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Summary

Transient execution vulnerabilities in the security context of server
hardware

Allison Randal

The thesis of this work is that eliminating speculation is a feasible approach to mitigat-

ing the transient execution vulnerabilities on large-scale server hardware. Many mitigations

have been proposed and implemented for many variants of the transient execution vulner-

abilities, and while the Meltdown-type exception-based transient execution vulnerabilities

have proven to be tractable, Spectre-type vulnerabilities and other speculation-based

transient execution vulnerabilities have been far more resistant to countermeasures. After

years of research and development by academia and industry, eliminating speculation is

still the only reliable countermeasure against Spectre.

For smaller-scale embedded systems or security-focused hardware such as a crypto-

graphic system or a root-of-trust (RoT), eliminating speculation is widely accepted as

a reasonable approach to improving security. But, for larger-scale and general-purpose

hardware, eliminating speculation is often rapidly dismissed as inconceivable, though the

claim that speculation is required for adequate performance is rarely supported by concrete

performance results. The performance results we do have from several independent strands

of research over the past few decades have shown that speculation features on large-

scale server hardware do not offer the same performance advantages as on smaller-scale

hardware, so eliminating speculation on large-scale server hardware does not harm perfor-

mance as much as we might suspect. And selective speculation techniques have shown

that speculation-based transient execution vulnerabilities can be mitigated by a partial

elimination of speculation, so we can preserve some of the performance of speculation

while subduing the security risk. In order to demonstrate the feasibility of eliminating

speculation from modern server hardware microarchitectures, I consider three alternative

approaches that partially or completely eliminate speculative execution.

Heterogeneous multicore systems that combine speculative and non-speculative cores

make it possible to entirely disable speculation for security-critical or untrusted sections of

code, by running that code on a non-speculative core. Code running on a speculative core
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performs as well as it would on a fully speculative hardware architecture. The systems

software developer has the power to choose which code runs with the performance advantage

of speculation, and which code runs with the security advantage of no speculation. However,

heterogeneous multicores only offer the ability to disable speculation at the process or

thread level. A finer-grained approach is desirable, to limit the performance penalty of

disabled speculation to the smallest possible region of code.

Non-speculative cores keep the performance advantages of most common features

in modern hardware architectures—such as dynamic multiple issue, dynamic pipeline

scheduling, out-of-order execution, and register renaming—while avoiding the risk of

speculative execution. Such processors do not perform as well as equivalent speculative

processors, but the results of this work indicate that they can perform as well or better than

equivalent speculative processors with all relevant mitigations for the transient execution

vulnerabilities applied. The performance penalty of eliminating speculation can also be

partially offset by increasing the size of fetch and issue stage components in the pipeline.

Non-speculative cores do not give systems software developers the option to choose between

performance and security. However, these cores may be desirable for large-scale server

deployments that exclusively serve privacy-centered workloads, such as processing hospital

patient data.

Selective speculation combines speculative and non-speculative features on a single core.

The performance of selective speculation cores is proportional to the use of speculative and

non-speculative features, so only regions of code that disable speculation pay a performance

penalty. Out of the three approaches considered in this dissertation, selective speculation

cores are best for large-scale general-purpose server deployments, because they simplify

resource allocation by keeping all cores identical, have no performance penalty for code

run as entirely speculative, and give systems software developers the most precise control

over speculation.
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Chapter 1

Introduction

A new class of vulnerabilities related to speculative and out-of-order execution, fault-

injection, and microarchitecture side-channels rose to attention in 2018. The techniques

behind the transient execution vulnerabilities were not new, but the combined application of

the techniques was more sophisticated, and the security impact more severe, than previously

considered possible. The models of secure isolation employed by server workloads such

as virtual machines and containers offer little protection from the transient execution

vulnerabilities. While the major server hardware vendors have applied some hardware

and software mitigations for some known variants of these vulnerabilities, none of the

major vendors have bothered to try to eliminate all variants, and the probability of further

variants being discovered in the coming years is high. The not-very-well-kept secret of

the industry is that public cloud providers generally run with many transient execution

mitigations disabled, because it is not cost-effective to enable them.

For smaller-scale or security-focused hardware—such as embedded systems or dedicated

cryptographic hardware—the easy and obvious solution to the transient execution vulner-

abilities is to simply eliminate speculation entirely. Eliminating speculation ruptures the

fundamental DNA of all Spectre-type attacks—blocking the initial fault-injection attack

vector that makes these attacks so much more severe than previously known microarchi-

tectural attacks, and blocking the transient microarchitecture states that leak secrets from

ever being created in the first place—so hardware without speculation is proof against

all currently known variants of Spectre and all variants that may be discovered in the

future. Smaller-scale and security-focused hardware microarchitectures rarely implement

speculation features anyway, because of resource constraints, because speculation provides

too little performance benefit for the particular workloads running on the hardware, or

because speculation radically increases the difficulty of verifying the security properties

of the hardware. However, for general-purpose, medium-to-large scale hardware such as

laptops, desktops, and servers, eliminating speculation has generally been regarded as

impractical, on the assumption that these architectures depend on speculation to achieve
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adequate performance [225, 261, 377, 483, 72, 163, 363].

The thesis of this work is that eliminating speculation is a feasible approach to mitigating

the transient execution vulnerabilities on large-scale server hardware. Firstly, for particular

kinds of workloads [371] or for large-scale servers [408] it has been demonstrated that

the performance benefits of speculation degrade to the extent that the feature either has

minimal performance benefits or actively harms performance, indicating that eliminating

speculation may be more feasible for the largest-scale servers than for medium-scale laptops

or desktops. Secondly, selective speculation techniques make it possible to partially disable

speculation, reducing the risk of speculation while still keeping many of the performance

benefits. The research questions we have sought to address are whether eliminating

speculation really is as “clearly unacceptable” [483] as other authors have assumed.

In concrete terms, this work has involved exploring the performance characteristics of

speculation on server hardware, and experimenting with other ways to improve the

performance of server hardware either without speculation or with restricted speculation.

We hope that this work may help encourage server hardware vendors to consider the kind

of fundamental hardware architecture changes the industry needs to effectively control the

transient execution vulnerabilities.

The next two chapters provide necessary background for the work of the dissertation,

with Chapter 2 providing historical perspective on the security context of server hardware

and Chapter 3 providing a critical analysis of the transient execution vulnerabilities.

Chapters 4 through 6 explore the feasibility of three alternative approaches to mitigating

all variants of Spectre through fundamental microarchitecture design choices that block the

initial fault-injection phase of the attack. Chapter 7 describes prototype implementation

work completed during the course of this research.
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Chapter 2

Background

Many modern computing workloads run in multitenant environments, where each physical

machine is split into hundreds or thousands of smaller units of computing, generically

called guests. Cloud and containers are currently the leading approaches to implementing

multitenant infrastructures, but other related technologies, such as unikernels or serverless,

are also variations on multitenant infrastructures. The guests in a cloud deployment are

commonly called virtual machines or cloud instances, while the guests in a container

deployment are commonly called containers. Typically, a single tenant (a user or group of

users) is granted access to deploy guests in an orchestrated fashion across a cloud or cluster

made up of thousands or hundreds of thousands of physical machines located in the same

data center or across multiple data centers, to facilitate operational flexibility in areas such

as capacity planning, resiliency, and reliable performance under variable load. Each guest

runs its own (often minimal) operating system and application workloads, and maintains

the illusion of being a physical machine, both to the end users who interact with the

services running in the guests, and to developers who are able to build those services using

familiar abstractions, such as programming languages, libraries, and operating system

features. The illusion, however, is not perfect, because ultimately the guests do share

the hardware resources (CPU, memory, cache, devices) of the underlying physical host

machine, and consequently also have greater access to the host’s privileged software (kernel,

operating system) than a physically distinct machine would have.

Ideally, multitenant environments would offer strong isolation of the guest from the host,

and between guests on the same host, but reality falls short of the ideal. The approaches

that various implementations have taken to isolating guests have different strengths and

weaknesses. For example, containers share a kernel with the host, while virtual machines

may run as a process in the host operating system or a module in the host kernel, so they

expose different attack surfaces through different code paths in the host operating system.

Fundamentally, however, all existing implementations of virtual machines and containers

are leaky abstractions, exposing more of the underlying software and hardware than is
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Figure 2.1: The evolution of multitenant infrastructures. Reprinted from Randal [347].

necessary, useful, or desirable. New security research starting in 2018 delivered a further

blow to the ideal of isolation in multitenant environments, demonstrating that certain

hardware vulnerabilities related to speculative execution—including Spectre, Meltdown,

Foreshadow, L1TF, and variants—can easily bypass the software isolation of guests.

Because multitenancy has proven to be useful and profitable for a large sector of the

computing industry, it is likely that a significant percentage of computing workloads will

continue to run on multitenant infrastructure for the foreseeable future. Randal [347]

examined the co-evolution of software and hardware for multitenant infrastructures over

sixty years of history, and how the trade-offs made along the way led to the current tension

between the lofty ideals of security versus the flawed reality. This dissertation focuses on

the hardware dimension of multitenant infrastructures, and particularly on the impact of

transient execution vulnerabilities.

This chapter is divided into sections following the evolutionary paths of the technologies

behind virtual machines and containers, generally in chronological order, as illustrated in

Figure 2.1. Section 2.2 explores the common origins of virtual machines and containers in

the late 1950s and early 1960s, driven by the architectural shift toward multitasking and

multiprocessing, and motivated by a desire to securely isolate processes, efficiently utilize

shared resources, improve portability, and minimize complexity. Section 2.3 examines

the first virtual machines in the mid-1960s to 1970s, which primarily aimed to improve

resource utilization in time-sharing systems. Section 2.4 delves into the capability systems

of the early 1960s to 1970s—the precursors of modern containers—which evolved along a

parallel track to virtual machines, with similar motivations but different implementations.

Section 2.6 outlines the resurgence of virtual machines in the late 1990s and 2000s. Section

2.7 traces the emergence of containers in the 2000s and 2010s. Section 3 starts to explore

the impact of recent security research into transient execution vulnerabilities on both
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virtual machines and containers.

2.1 Terminology

For the sake of clarity, this dissertation consistently uses certain modern or common terms,

even when discussing literature that used various other terms for the same concepts.

• cloud: Implementation approaches that adopt the label “cloud” are typically virtual

machines with added orchestration features to enhance portability. Cloud implemen-

tations also tend to favor lighter-weight guest images, which enhances performance

and reduces complexity, though cloud images are generally not quite as minimal as

container images.

• container: The term “container” does not have a single origin, but some early

relevant examples of use are Banga et al. [34] in 1999, Lottiaux and Morin [266] in

2001, Morin et al. [296] in 2002, and Price and Tucker [334] in 2004. Early literature

on containers confusingly referred to them as a kind of virtualization [334, 396, 290,

208, 77, 92], or even called them virtual machines [396]. As containers grew more

popular, the confusion shifted to virtual machines being called containers [60, 490].

This dissertation uses the term “container” for multitenant deployment techniques

involving process isolation on a shared kernel (in contrast with virtual machine, as

defined below). However, in practice the distinction between containers and virtual

machines is more of a spectrum than a binary divide. Techniques common to one can

be effectively applied to the other, such as using system call filtering with containers,

or using seccomp sandboxing or user namespaces with virtual machines.

• guest: The term “guest” had some early usage in the 1980s for the operating system

image running inside a virtual machine [300], but was not common until the early

2000s [440, 40]. This dissertation uses “guest” as a general term for operating system

images hosted on multitenant infrastructures, but occasionally distinguishes between

virtual machine guests and container guests.

• kernel: A variety of different terms appear in the early literature, including “su-

pervisory program” [94], “supervisor program” [17], “control program” [303, 315,

7], “coordinating program” [315], “nucleus” [69, 98], “monitor” [464], and ultimately

“kernel” around the mid-1970s [259, 331]. This dissertation uses the modern term

“kernel”.

• process: The early literature tended to use the terms “job” [356] or “program”

[94, 315, 17], and “process” only appeared around the mid-1960s [112, 6]. This
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dissertation uses the modern term “process”. The early use of “multiprogramming”

meaning “multiprocessing” was derived from the early use of “program” meaning

“process”.

• serverless: Implementation approaches that adopt the label “serverless” tend to

emphasize portability and minimizing complexity. They rely on the underlying

infrastructure—typically some combination of bare metal, virtual machines, and/or

containers—for whatever secure isolation and performance they provide.

• unikernel: Implementation approaches that adopt the label “unikernel” take mini-

malist guest images to an extreme, by replacing the kernel and operating system of

the guest with a set of highly-optimized libraries that provide the same functionality.

The code for an application workload is compiled together with the small subset of

unikernel libraries required by the application, resulting in a very small binary that

runs directly as a guest image. Historically, unikernels have sacrificed portability of

guest images, by targeting only a limited set of virtual machine implementations as

their host, but recent work has explored running unikernels as containers [466]. The

unikernel approach also reduces the portability of application code, since unikernel

frameworks tend to require the application code to be written in a specific way to

integrate with the unikernel libraries.

• virtual machine: This dissertation uses the term “virtual machine” for multi-

tenant deployment techniques involving the replication/emulation of real hardware

architectures in software (in contrast with container, as defined above). The code

responsible for managing virtual machine guests on a physical host machine is often

called a “hypervisor” or “virtual machine monitor”, both derived from early terms

for the kernel, “supervisor” and “monitor”. In many early implementations of virtual

machines, the host kernel managed both guests and ordinary processes.

2.2 Time-sharing on mainframes

The earliest form of hardware for multitenant infrastructures was time-sharing systems

on mainframes. The origins of both virtual machines and containers can be traced to

a fundamental shift in hardware and software architectures toward the late 1950s. The

hardware of the time introduced the concept of multiprogramming, which included both

basic multitasking in the form of simple context-switching and basic multiprocessing

in the form of dedicated I/O processors and multiple CPUs. Codd [93] attributed the

earliest known use of the term multiprogramming to Rochester [356] in 1955, describing

the ability of an IBM 705 system to interrupt an I/O process (tape read), run a process

(calculation) on the data found, and then return to the I/O process. The concept of
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multiprogramming evolved over the remainder of the decade through work on the EDSAC

[463], UNIVAC LARC [122], STRETCH (IBM 7030) [120, 94], TX-2 [142], and an influential

and comprehensive review by Gill [158]. While the hardware of today is radically different

than the hardware of the 1950s-1970s, several key concepts continue to be relevant.

The first key concept was simply the ability to run more than one process on a

machine at the same time. This concept was originally called multiprogramming and

evolved through a series of hardware architectures in the 1950s, notably the IBM 705

[356], EDSAC [463], UNIVAC LARC [122], STRETCH (IBM 7030) [120, 94], and TX-2

[142]. Multiprogramming involved both multitasking (as simple context-switching) and

multiprocessing (as multiple CPUs and dedicated I/O processors), which introduced a risk

of processes disrupting the operation of other processes on the same machine.

So, the first key concept led naturally to the second key concept: isolating processes to

prevent them disrupting each other. Initially, this work revolved around the now familiar

approach of a small privileged kernel with unrestricted access to all hardware resources

and running processes, as well as responsibility for potentially disruptive operations such

as memory and storage allocation, process scheduling, and interrupt handling, combined

with restrictions on any software outside the kernel to limit access to these risky features.

STRETCH [94] in the 1950s and IBM System/360 [17] in the 1960s were significant early

examples of hardware architectures designed to provide hardware support for kernel process

isolation.

The concept of process isolation led to two major divergent schools of thought on

hardware security for the multitenant systems of the time—capabilities and virtual ma-

chines—both initially focused on strengthening process isolation by adding memory

isolation features. Capabilities viewed secure isolation as an essential feature of the hard-

ware and operating system, which should be available to every process. Virtual machines

approached secure isolation at a different level of granularity, emphasizing the ability

to run an entire operating system in an isolated environment by closely replicating the

behavior of physical hardware. Both capabilities and virtual machines depended heavily on

custom hardware implementations of their security features. The fundamental principles

of these two major divergent schools of thought continue today, as a dichotomy between

modern containers and modern virtual machines.

2.3 Early virtual machines

The early work on virtual machines grew directly out of the work on multiprogramming,

continuing the goal of safely sharing the resources of a physical machine across multiple

processes. Initially, the idea was no more than a refinement on memory protection between

processes, but it expanded into a much bigger idea: that small isolated bundles of shared
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resources from the host machine could present the illusion of being a physical machine

running a full operating system.

2.3.1 M44/44X

In 1964, Nelson [303] published an internal research report at IBM outlining plans for

an experimental machine based on the IBM 7044, called the M44. The project built

on earlier work in multiprogramming, improving process isolation and scheduling in the

privileged kernel with an early form of virtual memory. They called the memory mapped

for a particular process a “virtual machine” [303, p. 14]. The 44X part of the name stood

for the virtual machines (also based on the IBM 7044) running on top of the M44 host

machine.

Nelson [303, p. 4-6] identified the performance advantages of dynamically allocated

shared resources (especially memory and CPU) as one of the primary motivators for the

M44/44X experiments. Portability was another central consideration, allowing software to

run unmodified across single process, multiprocess, and debugging contexts [303, pp. 9-10].

The M44/44X lacked almost all of the features we would associate with virtual machines

today, but it played an important, though largely forgotten, part in the history of virtual

machines. Denning [111] reflected that the M44/44X was central to significant theoretical

and experimental advances in memory research around paging, segmentation, and virtual

memory in the 1960s.

2.3.2 Cambridge Monitor System

The IBM System/360 was explicitly designed for portability of software across different

models and different hardware configurations [17]. In the mid-1960s, IBM’s Control

Program-40 Cambridge Monitor System (CP-40/CMS) project running on a modified

IBM System/360 (model 40) took the idea a few steps further—initially calling the work

a “pseudo-machine”, but later adopting the term “virtual machine” [108, p. 485]. The

CP-40/CMS and later CP-67/CMS1 projects improved on earlier approaches to portability,

making it possible for software written for a bare metal machine to run unmodified in

a virtual machine, which could simulate the appearance of various different hardware

configurations [7, pp. 1-2]. It also improved isolation by introducing privilege separation for

interrupts [7, pp. 6-7], paged memory within virtual machine guests [69, 318], and simulated

devices [69, 98]. IBM’s work on the CP-40/CMS focused on improving performance through

efficient utilization of shared memory [7, pp. 3-5], and explictly did not target efficient

utilization of CPU through sharing [7, p. 1]. Kogut [227] developed a variant of CP-

67/CMS to improve performance through dynamic allocation of storage (physical disk) to

1For the IBM System/360 model 67.
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virtual machines.

2.3.3 VM/370

IBM’s VM/370 running on the System/370 hardware followed in the early 1970s, and

included virtual memory hardware [108, p. 485]. Madnick and Donovan [271, p. 214]

estimated the overhead of the VM/370 at 10-15%, but deemed the performance trade-off

to be worthwhile from a security perspective. Goldberg [162, pp. 39-40] identified the

source of overhead as primarily: maintaining state for virtual processors, trapping and

emulating privileged instructions, and memory address translation for virtual machine

guests (especially when paging was supported in the guests). In retrospect, Creasy noted

that efficient execution was never a primary goal of IBM’s work on the CP-40, CP-67,

or VM/370 [108, p. 487], and the focus was instead on efficient utilization of available

resources [108, p. 484].

2.3.4 Trade-offs

In their formal requirements for virtual machines in the mid-1970s, Popek and Goldberg

[332, p. 413] stated that ideally virtual machines should “show at worst only minor

decreases in speed” compared to running on bare metal. In 2017, Bugnion et al. [63]

explained Popek and Goldberg’s requirements in modern terms, exploring the performance

impact for hardware architectures that do not fully meet the requirements.

Buzen and Gagliardi [69, p. 291], Madnick and Donovan [271, p. 212], Goldberg [161,

p. 75], and Creasy [108, p. 486] all observed that the portability offered by virtual machines

was also an advantage for development purposes, since it allowed development and testing

of multiple different versions of the kernel/operating systems—and programs targeting

those kernels/operating systems—in multiple different virtual hardware configurations, on

the same physical machine at the same time.

Buzen and Gagliardi [69] considered one of the key advantages of the virtual machine

approach to be that “virtual machine monitors typically do not require a large amount

of code or a high degree of logical complexity”. Popek and Kline [331, p. 294] discussed

the advantage of virtual machines being smaller and less complex than a kernel and

complete operating system, improving their potential to be secure. Goldberg [162, p. 39]

suggested minimizing complexity as a way to improve performance: selectively disabling

more expensive features (such as memory paging in guests) for virtual machines that

would not use the features. Creasy [108, p. 488] discussed the advantages of minimizing

interdependencies between virtual machines, giving preference to standard interfaces on

the host machine.

A frequently-cited group of papers in the early 1970s, by Lauer and Snow [241], Lauer
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and Wyeth [242], and Srodawa and Bates [402], suggested that virtual machines offered a

sufficient level of isolation that it was no longer necessary to maintain a privilege-separated

kernel in the host operating system. However, by that point in time the concept of a

privileged kernel was well enough established that the idea of eliminating it was unlikely to

be widely accepted. Buzen and Gagliardi [69, p. 297] observed that the proposal depended

heavily on the ability of the virtual machine implementation to handle all virtual memory

mapping directly, but since the papers failed to take memory segmentation into account,

the approach could not be implemented as initially proposed.

2.3.5 Decline

As companies like DEC, Honeywell, HP, Intel, and Xerox introduced smaller hardware to

the market in the 1970s, they did not include hardware support for features such as virtual

memory and the ability to trap all sensitive instructions, which made it challenging to

implement strong isolation using virtual machine techniques on such hardware [117, 146].

Creasy [108, p. 484] observed in the early 1980s that the advent of the personal computer

decreased interest in the early forms of virtual machines—which were largely developed for

the purpose of isolating users in time-sharing systems on mainframes—but he recognized

potential for virtual machines to serve “the future’s network of personal computers”.2

2.4 Early capabilities

The origin of containers is often attributed [97, 232, 256, 344, 46] to the addition of the

chroot system call in the Seventh Edition of UNIX released by Bell Labs in 1979 [217].

The simple form of filesystem namespace isolation that chroot provides was certainly one

influence on the development of containers, though it lacked any concept of isolation for

process namespaces [209, 335]. However, containers are not a single technology, they are

a collection of technologies combined to provide secure isolation, including namespaces,

cgroups, seccomp, and capabilities. Combe et al. [97], Jian and Chen [203], Kovács

[232], Priedhorsky and Randles [335], and Raho et al. [344] describe how these different

technologies combine to provide secure isolation for containers. It is more accurate to

attribute the origin of containers to the earliest of these technologies, capabilities, which

began decades before chroot and several years before the first work on virtual machines.

Like containers, capabilities took the approach of building secure isolation into the hardware

and the operating system, without virtualization.

2It was a reasonable prediction for the time: HTTP was introduced much later in the 1980s, but the
RFC for the Internet Protocol (IP) [333] was published in the same month as Creasy’s article, and TCP
had already been around since the mid-1970s.
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2.4.1 Descriptors

In the early 1960s, inspired by the need to isolate processes, the Burroughs B5000 hardware

architecture introduced an improvement to memory protection called descriptors, which

flagged whether a particular memory segment held code or data, and protected the

system by ensuring it could only execute code (and not data), and could only access data

appropriately (a single element scalar, or bounds-checked array) [281, 249]. A process on

the B5000 could only access its own code and data segments through a private Program

Reference Table, which held the descriptors for the process [249, p. 23]. A descriptor also

flagged whether a segment was actively in main memory or needed to be loaded from

drum [249, p. 24].

2.4.2 Dennis and Van Horn

In the mid-1960s, Dennis and Van Horn [112] introduced the term capability in theoretical

work directly inspired by both the Burroughs B5000 and MIT’s Compatible Time-Sharing

System (CTSS) [112, p. 154]. Like the B5000 descriptors, capabilities defined the set of

memory segments a process was permitted to read, write, or execute [249, p. 42]. These

early capabilities introduced several important refinements: a process executed within a

protected domain with an associated capability list; multiple processes could share the

same capability list; and a process could FORK a parallel process with the same capabilities

(but no greater), or create a subprocess with a subset of its own capabilities (but no

greater) [249, pp. 42-44]. These theoretical capabilities also had a concept of ownership (by

a process or a user) [249, p. 42], and of persistent data “directories” (but not files) which

survived beyond the execution of a process and could be private to a user or accessible to

any user [249, pp. 44-45].

Soon after Dennis and Van Horn published their theoretical capabilities, Ackerman

and Plummer [6] implemented some aspects of capabilities relating to resource control

on a modified PDP-1 at MIT, and added a file capability in addition to the directory

capability—a precursor to filesystem namespaces.

2.4.3 Chicago Magic Number Machine

In 1967, the University of Chicago launched the first attempt at designing and building

a general-purpose hardware and software capability system, which they later called the

Chicago Magic Number Machine3 [131, 132]. The Chicago machine pushed the concept

of separation between capabilities and data further, to protect against users altering the

capabilities that limited their access to memory on the system [249, pp. 49-50]. The

3The unusual name was emblematic of the decade, from Ken Kesey’s “Magic Bus” to the Beatles’
“Magical Mystery Tour”. At the level of physical memory, capabilities are effectively a “magic” number.
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machine had a set of physical registers for capabilities, which were distinct from the usual

set of registers for data. It also flagged whether each memory segment stored capabilities

or data, and prevented processes from performing data operations like reading or writing

on capability segments or capability registers. Inter-process communication also sent both

a capability segment and a data segment [249, p. 51].

The University of Chicago project ran out of funding and was never completed, but it

inspired subsequent work on CAL-TSS [249, p. 49].

2.4.4 CAL-TSS

In 1968, the University of California at Berkeley launched the CAL-TSS project [249,

pp. 52-57], which aimed to produce a general-purpose capability-based operating system,

to run on a Control Data Corporation 6400 model (RISC architecture) mainframe machine,

without any special customization to the hardware. Like previous implementations, CAL-

TSS confined a process to a domain, restricting access to hardware registers, memory,

executable code, system calls to the kernel, and inter-process communication. The project

introduced a concept of unique and non-reusable identifiers for objects, to protect against

reuse of dangling pointers to access and modify memory that has been reallocated after

being freed.

The CAL-TSS project encountered difficulties implementing the operating system as

designed, and was terminated in 1971. Levy [249, p. 57] identified the memory management

features of the CDC 6400 as a particularly troublesome obstacle to the implementation. In

postmortem analysis, Sturgis [405] and Lampson and Sturgis [239] reflected that CAL-TSS

ended up being large, overly complex, and slow, and attributed this primarily to a poor

match between the hardware they selected and the design of mapped address spaces, and

also to their design choice of distributing privileged code for manipulating global system

data across individual processes, rather than consolidating it in a privileged kernel.

2.4.5 Plessey System 250

In the early 1970s, the Plessey System 250 [124] was a commercially successful real-time

multiprocessing telephone-switch controller. It implemented capabilities for memory

protection and process isolation [249, p. 65], and expanded capabilities into the I/O system

[249, p. 77].

2.4.6 Provably Secure Operating System

Also in the early 1970s, the Stanford Research Institute began a project to explore the

potential of formal proofs applied to a capability-based operating system design, which they

32



called the Provably Secure Operating System (PSOS) [305]. The design was completed in

1980, but never fully formally proven, and never implemented [306].

2.4.7 CAP

In the late 1970s, the University of Cambridge’s CAP machine [302, 462] successfully

implemented capabilities as general-purpose hardware combined with a complementary

operating system. The CAP introduced a refinement replacing the privileged kernel with

an ordinary process, so the special control the “root” process had over the entire system

was really just the normal ability of any process to create subprocesses and grant a subset

of its own capabilities to those subprocesses [249, pp. 80-81].

2.4.8 Object systems

Several software offshoots of the early capability systems generalized the idea by treating

processes and shared resources as typed objects with associated capabilities, including

Carnegie-Mellon’s Hydra [478, 479], StarOS [207], and Gnosis later renamed to KeyKOS

[180].

2.4.9 IBM System/38

In 1978, IBM announced plans for a capability-based hardware architecture, the System/38,

which they shipped in 1980 [249, p. 137]. Berstis [48] characterized the primary goal of

the System/38 as improving memory protection without sacrificing performance. Houdek

[187] described the implementation of capabilities as protected pointers in detail. The

System/38 introduced a concept of user profiles associated with protected process domains

[48, pp. 249-250], which were vaguely reminiscent of modern user namespaces, though

implemented differently. User profiles allowed for revocation of capabilities, but at the

cost of significantly increased complexity in the implementation [249, pp. 155-156].

