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Background: The consequences of poor nutrition are well known and of wide concern.

Governments and public health agencies utilise food and diet surveillance to make

decisions that lead to improvements in nutrition. Three important objectives of diet

surveillance include to 1) assess the nutritional status of particular population groups;

2) identify population groups at high risk of deterioration in nutrient consumption, and

3) evaluate the allocation of resources to alleviate nutritional deficiencies. Iron defi-

ciency is considered to be one of the most prevalent forms of malnutrition affecting

both men and women, and people of all ages and socio-economic status; however,

the magnitude of the problem has not been robustly quantified. National diet and nu-

trition surveys are important sources of information that is representative of the target

population. These surveys often utilise complex sample designs for efficient data col-

lection. Common designs include the use of sampling weightings, multistage sampling

and stratification. Dietary data can be collected through food diaries that participants

fill in for a period of 4-7 consecutive days. There are several challenges in the statistical

analysis of dietary intake data collected using complex survey designs, which have not

been fully addressed by current methods. Firstly, the shape of the distribution of intake

can be highly skewed due to the presence of outlier observations and a large proportion

of zero observations arising from the inability of the food diary to capture consumption

within the period of observation. Secondly, dietary data is subject to variability aris-

ing from day-to-day individual variation in food consumption and measurement error,

and this needs to be accounted for in the estimation procedure for correct inferences.

Thirdly, the complex sample design needs to be incorporated into the estimation pro-

cedure to allow extrapolation of results into the target population. This thesis aims to

develop novel statistical methods to address these challenges, motivated by the three

objectives of diet surveillance described above and applied to the analysis of iron in-

take data from the UK National Diet and Nutrition Survey Rolling Programme (NDNS

RP) and UK national prescription data of iron deficiency medication.

Methods: 1) To assess the nutritional status of particular population groups a two-

part model with generalised gamma distribution was developed for the intake of foods

that showed high frequencies of zero observations. The first component of the model



was specified to estimate the probability of consumption and the second to estimate

the mean amount consumed given a positive consumption. The first component used

mixed-effects logistic regression and the second a generalised gamma mixed-effects

regression model. The use of a generalised gamma distribution for modelling intake is

an important improvement over existing methods, as it includes many distributions with

different shapes and its domain takes non-negative values. The two-part model accom-

modated the sources of data variation of dietary intake with a random intercept in each

component, which could be correlated to allow a correlation between the probability of

consuming and the amount consumed. This also improves existing approaches that

assume a zero correlation. The utility of the proposed approach was demonstrated by

modelling the mean consumption of iron intake from selected episodically consumed

food groups using data from the NDNS RP in terms of sex, age and socio-economic

status.

2) To identify population groups at high risk of deterioration in nutrient consumption, a

linear quantile mixed-effects model was developed to model quantiles of the distribu-

tion of intake as a function of explanatory variables. The model utilises the asymmetric

Laplace distribution which can accommodate many different distributional shapes, and

likelihood-based estimation which is robust to model misspecification. This method

is an important improvement over existing methods used in nutritional research as it

explicitly models the quantiles in terms of explanatory variables using a novel quan-

tile regression model with random effects. The proposed approach was illustrated by

comparing the quantiles of iron intake with Lower Reference Nutrient Intakes (LRNI)

recommendations using NDNS RP.

This thesis extended the estimation procedures of both the two-part model with gen-

eralised gamma distribution and the linear quantile mixed-effects model to incorporate

the complex sample design in three steps: the likelihood function was multiplied by the

sample weightings; bootstrap methods were used for the estimation of the variance

of the parameters estimates to account for the correlation among observations taken

from the same population sampling unit. Finally, the variance estimation of the model

parameters was stratified by the survey strata. These procedures were implemented

in SAS and R.



3) To evaluate the allocation of resources to alleviate nutritional deficiencies, a quantile

linear mixed-effects model with the asymmetric Laplace distribution was used to anal-

yse the distribution of expenditure on iron deficiency medication across health boards

in the UK. Expenditure is likely to depend on the iron status of the region; therefore, for

a fair comparison among health boards, iron status was estimated using the method

developed in objective 2) and used in the specification of the median amount spent.

Each health board is formed by a set of general practices (GPs), therefore, a random

intercept was used to induce correlation between expenditure from two GPs from the

same health board. Finally, the approaches in objectives 1) and 2) were compared

with the traditional approach based on weighted linear regression modelling used in

the NDNS RP reports. All analyses were implemented using SAS and R.

Results: The two-part model with generalised gamma distribution fitted to amount of

iron consumed from selected episodically food groups using NDNS RP data, showed

that females tended to have greater odds of consuming iron from foods but consumed

smaller amounts. As age groups increased, consumption tended to increase relative

to the reference group though odds of consumption varied. Iron consumption also ap-

peared to be dependent on National Statistics Socio-Economic Classification (NSSEC)

group with lower social groups consuming less, in general. The quantiles of iron intake

estimated using the linear quantile mixed-effects model showed that more than 25% of

females aged 11-50y are below the LRNI, of whom the 11-18y girls is the most severely

affected group in the UK. Predictions of spending on iron medication in the UK based

on the linear quantile mixed-effects model showed areas of higher iron intake resulted

in lower spending on treating iron deficiency. In a geographical display of expenditure,

Northern Ireland featured the lowest amount spent. Comparing the results from the

methods proposed here showed that using the traditional approach based on weighted

regression analysis could result in spurious associations.

Discussion: This thesis developed novel approaches to the analysis of dietary com-

plex survey data to address three important objectives of diet surveillance, namely

the mean estimation of food intake by population groups, identification of groups at

high risk of nutrient deficiency and allocation of resources to alleviate nutrient defi-

ciencies. To the best of my knowledge this work presents the first application and



extension of the two-part model with generalised gamma distribution, and the linear

mixed-effects model to dietary complex survey data. The methods provided models

of good fit to dietary data, accounted for the sources of data variability and extended

the estimation procedures to incorporate the complex sample survey design. The use

of a generalised gamma distribution for modelling intake is an important improvement

over existing methods, as it includes many distributions with different shapes and its

domain takes non-negative values. The two-part model accommodated the sources

of data variation of dietary intake with a random intercept in each component, which

could be correlated to allow a correlation between the probability of consuming and

the amount consumed. This also improves existing approaches that assume a zero

correlation. The linear quantile mixed-effects model utilises the asymmetric Laplace

distribution which can also accommodate many different distributional shapes, and

likelihood-based estimation is robust to model misspecification. This method is an im-

portant improvement over existing methods used in nutritional research as it explicitly

models the quantiles in terms of explanatory variables using a novel quantile regres-

sion model with random effects. The computational implementation of these methods

is also provided to make them readily available in SAS and R. The application of these

models to UK national data confirmed the association of poorer diets and lower social

class, identified the group of 11-50y females as a group at high risk of iron deficiency,

and highlighted Northern Ireland as the region with the lowest expenditure on iron pre-

scriptions.



David Pell

December 2018
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Glossary

24 Hour Recall (24HR) A dietary assessment method that collects food and drink in-

take for the previous 24 hours.

British National Formulary (BNF) A reference for information and advice on medica-

tion prescribing and pharmacology in the UK.

Balanced Repeated Replication (BRR) A resampling method used for variance esti-

mation for complex survey designs. Requires 2 PSU per stratum.

Computer Assisted Personal Interview (CAPI) Method of recording supplementary

questions covering household composition, employment status and dietary de-

terminants.

Clinical Commissioning Groups (CCG) Groups responsible for commissioning health

services in England.

Cumulative distribution function (CDF) A function with a value is the probability that

a corresponding continuous random variable has a value less than or equal to the

argument of the function.

Diet Diaries (DD) A prospective method of dietary assessment requiring participants

to record all food and drink consumption in a diary for several consecutive days.

Doubly Labelled Water (DLW) A biomarker used to validate energy intake.

Dutch National Food Consumption Survey (DNFCS) The Dutch equivalent of the

NDNS.

Elsie Widdowson Laboratory (EWL) Medical Research Council funded research nu-

trition unit that superseded Human Nutrition Research.

Food Frequency Questionnaire (FFQ) A long-term method of dietary assessment

that requires participants to complete a questionnaire regarding food consump-

tion typically over the previous 6-12 months.
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Food Standards Agency (FSA) Regulatory body for UK food standards.

Government Office Region (GOR) Regions of the UK used by government and the

NDNS RP.

General Practitioner (GP) A medical doctor, usually based in the community and is

generally the first contact for patients. They are mainly responsible for the pre-

scription of medication for chronic conditions including anaemia.

Grouped Balanced Half Sample (GBHS) A method of combining PSUs within each

stratum into two groups allowing for BRR to be carried out on data that is not

sampled with 2 PSU per stratum.

Human Nutrition Research (HNR) Medical Research Council funded research nutri-

tion unit.

Iron Deficiency Anaemia (IDA) Anaemia due to deficiency of Iron, symptoms include

shortness of breath and lethargy, severe anaemia can cause death.

Index of Multiple Deprivation (IMD) An index of deprivation in the UK based on 7

criteria including health deprivation and disability.

Institute of Medicine (IoM) US agency produced method of estimating usual intake.

Iowa State University (ISU) US University that produced a method of estimating usual

intake.

Lower Reference Nutrient Intake (LRNI) Threshold value set by SACN used to char-

acterise the risk of nutrient deficiency in a population.

Lower Layer Super Output Area (LSOA) A small geographic area that contains ap-

proximately 1500 people. Index of Multiple Deprivation scores are assigned at

the LSOA level.
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National Centre for Social Research (NatCen) UK organisation that runs many na-

tional surveys and is responsible for NDNS data collection.

National Cancer Institute (NCI) US agency that produced methods for usual intake

estimation.

National Diet and Nutrition Survey Rolling Programme (NDNS RP) National survey

to assess food and drink intakes in the UK.

National Health and Nutrition Examination Survey (NHANES) National survey to as-

sess food and drink intakes in the US.

National Research Council (NRC) US nongovernmental agency responsible for a method
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Pseudo-likelihood ratio test (PLRT) Used to compare the goodness of fit of two mod-
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model).
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1 Modelling nutrient data from complex sample national

surveys

1.1 Introduction

Diet plays an important role in many health and disease related conditions including

cancer, diabetes and heart disease (Lopez et al., 2006). Governments throughout

the world have recognised the importance of diet and health and have commissioned

surveys to collect dietary intakes for their populations.

National surveys of dietary intake allow the evaluation of nutrient intakes of a pop-

ulation to inform health policies, such as the provision of healthy eating advice and

interventions to improve nutrition status. Dietary surveillance should be capable of

providing specific information relating to specific groups, for example the proportion of

adults consuming at least 5 portions of fruit and vegetable per day has been shown to

fluctuate over time from 27% to 31% (Roberts et al., 2018) and across income groups

from 24% in the lowest income group to 38% in the highest (Bates et al., 2014a).

The impact diet has on disease, notwithstanding acute allergy and poisoning, is caused

by long-term exposure thus a measure of usual intake is required rather than a single

instance of intake. Yet collecting accurate information on usual dietary intake that is

free from measurement error requires dealing with some sizeable challenges as it is

difficult to collect a representative sample of people who are willing to accurately report

their diet for long enough to reflect their usual intake (Bingham, 1987). It is therefore

important to reduce the burden upon survey participants when collecting dietary infor-

mation to facilitate the capture of as much dietary intake detail as possible but also to

develop statistical methods that make efficient use of the available data and minimise

the bias of dietary intake estimates.

The following challenges to estimating usual intake from a dietary assessment measure

have been identified in the literature (Tooze et al., 2006):

• Accounting for days without consumption of a particular food or nutrient during

the period of observation

1



• Allowing for consumption-day amount data that are generally positively skewed

and have extreme values in the upper tail of the intake distribution

• Distinguishing within-person variability, which consist of day-to-day variation in

intake and random reporting errors, from between-person variation

• Allowing for the correlation between the probability of consuming a food and the

consumption-day amount

• Relating covariate information (e.g., sex, age or socio-economic status) to usual

intake

A further challenge is accounting for the complex sampling design necessary to carry

out surveys over a large geographic area, within a single statistical analysis method

that meets the above requirements.

1.2 Usual intake

Due to the natural variability that occurs in diets it is important to collect more than

one day of intake to derive a measure of usual intake. Diets often vary because of

factors such as the day of the week and seasonality as foods come in and out of

season (Shahar et al., 2001; Hoare et al., 2004). This leads to skewed distributions

of intake as illustrated using data from the National Diet and Nutrition Survey Rolling

Programme Y1-4 (2008-2012), Figures 1, 2 and 3 show how alcohol and vegetable

intakes vary over the week and the extent to which strawberry intake differs across

the months of the year. In Figure 1 it can be seen that mean daily alcohol intake

in adults is approximately 7g on Mondays steadily increasing throughout the week to

approximately 18g at the end of the working week on Friday then increasing yet further

to around 24g on Saturdays (Figure 1). Figure 2 shows that mean vegetable intake

across all ages is higher on a Sunday at around 170g dropping throughout the week to

a low of around 160g on Saturdays likely influenced by the typical British Sunday lunch.

Similarly Figure 3 shows that the mean monthly intake of strawberries is lowest at the

start of the year then peaks in the summer months, reflective of the growing season of
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soft fruit, though this should be considered by surveys monitoring fruit intake as intakes

would differ depending on the month it was carried out.

An individual’s usual dietary intake has been defined as the individual’s long-run av-

erage dietary intake (Carriquiry, 2003). By determining usual dietary intakes for a

population it is possible to determine adherence to dietary recommendations and get

an indication of health status, toxicity risk and the effectiveness of public health policies

(Riley, 2010). This can be done for a sample of the population with a single record

collection, if it is representative of the population, seasons and days of the week (Biro

et al., 2002), although because of the variation in intakes the variance of the sample

will be inflated (Carriquiry, 2003; Mackerras and Rutishauser, 2005). In longitudinal

studies examining the impact of diet on disease it is common to measure food intake

and then to follow individuals over time to draw associations between what has been

consumed and the development of disease; for example: (Key et al., 1996) and (An-

nweiler et al., 2012). The assumption underlying usual intake states that diet remains

constant over an individual’s life however, this may not be the case. Willett et al. (1988)

found that diets did vary over 4 years in a group of 150 women, but the degree of vari-

ance depended upon the nutrient. They reported correlation coefficients between the

initial dietary assessment and follow up four years later, that ranged from 0.28 for iron

intake with supplements to 0.61 for total carbohydrate consumption.

1.3 Measurement error

The limitations to the measurement of usual intake arise because currently there is no

accurate method to collect this information without requiring the participant to know-

ingly provide the data. Once the participant is conscious that their food is being

recorded they may deviate from their usual diet either through deliberately not recording

a food that has been eaten (intentional under-reporting), by a deviation from usual in-

take - typically to one that contains more perceived healthy foods and fewer perceived

unhealthy foods (intentional alteration of diet) or they may forget to record the foods

consumed (unintentional under-reporting) (Macdiarmid and Blundell, 1998). It is possi-

ble to examine the extent to which this occurs through studies that observe the partici-
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Figure 1

Mean intake of alcohol (g) by day of the week for all 3603 participants aged 18+y from the

National Diet and Nutrition Survey Rolling Programme (NDNS RP) Years 1-4 (2008-2012).
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Figure 2

Mean intake of vegetables (g) by day of the week for all 6828 participants aged 1.5+y from the

National Diet and Nutrition Survey Rolling Programme (NDNS RP) Years 1-4 (2008-2012).
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Figure 3

Mean intake of strawberries (g) by month for all 6828 participants aged 1.5+y from the National

Diet and Nutrition Survey Rolling Programme (NDNS RP) Years 1-4 (2008-2012)
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pant’s meals but these are more expensive than surveys and do not represent a typical

free living situation. Alternatively, there are a small number of nutritional biomarkers

available for validation of intakes such as Doubly Labelled Water (DLW) which can be

used to objectively measure total energy expenditure. Based on the assumption that

energy expenditure equates to energy intake in weight stable individuals, DLW is an

unbiased measure of energy intake that requires subjects to drink a small quantity of

water labelled with a stable isotope, then by collecting excreted urine, energy balance

can be determined (Buchowski, 2014; Lennox et al., 2014). This, however, is pro-

hibitively expensive to be used for all subjects in large national surveys (Rennie et al.,

2007) and therefore typically, a subset of the survey is selected and given DLW. This

was the case in the National Diet and Nutrition Survey Rolling Programme (NDNS RP)

in 2008/09 and 2010/11 where approximately 10% of participants received DLW and as

a result it was found that energy (kcal) was under-reported by 27% on average across

age and sex groups (Lennox et al., 2014). These findings are similar to previous work

that has shown that study participants under-report energy intake by, on average, 30%;

with the degree of under-reporting much higher in teenage and adult females than in

males and children (Black and Cole, 2001; Rennie et al., 2007).

1.3.1 Measurement error model

The discrepancy that arises between the diets people report and their true intake can

be described using the classical measurement error model (Keogh and White, 2014).

In the following model XXX i indicates a vector relating to true intake for individual i and

the reported intake for individual i is a vector denoted by WWW i1 on day 1, WWW i2 on day 2

and so on. It is assumed that the error on each day of reported intake will be identically

distributed. Using a logistic regression model with a binary outcome Yi, the association

between exposure and outcome is given by:

log{ Pr(Yi = 1∣XXX i,ZZZi)
1 −Pr(Yi = 1∣XXX i,ZZZi)

} = α +βββ′XXX i + γγγ′ZZZi (1)

where ZZZi is a vector containing error free covariates and β and γ are vectors of regres-

sion parameters. In dietary assessment it is not uncommon for the dietary intake from

a single diary, measured with error, represented by WWW i1 to replace XXX i the unbiased
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measure of intake:

log{ Pr(Yi = 1∣WWW i1,ZZZi)
1 −Pr(Yi = 1∣WWW i1,ZZZi)

} = α +βββ∗′WWW i1 + γγγ′ZZZi (2)

This will mean that the estimator for βββ∗ will also be biased. The classical measurement

error model compartmentalises WWW ij into :

WWW ij =XXX i + εij (3)

that is the recorded intake for individual i on day j is the true intake plus the er-

ror term εij which has mean 0 and constant variance σ2
ε . The error is random and

can be placed into one of two categories: within-person or between-person variance.

Within-person variance arises due to the inconsistency of an individual’s diet over time

whereas between-person variance reflects the degree to which an individual varies

from the sample mean and large between-person variances would reflect a heteroge-

neous sample. It has been shown that the error can depend upon true exposure and

further that εij can be divided into a systematic part if extra information relating to true

intake is known, therefore:

WWW ij = ψ + θXXX i + εij (4)

where ψ indicates a constant shift which may occur, for example, from a food that has

an incorrect nutrient value attached to it or from an inaccurate measurement tool used

to record the amount of food consumed. For example, scales that are not calibrated

or a participant that records a tablespoon as a dessertspoon. θ ≠ 1 is an error that

is dependent upon the true intake and as such impacts upon the slope, for example,

a participant who inaccurately reports smaller portion sizes of a food perceived to be

unhealthy but accurately reports portion sizes for foods that are perceived to be healthy.

If either of these conditions occur then simply increasing the number of records will not

remove the error. Commonly, the reported energy intake amount is lower than energy

expenditure determined by DLW suggesting that the participant has not recorded all

of the energy consumed during the recording period. However matching values for

energy intake and expenditure does not indicate an unbiased energy value, as it may

be the case that the individual has deviated from their usual intake by consuming less

energy but that they truthfully reported everything that was consumed, i.e. unintentional

under-reporting.
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1.4 Measuring dietary intake from multiple records

To characterise the diet of the UK, thresholds have been determined by the Scien-

tific Advisory Committee on Nutrition (SACN) (Scientific Advisory Committee on Nutri-

tion (SACN), 1991) that are sufficient to meet the nutrient intake requirements. These

thresholds provide values that are sufficient for the majority (97.5%)of the population

(Reference Nutrient Intake (RNI)) and a lower level at which the risk of deficiency is

increased (Lower Reference Nutrient Intake (LRNI)), thought to be sufficient for 2.5%

of the population. To classify an individual as being below the LRNI for a nutrient, a reli-

able measure of their usual intake is required; however, measuring usual intake can be

problematic as the tools used to collect intake are subject to substantial within-person

variation. This can be due to changes in the diet which can vary considerably from

day to day with some foods and nutrients consumed almost every day whilst others

consumed less often, perhaps once or twice per week or less. Surveys of dietary in-

take should aim to capture a minimum of two non-consecutive days of intake as this

provides an indication of the extent to which the day-to-day variations in intake occur.

The number of days required to capture usual intake depends on the food or nutrient

but is thought to vary greatly (Nelson et al., 1989). For example, the number of collec-

tion days required to adequately capture energy in female children is 10 days whereas

16 days are necessary to record usual iron intake (Nelson et al., 1989) (see Table 1).

However, because dietary survey response rates have been shown to be linked to par-

ticipant burden, recruiting a representative sample of participants becomes difficult as

the number of days of dietary record increases.

1.5 Dietary assessment tools

The methods used to capture diet are referred to as dietary assessment methods and

may be categorised into two groups; either short-term methods such as the 24 Hour

Recall (24HR) or Diet Diaries (DD) or longer-term methods e.g. Food Frequency Ques-

tionnaire (FFQ). These can be further classified into prospective methods that collect

dietary intake at the time of consumption, for example, DD or retrospective either in

the short-term using 24HR or longer term, typically 6 months to one year with an FFQ.
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Table 1

Number of days required to estimate true intake from diary records

All Males Females

1-4y 5-17y 18y+ 5-17y 18y+

Nutrient

Energy 7 9 4 10 6

Protein 5 6 6 15 8

Fat 7 8 6 12 7

Carbohydrate 6 10 4 9 6

Iron 6 10 10 16 9

Carotene 20 40 18 72 38

Vitamin C 3 9 12 12 7

Vitamin E 10 13 8 16 16

Calcium 4 4 5 12 8

The number of days of intake to be collected for reported intake to meet true intake (r ≥ 0.9) for selected

nutrients. Intakes for infants and young children are often reported together due to low variation between

the sexes. Adapted from Nelson et al. (1989)

Retrospective methods rely on the participant’s ability to remember their consump-

tion, usually through a short interview, making them less burdensome than the diary

method. In contrast, the DD allows participants to record all the food and drink they

consume over the recording period including as much detail as required and because

of this they are a more precise method of dietary assessment and may be preferred

where multiple days of intake are required. By taking repeated measures to account

for the day-to-day variation, the daily records are correlated within individuals, which

needs to be considered in any analysis to obtain valid estimates of intake.

1.5.1 24-Hour recall

Used in many national dietary surveys in Europe (Biro et al., 2002) and the US (Con-

way et al., 2003), the 24HR collects information from participants about food and drink

consumed in the previous 24 hour period. It is typically carried out as an interview by

a trained nutritionist or dietitian who methodically goes through a series of questions

refining the record after each round (or pass) of questions, known as the multi pass
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method (Moshfegh et al., 2008). Participants are recruited into the dietary study then

contacted by the interviewer, ideally, at a time unknown to the participant (Conway

et al., 2003) to reduce the possibility of the participant modifying their diet beforehand.

The interview needs coding into a digital format so it can be linked to nutritional in-

formation though online and mobile methods have been developed reducing the time

processing time (Subar et al., 2016).

1.5.2 Diet diaries

Diet diaries require the participant to record all food and drink at the time of consump-

tion, rather than relying on memory. The participant is provided with a diary that typi-

cally contains questions regarding eating habits and contextual questions to prompt an

accurate record (Bingham, 1987). Diaries used in the NDNS RP have sections prompt-

ing for the time of consumption along with socio-contextual questions. The NDNS RP

diaries require a trained interviewer to explain to the participant what information is

needed for adequate completion of the diary and then to check that the diary has been

filled in correctly and answer any questions regarding completion that may have arisen

during the recording process (Nelson et al., 1989). Diet diaries have a high partici-

pant burden and as such are typically used to collect intake data for a few days only,

this makes diet diaries unsuitable for collecting long term average intakes. The NDNS

RP diet diary collects four consecutive days of dietary intake with estimated portion

sizes to reduce participant burden, as opposed to the previous NDNS surveys that col-

lected seven days of intake with weighed portion sizes. The majority of studies using

NDNS RP data take the dietary assessment values to represent true intake and do

not consider measurement error in the analysis and results (Adams and White, 2015;

McGeoghegan et al., 2015; Murakami and Livingstone, 2016; Syrad et al., 2016; Zi-

auddeen et al., 2017; Hobbs et al., 2018), highlighting the importance of developing

accessible methods capable of dealing with measurement error in diet diaries.
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1.5.3 Food frequency questionnaire (FFQ)

An FFQ requires participants to record the frequency with which they consumed foods

on average in the past, usually 6 months to one year. Participants select one cate-

gory that best describes their frequency of consumption, typically ranging from more

than once per day to not in the previous 12 months. The list of foods can encompass

the whole diet or, where the FFQ excels, a select list of foods that are rich in a par-

ticular nutrient of interest. For example calcium is present in significant amounts in a

limited number of foods and so an FFQ aimed at collecting calcium intake would con-

tain markedly fewer items than an FFQ examining the whole diet (Taylor and Goulding,

1998). Conversely, attempting to get a complete measure of dietary intake would need

to cover all possible foods, which is likely to cause participants to lose interest and

result in less accurate intakes (Cade et al., 2004). As usual intake covers the long

term average of an individual an FFQ would seem an appropriate tool to use, however,

the main limitation with FFQs is that they collect nutrient intake data which are weakly

correlated with objective measures of intake that include energy intake using DLW and

protein intake which are both determined from urine excretion (Schatzkin et al., 2003).

These are findings from the Observing Protein and Energy Nutrition (OPEN) study that

compared repeated FFQs and 24HRs with intake biomarkers (Subar et al., 2003).

1.5.4 Other methods

There are other methods of recording diet, used to lesser degrees, which include the

duplicate diet; where the participant collects two portions of each food and drink item

they intend to consume - the first is consumed and the second is given to the investi-

gator to be analysed for nutrient composition. Though the cost of analysis make this

method unsuitable for national surveys it does provide the most accurate food com-

position data reflecting, as close as possible, the participant’s intake (Abdulla et al.,

1981). There are recently developed methods that use advances in technology in-

cluding cameras and mobile phones to unobtrusively observe intake such as: FIRSST

(Rockett et al., 2003), TADA (Mariappan et al., 2009), FIVR (Weiss et al., 2010), DDRS

(Shang et al., 2011) and the eButton (Chen et al., 2013). These methods may prove
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better in time at collecting usual dietary intakes and solving some of the above chal-

lenges, but as the UK national dietary survey, the NDNS RP, currently uses diet diaries,

developing statistical tools which are able to provide better estimates of usual intakes

from data already collected is required.

