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Preface

I oWE MUCH to many people for what I say in this book. Specific debts
are acknowledged in the text. In discussing other views I use direct
quotation where possible, to avoid attacking straw men or claiming tacit
credit for what is not mine. I have no further interest in academic
patents, and have gone rather to clear expositors than to first authors of
views. But I apologise if I have overlooked a due acknowledgement,
and should be glad to be told of it. References are given in the Harvard
system to a list at the end of the book. This also lists pertinent works I
have read but not referred to. It is not otherwise comprehensive on any
topic I discuss.

Many deeper debts are less traceable. I have discussed all these topics
with many people and gained much from their remarks. Professors
Braithwaite, Kneale and Mackie have taken a particularly careful and
critical interest and made me face problems I should not have seen
unaided. I may not convince them, but I hope they may have helped me
to convince others. I am further indebted to the private comments, as
well as to the published work, of Professors Korner and Giere and
Drs Ian Hacking and John Wilson on topics central to the book. The
first two chapters, written last, owe much to the patient criticism of
Paul Teller.

I have many general philosophical debts. Professors Feigl and
Brodbeck introduced me to the philosophy of science; Gerd Buchdahl
has persistently encouraged me in it; Mary Hesse’s and Jonathan
Bennett’s astringent interest has been a great curer of complacency; the
stimulus of my colleagues, teachers and students of philosophy in
Cambridge, has left my limitations no excuse. Their stimulus is largely
responsible for what may be of interest in this book. The mistakes are
all mine.

My most practical debts are to Verna Cole, who typed the book,
Charles Jardine, who computed figures 3 and 4, David Papineau, who
checked the references, Harold Frayman, who compiled the index, and
my father, who thought up the title.

I should like to have repaid my debts with a good book, but there it
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is. Some material, mostly in chapter 6, first appeared in Philosophy of
Science 32 (1965), 105—22; 33 (1966); 345—59; 34 (1967), 1—9. Some
material mostly in chapter 7 first appeared in The British Journal for the
Philosophy of Science 16 (1965), 209—25; 17 (1967), 323-6; I8 (1967),
235-8; 20 (1969), 366—71. Some material, mostly in chapters 1 to 4,
first appeared in ‘Chance’, published in the Aristotelian Sociery’s
Supplementary Volume 43 (1969), 11—36, and is reprinted by permission
of the Editor. © The Aristotelian Society 1969. I owe thanks to the
editors and publishers of these journals for permission to use this
material again.

D. H. MELLOR
January 1971



Introduction

There are certain common privileges of a Writer, the Benefit whereof, I hope,
there will be no Reason to doubt; Particularly, that where I am not under-
stood, it shall be concluded, that something very useful and profound is coucht
underneath.

Swift. 4 Tale of @ Tub. Preface

IT MAY BE THOUGHT rash or superfluous in the Cambridge of Venn,
Keynes, Ramsey, Fisher, Jeffreys, Braithwaite and Hacking, to write
another philosophical book on probability. The present state of the
subject, however, is neither so good as to make it superfluous nor so
bad as to make it entirely rash. My project is in any case limited. I am
concerned only with statistical probability, which I call ‘chance’. The
chances of coins landing heads, of people dying and of radioactive
atoms decaying concern me; the probabilities inconclusive evidence
perhaps lends to hypotheses on these and other matters do not. Inductive
probability and the deep problems of confirmation, induction and
acceptance that involve it I mention only to show how little chance
bears on them. That may serve indirectly to forward the solution of
these problems, by limiting them, and I would claim no more than that
for this work.

I assume some familiarity with the existing philosophical accounts of
chance to which I refer. The ingredients of the present theory are in the
literature, but they have hitherto been no more than half baked. The
test of the theory is how much sense it makes of what professional
usage shows to be thought true of chance. This usage seems to me to
embody four important assumptions that other theories cannot make
simultaneous sense of: that chance is objective, empirical and not
relational, and that it applies to the single case. The chance of a radium
atom decaying in the next ten minutes is as objective and empirical a
matter as its mass, as little relative to evidence, and as much an attribute
of one as of many statistical trials. Frequency theory makes no sense of
the single case, personalist theory no sense of chance’s objectivity, and
classical and logical theory no sense of its empirical and non-relational
character.

xi



xii  Introduction

The present theory takes most if not all chances to display disposi-
tional properties which I call ‘propensities’. The idea is not new; the
name of the property is taken from Popper (1957). But the details of the
theory and its defence against obvious objections are new. My chief
concern is to give an acceptable account of the nature of propensity and
of its relations to chance and to other dispositional properties.

I start by adopting the positive contribution of the personalist theory
of probability. Statements of chance inter alia express degrees of partial
belief, e.g. in the decay of a radium atom. Arguments are given for the
existence and dispositional nature of partial belief and its appropriate
relation to full belief. T then present the rationale for one betting
measure of partial belief in more than usual detail to support the claim
that it is measurable. This is all preliminary to the main claim that chance
statements assert some degrees of belief to be made more reasonable
than others by objective empirical features of the world. It is contingent
that the world has such features; I argue only that nothing in the
characterisation and measurement of partial belief excludes further
empirical constraints of rationality upon it.

The constraints are then located in propensities, which are such
standing dispositional properties of things as the bias of coins and dice,
the half-life of radioelements and the death risk of people. The latter
examples are given in some detail to support my claims about scientific
usage and to show how naturally propensity theory accounts for it.
I have deliberately avoided references to quantum theory, for a number
of reasons. First the réle of probability in the foundations of the theory
is controversial. But secondly, if the theory provides rational partial
beliefs in the happening of macroscopic events, the measure of these
will be probabilistic. We may take any such objective chances as
displays of macroscopic propensities independently of their microscopic
explanation. I do not take the less theoretically “fundamental” nature
of my examples to make them less secure cases of scientific knowledge.
I have argued elsewhere (Mellor, 1968) against the all-embracing
ontological pretensions of physical theories of the very small.

These examples are followed by a discussion of possible objections to
propensity as a disposition. I attend in particular to imprecision and
inexactness in scientific concepts and show that propensity is not
peculiar in these respects. From an account of the sources of inexactness
in explanatory dispositions I derive the regulative principle of con-
nectivity, that two physical systems cannot differ in just one such
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property. When this principle is applied to propensities some plausible
classical chance distributions can be derived. I then compare these
derivations with related classical and fiducial arguments.

Finally the implications of propensity theory for determinism and the
status of natural laws are gone into. ‘ Determinism here refers not to the
absence of free will but to the thesis that events are governed by non-
statistical laws. In this connection and generally throughout the book I
address myself only to problems that bear on the relation of chance to
other scientific concepts; I am not satisfied that the problems of free
will do bear on this relation.

For the same reason I have felt free to adopt controversial positions
without argument where the controversy would affect my discussion
only in its terminology. For example, objective and realist terminology
is used throughout the book. I write as if scientific knowledge is
objective and as if such properties as mass, length and temperature exist.
The wholesale dissent of subjectivists and nominalists from these
presuppositions ought not to bear substantially on the theory here
presented of the particular relation chance has to these other concepts.

One or two miscellaneous matters of notation need remarking. I use
single quotation marks to form the names of terms and sentences and
double quotation marks for other purposes. (In particular I use single
quotes where I wish to discuss an author’s remarks rather than merely
to reiterate them.) Equations and other symbolised statements to which
further reference is made are numbered consecutively within each
chapter. In representing conditional statements I use ‘ =’ except where
the material conditional is explicitly intended. It should be read if. ..
then. . .’, however that is further analysed.






1 The limits of personalism

THE OBJECT OF THIS BOOK is to develop a philosophical theory
about statistical probability. I call statistical probability ‘chance’ for
brevity and to mark it off from inductive probability. Statistical
probability is what is meant in saying of a coin either

H,: The probability of coin a landing heads when tossed is p,
or

Hy:  The probability of coin @ landing heads when tossed is p,.

Inductive probability is what is meant in saying that on the evidence
available of symmetry, results of tosses etc., that

H, is more probable than H,,.

My main concern is thus with what Carnap (1962) calls ‘ probability,” as
opposed to what he calls ‘probability,’. But I do not share his view
(1962, §9; 1955) that these are distinct senses of an ambiguous term
‘probability’ (cf. Ayers, 1968, pp. 42—50). Nor do I accept his frequency
account of ‘probability,’.

The theory of this book is that some chance statements such as H,
and H, can be made true by things having a certain dispositional
property. Following Popper (1957, 1959a), I call this property
‘propensity’. To pursue the example, the bias of a coin (or its un-
biasedness) is a propensity which makes true some such statement as
H, of the chance of it landing heads when tossed. Naturally there are
many other and more serious instances of propensities. Before discuss-
ing them in detail it is desirable to indicate more clearly what this
propensity theory of chance asserts and how far it absorbs, denies and
supplements other theories of probability.

Propensity theories have been presented before. Such a conception
of statistical probability was suggested before Popper by Peirce (1931,
volume 2, §664) and has later been developed by Hacking (1965) and
adopted by Levi (1967). It will be obvious in the sequel how much the
present account owes to their work. But it differs from these earlier
accounts in a number of ways. First I attend more to what kind of item
a propensity could be and how like it is to other scientific properties.

I [1] MMR



2 The limits of personalism

Hacking is in contrast more concerned with statistical inference itself
than with the feature of the world that, as I hold, sometimes makes such
inference reasonable. Popper and Levi are likewise sketchy on what
propensities are and they do not draw out the detailed consequences of
their views. My intention is, by so drawing out consequences, to
present at least a clear and detailed view for criticism if not to convert
adherents of other views.

Secondly however, I hope also to show that much obvious truth in
other views is herein accommodated. The propensity theory is not a
comprehensive and exclusive new theory of probability in general but
an account of one kind of objective probability statement. It certainly
conflicts with such limiting frequency views as those of von Mises (1957)
and Reichenbach (1949), although it can be largely reconciled to
Braithwaite’s (1953) more sophisticated frequentism. On the other hand,
propensity theory can observe at least a non-aggression pact with
accounts of logical probability statements as in Carnap (1962) and
Jeffreys (1961). And it is positively a feature of this version of propensity
theory to base itself explicitly on the personalist theories of Ramsey
(1926), de Finetti (1937), Savage (1954) and Jeffrey (1965). Personalists
have admittedly tended to accompany their theories with a view of
probability statements as merely subjective. But that is an incidental
defect of personalism which it is my principal aim in this chapter and
the next to expose and remove. To this end I generally reserve ‘sub-
jective’ and ‘subjectivism’ hereafter for the doctrine I reject, that there
can be no objective probabilities. I use ‘personalism’ to refer to the
accounts of chance statements as expressing ““partial beliefs”, which
broadly I accept.

The relation between the propensity and personalist theories is this.
According to the latter the making of a probability statement expresses
the speaker’s ““partial belief”” in whatever he thereby ascribes proba-
bility to, say that a coin e will land heads when tossed. Knowledge of the
coin’s propensity on the present theory is what in suitable circumstances
makes reasonable the having of some particular partial belief in the
outcome of the toss. The chance of the coin falling heads when tossed
is then the measure of that reasonable partial belief.

It is not usual to base an account of objective probability on a concept
of partial belief. It may well be asked why one should do so. Kneale,
discussing relational probability rather than chance, puts the question
rhetorically (1949, p. 13):
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A man who knows that the evidence at his disposal justifies a certain degree of
confidence in proposition 4 must know that the evidence probabilifies 4 to a
certain degree; for it is only so that the evidence can justify any degree of confidence.
But if a man who has a rational opinion knows all this (even although he may not
have the terminology in which to state it explicitly), why need we say in addition
that he has a degree of confidence in 4 which somehow corresponds with the degree
to which the evidence probabilifies 47 Can we not content ourselves with the
assertion that rational opinion is the knowledge that the available evidence probabili-
fies a proposition to a certain degree?

One might similarly ask of chance: can we not analyse full belief
that the chance of heads on a coin toss is 4 without reference to some
supposedly corresponding partial belief that the coin will land heads?
The reason for denying this is the fact to which Kneale himself draws
attention (p. 18) “that knowledge of probability relations is important
chiefly for its bearing on action”. It follows as Kneale says (p. 20) that
“no analysis of the probability relation can be accepted as adequate. . .
unless it enables us to understand why it is rational to take as a basis for
action a proposition which stands in that relation to the evidence at our
disposal”. Similarly with chance. It must follow from our account that
the greater the known chance of an event the more reasonable it is to act
as if it will occur. What can intelligibly come by degrees, however,
turns out not to be reasonableness so much as a tendency to act as if an
event would occur. This concept of a quantitative tendency to action is
just that of partial belief as it has been developed by personalists. It is
thus available to provide in our account of chance that necessary
connection with action on which Kneale rightly insists. A great
difficulty facing other objective accounts of chance, notably the fre-
quency theories, has been to build such a connection subsequently on
to their entirely impersonal foundations (see e.g. Braithwaite, 1966).
In proceeding differently we shall of course later need to show that no
properly hallowed Humean doctrine is denied.

The other advantage which propensity theory has in basing itself on
partial belief is, curiously enough, over subjectivism in being less open
to charges of idealisation. We shall see that personalists credit people
with partial beliefs whose measure is a probability. Many of their
arguments, however, are presented as both normative and limited: e.g.
that if a man has certain partial beliefs he can be made to lose money
should they not be probabilities. Personalists take their theory to be
refuted neither by a person lacking partial beliefs altogether nor by
their failing to satisfy such personalist constraints of ““coherence”.

I-2



4 The limits of personalism

So de Finetti (1937, p. 111): ‘[Personalist] probability theory is not an
attempt to describe actual behavior; its subject is coherent behavior, and
the fact that people are only more or less coherent is inessential.” But de
Finetti does not disdain empirical support even on the same page as he
disdains empirical refutation: ‘ The notion of probability which we have
described is without doubt the closest to that of ““ the man in the street™;
better yet, it is that which he applies every day in practical judgments. . .
What more adequate meaning could be discovered for the notion?’
(my italics).

But however much or little it matters to personalists that people have
suitable partial beliefs, it matters less to propensity theory. Our subject
is not partial belief itself but that feature of the impersonal world,
namely propensity, knowledge of which can make some partial beliefs
more reasonable than others. The actual existence of people with such
partial beliefs is as immaterial to propensity theory as that of radio-
elements and dice is to games and decision theories. Given that the latter
theories provide a suitable concept of partial belief, propensity theory is
no further concerned with it in detail than thermodynamics is with
subjective feelings of warmth. Subjectivism, on the other hand, offers
partial belief as a surrogate for the objective chance that statistical
sciences ostensibly refer to. It is very material to one who would dismiss
objective chance as a fiction that mathematically suitable partial beliefs
exist to take its place.

Nevertheless, even for our purposes more must be said of partial
belief if propensity is to be intelligibly characterised in terms of it. It
may be as subjective a notion but it is not as plain to the senses as are
feelings of warmth. More argument is needed to show that the concept
of partial belief will serve our turn; in particular that partial belief is
suitably related to full belief, e.g. in a coin landing heads, and to
behaviour consequent thereon.

BELIEF AND PARTIAL BELIEF
Often enough, my cat’s behaviour makes it clear to me that he believes he is
about to be fed.
Jeflrey, 1965, p. 59
It is a commonplace of personalism that in ascribing a probability one
expresses a certain attitude which may reasonably be referred to by such
terms as ‘doubt’, ‘expectation’, ‘degree of conviction’ or ‘partial
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belief’. T mostly use ‘partial belief” as being the most common and
because of the connection to be here discussed with full belief. Similarly,
I use ‘belief” rather than ‘believing’, by analogy with ‘partial belief’.
There would be advantages in keeping ‘belief” for what is believed (a
proposition) and using ‘believing’ for the attitude a man has who
believes (cf. Russell, 1921, pp. 232—3 ; Braithwaite, 1932—3, ‘ The Nature
of Believing’; Wittgenstein, 1958, pp. 190—2). But such usage is un-
common enough for it to mislead and I do not wish to add ‘partial
believing’ to an already overloaded vocabulary.

It is usual to take propositions rather than events on the one hand or
sentences on the other as the sole objects of belief and partial belief.
Cases of belief or partial belief in events or states of affairs can be
trivially redescribed. If I believe or partly believe in a coin landing
heads I believe or partly believe in the truth of the proposition that it
does so. Similarly with belief or partial belief in a state of affairs such as
a coin being biased. On the other hand, we do not care what sentence
(English, French or whatever) isused to state that the event occurs or state
of affairs obtains. It does not, moreover, seem necessary either to belief
or to partial belief that the believer have any such sentence of his native
language in mind. A believer does not even seem to need a language at
all if Jeffrey’s cat is a fair example (p. 4 above). It likewise does not seem
senseless to ascribe partial belief in his master’s front door entry to a dog
running excitedly from front door to back as his master approaches the
side of the house. Hence for the present I follow Jeffrey (1965, pp.
48-59) in taking propositions rather than sentences as the objects both
of belief and of partial belief. In so doing I do not mean or need to insist
on the irreducible existence of propositions as bearers of truth. On that
large topic I wish to imply no fixed view. But the traditional termin-
ology here conveniently unifies diverse objects of belief and partial
belief and begs fewest questions of linguistic competence.

Assuming belief and partial belief to be diverse attitudes towards
propositions, what is the relation between them? There clearly is a close
relation and we may at least constrain the less by the more familiar
notion even if we cannot thereby completely define it.

The ordinary concept of belief is qualitative. One believes a proposi-
tion ¢ or not; the matter does not admit of degrees. Similarly with
disbelieving ¢, which I take to be believing ~g. In between it seems
clearly possible to have a definite attitude towards a proposition which
is yet neither belief nor disbelief but is partial belief. If partial belief is a
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quantity, it is obviously bounded by belief and disbelief. One extreme
of partial belief will be a state of belief, the other a state of disbelief.
Certainly less than extreme values will also count as belief. Not all one’s
beliefs are equally certain and a little doubt may yet fall short of
agnosticism. We cannot then take absence of belief as a necessary
condition of partial belief. Nor is there any point in asking just where
partial belief shades into full belief. It is enough that it must do so
somewhere and that our account of both concepts must allow for this
necessity.

If absence of belief is not necessary for partial belief, it is even more
clearly not sufficient. Lack of belief in g may signify merely a lack of
any attitude whatever towards ¢. Even if one requires also that ¢ be
“entertained” (cf. Braithwaite, 1932—3, . 132), it is not clear that a man
must believe, disbelieve or partially believe every proposition he
entertains. To say

‘I don’t know what to believe’
or

‘I don’t know whether I believe it or not’
of some topic or proposition is not really to report ignorance of one or
other, presumably subconscious, attitude. It is rather to report that the
speaker, although conscious of the question, is aware of being unable to
come to any of these definite attitudes towards it.

In any case, we shall see later (p. 14) that the notion of entertaining a
proposition is both too unclear in itself and too much tied to con-
sciousness to be an acceptable prerequisite of belief. It is no clearer in
the case of partial belief for which, for similar reasons, consciousness can
hardly be essential if it is not so for belief. Certainly Jeffrey’s cat and
our own uncertain dog cannot as plausibly be credited with consciously
entertaining propositions as they can respectively with believing and
with partly believing them. Entertaining ¢ is thus neither an effective
nor an intuitively acceptable supplement to the definition one might
have hoped for, namely of partial belief in terms of the absence of full
belief.

Nor can appeal to the theoretical nature of partial belief make such a
definition acceptable. No doubt games or decision theories may often
give adequate theoretical grounds for ascribing to a person partial
beliefs of which he is quite unaware. But this cannot be assumed to
work by definition in every case, even taking partial belief to be a
disposition and making every appeal to our unconsciousness of most of
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our own dispositions. It will be granted by the theory that some pro-
positions fail to induce any relevant disposition in a person simply
because they have not come, even subliminally, to his notice. (This is
not of course to deny that a man may be disposed to believe such a
proposition; but that is another matter.) Even some propositions that a
man has explicitly thought about, however, may still, as we have just
seen, fail to produce in him any awareness of belief or of partial belief.
One must not then beg the question by automatically postulating the
corresponding unconscious dispositional state. It may still be that the
relevant situation would call forth none of the appropriate displays of
behaviour on his part. And that in turn must not be ruled out by
counting every possible piece of behaviour extracted by compulsion in
such a situation as a sign of some such disposition. Measuring partial
belief by forcing a man to choose betting odds, for example, presupposes
that he has a partial belief which the chosen odds measure. His forced
choice does not itself show that he has any such disposition, because he
is forced to choose whether he has or not. If he lacks any disposition, he
will have to choose odds at random. That a man can always be forced
to choose odds in no way shows that he always has even subconscious
partial beliefs. AnIQ test will analogously show what IQ a child has if it
has any. But the mere fact that the test can always be applied is no
answer to a sceptic who denies the existence of any such mental
capacity as 1Q. Like IQs, partial beliefs cannot just be stipulated into
existence.

I conclude that partial belief, however highly theoretical a disposition
it may be, cannot be defined in terms of full belief, with or without
appeal to consciousness. Partial beliefs form a distinct family of
attitudes whose existence, nature and relation to the full beliefs that are
their bounds must be separately argued for.

THE NATURE OF PARTIAL BELIEF

That there is some such thing as partial belief may reasonably be
inferred from common usage. Venn puts the case well (1888, p. 139):

There is a whole vocabulary of common expressions such as, ‘I feel almost sure’,
‘I do not feel quite certain’, ‘I am less confident of this than of that’, and so on.
When we make use of any one of these phrases we seldom doubt that we have a
distinct meaning to convey by means of it. Nor do we feel much at a loss, under any
given circumstances, as to which of these expressions we should employ in preference
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to the others. If we were asked to arrange in order, according to the intensity of the
belief with which we respectively hold them, things broadly marked off from one
another, we could do it from our consciousness of belief alone. . .

So far so good, but of what does “our consciousness of [partial]
belief” consist? How in particular can so seemingly subjective a feeling
of doubt or degrees of confidence or certainty be compared in intensity
between one person and another?

At first sight partial beliefs are only subjective in the irrelevant sense
that Xand ¥, with partial beliefs ¢ and ¢, of different strengths in some
proposition ¢, do not contradict each other merely by saying so. It is
still an objective matter that X and ¥ have these partial beliefs. ¥ need
not share X’s partial belief ¢, but if he denies that X has it he is object-
ively wrong.

If partial belief were a feeling, a merely introspectible state perhaps
like a sensation of some kind, this appearance of objectivity could be
misleading. The comparison is worth pressing in fact, in order to make
clear that partial belief is not such a feeling but is rather a publicly
detectable disposition. This is indeed widely assumed but it has not been
widely argued.

Suppose first that X alone could know, by introspection, what his
partial beliefs were. Now try to suppose that on this basis he could
accurately report the strength of his partial beliefs. These assumptions
still seem to provide no public method of correlating X’s reports with
the similarly couched reports of other people. To suppose that ¥ could
be wrong, or even right, about X’s partial beliefs now lacks clear sense.
He could predict that X would use the expression ‘¢’ to report his
partial belief and could certainly be right or wrong about that. But he
would seem unable to know either what X applied ‘¢’ to or whether
he, ¥, would apply the same term to a similarly strong partial belief. As
for the terms ¥ uses to report the strength of his own partial beliefs, he
would have no way of telling if they were rightly applied to X. He
would effectively be unable either to assert or to deny the accuracy of
X’s reports. The rest of us, not being X either, would be similarly
impotent. In short, second and third person ascription of partial belief
would be pointless and its apparent objectivity spurious.

Arguments like this are now widely recognised to be ineffective in
showing sensations to be incommunicable; but the standard reply to
them is not available in the case of partial belief. The point is that even
if a sensation is private, the terms in which it is reported are not. They
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can for instance also be applied on the basis of standard causes of the
sensation being present, which is an entirely objective matter. My
confidence that my present visual sensation of sunlit grass is rightly
reported as being like yesterday’s similarly caused sensation relies
heavily on my knowledge that it is similarly caused. Through such
appeal to standard causes we can even give objective sense to such
remarks as

‘X sees yellow more green than ¥ does’
by getting X and ¥ to match a standard yellow light against various
standard mixtures of red and green light (Gregory, 1966, p. 1277). The
tests of matching are of course objective behavioural tests of ability to
discriminate such as are used to test and measure colour blindness. We
can then afford to concede the obscure claim that Xand ¥ cannot com-
pare absolutely the sensations they respectively receive from the same
standard sources of coloured light. It is enough that they can match
other colours objectively against such public standards and so describe
and compare their visual sensations in these public terms.

Could we not similarly assess X’s introspectible feeling of partial
belief by getting him to match it with that induced by some standard
source of it? It may, that is, be as senseless (or at least as immaterial) as
it is with visual sensations to remark that we cannot compare absolutely
the states of mind of X and ¥ induced by some standard cause of doubt.
So long as doubt can be matched against what some standard causes
induce we may have all that is needed for objective comparison of felt
partial belief, as we do with seen colour.

Up to a point, indeed, the analogy holds, and has been used to
characterise degrees of partial belief. Suppose X to be in doubt about
the truth of a proposition ¢ which will be settled by some agreed future
observation. Let it be one of the usual propositions about the result of
throwing a die or that a man dies or that some atom decays in the next
year or day. Then X is offered the following choice of bets: a fixed prize
either if ¢ turns out true or, alternatively, if a standard coin that every-
one agrees to be unbiased lands heads on a given toss. If X’s partial
belief in ¢ makes him indifferent for all prizes which of these prospects
of gain he will take, one may surely conclude that whatever it feels like
to him it matches in the relevant respect his partial belief in the standard
coin landing heads. The coin is moreover a very plausible inducer of a
standard doubt. For X to believe it unbiased is by the same test for him
to have equal partial belief in it landing heads and tails; he would
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presumably feel indifferent between getting the prize on the one and
getting it on the other.

This test is in fact appealed to by Ramsey (1926, p. 177) to show inzer
alia that partial belief is objectively measurable. Where it differs from
the colour matching test is that the latter presupposes the existence of
objectively coloured objects. Reference to the light sources having
standard colours cannot be replaced by reference to them /looking red,
green, etc. The whole point is that there are no behavioural tests of
whether a given standard really “looks the same” colour to different
observers. Hence the objective colour of the standard source is needed
precisely to give sense to second and third person application of the
concept of something looking of that colour. Now if partial belief were
similarly accessible only to introspection, lacking behavioural tests of
its strength, Ramsey would equally have to rely on the standard coin
actually being unbiased. It would not do for it merely to induce similar
feelings of partial belief in it landing heads in different people. The
whole point of the coin would be to give sense to such statements of
similarity in feelings of partial belief. Ramsey’s test would have to
presuppose the existence of objectively equal chances of the coin landing
heads and tails. Of this one would have to be convinced in any particular
case by checks of symmetry, frequency, etc., just as one checks the
specification of a standard source of red light. In each case one could be
shown to be wrong, but only by reference to a further standard whose
objective chance or colour was not in question.

This is of course a fantasy. Partial belief cannot possibly presuppose
objective chance in the way coloured sensations may presuppose
coloured objects. Perceiving objective colours is obviously a vastly
more direct process than perceiving chances. I do not insist that the
colour of sensations zs thus definable in terms of their standard causes.
But even if it were, that would give no reason to assume the same of
partial belief. It is quite clear that our concept of partial belief could be
applied just as well in a deterministic world devoid of chance. A
subjectivist like de Finetti (1937) must indeed suppose this to be our
situation. His view may be false but it is certainly not a contradiction in
terms. On the other hand, Ramsey’s is a patently reasonable device for
comparing partial beliefs. Partial belief therefore cannot be a merely
introspectible feeling. There must be independent public criteria for its
presence and strength.

Partial belief may of course often be attended by related feelings; as



The nature of partial belief 11

Braithwaite remarks (1932-3, p. 142) in the extreme case of full belief,
“in a great number of cases I have a feeling of conviction when I
believe: indeed I think that this feeling of conviction may reasonably be
used as evidence for the existence of the belief”. The evidence of course
is inductive, based on correlation of the feeling with independently
attested belief. This correlated feeling no doubt explains why one
generally knows more than others do about one’s own beliefs.

We may readily concede similar correlations of partial belief with
feelings of “partial conviction” by which a man may become peculiarly
well informed of his own doubts, as yet publicly undisplayed. That does
not make feelings part either of belief or of partial belief, nor need
feelings by any means always accompany them. Thus Braithwaite
observes (1932—3, p. 142) that “I believe quite thoroughly that the sun
will rise tomorrow, but experience no particular feeling attached to the
proposition believed.” Kneale similarly notes (1949, p. 15) that “when
we realise that 2 +2 = 4, we do not sweat with any feeling of supreme
intensity .

Whether or not partial beliefs are correlated with introspectible
feelings of doubt and certainty, the latter are not our concern. Kneale’s
mistake in denying more than marginal relevance to partial belief
follows directly from his taking it to be such a kind of feeling (1949,
pp- 14-17). He observes of himself that he “can discover no such feel-
ing” (p. 14); complains of it that it could not be adequately measurable
(p- 15); and remarks in the above quotation the absurdity of supposing
full belief to be an extreme of it.

Oddly enough, one of Venn’s objections to partial belief as a founda-
tion for chance is precisely that it is ot an introspectible feeling; and so
not, Venn thinks, accessible except by reference to the frequency with
which the corresponding full belief is displayed. In this he contrasts it
(1888, p. 158) with surprise, ““to which we are thus able to assign some-
thing like a fractional value” and which “has what may be termed an
independent existence; it is intelligible by itself...Hence. . .it is as
applicable, and as capable of any kind of justification, in relation to the
single event, as to a series of events. In this respect. . .it offers a complete
contrast to our state of belief about any one contingent event”. Venn is
quite right in thinking that whatever is needed to characterise chance is
not measurable by introspection, and right also in pointing to the crucial
difficulty of justifying partial belief in a single event. He is wrong only
in supposing that states of belief must be measurable by introspection if
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at all, and in supposing the problem of justification to be soluble by
dismissing partial beliefs in favour of frequencies.

We find that partial belief is no more definable as a feeling, measurable
by introspection or by reference to its standard causes, than it is
definable by absence of full belief. We are left with the alternative
account of partial belief as a disposition to indulge in publicly describ-
able behaviour, e.g. specifically behaviour in betting situations. The
detailed justifying of this specification will concern us later. Here I note
merely, before giving a suitably related account of belief, that this view
is implicit in all the main personalist theories. Ramsey in particular,
proposing his measure for partial belief, takes it to be dispositional.
While explicitly avoiding any commitment to subjectivism, Ramsey as
carefully avoids any appeal in characterising partial belief to the existence
of chances. The standard coin does not have to be unbiased, only to be
thought so, i.e. to induce equal partial beliefs in it landing heads and
tails. Equality of partial belief itself is characterised dispositionally by
“belief of degree 4 as such a belief as leads to indifference between
betting one way and betting the other for the same stakes”. (Ramsey,

1926, p. 178.)

THE NATURE OF BELIEF

The view of belief as dispositional is naturally congenial to one who
takes partial belief to be so. It is surprising only that the two have so
rarely been related. Personalists on the one side have given scant and
superficial attention to philosophical accounts of belief; on the other,
Price (1969) for example treats Locke and Cardinal Newman as the
leading writers on whether belief admits of degrees. No doubt much
that needs saying about belief is not germane to our enquiry. We need
satisfy ourselves only that our view of belief is consistent with the
extreme cases of our view of partial belief. For example, as partial
beliefs of increasing strength shade into full belief, we shall not want to
transform a steadily changing disposition abruptly into an essentially
introspectible mental act of assent. It will also be as well before develop-
ing a behavioural measure for partial belief, to check that the two
extremes of such behaviour are plausible manifestations respectively of
belief and of disbelief.

It is now widely agreed that belief at least contains a dispositional
component. The dispositional account of belief is well given by
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Braithwaite (1932—3), and has largely been conceded by Price (1969).
It is not just that one has certain dispositions to believe propositions
one is not actively considering. A sleeping man, for instance, will
obviously be credited with this amount of dispositional belief however
his state of conscious active assent to a proposition is further analysed.
The important claim of the dispositional account is that active assent,
whatever it may feel like, cannot rightly be ascribed to a man who
would not exhibit appropriate behaviour in relevant circumstances. The
relevant behaviour moreover is substantially non-verbal. The crucial
test of belief is normally how a man acts, not whether he says ‘yes’
when asked. We may wish to discourage lying and self-deceit, but can
hardly hope to make them logically impossible.

Price (1969, pp. 256—9) is wrong, however, to distinguish as sharply
as he does on these grounds between speech and other action. It is just
as feasible to simulate action that characterises a belief as it is to lie.
One can even deceive oneself in some non-verbal display of belief. An
actor may wordlessly portray belief in some tragic event, and an
audience may be unselfconsciously moved thereby to tears. Or a
jealous husband may carefully set out to convince even himself by his
displays of trust in his wife. Verbal behaviour is only less conclusive in
that it is usually the easiest and cheapest method of deceit, and con-
sequently often the least reliable evidence of belief.

Linguistic evidence of belief may be permissible, but Jeffrey’s cat
(p- 4) strongly suggests that it is not necessary. I have indeed taken
propositions as the objects of belief (p. §) precisely to avoid making
linguistic competence a prerequisite of it. That it makes sense of
ascribing beliefs to speechless creatures need not of course be a merit
peculiar to the dispositional theory. It might make sense to credit cats
and dogs with characteristic feelings of both full and partial belief. But
only if belief is also evidenced in their necessarily non-linguistic
behaviour could we ever have grounds for doing so. Such ascription of
belief would be quite inexplicable unless belief is essentially disposi-
tional.

Itis a further merit of the dispositional account of belief that it makes
clear sense of unconscious beliefs, as Price characterises them (1969,
pp- 300-1): * ‘4 believes that p’ can still be true, even though 4 does not
assent to the proposition p when he entertains it and attends to it.” This
covers the cases both of self-deceit and where A4 is simply unaware that
he has any belief on the matter at all. This possibility and that of
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animals having beliefs cast doubt, however, on the force of requiring
dispositional belief sometimes to be “entertained” as well. The idea is
that the state of active assent, at least, must include entertaining the
proposition believed (Braithwaite, 1932—3, p. 132), or have done so on
some past occasions (Price, 1969, p. 251). Now there is only force in
this requirement if ‘entertaining’ here refers to some conscious aware-
ness of p. But then it seems to rule out belief in animals, who cannot with
clear sense be said to entertain consciously what they admittedly could
not formulate. And if ““entertaining” may be credited to a believer just
because he exhibits the behaviour to which the belief disposes him, the
requirement is empty. If given greater content, moreover, it would rule
out also unconscious beliefs of which a person has never been aware.
Yet surely one can discover that one had always unconsciously assumed,
without ever thinking about it explicitly, that the quickest way from
London to Tokyo was over the North Pole.

A dispositional as opposed to an ““occurrence” account of belief need
not in fact proceed in two stages. It need not tack on to the undeniable
disposition to active assent that a sleeping or inattentive man must be
credited with, a separate dispositional account of active assent. It need
only credit the believer with a single disposition, namely to indulge in
the relevant behaviour. No doubt behavioural displays of belief in
people will normally be accompanied by conscious awareness of the
belief displayed. That hasbeen noted already in the discussion (pp. 10—11)
of partial belief, as has the main point that such awareness or feeling of
conviction is not essential.

The dispositional theory has apparent difficulty in explaining how
someone can seemingly be directly aware of beliefs that he is not
outwardly displaying. This objection has, I think, been adequately met
by Braithwaite (1932—3, pp. 139—43). His appeal to correlated feelings
of conviction affording evidence for one’s own beliefs has already been
referred to (p. 11). He notes in addition that we can have “(1) A direct
induction from my knowledge of my behaviour in the past to know-
ledge of my behaviour in the future. (2) By means of Gedankenexperi-
mente: 1 may consider how I shall act in the future in a given situation,
and infer that I shall act in the way I think I shall act.”

Braithwaite similarly (pp. 137-9) meets objections thata dispositional
account is implausible of beliefs which have only remote implications
for action, for example beliefs about the past. I find his rejoinders
convincing; but in any case such difficulties would not impair the
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theory’s adequacy for our present purposes. I am concerned with partial
belief and therefore with belief itself only in future physical happenings
that can have chances, such as the fall of dice and men, the decay of
atoms, the spread of disease. The relevance to possible action of belief
in such future events is not doubtful, as it might be thought to be with
events in the remote past. No doubt chancy events occurred then too
but it is the partial belief of someone to whom they would then have
been future that is our concern.

In the case of partial belief, moreover, it is a great merit of personalist
theory that it is able to prescribe a single kind of action to display
dispositional belief in events of every kind, e.g. choosing odds for a
bet on its occurrence. The homogeneity that can thus be imposed on the
most diverse partial beliefs indeed justifies treating them as a single
family of attitudes. It is easier with partial belief than with belief itself
to specify what can count as a display of the alleged disposition and the
dispositional account of partial belief is accordingly the less contested.

There must, however, be a connection between the actions that
respectively display belief and partial belief if the former is to be taken
as an extreme case of the latter. The connection is indeed reasonably
evident. Suppose that with given desires and other beliefs a belief in ¢
would be displayed by action 4 in situation S. Suppose that partial
belief in ¢ steadily increases as measured by acceptable odds on its truth.
Now try to suppose that a partial belief, so measured and so increasing,
never turned into full belief. This is surely incoherent: to be disposed to
risk an indefinitely great loss (for a given stake) should ¢ prove false,
but not otherwise disposed to display belief in ¢ by doing 4 in S. In
other words, if S is an appropriate betting situation, being prepared to
offer sufficiently short odds on ¢ — varying no doubt with ¢ and the
believer — just is one way of displaying belief in ¢. Belief, as Price (1969,
p. 294) says, “is a multiform disposition, which is manifested or
actualized in many different ways”’. What our account needs, and what
seems to be true, is that this betting behaviour is always one way of
manifesting belief at least in the events to which chance might be
ascribed.

Naturally much else is true of belief which needs showing to be
possible of a disposition. The main points have been made in the
literature and need not be laboured here. Price (1969, pp. 246—7) notes
that a disposition need not persist any great length of time, and Braith-
waite (1932—3, p. 139) that it can intelligibly change without ever being
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displayed. Thus the facts adduced by Venn (1888, chapter 6, §§7-8) and
others about the fluctuating nature of belief and the influence on it of
other emotions count not at all against it being a disposition. Analogous
instances come readily to mind. My weight is undeniably nothing but a
multiform disposition, inter alia to depress excessively the bathroom
scales. Yet it fluctuates incessantly without my being weighed, some-
times indeed because I worry, being made too directly conscious of it
by correlated feelings of grossness.

I find, then, no objection to construing the propositional attitudes
called ‘partial beliefs’ as a family of dispositions which shade appro-
priately into the dispositional attitudes of belief and disbelief. These
attitudes are what personalists rightly claim to be expressed in the
making of probability statements. But is it true, as subjectivists
allege, that probability statements can do nothing else? To that question
we now turn.

SUBJECTIVISM

I met a timid old lady [once in a railway train] who was in much fear of
accidents. I endeavoured to soothe her on the usual statistical ground of the
extreme rarity of such events. She listened patiently, and then replied: “Yes,
Sir, that is all very well; but I don’t see how the real danger will be a bit the
less because I don’t believe in it.”

Venn, 1888, p. 157

The propensity theory is an a priori theory about what, if anything,
makes some chance statements true. It does not itself assert that any
chance statements are true, that is it does not deny that the world may
be entirely deterministic. I suppose some chance statements to be true
since I believe as a matter of fact that some things have propensities.
Anyone who accepts this account of chance will suppose so too if he
believes with natural piety the sayings of statistical science. But there is,
for example, no logical necessity either in a coin being biased or in it
being unbiased. There is no question of trying to prove a coin’s bias or
lack of it by this or any other a priori theory. Naturally, there might
neither be nor have been thought to be chances, and scientists might
never have proposed and seriously tested statistical laws. The theory
would then have been of as little interest as a theory of the conceptual
ramifications of witchcraft now is to most of us, but it would be none-
theless capable of truth. It is no part of the propensity theory itself that
there are any propensities. It is a part of it, however, that there can be
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propensities and that it is the province of statistical science to settle
whether there are or not.

While, therefore, I need not argue for the existence of chances, I do
need to meet a priori arguments against them. Such arguments may
lead to a stronger or a weaker conclusion. The stronger conclusion
would be that the concept of chance is incoherent. Statistical statements
then, ostensibly about chances, would have to be given some more
plausible alternative reference in order to be capable of truth. The
weaker conclusion would be that true statistical statements always
could be given such alternative reference even if they did not have to be.
We would have, and statistical science would give us, no reason to
assert the existence of chances except as logical constructions out of
such other things as frequencies or personal betting rates. Objective
chance would be at least redundant and at worst conceptually im-
possible, if such arguments were sound.

Arguments tending to these conclusions are associated with those
who have developed the personalist theory of probability although
notably not with Ramsey (1926) himself. Thus de Finetti (1937, p. 141)
comments on such an assumption as that a coin has a fixed but unknown
bias, so that tosses of it could be “independent events with constant but
unknown probability p”: ‘one would be obliged to suppose that
beyond the [subjective] probability distribution corresponding to our
judgment, there must be another, unknown, corresponding to some-
thing real. . . From our point of view these statements are completely
devoid of sense.” Sinceastatement “ completely devoid of sense”” must,
one supposes, necessarily fail to be true, we have here an expression of
the stronger subjectivist conclusion. Jeffrey (1965, p. 190) tentatively
proposes the weaker conclusion: ‘in the interest of conceptual economy
one might wish somehow to reduce the objectivistic concept [of
probability] to the subjectivistic one. I shall now propose a reduction
of a sort.”

Many personalists admit that subjective doctrines are really inci-
dental to personalism, and profess only sceptical agnosticism about
objective probability. This agnosticism, however, relates less to chance
than to the possible success of Carnapian attempts to argue a priori the
existence of inductive probability. Thus Savage (1954, pp. 6~7) supposes
that “until the contrary be demonstrated, we must be prepared to find
reasoning inadequate to bring about complete agreement [in sub-
jective probability]”. Savage does not seriously suppose that empirical

2 MMR
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chance, as opposed to the reasoning of inductive logicians, might
justify such agreement. That is because he assumes that if chance exists
it must have a frequency analysis which disclaims any relevant relation
to subjective probability. But a personalist who accepted a propensity
theory could let some of his agnosticism be resolved by the results of a
statistical science. Whether the rest of it could also be resolved by an
a priori inductive logic is not for propensity theory to say.