The System/38 was succeeded by the AS/400 in the late 1980s, which removed

capability-based addressing [397, p. 119]. The AS/400 later adopted the concept of logical

partitioning from the IBM System/370 [372, pp. 1-2], to divide the physical resources of

the host machine between multiple guests at the hardware level4 [397, pp. 240, 328].

2.4.10 Intel iAPX 432

In 1975, Intel began designing the iAPX 432 [197] capability-based hardware architecture,

which they originally intended to be their next-generation, market-leading CPU, replacing

4Unlike virtual machines, capabilities, or containers, which divide physical resources at the software
level.
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the 8080 [282, p. 79]. The project finally shipped in 1981, but it was significantly delayed

and significantly over budget [282, p. 79].

Mazor [282, p. 75] recorded that performance was not considered as a goal in the design

of the iAPX 432. Hansen et al. [179] measured the performance of the iAPX 432 against

the Intel 8086, Motorola 68000, and the VAX-11/780 in 1982, with results as poor as 95

times slower on some benchmarks. Norton [307, p. 27] assessed the poor performance

and unoptimized compiler offered by the iAPX 432 as the leading cause of its commercial

failure. Levy [249, p. 186] blamed the commercial failure on both poor performance and

over-hyped marketing.

In a move that Mazor described as “a crash program...to save Intel’s market share”

[282, p. 75], Intel launched a parallel project to develop the 8086 architecture (the first

in a long line of x86 CPUs), which became Intel’s leading product line by default, rather

than by design [282, p. 79].5

2.4.11 Trade-offs

The early capability systems in the 1960s and 1970s sacrificed performance for the sake of

security, though Levy speculated in the mid-1980s that this was partly due to “hardware

poorly matched to the task” [249, p. 205]. Wilkes [464, pp. 49-59] contrasted the memory

protection features of capabilities with other systems of the time, including detailed

descriptions of hardware implementations.

Levy [249, p. 205] also observed that the early capability systems significantly increased

complexity for the sake of security. Patterson and Séquin [323] and Patterson and Ditzel

[321] judged this sacrifice as a major reason the capability machines were surpassed by

simpler architectures, such as RISC.

Kirk McKusick recalled that the primary reason Bill Joy ported chroot from UNIX

into BSD in 1982 was for portability, so he could build different versions of the system in

an isolated build directory [209, p. 11].

2.4.12 Decline

As with virtual machines, interest in the early capability systems sharply declined in the

1980s, influenced by several independent factors. Several early attempts to implement

capabilities were terminated uncompleted—notably the Chicago Magic Number Machine,

CAL-TSS, and the Provably Secure Operating System—contributing to a reputation that

capability systems were difficult to implement and perhaps overly ambitious, despite the

successful implementations that followed. The commercial failure of Intel’s iAPX 432 raised

5In hindsight, the commercial failure of the iAPX 432 probably influenced Intel’s single-minded focus
on performance and disinterest in memory protection techniques in the decades that followed, which
ultimately contributed to the vulnerabilities discussed in Section 3.
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further doubts on the feasibility of capability-based architectures. In 2003, Neumann and

Feiertag [306, p. 6] looked back on the early capability systems, expressing disappointment

that “the demand for meaningfully secure systems has remained surprisingly small until

recently”.

Perhaps the most significant factor in the decline of capabilities was the rise of general-

purpose operating systems. Saltzer and Schroeder [365, p. 1294] contrasted capabilities

with the access control list models adopted by Multics and its descendants, calling out

revocation of access as one major area where capabilities fell short.

While none of the early capability systems remain in use today, they have not been

entirely forgotten. In 2003, Miller et al. [291] reviewed capability systems from a historical

perspective, addressing common misconceptions about capabilities related to revocation,

confinement, and equivalence to access control lists. Section 2.7 traces the evolution of a

feature called capabilities in the modern Linux Kernel. FreeBSD took a different approach

for the feature it calls capabilities, and integrated the Capsicum framework [287, p. 30],

which was more directly derived from the classic capability systems [450, 21]. In 2012, the

CHERI project [451, 453, 473, 449] expanded on the ideas of the Capsicum framework,

pushing its capability model down into a RISC-based hardware architecture. Since 2016,

Google has been exploring a revival of capability systems with the Fuchsia operating system

and Zircon microkernel [165]. In a 2018 plenary session about Spectre/Meltdown, Hennessy

[184] pointed to future potential for capabilities, reflecting that the early capability systems

“probably weren’t the right match for what software designers thought they needed and

they were too inefficient at the time”, but suggested “those are all things we know how

to fix now...so it’s time, I think, to begin re-examining some of those more sophisticated

[protection] mechanisms and see if they’ll work”.

2.5 General-purpose hardware and general-purpose

operating systems

As early as the 1960s, hardware vendors recognized that designing complete custom

hardware, custom operating systems, and custom application software for each generation

of their products was an expensive way to approach systems development. In 1964, Amdahl

et al. [17] discussed the philosophy of “general-purpose CPU design for communications-

oriented systems” as a driving design principle for the IBM System/360. The idea led to a

third key concept that survives in modern multitenant infrastructures—portability made

possible by architectural stratification and standardization.

The 1970s and 1980s saw the rise of general-purpose hardware capable of running

multiple different operating systems, general-purpose operating systems capable of running

on multiple different hardware architectures, and application/workload software capable
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of running on multiple different operating systems and hardware architectures. On the

hardware side, companies like DEC, Honeywell, HP, Intel, and Xerox shifted their product

lines toward simpler general-purpose hardware architectures that no longer supported the

security features of capabilities [306, 282, 397] or virtual machines [117, 146]. On the

operating system side, MIT’s Compatible Time-Sharing System (CTSS) [101, 464] laid

the foundation for Multics [100], which later inspired UNIX [354] and its robust mutation,

the Berkeley Software Distribution (BSD) [286, 285], followed by Solaris, Linux, and their

many variants.

On one hand, stratification and standardization were a substantial benefit to the

hardware and software industries, as both hardware and software architectures grew so

much more complex over the decades, that the only sustainable approach to ongoing

development of the full hardware and software stack was to break it into modular and

recombinable hardware components—such as CPUs, memory, and storage—together

with modular and recombinable software components—such as kernels, system utilities,

operating systems, and applications. On the other hand, stratification and standardization

were also a source of risk, as researchers and engineers working at one architectural level

tended to have less and less exposure over time to how other levels actually functioned,

across the boundaries of microarchitecture, instruction set architecture, peripherals, kernel

and user space features, and application/workload software. This fundamental disconnect

has played a part in the transient execution vulnerabilities. Modern software security

research relies on critical assumptions about the behavior of the hardware that have

been false for decades, but software security research is so far removed from modern

microarchitecture research that few researchers saw the risk, and even those who did [327]

radically underestimated the impact.

2.6 Modern virtual machines

Virtual machines still existed in the 1980s and 1990s, but garnered only a bare minimum

of activity and interest. IBM’s line of VM products, descended from VM/370, continued to

have a small but loyal following [435]. DOS, OS/2, and Windows all offered a limited form

of DOS virtual machines during that time, though it might be more fair to categorize those

as emulation. The rise of programming languages like Smalltalk and Java re-purposing

the term “virtual machine”—to refer to an abstraction layer of a language runtime, rather

than a software replication of a real hardware architecture—may be indicative of how dead

the original concept of virtual machines was in that period.

After nearly two decades, the late 1990s brought a resurgence of interest in virtual

machines, but for a new purpose adapted to the technology of the time.
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2.6.1 Disco

In 1997, the Disco research project at Stanford University explored reviving virtual

machines as an approach to making efficient use of hardware with multiple CPUs (on

the order of “tens to hundreds”), and included a lightweight library operating system for

guests (SPLASHOS) as an option, in addition to supporting commodity operating systems

as guests. Bugnion et al. [64] cited portability (rather than security or performance) as the

primary motivation of the Disco project, which proposed virtual machines as a potential

way to allow commodity operating systems (Unix, Windows NT, and Linux) to run on

NUMA architectures without extensive modifications.

2.6.2 VMware

A year later, the team behind Disco founded VMware to continue their work, and released

a workstation product in 1999 [65], quickly followed by two server products (GSX and

ESX) in 2001 [440, 10, 367]. VMware faced a challenge in virtualizing the x86 architectures

of the time, because the hardware did not support traditional virtualization techniques—

specifically the architecture contained some sensitive instructions which were not also

privileged—so a virtual machine monitor could not rely on trapping protection exceptions

as the sole means of identifying when to execute emulated instructions as a safe replacement,

since some potentially harmful instructions would never be trapped [355, p.131].6 To work

around this limitation, VMware combined the trap-and-execute technique with a dynamic

binary translation technique [65, p.12:3], which was faster than full emulation, but still

allowed the guest operating system to run unmodified [65, p.12:29-36].

2.6.3 Denali

The Denali project at the University of Washington in 2002 [458] introduced the term

“paravirtualization”,7 another work-around for the lack of hardware virtualization support

in x86, which involved altering the instruction set in the virtualized hardware architecture,

and then porting the guest operating system to run on the altered instruction set [457].

2.6.4 Xen

The Xen project at the University of Cambridge in 2003 [40] also used paravirtualization

techniques and modified guest operating systems, but emphasized the importance of pre-

serving the application binary interface (ABI) within the guests so that guest applications

could run unmodified. Xen’s greatest technical contribution may have been its approach

6Popek and Goldberg [332] classically defined such machines as unvirtualizable.
7The term was new, but the technique had roots stretching back to IBM’s VM/370 [108, 162].
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to precise accounting for resource usage, with the explicit intention to individually bill

tenants sharing physical machines [40, p.176], which was a relatively radical idea at the

time,8 and directly led to the creation of Amazon’s Elastic Compute Cloud (EC2) a couple

of years later [41].9

Chisnall [89] provided a detailed account of Xen’s architecture and design goals. Xen’s

approach to the problem of untrapped x86 privileged instructions was to substitute a set

of hypercalls for unsafe system calls [89, pp.10-13]. Smith and Nair [394, p.422] highlighted

that Xen was able to run unmodified application binaries within the guest, because it

ran the guest in ring 1 of the IA-32 privilege levels and the hypervisor in ring 0, so all

privileged instructions were filtered through the hypervisor.

2.6.5 x86 Hardware virtualization extensions

In 2000, Robin and Irvine [355] analyzed the limitations of the x86 architecture as a host

for virtual machine implementations, with reference to Goldberg’s earlier work [160] on the

architectural features required to support virtual machines. In the mid-2000s, in response

to the growing success of virtual machines, and the challenges of implementing them on

x86 hardware, Intel and AMD both added hardware support for virtualization in the form

of a less privileged execution mode to execute code for the virtual machine guest directly,

but selectively trap sensitive instructions, eliminating the need for binary translation or

paravirtualization. Rosenblum and Garfinkel [359] discussed the motivations behind the

added hardware support for virtualization in x86, before the changes were released. Pearce

et al. [325, p. 7] contrasted binary translation, paravirtualization, and the features x86

added for hardware-assisted virtualization, clarifying the x86 virtualization extensions

were not full virtualization. Adams and Agesen [8] recounted the difficulties VMware

encountered while integrating the x86 hardware virtualization extensions, and concluded

that the new features offered no performance advantage over binary translation.

In 2007, the KVM subsystem for the Linux Kernel provided an API for accessing the

x86 hardware virtualization extensions [223]. Since KVM was only a Kernel subsystem,

the developers released a fork of QEMU10 as the userspace counterpart of KVM, so the

combination of QEMU+KVM provided a full virtual machine implementation, including

virtual devices [448, pp.128-129]. Eventually, KVM support was merged into mainline

QEMU [257].

8Partially inspired by earlier work, involving some of the same authors, on resource management in
the Nemesis operating system [39].

9The EC2 beta was launched in 2006, but when I presented at the Amazon Developers Conference in
2005, they were already working on it.

10Which was previously only an emulator [44].
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2.6.6 Hyper-V

In 2008, Microsoft released a beta of Hyper-V [210] for Windows Server. It was built on

top of the x86 hardware virtualization extensions, and for some virtual devices offered

a choice between slower emulation and faster paravirtualization if the guest operating

system installed the “Enlightened I/O” extensions. Like Xen’s Dom0, Hyper-V granted

special privileges to one guest, called the “parent partition”, which hosted the virtual

devices and handled requests from the other guests.

In 2010, Bolte et al. [56] incorporated support for Hyper-V into libvirt, so it could

be managed through a standardized interface, together with Xen, QEMU+KVM, and

VMware ESX.

2.6.7 Trade-offs

Denali and Xen both used paravirtualization techniques, sacrificing portability to gain

performance, but their goals for scale were completely different: Denali considered 10,000

virtual machines11 to be a good result [459]—achieved through a combination of lightweight

guests and a minimal host—while Xen argued that 100 virtual machines running full

operating systems12 was a more reasonable target [40, p.165, 175]. To some extent, Denali

was more in line with modern container implementations than with the virtual machine

implementations of its day. Xen has shifted their estimation of required scale upward

over the years, but still exhibits a tolerance for unnecessary performance degradation. For

example, Manco et al. [275] demonstrated that a few small internal changes to the way

Xen stores metadata and creates virtual devices improved virtual machine instantiation

time by an order of magnitude—a result 50-200 times faster than Docker’s container

instantiation—however those patches are unlikely to ever make it into mainline Xen.

Xen and KVM have a reputation for sacrificing performance to gain security, however

several independent lines of research have raised questions as to whether those security

gains are real or imagined. Perez-Botero et al. [328] analyzed security vulnerabilities

in Xen and KVM between 2008-2012, categorizing them by source, vector, and target,

and observed that the most common vector of attack was device emulation (Xen 34%,

KVM 40%), the majority were triggered from within the virtual machine guest (Xen 71%,

KVM 66%), and the majority successfully targeted the hypervisor’s Ring -1 privileges or

slightly less privileged control over Dom0 or the host operating system (Xen 80%, KVM

76%). Chandramouli et al. [83] built on the work of Perez-Botero et al. [328], moving

toward a more general framework for forensic analysis of vulnerabilities in virtual machine

implementations. Ishiguro and Kono [200] evaluated vulnerabilities in Xen and KVM

11On a 1.7GHz Pentium 4 with 1GB RAM.
12On a 2.4GHz dual-core Xeon with 2GB RAM.
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related to instruction emulation between 2009-2017. They demonstrated that a prototype

“instruction firewall” on KVM—which denies emulation of all instructions except the small

subset deemed legitimate in the current execution context—could have defended against

the known instruction emulation vulnerabilities, however the patches are unlikely to ever

make it into mainline KVM.

Szefer et al. [412] demonstrated in the NoHype implementation (based on Xen) that

eliminating the hypervisor and running virtual machines with more direct access to the

hardware improved security by reducing the attack surface and removing virtual machine

exit events as potential attack vectors. However, the approach involved a performance

trade-off in resource utilization that was not viable for most real deployments: it pre-

allocated processor cores, memory, and I/O devices dedicated to specific virtual machines,

rather than allowing for oversubscription and dynamic allocation in response to load.

One persistent argument in favor of virtual machines has been that virtual machine

implementations have fewer lines of code than a kernel or host operating system, and are

therefore easier to code-review and secure [64, 149, 275, 325, 383], which is the classic

trade-off of minimizing complexity to gain security. However, less code offers only a vague

potential for security, and even that potential becomes questionable as modern virtual

machine implementations have grown larger and more complex [96, 325, 467, 60].

Recent work on virtual machines—such as ukvm [465], LightVM [275], and Kata

Containers (formerly Intel Clear Containers) [212]—has shifted back toward an emphasis

on improving performance. However, this work appears to be founded on the assumption

that the virtual machine implementations under discussion are adequately secure, and

need only improve performance, which is a dubious assumption at best.

Two notable departures from this complacent attitude to security are Google’s crosvm

[164] and Amazon’s Firecracker [16], which aim to improve both performance and security,

by replacing QEMU with a radically smaller and simpler userspace component for KVM,

and by choosing Rust as the implementation language for memory safety.13 Firecracker

started as a fork of crosvm, but the two projects are collaborating on generalizing the

divergence into a set of Rust libraries they can share.

2.6.8 Decline

Toward the end of the 2000s, the enthusiasm for virtual machines gave way to a growing

skepticism. Garfinkel et al. [148] demonstrated that virtual machine environments could

reliably be detected on close inspection, reviving the long-running tension between the

ideals of strong isolation in virtual machines, and the reality of actual implementations.

13The memory safety features of Rust do not address the security vulnerabilities discussed in Sec-
tion 3, but can eliminate another common class of memory access vulnerabilities, such as buffer over-
flows/underflows and use-after-free. Szekeres et al. [413] provide a systematic account of such vulnerabilities
and their impact in the C/C++ programming languages.
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Buzen and Gagliardi [69] commented on the ideals in the early 1970s, “Since a privileged

software nucleus has, in principle, no way of determining whether it is running on a virtual

or a real machine, it has no way of spying on or altering any other virtual machine that

may be coexisting with it in the same system.” but in the same paper acknowledged, “In

practice no virtual machine is completely equivalent to its real machine counterpart.”

In 2010, Bratus et al. [60] criticized the disproportionate focus of systems security

research on virtual machines and the resulting neglect of other potentially superior ap-

proaches to system security. Vasudevan et al. [437] outlined a set of requirements for

protecting the integrity of virtual machines implemented on x86 with hardware virtual-

ization support, and evaluated all existing implementations as “unsuitable for use with

highly sensitive applications” [437, p.141]. Colp et al. [96] observed that multitenant

environments presented new risks for virtual machine implementations, because they

required stronger isolation between guests sharing the same host than was necessary when

a single tenant owned the entire physical machine.

Virtual machines such as Xen, QEMU+KVM, Hyper-V, and VMware are still in active

use today, but in recent years they have ceded their reputation as the leading technology

for cloud deployments to containers.

2.7 Modern containers

The collection of technologies that make up modern container implementations started

coming together years before anyone used the term “container”. The two decade span

surrounding the development of containers corresponded to a major shift in the way

information about technological advances was broadcast and consumed. Exploring the

socio-economic factors driving this shift is outside the scope of this survey, however, it

is worth noting that the academic literature on more recent projects such as Docker and

Kubernetes is largely written by outsiders providing external commentary, rather than by

the primary developers of the technologies. As a result, recent academic publications on

containers tend to lack the depth of perspective and insight that was common to earlier

publications on virtual machines, capabilities, and security in the Linux Kernel. The

dialog driving innovation and improvements to the technology has not disappeared, but it

has moved away from the academic literature and into other communication channels.

2.7.1 POSIX capabilities

In the mid-1990s, the security working group of the POSIX standards project began drafting

an extension to the POSIX.1 standard, called POSIX 1003.1e [337, 123, 172], which added

a feature called “capabilities”. The implementation details of POSIX capabilities were

entirely different than the early capability systems [452, p.97], but had similarities on
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a conceptual level: POSIX capabilities were a set of flags associated with a process or

file, which determined whether a process was permitted to perform certain actions; a

process could exec a subprocess with a subset of its own capabilities; and the specification

attempted to support the principle of least privilege [337]. However, the POSIX capabilities

did not adopt the concepts of small access domains and no-privilege defaults, which were

crucial elements of secure isolation in the early capability systems [110]. The POSIX.1e

draft was withdrawn from the process in 1998 and never formally adopted as a standard

[172, p.259], but it formed the basis of the capabilities feature added to the Linux Kernel

in 1999 (release 2.2) [73, 276].

2.7.2 Namespaces and resource controls

A second important strand in the evolution of modern container implementations was the

isolation of processes via namespaces and resource usage controls. In 2000, FreeBSD added

Jails [209], which isolated filesystem namespaces (using chroot), but also isolated processes

and network resources, in such a way that a process might be granted root privileges

inside the jail, but blocked from performing operations that would affect anything outside

the jail. In 2001, Linux VServer [396] patched the Linux Kernel to add resource usage

limits and isolation for filesystems, network addresses, and memory. Around the same

time, Virtuozzo (later released as OpenVZ) [192, 280] also patched the Linux Kernel

to add resource usage limits and isolation for filesystems, processes, users, devices, and

interprocess communication (IPC). In 2003, Nagar et al. [299] proposed a framework

for resource usage control and metering called Class-based Kernel Resource Management

(CKRM), and later released it as a set of patches to the Linux Kernel.

In 2002, the Linux Kernel (release 2.4.19) introduced a filesystem namespaces feature

[218].14 In 2006, Biederman [51] proposed expanding the idea of namespace isolation in

the Linux Kernel beyond the filesystem to process IDs, IPC, the network stack, and user

IDs. The Kernel developers accepted the idea, and the patches to implement the features

landed in the Kernel between 2006 and 2013 (releases 2.6.19 to 3.8) [218]. The last set

of patches to be completed was user namespaces, which allow an unprivileged user to

create a namespace and grant a process full privileges for operations inside that namespace,

while granting it no privileges for operations outside that namespace [430]. The way user

namespaces are nested bears a resemblance to Dennis and Van Horn’s [112] capabilities,

where processes created more restricted subprocesses.

In 2004, Solaris added Zones [334] (sometimes also called Solaris Containers), which

isolated processes into groups that could only observe or signal other processes in the

same group, associated each zone with an isolated filesystem namespace, and set limits

for shared resource consumption (initially only CPU). Between 2006 and 2007, Rohit

14Partially inspired by the namespaces feature of Plan 9 [330] from Bell Labs.
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Seth and Paul Menage worked on a patch for the Linux Kernel for a feature they called

“process containers” [105]—later renamed to cgroups for “control groups”—which provided

resource limiting, prioritization, accounting,15 and control features for processes.

2.7.3 Access control and system call filtering

A third set of relevant features in the Linux Kernel evolved around secure isolation of

processes through restricted access to system calls. In 2000, Cowan et al. [107] released

SubDomain, a Linux Kernel module which added access control checks to a limited set of

system calls related to executing processes. In 2001, Loscocco and Smalley [265] published

an architectural description of SELinux, which implemented mandatory access control

(MAC) for the Linux Kernel. The access control architecture of SELinux was received

positively, but the implementation was rejected for being too tightly coupled with the

kernel. So, in 2002, Wright et al. [474] proposed the Linux Security Modules (LSM)

framework as a more general approach to extensible security in the Linux Kernel, which

made it possible for security policies to be loaded as Kernel modules. LSM is not an

access control mechanism, but it provides a set of hooks where other security extensions

such as SELinux or AppArmor can insert access control checks. LSM and a modified

version of SELinux based on LSM were both merged into the mainline Linux Kernel in

2003. In 2004-2005, SubDomain was rewritten to use LSM, and rebranded under the name

AppArmor.

In 2005, Andrea Arcangeli [26] released a set of patches to the Linux Kernel called

seccomp for “secure computing”, which restricted a process so that it could only run an

extremely limited set of system calls to exit/return or interact with already open filehandles,

and terminated a process attempting to run any other system calls. The patches were

merged into the mainline Kernel later that year. However, the features of the original

seccomp were inadequate and rarely used, and over the years multiple proposals to improve

seccomp were unsuccessful. Then, in 2012, Will Drewry [119] extended seccomp to allow

filters for system calls to be dynamically defined using Berkeley Packet Filter (BPF) rules,

which provided enough flexibility to make seccomp useful as an isolation technique. In

2013, Krude and Meyer [233] implemented a framework for isolating untrusted workloads

on multitenant infrastructures using seccomp system call filter policies written in BPF.

2.7.4 Cluster management

A fourth relevant strand of technology evolved around resource sharing in large-scale

cluster management. In 2001, Lottiaux and Morin [266] used the term “container” for a

form of shared, distributed memory which provided the illusion that multiple nodes in an

15Similar in idea, though not in implementation, to Xen’s resource usage accounting.
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SMP cluster were sharing kernel resources, including memory, disk, and network. In 2002,

the Zap project [316] used the term “pod”16 for a group of processes sharing a private

namespace, which had an isolated view of system resources such as process identifiers and

network addresses. These pods were self-contained, so they could be migrated as a unit

between physical machines. In the mid-2000s, Google deployed a cluster management

solution called Borg [438, 68] into production, to orchestrate the deployment of their

vast suite of web applications and services. While the code for Borg has never been seen

outside Google, it was the direct inspiration for the Kubernetes project a decade later [438,

p.18:13-14]—the Borg alloc became the Kubernetes pod, Borglets became Kubelets, and

tasks gave way to containers. Burns et al. [68, p.70] explained that improving performance

through resource utilization was one of the primary motivations for Borg.

2.7.5 Combined features

The strength of modern containers is not in any one feature, but in the combination of

multiple features for resource control and isolation. In 2008, Linux Containers (LXC) [258]

combined cgroups, namespaces, and capabilities from the Linux Kernel into a tool for

building and launching low-level system containers. Miller and Chen [290] demonstrated

that filesystem isolation between LXC containers could be improved by applying SELinux

policies. Xavier et al. [480] and Raho et al. [344] contrasted LXC’s approach to isolation

and resource control using standard Linux Kernel features such as cgroups and filesystem,

process, IPC, and network namespaces, versus the approaches taken by Linux VServer

and OpenVZ using custom patches to the Linux Kernel to provide similar features.17

Docker [288] launched in 2013 as a container management platform built on LXC.

In 2014, Docker replaced LXC with libcontainer, its own implementation for creating

containers, which also used Linux Kernel namespaces, cgroups, and capabilities [195, 344].

Morabito et al. [295] compared the performance of LXC and Docker after the transition

to libcontainer, and found them to be roughly equivalent on CPU performance, disk I/O,

and network I/O, however LXC performed 30% better on random writes, which may have

been related to Docker’s use of a union file system. Raho et al. [344] contrasted the

implementations of Docker, QEMU+KVM, and Xen on the ARM hardware architecture.

Mattetti et al. [279] experimented with dynamically generating AppArmor rules for Docker

containers based on the application workload they contained. Catuogno and Galdi [77]

performed a case study of Docker using two different models for security assessment. They

built on the work of Reshetova et al. [351] in classifying vulnerabilities by the goal of the

16Given as an acronym for a PrOcess Domain abstraction.
17In the 2000s, many VM or container implementations relied on custom patches to the Linux Kernel,

including VServer, OpenVZ, Xen, VMware, and MetaCluster (an earlier version of LXC). The practice was
contentious, as multiple incompatible patch sets competed to be merged upstream [103], and ultimately
none were ever accepted.
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attack: denial of service, container compromise, or privilege escalation.

In 2015, Docker split the container runtime out into a separate project, runc, in support

of a vendor-neutral container runtime specification maintained by the Open Container

Initiative (OCI). Hykes [196] highlighted that SELinux, AppArmor, and seccomp were all

standard supported features in runc. Koller and Williams [229] observed that runc was

more minimal than the Docker runtime, while still using the same isolation mechanisms

from the Linux Kernel, such as namespaces and cgroups. In 2016, Docker and CoreOS

merged their container image formats into a vendor-neutral container image format

specification, also at OCI [57].

2.7.6 Orchestration

In 2014, Docker began working on Swarm, described as a clustering system for Docker,

which they ultimately released late in 2015 [269]. Also in 2014, Google began developing

Kubernetes, an orchestration tool for deploying and managing the lifecycle of containers,

which they released in the middle of 2015 [61]. Also in 2014, Canonical began developing

LXD, a container orchestration tool for LXC containers, which they released in 2016 [167].

Verma et al. [438] outlined the design goals behind Kubernetes, in the context of

lessons learned from Borg. Syed and Fernandez [410, 409] pointed out that the performance

advantages of the higher-level container orchestration tools, such as Kubernetes and Docker

Swarm, were primarily a matter of improving resource utilization. They also contrasted

the portability advantages of managing containers across multiple physical host machines

against the increased complexity required for the orchestration tools to advance beyond

managing a single machine host. Souppaya et al. [398] systematically reviewed increased

security risks and mitigation techniques for container orchestration tools. Bila et al. [52]

extended Kubernetes with a vulnerability scanning service and network quarantine for

containers.

