 
and eastern Mediterranean basins (Fig. 1.1). This area 
called the ‘Sicilian-Tunisian Platform,’ and also known 

Table 1.1. Description of the geological formations found on the Maltese Islands.

Geological time 
(youngest to oldest) Formation Description Thickness

Miocene Upper Coralline 
Limestone

Shallow marine limestone with abundant coral-algal 
mounds and reefs, commonly altered to micrite and 
sparite

0.70–175 m; moderate to 
very high permeability 
(especially where karstified)

Greensand Friable, glauconitic argillaceous sandstone, moderate 
permeability

0.5–15 m 

Blue Clay Massive to bedded grey/blue shallow marine/offshore 
calcareous claystones with occasional to abundant 
marine fossils. Impermeable or an aquiclude

50–75 m 

Globigerina 
Limestone

Shallow marine, calcareous mudrocks with abundant 
fossils, poor permeability, phosphatized hardgrounds

20–227 m 

Oligocene Lower Coralline 
Limestone

Shallow marine limestones with spheroidal algal 
structures, abundant echinoid fossils. Well-cemented 
and permeable

100–140 m
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Figure 1.2. Stratigraphic column of the geological formations reported for the Maltese Islands (P. Chatzimpaloglou).

Figure 1.3. Geological map of the Maltese Islands (P. Chatzimpaloglou, adapted from Pedley 1993).
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of Gozo (Fig. 1.5). The rocks comprising this formation 
are all indicative of having been laid down in a shallow 
sea and can be sub-divided into five different facies1 of 
limestones (Pedley et al. 2002). These facies are: a) the 
Reef Limestone (Wied Magħlaq), b) the fine-grained 
Shallow Lime Muds (Attard), c) the cross-bedded 
Lime Sands (Xlendi), d) the Foraminiferal Limestones 
and e) the ‘Scutella Bed’ (Il-Mara) (see Gauci 2019 for 
detail). Felix (1973) suggested that the deposition of 
the Lower Coralline Limestone had initially been in a 
shallow gulf-type environment. In addition, succeeding 
beds provided evidence of increasingly open marine 
conditions during which algal rhodolites developed. 
Finally, a shallow marine shoal environment followed 
and was the dominant environment in all areas except 
southeastern Malta. In this area, calmer conditions 
prevailed in a protected deeper water environment 
(Pedley et al. 1976).

1.4.2. Globigerina Limestone Formation 
The Globigerina Limestone Formation is a softer, 
yellowish fine-grained limestone that forms irregular 
slopes (Fig. 1.6) and is the most extensively exposed 
formation on these islands (Schembri 1997). It is named 
after Globigerina, a microscopic planktonic foraminifera, 
which is abundant in this formation. The Globigerina 
Limestone varies in thickness from some 20 to c. 227 m 
(Fig. 1.2), a characteristic which possibly signifies the 
onset of the warping of the sea bed and possibly the 
formation of depressions because of the collapse of 
the sea bed above underlying caverns (Pedley et al. 
2002). The lithology and fossils in the rock show that 
this formation was originally deposited in deeper 
water between 40 and 150 m below the influence of 

Although the geology of the islands appears 
rather simple with a similar stratigraphy, each forma-
tion, and, where present, its members, present different 
characteristics reflecting their depositional settings 
(Fig. 1.3). The stratigraphy of Malta is juxtaposed by 
normal faults, arranged as graben and half-graben. 
Gozo is structurally less complex with a ‘layer-cake’ 
stratigraphy, but has a more varied geology than 
Malta. The centre of Gozo is dominated by the Upper 
Coralline Limestone, resting on Blue Clay, where the 
Globigerina Limestone and Lower Coralline Limestone 
outcrops in coastal locations and the base of some 
valleys. Here erosion has occurred low enough in the 
succession to expose these formations and table-top 
plateaux or mesas of weathered and eroded Upper 
Coralline Limestone. Finally, Comino and its satellite 
islands are composed of only the highest layers of the 
Upper Coralline Limestone Formation. 

