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Nuclear Magnetic Resonance

bulk magnetization

magnetic field
/ - ®®%®@ Nuclei with spin (e.g. 'H) align (mostly)

with the applied magnetic field

%5 Application of a “pulse” tips the bulk magnetization by 90°

Magnetization vectors then rotate in this plane at a frequency

7:4—5 that depends on the chemical environment of each nucleus

Each nucleus in a protein is in a different environment so
a frequency can be assigned to each 'H.




Nuclear Magnetic Resonance
@5 Nuclei can interact with each other:
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Network of distance restraints (NOEs) leads to structures



Even Small Proteins Contain too Many Hydrogens




Two-dimensional NMR
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Structure Determination by NMR

1.) sample preparation

3D structure
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2.) data collection

3.) data processing

NMR spectrometer
(magnet + console)

5.) structure
calculation

computer

4.) assignment
& analysis

|
H [ppen)

3D



Structure Calculation - from NOE to Structural Ensemble

Peak intensities are measured and are calibrated against known distances
to derive proton/proton distance constraints (NOE is proportional to 1/ r6).

Upper distance limit for NOEs is about 5A

Different or random structure starting points are used to obtain ensemble of calculated
structures which are consistent with the experimental data

Even a small protein contains several
hundred hydrogen nuclei




Ambiguity in the NMR Data

Overlap in through-space spectra

oA a0

oB  o6C OB, 8C
NOEs A-B and A-C can be assigned if the If the position of B and C peaks are the same
positions of B and C peaks are distinct. these possibilities cannot be distinguished.
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Ambiguity in the NMR Data

Distance restraints are treated as ambiguous i.e. each is a sum of contributions:

o NS -1/6
a=1

Where D is the effective distance restraint and the individual contributions are d,.

The structures are calculated using these restraints and the contribution of each possibility is then
ranked. Possibilities that contribute little to the peak intensity are discarded.

The structures are then calculated again with the new set of restraints and the analysis is repeated.

The cutoff for the contributions is more stringent with each iteration, thus the ambiguity of the restraints
is decreased.



Calculation of three-dimensional structures

Search conformational space for low energy:

Molecular dynamics simulated annealing from random structures
using torsion angle dynamics.

Only angles around bonds are allowed to move during dynamics
(computationally more efficient)

High temperature torsion angle dynamics, followed by slow cooling
with Cartesian dynamics (i.e. all atoms are now allowed to move)

Local energy barriers are overcome by the high temperatures.

Structure calculation is performed using CNS
http://cns-online.org/v1.2/ 2\
X

Interfaced with ARIA, which handles all the data using Python
http://aria.pasteur.fr/

Use CamGRID for structure calculations - 9 iterations of 20

structures each takes about 24 hours for a 300 residue protein Ww W w w

high temperature low temperature




NMR Structures are Ensembles Consistent with the Data

Sec5 - all B-sheet

HR1b - all a-helix



Protein-protein Interfaces

Prediction of protein structures is
possible if a homologue is known
-— but interfaces are harder to
— predict

Proteins interact through large, flat
surfaces using multiple contacts

Traditionally considered a difficult

-— target for drug design but “hot
spots” may define important
interactions



Small 6 Proteins are Molecular Switches
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The Ras Superfamily Includes Five Groups of Proteins
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The Ras Superfamily, their Effectors and Effects

Cell growth and Cytoskeletal Intracellular vesicle Nucleo-cytoplasmic
differentiation organization _/ trafficking transport



Ral is a Ras Family Member Involved in Multiple Cellular Processes
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RLIP76 is a Multidomain Ral Effector
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RLIP76 is a Transporter for Toxins and Metabolites in Response to Stress

R. Vatsyayan et al./Biochemical Pharmacology 79 (2010) 1699-1705
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Ral Binding Domain of RLIP76




Structure of the RalB-RLIP76 GBD Complex

switch 1

switch 2

Fenwick et al (2010) Structure Vol 18 985



Conserved Residues in RLIP76 are in the Interface

Fenwick et al (2010) Structure Vol 18 985



Mutation of RalB Residues in the Interface Disrupts Binding
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Protein-protein Interfaces

Prediction of protein structures is
possible if a homologue is known
-— but interfaces are harder to
— predict

Proteins interact through large, flat
surfaces using multiple contacts

Traditionally considered a difficult

-— target for drug design but “hot
spots” may define important
interactions
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