2.7.7 Trade-offs

Containers have a reputation for substantially better performance than virtual machines,

however that reputation may not be deserved. In 2015, Felter et al. [136] measured the

performance of Docker against QEMU+KVM and determined that neither had significant

overhead on CPU and memory usage, but that KVM had a 40% higher overhead in

I/O. They observed that the overhead was primarily due to extra cycles on each I/O

operation, so the impact could be mitigated for some applications by batching multiple

small I/O operations into fewer large I/O operations. In 2017, Kovács [232] compared

CPU execution time and network throughput between Docker, LXC, Singularity, KVM,

and bare metal and determined that there was no significant variation between them,
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as long as Docker and LXC were running in host networking mode, but in Linux bridge

mode Docker and LXC exhibited high retransmission rates that negatively impacted their

throughput compared to the others. Manco et al. [275] demonstrated that Xen virtual

machine instantiation could be 50-200 times faster than Docker container instantiation,

with a few low-level modifications to Xen’s control stack.

Secure isolation technologies have been the core of modern container implementations

from the beginning, so it would be reasonable to expect that containers would provide

a strong form of isolation. However, early implementations of containers were prone to

preventable security vulnerabilities, which may indicate that security was not a primary de-

sign consideration, at least not initially. Combe et al. [97] analyzed security vulnerabilities

in Docker and libcontainer between 2014-2015, and determined that the majority were

related to filesystem isolation, which led to privilege escalation when Docker was run as the

root user. They also suggested that some of Docker’s sane default configurations for the

isolation features of the Linux Kernel could be easily switched to less secure configurations

through standard options to the docker command-line tool or the Docker daemon, and

so might be prone to user error. Martin et al. [277] surveyed vulnerabilities in Docker

images, libcontainer, the Docker daemon, and orchestration tools, as well as the unique

security challenges of containers in multitenant infrastructures. In addition to security

patches for specific privilege escalation vulnerabilities, there has been ongoing work to

integrate support for user namespaces into Docker and Kubernetes,18 so they can run as a

non-root user and limit the scope of damage from privilege escalation. However, the user

namespaces feature itself has had a series of vulnerabilities19 related to interfaces in the

Kernel that were written with the expectation of being restricted to the root user, but are

now exposed to unprivileged users.

One significant difference between virtual machine implementations and container

implementations is that containers share a kernel with the host operating system, so

efforts to secure the kernel greatly impact the security of containers. Reshetova et al.

[351] considered the set of secure isolation features offered by the Linux Kernel as of

2014 (in the context of LXC), and judged them to have caught up with the features of

FreeBSD Jails and Solaris Zones, but highlighted some areas for improvement in support

of containers. These improvements included integrating Mandatory Access Control (MAC)

into the Kernel as “security namespaces”; providing a way to lock down device hotplug

features for containers; and extending cgroups to support all resource management features

supported by rlimits. Gao et al. [147] discussed the risks of certain types of information

that containers can currently access from the Linux Kernel via procfs and sysfs—which

can be exploited to detect co-resident containers and precisely target power consumption

18Such as Suda and Scrivano [407] and Suda [406].
19Such as CVE-2018-6559, CVE-2018-18955, CVE-2014-9717, and CVE-2014-4014.
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spikes to overload servers—and prototyped a power-based namespace to partition the

information for containers.

Some more recent approaches to secure isolation for containers have been inspired by

virtual machine implementations. Kata Containers (formerly Intel Clear Containers) [212]

wraps each Docker container or Kubernetes pod in a QEMU+KVM virtual machine [213].

They realized that QEMU was not ideal for the purpose—since it introduces a substantial

performance hit compared to running bare containers, and the majority of the code relates

to emulation which is not useful for wrapping containers—so a group at Intel started

working on a stripped-down version of QEMU called NEMU [304]. X-Containers [385]

used Xen’s paravirtualization features to improve isolation between containers and the

host, but made an unfortunate trade-off of removing isolation between containers running

on the same host. Nabla Containers [298] and gVisor [166] have both taken an approach

of improving isolation by heavily filtering system calls from containers to the host kernel,

which is a common technique for modern virtual machines.

Bratus et al. [60] noted that the “self-protection” techniques employed by container

implementations are a necessary path for future research, since even virtual machines

depend on those techniques to protect themselves. Hosseinzadeh et al. [186] explored the

possibility that container implementations might directly adapt earlier work (primarily

Berger et al. [45]) for virtual machine implementations to integrate a Trusted Platform

Module (TPM) as a virtual device.

Container implementations have a potential advantage over virtual machine implemen-

tations in addressing the problem of secure isolation over the long-term, not because any

existing implementations are inherently superior, but because containers take a modular

approach to implementation that permits them to be more flexible over time and across

different underlying software20 and hardware architectures, as new ideas for secure isolation

evolve.

20Such as pledge and unveil on OpenBSD versus capabilities and namespaces on Linux.
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Chapter 3

Transient execution vulnerabilities

Early in 2018, two papers by Kocher et al. [225] and Lipp et al. [261] drew attention to a

new class of security vulnerabilities related to both speculative execution and out-of-order

execution, collectively described as transient execution. The specific vulnerabilities they

described—Spectre and Meltdown—use transient execution effects to amplify the severity

and ease of exploiting previously known microarchitectural side-channel attacks, however

subsequent work has demonstrated that transient execution effects can also be used to

amplify the effects of other attacks, such as microarchitectural fault-injection attacks like

Rowhammer. The broad class of transient execution vulnerabilities upend traditional

notions of secure isolation employed by virtual machines and containers.

The features that the transient execution vulnerabilities exploit are common to modern

major hardware architectures, such as x86 and ARM, and had already begun to be

replicated in RISC-V implementations before the vulnerabilities were reported. While

transient execution vulnerabilities may be found on desktop, mobile, embedded, or server

hardware, the deployment contexts of virtual machines and containers on server hardware

have unique implications on the ease of exploit, scope of impact, and choice of mitigations

for the vulnerabilities, as we will discuss in Chapters 4 through 6. It has been argued

that these vulnerabilities are not bugs in the traditional sense, because the transient

execution features are functioning as they were designed, however they are flaws in

the microarchitecture implementations of both speculative execution and out-of-order

pipelines as optimizations to improve instruction-level parallelism. Today, it is possible to

mitigate Meltdown-type vulnerabilities in the microarchitecture design with reasonably

low performance penalties. Among the major server hardware vendors, AMD was never

vulnerable to the initial variants of Meltdown [399, 395], and so far it appears that only

ARM has made the effort to formally prove that certain generations of their hardware

are not vulnerable to Meltdown [270]. Spectre-type vulerabilities have proven to be more

difficult to mitigate, and the products currently shipped by server hardware vendors and

actively deployed around the world offer no more than meager protections—limiting some of
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the damage caused by some variants, while introducing prohibitive performance penalties—

and do not resolve the inherent logic flaws of the microarchitecture implementations, which

are the true root cause of the entire class of vulnerabilities.

We can never know what might have happened if the security trade-offs of transient

execution had been fully considered at the same time the performance advantages were

discovered—whether the transient execution vulnerabilities might have been exposed and

resolved earlier, or whether modern computer microarchitectures might have evolved down

a slightly different path. If the history of virtual machines and containers has taught us

anything, it is that we have the ability and responsibility to re-consider security trade-offs

over time, and make better choices for the future. While it may not be fair to judge past

work by lessons we learned later, it will be fair to judge future work on whether it applies

those lessons or ignores them.

3.1 Precursors to Spectre and Meltdown

While Spectre, Meltdown, and more broadly the entire concept of software-induced transient

execution vulnerabilities are relatively new in the field of security research, in essence they

are no more than a small step of evolution beyond 70 years of hardware security research

on covert channels, side-channel attacks, and fault-injection attacks.

3.1.1 Covert channels and side channels

In 1973, Lampson published “A note on the confinement problem” [238], an early but

influential work on the challenges of preventing information leakage between isolated

processes running on the same kernel. In that work he defined a covert channel as a

hardware resource used to bypass isolation mechanisms by transferring information, where

the attack succeeds because the hardware resource was never intended or recognized as a

communication channel by the system’s designers, so they never bothered to protect it

against undesirable information leaks.

Later work uses the term side channel in combination with covert channel, but it

is important to recognize that although the two terms sometimes appear to be used

interchangeably in the literature—and the two kinds of attacks use some of the same

hardware resources as channels—covert channels and side channels are not the same thing.

In a covert-channel attack, the communication of leaked information is intentional, and

the sender and receiver are both malicious (sometimes called “trojan” and “spy”). In a

side-channel attack, the communication of leaked information is unintentional, and the

sender is a victim, while the receiver is a malicious attacker [152, 411, 338].

The hardware resources that Lampson [238] envisioned being used as covert chan-

nels were no more complex than shared memory, a file on the file system, interprocess
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communication, or request/response metadata, but subsequent work over the decades

has explored increasingly exotic channels for leaking information. Conceptually, modern

side-channel attacks can trace their roots back to acoustic attacks in the mid-1950s, when

recordings of the clicking sounds made by mechanical cryptographic machines captured

enough information for attackers to break the cipher used in the encryption [50, 145].1

However, there is a world of difference between the 1950s and today in the sophistication of

the machines being attacked, the quality and quantity of information being gathered, and

the elaborate nature of analysis techniques applied to extract secrets from that information.

3.1.2 Physical side-channel attacks

The first rounds of research into side channels focused on physical side-channel attacks,

exploiting indirect physical information to extract secrets. Because physical side-channel

attacks require physical access or proximity to the machine, they are more difficult to

perform, and have historically been regarded as less risky and only worth mitigating on

security-critical components such as cryptographic hardware. The most common kinds of

physical information gathered in these attacks, which still remain relevant today, are:

• Timing Analysis: measures execution time of operations (such as encryption/decryption)

for different inputs, and infers secret information from variations in timing. This

technique is often combined with other physical side-channel attacks. In the mid-

1990s, Kocher [226] advanced this technique—and the entire research field of physical

side-channel attacks—to a point of being able to extract entire secret keys from a

decryption process.

• Power Analysis: measures power usage related to operations (such as encryp-

tion/decryption) for different inputs/outputs, and infers secret information from

variations in power consumption. In the late 1990s, Kocher et al. [224] made similar

advances in physical side-channel attack techniques making use of power analysis.

• Electromagnetic Analysis: measures electromagnetic waves produced by current flow

over the device, and infers secret information from variations in electromagnetic

signals. In the early 2000s, Quisquater and Samyde [340] built on Kocher’s earlier

work on timing analysis and power analysis to extract secret keys from smart cards

using only electromagnetic analysis.

1Peter Wright of MI5 [475, pp. 81-86] described the attack—later codenamed ENGULF—in Chapter 7
of his autobiography. In 1956, with the help of the London Post Office, he bugged a telephone at the
Egyptian Embassy in London installed next to their Hagelin cipher machine, with a hard line to GCHQ
so they could listen in each morning as the cipher clerk entered the mechanical encryption settings for
the day. Analyzing the recorded sounds with an oscilloscope yielded enough information about how the
machine was configured each day that they were able to crack the cipher.
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• Fault Analysis: physically tampers with voltage levels, clock signal, or other hardware

components to trigger a fault in the device (e.g. disturb a few memory or register

bits), and infers secret information based on variations in the output of faulty

operations. This is actually a combination of two techniques, it starts with a physical

fault-injection attack (violating integrity), then uses the successful results of the

fault-injection attack as a source of information for a physical side-channel attack

(violating confidentiality). In the mid-1990s, Anderson and Kuhn [22] made a first

brief mention of clock and power glitching techniques in the context of smart card

attacks, which Skorobogatov and Anderson [391] later explicitly connected with

Kocher’s work on physical side-channel attacks.

3.1.3 Microarchitecture side-channel attacks

More recent rounds of research into side-channel attacks have expanded the range of infor-

mation sources considered. In contrast to physical side-channel attacks, microarchitecture

side-channel attacks exploit indirect microarchitectural sources of information to extract

secrets, do not require physical access to the machine, and may even be software-induced,

so they are easier to perform and of greater concern for general-purpose hardware. The

analysis techniques and objectives of microarchitecture side-channel attacks are similar to

earlier work on physical side-channel attacks, though the sources of information used are

more varied and also inspired by that earlier work.

As a common example of microarchitecture side-channel attack techniques, cache-timing

analysis measures the time required to load a data value from cache, and infers secret

information from variations in timing. An attacker establishes a pre-defined cache state,

allows the victim to perform an operation, then observes cache state changes. Although

Kocher [226] briefly mentioned the influence cache-timing effects have on physical timing

analysis in the mid-1990s, the idea of microarchitecture cache-timing side-channel attacks

was not fully developed until the mid-2000s by Bernstein [47] and Percival [327], who

extracted entire secret keys using only cache-timing information. Cache-timing side-channel

attacks have been a prolific area of security research for nearly two decades, with variants

differentiated by characteristics like the specific cache targeted (for an L1 attack to succeed,

the attacker and victim have to share a core, while an LLC attack can succeed across cores),

or the specific attacker actions to prepare or observe the cache, such as Prime+Probe [317,

264], Evict+Time [317], Flush+Reload [485], Flush+Flush [174], Stream+Reload [454], or

Write+Write [418].

Caches are not the only targets for microarchitecture side-channel attacks, many other

microarchitectural sources of information have been successfully exploited to extract secrets,

such as:
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• Translation Lookaside Buffer (TLB): Wang et al. [445], TLBleed [169] successfully

bypasses cache isolation

• Page tables: Van Bulck [432], Wang et al. [445]

• DRAM: Pessl [329], Wang et al. [445]

• Prefetchers: Szefer [411], Shin et al. [387], Vicarte et al. [366], AfterImage [88]

• Branch Target Buffer (BTB): Branch Prediction Analysis (BPA) [4] and Simple

Branch Prediction Analysis (SBPA) [3], Evtyushkin et al. [128], Lee et al. [247], Yu

et al. [487]

• Conditional branch predictor, Pattern History Table (PHT): BranchScope [129],

Bluethunder [193]

• Return Stack Buffer (RSB): Hyper-Channel [67]

• FPU timing: Andrysco et al. [23]

• SMT port contention: Wang and Lee [447], Aciicmez and Seifert [5], Aldaya et al.

[15]

• GPU timing: Xu et al. [482]

• CPU frequency: CLKscrew [414]

• Power analysis: Hertzbleed [446], Platypus [263], Barenghi and Pelosi [38]

• Memory controller scheduler: Semal et al. [382]

• Cache way predictor: Take A Way [260]

• Instruction cache: Aciiçmez [1], Aciiçmez et al. [2]

• Micro-op cache: Ren et al. [350]

• Performance counters: PMU-Leaker [339]

Spectre and Meltdown build on this history of research into side-channel attacks.

They make use of microarchitecture side-channel attack techniques, but are often falsely

categorized simply as timing analysis techniques, specifically as cache-timing side-channel

attacks [71]. It is more accurate to recognize that Spectre and Meltdown are both primarily

fault analysis techniques, because they both begin with a fault-injection attack (violating

integrity)—Meltdown by triggering an exception, and Spectre by inserting false entries

into branch prediction and other prediction-related microarchitectural state—and then go

on to use the successful results of the microarchitecture fault-injection attack as a source

of information for a microarchitecture side-channel attack (violating confidentiality).
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3.2 Threat model for speculative execution

A collection of papers in the early 1970s, including Tjaden and Flynn [421], Flynn [140],

Flynn and Podvin [141], and Riseman and Foster [353], explored the logical limits of

instruction-level parallelism for the hardware of the time, identifying branches and memory

loads as significant obstacles. Within a decade, the tone of publications shifted from

assessing these obstacles as insurmountable, to assessing them as straightforwardly solved

by combining several techniques that remain in common use today, particularly the

speculative techniques of branch prediction and hardware prefetching. Other techniques

for instruction-level parallelism developed around the same time are commonly combined

with speculation today, but are not inherently speculative—such as multiple instruction

issue, register renaming, dynamic pipeline scheduling, and out-of-order execution.

Lee and Smith [245] and McFarling and Hennessy [283] captured historical perspectives

on branch prediction from the point of view of the mid-1980s. Both surveyed the state

of the art in branch prediction techniques at the time—such as dynamic prediction and

branch target buffers—and critically reviewed previous techniques to speed up conditional

branches without speculation—such as delayed branches, look-ahead resolution, branch

target prefetching, and multiple instruction streams. Smith [393, 392] captured similar

early perspectives on hardware prefetching in the late 1970s, surveying the impact of

memory access latency for both instruction fetching and memory load instructions, the

limitations of existing implementations of instruction and data prefetching at the time, and

the potential for future performance improvements. One noteworthy characteristic shared

by these papers—and by much of the substantial work on speculative techniques in the

decades that followed—was a focus on metrics of performance with little or no consideration

given to metrics of security. In all fairness to the hardware designers of the time, the

groundbreaking work on speculation was completed decades before microarchitecture side-

channel attacks were considered as a possibility. So, their failure was not a willful ignorance

of known threats, it was a naive complacency and unsophisticated design methodology that

embraced new features without adequate consideration of the system-wide implications.

Modern hardware designers have no such excuse.

Some of the earliest work on microarchitecture side-channel attacks in the mid-2000s

by Percival [327] explored the risks inherent in combining speculative execution with

simultaneous multithreading, dynamic pipeline scheduling, multilevel memory caches, and

hardware prefetching, but did not recognize the full extent of the security impact.
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3.2.1 Speculative branch instructions

Consider a superscalar microarchitecture that is roughly analogous to a modern x86 pro-

cessor.2 Like a modern x86, the pipelining approach in this hypothetical microarchitecture

uses both dynamic multiple issue and dynamic pipeline scheduling, with out-of-order

execution. Figure 3.1 illustrates the essential stages of such a microarchitecture: instruc-

tions are fetched, placed in a reorder buffer, queued to reservation stations, dispatched

to functional units3 for execution, and then the commit unit retires instructions, either

writing or discarding their results. This illustration abstracts away some details of specific

microarchitectures to focus on common elements. For example, microarchitectures for the

complex x86 instruction set typically decode the fetched instructions into micro-operations,

to simplify the issue, execution, and commit stages, but this extra decoding step is rarely

added to microarchitectures for the RISC-V ISA,4 which is fundamentally designed to be

more like the simple micro-operations of x86.

instruction fetch unit

reorder buffer

functional
unit

functional
unit

functional
unit

functional
unit

reservation stations

commit unit

In-order issue

Out-of-order execute

In-order commit

Figure 3.1: Essential components of a dynamically scheduled pipeline. Adapted from
Patterson and Hennessy [322], Figure 4.69, p. 330.

First, consider how speculative branch instructions flow through these essential compo-

nents of a dynamically scheduled pipeline.

3.2.1.1 Fetch

Based on a recent history of executed branches, instruction fetching uses a branch target

buffer (BTB) to predict the destination that is most likely for each direct or indirect

branch, or a pattern history table (PHT) to predict the whether a conditional branch

is likely to be taken or not. Various microarchitectures may also use a branch history

buffer (BHB), branch history table (BHT), or a return stack buffer (RSB) in predicting

return addresses. Rather than waiting for the result of calculating the branch or return

2For a specific example, chapter 4, section 11 of Patterson and Hennessy [322] offers a straightforward
overview of an x86 microarchitecture, based on an Intel Core i7 920.

3Superscalar processors have multiples of each kind of functional unit, including arithmetic logic units
(ALU), floating-point units (FPU), load-store units (LSU), and more.

4The BOOM [493] RISC-V core does decode some instructions into micro-operations, as an optimization
for a special case of data-dependent branches.
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destination or evaluating the branch instruction condition, the instruction fetch unit will

continue to fetch instructions along the predicted branch path.

3.2.1.2 Issue

Instruction issue places an entry for each instruction into a reorder buffer, in the order

the instructions were fetched. This stage also performs register renaming, mapping the

architectural registers (the ones visible in the ISA) onto a larger set of physical registers.

Register renaming makes it possible for a sequence of speculatively executed instructions

(or unrolled loop instructions) to effectively operate on a temporary virtual register set,

which may be discarded if the speculatively predicted branch is later determined to be

incorrect. Finally, instruction issue sends instructions to the reservation stations, either

copying the operands immediately (if they are available) or copying them later (if the

operands depend on the results of other instructions).

3.2.1.3 Execute

The reservation stations queue up instructions and their operands for multiple functional

units. The reservation stations buffer each instruction until all its operands are ready

and the necessary functional unit is available. The reservation stations dispatch multiple

instructions in parallel to multiple functional units in each clock cycle (known as “multiple

issue”). The functional unit calculates the result of the operation and sends it to the

reorder buffer, as well as to any other reservation stations whose operands depend on the

result. Buffering in the reservation stations means that instructions may not be executed in

the order they were fetched (known as “out-of-order execution”), because the pipeline tries

to avoid hazards and stalls by reordering the instructions (known as “dynamic pipeline

scheduling”) while maintaining the data flow structure of the program.

3.2.1.4 Commit

The commit unit uses the instruction entry in the reorder buffer to hold the results of

the instruction execution until it determines that any speculated results were speculated

correctly, and then marks the instruction entry as complete. The commit unit processes

the reorder buffer in the order the instructions were fetched, so when the instruction at

the head of the reorder buffer is marked as complete, it will perform any pending register

writes or memory stores, and then remove the instruction entry from the reorder buffer.

Alternatively, if the commit unit determines that the speculation was incorrect, it will

discard the result in the reorder buffer, and remove the instruction entry. This approach

of preserving the instruction fetch order in the commit process, called “in-order commit”,

allows the out-of-order pipeline to preserve the appearance of operating like a simple
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in-order pipeline. The commit unit only stores results to memory after any speculatively

predicted branches that the store instruction depends on have been determined as correct.

3.2.1.5 Discussion

Figure 3.2: RISC-V BOOM microarchitecture. Reprinted from Zhao et al. [493], Figure 1.

A number of different real-world microarchitectures follow this general model of specula-

tive pipelining. For example, Figures 3.2, 3.3, and 3.4 are modern examples of superscalar,

speculative x86, ARM, and RISC-V microarchitectures, and though implementation details

differ, even a cursory examination reveals that they are all designed using the same funda-

mental pipeline components from Figure 3.1. The third generation of the Berkeley RISC-V

Out-of-Order Machine (BOOM) in Figure 3.2, shows instruction fetch near the top center

of the figure, branch predictor near the top left, reorder buffer near the center, feeding

into reservation stations labeled “Distributed Scheduler”, which feed into functional units

labeled “EUs”, and finally retirement/commit is annotated on the reorder buffer near

the center. The ARM Neoverse N1 microarchitecture in Figure 3.3,5 shows instruction

5The AWS Graviton processor custom-built for Amazon EC2 is based on the ARM Neoverse microar-
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Figure 3.3: ARM Neoverse N1 microarchitecture. Reprinted from Schor [373].

fetch near the top center of the figure, branch predictor at the top left, reorder buffer near

the center, feeding into reservation stations labled “Issue” and “Queue”, which feed into

functional units labeled “EUs”, and finally retirement/commit is annotated on the reorder

buffer near the center. The Intel Sunny Cove microarchitecture in Figure 3.4 is a single core

within Intel’s Ice Lake server processors,6 and shows instruction fetch near the top center

of the figure, branch predictor near the top left, reorder buffer near the center, with register

alias tables near the center left, feeding into reservation stations labeled “Scheduler”, which

feed into the functional units labeled “EUs”, and finally retirement/commit operates on

the reorder buffer near the center right.

The critical security risk in this speculative implementation of branch instructions—and

in any microarchitectures that follow a similar pattern—lies in the first component listed

above, when instruction fetching predicts a particular result for a conditional branch,

and then proceeds to speculatively fetch, issue, and execute instructions on that branch.

Spectre-type attacks use techniques to mistrain the branch prediction by feeding it false

history, thus “poisoning” the branch predictor state of the microarchitecture [72, pp. 4-6].

chitecture.
6The Ice Lake server processors are also branded as 10th generation Xeon processors, while the Ice

Lake client processors are also branded as 10th Generation Core i3, i5, and i7 processors.
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Figure 3.4: Intel Sunny Cove microarchitecture. Reprinted from Schor [374].

3.2.2 Speculative memory load instructions

As we observed in Section 3.2.1, speculative branch instructions are one microarchitectural

root cause of Spectre-type vulnerabilities, but another root cause is speculative memory

load instructions. Continuing to consider a superscalar microarchitecture that is roughly

analogous to a modern x86 processor, speculative memory load instructions flow through

the same essential components of a dynamically scheduled pipeline as speculative branch

instructions.

3.2.2.1 Fetch

Instruction fetching may encounter an ordinary memory load instruction inside a predicted

branch, in which case it will fetch (as well as issue and execute) that memory load

instruction in exactly the same way it speculatively fetches all other instructions on the

predicted branch.
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3.2.2.2 Issue

Instruction issue places an entry for each memory load instruction into the reorder buffer,

performs register renaming, and dispatches the instruction to the reservation stations, the

same as in Section 3.2.1.2.

3.2.2.3 Execute

Outside of any branch code path, another way that memory load instructions may be spec-

ulatively executed is through a memory dependence predictor that predicts which memory

loads do not have a Store To Load (STL) dependency on any prior store instructions, so a

memory load may be executed speculatively, before prior stores to the same address have

been completed.

The reservation stations buffer memory load instructions until their operands are ready

and the necessary functional unit (a load-store unit) is available. The functional unit

executes the memory load operation, and sends the result (the value loaded from memory)

to the instruction entry in the reorder buffer, and also to any other reservation stations

whose operands depend on the result. If the memory load was executed speculatively,

other instructions with a data dependency on the memory load may also be executed

speculatively.

3.2.2.4 Commit

The commit unit uses the instruction entry in the reorder buffer to hold the results of the

memory load instruction (the value loaded from memory), until it determines that the

speculated memory load was speculated correctly. If the commit unit determines that the

speculation was correct, it marks the instruction entry in the reorder buffer as complete,

performs any pending register writes or memory stores, and removes the instruction entry

from the reorder buffer.

If the memory load instruction was speculated because of branch prediction, the

determination of correctness is based on whether the branch path was predicted correctly,

and a misprediction will remove the instruction entry from the reorder buffer. If the

memory load instruction was speculated because of the memory dependence predictor, the

determination of correctness is based on whether the prediction that all prior stores were

complete was correct, and a misprediction will discard the result in the reorder buffer, but

will have to execute the memory load operation all over again to get the correct result,

and also re-execute any other instructions that had a data dependency on the result of

the memory load.
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3.2.2.5 Discussion

The critical security risk in this speculative implementation of memory load instructions,

and in any microarchitectures that use similar techniques, lies in the third component

listed above, when the load-store unit executes the memory load operation. In modern

architectures, a memory load operation is not a passive read directly from physical

memory, it is a complex operation with cascading side-effects through multiple levels of

memory cache, DRAM buffers, and translation lookaside buffers (TLB), and also has

the potential to trigger exceptions. Some Spectre-type attacks—notably, the speculative

store bypass variant reported by Horn [185]—use techniques to mistrain the memory

dependence predictor, so it incorrectly speculates a memory load operation, leaving behind

microarchitectural traces of a stale value that should have been overwritten by a prior

store, and then access the stale value through cache-based side-channels [72, p. 6].

3.3 Spectre

Spectre is a hardware security vulnerability first discovered in 2017, but not reported

publicly until January 2018, in the groundbreaking work by Kocher et al. [225]. Together

with Meltdown, Spectre is the first of a new class of vulnerabilities—known as transient

execution vulnerabilities—that exploit weaknesses in certain low-level microarchitectural

effects of out-of-order and speculative pipelines. While any out-of-order pipeline could be

vulnerable to Meltdown, only speculative pipelines can be vulnerable to Spectre. Spectre

is a fault analysis side-channel attack, it combines both fault-injection techniques to

manipulate the victim into a vulnerable state and side-channel techniques to convey

the exposed secrets to the attacker. The combination of the two techniques is what

makes this class of vulnerabilities so powerful. The fault-injection phase of a Spectre-type

attack mistrains a speculative predictor so it starts making false predictions. The victim

blindly accepts the false predictions and proceeds to execute with either wrong values or

wrong instructions, leaving a trail of microarchitectural state changes as it executes. In

theory, those microarchitectural state changes are architecturally invisible if the speculated

prediction proves to be false—the architectural changes are all cleaned away and the

pipeline is flushed leaving no visible effects7—so they are “transient” in the sense that

they only exist briefly before they disappear [72, 71]. But, during transient execution, the

microarchitectural state changes that the victim made as a result of false predictions are

microarchitecturally visible, so the attacker can access them through side channels. All

the side channels used as the transmission phase of Spectre-type attacks can be used as

stand-alone microarchitecture side-channel attacks, and as we discussed above in Section

3.1.3, some of those side channels have been known for decades. The uniquely interesting

7Some architectures are sloppier than others about cleaning up the side-effects speculation.
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thing about Spectre is the initial fault-injection preparation phase, which tricks the

victim into exposing its own secrets—the attacker manipulates the victim into executing

instructions or values it never would have done non-speculatively, so the victim creates

shared microarchitectural state it never would have created non-speculatively, specifically

so the attacker can access that shared microarchitectural state through microarchitecture

side-channels.