THE OBJECTIVISM OF USAGE

In challenging the need for personalism to be subjectivist, some
seemingly trite things need to be said and argued for. First of all that
chance statements are rarely, if ever, meant just to convey subjective
attitudes of partial belief. Chance statements certainly do express such
attitudes, and their doing so indeed gives an essential point to making
them. What is at issue is whether expressing partial belief can be all a
chance statement does.

When two people express different partial beliefs about a proposition,
they clearly do not thereby contradict each other. That is true however
similar their situations, knowledge or preferences may be. So if all
probability ascription ever did was to express such an attitude, it would
never assert the existence of any objective probability and a fortiori
never of any chance. Chances might still exist, but the supposition that
they did would be pretty pointless since no statistical utterance could
bear on it. For suppose ascriptions by two people of different chances
to the same event (or set of events) expressed only diverse beliefs about
the corresponding proposition (that the event or events occur). Since
they would necessarily fail to contradict each other, no sense would be
given to one rather than the other being objectively correct. If there can
be chances, then the ascription of one (e.g. 0.5 to heads on a coin toss)
must be able to contradict the ascription by someone else of a different
one (e.g. 0.3) to the same event. To admit even the possibility of
chances, we must take chance statements not only to express a partial
belief but also or instead to assert that it is in some way objectively more
justified than is the expression of some other partial beliefs, regardless
of whose they are.

It may of course be, if there are objective probabilities, that what
justifies some partial belief is not a property of an event but some
relation the proposition partly believed bears to other propositions. The
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other propositions may even be characterised in an apparently subjective
way as those known or reasonably accessible to the believer. This is
done for instance in Carnap’s requirement (1963, p. 972) that a rational
man should assess the probability of a proposition by its relation to his
“total evidence” for and against it. But that probabilities may be
relational, even in such a way, does not show at all that they are
subjective. A man can be objectively wrong both about what is known
or reasonably accessible to him and about its relation to a proposition he
partly believes. A Carnapian probability statement which asserts the
utterer to be right on these matters does more than a subjective express-
ion of an attitude could. Even Keynes’ clear insistence (1921, p. 4) on
this elementary point, however, has not prevented repeated confusion
of relational with subjectivist views and consequent misappropri-
ation of the former to the latter category (e.g. by von Mises, 1957,
pp- 75-6)-

Thus probability ascriptions merely expressing attitudes make no
more sense of objective probability as a relation between propositions
than they do of it as a property of events. Two people may address
themselves to precisely the same relation between precisely the same
propositions and still they will not contradict each other in expressing
different attitudes or in reporting that in relevantly identical situations
they do or would have different partial beliefs. Even one man only
contradicts himself straightforwardly if he both asserts and denies of a
proposition that he has.a given attitude to it at one time. Subjectivism
thus entails that ascriptions of different probabilities are sufficiently
reconciled by numerical diversity in the ascribers. Given such diversity,
a subjectivist must hold that the truth of one ascription can never entail
the falsity of the other. This is just what any objective theory of
probability, relational or not, logical or propensity, must deny. A
personalist who wishes also to deny it must therefore deny that all a
probability statement does is express partial belief.

So the first thing to show is that probability ascriptions are in fact
normally taken to do more than express partial belief. To show this
some preliminary sampling of common usage suggests itself.

In English a wide variety of words may be used in making a sentence
make what everyone would agree to be a probability statement. Take
some mildly forensic examples:

(1) ‘We don’t really know, but most probably the robbery occurred
yesterday.’
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(2) ‘The way the lock was forced makes it most improbable that it
was an inside job.’

(3) ‘They were much more likely to have used a chisel than a pen
knife.’

(4) ‘I expect they took their time over it.’

(5) ‘We were pretty sure some attempt would be made.’

(6) ‘The probability is, being amateurs, they didn’t realise that it is
virtually unsaleable.’

(7) ‘The chances are enormously against them pulling another job

here so soon.’
Of these sentences, only (4) and (5) would naturally be used merely to
convey attitudes, and it is significant that neither contains any of the
terms ‘probable’, ‘improbable’, ‘probably’, ‘probability’, ‘probabili-
ties’. Not that invented instances prove anything, but it is in fact very
difficult to construct naturally subjective English sentences explicitly
in terms of probability.

Moreover, closer inspection shows incidental reasons for (4) and (5)
appearing to be subjective. Suppose their hearers, as good subjectivists,
reply with sentences so negated as to give as little appearance of con-
tradicting (4) and (5) as possible:

(~ 4) ‘I do not expect they took their time over it’,

(i.e. not ‘ I expect they did not take their time over it’);

(~ 5) “We were not pretty sure some attempt would be made’,
(i.e. not: ¢ We were pretty sure some attempt would 7oz be made”).
First, (~ 4) and (~ 5) might be used to convey a lack of any attitude
at all (see pp. 6—7). If so, clearly no question arises of their use being
intended to deny objective justification to the attitudes conveyed by (4)
and (5). And even if (~ 4) and (~ §) are used to convey positive
attitudes, they might secondly be used to remark a difference in the
objective situation or knowledge of the hearer which would account
objectively for his different attitude being equally appropriate. Thus he
might supplement (~ 4) with

‘I’ve seen these chaps before, which you haven’t, and they don’t
hang about on jobs like this’;
or (~ 5) with

‘We hadn’t been told, as you had, that they knew the stuff was here’.
Thirdly, the past tense of (5) and (~ 5) makes them irrelevantly
subjective where the present tense statements might well not be so.
Compare:
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(i) ‘I said that ¢’
reporting a past assertion which in no way reasserts that ¢ with

(ii) ‘I say that ¢’
expressing a present assertion that ¢g. The reply

‘I deny that ¢’
may clearly be used to contradict (ii) even though the reply

‘I denied that ¢’
obviously in no way contradicts (i). Similarly, the relevant subjective-
ness of the present tense version of (5),

(5") “We are pretty sure some attempt will be made’,
must not be inferred from the obvious failure of (~ 5) to conflict as a
reply with (5) itself.

Making every allowance to us on these grounds, a subjectivist might
still insist that such present tense sentences as (4) and (5') can naturally
be used subjectively. Granting that, it remains doubtful, as I have
hinted, that their merely subjective sense survives translation into
explicit terms of probability. Let us admit that

‘I expect that ¢’
merely expresses partial belief in g; it is less clear that

‘I think that ¢ is probable’
or even that the less stridently objective

‘I think ¢ probable’
does so. The reply

‘I do not think that ¢ is probable’
would normally be understood as relevantly opposed, neither remark
being taken merely to report what the speaker’s private opinion was.
The speakers would, I suggest, be taken as asserting their conflicting
opinions (a) that ¢ is (objectively) probable and () that ¢ is (objectively)
improbable. The prefix ‘I think that” in ‘I think that 7’ indeed generally
signifies tentativeness in the speaker’s opinion that 7 or his awareness of
lacking conclusive evidence that r. Nevertheless, I think that an utter-
ance of ‘I think that 7’ is, in general, an assertion, however tentative,
that 7. If this is so, special reasons must be adduced for us to make an
exception just when r happens to be explicitly a probability statement.

But whether or not sentences of the forms ‘I think ¢ probable’,
‘I think g improbable’, etc. are normally used to make merely subjective
statements, the sentences (1), (2), (3), (6) and (7) above, which lack any
such qualifying expression as ‘I think that’ are clearly never so used.
On this point personalists have sometimes been disingenuous in their
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choice of examples. Thus Savage: ‘If, for example, a statistician were to
say, “I do not know the p of this coin, but I am sure it is at most one
half,” that would mean in personalistic terms, “I regard the sequence of
tosses of this coin as a symmetric sequence, the measure M of which
assigns unit measure to the interval [0, 3]”.” (1954, p. §3.) That is too
easy: the statistician’s remark is subjective to start with. The question
is what plausible alternative the personalist has to a statistician’s
utterance, however tentative, of
‘The p of this coin is at most one half’

and whether that would be as convincingly subjective as Savage’s
sentence beginning ‘I regard’.

SUBJECTIVE SURROGATES FOR CHANCE

.. .proceed to consider what a wise man would think and call that the degree

of probability.

Ramsey, 1926, p. 163

That we mostly mean our probability statements to be objective
disposes of no positive subjectivist argument. What it does is put on
subjectivists the onus of accounting for what they must take to be a
popular illusion of objectivity. Subjectivism must first account for the
wide intersubjective agreement on some probability statements which
gives their objective truth such prima facie plausibility. These are just
the standard cases of chance with which we shall be concerned: the
chances of radioactive decay and of other physico-chemical transitions,
of the outcomes of gambling trials and genetic experiments, of death,
disease and accidents in various clinical and social settings. Of these the
subjectivist must tell a causal story showing how perception of entirely
non-probabilistic features of the world leads diverse people to similar
partial beliefs in the truth of the propositions in question. This causal
story is the subjective surrogate for the objectivist account of agree-
ment as resulting from a shared perception of objective chances. To
this subjective surrogate, which personalists have tried to provide in
the precepts of Bayesian inference (see e.g. de Finetti 1937, p. 152), we
shall return in chapter 2 (pp. 45-9).

Subjectivism must not only account for agreement on chances, it
must also give a subjective point to the widespread activities of asserting,
disputing and modifying chance statements. Since he must hold all these
statements to fail in their intended reference to objective probabilities,
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a subjectivist must suppose them to fail uniformly of truth. This failure
may be put in terms of the statements lacking truth value or of not
being made at all by the use of statistical sentences (Strawson, 1950,
1952). De Finetti’s description of sentences referring to unknown
chances as “devoid of sense” (see p. 17) seems best taken this way.
With Russell (1905, 1919), I prefer to construe sentences that fail to
refer as making false statements; in this context the difference is only
terminological. If in these terms all chance statements are supposed
equally false, the point of debating them cannot be that of picking out
the class of true ones. There must be a subjective surrogate for truth, if
the objectivist presuppositions of usage are to be explained away.

There is nothing terrible in the discovery that a presupposition of
common usage is mistaken. The fact that, as Kneale (1949, p. 7) puts it,
“we think it possible to argue about probabilities and maintain that
some men’s judgements are better than those of others” does not of
itself dispose of subjectivism. Statistical talk may presuppose objective
probability, but that does not make its existence part of the meaning of
‘probability’; and if it did, that still wouldn’t prove that objective
probabilities exist. One might as well conclude that a subjective account
of Christian discourse and objective atheism must both be wrong
because Christian discourse presupposes God’s existence. Or that
England must have existed for centuries because historians all write as
if it had. These are not conclusive answers to scepticism either about
chances, God, or the past.

But a subjectivist, to meet the facts of usage, must give alternative
sense to the utterance, and acceptance by others, of one chance state-
ment rather than another. The required sense can be provided by a
notion of sincerity which is available to personalists. We are agreed that
an essential role of a chance statement is to express partial belief, and
whoever makes it may or may not have the partial belief it expresses. If
he has, let us call the statement sincere’; if not, ‘insincere’. Then the
subjectivist surrogate for truth in his reconstruction of objectivist usage
will be sincerity. The “right” (if trivially false) chance statement to
make will be one that truly expresses the speaker’s partial belief. A
“wrong” chance statement will be one that expresses some partial
belief the speaker doesn’t have. What is wrong about it will be not that
it is false —a trivial defect for the subjectivist, shared by all chance
statements — but that it is insincere.

Some objections and complications to this notion of sincerity need
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brief remark. In its normal sense ‘sincerity’ requires more than is
granted here. In particular it normally requires belief in the truth of the
statement made. In this sense a subjectivist cannot be sincere in making
a chance statement. But to complain of that would be trivial; if weare to
trade on the virtues of sincerity, we must settle for a weaker notion to
which having the appropriate partial belief is sufficient as well as
necessary.

The complications arise from the dispositional account we have given
of partial belief which makes it possible to be unaware of one’s partial
beliefs. So a man may deceive himself and sincerely (in its normal sense)
express in his chance statement a partial belief which, when it comes to
the behavioural test, he does not display. Whether this ever or often
happens is not of much consequence: we may either say of such cases
that the man ‘thought himself sincere’ or add self-knowledge to
sincerity in the subjectivist criterion for propriety of statistical utter-
ance. The essential point is that making a chance statement is at least a
standard way of expressing a partial belief, namely the one the speaker
would have if sincere and not self-deceived.

We may also admit what one might call ‘group sincerity’, where a
probability statement is approved as expressing the shared beliefs of
some group of people. The prestige of some scientific group may even
make statements of their shared beliefs of such weight and interest to the
public at large that they provide a standard by which deviant beliefs
can be dismissed as erroneous. There is thus even a subjective surrogate
for objectivity itself, endowing the consensus of professional physicists,
say, with infallibility at least in matters of chance. This may be less than
congenial to those outside the nuclear or genetic temples, but it
obviously carries a shrewd appeal to the high priests within. Thus
Borel (1924, p. 50) affirms:

There are cases where it is legitimate to speak of the probability of an event;
these are the cases where one refers to the probability which is common to the
judgements of all the best informed persons. . . One could, in order to abridge our

language, while at the same time not attaching an absolute sense to this expression,
call these probabilities objective probabilities.

Now it is doubtless desirable to defer from time to time to the informed
opinion of physicists in talking of “the probability that an atom of
radium will explode tomorrow” (Borel’s example), but that is hardly
what it means to talk so. An objectivist would find it a bizarre conclusion
that the properties of radium have respectfully altered down the years
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to match the changing but ever-infallible consensus of “the best
informed persons” at the Cavendish laboratory and elsewhere. (The
subjectivist, of course, would retort that his claim is precisely that there
is no such probabilistic property of radium.)

Here, however, we must distinguish general from specifically
probabilistic subjectivism. Borel takes this supposed probabilistic
property of radium to be “a constant of the same kind as the density of
copper or the atomic weight of gold. . .always at the mercy of the
progress of physical-chemical theory”. But the truism that even well
informed opinions may change on objective matters affords no argu-
ment for general subjectivism. Anyway, as Hacking (1965, p. 211) has
observed in this context: “if all flesh is grass, kings and cardinals are
surely grass, but so is everyone else and we have not learned much about
kings as opposed to peasants”. I need not dispute a general subjectivism
whose acceptance would affect only in terminology a discussion of the
relation of chance to other supposedly objective concepts. I take the
subjectivist then, unlike Borel, to deny the existence only of chance
properties in radium, leaving it possible for even “the best informed
persons” to be objectively wrong about such matters as its density and
its atomic weight.

Bizarre as the subjectivist rewriting of our supposed knowledge of
radioactivity may seem, we could be forced to accept it by sufficiently
compelling independent arguments for subjectivism. The objectivist
assumptions of usage could then be explained away in the fashion I have
outlined. But compelling independent argument is needed for so
strained a reconstruction of physical theory; otherwise the general
presumption must remain that people can sometimes be right in what
they mean to say about chance as about other matters.

I have emphasised that an objectivist need not assume physicists’ talk
to be infallible in the way subjectivists must assume their shared partial
beliefs to be so. All the probabilities I am concerned with are empirical.
Apart from logical and mathematical errors, the most well informed
physicist may just be wrong in taking the half-life of radium (the length
of time in which the chance of a radium atom decaying is %) to be #,. It
might in fact be #, (# #) or, pace current theory, there might be no
half-life at all. It is logically possible that what is chemically identified
as radium simply is not, despite appearances, a radioelement as currently
understood. Many current assumptions about chances might be false
and they could conceivably all be rejected in the light of future science.
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But that, as Borel admits, is nothing peculiar to chance. If subjectivism
is to be as impervious as it must claim to be to the apparently objective
successes of the statistical sciences, it must be content to rest equally
unsupported by their hypothetical future failures.

In developing propensity theory it will be necessary to deal with
other arguments against the possible existence of chances. Some of
these stem from metaphysical determinism, some from supposed
consequences of a Humean view of laws of nature or of induction.
None are compelling enough to warrant taking subjectivist substitutes
for the intendedly objective chance statements that we need to suppose
true. It may be conceded to Savage (1954, p. §3) and company that
“the meaningfulness of such [objective] propositions does not constitute
an inadequacy of the personalistic view of probability” (my italics).
What does constitute the incompleteness of personalism as an account
of chance and the falseness of subjectivism is the intended meaning of
such propositions and with it their possible truth.
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It is not enough to measure probability; in order to apportion correctly our
belief to the probability we must also be able to measure our belief.
Ramsey, 1926, p. 166

SINCERITY for an objectivist, like patriotism for Edith Cavell, is not
enough. Also like patriotism, perhaps, it is not even necessary. A
chance statement is not made true by sincerely expressing the speaker’s
partial belief. What makes it true is a correspondence between the
partial belief it expresses, sincerely or not, and some objective feature of
the world. We take the feature to be quantitative, as in the continuously
variable bias of a die. For an appropriate correspondence to be possible
we want a similarly quantitative measure of partial belief. Consider a
person aware of the changing bias of a die: we wish to be able to urge
him to change by some corresponding extent his partial belief in it
landing six when thrown.

It is not immediately evident that our wishes can be fully gratified.
Partial beliefs might be comparable only in terms of greater or less. We
should then be able to say only that a partial belief grows or lessens and
our statements of correspondence would be limited accordingly. When
the chance of throwing six with a die rises by 0.2, we could only ask the
corresponding partial belief to become greater than that corresponding
to any smaller rise in the chance. There would be no further sense in
asking how much change occurs in a partial belief or how much greater
one partial belief is than another. Kneale (1949, p. 15), mistaking partial
belief to be a feeling, claims that ““it is absurd to say of one feeling that
it is just twice as intense as another of the same kind, because feelings of
great intensity do not have parts which are themselves feelings of less
intensity . We have already seen (pp. 8-12) that partial belief is not a
feeling, but even so one might wish or be obliged to confine oneself to
comparative statements about it. Koopman’s development of personal
probability has a comparative basis with the primitive relation

‘a on the presumption % is no more probable than & on the presump-

tion £’
[27]
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where a, b, 4, k are all such “experimental propositions” as that a coin
lands heads in such-and-such a time and place, and the relation is what
“agiven individual at a given moment may be regarded as assenting to”’
(Koopman, 1940, pp. 162—3).

Personalist theory has however given sense to stronger than
comparative measures of partial belief. The technical part of this
achievement is well known ; in what follows I attend more to its rationale.
I concentrate in particular on one underrated personalist argument that
uses betting behaviour to measure partial belief. Its conclusion is that
there is a quantitative measure of partial belief thatis a probability (in the
sense of having at least the main properties mathematicians ascribe to
probabilities). The present importance of the argument is in showing
partial belief to have a quantitative measure. Once that is shown there
are a number of independent arguments for the measure being probabil-
istic (see Hacking, 1968, p. §3; Lucas, 1970, chapter 3).

It is by no means an unmixed blessing that the measure of partial
belief is a probability. It certainly justifies personalists in calling partial
belief so measured ‘subjective probability’ and in making free with
many theorems of the probability calculus. It justifies them also in
claiming to have given at least a very plausible interpretation of that
calculus. But it has also caused a good deal of philosophical confusion.
Whether any objective probability statements are true is quite unsettled
either way by the same calculus happening also to provide a measure
for partial belief. That fact does not begin to show that no objective
empirical quantity is also a probability. Had the calculus not applied to
partial belief, that would equally not have shown that there had to be
objective probabilities to make sense of applications of the calculus.
Nor would it have shown that objective probabilities could not corres-
pond to partial beliefs. It is neither logically necessary that empirical
applications of the calculus should be successful; nor that correspon-
dence with chance requires partial belief to have the same measure as
chance.

The question of what statisticians apply the probability calculus to
would naturally arise if it measured neither partial belief nor any
objective quantity suitably linked thereto. The question has a fre-
quentist answer, namely that the calculus applies to certain objective
frequencies (or limits of them) which can easily be shown to satisfy it.
In that sense a frequentist supposes there to be objective probabilities.
What a frequentist denies existence to is any probabilistic feature of the
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world that is irreducible to frequency and peculiarly related to partial
belief.

The propensity theory asserts that there can be chances which are
not reducible to frequencies. I also suppose with the personalists that
partial belief in fact has a probabilistic measure. This makes feasible a
conveniently concise statement of the objectivist thesis: some personal
probabilities can be made more reasonable than others in a person
suitably situated by his being aware of a corresponding objective
probability. Normally the two probabilities will be of the same
numerical value although there are some special cases in which they
differ (see e.g. pp. 6o-1).

It is a pleasant coincidence that chance and partial belief can have the
same measure. It is naturally not coincidental, given this fact, that the
same measure is actually chosen to apply to both. Betting quotients are
preferred to betting odds as measures of partial belief just because they
can be constrained to be probabilities. The propensity view, it is
worth remarking, gives this preference a point lacking in both frequency
and subjective accounts. For the frequentist the probability axioms are,
at least with finite classes, “arithmetical truisms”” (Ramsey, 1926, p. 158)
about proportions, e.g. of coin tosses that land heads. If chance is now
defined in terms of such proportions, then arithmetical truisms its
axioms remain. It is gratuitous for a frequentist to impose these also on
the seemingly irrelevant subject matter of partial belief.

Similarly, subjectivist arguments for adopting the standard proba-
bility axioms must rest entirely on plausible premises about the nature
of partial belief. Personalists have indeed established the major axioms
in this way, but an axiom not so supported that is put to fruitful use in
statistics shows only inadequacy in a subjectivist account of chance. A
problem of this kind has bothered personalists who have tended
wrongly to feel that they should adopt subjectivism: no evident
feature of partial belief warrants the assumption that personal proba-
bilities are countably additive. Now statistics assumes countable
additivity extensively of chance especially in treating of continuous
distributions. It is thus not clear whether an important class of theorems
which require this assumption are generally true of partial belief. To
adopt them when needed, on the grounds that statistics applies them
successfully and has partial belief as its subject matter, is to beg the
question (see Savage, 1954, p- 43)-

There is no problem here for propensity theory, because it does not
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take partial belief to be the subject matter of applied statistics. Assuming
countable additivity to be true of chance requires on this view no
peculiarly esoteric justification. It is enough that the assumption is
mathematically convenient and theoretically fruitful in applied stat-
istics itself. The justification is the same as for making comparable
assumptions about any other objective quantity. For example, no
direct measurement of length could conceivably be so precise as to
require the use of real rather than merely rational numbers in stating its
result. Yet nobody objects on these grounds to the universal assumption
that there are irrational lengths. It is very convenient and fruitful to
assume certain relations between continuous lengths, areas, volumes,
distances, times and other quantities, for instance in the mundane
application of Euclidean geometry. But these assumptions entail that
some lengths being rational requires others to be irrational. Whenever
the side of an Euclidean square is of a rational length its diagonal must
be irrational and vice versa. The fact that this particular consequence of
our physics is not amenable to direct experimental test is not taken to
count against the otherwise well confirmed system from which it
follows. It would be unreasonable of an objectivist to accept such
merely indirectly testable assumptions about other commonplace
quantities and yet without special reason to rebel against them in the
case of chance.

The same assumptions, made about partial belief, may of course be
similarly fruitful in the theories of games and decisions based on it. If
so, that will as much show them to be true of partial belief as applied
statistics has shown them to be true of chance. Such justification is a
sine qua non of an adequate subjectivist account of chance. But it is
a matter of only mild interest to propensity theory. There would be a
certain aesthetic appeal in a demonstration of complete identity of
measure between partial belief and chance, but no more than that. The
arguments against subjectivism rest on stronger ground than the
unprovenness of such an identity. Meanwhile, since our theory in no
way requires it, we may assume for expository convenience what a
subjectivist should show. After outlining a rationale for one personalist
derivation of the main axioms, I shall refer thereafter without further
qualification to mathematical probability as being alike the measure of
chance and partial belief.
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BETTING AND BELIEF

I follow many personalists in taking betting behaviour to provide one
measure of the partial beliefs that may be displayed in it. This course
has many advantages and some drawbacks. The great advantage has
been remarked above (p. 15) that the same measure then applies to
partial belief on all subjects, however diverse, that can be bet on.
Different measures are not needed for partial belief on different topics,
and partial beliefs on the most disparate matters are thereby made
quantitatively comparable in strength.

The drawback is that some topics cannot be bet on. A bet must be
settleable either way to the satisfaction of the parties to it and in some
currency or benefit whose value can be assessed before the bet. These
may seem modest requirements but they may not always be satisfied.
Consider for example a bet on an afterlife as that is normally conceived.
If the belief in an afterlife is false, at least one party to the bet will be
unable to collect his winnings. If the belief is true, the subsequent value
is still obscure of any stake that might be supposed also to survive the
settling of the bet (see Mellor 1969a, p. 229 for further discussion of
this case). Similarly with a case of tentative belief in a general but
vaguely characterised theory of evolution. There are almost endless and
unspecified possibilities for modifying the theory either to accom-
modate new data or to fall foul of them. It is not clear what the parties
to a bet on its truth will be able to agree on as settling the bet either way.
It cannot be assumed in such cases as these that a betting measure
applies at all, nor consequently that sense is given by it to talk of
quantitative partial belief.

Before a betting measure of partial belief can be applied to any topic
it needs showing that the topic can be bet on. Otherwise the reference
to betting is an idle metaphor. In the wide class of cases that might
involve propensities, however, the possibility of betting is not seriously
disputed. Trials with dice, coins and scintillation counters are easily con-
ducted and their outcomes easily observed ; as are the deaths and diseases
of men, the yields of crops and the sex and other genetic characters
of the offspring of biological species. No doubt there will always be
hard cases but nothing to warrant labouring their epistemology here.

Some trivial idealising of the betting situation is obviously in order.
We cannot for instance conduct and settle bets as fast as some radio-
elements decay (with half-lives of 1078 seconds) or as slowly as others
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(107 years). But the time taken over the mechanics of a bet is so little of
its essence as to make this fact immaterial. We could if need be bet
instead on some more convenient record of such happenings. In the
same way, many partial beliefs are measured only indirectly through
some further partial beliefs related to them by a statistical theory
accepted by the believer. The partial belief of a modestly mathematical
gambler that heads will result on three successive coin tosses may
reasonably be inferred from his measured partial belief in heads on one
such toss. Again, the bearing of unaided observation may be remote on
the settling of a bet about some obscure quantum transition. But
provided the parties to the supposed bet can agree on what will settle it,
and in due course that it has been so settled, it is immaterial how
“theory-laden” their joint assumptions are.

These assumptions, needed to show the feasibility of betting in
typical statistical situations, are indeed trivial. The assumption which
chapter 1 (pp. 6—7) showed not to be trivial is that such betting displays
a dispositional partial belief. In particular, even when a man has some
such partial belief, extracting quantitative behaviour from him in a bet
does not show the partial belief to be correspondingly quantitative. A
man may be in a state of partial belief that is in quantitative terms very
imprecise. He may think something probable without having any
feeling of it being very probable rather than fairly probable or vice
versa. If made to bet, he will have to behave, e.g. in his choice of odds,
more precisely than his disposition dictates. We must not then read
back into his partial belief the precision we have imposed on its display.
We might analogously make a colour-blind man pick out one patch on
a colour chart; we must not infer from his enforced choice between the
red and the green patches that he can see a difference in colour between
them. The temptation of spuriously investing a measured quantity with
too great a precision, because the method of measurement yields it, is
not peculiar to partial belief. Accountants notoriously suppose million
pound transactions to be capable of valuation to the last penny;
engineers feed computers data good to two significant figures and
solemnly process the fifth and sixth figures of the resulting output.

Although the temptation of specious precision is general and has
been generally discerned (see chapter 6, pp. 101-9), it is worth
noting the means available to resist it in the betting measure of partial
belief. Otherwise the measure could be wrongly convicted of irrelevance
or falsity in ascribing to partial beliefs a precision they do not possess.
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Instead of referring to the odds a person will choose when forced, we
could as well refer to the range of odds he will noz choose. The man who
merely thinks something probable need only be taken to be disposed
by his partial belief inzer alia to avoid odds corresponding to probabili-
ties not greater than 4. The exposition that follows of how partial belief
can be measured could have been rewritten in these terms, but the
consequent complication seemed to me needless. It should be enough
for those rightly sceptical of personalism’s power to precisify our
doubt that the rewriting can evidently always be done. The admitted
diffuseness of much partial belief need be no ground for rejecting the
personalist measures of it.

Before betting behaviour can be taken to provide a measure of partial
belief, two things must be done. First some suitably quantitative
feature of the behaviour must be isolated that is a function inzer alia of
the gambler’s partial belief. Secondly the influence on this feature of all
other factors must be discounted or eliminated. The strength of this
personalist argument lies in the plausibility of its claims to have done
these two things.

The two obviously quantitative features of betting behaviour thatare
affected by partial belief are (i) how much a man stakes and (ii) the odds
he bets at. The more a man inclines to believe a proposition g, the more
he will stake on its truth at fixed odds and the shorter the odds he will
offer on it at a fixed stake. Personalists have used (ii) to measure partial
belief; but it is illuminating to see why (i) will not do, especially as it
has recently been proposed (Watling, 1969, p. 37).

The arbitrariness of monetary units unsuit them as measures of
partial belief. Nobody would wish to base such a measure on a particular
currency or on a temporarily fixed set of exchange rates or on gold.
None of these has any theoretically plausible connection with human
attitudes, useful though any of them might be as indicators on a
particular occasion. A particular thermocouple or mercury thermo-
meter might analogously be in widespread use to measure temperature
and yet would not provide an acceptable definition of that measure.
Even in a fixed currency the value of a given stake is undesirably related
to the gambler’s wealth. £1 is worth less to a millionaire than to an
impoverished student. Willingness to risk £1 on a proposition may
therefore indicate a greater faith in its truth, other things being equal,
on the part of the student.

3 MMR
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One might reasonably allow for a gambler’s wealth by supposing
him supplied with an amount of money that was fixed and large enough
to swamp the influence of his private resources. In itself this is no more
artificial than the betting situations actually proposed by personalists.
It becomes so, however, when we try to allow for the effect of the odds
on the proffered stake. It has been suggested that the odds could be
ignored, but that would be absurd. If I were offered ten million to one
on snow tomorrow (in a fine cold English May) I might well put £1
on it; while at evens I should risk no more than 25p on rain. Nobody
would conclude, T hope, from this modestly rational behaviour that T had
a stronger partial belief in snow tomorrow than I had in rain. There
can be no doubt that the odds are among the other factors, affecting
how much a man will risk losing, whose influence must be allowed for
or removed before we can accept the proffered stake as measuring his
partial belief.

The main objection to this proposed measure stems in fact from the
strong influence of the odds on it. No plausible way of allowing for the
effect of the odds leaves any quantitative measure of partial belief at all.
Suppose we try stipulating that all bets are to be at even odds. A vast
number of prospects will now attract equally negligible stakes even
though the gambler’s doubts about them are plainly unequal. Compare
for instance the prospect that a date picked blindfold off a calendar will
be a Sunday with the prospect that a flipped coin will land on edge.
Nobody in his right mind would put money on either prospect at even
odds. Yet my partial belief in the former, weak as it is, is clearly
stronger than my partial belief in the latter. Different odds would
discriminate partial beliefs of these two strengths: at eight to one the
Sunday bet would attract money which the other would not. But there
would still be other unequal partial beliefs which stakes at these or at
any other fixed odds would not discriminate.

The plain moral is that the shortest odds at which a person will bet at
all is a much more plausible general measure of partial belief than is the
stake he will put up at any fixed odds. The reason is simply that the
influence of what money is available on the shortest acceptable odds is
vastly less than is the effect of odds on the size of stake. If odds are the
basic measure, vagaries of the money supply can be countered without
making the situation so artificial as to invalidate appeal to our know-
ledge of behaviour in real betting situations. The alternative of taking
stake size as the basic measure after allowing for the odds is like taking
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the speed of a wind in preference to its temperature as the basic measure
of its coldness. It is true that higher speed makes a cold wind colder, but
for no fixed temperature will wind speed measure all detectably
different coldnesses, which the temperature of still air readily does.

We start then by taking the shortest odds at which a person will bet
at all as one provisional measure of his partial belief. We must next take
account of the other factors besides partial belief that may also affect
such odds. If need be we may restrict the supposed betting situation in
some reasonably natural way so as to render their effects either calcul-
able or negligibly small. A man with very little money, for example,
may be reluctant to bet even the smallest amount possible in a given
currency except at longer odds than would attract an equally doubtful
but richer man. To minimise this effect we might suppose the gambler
to be supplied with enough money to bet at whatever stakes are required.
We should then assume the shortest acceptable odds to be impervious
to wide variations in the (relatively small) proportion of his wealth
committed to the bet.

The above is a natural assumption and is doubitless satisfied in many
bets. It would still be preferable to be able to dispense with it by placing
some suitable constraint on the betting situation. Even with a fixed and
adequate supply of cash a man's gambling tendencies may well be
affected by considerations of scale. Some might disdain bets for small
amounts except at very long odds and others of a more prudent or
nervous disposition might be similarly averse to wagering fortunes.
Either way it will be hard to assess and allow for the effect of the stake
proposed on the shortest acceptable odds. We therefore restrict the
situation to one into which such considerations cannot enter. The
gambler is allowed neither to choose the stake nor to know what it will
be before he decides what odds are acceptable. We achieve this by
making his opponent choose the stake after the gambler has specified
the odds, provided always that the stake is reasonably within what the
gambler has been supplied with.

This raises yet a further problem, the solution to which however also
enables us to deal with another irrelevant factor. The problem is that
our gambler may well refuse to bet at all under the conditions we have
imposed. If stake size affects the shortest acceptable odds —and if it
didn’t these precautions would be needless — the gambler may be
unable to specify them without knowing what the stake is. Observe
that we cannot as things stand compel him to bet in order to extract the

3-2
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required choice of odds. We want to know the shortest odds that are
acceptable to him, i.e. such that he would refuse to bet at any shorter
odds. If we are going to make him bet whatever he says, there are no
odds at which he can refuse to bet. No odds can be unacceptable to a
man who is compelled to bet in any case. The concept of choosing the
shortest acceptable odds has no application in that situation. And if we
make him bet but give him a free choice of odds, the gambler will
clearly choose the longest odds the rules allow regardless of his partial
belief.

We seem then to face the alternative of abandoning shortest accept-
able odds as our measure of partial belief or of reverting to the inelegant
idealisation that they are unaffected by stake size. The right choice is
made plainer by considering how another irrelevant effect on the odds
can be disposed of. A gambler’s choice of odds on ¢ may well be
affected by whether he wants ¢ to be true or thinks it should be true. A
Conservative might feel that he should not put money on Labour
winning a general election. It would therefore take longer odds to
tempt him to bet on such a dreadful prospect rather than against it. It
being again almost impossible to assess and hence allow for such
irrelevant effects on what odds are acceptable, the betting situation
must be so restricted as to eliminate them. This can fortunately be done
in an obvious way which simultaneously resolves our other dilemma.

The solution is to let the gambler’s opponent not only set the stake
after the odds are fixed but also choose then which way round the bet
goes. For example, his opponent decides whether our Tory gambler is
to bet on Labour or on the Conservatives winning. It will no longer be
within the gambler’s power to choose which side he backs. He will
have to bet one way or the other and will not know which until after he
has fixed the odds. His choice can thus not be affected by his knowledge
of which way the bet is to be. In this situation it is unnecessary to
assume as Ramsey does (1926, p. 178) the doubtful existence of an
“ethically neutral proposition, believed to degree .

Better still, now that his opponent settles the direction of the bet the
gambler need not be confined to the shortest odds acceptable to him.
For odds that are longer one way are shorter the other. Our Tory
cannot aim to profit by setting odds on Labour much longer than he
would in fact accept in an unforced bet. If he did, his opponent could
turn his expected profit into an expected loss by making him back the
Conservatives at the correspondingly shorter odds. Being thus able to
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abandon reference to the odds being the shortest that are not unaccept-
able, it now makes sense to compel the gambler to bet.

A gambler’s choice of odds might of course be affected if he believed
he knew what stake and bet direction would be imposed on him. He
must obviously not only be in a position of ignorance but realise that
he is so. In specifying the betting situation we prescribe that the gambler
be brought to or left in this psychological state. The condition is not
implausible. I have remarked (pp. 6—7 above) the possibility of
lacking both belief and partial belief on a topic. Where the topic is
other people’s intentions I find that their incomprehensible behaviour
frequently actualises this possibility in me.

One plausible measure of a man’s partial belief is thus the odds he
will determine if compelled to bet where his greedy but otherwise
mysterious opponent subsequently decides both the stake size and the
direction of the bet. From this situation the irrelevant effects are absent
of a man’s other beliefs, of his itch or distaste for gambling, of his
preference for high or for low stakes, of his desires that some things
should be true and others not and of the variable utility of money. The
claim is that the only remaining factor disposing a man to settle on some
odds in preference to others just is the strength of his partial belief, of
which the odds are therefore a fair measure.

It seems to me that all one can or need do in support of such a claim
is to account as I have outlined for the other known influences on the
odds, since it will hardly be denied that partial belief is one such
influence. Then it will not do to reject the claim merely on the grounds
that there might be other influences unaccounted for, we know not
what, which distort the proposed measure. It would be as reasonable
to refuse credence to the readings of a thermometer shielded against all
known sources of possible error on the grounds that it might after all be
affected by some field or cosmic exhalation as yet unthought of.

Even so, more needs saying in defence of this betting measure of
partial belief. The objection to be met is not like a querying of the
accuracy, on a thermodynamically justified scale, of readings given by
some practical thermometer. It is more like denying the claim of such a
scale to be a measure of comparative warmth, where we hold the latter
concept to have been available long before the advent of modern
thermometry. Such objections have been repeatedly raised to projects
of the kind that Carnap (1962, 1963) has called ‘explication’ and taken
to be common both to science and to philosophy. Objectors such as
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Strawson (1963) have taken explication to be common to science and to
what Carnap does, e.g. in his construction of confirmation theory, and
to be in either case irrelevant to philosophical analysis of everyday
concepts. I have no wish to enter here upon the general dispute; if I did
I should start by denying the shared assumption that “explication” in
science is like what Carnap does. It is pertinent, however, to ask in the
present case how a supposed disposition to rather abstruse, elaborate,
artificial betting behaviour is related to doubt and uncertainty as we
commonly understand them. A man can surely doubt and be certain
who has never heard of betting, who even lives in a primitive com-
munity that uses no money, exchange or barter of any kind. Betting
behaviour, it might therefore be urged, can be no part of what is meant
when one is said to be in doubt or in this or that state of partial belief.

Consider an analogy. The Newtonian concept of mass is widely
agreed to provide a quantitative measure of roughly ‘“how much there
is of” everyday things including people. The measure relies on elaborate
concepts of acceleration, of exotic behaviour in artificial situations; or
so it may seem from the viewpoint of some everyday lives. Yet men
were surely said to be ‘massive’ (not only ‘heavy’ but literally ‘hard to
push around’) before any of this Newtonian conceptual apparatus was
constructed. And surely men can still be massive in just this sense, with
which Newton can consequently have nothing essentially to do?

The proper reply to such remarks would be that the everyday use of
‘massive’ and related terms has come to be extended and refined. In
particular comparative and quantitative judgments of massiveness have
been added. For this extension Newtonian mechanics has provided
sense and the successful sciences that deal in Newtonian forces have
provided application. The sense of ‘mass’ is tied to no one sort of
Newtonian force — contact, pressure, friction, viscous, electrical,
magnetic, electromagnetic, gravitational — by which Newtonian masses
can be affected. But the existence and mechanically interchangeable
nature of these diverse forces is what gives sense to ascribing to objects
finely graded dispositions to resist them. The objects of course include
people, and that they may be unaware of having such dispositions is
obviously neither here nor there. Most everyday remarks, although they
intend no such elaborate implications, can be construed equally well as
suitably imprecise statements about Newtonian mass. Of course it
needs showing in each case that the everyday forces which we credit
people with some ability to resist are quantitatively Newtonian. Where
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they are not, as when one refers to a man’s “massive” stubbornness
(his ability to be unmoved by forceful arguments), one’s use of the
terms becomes metaphorical.

The relation here, whatever it is, seems to me similar to that between
everyday doubt and its explication as a disposition to indulge inzer alia
in suitably quantitative betting behaviour. The uses of such quantitative
talk are comparably sophisticated, given point by theories of games and
decisions relating them to similarly extended uses of terms referring to
preference and utility. For such talk to be truly applied to a person, he
has no more to have heard of money or of betting than Goliath had to
have heard of Newton in order to be quantitatively massive. What is
needed, as with mass, is that the everyday doubt thus elaborated is in
something which the related quantitative concepts can be applied to.
We have seen (p. 31) that because it cannot be bet on, the prospect of
an afterlife can only be shown by the present account to attract quanti-
tative partial belief in the metaphorical way a man can be massively
stubborn.

If most or even many of our everyday doubts had to be thus ruled out
as metaphorical, we should rightly reject the proposed betting measure
as inadequate if not completely irrelevant to them. But not every, and
perhaps not any single, use of everyday terms can be counted analytic
and many uses in new situations are not specified at all. So new rules of
use can well be added and existing ones to some extent revised during
the scientific development of an everyday term without any need to
suppose that a new concept has been introduced. This seems to me to
be as much the case with partial belief as it is with mass. A person can
bet as we have prescribed on the truth of most propositions that he can
in everyday terms be said to doubt. We have a criterion then for saying
of a man who doubts such a proposition that he is in what Johnson
(1921, chapter 11) calls a ‘determinable’ dispositional state of partial
belief, namely one of which ““determinate” values can be distinguished
by the various odds he could choose in the specified betting situation.
It may of course be false that he is in any such state and it may be as we
have noted (p. 32) that his partial belief is not precise and would be
equally well displayed by any choice of odds in some interval. These
count no more as objections to a betting measure of partial belief than
a rainbow’s lack of mass, or imprecision in mass of vaguely bounded
objects like mountains, count against the explicatory value of Newtonian
mechanics.
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COHERENCE

I have argued the case for taking betting odds rather than stake size as
the betting measure of partial belief. It is usual in fact to take not the
odds themselves but a simple function of them, namely the betting
quotient. The reason is that betting odds are not probabilities. This
title is not withheld because odds lack such mathematical refinements
as countable additivity (p. 29) but because they violate the most basic
axioms of the probability calculus. Betting odds are ordered pairs of
real numbers (usually integers, for convenient staking in the units of a
discrete currency) each of which may take on any positive value.
Probabilities are in contrast single real numbers (or at least rationals—
see Braithwaite, 1953, pp. 130—1; Kyburg, 1961, pp. 64—5) confined to
the interval [o,1] (Kolmogorov, 1933, p. 2). In this, probabilities
resemble betting quotients, which can be defined in terms of betting
odds as follows: if the odds on a proposition ¢ are n:m, the betting
quotient on ¢ is n/(n +m).