1.5.5 Collection period

When conducting dietary surveys, there remains a trade off between twin goals of col-

lecting reliable, precise dietary intakes and recruiting sufficient numbers of people to

make the sample representative of the population. The number of people willing to

take part in a study falls as the burden imposed by recording a greater number of days

of intake increases (Bingham, 1987). It is important to determine the number of days

required to obtain reliable measures of the dietary intake. Nelson et al. (1989) exam-

ined the number of days required to produce correlation coefficients from 0.75 to 0.95

between observed intake and true intake using diet diaries. They examined data from

6 studies and found that the number of days required for r = 0.95 depended upon age

and sex but also the nutrient being examined (see Table 1). Examining the number

of 24HRs necessary to provide an accurate indication of usual intake in overweight

and obese individuals, Jackson et al. (2008) proposed that eight days was sufficient

to produce a correlation coefficient of 0.9 between measured intake and true intake

for individual macronutrients, based on 50 individuals who each completed ten 24HRs.

Furthermore the authors considered the error that arose between intakes on weekends

versus weekdays, though because the participants were reluctant to be interviewed at

the weekend, Fridays were omitted from weekdays and weekends were represented

by Sundays alone. Similarly Ma et al. (2009), found that one 24HR provided an under-

estimation of intake and that three recalls were needed to accurately estimate energy

intake. They further reported that increasing the number of recalls did improve the ac-

curacy of energy intakes. It is also worth noting that DLW is a suitable validation tool

for energy, a habitually consumed food component, only. The prevailing view in the US

in dietary assessment is that a minimum of two 24 hour recalls should be carried out

on non-consecutive days and ideally in conjunction with a FFQ to minimize the within-

individual variation and to indicate consumption frequency over a longer period (Dwyer
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et al., 2003). Conversely in the UK, diet diaries are preferred with many major surveys,

(Price et al., 1995; Bingham, 1997; Bingham et al., 1997; Stallone et al., 1997; Public

Health England, 2014), opting for between four to seven diary days.

1.6 Semi-continuous data

The consumption of foods and nutrients can be categorised as being either habitually

or episodically consumed. Habitual consumption can be defined as foods or nutrients

being consumed by the majority of people on the majority of days and episodical con-

sumption would indicate the converse intake pattern, intakes on a minority of days by

a minority of people. As nutrients are generally distributed throughout foods, nutrients

are usually consumed habitually whereas foods are usually consumed episodically as

individuals tend to vary their diet from one day to the next. Episodically consumed

foods have a semi-continuous distribution that has a large number of observations at

zero to indicate non-consumption and the remainder following a continuous distribution

(Olsen and Schafer, 2001). Figures 4,5 and 6 show energy, omega-3 and alcohol in-

takes as an example of frequency distributions, with all participants consuming energy

on all days, some participants consuming omega-3 on some days, and few participants

consuming alcohol on a few days.

The classification into habitually consumed foods is not clear-cut and may been done

according to background consumption knowledge with one study classifying total veg-

etable consumption as an episodically consumed food group although only 3% of par-

ticipants did not consume it (Carroll, 2014). Foods and nutrients may be episodically

consumed for one of two possible reasons: either the participant does not consume

the food and is therefore a never-consumer with zero probability of consumption or,

the participant does consume the food and does have a probability of consumption

greater than zero, however too few days of intake have been collected to capture their

consumption. With extra information, such as an FFQ, participants can be correctly as-

signed to the never- or non-consumer category and modelled appropriately (Haubrock

et al., 2011).
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Figure 4

Distribution of intake for energy (kcal) for all 6828 participants aged 1.5+y from the National

Diet and Nutrition Survey Rolling Programme (NDNS RP) Years 1-4 (2008-2012).
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Figure 5

Distribution of intake for omega-3 fatty acid (g) for all 6828 participants aged 1.5+y from the

National Diet and Nutrition Survey Rolling Programme (NDNS RP) Years 1-4 (2008-2012).
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Figure 6

Distribution of intakes for alcohol (g) for all 3603 participants aged 18+y from the National Diet

and Nutrition Survey Rolling Programme (NDNS RP) Years 1-4 (2008-2012).
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1.7 Survey designs

1.7.1 Simple random sampling

When attempting to examine the diets of a population, the ideal scenario would be to

take the entire population, survey them and then examine the results. This is usually

impractical,however, and so a sample of participants are chosen. It is important that

the selected sample is still representative of the population, otherwise any inference

may not be applicable back to the population, and so to ensure that the sample reflects

the population individuals are selected at random to mitigate any bias that may occur in

selecting certain groups. For example, to determine the average height of a population

it is important to sample equal numbers of males and females as a greater number of

males would suggest a taller than expected population, as males are, on average, taller

than females. This is referred to as simple random sampling (SRS) and is illustrated in

Figure 7, where the members of the population (left) are selected at random (indicated

in green) to become part of the sample (right) (Dodd, 2011).

Carrying out simple random sampling in national surveys taking place over a large ge-

ographic area can become expensive due to the travel and time costs. A hypothetical

example of the distances travelled when sampling in the UK are shown in Figure 8,

where the grey dots indicate a random selection of participants dispersed throughout

the UK. Visiting these participants would require travelling large distances and if re-

peated visits over a number of days are required, the time and cost of travelling by the

interviewer would become prohibitive. Due to these reasons a complex sample design

is often preferred. A further draw back to simple random sampling is due to the pre-

cision of estimates for population subgroups as these may be reduced if there are not

enough subgroup members sampled to be representative.
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Figure 7

Simple random sampling representation adapted from Dodd (2011)
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Figure 8

Illustration of simple random sampling of the UK

1.7.2 Stratified simple random sampling

More efficient approaches to survey sampling include first dividing the population into

groups, or strata, and then performing simple random sampling within each strata level.
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This is illustrated in Figure 9, here the population is divided into four strata and selected

individuals (coloured green, blue, orange and yellow to indicate different strata) become

part of the sample.

The choice of strata is usually based on population demographic characteristics or fac-

tors thought to be related to the measurement of interest e.g. dietary intake. Examples

of stratification factors include age, income and, in the case of UK national surveys:

English regions and the devolved countries; Northern Ireland, Scotland and Wales.

The selection of individuals with similar characteristics allows the comparison of like

with like within each stratum which leads to more precise estimates of the population

parameters.

1.7.3 Stratified balanced simple random sampling

Sampling with stratification has the advantage that there is a greater probability of in-

cluding individuals in minority demographic groups in the sample, however this can end

up with strata sizes that are potentially too small to calculate the variance of estimates

where a single individual has been selected. An alternative approach is to ensure

that each strata has the same sample size, this is known as stratified balanced simple

random sampling (SBSRS). This approach is preferred when having similar levels of

precision between subgroups is more important than having a sample representative

of the population. SBSRS is illustrated in Figure 10 where five members of each strata

are sampled per population strata level.

1.7.4 Stratified clustered simple random sampling

Whilst stratification is effective at ensuring minority groups within the population are

included in the sample, it does not address the logistical issues of carrying out surveys

over large areas, this challenge can be met through clustering. This involves sampling

clusters of individuals within a small geographic area leading to a much reduced jour-

ney time for the interviewer. In practice this often means that the interviewer will have

a list of houses that are all in the same street and be able to walk from door to door.
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Figure 9

Stratified simple random sampling representation adapted from Dodd (2011)
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Figure 10

Stratified balanced simple random sampling representation adapted from Dodd (2011)
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Clustering can have an impact upon the precision of the estimates as participants sam-

pled in the same area are likely to be exposed to the same dietary determinants than

participants from other areas. These may include access to fruit and vegetables, cost

of foods and transport provision in accessing shops. An example of stratified clustered

design is illustrated in Figure 11, where strata are created as in Figure 9 then within

these strata clusters of individuals are selected to be in the sample.

1.7.5 Multistage sampling

The selection of clusters can be extended to further levels, known as multistage sam-

pling, such as is used in the National Health and Nutrition Examination Survey (NHANES)

(Figure 12). The first stage selects Primary Sampling Units (PSU) which is generally

at the county level, then the next level is to select segments within the Primary Sam-

pling Unit (PSU) that are approximately the size of city blocks. The third stage selects

households within the city block and then finally individuals are selected from within the

household.
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Figure 11

Stratified clustered simple random sampling representation adapted from Dodd (2011)
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Figure 12

Illustration of multistage sampling using the National Health and Nutrition Examination Survey

(NHANES) adapted from CDC and National Center for Health Statistics (2013)

1.7.6 Postal surveys

A different approach to overcome the logistic challenges of collecting participant infor-

mation over a large geographic area is to post the questionnaire to respondents. A

postal survey has the advantage that it does not require an interviewer to visit partic-

ipants to recruit them into the survey, and, whereas the participants may be not be at

home when the interviewer calls, a posted survey will be seen when they return home.

Postal surveys also have the advantage that participants feel less pressured to respond

and so can complete the survey at a suitable time. The downside is that individuals

are more likely to take part in the survey if asked in person and consequently response

rates for postal surveys can be low. Postal surveys can be useful when recipients have

an interest in the topic, and when the questionnaire is well designed high response

rates have been observed (Kazzazi et al., 2018).
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As mentioned above the variance of estimates are affected by clustering and stratifica-

tion and as a result methods of analysis based on a SRS assumption may no longer be

valid as the groups containing participants are no longer randomly selected, therefore

statistical methods that can account for the complex sampling are required.

27



1.8 Statistical modelling of usual intake

The assessment of dietary intake in a country is typically undertaken through national

dietary surveys. However, due to the daily variation seen in food intake, dietary data

are prone to measurement error and therefore repeated measures are collected. The

two sources of variability arising from between- and within-individual fluctuations need

to be considered in the method of statistical analysis. Moreover, estimating the in-

take of episodically consumed foods and nutrients leads to modelling challenges. This

is caused by dietary data containing records where the food or nutrient of interest is

not consumed. When modelling all food intake there will be a number of zero obser-

vations together with a positive continuous distribution that is typically skewed to the

right where it was consumed. In this situation, standard methods of analysis based on

the normality assumption are not adequate, because a logarithmic transformation will

not be sufficient to obtain a symmetric distribution. Similarly, restricting the analysis

to non-zero observations would be suboptimal as knowledge of whether consump-

tion took place would be ignored. Distributions of this type are referred to as semi-

continuous distributions and can be analysed using a two-part model (Cragg, 1971;

Manning, 1981; Duan et al., 1983) which deals with semi-continuous data in two parts.

The first part indicates whether the food has been consumed P(Y > 0) and the sec-

ond part models the amount eaten, given that it has been consumed Y ∣Y > 0. This

allows instances of zero intake to be considered as genuine zeros instead of consid-

ering them as values below detection such as in the Tobit (Tobin, 1958) and Heckman

selection models (Heckman, 1976, 1977). A model that combines both a two-part and

a tobit approach has been suggested (Moulton and Halsey, 1995), which would be ap-

plicable where data contain true zeros in addition to values that are below the limit of

detection. Here the interest is in continuous variables though for count data alternate

methods have been proposed e.g. zero-inflated Negative Binomial and Poisson mod-

els. Similar to the two-part models, the zero-inflated models partition the population

into consumers and non-consumers using a two component mixture that contains a

degenerate distribution centred at 0 for non consumers and a distribution such as a

Poisson or Negative Binomial is used for the count of consumption. The proportion of

zeros from the non consumers is the mixing probability of the two component mixture
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distribution (Tang et al., 2015). The advantage of the zero-inflated Negative Binomial

distribution is that is contains a parameter to model large variances whereas the zero

inflated Poisson regression model does not and can therefore lead to biased estimates

(Tang et al., 2015).

1.9 One-part model

The one-part model forms the basis of the measurement error model in its simplest

case. It models the intake yij of foods or nutrients that are regularly consumed by most

people on most days, examples include energy, iron and water. The one part model is

specified as follows:

yij =XXX ′
ijβ + ui + εij (5)

where XXX ′
ij is a 1× q vector of covariates for individual i; i = 1, ..., n collected at observa-

tion j; j = 1, ..., ni, βββ is a q×1 vector of regression coefficients that includes an intercept

and regression coefficients of q − 1 (q = 1, ..., n) covariates, ui is a random intercept to

account for the correlation between repeated observations of intake and εij is an error

term. This model has the following assumptions:

εij ∼ N(0, σ)

ui ∼ N(0, σu)

εij á ui

that is the error terms εij and ui are independent and are normally distributed with

variances σ and σu respectively.

1.10 Two-part model

The two-part model (Olsen and Schafer, 2001; Tooze et al., 2002) is suitable for the

analysis of intake of episodically consumed foods or nutrients. It accounts for the large

number of zeros observed in the data by introducing a logistic regression model to

determine the probability of consumption then a linear regression part which models
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the amount consumed. Let Yij denote a semi-continuous response for subjects i =

1, ..., n at day j = 1, ..., ni. This response can be represented by two variables: an

indicator of consumption

Zij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if Yij > 0

0, if Yij = 0

and the amount consumed Yij, given that it is greater than 0, which may be transformed,

eg log(Yij), to make it approximately normally distributed. For the binary part of the

model we assume that ZZZij follows a logistic regression model with a random intercept

to account for the correlation between repeated observations

log
⎛
⎝

πij
1 − πij

⎞
⎠
=XXX ′

ijβββ + ui, (6)

where πij = Pr(Zij = 1∣ui), XXX ′
ij is a 1 × q vector of covariates, βββ is a q × 1 vector of

regression coefficients and ui is a random effect. The contribution of participant i to

the log likelihood from the logistic regression part given the random intercept ui is

`Zi
=

ni

∑
j=1
Zij log(πij) + (1 −Zij) log(1 − πij) (7)

The amount consumed given that this was greater than 0, follows a linear mixed-effects

model:

Yij ∣(vi, Zij = 1) =XXX∗′
ijγγγ + vi + ψij

whereXXX∗′
ij is a 1×p vector of explanatory variables, γγγ is a p×1 vector of regression coef-

ficients, and vi is a random intercept. The error term εij is assumed to be distributed as

N(0, σ2
ε ). The contribution of participant i to the log likelihood from the linear regression

part is:

`Yi = −n∗i log(σε) −
n∗i

∑
j=1

1

2σ2
ε

(yij − x∗
′

ijγγγ + vi)2 (8)

where n∗i is the number of positive intakes for individual i. Importantly the two random

intercepts above are assumed to be jointly normal and possibly correlated:

⎡⎢⎢⎢⎢⎢⎣

ui

vi

⎤⎥⎥⎥⎥⎥⎦
∼ N

⎛
⎝

0,ΣΣΣ =
⎡⎢⎢⎢⎢⎢⎣

σ2
u, σuv

σuv, σ2
v

⎤⎥⎥⎥⎥⎥⎦

⎞
⎠

The likelihood function for the model defined by (6) and (7) can be expressed as:

L∝
N

∏
i=1
∫ ∫ exp{`Zi

} exp{`Yi}f(ui, vi; Σ)duidvi (9)
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where `Zi
and `Yi are the logistic regression and linear regression log likelihood contri-

butions and f(ui, vi; Σ) denotes the joint normal distribution for the random effects. The

parameters of interest are the regression coefficients βββ and γγγ. It is natural to assume

that the amount consumed is related to the probability of consuming. The parameter

σu,v correlates the two parts of the model. Alternatively if σu,v = 0 the two models can

be estimated separately. This would imply that consuming or not consuming the food in

one day does not influence the amount consumed. If this is not a plausible assumption,

failure to take into account the correlation may lead to biased estimates of the param-

eters (Su et al., 2009). The choice of covariates for the logistic and the normal parts

may coincide, although the linear part is based on those cases where the consumption

is greater than zero.

1.11 Numerical integration

Marginal maximum likelihood estimation is commonly used to estimate mixed-effects

models including those presented in this thesis. However maximum likelihood estima-

tion of random effects is often intractable and therefore numerical integration is carried

out. Numerical integration is used to estimate the log likelihood then numerical deriva-

tives are used to maximise it. Approaches include Laplace approximation and ordinary

and adaptive quadrature methods such as Gaussian quadrature. Laplace approxima-

tion (also referred to as Laplace’s method) has been used to estimate integrals in the

mixed-effects model setting, where it estimates the mode of the integrand, with respect

to the random effects (Rizopoulos et al., 2009). The second approach, quadrature

methods, approximates the entire distribution of the integral using a weighted sum of

the predefined abscissas for the random effect. The level of precision can be related to

the number of quadrature points chosen, though the increasing the number of quadra-

ture points will lengthen the duration of the approximation Liu et al. (2010). The choice

of weights and abscissas is dependent upon the shape of the integral being evaluated

with standard Gauss-Hermite weights and abscissas (Golub and Welsch, 1969) used

for estimation under a normality assumption and Gauss-Laguerre weights and abscis-
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sas preferred when the random effects are assumed to have an asymmetric Laplace

distribution (Geraci and Bottai, 2014).

1.12 Comparing methods of usual intake estimation

There have been a number of different methods developed for estimating usual intake

(Food and Nutrition Board et al., 1986; Slob, 1993; Wallace et al., 1994; Buck et al.,

1995; Nusser et al., 1996a; Hoffmann et al., 2002; Slob, 2006; Tooze et al., 2006;

Waijers et al., 2006), differing in statistical models, assumptions and data transforma-

tions used and there have been approaches to working with data in its original scale

(Nusser et al., 1990). However none of the published methods satisfactorily meet all of

the challenges required in modelling the NDNS RP data. The first method to attempt

to estimate usual intake distributions was detailed in a report by the National Research

Council (NRC) in the US (Food and Nutrition Board et al., 1986). This method was

then modified by the US Institute of Medicine (IoM) (Subcommittee on Interpretation

and Uses of Dietary Reference Intakes and the Standing Committee on the Scientific

Evaluation of Dietary Reference Intakes, 2003) by including a power or log transfor-

mation to transform the nutrient data to normality. The NRC and IoM methods have a

number of limitations that render them unsuitable for application with the NDNS RP, as

their capability at incorporating complex survey design is unclear: they do not allow for

the inclusion of covariates and can only estimate habitual consumption. Attempting to

address these limitations a number of methods have been suggested as summarised

in Table 3, of these, three methods will be explored in further detail below, but firstly

the traditional method currently employed in the NDNS RP and its limitations will be

discussed.

1.12.1 Traditional approach

The traditional method of estimating usual intake is known as the within-person mean

method and this involves taking the average intake for an individual then averaging

the intakes of all individuals within the group. Estimating usual intake for foods that

are consumed episodically can be prohibitive both in terms of expense and participant
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burden, particularly for a national survey of hundreds or thousands of individuals, as the

number of days of measured intake required increases. Therefore the intake reported

from a small number of days contains greater within-person variance than usual intake

which gives biased estimates of the population distribution.

As an illustration, Figure 13 displays the probability density of fruit and vegetable serv-

ings based on a single day’s intake, the average of intake measured by two 24-hour re-

calls and intake estimated using the Iowa State University (ISU) (Nusser et al., 1996a,b)

method (discussed below) using Continuing Survey of Food Intakes by Individuals (CS-

FII 1994-1996) data (Tippett and Cleveland, 2001). The proportion of individuals who

eat less than 5 servings per day is approximately the same at 40% for all three distri-

butions. However, examining the tails of each distribution shows that the proportion of

individuals consuming less than one serving has greater variance with a much larger

proportion of individuals estimated to be consuming less than one portion using one

day of intake (lined area), falling with the average of two 24-hour recalls (hatched area)

and falling further still with the ISU method (filled area) (Guenther et al., 2006).

The traditional approach is currently used in the NDNS RP to estimate habitually con-

sumed foods where four days of intake are collected per individual and the mean taken.

The individual means are then averaged to give a single value per group defined by

age and/or sex. This gives estimates that do not account for the variation in intake that

occurs within the individual. These are then reported in the tables published annual

reports. In the Year 1-4 NDNS RP report episodically consumed foods and nutrients

were not analysed differently to habitually consumed foods and nutrients considered,

with the exception of Alcohol. Here descriptive statistics including means and quantiles

of alcohol intake were reported both for consumers and non-consumers combined and

for consumers only broken down by age and sex groups (Table 2).

1.12.2 Iowa State University (ISU) method

The ISU method was developed in 1996 for habitually (Nusser et al., 1996b) and

episodically (Nusser et al., 1996a) consumed foods and nutrients. The ISU method was

the first method developed to attempt to model both the frequency of consumption and

33



Figure 13

Intake of servings of fruit and vegetable, by one 24-hour recall (broken line), the mean of two

non-consecutive 24-hour recalls (dotted line) and usual intake estimated by ISU model (solid

line) for 14963 participants in the Continuing Survey of Food Intakes by Individuals (1994-1996)

adapted from Guenther et al. (2006).
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Table 2

An example of episodically consumed food reporting from Alcohol intake for 4947 participants

aged 11+ in the National Diet and Nutrition Survey Years 1-4 (2008-2012). Adapted from Table

5.13 of the National Diet and Nutrition Survey Rolling Programme Report Steer et al. (2014)

Alcohol intake Sex and age group (years)

Males Females Total

11-18 19-64 65+ 11-18 19-64 65+ 11-18 19-64 65+

Total (including non-consumers)

Alcohol (g)

Mean 2.5 18.5 12.9 1.8 10.1 4.9 2.2 14.3 8.4

Median 0.0 8.5 4.8 0.0 1.7 0.0 0.0 4.7 0.1

sd 11.0 28.3 18.0 8.5 15.5 8.4 9.9 23.2 14.0

Upper 2.5 percentile 35.0 87.6 61.3 22.3 56.1 26.2 27.6 70.4 54.0

Lower 2.5 percentile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total energy (%)

Mean 0.8 5.6 4.5 0.7 4.1 2.3 0.7 4.9 3.3

Median 0.0 2.9 1.6 0.0 0.7 0.0 0.0 1.8 0.1

sd 3.3 7.5 6.0 3.1 5.9 4.1 3.2 6.8 5.1

Upper 2.5 percentile 12.3 23.7 21.9 8.6 19.1 13.4 10.7 22.2 18.7

Lower 2.5 percentile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bases (unweighted) 744 1126 317 753 1571 436 1497 2697 753

Consumers only

Alcohol (g)

Mean 19.3 29.2 21.5 14.5 19.2 11.1 17.0 24.7 16.5

Median 10.1 20.8 16.0 7.5 14.8 9.1 8.0 18.1 12.3

sd 24.6 30.8 18.8 19.9 16.8 9.4 22.5 25.9 15.9

Upper 2.5 percentile 98.5 100.6 76.0 89.9 67.4 33.6 89.9 86.0 61.3

Lower 2.5 percentile 0.1 2.4 0.5 0.3 0.9 0.1 0.1 1.0 0.1

Total energy (%)

Mean 5.9 8.9 7.5 5.6 7.8 5.3 5.8 8.4 6.4

Median 3.3 7.0 5.6 3.1 6.4 3.8 3.3 6.7 4.7

sd 7.2 7.7 6.2 7.0 6.2 4.7 7.0 7.1 5.6

Upper 2.5 percentile 26.7 29.0 23.3 31.9 22.9 14.4 27.3 26.6 21.9

Lower 2.5 percentile 0.0 0.5 0.2 0.1 0.3 0.1 0.0 0.5 0.1

Per cent consumers 13 63 60 13 53 44 13 58 51

Bases (unweighted) 91 697 174 87 788 177 178 1485 351
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the amount consumed with a step to integrate out the random effects to estimate usual

intake distribution. This method cannot cope with covariates, however it can make ad-

justments for nuisance effects such as seasonal variations, week day versus weekend

and start day. The effects should firstly be examined by linear regression, to determine

whether they do contain significant variance and should therefore be adjusted for. The

ISU method typically has greater uncertainty, as indicated by the standard deviation of

the bias, than the NCI and SPADE methods described below (Souverein et al., 2011).

1.12.3 National Cancer Institute (NCI) method

The National Cancer Institute (NCI) method (Tooze et al., 2002, 2006, 2010) was de-

veloped in 2006 and is currently used to estimate usual intake in multiple surveys in-

cluding the NHANES report as well as secondary analysis by a number of authors that

include usual intake estimation of added sugar in adolescents (Zhang et al., 2015),

fish and omega-3 intake in adults (Papanikolaou et al., 2014) and intakes of female

breast cancer survivors (Milliron et al., 2014), making it the predominate method used

in the US. It has also been used to estimate usual intakes in other populations includ-

ing the Bavarian food consumption survey (Wawro et al., 2017), the Brazilian national

dietary survey (Sousa and Costa, 2015) and for beverage intake using Australian na-

tional nutrition and physical activity survey (Sui et al., 2016).The NCI method uses a

two-part model where the first part models the probability of consumption using lo-

gistic regression then, in the second part, the data are transformed to normality or

approximate normality using a Box-Cox transformation, conditional upon intake occur-

ring. The data are then modelled on the transformed scale using a linear mixed-effects

model that is capable of separating the within-person and between person variation.

Then pseudo person intakes for each member of the sample are simulated using the

estimated mean and the between person variance of the linear mixed-effects model.

The final step involves back transforming the data to the original scale using the orig-

inal Box-Cox transformation parameter and the within-person variation from the linear

mixed-effects model in the second step. The Box-Cox transformation is effective at

transforming to normality when the data show moderate levels of skewness. How-

ever, where large amounts of non-consumption is observed along with high degrees of
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skewness in the positive consumption part of the distribution the box-cox transformation

provides inconsistent predictions (Duan et al., 1983; Herrick et al., 2018). Furthermore

it has been shown to provide biased estimates when within-person greatly exceeds the

between person variance (Souverein et al., 2011). The NCI method can be used to

estimate habitually consumed foods and nutrients using the second part of the two-

part model only. The NCI method can be fitted using SAS macros that are available

from the riskfactor.cancer.gov website and can include information on never con-

sumers from a questionnaire such as an FFQ by including covariates indicating values

of whether consumption took place.