3.3.1 Characterizing the variants

The first few variants of Spectre published early in 2018 were novel, but also relatively simple.

After 6 years and hundreds of published papers, the landscape today is a combinatorial

explosion of variants and mitigations. Understanding the first few variants published

is not enough to make sense of the entire class of Spectre-type vulnerabilities, but far

too many hardware researchers and engineers make the mistake of stopping there. The

discouraging truth of Spectre is that potentially any speculative predictor could be used for

the fault-injection preparation phase, and potentially any microarchitectural state could be

used for the side-channel transmission phase. To compound the complexity, in the access

phase any instructions executed transiently by the victim as a result of the fault-injection

misprediction could take any action to leave transient traces in shared microarchitectural

state, serving as a gadget that exposes secrets so they become vulnerable to side-channel

transmission. All of those variations in the preparation, access, or transmission phases are

still called “Spectre”, because they all satisfy the fundamental definition of the technique—

as Kocher et al. [225] described it in the very first paper, “Spectre attacks involve inducing

a victim to speculatively perform operations that would not occur during correct program

execution and which leak the victim’s confidential information via a side channel to the

adversary.”

The primary way of categorizing Spectre-type variants, shown in Table 3.1, is by the

fault-injection attack vector used to trigger speculative execution in the preparation phase.

While the initial Spectre variants reported in 2018 used a branch, return, or memory

dependence predictor in the preparation phase, subsequent work on Spectre and other

transient execution vulnerabilities has explored a more diverse collection of ways to trigger

speculative execution in the pipelines of modern processors, as shown in Table 3.1 and

further discussed in Section 3.5.
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Table 3.1: Spectre variants by preparation phase fault-

injection attack vector

Predictor Mechanisms Examples

Pattern History Table

(PHT)

PHT poisoning: mistrains

conditional branch predic-

tion, to redirect control

flow to the attacker’s cho-

sen branch path, so the vic-

tim transiently executes ei-

ther wrong instructions or

with wrong values.

Spectre-PHT (Spectre vari-

ant 1, “Input Validation By-

pass”) [225], Kiriansky and

Waldspurger (Spectre vari-

ants 1.1 and 1.2) [222], Net-

Spectre [377], SGXSpectre

[310], SiSCloak [66], Ham-

merScope [95], SpecHammer

[423], Schwarzl et al. [380]

Branch Target Buffer

(BTB)

BTB poisoning: mistrains

direct or indirect branch pre-

diction, to redirect control

flow to the attacker’s chosen

branch destination, so the

victim transiently executes

wrong instructions.

Spectre-BTB (Spectre vari-

ant 2, “Branch Target Injec-

tion”) [225, 352, 439], Sgx-

Pectre [87], Spectre-BTB-

SA-IP [72], SMoTherSpec-

tre [49], Mambretti et al.

[274], Straight-Line Specu-

lation (BTB variants) [404],

Retbleed [461]

Branch History Buffer

(BHB)

BHB poisoning: mistrains

indirect branch prediction,

to redirect control flow to

the attacker’s chosen branch

destination, so the victim

transiently executes wrong

instructions.

Spectre-BHB (“Branch His-

tory Injection”) [37]

continued on next page...
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Table 3.1 – continued from previous page

Predictor Mechanisms Examples

Return Stack Buffer

(RSB) or Return Ad-

dress Stack (RAS)

RSB poisoning: mistrains

the RSB by executing call

instructions to add invalid

entries to the RSB, or ex-

plicitly overwrites return ad-

dresses, to redirect return

control flow to the attacker’s

chosen destination, so the

victim transiently executes

wrong instructions.

Spectre-RSB (Spectre vari-

ant 5, “Return Address In-

jection”) [273, 230], SgxPec-

tre (RSB falls back on BTB)

[87], Straight-Line Specula-

tion (RSB variants) [404],

Spring [460]

Memory dependence

predictor

STL poisoning: mistrains

store-to-load predictor, so

the victim transiently loads

stale values that should have

been overwritten by inter-

vening stores, and tran-

siently executes with wrong

values. If the stale value is

a code pointer, it can redi-

rect control flow to a gad-

get, so the victim transiently

executes the wrong instruc-

tions.

Spectre-STL (Spectre vari-

ant 4, “Speculative Store By-

pass”) [185]

String Comparison

Overrun (SCO)

Does not require mistraining

or a leakage gadget, because

a single instruction contains

both the speculation trigger

and the leaking memory ac-

cess

Oleksenko et al. [312]

Zero Dividend Injec-

tion (ZDI)

Speculation induced by divi-

sion instructions

Oleksenko et al. [312]

As we discussed in Section 3.1.3, many different microarchitectural states have been

exploited in microarchitecture side-channel attacks. So, it should come as no surprise

that many different microarchitectural states have been used in the transmission phase of
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Spectre-type vulnerabilities, some of the highlights are listed in Table 3.2.

Table 3.2: Spectre variants by transmission phase side-

channel attack vector

Channel Mechanisms Examples

L1 data cache Leaks information using a

cache-timing side-channel on

the L1D cache

Take A Way [260]8, PMU-

Leaker [339], most attack

variants that succeed with

L3 as a side-channel also

work on L1D

L1 instruction cache Leaks information using a

cache-timing side-channel on

the L1I cache

Mambretti et al. [274]

L2 cache Leaks information using a

cache-timing side-channel on

the L2 cache

Most attack variants that

succeed with L3 as a side-

channel also work on L2

L3/Last-level cache Leaks information using a

cache-timing side-channel on

the L3 cache or LLC, for ex-

ample, Flush+Reload [485]

or Prime+Probe [264]

SgxPectre [87]

Translation Lookaside

Buffer (TLB)

Leaks information using a

TLB-based side-channel

Yan et al. [483], Khasawneh

et al. [219], Kiriansky et al.

[221], Loughlin et al. [268],

Schwarz et al. [375], Seddigh

et al. [381], PACMAN [348]

Vector instructions Leaks information using a

side-channel based on differ-

ences in AVX2 instruction

timing

NetSpectre [377], Weber et

al. [454]

continued on next page...

8While Lipp et al. [260] demonstrated that AMD’s cache way predictor can be used as part of a Spectre
variant, it is only used as a side-channel attack vector in the transmission phase, not as a fault-injection
attack vector in the preparation phase.

65



Table 3.2 – continued from previous page

Channel Mechanisms Examples

SMT and single-

threaded port con-

tention

Leaks information using a

side-channel based on exe-

cution timing differences be-

tween instructions on differ-

ent execution ports

SMoTherSpectre [49], Fus-

tos et al. [143], Spectre-STC

[135]

Branch Target Buffer

(BTB)

Leaks information using a

side-channel based on timing

differences between correct

and false BTB predictions9

Weisse et al. [455], Mam-

bretti et al. [274]

Micro-op cache Leaks information using a

micro-op cache timing side-

channel

Ren et al. [350]

Instruction timing Leaks information using

a side-channel based on

variable-time arithmetic in-

structions

Zhang et al. [492], Ra-

japksha et al. [345]

Store and load buffers Leaks information using a

side-channel based on execu-

tion timing analysis of load-

store buffers

Timed Speculative Attacks

(TSA) [82]

Rowhammer Leaks information using a

side-channel based on mea-

suring the power consumed

by transient memory ac-

cesses

HammerScope [95]

3.3.2 Characterizing the countermeasures

Many countermeasures for Spectre-type vulnerabilities have been proposed, but overall

the results have been disappointing [71, 139]. As Figure 3.510 illustrates, the performance

9As noted in Table 3.1, the BTB can also be used as a fault-injection attack vector in the preparation
phase of Spectre.

10The data sources for Figures 3.5 and 3.6 are [11, 12, 20, 30, 35, 43, 58, 72, 75, 76, 90, 91, 114, 118,
127, 144, 150, 163, 170, 204, 219, 220, 221, 225, 231, 236, 237, 240, 244, 246, 253, 252, 255, 268, 284, 301,
309, 313, 320, 346, 349, 360, 361, 363, 362, 376, 379, 386, 416, 415, 417, 422, 425, 436, 439, 443, 444, 455,
468, 470, 476, 477, 483, 489, 488, 492, 494, 495].
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penalties of proposed mitigations have been improving over time, and the proposals are

trending toward mitigating more than one variant by considering root causes. Unfortunately,

it is relatively common to see papers—such as Behrens et al. [43] or Guan et al. [175]—

which claim to evaluate the overall performance of mitigating Spectre, but actually only

evaluate a small subset of mitigations that are inadequate to mitigate all variants. So

far, the only approach that eliminates all variants of Spectre is to eliminate speculation

entirely, and while the approach is often dismissed for performance reasons without any

actual performance measurements [225, 261, 377, 483, 72, 163, 363, 181, 455, 357], the

few papers that do measure the performance of eliminating speculation [417, 346] reveal

performance penalties comparable to other mitigations for Spectre, as in Figure 3.5.
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Figure 3.5: Performance penalty trends for Spectre countermeasures (2018-2023)
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3.3.2.1 Software-only mitigation approaches

Some of the earliest mitigations proposed for Spectre were software workarounds for the

vulnerabilities. These mitigations were inspired by earlier work on mitigating side-channel

attacks for cryptographic software, where it was understood that the mitigations only

needed to be applied to small but critical sections of code [99, 152, 411, 267, 293, 71, 79,

55]. Software-only mitigations have the advantage that they require no changes to the

hardware, however, they have prohibitive performance penalties, and have proven to be

inconsistently effective.

The very first paper on Spectre by Kocher et al. [225] suggested the insertion of

speculation barrier instructions—for example, lfence on x86 or sb on ARM (added in

v8.0)—which temporarily block speculative execution for instructions after the barrier, until

speculation has resolved for all instructions before the barrier. The major vendors quickly

adopted this approach and still actively recommended it today [395, 401]. Oleksenko et al.

[313] demonstrated performance penalties as high as 440% for comprehensive use of lfence,

which is worse than simply eliminating speculation [71]. The focus of much subsequent work

on speculation barriers has been on limiting their use to improve performance [443, 416,

436, 205]. However, anything less than comprehensive use of speculation barriers means

there is no guarantee that Spectre is fully mitigated [388, 416, 436]. Manual placement

of speculation barriers is prone to developer mistakes, automatic placement often misses

vulnerable code patterns, and even when the speculation barriers are correctly placed, race

conditions in the specific microarchitecture implementation may allow secrets to be leaked

past the barrier anyway [289, 309]. As with many Spectre mitigations, speculation barriers

are often targeted only at the most well-known variants, and fail to provide protection

beyond that narrow scope. For example, lfence stops some speculative accesses, but may

or may not have any effect on the transmission phase. It is not effective against Spectre

variants that use alternative side-channels as the transmission phase of the attack, such

as side-channels based on AVX functional units, the TLB, the instruction cache [377], or

micro-op cache [350], or against Spectre variants that use a speculative write to modify

the gadget code [222]. Intel added a new Indirect Branch Predictor Barrier (IBPB) [400]

instruction in 2018 to manually flush indirect branch predictor state so branch predictions

after the barrier are not trained by branches before the barrier at a performance penalty

of 24% to 53% [231], but Wikner and Ravazi [461] demonstrated that this mitigation was

not effective.

Another early software-only mitigation for Spectre-BTB was retpoline [428, 352], which

replaces an indirect branch instruction with a return sequence in the instruction stream.

McIlroy et al. [284] reported a performance penalty of 152% for comprehensive use of

retpoline, and subsequent work has focused on limiting the use of retpoline [231, 206].

Initially, retpoline was constructed on the assumption that the Return Stack Buffer could
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not be mistrained by attackers, but the Spectre-RSB variant [273, 230] later proved that

assumption to be false and bypassed retpoline as a mitigation for Spectre-BTB. Maisuradze

and Russow [273] suggested an alternative form of retpoline as a mitigation for the Spectre-

RSB variant. The Retbleed [461] variant of Spectre demonstrated that retpoline is not an

effective mitigation on architectures such as Intel and AMD that fallback to the Branch

Target Buffer (BTB) to predict returns.

Speculative Load Hardening (SLH) is another software mitigation technique, which only

mitigates the Spectre-PHT variant, proposed by Carruth [76] in 2018, adopted by both

LLVM and GCC, with a reported performance penalty of 36% [72]. In 2021, Patrignani

and Guarnieri [320] demonstrated that the original implementation of Speculative Load

Hardening still allowed some data leaks, and proposed a stronger form of the mitigation,

with a reported performance penalty of 127% [492]. In 2023, Zhang et al. [492] demon-

strated that the original SLH mitigation is not effective against alternative side-channels

in the transmission phase based on variable-time arithmetic instructions, and proposed an

improved “ultimate” SLH mitigation, with a reported performance penalty of 165%.

Swivel [301] applied compiler transformations to sandboxed WASM code to limit some

of the effects of Spectre vulnerabilities, however the approach relies on techniques like

fences, ASLR, BTB flushing, and Intel’s MPK which have been demonstrated not to be

effective [377, 222, 72, 71, 350, 461, 381]. Several authors pointed out that Swivel and

other compiler-based mitigations such as Jenkins et al. [202] and Venkman [386], have

never been verified to work [90, 78, 492].

McIlroy et al. [284] noted that in their analysis, it was not possible to address the

Spectre-STL variant using software-only mitigations.

While the initial mitigations proposed for Spectre were mostly implemented as software

patches, over the years the trend has shifted toward mitigations implemented entirely in

hardware or with an element of hardware acceleration, as shown in Figure 3.6. One factor

in the decline of software-only mitigations is that hardware mitigations have tended to

perform better than software mitigations. Another factor is that historically, hardware

architectures were rarely designed with the intention of giving software control over

speculation features,11 so the range of options for mitigating Spectre entirely in software

have been limited. The software mitigations proposed in recent years have often been

refinements of software mitigations from previous years, such as successive attempts to

improve the security of Speculative Load Hardening (SLH) [320, 492] or to improve the

performance of fences [443, 495, 436, 494, 470].

11The Intel i860 [228] was one noteworthy exception.
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Figure 3.6: Performance penalty trends by implementation level for Spectre countermea-
sures (2018-2023)

3.3.2.2 Mitigation approaches that only consider cache-based side-channels

It is unfortunately common for papers about Spectre to focus on variants of the vulnerability

that use cache-based side-channels, and then propose cache-based mitigations as if they

could be solutions for Spectre. Some early papers went so far as to classify Spectre simply

as a cache-timing side-channel attack without any mention of the transient execution effects

involved [84, 341]. Such an oversimplification of Spectre-type vulnerabilities indicates

a lack of understanding of past work and the available literature on Spectre. Even the

very first paper on Spectre, by Kocher et al. [225], explicitly discussed the fact that

many different microarchitectural side-channels could be used for the transmission phase

of Spectre, though the specific examples they chose to implement for the paper used
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cache-timing side-channels. While it is worthwhile to review these mitigation proposals as

part of a comprehensive survey on Spectre, it is also important to recognize that exclusively

cache-based mitigations can never be anything more than partial solutions [455, 82].

One group of papers in this category are really no more than general mitigations for

cache-timing side-channel attacks. Although they mention Spectre (and sometimes also

Meltdown) vulerabilities as prominent examples, they do not make specific claims that their

approach is a viable one for transient execution vulnerabilities. For example, CEASER

[341] randomizes the location of lines in the last-level cache (LLC), and only claims

to mitigate conflict-based cache attacks. DAWG [221] partitions caches into protection

domains. On the more extreme side, Tsai et al. [427] redesign the memory hierarchy to

replace caches with a memory-safe alternative they call Hotpads. While eliminating caches

would eliminate cache-based side-channels, it does not protect against other side-channels,

and the authors did not verify whether Hotpads might be used as side-channels.

One group of mitigations, which came to be known as invisible speculation, focused

on hiding changes to the cache. Yan et al. [483], Khasawneh et al. [219], Sakalis [362],

Gonzalez et al. [163], Ainsworth and Jones [12], and Wu and Qian [476] added a small

separate cache to store speculative loads. Sakalis et al. [363] proposed delaying updates to

the cache hierarchy until after a load is no longer speculative, so L1 data cache hits would

execute speculatively, but L1 data cache misses would delay until they can execute non-

speculatively. Behnia et al. [42] and Fustos et al. [143] later demonstrated that invisible

speculation approaches are not effective mitigations, because the delayed load introduces

timing changes that can be observed in subsequent instructions that depend on the load, so

the secret can be inferred even though the cache hierarchy was not immediately updated.

Even worse, the subsequent dependent instructions may update the cache, making the

secret easily accessible through the cache anyway, despite the delayed load. GhostMinion

[11] was proposed to resolve the security problems with previous approaches to invisible

speculation, however Yang et al. [484] uncovered a new variant of Spectre that bypasses

GhostMinion.

CleanupSpec [361], ReversiSpec [477], ReViCe [220], and CacheRewinder [246] all

take an approach of cleaning up the cache after speculation fails. However, all rollback

techniques permit speculative execution to change the cache system, so they have the same

problems as invisible speculation [42, 143], because the cache changes can still be observed

by correct instructions executing at the same time as the misspeculated instructions, and

the leakage succeeds before the cleanup finishes [11, 476, 178].

3.3.2.3 Mitigation approaches based on isolation

Another general approach to mitigating Spectre has been to increase isolation between

user and kernel modes, threads, processes, or other security domains. One problem
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with isolation approaches to mitigating Spectre is that flushing or partitioning some

microarchitectural state when changing domains is generally not sufficient to eliminate all

microarchitectural traces, and so hardware remains vulnerable despite the mitigations [71].

A more fundamental problem with all mitigation approaches that rely on isolating one

security domain from another is that not all Spectre variants are cross-domain attacks.

Even the very first paper on Spectre [225] highlighted the fact that Spectre attack code

could be in the same process and the same privilege level as the victim code, with a target

of leaking memory that the attacker should not have access to because of a sandboxed

interpreter, JIT compiler, or memory-safe language. Canella et al. [72] demonstrated that

Spectre-PHT, Spectre-BHB, and Spectre-RSB variants still succeeded on Intel processors

no matter whether the mistraining was done in the same-process or cross-process, and

using the victim branch or a congruent branch. The same-process and cross-proces

variants mostly succeeded on AMD and ARM too, though they both had some protections

against cross-process congruent branch mistraining for Spectre-BTB, and ARM had some

protection against cross-process mistraining for Spectre-RSB. Mitigations that merely

isolate predictors across user/kernel mode or between threads are not effective against

same-domain Spectre attacks [230, 37].

Intel and AMD added Indirect Branch Restricted Speculation (IBRS) [400, 395] as a

hardware defense against Spectre-BTB, to flush branch predictor state when switching

between user and kernel mode. Mambretti et al. [274] observed that IBRS was not

effective against their icache and Double BTI variants of Spectre-BTB. Intel and AMD

later added enhanced IBRS (eIBRS) as an improvement to IBRS, however Barberis et al.

[37] demonstrated that eIBRS was not effective because it only protected the Branch Target

Buffer (BTB), so the mitigation could be bypassed by mistraining the Branch History

Buffer (BHB) instead. ARM added similar features in the form of “IbrsSameMode” and

CSV2 features, which were also vulerable to the BHB variant of Spectre [37]. Furthermore,

Barberis et al. [37] discovered variants of Spectre-BTB using same-mode indirect branch

mispredictions (kernel-to-kernel), so that eIBRS and other isolation-based mitigations in

general are not sufficient protection.

Intel and AMD added Single Thread Indirect Branch Predictors (STIBP) [400, 395]

to isolate branch predictors for different threads on the same core, preventing branch

predictors in one thread from influencing branch predictions in other threads. STIBP has

been reported to be effective as a partial mitigation only for cross-thread mistrainings

[274], with performance penalties in the range of 50% [74], and both Intel and AMD have

recommended against enabling STIBP by default [106]. STIBP has no effect on co-resident

processes [441] or other same-domain mistrainings.

Wistoff et al. [468, 470] proposed a fence.t instruction to provide temporal partition-

ing, and Escouteloup et al. [127] proposed thread-level security domains called “domes”,
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to introduce additional levels of isolation on RISC-V processors, but neither approach has

any effect on same-domain attacks.

3.3.2.4 Mitigation approaches based on selective speculation

The most successful mitigation approaches to Spectre, in terms of both security and

performance, have turned out to be the ones that restrict speculation. These approaches are

based on a growing understanding that truly mitigating Spectre at the transmission phase

(the side-channel leakage attack vector) would require blocking all known microarchitecture

side-channels as well as any that might be discovered in the future [170]. Identifying the

initial speculative access of the secret is a more tractable problem than chasing down every

possible secondary transmission channel.

As a mitigation for Spectre-STL, Intel introduced a processor mode Speculative Store

Bypass Disable (SSBD) [400], which prevents loads from executing if they bypass any

stores, so attackers cannot read stale values, effectively turning all loads non-speculative.

While this mitigation reportedly works for Spectre-STL variants, it has no effect on other

Spectre variants. Initially measured at an 8% performance penalty in 2018 [455], Behrens

et al. [43] observed that grew to a 34% performance penalty by 2022, possibly because

newer processors may be shipping more complete implementations of SSBD than was

possible with the original microcode patches. SSBD is defeated by other transient execution

vulnerabilities such as RIDL [370].

Some approaches to selective speculation simply delay the execution of all instructions

that may have speculative sources of data as operands. NDA [455] restricts data propagation

after an unresolved branch or unresolved store address. It begins with the assumption

that instructions can execute speculatively as long as their operands are the results of

“safe” instructions. They regard any instruction following a branch instruction as unsafe

until the branch target and direction is resolved, and any load instruction as unsafe if it

follows a store with an unresolved address. NDA then delays execution of any instruction

with unsafe operands until those operands can be marked as safe, because the original

speculation trigger for that operand has resolved and is no longer speculative. SpecShield

[35] is similar to NDA, but focuses more on load instructions as sources of speculative

data forwarding, and makes some minimal attempt at identifying which instructions are

a lower risk for leaking forwarded speculative data. NDA has performance penalties as

high as 45%, and SpecShield 21%. Jin et al [204] attributed the poor performance of both

approaches to the way they delay execution of a large number of instructions that never

could have caused changes to the microarchitectural state anyway, and so would have been

safe to execute speculatively.

Some approaches to selective speculation are based on hardware taint tracking tech-

niques, inspired by previous work on information flow tracking techniques [420, 419].
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Speculative Taint Tracking (STT) [489] begins with the assumption that it is safe to spec-

ulatively execute instructions and speculatively forward their results to other instructions,

as long as 1) the forwarded results are marked as “tainted”, 2) the taint propagates as the

forwarded results are used as operands for subsequent instructions, and 3) any tainted

operands delay the execution of instructions that could serve as a transmission side-channel

until the original instruction that tainted the operand is no longer speculative. STT was

only proposed as a mitigation for Spectre-PHT variants, at a reported performance penalty

of 14.5%, however Loughlin et al. [268] later measured the performance penalty of STT

as high as 44.5% for protecting data in memory, and as high as 63.4% when extended

to protect data in registers. One key challenge of the STT approach is identifying all

the instructions that could be used as transmission side-channels, and Jin et al [204]

and Loughlin et al. [268] later identified that STT does not catch Spectre variants using

speculative store instructions in the transmission phase with side-channels based on the

TLB, store buffer, or load-store aliasing. Choudhary et al. [91] observed that STT only

prevented speculative transmission of data that was accessed speculatively, but failed to

protect data that was originally accessed non-speculatively, so their Speculative Privacy

Tracking (SPT) extends the idea of STT, by tainting the results of a much larger set

of data access instructions, with a performance penalty as high as 45%. Speculative

Data-Oblivious Execution (SDO) [488] extended STT by allowing some transmission

side-channel instructions to execute speculatively if they are independent of sensitive data,

at a reported performance penalty of 10%. Zhao et al. [494] and Kvalsvik et al. [237] tried

to improve the performance of STT and other similar approaches, by altering the behavior

of speculative loads, reporting performance penalties of 13.2% and 4.9% respectively for

their implementations of STT.

Dolma [268] is conceptually similar to STT, but instead of taint tracking forwarded

results of prior instructions, it tracks speculative control dependencies (on prior branch

instructions) and speculative data dependencies (on prior load instructions). Dolma marks

micro-ops in the reorder buffer with the speculative control or data dependency, and

delays their execution until the dependency is resolved because the original store or load

is no longer speculative. Dolma has a performance penalty of 42.2%. Dolma claimed

to protect against all transient execution attacks, but Jin et al [204] noted that Dolma

does not protect against a load-load reordering side channel, as identified by Yu et al.

[489]. Conditional Speculation [253] also tracks dependencies on prior branch and load

instructions like Dolma, however it only delays execution of potential transmission side-

channel instructions if they would change cache contents due to mis-specuation because of

a cache miss. This more limited approach lowers the performance penalty to 12.8%, but

still leaks information on cache hits [178] and with side-channels other than cache [204].

Ravichandran et al. [348] noted that mitigations based on information flow tracking
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such as STT, NDA, and Dolma only consider load instructions as the source of the taint,

so they are not effective against variants of Spectre where the speculative taint has a

different source, such as a pointer authentication instruction. The SpecHammer [423]

variant of Spectre-PHT defeats some taint tracking mitigations by using Rowhammer to

flip bits in the victim code, so code that would not ordinarily work for the access phase of

Spectre-PHT becomes a viable attack vector.

SpecTerminator [204] refines earlier selective speculation approaches with performance

improvements to taint tracking, and by applying different delayed execution techniques to

different kinds of sensitive instructions—TLB request ignoring, extended Delay-on-Miss,

delayed squash, and selective issue. SpecTerminator considers side-channels based on the

TLB, DRAM, BTB, and port contention in addition to cache-based side channels. Similar

to other selective speculation approaches, SpecTerminator uses taint tracking for potential

transmission side-channel instructions (loads or stores) that depend on earlier access

instructions (loads). But, instead of only delaying execution of transmission instructions,

they delay TLB requests, which blocks more potential side-channels at an earlier stage

of the pipeline. This approach also delays issue of branch instructions that depend on a

prior speculative load, to prevent speculative updates to other microarchitectural states

that enable BTB or port contention side channels. And, this approach delays squashes to

protect against Spectre-STL variants and load-load reordering. SpecTerminator reported

an impressive 6% performance penalty for mitigating the subset of Spectre variants

they considered, however, Ghaniyoun [155] independently evaluated the SpecTerminator

implementation and determined that the performance penalty was actually closer to 25%,

and that TLB requests were not being ignored as intended.

SafeBet [170] focuses on the access phase of a Spectre attack, and delays execution

of data access instructions until they are non-speculative. To improve performance, the

approach uses a Speculative Memory Access Control Table (SMACT) to track prior non-

speculative data accesses within the code region of a trust domain, and allows speculative

data access instructions to execute if they are accessing the same location in the same

region as a prior non-speculative data access. The SafeBet paper claims to mitigate all

variants of Spectre, but then goes on to say the approach does not handle side channels

based on micro-op caches. The approach only considers load instructions as sources of

speculative data, so the limitation that Ravichandran et al. [348] identified for STT, NDA,

and Dolma would also apply to SafeBet. And, SafeBet is fundamentally an isolation

mitigation, so it offers no protection against same-domain Spectre variants, as discussed

in Section 3.3.2.3.
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3.4 Meltdown

Like Spectre, Meltdown is a transient execution vulnerability first discovered in 2017 and

reported publicly in January 2018, by Lipp et al. [261], in a preprint which was republished

later that year at the USENIX Security Symposium in June [262]. Also like Spectre,

Meldtown is a fault analysis side-channel attack, it combines both fault-injection techniques

to manipulate the victim into a vulnerable state and side-channel techniques to convey

the exposed secrets to the attacker. Unlike Spectre, Meltdown does not use speculation as

an attack vector, so an out-of-order pipeline could be vulnerable to Meltdown, even if it

has no speculative features.