What the expressions ‘odds on ¢’, ‘quotient on ¢’ are intended to
implyabout the direction of the bet is best shown by an example. Suppose
I say that I agree to odds of 1000:17 on ¢. Then if I am betting on g,
I put up 1000 units for every 17 my opponent puts up. Whoever wins
collects the total stake of 1017 units. If ¢ turns out to be true, I win; if
false, my opponent wins. The betting quotient on ¢ is thus the fraction
of the total stake put up by whoever will win it if ¢ is true.

Although betting quotients must be like probabilities in lying
between o and 1, they could for all we have yet shown fail to satisfy
other basic axioms of the calculus. The probabilities of the members of
a set of mutually exclusive and jointly exhaustive propositions must add
up to 1 (Kolmogorov, 1933, p. 2). Betting quotients that do satisfy this
constraint are called ‘coherent’ or ‘fair’. (The former is the better term
because Carnap (1962, p. 166) has also applied ‘fair’ more restrictedly
to just those coherent betting quotients that are also warranted by an
objective probability relation.) But it is not yet clear why a person’s
betting quotients should be assumed to be coherent. To take the
simplest example, a person disposed to adopt quotient p on ¢ in one bet
is not prima facie thereby disposed toadopt 1 — p on ~ g inasimultaneous
bet. If we are to credit betting quotients in general with the coherence
they need to be probabilities, a general argument is needed to rule out
alternative incoherent quotients. The standard argument for this is the
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“Dutch book” argument that incoherence in his quotients makes a man
liable to lose money whatever happens, i.e. whether ¢ turns out true or
false. The mathematics of the argument is simple and well known (see
e.g. de Finetti, 1937, pp. 103—4) and it will be enough here to illustrate
it. What is more important is to show that (and how) the argument
applies to the betting situation we have specified above.

The Dutch book argument works by making a person with in-
coherent quotients take on a number of bets, on each possible outcome
of which his total losses exceed his total gains. It is taken to be irrational
to expose oneself to certain net loss in this way and the betting quotients
of rational beings are consequently assumed to be coherent. (A stronger
argument which we need not here consider deems it irrational to
combine bets with at least one possibility of net loss and none of net
gain, see Kemeny, 1963, pp. 719—20). Now a gambler could normally
avoid a Dutch book in a number of ways without making his quotients
coherent. He could refuse one or more of the fatal combination of bets,
or veto the stake sizes or bet directions, or alter his quotients, after
these other factors were safely fixed, to some suitable but still incoherent
values. While these alternatives remain open the desirability of avoiding
a Dutch book affords no strong argument for coherence. But in order
to establish betting odds (and hence the betting quotient) as a suitable
measure of partial belief, we have already ruled out these alternatives on
independent grounds. Our gambler has to bet at quotients which he
fixes first, after which his opponent freely determines the stake size and
bet direction. In this situation the gambler’s only method of stopping a
Dutch book against him is to make his betting quotients coherent.

A Dutch book may be illustrated by the example above, with
incoherent betting quotients of 0.7 on ¢ and 0.2 on ~g. Our gambler’s
opponent chooses to stake £7 on ¢ in a bet (i) at the 0.7 quotient and
£2 on ~q in another bet (ii) at the 0.2 quotient. It is easily seen that on
this combination of bets our gambler will make a net loss of L1
whether ¢ is true or false.

g TRUE ¢ FALSE

Bet i) —3 +7
GAMBLER’S PROFIT in £s {Bet (ii) +2 -8
Net -1 —1I

The question remains, however, why the betting quotients that
measure a person’s partial beliefs should be assumed to be coherent.
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We have of course the independent arguments for a probabilistic
measure of partial belief referred to on p. 28, but the betting situation
we are using to measure partial belief should furnish its own rationale.
Some trivial objections to the Dutch book argument are easily met. A
philanthropist with a taste for gambling might no doubt purposely
submit to a Dutch book as a congenial method of giving money away.
His betting quotients will be incoherent; equally, they reflect other
factors than his partial beliefs. Indeed, such a use of a betting situation is
freakish enough to call its sense in question. Certainly what is staked in
a bet need not be actual cash, whether pounds or roubles, and a betting
mechanism could incidentally be used to give cash away. But a bet needs
some suitably transferable quantitative object of desire that can be
possessed and so staked and won or lost. The term ‘goods’ is con-
veniently used here to refer indifferently to any such desired stuff. Then
what makes a betting situation is that each party has the object of
winning by means of it whatever goods the other is by the same means
prepared to lose. If our philanthropist really is betting, as well as
dispensing cash in a pointlessly complex way, there must be some goods
he desires to win but might lose. They might be the quantity of
happiness in others that could be produced by the difference between
his greatest and least possible loss of cash. Whatever his goods are, in
terms of them our philanthropist will wish to avoid a Dutch book
however he behaves in cash terms. To accept betting behaviour at all as
a measure of partial belief is surely to accept as legitimate a constraint
such as coherence that is needed to give a minimal betting sense to it.

Nevertheless, the usual way of justifying coherence in terms of
‘rationality”’ can be misleading. It makes it seem a merely normative
constraint too much like the further constraints an inductive logic
would impose (Savage, 1954, pp- 6—7). But inductive logic is in no
sense subjective; it is quite immaterial that actual partial beliefs do not
satisfy its constraints. Personalism on the other hand purports to deal
in real partial beliefs (Jeffrey, 1968, p. 169). We shall see that it even
purports to provide in Bayesian precepts a causal account of how
scientists’ partial beliefs converge on agreed values (pp. 45—9). I have
remarked that personalists hedge their bets on this point (p. 4), but a
stronger case can be made for what they ought to say. The case may
not in the end be strong enough for subjectivism but it will be strong
enough for us.

What observations of incoherence mostly show is that everyday
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betting behaviour is rarely an accurate measure of partial belief. In the
same way, many casual tape-measure operations do not constitute
accurate measurements of length. The kinds of situation in which
lengths and partial beliefs can be given accurate direct measurement are
both highly artificial. In the case of partial belief, we have seen that it
must be so if irrelevant influences on the betting quotient are to be
excluded. The same is true of the precautions needed in making accurate
length measurement. Specifying the precautions seems no more
normative in the one case than in the other. It is plausible to assume
that people in, and fully seized of, the carefully constrained betting
situation we have specified would in fact be coherent if the consequences
of incoherence were made explicit. And it is as dispositions to produce
different betting quotients in precisely this situation that partial beliefs
are here discriminated as being of different strengths.

The application of the Dutch book argument is not restricted by the
fact that partial belief is often measured otherwise than by betting
behaviour. It does not matter even that some partial beliefs (un-
conscious ones and those of animals) cannot be measured by betting at
all. There is analogously no way of laying a metre rule alongside a light
wave to measure its length. In neither case should we infer that the
concept is not subject to the same measure. In each case other connota-
tions give the concept application and impose on it what would be true
of the results of this method of measurement. A measurement of
any quantity may be corrected by one of a different kind, as when a
mercury thermometer reading of a temperature is corrected by that of a
thermocouple. For this to be possible, clearly the measure must be the
same by whatever method it is applied. And so it is with partial belief,
whose strength may be inferred equally from choice among uncertain
options and independent measures of their utility. Any idealisation in
all this, in applying the correlations on which alternative measures of a
quantity rely, is scientific and theoretical rather than normative in the
manner of an inductive logic.

The degree of idealisation is certainly greater with partial belief than
it is with length and it is neither necessary nor plausible to impose
coherence over the whole range of a person’s partial beliefs. People may
as well have incoherent partial beliefs as they may have logically
inconsistent full beliefs. The idealisations to consistency in full belief
and coherence in partial belief still have a descriptive point and their
limitations can be similarly accounted for. Both belief and partial belief
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have been taken to be dispositions to action, being given content and
application in explanatory theories thereof. Now consider full belief:
the paradigms of action are deliberate, and certainly beliefs that are
consciously seen to be inconsistent cannot be held simultaneously.
Plausible explanation of deliberate action will therefore ascribe con-
sistency at least to those conscious beliefs motivating it. One is therefore
generally reluctant to ascribe inconsistent dispositions because they
would not deliberately be displayed together in one action. One or
other would be changed and to that extent a believer will deliberately
act as if he had never held simultaneously inconsistent beliefs.

Still we may observe inconsistency amongst beliefs indirectly and
account for its possibility in terms of unawareness and lack of joint
display in deliberate action. Since beliefs may moreover be changed by
coming to consciousness, past inconsistency may be inferred even
where none is presently displayed. In the example of p. 14, my becoming
aware of my belief about the quickest way from London to Tokyo
might lead me to change it because I now see it to be inconsistent with
other, previously unrelated, beliefs about geography and airline routes
and speeds. I may likewise be separately conscious on different occasions
of beliefs which I should see to be inconsistent and hence modify if I
considered them together.

Similarly, the use and limitations of assuming coherence amongst
partial beliefs can largely be accounted for descriptively. I have sug-
gested (p. 42) that it is as conceptually impracticable in our specified
betting situation to display incoherent partial beliefs as it is to display
together consciously inconsistent full beliefs. Now the deliberate actions
under uncertainty that partial beliefis invoked to explain (e.g. marketing
and other business decisions) are assumed to be treated by the agents as
displaying what such betting would alternatively measure. In so far as
the successful application of the theory to these actions justifies this
assumption we may conclude that bringing partial beliefs to conscious-
ness, preparatory to deliberate action, tends to make them coherent.
This is the justification for idealising partial beliefs into coherence at
least in the explanation of much deliberately risky action.

This justification is anyway quite adequate for our present limited
purposes. A person who wishes to distribute correctly his partial beliefs
in sundry prospects according to his knowledge of their chances must
first make his partial beliefs coherent. That, however, is his problem,
not ours. As we have already remarked (p. 30), it is of no consequence
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for propensity theory if indirect tests or associated feelings of doubt
suggest from time to time that some of a person’s unconscious, un-
compared or unacted on partial beliefs are incoherent.

BAYESIANS AND THE LIMITS OF COHERENCE

Let us then, instead of that idle and not very innocent Employment of forming
imaginary Models of a World. . .turn our Thoughts to what we experience
to be the Conduct of Nature with respect to intelligent Creatures.

Butler, 1736, p. viij.

We cannow revert to a topic left over from chapter 1 (p. 22), namely the
subjectivist surrogate for the perception of chances. In terms of
coherent betting quotients (CBQs), physicists for example share
remarkably similar partial beliefs in the occurrence, within fixed
intervals of time, of certain well known nuclear transitions. Plain men
account for this as the natural result of their shared perception of an
objective chance. Subjectivists must be more subtle: they must explain
causally how the shared perception of quite non-chance features of the
world leads men of diverse initial opinions into the ultimate concord-
ance of partial belief that we observe. As de Finetti (1937, p. 152) puts
it, if

it is a question of showing that there is no need to admit, as it is currently held, that

the probability of a phenomenon has a determinate value and that it suffices to get to
know it,

then it will be necessary

to show that 1] there are rather profound psychological reasons which make the exact

or approximate agreement that is observed between the opinions of different individuals
very natural, but that [2] there are no reasons, rational, positive, or metaphysical, that
can give this fact any meaning beyond that of a simple agreement in subjective opinions.

(de Finetti’s italics; my underlining).

Chapter 1 produced reasons of usage against part [2] of de Finetti’s
project. I now enquire into the success of part [1], what the “rather
profound psychological reasons’’ might be that lead physicists to agree
on objectively non-existent half-lives for radioelements. Part [1] of the
project of course has no force on its own as an argument for subjecti-
vism, however successful it may be. The existence of chances does not
preclude a causal account of how physicists come to agree on them. On
the contrary, for any objective quantity that we can come to know there
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is presumably a discoverable causal process of perception by which we
come to know it. If scientists can investigate and agree on temperatures,
for example, they can investigate the causal conditions under which
such agreement comes about. The process is not normally esoteric nor
are its conditions obscure: clear-sighted men look straight at a well-
calibrated, suitably placed thermometer, reasonably close and in a good
light. In these conditions, as de Finetti (1937, p. 99) says of probability,

one can get a clear idea of the reasons, themselves subjective, for which in a host of
problems the subjective judgements of diverse normal individuals not only do not
differ essentially from each other but even coincide exactly.

One would not take this mundane truth as a ground for “refusing to
admit the existence of an objective meaning and value” (de Finetti,
1937, p. 99) for temperature, mass, electric current and the like; nor is
it a ground for such refusal in the case of chance. In general, the truth
of a scientific theory of perception, about how scientists come to agree
in the opinion that they have objective knowledge of some kind, does not
entail or even suggest that their agreed opinion is false. And if it did,
chance would be no worse off than any other major scientific concept.

Subjectivists nevertheless need their surrogate for the perceptual
process and have thought to provide it in the following way. Among the
theorems of the probability calculus true of partial belief (measured
e.g. by CBQs) is Bayes’ theorem (e.g. Feller, 1957, p. 114). Sub-
jectivists would interpret Bayes’ theorem as relating a person’s CBQ on
a proposition ¢ to a hypothetical CBQ on ¢ conditional upon the truth
of another proposition r. A Bayesian in these terms is one who on
learning of the truth of r adjusts his actual CBQ on ¢ to equal this
previously hypothetical CBQ. In doing this he is said to ‘conditionalise’
his subjective probability assignments on the acquired evidence that 7 is
true. Then as Savage (1954, p. 68) puts it:

In certain contexts, any two [Bayesian] opinions, provided that neither is extreme
in a technical sense, are almost sure to be brought very close to one another by a
sufficiently large body of evidence.

This is the fact cited by subjectivists as their causal explanation of how
scientists, initially allowed to have widely divergent CBQs, are brought
by the piling up of shared evidence into the close agreement that is
observed in their chance assignments.

Not only does this account of Bayesian consensus fail to show that
there is nothing to agree on, but the CBQ measure of partial belief fails
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in two ways even to entail Bayesian consensus. First, personalists have
not in other respects presented arguments for coherence as a scientific
theory about real betting quotients. They have presented the conclusion
of the Dutch book argument as a canon of rationality restricting betting
quotients proffered simultaneously by one person to those of which
inter alia Bayes’ theorem is true. When a person’s simultaneously
proftered quotients are found to violate this restriction, personalists do
not take their account to be refuted; his behaviour is rather to be
condemned as incoherent (see chapter 1, p. 4). So construed, the account
could neither be confirmed nor be infirmed by evidence of actual
behaviour. By the same token it could not entail or explain actual
behaviour as would a real psychological theory of how scientists come
to agree on assignments of probability.

I did my best in the last section to construe the Dutch book argument
more descriptively. But no evidence has been produced that its premises
are true of the processes leading to the scientific agreement on chances
which is to be explained. No one supposes the committees who settle
and revise values of radioactive constants to proceed by conditionalis-
ing CBQs. Nor is it really pertinent that Bayesian committees would
be able to agree just as real ones do. The fact that a flat earth would
share many features with the real one does not make the flat earth
hypothesis an acceptable explanation of those features. (It could of
course be said that a flat earth at least provides a model for them. What
Bishop Butler called ‘that idle and not very innocent Employment of
forming imaginary Models of a World”’ (see p. 45) is always in fashion
with mathematicians as being both easier and more elegant than finding
out the empirical truth of the matter.)

However the Dutch book and other arguments for coherence in
partial belief are construed and applied, the really serious objection is
that behaviour can perfectly well be coherent without being Bayesian.
Coherence applies only to a person’s actual simultaneously proffered
betting quotients, not to hypothetical or conditional quotients. The
Dutch book argument for example does not work with conditional bets.
If a gambler can be taken up on old conditional bets whose antecedents
have been realised, he can be made to lose money whether he condi-
tionalises or not. To see this it is necessary to make more distinctions
than are usually made in the literature (except by Ramsey, 1926, p.
180).

There is first the concept of conditional probability defined in the
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calculus (e.g. Feller, 1957, p. 105). Taking propositions for the
moment as the bearers of probability, the definition may be put thus:

N CL)
P (77 ) df P( r) .

When the unconditional probabilities p(r) and p(¢&r) are interpreted
as CBQs on the truth of r and ¢&r, my conditional probability
p(g,r) is simply the corresponding function of my CBQs.

Secondly there is the concept of a conditional bet made at a conditional
betting quotient. I may not only be disposed to bet on ¢ at an uncondi-
tional quotient p(g), but also to undertake a bet on ¢ subject to the
condition that  be true. If r is true, a bet on ¢ takes place at my condi-
tional quotient; if 7 is false, no bet takes place. My quotient for this
conditional bet may well be different from p(g) if I believe the truth of
to bear on that of ¢. It does not follow that it will be the same as the
conditional probability p(g,r).

Thirdly, there is the new unconditional quotient on ¢ I adopt after
learning of the truth of .

Suppose the Dutch book argument applied to conditional betting
quotients. Surely when I learn r I should equate my new unconditional
quotient on ¢ with my previous quotient on ¢ conditional on r? For
otherwise a Dutch book could be made against me by combining bets
at my present unconditional and my past conditional quotients. There
is however a fatal flaw in any such argument for Bayesianism. The
argument will not entail conditionalising unconditional betting
quotients unless we further identify conditional betting quotients with
conditional probabilities. But once that is done a Dutch book can be
made against me in any case. Bayesian behaviour will not preserve me
and so is not picked out by the argument as particularly rational.

We have seen that the Dutch book argument to be effective requires
that the gambler is compelled to bet at the quotients he specifies. If
it is applied to his conditional probabilities on ¢ interpreted as condi-
tional betting quotients, he can subsequently be taken up on any such
quotient whose condition is realised. Let two such mutually compatible
conditions be 7 and s, where the gambler’s partial beliefs before learning
of their truth were such that p(g,r) * p(g,s). He thus committed
himself to betting on ¢ at two different quotients should both r and s
turn out true. Now that they have done so his opponent has only to
enforce a suitable combination of these two bets in order to make a
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Dutch book. It is immaterial how the gambler has subsequently
changed his unconditional quotients.

This absurd consequence can be avoided by not applying the Dutch
book argument to conditional probabilities. This is indeed essential to
the argument’s use above in establishing coherence in unconditional
betting quotients. There is in any case no plausible need to appeal to
conditional bets. A measure of my partial belief at any time in every
proposition I could bet on is provided by the unconditional quotient
I would produce at that time. The most that my conditional quotients
could be supposed to measure is my prediction of what my partial
beliefs would be in possible future situations. I cannot see great import-
ance in measuring predictions of partial belief, certainly not at the cost of
destroyinganargument for coherencein the measure of partial beliefitself.

It should be clear anyway that coherence in my partial beliefs at one
time can no more determine what they should be at another than logical
consistency can in the case of full beliefs. The constraints of coherence
cannot compel a person to change his partial beliefs from time to time
in a Bayesian or in any other way. Just as, on a subjective view, two
people may have the same or widely different CBQs on the same event,
so one person may from time to time preserve or alter his CBQs on
that event in any way to which he is disposed. That this is so is well
illustrated by a personalist’s assertion that
there are cases in which a change in the probability assignment is clearly called for,
but where the device of conditionalisation cannot be applied because the change is
not occasioned simply by learning of the truth of some proposition. In particular
the change might be occasioned by an observation. (Jeffrey, 1965, p. 154.)
Equally of course any change called for by conditionalisation can be
cancelled or modified to any extent by such effects of inconclusive ob-
servation. Whatever the other merits of this assertion (see Levi, 19674,
1969; Harper and Kyburg, 1968) it shows at least the compatibility of
coherence and non-Bayesian behaviour (see also Hacking, 1967).

Recent unpublished work by Paul Teller has persuaded me that there
are arguments at least for the generalised form of conditionalisation
advanced by Jeffrey (1965, chapter 11). I am not convinced that they
establish in it the causal explanation of agreement on chances that
subjectivists need. Certainly what I have yet seen publicly advanced
does not do so. And we have seen that it will not be matter for more
than sympathetic concern to propensity theory if and when this lacuna
in subjectivism is filled.

4 MMR



3 Frequencies and trials

FREQUENCY ANALYSES have become accepted as the standard
accounts of chance, and their inadequacy has been the most potent
subjectivist argument against its existence. Philosophers have felt
forced into subjectivism by elimination, just as they feel scientists have
been forced into frequentism. As Savage puts it (1961, p. §76), “reject-
ing both necessary and personalistic views of probability left statisticians
no choice but to work as best they could with frequentist views”. With
statisticians frequency views have predominated among objective
accounts of chance. A symposiast introducing a Royal Statistical Society
discussion can quite naturally say: ‘ The term frequentist applies to any
analysis or analyst of the “objectivist” school, where. . .there is a
tendency to interpret probability solely in terms of relative frequencies
in large scale replication’ (Aitchison, 1964, p. 161). For Savage (1954,
p- 3) also “objectivist views hold that. . .evidence. . . for the magnitude
of the probability. . .is to be obtained by observations of some repeti-
tions of the event, and from no other source whatever”.

Having thus identified objective with frequency views, the subjecti-
vist of course concludes that “the difficulty. . .in any objectivistic view
[is that] probabilities can apply fruitfully only to repetitive events. . . it
is either meaningless to talk about the probability that a given proposi-
tion is true, or this probability can be only 1 or 0™ (Savage, 1954, p. 4).
This is indeed the chief defect in any view that is properly called
‘frequentist’ but, as Giere (1969, p. 382) has noted, it is not as endemic
to objectivism as personalists have supposed. Propensity theory at
least is free of it and can satisfy, as his own theory does not (see
chapter 7 below, pp. 136-46), Kneale’s demand for a tenable “ objecti-
vistanalysis of an A-thing’s being B which is yet not a frequency theory”
(Korner, 1957, p. 80).

The disease from which frequency accounts of chance suffer is too
much operationalism; not, as de Finetti (1937, pp. 148—9) believed, too
little. It relates the concept of chance too closely to one particular
method, namely measuring frequencies, by which chances are ascer-
tained. That chance is a property of which ““observed frequencies are

[s5o]
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to be thought of as measurements” (Loéve, 1955, p. §) is of course a
commonplace among statisticians. It does not follow that frequencies
provide an acceptable definition of chance any more than metre rule
operations provide an acceptable definition of length. The frequentist
error, as Kneale (1949, pp. 193—4) observes, is ““that of confounding
evidence with that for which it is evidence. . . My evidence for stating
that another man is in pain may be that he winces and says he is in pain,
but this is not what I mean by my statement.” It is superfluous today to
spend time razing the largely abandoned ruins of operationalism, but
erstwhile tenants who continue to squat in frequentist outhouses ought
perhaps to be evicted. . .

The attractive starting point for frequency analyses of chance is the
relative frequency or proportion of G (i.e. things having the property
G) in some finite population of #. Thus Braithwaite (1953, p. 122): ‘On
the assumption that the class £ is neither the null class nor is an infinite
class,. . . the probability of a f-specimen being an a-specimen can be
identified with the proportion among the members of £ of those which
are members of a.” (See also Russell, 1948, p. 371.)

The frequency theories of von Mises (1957) and Reichenbach (1949)
ostensibly define probability only for certain infinite classes which von
Mises calls collectives’; but this is not to be taken literally, as von Mises
in effect admits (p. 11): ‘In order to apply the theory of probability we
must have a practically unlimited sequence of uniform observations.’
(My italics.) Few if any empirical classes, however, are known to be in-
finite and those which are open are most plausibly supposed finite.
Thus Kyburg (1961, p. 143): ‘I have already supposed that all rational
classes are finite, and even that the number of their members must be
less than two to the googolplex [1019"].” A frequency theory must
certainly apply to the finite case if it is to have even prima facie plausi-
bility, since frequency is undefined in infinite classes. It is only the
sequence of frequencies in finite classes from which von Mises constructs
limits for his collectives, that gives his theory any frequency sense. If
these finite frequencies are denied to be chances it is hard to see why
von Mises’ pseudo-mathematical limits of them should be admitted to
be so. Determinism in general cannot seriously be supposed a conse-
quence of the Universe having only a finite number of individuals, nor
in a particular class of f-specimens of that class being finite.

I therefore follow Russell (1948, p. 382) in assuming, “in order to
make Reichenbach’s theory as adequate as possible, that, where finite

4-2
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classes are concerned, the definition of [p. 371] is to be retained, and
that the new definition is only intended as an extension enabling us to
apply probability to infinite classes. Thus his H,(O,P) will be a
probability, but one applying only to the first # terms of the series.”
The extension to infinite classes is not trivial. Von Mises had difficulty
reconciling the condition that G occur randomly in a collective of F
with the condition that there is a limit to the frequency of G in increas-
ing classes of F (see Kneale, 1949, §§32—3; Popper, 1959, §§50-65;
von Mises, 1957, pp. 87—93). Such difficulties need not concern us. Our
objections are rooted equally in the finite cases from which frequency
theories ultimately derive their sense.

It is tempting to identify chance with frequency because frequency,
in the finite case at least, is an objective property, in principle easily
measurable, which trivially satisfies the probability calculus. “When
probabilities can be identified with class-ratios whose denominators
are finite numbers which are not zero, no further problem arises about
them. All these probabilities are rational numbers lying between o and 1
inclusive, and all the logically necessary laws connecting related
probabilities appear as arithmetical propositions connecting related
fractions” (Braithwaite, 1953, p. 122). The trouble is that the frequency
of G in a class of F is a property that cannot intelligibly attach to the
individual members of the class. Hence the frequentists’ inability to
make sense of a named individual @ which is £ having a chance of being
G as well as having the property G or the property ~ G (von Mises,
1957, pp- 11, 17-18; Reichenbach, 1949, §72). This is precisely the
inability, put as that of assigning an objective probability to the
proposition that ¢ is G, which Savage attributes to objectivists in
general (p. 50 above).

The difficulty may be more plainly seen as follows. Suppose @ has
the properties £y, Fy, . .., Fj, . .., where the corresponding classes (of
things that are F;, Fy, etc.) are all finite. On a frequency view the chance
that 7, is G is the frequency of G in £, the chance that F, is G is the
frequency of G in F, and similarly for any other property Z,. These
frequencies in general differ and so therefore do the chances defined by
them. Which, if any, of these alleged chances is to be ascribed to the
individual a? If none, how are they to fulfil chance’s intended réle of
constraining the CBQ it is appropriate to offer on a being G? If no one
frequency can be picked out to fill this r6le the definition, whatever it is
of, is not of chance.
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Kneale (K&rner, 1957, p. 19) and Ayer (1963, p. 200) have pointed
out (pace Salmon, 1967, p. 96) that this is the frequency analogue of a
difficulty for the view that probability statements express logical
relations between two propositions, e.g. a hypothesis and inconclusive
evidence for it. The difficulty is to decide how much evidence should be
invoked to yield a non-relational probability that could constrain a
CBQ on the hypothesis. One may say that all, or all available, evidence
should be invoked (Carnap, 1963, p. 972). The frequency analogue of
such a “total evidence” requirement is that the chance that a is G should
be identified with the frequency of G in the most closely defined class of
which a is a member, namely the class of things that are £, and F,
and...F; and...; but unless some limit is set to the increasingly
detailed specification of this “reference class’, @ will be its sole member.
The frequency of G in the reference class will be 1 or o as * Ga’ is true or
false. This is the fact analogous to the total evidence — the set of all true
propositions — containing either the hypothesis that e is G or its
negation, so that the logical probability of ‘ Ga’ on the total evidence is
either 1 or o (Ayer, 1957, p. 16).

Frequency and logical relation theorists have never overcome this
obstacle to their accounting for plainly non-relational objective
probability statements (Hempel, 1968; Kyburg, 1970a). Their attempts
founder on the problem of setting a non-arbitrary limit to the amount
of evidence, or closeness of specification of the reference class, to be
invoked in making the probability assignment. The problem might be
overcome, for example by an adequate explication of the notion of
“available” evidence (Ayers, 1968, pp. 21—2). But the resulting
definition of probability would then rest on other considerations than
frequency or the logical relation holding between two propositions.
Frequentists faced with this problem have generally adopted the
Procrustean solution of denying that there is a chance that ¢ is G. Thus
von Mises asserts (1957, pp. 17-18):

We can say nothing about the probability of death of an individual. . .. It is utter
nonsense to say, for instance, that Mr X, now aged forty, has the probability o.orx
of dying in the course of the next year. [Mr X] is. . .a member of a great number of
other collectives. . . for which the calculation of the probability of death may give as
many different values. One might suggest that a correct value. . .may be obtained
by restricting the collective to which he belongs. . .by taking into consideration
more and more of his individual characteristics. There is, however, no end to this
process. . .we shall be left finally with this individual alone. . .the collective will
cease to exist.
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This view makes it quite inexplicable how statistical data can be
given individual application. Reichenbach (1949, §71) rightly insists
that “it is the predictional value that makes probability statements
indispensable” but is reduced to the following account of how this

indispensable réle can be fulfilled (§72):

An individual thing or event may be incorporated in many reference classes, from
which different probabilities will result. ... We then proceed by considering the
narrowest class for which reliable statistics can be compiled. . .. We do not affirm that
this method is perfectly unambiguous. . .we are dealing here with a method of
technical statistics.

Of course we are dealing with nothing of the sort: we are dealing with a
crucial test of the adequacy of any proposed definition of chance. The
same goes for Salmon’s (1967, p. 91) alternative appeal to the ““broadest
homaogeneous reference class” in providing for the application of statisti-
cal data to the single case. It will not do to relegate this “extremely
practical affair” (Salmon, 1967, p. 92) of obtaining ““weights that can be
used in practical decisions” (p. 95) to “rules [that] are part of metho-
dology, not of probability theory” (pp. 93—4). The process of picking
particular reference classes is no doubt extremely practical; but if the
process is what makes probability statements indispensable probability
theory should at least make sense of it. The issue cannot be disposed of
just by calling single case chances ‘weights’ and the problems of
determining their values ‘methodological’. Single case application is so
central to the use of probability statements (cf. Ayers, 1968, p. 23) that
no account of their meaning can be acceptable which rules it out.

Nor is it sufficient to refer as von Mises (1957, p. 16) does to the
profits of casinos, lotteries and insurance companies in order to show
that chance statements are used predictively. No one seriously doubts
our knowledge of their predictive usefulness, just as ““ one would appear
ridiculous, who would say, that ’tis only probable the sun will rise
tomorrow” (Hume, 1739, book 1, part 3, section 11). What we want
in each case is an account of how such knowledge is possible. It is just
this that frequentists, as a consequence of their definition, cannot
provide. “When frequency theorists claim that they can provide a
justification for the practice of insurance companies. . .they delude
themselves by abandoning their own definition of probability at a
crucial point in the argument.” (Kneale, 1949, p. 167.)

If frequentists deny that their definition applies to the single case,
what does it apply to? What sense can be made of ‘the chance that an F
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is G’ which denies all sense to ‘the chance that zAis F'is G’? It seems to
me that two common kinds of situation have lent frequency analyses
their prima facie plausibility. One is where an F is selected, with each
F having an equal chance of selection. It then trivially follows that the
chance of the selected item being G is equal to the frequency in the class
of F. This is what gamblers take the situation to be in drawing cards
“at random” from a deck. The description of the situation clearly
affords no frequency definition of chance, since chance has to be
independently invoked in giving the description. But the situation is
one in which, given the concept of chance, it is plain why frequency
should be a measure of it, i.e. should warrant a partial belief on the
possible outcome that the selected F is G. The fact that the selected F
may also be £}, F,, etc. is irrelevant; it is given that the selection device
ignores these characteristics. If @ is 7, it has a chance of being selected
that is independent of its other properties; if @ is ~F, it has no chance of
being selected whatever its other properties.

The other kind of situation in which the frequency analysis appears
most plausible is where a population is generated by some device, as the
human population is. Some humans () are male (G) and others not.
The frequency of G in the population of F may be explained in terms of
the chance of the event that the creation of an # will also be a creation of
a G. If this chance, p, is the same for each such event, then it follows
from the strong law of large numbers (e.g. Feller, 1957, p. 190) that
there is a very high chance that the frequency, £, of G in a large popula-
tion so generated will not differ by more than a specified small amount
from the chance p. (T assume for simplicity that Gs and ~ Gs that are
F do not differ in their chances of death; where this is false, f'will also
be a function of such chances.) Here again it is easy to see how the
concept of chance as warranted partial belief can be applied: one
can bet on the outcome (male or female) of a single process of con-
ception and delivery; on the outcome of many such processes one
can bet that the frequency of men in the resulting population lies in the
specified limits. Given this concept of chance, it is easy to see also that
the observed frequency might be used as a measure of the chance that a
single birth is male. The temptation to regard this commonplace
though important fact about chance as giving scope for a frequency
definition is well illustrated in Cramér (1945, p. 149):

Whenever we say that the probability of an event E with respect to an experiment
. . .is equal to P, the concrete meaning of this assertion will thus simply be the follow-
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ing: In a long series of repetitions of [the experiment], it is practically certain that
the frequency of E will be approximately equal to P. [My italics.]

But all the law of large numbers really tells us, as Kyburg (1961, p. 20)
notes, is that “given a probability statement, we can...roughly
anticipate the result of a long experiment; given the result of an experi-
ment we may decide what probability statement to accept on the basis
of a decision technique”. It is, of course, essential that probability
statements be testable in this way but that does not make them thereby
definable.

In situations of both these kinds, where frequency in a population is
closely and plainly connected with chance, some other item than the
populationisinvolved and there is some possible event on the occurrence
of which a person could bet. In the one case the extra item is a sampling
device and the event is that the 7 sampled is G; in the other case the
extra item is the generating device and the event is that the # generated
is G. It is an irrelevant though possibly misleading fact that in some
cases the sampling or generating device may itself be 7, as when it is
people who sample from or breed a population of persons. The fact is
irrelevant because no assumption is used about the extra item being F
or ~ F; it could be misleading if it suggested that nothing but popula-
tions of # and G need be invoked in describing the situation as being
one of chance.

Where no such extra items are present and no possible event is
contemplated on whose occurrence a bet could be made, there is no
obvious use for the concept of probability. What use is there in saying
that the chance of a card in a deck being an ace is 1/13 except in some
context of manufacturing decks or of selecting cards from them? It is
true that in other contexts the frequency definition makes probability’
a synonym for ‘frequency’, but it is precisely this feature that generates
the frequentists’ problems. Because there is a frequency of G in every
finite population of F, F;, F,, etc. the frequentist is obliged to suppose a
corresponding probability. But no accepted inference from frequency
to chance or from chance to frequency would be invalidated if this
identification were abandoned. The laws of large numbers, as theorems
of the probability calculus, in no way presuppose a frequency account
of probability. Nor do the statistical decision techniques by which they
are applied to finite data and through which they adequately explicate
the everyday conception that what is probable is what happens more
often than not. To define chance in terms of frequency adds nothing to
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this explication; it merely makes needless nonsense of inferences to the
single case.

Braithwaite’s (1953, chapters §—7) theory is perhaps unfairly called
‘frequentist’ (by its author amongst others). It essentially treats chance
as an implicitly defined theoretical concept in a hypothetico-deductive
system. This is an eminently reasonable approach and, as Kyburg and
Smokler observed in 1964 (p. 4), “most statisticians today hold views
which, while not so formal and explicit as Braithwaite’s, are not
essentially different from his”. Feller (1957, p. §) for example observes,
congenially to the present thesis, that “we shall be concerned with
theoretical models in which probabilities enter as free parameters in
much the same way as masses in mechanics”. On to this theory Braith-
waite has however grafted a number of gratuitously frequentist features.
He gives a frequency definition of chance in the finite case (quoted on
p- 51 above) that his theory does not use and which it could easily
abandon. He then adds a dispensable Campbellian analogy (see
Campbell, 1920, chapter 6; Mellor, 1968) with his “Briareus model”
(pp- 129-33), in which finite frequency statements correspond to
probability statements in the theoretical calculus. The Campbellian
r6le of the Briareus model is to make the calculus acceptably intelligible
by giving it an alternative interpretation in terms of frequencies. That
does not make probabilities frequencies, as Braithwaite shows in
remarking on “the fact that the model [requiring] a restriction of
probabilities to rational numbers makes probabilities more analogous to
class-ratios [i.e. finite frequencies] than they would otherwise be”
(p. 131, my italics). But his Briareus model does make Braithwaite’s
theory look more like a frequency theory than it needs to do.

The crucial part of Braithwaite’s theory is his account of how chance
statements are tested against observed frequencies. It has been criticised
on points of detail (Hacking, 1965, pp. 114-17; Kyburg, 1958) but its
chief defect is taking ““the meaning of a probability statement [to be]
given by its rejectability by appropriate statistical [i.e. frequency]
evidence” (p. 191). Now Braithwaite admits on the same page that
“reasonable belief in probability statements may be based on quite
other data than those concerned with frequencies which correspond to
the probabilities”. He declines only to admit that these other data could
be as analytically related to chance as frequencies are. Consequently he
is left with the problem: ‘Why is it reasonable to base a betting rate
upon an estimate of chance?’ which he considers in a paper of that title
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(Braithwaite, 1966). All we need to reconcile Braithwaite’s account
with propensity theory is to strip it of the operationalist bias that ties
chance needlessly tight to a frequency measure of it. Braithwaite’s
problem then becomes: ‘Why is it reasonable to use frequency as an
estimate of chance?’

Abandoning frequency views of course still leaves the positive task
of analysing the relation chance has to other concepts including, where
relevant, that of frequency. But the latter is not the hard part of the
task. As a result of the work of Braithwaite and others, and as the
simple examples above partly show, the relation of chance to frequency
is quite well understood except that it is not one of definition. What
really need looking into are its relations with other scientific concepts.

CHANCES AND TRIALS

I propose to account for chance in terms of a feature of the world,
ascertainable by the methods of science, that warrants adopting some
partial beliefs rather than others. For frequentists, the sort of item of
which chance is a feature is a class of things of some kind. The feature is
the frequency, in that class, of things of some other kind. Of what kind
of thing is it a feature, on the propensity view, that the chance that #is
G is p, and how is this feature related to others?

It should be clear from the discussion so far that one kind of situation
to which propensity theory could apply the concept of chance is one in
which something can be bet on. Typically the situation is one in which
the occurrence in the near future of an event of some observable kind is
possible but not certain. Among such situations are the examples above
in which a population is being generated or sampled from. Other obvious
examples are those in which it is noted whether a person dies, falls ill or
recovers, or some such transition as the decay of a radioactive atom
occurs, in a given period of time. In all such situations there are two or
more possible events, one or other of which is bound to occur. To
apply the concept of chance to the situation is, on the present view, to
say that and how the situation warrants certain partial beliefs on the
occurrence of these possible events.

This usage is conveniently consonant with the more ascetic usage of
mathematical probability, where ‘event’ is used of anything to which a
probability can be assigned. The calculus is stated in terms of a set of
“sample points” called a ‘sample space’, of which events are subsets.
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Numbers are assigned to sample points, and thence to events containing
them, so as to satisfy the probability axioms (see Cramér, 1946; Feller,
1957; Kolmogorov, 1933). In the present interpretation of the calculus
I largely adopt Hacking’s (1965, pp. 13-14) terminology. A situation
to which the concept of chance can be applied is a “trial. . .each trial
must have a unique resu/t [sample point] which is a member of a class of
possible results [sample space]. . .the possible results for any trial are
mutually exclusive. A set of possible results on any trial will be called
an outcome [event]. A trial will be said to have outcome E when the
result is a member of E.”” A chance is normally assigned to an outcome
but may for brevity also be assigned to a result, meaning by that the
outcome whose sole member is the result.

The term ‘trial’ too much suggests a contrived situation or experi-
ment as opposed to one that occurs naturally. The concept of chance
may be applied to either, as the examples of death and radioactive
decay show. However, while not ideal, “trial’ is an accepted term and I
adopt it as such rather than add yet another to the literature.

Given this terminology, I return to the question: to what should the
feature I call ‘chance’ be ascribed? It is trivially true that an outcome
“has” a chance; to ascribe a chance to an outcome of a trial is no more
than to restate that there is an objective constraint on the partial belief
reasonably held on its occurrence. But the chance of it happening is not
a property that can be ascribed to an event without taking it to be the
outcome of a trial. It must indeed be the trial itself of which it is a feature
that the chance of an event is p. For typically an event that occurs as the
outcome of a chance trial contains more than one possible result. The
event that a throw of a die yields an odd number for example contains
the possible results one, three and five. Its chance p is therefore deter-
mined in part by the chances of results that have not occurred and are
consequently hardly available to be their ultimate bearers. Hence the
pertinent feature of the trial cannot just be the chance of the result that
actually occurs but the chance distribution over all possible results,
which yields in turn the chance of every possible outcome.

There is of course normally no objection to saying that it is a
property of a throw of a die that the outcome {five} has a chance say of
0.3. On the contrary, this will be entailed by the chance distribution
over all the results just as that a rod has a length > 20 cm is entailed by
it having a length of 30 cm. The point is that this usage must not be
taken to license the inference that the chances of {five} and of {six} are
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distinct properties susceptible of independent explanation, perhaps by
reference to each other. In the same way the length of a rod being
< 40 cm is not an extension of it independent of it being > 20 cm and
susceptible of independent explanation. Both are entailed by the length
of the rod being 30 cm, and this is the single extension of it that laws
connect with other properties and relations of the rod.

These remarks should not be misconstrued, as they have been by
Watling (1969, p. 41), as an admission that chance is relational. It is not
a matter of choice either that an event is an outcome of a chance trial or
of what trial it is an outcome. A coin may land heads on being tossed
when biased, on being tossed when unbiased and on being carefully
lowered to the ground heads up. In the first two cases the chances of it
landing heads differ; in the third no chance is involved at all because the
event is not an outcome of a chance trial. In general, an event may be
identified under a description whose satisfaction could be bet on, and
many events distinguished by their spatio-temporal locations may
satisfy such a description. Some will be outcomes of chance trials and
some will not. Those that are outcomes of trials have chances and the
others do not. Any given event either is as a matter of fact such an
outcome and so has a definite chance or is not and has no such chance.
Watling’s own examples (pp. 41—2) show that here is nothing relational.
Of course the chance of a radium atom decaying in &V years depends on
whether it is bombarded during that period. Any given atom either is
bombarded and its decay has one chance or it is not bombarded and its
decay has another. (See chapter § below, pp. 91, 97—100 for details
of this example.) No one decay of a radium atom need have two
chances; there is no conflict of properties to be resolved by recourse to
relations.