1.12.4 Statistical Program to Assess Dietary Exposure (SPADE)

The Statistical Program to Assess Dietary Exposure (SPADE) software (Dekkers et al.,

2014) is written in R, and was developed to be used in analysing the Dutch National

Food Consumption Survey (DNFCS) data. The package offers three analysis options:

habitually consumed foods and nutrients, episodically consumed foods and nutrients,

and food or nutrient intake from food sources with supplements. Estimates are deter-

mined following similar steps to those in the NCI method. A two-part model is used

for foods that are consumed episodically, that calculates the probability of consump-

tion first then models the amount consumed. When no long term measure of con-

sumption is included, the method assumes that participants who have zero intake over

the two 24HRs are consumers, but that two 24HRs were not sufficient to record an

intake and that if the number of observations increased, consumption would eventu-

ally be observed. Data are transformed to normality using a Box-Cox transformation,

then a linear mixed-effects regression model estimates the mean and the within- and

between-person variances. Data are then back transformed using Gaussian quadra-

ture using the within-person variance from the mixed-effects model along with the initial

Box-Cox transformation parameter. The method does not correlate the probability of

consumption with the amount consumed. It is generally assumed that when an individ-

ual consumes a food they will consume larger amounts of it for a number of reasons,

either as they have easy access or because they like the food. However, the difference

in results from SPADE to other methods that do include this correlation have shown
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that the results from SPADE are comparable to the ISU and NCI methods for single

nutrients (Souverein et al., 2011). A three-part model includes dietary supplements in

the model alongside foods. As supplements are typically consumed in standard por-

tions every day and thus with little variation, the assumptions that are included in the

method are less speculative. Covariates cannot be modelled using SPADE other than

sex, although the method is implemented as a function of age. SPADE is based on one

positive intake, if the intake value for an individual is zero throughout their records then

they are removed from the dataset. If an individual has more than one positive intake

then one of their intakes is randomly selected (Dekkers et al., 2014). Table 3 provides

a summary of methods used to estimate usual intake.
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Table 3

Comparison of methods for estimating usual intake

NRC/IOM ISU NCI SPADE

Software SAS Stand-alone software (SIDE) SAS Macros R

Cost Requires SAS Suggested donation ($300-$500) Requires SAS Nil

Covariates No A priori adjustments Yes Age only

Episodical Foods No Yes Yes Yes

Multistage sample variance No Yes BRR Bootstrapping

Sample weighting No No Yes Yes

Quantiles No Age Yes Yes

Frequency and amount correlation No No Yes No

Adapted from Souverein et al. (2011).

NRC / IOM - National Research Council / Institute of Medicine

ISU - Iowa State University

NCI - National Cancer Institute

SPADE - Statistical Program to Assess Dietary Expose
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The current method for estimating intake for the NDNS RP, the within-person mean

method, has the advantage that it is easy to implement however a mean is not an ade-

quate summary statistic for skewed distributions as the bias arising from not separating

the within-person and between person variation and the high frequency of zero obser-

vations when estimating mean intake of episodically consumed foods are not taken into

account. Alternative approaches such as the two methods of usual intake estimation

used in the Dutch and US national dietary surveys show similar estimates as deter-

mined by simulation studies (Souverein et al., 2011; Laureano et al., 2016) but may

fail to cope with data that is strongly skewed as the methods are restricted to the use

of the Box-Cox transformation. Furthermore, in the case of SPADE when measuring

episodically consumed foods fail to consider the correlation between the probability of

consumption and the amount consumed.

1.13 Iron Intake

In this thesis I shall use iron intake and expenditure on iron medication to illustrate

the statistical methods developed, due to its public health significance both in the UK

and across the world. Furthermore, iron is a useful nutrient to examine because the

intake distributions observed for iron as a nutrient and for foods that contain iron pro-

vide a good illustration of the challenging distributions arising in food consumption.

Iron is an habitually consumed nutrient: consumed by the majority of individuals on

the majority of days. It has an important role in the body as an oxygen transporter in

haemoglobin and myoglobin, in many enzymic reactions and is important as a trans-

porter for electrons within cells (Scientific Advisory Committee on Nutrition (SACN),

1991). So estimating iron intake with reduced bias is important in distinguishing clini-

cal iron deficiency from statistical artefact.

1.14 Summary

In this chapter I have introduced the statistical issues present when estimating usual

intake of foods and nutrients that have been collected as part of a survey employing a
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complex survey design. These include the challenge that diets are not consistent within

individuals from one day to the next (Figures 1 and 2) and that they vary by season

(Figure 3) and are prone to measurement error, which was introduced in Section 1.3.

The methods used to collect dietary data were introduced in Section 1.5 explaining

why it is difficult to use dietary assessment to capture true usual intake due to the

number of days required to capture true intake, and that the burden this places on

participants means that it is unlikely that a representative sample from the population

would be collected. The challenge of skewed data seen in episodically consumed

foods and nutrients was introduced in Section 1.6 and illustrated in Figures 4, 5 and 6.

The challenges of selecting participants to take part in a national survey, ensuring that

the sample is representative of the population but that has sufficient members from

minority subgroups for analysis to be possible along with the logistical constraints of

collecting data by visiting disparate addresses were presented in Section 1.7. Then

existing methods of estimating usual intake of dietary components were presented and

contrasted in Section 1.12, where the traditional approach currently used in the NDNS

RP was shown to lack the flexibility to cope with many of the challenges mentioned

including: skewed distributions; separating within- and between-person variation; and

correlating the probability of intake with the amount consumed. Methods used in other

national dietary surveys that were more able to meet the challenges were described in

Section 4.1 but have been shown to struggle to produce reliable estimates where data

are considerably skewed and, in the case of SPADE, the correlation between intake

probability and intake amount is assumed to be zero.

1.15 Aims and Objectives

This thesis aims to meet the statistical challenges described in this chapter, by devel-

oping statistical approaches to the estimation of dietary intake collected as part of a

national survey whilst accounting for a complex survey design and measurement er-

ror that also address the limitations of the NCI and SPADE methods. Specifically the

objectives of the thesis are:
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1. To develop a novel method for estimating the mean intake of episodically con-

sumed foods and nutrients, collected using a complex survey design. The method

should allow the specification of the mean in terms of explanatory variables and

account for the within- and between-person variation.

This will be achieved through developing a novel two-part model for semi-continuous

data with random effects, that has improved flexibility in modelling skewed distributions

of non-negative data by using a generalised gamma distribution to model intake of

episodically consumed foods. This ensures a good model fit to the data and removes

the requirement for a Box-Cox transformation. Furthermore the two parts of the pro-

posed model have a joint correlation structure allowing for each individual’s probability

of consumption to be correlated with their intake amount. The estimation procedure will

be extended to incorporate the complex sample design. This is presented in Chapter

3.

2. To develop methods for estimating quantiles of intake from habitually consumed

foods and nutrients using data collected under a complex survey design. The

method should allow the specification of quantiles in terms of explanatory vari-

ables and account for within- and between-person variation.

This will be achieved through the development of a semi-parametric approach to quan-

tile regression that is based on the asymmetric Laplace distribution which can deal

with skewed distributions and non-negative observations. The method is extended to

account for the complex survey design in the estimation of model parameters (Chapter

4). This allows improved flexibility in estimating specified quantiles of intake for exam-

ple at the Lower Reference Nutrient Intake (Section 1.4)

3. To model expenditure on iron prescriptions in the UK across health boards using

the quantile regression model introduced in Chapter 4, whilst incorporating esti-

mated dietary intake as a covariate in the model. This information is important

for a fair comparison of expenditure among health boards, as expenditure will

depend on iron bioavailability status.

This will be achieved by analysing national electronic records of expenditure on iron

prescriptions by health boards in the UK. The quantile regression model will account for

42



clustering at the health board level. The covariates will include estimated bioavailable

iron intake based on age and sex make up of registered patients. Estimated quintiles

of expenditure by region will be graphically presented in Chapter 5.
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The remainder of the thesis is structured as follows: Chapter 2 introduces the Na-

tional Diet and Nutrition Survey Rolling Programme detailing the purpose of the sur-

vey, how the data are collected including the survey design and weighting and de-

scribing the explanatory variables used throughout the thesis. Chapter 3 presents

methods for analysing the mean iron content of selected foods which demonstrate a

semi-continuous distribution, using a two-part model with a generalised gamma distri-

bution, and extends the estimation procedure to incorporate the complex survey de-

sign. Chapter 4 describes methods for the modelling of quantiles of iron intake using

linear mixed-effects quantile regression and extends the model estimation procedure

to incorporate the complex sample design. Chapter 5 utilizes the quantile regression

model introduced in Chapter 4 and methods of estimation of dietary intake to explore

differences in the amount spent on iron prescription between UK health boards and

Chapter 6 is a discussion. Included as appendices is an example of the letter inviting

participants to take part in the NDNS RP (Appendix A), a table listing the measures

collected by the NDNS RP (Appendix B) and an example of the food diaries used

to collect dietary data in the NDNS RP(Appendix C). Appendix D contains supple-

mentary tables showing the impact of various numbers of bootstrap resamples upon

standard error estimation for the methods presented in Chapter 3. Appendices F, H

and L provide examples of the structure of the data used in Chapters 3, 4 and 5. R and

SAS scripts that include the code used in Chapters 3, 4 and 5 are presented in Appen-

dices G, I and J. The sources of data used in Chapter 5 are illustrated in Appendix K

along with the regression coefficients table for the analysis performed in Chapter 5 in

Appendix M.
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2 National Diet and Nutrition Survey Rolling Programme

The NDNS RP (Public Health England, 2014) is a cross sectional national survey set up

with the aim of capturing food and nutrient intakes in the UK. It is jointly funded by Public

Health England (PHE) and the Food Standards Agency (FSA) and carried out by the

Department of Health, Elsie Widdowson Laboratory (EWL) (formerly Human Nutrition

Research (HNR)), the National Centre for Social Research (NatCen) and University

College London (UCL). It is jointly funded by the Department of Health in England and

the food standards agencies for Scotland, Wales and Northern Ireland.

National dietary surveys in the UK started with the Dietary and Nutritional Survey of

British adults 1986-87 (Gregory et al., 1990), subsequently the NDNS programme be-

gan with separate surveys carried out for different age groups starting with children

aged 1.5-4.5y in 1992-3 (Gregory et al., 1995); People aged 65+y (1994-5) (Finch,

1998); Young People aged 4-18y (1997) (Smithers et al., 2000) and a second survey

for adults aged 19-64y with fieldwork carried out in 2000-01 (Henderson et al., 2004).

A further survey was carried out on low income families – the Low Income Diet and

Nutrition Survey for people aged 4+y (2003-05) (Nelson et al., 2007), and in addition a

national dietary survey was carried out in 2011 capturing the diets of infants aged 4-18

months (Stephen et al., 2013).

The NDNS RP moved to a rolling programme format in 2008 and has continued running

in yearly cycles to date. Moving to a rolling programme was carried out as it was felt

the survey would be better at capturing temporal changes allowing trends over time

to be examined, it would be more responsive to policy needs and it would be able

to collect additional data at short notice. Approximately 1000 non-institutionalised,

non-pregnant non-breastfeeding participants aged 1.5 years and older are recruited

each year, with some over-sampling of children and participants in the UK devolved

countries. Participants are asked to record all food and drink in an estimated DD for four

consecutive days, with those who complete a minimum of three days included. Along

with food and nutrient information the NDNS RP collects blood and urine samples,

sun exposure measures and asks many other questions that include physical activity,
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medicine use and food security, see Appendix B for the complete list of collected

variables.

2.1 The purpose of the NDNS RP

The NDNS RP is used as a surveillance tool by governmental agencies including the

FSA and PHE to monitor the diet and nutritional status of the UK population for fac-

tors including intakes that deviate from reference nutrient intake and groups that are

higher or lower than national averages. Furthermore it is used to develop policies and

monitor their effectiveness, for example the Healthy Lives, Healthy People white paper

(Department of Health, 2010) used the NDNS RP figures on salt intake and the number

of adults consuming five portions of fruit and vegetables per day in its evidence base.

Similarly the SACN used NDNS RP to highlight high levels of carbohydrate intake in

their latest report on Carbohydrates and Health (SACN (Scientific Advisory Committee

on Nutrition), 2015). Exposure to chemicals in food is also monitored using NDNS RP

data by the FSA.

2.2 Data Collected

Figure 14 presents the design of the study data collection. The first step is to send let-

ters to selected addresses describing the survey and informing them that an interviewer

will be visiting their house to invite household members to take part (see Appendix A).

The interviewer then arrives at the address to recruit the participants and ask them to

complete a diet diary recording all food and drink consumed over 4 consecutive days,

with a random start date given to ensure an equal distribution of days are covered. Dur-

ing the first visit anthropometric data, including height and weight, are collected along

with the Computer Assisted Personal Interview (CAPI) questionnaire. Furthermore if

the participant is aged 4-15y and is willing to participate they are recruited into the

physical activity arm and given an ActiGraph monitor to record their physical activity

levels, this requires a further visit to collect the ActiGraph monitor.
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Also at the first visit, participants are given instructions on how to fill in the diary. The

interviewer returns on the second day of the diary to check for completeness and an-

swer any questions the participant may have regarding completion. After the four days

have been completed, the interviewer returns for their 3rd visit to collect the diary,

again checking the diary and collecting any food packaging to be used to help identify

the nutrient content of any unusual foods. The diary pages are divided into categories

prompting participants to record a thorough description of their diet including, the date

and time of consumption, the brand of food and the estimated amount of food and

drink consumed, along with some socio-contextual questions, such as who the food

was eaten with and whether the television was on (see Appendix C for example diary

pages).

Figure 14

National Diet and Nutrition Survey Rolling Programme Study Design

Once complete, the diaries are sent to MRC EWL for processing, where the data are

manually coded and entered into the DINO database (Fitt et al., 2014) linked to the

NDNS RP Nutrient Databank (Smithers, 1993) which contains food composition data,

primarily based on McCance & Widdowson 6th edition (Food Standards Agency, 2002),
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augmented with manufacturers’ data and standardised portion sizes (Food Standards

Agency, 1988).

Two further arms to the study are introduced on the third interviewer visit. A sub-sample

of participants are recruited to take part in the DLW study to objectively measure en-

ergy intake (10% sub-sample in Years 1 and 3 only). Those that agree to take part

receive two further visits by the interviewer; in the first of these the DLW is adminis-

tered and at the second urine samples are collected and sent for analysis. Also on

the third interviewer visit, participants are invited to receive a visit by a nurse who will

ask health related questions and take a blood sample if the participant is willing. Blood

samples are sent for analysis and passed on to the respondent’s General Practitioner

(GP). The analysis for blood samples includes a full blood count, lipid profile to assess

cardiovascular disease risk and HbA1c to test for diabetes. The data used throughout

this thesis are from the NDNS RP years 1-4 collected in 2008 to 2012.

2.3 Data accessibility

Once processing, analysis and reporting have been completed, the data are uploaded

to the UK data archive http://www.data-archive.ac.uk, hosted at the university of

Essex. From here interested researchers are able to create an account and download

the data for use. The files available include previous versions of the NDNS and the

latest version of the Rolling Programme data available in multiple data formats. The

files available include a product level list of every dietary record for every individual

with nutrient and food information included and an aggregated version of this infor-

mation containing the within-person means and therefore 1 record per individual. Also

included are the questions and participant answers collected during the CAPI interview

along with information relating to average daily nutrient intakes per participant, average

daily food intakes per participant, and associated variables listing demographic, blood,

sodium, physical activity and health measures. The UK NDNS RP Nutrient Databank

containing the entire list of foods available in the DINO database is provided with a

separate file for each year of the Rolling Programme. Further information on the types

of variables available for analysis is given in Appendix B.
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2.4 Sample design

The NDNS RP uses a complex survey design that includes stratification, clustering and

sampling weightings. The weightings provide an adjustment for selection probability at

the address, household and individual level and also adjust for non-response. To select

an individual a number of steps are carried out. Firstly a sample of 799 postcode

sectors were drawn from the postcode address file, referred to as strata and from

within these sectors, 21,573 addresses were sampled known as clusters. Dwelling

units within each address are chosen, and then catering units within the dwelling units

are selected until finally individuals within the catering units are reached. Selection at

the dwelling and catering units will only be relevant where these exist. Selection at the

dwelling unit level would be required where the household space is not behind a door

that only one household can use. This would apply where more than one household is

sharing a bathroom or kitchen. A household is defined as either an individual or group

of individuals who have the address as their main or only residence and either eat at

least one meal together per day or share a living room. Catering units are defined as

people living together who buy and eat meals together (Tipping, 2014).

The postcode sectors and addresses were randomly sampled from the postcode ad-

dress file. This is a list of postcodes used for postal delivery within the UK limited

to addresses that receive less than 25 mail items per day, to exclude business ad-

dresses, and as such is comprehensive in its coverage of the UK. This sample is the

PSU. Where a PSU contains less than 500 addresses other PSUs are grouped to-

gether. The sampling frame is then split by country giving strata, then the PSUs in

England are sorted by Government Office Region (GOR) and in all countries by the

Index of Multiple Deprivation (IMD) and population density and from this list a system-

atic random sample of PSUs is chosen. Each PSU is randomly chosen by dividing the

number of cases by the number required in the sample I = number of cases
number required in sample . A ran-

dom number (R) between 0 and I is generated and this number indicates the position

of the first PSU to be chosen from the list. The next value is found by R + 1 ⋅ I rounded

up to the next integer, then subsequent values are R + 2 ⋅ I,R + 3 ⋅ I, ...,R +N ⋅ I and is

continued until a complete sample frame is compiled. (Tipping, 2014).
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2.5 Weighting

Participants in the NDNS RP are given a weight to adjust for their probability of selec-

tion into the survey and for non-response of selected individuals who did not take part.

Separate sets of weights are given for the all 6828 participants, then further weights

are created for participants in the various extra arms of the study who agreed to pro-

vide further health information (Nurse visit), provided blood samples, for individuals

aged 16+y who completed the recent physical activity questionnaire, for participants

who provided 24-hour urine samples and for children aged 4-15y who agreed to wear

an ActiGraph activity monitor. These weights are important as they adjust the sample

of participants to reflect the population they were sampled from, i.e. the UK, ensuring

that the findings are reflective of the population as a whole. The weights are calculated

in two stages first the weights are adjusted for the probability of selection. The ini-

tial sample was adjusted to take into consideration various factors that impacted upon

the probability of selection, these were due to the pilot study, an increased sample in

Northern Ireland, Scotland and Wales and an increase in the recruitment of adults. The

pilot study, known as the Run In was carried out in February and March 2008 before

the start of the survey proper to test methods and the data were subsequently included

into the first year of the survey meaning that there are 14 months in Year 1 that required

adjustment to ensure that no months were over represented. Due to the small popu-

lation size in the devolved countries, relative to England, an increase in the number

of residents was commissioned in Northern Ireland and Scotland in Year 1 and then

Northern Ireland, Scotland and Wales in Years 2 to 4. This was to allow meaningful

numbers of participants to be sampled allowing for country specific reports to be pro-

duced. Furthermore in the final quarter of Year 4 an additional number of addresses

were sampled in Scotland. Referred to as country boosts, this oversampling has an

impact upon the sample as the probability of being selected in England is lower than

expected and therefore the contribution of participants from the devolved countries is

weighted down, relative to participants in England. The final adjustment made was as

a result of an increase in the recruitment of adults into the survey in Year 4. Prior to the

increased recruitment addresses were designated as main: where both an adult and

child could be surveyed and child addresses: where only a child was selected. In Year

50



4, adults could be interviewed at all addresses, meaning that, in Year 4, the probability

of adults being sampled increased in comparison to previous years.

The probability of selection for each address was determined for each country by di-

viding the total number of selected addresses by the total number of addresses. Then,

after adjustment for the Run In, and increased selection probabilities for adults, the

weights for each country were combined denoted w0. Table 4 highlights the impact of

weighting in correcting the sample to be representative of the population. For example,

the percentage of English addresses in the UK postcode address file is 83% com-

pared to Northern Ireland which has 2.8% of the addresses in the UK yet, 50.8% and

12.1% of the NDNS RP are from England and Northern Ireland respectively. Therefore

weighting is important as it inflates the English sample and deflates the Northern Irish

sample to reflect the probability of selection.

Table 4

The distribution of UK addresses in the UK Postcode address file, with unweighted NDNS

RP Y1-4 (2008-2012) sample, then adjusted percentage following the application of selection

weights, by country, adapted from the Table B.1 from the National Diet and Nutrition Survey

Y1-4 (2008-2012) (Tipping, 2014)

Selected sample of addresses

Postcode

address file

Unweighted Weighted

by selection

weight

% % %

Government Office Region

England 83.0 50.8 82.8

Wales 5.0 9.9 5.0

Scotland 9.2 27.0 9.2

Northern Ireland 2.8 12.1 2.8

Base (unweighted) 27,147,524 21,573 21,573
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Further adjustment to the weights occurred where the address contained more than

one dwelling unit (w1) or catering unit (w2) existed within an address to ensure that

accommodation of this nature was not under represented in the sample.

Individuals within catering units where selected based on the type of address. Within

each sample point were 27 addresses in Years 1-4, 9 addresses were designated as

main addresses meaning that an adult and a child could be randomly selected to take

part in the survey and the remaining 18 address within the sample point contained

child addresses where children (aged <19y) were selected. Each individual is given a

selection weight (w3) to reflect the household size otherwise individuals within smaller

catering units will be over-represented in comparison to those in large catering units.

The selection weight is the inverse of the individual selection probability, which for

adults equates to the number of eligible adults within the catering units (i.e. exclud-

ing pregnant and breastfeeding women) and for children this is the number of eligible

children in the household (i.e. aged 1.5-18y).

A final set of weights giving the probability of selection is given by

Wsel = w0 ∗w1 ∗w2 ∗w3

Where wsel are the selection weights, w0 is for each country adjusted for Run In and

differences in address type, w1 adjusts for multiple dwelling units, w2 adjusts for multiple

catering units and w3 adjusts for selection probability at the catering unit level.

These selection weights are then used to create final weights for each member of the

NDNS RP through calibration methods, whereby the selection weight is adjusted until

it reflects age, sex and government office region groups in the UK. Further adjustment

means that a single set of weights can be used to analyse the UK overall and for sep-

arate analysis by country, by children and adults and by males and females (Tipping,

2014).

2.6 Impact of the weighting and the complex survey design

The impact that the weighting and survey design has upon point estimates is shown in

Table 5 where it can be seen that the majority of estimates that consider the weighting
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and survey design aspects differ from those estimates that do not take the weighting

and survey design into account, for example the adjusted upper 2.5 percentile for iron

intake in Men aged 19-64y is 21.2mg per day whereas the unadjusted intake for 20.8mg

per day.
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Table 5

Iron intakes from food sources in the UK from 6224 participants aged 4 years and older from the National Diet and Nutrition Rolling Programme Years

1-4 (2008-2012), adjusted and unadjusted for the NDNS RP weighting and complex survey design

Average daily intake of iron from food sources only, by sex and age

Sex and age group (years)

Boys Men Girls Women

4-10 11-18 19-64 65+ 4-10 11-18 19-64 65+

Adjusted for weighting and complex survey design

Mean 9.0 10.7 11.7 11.1 8.4 8.4 9.6 9.4

Median 8.8 10.5 11.5 10.8 8.2 8.1 9.5 9.1

sd 2.5 3.4 4.0 3.7 2.4 2.7 3.0 2.7

Upper 2.5 percentile 14.6 18.7 21.2 19.3 14.4 14.1 15.9 15.3

Lower 2.5 percentile 4.8 4.8 5.3 5.2 4.4 3.6 4.1 4.9

Unadjusted for weighting and complex survey design

Mean 8.8 10.7 11.7 10.8 8.1 8.4 9.5 9.2

Median 8.6 10.3 11.4 10.5 8 8.2 9.4 8.9

sd 2.6 3.5 4.0 3.7 2.2 2.7 3.1 2.7

Upper 2.5 percentile 14.9 18.6 20.8 19.4 12.7 14.2 16.0 14.9

Lower 2.5 percentile 4.6 5.2 5.2 5.1 4.3 3.7 4.1 4.6

Participants (unweighted) 665 744 1126 317 612 753 1571 436
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2.7 Socio-economic factors: NSSEC

Diets have been demonstrated to vary according to income (Nelson et al., 2007; Stevens

and Nelson, 2011), therefore an indicator of socio-economic status was included through-

out the thesis in models estimating dietary intake. The indicator recorded in the NDNS

RP is the National Statistics Socio-Economic Classification (NSSEC). The NSSEC is

a classification constructed to measure employment relations and conditions of occu-

pations (Office for National Statistics, 2010) (Tables 6a and b). The NSSEC classes

indicate a social class gradient with those in higher categories expected to have greater

income and material advantage over those in lower classes (Rose et al., 2005). The

“Never worked” category comprises those who have never worked and the long-term

unemployed. Students, those in occupations not stated, inadequately described or not

classifiable for other reasons make up the “Other” category. Retired participants remain

in the same NSSEC category they were in prior to retirement. Detailed demographic

characteristics are listed in Tables 6a and b.
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Table 6a

Weighted demographic characteristics for females, males and all participants of the NDNS RP Years 1-4 (2008-2012)

Females Males Total

Count Percent Count Percent Count Percent

Age Groups 1.5 - 3y 66 1.6 63 1.5 130 3.1

4-10y 169 4.1 161 3.9 330 8.0

11-18y 211 5.1 200 4.8 411 9.9

19-64y 1287 31.0 1294 31.2 2582 62.2

65+ 305 7.4 390 9.4 695 16.8

NS-SEC Higher managerial & professional occupations 360 8.7 266 6.4 626 15.1

Lower managerial & professional occupations 541 13.0 580 14.0 1121 27.0

Intermediate occupations 149 3.6 193 4.6 341 8.2

Small employers & own account workers 203 4.9 266 6.4 469 11.3

Lower supervisory & technical occupations 217 5.2 200 4.8 418 10.1

Semi-routine occupations 266 6.4 281 6.8 548 13.2

Routine occupations 241 5.8 214 5.2 455 11.0

Never worked & long-term unemployed 33 0.8 59 1.4 92 2.2

Other 28 0.7 50 1.2 78 1.9

Ethnicity White 1799 43.4 1872 45.1 3672 88.5

Mixed ethnic group 29 0.7 41 1.0 69 1.7

Black or Black British 67 1.6 70 1.7 136 3.3

Asian or Asian British 103 2.5 96 2.3 199 4.8

Any other group 41 1.0 31 0.7 72 1.7

Employment status Employed 1044 25.2 862 20.8 1907 46.0

Full time student 390 9.4 388 9.4 779 18.8

Not working 554 13.3 811 19.6 1365 32.9
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Table 6b

Weighted demographic characteristics for NDNS RP Years 1-4 (2008-2012)

Females Males Total

Count Percent Count Percent Count Percent

UK region North east 94 2.3 80 1.9 173 4.2

North west 228 5.5 235 5.7 462 11.2

Yorkshire & the Humber 145 3.5 207 5.0 352 8.5

East midlands 148 3.6 151 3.6 299 7.2

West midlands 177 4.3 188 4.5 365 8.8

East of England 218 5.3 168 4.0 386 9.3

London 254 6.1 266 6.4 520 12.6

South east 267 6.4 301 7.3 568 13.7

South west 175 4.2 177 4.3 352 8.5

Wales 96 2.3 106 2.6 202 4.9

Scotland 177 4.3 171 4.1 348 8.4

Northern Ireland 60 1.4 59 1.4 119 2.9

Highest qualification Degree or equivalent 406 9.8 367 8.8 772 18.6

Higher education, below degree level 145 3.5 191 4.6 336 8.1

A levels or equivalent 274 6.6 235 5.7 509 12.3

GCSE grades A-C or equivalent 282 6.8 317 7.7 599 14.4

GCSE grades D-G or equivalent 57 1.4 51 1.2 108 2.6

Foreign or other qualifications 77 1.9 69 1.7 147 3.5

No qualifications 308 7.4 396 9.6 704 17.0

Still in full-time education 116 2.8 126 3.0 242 5.8

Total 2038 49.2 2108 50.8 4148 100
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2.8 Strengths and limitations of the NDNS RP

The NDNS RP is sampled such that over a yearly cycle participants are representa-

tive of UK citizens in terms of sex, age, location, and ethnicity. Furthermore daily and

seasonal variations are captured. This makes it the foremost dataset for examining

the dietary intakes of the UK and this is reflected in its widespread use in food and

nutrition policy making, for example monitoring sugar reduction policies and dietary

recommendations in the change4life initiative (Tedstone et al., 2014). Because of the

rolling programme design that collects a complete cross-sectional sample each year it

is possible to examine trends over time making this an important public health monitor-

ing tool, see for example Figure 15 showing an increase in average vitamin D intakes

in Females aged 65 and over.