1.4. Stratigraphy of the Maltese Islands

1.4.1. Lower Coralline Limestone Formation 
The Lower Coralline Limestone is the oldest exposed 
rock formation on the Maltese Islands. It is a hard, pale 
grey limestone and contains beds with fossils such as 
corals and marine calcareous algae. Outcrops of this 
limestone are mainly restricted to coastal sections along 
the western coasts of Malta and Gozo (Fig. 1.4). It can be 
up to 140 m thick, forms sheer cliffs particularly on the 
southwest coasts of the islands because of the islands’ 
tilt and its base cannot be seen above sea level. When 
found inland, this formation forms barren grey lime-
stone-platform plateaux on which karstland develops 
(Schembri 1997), as for example those found in the west 

Figure 1.4. Typical coastal outcrops of Lower Coralline Limestone, forming sheer cliffs (P. Chatzimpaloglou).
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The Globigerina Limestone is divided into three 
members (Upper, Middle and Lower Globigerina Lime-
stone) separated by two main phosphatic conglomerate 
beds (referred as the Lower Phosphorite Conglomerate 
Bed C1 and the Upper Phosphorite Conglomerate Bed 
C2), which do not exceed one metre in thickness (Fig. 

wave action (Felix 1973). The unexpected occurrence 
of the planktonic foraminiferans, such as Globigerina, 
in this shallow-water depositional environment may 
be explained by a drift that brought these organisms 
into this shallower basin from the surrounding deeper 
water seas. 

Figure 1.5. Characteristic geomorphological features developed on the Lower Coralline Limestone in western Gozo 
(Dwerja Point). The picture shows different sub-circular collapsed karstic features (a & b), while the green arrow points 
to the location of the chert outcrops (image © 2017 Google).

	
	
	

	

	

Figure 1.6. The Middle Globigerina Limestone at the Xwejni coastline. It is one of the biggest outcrops of this unit 
and the orange lines highlight the two conglomerate layers, which are clearly presented in this location, and signify the 
transition to the Upper and Lower Globigerina units (P. Chatzimpaloglou).
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may also have been supplying material during the 
deposition of the Middle Globigerina Limestone that 
contributed to the formation of the chert outcrops.

The fine-grained particles comprising the Upper 
and Lower Globigerina Limestone members are only 
lightly cemented and therefore are easily worked as 
building stone. Indeed, the Lower Globigerina Lime-
stone member, called ‘franka’ in Maltese, has proven 
to be the most suitable building stone available on 
the islands. This is related to its uniform texture and 
explains why most of the buildings of the Maltese 
Islands, until recently, were built from this unit. Its 
texture, in addition to its extensive exposure on Malta 
and Gozo, has contributed to the smoothing of the 
topography of the islands. The thin fine sandy/silt 
loam soils developed on this formation are intensively 
cultivated and terraced. 

1.4.3. Chert outcrops 
The existence of chert outcrops has been long reported 
(Cooke 1893a), but little is known about their charac-
teristics and the conditions under which they formed. 
Archaeological research has revealed that these chert 

1.2); other minor phosphatic layers also occur (Baldassini 
& Di Stefano 2015). The upper and lower members 
have a pale yellow colour, while the middle member 
is pale grey (Fig. 1.6). The latter unit is considered to 
have been deposited during the time that the central 
Mediterranean Sea basin reached its deepest level. 
This could also explain the presence of chert outcrops, 
which have been found intercalating with the Middle 
Globigerina Limestone (Fig. 1.7).

The two conglomerate layers show evidence of 
erosion phases through the incorporation of many 
pebbles of brown-coloured limestones (Pedley et al. 
2002). In addition, their presence indicates that the sea 
basin was influenced by water agitation and that the 
sea levels had probably fallen during their deposition. 
The colour of these layers is attributed to the high 
concentration of francolite (a phosphatic mineral) in 
the cements. The significant presence of this mineral 
suggests that the water streaming over the shallow sea 
bed at the time of deposition was rising from greater 
depths as an ‘up-welling’ current which was coming 
from the depths of the western Mediterranean basin 
and passing eastwards (Pedley et al. 2002). These inputs 

Figure 1.7. An overview of the area investigated in western Malta. It presents the locations of chert outcrops (yellow 
lines) and the areas investigated during fieldwork (green lines) (image © 2017 Google).
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Figure 1.8. The end of the major fault system of Malta (Victoria Lines) at Fomm Ir-Riħ, with chert outcrops to either 
side (P. Chatzimpaloglou).