Research on Meltdown variants and mitigations has been far less extensive than

Spectre, probably partly due to the fact that AMD, ARM, and IBM processors were never

vulnerable to some variants of Meltdown [72, 154], so we have always known that hardware

mitigations for Meltdown could have reasonable security and performance. Eventually,

even Intel figured out that faulty reads could just return zero, preventing the leak of secret

information [154].

3.4.1 Characterizing the variants

A number of variants of Meltdown have been reported, primarily focused on unauthorized

access to some value protected by a permission check, and the defining characteristics of

all variants are two phases 1) triggering an exception for a failed permission check in the

context of transient execution so the exception is delayed, and 2) leaking the unauthorized

value through microarchitecture side-channels. The permission check will ultimately fail

and raise an exception, but in the context of transient execution, the exception is delayed

until the transient instruction sequence commits. Some microarchitecture implementations

made the design choice to update shared microarchitectural state during transient execution

as if the permission checks were successful, and to allow subsequent transient instructions

in the sequence to operate using the unauthorized value. In theory, those changes are only

temporary and never architecturally visible, but in practice, shared microarchitectural

state can be observed by an attacker and leaked over side-channels.

The primary way of categorizing Meltdown-type variants, shown in Table 3.3, is by

the exception used in the preparation phase.
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Table 3.3: Meltdown variants by exception

Exception Permission Bit Mechanisms Examples

page fault user/supervisor

page-table at-

tribute

Supervisor-only Bypass: by-

passes user/supervisor per-

mission checks to read

unauthorized kernel memory

from user space.

Meltdown (original variant,

“Rogue Data Cache Load”)

[261, 262]

page fault read/write page-

table attribute

Read-only Bypass: by-

passes read/write permis-

sion checks to transiently

write over read-only data

within the current privi-

lege level. May be used,

for example, to bypass the

hardware-enforced isolation

of software-based sandboxes.

Meltdown-RW (also inaccu-

rately called “Spectre vari-

ant 1.2”) [222, 72]12

page fault page-table

present bit or

reserved bit

L1 Terminal Fault (L1TF):

bypasses Intel SGX enclave

or operating system or hy-

pervisor isolation to read

unauthorized memory across

isolation boundaries.

Foreshadow (Intel SGX)

[433], Foreshadow-NG

(OS and hypervisor) [456],

Foreshadow-VMM (VM

guest to host) [62]

page fault Intel memory-

protection keys

for user space

(PKU)

Protection Key Bypass:

bypasses hardware-enforced

read and write isolation, to

leak or modify protected

memory.

Meltdown-PK [72]

page fault not present, all

access to the

page has been

revoked

Write Transient Forwarding

(WTF): store buffer

Fallout [292]

continued on next page...

12Note that although Meltdown-RW is generally categorized as a Meltdown-type attack, it is not a
side-channel attack because the target of the attack is not to leak secret values (violating confidentiality),
but instead to modify read-only values (violating integrity).
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Table 3.3 – continued from previous page

Exception Permission Bit Mechanisms Examples

general

protection

fault

N/A System Register Bypass: by-

passes permission checks on

privileged system registers

to leak system register con-

tents.

Meltdown-GP (also called

variant 3a) [72]

device not

available

exception

N/A FPU Register Bypass: by-

passes isolation of floating

point unit or SIMD registers

across context switches, to

leak register contents.

Lazy FP [403]

bound

range ex-

ceeded

exception

N/A Bounds Check Bypass: by-

pass hardware-enforced ar-

ray bounds checking13 to ac-

cess out-of-bound array in-

dices.

Meltdown-BR [118, 72]

including Meltdown-MPX

[199] and Meltdown-BND

[72]

While AMD was not vulnerable to earlier variants of Meltdown, it was vulnerable to

the Meltdown-BND variant [72] and to new variants reported by Xiao et al. [481].

A secondary way of categorizing Meltdown-type variants is by the microarchitectural

states used in the transmission phase of attack—Table 3.4 shows some of the highlights.

There have been fewer attempts to replicate Meltdown variants across a diverse collection

of different side-channels, because it quickly became clear that it was feasible to block

Meltdown in the preparation and access phases of the attack, so the side-channel used in

the transmission phase is less interesting.

Table 3.4: Meltdown variants by transmission phase side-

channel attack vector

Channel Mechanisms Examples

L1 data cache L1TF variants [433, 456, 62]

and SMAP and MPK vari-

ants [481] only work on L1D

continued on next page...

13Such as the older Intel bound opcode or modern Intel Memory Protection eXtensions (MPX).
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Table 3.4 – continued from previous page

Channel Mechanisms Examples

L3 cache or LLC For example, Flush+Reload

[485] or Prime+Probe [264]

Meltdown (original variant)

[261, 262], Meltdown-GP

(also called variant 3a) [72],

Meltdown-PK [72], Lazy FP

[403]

uncached memory Meltdown (original variant)

[261, 262]

Translation Lookaside

Buffer (TLB)

Leaks information using a

TLB-based side-channel

Schwarz textitet al. [375],

Seddigh et al. [381]

3.4.2 Characterizing the countermeasures

A number different countermeasures were proposed for Meltdown-type attacks, but ulti-

mately the right answer was fairly simple: always do permission checks first, and never

update shared microarchitectural state or forward the results of data accesses until after

the permission checks are successful [483, 154]. It is fine to delay raising the exception

until after the transient instructions commit, so out-of-order and speculative pipelines can

be safe from Meltdown-type vulnerabilities as long as the microarchitecture design is done

correctly. The only reason Meltdown-type attacks ever worked, is that hardware designers

assumed that microarchitectural state created in the context of transient execution was

safely hidden so deep in the hardware that it could never be accessed, but that assumption

was false.

There were some early software-only mitigations for Meltdown, which are still in use

on legacy hardware. The KAISER [173] patch to Kernel Address Space Randomization

(KASLR) was demonstrated to be an effective mitigation for the first User/Supervisor

variant of Meltdown [261], and was later implemented in the Linux Kernel as Kernel Page

Table Isolation (KPTI) [102]. However, KAISER and KPTI are only isolation mitigations

between kernel and user space memory, and so the mitigation has no effect on other variants

of Meltdown or on same-mode attacks. Hua et al. [191] measured the KPTI mitigation

at a 30% performance penalty, and developed an alternative mitigation, EPTI, that uses

extended page tables (EPT) instead of guest page tables for isolation at a 13% performance

penalty. While EPTI performed better than KPTI, it was not more effective. Page Table

Entry (PTE)-Inversion [104] was implemented as a mitigation for the L1 Terminal Fault

(L1TF) variants of Meltdown, by ensuring that addresses used following a translation

failure do not point to a valid page frame [154]. He et al. [181] observed that software-only
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mitigations have been far less successful for Meltdown than they were for Spectre, because

the microarchitectural causes for Meltdown-type vulnerabilities occur within a single

instruction, while the microarchitectural causes for Spectre-type vulnerabilities occur in

the interaction between instructions.

Isolation mitigations were also tried, such as flushing the L1 cache on context switches

or careful scheduling to prevent processes or VMs from executing on the same core or

thread [456, 154]. And, a number of mitigations for Spectre also claimed to mitigate

Meltdown, with varying degrees of success [455, 219, 170], even though Meltdown-type

attacks really are fundamentally different than Spectre-type attacks [181]. The proliferation

of hardware and software mitigations necessary to catch all variants of Meltdown has been

deeply unappealing compared to AMD’s simple answer of “just don’t be vulnerable in the

first place” [455, 154, 308].

However, just because it is possible to eliminate Meltdown-type vulnerabilities from

out-of-order and speculative cores with careful microarchitecture design, does not mean

that every microarchitecture implementation has successfully done so. This one of many

reasons why pre- and post-silicon hardware security verification techniques are critical for

modern hardware design, as discussed in section 3.6.

3.5 Transient execution vulnerabilities beyond Spec-

tre and Meltdown

Because Spectre and Meltdown were the first transient execution vulnerabilities discovered,

they have received the most attention, but researchers continue to find new transient

execution vulnerabilities. The vulnerabilities all share the defining characteristic of using

transient execution effects as an attack vector, but otherwise they are a diverse collection.

Some are side-channel attacks with a goal of leaking secrets to violate confidentiality like

Spectre and Meltdown, but others are straight up fault-injection attacks with a goal of

violating integrity.

3.5.1 Side-channel attacks inspired by Meltdown

Some transient execution vulnerabilities use different ways of inducing transient execution.

Rather than exploiting delayed exceptions like Meltdown, Nemesis [431] exploits the fact

that interrupts are delayed until instruction retirement. The target of Nemesis-type attacks

is to leak instruction timings from secure enclaves. Fallout [292] uses microcode assists as

a trigger for transient execution, rather than exceptions, leaks information via the store

buffer, and is able to bypass the Kernel Page Table Isolation (KPTI) countermeasure for

Meltdown.
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Possibly inspired by an early mention of line-fill buffers as a potential attack vector for

Meltdown [262], microarchitectural data sampling (MDS) attacks exploit the transient

effects of line-fill buffers, load ports, and store buffers. MDS attacks are data speculation

attacks like Meltdown and some variants of Spectre, but they do not depend on the

attack techniques of circumventing failed permission checks (like Meltdown) or mistraining

predictors (like Spectre). Similar to Meltdown, MDS attacks exploit the way that out-

of-order pipelines defer exceptions until instruction retirement. But, unlike Meltdown,

MDS attacks do not access the actual data at the operand address of the faulting load

instructions, instead, they access data from various other microarchitectural resources on

the CPU. Rogue In-flight Data Load (RIDL) [370] cannot be mitigated in software, and

specifically defeats mitigations such as Kernel Page Table Isolation (KPTI), Page Table

Entry (PTE) inversion, Speculative Store Bypass Disable (SSBD), and L1 data cache

flushing, and works both cross-context and same context. ZombieLoad [378] amplifies

microarchitectural data sampling (MDS) and bypasses mitigations for both Meltdown-type

attacks and other MDS-type attacks. CacheOut [369] bypasses mitigations that Intel put

in place on the Whiskey Lake architecture to protect against other MDS-type attacks such

as Fallout, ZombieLoad, and RIDL. SGAxe [368] adapts CacheOut to target SGX enclaves.

Medusa [294] is a more focused MDS-type attack than ZombieLoad or RIDL, which only

targets data loads caused by write combining operations, and can only be successfully

mitigated if hyperthreading is disabled. Ragab et al [342] discovered another variant of an

MDS-type attack that leaks information using a global staging buffer shared between all

CPU cores and defeats mitigations based on spatial or temporal partitioning or isolating

workloads on separate cores. Witharana and Mishra [472] reported another MDS variant

that works on AMD architectures, which were not vulnerable to previous variants.

3.5.2 Side-channel attacks inspired by Spectre

Rokicki [357] demonstrated that processors based on Dynamic Binary Translation (DBT),

such as Nvidia Denver [54] or Hybrid-DBT [358], are vulnerable to variants of Spectre even

though the underlying hardware is strictly in-order, because the DBT engine introduces

conditional branch prediction and memory dependency prediction as it translates and

optimizes the binaries.

3.5.3 Other transient execution vulnerabilities

Not all transient execution vulnerabilities are side-channel attacks, some use transient

execution effects for other purposes. Like Meltdown, Load Value Injection (LVI) [434, 121]

begins with a preparation phase of triggering an exception, but the target of the attack

is fault-injection rather than side-channel leakage, specifically to inject false values into
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the victim’s transient execution (violating integrity). Also, LVI attacks run in the victim

domain, so cross-domain isolation is not effective as a mitigation [71].

Ragab et al. [343] explored transient execution vulnerabilities on Intel and AMD

induced by machine clears. Their Speculative Code Store Bypass (SCSB) variant allows

attackers to execute stale code, while their Floating Point Value Injection (FPVI) variant

is similar to LVI but injects operands into floating point operations. Both are primarily

integrity attacks, but they can also be combined with side-channel attack techniques

(violating confidentiality).

Like Spectre, ExSpectre [441] has a preparation phase that mistrains branch predictors,

but unlike Spectre, it uses transient execution effects to hide malware from static and

dynamic analysis techniques, with a primary target of arbitrary code execution (violating

integrity). For example, ExSpectre is capable of running system calls to launch a dial-back

TCP shell. Isolation techniques such as Intel’s Single Thread Indirect Branch Predictors

(STIBP) are not effective mitigations against ExSpectre because the attack code and the

victim code run in the same context.

GhostKnight [491] has a preparation phase that mistrains branch predictors, but uses

speculation execution to amplify the Rowhammer fault-injection attack, extending the

reach of the attack to cross privilege boundaries (violating integrity). Spoiler [201] also

uses transient execution effects to amplify Rowhammer attacks.

BlindSide [159] is a speculative probing technique that uses speculative execution to

amplify a simple memory corruption attack into a speculative control-flow hijacking attack,

with targets ranging from leaking sensitive data, to arbitrary code execution, all the way

to full-system compromise. Speculative probing attacks are able to bypass mitigations

designed to prevent speculative control-flow hijacking such as retpoline, IBPB, IBRS, and

STIBP.

Another category of vulnerabilities that can use transient execution effects are mi-

croarchitectural replay attacks (MRA) such as MicroScope [389, 390, 364], where the

attacker forces pipeline flushes so the victim instructions are repeatedly re-executed. MRA

techniques can reduce the noise in side channels used to leak secrets, making transient

execution vulnerabilities and other vulerabilities easier to exploit.

3.6 Hardware security verification for transient exe-

cution

Over the years of research into the transient execution vulnerabilities, the emphasis has

shifted away from looking for some magic hardware or software countermeasure that will

preserve the performance benefits of transient execution while eliminating the security risks.

Instead, there is a growing understanding of transient execution as a one of those complex
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multilayered problems, like memory safety, where human errors by the people designing

and implementing the systems plays a significant role, and expecting hardware engineers

to manually catch all the security flaws is an inadequate answer. In response—and as part

of a broader trend of increasing interest in hardware security verification [125, 24, 324, 70,

471, 234, 190, 189, 115, 138, 188]—there has been a rise in academic and commercial tools

to inspect, test, fuzz, and scan for transient execution vulnerabilities, at the hardware-level,

at the software-level, or with formal models.

Hardware security verification tools are not capable of guaranteeing that a speculative

or out-of-order processor is invulnerable to all transient execution vulnerabilties, but

they can help improve security by determining whether a specific processor is vulnerable

to specific known variants, confirming whether implemented and deployed mitigations

actually work, and identifying risky patterns in the design and implementation of hardware.

Ultimately, if a vendor is convinced that they must produce hardware with transient

execution features, they should also be using hardware security verification tools to catch

flaws in their microarchitecture design and implementation, and to minimize the damage

they cause their customers.

Among the major server hardware vendors, we know from publicly available informa-

tion that ARM has used hardware security verification tools for the transient execution

vulnerabilities [270]. We have no information about Intel or AMD, however based on

available evidence—specifically the way that AMD was not vulnerable to several variants

of Meltdown and Spectre before they were even reported—we suspect that AMD does use

microarchitecture-level hardware security verification tools.

3.6.1 Formal model verification

Spectector [177] was an early attempt at detecting Spectre vulerabilities using symbolic

execution and comparing the microarchitectural information flows between speculative and

non-speculative execution. Loughlin et al. [268] argue that Spectector was too restrictive

and delayed some transient instructions that would have been safe to execute speculatively.

CacheFix [84] and CheckMate [426] both do formal modeling of microarchitectural state

to detect vulnerabilities, but only for cache-timing side channel attacks. Guarnieri et al.

[178] extended Spectector with a concept of speculation contracts. Fabian et al. [130]

extended Spectector beyond modeling branch instructions to also model store and return

instructions, so it could detect variants of Spectre-PHT, Spectre-RSB, and Spectre-STL.

Cauligi et al. [78] surveyed formal frameworks for software mitigations. Cheang et

al. [86] formally defines a class of information flow security properties for reasoning

about the security of microarchitectural speculation features, and operational semantics

for an intermediate assembly representation which can run small programs and verify if

they conform to the secure speculation property. Griffin and Dongol [171] implemented
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the secure speculation properties defined by Cheang et al. in the Isabel/HOL proof

assistant. Unique Program Execution Checking (UPEC) [134, 133, 135] is a structured and

systematic formal methodology for hardware security verification that targets transient

execution vulnerabilities at the register-transfer level (RTL) of the hardware design and

implementation workflow. InSpectre [176] proposes a formal microarchitectural model

of out-of-order and speculative features used as attack vectors in a variety of transient

execution vulnerabilities, and implements the model as a Machine Independent Language

(MIL) as an abstract microcode target language for translating ISA instructions. Pitchfork

[79] performs constant-time code analysis on an abstract model, but lacks microarchitectural

implementation details. KLEESpectre [442] extends the KLEE symbolic execution engine

with modeling of cache and speculative execution.

Pensieve [484] formally models early-stage microarchitectural designs, to evaluate the

security of proposed mitigations for transient execution vulnerabilities. Ponce-de-león

and Kinder [248] use the CAT modeling language for memory consistency to implement

an axiomatic framework to detect attacks and validate defenses for transient execution

vulnerabilities, including execution models of speculative control flow, store-to-load for-

warding, predictive store forwarding, and machine clears. Mathure et al. [278] apply

refinement-based formal verification methods to detect whether a microarchitecture design

is vulnerable to variants of Spectre.

3.6.2 Pre-silicon verification

Hu et al. [189] surveyed hardware verification strategies based on information flow tracking.

Barber et al. [36] instrument RTL simulations to produce detailed execution traces

of microarchitectural structures, and perform differential analysis on the traces to iden-

tify potential attack vectors. TEESec [156] is a pre-silicon framework for discovering

microarchitectural vulnerabilities in secure enclaves, by profiling the processor design for

microarchitectural structures relevant to enclave data, crafting verification gadgets to

exercise all possible access paths to the enclave data, running the verification gadgets

through a cycle-accurate RTL simulation of the design-under-test, and analyzing the

simulation logs for traces that violate microarchitectural security principles.

SpecDoctor [194] is an automated RTL fuzzer to detect both Spectre-type and Meltdown-

type vulnerabilities, which systematically tests a comprehensive set of configuration options

while selectively monitoring specific RTL components to discover constraint violations, then

chains those violations to construct concrete proof-of-concept transient execution attack

instruction sequences. SpecDoctor was implemented by adding monitoring logic for reorder-

buffer rollback events to the Chisel source code for two RISC-V core implementations,

BOOM and NutShell. IntroSpectre [157] is annother RTL fuzzer to detect Meltdown-type

leaks.
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3.6.3 Post-silicon verification

SpeechMiner, Xiao et al. [481] is a software framework focused on detecting transient

execution vulnerabilities on existing hardware, by generating sequences of instructions as

tests. It models Meltdown-type vulnerabilities as a race condition between data fetching

and processor fault handling and models Spectre-type vulnerabilities as a race condition

between covert channel transmission and speculative instruction squashing. SpeechMiner

was only implemented for 32-bit and 64-bit x86 architectures, not ARM or RISC-V. Revizor

[311, 312] is a black-box testing framework that detects microarchitectural leakage on x86

CPUs, using a concept of speculation contracts.

Transynther [294] uses fuzzing techniques to systematically identify whether hardware

is vulnerable to variants of Meltdown and microarchitectural data sampling (MDS) attacks.

Transynther was only implemented for x86 (Intel and AMD) and has not been ported to

ARM or RISC-V. Osiris [454] and SIGFuzz [345] are also fuzzing frameworks to detect

microarchitectural side-channels. Plumber [198] is a framework that generates instruction

sequences from templates to identify side-channel behavior, using concepts from instruction

fuzzing, operand mutation, and statistical analysis. It was only implemented for ARM and

RISC-V, but could be ported to x86. Scam-V [66] generates tests to validate side-channel

models, based on validation of information flow properties using relational analysis.

Li and Gaudiot [251, 250], Depoix and Altmeyer [113], Ahmad [9], and Alam et al.

[14] use a combination of hardware performance counters and machine-learning classifiers

to detect Spectre and Meltdown attacks, and more broadly cache side-channel attacks,

in live running hardware. CloudShield [182] uses similar techniques to detect Spectre,

Meltdown, and cache-based side-channel attacks on server hardware deployed in a cloud

infrastructure. However, Dhavlle et al. [116] demonstrate that these detection mechanisms

can be bypassed by variants of Spectre that use same-domain code-injection as part of the

attack, and Pashrashid et al. [319] demonstrate they can be bypassed by Spectre variants

that chain benign gadgets or insert nop instructions into the branch mistraining code.

Spectify [319] tracks the attack phases of a Spectre attack using microarchitecture-level

information to find and report data leaks before the transmission phase of the attack, to

help identify where hardware mitgations for Spectre need to be applied.

ABSynthe [168] takes an automated, black box approach to synthesizing contention-

based side-channel attacks for x86 and ARM microarchitectures, which can be used by

hardware designers for regression testing.

3.6.4 Software-only mitigation verification

Kasper [205] is a software scanner for the Linux Kernel that looks for code sequences

that could be used as gadgets in the access phase of a Spectre-PHT attack, and models
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not only cache-based side-channels, but also port-contention side-channels, MDS-based

side-channels, and LVI. Kasper operates as a fuzzer on the syscall interface, and requires

recompiling the kernel with support for the scanner. SpecFuzz [314] enhances conventional

fuzzing techniques with instrumentation to simulate speculative execution. FastSpec [424]

uses fuzzing and deep learning techniques to automatically generate and detect Spectre

gadgets.

Mosier et al. [297] developed a static analysis tool for software based on their concept

of a microarchitectural leakage containment model (LCM), which is able to identify some

Spectre vulnerabilities. RelSE [109] performs static analysis of program binaries for

Spectre-PHT and Spectre-STL, based on security property of speculative constant-time.

The CrossTalk [342] framework analyses the microarchitectural behavior of x86 instruc-

tions, with special attention to their use of globally shared staging buffers.

Easdon et al. [121] developed two open source frameworks—Transient Execution Attack

library (libtea) and SCFirefox—to generate prototype Meltdown, LVI, and MDS attacks

on x86 and ARM.
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Chapter 4

Discussion of heterogeneous

multicores

In Chapter 3, we discussed the fundamental nature of Spectre-type vulnerabilities: 1)

first the fault-injection phase mistrains a speculative predictor, 2) as a result of the

successful fault-injection attack, the victim transiently stores a secret value in shared

microarchitectural state, and 3) the side-channel leakage phase uses the shared microar-

chitectural state to convey the exposed secret to the attacker. Because a fault-injection

attack on the speculative predictors is the first step of all Spectre-type vulnerabilities, only

cores that have those predictors are vulnerable to Spectre. On a non-speculative core,

speculative predictors cannot be mistrained, because there are no speculative predictors.

On a non-speculative core, the secret value will never be transiently stored in shared

microarchitectural state, so there is no way for any side-channel to access the secret value

and convey it to the attacker.

This chapter explores combining speculative and non-speculative cores in a heteroge-

neous multicore system, as one possible approach to protecting security-critical workloads

running on general-purpose server hardware. A workload running on a non-speculative

core is not vulnerable to Spectre, because the core has no speculative predictors for

the attacker to mistrain. Workloads on non-speculative cores never create transient

shared microarchitectural state, so there is no transient state for the attacker to leak

over side-channels, it simply never exists. Likewise, an untrusted workload running on a

non-speculative core has a significantly restricted ability to launch Spectre-type attacks

against other workloads—even other workloads running on speculative cores—because the

non-speculative core never directly trains predictors.

The crucial insight of the approach is that targeting the fault-injection phase of Spectre—

rather than the side-channel leakage phase—so thoroughly disrupts Spectre-type attacks

that non-speculative cores are protected even though they share hardware resources with

speculative cores on the same machine. Adding non-speculative cores to server hardware
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makes it possible to run limited sections of code non-speculatively—when the code is

either critical to security or untrusted—while allowing most code to run speculatively

for performance gains. With this approach, it is important to note that the speculative

cores are not protected, and may still be mistrained in the fault-injection preparation

phase—either by other speculative cores or in-place as a “confused deputy”. Once a

speculative core has been tricked into transiently updating shared microarchitectural state,

any sensitive data in that shared microarchitectural state is exposed to non-speculative

cores too. Heterogeneous multicore architectures cannot completely eliminate all risk from

speculation like the non-speculative approaches discussed in Chapter 5, but they do limit

the scope and impact of the vulnerabilities more effectively and with more reasonable

performance than other common mitigations today. The approach can also be strengthened

by other known techniques to improve isolation between cores, such as partitioning shared

resources like the last-level cache (LLC).

The interesting research question is not whether heterogeneous multicore architectures

are possible, we know they are possible and already shipping in production. Nor is it

interesting to ask whether non-speculative cores are an effective way to eliminate Spectre

type attacks, we know that they are—as one author expressed it, processors with no

speculation are “trivially immune to speculative execution attacks” [455, p. 11]. The

interesting research question is whether heterogeneous multicores are a feasible approach

for server hardware vendors to adopt, as a practical countermeasure against Spectre-type

vulnerabilities and other speculation-based transient execution vulnerabilities. Chapters 5

and 6 explore more experimental approaches to eliminating speculation, but heterogeneous

multicore architectures are a little easier to understand, so we will start there and build

up to more complex approaches in later chapters.

4.1 Feasibility considerations

Heterogeneous multicore systems have been an area of increasing interest in systems

research, as well as increasing plausibility in practical applications, since the early 2000s.

While earlier work tended to focus on the performance advantages or energy efficiency

advantages of the approach, more recent work has brought attention to the security

advantages. As early as 2003, Kumar et al. [235] simulated a model combining cores

with the same instruction set architecture (ISA) but different microarchitectures—some

in-order and some out-of-order—on a single heterogeneous multicore chip, dynamically

migrating a thread between cores to improve performance (on a more powerful core) or

energy efficiency (on a less powerful core). In 2010, Li et al. [254] modified the Linux

Kernel to simultaneously support sets of cores with different performance characteristics

and slightly different instruction set architectures (ISAs), dynamically migrating threads
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between different kinds of cores to improve performance and throughput. In 2014, Aminot

et al. [19] explored combining cores with different ISAs, some with a minimal set of

instructions and others with added instruction extensions for less frequently used and

more energy hungry features, dynamically migrating code between cores to improve energy

efficiency. In 2017, Birhanu et al. [53] built on the ARM big.LITTLE architecture—a

heterogeneous multicore architecture combining cores with the same ISA but different power

and performance characteristics—and demonstrated that replacing the Linux Kernel’s

Completely Fair Scheduler (CFS) with their Fastest-Thread-Fastest-Core (FTFC) scheduler,

which dynamically migrated threads between “big” and “little” cores based on CPU

utilization and capacity, improved power efficiency by 2.22% and improved performance by

52.62%. In 2019, the mainline Linux Kernel accepted the Energy Aware Scheduler (EAS)

[215], specifically for heterogeneous multicore architectures like ARM big.LITTLE, which

similarly takes CPU utilization and capacity into account to improve energy efficiency

while minimizing negative impact on performance. In 2020, Ainsworth and Jones [13]

proposed adding a set of non-speculative special-purpose cores with different ISAs running

specialized kernels, alongside the main speculative general-purpose cores, to improve the

security of small regions of code that are either offloaded to the non-speculative cores or

run as independent validation of results on the main cores. Also in 2020, Le et al. [243]

briefly suggested a heterogeneous multicore system combining non-speculative Rocket

cores [27] with speculative BOOM cores [81, 80] as a mitigation approach for transient

execution vulnerabilities, without any implementation details. In 2022, Anzai et al. [25]

proposed a heterogeneous architecture for security sandboxing, where kernel and user

space run on separate cores that do not share memory or cache and can only communicate

using remote direct memory access (RDMA).

4.1.1 Production hardware

Beyond academic research, several factors make the heterogeneous multicore approach

worthwhile to consider as a possibility for the near-term future of mainstream server

hardware. In mainstream production hardware, the ARM big.LITTLE architecture has

been shipping for several years in smartphones such as Samsung and Apple, and in tablets

and laptops such as Apple’s M1 family of SoCs with their own heterogeneous ARM

architecture. Intel has also been trying out a heterogeneous multicore approach for x86

architectures, with the Lakefield mobile processors and Alder Lake desktop processors.