Similarly with Watling’s horse racing example (p. 48). If horse races
really are chance trials (which I doubt) then the chance of horse 4
winning may well depend on whether it rains or not. Suppose the
chance is 0.6 if it rains and o.2 otherwise. If we do not know the state of
the weather we do not know 4’s chance of winning, although we may
know it to be in the interval [0.2, 0.6.] A probabilistic confirmation
theory covering this situation could conceivably be to hand, with
rules for detaching probabilities on specified amounts of evidence.
Suppose that relative to such evidence the theory confers inductive
probability o.5 on the hypothesis that it will rain. In this (perhaps
barely) conceivable position of quantifiable ignorance we might be
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entitled to adopt and recommend a partial belief of strength 0.4 on 4
winning. All the example really shows is that if there can be chances we
may be as ignorant of them as of anything else objective.

This situation must be sharply distinguished from that in which one
and the same event really could be said to have two or more chances.
That happens when the occurrence of one chance trial is itself a possible
outcome of another chance trial. This could be the case here: whether
it rains or not could be a chance matter. Then if rain is the outcome a
further trial occurs, namely a race in which 4’s chance of winning is 0.6.
If the outcome were fine weather the further trial would be of a different
kind, namely a race on which 4’s chance of winning would be o.2.
Suppose the chance of rain is 0.5 and that in fact it does rain. Then the
event of 4’s winning seems to have two chances: 0.6 as the outcome of
the rainy race and o.4 as the outcome of the composite trial. Another
example is Laplace’s case of a coin the direction of whose bias is
unknown. Heads seems to have a probability of 1 on the first toss as
well as the chance that displays the bias. See chapter 7 below, pp. 131-6.

Is this an inconsistency or a complication? It certainly provides
another reason, if one were needed, for taking chances to be features
primarily of trials rather than of events. Talking of an event having a
unique chance is normally natural because the event is an outcome of a
trial whose occurrenceis notin turn the outcome of another trial. We are
able to classify such simple situations into kinds of trial with character-
istic chance distributions. According to the propensity theory this
ability is parasitic on our ability to classify certain physical things into
kinds, with characteristic propensities. The dispositional nature of
propensities in fact affords natural scope for making one trial result
from another. (See p. 72 below). But in any case our classification
of simple trials enables us to account for more complex situations, as an
outcome of which an event can plausibly be said to have more than one
chance.

I need also to emphasise that in contrast to Hacking (1965, pp. 18—20)
I ascribe chance distributions primarily to trials rather than to kinds of
trials. We might of course distinguish two trials as being of different
kinds just because they had different chance distributions over their
possible results. We might e.g. wish for that reason to distinguish
waiting a day from waiting a year to see if a person dies as being trials
of different kinds. This is not in fact done (see chapter §, p. 98) but
we may for the moment and the sake of argument suppose that a given
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chance distribution over given kinds of results characterises a kind of
trial. There is however a danger in using the noun ‘kind’ in this way.
For while ascribing the chance distribution to the kind of trial is a
convenient symptom of this usage, it may then tempt one to deny the
propriety of ascribing chance distributions to trials themselves. The
temptation is particularly strong for a frequentist. Something that is at
least like a frequency of one kind of result can readily be ascribed to a
kind of trial, namely the frequency (or its limit) of such results in some
class of actual or hypothetical trials of that kind. But such frequencies
cannot, as we have seen, be ascribed with sense to any single trial of that
kind. Now this is only a fact about frequencies that in itself makes the
frequency account of chance unacceptable. While that account is in
question it cannot be claimed to be a fact about chances in support of
the frequency view — at least, not without using what Flew (1966, p. 73)
calls the ‘ My-best-friend-is-a-Jew-but’ gambit (in which all the evidence
counts against the conclusion drawn from it).

On the present analysis, ascribing chances to single trials expresses
the fact that their function is to warrant certain partial beliefs on the
possible outcomes of such a trial. One cannot bet on a kind of trial
because a kind of trial is not itself a trial. One could warrant as strong
belief on all trials of a certain kind were trials so classified (which they
are not) that this followed from its being warranted on any one trial of
that kind. That is all that talk of ascribing chance distributions to kinds
of trial could signify. It could not in the least follow from it that
distributions should not also be ascribed to individual trials.

I conclude provisionally that the ““feature of the world ascertainable
by the methods of science’ (p. 58 above) with which we are concerned
is expressed in a chance distribution over the possible results of a trial.
This feature is to be regarded as primarily a property of the trial and
only derivatively of the events that are its actual outcomes or of a kind
of trials characterised by possession of the feature. But this kind of
entity, the trial, and the feature expressed in the chance distribution over
its possible results, still bear an obscure relation to the other entities and
features of science with which it is clear they are connected. In the
following chapter the dispositional concept of propensity is introduced
to clarify the relation. Although it may in due course displace chance
distribution as the primitive objective concept, the two are not at all the
same. We shall find reason to distinguish them more carefully than has
hitherto been usual.
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DISPOSITIONS

Chance distributions display dispositions called ‘propensities’. To
assess this claim we have first to discuss dispositions. The psychological
dispositions of belief and partial belief have been considered; now a
more general discussion is needed of what a disposition is. Dispositions
are ascribed not to trials but to more permanent entities which are
reidentified through apparent change as unchanging bearers of changing
properties. The paradigms of such entities are the common physical
things with which science begins its enquiries. The paradigms of such
properties are the dispositions we ascribe to people.

Such a sentence as

‘a is of a generous disposition’

is used of a person a to explain a regularity in his behaviour. It is not an
unconditional regularity like the sun rising every day. a is being accused
neither of continuous generosity nor of periodic fits of it. a is rather said
to be such that situations of a certain kind regularly evoke a more
generous response from a than they do from most people. The situations
are of a kind where alternative actions differ in the extent to which they
are generous. Dispositions in people thus explain what might be called
‘conditional regularities’.

The characteristically generous action that a situation evokes may be
called a ‘display’ of the agent’s generous disposition. The point of the
disposition is that it is ascribed to the person at a time whether he is
then in the situation or not. The situation calls forth a display of the
disposition, i.e. a piece of behaviour which in that situation is explained
by the fact that the person is generous.

Some features of psychological dispositions do not carry over to
other cases. People may choose to display their dispositions by bringing
about appropriate situations. a may contrive occasions for his generosity
as well as responding generously in uncontrived situations. (A person’s
action in contriving a situation in which to display a disposition might
of course itself count as a display of it.) The essential feature which
does carry over is that whenever the bearer of the disposition is in

[63]
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a suitable situation that situation has a characteristic feature. The
feature normally is that the situation has a certain result, e.g. the
result of the generous act. The feature need not however be a result even
in the human case. An orchestral conductor may for example have the
dispositional ability to give exciting performances of Berlioz. But this
quality of the performance, which displays his ability, is not in any
normal sense a result of it. The present importance of a disposition’s
display not needing to be a result of the display situation is that in the
case of propensity it never is (see below pp. 68—70).
To say then of a person or thing a that

a has disposition F at time ¢
is at least to say that

if @ were involved in a situation of kind X at time ¢,

the situation would have property P.
A statement ascribing a disposition thus entails what is best called a
‘subjunctive’ conditional. ‘Subjunctive’ is better than ‘counter-
factual’ even though in English it also normally implies falsity in the
antecedent, because that implication has to be shed here. The con-
clusion would be ridiculous that a person’s generous disposition had to
lapse whenever he was in process of displaying it.

Physical dispositions are like psychological ones in that they do not
have to display themselves continuously, periodically or even at all. The
solubility of a substance is always available to account for a property of
situations in which it is mixed with water, namely that a certain amount
of it dissolves; but a sample of the substance is no less soluble for never
being mixed with water.

Nor must the use of the word ‘always’ in the last sentence be mis-
construed. It is true as a matter of natural law that chemical substances
may be characterised inter alia by their solubility. Soluble objects cannot
in general become insoluble without changing in chemical composi-
tion. An object identified under a chemical description therefore cannot
change in this respect from time to time. A piece of salt that is soluble
at one time is soluble at all times. But this is an empirical consequence of
the laws relating solubility to chemical constitution, not a logical
consequence of solubility being a disposition. What makes an object
soluble when it is not dissolving is not that it wi// dissolve in the future
but that it would dissolve now. What is invariable is not that objects will
always be soluble if they are ever so, but that they will always dissolve
if mixed with water while they are soluble. It is in the latter sense that
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dispositions are invariable, not the former. Conversely the fact that a
usually soluble object may sometimes not be soluble gives no licence to
the view that soluble objects might sometimes not dissolve in water. An
object that fails to dissolve when suitably mixed with water is thereby
shown to be insoluble at that time, however soluble it might be at other
times. It is the same with quantitative dispositions. An object that
accelerates differently at different times under the same force has
different inertial masses at those times.

Human dispositions are arguably not always so invariable. One
might conceivably truly call a man ‘generous’ even while he acted
meanly, if mean acts were sufficiently unusual with him. I should prefer
to say that his usual generosity had temporarily deserted him, but the
point of usage is not important. What is important is the invariable
character of the physical dispositions to which chance is to be related.
Hereafter I intend ‘disposition’ to imply invariability in this sense, and
use ‘tendency’ for what can admit unexplained exceptions to the
regularities of behaviour it purports to explain.

Physical dispositions of objects then are invariable in their display
but changeable in their presence. The events that are their changes must
be sharply distinguished from the events that are their displays (Ayers,
1968, p. 83). Dissolving an object is not the same as making it soluble,
taking its temperature is not the same as heating it, and declining to
weigh oneself will not of itself keep one’s weight down. But if disposi-
tions are changeable, what serious test can there be of their presence
in an object while it is not displaying them? Is it not trivially and thus
pointlessly easy to make a changeable disposition “always available” to
account for every fluctuating conditional regularity that we choose to
read into an object’s behaviour? It would indeed be too easy to explain
aregularity in terms of a disposition solely constrained to account for it.
Hence the notorious and exaggerated inadequacy of a drug’s disposi-
tional ““dormitive virtue” to explain the sending to sleep of those who
take it. We require therefore of at least the explanatory and explainable
dispositions introduced by the sciences that they be linked to other
properties and relations of the entity (see chapter 6). Thus they are
properly ascribable on the basis of other regularities than the ones they
serve to explain. We have seen for example that solubility is ascribable
on the basis of chemical constitution, and inertial mass is ascribable on
the basis of weighing. A drug’s dormitive virtue that was detectable
also by smell or chemical analysis would be a perfectly respectable

5 MMR
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disposition. The links between dispositional properties that make them
nontrivially usable in explanation are the laws into which they enter,
however loosely these may be formulated. What laws a disposition
enters into is of course contingent. It is no part of the meaning of
‘soluble’ that solubility is connected specifically to chemical composi-
tion. But the fact that no other property is necessarily connected to
solubility does not refute the rule that some other property must be
contingently connected to it. Being a rule governing the explanatory
scientific use of all disposition terms, it tends not to be cited as part of
the particular meaning of any one of them. It tends to be overlooked by
those who have not familiarised themselves with scientific usage.

PROPENSITY

The die has a certain “would-be”. . .a property quite analogous to any kabiz
that a man might have.
Peirce, 1931, volume 2, {664

The commonplace remarks of the last section leave many problems
about dispositions, some of which will have to be attended to in this
and later chapters. But they may serve initially to show the concept of a
disposition to be sufficiently familiur and plainly independent of
probability to warrant its use in our account of chance. Even if Popper
is wrong (1957, p. 70) in supposing all physical properties to be
dispositional, certainly most are. We have already had solubility, mass,
weight and temperature as examples. We could as readily have had
length, volume, pressure, electric charge, current, fields of every kind,
with the capacities of things to react to and affect them, without
exhausting even the macroscopic domain. Whatever problems remain
in further analysing dispositions, a successful dispositional account of
chance can fairly claim to have dealt with those which the peculiar
nature of chance has posed in statistical science.

I have already remarked that a dispositional view of chance is not
new. It occurs in the quotation above from Peirce, is referred to by
Braithwaite (1953, p. 187) and has recently been strongly revived by
Popper (1957, 1959a) and Hacking (1965) and adopted by Levi (1967).
But these authors’ accounts of what such a view entails seems to me
either incomplete or defective enough to justify another attempt.

The view is that the feature I have taken to be expressed in a
chance distribution ascribed to trials of some kind should be regarded
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as the display of a dispositional property ascribed to more permanent
entities. I follow Hacking (1965, p. 13) in calling the entity a ‘chance
set-up’ and Popper (1957, p. 67) in calling the property ‘propensity’:
The probabilities. . .may be looked upon as properties of this arrangement. They

characterise the disposition, or the propensity, of the experimental arrangement to give
rise to certain characteristic frequencies when the experiment is often repeated.

Despite his emphasis on frequencies and repetition, Popper is clear
(p. 68) that

we now take as fundamental the probability of the result of a single experiment, with
respect to its conditions, rather than the frequency of results in a sequence of experi-
ments. . .. A statement about propensities may be compared with a statement about
the strength of an electric field. . .[which] speaks about certain dispositional
properties of the field. And just as we can consider the field as physically real, so we
can consider the propensities as physically real.

Hacking (1965, p. 13) characterises a chance set-up as “a device or
part of the world on which might be conducted one or more zrials,
experiments or observations” and identifies propensity (which he calls
¢chance’) with what the chance distribution would be, would have been
or will be on such a kind of trial. Hacking differs from the present
account in taking chance to be a property of a kind of trial rather than
of a trial (see p. 61 above). For this reason he needs a so-called *fre-
quency principle’ to relate his chance to what may be expected of the
single case: ‘If all we know is that the chance of £ on trials of kind Kis
p, then our knowledge supports to degree p the proposition that £ will
occur on some designated trial of kind X’ (Hacking, 1965, p. 135). The
symbolising of this principle has led to problems and controversy that
are of more mathematical than philosophical interest (Miller, 1966 and
1966a, 1968; Popper, 1966, 1966a; Mackie, 1966; Bub and Radner,
1967; Rozeboom, 1969). It is of the essence of chance that some such
principle is true, and I do not doubt that it can be consistently framed.
Providing a frequentist rationale for it is essentially the task undertaken
in Braithwaite’s (1966) paper referred to on p. 57 above. But it takes a
frequentist to need a rationale for such a plainly analytic truth. The
present account, taking propensity to be displayed in single trials,
avoids the need for such complications; nor is it thereby cut off from
truths about long runs.

In asserting the dispositional nature of propensity Hacking (1965,
p- 10) draws an explicit analogy with such a property as the fragility of
a glass: ‘If a wine glass would break, or would have broken, or will

5-2
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break when dropped, we say the glass is fragile. There is a word for the
active event, and another for the passive dispositional property.” But
this analogy needs more careful statement on the present view. The
fragility is the dispositional property of the glass that it has whether or
not it is being or ever has been or will be dropped. The breaking is the
characteristic property of the “trial”, namely of the dropping of the
glass, which the glass’s fragility explains and which it therefore shares
with a// trials of the same kind, namely all droppings of fragile glasses.
It is not immediately obvious what are analogous respectively to
fragility and breaking in the case of single trials on a chance set up. On
Hacking’s account (1965, pp. 10-11) the “active event” is the “long
run frequency” on many trials of the same kind. Elusive as this item
notoriously is, it is certainly not to be found in our single case.

PROPENSITY: DISPOSITION OR TENDENCY?

The breaking of a fragile glass would normally and rightly be called
the ‘result’ of dropping it. It is tempting then to take the result (or some
outcome containing the result — see p. 59 above) of a chance trial as the
corresponding “active event” that displays a chance set-up’s propen-
sity. But we cannot both yield to this temptation and construe propen-
sity as a disposition. If the breaking of a glass displays a fragile
disposition it must be the invariable result of suitably dropping fragile
glasses. A glass that does not break when so dropped is at that time
not fragile. A glass that sometimes breaks when dropped and sometimes
not (supposing it reconstituted from its fragments — it is incidental that
the display of this disposition destroys the object) is not “disposed to
be fragile”; sometimes it is fragile and sometimes it is not.

The result of a chance trial however must not be invariable. A coin
that never lands heads when tossed is not in that respect a chance set-up
at all. (I exclude for the present the degenerate chances of 1 or o.) It s
essential to the concept of a chance set-up that repeated trials should
sometimes lead to one result and sometimes to another. A coin with a
moderate bias towards tails must be expected to land heads sometimes.
A coin that does not land tails on a suitable toss is not thereby shown to
lack its normal bias at that time. (This is not like the occasional lapse we
might allow in the display of a human disposition (p. 65 above). A
person might possibly act meanly while retaining his generous disposi-
tion, but no one supposes that he has to.)
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We face the following dilemma. Either propensity is not a disposition
or results and outcomes of chance trials do not display it. Let us test the
first horn of the dilemma. The result of a chance trial could be taken to
display what T have called a ‘tendency’ (p. 65 above). To say for example
that

a tends to act generously
is plausibly to say that in situations where generous action is possible
but not certain

a acts generously more often than not.

The tendency does not require, as a disposition would, that when a
fails to act generously he lacks the generous tendency. All a generous
tendency needs is a preponderance of occasions on which generous
action is forthcoming. Analogously, to say that

tails is probable
where tails is a possible result of tossing a coin a, would be taken to say
that

a tends to land tails
meaning merely that in suitable tossing situations

a lands tails more often than not.

We might refine this concept of a tendency to cope with comparative
and quantitative chance statements.

‘Tails has a higher chance than heads’
said of the coin @ would come out as

‘e has a stronger tendency to land tails than it has to land heads’.
We would suppose a numerical scale of ““tendency-strength”, with
weak tendencies to land tails corresponding to chances of tails < % and
strong tendencies to chances > . It is certainly true that tendency
admits of degrees of strength in a way that dispositions do not.
Although we can say

‘a is of a more generous disposition than 4’
that means something else. It means either that a acts more generously
than 4 in situations of the same kind or that he acts generously in kinds of
situations in which 4 does not. But to be more generous in this sense is
to have a different disposition, just as to be longer or heavier is. There
is not the difference of degree exemplified in saying that

a has a stronger tendency to be generous than 4
where a more often acts generously than 4 does in situations all of the
same kind.

What is wrong with all this, of course, is that the concept of
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needs analysis at least as much as chance does. And, moreover,
no analysis seems plausible that does not involve essential reference
to chance or, as above, reduce essentially to relative frequency
(‘tends to yield x* = 4 ‘yields x more often than not”). The former
would be viciously circular and the latter simply amounts to a frequency
account of chance that we have already rejected.

I settle therefore on the other horn of the dilemma, taking propensity
to be a disposition and denying that the result of a chance trial is its
display. The advantage is not that dispositions pose no conceptual
problems, but that science presents many plain instances which can
clearly be accounted for without reference to chance. On the other hand
no obvious examples of tendencies present themselves that are not
examples of chances. The major scientific concepts to which chance is
connected by statistical laws are clearly dispositions.

PROPENSITIES AND CHANCES

The display of a propensity is the chance distribution over the possible
results of the appropriate trial. It is the property of the situation, e.g. of
the toss of a coin, that characterises the disposition of the persisting
entity, e.g. the bias of the coin. The bias of the coin replaces the
chance distribution as the feature of the world which warrants some
partial beliefs rather than others in events that are outcomes of the
toss. The concept of propensity is of a more familiar and intelligible
kind than is the chance distribution that may now be regarded as its
display. The ordinary physical things that can have propensities are the
same as those that have other dispositional properties. Statistical
science need no longer add the heterogeneous category of trials to
our primitive ontology of things. There will be chance trials of
course, just as there are measurings of mass and testings of solubility,
but they need not be regarded as the ultimate bearers of statistical
properties.

Perhaps things with dispositions should in the end be construed as
assemblies of events. I do not believe it, but the thesis anyway bears no
more peculiarly on propensities than a wholesale subjectivism does
(p- 25). Perhaps also some chance distributions are not displays of any
propensity. I have yet to be convinced of examples: certainly not by
supposed limits of hypothetical frequencies in arbitrary classes of
possible future events. I doubt, though without clear argument, the
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intelligibility of chances unbacked by propensities (but see chapter 8,
p- 173). However this may be, our present subject is propensity and the
chances that display it.

One may still ask what is added by introducing the concept of
propensity. There are first the constraints remarked on above to which
the explanatory postulating of dispositions is subject. Propensities
admitted in scientific theory must thereby be connected to other
properties in whose terms they admit of explanation. It thus happens
that indirect evidence can occur for propensities as for other dispositions.
Thus it also happens that traditional gambling examples are not ideal in
that their interest lies more in the trial than in the set-up. Serious
sciences do not deal with the propensities of coins and dice, although
something is known about them. The terminology of trials and chances
devised to deal with gambling is not so well suited to describing the
r6le of statistical theories. The entities and properties involved are
made to seem more different from those of non-statistical theories than
they need to be.

Having introduced propensity it is important not to confound it with
chance. That the result of a chance trial displays only a tendency gives
rise to a peculiar temptation to do this. Popper and Hacking seem at
times to yield to it, laying themselves open to Kneale’s charge (K6rner,
1957, p- 80) of “doing no more than provide a new name for objective
probability”. The point is that a disposition may in general be character-
ised by the feature of a trial that constitutes its display. That feature is
often an event, some characteristic result of the trial. But a statement
ascribing the disposition does not entail that the characteristic event
ever occurs because it does not entail that the disposition is ever
displayed. To say that a glass is fragile is not to say that it will
break, since it may never be dropped. The temptation to confound
propensity with chance arises because disposition statements share this
feature with chance statements. A chance statement also deals with an
event, for the happening of which it entails that some partial belief is
peculiarly warranted. If the strength of this partial belief is less than 1
the statement does not entail that the event occurs, even if the trial does.
But a propensity statement, being a disposition statement, further does
not entail that the trial occurs. This lack of entailment must not be
confused with that shown by a chance statement. For example, if the
propensity statement is that a coin is unbiased, it fails to entail that the
coin falls heads not only because the chance of heads on a toss is less
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than 1 but also because it does not entail that the coin is ever tossed
at all.

The difference between propensity and chance may be further brought
out in this example. The degree of partial belief warranted on a coin
landing heads in an interval of time obviously depends on how often
the coin is tossed in it. If the coin is not tossed, no partial belief > o is
warranted; if it is tossed twice or more a stronger partial belief is
warranted than if it is only tossed once. The coin’s propensity, its bias
or unbiasedness, is of course the same in each case. One might suppose
a condition that the coin be tossed just once to be implicit in the use of
‘chance’; but one could not then identify chance with warranted partial
belief. Until I believe the coin will be tossed I have in general no
partial belief in it landing heads, although I may predict what my partial
belief would then be. The arguments of chapter 2 for measuring
partial belief by CBQs both require the gambler to be compelled to bet
(pp- 36—7) and exclude conditional bets (p. 49). No doubt ‘chance’ is
often used also of what I call ‘ propensity’, but to explain a confusion is
not to condone it.

The point perhaps becomes clearer in a situation like that in chapter 3
where an event can seem to have more than one chance (p. 61).
The display of a propensity or of any other disposition is not normally
a chance matter. It can be made so, however, if for example we decide
to toss one unbiased coin, a, only if another, 4, that we toss lands heads.
Otherwise a is to be turned tails up. We can make a machine do all this
when we press a button, and the chance then of a landing heads is %,
of it landing tails $. That indeed displays a propensity in the machine;
the coin is of course as unbiased as ever. Whatever may be said for
ascribing conflicting chances (of 4 and 1) to @ landing heads when it
does so, no conflicting propensities need be ascribed either to the coin
or to the machine.

The trouble that can arise from confounding propensity with chance
is best shown in cases where a trial is carried out simply by letting time
elapse. Suppose for the moment that a distinct property of a person is
displayed by the chance of his dying within a year. (It will be seen in
chapter § (pp. 83—97) that this is too simple an assumption, but it does
not affect the example’s illustrative force.) This property is a propensity
a person has at any one time. It may change from time to time as his
other properties change, such as his state of health, exposure to radiation,
etc. Only if there is no such change during a year is the trial carried out
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that directly displays the propensity to die he had when the year
started. In fact the propensity changes continuously with age so that it
is never directly displayed. It will of course be indirectly displayed by
the display of other dispositions with which it is connected and which
in turn connect with the man’s propensities to die in shorter periods of
time. Then from such chances the chance of death in a given year may
be deducible and may well differ from that corresponding directly to
any propensity the person had during the year. Suppose a healthy man
has, from January to June, a propensity to die in a year that would be
displayed directly by a chance of death of 0.05. Suppose now that in June
he contracts a disease which changes his propensity to that which
would be displayed by a chance of 0.3. It is clear that the chance of the
man dying in the whole year, January to December, is between 0.05
and 0.3 and that at no time does he have a propensity of which this
chance is a direct display. This is so whatever complication of the sort
discussed above may be introduced by assuming that his catching the
disease is itself the result of a chance trial (see chapter §, pp. 90-1).
In any case the chance of the man dying during the given year is not a
property of the man, ascribable to him at a particular time in the year
and capable of changing from time to time, as the propensity is. It is
a property of the trial of waiting a year — during which the man’s
propensity changes. It makes no more sense to locate it temporally
within the duration of the trial than it would to ask how the chance of
heads changes during the toss of a coin, or what the length of a rod is
half way along it.

That Popper and Hacking confound chance and propensity seems
to be shown by their unfortunate reform of usage in the literature. We
have quoted Peirce (p. 66 above) ascribing something like a propensity
to a die. His subsequent account of this “would-be” is unacceptably
frequentist but is at least ascribed to the die, just as analogous would-be’s
are presumably ascribable to coins and atoms. Popper and Hacking,
however, seem to be misled by the chance of heads on the toss of a
coin depending on how and in what surroundings it is tossed. They
thereupon include all these other features in the total “experimental
arrangement” (Popper) or “set-up” (Hacking). I have adopted the
terminology but wish now to disown some of its connotations.

In bringing about a situation that will display a disposition it is often
necessary to add something to the object the disposition is ascribed to.
For a solubility to display itself some solvent must be added for the
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soluble substance to dissolve in. For a glass’s fragility to display itself a
stone floor, let us say, must be added for the fragile glass to be dropped
on. Call the description of what must be added, and how, to bring
about the display of a disposition its ‘operational definition’. (I don’t
make the operationalist assumption that each concept has a unique
operational definition, but the term is nonetheless useful. Bridgman
(1927, chapter 1) may not have introduced the term explicitly of
dispositions, but certainly of concepts like length, which I take to be
dispositions.) A situation brought about by applying an operational
definition to an object has some feature that displays the disposition.
The dissolving of the substance in the solvent and the breaking of the
fragile glass when dropped are both such features. But these are
properties of the situation, not properties of the object; and the
dispositions they display are conversely properties of the object,
not of the situation. Solubility is not a property of the mixing of a
solid and a liquid, and fragility is not a property of the dropping of
a glass.

Starting from the situation, or trial, the point may be put by saying
that convention picks out some more permanent entity, that could be
involved in other trials of the same kind, to bear the disposition
displayed in the situation. Although the choice of entity is to an extent
conventional, it is by no means arbitrary. The entity must be capable of
bearing other dispositions, i.e. of being involved in situations of other
kinds, brought about by other operational definitions. The law-like
connections between simultaneously possessed dispositions serve thus
to explain the features of many diverse situations (see pp. 656 above).
The physical things with which sciences start their ontological collec-
tions are entities of this sort.

The conventional element is well illustrated in the case of solubility.
If only one solvent, e.g. water, is in question, the solubilities are
ascribed to the different solids whose presence with water gives rise to
mixing situations with different features, namely dissolvings of
different quantities of the solute. If on the other hand only one solid is
in question, the relevant dispositions are ascribed to the various liquids
in which it may or may not dissolve. Agua regia is thus notable among
liquids for its dispositional ability to dissolve gold. With variety in both
solids and liquids a solubility would clearly be ascribed to an ordered
pair and express a dispositional relation between them. The dispositions
of being hard and soft could similarly be ascribed to a variety of floors



Propensities and chances 75

as fragile glasses were and were not disposed to break when dropped on
them.

The special case of propensity is now clear: Propensity is ascribed to
a die or coin rather than to the complete “set-up” present only at the
trial displaying it because convention picks out this more permanent
entity from others also involved in the trial. There are standard ways of
tossing coins and throwing dice that could be specified in an operational
definition. They are normally taken for granted, however, just as it is
normally taken for granted that solubility is solubility in water and
fragility to dropping on a hard floor. The convention could be other-
wise. There could be definite varieties of tossing device which systemati-
cally affected the chance distributions of coins tossed on them. We
should then ascribe bias to a device that gave a biased distribution to a
standard unbiased coin. In so doing we should do nothing more exotic
than is done in ascribing colours to light that makes white objects look
as coloured objects look in white light.

It is true then that the chance distribution over the possible results
of tossing a coin is affected by the properties both of the coin and of the
tossing device. The propensity displayed may be ascribed to either
according to conventions like those governing the ascription of
solubility and colour. The convention is unusually arbitrary in this case
just because there is no serious science with a network of laws about
coins or tossing devices into which the propensity can be fitted. The
ascription of a propensity here either way may be taken to express a
conviction that such a science is possible. What is clear in any case is
that the propensity must not be attributed to the whole assembly of
coin, tossing device and environment that is only present when the
coin is actually being tossed. To do that is to remove completely the
point of ascribing a disposition as something that is present whether or
not it is being displayed. It is to confound propensity with the chance
distribution that displays it and hence indeed to make ‘propensity” no
more than a new name for chance.

Hacking seems to suffer from this confusion both in accepting
Popper’s notion of the set-up and in the example in which he says that
“a piece of radium together with a recording mechanism might consti-
tute a chance set-up”’ (1965, p. 13). On the present account that would
be like saying that a thin glass together with a hard stone floor might be
fragile, or that a grain of salt with a bucket of water might be soluble,
or that a fire together with a thermometer might be hot. I use the term
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‘set-up’ so that a piece or an atom of radium is a chance set-up; a coin
is a chance set-up, given standard tossing devices; a tossing device is a
chance set-up, given standard coins. The distinction between propen-
sity and chance is as essential as the distinction between a set-up and a
trial on it.

DISPOSITIONS AND DISPLAYS

Having emphasised the particular distinction between propensity and
chance, I turn again to the general relation between dispositions and
their displays. We need to be satisfied that peculiarities of propensity do
not make its fit as Procrustean on the dispositional as it is on the
frequency bed. It is convenient to start with the operational view of
scientific concepts (e.g. Bridgman, 1927, 1938; Dingle, 1950), defunct
though that largely is. There is no point in retelling all the objections
raised by L. J. Russell (1928), Lindsay (1937), Feigl (1945), Morgenau
(1950), Pap (1959), Hempel (1965, chapter §), Schlesinger (1967) and
others. I consider here only what is pertinent to comparing propensities
with other dispositions.

The first point is that dispositions are not limited to those that
display themselves in situations which can be brought about at will. The
class of dispositions is wider than the class of what Carnap (1956, p. 65)
calls “testable dispositions’. The disposition of the sun to bend light
rays passing close to it is no less a disposition because it only displays
itself during eclipses. It is being able to observe the display of a
disposition that matters, not being able to bring it about. The term
‘operational definition” adopted above (p. 74) for the procedures by
which a disposition is displayed too much suggests contrived displays
as opposed to those that occur naturally. The same point has already
been made (pp. 59, 67) in the special case of propensity that ‘set-up’and
‘trial” must be taken to cover natural as well as constructed systems and
situations. So the propensity of a radium atom to decay is no less a
disposition because its display can be secured merely by the lapse of
time; nor does that of a sparrow to die in a cold winter fail to be a
disposition because neither we nor the sparrow can control the weather.
Nothing here sets off propensities from other dispositions. Hereafter
I use ‘operational definition’, like trial” and ‘set-up’, without implying
a restriction to contrived situations.

The next point is that no dispositional concept can be “synonymous
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with the corresponding set of operations” (Bridgman, 1927, p. 5)
precisely because it is ascribed even when the operations are not going
on. The whole object of ascribing dispositions is to support subjunctive
conditionals about the upshots of trials that may never be carried out
(p- 64 above) in the same way that laws support subjunctive condi-
tionals about possible instances. But then, as Hempel (1965, p. 126)
observes, “to attribute a disposition of this kind...is to make a
generalisation, and this involves an inductive risk”. Ascribing a
disposition goes beyond what is given by experience in just the way
operationalists wish to avoid, even if it is defined exclusively by the
results of one kind of operation. It is not safe, “in the same sense in
which Bridgman insists it is “not safe” to assume that two procedures
of measurement that have yielded the same results in the past will
continue to do so in the future” (Hempel, 1965, p. 126). This being so,
the motive for operationalist rigour is largely gone. Dispositions such
as masses, temperatures and propensities must be admitted whether on
the basis of one or of many kinds of operation. Their ascription is no
more secure in the former case than in the latter. Yet it is just such
unattainable security the operationalist seeks to achieve by excluding
the latter case. It is thus not at all a difficulty peculiar to propensity that
its true ascription is not entailed by the results of any number, however
great, of its displays. Nor do frequentists have any sound operationalist
reason here to restrict admissible displays by definition to just one kind,
namely frequencies in sequences of single trials.

This leads naturally to the third point, that dispositions normally
display themselves in more than one way (cf. Ryle, 1949, p. 44). It is
not true of dispositions that ““if we have more than one set of operations,
we have more than one concept” (Bridgman, 1927, p. 10). There are
several issues here, which it is easy to confound. It could be made true,
as by Carnap (1956, p. 64), simply by stipulation that a disposition
displays itself in only one way. In that case such concepts as mass,
temperature and propensity would turn out not to be dispositions but
rather, as for Carnap (1956, p. 68), “theoretical” concepts. That how-
ever assumes a sharp distinction I do not assume between observable and
theoretical properties and, relatedly, the traditional analytic-synthetic
distinction. Thus Pap (1959, p. 181) accepts the ‘different operation,
different concept’ stipulation at least for non-quantitative dispositions
for the following reason:

This approach has the advantage of avoiding a logically objectionable feature of
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pairs of reduction sentences for the same disposition term, namely, that a conjunction
of analytic statements entails a synthetic (factual) statement. The conjunction
of ‘Q;2(D=Qy)’ and ‘Q;>(D=Q,)’ entails ‘~(Q.Qp-Q3 ~Qy)’; the
negated conjunction, . . .however, is logically possible. It is, for example, logically
possible that a body which attracts a small iron body should fail to generate an
electric current in a closed wire loop through which it moves. But if we put ‘D, in
the first reduction sentence and ‘D,’ in the second, we cannot formally deduce the
mentioned synthetic (factual) consequence; we should require the further premise
‘(%) (Dyx = Dyx)’.

I do not however assume that any statements made by reduction (or
related) sentences are analytic in Pap’s traditional sense. I take any one
such sentence to be rejectable in the face of experience, and whether or
not its rejection entails abandoning the concept seems to be more
complex than Pap allows for. What Hempel and Carnap admit to be
true of theoretical terms I take to be true of dispositions: *“ Experiential
significance is then seen to be a matter of degree. . .and it even appears
doubtful whether the distinction between analytic and synthetic
sentences can be effectively maintained in reference to the language of
empirical science.” (Hempel, 1965, p. 133).

What then justifies applying the term ‘disposition” to such concepts?
First, there are virtually no instances, and certainly no important
scientific instances, of ““one-operation” dispositions.

The interpretation of scientific terms as pure dispositions cannot easily be reconciled
with certain customary ways of using them. . .a scientist, when confronted with the
negative result of a test for a certain concept, will often still maintain that it holds,
provided that he has sufficient positive evidence. . .. The scientist will point out
that the test procedure. . . should not be taken as absolutely reliable. (Carnap, 1956,

p- 68.)

Before any theory of X-rays was developed, X-rays were simply ““what you got
when cathode rays impinged upon metal surfaces”; and “that which produced
photographic images of a certain kind”. Only as we advance in discovery and
technique such very sketchy definitions are supplanted by fuller qualitative,
quantitative, and far-flung relational characteristics. . .(Feigl, 1945, p. 506).
Empirical laws enable us to define the same concept by different operational routes.

(Feigl, 1945, p. 504.)
The wide range of application of statistical law and theory connects
propensity concepts at least as widely as that of an X-ray (see Braith-
waite, 1953, pp. 116-17).

The dearth of “one-operation™ dispositions leaves us free to apply
the term ‘disposition” more widely than Pap and Carnap do. To do so is
fair because things which have the properties to which I apply it are
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understood to be thereby disposed to behave in certain ways in certain
situations. The list of situations and corresponding ways for a given
concept is not fixed. It may be extended and changed as available
situations, methods of observation and theoretical connections of the
concept change. Consider Newtonian mass, which is a disposition to
resist applied forces (cf. chapter 2, pp. 38—9 above). The greater the
mass the less the acceleration induced by a given force. The list of
Newtonian forces whose application provokes a display of massive
inertia has been steadily extended since the concept was introduced.
New ways have been found of detecting the resultant display, e.g. in
electrically charged masses whose acceleration has electromagnetic
effects. Theories of gravitation have proposed an identification of
inertial with gravitational mass that makes a weighing as much a
display of the former as acceleration is. What Levi (1967, p. 196)
observes of temperature is even more plainly true of mass, that “if it is
considered dispositional, it [is] a disposition to a great many things”.
But that fact is no reason not to consider mass and temperature dis-
positional. It may blur the edges of our concepts and so make life more
trying for concept counters. Are there two concepts of mass — gravi-
tational or inertial — or only one? A change of answer to such a
question is not of great moment. It transforms an illustration of the
present claim that a disposition may be displayed in diverse ways into
an illustration of the earlier claim (pp. 65—6) that dispositions must be
interconnected by laws, or vice versa. Whichever claim a given example
illustrates, both claims remain. We shall see in the next chapter how
such trivial puzzles of conceptual identity arise with propensity concepts
such as radioactive half life and physiological age. Here again we find
no cause to doubt propensity’s dispositional credentials.

When we take a single disposition to be displayed in different kinds
of situation we may apply a common term to the different kinds of
display. We may say of a bad-tempered man, whether he is abusing his
colleagues or beating his children, that he is in each case indulging in a
display of bad temper. Every way his bad temper can display itself is a
piece of behaviour to which the non-dispositional property of being
a display of bad temper can be correctly ascribed. The concept of the
disposition is thus necessarily if trivially linked to the concept of its
display. It need not be necessarily linked to any independently charact-
erised kind of situation and behaviour therein, in and by which it is
normally displayed.
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We rarely have call to distinguish the two concepts. Whatever can
be said in terms either of the disposition or of its display can be said
differently but equally well in terms of the other. Which one uses
depends on whether the thing with the disposition is of more or less
interest than the situation displaying it. One might remark on the bad
temper of @ man one knows to be given to anger where most people are
not; or one might remark of his behaviour on some suitable occasion
that it was a piece or display of bad temper. Of a display that comes about
naturally it is common to use the same term that is used of the disposition.
Both the dispositional colour of a pillar box and its non-dispositional
appearance to a standard observer are called ‘red’. If one is out in cold
weather one may remark that it is cold out, referring to the display of
coldness brought on by the operation of going outdoors. From inside
one might equally look out at the frost and remark that it is cold out,
referring to the disposition of the outside environment to cool a person
out in it. The point and normal justification of this usage is the necessary
connection of the disposition with its display. It is not at all diminished
by there being as many ways of telling in diverse circumstances
whether it is cold out or what colour a thing is as there are ways of
being bad tempered.

This view of dispositions enables us to resolve apparent conflicts in
the literature. Carnap (1956, p. 64) and Pap (1959, p. 181) perceive the
necessary connection between a disposition and its display but mistake
it for a necessary connection between the disposition and one particular
way of displaying it. In particular they tie displays too closely to
observation. Then, blurring the distinction between display and
disposition makes Carnap (1956, p. 65) uneasy about his own distinction
between dispositional and observational terms: * An observable property
may be regarded as a simple special case of a testable disposition; for
example, the operation for finding out whether a thing is blue or hissing
or cold, consists simply in looking or listening or touching the thing,
respectively.” But dispositions do not constitute a half-way house
between observable displays and theoretical concepts that are un-
observable and so cannot have displays at all. The disposition/display
distinction cuts across the observable/theoretical distinction. It has to
do rather with the distinction between things and events, and events
can be quite hard to observe as things. Once we admit dispositional
properties with more varied and less directly observable displays we can
reconcile Carnap and Pap more to Popper’s suggestion (1957, p. 70)
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that “all physical (and psychological) properties are dispositional. That
a surface is coloured red means that it has the disposition to reflect light
of a certain wavelength. That a beam of light has a certain wavelength
means that it is disposed to behave in a certain manner if surfaces of
various colours, or prisms, or spectrographs, or slotted screens etc.,
are put in its way.” The example shows again how a highly theoretical
property like the wavelength of electromagnetic radiation is a “dis-
position to a great many things” that need not all be necessary for it.
Wavelength is indeed normally a good test of colour, yet an observably
white light in which a surface looks red to a normal observer may have
had the “certain wavelength” that Popper refers to completely
removed. Conversely the reflectivity that makes a surface red can be
tested quite mechanically without the use of sighted observers.

It needs emphasising that the concept of a display is not that of
something especially accessible to direct observation. Displays are not
properties of anything like sense-data. For one thing they are not
private; displays of colour can as well be recorded by a camera as by a
human eye. For another, descriptions of the situations these concepts
apply to are given in a full “physical thing” language. Even as public
objects they are not stripped of conceptual commitments as Kneale’s
(1957, pp. 155—7) “views” for instance are. One would be wrong to
describe a feature of a situation as a dissolving if one did not take the
situation to involve a soluble substance.

These points have been laboured in order to press in two ways the
comparison of propensity with other dispositions. (Or, if you please,
with mass, temperature, wavelength etc., whether they be called
‘dispositions’ or no. But I shall use the term.) First no particular
objection to chance distributions displaying a disposition can be
grounded in their not being directly observable. They need no more be
visible or tangible as features of single trials than is the passing of an
X-ray. Chance distributions are indeed inferred indirectly and incon-
clusively from frequencies and from other properties related to them by
statistical laws. Such an inference is not less admissible or intelligible
than is say the weighing of an inertial mass or a volumetric measure-
ment of a gas temperature.

The other point of comparison is in the necessary connection
between disposition and display. It is important on the one hand that
this duplication of concepts is practically needless, that whatever can be
said in terms of one can be said in terms of the other. Hence in particular

6 MMR
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to talk of propensity rather than of the chance distribution that displays
it is not to change the subject. On the other hand, since not everything
is said in terms of the disposition, the distinction must be drawn if only
to propose a change of usage that might make it redundant. Hence I
have had to distinguish from chance the dispositional concept of
propensity. To press the comparison I now need to distinguish from
other dispositions displays that are not just the results of particular
operations. Otherwise the necessary connection between a propensity
and its chance display would seem to lack parallels in a non-operational-
ist account of other concepts.