	
	
	

	

	

rocks were used by the prehistoric inhabitants (Malone 
et al. 2009a; Vella 2009). The Middle Globigerina Lime-
stone member has extensive exposures in both islands 
of Malta and Gozo, but not all of them present chert 
outcrops. Recent fieldwork has revealed that chert 
outcrops were present only on the western parts of 
both islands in bedded form (Chatzimpaloglou 2019; 
Chatzimpaloglou et al. 2020). 

The main chert outcrops on Malta were located in 
the Fomm ir-Riħ Bay area at the end of the Great Fault 
(Fig. 1.8), which is a major tectonic feature of Malta, and 
are considered more extensive than those on Gozo. The 
chert outcrops on Gozo were found at Dwejra Point, 
close to Fungus Rock (Fig. 1.9). The area is character-
ized by massive karstic features which could have been 
enhanced by past tectonic activity. The investigation of 
both exposures showed that nodular chert was present 
at the top and bottom of the unit, while bedded chert 
and/or silicified limestone were found in the middle 
part of the unit (Fig. 1.10). Generally, the outcrops 
present similar macroscopic characteristics with the 
bedded outcrops and have a higher concentration of 
carbonate material than the nodules.

1.4.4. Blue Clay Formation
The Blue Clay Formation is a very soft formation which 
generally forms either as low or rounded slopes when 
exposed on the surface or as very steep slopes where it 
cascades over the underlying Globigerina Limestone 

(Pedley et al. 1976, 2002). The thickness of the for-
mation ranges from 50 to 70 m (at Fomm ir-Riħ Bay) 
(Fig. 1.11). Although the Blue Clay has macroscopic 
differences from the Globigerina Limestone, they 
have very similar characteristics at least to the Upper 
Globigerina member. The Blue Clay is composed of 
very fine-grained sediments, with a large proportion 
of them of foraminiferal origin. This suggests that this 
formation was deposited in a similar deep-sea deposi-
tional setting to the Globigerina Limestone (Pedley et 
al. 2002) and it can be regarded as a continuation of the 
Upper Globigerina Limestone member sedimentation 
in which clay material of terrigenous origin became 
progressively incorporated (Scerri 2019). 

Basically, the main factor that distinguishes the 
Blue Clay Formation from most of the Globigerina 
Limestone is the presence of clay minerals. This 
clay content can only have come from a land source, 
although the possibility that part of the clay fraction 
originates from volcanic ash of an active volcano 
should not be excluded (Pedley et al. 2002). The qual-
ity of clay material mixed with the plankton-derived 
calcium carbonate detritus prevented the formation 
from reaching the same level of hardness as the lime-
stones. The Blue Clay is the softest rock formation of 
the Maltese Islands and produces most of the fertile 
and water retentive soils found across Gozo and Malta, 
provided there is the level of plough technology to 
work these heavier soils. This would have been more 
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Figure 1.9. An overview of the western part of Gozo where the chert outcrops are located. The yellow line orientates 
the internal valley, closer to Fungus Rock, the location of the chert outcrops (blue rectangle), and the areas investigated 
during fieldwork (red lines) (image © 2017 Google).

Figure 1.10. Chert outcrops: bedded chert (a & c), and nodular chert (b & d) (P. Chatzimpaloglou).
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the presence of glauconite (a complex, silicate based 
mineral). In contrast, the weathered exposures have 
an orange-brown colour formed by the oxidation 
products of this mineral. These Greensand outcrops 
represent the residue of a long period of submarine 
erosion and winnowing of sediments, probably related 
to the uplift of the Maltese area on the north flank of the 
Pantelleria Rift. Where present, the top part of the for-
mation passes transitionally into the overlying Upper 
Coralline Limestone Formation. This same upper part 
of the formation, lying above the Blue Clay, acts as an 
important point of water seepage and springs in the 
stratigraphy of the Maltese Islands. 