These architectures work well in a mobile devices or laptops—where peak performance is

only required sporadically, cores are frequently idle, and switching low priority workloads

to lower power cores can significantly extend battery life. It is less clear that heterogeneous

multicores are desirable in server hardware especially for cloud or container deployments—

which require consistent peak performance for all workloads, and aim to minimise idle cores
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by sharing the same hardware resources between many workloads for many tenants—as

we will discuss further in Section 4.2.

4.1.2 Prototyping

The University of Berkeley’s Chipyard framework [18] for design, simulation, and implemen-

tation of RISC-V SoCs—originally called the “Rocket Chip Generator” [27]—includes a

collection of default configurations to build SoCs that combine varying numbers of heteroge-

neous cores, including non-speculative Rocket cores and speculative BOOM cores. Balkind

et al. [31] developed the BYOC (“bring your own core”) framework—extending the earlier

OpenPiton framework [32]—explicitly for the purpose of supporting implementations of

heterogeneous multicore systems.

Both Chipyard and BYOC provide open hardware implementations of common shared

components, including memory with coherent caches, accelerators, and standard peripherals

such as UART, block devices, and NICs. Both frameworks support software simulation,

FPGA emulation, and tapeout to silicon as output targets. Chipyard is implemented as a

parameterized hardware generator based on Chisel, with support for integrating Verilog

components directly, while BYOC is implemented in Verilog and SystemVerilog. Both

frameworks have a strong emphasis on enabling verification and validation of designs.

Both frameworks support heterogeneous cores as general-purpose first-class citizens, but

Chipyard focuses on cores running versions of the RISC-V ISA plus extensions, while

BYOC includes implementations of cores using RISC-V, x86, and SPARC ISAs, and

specifically targets combining different ISAs into unified general-purpose heterogeneous

multicore systems.

In addition to Chipyard and BYOC, a number of other more specialized frameworks

build custom multicore systems with varying degrees of heterogeneity. OpenPiton [32] was

originally focused exclusively on the SPARC ISA, but later added the RISC-V ISA in the

form of the 64-bit Ariane core [33]. lowRISC [59] combines RISC-V cores with different

ISA extensions, however the small cores only serve as subordinate “minions”.

The existence of frameworks like Chipyard and BYOCmean that it is currently relatively

straightforward to build custom heterogeneous multicore systems for development and

testing, using either the same ISA with different microarchitectures or entirely different

ISAs.

4.1.3 Kernel

The Linux Kernel already supports heterogeneous multicore systems like ARM’s big.LITTLE

architecture with the Energy Aware Scheduler [215] or Capacity Aware Scheduler [214]. A

speculation-centric heterogeneous architecture could use those existing schedulers, with
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the non-speculative cores serving the purpose of the lower energy, less powerful “little”

cores, and the speculative cores serving the purpose of the higher energy, more powerful

“big” cores. However, the existing schedulers would only take into account CPU utiliza-

tion, capacity, and energy usage, and would not give any consideration to the security

implications of the differences between the big and little cores.

A new scheduler would be necessary to take full advantage of non-speculative cores in

heterogeneous multicore systems. Rather than prioritizing energy efficiency or performance,

such a scheduler would prioritize consistent allocation of tasks within an appropriate

“security domain”—a group of CPUs with the same security characteristics—directly

parallel to the “performance domains” that the Energy Aware Scheduler uses to group

CPUs by performance characteristics [216]. A region of code that is not safe for speculation

must only be scheduled on a non-speculative core. A region of code that is safe for

speculation could always be scheduled on either a speculative or non-speculative core, so

the processing resources of the non-speculative cores would still be useful for the purpose

of energy efficiency, even when they are not being utilized for the purpose of security.

Developing a new scheduler for a heterogeneous multicore system—with a bifurcation

of cores for security rather than performance—is not a trivial task, but the desired features

are a relatively minor departure from existing schedulers, and not disruptive to the overall

stack of systems software.

4.1.4 Workloads

One level up the system stack from the kernel, modern implementations of virtual machines

and containers make use of kernel security features to improve their own security. Chapter

2 and Randal [347] reviewed the evolution of standard features in the Linux Kernel used

by modern virtual machines and containers, such as filesystem, process, IPC, and network

namespaces, resource usage limits, access controls, and system call filtering. These security

features are applied at the process-level, where each virtual machine or container is a

process on the host kernel, and may contain additional processes on the same host kernel

or a guest kernel. To take full advantage of speculation-centric heterogeneous multicore

systems, the container runtime or virtual machine manager need the ability to declare

the security domain of the processes it launches as virtual machines or containers, so the

kernel scheduler can appropriately choose a speculative or non-speculative core for the

process. One simple way to integrate such a feature into the Linux Kernel would be to

add a speculation capability (perhaps CAP SYS SPEC) that grants permission to run on a

speculative core. The Linux Kernel scheduler would then take the speculation capability

into account when choosing where to schedule tasks.

Another alternative, which would not require any modification to the Linux Kernel

scheduler or capabilities, would be to use the Linux Kernel’s existing features for processor
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affinity and CPU pinning, to restrict a process or thread so that it will only run on a

specific core or set of cores. The taskset command and sched setaffinity system call

set the CPU affinity of a process, while the glibc functions pthread setaffinity np and

pthread attr setaffinity np set the CPU affinity of a thread. The existing features for

CPU affinity are more manual, and would require defining CPU sets for speculative and

non-speculative cores. But, using existing features would make it easier to evaluate an

unmodified Linux distribution on a heterogeneous multicore system generated by a default

configuration of a framework like Chipyard.

4.2 Trade-offs

Heterogeneous multicore systems that combine both speculative and non-speculative cores

make it possible to entirely disable speculation for security-critical or untrusted sections

of code, by running that code on a non-speculative core. Code running on a speculative

core performs as well as it would on an ordinary speculative hardware architecture.1 The

systems software developer has the power to choose which code runs with the performance

advantage of speculation, and which code runs with the security advantage of no speculation.

However, heterogeneous multicores only offer the ability to disable speculation at the

process or thread level. A finer-grained approach is desirable, to limit the performance

penalty of disabled speculation to the smallest possible region of code.

The greatest advantage of the heterogeneous multicore approach is that it requires less

extensive and less disruptive changes to the hardware and software stack, which makes

production hardware realistically achievable in the short-term future. By comparison,

the manual approach to selective speculation in Chapter 6 requires substantial changes

at the microarchitecture level and throughout the systems software stack. The non-

speculative approaches in Chapter 5 and the automatic selective speculation approaches

in Section 3.3.2.4 only require changes at the microarchitecture level, but developing those

microarchitectures to production-ready silicon chips for large-scale server hardware will be

a multi-year effort.

One significant disadvantage of the heterogenous multicore approach is the level of

granularity in control over speculation. The manual selective speculation approaches in

Chapter 6 have instruction-level granularity—speculation can be enabled and disabled

at the level of a single instruction in the instruction stream. The heterogenous multicore

approach has process-level or thread-level granularity—speculation can only be enabled

and disabled at the process or thread level. So, an entire virtual machine or container—or

1In light of the risks posed by the transient execution vulnerabilities, it is unlikely that any serious
hardware architecture would ship a speculative core with absolutely no mitigations, but it could ship
a speculative core with a moderate level of mitigations similar to what Intel, AMD, or ARM provide
today—providing some combination of the most critical software, hardware, and configurable mitigations.

92



a process or thread inside a virtual machine or container—may be speculative or non-

speculative, but controlling speculation down to the level of a single instruction would be

impossible. For some use cases the granularity of control may not be important, but as

long as speculative pipelining continues to be substantially faster than non-speculative

pipelining, there will be a performance advantage to keeping speculation enabled by default,

and only disabling it for the smallest possible regions of security-critical code.

The greatest disadvantage of the heterogenous multicore approach in the context of

large-scale server infrastructures is inflexible hardware resource allocation. When building

a large-scale data center, the heterogenous multicore approach would require deciding

in advance exactly how many speculative and non-speculative cores to manufacture in

every machine in the data center. Getting the upfront allocation decision right involves an

impossible level of precision in predicting the kinds of workloads that customers will want

to run, and exactly what percentage of speculative versus non-speculative execution they

will want. Getting the upfront allocation decision wrong means a massive waste of capital

spent on cores that lie idle in production due to a lack of customer demand. A private

cloud might get away with downgrading some workloads from big cores to small cores, but

a public cloud provider selling CPU time in performance tiers by the hour would quickly

lose customers if they arbitrarily downgraded workloads that the customer paid to deploy

on big speculative cores, substituting unused small non-speculative cores.

While heterogeneous multicores are not a good choice for large-scale server hardware,

they may be a reasonable approach to consider for mobile and laptop devices, which have

less extreme requirements for flexible resource allocation. The disruption of shifting to

heterogeneous multicores would be particularly minimal in products where the hardware

is already running a combination of big and little cores for performance and energy

consumption considerations, as in some modern smartphones and laptops.
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Chapter 5

Discussion of eliminating speculation

Since the transient execution vulnerabilities were first reported in 2018, it has often been

said that we must continue producing superscalar processors based on speculative execution,

despite the security risks, because the speculation features are critical for performance [225,

261, 377, 483, 72, 163, 363, 181]. It is true that stripping away all the modern features

of superscalar processors and stepping back in time to the exact features of old simple

scalar processors would certainly mean returning to the performance levels of those scalar

processors. However, the defining characteristics of modern superscalar processors are not

speculative execution, they are dynamic multiple issue and dynamic pipeline scheduling

[322, p. 328]. In light of the transient execution vulnerabilities discovered in recent years,

it is a worthwhile exercise to consider the logical limits of performance for a modern

superscalar processor without speculative execution features. In the context of large-

scale server hardware, it is also worth considering whether maximizing instruction-level

parallelism for a single stream of instructions—which has always been the performance

goal of speculative execution—is still the right performance goal for systems that are

massively multi-core, multi-threaded, multi-workload, and multi-user.

5.1 Feasibility considerations

There are many possible ways to implement the microarchitecture of any given instruction

set architecture (ISA). This chapter explores the feasibility of a small but significant

variation on existing microarchitecture implementations, evolving superscalar processor

techniques forward while eliminating speculation. Chapters 4 and 6 explore alternative

approaches that make it possible to disable speculation for specific regions of code, without

eliminating it entirely.
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5.1.1 Performance characteristics of speculation on server hard-

ware

In the early 1970s, before speculative execution became the norm, Riseman and Foster [353]

published a thought experiment on the theoretical limits of performance for conditional

branches. This work posited a machine with an infinite reorder buffer,1 infinite functional

units, infinite registers with register renaming, and the ability to hold an infinite number of

“tentative computational paths” simultaneously for both code paths from each conditional

branch (taken or not taken) and discard incorrect paths when the branch conditions were

resolved. They observed that the maximum speed on such a machine is attained through

the potential to hold an infinite number of conditional branches, which meant that the

maximum possible performance improvement was limited by the size of the reorder buffer.

They calculated that holding j conditional branches in the pipeline required a reorder

buffer large enough to hold least 2j simultaneous code paths. On the hardware of the time,

they considered a reorder buffer with two slots to be a reasonable size, and ten slots as

unusually large, so they rejected the approach as impractical.

This is the theoretical context in which speculative execution was embraced. At a

fundamental level, speculative execution was not originally a performance optimization

so much as it was a space optimization—using less storage space at various stages of the

pipeline to achieve roughly the same performance. Speculation allows the pipeline to only

hold the instructions for one path of each conditional branch at a time, while ignoring the

other path that it predicts as unlikely. But, the space optimization comes with a heavy

performance cost when the speculation turns out to be wrong and the instructions for

the ignored path have to be fetched, decoded, issued, and executed after the result of the

branch condition is known, as if the speculation never happened.

In 2003, Swanson et al. [408] observed that the performance benefit of speculation

decreases on multithreaded superscalar processors as they increase parallelism through

different elements of the pipeline. In their experiments, a non-speculative pipeline with 8

functional units (combined ALU/LSU) performed 12% better than a speculative pipeline

with 4 functional units. Increasing the size of the L1 data and instruction caches decreased

the performance benefit of speculation from 33% at 16KB, to 24% at 128KB. Increasing

the number of threads on the core reduced the performance benefit of speculation from

300% at 1 thread, to 100% at 4 threads, 24% at 8 threads, and 0% at 16 threads. They

observed that only heavily loaded servers with many workloads would keep such a machine

continuously busy, and so dismissed their own results as not applicable to “the vast majority

of cases” [408, p. 335]. However, their results are uniquely applicable to large-scale server

hardware, and the performance impacts they observed are also more relevant to modern

1They did not call it a “reorder buffer”, or settle on any consistent way to refer to it, but the most
common were “instruction stack” or “dispatch stack”.
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superscalar processors than they were 20 years ago.

In 2012, Ferdman et al. [137] analyzed common cloud workloads running on large-scale

server hardware, and reached a similar conclusion to Swanson et al. [408] that for these

kinds of workloads it is better—for performance, die area, and power costs—to reduce

out-of-order/speculative features and instead increase the number of hardware threads.

In 2021, Thoma et al. [417] implemented an extension to the RISC-V ISA core, called

BasicBlocker, to annotate the instruction stream with basic block information, so the

pipeline can make efficient choices about out-of-order branch instruction delays, without

speculation. They also implemented a modified version of the LLVM compiler to generate

the basic block information for the instruction stream. On a VexRiscv implementation,

BasicBlocker achieved a 2.12x performance gain, compared to a 2.88x performance gain for

full control-flow speculation. On gem5, BasicBlocker achieved a 2.13x performance gain

compared to no speculation, compared to a 3.69x performance gain for full control-flow

speculation.2

In 2022, Schall et al. [371] and Asheim et al. [29] analyzed serverless workloads on

large-scale server hardware, which tend to have small memory footprints, short execution

times, and a high degree of “lukewarm” invocations. These workloads do not get the

full performance benefit of microarchitecture features designed to optimize for frequent

repetition of closely-related code—such as speculative prediction, prefetching, and cache—

because these predictive microarchitectural structures are thrashed by a large number of

unrelated workloads and are never fully “warm”. They observed an overall performance

penalty of 31-114% for lukewarm invocations. Asheim et al. [28] also demonstrated

that large-scale server hardware suffers from performance problems in branch prediction,

because the large instruction footprints of modern workloads exceed the capacity of the

server hardware’s branch target buffer (BTB) and L1 instruction cache.

Performance measurements for transient execution mitigations are generally taken

on idealized workloads like the SPEC CPU benchmarks, and run repeatedly to gain

the maximum possible benefit from fully “warm” branch predictors and other predictive

microarchitecture features. However, it is important to remember that these idealized

performance results do not reflect the real-world performance of speculation, especially

not on large-scale server hardware. In a deployment context where speculative cores

have a performance penalty as high as 114%, it becomes far more reasonable to consider

non-speculative cores in production server hardware.

2Keep in mind that gem5 inaccurately models branch prediction in a way that skews results in favor of
speculation [85, 484].
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5.1.2 Non-speculative branch instructions

One possible way to entirely avoid the security risk of speculative branch instructions is to

replace them with non-speculative branch instructions, which do not participate in branch

prediction. In a traditional, scalar, in-order microarchitecture without branch prediction,

non-speculative branch instructions stall the pipeline, so the pipeline does not fetch or

issue any instructions from either path of the branch until the branch condition or branch

target is resolved. A number of more nuanced approaches to non-speculative branch

instructions are possible in the context of dynamic pipeline scheduling. One example,

not particularly new or radical, would be to design the system so that it fetches and

issues instructions from both paths of a conditional branch instead of trying to predict

which path of the branch will be taken or not—beyond the theoretical work by Riseman

and Foster [353] in the 1970s, the IBM 370/168 and IBM 3033 used similar techniques

[245], though the pipelining techniques of the time were a poor fit for fetching multiple

independent instruction streams. Another more recent example is optimizations that

replace branch prediction with predicated execution to improve performance [429].

5.1.2.1 Fetch

Instruction fetching for non-speculative branch instructions does not read from or update

a branch target buffer, branch history buffer, branch history table, pattern history table,

or return stack buffer. This means both that branch instructions in malicious code cannot

mistrain a branch predictor, and that branch instructions in secure code are not vulnerable

to mistraining attacks.

5.1.2.2 Issue

The non-speculative pipeline places instruction entries in the reorder buffer for branch

instructions and other instructions in the usual way, but depending on the non-speculative

approach, it may take additional steps. The predicated execution approach would add

a decoding step for a conditional branch instruction and the instructions that follow it,

rewriting them as predicated micro-ops. The IBM 3033 approach would add entries in the

reorder buffer for instructions on both the taken or non-taken code paths of a conditional

branch, tagging the entries with a control dependency on the result of the conditional

branch instruction, and renaming registers in each code path so the two alternative sets of

instructions do not use the same physical registers.3

The pipeline would then send predicated micro-ops or the instructions tagged with

control dependencies to the reservation stations.

3This step is similar enough to the microarchitecture technique of loop unrolling that it might deserve
to be called “branch unrolling”.
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5.1.2.3 Execute

The reservation stations buffer the instructions in the usual way, however they would

treat a control dependency tag or predicated micro-op similarly to a data dependency of

waiting for operands. No instruction (or micro-op) from a taken or not-taken branch code

path is dispatched to a functional unit until the result of the non-speculative conditional

branch instruction is known, so there is no “speculative execution” of any instruction.

However, since the instructions have already been fetched and issued, the instructions on

the taken branch path can be dispatched to the functional unit on the next clock cycle

after the result of the conditional branch has been calculated. This is far more rapid

than if the entire fetch and issue process was delayed until after the branch condition is

evaluated. The instructions (or micro-ops) on the not-taken branch path are discarded

by the reservation stations, and tagged for discard in the reorder buffer (the instruction

entries are effectively re-written as completed no-op entries).

5.1.2.4 Commit

The commit unit treats instructions from the not-taken conditional branch path in the

same way as incorrectly speculated instructions, freeing up the renamed registers and

removing the instruction entry from the reorder buffer. The commit unit still processes

the reorder buffer in the order the instructions were fetched. The instructions from either

the taken or not-taken code path for the conditional branch might have been fetched first,

but it ultimately does not matter branch code path is first in the reorder buffer, since the

instructions from the not-taken branch path will all be discarded (in the order they were

fetched), and the instructions from the taken branch path will all be committed (in the

order they were fetched). No instructions on either branch code path will ever produce a

result until after the result of the conditional branch is known.

5.1.2.5 Discussion

If we altered Figures 3.2, 3.3, and 3.4 for a non-speculative branch pipeline, the primary

visible change would be removing the branch predictor components. The size of some

components of the pipeline—such as the L1 instruction cache, fetch width, fetch buffer,

decode width, reorder buffer, and the reservation stations—might to be increased to

maintain the same instruction throughput despite discarding instructions on the not-taken

code path or predicated micro-ops. On the whole, however, non-speculative superscalar

branch pipelines preserve the microarchitectural state and functionality of the existing

superscalar core design, requiring only minimal changes to the internal behavior of

instruction fetch, issue, execute, and commit.

The approaches to non-speculative branch pipelines discussed in this section do more
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work than a speculative branch pipeline—such as decoding predicate micro-ops or fetching

and issuing instructions from both branch paths, instead of fetching and issuing instructions

from the predicted branch code path and ignoring the other branch code path. However,

the extra work of the non-speculative pipeline does not necessarily imply slower through-

put of instructions with dynamic pipeline scheduling, since predicated micro-ops or the

instructions on the two branch code paths are independent, and can be fetched and issued

in parallel. The execution of non-speculative branch instructions will always be faster

than mispredicted speculative branch instructions, since the pipeline can immediately

proceed with executing predicated micro-ops or the already issued instructions from the

correct branch code path, instead of doing all the work of executing the misspeculated

branch path instructions, discarding them, and then starting the fetch for the correct

branch path instructions after the result of the conditional branch is known. So, it is likely

that a non-speculative superscalar branch pipeline will tend to perform no better than

the best case of all correctly predicted speculative branch instructions, but will tend to

perform better than the worst case of all mispredicted speculative branch instructions. In

practical terms, the relative performance of a non-speculative branch pipeline compared

to a speculative branch pipeline will also depend on the actual nature of the code being

run—specifically on whether the code is dominated by branch conditions and targets that

are consistently predictable or change results frequently, on whether branches have long

or short sequences of instructions on their code paths, and on how extensive the data

dependency of surrounding instructions is on the results of branch instructions and the

results of other instructions with a control-flow dependency on those branch instructions.

In Chapter 7, we will explore the performance potential of non-speculative branch

pipelines further with RTL and FPGA simulation.

5.1.3 Non-speculative memory load instructions

One possible way to entirely avoid the security risk of speculative memory load instructions

is to replace them with non-speculative memory load instructions. However, while the

limiting factor for branches is parallelism in the pipeline itself, the limiting factor for

memory loads is unavoidable memory latency through the data cache hierarchy and DRAM,

which means that the performance impact of eliminating speculation will be greater for

memory loads than for branches.

5.1.3.1 Fetch

Instruction fetching for non-speculative memory load instructions does not use speculative

predictions from the memory dependence predictor, and does not participate in training

the memory dependence predictor for any future speculative predictions. It does, however,
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use the memory dependence predictor for tracking when all prior stores to the same address

have been completed—resolving all Store To Load (STL) dependencies for the memory

load instruction—to determine when the memory load is safe to execute non-speculatively.

5.1.3.2 Issue

Non-speculative memory load instructions are fetched, issued with an entry in the reorder

buffer, and dispatched to the reservation stations, the same as in Section 5.1.2.2. Memory

load instructions are tagged with a control dependency by the memory dependence

predictor, so they cannot execute before all prior stores to the same address have been

completed. If a memory load instruction is fetched and issued as part of a non-speculative

branch code path, it may also be decoded as a predicated micro-op or tagged with a

control dependency on the result of the branch instruction.

5.1.3.3 Execute

The reservation stations preserve control dependency tags or predicated micro-ops, treating

them similarly to the data dependencies of waiting for operands. They will not dispatch

any memory load instruction to the load-store unit until all prior stores to the same address

have been completed. When the memory load is on a conditional branch code path, the

reservation stations also will not dispatch the memory load instruction to the load-store

unit until the result of the branch condition or branch target is known.

5.1.3.4 Commit

Since non-speculative memory load instructions are never speculatively executed, the

memory load instruction entry in the reorder buffer is always marked as complete after it

receives a result from the load-store unit.

5.1.3.5 Discussion

Non-speculative memory loads will always be slower than the best case where a speculative

memory load is correctly predicted through the memory dependence predictor. In the

worst case of branch misprediction, non-speculative memory loads avoid the cost of loading

a value through multiple layers of cache that will only be discarded, while still giving

the pipeline flexibility to dynamically schedule the memory load instruction out-of-order

(without executing it speculatively). In the worst case of the memory dependence predictor

mispredicting, non-speculative memory loads avoid the cost of re-executing the memory

load operation and any other instructions that depended on the value it loaded.

In the case where a non-speculative memory load is an L1 data cache hit, simple

out-of-order execution without speculation may be able to hide any performance penalty
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of the memory load, because it can execute the memory load instruction as soon as any

control dependencies on non-speculative branch instructions or prior stores are completed.

These control dependencies may be resolved and the memory load executed long before

any instructions with a data dependency on the memory load are ready to execute, even

without speculation. In the case where the non-speculative memory load is an L1 data

cache miss, however, the performance penalty of the memory load may be prohibitive.

Zhao et al. [493] estimate that on the BOOM RISC-V microarchitecture, the performance

penalty for an L1 fetch is only 10 cycles, while the performance penalty for an L3 fetch is

on the order of 50 cycles, which would require a lookahead of 200 instructions on a 4-wide

BOOM pipeline, exceeding the capacity they designed for the reorder buffer.

5.1.4 Thread-level parallelism

Modern hardware architectures like the x86 do not limit a single hardware core to running a

single process, instead they use the abstraction of threads to share a core between multiple

tasks. Multithreading is important in the context of desktop and mobile hardware—which

tend to have a relatively small number of cores—but it is absolutely essential in the context

of multitenant server architectures—where the cloud/container business model depends on

the ability to overcommit CPU resources, running more (mostly inactive) virtual machines

or containers than the machine has cores. Sharing cores yields a substantial performance

gain, because idle compute resources from one thread can be used for another thread.

Even combining all the most advanced techniques of instruction-level parallelism,4 a single

stream of instructions for a single thread will still regularly block on data hazards or control

hazards when there are not enough instructions ready to be dispatched to a functional unit

in a clock cycle to fill all the available functional units, leaving compute resources idle.

Unfortunately, the performance gain of multithreading compounds the security risk

of speculative execution, because it means that the microarchitectural state exposed by

branches and memory loads is shared between multiple threads, which may be running

completely unrelated code from unrelated virtual machines or containers for unrelated users.

Percival [327] provides an early but comprehensive exploration of the risks inherent in

combining simultaneous multithreading with speculative superscalar pipelining, multilevel

memory caches, and hardware prefetching. Ge et al. [151] more broadly survey the

microarchitecural side-channel attacks enabled by multithreading, multilevel memory

caches, and co-resident virtual machines. Escouteloup et al. [126] propose a collection of

fundamental security principles and recommendations for the design of future hardware in

light of these microarchitectural risks. Taram et al. [415] propose an adaptive partitioning

approach to provide more complete isolation for shared hardware resources between threads,

4Such as dynamic multiple issue, dynamic pipline scheduling, hardware prefetching, speculative
execution, etc.
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but in a temporary way that adapts as the resource needs of the threads change.

Existing techniques to improve the security of multithreading with speculative su-

perscalar pipelines—such as tracking a unique thread ID for every instruction through

all stages of the pipeline and segmenting caches and other microarchitectural state per-

thread—are equally effective with non-speculative pipelines. On each clock cycle, multiple

instructions from multiple different threads may be fetched, entered in the reorder buffer,

issued to the reservation stations, dispatched to functional units, and marked as complete

by the commit unit. Although they share the same microarchitecture hardware, instruc-

tions from one thread must not have access to another thread’s microarchitectural state.

Non-speculative superscalar pipelines have the potential to provide a stronger guarantee

of the required isolation between threads than speculative pipelines, because they never

create the lingering traces of mispeculated microarchitechural state that are exploited by

the transient execution vulnerabilities.

5.2 Trade-offs

Non-speculative superscalar pipelining makes it possible to eliminate the speculation-based

transient execution vulnerabilities, in a way that is invisible outside the microarchitecture.

The approach does not require any changes to the ISA or system software, so it is not

disruptive to existing software stacks, and preserves portability between different processors

with the same ISA, even when one processor has a speculative microarchitecture and

another has a non-speculative microarchitecture.

From a security perspective, the approach in this chapter—a standard ISA with a

non-speculative microarchitecture—has the advantage of entirely eliminating the risk of

speculative execution, while the heterogeneous multicore approach in Chapter 4 or the

selective speculation approach in Chapter 6 only provide the ability to partially disable

speculation.

From a complexity and die-area perspective, the standard ISA approach in this chapter

may have an advantage over the selective speculation ISA approach in Chapter 6 because it

eliminates the complexity and die-area of speculation features in the pipeline, rather than

keeping all the complexity of speculation features and adding additional complexity for

features to disable speculation. The approach in this chapter also has a resource allocation

advantage over the heterogeneous multicore approach in Chapter 4, because every core

on the server is identical, so the host retains full flexibility to control scheduling between

cores in response to demand, rather than restricting certain workloads to specialized

non-speculative cores.

One potential disadvantage of the standard ISA approach in this chapter is that

the microarchitecture is exclusively dedicated to non-speculative pipelining, and has no
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option to use speculation even in regions of non-critical code where it might be safe to

speculate. For the immediate future, despite the security risks, speculation is a solid bet

for improving performance, and as long as that continues to be true, it is worthwhile to

explore approaches that only partially disable speculation, as in Chapters 4 and 6.
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Chapter 6

Discussion of selective speculation

The microarchitectural features that make the transient execution vulnerabilities possible

are integral to the performance potential of modern hardware architectures. Entirely

eliminating speculative features from an architecture does eliminate the transient execution

vulnerabilities, but it also degrades performance. Applying the known mitigations for

the transient execution vulnerabilities also significantly degrades performance. This

performance trade-off is a blunt instrument, all code running on the system is affected.