The NDNS RP Nutrient Databank (Smithers, 1993) is monitored and continually revised

to match the foods recorded in the diary with those available and can be updated to

reflect reformulations carried out by manufacturers. This is particularly important when

foods become fortified as this often causes a dramatic change in the micronutrient

content of the food and subsequently the overall diet. Whilst the Nutrient Databank

is continually updated and therefore contains the most accurate possible data it also

means that care should be taken when interpreting dietary trends to examine whether

these represent genuine temporal differences in intakes rather than simply reflecting

updated food composition.

Limitations to the NDNS RP are mentioned in Section 1.5 and include the possibility

that a participant recording their dietary information may alter their diet or misreport

actual consumption. This is a limitation inherent in all surveys using diet diaries and

dietary assessment methods in general. Measures are included in the NDNS RP to

mitigate this through the use of interviewers prompting for missing foods, participants

being encouraged to collect food packaging, using a food atlas to prompt for portion

sizes and DLW.
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Figure 15

Mean daily vitamin D intake in 436 Females aged 65+ from NDNS RP Years 1-4 (2008-2014)

by year of survey
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3 Two-part models of complex survey data using a gen-

eralised gamma distribution: Dietary Iron intake in

the UK

The aim of this chapter is to present methods of estimating usual mean intakes foods

with an application to iron intake from five food groups that are the greatest contribu-

tors to iron in the diet. The approach comprises a two-part model capable of estimating

mean intakes of episodically consumed foods using both parts of the model or, using

the second part only, estimating mean intakes of habitually consumed foods. The cur-

rent method of estimating intake from episodically consumed foods and nutrients in

the NDNS RP is detailed in Section 1.12.1, highlighting that the only case where in-

take from episodically consumed food is considered is in alcohol, where descriptive

statistics for all adults (regardless of alcohol consumption) and alcohol consumers only

are reported. In the remainder of the NDNS RP analysis no distinction is made be-

tween intake from episodically and habitually consumed foods and nutrients with the

within-person mean method used throughout. As discussed previously this method is

likely to bias estimates as no consideration is made for the within- and between-person

variance, nor the high frequency of zero observations. Methods such as the NCI and

SPADE methods have been developed to address these issues but fail to handle data

that are highly skewed and, in the case of the SPADE approach, the correlation be-

tween the probability of consumption and the amount consumed. To address this, novel

methods are presented extending a two-part model with a generalised gamma distri-

bution to analyse dietary components that exhibit skewed distributions collected using

a complex sample design whilst including correlated random effects between both the

probability of consumption and the amount consumed. The results from an application

of these methods are compared to those from survey weighted linear regression.

This chapter is structured as follows: Section 3.2 introduces the generalised gamma

(GG) distribution. In Section 3.3 the two-part model using a GG distribution and its

extension to incorporate the complex sample design are introduced. Section 3.4

presents an application of the two-part model estimating iron intake from foods that
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contain iron using NDNS RP survey data with random effects in both model compo-

nents. A comparison between the methods presented here and results from the cur-

rently used survey weighted regression analysis is given in Section 3.6.1 and Section

3.7 provides a discussion.

3.1 Introduction

Dietary intake can only take non-negative values, and its distribution is often non-

symmetric with a high frequency of zero observations, as shown in Figures 5 and 6,

and to deal with this various methods have been proposed. These include transform-

ing the data to normality using a Box-Cox transformation (Box and Cox, 1964) then

carrying out ordinary linear regression followed by a transformation back to the original

scale (Tooze et al., 2002). However this approach cannot cope with heteroscedastic

data and therefore may lead to biased inference. Suggested alternative approaches to

a two-part model are to either

• Include the zero observations and model all data

• Exclude the zero observations and model the positive part alone

• Change the zero observations into a positive value by adding a small constant.

However the suitability of the methods depends upon the data generating process and

in this case the zeros represent a genuine process indicating a participants lack of con-

sumption during the period of observation, rather than a true non-consumer. The GG

distribution (Stacy, 1962; Manning et al., 2005) has been used as an attractive alter-

native to the use of a normal distribution to model non-negative data (Liu et al., 2008).

The GG distribution offers flexibility on the shape of the distribution and contains the

standard gamma, log-normal, exponential and Weibull distributions as special cases

(Figure 16).
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Figure 16

Generalised gamma distribution with varying parameter values displaying the standard gamma,

Weibull, exponential and log-normal distributions.
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The repeated measures, representing each day of intake, lead to observations that are

correlated at the individual level and this has been dealt with through the introduction

of random effects (Olsen and Schafer, 2001; Tooze et al., 2002). Here random effects

are specified for each part of the model allowing a correlation structure to be imposed

on both parts.
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The motivating example for this chapter is an examination of the iron intake of com-

monly consumed foods that are episodically consumed and hence display a semi-

continuous distribution, using data collected under a complex sampling plan. In indi-

viduals with iron deficiency, advice is given to increase the intake of foods containing

iron. One approach is to include foods containing high amounts of iron such as liver,

meat and beans in the diet. However this approach is likely to require a greater dietary

change than simply increasing the intake of currently consumed foods that contain

moderate sources of iron and may therefore be less successful. This is because food

choices are often made on the basis of preference, taste and social context and dietary

modifications in this way may have limited success. Dietary advice should be tailored to

the recipient as diet has been shown to vary by age and sex (Steer et al., 2014). There-

fore a modelling strategy of dietary intake that includes explanatory variables such as

age and sex, allows the greatest sources of iron intake in groups with low levels of

iron intake to be quantified. Furthermore providing these estimates based on a nation-

ally representative sample taken from the NDNS RP brings additional challenges in

incorporating the survey weighting, clustering and strata. The resulting estimates can

be used to offer guidance to increase the consumption of foods containing moderate

sources of iron that are currently eaten and will be therefore more likely to succeed,

rather than advocating the increased consumption of foods with low consumption pat-

terns and therefore unlikely to be consumed.

3.2 The generalised gamma distribution

The following is the definition of the GG distribution for a positive random variable Y .

The probability density function following the parametrisation given by Manning et al.

(2005) depends on the parameters k, µ and σ and is given by:

f(y;k,µ, σ) = γγ

σy
√
γΓ(γ) exp[z√γ − u] y ≥ 0 (10)

where Γ(⋅) denotes the standard gamma function γ = ∣k ∣−2 > 0, and z = sign(k)(log(y)−

µ)/σ is dependent on the sign of the shape parameter k, the location parameter µ > 0,
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the scale parameter σ > 0 and u = γ exp(∣k∣ z). The expectation of Y is given by:

E(Y ) = exp [µ + (σ
k
) log(k2) + log(Γ{( 1

k2
) + (σ

k
)}) − log(Γ{ 1

k2
})] (11)

and the variance can be written as:

Var(Y ) = {exp(µ) ⋅ k2σ/k}2{Γ(1/k2 + 2σ/k)
Γ(1/k2) − [Γ(1/k2 + 2σ/k)

Γ(1/k2) ]
−2

} (12)

3.3 Two part model

The two-part model for longitudinal semi-continuous data introduced in Section 1.10 is

re-formulated to substitute the linear mixed-effects model used to model the continuous

component by a GG distribution with random effects. This comprises a logistic mixed-

effects model in the first part and a generalised gamma mixed-effects model for the

second part where the GG distribution follows that proposed by Liu et al. (2010). The

semi-continuous observation for participant i where i = 1,2, ...,N and on day j, j =

1,2, ..., ni is represented by two random variables an indicator of consumption Zij and

the amount consumed Yij given that the indicator is equal to 1

Zij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if Yij > 0

0, if Yij = 0

The indicator variable Yij is modelled using a logistic regression model that includes a

random effect to account for the correlation between repeated observations, as given

in Expression 6 in Section 1.10, is

log
⎛
⎝

πij
1 − πij

⎞
⎠
=XXX ′

ijβββ + ui, (13)

where πij = Pr(Zij = 1∣ui), XXX ′
ij is a 1×q vector of explanatory variables, βββ is a q×1 vector

of regression coefficients and ui is a random intercept. The contribution of participant

i to the log likelihood from the logistic regression part given the random effect ui, as

given in Expression 7 in Section 1.10, is

`Yi =
ni

∑
j=1
Zij log(πij) + (1 −Zij) log(1 − πij). (14)
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The positive consumption amount Yij ∣(Yij > 0, vi) is modelled using the GG distribution

of Section 3.2 with the location parameter modelled as:

µij =X∗′
ij γ + vi

where XXX∗′
ij is a 1 × p vector of explanatory variables, γγγ is a p × 1 vector of regression

coefficients, and vi is a random intercept. The contribution to the likelihood from the

second part is given by

`Yi =
n∗i

∑
j=1

[(γ − 0.5) log(γ) − log(σ) − log(zij) − log(Γ(γ)) + yij
√
γ − γ exp(∣k∣yij)] (15)

where n∗i is the number of positive intakes for individual i and zij = sign(k)( log(yij) −

µij)/σ. To account for the cross equation correlation the two random effects, ui and vi,

have a bivariate normal distribution with means zero and covariance matrix Σ where

Σ is a positive definite covariance matrix and this will capture the positive correlation

between days of consumption and the amount of food consumed as shown empirically

in Figure 17. Allowing the random effects from both parts to be correlated leads to

a better model fit (Neelon et al., 2016) and prevents possible biased inferences (Su

et al., 2009). Various approaches to estimating the intractable integrals necessary to

integrate out the random effects have been proposed, including sixth order Laplace

approximation (Olsen and Schafer, 2001) and adaptive Gaussian quadrature (Tooze

et al., 2002). The model can be extended to account for heteroscedasticity through

modelling of the scale parameter σ as a function of explanatory variables Xij where

σ2
ij = exp(X ′

ijδ), and δ is a vector of regression coefficients.

3.3.1 Extension to multistage sampling

The target population comprises L strata denoted by l, l = 1, ..., L which are divided into

Nl primary sampling units (PSU) denoted by k, k = 1, ...,K then using simple random

sampling Nkl individuals are sampled from PSU k in stratum l. The dietary records

are denoted by yijkl, j = 1, ...,Nikl clustered within individual i, i = 1, ...,Nkl in PSU k in

stratum l. To adjust the characteristics of the sampled individuals back to those of the

target population and to correct for selection bias and individual non-response, weights

wikl are created for the ith individual within the kth PSU in the lth stratum. The survey
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Figure 17

Iron intake from vegetables by number of days of consumption using data from NDNS RP

2008-12 for 4156 participants aged 1.5 years and over
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weights are included using a pseudo likelihood approach by multiplying the likelihood

function by the weighting at the individual level.

3.3.2 Standard error estimation of model parameters

Variance estimation that does not consider the multilevel sampling will typically lead

to biased estimates (Rabe-Hesketh and Skrondal, 2006); thus strata and PSU should

be considered and this can be done through the bootstrap technique. The covariance

matrix of the maximum pseudo likelihood estimate can be estimated through bootstrap:

B bootstrap replicates are generated by random sampling from each PSU in each

stratum, from each replicate the pseudo likelihood parameter estimate θ̂(p)b (b = 1, ...,B)

is obtained. The bootstrap estimate of the covariance matrix θ̂(p) is given by

cov (θ̂(p)) = A
B

B

∑
b=1

(θ̂(p)b − θ̂(p)∗)(θ̂(p)b − θ̂(p)∗)T

where θ̂(p)∗ = 1
B ∑

B
b=1 θ̂

(p)∗
b and A is a scaling factor defined by A = M̄l

M̄l−1
, where M̄l is

the average number of PSUs per stratum. The weights for each bootstrap replicate

need to be adjusted according to the sampling method (Canty and Davison, 1999).

For example, if Nl PSUs are sampled in stratum l then the adjusted weights are wbikl =

wiklkbkl, where wikl is the original weight for the ith individual in the kth PSU of the lth

stratum, and kbkl is the number of repeated samples from the kth PSU of the lth stratum,

in the bth bootstrap replicate.

For implementation in SAS, the NLMIXED procedure (Littell et al., 2006) is used.

Point estimates are calculated using a single modelling fitting with all participants and

weighted using the individual survey weighting. However the NLMIXED procedure

does not allow arguments specifying a complex survey design to be included and is

only capable of taking a single set of frequency weights. Variance estimates need to

adjust for the complex survey design and therefore a set of individual weights that ad-

just for the complex survey design and simultaneously the individual survey weighting

were created. These were calculated by sampling at the PSU level with replacement to

get a data frame of PSUs, the same number as in the original NDNS RP data. A count

of the number of times each PSU was sampled is kept, e.g. if PSU is included 3 times
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then the bootstrap weight column will contain 3. This bootstrap weight is then multiplied

by the survey weight for the same individual and this newly created weight enters the

pseudo likelihood and the model is fitted. The process is repeated with a new sam-

ple of PSUs drawn from the NDNS RP and the count of the number of times they are

sampled kept and multiplied by the corresponding survey weight for each individual

and is repeated B times and the average of the estimates resulting from the model

fitted to each bootstrapped sample is taken. This is illustrated in Figure 18 where step

1. shows the data with ID numbers, an iron value, the primary sampling unit for each

individual and their individual survey weight. Step 2. shows the list of sampled PSUs,

in step 3. a count of the PSUs is taken, this is referred to as the bootstrap weight and

finally the individual’s survey weight is multiplied by the bootstrap weight to create the

new weight which will enter the model.
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Figure 18

Illustration of the process to create a survey adjusted single weight for sampled PSUs in the NDNS participants.
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3.4 Application of the two-part model on iron consumption from

selected food groups in the NDNS RP

Iron is habitually consumed by almost all individuals on all days and its intake can thus

be modelled relatively simply as its distribution is unlikely to have a peak at zero. Yet to

make effective recommendations that fit with national food intake guidelines to increase

iron consumption it is important to examine foods that are sources of iron rather than

the nutrient itself. Foods, however, are more likely to be consumed episodically and

therefore will intake exhibit a semi-continuous distribution requiring a two-part model

approach. To illustrate the methods the NDNS RP Years 1-4 presented in Section 2

(Public Health England, 2014) is considered. Participants are asked to record every-

thing they consume over a four day period with estimated portion sizes which are then

entered into a database (Fitt et al., 2014) using appropriate food codes. The NDNS RP

contains approximately 3700 unique food codes which are grouped into 58 food groups

(excluding dietary supplements and artificial sweeteners). The contribution of iron in-

take from each food group is displayed in Figure 20 and from here five food groups

were chosen to illustrate the flexibility of the two-part model presented. These are:

‘Breakfast cereals’ which is a combination of ‘high fibre breakfast cereals’ and ‘other

breakfast cereals’; ‘Bread’ which combines the food groups ‘white bread’,‘wholemeal

bread’, ‘brown, granary and wheatgerm bread’ and ‘other bread’; ‘Vegetables’ which

combines the food groups ‘Vegetables not raw’ and ‘salad and other raw vegetables’,

‘Chips, fried and roast potatoes and potato products’ and ‘Other potatoes, potato sal-

ads and dishes’; ‘Fruit’ which is composed of the ‘Fruit’ group and ‘Fruit and Vegetables’

which is a combination of the ‘Fruit’ and ‘Vegetables’ food groups (Figure 21b). The

food groups breakfast cereals, bread and pasta rice and other cereals are all significant

contributors to dietary iron intake due to the mandatory fortification of flour with iron in

the UK (Food Standards Agency, 2008). These particular food groups were also cho-

sen to fit with dietary recommendations (NHS Choices, 2011), at the expense of other

foods that are good sources of iron for example meat, as recommending an increase

in the consumption of meat would be at odds with the eatwell plate which suggests

individuals should consume small amounts of red and processed meat. In addition the

combined fruit and vegetables group was chosen to align with the five a day campaign
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(NHS Choices, 2016). Histograms with a small number of extreme outliers removed for

ease of interpretation (partial histograms) for the 5 food groups are presented in Fig-

ure 19 also displayed are the percentage of zeros, to demonstrate the flexibility of the

methods in coping with varying distributions from >50% zeros where a zero indicates

a diary record where the food has not been consumed.
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Figure 19

Partial histograms with kernel density estimates (dark line) for iron intake of selected food groups using data from NDNS RP Years 1-4 (2008-2012)

for 4156 participants aged 1.5 years and over.
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3.4.1 Model specification

Increases in iron requirements occur during periods of growth and to replace menstrual

losses; consequently age and sex are important factors to consider and are included in

the specification of the location parameter of the GG regression model and the logistic

regression model. In addition socio-economic class (NSSEC) is included as there

appears to be an impact upon iron status that is inversely proportional to class (Thane

et al., 2000; Bates et al., 1999). The percentage contribution to total iron of all foods

is displayed in Figure 20 and then for the selected foods in Figure 21a. Figure 21b

displays the number of zeros present in each food group describing a range of cases

from breakfast cereals that had approximately 50% zeros to the fruit and vegetable

category that had less than 20% zeros. The two parts of the model are specified as

follows, firstly the mixed-effects logistic regression model (part 1):

log( πijkl
1 − πijkl

) = α0 + α1Sexikl + α2AgeGroupikl + α3NSSECikl + ui, (16)

and for the GG mixed-effects regression model (part 2):

µijkl = β0 + β1Sexikl + β2AgeGroupikl + β3NSSECikl + vi, (17)

where πijkl is the probability of consumption and µijkl is the location parameter of the

GG for the model of food intake for individual i on day j in PSU k within strata j given

that intake occurred and ui and vi are random intercepts.

Maximum likelihood estimation was carried out using adaptive Gaussian quadrature in

the SAS NLMIXED procedure (Littell et al., 2006) using 5 quadrature points following

Liu et al. (2010) who found that increasing the number of points to 10 had little impact

upon results but did take significantly longer for convergence to be reached. To con-

firm the findings, a study was carried out here by comparing standard errors for iron

in take from vegetables estimated with 5, 10, 15 and 20 quadrature points in terms of

accuracy and the time taken for each model to converge. In total 200 models were run,

50 with 5 quadrature points, 50 with 10 quadrature points, 50 with 15 quadrature points

and 50 with 20 quadrature points. An error was returned by the software when overall
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Figure 20

The percentage contribution to total iron intake by all food groups using data from NDNS RP

Years 1-4 (2008-2012) for 4156 core participants aged 1.5 years and over

aThe Miscellaneous food group includes iron fortified nutrition powders and drinks along with foods in the food groups: dry weight

beverages; soup, manufactured/retail and homemade; savoury sauces, pickles, gravies and condiments; and commercial toddler

foods.
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Figure 21a

The percentage contribution to total iron intake by selected food groups using data from NDNS

RP Years 1-4 (2008-2012) for 4156 participants aged 1.5 years and over.

0
5

10
15

20

P
er

ce
nt

ag
e 

(%
)

B
re

ak
fa

st
 C

er
ea

ls

B
re

ad

V
eg

et
ab

le
s

F
ru

it

F
ru

it 
&

 V
eg

et
ab

le
s

75



Figure 21b

The proportion of zero consumption days by selected food groups using data from NDNS RP

Years 1-4 (2008-2012) for 4156 participants aged 1.5 years and over.
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convergence did not occur and the procedure stopped running. In some cases estima-

tion for individual parameters could not be completed and the remaining parameters

were returned by the software, when this happened the results from the entire model

were excluded thus results used throughout are only from models where all parame-

ters were estimated with the desired convergence threshold. The time taken to fit 50

models varied from 15 hours and 13 minutes when ran with 5 quadrature points to 577

hours and 42 minutes with 20 quadrature points, though there was minimal difference

between the means of the estimated standard errors comparing 5 quadrature points to

the other three scenarios (see Appendix E). As a result of these findings, 5 quadrature

points was deemed sufficient for model estimates and was used in all cases with the

two-part model.

3.5 Standard error of parameter estimates

To estimate the standard errors of the parameter estimates of the two-part model,

bootstrap resampling was carried out as detailed in section 3.3.2. The number of

bootstrap samples carried out and presented in the results shown in Tables 8b-e was

50. Choosing an appropriate number of bootstrap samples to carry out is a pragmatic

trade-off dependent on the complexity of the model being fitted and hence the time

taken against the convergence of the bootstrap estimates (Andrews and Buchinsky,

1996). To examine the extent to which the standard error accuracy was affected the

two-part model was run with 300 bootstrap samples. Then the standard errors were

calculated by taking the average of either 50, 100, 200 and 300 bootstrap samples

representing 4 possible bootstrap scenarios, the results are shown in Tables 10a and

b for vegetables only and for the other food groups in Appendix D.

3.6 Results

Table 7 displays the mean, standard deviation, median, interquartile range, minimum

and maximum number of grams of food consumed each day for each of the chosen
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food groups along with the percentage of days that contain no recorded intake. The

parameter estimates of the fitted two-part model are displayed in Tables 8a-e. The

tables show the estimated regression parameters from the two-part model for different

food groups, with part 1 estimates, SE, and p-values relating to the propensity to con-

sume iron from the given food and part 2 estimates, SE, and p-values relating to the

mean intake of iron from the given food. Also displayed in the tables are the estimated

shape k and scale σ parameters from the GG distribution and the random effects vari-

ance components, that is the variance of the random effects (σ̂u, σ̂v) and their covari-

ance. Correlations between part 1 and 2 are given by ĉov(ui, vi)/σ̂uσ̂v where a positive

(negative) value indicates a positive (negative) correlation between the propensity of

consuming iron from the food and the amount of food consumed. The model regres-

sion coefficients of the first part are the log odds ratio of consumption and those from

the second part, given that the intake was positive, indicate the differences in the mean

for a one unit increase on the explanatory variable, where it is continuous or the mean

difference between categories for categorical variables which are conditional upon the

random effects. For illustration, the impact of varying the shape k and scale (σ) param-

eters of the GG is shown in Figure 16 where for example a k value of 0 and a σ value

of 1 gives the Log-normal distribution and a k value of 1 and a σ value of 0.6 gives the

Weibull distribution.

Females had greater odds of consuming iron from breakfast cereals (OR=1.5, 95%

CI:1.2, 1.8, p<0.001) but consumed smaller amounts when compared to males (γ̂=-

0.11, 95% CI:-1.2, -0.1, p<0.001). Similar results were found for iron from vegetables

but not iron from bread where males had higher odds of consuming and consumed

greater quantities than females.

All age groups consumed greater amounts of iron from bread, vegetables and the fruit

and vegetables food groups compared to the reference group 1.5-3y, though the odds

of consuming varied. Odds ratios for consuming iron from breakfast cereals varied

across age groups with the 4-10y age group having a higher odds ratio (OR=2.5, 95%

CI:1.3, 4.7, p = 0.007) whereas the 19-64y group had a lower odds ratio (OR=0.4,

95% CI:0.2, 0.7, p = 0.003) compared to the youngest reference group. The odds
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Table 7

Descriptive characteristics for selected foods using data from NDNS RP Years 1-4, (2008-

2012).