1.4.6. Upper Coralline Limestone Formation 
The Upper Coralline Limestone Formation is situated 
at the top of the stratigraphic sequence of the Maltese 
Islands. It is a hard, pale grey limestone, similar to the 
Lower Coralline Limestone Formation. This limestone 
forms sheer cliffs of varying height and includes a 

likely in Roman and later historical times (Margari-
tis & Jones 2008). It is also the basis of the perched 
aquifer as it forms an aquiclude to the porous rocks 
above. This perched aquifer was practically the only 
source of freshwater, apart from surface run-off, on 
the islands up to the British Period because of the 
springs that originated from it at the level of the Blue 
Clay-Greensand/Upper Coralline Limestone interface 
(Cassar et al. 2008). The upper parts of the formation 
show an increase in brown phosphatic sand grains 
and green grains of the complex mineral glauconite. 

1.4.5. Greensand Formation 
The Blue Clay transitions into the Greensand Formation 
with the Upper Coralline Limestone above (Pedley 
et al. 2002). The outcrops of this formation, when 
they are present, are very thin and only in Gozo do 
they exceed 11 m (i.e. 11 m at Il-Gelmus). The freshly 
exposed outcrops, mainly in man-made deep cuts, 
have a characteristic greenish colour influenced by 

Figure 1.11. Four characteristic exposures of the Blue Clay formation on Gozo and Malta (P. Chatzimpaloglou).
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Pleistocene–early Middle Pleistocene (Oxygen Isotope 
Stage 16: 690,000 years bp), a series of influxes during 
the marine regressions of the late Middle Pleistocene 
(between Oxygen Isotope Stage 12: 490,000 years bp 
and Stage 8: 300,000 years bp), and a final influx during 
the sea level low-stand of the Last Glacial Maximum 
(Oxygen Isotope Stage 2: 22,000–17,000 years bp) when 
sea level fell by 120–130 m and probably connected the 
Maltese Islands with Sicily via a land bridge. After this 
the Maltese Islands gradually attained more or less 
their present configuration and coastline as sea levels 
rose (Furlani et al. 2013).

1.5. Structural and tectonic geology of the Maltese 
Islands

Tectonics have affected the geography and geomor-
phology of the Maltese Islands (Galea 2019). The main 
geological formations essentially lie horizontally, but 
are displaced at intervals by faults belonging to two 
main families: a) a series of east–northeast to west–
southwest trending faults, and b) the Magħlaq and 
associated faults which trend northwest to southeast. 
The first family has been active since the Early Miocene 
and has resulted in the horst and graben systems most 
evident north of the Great Fault up to the South Gozo 
Fault. The second became active in the Late Miocene as 
a result of development of the Pantelleria Rift System. 
These faults were responsible for making the western 
side of Malta higher than the east, forming dramatic 
seacliffs of the western/northwestern shores (Alexan-
der 1988; Bonson et al. 2007; Ruffell et al. 2018; Galea 
2019). According to Lambeck et al. (2011) and Furlani 
et al. (2013, 2018), Malta appears to have remained 
tectonically stable throughout the Holocene.

The continental shelf around the Maltese Islands 
was progressively drowned by sea level rise since the 
Last Glacial Maximum (Furlani et al. 2013), such that 
there are well preserved terrestrial palaeo-landforms 
present on the present sea floor at depths shallower 
than c. -130 m (Foglini et al. 2016; Micallef et al. 2013; 
Prampolini et al. 2017). The post-Quaternary tectonics 
are restricted mainly to regional movements which 
have resulted in the submergence of archaeological 
features such as the ‘cart-ruts’ which enter the sea at 
St. George’s Bay, St. Paul’s Bay and Birżebbuġa (Hyde 
1955; Furlani et al. 2013), and the presence of speleo-
thems (cave mineral deposits, including stalagmites) 
in marine caves (Rizzo 1932; Furlani et al. 2018).