We question the fundamental assumption in current research and production hardware—

and in decades of hardware architecture design—that speculative features must be always

off or always on, and so mitigations must also apply in a universal fashion. Early systems

like the Intel i860 [228] combined speculative and non-speculative features, and despite

decades of evolution in a different direction, the combination is still possible in modern

hardware architectures. The advantage of such a hardware architecture would be the

ability for systems software to choose between parts of a host or guest operating system

that are so sensitive they must not be speculated, and other parts where performance is

crucial but leaking information is harmless.

This chapter explores adding instructions to the RISC-V instruction set architecture

(ISA), making it possible to selectively disable speculative execution within a single core.

The microarchitecture design options discussed in this chapter are part of a wider body of

work on selective speculation techniques discussed in Section 3.3.2.4—called “selective”

because they are speculative microarchitectures but also provide the option of running

non-speculatively.

If we shift the paradigm slightly, recognizing that some regions of code are more

sensitive to leaking transient microarchitecural state than others, it opens the door to

different approaches. Systems software developers are familiar with making trade-offs

between security and performance, and with the fact that different technical choices may

be appropriate for different software contexts such as host kernels and operating systems,

guest kernels and operating systems, application or workload software, and cryptographic
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software. Techniques to disable speculation entirely can improve the security of critical

code, because they rupture the fundamental DNA of all Spectre-type attacks—blocking

the initial attack vector that makes these attacks so much more severe than all previously

known side-channel attacks, and preventing speculative microarchitectural state from ever

being created in the first place—so they are proof against all currently known variants

and all variants that may be discovered in the future. However, the performance penalty

of disabling speculation for an entire machine (or entire data center) is high. A finer-

grained approach to disabling techniques that narrows their use to a specific security

domain—such as, a region of code, process, thread, sandbox, trusted execution environment,

VM, container, or privilege level—can reduce the system-wide performance penalty for

large-scale deployments by limiting the use of the techniques to the smallest possible scope.

Similar to non-speculative cores in the heterogeneous multicore approach in Chapter

4, a region of code running non-speculatively on a selective speculation core does not

create transient shared microarchitectural state, so there is no transient state for the

attacker to leak over side channels. Likewise, a region of code running non-speculatively

on a selective speculation core never directly trains predictors, so it has a significantly

restricted ability to launch Spectre-type attacks against other regions of code. Unlike

the non-speculative cores discussed in Chapter 5, selective speculation approaches do not

completely eliminate all risk from speculation. It is especially important to note that

speculative regions of code on a selective speculation core are not protected, and can

still be mistrained in the fault-injection preparation phase, and tricked into transiently

updating shared microarchitectural state in the access phase, so that any sensitive data in

that shared microarchitectural state is exposed to non-speculative regions of code too. But,

the ability to disable speculation for a region of code can offer more complete control over

the risky effects of speculation than other mitigation approaches like speculation barriers or

invisible speculation. When applied appropriately in the compiler and full system software

stack, software-controlled selective speculation provides stronger security guarantees for

critical regions of code than software-only mitigations can provide. The approach can also

be strengthened by other techniques to improve isolation between security domains.

6.1 Feasibility considerations

In the late 1980s, the RISC-based Intel i8601 included both speculative and non-speculative

instructions, so the compiler had the power to choose whether to use a primitive form

of speculation for branches and memory loads within a particular region of code [228].

The architecture was not commercially successful, so Intel abandoned it in the 1990s.

However, in light of the transient execution vulnerabilities discovered in recent years, it

1Also known as the 80860.
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is fascinating to consider where the industry might have ended up today if mainstream

superscalar processors had taken the path of the i860 rather than the x86. We can never

know what might have been, but we can apply a similar approach to modern hardware

architectures and evaluate the results.

Some research into countermeasures for the transient execution vulnerabilities has taken

the approach of implementing a traditional superscalar architecture with the standard

RISC-V ISA and experimenting with minor variations in the microarchitecture. The

Berkeley Out-of-Order Machine (BOOM) [81, 80] is a superscalar out-of-order RISC-V

core, designed as a compatible substitute for the 5-stage in-order scalar pipelined RISC-V

core Rocket [27], within the Chipyard [18] implementation framework for RISC-V custom

SoCs. The third version of the BOOM core [493] offers more advanced speculation features,

including an instruction fetch unit based on the TAGE branch predictor algorithm and a

load-store unit that supports multiple loads per cycle. Gonzalez et al. [163] replicated the

Spectre [225] bounds check bypass and branch target injection attacks on an extended

RISC-V BOOM processor, and experimented with adding an L0 speculation buffer to

mitigate the attacks, with only partial success.

Some researchers have also proposed minor variations on the RISC-V ISA. Yu et al.

[486] prototyped a RISC-V extension on the BOOM core, to track confidentiality labels

on data against security-guarantees of instructions, as a mitigation for microarchitecural

side-channel attacks. Escouteloup et al. [126] proposed an extension to the RISC-V

ISA (specifically the RV32I base ISA) introducing a concept of confidential registers

and hardware security contexts to express security boundaries, as a mitigation for some

side-channel attacks. Wistoff et al. [469] proposed adding a fence instruction to the

RISC-V Ariane core, to flush microarchitectural state when switching between security

contexts, based on earlier research [151, 183, 153, 152] into time protection mechanisms

against side-channel attacks.

6.1.1 RISC-V ISA extensions

The ideas discussed in this chapter are applicable to other hardware architectures, such as

x86 and ARM. But, the modular nature of the RISC-V ISA—consisting of a base set of

integer instructions and a collection of standard and non-standard instruction extensions

for more complex features—does make it a particularly good target for experimenting

with combining speculative and non-speculative instructions in a single core.

Within the RISC-V 32-bit base integer instruction set (RV32I), only a relatively small

number of instructions are relevant for speculative execution: load operations access

memory, and branch or return instructions create decision points in the control flow. An

ISA extension to support both speculative and non-speculative features would add a

small number of duplicate instructions, so each speculative instruction would have a non-
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speculative variant. Following the RISC-V naming convention specified for non-standard

extensions, we call this hypothetical extension “Xnospec”. Table 6.1 lists the relevant

RV32I base instructions and their variants in the extension.2 Throughout this chapter,

we will describe the base instructions as speculative and the Xnospec extension as non-

speculative, for example the beq (branch if equal) instruction is speculative, while the xbeq

instruction in the Xnospec extension is non-speculative. The concept could be implemented

equally well with non-speculative base instructions, but a speculative base means that

unmodified compilers get the performance advantages of the speculative instructions, while

modified compilers can access the security benefits of disabling speculation for limited

sections of code.

Table 6.1: Selective speculation extensions for RISC-V

32-bit base integer instruction set

Description RV32I Base RV32I Xnospec

Load Byte (8-bit) LB rd,rs,imm XLB rd,rs,imm

Load Halfword (16-bit) LH rd,rs,imm XLH rd,rs,imm

Load Word (32-bit) LW rd,rs,imm XLW rd,rs,imm

Load Byte Unsigned LBU rd,rs,imm XLBU rd,rs,imm

Load Halfword Unsigned LHU rd,rs,imm XLHU rd,rs,imm

Branch Equal BEQ rs1,rs2,offset XBEQ rs1,rs2,offset

Branch Not Equal BNE rs1,rs2,offset XBNE rs1,rs2,offset

Branch Less-Than BLT rs1,rs2,offset XBLT rs1,rs2,offset

Branch Greater-Than or Equal BGE rs1,rs2,offset XBGE rs1,rs2,offset

Branch Less-Than Unsigned BLTU rs1,rs2,offset XBLTU rs1,rs2,offset

Branch Greater-Than or Equal Unsigned BGEU rs1,rs2,offset XBGEU rs1,rs2,offset

Direct branch (“jump and link”) JAL rd,offset XJAL rd,offset

Direct branch (pseudoinstruction for JAL) J offset XJ offset

Indirect branch (“jump and link register”) JALR rd,offset(rs1) XJALR rd,offset(rs1)

Indirect branch (pseudoinstruction for JALR) JR rs1 XJR rs1

Return (pseudoinstruction for JALR) RET XRET

Memory store operations (sb, sh, sw, and sd) participate in speculative execution, but

only to the extent that they must wait until any speculative results they depend on have

2There is no particular significance in the use of “X” as the first letter in the names of the variant
instructions, it was chosen merely because the character is rarely used, relatively distinctive, and akin to
the “X” prefix for non-standard extensions.
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been finally committed. Since the Xnospec extension makes it possible to mix speculative

and non-speculative instructions, it would not be safe to provide the user with alternative

store instructions that ignore speculation, since the user might incorrectly use the non-

speculative instruction to store results that actually depend on some speculatively executed

code. Instead, the microarchitecture implementation of the store instructions must be

modified to recognize that the Xnospec load and branch instructions do not participate in

speculative execution, which effectively means they always commit immediately after the

execution stage.

In RISC-V, computational instructions—such as math or logic operations—only operate

on registers and immediates, so while they might benefit from a speculative memory fetch

or might run as part of a speculative branch prediction, they are inherently neutral to

speculation, and do not require variants in the Xnospec extension.3

The RISC-V 64-bit base integer instruction set (RV64I) adds two instructions that are

relevant to speculation. Table 6.2 shows variants for these instructions in the Xnospec

extension.

Table 6.2: Selective speculation extensions for RISC-V

64-bit base integer instruction set

Description RV64I Base RV64I Xnospec

Load Doubleword (64-bit) LD rd,rs,imm XLD rd,rs,imm

Load Word Unsigned LWU rd,rs,imm XLWU rd,rs,imm

Beyond the base integer instruction sets, RISC-V defines a combination of standard

extensions for general-purpose computing, including multiplication and division instruc-

tions (extension M), atomic instructions (A), single-precision (F) and double-precision

(D) floating point instructions, control and status register instructions (Zicsr), and the

instruction-fetch fence instruction (Zifencei). This combination of integer base and stan-

dard extensions is abbreviated from “IMAFDZicsr Zifencei” to simply “G”, so the 32-bit

and 64-bit general-purpose combined instruction sets can be clearly referred to as RV32G

and RV64G.

RV64G is the typical target for RISC-V hardware capable of running a full Linux

operating system, so it is reasonable for the Xnospec extension to consider the full set of

RV64G instructions. The multiplication and division extension (M) and floating point

3It is worth noting that the x86 instruction set defines computational instructions that operate directly
on memory locations, so a similar extension for x86 would require many more instruction variants than
RISC-V.
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extensions (F and D) do not add any instructions relevant to speculation, and so do not

require variants in the Xnospec extension. The atomic extension (A) adds load and store

operations for memory, however the instructions read, modify, and write memory within

a single operation (for syncronization between multiple RISC-V hardware threads), and

so will always be non-speculative. The control and status register extension (Zicsr) adds

loads and stores of the Control/Status Register (CSR) set, however CSR instructions are

also only executed non-speculatively. The instruction-fetch fence extension (Zifencei) may

require changes at the microarchitecture level to handle the combination of speculative and

non-speculative instructions, but does not require the addition of any variant instructions

for the Xnospec extension.

In summary, the Xnospec extension adds a total of only 18 new instructions to the

RV64G general-purpose instruction set. This increase in the footprint of the ISA is

tolerably small, when weighed against the benefit of providing user-level control over

speculative execution.

6.1.2 Microarchitecture

One crucial challenge for implementing selective speculation features at the instruction

level lies in the microarchitecture, specifically in implementing a pipeline capable of

efficiently executing both speculative and non-speculative instructions. As in Chapter

5, consider a foundation of a superscalar microarchitecture that is roughly analogous

to a modern x86 processor, which uses dynamic multiple issue and dynamic pipeline

scheduling, with out-of-order execution. There are many possible ways to implement the

microarchitecture of both speculative and non-speculative features, but some are more

compatible than others. Specifically, combining a modern superscalar microarchitecture

with an old scalar microarchitecture on a single core would effectively require including

two completely different instruction pipelines each with their own microarchitectural

state. On the other hand, the non-speculative superscalar microarchitectures described in

Chapter 5 is highly compatible with a speculative superscalar microarchitecture—they

use identical instruction pipelines and nearly identical microarchitectural state, with only

minor differences in which instructions are fetched, whether instructions are decoded as

predicate micro-ops, and when instructions are executed. The next two sections describe

a combination of speculative and non-speculative pipelining as one reasonable way to

implement a microarchitecture supporting the Xnospec extension.

6.1.2.1 Branch instructions

In the selective speculation ISA, ordinary memory load, branch, and return instructions

are speculative, while the non-speculative instructions in the Xnospec extension do not
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participate in memory dependence prediction, branch prediction, or return prediction.

Fetch: Instruction fetching for the non-speculative branch and return instructions does

not read from or update the branch target buffer, branch history buffer, branch history

table, pattern history table, or return stack buffer, even though the microarchitecture has

these features in the hardware and uses them for the speculative branch instructions. This

means both that non-speculative branch and return instructions will never use mistrained

predictions from other speculative branch or return instructions (so they might be used in

regions of code that are critical to security), and also that non-speculative branch and

return instructions cannot be used to mistrain branch or return predictors (so they might

be substituted for speculative branch or return instructions in regions of code that are

untrusted).

Issue: As in Section 5.1.2.2, the pipeline would place entries in the reorder buffer instruc-

tions would fetch instructions in the non-speculative extension as usual, though it might

take some additional steps to tag entries with control dependencies or decode predicate

micro-ops. Because the reorder buffer entries for non-speculative branch instructions are

tagged with a special control dependency or decoded as predicate micro-ops, they do not

interfere with ordinary speculative branch instructions, which proceed through the pipeline

in the normal speculative way. The pipeline sends instructions to the reservation stations

in the usual way, but non-speculative instruction sequences will either be marked with a

control dependency tag or decoded as predicated micro-ops.

Execute: The reservation stations buffer all instructions issued from either speculative

or non-speculative instruction sequences in the usual way, however they treat a control

dependency tag or predicated micro-ops as similar to a data dependency of waiting for

operands. Instructions from a speculated branch path are dispatched to a functional unit

to be executed immediately. However, no instructions from non-speculative instruction

sequences are dispatched to a functional unit until the result of the non-speculative memory

load, branch, or return instruction is known, so there is no speculative execution of any

instruction for the non-speculative instruction sequences.

Commit: The commit unit treats the instructions from the non-speculative sequences

in the same way speculative sequences. For incorrectly speculated instructions or non-

speculative instruction sequences on not-taken branch code paths, it frees up the renamed

registers and removes the instruction entries from the reorder buffer. As in Sections

3.2.1.4 and 5.1.2.4, the commit unit processes results from the reorder buffer for all

instructions—speculative or non-speculative—in the order the instructions were fetched.
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As discussed in Section 5.1.2, the size of several fetch and issue components need to be

increased in this selective speculation design to maintain the same instruction throughput

despite discarding instructions on non-speculative branch paths.

6.1.2.2 Memory load instructions

Continuing to consider a superscalar microarchitecture that is roughly analogous to a

modern x86 processor, the this selective speculation RISC-V microarchitecture may specu-

latively execute ordinary memory load instructions. Ordinary memory load instructions

within a non-speculative branch path behave like any other instruction to the extent that

they will be fetched and issued, but will not be speculatively executed as part of the

branch. However ordinary memory loads could still be set up for speculative execution by

the memory dependence predictor. There is a viable use case for permitting the memory

dependence predictor to speculate memory loads within a non-speculative branch path,4

so in this hypothetical selective speculation microarchitecture only the non-speculative

memory load instructions in the Xnospec extension fully avoid speculative execution.

Fetch: Instruction fetching for speculative memory load instructions uses speculative

predictions from the memory dependence predictor, and participates in training the

memory dependence predictor for future speculative predictions. Non-speculative memory

load instructions do not use the memory dependence predictor for predictions, however,

they do use the memory dependence predictor for tracking when all prior stores to the

same address have been completed—resolving all Store To Load (STL) dependencies for

the memory load instruction—to determine when the memory load is ready to execute

non-speculatively.

Issue: Both speculative and non-speculative memory load instructions are fetched, issued

with an entry in the reorder buffer, and dispatched to the reservation stations, the same as

in Sections 3.2.2.2 and 5.1.3.2. Speculative memory load instructions proceed through the

reorder buffer to the reservation stations in the normal speculative way. Non-speculative

memory load instructions that are fetched and issued as part of a non-speculative branch

path are tagged with a control dependency on the result of the non-speculative conditional

branch instruction. Non-speculative memory load instructions outside of a non-speculative

branch path are tagged with a control dependency by the memory dependence predictor,

so they cannot execute before all prior stores to the same address have been completed.

Execute: The reservation stations preserve the control dependency tag or predicated

micro-op for non-speculative memory load instructions, treating it similarly to a data

4As usual, this is primarily a trade-off between security and performance.
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dependency of waiting for operands. They will not dispatch a non-speculative memory

load instruction to the load-store unit until all prior stores to the same address have been

completed and/or the result of the non-speculative branch or return is known. Speculative

memory load instructions proceed through the reservation stations, through the functional

units, and on to the commit unit in the normal speculative way.

Commit: Since non-speculative memory load instructions are never speculatively exe-

cuted, the commit unit always marks the memory load instruction entry in the reorder

buffer as complete after it receives a result from the load-store unit. For speculative

memory load instructions, the commit unit determines whether the speculated memory

load instruction was speculated correctly, and if so, marks the instruction entry in the

reorder buffer as complete, performs any pending register writes or memory stores, and

removes the instruction entry from the reorder buffer. If the commit unit determines

the speculation was incorrect, it will discard the result of the speculated memory load,

and either remove the memory load instruction entry from the reorder buffer (if the

instruction was on a misspeculated branch path), or else execute the memory load all over

again together with any instructions that depended on its result (if the instruction was

misspeculated by the memory dependence predictor).

6.1.3 High-level language modifications

If selective speculation features were implemented at the instruction level, the challenge for

high-level languages would be how to expose the concept of choosing between speculative

and non-speculative instructions, in a way that is meaningful to programmers and relatively

easy to use. An extended ISA would require modifying the compiler to output the added

instructions. Such a change involves modifying the definition of the source high-level

language, adding a way for programmers to indicate which sections of code should be

non-speculative, modifying the parser to recognize the new syntax, modifying the semantic

analysis phase to retain information about regions of code tagged as non-speculative, and

modifying the generator to select different instructions within non-speculative regions of

code. There are many different ways such changes could be implemented in a compiler, this

section and Section 6.1.4 explore one possible example using Rust as the high-level language

and LLVM as the compiler toolchain, to demonstrate the feasibility of the approach.

In Rust, the unsafe keyword instructs the Rust compiler to alter a few small but

significant low-level behaviors related to memory safety. Without delving into the details

of how unsafe works in Rust, what is relevant here is that Rust programmers have become

familiar with the concept of unsafe as a strategically placed keyword that alters the
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output of the compiler.5 The unsafe keyword is allowed in three positions in the syntax

of Rust: as a block, on a function or method definition, and on a trait declaration or

implementation. We posit a new keyword named nospec, allowed in all the same syntactic

positions as the unsafe keyword.

When used as a block, the nospec keyword indicates that all code within the body of

the block should be compiled using non-speculative instructions:

nospec {

// non-speculative code here

}

Conditional branches within the nospec block will not run speculatively, which means

no code that depends on the branch instruction will execute until the condition is evaluated,

no trace will be left in the cache of falsely predicted results, and no trace of the branch will

be left in the branch predictor, so the code cannot influence any future branch predictions.

Memory accesses within the nospec block will not perform speculative memory fetching,

which means they will leave no trace of misspeculated loads in the cache to be exposed by

side-channel attacks.

When used on a function or method definition, the nospec keyword indicates that all

code within the body of the function should be compiled using non-speculative instructions.

A function defined as a nospec function can only be called from within a nospec block, as

a way of requiring the programmer to explicitly take responsibility for the altered behavior.

In the code example below, the leave no trace function is defined as non-speculative,

and called from within a nospec block6:

nospec fn leave_no_trace() {}

nospec {

leave_no_trace();

}

When used on a trait definition or implementation, the nospec keyword indicates that

all code within the body of the trait should be compiled using non-speculative instructions.

In the code example below, the LeaveNoTrace trait is defined as non-speculative, and

later implemented for the Password type:

5Other programming languages have keywords to alter compiler behavior, such as volatile in C,
C++, C#, and Java, but Rust’s unsafe is a cleaner example of high-level language syntax for clearly
delineated blocks of code.

6The Rust language only allows unsafe functions to be called from within an unsafe block, as a way
of ensuring that the programmer is always explicitly aware when low-level behavior has been changed.
The restriction is not absolutely necessary, but from a programming language design perspective it fits
with Rust’s strong emphasis on compile-time enforcement of memory safety.
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nospec trait LeaveNoTrace {

// method signatures

}

nospec impl LeaveNoTrace for Password {

// method implementations

}

6.1.4 Compiler toolchain modifications

Taking a step back from the high-level language to the compiler toolchain that supports

it, the challenge at this layer is how to capture and preserve information about the

nospec feature through all compilation phases, in order to finally output non-speculative

instructions.

LLVM is a collection of libraries and tools, used for both static and dynamic compilation

of programming languages. The compiler for the Rust programming language uses LLVM

for code generation: one of the later stages of Rust compilation produces output in LLVM

Intermediate Representation (IR)—a kind of heavily annotated assembly language—which

LLVM takes as input to run optimization passes and generate machine code for the target

architecture as the final output. LLVM is designed to be extensible and allow for custom

behavior at every stage of the compilation process, including code generation for a wide

variety of hardware architectures and even non-traditional code generation targets such as

WebAssembly.

At the highest level of LLVM IR produced by the Rust compiler, LLVM has a built-in

system for attaching metadata to annotate the IR instruction stream with additional

information. The most common use of the metadata feature in LLVM is the !dbg

identifier to capture source-level debug information in a standard form, and preserve that

information through any optimization or tranformation passes, all the way through to the

final generated machine code. It would be possible to add a !nospec metadata identifier

to LLVM, and then modify the Rust compiler to annotate IR instructions, functions, and

modules with the metadata identifier, corresponding to the high-level language code blocks,

functions, and traits defined with the nospec keyword. The following code example in

LLVM IR is a conditional branch, which branches to the destination label true when the

condition evaluates as true, and to the label false when the condition evaluates as false.

Normally, LLVM would compile this conditional branch as a speculative branch instruction

in the standard ISA, but adding the metadata identifier !nospec to this conditional branch

would tell LLVM to compile it as a non-speculative branch instruction in the extended

ISA.
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br i1 %cond, label %true, label %false, !nospec !0

At the lowest level of LLVM’s code generation, the extended selective speculation

RISC-V ISA would need to be defined as a separate target, though it would inherit almost

all features from the existing standard RISC-V target. Each instruction added in the

selective speculation RISC-V extension in Section 6.1.1 would require adding an entry in

the TargetInstrInfo class for the target to describe the instruction.

Optimization or transformation passes in LLVM discard any metadata annotation

they are unable to recognize, so each pass to be used in the compilation of the LLVM IR

produced by the Rust compiler would need to be modified to preserve the custom !nospec

metadata identifier. The instruction selection pass would also need to be modified, to

recognize the metadata identifier, and use it to select the extended RISC-V non-speculative

instructions instead of the standard RISC-V instructions.

Overall, the modifications to LLVM required to support an extended RISC-V ISA are

not trivial, but they do lie within the realm of custom compiler features that LLVM was

designed to support.

6.2 Trade-offs

While the ability to disable speculation for small regions of code is a security advantage

over speculating all code, implementing selective speculative features at the ISA level is not

radically more secure than the heterogeneous muilticore alternative outlined in Chapter 4

and is less secure than entirely eliminating speculation with the standard ISA approach in

Chapter 5. Taking full advantage of the extended RISC-V ISA requires a web of changes

through multiple layers of systems software. Such changes are feasible, but also disruptive,

in a way that may initially make it more difficult to validate the security of the overall

system.

From a performance perspective, the selective speculative ISA approach has an ad-

vantage over the heterogeneous multicore approach in Chapter 4, in that it avoids the

overhead of inter-process communication between speculative and non-speculative regions

of code. However, this advantage is balanced against the potential performance loss of

a more complex microarchitecture pipeline combining speculative and non-speculative

features.

From a portability perspective for large-scale server infrastructures such as cloud and

containers, the disadvantage of the selective speculation ISA approach is that host and

guest operating systems and workloads would be highly dependent on the low-level details

of the extended ISA. A host operating system or guest image compiled for a selective

speculation RISC-V ISA on one server is not portable to a standard RISC-V ISA on

another server. On the other hand, the selective speculation ISA approach also has an
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advantage in resource allocation over the heterogeneous multicore approach—because

every core is identical and able to run in a non-speculative mode, the host is free to

allocate workloads to any core. With the heterogeneous multicore approach in Chapter

4, the host must allocate speculative workloads to speculative cores, and non-speculative

workloads to non-speculative cores. Since the hardware for a heterogeneous multicore

system is manufactured with a fixed number of speculative and non-speculative cores,

there is no flexibility to change that allocation in response to demand. Across a data

center with thousands or hundreds of thousands of servers, an imbalance in the utilization

of the speculative and non-speculative cores could result in a substantial performance loss

through unused resources and wasted capacity.

Ultimately, the heterogenous multicore approach is easier to deliver in the short-term

future, but selective speculation and entirely non-speculative cores are worth further

research in the longer-term.

117



118



Chapter 7

RISC-V prototypes

The performance penalties of the Spectre mitigations available at the time we originally

submitted this dissertation were prohibitive—in the range of 50% to 200% to fully mitigate

the vulnerabilities—so a minimal amount of microarchitecture design and prototyping

work was necessary to demonstrate that other approaches were possible. Research on the

transient execution vulnerabilities continues to move at a rapid pace, and subsequent work

by other researchers discussed in Section 3.3.2.4 both confirmed our hypothesis that selective

speculation is the best approach for both security and performance, and also superseded

the lightweight prototypes we developed with far more advanced microarchitecture designs

built on the same concepts. We do not claim any credit for the subsequent work, it was a

case of multiple independent researchers reaching similar conclusions through separate

streams of experimental work.

In 2021 we implemented several lightweight SoC prototypes with RISC-V cores, in

support of the feasibility discussions in Chapters 4-6. These prototypes were not intended

as proposals of complete microarchitecture implementations, they were only intended as

design space exploration of the potential performance impact of heterogenous multicores,

non-speculative cores, and selective speculation cores. The purpose of the prototype work

was to answer several key research questions:

• What is the performance penalty of eliminating speculation entirely, and how does

that compare with the performance of mitigating Spectre?

• Are there alternative ways to improve performance, either with no speculation, or

with restricted speculation?

• Can restricted speculation provide adequate protection against Spectre?

We simulated the prototypes and reference Rocket and BOOM cores with FireSim[211]

and FireMarshal[326] on AWS F1 FPGAs, using the SPEC CPU2017 intspeed benchmarks.1

1So far, only the intspeed benchmarks have been successfully ported to run as a FireMarshal workload.
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The FireSim simulations ran at a host frequency of 65MHz on the FPGAs, and modeled

the system running at 1GHz, configured with 512KB L2, 4MB simulated L3, and 16GB

DRAM, and with 32KB L1I, 32KB L1D on the BOOM core and prototypes based on

BOOM, but 16KB L1I, 16KB L1D on the Rocket core. The SPEC benchmarks were

compiled with gcc, with -O3 optimizations.

Figure 7.1 shows the combined results of the prototypes. The Rocket [27] core is

an extensible RISC-V in-order scalar core, which uses branch prediction in the fetch

stage, but does not execute instructions speculatively. The BOOM [493] core is a RISC-V

out-of-order speculative core, based on the Rocket core, with a high-performance TAGE

[384] branch predictor. The first prototype we implemented was a heterogeneous multicore

configuration, as discussed in Chapter 4, combining a non-speculative Rocket core with a

speculative BOOM core. The performance of the Rocket and BOOM cores was identical in

either single core or heterogeneous multicore configurations, so the results only show one

entry each for Rocket and BOOM. The second prototype explored non-speculative cores,

as discussed in Chapter 5, using a modified version of the BOOM core which eliminates

the microarchitectural implementation of branch prediction from the Chisel source code

for the core. The performance results for the non-speculative prototype appear in Figure

7.1 with the “Non-spec” label. And, the third prototype explored selective speculation,

as discussed in Chapter 6, again using a modified version of the BOOM core. Instead of

entirely removing branch prediction from the implementation, the selective speculation

prototype work was a series of small variations, ranging from almost entirely speculative to

almost entirely non-speculative. Figure 7.1 shows two of those variations with the “Mostly

non-spec” and “Mostly spec” labels.
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Figure 7.1: Comparing RISC-V prototypes on SPEC CPU 2017 benchmarks.
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7.1 Baseline comparison of reference cores

As a baseline on the research question about the performance penalty of eliminating

speculation entirely, the first performance comparisons we made were between two reference

cores that already existed: Rocket (non-speculative) and BOOM (speculative). For this

measurement, we made no modifications to either Rocket or BOOM, we only compared

them in their default single-core configurations as provided by the original developers.