Some displays of non-statistical dispositions have been referred to
already. To take another example, it is necessarily true that an object
30 cm long will yield a “length display” of 30 cm in an occasion of
measurement. The particular method used may be inaccurate and so
give a misleading result of other than 30 cm. In the same way a green
object viewed in what purports to be daylight but is not may not look
green to an observer. It is still necessarily true that its ““colour display”’,
that which it is disposed to yield on suitable observation, is a “green
look”. Again, a good method for measuring length may be misapplied
or its result misrecorded. Just so may a colour-blind observer be
chosen to make a colour judgment in a good light, or a normal observer
mistake a colour he glances too carelessly at, or write down ‘grue’ for
‘green’. Admitting all these possibilities of error it is still important to
recognise that which the measured object brings to the occasion of
measurement, that feature of the situation for which the object, rather
than the measurer or his method, is to be held responsible — this is what
I mean by ‘display’. Display concepts are unfamiliar because they are
normally dispensable. To ascribe a length display to an occasion on
which an object is measured is neither more nor less than to ascribe a
length to the object. In the present account of chance such concepts are
not at once dispensable. The present theory is that most if not all
chance distributions are displays of propensities. They may be ascribed
on the basis of diverse operations, as length and temperature displays
may be. Lengths, temperatures and propensities are alike dispositions
to yield respectively length displays, temperature displays and chance
distributions. Each of these connections is necessary; none is necessary
between these properties and the result of any one operation of measure-
ment.
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ENOUGH HAS BEEN SAID of propensities to excuse an excursion into
matters of fact. It is as well to see what sense propensity theory makes of
some serious science as well as of gamblers’ toys. I take two examples:
the elementary theory of radioactive decay and a theory of physiological
aging. They are intended to be reasonably realistic without being
unreasonably complex. The first is well known as a challenge to
subjectivists; the second poses a particularly explicit challenge to
frequentists (see p. §3 above). My account of both theories is inevitably
rather simplified and dated. The theory of radioactivity has been
absorbed in a more comprehensive theory of nuclear activity. It is
established but outgrown and by that token expoundable with little risk
of scientific controversy. Theories of aging are less secure and more
controversial. What I say may make the subject seem more settled than
it is, but that does not matter. All parties treat the subject as statistical
and deal in the concepts I introduce. We are concerned with the sense
of what is said, not with scientific qualms about the truth of details. It is
enough that both theories are products of serious and largely successful
natural sciences. Either theory may be superseded, but neither is likely
to go the way of phrenology or mesmerism. Science’s way with its past
admittedly foreshadows Orwell’s 7984, but the fact of the Bomb (and
the formidably scientific ghosts of Rutherford and others) will surely
keep even the falsified remains of radioactivity within the historical
pale of science. Concepts of aging have the alternative protection of
common usage. Some men are known to age, to grow old before their
time. That is the sort of thing we would all know even if medical science
had not presumed to make statistical sense of it.

DEATH RISK AND PHYSIOLOGICAL AGE

Consider the trial of waiting to see if an individual @ of age w diesin a
further stretch of time z. Assume that this trial has a chance distribution
over the alternative results that a dies and that he survives. Let the
chance of a dying in the stretch of time ¢ be p. For short stretches we
(8] 6-2
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assume that p is roughly proportional to . The chance of a man dying
in two days is about twice that of his dying on one. To get a quantity
more characteristic of the individual we therefore divide the chance p
by the time #, and take the limit of this fraction as ¢ decreases. Thus the
individual’s death risk p at age w may be defined as

4 = Lim é (Taylor, 1961, p. 349).
10

The evil influence of frequentism has made the term ‘death rate’
almost synonymous with ‘death risk’, and values of x are usually given
in such units as ‘deaths per 1000 per year’ (e.g. Jones, 1961, p. 274).
Statistical usage is not consistent, but we shall see that death risk is best
regarded as a propensity of individuals. I reserve the term ‘death rate’
hereafter for some frequency of deaths in a population, which might
be used to measure a member’s death risk.

The death risk of individuals is taken to be a function of environment
and state of health as well as of age. In a constant environment and state
of health, however, the death risk of an adult increases steadily and
sharply with age. On the long standing theory (Gompertz, 1825) I am
taking as exemplar, “the relative annual increase in the death [risk] as a
consequence of aging is a constant fraction which depends upon the
species concerned” (Jones, 1961, p. 270). For a number of species
(including men, mice and flies) the fraction is proportional to the life
span of the species. If we take the life span as the unit of time we can
therefore superimpose the graphs of death risk against age for members
of these species, as shown in figure 1 (from Jones, 1961, p. 271). In
figure 1 “curves 4, B, and C represent successively better states,
whether with respect to genetic factors, overt disease, or environment”
(Jones, 1961, p. 271). That is, an individual whose death risk is given
by A has seven times the death risk at any given age of an individual
whose risk is given by C.

From such general relations as those shown in figure 1, relations of
death risk to age for particular species follow immediately. Figure 2
shows the relations for men that follow from 4, B and C if we assume
a life span of 100 years. I have also superimposed on figure 2 a plot of
death rates against age for white U.S. men and for Swedish men in 19535.
(From Taylor, 1961, p. 352; World Health Organisation, 1958,
PP- 54—7.) The comparison is not strict, for two reasons. First, actual
death rates calculated for such five-year age-spans are not identifiable
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with death risks; they are in effect death risks averaged over that age
range. Secondly, the death rates of Swedish and U.S. men are averaged
over many individuals in different environments and states of health
and with consequently different death risks. The plots may neverthe-
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less reasonably be taken within limits of experimental imprecision to
represent the death risks of typical members of these two populations.

The characteristic rate of relative increase in death risk with age for
members of a given species is often referred to as its ‘ force of mortality’.
It may be expressed in terms either of the rate constant or of the time
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taken for the death risk to double (Jones, 1961, p. 271). Figure 2 shows
that the force of mortality for men is given by a “doubling time” of
eight years. The time is the same on all three theoretical graphs;
whatever one’s environment and state of health, provided it stays the
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same, one’s death risk goes up about ten per cent a year for most of one’s
adult life.

Men cannot live long at the same age, and the exponential increase of
death risk with age must be allowed for in general when deriving chance
distributions from the theory. However, the effect on the distribution
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in an extended trial of the increased death risk towards its end is reduced
by the chance that the man may die before then. Allowing for these
factors, chance distributions for various extended trials derived from
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graph B of figure 2 are given in figures 3 and 4. The general relation is
T
p = 1—exp — [ulw +2) — p(w))-

Figure 3 shows the chances of death in trials of two, five, ten and twenty
years duration as functions of age. Figure 4 shows the chances of death
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as functions of duration for extended trials on men aged thirty, fifty,
seventy and ninety. Thus point X on figure 3 shows a fifty—fifty chance
thata man aged 66 will live another ten years; point ¥ on figure 4 shows
a chance of 39 in 4o that a man of thirty will do the same.
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It is of course assumed in figures 3 and 4 that the risk of the man
whose death is in question continues to be represented throughout the
trial (or as much of it as he survives) by graph B of figure 2. I have
expressed this assumption by saying that the man’s environment and



Death risk and physiological age 89

state of health remain constant. The first condition has been difficult to
satisfy in Europe and the United States during the last hundred years,
as rising hygienic standards have shown themselves in steadily falling
death rates. The derivation of chance distributions for extended trials
in these conditions is more complicated although not different in
principle. We ascribe to the environment a variable propensity to induce
death in people of various ages and states of health. The chance distri-
bution in a given trial displays this propensity as well as the death risk
of the individual. If its variation with time were known quantitatively
as is that of death risk in a constant environment, the chances of death
in extended trials would again be derivable.

The complexities of this example make two things very plain. First
the need to distinguish propensities from chances. Secondly, the
conventional element remarked on in chapter 4 (pp. 74—6) in assigning
dispositional properties. With a variety of people in similar environ-
ments we take their different chances of death to display different
propensities in them. With similar people in a variety of environments
we take their different chances of death to display different propensities
in the environment.

Consider a journeying motorist who maintains an invariable ability
and vigilance. The chance of his dying in the next minute (say) still
varies with the state of the road and traffic. A stretch of road on which
this chance is particularly high we call ‘dangerous’. The term denotes a
propensity of individual roads which traffic engineers put much effort
into removing. They do so by altering other properties of the road
connected to it, such as its surface, its gradient, its width, its lighting,
its markings and its road signs. What they are doing is exactly analogous
to removing the colour of a paint by changing its chemical composition
with a bleach, or the fragility of glass by changing its stress distribution
in annealing it.

Equally, of course, the chances of two drivers dying in similar cars
on the same stretch of road may differ widely. A driver whose death has
a particularly high chance we call ‘dangerous’. The term again denotes
a propensity, this time in him, with which other properties are known
to be connected, such as the level of alcohol in his blood. Cars too can
be dangerous in the same sense. It is invariably held, as it is with roads
and men, that dangerousness is a function of a car’s other properties. It
must be possible to make a car less or more dangerous by changing it in
some other respect.
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We see illustrated here the general regulative principle of con-
nectivity (Schlesinger, 1963, chapter 3), of which we shall say more
hereafter. The principle is used to settle the ascription of dispositions
on the basis of other properties connected to them. Suppose a glass
breaks on a floor. Does this display unusual fragility in the glass or
hardness in the floor? It depends on whether relevantly similar glasses
break on relevantly different floors, and whether relevantly different
glasses break on relevantly similar floors. Without an array of other
properties of glasses and floors, and a network of laws to tell us which
are relevant to fragility and hardness, we cannot settle the question. It
is the same with propensities. Their ascription on the basis of measure-
ments of chance requires an effective ontology of things like men, cars
and roads or coins and tossing devices (p. 75), variable in other respects
to which the ascribed propensities may be connected.

Death risk must be distinguished from the chances that display it if
specious objections are not to be raised. A man may obviously be so
assassinated that his death is not a matter of chance at all. A biased coin
may equally be so lowered to the ground that its landing heads is not a
matter of chance (p. 60). Or a radioactive atom may be split by deliber-
ate bombardment. That these are not chance trials does not count
against the things involved being chance set-ups. The assassinated man
still had his death risk, the lowered coin its bias and the bombarded
atom its half-life.

The propensities of the person must similarly be distinguished from
those of the environment. Consider the radioactive analogy. A bom-
barding environment may not certainly hit an atom in it but only have
a propensity to do so. And a hit atom may not certainly decay but only
have a higher propensity to do so than an unhit atom has. We can
calculate from these data what the chance of decay in a given time is for
an atom placed in such an environment. It will be higher than the chance
decay in that time of an unhit atom which is not being bombarded. We
might put this by saying that the environment has raised the “decay
risk” of the atom, but it would be misleading. It would suggest that
merely by entering the environment the atom acquires a new propensity
to decay, intermediate between those of hit and unhit atoms. This is not
the case. No change in the properties of the atom takes place unless and
until it is hit (see pp. 99—100 below). The third propensity needed
to calculate the chance of decay is a property of the environment, not of
the atom.
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Similarly with the death of people. There are statistical theories of
epidemics which credit human environments with propensities to give
people dangerous diseases. Suppose for example that the greater the
proportion of people in a community with an infectious disease, the
greater the chance of an uninfected person catching it (e.g. Feller,
1957, p. 110). Someone with the disease moreover has a greater death
risk than a similar person without it. Now the chance of an uninfected
person dying is clearly increased by his entering the epidentic area. But
he acquires no new propensity to die unless and until he actually catches
the disease. To say that his death risk increases on his merely becoming
exposed to infection is to confound propensity with chance.

The terms ‘death risk’ and ‘ death rate’ have been loosely used in this
respect to cover chances of death displaying propensities both of
people and of their surroundings. Thus Jones (1961, p. 286) asserts
that “the single, heavy-smoking male, sedentarily employed in a large
United States city, may be compared [in death risk] with a married, non-
smoking female living in rural Scandinavia”. This heterogeneity has
not worried workers in the field because frequentism, adopted faute de
mieux, has led them in any case to suppose that death risk “cannot be
determined for an individual; it is a measure associated with a popula-
tion” (Taylor, 1961, p. 349). We can, however, confine ourselves to
the extra death risks of those who have contracted specific diseases.
These are undoubtedly propensities of people rather than of their
environments. Nor, despite frequentist protestations, is there any doubt
that these concepts are specifically applied to individuals. Thus Jones
(1961, p. 289): ‘Individuals having malignant tumours are known to
have particularly high death rates. . .such death rates characterise all
such patients.” Jones considers the various established causes of such
high death risks and whether they can be reversed. In the table on his
p. 287 he classifies these causes accordingly. Of the risk of death from
heart disease he concludes (p. 285) that “reduction of the heart disease
risk appears practicable, using dietary methods for lowering the
disturbed elevations of serum lipoproteins”. A man on such a diet is
not worried about “a measure associated with a population”; he is
concerned to change that property of himself which would otherwise be
displayed in an excessive chance of his death during the years ahead.

As a more convenient and perspicuous measure of such death risks
from specific diseases, the concept of physiological aging has been
introduced. It has been observed that “not only does the death [risk]
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from all causes for a given population increase at a constant relative rate
with age, but also the [risk] for almost any selected cause of death
increases at about the same pace” (Jones, 1961, p. 271). The immediate
effect of contracting a disease of which this is true is to produce a sharp
rise in the death risk, e.g. from graph B to 4 on figure 2. Thereafter the
death risk of the person with the disease remains on graph A as he
grows older. The overall effect therefore is to shift his whole death
risk/age curve a number of years to the left. His death risk at any
chronological age is the same as he would have reached that number of
years later had he not contracted the disease. A disease may therefore be
characterised, in its effects on death risk, in terms of the number of
years of “physiological aging” it produces (Jones, 1961, p. 287).
Figure § shows this effect for the diseased bodily state that smoking
twenty cigarettes a day induces, which Jones (p. 287) cites as aging a
man seven years. If in a given environment we use the death risk of a
healthy individual as a standard, we can define not merely increases but
absolute values of physiological age. A man’s physiological age is the
age of a healthy man with the same death risk.

So much serves to introduce the concepts of death risk and physio-
logical age. More needs to be said in support of interpreting them as
propensities of individuals. Death risks and physiological ages are of
course directly measured by frequencies via derived chances such as
those in figures 3 and 4. But not every frequency of death among an
arbitrary class of people measures a chance. Frequency of death in a
class of “man-years” only measures chance directly when all the
members of the class have the same chance. In particular, the chances
will be equal if all the men involved have the same physiological age
and are in similar environments.

This account requires that pairs of unknown chances, death risks
and physiological ages can yet be known to be equal. There is no
vicious circularity in such an assumption; it is a logical commonplace
that two classes of unknown size can be known to be equinumerous
(Russell, 1919, chapter 2). More pertinently, the measuring of many
physical quantities requires similar assumptions. Consider a scientist
using a thermometer to measure the temperature of an object. He must
first satisfy himself that the thermometer is at the same temperature
(ex hypothesi unknown) as the object. Only then is he justified in
ascribing to the object the temperature he reads off the thermometer.
Similarly when a length is measured with a pair of calipers or when a



Death risk and physiological age 93

bridge method is used to measure differences of electrical potential
(Astbury, 1962). There is thus nothing peculiar in our assumption; but
it needs showing how it can be known to be satisfied in the case of death
risks (and hence chances).
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I have remarked that propensities, like dispositions generally, are
admitted only as being connected by laws with other properties. When
such proposed laws are established they can be used to ascribe death
risk and physiological age on the basis of measurements of connected
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properties. We have seen a man’s age to be the property most notably
connected to his death risk. Hence the age of a person in a fixed state of
health is a measure of his death risk, just as the volume of a fixed mass
of a given gas at a fixed temperature is a measure of its pressure. Two
such samples of gas of the same known volume are thereby known to be
of the same, even if unknown, pressure. Similarly two people of the
same age in the same known state of health are thereby known to be of
the same, even if unknown, death risk and physiological age. Hence the
frequency of death in some time interval among a class of such persons
in relevantly similar environments is a good measure of the chance of
their death. If the environment is suitably standard this chance is in
turn a display of the physiological age of the people involved; once we
know some physiological ages we can take such chances to display the
“dangerousness” of non-standard environments. The case is exactly
like that of using frequencies in coin tosses to ascribe bias alternatively
to the coin or to the tossing device (chapter 4, p. 75).

Where physiological age is a known function of some ““cause of
death”, a frequency of death among a quite different class can be a good
measure of the chance of death. Figure § shows the aging of seven years
caused by smoking twenty cigarettes a day. Call such people ‘smokers’
and those who do not smoke at all ‘non-smokers’. Then the physio-
logical age of a smoker of 3 is the same as that of a non-smoker who is
42 but in otherwise similar health. Hence the frequency of death among
42 year-old non-smokers is a good measure of the chance of a similar
smoker of 35 dying in the same period. Analogously, the effect on the
pressure of an ideal gas of doubling its volume #”is exactly cancelled by
doubling the absolute temperature f. A reading of the pressure of a gas
sample at 27" and 26 is therefore a good measure of the pressure of an
otherwise similar sample at #”and 6. So indeed would an average be of
readings of samples, some at #” and # and some at 27" and 26. In the
same way frequency in a mixed class of smokers of 35 and non-smokers
of 42 provides aperfectly good measure of their common physiological
age.

Thus a frequency in a class of people some of whom are dissimilar in
a relevant respect can give a good measure of man’s physiological age.
Conversely, a frequency in a class of people who are all similar, but in
an inadequate number of relevant respects, can give a bad measure. So
far from the frequency of death among smokers (of all ages) being the
only acceptable measure of “a smoker’s chance of dying” (as on the
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frequency definition), there may well be 7o smoker of whose chance of
dying that frequency is an acceptable measure. Death risk is a pro-
nounced function both of age and cigarette consumption. Frequency in
a class of smokers of all ages is a bad measure of the death risk of a
smoker of 35, as is frequency in a class of 35 year-olds many of whom
are non-smokers. In the same way an average of pressure readings of
gas samples all of the same volume as a given sample but of widely
varying temperatures is a bad measure of the pressure of the given
sample.

The appeals above to people and gas samples being ““otherwise
similar” do not beg the question at issue. We are not given a priori the
respects in which other things must be equal, nor are they forced on us
directly by observation. It is a matter for ““conjecture and refutation”
(Popper, 1963). If we suspect relevance in a previously unregarded
property it can be tested for in the ways I have illustrated. It is true that
gases are less complex than people, and we can be surer of having
satisfied ‘ceteris paribus’ clauses about them. But this is a difference of
degree, not of principle. The “relevant respects” other than volume
and temperature in the case of gas pressure are known to be mass and
chemical composition. In the case of physiological age the relevant
respects other than smoking and age are a finite number of personal
properties. Some of them are established, others still under investigation.
“Thus, radiation effect, genetic constitution, physical injury, and some
of the infectious diseases produce through their action the equivalent of
advancing of physiological age” (Jones, 1961, p. 269).

Physiological age is not only affected and explained by other
physiological properties with which it is connected. Once established
it is itself used in physiological explanation. Thus Jones (1961, p. 272)
suggests that “many of these causes [of death] — cancer, vascular
disease, diabetes — are linked to the quality of internal metabolism. . ..
It is reasonable to assume that these deaths are the result of aging in the
sense that decay of functional vigor somehow underlies the onset of
these functional failures.” And on the other hand there are ““metabolic
events known to be associated with aging. . . the risk of recurrence of a
vascular disease accident was shown to be dependent upon the patient’s
serum lipoprotein level” (Jones, 1961, pp. 284—5). The law-like status
of these generalisations is further shown in such counterfactual inferences
as the one to the conclusion (p. 91 above) that dietary methods would
reduce a patient’s heart disease risk via their effect on the serum lipo-
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protein level. The same criterion is used to distinguish relevant from
irrelevant factors affecting heart disease risk. Investigations

suggest that blood pressure has about equal importance with serum lipids in the
estimation of heart disease risk. . .Blood pressure and blood lipids are only very
slightly correlated, so that their usefulness in predicting the risk is additive. On the
other hand, overweight...may not supply additional information beyond that
contained in the lipid and blood pressure data, because of the strong positive
correlations between overweight and either blood pressure or serum lipids. (Jones
1961, p. 286.)

In other words, the data suggest the counterfactual inference that if a per-
son’s weight were changed without changing his blood lipid or pressure
levels, his death risk from heart disease would be unaffected. Weight
is thus not a property independently connected to heart disease risk.

I have given this example in perhaps excessive detail, and laboured
elementary facts of measurement, to show how much less mysterious
death risk and physiological age appear on a propensity than on the
received frequency view. They are quite commonplace attributes of
individuals, dispositions admitted on the basis of their law-like con-
nections with other properties that in turn provide many alternative non-
frequency measures of them. Physiological age serves in the deductive
explanation of hosts of statistical laws about the effects of bodily causes
on the chances of a person’s death. It is in turn explained by its correla-
tions with such other of his properties as age, genetic constitution,
blood pressure, etc. That these correlations are not as complete and
certain as those enshrined in the gas laws shows merely that the medical
sciences still have work to do. It is endlessly possible that the work will
reveal further relevant factors and falsify existing statistical law state-
ments. So it is with deterministic laws. Meanwhile, we have a rational
account of why life insurance companies investigate some properties of
a client and ignore others. They are not making mysterious prudential
or methodological decisions about how much ignorance is worth dis-
pelling before settling on a relative frequency, or logical probability rela-
tion, or purely subjective partial belief. They interest themselves in the
properties currently established as connected to their client’s physiologi-
cal age, of which they thereby hope to make an indirect measurement.
(They of course enquire similarly into the dangerousness of his environ-
ment, which also affects the chances of his death.) And there is nothing
more obscure or irrational in the indirect measurement of physiological
age than thereisin the indirect measurement of any other disposition.
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I suppose incorrigible determinists, whether frequentist or subjecti-
vist, may still object that all the given statistics reflect is ignorance of the
cause of each person’s death. To any two people differing in life span
some other explanatory difference, they might claim, must (and hence
doubtless can) be ascribed. The statistical data then result from a
merely accidental mixture of such different kinds of person in the
population. The long answer to this is given in chapter 8. The short
answer is that these alleged explanatory differences between people who
die at different ages are not known in all cases, and existing theory does
not provide for them. The claim that they must nevertheless exist and
that neither people nor environment can “really” have propensities is
based on an assumption of determinism that is the very point at issue.

HALF LIFE

If physiological theory does not provide deterministic differences
between individuals who pass away at different ages, the theory of
radioactive disintegration positively excludes them. It does not postu-
late differences between radium atoms that decay at different times and
then lay down measures for our ignorance. It asserts identity of
properties between them, and especially of a property whose display is
the equal chances of their decay in equal times. On this theory a radio-
active atom is a chance set-up. ““ A radioactive atom. . .is in an unstable
condition. In any interval of time it will have a certain definite proba-
bility of disintegrating” (Delaney, 1962, p. 45). The “unstable condi-
tion” of an atom is the propensity to decay, of which the chances of
decay in various times are the displays. The chances of decay are
derivable from the theory as they are from the theory of physiological
aging. The set-up here is simpler than a person, and so the derivation is
simpler, involving fewer independent variables. “ The probability A
that any particular atom will disintegrate in unit time is constant and
independent of the age of that atom” (Collinson, 1962, p. 44). A trial on
this set-up consists of waiting for a finite time ¢, in which there is a
finite chance p that the atom will decay, where p is given by

p =1—exp (—A). (Delaney, 1962, p. 45). (1)
The decay constant A is commonly given in terms of the half-life
T(= ln 2/A) , which is the duration of a trial in which the chance of
decay is 4. The half-life is the same for all atoms of the same “radio-
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element”, a radioelement being a (radioactive) isotope of a chemical
element (Brown, B., 1962, p. 60). The half-life of the most common
isotope of radium, for example, is 1622 years (Myerscough, 1962,
p- 168).

This is a case in which the same propensity is equally displayed in
trials of any duration, with consequently diverse chance distributions.
The same is true of physiological age, but the situation is further
complicated there by several propensities being displayed in any given
trial. The point is seen more clearly in the austerer context of radio-
activity. We thus do not distinguish radioactive trials as differing in
kind merely because they differ in their chance distribution (see chapter
3, p. 61). Such trials only differ in kind where they involve atoms of
different radioelements. To say this is merely to say that equation (1) is
very analytic to the radioactive disintegration theory. There is no doubt
that statistical measurement of 7 for a given radioelement on trials of
one duration would be subject to correction via equation (1) by statisti-
cal measurement of the chance distribution on trials of other durations.
Hence these constitute only one kind of trial and the atom’s single
propensity to decay is that expressed in the value of its half-life, which
it shares with all other atoms of the same kind, namely of the same
radioelement. The half-life is the single property of a radioactive atom,
as physiological age is of a person, that enters into the law network
connecting it with other properties.

It may be thought a peculiar feature of statistical dispositions to be
capable of display in trials of many apparent “kinds”, but it is not so.
Analogous situations arise with many other properties, as has been
generally urged in chapter 4 (pp. 76-82). Young’s modulus, an elastic
property of materials of which Hooke’s law is true, is equally displayed
by any stretching of a wire made of the material within its elastic limit.
Less obviously perhaps, consider whether the vapour pressures of a
substance at various temperatures constitute as many difterent proper-
ties of it, or whether measurements at these temperatures are all equally
displays of a single property. The question obviously turns on how
analytic is the function involved, i.e. the extent to which it would be
used, like equation (1), to combine data taken indifferently at various
temperatures. A typical relation between vapour pressure P and
temperature § is an exponential relation of the form

P = exp (A —BJ0), (2)
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where A and B are constants for a given substance. Such a relation may
be so analytic to a new (e.g. a synthesised organic) substance that its
vapour pressures at all temperatures are calculated from just enough
measurements to fix the values of A and B (see Armstrong, 1962,
p- 587; Othmer and Gilmont, 1955). This is particularly likely when,
for example, knowledge of vapour pressure is needed for investigating
chemical reactions at temperatures at which the substance’s instability
makes direct measurement impossible. In such circumstances the
characteristic values of A and B in equation (2) express just asingle
property of the substance. Vapour pressures at different temperatures,
where measurement at one temperature is thus subject to correction via
equation (2) by measurements at others, are not taken to be independent
properties. They are of course all derivable from equation (2), just as
the chances of many individual outcomes in a chance trial are all
derivable from the one chance distribution (see chapter 3, p. 59).
Equation (2) is capable of such analyticity largely because it is derivable
with simplifying assumptions from thermodynamic theory. (In this
context, and that of similarly derived equations of state, the use of such
expressions as ‘semi-empirical’ is an excellent indication of the status of
a proposed generalisation (see Thewlis, 1962, volume 3, p. 4).)

Construed as a disposition, then, half-life is not peculiar in being
displayed in many different chance distributions. All this commonplace
fact gives us reason for is repeated insistence on the distinction between
propensity and chance.

The obvious differences between the concepts of half-life and
physiological age are immaterial to their status as dispositions. It is
true for example that half-life cannot change continuously as physio-
logical age can. The half-life of an atom is nevertheless a property of it
which is connected with its nuclear properties although independent of
its state of chemical combination. Nuclear structure is not as readily and
is not continuously changeable as are the properties with which
physiological age is connected. This is not an important difference.
Nuclear structure is changeable: the radioactive disintegration theory
postulates that the same atom is transformed, when decay occurs, from
one structure to another. In the thorium series an atom of thorium-232
passes by decay through twelve successive stages to the stable lead-208.
In each stage the atom has a distinct half-life, ranging from 10° years
(thorium-232) to 107 seconds (tolonium-212) (Brown, B., 1962, p. 60).
Thus a numerically identical atom undergoes over a period of time a
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series of drastic changes in its propensity to decay, these changes being
connected with and explained by changes in its nuclear structure. Such
changes may occur naturally or may be brought about artificially, for
example by bombarding stable elements with neutrons, protons or
deuterons (Brown, B., 1962.a).

The case is therefore quite closely analogous to that of physiological
age, in which a person’s propensity to die may change naturally,
increasing with increasing age, or be changed artificially by taking or
giving up smoking, exposure to radiation, physical injury etc. Like
physiological age, half-life explains on the one hand a host of derived
statistical laws about disintegration in various quantities and mixtures of
radioelements. On the other, it is in turn explained by its correlations
with the other physical properties that distinguish different isotopes of
the same chemical element. And here too, indirect measurement of
half-life, via that of the disintegration rate of a sample of the radio-
element, is a commonplace. “ There are four main methods of measure-
ment [of disintegration rate], namely counting, calorimetric, loss of
charge and ion chamber”, of which only counting (““normally only
suitable for weaker sources” (Collinson, 1962, p. 41)) is anything like a
frequency measure. But this frequency measure is certainly not so much
more analytic than the other methods, relying on correlations of half-
life with other properties, that the concept would be retained if the
other methods failed to correlate. The correlations are direct conse-
quences of the radioactive disintegration theory which alone provides
employment for the concept of half-life. Frequencies of decay in
arbitrary classes of atoms would no doubt continue to be measurable
without such a theory, but not the explanatory propensity, of which such
frequencies now measure only one of a large number of alternative
possible displays.



6 Imprecision and inexactness

THE PREVIOUS CHAPTER supplied examples of respectable scientific
propensities. I now resume the quest for cause or just impediment why
these quantities may not be joined together in the conceptual category
of dispositions. In so doing I shall be led to deal further with dispositions
in general, the results being applied specifically to propensities in
chapter 7.

I consider first whether any peculiar logic of measurement in pro-
pensity marks it off from other dispositions. Propensities are obviously
quantities. Their values are given by those of the chance distributions
that display them. Where many distributions display one propensity
the value is that of the parameters of the analytic relation between them,
such as the half-life and doubling time in theexamples of the last chapter.
Such values are generally capable of continuous variation on at least an
interval scale (Stevens, 1959; Ellis, 1966, pp. 58—67) of rational
(Braithwaite, 1953, p. 130) or, in general, of real numbers.

It has been widely if tacitly supposed that a true quantity must be
capable in principle of having precise values ascribed to individuals. No
doubt tiresome but trivial “errors of measurement and other forms of
experimental error” may have to be discounted before ““our attention
can turn to the logico-mathematical structure” of relations between
these quantities (Sellars, 1961, p. 73). Even the discussion provoked by
exceptions apparently implied by the Uncertainty Principle serves to
emphasise the otherwise general assumption.

Precise values of chances, and hence of propensities, are notoriously
not ascribable even in principle. On any recognised theory of testing
statistical hypotheses (e.g. Neyman, 1952, chapter 1) all that can ever be
shown is that a chance lies in an interval of values. Even this assertion
will be subject to a finite probability of falsehood. Not only can precise
values of chance not be ascribed, it cannot even be shown conclusively
that a value lies in any interval less than [o, 1]. This all stems not from
errors of measurement but from the very nature of chance. Does this
apparent distinction show that propensity is not after all a true quantity?

The distinction in fact is only apparent. Chance values can be shown
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to lie in intervals less than [o, 1] as conclusively as measurement can
show anything dispositional. Values of propensities can be shown to be
in significantly restricted intervals evenif they cannot be given precisely.
And contrary to common belief, nothing more can be shown in the case
of other dispositional quantities. Imprecision is just as inevitable in
measurements of other quantities as it is in measurements of propensity,
and just as inherent to the quantities measured.

Consider first the propensity statement that a coin @ is unbiased,
which we may symbolise as

po (H) = o0s5. (1)
No doubt (1) cannot be tested directly, only statements derived from
(1) of the form k< p, (H) <, )

where 0 < £ < 0.§ < /< 1. Any test criterion will moreover leave a
finite probability of rejecting a true statement of the form of (2) or
accepting a false one (apart from the degenerate case £ = o, / = 1).

Chwistek (1948, p. 256) has observed that this is just as true of
statements assigning particular values of any other quantity measurable
on a continuous interval scale. Take temperature as a typically respect-
able dispositional quantity. Consider the statement that the temperature
of a coin a is 21 °C, which we may symbolise as

0, = 21. 3

Again, all that thermometers of varying precision can test directly are
derived statements of the form

k<0, <l (4)

where —273.2 < £ < 21 < /< melting point of a in °C. Any given
test criterion (i.e. operational definition prescribing a method of
applying and reading a thermometer) will leave a finite probability of
rejecting a true statement of the form of (4) or accepting a false one
(apart again from the degenerate case £ = —273.2,/ = melting point
of ain °C).

To this parallel two objections might be raised. The first is that the
probabilities of error in testing (1) are calculable from the original
statement and indeed intrinsic to its meaning (Braithwaite, 1953,
Pp- 151-5), whereas this is not true of (3). In reply to this we observe
that incidental sources of error are as possible in tests of propensity
statements as in tests of temperature statements. It is as possible to
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make a mistake in counting the number of heads in a sequence of tosses
as it is to misread a thermometer. It is also as possible for a particular
sequence of trials to fail to display the propensity (e.g. the coin is
warped by a temperature change during the sequence) as for a particular
surface reading to fail to display the temperature (e.g. chemical action
sets up temperature gradients inside the coin). Doubtfulness in the value
of a dispositional quantity introduced in this sort of way I call ‘opera-
tional imprecision’.

Conversely, what I call ‘conceptual imprecision’ is inherent in
temperature measurement just as it is in that of propensity. Its existence
is recognised in current theories of temperature. Fluctuating molecular
velocities limit the precision of any possible temperature measurement.
No refinement of measuring technique could warrant ascribing a precise
value of a temperature as opposed to an imprecise ascription in the form
of (4). This is inherent to the present concept of temperature; the
probability of a supposedly precise reading deviating from the “true”
mean value by any given amount is calculable from its theory. The same
is true of lengths, pressures, electric currents, and the magnitudes of
fields, electromagnetic, gravitational etc. connected with particles in
indeterminate motion.

The second objection that might be raised is that the concept of a
probability of error has been introduced. This concept seems to have a
connection with propensity that it lacks with other quantities (see e.g.
Braithwaite, 1953, p. 155). But this is not so. Measurement of any
quantity is subject to error as well as to imprecision, and error is often
an outcome of a chance trial. The set-up is the measuring device and the
trial consists of making a measurement prescribed by an operational
definition of the quantity measured. The possible results are the possible
readings the device gives of the quantity. Its propensity is displayed in
the chance distribution over these possible readings. If this propensity
is not known it may itself be measured. Thus estimates are made of the
reproducibility of thermometer readings and the results of statistical
trials alike. And doubtless the devices used in zkese measurements have
a propensity to err, of which further measurements could be made.
There is an endless regress, but it is neither vicious nor mysterious. In
the special case of frequency measurements, indeed, Braithwaite (1953)
has made it the basis of his definition of chance. I decline the definition,
but not because it involves a regress. That devices for measuring
propensity resemble devices for measuring temperatures in having
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propensities to err reinforces rather than diminishes the similarity be-
tween them. It certainly discloses no distinction in their logics of
measurement (see Mellor, 1967a, pp. 325-6).

What is controversial in this field is not chances of error given the
true value of a quantity, but using the concept of probability in inverse
inferences from a reading to the true value. Despite the strictures of the
Neyman—Pearson school (e.g. Neyman, 1952, p. 235), scientists
certainly do make such inferences from readings and interpret error
distributions in terms of probability. On the other hand it is certainly
not clear what kind of trial could have true values of a quantity as
possible results nor what kind of set-up could have a propensity to
produce such true values. It is not even clear how bets on the results of
absolutely conclusive measurements could ever be settled (cf. chapter 2,
p- 31). If probabilities are involved, therefore, they seem not to display
propensities nor even to be interpretable as CBQs. They are the concern
of confirmation theory rather than of statistical science. The probability
that a dispositional quantity lies in a certain interval, given a reading of
it, is thus a questionable concept. But it is quite immaterial to its
legitimacy whether the quantity being measured is a propensity or a
temperature.

Whether or not they are interpreted probabilistically, there are as
established criteria for accepting statements like (2) as there are for
accepting statements like (4). Neither acceptance is secure against
inductive doubt, which cannot therefore be invoked peculiarly against
propensity. It is endlessly possible for future measurements, both of
propensity and of temperature, not to correlate with past ones. It is
endlessly possible for temperatures and propensities alike no longer to
correlate as they have previously done with other dispositions. The
traditional problems of induction bear on the present topic not at all,
since they are posed equally by the ascription of any disposition.
Measurement can show as conclusively that a coin’s propensity to fall
heads is between 0.45 and o.55 as it can show its temperature to be
between 20.5 and 21.5 °C.

It remains to discuss why imprecision is as inherent to other disposi-
tional quantities as it is to propensity. I have emphasised already that
constraints are imposed on explanatory dispositions in science (chapter
4, pp. 65—6). For a term denoting a disposition to convey in-
formation it must be applicable on the basis of more than one opera-
tional definition. It must be usable in stating a law not entailed by its
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method of application. “If the linear expansion of a mercury column in
a glass tube of even width furnishes the basis of an operational definition
of ‘temperature’, then the question whether mercury expands in linear
proportion to temperature (so defined) must be answered ‘yes’ as a
matter of logical necessity”” (Feigl, 1945, p. §04). Defining temperature
by a mercury thermometer would say nothing about the world until the
defined concept was related to others in a logically distinct way, for
example in the laws of thermal expansion of other liquids and gases.
But then these laws in turn can be made to provide alternative opera-
tional definitions of temperature. In fact any sufficiently well estab-
lished law into which a disposition enters, whether a quantity or not,
can be invoked in an operational definition. Whatever the historical
order of their discovery, once others are accepted no one law about such
a concept remains analytic in the traditional sense. Science has no
conservative regulative principle, that concepts should be permanently
enshrined in the oldest known general truths about them. There is no
one uniquely privileged operational definition of a dispositional
quantity. So a chemical substance can be identified in analysis by any
suitable set of its properties —melting point, solubility, chemical
reactions, colour, hardness. Similarly a length can be measured from
the period of a pendulum, the flow of a viscous fluid, the extension of a
rod on heating or under stress, by sundry optical and mechanical
means; in short, by invoking any applicable law into which the concept
of length enters. To be acceptable a scientific disposition must enter
into at least two laws well established enough to provide alternative
operational definitions. Normally indeed it will enter into a whole
“law-cluster” of them (Putnam, 1962). This is the feature that gives
rise to conceptual imprecision in quantities.

Various reasons of theory and convenience determine the choice of
operational definition on different occasions and for different values of
a dispositional quantity. The thermocouple and the pyrometer become
the standards of high temperature measurement, as the micrometer and
interferometer replace the metre rule for short lengths. In the same way
calorimetric and charge loss methods replace counting as a measure of
radioactivity for strong sources, and age becomes the measure of death
risk for a healthy man (see chapter § above). Nevertheless, the continued
use of a single term through all these shifts of operational definition is
not just a typographical accident. It signifies a presupposition that all
the sufficiently well-established laws the disposition enters into hold,
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whether they are invoked in the particular operational definition or not.
Identifying a chemical substance permits an immediate inference to any
of its established physical and chemical properties, not just to those by
which it happened to be identified. Similarly, however any length or
half-life is in fact measured it is invariably implied by the use of the term
that invoking any other applicable law would give a consistent reading.

As refinements of measuring technique decrease operational impreci-
sion, different operational definitions may fail to correlate as they used
to do. This is the valid point on which operationalists have insisted.
“It is not safe to forget [that] the equivalence of two operations is
established by experiment, and we must always adopt the attitude that
the results of such an experimental proof may be subject to revision
when the range or accuracy of our experience is increased”” (Bridgman,
1938, pp. 121—2). Such failure of correlation generates conceptual
imprecision, since to assert the value of the quantity too precisely is then
to falsify at least one established law into which it enters. Whereas if
one says merely that the value lies in an interval containing both
readings, neither law is falsified. I have called the shortest such interval
(or its length, according to context), containing readings by all
accepted methods, the ‘imprecision’ in a dispositional quantity (see
Mellor, 1965, 1967, where this topic is explored in more detail).
Operational imprecision arises from requirements of reproducibility in
applying any one operational definition; conceptual imprecision is a
measure of the discrepancy between readings produced by two or more
definitions, equally well established. As all dispositions have at least two
operational definitions conceptual imprecision can be revealed in any
dispositional quantity by sufficiently precise measurement.

The distinction between and mutual independence of conceptual and
operational imprecision may be illustrated by two of many possible
examples:

(i) The height of the atmosphere is conceptually imprecise. Its
operational definition could be given much greater precision as the
height to some arbitrary density level. But then fluctuations in tempera-
ture (for example) would lead to a failure of this to correlate with
height defined by pressure at sea level, so that inferences drawn from
one to the other with such precision would not be reliable.

(ii) There are various ways of measuring size distributions of
collections of small particles: with a microscope, by wet or dry sieving,
by settling in still or moving air or liquid, by using various centrifugal



Imprecision and inexactness 107

devices. Each method is operationally precise to a few per cent, but they
correlate to only 10—20 per cent. Thus only a “settling size” or “wet-
sieve size”’ distribution can be established with any precision. Values of
the single quantity denoted by particle size’ as used in all these contexts
can be given to a precision no better than ten per cent.

There is not a major dispositional quantity in the physical sciences
which is conceptually precise. The dimensions and mass even of the
most rigid, inert and involatile solid are conceptually imprecise on an
atomic scale, and most dimensions and masses have much greater
imprecision than that. There is conceptual imprecision similarly in the
pressure and temperature of even the most stable and isolated equili-
brium system. These facts we have seen above (p. 103) tobe recognised
and accounted for in physical theory. And what is true of physical
quantities is as true of psychological ones. I have had occasion (chapter
2, p. 33) to insist that imprecision should not disqualify partial belief as
a quantity. If it did, science would have few quantities.

The world no doubt might have been such that only precise dis-
positional quantities were needed in its description (Swinburne, 1969).
It could equally have been finite and deterministic, so that only precise
frequencies were needed to give objective application to the probability
calculus. The point however is that the quantitative concepts science in
fact applies to the world, rightly or wrongly, are inherently imprecise,
propensity no more so than any other.

The view that imprecision in measurement is trivial and incidental to
the quantities measured (e.g. Pap, 1963, chapter 3) seems to have two
sources. The first is a line of reasoning of the sort that leads to the
Sorites paradox (Cargile, 1969). Since it is certainly not inherent in
quantitative concepts to have any specific imprecision, it is tempting to
suppose that they need have none. In the same way Fellows of Cam-
bridge Colleges have been known to argue that since any specific rent
for their rooms would be arbitrary they should pay no rent. Such
reasoning may be persuasive but it is not sound. It need not be arbitrary
that the rent of a room, the number of grains in a heap of sand, and the
imprecision in a quantity should all exceed zero, however arbitrary their
precise values may be.