1.6. Geomorphology 

The geomorphology of the Maltese Islands has been 
thoroughly described and discussed by a number 

similar content of fossils such as corals and coralline 
alga. It can be up to c. 170 m thick (Fig. 1.4), although it 
also forms thin hill cappings and limestone platforms 
(Schembri 1997). Karstic geomorphological features 
have been reported on this formation (Fig. 1.4), but not 
at the same scale as for the Lower Coralline Limestone. 
The Upper Coralline Limestone is mostly comprised 
of shallow marine sediments deposited in different 
marine or intertidal environments and it generally 
comprises four members (oldest first): Ghajn Melel, 
Mtarfa, Tal-Pitkal and Ġebel Imbark (Pedley 1978). 
The Upper Coralline Limestone is the only formation 
exposed on Comino and Cominoto, while it is fully 
developed in western Malta and eastern Gozo (Pedley 
et al. 2002). 

1.4.7. Quaternary deposits 
Although the main marine sedimentation processes 
ended between the Miocene and Pliocene, there are 
a variety of post-Miocene Quaternary deposits of 
limited areal extent scattered throughout the islands 
(Trechmann 1938; Pedley et al. 1976; Hunt 1997; Hunt 
& Schembri 1999). The best studied of these are the 
cave and fissure infilling sediments because of their 
at times abundant fossil vertebrate remains, which 
provide insights into the climatic conditions and pal-
aeoenvironment at the time of deposition (see Hunt & 
Schembri 1999 and references therein). Other types of 
Quaternary deposits include marine highstand depos-
its, freshwater lake deposits, fluvial conglomerates 
and alluvial fan deposits, slope deposits, breccias and 
blown sand (aeolian) deposits.

Initial colonization of the islands by terrestrial 
biota is thought to have taken place during the Messin-
ian Salinity Crisis when the central Mediterranean was 
mostly dry land connecting North Africa to Sicily and 
Europe (Hunt & Schembri 1999; Schembri 2003; Cassar 
et al. 2008). Following the refilling of the Mediterranean 
during the Zanclean, the Maltese Islands were isolated 
until the Pleistocene glaciations when they may have 
become connected to Sicily (but not to North Africa) 
during lowstands or, if not connected, to have been 
separated by a channel much narrower than at present 
because of low sea levels. This facilitated further waves 
of colonization of the islands by biota able to disperse 
over the land bridge or across the narrowed channel 
(Thake 1985a; Hunt & Schembri 1999; Schembri 2003; 
Cassar et al. 2008).

Based on a comparative study of the Maltese fossil 
Pleistocene fauna recovered from Quaternary deposits 
with that of the Sicily and the Italian mainland, Hunt 
and Schembri (1999) have postulated three main waves 
of colonization of the Maltese Islands by biota: an 
early influx during a marine regression in the Lower 
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On Malta, all five rock formations are only 
present north of the Great Fault and on the Rabat-
Dingli uplands south of it. Elsewhere there are vast 
exposures of Globigerina Limestone which generally 
present a large-scale gentle folding which is respon-
sible for the characteristic topography of plains, 
shallow depressions and low hills; in fact the only 
high ground in this part of the island is the Naxx-
ar-Għargħur upland. Where the entire geological 
sequence is present, the Upper Coralline Limestone 
forms flat limestone-pavement karstic plateaux with 
steep cliff-like sides bordered by boulder screes at 
their base (Maltese: rdum) made by the slumping of 
blocks of rock from the cliff edge because of erosion 
of the underlying soft rock – the Greensand and/or 
Blue Clay. The eroded Blue Clay cascades down-slope 
to form taluses that cover the rock underneath (Glo-
bigerina Limestone). The Upper Coralline Limestone 
boulders also travel down-slope riding on the Blue 
Clay and where this happens on the coast, the result 
is a boulder-strewn shoreline.

of scholars, including House et al. (1961), Vossmer-
bäumer (1972), Guilcher and Paskoff, (1975), Paskoff 
and Sanlaville (1978), Ellenberg (1983), Reuther (1984), 
Alexander (1988), Anderson (1997), Schembri (1993, 
1994 & 1997) and Prampolini et al. (2017), and, most 
recently, in a multi-authored volume on the landscapes 
and landforms of the islands (Gauci & Schembri, 2019). 
The present account is based on these sources. 