Breakfast Cereals Bread Vegetables Fruit Fruit & Vegetables

Mean (g) 23.3 76.1 127.5 91.9 219.4

sd (g) 38.8 67.5 137.3 122.5 198.5

Median (g) 0.0 70.0 90.0 50.0 179.3

Interquartile range 36.0 82.0 177.5 150.0 243.1

Min 0.0 0.0 0.0 0.0 0.0

Max (g) 490.2 675.6 1271.7 2306.5 2476.5

Zeros (%) 51.5 21.2 23.5 44.0 13.7

ratio of consuming iron from fruit was lower in the 11-18y group (OR=0.5, 95% CI:0.3,

0.9, p = 0.02) but higher in the oldest 65+y age group (OR=2.4, 95% CI:1.4, 3.9, p

<0.001), however in both cases the amount consumed was higher compared to the

1.5-3y reference group (γ̂=0.20, 95% CI:0.0, 0.4, p = 0.046 & γ̂=0.56, 95% CI:0.4, 0.7,

p<0.001 respectively)

When examining the regression coefficients for NSSEC, many groups differed from

the reference higher managerial and professional occupations group. Those in the

lower managerial and professional occupations (OR=0.6, 95% CI:0.4, 0.7, p<0.001,

γ̂=-0.07, 95% CI:-0.1, -0.01, p=0.01), intermediate occupations (OR=0.5, 95% CI:0.4,

0.8, p=0.0015, γ̂=-0.13, 95% CI:-0.2, -0.05, p=0.001) and semi-routine occupations

(OR=0.6, 95% CI:0.5, 0.8, p=0.002, γ̂=-0.09, 95% CI:-0.1, -0.03, p=0.01) classes all

had significantly lower odds ratios for the consumption of iron from bread and con-

sumed lower amounts where it was consumed. Iron from fruit intake also showed a

significantly lower odds ratio and significantly smaller amounts were consumed in the

lower managerial and professional occupations (OR=0.6, 95% CI:0.5, 0.8, p<0.001,

γ̂=-0.15, 95% CI:-0.2, -0.05, p=0.003), intermediate occupations (OR=0.4, 95% CI:0.3,

0.6, p<0.001, γ̂=-0.16, 95% CI:-0.3, -0.02, p=0.02), small employers and own ac-
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count workers (OR=0.7, 95% CI:0.5, 1.0, p=0.02, γ̂=-0.13, 95% CI:-0.2, -0.01, p=0.04),

lower supervisory and technical occupations (OR=0.4, 95% CI:0.3, 0.6, p<0.001, γ̂=-

0.22, 95% CI:-0.3, -0.1, p<0.001), semi-routine occupations (OR=0.3, 95% CI:0.2, 0.4

p<0.001, γ̂=-0.23, 95% CI:-0.3, -0.1, p<0.001) and routine occupations (OR=0.3, 95%

CI:0.2, 0.4, p<0.001, γ̂=-0.29, 95% CI:-0.4, -0.2, p<0.001) classes compared to the

reference group. The routine occupations group also had lower odds ratios and con-

sumed lower amounts of iron from vegetables (OR=0.4, 95% CI:0.3, 0.5, p<0.001, γ̂=-

0.15, 95% CI:-0.27, -0.03, p=0.01) and the fruit and vegetables combined categories

(OR=0.4, 95% CI:0.3, 0.5, p<0.001, γ̂=-0.19, 95% CI:-0.3, -0.07, p<0.001) when com-

pared to the higher managerial and professional reference group. Along with the semi

routine occupations group which also had a lower odds ratio for the consumption of

iron from fruit and vegetables and consumed smaller amounts (OR=0.4, 95% CI:0.3,

0.5, p<0.001, γ̂=-0.15, 95% CI:-0.3, -0.03, p=0.002) compared to the reference group.

Correlations between the random effects in parts 1 and 2 ranged from a fairly weak 0.12

for iron from breakfast cereals to highly correlated values of 0.92 and 0.94 in the fruit

& vegetables group and the bread groups respectively, strong correlations between

the probability of consuming iron and the amount consumed were also seen for the

separate fruit and vegetable groups of 0.65 and 0.78 respectively, highlighting that these

correlations are important and should be considered though correlated random effects.
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Table 8a

Estimated parameters of the two-part model for iron intake from breakfast cereals in the UK using data from NDNS RP Years 1-4 (2008-2012).

Part 1 Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females 0.41 0.10 <0.001 -0.11 0.03 <0.001

Age Group 1.5 -3y (Reference)

4-10y 0.91 0.33 0.007 0.48 0.09 <0.001

11-18y -0.10 0.33 0.75 0.84 0.09 <0.001

19-64y -0.88 0.29 0.003 0.37 0.08 <0.001

65y and older 0.80 0.31 0.01 -0.002 0.08 0.98

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations 0.02 0.16 0.92 0.03 0.05 0.48

Intermediate occupations 0.10 0.22 0.64 0.01 0.07 0.87

Small employers & own account workers -0.003 0.20 0.99 -0.01 0.06 0.88

Lower supervisory & technical occupations 0.005 0.21 0.98 -0.01 0.06 0.91

Semi-routine occupations -0.10 0.19 0.60 0.01 0.06 0.80

Routine occupations -0.40 0.20 0.047 0.01 0.06 0.90

Never worked -0.001 0.36 0.998 -0.002 0.11 0.99

Other 0.50 0.39 0.20 -0.002 0.12 0.99

k̂, GG distribution shape parameter 2.93 0.07 <0.001

σ̂, GG distribution scale parameter 0.01 0.05 <0.001

Estimates SE p-value

Variance components σ̂u 6.01 0.21 <0.001

σ̂v 0.32 0.02 <0.001

ĉov(ui, vi) 0.24 0.06 <0.001
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Table 8b

Estimated parameters of the two-part model for iron intake from bread in the UK using data from NDNS RP Years 1-4 (2008-2012).

Part 1 Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females -0.38 0.08 <0.001 -0.24 0.02 <0.001

Age Group 1.5 -3y (Reference)

4-10y 0.38 0.27 0.15 0.32 0.06 <0.001

11-18y -0.04 0.25 0.89 0.49 0.06 <0.001

19-64y 0.01 0.23 0.95 0.58 0.05 <0.001

65y and older 1.01 0.25 <0.001 0.44 0.05 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.56 0.13 <0.001 -0.07 0.03 0.01

Intermediate occupations -0.61 0.18 0.0015 -0.13 0.04 <0.001

Small employers & own account workers -0.26 0.16 0.12 -0.07 0.03 0.03

Lower supervisory & technical occupations -0.47 0.17 0.004 -0.04 0.04 0.26

Semi-routine occupations -0.48 0.15 0.002 -0.09 0.03 0.01

Routine occupations -0.54 0.16 <0.001 -0.05 0.03 0.19

Never worked -0.99 0.28 <0.001 -0.04 0.06 0.55

Other -0.45 0.31 0.14 0.04 0.07 0.54

k̂, GG distribution shape parameter 0.50 0.10 <0.001

σ̂, GG distribution scale parameter 1.22 0.05 <0.001

Estimates SE p-value

Variance components σ̂u 1.93 0.15 <0.001

σ̂v 0.11 0.01 <0.001

ĉov(ui, vi) 0.20 0.02 <0.001
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Table 8c

Estimated parameters of the two-part model for iron intake from vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012).

Part 1 Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females 0.40 0.076 <0.001 -0.08 0.03 0.01

Age Group 1.5 -3y (Reference)

4-10y 0.01 0.24 0.97 0.28 0.10 0.01

11-18y -0.51 0.23 0.03 0.43 0.10 <0.001

19-64y 0.41 0.21 0.053 0.79 0.09 <0.001

65y and older 1.00 0.23 <0.001 0.69 0.10 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.40 0.13 0.002 -0.07 0.05 0.17

Intermediate occupations -0.89 0.17 <0.001 -0.10 0.07 0.14

Small employers & own account workers -0.19 0.16 0.22 -0.05 0.06 0.42

Lower supervisory & technical occupations -0.69 0.16 <0.001 -0.10 0.06 0.09

Semi-routine occupations -1.10 0.14 <0.001 -0.09 0.06 0.15

Routine occupations -1.03 0.15 <0.001 -0.15 0.06 0.01

Never worked -1.00 0.27 <0.001 -0.12 0.11 0.29

Other -0.40 0.30 0.19 -0.12 0.12 0.32

k̂, GG distribution shape parameter 0.76 0.09 <0.001

σ̂, GG distribution scale parameter 0.30 0.05 <0.001

Estimates SE p-value

Variance components σ̂u 1.59 0.12 <0.001

σ̂v 0.21 0.04 <0.001

ĉov(ui, vi) 0.26 0.04 <0.001
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Table 8d

Estimated parameters of the two-part model for iron intake from fruit in the UK using data from NDNS RP Years 1-4 (2008-12)

Part 1 Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females 0.13 0.08 0.11 -0.02 0.03 0.55

Age Group 1.5 -3y (Reference)

4-10y 0.07 0.27 0.78 0.15 0.10 0.12

11-18y -0.64 0.27 0.02 0.20 0.10 0.046

19-64y -0.23 0.24 0.34 0.34 0.08 <0.001

65y and older 0.86 0.26 <0.001 0.56 0.09 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.52 0.13 <0.001 -0.15 0.05 0.003

Intermediate occupations -0.93 0.18 <0.001 -0.16 0.07 0.02

Small employers & own account workers -0.36 0.16 0.02 -0.13 0.06 0.04

Lower supervisory & technical occupations -0.80 0.16 <0.001 -0.22 0.06 <0.001

Semi-routine occupations -1.16 0.15 <0.001 -0.23 0.06 <0.001

Routine occupations -1.18 0.16 <0.001 -0.29 0.06 <0.001

Never worked -1.01 0.29 <0.001 -0.13 0.12 0.28

Other -0.39 0.31 0.21 -0.13 0.11 0.25

k̂, GG distribution shape parameter 0.60 0.07 <0.001

σ̂, GG distribution scale parameter 0.22 0.05 <0.001

Estimates SE p-value

Variance components σ̂u 2.22 0.13 <0.001

σ̂v 0.38 0.02 <0.001

ĉov(ui, vi) 0.55 0.04 <0.001
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Table 8e

Estimated parameters of the two-part model for iron intake from fruit and vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012).

Part 1 Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females 0.58 0.09 <0.001 -0.02 0.03 0.41

Age Group 1.5 -3y (Reference)

4-10y 0.15 0.30 0.62 0.30 0.09 <0.001

11-18y -0.46 0.28 0.10 0.36 0.09 <0.001

19-64y 0.49 0.26 0.06 0.79 0.08 <0.001

65y and older 1.15 0.28 <0.001 0.76 0.09 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.23 0.15 0.12 -0.08 0.05 0.06

Intermediate occupations -0.85 0.19 <0.001 -0.10 0.06 0.09

Small employers & own account workers -0.17 0.18 0.36 -0.03 0.06 0.56

Lower supervisory & technical occupations -0.67 0.18 <0.001 -0.09 0.06 0.06

Semi-routine occupations -1.02 0.17 <0.001 -0.15 0.06 0.002

Routine occupations -1.01 0.17 <0.001 -0.19 0.06 <0.001

Never worked -0.99 0.31 0.001 -0.11 0.11 0.26

Other -0.38 0.35 0.28 -0.11 0.11 0.27

k̂, GG distribution shape parameter 0.91 0.10 <0.001

σ̂, GG distribution scale parameter 0.25 0.05 <0.001

Estimates SE p-value

Variance components σ̂u 1.66 (0.15 <0.001

σ̂v 0.23 0.02 <0.001

ĉov(ui, vi) 0.35 0.04 <0.001
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3.6.1 Two-part model comparator analysis

To place the results in context is somewhat difficult as this chapter addresses cur-

rent gaps in the analysis of episodically consumed foods and, as discussed in Section

1.12.1, estimation of episodically consumed foods is not currently carried out in the

NDNS RP. Therefore to demonstrate the two-part model, introduced here, the amount

of iron consumed in the various food groups is compared to estimated intakes from a

regression model estimating mean intakes of iron from the same food groups whilst

adjusting for the NDNS RP survey design, as is currently done in the NDNS RP re-

port, but not considering the skewed distribution of intakes and not considering the

within-person variation arising from the repeated measurements of the NDNS RP par-

ticipants. Both models adjust for sex, age group and NSSEC as in the two part model

given as

µi = β0 + β1Sexi + β2AgeGroupi + β3NSSECi (18)

where µi is the mean amount of iron consumed from the food group by participant i,

sex is a categorical variable with values: males and females, age group is a categorical

variable with categories: 1.5-3y; 4-10y; 11-18y; 19-64y; and 65y and older and NSSEC

is a categorical variable containing the groups: higher managerial and professional oc-

cupations; lower managerial and professional occupations; intermediate occupations;

small employers and own account workers; semi-routine occupations; routine occupa-

tions; never worked; and other. The limitations of the survey weighted regression ap-

proach are that it does not deal with the high frequency of zeros and it fails to separate

the within- and between-person variation. This means that the variance component of

the model is incorrect which can lead to biased results.

Table 9a compares the mean and standard error of iron consumed from breakfast ce-

reals estimated by survey weighted regression and the two-part model and highlights

that statistically significant differences may be missed. For example the iron intake in

those aged 11-18y was not significantly higher than the reference group in the sur-

vey weighted regression model whereas it was found to be significantly higher in the

two-part model (Survey weighted regression: 0.15, 95% CI:-0.05, 0.35, p-value=0.15
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vs Two-part model: 0.84, 95% CI:0.66, 1.02, p-value<0.001). Moreover results from

the survey weighted regression showed a statistically significant association between

iron intake from breakfast cereals in those aged 19-64y compared to the reference

group though this was a different direction of association to the two-part model (Survey

weighted regression: -0.32, 95% CI:-0.50, -0.14, p-value<0.001 vs Two-part model:

0.37, 95% CI:0.21, 0.53, p-value<0.001).

When the amount of iron consumed from bread, as estimated by the two-part model,

was compared with estimates using the survey weighted regression model (Table 9b)

four of the NSSEC groups no longer showed a statistically significant difference com-

pared to the reference group. These were the lower managerial & professional occu-

pations group (Survey weighted regression: -0.01, 95% CI:-0.13, 0.11, p-value=0.90

vs Two-part model: -0.07, 95% CI:-0.13, -0.01, p-value=0.01); the intermediate occu-

pations group (Survey weighted regression: -0.08, 95% CI:-0.26, 0.10, p-value=0.37

vs Two-part model: -0.13, 95% CI:-0.21, -0.05, p-value <0.001); the small employers

& own account workers group (Survey weighted regression: 0.04, 95% CI:-0.12, 0.20,

p-value=0.62 vs Two-part model: -0.07, 95% CI:-0.13, -0.01, p-value=0.01) and those

in semi-routine occupations group (Survey weighted regression: -0.04, 95% CI:-0.18,

0.10, p-value=0.54 vs Two-part model: -0.09, 95% CI:-0.15, -0.03, p-value=0.01);

Estimates by survey weighted regression for iron intake from vegetables were found

to be statistically significantly different from the reference group though not in esti-

mates by the two-part model. These were the sex category with females different from

the male reference group (Survey weighted regression: -0.04, 95% CI:-0.12, 0.04,

p-value=0.26 vs Two-part model: -0.08, 95% CI:-0.14, -0.02, p-value=0.01) and five

NSSEC groups different from the reference group higher managerial & professional

occupations (Table 9c). These were the lower managerial & professional occupa-

tions group (Survey weighted regression: -0.17, 95% CI:-0.29, -0.05, p-value=0.006

vs Two-part model: -0.07, 95% CI:-0.17, 0.03, p-value=0.17); the intermediate occu-

pations group (Survey weighted regression: -0.29, 95% CI:-0.45, -0.13, p-value<0.001

vs Two-part model: -0.10, 95% CI:-0.24, 0.04, p-value=0.14); the lower supervisory %

technical occupations group (Survey weighted regression: -0.24, 95% CI:-0.40, -0.08,
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p-value=0.001 vs Two-part model: -0.10, 95% CI:-0.22, 0.02, p-value=0.09); the semi-

routine occupations group (Survey weighted regression: -0.27, 95% CI:-0.43, -0.11,

p-value=0.001 vs Two-part model: -0.09, 95% CI:-0.21, 0.03, p-value=0.15) and those

in the never worked category (Survey weighted regression: -0.32, 95% CI:-0.54, -0.10,

p-value=0.006 vs Two-part model: -0.12, 95% CI:-0.34, 0.10, p-value=0.29).

Comparing the amount of iron consumed from fruit in the two-part model with the sur-

vey regression (Table 9d) showed three cases where statistically significant differences

were found relative to the reference group in the survey weighted regression estimates

that were not observed in the two-part model estimates. These were for females (Sur-

vey weighted regression: 0.04, 95% CI:0.02, 0.06, p-value=0.005 vs Two-part model:

-0.02, 95% CI:-0.08, 0.04, p-value=0.55); for those in the age group 4-10y (Survey

weighted regression: -0.06, 95% CI:-0.10, -0.02, p-value=0.003 vs Two-part model:

0.15, 95% CI:-0.05, 0.35, p-value=0.12) and those in the never worked NSSEC group

(Survey weighted regression: -0.10, 95% CI:-0.18, -0.02, p-value=0.02 vs Two-part

model: -0.13, 95% CI:-0.37, 0.11, p-value=0.28). In addition the direction of the differ-

ence in the amount of iron consumed changed in age groups 11-18y (Survey weighted

regression: -0.18, 95% CI:-0.22, -0.14, p-value<0.001 vs Two-part model: 0.20, 95%

CI:0, 0.40, p-value=0.046) relative to the reference group 1.5-3y.

Estimates for the amount of iron consumed from fruit and vegetables showed some

differences between those for the two-part model and those from the survey regres-

sion model (Table 9e). The iron intake from fruit and vegetables for those in the age

group 11-18y was significantly higher than the reference group and this was not seen

in the comparator analysis (Survey weighted regression: 0.05, 95% CI:-0.03, 0.13,

p-value=0.25 vs Two-part model: 0.36, 95% CI:0.18, 0.54, p-value<0.001). Further-

more four NSSEC groups showed statistically significant differences compared to the

reference group in the model estimates from the survey weighted regression model

that did not occur in the two-part model. These were the lower managerial and pro-

fessional occupations group (Survey weighted regression: -0.24, 95% CI:-0.38, -0.10,

p-value=0.001 vs Two-part model: -0.08, 95% CI:-0.18, 0.02, p-value=0.06); the in-

termediate occupations group (Survey weighted regression: -0.38, 95% CI:-0.56, -
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0.20, p-value<0.001 vs Two-part model: -0.10, 95% CI:-0.22, 0.02, p-value=0.09); the

lower supervisory and own account workers group (Survey weighted regression: -0.39,

95% CI:-0.57, -0.21, p-value<0.001 vs Two-part model: -0.09, 95% CI:-0.21, 0.03,

p-value=0.06) and those in the never worked category (Survey weighted regression:

-0.42, 95% CI:-0.67, -0.17, p-value=0.002 vs Two-part model: -0.11, 95% CI:-0.33,

0.11, p-value=0.26).
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Table 9a

Estimated parameters of a survey weighted regression model and from part 2 (Amount) of a two-part model, for iron intake from breakfast cereals

in the UK using data from NDNS RP Years 1-4 (2008-2012).

Survey weighted model Two-part model: Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females -0.26 0.07 <0.001 -0.11 0.03 <0.001

Age Group 1.5-3y (Reference)

4-10y 0.54 0.10 <0.001 0.48 0.09 <0.001

11-18y 0.15 0.10 0.15 0.84 0.09 <0.001

19-64y -0.32 0.09 <0.001 0.37 0.08 <0.001

65y and older -0.18 0.11 0.09 -0.002 0.08 0.98

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.04 0.11 0.72 0.03 0.05 0.48

Intermediate occupations 0.07 0.15 0.63 0.01 0.07 0.87

Small employers & own account workers -0.22 0.14 0.12 -0.01 0.06 0.88

Lower supervisory & technical occupations -0.08 0.13 0.55 -0.01 0.06 0.91

Semi-routine occupations -0.10 0.13 0.42 0.01 0.06 0.80

Routine occupations -0.24 0.13 0.06 0.01 0.06 0.90

Never worked -0.28 0.16 0.07 -0.002 0.11 0.99

Other -0.23 0.23 0.31 -0.002 0.12 0.99
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Table 9b

Estimated parameters of a survey weighted regression model and from part 2 (Amount) of a two-part model, for iron intake from bread in the UK

using data from NDNS RP Years 1-4 (2008-2012).

Survey weighted model Two-part model: Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females -0.46 0.04 <0.001 -0.24 0.02 <0.001

Age Group 1.5-3y (Reference)

4-10y 0.46 0.05 <0.001 0.32 0.06 <0.001

11-18y 0.56 0.05 <0.001 0.49 0.06 <0.001

19-64y 0.78 0.05 <0.001 0.58 0.05 <0.001

65y and older 0.71 0.06 <0.001 0.44 0.05 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.01 0.06 0.90 -0.07 0.03 0.01

Intermediate occupations -0.08 0.09 0.37 -0.13 0.04 <0.001

Small employers & own account workers 0.04 0.08 0.62 -0.07 0.03 0.03

Lower supervisory & technical occupations 0.06 0.09 0.52 -0.04 0.04 0.26

Semi-routine occupations -0.04 0.07 0.54 -0.09 0.03 0.01

Routine occupations 0.03 0.09 0.77 -0.05 0.03 0.19

Never worked -0.12 0.12 0.34 -0.04 0.06 0.55

Other 0.03 0.14 0.84 0.04 0.07 0.54
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Table 9c

Estimated parameters of a survey weighted regression model and from part 2 (Amount) of a two-part model, for iron intake from vegetables in the

UK using data from NDNS RP Years 1-4 (2008-2012).

Survey weighted model Two-part model: Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females -0.04 0.04 0.26 -0.08 0.03 0.01

Age Group 1.5-3y (Reference)

4-10y 0.19 0.04 <0.001 0.28 0.10 0.01

11-18y 0.23 0.04 <0.001 0.43 0.10 <0.001

19-64y 0.73 0.04 <0.001 0.79 0.09 <0.001

65y and older 0.64 0.04 <0.001 0.69 0.10 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.17 0.06 0.006 -0.07 0.05 0.17

Intermediate occupations -0.29 0.08 <0.001 -0.10 0.07 0.14

Small employers & own account workers -0.12 0.08 0.11 -0.05 0.06 0.42

Lower supervisory & technical occupations -0.24 0.08 0.001 -0.10 0.06 0.09

Semi-routine occupations -0.27 0.08 0.001 -0.09 0.06 0.15

Routine occupations -0.35 0.08 <0.001 -0.15 0.06 0.01

Never worked -0.32 0.11 0.006 -0.12 0.11 0.29

Other -0.25 0.13 0.06 -0.12 0.12 0.32
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Table 9d

Estimated parameters of a survey weighted regression model and from part 2 (Amount) of a two-part model, for iron intake from fruit in the UK

using data from NDNS RP Years 1-4 (2008-2012).

Survey weighted model Two-part model: Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females 0.04 0.01 0.005 -0.02 0.03 0.55

Age Group 1.5-3y (Reference)

4-10y -0.06 0.02 0.003 0.15 0.10 0.12

11-18y -0.18 0.02 <0.001 0.20 0.10 0.046

19-64y -0.06 0.02 0.001 0.34 0.08 <0.001

65y and older 0.11 0.33 <0.001 0.56 0.09 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.07 0.03 0.01 -0.15 0.05 0.003

Intermediate occupations -0.10 0.03 0.002 -0.16 0.07 0.02

Small employers & own account workers -0.09 0.03 0.003 -0.13 0.06 0.04

Lower supervisory & technical occupations -0.14 0.03 <0.001 -0.22 0.06 <0.001

Semi-routine occupations -0.15 0.03 <0.001 -0.23 0.06 <0.001

Routine occupations -0.20 0.03 <0.001 -0.29 0.06 <0.001

Never worked -0.10 0.04 0.02 -0.13 0.12 0.28

Other -0.01 0.06 0.81 -0.13 0.11 0.25
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Table 9e

Estimated parameters of a survey weighted regression model and from part 2 (Amount) of a two-part model, for iron intake from fruit and vegetables

in the UK using data from NDNS RP Years 1-4 (2008-2012).

Survey weighted model Two-part model: Part 2

Estimates SE p-value Estimates SE p-value

Sex Males (Reference)

Females 0.00 0.04 0.95 -0.02 0.03 0.41

Age Group 1.5-3y (Reference)

4-10y 0.13 0.04 0.001 0.30 0.09 <0.001

11-18y 0.05 0.04 0.25 0.36 0.09 <0.001

19-64y 0.67 0.04 <0.001 0.79 0.08 <0.001

65y and older 0.75 0.06 <0.001 0.76 0.09 <0.001

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.24 0.07 0.001 -0.08 0.05 0.06

Intermediate occupations -0.38 0.09 <0.001 -0.10 0.06 0.09

Small employers & own account workers -0.21 0.09 0.015 -0.03 0.06 0.56

Lower supervisory & technical occupations -0.39 0.09 <0.001 -0.09 0.06 0.06

Semi-routine occupations -0.42 0.09 <0.001 -0.15 0.06 0.002

Routine occupations -0.55 0.09 <0.001 -0.19 0.06 <0.001

Never worked -0.42 0.13 0.002 -0.11 0.11 0.26

Other -0.27 0.17 0.11 -0.11 0.11 0.27
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3.6.2 Number of bootstrap samples for SE estimation

Tables 10a and 10b display the point estimates of regression coefficients for the mod-

els for iron intake from vegetables along with standard errors taken from the average

of 50, 100, 200 and 300 bootstrap samples to 5 decimal places and Tables 11a and b

display the corresponding percentage differences for the standard errors from models

estimating iron intake from vegetables between 50 bootstrap samples and 100, 200

and 300 bootstrap samples respectively. It can be seen from these tables that the

standard errors change very little when the number of bootstrap samples is increased.