Figure 7.1 shows the performance results for the Rocket and BOOM cores. On average,

the Rocket core performed with a 49% performance penalty compared to the BOOM core.

Independent work by Thoma et al. [417], also in 2021, demonstrated a performance

penalty of only 26% for a non-speculative superscalar core designed as a countermeasure

for the speculation-based transient execution vulnerabilities.

These two non-speculative reference cores were shown in Chapter 3, Figure 3.5 as the

two data points with mitigation targets of “all variants”.

7.2 Heterogeneous multicores

We also implemented a heterogeneous multicore prototype as a baseline for comparison to

other approaches. Prior work by other researchers was not adequate for the comparisons

we wanted to make, either because the small non-speculative cores they implemented were

too specialized [13], or because they only discussed the possibility of speculative/non-

speculative heterogeneous multicores without actually implementing them [243]. The

performance results for heterogeneous multicores were what one would reasonably expect,

they demonstrated that workloads allocated to a big core in a heterogeneous configuration

perform the same as on a big core in a single-core configuration (the “BOOM” label in

Figure 7.1), and workloads allocated to a small core in a heterogeneous configuration

perform the same as on a small core in a single-core configuration (the “Rocket” label

in Figure 7.1). So, the heterogeneous multicore prototype served a useful purpose in

confirming our expectations, but was not particularly interesting otherwise.

7.3 Non-speculative

The non-speculative prototype was also originally intended to serve only as a baseline

for comparison to other approaches. However, the performance results were better than

we anticipated, which led us into an exploration of the performance characteristics of

speculation in large-scale processors, as discussed in Chapter 5. The non-speculative

prototype removed BOOM’s speculative features from the RTL, while keeping all other

superscalar and out-of-order features of the processor, and did not execute any instructions
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speculatively.2

The results in Figure 7.1 show that the non-speculative prototype tended to perform

nearly as well as or better than the Rocket core. On average, the non-speculative prototype

performed 20% better than the Rocket core—slightly worse than the Rocket core on the

perlbench, gcc, and exchange2 benchmarks, and better than the Rocket core on the

mcf, omnetpp, xalancbmk, x264, deepsjeng, leela, and xz benchmarks. Compared to

the speculative BOOM core, the non-speculative prototype performed on average 40%

worse—about a 30% performance penalty on the perlbench and omnetpp benchmarks,

about a 40% performance penalty on the gcc, mcf, x264, leela, and xz benchmarks,

about a 50% performance penalty on the xalancbmk, deepsjeng benchmarks, and about

a 60% performance penalty on the exchange2 benchmark. These performance results

may sound dismal, but at the time of submission the performance penalties for this non-

speculative core were nearly as good as or slightly better than speculative cores with all

relevant mitigations for the transient execution vulnerabilities applied.3 The performance

results for the non-speculative prototype demonstrated that implementing superscalar

and out-of-order features on a core without speculation can still significantly improve

performance.

Further experimentation with the non-speculative prototype confirmed the results of

earlier work by Swanson et al. [408], demonstrating that increasing the fetch width and

decode width, the size of the fetch buffer and reorder buffer, and the number of ALUs,

FPUs, and LSUs all improved performance of the non-speculative core to the point that the

largest configuration of the non-speculative core we measured performed with only a 13%

performance penalty compared to the default configuration of the speculative BOOM core

on some benchmarks. Figure 7.2 shows a performance comparison of the non-speculative

prototype and BOOM configurations listed in Table 7.1. The largest configuration we

tested was a fetch width of 16, decode width of 8, fetch buffer of 64, reorder buffer of

256, with 8 ALUs, 4 FPUs, and 2 LSUs, which is in the realm of a reasonable scale for a

modern server processor.4

2The BOOM core also implements a short forward branch optimization, which is a non-speculative
technique for improving the performance of branches [493, p. 4].

3Large public cloud providers have privately mentioned that the effect of deploying all known and
relevant current mitigations for the speculative execution vulnerablities in production is in the range of a
50% performance penalty, and still cannot fully protect against the vulnerabilities.

4The B, C, and D configurations were too large and complex for FireSim to build them for the AWS F1
FPGAs, so we were not able run these comparisons on the FPGA simulations, and instead built and ran
them within the Chipyard framework using the Verilator RTL simulator for a cycle-accurate behavioral
model.
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Figure 7.2: Equivalent variations on the non-speculative prototype and BOOM.

Table 7.1: Configurations of non-speculative prototype

and BOOM.

Variant Fetch

Width

Decode

Width

Fetch

Buffer

ROB ALUs FPUs LSUs

A 8 3 24 96 3 1 1

B 8 4 32 128 4 2 2

C 8 5 40 130 5 2 2

D 16 8 64 256 8 4 2

The performance potential of non-speculative cores, combined with the ability to

completely eliminate the transient execution vulnerabilities, places them in the running

as a viable solution. Non-speculative cores may be suitable for special-purpose cloud

or container infrastructure deployments which run extremely large-scale hardware, or

primarily run smaller and short-lived workloads (also known as “serverless”), or exclusively

serve privacy-centric workloads, or in legal jurisdictions with strong data privacy laws.

However, selective speculation cores are a better fit from a performance perspective for

most general-purpose server hardware, even though non-speculative cores are more secure.

7.4 Selective speculation

The third and final prototype implemented selective speculation—mixing speculative and

non-speculative execution of instructions in the same pipeline on a single core. This
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prototype explored the performance potential of keeping speculation where it is safe, and

disabling speculation only where necessary for security.

The results in Figure 7.1 show that the performance of the selective speculation

prototype depended heavily on the percentage of instructions in the workload that run

speculatively rather than non-speculatively.5 A benchmark run on the selective speculation

prototype with speculation fully enabled has the same performance as on an unmodified

BOOM core, and a benchmark run with speculation fully disabled has the same performance

as on an entirely non-speculative core. The more interesting question is what happens

when a workload mixes speculative and non-speculative execution of instructions. To

model the effects of mixed workloads, we implemented a series of variations on the

selective speculation prototype, shown in Table 7.2, where some branch instructions enable

speculative execution of following instructions and other branch instructions delay execution

of following instructions until they can execute non-speculatively. The performance of all

benchmarks running on the prototype that disabled most speculation (Selective.B, labeled

“Mostly non-spec” in Figure 7.1) was better than the Rocket core and at least slightly

better than the non-speculative core. The performance of benchmarks running on the

prototype that enabled most speculation (Selective.C, labeled “Mostly spec” in Figure

7.1) was generally much closer to the performance of the BOOM core.

Table 7.2: Characteristics of selective speculation varia-

tions.

Variant Speculative Non-Speculative

Selective.A BGE all other branches

Selective.B BEQ all other branches

Selective.C all other branches BEQ

Selective.D all other branches BGE

Figure 7.3 compares all the variations in Table 7.26, showing that performance of

the benchmarks by IPC varies depending on the relative proportion of speculative to

5This is similar to the way performance on the heterogeneous multicore depended on whether a
workload runs on a speculative core or a non-speculative core.

6The same as Figure 7.2, we built and ran the benchmarks in Figure 7.3 within the Chipyard framework
using the Verilator RTL simulator for a cycle-accurate behavioral model. The SPEC CPU benchmark suite
scores used in Figure 7.1 are a measure of normalized execution time, which depends on CPU performance
by IPC, but also depends on the performance of other components in the system such as the cache and
memory hierarchy, number of cores, number of threads, and clock speed. This means that the SPEC CPU
score is a more comprehensive measure of an overall system than IPC alone, but it also means that direct
comparison of the score results is most useful when the systems being compared are similar.
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non-speculative branch instructions. In this particular set of benchmarks, bge branch

instructions (branch if greater or equal) are relatively rare, so for the Selective.A prototype—

which only speculates bge branch instructions and runs all other branch instructions as

non-speculative—the performance by IPC is only slightly better than the non-speculative

core. But, for the Selective.D prototype—which speculates all branch instructions except

bge—the performance by IPC for most of the benchmarks is only slightly worse than the

BOOM core. In three of the benchmarks (multiply, spmv, and vvadd) the performance

on the Selective.D prototype is slightly better than the BOOM core, which could be

explained if some bge branches were misspeculated on BOOM, so that the non-speculative

bge ends up performing better by avoiding the hit of misspeculation. In contrast, the beq

branch instructions (branch if equal) are far more common in the dhrystone and towers

benchmarks in Figure 7.3, so the performance of these benchmarks on the Selective.B

prototype—which only speculates beq branch instructions—is substantially better than

the non-speculative core in the dhrystone benchmark, and nearly as good as the BOOM

core in the towers benchmark. And, for the Selective.C prototype—which speculates all

branch instructions except beq—the performance by IPC is substantially worse than the

BOOM core on the towers benchmark and almost as bad as the non-speculative core

in the dhrystone benchmark. In the other benchmarks, the beq branch instruction is

rare, so the performance on the Selective.B prototype is about the same as the Selective.A

prototype, and the performance on the Selective.C prototype is about the same as the

Selective.D prototype.
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Figure 7.3: Comparing a series of variations on the selective speculation core.

These results demonstrated that while workloads with mixed speculative and non-

speculative execution of instructions do pay a performance penalty, they do so in proportion

to their use non-speculative execution. Workloads that make only light use of non-

speculative execution, suffer only a minor loss of performance. This effect of gradually
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degraded performance sets the selective speculation approach apart from the common

approaches to mitigating the transient execution vulnerabilities at the time of submission.

Out of the three approaches prototyped in this section, selective speculation cores are

best for general-purpose server infrastructure deployments, because they simplify resource

allocation by keeping all cores identical and have no performance penalty for code executed

as entirely speculative.

7.5 gem5 prototypes

In 2022 we worked on gem5 with a team of engineers to both improve the stability of gem5’s

included speculative O3CPU core for RISC-V and also to implement a new cloud-scale

RISC-V core on gem5. Both efforts were a success, however subsequent work by myself and

others to implement a series of prototypes of Spectre mitigations on the gem5 simulation

revealed substantial model inaccuracies specifically around branch prediction and memory

loads, which is exactly where precision is needed in evaluating mitigations for Spectre.
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Figure 7.4: Performance penalty of Spectre mitigations on gem5 with SPEC CPU 2017
benchmarks

Figure 7.4 shows the results of one prototype, measured by the performance penalty of

applying a selective speculation Spectre mitigation to the cloud-scale core on gem5,

compared to the same core with no mitigations applied. The average performance

penalty for the gem5 implementation with mitigations applied was 61%, while the average

performance penalty for the same mitigations applied by other researchers to BOOM

and FireSim was 6% [204]. Independent work by Chatzopoulos et al. [85] confirmed our

findings about gem5’s model inaccuracies around branch prediction and memory loads,

and explored gem5’s limitations in much greater detail. Furthermore, Yang et al. [484]

126



criticize the use of gem5 for evaluating Spectre mitigations, because gem5 only models

just enough of the microarchitecture to approximate timing for performance evaluation,

and intentionally does not model certain microarchitectural details that are critical to

the transient execution vulnerabilities. The limitations of gem5 are not specific to the

RISC-V implementation, they are fundamental to the simulator platform, and equally

affect attempts at implementing Spectre mitigations on gem5’s x86 or ARM simulations.
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Chapter 8

Conclusions

The publication of the transient execution vulnerabilities in 2018 created a shock wave

in hardware and software security research that continues to unfold. Many new variants

of the vulnerabilities have been published over the years, usually with a collection of

mitigations for the symptoms of each variant. Some mitigations are adopted by major

hardware vendors and deployed by public providers of large-scale server hardware. Many

proposed mitigations never see significant adoption because the performance penalty of

the specific mitigation is too high, or because the performance penalty of deploying all

the relevant mitigations is so high that hardware vendors and infrastructure providers

choose to adopt only a subset of mitigations with the greatest impact for their particular

target use case. If we continue this way, we can look forward to many generations of

hardware debilitated by performance penalties from increasing layers of mitigations as new

variants are discovered, and yet still vulnerable to variants that have yet to be discovered,

or variants that have been discovered by malicious parties and have yet to be reported or

mitigated. Aside from the narrow subset of Meltdown-type vulnerabilities, there is no real

resolution to the transient execution vulnerabilities on the horizon.

This dissertation has sought to demonstrate the potential of research avenues that

fundamentally rethink the role of speculation in modern server hardware. We have explored

whether speculation could be partially or completely eliminated, and the security and

performance implications of doing so. We conclude that eliminating speculation, partially

or completely, is a feasible approach to mitigating the transient execution vulnerabilities

on large-scale server hardware, from the perspectives of both security and performance.

Chapters 2 and 3 established the background for this dissertation. We described the

unique requirements that large-scale server infrastructure environments have for hardware

and software security, and how key concepts of large-scale server infrastructures developed

over time. We then outlined how the transient execution vulnerabilities undermine crucial

assumptions about hardware security that researchers and the industry have been making

for decades, and characterized the many variants and mitigations published in recent
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years. 7 years on from the first discovery of the speculation-based transient execution

vulnerabilities, eliminating or restricting speculation continues to be the only complete and

reliable countermeasure, and the performance of non-speculative and selective speculation

approaches are comparable to other proposed mitigations, but more secure.

Chapter 4 explored the potential for heterogeneous multicore architectures that combine

speculative and non-speculative cores. Heterogeneous multicores make it possible run a

process or thread as non-speculative, but cannot provide any tighter level of control over

speculation. Performance is determined by which core runs the workload—a big speculative

core in a heterogeneous multicore system performs as well as a single speculative core and

a small non-speculative core in a heterogeneous multicore system performs as poorly as

a single non-speculative core. Because heterogenous multicores are already shipping in

(mobile and laptop) production hardware, they are more amenable to production deploy-

ments in the short-term future. However, these heterogeneous multicores are inflexible

for resource allocation—the decision of how much capacity to allocate to speculative and

non-speculative execution must be made at the time of hardware manufacture—which

makes them unsuitable for large-scale server infrastructures.

Chapter 5 explored the logical limits of performance for a modern superscalar architec-

ture without speculation. Non-speculative cores are more secure than either heterogeneous

multicores or selective speculation cores, because they completely eliminate the security

risk of speculation, but they also cannot use speculation to improve performance even

when it would be safe to do so. Performance of a non-speculative core is never as good

as an equivalently sized speculative core, but it can be improved by increasing the size

of fetch and issue stage components of the pipeline. It is unlikely that non-speculative

superscalar cores will ever beat the performance of unmitigated speculative cores, but it

is feasible that they may reach the point of consistently performing as well as or better

than speculative cores with all relevant transient execution mitigations applied. The

performance potential of non-speculative cores, combined with the ability to completely

eliminate the speculation-based transient execution vulnerabilities, places them in the

running as a viable solution. Non-speculative cores may be suitable for special-purpose

server infrastructure deployments that exclusively serve security-critical or privacy-centric

workloads, or smaller and short-lived workloads, such as serverless functions, where spec-

ulation performs poorly anyway. However, keeping speculative execution features as an

option for peak performance will be desirable for most general-purpose server deployments.

Chapter 6 explored the potential for hardware architectures that include both specu-

lative and non-speculative features on a single core. Selective speculation cores give the

systems software developer precise control over when to use speculation features. Perfor-

mance degrades gradually in proportion to the use of non-speculative features—code run as

entirely speculative pays no performance penalty, and code run as lightly non-speculative
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only pays a minor performance penalty—so selective speculation cores have peak perfor-

mance equivalent to speculative cores, while also allowing for fine-grained control over

speculative execution. Selective speculation cores are more flexible than heterogeneous

multicores for resource allocation in large-scale server infrastructures, because all cores

in the system are identical and equally able to combine speculative and non-speculative

execution. Selective speculation cores are most suitable for general-purpose server in-

frastructure deployments, because they put the choice of when to trade performance for

security into the hands of the customers, and maintain flexibility in resource allocation,

without sacrificing performance in the common case.

8.1 Future work

The scope of this dissertation has been limited to what one researcher can accomplish

within the short period of a PhD research program. While the work is enough to reveal

promising potential, a complete hardware design and implementation based on the concepts

discussed is an extensive and multi-year research agenda for a group of researchers. This

section briefly discusses some future research directions suggested by this work.

8.1.1 Heterogeneous multicores

While heterogeneous multicores are not a good choice for large-scale server infrastructures,

they may be a reasonable approach to consider for mobile and laptop devices, which have

less extreme requirements for flexible resource allocation. The disruption of shifting to

heterogeneous multicores would be particularly minimal in products where the hardware

is already running a combination of big and little cores for performance and energy

consumption considerations, as in some modern smartphones and laptops.

It would be worth exploring whether the performance gap between the speculative

and non-speculative cores of a heterogeneous multicore system could be improved by

implementing the “little” cores as non-speculative superscalar cores as discussed in Chapter

5 instead of in-order scalar cores. Such a system would be less useful for reducing energy

consumption in mobile and laptop devices, but could be more useful for improving security

on desktop devices without sacrificing performance.

8.1.2 Non-speculative cores

Several further research avenues are worth considering for improving the performance of

non-speculative superscalar cores. Increasing the size of fetch and issue stage components

in the pipeline showed potential in the prototype in Section 7.3, and could be explored

further. The largest non-speculative prototypes in Section 7.3 were too large to fit on

131



an AWS F1 FPGA, but FireSim’s Golden Gate [272] compiler does have some limited

ability to split RTL simulations across multiple FPGAs, while still producing bit-identical,

cycle-accurate results—which may make it possible to test larger cores on FireSim, instead

of only on Verilator. Multi-threading is another avenue worth exploring for non-speculative

cores, for efficiency through parallelism rather than speculation. Running multiple threads

on each core means the pipeline is less likely to stall, because even if it is held up on one

workload waiting for a non-speculative branch instruction to resolve or a memory load to

complete, it can still keep instructions for other workloads flowing through the execution

stage. The addition of dedicated functional units for evaluating branch conditions, separate

from the general ALUs, might be worth exploring as a way to improve throughput by

ensuring that branch conditions are always evaluated as soon as possible, and not held

up by other arithmetic or logic instructions in the pipeline. These research avenues could

potentially also benefit heterogeneous multicores or selective speculation cores.

8.1.3 Selective speculation

The greatest challenges for selective speculation countermeasures for the transient execu-

tion vulnerabilities, as discussed in Section 3.3.2.4 and Chapter 6 is determining where

speculation is safe or unsafe, and how to disable speculation with the least possible

disruption to legacy software stacks while providing strong security guarantees. The

approach to selective speculation described in Chapter 6 and prototyped in Section 7.4 is

manual—the decision of whether speculation is safe or unsafe is left to the software or

compiler developer at the granularity of a single instruction, so the approach can never

provide strong security guarantees. The approaches to selective speculation in subsequent

work by others discussed in Section 3.3.2.4 are more automated—the pipeline makes all

the decisions about where speculation is safe or unsafe—but those approaches still do not

manage to provide strong security guarantees because they miss some scenarios where

speculation is unsafe or because the implementation fails to disable speculation where the

design intended. There is room for a middle-ground approach that provides strong security

guarantees by disabling speculation for a security domain—such as a container, VM, secure

enclave, serverless function, or small region of code—to protect code within the security

domain from both cross-domain transient execution attacks launched outside the security

domain and same-domain attacks launched within the security domain, and also serve as a

sandbox preventing code inside the security domain from launching cross-domain attacks

on any other part of the system.

One approach to the resource allocation problem on heterogeneous multicores that

could be worth exploring is a core configuration option to enable or disable speculation for

an entire core—similar to the way Intel and AMD’s Indirect Branch Restricted Speculation

(IBRS) or Single Thread Indirect Branch Predictors (STIBP) features can be configured.
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While IBRS and STIBP were ineffective countermeasures with prohibitive performance

penalties, a feature to completely disable speculation would provide stronger security

guarantees, and implementing the non-speculative features more like a selective speculation

non-speculative security domain could potentially achieve reasonable performance.
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[198] A. Ibrahim, H. Nemati, T. Schlüter, N. O. Tippenhauer, and C. Rossow, “Mi-

croarchitectural Leakage Templates and Their Application to Cache-Based Side

Channels,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer

and Communications Security, New York, NY, USA: Association for Computing

Machinery, Nov. 2022, pp. 1489–1503.

[199] “Intel Analysis of Speculative Execution Side Channels,” Intel Corporation, White

Paper 336983-001, Jan. 2018.

152

https://tches.iacr.org/index.php/TCHES/article/view/8401
https://tches.iacr.org/index.php/TCHES/article/view/8401
https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://blog.docker.com/2015/06/runc/


[200] K. Ishiguro and K. Kono, “Hardening Hypervisors Against Vulnerabilities in In-

struction Emulators,” in Proceedings of the 11th European Workshop on Systems

Security, New York, NY, USA: ACM, 2018, 7:1–7:6.

[201] S. Islam et al., “SPOILER: Speculative Load Hazards Boost Rowhammer and

Cache Attacks,” arXiv:1903.00446 [cs], Jun. 2019.

[202] I. R. Jenkins, P. Anantharaman, R. Shapiro, J. P. Brady, S. Bratus, and S. W.

Smith, “Ghostbusting: Mitigating spectre with intraprocess memory isolation,” in

Proceedings of the 7th Symposium on Hot Topics in the Science of Security, New

York, NY, USA: Association for Computing Machinery, Sep. 2020, pp. 1–11.

[203] Z. Jian and L. Chen, “A Defense Method Against Docker Escape Attack,” in

Proceedings of the 2017 International Conference on Cryptography, Security and

Privacy, New York, NY, USA: ACM, 2017, pp. 142–146.

[204] H. Jin, Z. He, and W. Qiang, “SpecTerminator: Blocking Speculative Side Channels

Based on Instruction Classes on RISC-V,” ACM Transactions on Architecture and

Code Optimization, Nov. 2022.

[205] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida, “KASPER:

Scanning for Generalized Transient Execution Gadgets in the Linux Kernel,” in

Proceedings 2022 Network and Distributed System Security Symposium, San Diego,

CA, USA: Internet Society, 2022.

[206] C. Joly and F. Serman, “Evaluation of tail call costs in eBPF,” 2020.

[207] A. K. Jones, R. J. Chansler Jr., I. Durham, K. Schwans, and S. R. Vegdahl, “StarOS,

a Multiprocessor Operating System for the Support of Task Forces,” in Proceedings

of the Seventh ACM Symposium on Operating Systems Principles, New York, NY,

USA: ACM, 1979, pp. 117–127.

[208] A. M. Joy, “Performance comparison between Linux containers and virtual ma-

chines,” in 2015 International Conference on Advances in Computer Engineering

and Applications, Mar. 2015, pp. 342–346.

[209] P.-H. Kamp and R. N. M. Watson, “Jails: Confining the omnipotent root,” in Pro-

ceedings of the 2nd International SANE Conference, Maastricht, The Netherlands,

2000.

[210] J. A. Kappel, A. Velte, and T. Velte, Microsoft Virtualization with Hyper-V:

Manage Your Datacenter with Hyper-V, Virtual PC, Virtual Server, and Application

Virtualization. McGraw Hill Professional, Sep. 2009.

153



[211] S. Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System

Simulation in the Public Cloud,” in 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA), Los Angeles, CA: IEEE, Jun. 2018,

pp. 29–42.

[212] Kata Containers - The speed of containers, the security of VMs, May 2018. [Online].

Available: https://katacontainers.io/.

[213] Kata Containers Architecture, Jan. 2019. [Online]. Available: https://github.

com/kata-containers/documentation.

[214] Kernel Developers, Capacity Aware Scheduling, 2020. [Online]. Available: https:

//www.kernel.org/doc/html/latest/scheduler/sched-capacity.html.

[215] Kernel Developers, Energy Aware Scheduling, Nov. 2020. [Online]. Available: https:

//www.kernel.org/doc/html/latest/scheduler/sched-energy.html.

[216] Kernel Developers, Energy Model of devices, 2020. [Online]. Available: https:

//www.kernel.org/doc/html/latest/power/energy-model.html.

[217] B. Kernighan and M. McIlroy, UNIX Time-sharing System: UNIX Programmer’s

Manual, 7th. Murray Hill, New Jersey: Bell Telephone Laboratories, Incorporated,

1979, vol. 1.

[218] M. Kerrisk, Namespaces in operation, part 1: Namespaces overview, Jan. 2013.

[Online]. Available: https://lwn.net/Articles/531114/.

[219] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev, and N.

Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free

Speculation,” in 2019 56th ACM/IEEE Design Automation Conference (DAC),

Jun. 2019, pp. 1–6.

[220] S. Kim et al., “ReViCe: Reusing Victim Cache to Prevent Speculative Cache

Leakage,” in 2020 IEEE Secure Development (SecDev), Sep. 2020, pp. 96–107.

[221] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer, “DAWG:

A Defense Against Cache Timing Attacks in Speculative Execution Processors,”

in 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), Oct. 2018, pp. 974–987.

[222] V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows: Attacks and

Defenses,” arXiv:1807.03757 [cs], Jul. 2018.

[223] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The Linux

Virtual Machine Monitor,” in In Proceedings of the 2007 Ottawa Linux Symposium

(OLS’-07, 2007.

154

https://katacontainers.io/
https://github.com/kata-containers/documentation
https://github.com/kata-containers/documentation
https://www.kernel.org/doc/html/latest/scheduler/sched-capacity.html
https://www.kernel.org/doc/html/latest/scheduler/sched-capacity.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/power/energy-model.html
https://www.kernel.org/doc/html/latest/power/energy-model.html
https://lwn.net/Articles/531114/


[224] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in Cryp-

tology — CRYPTO’ 99, vol. 1666, Berlin, Heidelberg: Springer Berlin Heidelberg,

1999, pp. 388–397.

[225] P. Kocher et al., “Spectre Attacks: Exploiting Speculative Execution,” arXiv:1801.01203

[cs], Jan. 2018.

[226] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems,” in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed.,

Berlin, Heidelberg: Springer, 1996, pp. 104–113.

[227] R. M. Kogut, “The Segment Based File Support System,” ACM, Mar. 1973, pp. 35–

42.

[228] L. Kohn and N. Margulis, “Introducing the Intel i860 64-bit microprocessor,” IEEE

Micro, vol. 9, no. 4, pp. 15–30, Aug. 1989.

[229] R. Koller and D. Williams, “Will Serverless End the Dominance of Linux in the

Cloud?” In Proceedings of the 16th Workshop on Hot Topics in Operating Systems,

New York, NY, USA: ACM Press, 2017, pp. 169–173.

[230] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh, “Spectre Returns!

Speculation Attacks using the Return Stack Buffer,” Jul. 2018.

[231] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,

“SpecCFI: Mitigating Spectre Attacks using CFI Informed Speculation,” IEEE Com-

puter Society, May 2020, pp. 39–53. [Online]. Available: https://www.computer.

org/csdl/proceedings-article/sp/2020/349700a860/1j2LfWz9VpC.
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Koç, and C. Paar, Eds., Berlin, Heidelberg: Springer, 2003, pp. 2–12.

[392] A. J. Smith, “Directions for memory hierarchies and their components: Research

and development,” in The IEEE Computer Society’s Second International Computer

Software and Applications Conference, 1978. COMPSAC ’78., Nov. 1978, pp. 704–

709.

[393] A. J. Smith, “Sequential Program Prefetching in Memory Hierarchies,” Computer,

vol. 11, no. 12, pp. 7–21, Dec. 1978.

[394] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38,

no. 5, pp. 32–38, May 2005.

[395] “Software Techniques for Managing Speculation on AMD Processors,” AMD, White

Paper, May 2023, p. 9.
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