As already stressed above, the current geomor-
phological features of the Maltese Islands have been 
strongly influenced by the geological and tectonic 
status of the islands. Both Malta and Gozo are tilted 
towards the northeast which resulted the Lower Coral-
line Limestone along the west, southwest and southern 
coasts of the islands, and formed very steep to vertical 
cliff faces in most places rising straight from the sea. 
Along the east and southeast coast of both islands, but 
especially Malta, the tilt gives generally gently sloping 
shores, and where valleys open on the coast, drowned 
valleys form a ria and bay coastline. The Marsamxett 
and Grand Harbours are the prime examples of this.

Figure 1.12. Map of the fault systems, arranged often as northwest–southeast oriented graben, and strike-slip structures 
(after Gardiner et al. 1995; Prampolini et al. 2017) (P. Chatzimpaloglou).
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for the harbour regions, is now being swallowed up 
by extensive urban development.

Maltese soils are relatively young and relate 
directly to the rock formations of islands. Previous 
studies have highlighted the low contribution of the 
climate to soil development and the great impact of 
human activities in their modification, particularly 
where there is cultivation, as being a valuable and 
practically non-renewable resource, natural soils have 
been translocated and mixed together and with var-
ious materials since the earliest of times (Lang 1960; 
Bowen Jones et al. 1961; Svarajasingham 1971; Farres, 
2019). Possible trajectories of past soil development 
and change are further discussed in Chapter 5.

Lang’s (1960) comprehensive study has laid the 
foundation for the understanding of Maltese soils and 
their development. This study identified three main 
types of soil: Carbonate Raw, Xerorendzinas and Terra 
soils. Of the four Carbonate Raw series soils, two 
are formed from Blue Clay parent material (Fiddien 
and San Lawrenz series), one from weathered Upper 
Coralline Limestone (Nadur) and one from dune sand 
(Ramla). These highly calcitic soils conform to an A/C 
profile, where the upper horizon directly overlies the 
parent material, and contain a very low level of organic 
content. The Xerorendizinas, which were divided into 
three series (San Biaġio, Alcol and Tal-Barrani), are 
largely formed from Globigerina Limestone parent 
material and also present an A/C profile. Normally 
grey, loose and powdery when dry, these soils have a 
high chalk and gypsum content with limited organic 
content (yet distinguishably more than the carbonate 
soils). Lastly, the Terra soils are found as terra fusca and 
terra rossa. Both are derived from Upper and Lower 
Coralline Limestone parent material and present an A/
Bw/C profile. The Terra soils are well developed with 
little organic content (although more than the previous 
soils) and the notable presence of ferric hydroxide.

Maltese soils have most recently been studied 
as part of the MALSIS project, a Malta–EU co-funded 
programme with the objective of setting up a modern 
Maltese soil information system that includes a soils 
geo-database (Vella 2000, 2001, 2003). The MALSIS 
inventory recognizes seven soil groups of the World 
Reference Base for Soil Resources soil classification 
system (WRB 2014) that are present in the Maltese 
Islands. These are:

a)  Calcisols (37 per cent), which are soils with a high 
proportion of translocated calcium carbonate and 
the most commonly occurring in the islands.

b)  Leptosols (15 per cent), which are very shallow 
calcareous soils with a high gravel content that 
locally are found on exposed karstic plateaux 

Important and characteristic topographic fea-
tures of the Maltese Islands are the rdum and widien 
(Schembri 1994, 1997). Rdum are important since 
they provide a very rough and dynamic terrain and 
as such have rarely been cultivated, thus providing 
refuges for many species of Maltese flora and fauna, 
which would have otherwise been extirpated from 
the heavily anthropogenically modified landscape. 
Widien are natural drainage channels formed either 
by stream erosion during a previous (post-Miocene) 
much wetter climatic regime, or by tectonism, such as 
the grabens of northern Malta and southern Gozo, or 
by a combination of the two processes. Most widien 
are now dry valleys and only carry water along their 
watercourses during the wet season. A few widien 
drain perennial springs arising from the perched 
aquifer at the Upper Coralline Limestone–Greensand/
Blue Clay interface and have some water flowing in 
them throughout the year, attaining the character of 
miniature river valleys. By virtue of the shelter they 
provide and their water supply, widien are one of the 
richest habitats on the islands and are also extensively 
cultivated. The submergence of the mouths of some 
widien mainly caused by the tilt of the islands, has led 
in turn to the formation of wetlands of various types, 
providing yet another localized, semi-aquatic habitat 
type in an otherwise arid landscape.