The other source of the view of quantities as precise is the failure of
most philosophers of science to distinguish conceptual from operational
imprecision. Bridgman (1927, pp. 33—4) for example accounts for the
“approximate character of empirical knowledge” in terms of a “pen-
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umbra of uncertainty. . . to be penetrated by improving the accuracy of
measurement”’. Nagel (1961, p. 84) does indeed note “the tacit
assumption underlying the use of. . . diverse procedures [for measuring
electric current]. . . that they yield concordant results” and (p. 99) how
one “theoretical notion is made to correspond to two or more experi-
mental ideas”. But he does not consider these sources of conceptual
imprecision in discussing the “haziness” and “lack of sharp contours”
of experimental ideas, as when (p. 100) ““what is experimentally
identified as a spectral line corresponds, not to a unique wavelength but
to a vaguely bounded range of wavelengths”. Some of the examples in
which Duhem (1914, p. 134) contrasts ““ theoretical facts” with imprecise
*“practical facts” suggest conceptual rather than operational imprecision:
‘the body is no longer a geometrical solid; itisa concrete block. However
sharp its edges none is a geometrical intersection of two surfaces; instead
these edges are more or less rounded and dented spines’. But he refers
explicitly (p. 172) only to operational imprecision, to “ the degree of ap-
proximation. . .[increasing] gradually as instruments are perfected”.
With such analyses it is not surprising that imprecision in quantities
has been treated as a trivial matter of discountable error. Yet this
mistaken view has had consequences in the philosophy of science far
beyond the expected bounds of chance and the theory of measurement.
Defenders of deductive explanation have been curiously insensitive to
the weakness of their treatment of imprecision and to the attacks to
which this exposes them. Hempel (1962, p. 101) has a dismissive foot-
note for Duhem’s attack on deductivism, in which he admits that ““the
explanation of a general law by means of a theory will usually show
[that]. . . the law holds only in close approximation, but not strictly”.
He is here considering Duhem’s example (1914, p. 193) of the in-
consistency between Kepler’s laws and Newton’s theory of gravitation.
Hempel’s implied concept of “approximate but not strict” deductive
explanation seems to me unsatisfactory. Deducibility does not come by
degrees (except arguably in inductive logic, which is not here in
question); either one proposition follows from another or it does not.
Popper (1957a) takes the same example to illustrate a “sufficient
condition for depth” in a theory, that ‘‘it corrects [laws] while explain-
ing them”, and hence avoids “circularity” by ““deducing something
better in their place”. But he gives no account of the sense in which the
“something™ can at once be better than and yet explain the laws.
Similarly in the case of quantities, Brodbeck (1962, p. 244) admits that
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“there is no deduction. . .of a single, exact value. There is instead a
strict deduction, by the probability calculus, of a so-called “chance”
variable, that is, a frequency distribution, which is quite another thing.”
But the probability calculus provides no deductive step either way
between a finite number of data points and either a chance or a limiting
frequency distribution. In short, a notion of conceptual imprecision
such as I develop in my (1965) paper is necessary, if not sufficient, to a
defence of deductivism against the attacks of Feyerabend (1962, p. 48),
“based upon the fact that one and the same set of observational data is
compatible with very different and mutually inconsistent theories. This is
possible. . . because the truth of an observation statement can always be
asserted within a certain margin of error only.”

Conceptual imprecision cannot then be as readily discounted as
operational imprecision; it is the attempt to do so that creates an
illusory distinction between propensities and other quantitative dis-
positions. Consider the following example. A small piece of a short-
lived radioelement is left to disintegrate. A functional law relates its
mass to its initial mass and the time of decay. Readings are scattered
about the line relating precise values of these quantities which is taken
to represent the functional law. The scatter of imprecise data points is
“discounted” as an effect of experimental error, the discount growing
in relative importance as the mass decreases. At some point the whole
precise-functional-deterministic-law-plus-error scheme is suddenly
exchanged for a statistical description from which experimental error
has disappeared as a separable concept. This abrupt change in the
description of an obviously continuous process is absurd. The scatter of
results inherent in the statistical law cannot be just incidental to the
functional law it explains. It will not do to dismiss it as error, nor need
we reject the functional law. All we need do is admit imprecision in the
concept of radioactive masses that are subject to decay laws, just as we
do in the concept of propensity.

Imprecision then affords no ground of distinction between pro-
pensities and other dispositional quantities. A person has a physiological
age even though its value cannot be truly given to a minute just as a
table has a width even though its value cannot be truly given to a
thousandth of an inch (Wittgenstein, 1958, part 1, {88). Where I give
or refer to precise values of quantities in what follows, it is only because
the complications introduced by imprecision do not affect the argument,
not because I suppose the quantities really to be precise.
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INEXACTNESS

Requiring alternative operational definitions leads to conceptual
imprecision in quantitative dispositions. The same requirement gives
rise to a related quality of inexactness in dispositions generally. From
criteria for resolving inexactness a so-called ““ principle of connectivity
(Schlesinger, 1963, chapter 3) can be extracted. The present relevance of
the principle is its use in the next chapter to derive some classical
propensities from non-frequency evidence without appeal to indiffer-
ence arguments. Connectivity has reasonably been advanced as a
primitive regulative principle in its own right; it is still worth showing
how the principle relates to others.

It is convenient to consider a simple fictional example, that of the
concept of a tributary. Suppose for simplicity that this concept enters
into the minimum of two well established laws I have taken to be
necessary for an explanatory disposition. Its “law cluster” (p. 105
above) thus has just two members. Suppose that these are

L,: a tributary is the shorter of two river branches,

L,: a tributary has the smaller volume flow of two river branches.

These are taken to be statements of equivalence, not just of implication.
Being the shorter river branch and having the smaller volume flow are
criteria for applying the term ‘tributary’ to river branches. I assume
that there are no problems in applying these criteria themselves. (There
obviously could be: e.g. it might make a difference which bank the
length of a branch was measured along. All we need, however, is that it
does not make a difference; Mellor, 1966, pp. 351—2). Now suppose a
deductive theory of tributaries prescribes either L, or L, as a definition
and derives the other as a law. Consider how such a theory would be
assessed against various possible observations.

First we need some more terminology, which I derive from Tarski
(1944) and Korner (1964; 1966, chapters 2, 12). Corresponding to L,
and L, we have a pair of sentential functions:

Q, (x): ‘x is shorter than the other river branch’,
Q, (x): ‘x has a smaller volume flow than the other river branch’

in which river branches are values of x. A river branch sazisfies the
sentential function Q, (x) provided the statement made by the sentence
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derived from Q, (x) by substituting the name of the river branch for
‘x’ is true. Similarly for Q, (x). Then a positive instance of the concept
of a tributary is a river branch that satisfies both Q, (x) and Q, (x). A
negative instance of the concept is a river branch that satisfies neither
Q; (%) nor Qg (x).

Now although L, and L, are supposed to have been equally well
established before the construction of the theory, neither is supposed to
have entailed the other. There would be no contradiction in describing
a river branch as satisfying Q, (x) but not Q, (x), or vice versa. Of such
a river branch it would be misleading either to assert or to deny without
qualification that it is a tributary, since the inferences sanctioned by L,
L, would in either case lead to contradiction. Such a river branch I call
a ‘neutral candidate’ to the concept (Korner, 1966, p. 26). The possi-
bility of such neutral candidates arising constitutes the inexactness of the
concept. The appearance of actual neutral candidates compels the con-
struction of a deductive theory to resolve the conflicts of criteria by
creating an exact form of the concept.

I should note that I need not follow K&rner (1966) in his three-valued
logic of inexact concepts. Of every river branch it may be true that it is
a tributary or true that it is not (Cargile, 1969). The trouble is that we
have possibly conflicting criteria for applying the term. There could be
river branches where the criteria not only do not tell us whether they
are or are not tributaries, but prevent us from saying either. So we
might have to change the criteria for the term. Whether and in what
sense the concept is then changed, or was ever subject to other than
classical two-valued logic is a moot point. It is not a point on which I
commit myself by calling a concept ‘inexact’.

It is also convenient to note here that the conceptual imprecision
discussed above is not a form of inexactness. There conflicting criteria,
operational definitions prescribing alternative methods of measure-
ment, yield different values of a quantity all accommodated in an
interval of imprecision. Neutral candidates do not arise in the same way.
(This point is made more fully in Mellor, 1967, pp. 1—4.) The bounds of
intervals of imprecision and of imprecise readings may be taken to be
precise. There need not be conflicting criteria for a reading being
contained in an interval of imprecision. There must nevertheless be
limits to admissible imprecision, prescribed by theory or otherwise, if
quantitative theories are to be testable (Mellor, 1965, §§4-5). Two
readings of a quantity given by well established methods of measure-
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ment may differ by more than any admissible imprecision in it. The
conflict of criteria in that case is exactly analogous to that of the tributary
example. It calls for the same sort of reconstruction of the concept’s
criteria. To this extent quantities are inexact as well as imprecise.

With this preamble we return to our tributaries and consider how a
theory of them copes with neutral candidates. Suppose to start with
that the theory prescribes L, as the definition and derives L, as a law.
There are two sorts of possible neutral candidate:

(i) River branches that satisfy Q; (x) but not Q, (x). These are
positive instances of the theory’s exact form of the concept, since they
satisfy its definition. But the law Ly, derived in the theory, is not true of
them. Hence they refute the theory.

(ii) River branches that satisfy Qu (x) but not Q; (x). These are
negative instances of the theory’s exact form. Because they do not
satisfy the theory’s definition they are not tributaries so far as the theory
is concerned and hence do not refute it. Equally they are unexplained by
it. The theory does not explain why these river branches have the
smaller volume flow, since it does not apply to them at all.

Suppose now that only neutral candidates of the first sort are found.
(There is a defect in this example, which is not general, namely that the
two sorts of neutral candidate go together. If the left hand branch of a
river is a neutral candidate of the first sort, the right hand branch is a
neutral candidate of the second sort, and conversely. The example
being merely illustrative this feature can be ignored; or it can be
removed by applying the theory only to left hand river branches!) For
a theory of tributaries to remain unrefuted in that case, it must take L
as its definition. It thus excludes the neutral candidates as negative
instances of its exact form of the concept. But if a sizeable proportion of
river branches consists of neutral candidates which are thus left un-
explained, the theory will be held to be inadeguate. In changing the
exact form of the concept from that defined by L, to that defined by L,,
the theory has been kept from refutation at too great a cost in scope of
application. The extension of the exact form of the concept of a tribu-
tary has been shrunk to the extent of making the theory trivially true.
Indeed no longer, given its widespread flouting of the pre-theoretical
criterion L;, can it plausibly claim to be a theory of tributaries as
previously understood.

To meet the criterion of adequacy invoked here some feature needs to
be discovered that explains, in a reconstructed theory, why so many
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river branches have the greater volume flow while being shorter in
length. This might happen in one of two ways. The first would involve
discovering some further property G possessed by no neutral candidates
and by all positive instances of the inexact concept. G might for example
be the property of having a particularly hard and inerodable river bed.
We can then replace the unrefuted but inadequate implication that
having the shorter volume flow (#,) implies being the shorter river

branch (#)): (x) (Fyx — Fy %) (1)
by the unrefuted and adequate equivalence:
(x) (Fyx & F;x & Gx). (2)

This involves replacing L, in the law cluster of the concept of a tributary
by the stronger statement

L*: a tributary is that one of two river branches which is the
shorter and has a bed of hardness > s,

where s is a specified mean value of hardness on some agreed scale.
Whether such a theoretical reconstruction of the law cluster is accept-
able naturally depends on how strongly science needs an adequate
theory of river branches. The fictional example is unconvincing here
just because there is no pragmatically indispensable theory of tributaries
to force us to revise our pre-theoretical usage. But that again is no
objection to the example’s illustrative use.

The second way to making the theory more adequate would be opened
by a theory that introduced geological concepts accounting for the
formation and change of river branches. In such a theory a glacial
valley, say, could be a chance set-up with propensities to produce river
branches of varying lengths and volume flows. With such concepts
available one might replace L, in the law cluster with the weaker
statistical statement

L¥: there is a chance p of a tributary developing (and having
thereafter) the smaller low of two river branches,

where 0.5 < p < 1. A similar statement would be available in a theory
which catered for fluctuations of volume flow from time to time. The
river branch itself could then have a propensity to yield the smaller
instantaneous volume flow on a trial measurement. I take the latter
example for simplicity, since it enables the relevant propensity £ to be

8 MMR



114  Imprecision and inexactness

attributed to the river branches over which x ranges. Suppose then that
we obtain on this basis the unrefuted and adequate equivalence:

(%) (Ffx o Fyx). (3)
We have again an incentive to carry out the corresponding reconstruc-
tion of the concept’s law cluster. And again, whether this weakening of
the concept and its theory (L, is no longer derivable) is acceptable
depends on other than theoretical considerations. If it did not the
construction of adequate theories would be trivially easy.

The next thing to note is that both ways of making the theory
adequate result in the assertion of equivalences. This is a consequence
of two exact forms of the concept in adequate and unrefuted theories
having the same extension, i.e. the reconstructed inexact concept of a
tributary has in fact no neutral candidates. This is not an accidental
feature of the example. It is true in general that an adequate character-
isation of a system shows itself in the full statement of its laws as
equivalences and not just as implications. For otherwise a system which
satisfies the consequent of the law need not satisfy the antecedent. Its
difference from those systems that do satisfy the antecedent is un-
explained, and although it does not refute the law it shows the law to be
inadequate.

CONNECTIVITY

The requirement that any adequate law when stated fully must be
expressible in symmetrical form as an equivalence is Campbell’s (1920,
chapter 3) version of the principle of connectivity. The term ‘con-
nectivity’ comes from Schlesinger (1963, chapter 3). Campbell does
not use it, but enquires instead whether laws, expressed as “dual
relations” of “uniform association” are always symmetrical. ““ That is
to say, if the relation between A and B is such that, if A can be observed,
B can be observed, then is it also such that, if B can be observed, A can
be observed? The common sense answer. . . that it is not. . .is certainly
incorrect; it is based simply on the neglect of the qualifying conditions”’
(Campbell, 1920, p. 74). This view of laws is perfectly compatible with
recognising that what are normally used and tested are not fully stated
symmetrical laws, but rather derived statements of implication. For
example the incomplete asymmetrical law (1) of the last section is
derivable from the complete symmetrical law (2). Hence it is that laws
are usually represented as being of this asymmetrical form.
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The principle of connectivity has been extracted from an anti-
operationalist account of dispositions and an appeal to criteria of
adequacy in deductive explanation. Those who do not find this an
acceptable basis can still accept the principle on its own merit as one
that in fact governs science’s explanatory use of disposition terms. I
restate it now in the more perspicuous and useful form in which it has
been expounded by Schlesinger (1963, chapter 3). Consider its appli-
cation to the properties of some physical system, for example a chance
set-up such as a coin. The principle requires the set of scientifically
connected (and thereby explainable) properties of the system to be
divisible into two subsets, such that possession of all members of either
implies possession of all members of the other. The necessary and
sufficient condition for this is clearly that laid down in Schlesinger’s
version (1963, p. 73), namely that ““two physical systems never differ in
a single aspect only”. It is readily seen in the tributary example that the
process of satisfying this version of the principle is just that of devising
an adequate and unrefuted theory. For a system here (i.e. a river branch)
may be characterised as a tributary, on the theory of which (2) is a
consequence, either because it has both properties £} and G or because
it has the property F,. Having all members of either of the subsets
{F,, G} and {F,} of the set {F,, F, G} is taken to imply and explain
having all members of the other. Either subset can provide an opera-
tional definition for the concept of a tributary as occasion requires. If a
theory prescribes either it will be whichever was previously taken to be
the better established. Similarly on the weaker statistical theory, of
which (3) above is a consequence, with the pair of properties F¥
and F.

A mathematical example of connectivity is implicit in Lakatos’(1963)
discussion of the history of Euler’s theorem. It will serve here to
illustrate the wide application of the principle. The inexact concept is
that of a polyhedron and the problem is to prove Euler’s theorem:

V+F-E =2,

where V is the number of vertices, F the number of faces and E the

number of edges of the polyhedron. Lakatos calls the theorem the

‘main conjecture’ in order not to beg the question of a proof’s validity.

In the present terminology it is a well established law about polyhedra.

The problem is to explain it by derivation in a theory from a defining

set of other well established laws. These other laws are the lemmas of
8-2
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suggested proofs. (One proof for example invokes the lemma that any
polyhedron can be stretched flat, after having one face removed, by a
distortion that does not affect V, E or F.) The set of lemmas invoked in
any one proof defines an exact form of the concept of a polyhedron.

A neutral candidate of the first sort (p. 112 above) that refutes the
theory (i.e. a supposed proof of the main conjecture) is a figure of
which all the lemmas are true but of which the main conjecture is false.
This Lakatos calls a ‘global (but not local) counter example’. A
neutral candidate of the second sort that does not refute the theory but
rather demonstrates its inadequacy is a figure of which the main
conjecture is true but one or more of the lemmas false. This Lakatos
calls a ‘local (but not global) counter example’. Such figures show
inadequacy in the theory because they are figures of which the theorem
is true but to which the proof does not apply, since they are negative
instances of that particular exact form of the concept. Thus their
Eulerianness is left unexplained by the proof.

Lakatos’ historical discussion illustrates admirably the way in which
the exact form of the concept of a polyhedron, as embodied in the
various proposed proofs, is continually changed in the face of new
counter examples to try and fit the inexact concept as closely as possible.
Success in the enterprise would be an unrefuted and adequate theory in
which the proof applied to all and only Eulerian figures. That would
yield in turn a statement of equivalence in that satisfying the lemmas
not only guaranteed but was guaranteed by the Eulerianness of the
figure. Consequently any Eulerian figure would differ from any non-
Eulerian figure in at least two properties (since the latter would also fail
to satisfy at least one of the lemmas), thus fulfilling the principle of
connectivity.

One of the main points this example brings out is that deductivist
accounts have laid too little stress on the need for theoretical explana-
tion to be adequate as well as unrefuted. Observed inadequacy can lead
as urgently as observed refutation to theoretical reconstruction. One
doubtless puts up with an inadequate theory if nothing better is
available. Equally one may have to put up with a refuted theory, with
no less equanimity.

Moreover, if a certain number or proportion of apparently observed
neutral candidates is needed to show inadequacy in a well established
theory, the same is true for refutation. The very fact that an observation
would refute such a theory casts doubt on its authenticity. The point is
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made in Mellor (1965, pp. 113—14) in giving a probabilistic interpreta-
tion to limits of imprecision. A proportion of apparently discrepant
readings can be discounted as having more probably arisen from some
mistake in carrying out the operational definition. The third member of
the following series of purported readings of a length would certainly
be rejected on this ground alone:

25, 27, 2, 26, 26, 29.

The general point is made by Hume (1777, p. 113) that where “the
fact, which the testimony endeavours to establish, partakes of the ex-
traordinary and the marvellous. . .the evidence, resulting from the
testimony, admits of a diminution, greater or less, in proportion as the
fact is more or less unusual . The particular point is made in a published
lecture on the design of experiments (Royal Institute of Chemistry,

1961, pp. 11-12):

One immediate application of the error function is its assistance in deciding
whether an individual result falling well away from the main group of results can be
legitimately rejected from a series. . .. Correlation of rejected results with major
physical disturbances or serious personal mistakes should be used as confirmation of
the rejection of poor results.

Explaining away a proportion of apparently discrepant results by a
“mistake hypothesis” conflicts with Bennett’s theory (1963, pp. 116-19)
of the matter. He reckons that scientists’ treatment of discrepant data
is better accounted for by assuming that they tacitly treat laws as only
“weakly quantified” (i.e. not ‘all. ..’ but ‘nearly all...”). He denies
the assumption scientists often explicitly make that such reports must
be rejected as false if the law in question is to be preserved. I think the
mistake hypothesis explanation the more plausible, but Bennett’s being
right would if anything improve the case against the exaggerated ease
and importance of refutation. It is in any event agreed that not every
fleeting glimpse of an off-white swan or greying raven suffices to refute
a well-founded law.

The requirement for provisional or continued explanatory use of a
theory, that it should not have been refuted, might profitably be
treated as a regulative principle on a par with that of connectivity rather
than as an exceptionless rule. Certainly a refuted theory cannot be
true, but its explanatory use faute de mieux need be no more deplorable
than that of an inadequate one.



118  Imprecision and inexactness

The regulative status of the principle of connectivity perhaps needs
further emphasis. It is perhaps clearer in Schlesinger’s formulation of
the principle than in Campbell’s. If two physical systems ever did differ
only in a single property, the difference could not be explained by
correlation with any other. This is so whatever view — positivist,
instrumentalist or realist (Nagel, 1961, chapter 6)—one takes of
theoretical explanation. To construct — oremploy, or seem to discover —
a theoretical entity that accounts for just one isolated difference is to
restate the difference rather than to explain it. That a theoretical entity
detectable in just one way is unacceptably ad Aoc is a corollary of
connectivity that is probably better recognised than the principle
itself.

It is plain enough that the principle of connectivity does not make a
straightforwardly empirical assertion. As Schlesinger observes (1963,
p. 88), “we are not given a clear, detailed and generally applicable
definition of what constitutes a single aspect” or property of a system.
Any proposed counter example to the principle could apparently be
dealt with in one of two ways:

(i) One could refuse to recognise the observed difference as exhibiting
a real property or physical state at all. Thus Schlesinger (p. 78): ‘In
general, according to the principle of connectivity, if two physical
systems have different properties or the same property to a different
degree, this is bound to manifest itself in more than one way.” Clerk
Maxwell’s view is similarly expressed that “if a quantity is connected
to other effects that are independently defined then it is a physical state;
if not, then it is a mere scientific concept” (Turner, 1955, p. 231). I
have already argued (pp. 65—6) that dispositions satisfy this con-
dition.

(ii) One could deny the observed difference to be really in just a
“single aspect”; “we could always break up the ostensibly single
property into more elementary ones” (Schlesinger, 1963, p. 90).
Suppose we were confronted with Poincaré’s example (1913, p. 333):

When I say: Phosphorus melts at 44°, I mean by that: All bodies possessing
such or such a property (to wit, all the properties of phosphorus, save fusing point)
fuse at 44°. . .. Doubtless the law may be found to be false. Then we shall read in
the treatises on chemistry: ““ There are two bodies which chemists long confounded
under the name of phosphorus; these two bodies differ only by their points of
fusion”.

We would deal with this situation by denying that melting point was a
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single property. ““Melting point alone may be exhibited as a complex
property; it is the property of becoming liquefied at a certain tempera-
ture but also the property of discontinuously assuming a different specific
heat at the very same temperature” (Schlesinger, 1963, p. 91).

This latter example is unconvincing just to the extent that the
connections between the different properties that characterise a melting
point are very well established. There is much direct evidence for them,
and they have become deeply embedded in our structure of physical
laws and theories. Hence they have become very analytic to the major
concepts of a solid and of a liguid that are built into this structure. To
this extent the concept of a melting point that embodies these connec-
tions Zs regarded as a single real physical property. It is to be explained
by being connected through the law network with other properties,
not explained away as an unexplained coincidence of its diverse
symptoms. It is the same with the connections between the logically
distinct propensities to decay in different times that are embodied in the
concept of the half-life of a radioelement. These connections are so
analytic to the theory of radioactivity that the half-life is treated as a
single real physical property. It too is to be explained by its connections
with other (nuclear) properties of the radioelement, not explained away
as an unexplained coincidence of its diverse symptoms. One would refuse
equally to evade the application of connectivity to melting point and to
half life and insist that an observed difference in either must correlate
with some other physical difference. Only after the most strenuous
investigation had failed to disclose such another difference might we
conceivably be prepared toresort to reconstructing the conceptual scheme
and “deny that a pure substance had always a constant melting point”
(Campbell, 1920, p. 76) or a radioelement always a constant half life.

But one way or the other the principle of connectivity would be
preserved. It appears then as a regulative criterion for the adequacy of a
scientific description and explanation of a physical system. Not every
minute detail of the system need be supposed subject to it, but certainly
all the major physical states, the properties linked by the network of
established laws that apply to it. Conversely, to point to some feature
of a system as a significant scientifically explainable property is to
require inter alia that the principle of connectivity be applied to it.

This conclusion has been denied, oddly enough, even in its plainest
applications. It has been denied, for example, that colour need be an
explainable property of physical things. At least, it has been denied that
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the principle of connectivity need apply to colours of things. In this
respect colour has been contrasted with moral and aesthetic properties
to which connectivity has been applied under the name descriptive
universalisability’.

It is a peculiarity of moral predicates, it is suggested, that if you apply one to any
subject you are also, by implication, applying it to anything that is like that subject
in the relevant respects. . .if you say that a picture is good, and I produce another
picture exactly like the first (or at least like it in the relevant respects), you cannot
deny that it is also good. . .. There can be little doubt that this is true: the objection
to it is simply that it would seem to apply to any term at all, or almost any. If you
say for example, ‘this piece of cloth is yellow’, you are certainly implying that
another piece like it in the relevant respects is also yellow. There is indeed one
important difference. . . the “relevant respect” in which the second piece of cloth
is like the first will be simply its yellowness. The other characteristics of the cloth
may be quite independent of its colour.

(Monro, 1967, pp. 155—6; see also Hare, 1963, p. 141).

In fact there is no difference between ‘good’ and ‘yellow’ in this
respect. Two pieces of cloth cannot just differ in that one is yellow and
the other is not. The question ‘what makes it yellow’ is just as in-
adequately answered by ‘its yellowness’ as is the question ‘what makes
it good’ by ‘its goodness’ (pace Monro, 1967, p. 156). We do not just
use colour terms as inexplicable labels for sensations and for objects of
our merely passive and incurious gaze. It is also part of our usage that
things can be made and kept yellow by processes for which there are
intelligible recipes. If something could cease to be yellow without
changing in any other way there could be no such recipes. It is con-
tingent that the recipe is what it is (a matter of chemical composition)
and that we know what it is. But the idea of I.C.I. Paints Division
making every Dulux colour out of one otherwise identical stuff is more
than a contingent absurdity. Imagine I.C.I. blenders trying to change
Dulux colours without making any other changes in it. Imagine retailers
trying to keep it the same colour when their preserving all its other
properties would be of no avail. All this would presumably have to be
done by incantation, by magic. . .

Even if the colours of things are magical, their propensities are not.
Propensities are not such directly observable properties that they could
be forced inexplicably on our senses. They are self-consciously
postulated as part of the scientific attempt to make the world intelligible.
They share with other dispositions the crucial feature of entering into
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distinct laws with other properties, by none of which are they uniquely
defined. Nor does their imprecision mark them off in any relevant way
from other dispositions or save them from inexactness. I conclude
therefore that propensity shares with the other dispositions of a chance
set-up a subjection to the principle of connectivity. In the next chapter
I put this conclusion to use; the plausibility of what follows from it that

is not otherwise explainable I take to be a further recommendation of
the present view.



7 Connectivity and classical
propensities

IN EARLIER CHAPTERS I havetaken it for granted that the bias of a coin
(or its unbiasedness) is a propensity. Thisisin factanilluminatingly moot
point. Consider the universal proposition S expressed by the sentence

‘The chance of heads on a toss of an unbiased coin is .’

Is S contingent or not? There seem to be two obvious possibilities:

(@) Bias is defined in terms of other physical properties of the coin
without reference to its propensity to land heads when tossed. Then S
is a law, if true. It could have a counter example, namely a coin which
was unbiased in its other physical properties yet gave unequal chances
of heads and tails on a standard toss. Confronted with such a coin we
would reject S, perhaps with regret, but at least without a sense of
conceptual outrage.

() S is necessarily and trivially true, since bias is defined in terms of
the coin’s propensity to fall heads when standardly tossed. Any coin
that gives a chance of heads other than 4 on such a toss is, by definition,
biased and so not a counter example to S.

Taking bias to be a propensity commits one to (f), but neither
alternative appeals as an adequate account of our use of the terms ‘bias’
and ‘unbiased’. S does not seem to be trivially analyticin the definitional
sense of (f), yet it would surely not be given up as readily as («)
suggests. Here in fact is a clear case of the apparently a priori knowledge
of objective chance of which the classical Laplacean analysis is so
plausible. (And frequency analyses so implausible: the claim that our
confidence in S on (&) is either based on or reducible to confidence in the
results of millions of tosses of unbiased coins is barely even specious; or
on (f), for our confidence that a given coin is unbiased.) I now set out
to show how propensity theory can account naturally for such know-
ledge without using classical arguments from ignorance. In so doing I
show how the individual propensity expressed in the distribution

Pa (H) = Pa (T) = 0.5
(chapter 6, p. 101) can be established within the limits of conceptual
imprecision.

[ 122 ]
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Suppose we have a standard tossing device on which coins may
display their propensities. It is an auxiliary measuring device in the way
a thermometer is. So we ascribe the displayed propensity to the coin
rather than to it (chapter 4, pp. 74-6). We take the coin to be a chance
set-up with a propensity displayed in the chance distribution over
heads, tails and any other possible result (such as landing on edge) of
tossing it on the standard device. Let the determinable chance be
p(H), p(T) and p(E) respectively, with determinate values p, (H),
2. (T) and p, (E) for the coin a (see Johnson, 1921, chapter 11). Then

po (H) +p,(T) +p, (E) = 1.
The coin’s propensity D, may be represented by the ordered triple

(P (H), po (1), p, (E)). (1)

D, will, on the present account, be connected to the coin’s other
physical properties. The coin’s being magnetised in a particular direction
may affect the chance of it falling heads. Warping the coin by heating it
may affect the chance of it falling tails.

We may suppose the other properties connected to D, to be known,
even if the details of the connections are not all known. It may be
known that magnetisation and temperature alone affect D, but not
exactly how they affect it. This is a very common situation with other
quantities. The volume of a fixed mass of a given non-ideal gas, for
example, is known to be a function only of temperature and pressure,
even though it is not known what this function is. Each function more-
over is understood to apply only in circumstances restricted in some
natural way. It will be taken for granted that the coin is not heated to its
melting point or put under a pile-driver; it will be taken for granted
that the gas is not put in a vessel with which it reacts chemically.

To the connected properties the principle of connectivity applies.
Two coins, a and 4, known to be similarly magnetised and at the same
temperature are thereby known to have the same propensity. Two equal
masses of the same gas known to be at the same pressure and tempera-
ture are similarly thereby known to have the same volume. The con-
clusion in each case, that the pairs of coins and masses of gas have
respectively equal propensities and volumes, is of course contingent.
It is contingent both that the coins and gases have the other properties
ascribed to them and that these are all the connected properties. But the
principle of connectivity that warrants the inference is, as a regulative
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principle, not contingent. We have seen how it would be preserved,
and used to judge the adequacy of any scientific characterisation of
physical systems such as coins and samples of gas.

Now the statements asserting that just such-and-such properties are
connected to a propensity, although not logically necessary, may be very
well established. Just so are the corresponding statements connecting
pressure and temperature with the volume of a gas. That these are the
connected properties is much better established than is the statement of
any specific functional relation between them. More to the point,
however doubtful it may be whether some properties are connected to
a propensity or to a gas volume, there is no doubt that some properties
are not connected. It is even more sure that the colour of a gas is not
connected to its volume than that its viscosity is not so connected. It is
similarly implicit in the use of coins as chance set-ups that those of their
surface features that serve to label one side ‘heads’ and the other *tails’
are not among the properties connected to their propensities. Of coins
used in gambling it is known that labelling does not introduce bias (in
sense (f) above); coins of which this was known not to be true would
not be acceptable gambling devices.

In particular, therefore, reversing a coin’s labelling would affect its
propensity merely by interchanging the values of the chances of heads
and tails. It follows that the application of connectivity would be
unaffected by relabelling one of our two coins a and 4 — say a. Suppose
every true proposition ascribing connected properties to 4 becomes
true of @ when “tails’ is substituted for ‘heads’ in the sentence expressing
it: connectivity requires the proposition ascribing the propensity D, to
become true of @ under a similar substitution.

More precisely, we may express the two applications of connectivity
relating the coin & respectively to the labelled and relabelled coin a as
follows. Let S, be the conjunction of all true propositions ascribing to &
properties connected to D,, and let S, be the proposition obtained from
S, by substituting ‘e’ for 4’ throughout the sentence expressing it.
Then the principle of connectivity asserts that

(Sb = Sa) - (Db = Da)' (2)
It follows trivially from (1) and (2) that
(Sp = Sa) = (py (H) = p, (H))- 3)

Let S¥ be the proposition obtained from S, by carrying out the
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described substitution of ‘tails’ for ‘heads’ and ‘heads’ for ‘tails’
throughout the sentence expressing it. The same substitution in the
sentence stating that a’s propensity is D, yields a sentence stating that
@’s propensity is D¥, where D¥ is obtained from D, by interchanging
@’s values of p(H) and p(T), i.e.

D;k = <Pa (T)a Pa (H)) Pa (E)>' (4)

Applying the principle of connectivity to a and 5 after a’s labelling has
been reversed yields the assertion that

(Sp = 57) = (D, = Dg). ()
It again follows trivially from (1), (4) and (5) that
(Sy= S8 > (p, (H) = p, (TY). ©)
Now suppose that (3) is exemplified by @ and 4, i.e. that
Sb = Sa‘ (7)
From (3) and (7) we have immediately that
P (H) = p, (H). (®)
Suppose further that p. (H) £ p, (D). (9)
(e'g’ Py (H) = Pa (H) =0.75 Pq (T> = 0‘2)'
Then from (8) and (9)  p, (H) * p, (T). (10)
From (6) and (10) S, = Sk (11)
From (7) and (11) S, = Sk. (12)

Thus, if (i) a coin 5 exists related to @ by (7) and (ii) a’s propensity is
such that the chance of heads on a standard toss of it differs from the
chance of tails, zzen the truth-value of the conjunction of true proposi-
tions ascribing connected properties to a is changed by the substitution
of ‘tails’ for ‘heads’ and ‘heads’ for ‘tails’ throughout the sentence
expressing it. In other words, under these conditions connectivity
requires an asymmetry in some non-propensity property of a; i.e.
roughly, some other property truly ascribed to heads in a must be
falsely ascribed to tails.

Condition (i), the existence of the coin 4, is guaranteed by the exist-
ence of a, since the latter is itself such a coin, whose self-identity entails
the necessary truth of (7). Connectivity thus requires any asymmetry
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in a coin’s propensity to land heads and tails to be connected to an
asymmetry in some other property. Conversely, if the coin is unbiased
in the sense () that there is no such asymmetry, connectivity asserts
that there is no asymmetry either in the propensity. If heads and tails
are in fact the only possible results (i.e. if p, (E) = o) we arrive at the
proposition S: the chance of heads on a toss of an unbiased coin is 4.
The sense in which S can be stronger than a natural law without
being trivially analytic is now clear. Bias may indeed be defined in
terms of other properties of the coin, namely those connected to its
propensity. It is taken for granted that the properties serving to
distinguish heads from tails are not so connected. From this premise,
heads and tails being the only possible results, S follows necessarily by
the principle of connectivity. Apparent counter examples would be
explained away, although not with the trivial ease of (£). A coin with
unequal chances of heads and tails is thereby shown to be biased in
some other property. If it is unbiased in all known properties, then there
must be some other as yet undetected. The independent detection and
identification of the unknown property is not, of course, a trivial matter.
It might be objected here that I have claimed to establish a proposition
ascribing a precise value of a propensity, despite the account of
imprecision given in the last chapter. This is not so. While S is indeed
established with an absolutely precise value, the proposition

_pa (H) = 0-5

cannot be so established. (I avail myself here of a convention of
imprecision in the scientific use of decimal notation. A quantity is
normally given to so many “significant” figures, and an imprecision of
1 in the last unit given is understood. Thus to say that a temperature is
25.3 °C is to say that it is in the interval (25.25, 25.35) °C; if less
imprecision is intended the extra digit is put in, thus: 25.30 °C. The
convention is not rigidly adhered to; I adopt it here only to indicate
that some imprecision is implied when ‘0.5 is used in place of ‘3’.) To
apply S to a named coin we must show the coin to be unbiased in all its
connected properties. Apart from the possibility that some such property
has been overlooked, unbiasedness in any one quantity can only be
established within limits of imprecision. Suppose we can show the
centre of gravity of a coin to be within o.01 cm of its geometrical centre.
Suppose it is known that shifting the centre of gravity o.o1r cm changes
the chance of heads by not more than 0.005. Then to know that a coin
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is unbiased in its mass distribution to within o.o1 cm is to know (setting
aside other sources of bias) that the chance of heads lies in the interval
(0.495, 0.505). Where several imprecise quantities are involved the
relevant laws give imprecision in propensity as a function of that in
each of them, as illustrated in Mellor (1965). There is what I there call
an ‘acceptable interval’ of propensity readings consistent with the as-
sumed truth of the laws and the estimated imprecision in each quantity.

So symmetrical propensities of individual coins are established only
within intervals of imprecision, and with no more surety than that of
the particular laws invoked in their indirect measurement. But that
neither detracts from the status of S nor imposes imprecision on the
propensity value in it. It remains a regulative principle that any
deviation from equality, however slight, in the chances of heads and
tails is to be explained by asymmetry in other properties.

One might still feel that deriving so classical a propensity must involve
principles peculiar to chance. In particular an appeal to classical
indifference principles of ignorance, or “insuflicient reason”, may be
suspected of lurking behind the symmetry arguments. To show that this
is not so I use an exactly analogous argument to derive the value of a
non-chance quantity. I follow this up in the next section by analysing the
case of a biased coin, further to point the contrast with classical analysis.

Imagine a rigid air-tight vessel a divided into two parts, called
‘heads’ and ‘tails’, by a flexible but impermeable partition. The total
volume is known; suppose it to be 1 unit. We wish to know the volumes
of the two parts, v, (H) and v, (T), when each part is filled with equal
masses of the same gas. It is very well established that the volume in
each part is a function only of its pressure and temperature. In particular
it is taken for granted that the surface features by which we distinguish
heads from tails are not connected to their volumes. Let us define an
unbiased vessel as one in which the two parts are the same in their
connected properties, specifically in pressure and temperature. The
principle of connectivity immediately warrants the conclusion that the
volumes of heads and tails are equal, i.e.

Ve (H) = v, (T).
Since we already have that

Va (H) +v, (T) =1

if the volume v, (E) of the partition is neglected, it follows at once that
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the volume of heads in an unbiased vessel is4, which is an exact analogue
of the propensity proposition S. If the laws relating volume, pressure
and temperature of the gas are known, the imprecision in v, (H) for a
particular vessel may similarly be derived from the imprecision in
measurements of pressure and temperature.

I have contrived this case to present the most blatant analogy with
the standard coin tossing example. Its more artificial features are quite
incidental. For example, the total volume may not be known. Then
connectivity merely shows the equality of v, (H) and v, (T). A reading
of one is equally a reading of the other. Similarly the chance p (E) may
be finite of a coin landing on its edge. Connectivity then merely shows
the chances of heads and tails to be equal. Frequency of heads in a
sequence of standard tosses then affords as good a measure of the
chance of tails. The main point is that there is no need for all the
chances in a distribution to be equal. The present account makes no
appeal to ignorance, to carving up the range of possibilities into “a
certain number of cases equally possible, that is to say, to such as we
may be equally undecided about in regard to their existence” (Laplace,
1819, p. 6). In the case of a die, for instance, one may quite well know
that although it is biased towards six, it is not biased between two and
five. The chances of two and five, whatever they may be, are equal,
even if both are irrational.

We need to recognise the widespread use in measurement of
connectivity arguments to show equality of a known with an unknown
quantity. To take a simple example, the direct current flowing through
an electrical resistance is a function only of the applied potential
difference and the determinate value of the resistance. A common
method of measuring this value is to vary a known resistance to which
the same voltage is applied until the same current passes through each:
it then follows by the principle of connectivity that the known and
unknown resistances are equal and so a reading of the latter is obtained.
This is a special case of the “Wheatstone bridge method [which] is
perhaps the most widely used for measurement of d.c. resistance”
(Brown, R., 19624, p. 287), where the balancing resistors are equal.
In general they are in a known variable ratio which the unknown
resistance then bears to the known variable resistance. This complication
does not affect the application of connectivity. Similarly with voltage
measurement: “the potentiometer [which] is one of the most funda-
mental instruments of electrical measurement. . .[measures] an un-
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known potential difference by balancing it...by a known potential
produced by the [known] flow of current in a resistance net-work of
known value” (Gall, 1962, p. 613). (For the use of such “null”
methods in electrical measurement see Astbury, 1962.)

The present application of connectivity to measuring propensities
via readings of other quantities merely instances a common technique
for indirectly measuring all sort of physical quantities. It is surprising
only that propensity should for so long have been thought peculiar in
this respect; in particular that inferences to it should be thought to
depend on principles of indifference not needed elsewhere. Certainly
the inference is fallible. One may be wrong for a number of reasons in
thinking a coin unbiased. It may not after.all be symmetrical in the
supposedly connected properties. The assumed laws connecting the
properties may in fact be false; or the conditions for their application
may not be satisfied. The coin may be asymmetrical in some unsuspect-
edly connected property. The prediction that a coin is unbiased is
never absolutely certain.

But there is nothing peculiar to propensity in all this. Consider a
prediction that a liquid will boil at # °C because it is of substance X
and the pressure is U atmospheres. The prediction may fail: if the
pressure in fact is not U atmospheres; if the substance has been wrongly
identified; if the assumed vapour pressure law for X is false; if some
unknown circumstance is also connected to the boiling point. It would
evidently be perverse to conclude either that our faith in the prediction
is warranted simply by ignorance of these possible falsifying factors or
that it is not warranted at all. And so it is with predictions about
propensities based on measurements of other quantities.

BIAS AND IGNORANCE

Suppose we know a coin a to be biased but do not know whether its bias
favours heads or tails. According to Laplace (1819, p. §6), our ignorance
warrants our assigning equal probabilities to heads and tails on our
first toss of it:

If there exist in the coin an inequality which causes one of the faces to appear
rather than the other without knowing which side is favoured by this inequality, the
probability of throwing heads at the first throw will always be %; because of our
ignorance of which face is favoured by the inequality the probability of the simple
event is increased if this inequality is favourable to it, just so much is it diminished
if the inequality is contrary to it.