Across both Tables, 11a and b, an increase in the percentage difference as the number

of bootstrap samples increases would suggest that a higher number of bootstrap sam-

ples are required, though there doesn’t appear to be an overall trend in this direction

observed, and whilst the percentage difference for some estimates does increase as

the number of bootstrap samples increases, for example across age groups, there are

a similar number of cases where the percentage difference decreases as the number

of bootstrap samples increases, indicating that standard errors given as a average of

300 bootstrap samples are similar to those from 50 bootstrap samples. Moreover the

percentage differences tend to be around 1% in Table 11b with smaller differences of

around 0.3% seen in Table 11a when comparing standard errors estimated from 300

bootstrap samples with those estimated from 50 bootstrap samples. Similar results are

found for the other food groups (Tables 24e and f in Appendix D) and therefore for the

sake of computational brevity 50 bootstrap samples are recommended and were used

in Tables 8a-9e.
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Table 10a

Estimated regression parameters of the two-part model for iron intake from vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012)

showing the impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 1

Estimates Standard Error (Number of bootstrap samples)

SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females 0.40 0.07606 0.07595 0.07592 0.07598

Age Group 1.5 -3y (Reference)

4-10y 0.01 0.24245 0.24042 0.24117 0.24123

11-18y -0.51 0.23309 0.23120 0.23201 0.23209

19-64y 0.41 0.21071 0.20866 0.20953 0.20960

65y and older 1.00 0.22857 0.22685 0.22745 0.22759

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.40 0.12629 0.12590 0.12578 0.12590

Intermediate occupations -0.89 0.16396 0.16406 0.16407 0.16414

Small employers & own account workers -0.19 0.15656 0.15596 0.15596 0.15622

Lower supervisory & technical occupations -0.69 0.15578 0.15565 0.15562 0.15575

Semi-routine occupations -1.10 0.14235 0.14212 0.14197 0.14207

Routine occupations -1.03 0.14988 0.14923 0.14933 0.14942

Never worked -1.00 0.26341 0.26227 0.26201 0.26292

Other -0.40 0.29787 0.29532 0.29718 0.29726
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Table 10b

Estimated regression parameters of the two-part model for iron intake from vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012)

showing the impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 2

Estimates Standard Error (Number of bootstrap samples)

SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females -0.08 0.03119 0.03154 0.03146 0.03150

Age Group 1.5 -3y (Reference)

4-10y 0.28 0.10342 0.10484 0.10488 0.10499

11-18y 0.43 0.10139 0.10269 0.10281 0.10290

19-64y 0.79 0.08977 0.09106 0.09118 0.09129

65y and older 0.69 0.09540 0.09678 0.09681 0.09695

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.07 0.04901 0.04960 0.04944 0.04952

Intermediate occupations -0.10 0.06696 0.06778 0.06764 0.06764

Small employers & own account workers -0.05 0.06020 0.06091 0.06078 0.06092

Lower supervisory & technical occupations -0.10 0.06262 0.06337 0.06320 0.06330

Semi-routine occupations -0.09 0.05848 0.05928 0.05908 0.05914

Routine occupations -0.15 0.06211 0.06274 0.06262 0.06269

Never worked -0.12 0.11226 0.11335 0.11313 0.11349

Other -0.12 0.11787 0.11983 0.12030 0.12033

k̂, GG distribution shape parameter 0.76 0.09302 0.09113 0.09179 0.09154

σ̂, GG distribution scale parameter 0.30 0.04902 0.04820 0.04805 0.04836

Variance components σ̂u 1.59 0.12002 0.11862 0.11882 0.11914

σ̂v 0.21 0.03890 0.04050 0.03920 0.03916

ĉov(ui, vi) 0.26 0.04462 0.04507 0.04465 0.04459
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Table 11a

Percentage difference between standard error estimates for iron intake from vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012),

with 100, 200 and 300 bootstrap samples and 50 replicas: Part 1

Estimates Standard Error (Number of bootstrap samples)

SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females 0.40 0.07606 0.14 0.18 0.11

Age Group 1.5 -3y (Reference)

4-10y 0.01 0.24245 0.84 0.53 0.50

11-18y -0.51 0.23309 0.81 0.46 0.43

19-64y 0.41 0.21071 0.98 0.56 0.53

65y and older 1.00 0.22857 0.76 0.49 0.43

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.40 0.12629 0.31 0.40 0.31

Intermediate occupations -0.89 0.16396 -0.06 -0.07 -0.11

Small employers & own account workers -0.19 0.15656 0.38 0.38 0.22

Lower supervisory & technical occupations -0.69 0.15578 0.08 0.10 0.02

Semi-routine occupations -1.10 0.14235 0.16 0.27 0.20

Routine occupations -1.03 0.14988 0.43 0.37 0.31

Never worked -1.00 0.26341 0.43 0.53 0.19

Other -0.40 0.29787 0.86 0.23 0.20
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Table 11b

Percentage difference between standard error estimates for iron intake from vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012),

with 100, 200 and 300 bootstrap samples and 50 replicas: Part 2

Estimates Standard Error (Number of bootstrap samples)

SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females -0.08 0.03119 -1.12 -0.86 -0.99

Age Group 1.5 -3y (Reference)

4-10y 0.28 0.10342 -1.36 -1.40 -1.51

11-18y 0.43 0.10139 -1.27 -1.39 -1.48

19-64y 0.79 0.08977 -1.43 -1.56 -1.68

65y and older 0.69 0.09540 -1.44 -1.47 -1.61

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.07 0.04901 -1.20 -0.87 -1.04

Intermediate occupations -0.10 0.06696 -1.22 -1.01 -1.01

Small employers & own account workers -0.05 0.06020 -1.17 -0.96 -1.19

Lower supervisory & technical occupations -0.10 0.06262 -1.19 -0.92 -1.08

Semi-routine occupations -0.09 0.05848 -1.36 -1.02 -0.01

Routine occupations -0.15 0.06211 -1.01 -0.82 -0.93

Never worked -0.12 0.11226 -0.97 -0.77 -1.09

Other -0.12 0.11787 -1.65 -2.04 -2.07

k̂, GG distribution shape parameter 0.76 0.09302 2.05 1.33 1.60

σ̂, GG distribution scale parameter 0.30 0.04902 1.69 2.00 1.36

Variance Components σ̂u 1.59 0.12002 1.17 1.00 0.74

σ̂v 0.21 0.03890 -4.03 -0.77 -0.67

ĉov(ui, vi) 0.26 0.04462 -1.00 -0.07 0.07
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3.7 Discussion

This chapter presented a two-part mixed-effects model capable of estimating the vari-

ability arising from semi-continuous data sampled under a complex sampling design

applied to iron intake from selected food groups. This showed that females differed

from males in both the amount of iron consumed, and the probability of consuming

iron from bread, breakfast cereals, vegetables, and fruit and vegetables (Tables 8a-e).

Iron intakes from these food groups were expected to be higher in males than females

due to higher food intakes in general. Differences occurred between the reference age

group, 1.5-3y, and the older age groups. In most cases larger amounts of iron from the

selected food groups were consumed although the propensity to consume the foods

was not always found to be higher. Iron intake from breakfast cereals was lower in the

19-64y age group along with iron from fruit and from vegetables in those aged 11-18y.

Increasing iron intake through advice to increase meat and fish consumption has been

shown to be ineffective at its goal in infants (Penny et al., 2005) whereas breakfast ce-

reals are consumed by infants and increasing iron intake through increased breakfast

cereal consumption may be easier to achieve.

The NSSEC categories represent a gradient where typically those in a higher group

have greater material wealth than those of a relatively lower group, here almost all

NSSEC groups had a lower propensity to consume and lower consumption amounts

compared to those in the highest NSSEC group: higher managerial and professional

occupations (Tables 8b-e). In the case of iron from fruit this tended to decrease in a

linear fashion. Similar findings have been seen in the EPIC-Norfolk cohort examining

over 22,000 men and women, showing that fruit and vegetable intake was lower in

the manual social class vs the non-manual and those living in relatively more deprived

areas (Shohaimi et al., 2004). Individuals living in more deprived areas, and this relates

to those in lower NSSEC classes who have lower material wealth, have been found to

be less aware of the importance of fruit and vegetable intake and are less likely or

willing to act upon advice to change (McIntosh et al., 1990).
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Here individual foods were combined into broad groups which has the advantage of

allowing for a simple interpretation of intake between groups, though it may fail to

describe the variation in the type of foods within each group. For example, there is

evidence to suggest that vegetable intake varies by socio-economic position with those

in higher social classes consuming a greater variety of fruits and vegetables than indi-

viduals in lower classes (Darmon and Drewnowski, 2008) and may therefore consume

a greater variety of micronutrients. Similarly the proportion of breakfast cereals coming

from the "high fibre breakfast cereals" category is lower in age groups 4-10y and 11-

18y compared to older age groups (Bates et al., 2014b) and these typically have lower

levels of added sugars. While the regression coefficients presented here compared

overall consumption of the food groups across socioeconomic groups, it is not possible

to disentangle qualitative differences in the choice of single foods that form each group.

The food groups were chosen, in part, as a demonstration of modelling semi-continuous

data with a high proportion of zero values but mainly as they were found to be the main

sources of iron currently consumed in the NDNS RP and that increasing intake of these

foods is in line with dietary advice. The Eatwell Plate (NHS Choices, 2011), for exam-

ple, suggests a third of food intake should come from starchy carbohydrates including

bread and breakfast cereals and a third from fruit and vegetables. Using the findings

presented here recommendations can be made to groups to increase their iron intake

by increasing intakes of recommended foods.

The food groups breakfast cereals and bread are high in iron as flour is fortified with

iron. However iron fortification is not without controversy as it can lead to iron over-

load in at-risk individuals, there has been some evidence to suggest associations with

increased risk of diabetes (Forouhi et al., 2007), cancer (Huang, 2003) and cardiovas-

cular disease (Danesh and Appleby, 1999). Furthermore in Denmark, ending the iron

fortification of flour appeared to have little impact upon population iron levels (Osler

et al., 1999) though this is not seen everywhere (Sadighi et al., 2008; Huang et al.,

2009), nevertheless in the UK iron fortification contributes a sizeable proportion of iron

to the diet and increasing the range of foods fortified with iron could see a reduction in

iron deficiency.
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To compare the effectiveness of the introduced methods, a second piece of analy-

sis was presented using the amount part (part 2) of the novel methods presented

here. This is based on the generalised gamma distribution and includes a random

intercept and accounts for the survey weighting and design. Estimates given by the

amount model were presented alongside those using methods currently used in the

NDNS RP, namely a survey weighted regression model that does not consider mea-

surement error nor the skewed intake distribution. The magnitude and statistical signif-

icance of the regression coefficients for sex, age and NSSEC groups differed between

the novel amount part model and the traditional survey weighted regression method.

This includes the finding of the amount part model that females consumed significantly

less iron from vegetables when compared to males that was not found in the survey

weighted regression model and that females consumed significantly more iron from

fruit compared to males as estimated by the survey weighted regression, a finding that

was not repeated in the amount part model. Similarly, differences in the amount of

iron between NSSEC groups estimated by the two methods were found. For example,

with the exception of those in the ’other’ group, all NSSEC groups were found to con-

sume significantly lower amounts of iron from fruit and vegetables compared to those

in the higher managerial and professional group as estimated by the survey weighted

regression model whereas only those in the semi- and routine occupations were found

to consume lower amounts of iron from fruit and vegetables compared to the refer-

ence group and that the absolute amount of iron estimated by the survey weighted

regression model was approximately twice as low as the estimated amounts given by

the amount part model. As a result, associations indicated by the incorrectly specified

survey weighted model may be spurious and should be interpreted with care.
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4 Quantile regression of dietary intake in complex sam-

ple surveys

As detailed in the aims of this thesis (Section 1.15), of interest currently is the mod-

elling of usual intake of the diet. There are different challenges in estimating the intake

of foods and nutrients. This chapter serves to complement Chapter 3 that presented

methods for modelling the mean intake of foods and nutrients, by presenting methods

to examine the tails of intake distributions. By examining the proportion of the popula-

tion with low intakes of a particular nutrient, governments and public health agencies

are better informed to introduce or amend policies to reduce the number of people at

risk of deficiency. This chapter extends a recently developed quantile regression ap-

proach for clustered data to include a complex sample design in the estimation. The

approach is illustrated by describing patterns of dietary iron intake in the UK compared

to reference values. The extension to include a complex sample design allows this

model to be used to estimate intake collected from survey data, such as the NDNS

RP collected using complex sampling methods and shows that, compared to weighted

linear mixed-effects regression is better capable of modelling skewed distributions.

4.1 Introduction

To monitor dietary intake a more complete characterisation of the distribution is re-

quired to identify those at the lower end of the distribution who are more likely to be

at risk of deficiency and conversely those at the high end being at increased risk of

toxicity. This can be achieved by directly modelling the conditional quantiles of the

distribution of dietary intake given the explanatory variables through quantile regres-

sion (Koenker and Bassett, 1978; Koenker and Hallock, 2001). Whilst linear regression

models are capable of providing estimates of particular quantiles through the inverse

of the CDF, this will fail to provide a complete picture of relationships between dietary

intake and explanatory variables, as these are not easy to include in the quantile es-

timates. In addition, outliers often present in dietary data can have a large influence
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on mean estimates, in which case, the median becomes a more robust measure of

location.

Quantile regression using data sampled with simple random sampling is well estab-

lished, and there have been methods for confidence interval estimation in the com-

plex sample case (Francisco and Fuller, 1991; Dubnicka, 2007; Román-Montoya et al.,

2008; Dodd, 1999; Lee and Eltinge, 1999). Geraci (2013) provided a recent review

of quantile regression of survey data highlighting a limited number of studies. These

included using quantile regression to estimate Body Mass Index using survey data col-

lected in the US, where the survey weight was included in local-linear kernel weights

required to produce smoothed growth curves (Li et al., 2010). Also mentioned was an

application mapping quantile of expenditure in Ecuador (Geraci and Salvati, 2007). The

multistage sampling and sampling weightings have different impacts upon the model

estimates. The sampling weights affect both the point estimates and variance esti-

mates as they adjust the sample back to the population but the clustering and strata

will have an impact only upon the variance estimation as they deal with changes due to

similarities (through clustering) and differences (strata) (see Sections 1.7 and 2.6 and

Table 5).

Demonstrated here is the use of a recently developed linear mixed-effects quantile

regression model based on the asymmetric Laplace distribution (Geraci and Bottai,

2007; Geraci, 2014) to obtain a more accurate description of the distribution of di-

etary data collected using a complex sample design. Whilst the asymmetric Laplace

distribution is used for maximum likelihood estimation of the parameters, due to the

equivalence of the estimating equations for the regression parameters with those from

non-parametric quantile regression (Koenker and Bassett, 1978; Koenker and Hallock,

2001), the method is robust to distributional assumptions. A pseudo likelihood ap-

proach is used to incorporate the sampling weightings in the estimation, and bootstrap

methods are employed to estimate standard errors of the parameters estimates that

account for clustering and stratification. The proposed approach can be easily imple-

mented through use of the “survey" (Lumley, 2004, 2014) and “lqmm" (Geraci, 2014;

Geraci and Bottai, 2014) R packages. The method is illustrated by describing current
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patterns of iron intake in the UK population using dietary data from the UK NDNS RP

(Public Health England, 2014).

4.2 The asymmetric Laplace distribution as working model in quan-

tile regression with a random intercept

A continuous random variable Y ∈ R has an asymmetric Laplace distribution (ALD)

ALD(µ,σ, p) (Yu and Zhang, 2005) with parameters −∞ < µ < ∞, σ > 0 and 0 < p < 1, if

its probability density is

f(y;µ,σ, p) = p(1 − p)
σ

exp{ − 1

σ
ρp(y − µ)}, (19)

where µ is a location parameter, σ is a scale parameter and p is an asymmetry param-

eter; and

ρp(y − µ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(y − µ), if (y − µ) ≥ 0

(p − 1)(y − µ), if (y − µ) < 0.

For a fixed value of p, the parameter of interest is µ as it defines the pth quantile of the

distribution and σ is a nuisance parameter. To model the pth quantile, denoted by µ(p),

of dietary intake yij of individual i, i = 1 . . . , n at day j, j = 1, . . . ni for a given vector of

explanatory variables Xij and regression coefficients β(p) we specify

µ(p)(X ′

ij, ui) =X ′

ijβ
(p) + ui (20)

where ui is a random intercept with assumed normal distribution with zero mean and

variance σu.

The expectation is given by

E(y) = µ + σ 1 − 2p

p(1 − p) (21)

and the variance is given by

VAR(y) = σ
2(1 − 2p + 2p2)
(1 − p)2p2

(22)

Under the assumption that yij ∣ui are independent, maximum likelihood estimation based

on the working distribution ALD(µ(p), σ(p), p) yields robust estimates of β(p) with respect
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to distributional assumptions (Geraci and Bottai, 2007; Geraci, 2014). This follows from

the equivalence between maximum likelihood estimation of the regression parameters

in quantile regression based on the ALD and estimation based on a minimisation prob-

lem analogous to least squares but using the function ρp as a loss function (Koenker

and Bassett, 1978).

Inference is based on the marginal likelihood function which is defined as the integral

of the joint probability density of (y, ui) with respect to ui. The joint probability density

of (y, ui) is

p(y, ui;β(p), σ, σu) =
n

∏
i=1
p(yi, ui;β(p)) =

n

∏
i=1

ni

∏
j=1
f(yij ∣ui,Xi;β

(p), σ)p(ui;σu), (23)

where f(yij ∣ui,Xi;β(p), σ) denotes the asymmetric Laplace density function with pa-

rameter p fixed, location µ(p)(X ′

ij, ui) with βp the vector of quantile regression param-

eters, scale parameter σ; and p(ui;σu) is the density function of the random effect ui,

typically a normal density with mean zero and variance σu. The ith contribution of

observations yi to the marginal likelihood function is obtained by integrating out the

random intercept in the joint distribution of (yi, ui), that is

LYi(β(p), σ, σu) = ∫ p(yi, ui;β(p), σ, σu)dui.

Gauss-Hermite quadrature uses a fixed set of K ordinates and weights (vk,wk), k =

1, . . . ,K to approximate the integral with respect to ui as

LYi(β(p), σ, σu) ≈
K

∑
k=1
wk exp{log(p(yi, vk;β(p), σ, σu)},

and the marginal likelihood is then simply calculated as

LY (β(p), σ, σu) =
n

∏
i=1
LYi(β(p), σ, σu).

Gaussian quadrature has been found to be computationally less intensive and more ef-

ficient than a Monte Carlo EM procedure (Geraci and Bottai, 2007) previously proposed

by the same authors Geraci (2014).
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4.3 Statistical inference taking the complex sample design into

account

The quantile regression model can be extended to describe dietary data collected using

a complex survey design that involves multistage sampling. Often, the target population

is divided into L strata, and within each stratum l, l = 1, . . . , L, Nl primary sampling units

(PSUs) are sampled under a given probability sampling design. Subsequently, Nkl

individuals are selected from the kth PSU in stratum l using SRS. Following selection,

sampling weights wikl are calculated for individual i in PSU k of stratum l to adjust for

unequal selection probability, to compensate for non-response rate and to reflect known

population characteristics. Each selected individual then provides several records of

dietary intake, generating clustered data at the individual level. The survey design for

the NDNS RP is described in detail in Section 2.4 though briefly, the data comprise

dietary intake records yijkl taken at day j, (j = 1, . . . ,Nikl) by individual i, (i = 1, ...,Nkl)

selected from the kth PSU in stratum l, and a vector of explanatory variables Xijkl.

4.4 Pseudo likelihood estimation

A pseudo likelihood approach can be used to incorporate the sampling weights. Note

that the weights discussed in the previous section do not vary within individual; there-

fore, the weights can readily be incorporated and re-scaling is not required, unlike other

contexts whereby the sampling weights might change at different levels of sampling,

such as a weighting that adjusts for day of the week and therefore would vary within

the individual (Asparouhov, 2006; Rabe-Hesketh and Skrondal, 2006).

4.5 Model selection

Model selection can be undertaken using a pseudo likelihood ratio test. The analytical

distribution of the PLRT statistic requires the computation of the weighted information

matrix, which can be challenging to obtain. Alternatively, Aerts and Claeskens (1999)
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have shown that the parametric bootstrap method provides a consistent estimator for

the distribution of the pseudo likelihood ratio test statistics in similar settings to that

presented here involving models for clustered data, this approach is adopted here.

This is undertaken by: generating R samples (with the same cluster structure and size

as the observed sample) from the fitted null model; for each rth sample, pseudo ML

estimates of the parameters are obtained from the null and alternative models, and the

PLRT statistic t∗r from the rth sample is calculated. The significance of the PLRT is

calculated by Equation 24:

Pboot =
1 +#{t∗r ≥ t}

R + 1
(24)

where t denotes the observed PLRT statistic.

4.6 Estimation of standard errors

Bootstrap resampling can be used for estimation of uncertainty of the maximum pseudo

likelihood estimates, taking into account the complex survey design. To obtain boot-

strap estimates of the covariance matrix of the maximum pseudo likelihood estimate

θ̂(p) = (β̂(p), σ̂(p)), B bootstrap replicates were generated by random sampling from

each PSU in each stratum, from each replicate the pseudo likelihood parameter esti-

mate θ̂(p)b (b = 1, ...,B) is obtained. The bootstrap estimate of the covariance matrix θ̂(p)

is given by

cov (θ̂(p)) = A
B

B

∑
b=1

(θ̂(p)b − θ̂(p)∗)(θ̂(p)b − θ̂(p)∗)T

where θ̂(p)∗ = 1
B ∑

B
b=1 θ̂

(p)∗
b and A is a scaling factor defined by A = M̄l

M̄l−1
, where M̄l is

the average number of PSUs per stratum. The weights for each bootstrap replicate

need to be adjusted according to the sampling method (Canty and Davison, 1999).

For example, if Nl PSUs are sampled in stratum l then the adjusted weights are wbikl =

wiklkbkl, where wikl is the original weight for the ith individual in the kth PSU of the lth

stratum, and kbkl is the number of repeated samples from the kth PSU of the lth stratum,

in the bth bootstrap replicate.
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4.7 Modelling of dietary iron consumption

The purpose of the analysis was to describe current patterns of dietary iron consump-

tion in the UK population by age and sex and to compare with corresponding age and

sex specific LRNI values for iron. The following analysis is thus concerned with a nutri-

ent: dietary iron, and although supplements containing iron were recorded, they were

not included in the analysis. Individual daily iron intake was taken as the total iron

(mg/day) consumed in foods and drinks only (i.e. excluding supplements). Of the initial

6127 participants between 2008 and 2012, aged 65y or less, 18 were removed from

the analysis because they had a missing value for the NSSEC variable which gave

a total of 24232 observations of which 1.8% recorded three days with the remaining

recording 4 days of intake. Differences in dietary intake have been shown at the week-

end (Haines et al., 2003), therefore a binary variable (1=weekday, 0=weekend) was

created to distinguish week day consumption from weekend days defined as Saturday

and Sunday. The survey design consists of 795 PSUs clustered in 388 strata with an

average cluster size of 9 and a maximum of 19. There are two PSUs with a single par-

ticipant (lonely PSUs) which were joined with the nearest similar cluster. The sample

weightings used to adjust for selection probability and non response ranged from 0.02

to 10.23, had a median (IQR) of 0.50 (0.96) and a mean (sd) of 0.94 (1.14). The differ-

ence in median and mean values reflects the over sampling of children and participants

from Northern Ireland, Wales and Scotland as their contributions are deflated so they

reflect the population of the UK. The pth quantile of dietary intake yijkl, taken at day

j, (j = 1, . . . ,Nikl) by individual i, (i = 1, ...,Nkl) selected from the kth PSU in stratum l,

is expressed as in Equation 20 by

µ
(p)
ijkl = β

(p)
0 +β(p)1 Sexikl+β(p)2 Ageikl+β

(p)
3 Age2

ikl+β
(p)
4 Age3

ikl+β
(p)
5 NSSECikl+β(p)6 Weekdayijkl+ui,

(25)

where ui is a random intercept with assumed normal distribution with zero mean and

variance σu.
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4.8 Results

Table 12 presents the participants’ weighted characteristics, including socio-economic

status (NSSEC), age and proportion of diary records taken during the weekend (Satur-

day or Sunday) by sex. Although each participant recorded their intake for 4 days only,

the survey was designed to ensure that a reasonable proportion of weekend days were

captured, yielding at least one third of weekend observations on average. There is a

good mix of socio-economic status in the sample, which was achieved by the survey

stratification by region.

The 2.5th, 25th, median, 75th and 97.5th quantiles were modelled with sex, age, week-

day and NSSEC as explanatory variables (Equation 25). The distribution of iron intake

is described through a weighted histogram in Figure 22. As expected, this shows a

skewed distribution partly due to a number of outliers, which are checked by nutrition-

ists and deemed feasible, but are often present in survey dietary data. The figure also

shows the asymmetric Laplace distribution fitted to these data. The fit appears to be

reasonably good.

Figure 23 provides an empirical graphical representation of all the available data, pre-

senting the empirical median iron intake for each participant alongside the estimated

quantile regression curves with 95% confidence bands by age. It can be seen that the

estimated curves represent the patterns of intake well. The mean and mean ±2sd from

a reference population were used to set thresholds of iron intake in a population, and

represent the estimated average requirement (EAR), LRNI(mean-2sd) and reference

nutrient intakes RNI (mean+2sd) respectively (Scientific Advisory Committee on Nu-

trition (SACN), 1991). These are reference values set by the Committee on Medical

Aspects of Food and Nutrition Policy (COMA) and endorsed by SACN. Comparison of

the 2.5th quantile with the LRNI recommendations according to sex and age can help

to identify those who are at risk of dietary deficiencies (Figures 24 and 25). Inspection

of the observed median intake by age suggested that the relationship of age could be

non-linear (Figure 23). Quadratic and cubic terms of age were added to assess this. A

bootstrap PLRT showed that a model including the cubic term fitted significantly better
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Table 12

Weighted demographic characteristics of 6109 participants aged 65y and under in the NDNS Rolling

Programme Y1-4 (2008-2012)

Females Males All

Number of participants (%) 3249 (50.9) 2860 (49.1) 6109

Age (years), (mean, SD) 34.0 (18.1) 33.4 (18.1) 33.7 (18.1)

NS-SEC (%)

Higher managerial and professional occupations 462 (14.2) 502(17.4) 971 (15.3)

Lower managerial and professional occupations 869 (26.7) 783 (26.5) 1653 (26.7)

Intermediate occupations 271 (8.3) 237 (7.9) 508 (8.5)

Small employers and own account workers 394 (12.1) 289 (10.0) 678 (11.4)

Lower supervisory and technical occupations 329 (10.1) 274 (10.7) 601 (10.2)

Semi-routine occupations 430 (13.2) 342 (12.5) 769 (12.7)

Routine occupations 329 (10.1) 329 (11.7) 660 (11.1)

Never worked 83 (2.6) 53 (1.7) 134 (2.2)

Other 83 (2.6) 52 (1.6) 134 (1.9)

Weekend consumption days (%) 31.7 31.9 31.8

NS-SEC is the National Statistics socio-economic classification.
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Figure 22

Weighted histogram of mean daily iron intake for 6109 participants aged 65 and under in the

NDNS Y1-4 (2008-12) (shaded area) and fitted asymmetric Laplace distribution (dashed line).

Iron (mg)

D
en

si
ty

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

112



Figure 23

Estimated quantile iron intake with 95% confidence bands and observed median individual

intake.
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Figure 24

Estimated iron intake quantiles with 95% confidence bands by age groups with LRNI recom-

mendations (broken lines).
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Figure 25

Estimated iron intake quantiles with 95% confidence bands by age groups with LRNI recom-

mendations (broken lines) that differ by sex.
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that a model with linear and quadratic terms only (PLRT statistic= 0.00672, Degrees of

freedom=1, p-value <0.001).

Figures 24 & 25 show the 2.5th, 25th, median, 75th and 97.5th estimated quantiles of

iron intake by each year of age including reference values. The LRNI is the same for

males and females for ages 1-3y, 4-6y, 7-10y and 50-65y (Scientific Advisory Commit-

tee on Nutrition (SACN), 1991); in such cases plots of quantiles are presented for both

sexes in Figure 24. Sex specific LRNI values are provided for age groups 11-18y and

19-50y separately in Figure 25. Estimates are given by the solid line and the shaded

area indicates 95% confidence bands. The plots show the large proportion of females

below the LRNI for iron with the dashed LRNI line going between the 25th and 50th

quantiles in Females aged 19 to 50y and close to the 50th quantile throughout the en-

tire range of 11 to 18y age group. In the majority of other groups the LRNI is close to,

or below, the predicted 2.5th quantile.