1.7. Soils and landscape

It has reasonably been assumed that the seasonally 
dry and hot Mediterranean climate made the Maltese 
landscapes quite marginal for agricultural production 
especially since there were few natural springs orig-
inating from the perched aquifer, and what rain and 
surface run-off could be collected and stored was slim 
(Haslam 1969; Schembri 1997; Cassar et al. 2008). As 
a consequence, terracing was adopted extensively in 
Malta and Gozo to conserve soils and moisture and at 
the same time to create a more amenable landscape for 
subsistence based agriculture, although exactly when 
is a subject of debate (Fenech 2007; Grima 2004, 2008b; 
Micallef 2019) (see Chapters 5, 8 & 11). Like many other 
parts of the Mediterranean region, this landscape must 
have been prone to deforestation, drought and erosion, 
combined with intensive human activity (Bevan & 
Conolly 2013; Brandt & Thornes 1996; Hughes 2011; 
Grove & Rackham 2003), and these factors are the 
subject of much of this volume to follow. Today, the 
islands are characterized by highly terraced valleys 
between flat-topped limestone mesas, generally with 
substantial towns sprawling across these plateaux. The 
whole of the southeastern part of Malta, previously 
mainly agricultural with small scattered villages except 
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a lack of irrigation water and crop failure, since local 
water resources were, directly or indirectly, entirely 
dependent on rainfall and the perched aquifer until 
the British period (Schembri 2003).

The mean monthly air temperature varies from 
12 to 26° C, and rarely falls to zero for sufficiently long 
periods to affect plant growth (Haslam 1969; Chetcuti et 
al. 1992). The arid period extends from approximately 
the last third of March to the first third of September, 
with peak aridity reached between June and August 
and maximum temperatures of up to 43° C (Chetcuti 
et al. 1992). Ground (grass) temperatures may be much 
higher that the air temperature and values up to 49° 
C have been measured. Relative humidity is gener-
ally high, from 65–80 per cent, with wind prevalent 
throughout most of the year. This is important as it 
exposes dry un-vegetated soil to wind-winnowing, 
rendering already low-quality agricultural soils even 
more depleted.

The natural vegetation of the islands must be 
adapted to excess water during the wet season and to 
drought and heat in the dry season. Plant growth is 
thus restricted during the dry and hot summers with 
the main growing seasons being spring and, to a lesser 
extent, autumn (Haslam 1969; Haslam et al. 1977). This 
is reflected in the landscape which is generally green 
throughout the wet period, but appears mostly parched 
and bare of vegetation during the dry period given that 
many non-phanerophytes (phanerophytes = trees and 
shrubs) survive the dry season in the form of seeds 
(annuals) or some form of subterranean perennating 
organ (Haslam 1969; Schembri 1997).

The terrestrial vegetational assemblages of the 
Maltese Islands may be grouped into three categories, 
as follows: a) major communities that are part of the 
successional sequence towards the climatic climax, 
b) minor communities which are either specialized 
to occupy particular habitats or occupy habitats that 
are rare on the islands, or are relics from a previous 
ecological regime, now surviving in a few refugia, 
and c) vegetational assemblages of disturbed habitats, 
which are those occupying land subject to periodic 
disturbance, usually as a result of human activities, 
but also natural disturbances, such as the flooding of 
dry-valley (wied) watercourses following heavy rain 
(Schembri 1997). The present day vegetational assem-
blages of the Maltese Islands have been described 
by Haslam (1969), Lanfranco (1984, 1995), Lanfranco 
and Schembri (1986), Anderson and Schembri (1989), 
Schembri (1993, 1997) and Cassar et al. (2008).