9 MMR
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With probability interpreted as warranted partial belief, the conclusion
still seems plausible. Can propensity theory account for it?

The difficulty facing a propensity account in this case is obvious.
Whatever true proposition is expressed by the sentence ‘ The probabili-
ties of heads and tails on the first toss of coin a are equal’, it is not the

proposition that (), 5, (T), g, (E)
is such that ra(H) = p, (T)

since the latter proposition is known ex Aypothesi to be false. The coin
is known to be biased, and hence such that either

Syt po (H) > p, (T)
or Sy pu (H) < p, (T).

What is taken to be true is that S; and S,, as composite hypotheses
about the propensity, have equal probabilities before any tosses of the
coin. (A “simple” statistical hypothesis is one that completely specifies
a chance distribution; a “composite” hypothesis is a disjunction of
simple ones. See Neyman, 1952, p. 22.) These equal probabilities are
taken to be objective. I now show that where they exist they display
propensities, although not of the coin.

Neither S, nor S, prima facie asserts that an event occurs which is an
outcome of a trial on a chance set-up. In fact each does assert this in the
relevant sense that the occurrence of such an event is empirically
necessary and sufficient for its truth. Equal partial beliefs on the truth of
S, and S, can be warranted by knowledge of the relevant propensity of
the set-up in question. I postpone to the last chapter (pp. 165—7) a
consideration of when these equal partial beliefs are warranted. Let us
waive the question for the present and assume that they are so.

To avoid confusion we have to elaborate our terminology. I
represent these “initial” probabilities of S; and S, by ‘P (S;)’ and
¢ P(S,)’ respectively. Theseare numerically equal to chances of outcomes
on a chance set-up yet to be identified. The equal probabilities of heads
and tails on the first toss are P (H) and P (T) respectively. They are
to be distinguished of course from the unequal chances of heads and
tails on that (or any other) toss (p, (H) and p, (T)) which display the
unknown bias of the coin. We have here a case of events seeming to
have two objective probabilities, of the sort discussed in chapter 3
(p. 61). We shall see that there is no inconsistency in this; meanwhile
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it is essential not to mix the probabilities up. I represent conditional
probabilities in the usual notation and interpret them for the time being
in a Bayesian way (see chapter 2, pp. 47-9).

The claim as to what is taken to be true in this case needs qualifying.
To give the required conclusion that P (H) and P (T) are equal, it is
in general neither necessary nor sufficient that P (S;) should equal
P (S,). Consider the special case where S; and S, are such that on S;

Pa (H) =0.82, p,(T) =018, p,(E) =o;
andon S, p, (H) =0.43, p,(T) =057, p,(E) =o.

S, and S, are now exhaustive simple hypotheses on which
P (H,S) =o0.82; P(H,Sy) =o0.43;
P(T,S,) =o0.18; P (T,S,) =o.57.

Then, by an elementary theorem of the probability calculus (Feller,
1957, p. 106, equation (1.8)), since S; and S, are exclusive and exhaustive,

P(H) = P(H,S) P(S) + P(H,Sy) P(Sz)al (13)
P() = P(T,8) P(S) + P(T,5) P(s.)
The assumption that P (S;) = P(Sy) =3 (14)
here yields the result
P (H) = 0.625; P (T) = 0.375.

Hence the assumption is not sufficient for P (H) to equal P (T). The
same special case also shows the assumption to be unnecessary, since

the result PH) = P(T) =1 (15)
here follows from the incompatible assumption
P(S) =o0.4; P(Sy) = o.6.

But the knowledge assumed in this case is extremely esoteric. It is
not known which way the coin is biased, but it is known that if it is
biased towards heads the bias is greater than if it is biased towards tails.
This curious blend of knowledge and ignorance is indeed not explicable
on the present account. It does not follow from knowledge of any
propensity. But equally it is not the case intended by Laplace, nor is it
one in which assumed knowledge of the objective probabilities P (H)
and P(T) has any intuitive plausibility. There is nothing obviously
objective here to account for.

9-2
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Laplace clearly supposes that whatever knowledge there is of the bias
is symmetrical between heads and tails. In the simplest case, the extent
of the bias would be known. It might be known that the chances of
heads and tails, respectively, are either 0.6 and 0.4 (S;) or 0.4 and 0.6
(Sy). If the precise extent of the bias is not known, it is still assumed
that whatever is known of the chance of heads on hypothesis S, is known
of the chance of tails on hypothesis S,. Strictly, we assume that each of a
pair of sentences expressing S; and S, may be obtained from the other
by substituting ‘heads’ for ‘tails’ and ‘tails’ for ‘heads’ throughout.
This excludes all such special cases as the one just considered, and now
assuming equal probabilities for S; and S, 7s both necessary and suffi-
cient for equality between P (H) and P (T).

On these assumptions, a convenient measure g, of the coin’s bias is
the magnitude of the difference between the chance of heads and the
chance of tails. That is,

9a = |Pa (H) —Pa (T)l (16)

which is invariant under the permitted transformations between S;
and S,.

We have excluded pairs of hypotheses differing in the extent of the bias
they ascribe to the coin. Even so, there is oddity in claiming both to
know, however imprecisely, the bias of a coin and not to know which
way it is biased. (I exclude the uninteresting special case where a better
informed person simply fails to pass on all his knowledge.) Knowledge
of a coin’s bias comes directly from statistical evidence for the coin’s
propensity or indirectly from knowledge of its other connected
properties. These must evidently relate peculiarly to one side of the coin
if they are to provide knowledge of bias. In these circumstances, not to
know which way the coin is biased is just not to know how its sides are
labelled. This is a perfectly intelligible state of ignorance. There is no
need for the sides of a coin to be labelled when it is made or when its
propensity is fixed. A coin may become biased by bending, for example,
after it is labelled; the labelling could be reversed subsequent to its
biasing.

It may be taken as well established in current British society that a
coin of the realm will not have been relabelled since it was minted.
Everyone is equally convinced, rightly or wrongly, that British coins
as minted are unbiased (within limits of conceptual imprecision). Bias is
introduced into coins later, if at all, by some quite independent process.
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Let us again exclude cases of concealed knowledge that a coin has been
deliberately biased towards heads; nothing is to follow merely from
ignorance. We appeal instead to our earlier assumption (p. 124) that
the surface features of a coin that distinguish heads from tails are not
among the properties connected to its propensity. Any natural process
by which a coin becomes biased would be quite unaffected by reversing
the labelling of the coin. The same bias would simply have been
imparted towards heads instead of tails or vice versa.

Consider a coin that is in fact biased. Call the side with the greater
chance of falling uppermost in a standard toss *the likely side’ and the
other side ‘the unlikely side’. These are determinate sides of the coin,
detectable by measurements of its propensity while it is biased and
reidentifiable by surface features at any time. At some time, before or
after becoming biased, the likely side will have been labelled either
‘heads’ or ‘tails’. A device for doing this is kept at the Royal Mint; let
us hereafter call it ‘the Mint’. There is only one Mint, while there are
many natural biasing processes. We consequently ascribe to the pro-
cesses rather than to the Mint a propensity to make heads (say) the
likely side of a biased coin. But this, as we have seen with such other
dispositions as solubility, is a matter of convention (chapter 4, p. 74)-
Let us instead for expository convenience assume a standard repertoire
of biasing processes and settle the propensity on the Mint. Let us further
assume that the Mint is in other respects standard and that its variable
propensity is a function only of properties of the coin being labelled. It
is conceivable for example that a magnetised coin would be more likely
to have its “north face” labelled ‘heads’ than ‘tails’, or that a bent coin
would be more likely to have ‘heads’ stamped on its convex than on its
concave side.

In these terms our pious convictions about biased British coins come
to this: the properties distinguishing the likely from the unlikely sides
(i.e. which are properties connected to the propensity displayed in a
coin toss) are not connected to the propensity displayed in its labelling.
The Mint is 70z more likely to label ‘heads’ the “north face” of a coin
that subsequently becomes biased by being magnetised. Nor is a sub-
sequently bent coin more likely to have ‘heads’ stamped on what will
be its convex side. (When labelled, in fact, British coins have not yet
acquired the asymmetrical properties connected to their propensities to
land heads. So it is hardly surprising that they are unconnected to the
Mint’s labelling propensity.) A connectivity argument like that of the
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last section can now be applied. Let C, be the determinate propensity
expressed by the ordered pair

$pa (L), p, (U)),

where p, (L) and p, (U) are the determinate values for coin a of the
determinable chances p (L) and p (U) of the likely and unlikely sides
respectively of a biased coin having been labelled ‘heads’ by the Mint.

Clearly Pe(L) + 5 (U) = 1.

Similarly for another coin &.

Now let R, be the conjunction of all true propositions ascribing to 4
properties connected to C,. Let R, be the proposition obtained from
R, by substituting ‘a’ for ‘4’ throughout the sentence expressing R,
Then connectivity asserts that

(Rb = Ra) - (Cb = Ca)
and hence, trivially,

Ry =R) =>(p, (L) = p, (L))

Let R¥ be the proposition obtained from R, by substituting ‘the
likely side’ for ‘the unlikely side” and vice versa in the sentence express-
ing R,. The same substitution in the sentence stating that the Mint’s
propensity to label coin a is C, yields one stating that its propensity is
C¥, where C¥ is obtained from C, by interchanging p, (U) and

Pa (L)’ ie. CZ& = <Pa (U), Pa (L)>

The features distinguishing the likely from the unlikely side are not
connected to the propensity displayed in labelling the coin. So the
application of connectivity to aand 4is unaffected by this transformation
and yields the assertion

(R, = RZ) - (C, = CP);
whence, again trivially,

(R, =R¥) - (p, (L) = p, (U)).

From here the argument goes exactly as in the last section, yielding
the conclusion that, for any coin a, connectivity requires a difference
between p, (U) and p, (L) to be explained by a change in truth value of
R, under the transformation to R¥. But the properties distinguishing
the likely from the unlikely sides are not connected to the labelling
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propensity. Hence the terms ‘ the likely side’ and ‘the unlikely side’ need
not occur in the sentence expressing R,. In which case the prescribed
transformation cannot change the truth value of R, since it leaves the
sentence expressing it completely unaltered. R, and R} will be materially
equivalent for the conclusive reason that they are identical. Thus the
chances of the likely and the unlikely sides being labelled ‘heads’ are
equal; these being the only possible results, the chance of each is 3.

But the proposition that the likely side of the biased coin a is heads
is the proposition S;, which says that

2o (H) > po (T).
Similarly for proposition S,. We thus have
P(S) = p(L) = p(U) = P(S) =%

which is assumption (14) above (p. 131) that the initial probabilities of
S, and S, are equal. Under the conditions there assumed it follows at
once that the probabilities P (H) and P (T) are equal. Let the coin’s bias
be ¢,, given by equation (16) above. For all ¢, and p, (E) we have

Sy pa (H) =3 (1 —po(E) +4,); £ (T) =% (1 —p(B) —9,); |
Sy 2 (H) = 3 (1 —2u(B) ~4); 20 (T) =% (1 =2, (E) +4,). |
From (17) we have at once

P (H,S) = P(T,Sy) =% (1 —pE) +9,),

P (H, Sy = P(T,Sy) =% (1 —p(E) —90)-
Applying equations (13) above,

P(H) =% (1—p(E) +9) X3 +3 (1 —p(B) —9) X}
=3 (1 —p(E)) = P(T). (18)

If there is no chance of the coin falling on its edge (18) reduces to (15)

P(H) = P(T) =4

(17)

Thus equal probabilities of the propositions that a tossed coin will
fall heads and tails display a propensity in the labelling set-up. Where
the conclusion of Laplace’s classical argument from ignorance is
correct it follows from empirical knowledge of propensities displayed
in coin labelling situations. The further frequency evidence of coin
tosses relates directly to the bias of the coin. How it should affect the
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initial probabilities we have established is a matter for Bayesian
argument. We are concerned only that the initial probabilities are
neither a priori, subjective nor warranted merely by ignorance. Their
objectivity is a consequence of their displaying a propensity. We thus
escape the dilemma of having to accept a classical analysis because of
the obvious existence of classical probabilities, or of having to deny
their existence because of the equally obvious defects of classical
analysis. In the last two sections of this chapter I examine the views of
Kneale (1949), who has taken the former course, and of Hacking (1965),
who has taken the latter.

THE CLASSICAL ARGUMENT

Lady Bracknell: Ignorance is like a delicate exotic fruit; touch it, and the
bloom is gone.
Wilde, The Importance of Being Ernest, Act 1

I have used connectivity arguments to derive some classical propensities
from empirical, though not frequency, evidence. Similar arguments will
obviously establish other classical propensities: for example, an equal
distribution of chances over throwing the faces of a die known to be
“true” in its connected properties. The argument nowhere appeals to
ignorance, and the notorious paradoxes (see, e.g. Keynes, 1921, part 1,
chapter 4) are easily avoided. ‘ Throwing a 6’ and ‘throwing an odd
number’ are not equiprobable alternative outcomes; nor does ignorance
of the bias in connected properties between them suffice to make them so.

In general, the use of connectivity to justify assigning equal proba-
bilities is restricted to systems whose other properties are known to be
symmetrical in the relevant respects. In the games of chance to which
classical probability was originally and is appropriately applied, this
symmetry is deliberately contrived. Even so positive empirical evidence
is needed to show that the contrivance has been successful in a given
instance. One does not need to know exactly what would bias a die or a
coin; it suffices to know it to be unbiased in every property suspected of
being connected to its propensity. Still, one may overlook something,
and it is not the overlooking that makes the chances equal. It is even
more necessary to insist on this point in investigating the uncontrived
natural phenomena that concern science most, especially since Kneale
(1949, part 3) has made an influential attempt to extend an essentially
classical analysis to such cases.
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The classical element in Kneale’s account of probability is the
insistence that probabilities are to be understood in terms of numbers
of equiprobable alternatives. In the language of the probability calculus
this means that the sample points must be assigned equal probabilities.
If two apparently simple events (i.e. results of chance trials) differ in
probability, this shows at least the more probable event to be in fact a
compound event, an outcome containing more than one result (see
chapter 3, pp. 58—9 and Feller, 1957, p. 14, for this terminology).
Kneale does not claim to give an a priori method of finding equiprobable
alternatives and hence chance distributions: ‘The range theory. . .is
wrongly conceived as a method for determining probabilities a priors’
(p- 185). What he claims is that every distribution is to be interpreted as
a distribution over equiprobable results. We must take this to be
stronger than the trivial claim that any quantity can be understood in
terms of some number of its units (which is all that Keynes’ assertion
(1921, p. 41) that “in order that numerical measurement may be
possible, we must be given a number of equally probable alternatives”
seems to amount to). A volume can be regarded as a number of equal
unit volumes, and a temperature difference as a number of equal centi-
grade degrees. Kneale’s claim cannot be the unremarkable one that every
chance, say 0.3, is a number &V of chances each 0.3/N. It must be that
there really are in every case ultimate alternative results each with such
equal chances: ‘ The chances of which gamblers and theorists alike have
spoken so often in the plural are simply equipossible alternatives’
(Kneale, 1949, p. 181).

Every outcome of a chance trial must on Kneale’s account contain an
integral number of these ultimate chances. The number need not be
finite; statistical probabilities are not restricted to rational values (cf.
Braithwaite, 1953, p. 130):

Although primary sets of equipossible alternatives are basic in the theory of chance,
we cannot safely define the probability of an a thing’s being £ as the proportion of
the alternatives in such a set under a-ness which involve f-ness. For we have no
guarantee that even the principal set under a-ness with reference to f-ness will be
finite. On the contrary, we have good reason to believe that in very many cases this
principal set must be infinite. (Kneale, 1949, p. 181.)

Kneale introduces the concept of a range of equiprobable alternatives to
deal with non-finite cases. I discuss such an example later; but first we
need to ask why, even in the finite case, equal probabilities are supposed
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to be so much more intelligible than unequal ones as to provide an
acceptable analysis of them.

Kneale’s term (above) is ‘equipossible’, not ‘equiprobable’, but
for the desired conclusion to follow the terms must be taken to be
synonymous. The question remains: on what principle must results (as
opposed to outcomes) of trials always be assigned equal rather than
unequal chances? Although Kneale disclaims any intention of provid-
ing a method for settling chance distribution, I can only take him to
suppose that equal chances are easier to establish than unequal ones. To
this extent he subscribes to a principle of indifference. It is true that he
rejects it in the form he attributes to Laplace:

We may call alternatives equiprobable if we do not know that the available evidence
provides a reason for preferring any one to any other. (Kneale, 1949, p. 173.)

Kneale’s own position is stated thus:

We are entitled to treat alternatives as equiprobable if, but only if, we know that
the available evidence does not provide a reason for preferring any one to any other.

But this is still too weak, as is Jeffreys’ (1961, p. 33) formulation:

To say that the probabilities are equal is a precise way of saying that we have no ground
for choosing between the alternatives. . .if we do not take the prior probabilities
equal we are expressing confidence in one rather than another before the data are
available, and this must be done only from definite reason. To take the prior
probabilities different in the absence of observational reason for doing so would be
an expression of sheer prejudice.

— but no more so than to take them equal in the same circumstances. We
had occasion to remark in chapter 1 (pp. 6—7) that lack of belief does not
entail partial belief. Equally, a lack of different partial beliefs on two
topics does not entail equal partial beliefs in them. And the same goes
for chances, which are the objective grounds of partial belief. Available
evidence, when seriously incomplete, may provide reason neither for
preferring nor for not preferring one alternative possibility to another.
The sufficiently strong formulation is:

‘We are entitled to treat alternatives as equiprobable if, but
only if, we know that the available evidence provides a reason
for not preferring any one to any other.”

On this formulation it is clear that evidence may as well provide
reason for a preference as for a lack of it. There is nothing more
fundamental in the latter that warrants its use to explicate cases of the
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former. I have indeed produced connectivity arguments from evidence
of symmetry in other respects to equality of chances; but evidence of
symmetry is no more profound or easier to come by than evidence of
asymmetry. Incomplete evidence may equally suggest symmetry where
there is asymmetry and suggest asymmetry where there is symmetry.
¢ Ceteris paribus’ clauses are as much needed in the one case as in the
other. I have in any case been at pains to show that equal chances
established by connectivity arguments are nothing like Kneale’s
“ultimate alternatives”. A coin may be unbiased in that its chances of
landing heads and tails are equal, but there may still be a smaller,
finite chance of it landing on its edge. What the ultimate alternatives are
in this case is as unclear as in the case of a biased coin.

When we turn to infinite *“ primary sets of equipossible alternatives”, a
classical approach becomes even less plausible. Kneale considers the
chance thatan a-thing is also £, and tries to meet the difficulty that there
may be more than one equally fundamental measure of a range of
a-ness, leading to conflicting values of the chance. That Kneale feels it
essential to meet this difficulty is shown by his assertion (1949, p. 183)
that “to admit two different ways of measuring the range would be to
abandon all hopes of formulating an objectivist theory of probability”.

Part of Kneale’s argument is perfectly acceptable, since he is
prepared to use empirical information about a set-up to exclude certain
measures as inappropriate. He shows for example how the ““puzzles of
Bertrand’s paradox disappear when a practical method for selecting a
chord at random is specified” (p. 185). This well-known paradox
(discussed also in Neyman, 1952, pp. 1§—18) concerns the chance that a
chord drawn ““at random” to a circle will be longer than the side of an
equilateral triangle inscribed in the circle. If the angle the chord makes
to a given line is taken to measure the range of possibilities, the chance
is 1 (figure 6); if the distance between the centres of the chord and
circle is taken as the measure, the chance is 4 (figure 7); if the area of a
concentric circle to which the chord is a tangent, & (figure 8). Not more
than one measure is appropriate to a particular set-up. Drawing the
chord along the line of a previously spun pointer whose axis is on the
edge of the circle excludes the distance and area measures; letting its
centre be fixed by the first drop of rain to fall within the circle excludes
the angle and distance measures. So far so good, but it is not enough. An
infinite number of non-linear measures remain of each of angle, distance
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and area. Only positive empirical information justifies our excluding
them and so arriving at the requisitely unique measure. As before, it is
not sufficient for the available evidence to give us no reason for pre-
ferring any one equal area (say) of the circle to any other: it must give
us reason not to have such preference. To know enough about a chance
set-up to choose the right measure of the range of possible results is to
know directly the chance distribution the measure is supposed to
establish. The general point has been made by Will (1954, p. 23). But
the flaw in Kneale’s answer (p. 188) to this anticipated objection has
not been sufficiently exposed.

f@

Figure o.

Kneale needs to show that, where there are apparently distinct and
equally fundamental measures of the same range of possibilities, they
will nevertheless yield the same chance distribution. He relies (pp.
142—4) on generalising a theorem of Poincaré’s (1913, p. 403). Poincaré
takes the example of a spinning pointer and considers the chance f{x)
that it will travel an angular distance x before stopping. He assumes
reasonably that this cumulative chance is a continuous and everywhere
differentiable function of x. Figure 9 shows a sketch of a plausible
function f; figure 10 sketches its derivative f” with respect to x. Then,
for any such £ if a and 4 are two sufficiently close values of x, it follows
that the chance of the pointer stopping between a and % (a +8) differs
from the chance of it stopping between % (a +4) and 4 by less than any
stipulated amount, however small. For sufficiently close a and & the
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b
Area = chance of pointer stopping between a and E:— =1 (b-a)f'(a);

b
Area = chance of pointer stopping between % and b = 1 (6-a) f'(a).
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chanceissimply 4 (6-a) f” (a) as shown on figure 11. Kneale then argues
that if the pointer is spun hard enough these “sufficiently close”
values @ and 4 may be taken to differ by 2. So whatever the overall
shape of the function fthere is an effectively equal chance of the pointer
stopping in any equiangular sector of the circle. This further inference
is invalid. The trouble lies in the words ‘sufficiently close’. That a
sufficiently small interval (a, 5) exists is true; that this interval includes
any interval of interest (in this case one of length 27) does not follow at
all, however short the interval of interest may be.

Consequently, the general conclusion Kneale draws (p. 189) from
Poincaré’s theorem, and which his theory admittedly requires, is false:

If, as seems reasonable, it can be assumed (a) that of any two connected variables
[* and y] which are equally fundamental each is a continuous analytic [i.e. every-
where differentiable] function of the other and (&) that by either scale of measurement
the range of a-ness is a small part of the configuration space in which it lies, we are
entitled to say that metrical relations within the range of a-ness will be approximately
the same, whether the variation of x or that of y be chosen as a dimension of the
configuration space.

It is not enough to know that “the range of a-ness is a small part. ..”:
it must be a sufficiently small part for the degree of approximation (i.e.
imprecision) required. To know this is already to know the conclusion
it is desired to establish. The same objection holds against Kneale’s
further analogy from map-making (p. 189):

When two maps of a continent are made according to different projections, regions
represented by equal areas in one map may be represented by markedly unequal
areas in the other. If, however, we consider only those part of the same two maps
which correspond to a single county, we find that the differences introduced by
different methods of projection are negligible; parishes which are represented in the
one by equal areas are represented also in the other by approximately equal areas.

Again the problem remains: given the degree of approximation, to
show that particular pairs of parishes or counties are sufficiently small to
be represented by equally equal areas on both projections. Knowledge
that this is so is no more easily come by than knowledge that it is not so.

The invalidity of the classical argument and the proper application
of connectivity may be illustrated in Kneale’s own example. Let x be
the angular distance travelled by a spinning pointer, and let another
measure of the range be y = x+msin x, (19)

where 0 < m < 1 is a constant. Then x and y satisfy Kneale’s criteria
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(p- 187) for being equally fundamental and “each is a continuous
analytic function of the other”. Then if the cumulative chance function
f(x) is continuous and everywhere differentiable, so is its counterpart
g)-

Now suppose g() to be such that any interval of length

is “sufficiently small”. That is, the chance p of the pointer stopping in

any small interval (a, ) whose measure Ay is less than 27 is directly
roportional to Ay:

proportionat oS p =KDy, (20)

where £ is a constant. In particular this is true for a sub-interval small
enough for its measure Jy to be given by

dy = gg ox. (21)
Hence from (19), (20) and (21)
p=kdy
dy

= k (1 +m cos x) 0x

The chance that the pointer will stop in a small sector of angular width
0x is thus not directly proportional to dx. It varies between

k(1+m)dx at x = 2nm, 1

(n=o0,1,2,...)

and k 8x at x = (2n+ I)nJ

I

Any one of an indefinitely large number of measures y (correspond-
ing to different values of m) of the range of possible stopping places of
the spinning pointer could satisfy the condition (20). To each corres-
ponds a cumulative chance function f{(xx) of which Kneale’s conclusion
is false. The derivative of one such function is sketched in figure 12. It
could easily express the propensity of a magnetised pointer spun in a
magnetic field. However hard the pointer is spun there are substantially
unequal chances of it stopping in equiangular sectors of a circle. Such a
pointer shows also how more information is needed to resolve
Bertrand’s paradox than Kneale admits. Suppose its stopping place
were used to fix the angle of the chord. The chance of the chord being
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longer than the side of the inscribed triangle depends on where its axis
is placed. The chances will differ if it is placed on the west and north
sides of the circle, and neither is likely to be .

In this case as in every other such a propensity can only be excluded
by positive evidence that the connected properties —e.g. magnetic
properties — of the set-up are absent. It is of course possible that no
connected property of the pointer discriminates between some pair of
sectors of the circle. If so, connectivity will require that the propensity

2T

f@)

Figure 12.

of the pointer to stop there does not do so either. In a particular case this
might be true of every pair of equiangular sectors.

(The analogy between spun pointers and tossed coins can be pushed
further. There is an analogue of Laplace’s biased coin. Consider a
magnetised pointer in a known magnetic field. The two opposite ends
of the pointer are labelled ‘heads’ and ‘tails’ respectively; it is not
known whether heads or tails is the north pole of the pointer. Mark off
a semicircle round the pointer symmetrically disposed about a line
through the pointer’s axis in the direction of the field. Say the pointer
‘lands heads’ if it stops with heads within this semicircle. We know
that the chance of this is either greater or less than 4 — the pointer is
biased, but we do not know which way. There may then be equal
objective probabilities of the pointer landing heads and tails on its first

I0 MMR
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spin. If so, the propensity displayed is that of a labelling or magnetising
device: the chance of the north pole being labelled ‘heads’, or of heads
being made the north pole, is supposed to be 1.)

I conclude that there is no easier or more a priori knowledge to be
had of equal than of unequal chances, and therefore that there is no
justification for analysing the latter in terms of the former. True
conclusions of classical arguments can be established by applying
connectivity to empirical knowledge of related symmetries in some
set-up. Equality of chances can be shown in this way, but no more
readily than inequality of chances.

THE FIDUCIAL ARGUMENT

I have shown the empirical basis of some seemingly a priori probabilities
and rejected classical arguments for them. I now consider Hacking’s
fiducial argument (1965, chapter 9) for corresponding posterior
probabilities in Laplace’s case of the biased coin, relating its assumptions
to those of the connectivity argument. The term ‘fiducial’ is taken
from the work of Fisher (e.g. 1959, pp. §1—7), of which Hacking claims
(p. 140) to have given a consistent reconstruction: ‘Fisher invented
the fiducial argument. At any rate, I suppose that what he called the
fiducial argument must, if it has any validity, take something like the
course described above.” Both the connectivity and the fiducial argu-
ments apply under the same conditions, namely that the hypotheses S,
and S, ascribe the same (perhaps unknown) bias ¢, to the coin. The
fiducial argument then yields the posterior probabilities of S; and S,
-that follow by conditionalisation from the prior probabilities given by
the connectivity argument. Since Hacking claims to assume nothing
about prior probabilities, this calls for explanation.

Hacking’s general thesis about inductive support may be granted at
once. If scientists need a measure of inductive support for hypotheses it
will always be of inductive support on some evidence. If the measure is
probabilistic, what scientists need are posterior probabilities, not prior
ones. The problem of measuring support is that of finding a consistent
method of assigning posterior probabilities. This can either be done
directly, or indirectly by assigning prior probabilities and condition-
alising. The objection to classical methods is not that they assign prior
probabilities but that they are inconsistent. Indifference principles can
be used to assign incompatible prior probabilities to the same proposi-
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tion. It is equally an objection to the fiducial argument as used by Fisher
that it can be used to assign incompatible posterior probabilities
(Hacking, 1965, p. 151).

It is no objection to a method which yields consistent posterior
probabilities that it does so via prior probabilities. Still less is it an
objection that Bayes’ theorem can always be used to derive prior from
posterior probabilities. There is no need to interpret prior probabilities
as measures of inductive support at all if the concept of support by no
evidence is found objectionable. This point needs making to cover cases
where prior distributions fail to satisfy the probability axioms (Hacking,
1965, pp- 192—4; Jeflreys, 1961, §3.1). It needs making also to meet the
following objection to Bayesian methods: any posterior probability
can be derived from some prior probability; there can be no objective
basis for assigning one prior probability rather than another, since they
are probabilities relative to no evidence; hence there can be no objective
basis for assigning one posterior probability rather than another. (See
Kyburg (1963, p. 198) in the discussion of Braithwaite (1963) who
showed that any statistical decision strategy is equivalent to some
Bayesian strategy of assigning prior probabilities and then settling for
the hypothesis with the highest posterior probability.) The apparent
virtue of the fiducial argument is that it assigns posterior probabilities
independently. It assumes no prior distribution. Prior probabilities may
then be derivable from Bayes’ theorem, but they are redundant. No
sense need be made of them.

Whether there could be any consistent and compelling method of
assigning absolutely prior probabilities seems to me an open question.
The connectivity argument applied to Laplace’s coin is certainly not
such a method. The probabilities it establishes are prior only to the
frequency evidence obtained from coin tossing. They are not prior to
all evidence.

Hacking (pp. 136—45) only deals with the special case

Pa(B) =05 g, =023
where the competing hypotheses S; and S, become
Syt p, (H) =0.6; p, (T) = 0.4;
Set Pa (H) =o0.4; p,(T) =od.
His argument applies however to any pair of hypotheses S, and S, that
satisfy equations (17) of p. 135 above. It is convenient to consider the
more general argument in order to see why it applies just when

10-2
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connectivity also applies. Hacking starts by defining a new kind of
derivative trial, of which the two possible results are

o if H occursand S, is true
or T occurs and S, is true;
1 if H occursand S, is true
or T occurs and S, is true.

The chance distribution over the results of this trial is known because
it is independent of whether S, or S, is true. From equations (17) we
have Pa (O) = % (I _Pa(E) _ga)5
Pa (I) = % (I _Pa(E) +9a)'

It is essential to the fiducial argument that the chance distribution of the
derivative trial should be fixed in this way. Such trials are called
‘pivotal’ (Hacking, 1965, p. 140). The necessary and sufficient condi-
tion for this derivative trial to be pivotal is obviously that the chances
of heads and tails on hypothesis S; equal respectively the chances of
tails and heads on S,. This we have seen (pp. 131-2) to be precisely the
case to which the connectivity argument applies.

In this case it follows at once from Hacking’s “frequency principle”
(see p. 67 above) that the probabilities of the propositions that o and 1
respectively will occur at the first trial, relative to this evidence, are

P (0) = % (I _Pa(E) _qa)’}
P (1) =% (1 =p(E) +4,)-
Now suppose the trial occurs and the result is tails. How does this
extra evidence affect the probabilities of o and 1? On Hacking’s
principle of irrelevance it affects them not at all. Without fully developing
his terminology we can say that, for Hacking, extra evidence is irrele-
vant to a choice of hypotheses if it leaves their relative likelihoods
unaltered (Hacking, 1965, p. 141). In terms of his logic of support he

shows that this condition is satisfied here. In an earlier passage he argues
informally (pp. 138-9):

(22)

It may seem that. . .occurrence of tails. . .is simply irrelevant to whether or not o
has occurred. This may appear from considerations of symmetry in the definition
of 0 and 1. Or you may reflect that occurrence of o means that either heads or tails
occurred, and whichever it was, the odds were in favour of what actually happened;
occurrence of 1 means that either heads or tails occurred, and that the odds were
against what actually happened. . .. Learning that tails happened is no help at all to
guessing whether o happened.
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Hence the probabilities of o and 1, relative to the extra evidence that
tails occurred, remain at the values given in (22). “But as o is defined,
occurrence of tails implies that o occurs if and only if S, is true. Hence
by the logic of support™ (p. 139)

p (517 T) =P (O) = % (I _Pa(E) _ga)yl
P(SyT) = P (1) =% (1—pE) +4,) |

and similarly if heads is the result.
Thus Hacking derives posterior probabilities for S; and S, on either

possible result, heads or tails, of a single toss of the coin. It is elementary
to show that these probabilities derive by conditionalisation from the

prior probabilities P(S) = P(S,) =4

(23)

Of this connection with the classical prior probabilities Hacking observes
(p- 147):

It is true that there is a residual, if unformalisable, intuition that if the chance of
heads must be either 0.4 or 0.6, then, lacking other information, each of the alterna-
tives is equally well supported by the feeble data available. So it is pleasant that our
theory should not conflict with this tempting alleged intuition. But mere lack of
conflict with something so nebulous cannot be taken as evidence that our founda-
tions are correct.

We have seen that the intuition is not so unformalisable, and the data
are not so feeble, as Hacking here supposes. Where the connectivity
argument applies, it is not merely pleasant but essential that Hacking’s
argument should yield a compatible conclusion. But the connectivity
argument rests on empirical data of which the fiducial argument seems
to take no account. It is worth enquiring whether the latter has implicit
empirical premises equivalent to those the connectivity argument
employs explicitly.

The applications of Bayes’ theorem and the relation of chance to
degree of support have not been in question on either theory. What is
in question is Hacking’s application of his principle of irrelevance,
which he claims (p. 140) to be essential to consistent use of the fiducial
argument. What the principle of irrelevance claims in this case is that
“learning that tails happened is no help at all to guessing whether o
happened”. Now in our earlier terminology what happens if o occurs
is that the unlikely side of the coin comes up — the side, whether heads or
tails, with the lesser chance. If 1 occurs what has happened is that z4e
likely side has come up. That a particular side comes up is manifestly
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not irrelevant to whether or not that side is the likely side. What Hacking
claims to be irrelevant is that that side has been labelled ‘ heads’. 1t is
surely obvious that this information is irrelevant if and only if the
likely and unlikely sides had equal chances of being so labelled. To know
that the result tails is irrelevant to the hypothesis that the result o
occurs is to know that those chances are equal. This is just the know-
ledge derived by the connectivity argument from empirical evidence of
the independence of coin labelling and coin tossing set-ups. But relative
to this evidence we have directly equal prior probabilities of S, and S,.
Lacking this evidence, the principle of irrelevance cannot be known to
apply and the fiducial argument for the corresponding posterior
probabilities fails.

Thus, while the fiducial argument does not assume prior probabilities
directly, it does assume facts about propensities which equally warrant
them. The objection to prior probabilities, that they are relative to no
evidence, is here seen to be misplaced. It is a virtue of the connectivity
argument to make explicit the extra propensity evidence tacitly assumed
in the fiducial argument.

It must be said that the fiducial argument is far more general; in such
other applications as the theory of errors and cases where the prior
distribution is not probabilistic, there is no obvious connectivity
counterpart of it. The convergence of the two arguments in the biased
coin case may thus be a coincidence. If so, it is at least as curious as it is
gratifying. What their general relationship may be I do not know, but
the following observations seem to me pertinent. The connectivity
argument makes no use of Bayesian inference in deriving from propen-
sities what here count as prior probabilities. Nor does the fiducial
argument use Bayesian inference in deriving its posterior probability
after one toss. But Bayesian inference is needed to relate the two, and
we have noted in chapter 2 (pp. 47-9) a distinct lack of rationale for it.
The apparent fortuitousness of the agreement in this case may merely
reflect that fact. But the lack of rationale for Bayesian inference affects
the fiducial argument more than the connectivity argument. There is
not much point in having a probability posterior to one toss that
cannot be conditionalised to probabilities posterior to many tosses.
Whereas it is no matter to propensity theory if there are no objective
probabilities relative to evidence between full knowledge of a labelling
propensity and full knowledge of a coin’s bias.



8 Determinism and laws of
nature

IF PROPENSITIES are ever displayed, determinism is false. Every
event may still have a cause; in particular the results of chance trials
may have causes. But their trials cannot be their causes either directly
or indirectly. Roughly speaking, ““causal chains” end in chance trials.
Causal talk is not really illuminating in statistical contexts. It is un-
profitable to ask whether ““the outcome or the result of a trial” is “in
any way due to the trial” (Watling, 1969, p. 41). Chance is not a sort
of weak or intermittently successful causal link. I have avoided causal
concepts in my account of chance. Still, something should be said of its
relation to determinism.

On the present account a statistical law asserts of eac trial of a certain
kind that on it there is the stated chance p of some outcome. Where
a statistical law is put in some such common form as

‘100 pY, of Fare G’, (1)
this sentence must be taken to state that
all F have a chance p of being G. (2)
It is as much a universal proposition as it is that
all Fare G. (3)

The common distinction between “universal laws” and “statistical
generalisations” can be misleading if it is taken to imply that the latter
are either not universal or not lawlike.
Suppose the sentence (1) above refers to an outcome of kind G on
a trial of kind # on what is taken to be a chance set-up. Suppose also
that standard statistical criteria, applied to observed relative frequencies
of G and F, leave no reasonable doubt of its truth. It could still be
claimed (e.g. Ramsey, 1926, pp. 207-8) that (1) could still fail to state
a statistical law in our sense. (1) would fail, it is argued, if there is
another difference between the F-trials of which the outcome is G and
those of which the outcome is ~ G. Suppose the former are all #* and
the latter all ~ F*. A causal explanation could then be given of the
[ 151]
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result of each trial on the basis of deterministic (and, moreover, causal)

laws All F and F* are G, 1

All Fand ~ F*are ~ G.J @

Since each trial is either 7* or ~ F* the “chance” of it being G is
either 1 or o. In particular, of no trial is the chance of G p. So (1) does
not state the statistical law (2). It is thus argued that the possibility of
deterministic explanation of G-events, i.e. the existence of an F* such
that (4) are laws, is incompatible with (1) ascribing chances to single
trials. Conversely for (1) to do so requires that there is no such £7*—a
fact of non-existence that can never be known.

The argument is persuasive but it begs the question. It is agreed
that (1) expresses a true proposition; what is in question is its status.
Isitalaw or a statistical accident? Whichever it is, the true proposition
expressed by (1) will not be derivable from the laws (4) unless a further
premise is added, namely that made by the sentence

‘100 p%, of F are F*’. (5)

But what is the status of this proposition? It is perfectly compatible with
everything so far supposed that (5) expresses a statistical law. If it does,
so does (). Statistical law neither requires the absence of deterministic
explanation of the events it refers to nor does it just express ignorance
thereof.

As usual, it is the confusion of propensity with chance that makes
this conclusion seem puzzling and tempts one to deny it. A fluctuating
propensity can be ascribed to a temporally persisting set-up from time
to time. So it is tempting to ascribe a fluctuating chance from time to
time to a temporally extended trial. Consider the chance that the
temporally extended process of conception and delivery of a human
child (#) has the outcome that the child is male (G). Immediately before
delivery there is an explanatory difference between all those trials that
have outcome G and those that have outcome ~ G; namely that the
unborn child is either male (£*) or not (~ F*). Of each class it is ob-
served that the chance of any member yielding outcome G is either
1 or o. Hence, it is argued, in no case was the chance ever other than
1 or o. The only objective feature of the trial is that the child is either
G or ~ G. All our statistical speech expresses is suitably quantified
ignorance of the outcome.

We have already (chapter 4, pp. 72—3) remarked the fallacy of
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locating a chance at some temporal point within a trial. It can only seem
plausible to do so because the corresponding propensity can be so
located. But the latter signifies something quite different. If per im-
possibile a second child were conceived before the first was born, it too
would have a definite chance of being born male. The attempt to locate
a chance within a trial shows only that on a quite different kind of trial
the sex never changes. The chance of an unborn child changing sex
during delivery is o. This well known fact does bear on the original
trial to a limited extent. It shows that the chances of born and of unborn
children being male are the same. So the outcome G or ~ G of the
original trial might be indirectly settled, by determining 7 or ~ F*,
earlier than it could be settled directly.

One might still urge that it must be possible “in principle” to predict
the sex of an embryo. There “must” be some prior difference between
acts of conception giving rise to such different outcomes. Similarly for
coin tosses that give rise to outcomes as different as heads and tails.
But the problem simply recurs: what is the status of true statistical
propositions about the occurrence of acts of conception or of coin
tossing of these two alleged kinds? However far back sequences of
causally connected events are traced, it is still “in principle” possible
for the happening of one, F*, or other, ~ F*, event to be itself the
outcome of a chance trial. But the principles here invoked on either side
are a priori principles of determinism and indeterminism respectively,
and the matter is not to be settled a priori.

In the case of conception we do not suppose that the causal chain
ending in a male birth can go back endlessly in time. The number of its
members may be unlimited but we take them all to follow the act of
conception. The causal antecedents of a coin landing heads likewise all
follow the act of tossing it. Of that act none is a causal effect, although
the act may well have other effects.

I take this much at least to be entailed by a coin toss being a chance
trial, and I take determinism to deny it. A determinist will suppose
a more detailed description to distinguish the trials that result in heads
from those that result in tails. The result heads, when it occurs, is taken
to be a causal effect of the act of tossing under some more detailed true
description (e.g. Sklar, 1970, p. 360).

To avoid our earlier regress the determinist must suppose the occur-
rence of coin tosses of the two kinds he distinguishes not to be itself
a chance matter. He must decline to explain the observed relative fre-
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quencies with which tosses of the two kinds occur. (1) and (5) he must
take to state merely ““brute frequencies” in the world — any true pro-
positions they express he must suppose to be accidental, not lawlike.
No subjunctive conditionals follow from them. Nothing follows about
the prospects of being £* or G an entity would have if it were . No-
thing follows even about the proportions of items that would be £* or
G if they were all 7. The inadequacies of this account of (1) and (5) are
those of the frequency accounts of chance discussed in chapter 3 above.
No sense is made of applying statistical law to single cases. No explana-
tion is given even of observed frequencies of heads and tails. They must
be supposed to result from a purely accidental mixture of two kinds of
deterministic trial —i.e. a mixture governed by no law at all, and cer-
tainly not by statistical law. No principles of inference can be provided
either way between observed frequencies and those in the world as
a whole. A determinist could have no intelligible basis in observation
for accepting (or rejecting) (1) or (5) of an open class of F. Nor could
he rationally infer from them anything about frequencies he does observe.