Table 13 presents the estimated regression coefficients and standard errors when

modelling the 2.5th, 25th, median, 75th and 97.5th quantiles of iron intake. Age and

its square had significant regression coefficients across quantiles, with the exception

of the lowest quantile (2.5th) along with the regression coefficient of Age cubed except

for the two lowest quantiles (2.5th 25th). Males consumed significantly higher amounts

of iron across all quantiles of intake when compared to females (reference group). Ex-

amining the impact of NSSEC showed a trend towards decreased iron intake compared

to the reference group of higher managerial and professional occupations. All quan-

tiles showed significantly lower intakes in the intermediate occupations, lower super-

visory and technical occupations, semi-routine occupations, routine occupations and

the never worked groups compared to the reference group. The lower managerial and

professional occupations group had significantly lower intake across all quantiles with

the exception of the highest (97.5th) quantile and those in the small employers and own

account workers group had significantly lower iron intakes in the lowest quantile only,

compared to those in the higher managerial and professional occupations group. Also

iron intakes were higher on weekends (Saturday - Sunday) across quantiles compared

to intake on week days (Monday - Friday).
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Table 13

Estimated regression parameters for 2.5th, 25th, 50th, 75th and 97.5th quantiles and 95% confidence intervals for dietary iron intake in the UK.

The model used for quantile regression estimation was the linear mixed-effects quantile regression with ALD with SE estimated using bootstrap.

2.5th 95%CI 25th 95%CI 50th* 95%CI 75th 95%CI 97.5th 95%CI

Age -0.009 0.06 -0.08 0.136 0.20 0.07 0.254 0.32 0.19 0.418 0.50 0.33 0.75 0.90 0.60

Age2 -0.043 0.18 -0.27 -0.307 -0.06 -0.55 -0.54 -0.30 -0.79 -0.842 -0.54 -1.14 -1.377 -1.06 -1.69

Age3 0.098 0.33 -0.13 0.229 0.48 -0.02 0.359 0.59 0.13 0.469 0.75 0.19 0.65 0.92 0.38

Gender: Females (Reference)

Gender: Males 1.188 1.44 0.94 1.517 1.76 1.28 1.797 2.08 1.51 2.083 2.37 1.80 2.475 2.81 2.14

Weekday: Weekend (Reference)

Weekday: Weekday 0.024 0.18 -0.13 0.148 0.27 0.02 0.29 0.44 0.14 0.383 0.54 0.22 0.502 0.72 0.29

Higher managerial and professional occupations (Reference)

Lower managerial and professional occupations -0.576 -0.26 -0.90 -0.493 -0.08 -0.91 -0.436 -0.01 -0.86 -0.434 -0.01 -0.86 -0.318 0.18 -0.82

Intermediate occupations -0.753 -0.37 -1.14 -0.734 -0.21 -1.26 -0.723 -0.23 -1.22 -0.699 -0.14 -1.26 -0.656 -0.07 -1.24

Small employers and own account workers -0.526 -0.03 -1.03 -0.473 0.13 -1.07 -0.447 0.15 -1.04 -0.398 0.11 -0.90 -0.305 0.26 -0.87

Lower supervisory and technical occupations -1.043 -0.62 -1.47 -0.97 -0.51 -1.43 -0.971 -0.52 -1.42 -0.925 -0.34 -1.51 -0.911 -0.34 -1.48

Semi-routine occupations -1.13 -0.83 -1.43 -1.09 -0.63 -1.55 -1.054 -0.66 -1.45 -0.98 -0.49 -1.47 -0.934 -0.47 -1.40

Routine occupations -1.281 -0.87 -1.69 -1.273 -0.67 -1.88 -1.24 -0.64 -1.84 -1.202 -0.67 -1.73 -1.055 -0.46 -1.65

Never worked -1.365 -0.12 -2.61 -1.308 -0.32 -2.30 -1.301 -0.23 -2.37 -1.303 -0.18 -2.43 -1.235 -0.04 -2.43

Other -0.356 0.63 -1.35 -0.351 0.43 -1.13 -0.343 0.45 -1.13 -0.338 0.52 -1.20 -0.335 0.55 -1.22

*The pseudo likelihood ratio test statistic is 0.00672, Degrees of freedom=1, p<0.001 for the regression coefficient of age cubic
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4.8.1 Quantile regression comparator analysis

To place the results of the above analysis into context a further set of estimated iron

intake figures are presented in Table 14. These were produced using by a weighted lin-

ear mixed-effects regression model that includes the survey weighting but does not ad-

just for the other elements of the complex survey design, that is the strata and PSU, nor

does it adjust for the skewed distributions seen in dietary data, though the mixed-effects

model does allow the within- and between-person variation to be included (Bates et al.,

2014c).

The mean iron intake was specified as

µij = β0 + β1Sexi + β2Agei + β3Age2
i + β4Age3

i + β5NSSECi + β6Weekdayij + ui,

where µij is the mean iron intake for person i on day j, i = 1, . . . ,6109,j = 1, . . . , ni,

Sex is a binary variable (male or female), Age was the individual’s age measured in

years, Age2 and Age3 are quadratic and cubic age terms, respectively, NSSEC is the

individual’s NSSEC group and Weekday is a binary variable indicating Saturday or

Sunday (0) or Monday - Friday (1) for individual i on day j. The random intercept ui

was assumed to have a normal distribution centred at zero.

Comparing the results of the quantile regression models with those of the weighted

linear mixed-effects regression model (Table 14) showed some differences in findings.

Overall results were similar, though in the small employers and own account work-

ers, the median iron intake was lower than those in the higher managerial and pro-

fessional occupations group though not significantly lower (Quantile regression -0.45,

95% CI:0.15, -1.04) whereas the mean intake was significantly lower (weighted linear

mixed-effects regression -0.45, 95% CI:-0.12, -0.79).
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Table 14

A comparison of regression parameters estimated for the 50th quantile (median) and mean

along with 95% confidence intervals for iron intake in NDNS RP Y1-4 (2008-2012) participants

using linear mixed-effects quantile regression with ALD with SE estimated using bootstrap and

a weighted linear mixed-effects model.

Quantile regression weighted linear

mixed-effects

regression

50th 95%CI Mean 95%CI

Age 0.254 0.19 0.32 0.237 0.21 0.27

Age2 -0.54 -0.79 -0.30 -0.412 -0.50 -0.32

Age3 0.359 0.13 0.59 0.207 0.14 0.28

Gender: Females (Reference)

Gender: Males 1.797 1.51 2.08 1.782 1.61 1.95

Weekday: Weekend (Reference)

Weekday: Weekday 0.29 0.14 0.44 0.274 0.18 0.37

Higher managerial and professional occupations (Reference)

Lower managerial and professional occupations -0.436 -0.86 -0.01 -0.386 -0.66 -0.11

Intermediate occupations -0.723 -1.22 -0.23 -0.721 -1.08 -0.36

Small employers and own account workers -0.447 -1.04 0.15 -0.453 -0.79 -0.12

Lower supervisory and technical occupations -0.971 -1.42 -0.52 -0.86 -1.20 -0.52

Semi-routine occupations -1.054 -1.45 -0.66 -0.903 -1.22 -0.58

Routine occupations -1.24 -1.84 -0.64 -1.26 -1.59 -0.93

Never worked -1.301 -2.37 -0.23 -1.281 -1.86 -0.70

Other -0.343 -1.13 0.45 -0.588 -1.26 0.08

BOLD indicates statistical significance at the p<0.05 level
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4.9 Simulation

The performance of the linear mixed-effects quantile regression based on the ALD and

its implementation in the lqmm R package have been previously assessed extensively

through simulation (Geraci and Bottai, 2014) where 23 scenarios (Table 15) were ex-

amined that varied by cluster size and sampling distributions, using data generated

according to

yij = (β0 + ui) + (β1 + vi)xij + β2 + zij + (1 + γxij)eij (26)

where β = (100,2,1)′, ui and vi are random effects specific to each cluster, xij = δi + ξij,

where δ ∼ N(0,1), ξ ∼ N(0,1) and zij ∼ Binomial(1,0.5) and σ = 10. They generated

multiple datasets which were modelled with the estimated beta coefficients compared

to those used to simulate the data and they reported the relative bias and coverage.

Relative bias is taken as the relative difference in the simulated estimate to the pa-

rameter that was specified, thus a relative bias of 0 would indicate that the simulated

estimate contains no bias and coverage is given by the percentage of times the confi-

dence intervals include, or cover, the initial parameters used in simulation. In general,

relative bias of the model estimates was low (see Table 2. Geraci (2014)), although in

some scenarios (19,20,21) it rose to around 0.5 for some values. The 90% coverage

rate was higher than 90% in all cases though values as low as 90.2% were reported

(Table 3. Geraci (2014)). The results of this simulation give confidence that estimates

given by the lqmm method are accurate and from that basis further simulation work

was carried out to test the extension of the methods to complex survey data.

To examine the performance of maximum pseudo likelihood estimation in combination

with bootstrap estimates of variance for the analysis of complex survey data a Monte

Carlo simulation study was carried out described in Figure 26. This involved gener-

ating 100 data sets with predefined parameters that varied by 6 different factors then

performing 200 bootstrap replications to calculate the relative bias and coverage of es-

timated values for three parameters (Intercept, x and y) of three quantiles (50th, 75th

and 90th) which were then compared to the parameters used to simulate the data.
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Table 15

Simulation study scenarios used to evaluate the performance of the lqmm package adapted

from (Geraci, 2014)

Model Description (n,M) u v e γ

Location shift symmetric (5,50) N(0,5) - N(0,5) 0

Location shift symmetric (5,50) t3 - N(0,5) 0

Location shift heavy tailed (5,50) N(0,5) - t3 0

Location shift heavy tailed (5,50) t3 - t3 0

Location shift asymmetric (5,50) N(0,5) - χ2
2 0

Location shift asymmetric (5,50) t3 - χ2
2 0

Location shift symmetric cor(u, v) = 0 (5,50) N(0,5) N(0,5) N(0,5) 0

Location shift heavy tailed cor(u, v) = 0 (5,50) t3 t3 t3 0

Location shift symmetric (10, 100) N(0,5) - N(0,5) 0

Location shift symmetric (20, 200) N(0,5) - N(0,5) 0

Location shift heavy tailed cor(u, v) = 0 (10, 100) t3 t3 t3 0

Location shift heavy tailed cor(u, v) = 0 (20, 200) t3 t3 t3 0

Location shift heavy tailed cor(u, v) = 0 (20, 200) t3 t3 χ2
2 0

Heterscedasctic symmetric (10, 100) N(0,5) - N(0,50) 0.25

Heterscedasctic heavy tailed (10, 100) t3 - t3 0.25

Heterscedasctic asymmetric (10, 100) t3 - χ2
2 0.25

Location shift symmetric cor(u, v) > 0 (10, 100) N(0,5) N(0,5) N(0,5) 0

Location shift symmetric cor(u, v) < 0 (10, 100) N(0,5) N(0,5) N(0,5) 0

Location shift heavy trailed cor(u, v) > 0 (10, 100) t3 t3 t3 0

Location shift heavy trailed cor(u, v) < 0 (10, 100) St3 St3 t3 0

Location shift heavy trailed cor(u, v) > 0 (10, 100) St3 St3 t3 0

Location shift with 5% contamination (10, 100) N(0,5) - χ2
2 +N(0,50) 0

Location shift with 5% contamination (10, 100) N(0,5) +N(0,50) - χ2
2 0
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Figure 26

Schematic illustration of a simulation study carried out to examine the coverage and relative

bias of maximum pseudo likelihood estimation with bootstrapped variance estimates
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Table 16

Scenarios for the simulation study.

Random effects Number of

subjects

Number of

strata

Number of

repeated measures

(1) Normal 200 5 2

(2) Normal 200 5 4

(3) Normal 1000 25 4

(4) Asymmetric Laplace 200 5 2

(5) Asymmetric Laplace 200 5 4

(6) Asymmetric Laplace 1000 25 4

The six different scenarios (Table 16) varied by the number of subjects that were in-

cluded, the number of observations per subject and the random effect distribution:

either Gaussian or Laplacian. The scenarios proposed here are reflective of real na-

tional complex survey data, in terms of design and large variability observed in dietary

data, with the number of measures fixed at 2 and 4 to reflect two 24HR and the NDNS

RP’s four day diaries. The number of subjects chosen was either 200 and 1000 and

was selected to examine the performance of the methods under the most challenging

conditions, in terms of fewer data points, likely to be seen. The former sample size is

considered to be at the lower end of the number of subjects typically recruited in na-

tional surveys employing complex sampling methods but is greater than the minimum

sample size used by Souverein et al. (2011) who used 150 and 500 samples and Lau-

reano et al. (2016) who used 150, 300 and 500 samples respectively, in their simulation

studies of national survey data.

The data were simulated as follows: intake Yijkl for individual i on occasion j in PSU k

in strata l were simulated from N(µijkl,6) where µijkl is given by

µijkl = β0 + β1xijkl + β2zijkl + uikl + vkl (27)

where xijkl was sampled from N(0,1) and zijkl from a Bernoulli distribution with proba-

bility of success 0.5; there are two random effects, first uikl was defined at the individual
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level and was sampled from either N(0,6) or ALD(µ,σ, p), with µ = 0, σ = 3/
√

2 and

p = 0.5. The choice of these parameters for the ALD is such that they match those

when the random effect is normally distributed, i.e. the mean is zero and the standard

deviation 6 (Yu and Zhang, 2005). The second random effect vkl was defined at the

PSU level and was simulated from N(0,1). The regression coefficients: β0 = 10, β1 = 1,

β2 = 0.5, were chosen to be reflective of realistic variances seen in dietary survey data

and yielded quite small means of the outcome variable relative to its variance, in con-

trast to the parameters β = (100,2,1)′ and σ = 10 used by Geraci (2014). To illustrate,

the coefficient of variance of the simulated data used here, calculated by CV = σ/µ, of

0.59 is similar to values seen in the NDNS RP and falls within the range reported by

the NDNS RP for iron intake for all sources (Table 5.33a of the NDNS RP report (Bates

et al., 2014a)), which ranged from 0.30 in girls aged 4-10y to 0.85 in women aged 19-

64y whereas, the values chosen by (Geraci, 2014) gave considerably smaller CVs for

example the CV for scenario 1 (Table 15), of 0.10, which is outside the reported range

for iron intake.

Probability weights for each cluster were simulated from N(1,0.25). Strata varied in

size (Table 16) and included 2 PSUs per stratum. Numerical integration of the individ-

ual random intercept was carried out using adaptive Gaussian quadrature for normal

random effects and Gauss-Laguerre quadrature for the asymmetric Laplace random

effects, and in each case 20 quadrature points were specified. 100 datasets were cre-

ated and from each dataset, 200 bootstrap replicates were taken. It took an average

of approximately 110 milliseconds for a single model when p = 0.5 to estimate me-

dian regression using a windows 7 i5 laptop with 16Gb Ram, though the time taken

is dependent upon the number of subjects, the number of repeated measures and the

sparsity of the data for extreme quantiles. Relative bias and coverage of 90% confi-

dence intervals are presented in Tables 17 and 18. Three parameters were estimated

for three quantiles (median, 75th and 90th) under each scenario. This gives 54 esti-

mated values in total, and on the whole, the methods performed well with the average

coverage close to 90% and scenarios 1,3 and 6 had a coverage probability of 90% or

higher and scenario 4 close to 90% coverage at 89%. Scenarios 2 and 5 had the low-
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est average coverage at 88% and 86% respectively and the majority of values had a

coverage probability or equal to 90% coverage except for the intercepts, which may not

be surprising given the large variation with which the data were generated. The aver-

age coverage probabilities for the intercept in scenarios 2 and 5 at the median had the

lowest rates of coverage at 79% and 78% respectively. These scenarios both had the

lowest number of subjects (200) and the highest number of repeated measures (4) but

varied in terms of their random effects distributions (Normal and Asymmetric Laplace).

When the number of repeated measures was reduced, as in scenarios 1 and 4, whilst

keeping the number of subjects constant the coverage probabilities for the intercepts

increased to 85% and 83% and increased again to 87% and 91% as the number of

subjects included rose to 1000 (scenarios 3 and 6) suggesting that 200 subjects and

4 repeated measures is insufficient for reliable coverage. In the majority of cases the

model performs well with a mean bias of 0.049 overall. Parameters with the greatest

relative bias were those for z, estimated at the 90th which is at the extremes of the

distribution and may be due to relatively fewer data points. The average relative bias

varies by scenario ranging from 0.099 and 0.111 in scenarios 1 and 4 with 200 subjects

and 2 repeated measures only differing by random effects distributions to 0.015 and

0.013 in scenarios 3 and 6 with 1000 subjects and 4 repeated measures, again only

differing by random effects distribution indicating that the relative bias is reduced as

the number of subjects and repeated measures increases. In the application of these

methods above using NDNS RP data the number of strata per PSU is comparable and

the number of repeated measures is the same at 4 but the number of subjects (6109)

is greater than the 1000 sampled here, thus the coverage probability and relative bias

can be expected to be comparable or better than the values reported in the simulation.
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Table 17

Coverage probability of 90% confidence intervals calculated from simulated data under six

different scenarios.

Median 75th quantile 90th quantile Average coverage

Intercept x z Intercept x z Intercept x z

(1) 85 91 92 87 90 92 91 95 91 90

(2) 79 89 82 87 91 84 94 99 90 88

(3) 87 84 93 83 94 93 83 99 94 90

(4) 83 90 90 87 91 91 87 92 90 89

(5) 78 90 85 85 87 81 92 93 87 86

(6) 91 93 91 93 87 90 83 96 92 91

Table 18

Relative bias of estimated parameters from data simulated under six different scenarios.

Median 75th quantile 90th quantile Average bias

Intercept x z Intercept x z Intercept x z

(1) 0 -0.024 -0.106 -0.001 0.002 0.089 0.052 -0.014 0.891 0.099

(2) 0.008 0.027 -0.072 -0.022 0.067 0.072 0.026 0.060 0.563 0.081

(3) 0.004 0.018 -0.046 -0.009 0.005 0.021 0.033 0.019 0.092 0.015

(4) 0.005 0.009 0.005 0.004 0.039 0.066 0.066 0.025 0.776 0.111

(5) -0.018 -0.014 0.155 -0.025 -0.069 0.187 0.020 -0.027 0.582 0.088

(6) 0.001 -0.002 -0.051 -0.009 -0.010 0.052 0.046 -0.023 0.117 0.013
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4.10 Discussion

This chapter presented a novel approach to quantile regression of repeated measures

data collected under a complex survey design. This was illustrated through quantile

plots showing the effect of age and sex upon dietary iron intake using data collected

by the NDNS RP. The NDNS RP is the only source of high quality nationally repre-

sentative dietary survey data in the UK, and as such, is used as the evidence base

for policy change and implementation. Using these data an approach that is capa-

ble of providing a more precise characterisation of dietary intake for subgroups of the

UK population is demonstrated. By accounting for measurement error through a ran-

dom intercept, multistage sampling and survey weighting using bootstrap resampling

and a pseudo likelihood approach, it is possible to examine the association between

the outcome variable and the explanatory variables at the extremes of the distribution.

Due to the increased risk of deficiency, the LRNI is contrasted with actual quantiles of

iron intakes to highlight the high number of people below this recommendation. The

greatest subgroup of individuals below the LRNI are females aged 11-50y, which is in

line with other surveys, though is of concern as this range covers those most likely

to be childbearing and the impact of low iron during pregnancy and breast feeding is

severe for both mother and infant. Participants in the 11-18y age group are likely to be

experiencing a period of growth and development with associated increase in muscle

mass and blood volume, both of which require iron. In adolescent females there are

increased losses of iron with menstruation and females, compared to males, are likely

to consume less iron due to weight loss diets. Iron deficiency can cause lethargy and

shortness of breath leading to reduced physical activity. This plays an important role

in bone mineralisation through bone loading; reduced activity can cause lower bone

mineral density and a lower peak bone mass which in turn leads to increased risk of

osteoporosis (Troy et al., 2018). The cost to the NHS from hip fractures is estimated

at £1.1Billion per annum (Leal et al., 2016). Moreover iron deficiency has been linked

to cardiovascular disease (von Haehling et al., 2015) which is also a major economic

burden. Perhaps of greatest concern is the impact of iron deficiency for females be-

tween 11-50y on the infant during pregnancy. The prevalence seen here is similar to
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that found in a recent study of pregnant females (Barroso et al., 2011). Low iron can

lead to increased rates of premature births, infection and lower birth weights.

Iron intakes estimated by a weighted linear mixed-effects regression method estimating

mean intake showed that members of the small employers and own account workers

had significantly lower iron intakes compared to those in the higher managerial and

professional occupations groups, though this wasn’t found in the results of the quantile

regression model estimated at the median. The difference is likely due the impact of

outliers shown iron intake impacting upon the distribution of iron intakes (e.g. Figure

22). This can have implications where one group is erroneously identified as having

low iron intakes and resources are diverted towards the group to increase their iron

intakes.

Fitting the model relies heavily on computing power and as a consequence can take

many hours for a model using ~6000 subject clusters to converge. To reduce this time

it is possible to parallelise the code to exploit the multiple cores available available on

most computers. Each iteration took approximately 4 minutes using a Windows i5 ma-

chine with 16Gb of RAM. This time is dependent also upon the number of parameters

being estimated. Similarly the speed of convergence is dependent on the data points

at the quantile of interest. There is also a pragmatic trade-off between convergence of

estimates and the time taken; we have used 500 bootstrap replications.

Semi-parametric QR models can occasionally demonstrate crossing of the quantile

curves. This usually occurs when plotting a number of curves with few observations,

which can lead to the implausible case in which the 95th percentile is lower than the

90th, for example. This is because the quantiles are estimated separately. Bondell

et al. (2010) presented a simple constrained version of quantile regression to avoid

quantile crossing. Wu and Liu (2009) suggested the quantiles are fitted sequentially

with the subsequent quantile curve restricted from crossing the previous one. This,

however, is dependent on the order in which the curves are fitted. In a parameterised

setting, quantiles can be estimated simultaneously and in relation to the distribution,

which has the advantage that crossing will not occur (Stasinopoulos and Rigby, 2007).
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5 Iron prescription costs across the UK

The previous chapters have introduced and proposed methods for dealing with the

challenges that arise when estimating the mean or quantiles of skewed dietary data

sampled under a complex sampling plan that includes sampling weights. These were

addressed by modelling intakes of episodically consumed nutrients through a two part

logistic - generalised gamma regression model with correlated random effects (Chapter

3) and modelling quantiles of intake using an asymmetric Laplace distribution (Chapter

4). In these two chapters modelling of iron intake was used to illustrate the methods. In

this chapter I shall use national electronic health records to examine the amount spent

upon the treatment of iron deficiency in the UK and adjust for iron intake using dietary

iron taken from the NDNS RP.

5.1 Introduction

Iron deficiency impacts the UK population to a large extent with approximately 4.7 mil-

lion individuals deficient in iron (WHO and CDC, 2008). Iron deficiency disproportion-

ately affects certain groups with 12.9% of young children (1.5-3y), 5.8% of women aged

19-64 and 13.5% of the elderly (65+y) reporting iron levels below the haemoglobin

threshold for iron deficiency (Table 19 in Section 5.5).

5.2 Iron deficiency

Iron deficiency occurs when iron stores become depleted and are no longer sufficient

to meet iron requirements often a result of low iron intake from the diet (Killip et al.,

2007). Infants, children and women of reproductive age are more likely to be de-

ficient because of increased iron requirements during growth and excretion through

menstruation particularly in those with higher rates of bleeding. Similarly those with

inflammatory bowel disease suffering from blood loss in the stomach or intestine are at

increased risk (Gasche et al., 2004).
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Individuals are typically classified as being iron deficient using blood measures such

as haemoglobin or serum ferritin. Although an individual can be classified as having

an increased risk of iron deficiency if their dietary intake is below the LRNI (Scientific

Advisory Committee on Nutrition (SACN), 1991). This is an age and sex specific value

that represents an adequate intake for 2.5% of the population.

5.3 Iron deficiency consequences

Iron deficiency can lead to impaired physical and cognitive development in children, in-

creased risks for mother and neonate, and can cause delayed central nervous system

development (Beard, 2007). It can also lead to impaired immune status and thus in-

creased morbidity (Oppenheimer, 2001) and has been shown to lead to reduced work

capacity (Haas and Brownlie, 2001).

5.4 Global iron deficiency prevalence

Iron deficiency affects a sizeable portion of the developed and developing world (McLean

et al., 2009). Globally it is estimated that approximately 1.1 billion individuals are

anaemic due to iron deficiency (World Health Organisation, 2001). Across the world an

estimated 17,000 deaths per annum are due to iron deficiency (WHO, 2012). Figure

27 displays the extent to which iron deficiency impacts upon health in non-pregnant

women of childbearing age by country, and highlights that although deficiency is most

severe in developing nations such as large parts of Africa, Asia and Latin America it is

still of mild concern in developed countries including the UK.
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Figure 27

The global extent of the public health problem of iron deficiency anaemia in non-pregnant woman of child bearing age.