These combined themes of chronology, climate, 
soils and vegetation will be developed further by 
the palaeoenvironmental data presented below in 
Chapters 2–5.

and rdum, usually associated with low steppic 
and low garrigue vegetation.

c)  Cambisols (7 per cent), which are similar to Lepto-
sols but deeper (>25 cm) and show some horizon 
development in the form of a subsoil layer (or B 
horizon), although this is very limited in Maltese 
cambisols. 

d)  Vertisols (7 per cent), which are soils with a high 
content of clay and characterized by deep cracks 
when dry and occur on the Blue Clay.

e)  Luvisols (15 per cent), which are relict soils 
that formed under a previous wetter climatic 
regime, most likely during wet periods in the 
Pleistocene (see Chapter 5). The present climate 
does not form such soils, but it does modify them 
through the deposition of secondary calcium 
carbonate. Locally these soils have a reddish 
colour because of the presence of iron minerals 
and when undisturbed develop a surface layer 
of humus, a thin leached topsoil horizon, and a 
clayey and mineral rich subsoil. Such soils are 
found on flat or gently sloping karstland under 
high garrigue and maquis vegetation.

f)  Arenosols, which are porous sandy soils with no 
or almost no clay content and are usually deep. 
Locally they develop in a limited number of areas 
were blown beach sand accumulated inland from 
the adjacent coast.

g)  Regosols (19 per cent), which have been used as 
a ‘bin-group’ for soils that do not fit in any of the 
other local soil types. Such soils consist of broken 
down but otherwise practically unaltered parent 
material with no horizon development. Soils 
formed by mixing other soil types with powdered 
rock and anthropogenic waste are also classified 
as regosols.

1.8. Climate and vegetation

The present climate of the Maltese Islands is typically 
Mediterranean with characteristic mild, wet winters 
and hot, dry summers with ample sunshine (Chetcuti 
et al. 1992; Schembri 1993, 1994, 1997; Schembri et al. 
2009; Galdies 2011). The climate is strongly bi-seasonal, 
particularly in terms of precipitation. Despite an aver-
age rainfall of 530 mm, most of it (c. 85 per cent) falls 
during the period from October to March. Precipitation 
is highly variable from year to year with some years 
having almost twice the mean annual rainfall and 
others half. The latter are known as drought years 
and a continuous run of such (Murray 1890; Blouet 
1984) may have caused at least partial abandonment 
of the islands in the past. There may also have been the 
abandonment of marginal agricultural land because of 
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limestone facies), the sedimentary layering (e.g. cross 
bedded facies, etc.) or the main fossils. These are then 
related to an interpreted environment in which the 
sediments were deposited. Consequently, the rock can 
be referred to as beach-facies, lagoon facies, reef facies, 
and so on.

Notes

1 ‘Facies’ is a term that provides a specific characteriza-
tion of a group of rocks with distinct similar features. 
In sedimentary rocks, it embraces major features such 
as the main composition (e.g. quartz sand, clay or 
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cultural change and collapse in prehistory, 2013–18), led by Caroline Malone (Queens University Belfast) 
has explored issues of environmental fragility and Neolithic social resilience and sustainability  
during the Holocene period in the Maltese Islands. This, the first volume of three, presents the  
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The project employed a programme of high-resolution chronological and stratigraphic 
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environmental reconstruction of prehistoric landscapes and the changing resources exploited by the 
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excavated economic and environmental materials from archaeological sites allows Temple landscapes to 
examine the dramatic and damaging impacts made by the first farming communities on the islands’ soil 
and resources. The project reveals the remarkable resilience of the soil-vegetational system of the island 
landscapes, as well as the adaptations made by Neolithic communities to harness their productivity, in 
the face of climatic change and inexorable soil erosion. Neolithic people evidently understood how to 
maintain soil fertility and cope with the inherently unstable changing landscapes of Malta. In contrast, 
second millennium bc Bronze Age societies failed to adapt effectively to the long-term aridifying trend 
so clearly highlighted in the soil and vegetation record. This failure led to severe and irreversible erosion 
and very different and short-lived socio-economic systems across the Maltese islands.
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