Not all observed frequencies are the inexplicable brute facts the
determinist must suppose them to be. Some statistical sentences like
(1) and (5) are accepted as true and treated as lawlike. They are used to
explain frequencies and they plainly support subjunctive conditionals.
So I take determinism to be contingently — but quite adequately — false.

I do not distinguish in this conclusion between statistical laws and
so-called “initial conditions”. It is often held that classical statistical
theories, like the kinetic theory of gases, are compatible with deter-
minism. Classical gas particles move by deterministic laws. If their
velocities and places relative to the boundaries of the containing vessel
are given at any time, those at any later time are thereby determined.
The gas laws appear statistical only because the initial velocities and
places are not known. They are given a statistical distribution and this
is understood in a frequency sense. Such-and-such proportions of
particles have velocities and places in such and such intervals of values.
The initial condition of the gas is thus described statistically; the laws
connecting it to later conditions are deterministic. This is supposed to
suffice for determinism, because the statistical initial conditions merely
express ignorance of more detailed determining conditions.

We have met this argument already in the coin tossing case, and the
reply to it is the same. The distribution of particle velocities prescribed
by kinetic theory is not accidental. It is taken to be a law of nature that
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every sample of gas is subject to it, and the theory plainly supports
subjunctive conditionals. If anything were a sample of gas the prescribed
statistical distribution would apply to it. The subject matter of the
theory is not in fact the velocity and place of gas particles. From those
alone the macroscopic gas laws would not follow that the theory pur-
ports to explain. Its subject matter is the chance distribution over
possible places and velocities at any time, from which the gas laws do
follow (within limits of conceptual imprecision — see chapter 6, pp. 103—
107). It is immaterial that velocities and places are deterministically
linked to velocities and places earlier and later. That signifies no more
than does the existence of causal antecedents of male births and coins
landing heads. It shows merely that earlier and later gas particle velo-
cities and places also have chances. And their having chances is as
compatible with their also having determinate (not determined) values
as the chance of radioactive decay is with its actual occurrence. The
frequency account of these chances, on which the determinist relies in
dismissing statistical initial conditions as accidental, is no more adequate
here than it is elsewhere.

The gas case may seem puzzling because the deterministic chain of
antecedents of a given velocity or place distribution could be temporally
endless. It does not end in any analogue of the acts of tossing a coin or
conceiving a child. If one thinks of chance as a sort of weak causal link
between trial and result, it is hard to see what the trial could be. There
seems to be no event to which chance can link particle velocities and
places in the way the result heads is linked to the toss of a coin. I have
however remarked already (p. 151 above) that chance is not a sort of
weak causal link. Heads is in no way causally “due to” the coin toss;
the decay of an atom in no way “due to” its having a certain nuclear
structure for a certain time. We shall have cause to see again (p. 158
below) that causal talk must be eschewed if chance is to be understood.
There is no need to look for something like a cause of gas velocity and
place distributions in order to find a chance trial. The trial is simply the
gas sample being in a determinate state of volume, pressure and tem-
perature at a given time. In any of a wide range of such situations the
theory warrants a distribution of partial beliefs over the possible velo-
cities and places of single gas particles, and over possible frequency
distributions among the velocities and places of numbers of gas particles.

Kinetic theory ascribes to gases standing propensities which are
equally displayed by the chance distributions of particle places and
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velocities in diverse states of volume, pressure and temperature. Like
radium atoms and mortal men and unlike coins, gases continuously
display their propensities in one chance distribution or another. This
perhaps explains a confusion of propensity with chance (and thence
with frequency) in this case, although it hardly excuses it. The disposi-
tional insolubility of a rock on the sea bed is also continuously displayed;
but it is still not the same as the fact of the rock not dissolving,.

In a deterministic world there would be no propensities. (There is
a slightly frivolous borderline case: an otherwise deterministic world
with biased coins that were never tossed would have propensities but
no chances). We might still find use for false statistical theories in
a deterministic world and thus a use for fictional propensities. Chemical
engineers for instance habitually work with continuum theories of
fluid mechanics that are convenient although known to be false. The
theories ascribe to fluids uniform point densities, viscosities and other
mechanical and thermal properties which they are known not to have.
One cannot therefore argue directly from the successful use of these
theories to a continuous distribution of fluid matter. Can a determinist
properly object to the similar inference to indeterminism from the
successful use of statistical theories?

The determinist argument here could not rely on a general instru-
mentalist view of laws and theories (see Nagel, 1961, chapter 6). The
doctrine cuts both ways that laws and theories are neither true nor false
and so lack ontological consequences. Instrumentalism does not favour
discrete over continuum theories of matter, nor deterministic over
statistical laws. On it, if the continuum is a merely useful fiction, so are
atoms; deterministic dispositions such as fragility are no more real for
instrumentalists like Ryle (1949, pp. 119—20) than propensities would
be.

I adopt a realist view of laws and theories, while recognising that
many false theories continue to be usefully employed. Their falsity
however deprives their use of any ontological implications. The force
of the continuum example comes from our accepting as true an alter-
native atomic theory. That theory shows the continuum theory to be
false. It also shows what makes the continuum theory useful. It shows
in what circumstances the consequences of the continuum theory are
true. The circumstances are most common, and in them the desired
results are much more readily derived from the continuum theory. It
is only our acceptance of an underlying atomic theory that warrants
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our declining the inference from this widespread use to a real continuum;
and only because it commits us instead to real atoms.

It is the same with statistical laws and theories. The inference from
them to real chances and propensities can only be resisted if an accepted
underlying deterministic theory shows their use to be merely instru-
mental. It is not enough that such an underlying theory is conceivable.
The determinist must put up a better supported deterministic alternative
to every statistical theory. The indeterminist need not do as much
because his claims are more modest. He need not claim that all laws are
statistical, merely that not all laws are deterministic. I hope propensity
theory may induce determinists to similarly moderate their claims and
reconcile themselves to a world that science shows to be deterministic
in some respects and statistical in others.

NATURAL NECESSITY

I turn now to a constraint propensity theory is alleged to place on one’s
view of natural law. Professors Kneale and Mackie have privately
objected that it imposes a non-Humean view of natural necessity. My
enquiry here is not exegetical. I do not know what Hume would say of
propensity theory. The sequel will make it clear what views I take to be
Humean; they are compatible at least with such accounts of natural law
as Braithwaite (1953) and Ayer (1963) have given.

The argument I dispute may be put as follows in terms of the coin
tossing example. Suppose a given coin always lands heads and hence
that all coins of some independently specified kind do so. There could
be a natural law to this effect. For a Humean it would assert the constant
conjunction of events of these two independent kinds, namely coin
tossings of the specified kind and landing heads. There is assumed to be
no logical connection; being a toss of the specified kind is no criterion
for the result being heads. And there is for the Humean no further
connection in nature which could somehow necessitate the result heads
on each toss.

Returning to the statistical case, we have again a conjunction of
events of two logically independent kinds, but no longer a constant
conjunction. Sometimes a suitable and suitably tossed coin lands heads,
sometimes not. Yet the propensity theory seems to assert that nature
contains more than the two events. It contains also objectively, empiri-
cally, in each single case, something of which chance is the measure
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that makes it reasonable to expect (to a greater or less extent) the one
event to follow the other. In the extreme case of the chance approaching
or equal to 1 it has precisely the réle of that necessary but non-logical
connection which a Humean denies to exist. That is, a chance 1 is
a feature of nature over and above the events it conjoins which necessi-
tates their conjunction. Chances less than 1 then appear on the pro-
pensity theory, it is alleged, as similarly non-Humean connections.
They do not in general necessitate a conjunction of events, but exercise
a sort of “partial compulsion” on the result event to follow the trial
event.

It is thus argued that a propensity theorist has to accept non-Humean
necessary connections as the extreme cases of chance as it tends to
1 or o. Even if this alleged consequence were acceptable in itself the
propensity theory’s probabilistic extension of it would not do. The
idea of “partial compulsion” is quite unintelligible — of a connection
which is, in the relevant natural law sense, ““necessary” but which does
not always work. This is the idea of chance as a weak or intermittent
causal link that I have already had occasion to reject (pp. 151,155), and
it would be fatal for propensity theory to be saddled with it. The con-
nection would have to be there in every coin toss, yet what (when the
coin lands tails) would it connect and what would it explain? At least
in the extreme case it can always connect the toss to the landing heads
and could be supposed to explain the constancy of the conjunction.
In the statistical case 70 other invariable consequence of the toss exists
for this alleged probabilistic link to connect and thereby explain.

The propensity theory seems on this account to be unacceptable even
to a non-Humean. To a Humean it seems directly unacceptable because
its extreme deterministic case is a non-logical necessary connection.
Mackie takes a frequency theory of chance (and a fortiori of statistical
law) to be the natural extension of a Humean view of deterministic
law. Just as the one expresses invariable conjunction between events
of two kinds, so the other is to express merely a frequency of conjunc-
tion between events of two kinds. Now it makes no sense to say of
a single instance of a deterministic law that in it the antecedent is
“invariably” conjoined with the consequent event. Of an instance of a
statistical law it equally makes no sense to say (e.g.) that zAis toss of
a given coin is “frequently” conjoined with this particular instance of
the result heads. The frequency theory of statistical law, like the Humean
theory of deterministic law, allows it to assert nothing about the single
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case, only about the set of all cases instantiating the antecedent. The
propensity theory differs from the frequency theory on precisely this
point, which is consequently taken to show its incompatibility with
the Humean outlook.

Itis not, however, true that propensity theory has all the consequences
here drawn from it. Consider again what it really commits one to when
the chance is 1 or o. I assume that deterministic laws about events can
beidentified with universal conditionals ascribing these extreme chances.
The assumption is not trivial, since it rules out some widely held fre-
quency theories. In particular the limiting frequency of heads in an
endless sequence of coin tosses may be 1, even though an indefinitely
large number of tails occurs in the sequence. Thus on alimiting frequency
theory one occurrence of tails would not show the chance of heads to
be less than 1, whereas it would refute a deterministic law. The pro-
pensity theory, however (like such non-limiting frequency theories as
Braithwaite’s, 1953), need not leave this implausible logical gap between
deterministic law and the extreme cases of statistical law. In any case,
if there were such a gap, the propensity theory of chance would imply
nothing about the status of deterministic laws. Chances of 1 and o
would not be identifiable with necessary connections; the argument
I am disputing would not get started.

I take it then, that a deterministic law ascribes a chance of 1 to an
occurrence of one event (of kind B, say) given the occurrence of another
(of kind 4). What does this amount to on the present theory? We have
that, assuming the law, upon each occurrence of an 4-event the reason-
able partial belief to adopt on the occurrence of a B-event is of degree 1.
This entails that it is in these circumstances unreasonable to put any
money on a B-event not happening, whatever odds are offered. The
question is: for this to be unreasonable does the assumed deterministic
law have to be given a non-Humean force? Must it assert some necessary
connection between the 4-event and the B-event? The answer is plain:
a Humean constant conjunction is quite good enough. If I know that
every A-event, past, present and future, is accompanied by a B-event,
I know that this one is. It would be unreasonable of me in this assumed
state of knowledge to put any money on the B-event not happening,
since I know in advance that I would lose it.

This truth about an event, that being of kind 4 and given the deter-
ministic law, the chance is 1 of its being attended by a B-event, is not of
course the same as the truth that it zs so attended. The latter does not
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entail the former. A coin may land heads even though the chance of
heads is not 1. Where the chance zs 1, that is a fact about the toss over
and above the fact of it landing heads. A Humean constant conjunction
suffices to establish this extra fact. No further connection is needed be-
tween pairs of events of kinds 4 and B.

Similarly in the statistical case. It is an extra fact about an 4-event
that some degree of partial belief p is more reasonable than others on its
being accompanied by a B event. This extra fact is established by the
truth of the relevant statistical law. The question is whether statistical
laws can be given a Humean interpretation on the propensity theory.
The answer is not quite clear. We certainly cannot take a statistical law
to assert merely a constant, or indeed any specifically frequent, con-
junction of 4-events and B-events. If that is to be non-Humean, so be
it. But I suppose it sufficient to deny any statistical analogue of a non-
logical necessary connection, and to accommodate Humean scepticism
about induction. That much propensity theory can do.

The relation between frequency and a degree of partial belief being
reasonable is obvious in the deterministic case. It is unreasonable to
put any money on a B-event not attending an 4-event because that
money would always be lost. The facts of the statistical case that make
some partial beliefs reasonable and others not are doubtless more com-
plex. We need to show that they are nevertheless still merely about
occurrences and non-occurrences of B-events and 4-events.

I argue that a partial belief is reasonable if the gambler can know he
would break even after some repeated bets at the corresponding CBQ
and unreasonable if he cannot know this. To say an event has a chance
is to assert this possibility of knowledge for some, but not for all,
partial beliefs in the event. (It may also be possible to know of any
CBQ that the gambler will fail to break even on some number of re-
peated betsat it; but this will give no reason to prefer one degree of partial
belief to any other). A sense is thus given to a partial belief being
“reasonable” that both gives content to the propensity theory and is
Humeanly acceptable. The argument appeals to the so-called “strong
law of large numbers” (e.g. Feller, 1957, pp. 189—90). In it I need to
show how that law can provide knowledge that a gambler will break
even. I need further to show what makes it reasonable to prefera CBQ
for which this knowledge is available to one for which it is not.

The betting situation is the one specified in chapter 2. The con-
straints there put on it are needed to ensure that the choice of betting
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quotient measures the gambler’s partial belief and nothing else. Its
salient features are that (i) the gambler has to bet, (ii) he chooses the
betting quotient, and then (iii) his opponent chooses the stake size and
the direction of the bet.

If a gambler can be made to bet once, he can be made to bet again.
If one trial has a chance distribution, any trial sufficiently similar in its
connected properties has the same distribution. That means on the
present view that a CBQ warranted on one such trial is warranted on all.
It is reasonable to avoid certain loss in a compulsory bet on one trial,
by making one’s betting quotients coherent. It is also reasonable
to try to avoid loss in compulsory bets on many such trials by a
suitable choice among coherent quotients.

We shall not want to set a limit to the possible number of repetitions
of the trial. On the other hand our gambler cannot be credited with
both unlimited cash and a serious interest in winning more; so we set
up the following situation. The gambler and his opponent devote
a fixed stake to a complex bet whose result is the net result of a sequence
of NV bets on single trials. The bet on every single trial is at the same
CBQ, r, chosen by the gambler. The fixed total stake, chosen subse-
quently by his opponent, is divided equally among the & bets. All &
bets are the same way round, the direction again being fixed by the
opponent on learning the value of r.

Suppose the frequency of B-events in the sequence of N trials is f.
The net profit per unit stake is the difference between the frequency and
the agreed CBQ, | f—r|. In the prescribed situation the gambler cannot
apply any knowledge he has about these events to ensure that he, rather
than his opponent, gets whatever net profit the sequence yields. He
can on the other hand try so to choose 7 as either to maximise his profit
(hoping to win) or to minimise his loss (fearing to lose). The former
policy will evidently never give him cause to choose a CBQ other than
1 or o. In any case, our man has to be supplied with enough money to
put up any stake his opponent may set; for such a man winning more
will matter much less than not losing what he has; and there is a non-
trivial policy he can apply to minimise his losses.

The gambler, we suppose, holds there to be a chance p of a B-event
on each occasion of the bet. If he is right then the strong law of large
numbers shows of p alone that there is an arbitrarily high probability
1 —e¢ that after some sufficiently large number of bets, N, the frequency
fwill differ from p by less than some arbitrarily small amount d. This

II MMR
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is on the present account to say that some partial belief of strength p,
and no other, is such that an arbitrarily strong partial belief 1 —¢ is
reasonable on the bet that |f—p| < 0.

The arbitrarily small constant ¢ plainly explicates the concept of
breaking even. The gambler breaks even if and only if the net profit
on the sequence is less than . Various considerations — monetary units,
the size of stake, personal utilities of winning more or less — may set
upper or lower bounds to J in a given situation. § can take any required
positive value. For a finite stake in a discrete currency, § can always be
made small enough to stop any net transfer of cash being compatible
with breaking even.

The problem is to avoid begging the question in accounting for
reasonableness in the single case CBQ. We want to say that the reason-
able single case CBQ, r, to adopt is the one, p, to which the strong law
of large numbers applies. But the law refers in turn to a CBQ, 1 —e¢,
being reasonable on the many-case bet. This reference must be accounted
for without further appeal to chance, if our explication of the single
case is not to be viciously circular.

I rely here on an asymptotic property of very high reasonable CBQs.
The property is roughly that the better a very good bet is, the more
circumstances there are in which the gambler may act as if he knew it
was won. In chapter 1 I argued that increasing partial belief must
merge into full belief. In particular (pp. 6, 15), as one’s partial belief in
a proposition increases, it must in the end amount to belief in the
proposition. So a reasonable degree of partial belief which tends to
1 implies eventually that the corresponding full belief is reasonable.

There need not be a fixed degree of partial belief at which this always
happens. The common view of knowledge as reasonable true belief,
indeed, entails that there cannot be. The reasonableness of any parti-
cular partial belief, however strong, cannot be identified with knowledge
that the bet will be won. Any such identification falls foul of 4 lottery
paradox. For let the reasonable partial belief be of degree 1 —¢, with
¢ arbitrarily small. Suppose a one-prize lottery with § equal tickets,
where § > 1/e. The chance of each ticket not winning is not less than
I —¢, yet we cannot claim, on pain of contradiction, to know of each,
and hence of every, ticket that it will not win.

One might argue that it is reasonable to believe of each ticket that
it will not win. It is just that one such reasonable belief will fail to be
true and so fail to be knowledge, and we do not know which. But we
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do not need these complications. All the lottery paradox shows in any
case is that in some circumstances a claim to knowledge is not adequately
supported by the reasonableness of any particular partial belief how-
ever strong. If the reasonable partial belief is raised in strength from
1—¢ to 1 —¢ (where € <€), the number of these circumstances is
reduced, by eliminating those lotteries with numbers § of tickets such
that 1/¢’ > § > 1/e. In the present case, any sceptical challenge what-
ever, expressed by a lottery of any number of tickets §, however great,
can be met. The strong law of large numbers entails the reasonableness,
for some number N of single bets, of a many-case partial belief strong
enough to make that lottery unparadoxical. Although it is true it is not
pertinent that against any knowledge claim based just on this partial
belief a further paradoxical lottery could be produced. It is enough that
in any given circumstances a strong enough partial belief can be war-
ranted to support a knowledge claim. It is immaterial to point to other
circumstances in which a still higher reasonable degree of partial belief
would be needed; and even if it were material, the stronger reasonable
belief can always be produced.

Nothing in the lottery paradox counts against the asymptotic claim
made for very strong reasonable partial beliefs. The strong law of
large numbers can be used to meet any sceptical challenge. On the
strength of it the gambler can properly be said to be able to know that
he will break even after some number of bets at a CBQ p. He cannot
know this for any other CBQ. Now conditions (i) and (iii) above of
the betting situation compel the gambler to bet and prevent him aiming
for a profit as opposed to avoiding a loss. So breaking even is the best
result the gambler can possibly hope to know of. This obviously makes
it uniquely reasonable to set his CBQ r equal to p. The reasonableness
is that of betting behaviour in a situation of a kind tailored to the
measurement of partial belief. No further appeal is made to the concept
of chance.

The objective chance p the gambler supposes to exist is thus the
measure of the partial belief he should have in a B-event accompanying
an A-event. Of course a gambler may not know what the value p is, or
he may know only that it lies in some interval. But his claim that an
objective chance exists, about which more or less may be known, still
has the sense propensity theory needs. Ignorance does not make other
CBQs as reasonable as p. At no other CBQ can the gambler know that
he will avoid losing in repeated compulsory bets the indefinitely large

I1-2
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stake his opponent can make him put up. Should these bets ever be
enforced, it would be unreasonable to remain in any avoidable ignor-
ance of the value p.

The sense thus given to the gambler’s claim, that an 4-event has
a chance p of being attended by a B-event, should be entirely acceptable
to a Humean. It is that the gambler can know that after some number of
repeated bets at CBQ p he will break even. His knowledge here is of
nothing but facts about occurrences of A4-events and B-events, since
these suffice to determine whether he does break even. No non-Humean
connections in nature are needed to establish the fact that this 4-event,
by virtue of being of kind 4 and of the truth of the statistical law,
is such that it is reasonable to prefer a partial belief of degree p to any
other on its being attended by a B-event. And that is, on the propensity
theory, just what it is to say that p is the chance — the objective, empiri-
cal, single case probability truly ascribable to the situation.

A couple of defensive remarks may be needed here. Suppose the
world lacks enough 4-events for the gambler to break even on. We
seem then to appeal to counterfactuals about what would happen were
there more 4-events than there (tenselessly) are. Do not these go
beyond Humean facts about actual 4-events? No more so, I think, than
when a Humean denies equivalence in meaning to a deterministic law
and the conjunction of its instances, while insisting that no other facts
about events in the world are needed for it to be true. It is debatable
whether a Humean can so distinguish lawlike from accidental universals.
But he has no special problem with statistical laws. If Humean deter-
ministic laws can support counterfactuals so can Humean statistical
laws. If they can’t, Humeanism is false anyway, and it will not matter
whether propensity theory is compatible with it.

The second remark defends the emphasis above on repetition in
justifying the reasonableness of a CBQ. I might ascribe a chance with
no interest at all in repetitions of 4-events. I might even, on some
principle, refuse any offers of repeated bets. One might object that it
can’t be what would happen in a sequence of bets that makes my CBQ
in such a single bet reasonable, if such a sequence can be explicitly
ruled out. Here one must recall that ascribing a chance is not, on the
propensity theory, the same as betting. CBQs are only one measure of
the partial belief I claim is warranted. And all I say is what CBQ I
would adopt if' T were made to bet in the curiously specified circum-
stances laid down by the theory. And in those circumstances I could
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be made to bet again and again on events of the same kind. In claiming
my CBQ on each of these events to be reasonable I merely claim the
events to be such that repeated bets at my CBQ wou/d leave me breaking
even in some long run. I no more have to be prepared actually to
repeat the bet than I have to make it in the first place.

One might still ask how any reasonable, i.e. rationally justified,
measure can be placed on the expectation that a B-event will attend an
A-event. There being no logical connection between the events, is it not
the essence of Humeanism that no measure of expectation can be ration-
ally justified?

Now, on the propensity theory, the truth of some law-statement,
deterministic or statistical, is necessary for the truth of a singular state-
ment ascribing a chance, 1 or less, to an event. The consequence of
Humean arguments is merely that we can have no rationally justified
measure of our degree of belief in the truth of these law-statements.
And without them we cannot derive singular statements of chance, in
the sense of reasonable partial beliefs, from non-probabilistic singular
statements alone.

All that may be granted. Hume may have shown that a probabilistic
account cannot be given of our uncertain knowledge of natural laws.
There is no inconsistency in accepting that and still appealing to our
knowledge of such laws, understood moreover in a Humean manner,
to derive empirical probabilities. Certain degrees of partial belief in
a B-event attending an 4-event are made reasonable by statistical
laws, just as total belief in the attending B-event would be made
reasonable by the truth of a deterministic law. None of this commits
us to any non-Humean view either of what the laws themselves assert
or of what makes it reasonable to believe them.

Let us now apply this account of what makes a CBQ reasonable to
Laplace’s biased coin. I described this (chapter 7, pp. 130-1) as a case
of an event apparently having two chances; we can now clear the matter
up. Two partial beliefs seem to be reasonable on the first toss of a biased
coin: the CBQ 1 displaying a propensity of the labelling set-up, and
some other CBQ displaying the unknown bias of the coin. Which is
really the more reasonable depends, on the above account, on what
counts as repeating the bet. If further biasings of labelled coins, or
labellings of biased coins, are what the gambler must break even on,
his degree of partial belief should be %; if further tosses of the same
biased coin, it should be something other than 4.
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There is no doubt in normal use that tossing the biased coin again
is what counts as repeating the bet. The chance that displays the bias
thus gives the more reasonable partial belief. Nobody who knew which
way the coin was biased on its first toss would adopt the partial belief
of degree %. That is because he knows the result of the labelling trial
and does not envisage any repetition of it. We do not normally relabel
or rebias coins by chance processes whose outcomes we bet on. But it
is important to realise that we could do so,and that 1 could be the more
reasonable degree of partial belief. Imagine a machine that mints biased
coins which it tosses once and then discards. Statistical tests on the
discarded coins convince us that the machine’s propensity is displayed
in equal chances of the likely and unlikely sides of each coin being
labelled ‘heads’. We are to bet on the outcome heads of a toss on this
machine. This is of course in each case the first toss of a biased coin the
direction of whose bias is unknown. In this situation the CBQ % is
plainly more reasonable than any other. It is the only CBQ at which
the gambler can know he will break even after enough repeated tosses
of the machine. The chance of heads in this case really is 4, and the
propensity displayed in each trial is that of the machine, not that of any
of the biased coins it produces.

What determines the more reasonable of the two partial beliefs is
thus the propensity of the chance set-up on which the trial is conducted.
Two trials satisfying the description ‘toss of coin a with bias ¢,” can
display different propensities. Hence they can have different chance
distributions over the results heads and tails. That no more makes
chance relational than do the cases of chapter 4 (pp. 74-6) in
which an unbiased coin is tossed by a biased machine. Most trials
falling under this description clearly display one or other propensity
and so have the one chance of heads or have the other. No one such
trial need be supposed to have both distributions, and none of the heads
resulting from them need be credited with two chances. Certainly
conventions help to settle which propensity a given trial displays, but
that does not make the matter any less settled or less objective. A man
who adopts a CBQ 1 on its first toss stands to lose no less money on
repeated tosses of the same biased coin because it is a convention which
makes that the appropriate repetition of his bet. And the same goes for
the man whoadoptsany other CBQ on the first trial of our eccentric mint.

No doubt some cases could be unsettled. It could be unclear what
counts as repeating the bet: another toss of the coin, or a first toss of
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another coin. It would then be unclear which propensity is displayed
and hence not clear which partial belief is the more reasonable. It would
then tempt and mislead equally to say either that there is no chance,
or that there is one chance of which we are ignorant, or that there are
two chances. Two degrees of partial belief are equal candidates for
rationality in that there are propensities they could display. Either
could be more reasonable than any third degree. There are just two
partial beliefs, that is, which are not certainly objectively unreasonable.
It is tempting to express this fact by saying that there are two chances.
On the other hand no one partial belief is picked out as uniquely
reasonable, and it is tempting to express this by saying that there is no
chance. Or one could say that there must be a right way of repeating
the bet even if no convention has so far settled it. In that case one of
the two degrees of partial belief is the single chance, although we do
not know which. The best thing is to describe the situation in terms of
the propensities involved and not to talk of chance at all.

There is no need to regard the two CBQs involved in Laplace’s
biased coin case as picked out of a larger class of relational probabilities.
We have seen in chapter 7 (pp. 146—50) that if we do so the partial
belief of degree 3 becomes a reasonable ““ prior” probability for Bayesian
progress towards the chance revealed in repeated tosses of the biased
coin. In particular its derivation from the propensity of the labelling
device exhibits its empirical basis better than does the fiducial argument.
We have equally seen no reason for propensity theory to commit
itself to Bayesian progressions (chapter 2, pp. 45—9; chapter 7). We
do not need to suppose objective Bayesian probabilities relative to
evidence of the results of o, 1, 2, 3, ... tosses of the biased coin.

It is contentious whether there are relative degrees of support
measured by probabilities. They could not support unconditional bet-
ting quotients, precisely because they would be relative to evidence.
Unconditional CBQs can therefore not provide a general measure of
degrees of support. They could conceivably be measured by conditional
betting quotients. But we have seen in chapter 2 (p. 49) that condi-
tional quotients neither measure partial belief nor can be constrained
by the Dutch book argument. It has not been shown either that there
are logical relations of support or that they have a probabilistic measure
(although the arguments mentioned on p. 28 may show that zf support
has a measure it is probabilistic).

Propensity theory need no more justify chances as privileged values
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of relational probabilities than as privileged values of relative frequen-
cies. The demand for justification in either case presupposes an account
of objective probability that propensity theory has no need to accept.
Propensity theory need not deny that there are relative frequencies
which are mathematical probabilities, and that these sometimes provide
measures of chance. It need similarly not deny that there may be rela-
tional probabilities. If there are they are clearly connected to chance in
away statable by some formulation of Hacking’s ““ frequency principle”
(see p. 67 above). But deriving a relational probability from it does not
make clearer how a chance can measure reasonable expectation. On the
contrary, making the probability relative to evidence simply raises
the question why just #4is amount of evidence should be appealed to.

The question, if raised, may be answered as follows. We wish to
know if a possible future event will occur. As we proceed from a state
of complete ignorance about it our rational expectation of the event
may change with the changing evidence. We suppose, roughly speak-
ing, that expectation based on more evidence is more rational than
expectation based on less. Is there any non-arbitrary stopping point
(short of conclusive evidence that will either entail the event occurring
or it not occurring)? If not, then assuming a probabilistic measure of
expectation, there are no objective probabilities in this field other than
1 or o. What the propensity theory asserts in these terms is that the
world can set a non-arbitrary limit to the relevant evidence we can get.
It splits the relevant evidence into two sorts: evidence about a propen-
sity of some persisting thing (the chance set-up) and evidence of the
occurrence of another event (the trial). The chance is the probability
relative to the evidence of the set-up’s propensity and that the trial
occurs. The latter is taken to be known independently, although we
have had occasion to notice cases where it is itself an outcome of
a chance trial. The former is a standing property of a thing. Knowledge
of it is generally independent of knowledge of particular events in the
thing’s biography. Since it is widely connected with other standing
properties and so detectable in diverse ways, a propensity is merely
confirmed by accumulating evidence beyond a certain point. Once the
evidence fixes the determinate values of the connected determinables
further evidence is irrelevant. In terms of relational probability, a pro-
pensity signifies that all but a small amount of accessible evidence about
the set-up is irrelevant — it leaves the relational probability (given al-
ways that the trial occurs) of the various outcomes unchanged.
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Once the trial occurs one can conceive further evidence becoming
available. As the tossed coin moves through the air evidence of its
progress could conceivably support even weightier expectations of the
outcome heads. We imagine ourselves proceeding through these ex-
pectations to the final state of knowing whether the coin lands heads.
This is the picture of chance in relational terms, and it must be stressed
that it is only a picture. There is no evidence that these further rational
expectations exist or have any numerical measure. Nor would they be
accessible before the toss, even if they existed. Inference from events
before the toss, to details of the coin’s trajectory affecting the rational
expectation of heads, would require deterministic relations between
them which ex Aypothesi do not hold (see pp. 151—3 above).

Propensities are characteristics of things warranting conditional
expectations of the future. They mark non-arbitrary positions between
complete ignorance of the future and complete knowledge of it. In this
respect propensities are like other dispositional properties. They too
give knowledge of the future only on the unasserted condition of events
occurring that occasion their displays. Its fragility tells us what will
happen to a glass only if it is dropped. Again, dispositional knowledge
of the future is subject to the unasserted condition that things continue to
possess their present dispositions. We know what will happen when a
fragile glass is dropped only if it stays fragile. Propensities differ from
other dispositions only in yielding, subject to these conditions, not know-
ledge of what will happen in the future but mere reasonable expectation.

Temporally persisting things play an important r6le in our ontology
by providing this sort of conditional knowledge of the future. If they
can give reasonable full belief on these terms, they can surely give
reasonable partial belief. If a thing can have dispositions at all, it can
surely have propensities. It is foolish to swallow a coin’s mass and
strain at its bias. I can hardly doubt that we have conditional knowledge
and reasonable expectations of future events; and what could con-
ceivably provide them but presently detectable properties of things
whose future biographies contain the events? So I credit things with
persisting dispositions in general, and in particular with the relatively
uninformative dispositions I call ‘propensities’.

Perhaps Humeans cannot accept real dispositions. If so, they must
reject propensities, though not for reasons peculiar to or enlightening
about chance. I have argued above that objective chance is compatible
with a Humean account of statistical law. I argue now for a Humean
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view of laws relating dispositions, to accommodate propensities as
a special case. In so doing I assume that laws can relate properties of
things as well as of events. Occasionally laws are restricted to events
by definition (e.g. Swinburne, 1968, p. 177) but that is a mistake. We
notoriously lack independent criteria for identity and diversity of
events. Our ontology of events is derivative on our ontology of things
(e.g. Prior, 1968, chapter 1). We have a usable ontology of identifiable
and distinguishable things with persisting but changeable properties
and relations. In terms of it events can be derivatively identified and
distinguished, whereas the converse is not true. It is consequently most
implausible to suppose that all deterministic laws are reducible to
universal statements of causal relations between events. Suppose it is
a law that all ravens are black. I can imagine this applied to a causal
explanation of my turning black as an effect of being turned into a raven.
But how about an existing raven? Must it staying black from moment
to moment really be construed as a sequence of events which the law
relates causally to members of the similar sequence generated by the
bird staying a raven from moment to moment?

It seems quite clear that such laws are not applied to events at all but
to persisting things. Pace Swinburne (1968, p. 180), they assert the
invariable co-presence in such things of two logically independent pro-
perties or relations. That at least I take to be a Humean view of such
laws. A non-Humean would no doubt take them also to assert some
non-logical connection of necessity between the two properties by
which their invariable co-presence is to be explained.

What sort of properties can laws of co-presence apply to? Presumably
those which can meaningfully be attributed to things from moment to
moment and in which things can change from moment to moment.
A thing’s having or lacking the property at one time entails nothing
about its having or lacking the property at other times. Most physical
properties are like this, e.g. colours. An object may be green now: if
we discover that it is blue tomorrow, or destroy it, that in no way im-
pugns our present knowledge of its colour.

In contrast we may set such supposed properties as that of being
mortal. I take it that to be mortal is just to die at some (unspecified)
time. Then a man who does die was a/ways mortal and a man who
doesn’t never was. It makes no sense to say e.g. of Adam that he lost
his immortality. It may be true that had Adam not eaten the apple he
would have been immortal (i.e. still alive now as always). It is not true
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that before he ate it he had the property of immortality and that when
he ate it an event occurred properly describable as his exchanging
this property for that of mortality. I propose to say that there is in fact
no such property as mortality, so understood. The predicate ‘is mortal’
is not correctly applied to a man by virtue of any instantaneously pos-
sessed, persisting and changeable property. It is applied simply by
virtue of a single event, namely of an irreversible change in some per-
sisting and instantaneously possessed properties of his body.

What now of dispositional predicates —do they denote properties
in this sense? If they were given a Rylean sense perhaps they would
not (Ryle, 1949, p. 119). Suppose dispositions differed from mortality
only in being conditional. To say a glass is fragile would not be to say
it will break unconditionally but to say it will break if dropped. Now
suppose I take a fragile glass, heat-treat it so it ceases to be fragile, then
drop it and (of course) it doesn’t break. If ‘is fragile’ just meant ‘will
break when dropped’ that would show the glass never was fragile, just
as with ‘is mortal’. In fact, of course, fragility is a property possessed
by a glass from moment to moment. ‘Is fragile’ means ‘would break if
dropped now’. That this present tense subjunctive conditional is true
of the glass plainly expresses a changeable property of the glass in the
sense we require. The truth value of such a conditional statement can
obviously change continually without the condition ever being realised.
A glass may change continually in fragility without ever being dropped.
And similarly of course for such other dispositional predicates as ‘is
soluble’ and ‘has a mass of 1 kilo’. These points have all been made
before, and it counts neither against nor for them that the logic of sub-
junctive conditionals is not fully understood (pace Geach, 1957, pp. 6-7;
and the patient who, when told his doctors could not understand how
he was still alive, respectfully died).

Laws of co-presence can connect dispositions, and many do so. Gas
laws connect the co-present volume, temperature and pressure of a gas
sample. All these instantaneously possessed and changeable quantities
are dispositions. Should anything in all this distress a Humean? Pro-
vided he will admit the existence of things with properties at all, I do
not see why it should. I have credited him already with letting laws
support counterfactuals, so he need hardly jib at singular dispositional
ascriptions doing so. He can still maintain that their cash value in the
world market of events is just the constant conjunction of (e.g.) what-
ever dropping-of-fragile-glass-events there happen to be with breaking-
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of-fragile-glass-events. But whether or not there are any such events,
the truth or falsity of the present tense attribution of dispositional
fragility constitutes a further fact about a glass. And a further Humean
law can assert that whenever such true attributions can be made
so can a true attribution of some other dispositional (e.g. chemical)
property.

How about the special case of propensities? Consider first the relation
between statistical laws and laws of co-presence connecting dispositions
in general. Statistical laws quantify over trials, “disposition laws” over
things. A statistical law could say that every toss of a certain kind L of
an unbiased coin had a chance % of resulting in heads. A disposition
law could say that every glass of a certain independent kind K is fragile.
The propensity theory shows these laws to be more alike than they
seem. On the one hand the disposition law also entails a law about
trials, namely that every standard dropping of a glass of kind K results
in it breaking. The singular disposition of an individual glass that
instantiates the law in turn supports a subjunctive conditional.

It is not indeed a peculiarity of statements which one takes as expressing laws of
nature that they entail subjunctive conditionals: for the same will be true of any
statement that contains a dispositional predicate. To say, for example, that this
rubber hand is elastic is to say not merely that it will resume its normal size when
stretched, but that it would do so if ever it were stretched. (Ayer, 1963, p. 229.)

No one indeed would accept such a generalisation who would deny
it of a sufficiently similar individual. A sufficiently similar individual
is one that has the same determinate values of every connected
determinable property. The principle of connectivity appealed to here
has been discussed and applied in earlier chapters. Here it ensures
that every singular disposition does instantiate a law. If any glass is
fragile, every glass of some (possibly unknown) independent kind K
is fragile.

In particular a singular propensity is “universalisable” over all
chance set-ups of some suitably similar kind. If a coin is unbiased, so
are all coins which are like it in every connected property; if an atom
has a half life 7, so have all atoms of the same nuclear structure. Hence
the entailed chance distributions of standard trials on one set-up are
also universalisable over standard trials on all sufficiently similar set-
ups. These universalised chance propositions are statistical laws as
usually stated (see pp. 151—4 above). A singular propensity thus im-
plies a statistical law, although what law will only be known if the
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connected properties of the set-up are known. If any coin a is unbiased,
heads has a chance 4 on every trial of a (possibly unknown) kind L,
namely every standard toss of any coin sufficiently like a.

Whenever chances display propensities, the kind of event covered
by the statistical law can be specified in terms of the kind of thing that
has the propensity. I have suggested (pp. 169—70) that classifying
events generally depends on classifying things. This may be why most
if not all chances display propensities. In such cases at any rate the
process of Humean generalisation over the events into the statistical
law may be split into two stages, just as it may with deterministic laws
connecting events. The first stage is a generalisation over all trials of
a given individual with the propensity. The second is a generalisation
in the form of a disposition law over all things of the kind that have
that propensity. Thus it is a statistical law that every standard toss of
every (suitably specified) coin has a chance 4 of landing heads. It
follows from this law that every standard toss of a coin @ that meets the
specification has a chance % of landing heads. The ability of the overall
statistical law to support subjunctive conditionals entails the same
ability in the proposition that coin a is unbiased, which is derived from
the law simply by instantiating the specification of the kind of coin.
One could derive the proposition that a given glass is fragile in exactly
the same way by instantiating the deterministic law that all standard
droppings of a certain kind of glass result in breakage.

We thus have a statement to the effect that the coin a, while it re-
mains of the specified kind, is such that it would be a fact about any
standard toss of it that the most reasonable degree of partial belief in it
landing heads would be 3. This present tense subjunctive conditional
statement may be true of @ at one time, while it is unbiased, and false of
it at others (after being bent, for example). We have, that is, a statement
about the coin of precisely the form of other subjunctive conditionals
we have already supposed (p. 171 above) Humeans able to admit as
ascribing real dispositional properties. Why then should they deny
that this statement does so? It ascribes to coin a the changeable, persis-
ting, dispositional property of being unbiased, which is an instance of
a propensity. The coin a is said to be now in such a state that if it were
tossed the chance of heads would be 3.

The property of the coin may of course enter into Humean laws of
co-presence with other properties. It should be evident indeed from
the above discussion, with its appeal to the principle of connectivity,
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that propensities must enter into lawlike relations. There must be some
kind of coin of which it is non-trivially true that all coins of that
kind are unbiased. So two things can no more differ in propensity than
they can differ in any other dispositional property without at the same
time differing also in some further explanatory respect. The question is
whether this assertion and the principle of connectivity which backs it
are acceptable to a Humean.

Connectivity is a regulative principle. Our scientific characterisation
of things would not be allowed to be adequate if connectivity were not
satisfied. It can certainly be violated in any fixed scientific vocabulary.
Nothing in nature compels an explanatory difference to be statable in
any terms science has so far used. But if it is not so statable, that is
taken to show the need to extend the vocabulary. It shows there are
properties of things not yet discovered. One could put all this by saying
that it is necessary for two coins that differ in bias to differ in some other
respect. But it does not follow, and a Humean will suppose it untrue,
that there is any other respect in which it is necessary that they differ.
Neither an acceptance of connectivity generally nor its application to
propensities in particular entails accepting non-Humean necessary con-
nections between any pairs of properties.

Humean scepticism finds its proper expression very simply in terms
of propensities. While a coin remains unbiased it is most reasonable to
adopt a partial belief of degree % in heads resulting from a standard toss
of it. But there need be no reasonable probabilistic measure of our ex-
pectation that this changeable disposition (of being unbiased) will
continue to be possessed in the future. Connectivity may require that
some other property changes if the bias does, but the Humean point
applies equally to the other property. We have noted already (pp. 168
9) that all dispositional knowledge of future events is conditional and
there is no uniquely rational degree of expectation that the conditions
of it will be met. Propensities contribute no more than any other disposi-
tions to solving the problem of induction; by the same token it provides
no argument against their existence. Yet their scientific ascription may
serve to explicate all the partial and conditional expectations of future
events that we feel to be justified.

The test of a philosophical theory of chance is how much sense it makes
of what usage shows everyone to suppose true of chance. I claim that
the propensity theory makes sense of more than its rivals. It makes
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sense of chances being objective, empirical and not relational, and ap-
plying to the single case. No other theory I know of does as much. But
it may be said, I am biased.

APOLOGY

A person of true refinement would have expressed much of that very differently,
but nothing will ever make up for the lack of a classical education.
Ernest Bramah, Kai Lung Unrolls His Mat
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