Countries are coloured according to level of public health concern. Countries without data are coloured gray. Adapted from WHO (2012).
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5.5 UK iron deficiency prevalence

In the UK, a number of groups have been found to have high levels of iron deficiency

(Nicholson et al., 2014). 5.7% of girls aged 4-10y were classified as iron deficient

according to their haemoglobin levels, in females aged 11-18y this rose to 7.4%, in

females aged 19-64y this was 9.9% and 12.3% in females aged 65+y. In males aged

65+y, 15.2% were classified as below the haemoglobin threshold, Overall 12.9% of

children aged 1.5 to 3 years and 13.5% of adults aged 65+y were below the threshold

for haemoglobin (Nicholson et al., 2014) (Table 19). Across the UK it is estimated that

4.7 million individuals are deficient in iron (WHO and CDC, 2008).
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Table 19

Haemoglobin levels (g/dL) and status by age and sex from NDNS RP Years 1-4 (2008-2012)

Males Females Overall

Age Group 4-10 11-18 19-64 65+ 4-10 11-18 19-64 65+ 1.5-3 4-10 11-18 19-64 65+

Mean (g/dL) 13.0 14.4 14.9 14.4 12.8 13.1 13.2 13.2 12.0 12.1 13.8 14.0 13.7

Median (g/dL) 13.0 14.3 15.0 14.5 12.8 13.2 13.3 13.5 12.0 12.1 13.7 14.1 13.8

sd (g/dL) 0.94 1.10 0.88 1.49 0.83 0.89 0.98 1.21 0.89 0.98 1.20 1.24 1.46

2.5th percentile (g/dL) 11.2 12.4 13.1 11.3 10.5 11.1 11.2 9.5 10.6 10.6 11.6 11.4 10.5

97.5th percentile (g/dL) 15.4 16.4 16.5 16.8 14.7 14.8 15.1 15.0 14.0 14.0 16.2 16.4 16.4

Below Hb Thresholda (%) 3.1 1.8 1.5 15.2 5.7 7.4 9.9 12.3 12.9 4.4 4.5 5.8 13.5

n 138 261 562 143 116 255 778 200 50 254 536 1340 343

a Haemoglobin lower thresholds given by Scientific Advisory Committee on Nutrition (2011): 1.5-4y males

<11g/dL, 1.5-4y females <11g/dL, 5-11y males <11.5g/dL, 5-11y females <11.5g/dL, 12-14y males <12g/dL,

12-14y females <12g/dL, 15y+ males <13g/dL, 15y+ females (non-pregnant) <12g/dL

Adapted from NDNS RP Table 6.1 (Nicholson et al., 2014).
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5.6 Iron deficiency treatment

Iron is present in many foods either naturally occurring or added as a fortificant. How-

ever when dietary sources fail to meet iron requirements, treatment for iron deficiency

in moderate cases is through oral supplementation. This is in tablet form commonly

supplied as ferrous sulphate, ferrous fumerate and ferrous gluconate (Allen, 2002).

Doses between 100-200mg are advised 3 times a day typically as ferrous sulphate,

and may be prescribed prophylactically in those at increased risk of iron deficiency.

Increases of between 100-200mg /100 mL over 3-4 weeks are typically observed and

once haemoglobin values have reached the reference range, continued treatment is

advised for a further 3 months to replenish the iron stores (Joint Formulary Committee,

2017).

Iron supplementation is associated with side effects which may include increased flatu-

lence, abdominal discomfort or pain, nausea, constipation, loose or discoloured stools

(Cancelo-Hidalgo et al., 2013) and these can have an impact upon adherence to a

treatment regimen. Rates of adherence as low as 47% have been reported in some

groups (Lacerte et al., 2011). However the degree to which adverse events are re-

ported is dependent on the form of iron given and has been shown to vary from around

31% for ferrous gluconate and ferrous sulfate to 47% for ferrous fumarate (Lacerte

et al., 2011).

Iron status is dictated by dietary iron intake and when intake fails to meet iron require-

ments and symptoms of iron deficiency present themselves, the first line treatment is

iron supplementation prescribed by a GP (Joint Formulary Committee, 2017). GPs

are clustered within health boards who are, amongst other things, responsible for the

commissioning of services and the amount spent on prescriptions. In health boards

with financial constraints it is possible that treatments are prioritised at the expense of

iron deficiency leading to a disparity in the amount spent of iron deficiency medication

across health boards. For example The beechwood medical practice issued notice that

it will not be issuing prescriptions for many items including vitamin and mineral supple-

ments in a bid to save money (Beechwood Medical Practice, Bristol CCG, 2016), and
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similarly Mid Essex CCG has issued a statement that due to a £464 million deficit they

are proposing cuts for items patients such as gluten-free items that patients could pur-

chase for cheaper than the CCG cost (Mid Essex CCG, 2015). This variation can have

an impact upon the patient whose treatment can then become dependent on where

they live in the country: the so-called "postcode lottery". Therefore I shall describe iron

prescriptions in the UK, estimating the median amount spent on iron medication at the

health board level to highlight variation in prescribing practice across the UK and in

particular across health boards and present the findings in easily interpretable maps.

Expenditure on iron prescriptions is likely to depend directly on the population levels

of iron deficiency, or inversely on iron bioavailability. This information can be obtained

from the NDNS RP. When comparing intakes of iron to population reference levels

such as the RNI or LRNI as carried out in Chapter 4 it is appropriate to simply sum the

iron content of each food eaten, however when trying to determine the bioavailability

of iron, a physiological method that considers the effect of the interaction of foods and

nutrients on iron absorption is required. This is because the amount of iron available

for uptake in the body is dependent on other nutrients that can either have a positive or

negative impact on uptake (Zijp et al., 2000). Dietary iron comes in two forms namely

haem and non-haem which come from animal and non-animal sources respectively.

Haem iron is the more stable form of iron and is not affected by nutrients consumed

at the same time and makes up approximately 10% of total dietary iron intake (Reddy

et al., 2006). In contrast, the amount of non-haem iron available for uptake is impacted

by the intake of calcium, vitamin C phytate, polyphenols and tannins and also meat fish

and poultry intake, some of which improve availability and some decrease availability,

see Table 20.

Research examining variations in medication prescriptions is fairly limited particularly

when mapping prescription data. This has been carried out for prescriptions in England

(Rowlingson et al., 2013), Australia (Mullins et al., 2009), the US (Allen et al., 2010;

Ashton et al., 1999; Sargen et al., 2012), Taiwan (Cheng et al., 2011) and between

countries (Domanski et al., 2004). Rowlingson et al. (2013) examined prescriptions

for diabetes medication in England combined with diabetes incidence rates taken from
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Table 20

Dietary factors affecting the absorption of Iron

Increase Iron Absorption Decrease Iron Absorption

Vitamin C Polyphenols

Red meat Calcium

Fish Phytate

Poultry Tannins

the GP Quality and Outcomes Framework (QOF). The QOF is a programme created

in 2004 to standardise care provision given by GP practices dependent upon their per-

formance. GP practices are rewarded financially for meeting achievement indicators

across a range of clinical areas including chronic disease, heart failure and diabetes.

For example there are four indicators for heart failure: that include prescribing the ap-

propriate medication and ensuring that a certain number of patients are referred to

exercise-based rehabilitation programmes (NHS Digital, 2015). Using the prescription

and QOF data GP practices were categorised to identify those whose prescribing prac-

tice differed significantly from the expected spending for a GP practice when adjusted

for the age and sex distribution of the practice along with the total number of patients.

However the QOF does not monitor the incidence of those suffering from iron defi-

ciency or iron deficiency anaemia. For diseases that are assessed, the QOF provides

a powerful dataset when combined with prescription information allowing for detailed

modelling of incidence of disease in England.

As a public funded organisation the NHS has released information on all prescriptions

dispensed in the UK with the aim of increased spending transparency. Using these

data I present an analysis examining the median amount spent on prescriptions for

iron medication by each of the 235 health boards in the UK and rank the health boards

in to quintiles of spending whilst adjusting for patient demographics and dietary iron

intake. Levels of expenditure are then presented in a choropleth (a map coloured with

intensity related to ranking) which easily allows health boards with higher and lower
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spending rates to be identified. Further analysis highlighting the impact of modelling

bioavailable iron is included as a comparator.

5.7 Methods

5.7.1 The data

Data files containing the number of prescriptions dispensed, cost per prescription and

type of medication were downloaded from the English, Northern Irish, Scottish and

Welsh governmental websites. Data on the patients that received the prescriptions

was not available thus, overall GP practice level data was used. Separate data files

that contained the total number of registered patients at each GP practice split into

age and sex groups were also downloaded. Patients’ age groups were available in

the categories 0-4y, 5-15y, 16-44y, 45-64y and 65+y and a further set of data files that

contained Index of Multiple Deprivation (IMD) scores were used. The IMD values were

based on the postcode of the GP practice. Each GP practice has a unique identifying

number which was used to link the prescribing data with the registered patient data

and the IMD data, each GP had a IMD ranking from 1 to 9461. A small number of

records did not have patient information and were therefore excluded. These records

were missing due to the prescription coming from either an out of hours service, a

hospital or in some cases the GP practice had closed suggesting the patient had been

issued the prescription then kept until it was dispensed. The four countries vary in

the availability of prescription data with data available for England from June 2010.

However to allow for the entire UK to be examined the prescriptions presented here

are at the earliest point that all four countries’ data are available simultaneously which

is from October 2015 until July 2016 (see Figure 28).

5.7.2 Health boards

Each country has a different name for the cluster of GPs. In England there are 209

regions known as Clinical Commissioning Groups (CCG)s which were created in 2013
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Figure 28

Timeline depicting the availability and selection of prescription data by country.

England

Northern Ireland

Scotland

Wales

2010 2011 2012 2013 2014 2015 2016 2017

and replaced Primary Care Trusts (PCT)s. In Wales they are known as health boards

and there are 7 of them, in Northern Ireland there are 5, known as regional trusts

and in Scotland there are 14 regional health boards so for ease they shall be referred

to as health boards throughout. Figure 29 shows the location of each GP practice

with a dispensed prescription for iron during the data collection period. Health boards

are delineated by black borders. Practices are clustered within health boards and the

health board is responsible for the budget assigned to each practice.

5.7.3 Data sources

Figure 30 displays the location of the governmental webpages used to download data.

Prescription, registered patients and IMD data were downloaded from open source

repositories managed by each country and are available from the following locations.

From the English data.gov.uk website, Northern Ireland from the open data NI, from

the Scottish information services division part of NHS National Services Scotland and
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Figure 29

The distribution of UK GP Practices by postcode, with black borders indicating health board

boundaries. GP surgeries indicated by a blue dot.
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Welsh data came from the primary care services website. The number of patients

registered at a GP practice in England were downloaded from the NHS digital website

which contains data from January 2016. IMD values were obtained based on the post-

code of the GP practice from the open data communities website which is part of the
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Ministry of Housing, Communities & Local Government and contains a lookup table

that returns the corresponding IMD value.

Figure 30

Sources of data for England, Northern Ireland, Scotland and Wales

GP addresses for England were taken from NHS Digital, data containing the number

of patients registered at Scottish GP practices were extracted from IDS Scotland and

values were taken as of 1st of October 2015. Scottish IMD information was obtained

from the Scottish government website and were matched to GP practice postcodes

found at the IDS Scotland website.

Welsh GP practice addresses and GP registered patient numbers were found at Welsh

government website along IMD information and the addresses of GP practices. Patient

information regarding the age and sex distribution of patients registered at GP practices
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in Northern Ireland were requested from the health and social care Northern Ireland

team as only the total number of registered patients were available on the website.

Northern Irish IMD was not available at the postcode level but was provided in small

geographical units (Lower Layer Super Output Area (LSOA)). Then the LSOA of the

GP practice was found by converting the postcode from

http://mapit.mysociety.org/postcode/# (where # is the GP practice postcode). The IMD

scores were then found from the Northern Ireland statistics and research agency, the

latest available IMD data is from 2010. URLs are given in full in Appendix K.

Figure 31

Schematic diagram illustrating the merging of files containing iron prescriptions, GP addresses,

Index of Multiple Deprivation ranking and registered patients

Figure 31 illustrates the process of merging the four files to create a final dataset

used for analysis. Index of Multiple Deprivation was included based on the postcode

assigned to the IMD and this was used to merge with the file containing the GP address.

This was then merged with a file containing the total number of registered patients
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broken down by age and sex using the GP ID which exists in both files. This file in

turn was then merged, again by GP ID, to the file containing prescription information

for each GP surgery giving a final data set ready for analysis (see Appendix L for a

sample of the data).

5.7.4 Mapping health boards

To present the health boards and GP practices geographically, a map of the UK was

created with health boards delineated by combining maps from each country (see Fig-

ure 30 for sources). In England a health board map was available from the NHS digital

website, in Northern Ireland this come from Open Data NI whereas maps for Scotland

and Wales came from the database of global administrative areas (GADM)

http://biogeo.ucdavis.edu/data/gadm2.8/rds/GBR_adm2.rds which included local authority

boundaries that matched the boundaries of the health boards. Some adjustment was

made to the names of the local authority areas to ensure that they matched the names

of the corresponding health boards e.g. the Orkney Islands became Orkney. In ad-

dition "and" was changed to "&", the list of adjustments and code used to create the

maps is provided in Appendix J.

5.7.5 Number of patients by GP practice at the time of prescription

The number of patients registered at each GP practice is available on a quarterly ba-

sis whereas the prescription data is updated monthly, therefore it was not possible to

match patients across the duration of data collection. Furthermore the prescription

date corresponds to the date the medication was issued not the date the prescription

was written. In most cases the difference is expected to be minimal although it is pos-

sible that a patient may have moved to a different health board since the prescription

was issued, particularly if it was a repeat prescription. This was seen in one case

where a prescription was dispensed a number of months after the GP practice had

closed. Therefore there is a possibility that patients may be registered at one GP whilst

collecting prescriptions issued, and paid for, by another GP practice. To minimise this
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possibility registered patient numbers were taken at a single time point towards the

start of the period of data analysis in January 2016.

5.7.6 Index of Multiple Deprivation (IMD)

The Index of Multiple Deprivation (IMD) is a measure of the deprivation suffered by

the population based on multiple indicators. The indicators used to compose the IMD

are: income deprivation; employment deprivation; health deprivation and disability;

education, skills and training deprivation; crime; barriers to housing and services; and

living environment deprivation. These indicators are periodically assessed in surveys

carried out in each of the UK countries and from the results a score for each local

area is created then ranked within the country. In England there are 32,844 lower-layer

super output areas (LSOAs) each with their own ranking In Scotland there are 6,942

data zones for the IMD collected in 2016, in Wales the IMD values were last collected in

2014 and there are 1909 LSOAs and in Northern Ireland rankings were last compiled in

2010 at the super output area of which there are 890. As the IMD is based on an, albeit

small, area not all people living in highly deprived area will be deprived and conversly

there may be people suffering from personal deprivation living in areas assigned a low

deprivation ranking (Department for Communities and Local Government, 2015).

5.7.7 Index of Multiple Deprivation by GP practice

The IMD scores were based on the postcode of the GP practice, although this may

not necessarily correspond to the IMD of the patients who use the service as patients

may travel to the GP practice from areas with a different IMD score. GP practices were

ranked by ascending IMD within each country. This ranking was then standardised

to percentages relative to the country of origin to provide an overall UK IMD ranking

in which indices from the four countries are combined. This was done by taking the

ranking for each GP practice and converting it to a percentage by (r/N) ∗ 100 where

r is the IMD ranking of the LSOA and N is the number of ranked IMDs. Once the

rankings for each country have been converted to a percentage they are combined and
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then ordered creating a single IMD ranking. IMD is of interest as individuals with lower

rankings are thought to have poorer diets and consequently lower levels of iron in their

diet than those with a higher ranking (Nelson et al., 2007), this is then hypothesised

to have an impact upon the number of iron prescriptions and thus the cost incumbent

upon the practice. However the number of prescriptions will be related to the proportion

of patients with a lower IMD rank therefore IMD rank at the GP practice level was

adjusted by the number of patients at each practice.

5.7.8 Prescription of iron medication

The prescription datasets contain information on all medications prescribed by each

GP practice and so to extract iron prescription records, all codes starting with a British

National Formulary (BNF) code of 090101 were selected, representing medications

used in the treatment of Iron Deficiency Anaemia (IDA) and given either orally or par-

enterally. These include iron in various forms: ferrous sulphate, ferrous fumarate and

ferrous gluconate. Iron is recommended prophylactically for women of child bearing

age, in individuals with iron malabsorption and in low birth weight infants (Joint Formu-

lary Committee, 2017).

5.7.9 Iron bioavailability

Estimation of iron bioavailability requires adjustment for the interaction between the

iron available in foods and other nutrient components. Rickard et al. (2009) utilised

test meal data and physiological knowledge of iron absorption to derive a non-linear

expression that estimates available iron in terms of enhancing or inhibiting dietary fac-

tors of iron absorption. This was implemented to estimate the amount of available iron

consumed per NDNS RP participant. The NDNS RP dataset contains information on

the intake of calcium, vitamin C, haem and non-haem iron, along with disaggregated

meat, fish and poultry consumption. Tannin values were taken as 30mg per 200ml

of tea (Hallberg and Hulthen, 2000) and phytate values were taken from the EWL in-

house composition database with foods matched to NDNS RP foods. Not all foods had
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a corresponding food identification code and so some phytate values were imputed

based on either the closest possible food, the closest possible lower level food group

or the closest possible higher level food group, in that order. When scaled in this man-

ner the amount of available iron drops substantially to reflect the various interactions

but more accurately represents iron bioavailabilty. Bioavailable iron is calculated as

follows: Bioavailable Iron (mg) = (Percentage available NH ×NH) + (0.25 ×HI) where

Percentage available NH =

22.42×
(1 + log(1 + 0.0056 × V C))(1 + log(1 + 0.0008 ×AT ))

(1 + log(1 + 0.0008 ×C))(1 + log(1 + 0.0033 × P ))(1 + log(1 + 0.0004 × PO))(1 + log(1 + 0.0424 ×NH))

(28)

VC is vitamin C (mg), AT (animal tissue) is red meat, fish and poultry (g), C is calcium

(mg), P is phytate (mg), PO is polyphenols from tea (mg), NH is non-haem iron (mg)

and HI is haem iron (mg). Each individual in the NDNS RP was then assigned an iron

intake based upon their estimated bioavailability.

Table 21

Weighted dietary iron intake adjusted using an algorithm to adjust for concurrent food intake

(g/dL).

Sex Age Group Mean SD Median IQR

Male 0-3y 2.12 1.39 1.79 1.30

4-14y 3.40 1.91 3.04 1.98

15-44y 4.53 3.19 3.74 3.17

45-64y 4.95 4.02 4.07 3.28

65+ 4.29 2.97 3.60 2.76

Female 0-3y 1.97 1.29 1.72 1.24

4-14y 2.85 1.50 2.58 1.71

15-44y 3.82 5.13 2.90 2.44

45-64y 5.21 9.85 3.44 2.99

65+ 4.00 3.13 3.13 2.43

145



Figure 32

Mean dietary Iron intake by UK government office region. Data taken from NDNS RP Y1-4
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5.7.10 Dietary Iron

There are discrepancies in dietary bioavailable iron intake across regions within the

NDNS RP as shown in Figure 32 which displays the average dietary iron intake by

GOR and shows large differences in iron intake ranging from 7.1mg in Northern Ireland

to 12.6mg in London. Furthermore dietary intake varies by age and sex groups, with

intakes increasing across age groups and male iron intakes higher than females in all

age groups expect those aged 45-64y. Daily male iron intake increases from 2.12mg in

0-3y to 4.95mg in those aged 45-64y before reducing slightly to 4.29mg in those aged

65+y. Similarly daily iron intakes in females rose from 1.97mg in the 0-3y age group to

5.21mg in the 45-64y then dropped to 4mg in the eldest age group (Table 21). These

differences are likely to reflect the difference in total food consumption that increases

with age, and also suggests that intakes are skewed somewhat as mean intakes are

higher than median values in all cases. As the amount spent upon iron medication is

thought to be related to iron status which itself is related to bioavailable dietary iron

intake, median iron intakes for age, sex and regional groups were estimated using a

linear quantile mixed-effects model (Geraci, 2014; Geraci and Bottai, 2007) with NDNS

RP Years 1-4 dietary data.

The distribution of the bioavailable iron as calculated using the algorithm is shown

in Figure 33 (9 values greater than 20mg were removed from the Figure). Clearly

bioavailable iron is skewed and has outlier observations, these issues can be accom-

modated well by use of the linear quantile mixed-effects model. The median regression

for bioavailable iron intake was specified as

µ
(0.5)
ij = β(0.5)0 + β(0.5)1 Agei + β

(0.5)
2 Sexi + β(0.5)3 Regioni + ui,

where µ(0.5)ij is the median bioavailable iron intake for person i on day j, i = 1, . . . ,6828,j =

1, . . . , ni, Age was the individual’s age measured in years, Sex is a binary variable (male

or female) and region is the government office region the individual lives in. The ran-

dom intercept ui was assumed to have a normal distribution centred at zero.

These median values were used to assign an estimated median dietary iron intake to

each GP practice that was reflective of the practice’s location and the age and sex
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Figure 33

Iron (mg) intake as determined through an algorithm that considers nutrient interactions for in-

dividuals in the NDNS RP Y1-4 (2008-2012) and fitted asymmetric Laplace distribution (dashed

line).
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split of its registered patients. The GOR of the GP practice was used along with the

percentage of individuals in each age and sex group to estimate a weighted average

of the median iron intake from the NDNS RP data. This involved taking the number

of patients registered at the GP practice and determining the proportion in each of

the 10 age and sex groups. The proportion for each group was then multiplied by the

corresponding group median intake. The sum of these values was then taken as a

proxy of the iron intake for the GP practice. The median and mean intakes of dietary

iron by age and sex are given in Table 21

5.8 Statistical analysis

The distribution of the amount spent on iron prescriptions by health board showed a

number of large values skewing the distribution to the right (Figure 34), because of this

median regression is a more appropriate method as it is not impacted by outliers un-

like linear regression. Therefore quantile regression based on an asymmetric Laplace

distribution (Chapter 4) was used to estimate the median amount spent on iron pre-

scriptions by the j th GP practice in the ith health board, i = 1, . . . ,235, j = 1, . . . , ni with

the median regression specified by

µ
(0.5)
ij = β(0.5)0 + β(0.5)1 BioavailableIronij + β(0.5)2 IMDij + β(0.5)3 TotalPatientsij + ui,

where BioavailableIron is the estimated iron intake for each GP practice, IMD of the

GP practice was included due to the relationship with health literacy whereby those

in relatively more deprived areas are less likely to seek medical treatment (Rowlands

et al., 2013). TotalPatients is the number of patients registered at each GP practice,

and IMD is the IMD of the GP practice. The random intercept ui was assumed to have

a normal distribution centred at zero.

A second median regression model was estimated without bioavaible iron i.e.

µ
(0.5)
ij = β(0.5)0 + β(0.5)1 IMDij + β(0.5)2 TotalPatientsij + ui,

to assess the impact of the information on iron bioavailability on the parameters esti-

mates.
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The models were estimated using the "lqmm" package (Geraci, 2014) in R, standard

errors were estimated through bootstrapping with 50 repetitions. A sample of the data

is given in Table 29 in Appendix L.

5.9 Results

Figure 35 displays a choropleth of the UK with health boards ranked into quintiles

according to the median amount spent upon iron prescriptions, adjusted for total pop-

ulation and the age and sex of registered patients. Predicted expenditure for each

health board was determined using the predicted medians then from these, expendi-

ture quintiles were calculated. This figure shows health boards coloured according to

their relative expenditures with a darker colour indicating increased spending. A further

plot showing the impact that of including bioavailable iron intake is displayed as Figure

36. The estimated regression coefficients along with standard errors are displayed in

full for both models (excluding and including bioavailable iron) in Table 30 in Appendix

M.

The overall median expenditure over the 12 month period per health board was £120,002

(Inter-quartile range: £77,430, £183,700). Table 30 shows that the size of health

board as indicated by the total number of registered patients was a small but signif-

icant predictor of the amount spent (excluding bioavailable iron: 0.40 95% CI:0.38,

0.41, p<0.001; including bioavailable iron: 0.39 95% CI:0.38, 0.41, p<0.001). An in-

crease in iron intake, as estimated by iron bioavailability, was a strong and significant

predictor (-2395.4 95% CI:-2990.4, -1800.4, p<0.001) of reduced spending on iron

prescriptions. Also a mild but significant relationship between increasing IMD and a

decrease in the amount spent was seen (excluding bioavailable iron: -0.04 95% CI:-

0.05, -0.03, p<0.001; including bioavailable iron: -0.04 95% CI -0.04, -0.03, p<0.001).

A large number (105) of health boards had statistically significant coefficients deter-

mined by α < 0.05 so for brevity those below α < 0.001 will be discussed here. There

were 46 health boards with statistically significant coefficients for the amount spent

when bioavailable iron was not modelled; of these 36 had negative values indicating
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Figure 34

Total amount spent on Iron prescriptions by health boards in the UK from Oct 15 - Sept 16

overlain with an asymmetric Laplace distribution.
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low spending and the remainder were higher than expected compared to the reference

board: Lincolnshire West, which was chosen as it had the median spending amount

of £120,002, of these Rotherham (4619, 95% CI:3121, 6117, p<0.001) and Bradford

City (4056, 95% CI:1917, 6195, p<0.001) were particularly high. In the model including

bioavailable iron there were 105 healthboards with significantly different spending on

iron compared to the reference. Of these all but 2 had lower than expected spending

with Crawley (1626, 95% CI:796, 2455, p<0.001) and Ipswich & East Suffolk (2198,

95% CI:1354, 3043, p<0.001) having higher than expected spending compared to the

reference health board Lincolnshire West.

All of the Northern Irish health boards had negative coefficients which equates to a

lower than expected spending on iron prescriptions both when bioavailable iron was not

included and the estimated spending was lower when bioavailable iron was included.

Of the 14 Scottish health boards, 5 reported statistically significant estimates, Borders

(-2037, 95% CI:-2634, -1439, p<0.001), Dumfries & Galloway (-2025, 95% CI:-2625,

-1425, p<0.001), Orkney (-1332, 95% CI:-1964, -699, p<0.001), Tayside (-2063, 95%

CI:-2689, -1437, p<0.001) and Western Isles (-1190, 95% CI:-1826, -553, p<0.001)

were all found to have lower spending compared to the reference health board in the

model excluding bioavailable iron. When bioavailable iron was included in the model

12 of the health boards had lower than expected spending on iron prescriptions of

these Tayside (-3055, 95% CI:-3562, -2548, p<0.001), Borders (-2988, 95% CI:-3537,

-2439, p<0.001) and Dumfries & Galloway (-2943, 95% CI:-3498, -2388, p<0.001) were

particularly low. Estimates for the Welsh health boards were statistically significantly

different from the reference category in two cases when bioavailable iron was excluded:

Cwm Taf (-1523, 95% CI:-2170, -877, p<0.001) and Powys (-1469, 95% CI:-2190, -

747, p<0.001); these two health boards were also the only two out of the six Welsh

health boards that had statistically significantly lower spending on iron prescriptions

when bioavailable iron was included (Cwm Taf: -1987, 95% CI:-2539, -1435, p<0.001)

and Powys (-1813, 95% CI:-2366, -1260, p<0.001). The variance of the asymmetric

Laplace parameter σ̂ is given in Table 30 of 570.84 for the model including bioavailable
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iron showing slightly larger variance than that from the model excluding bioavailable

iron of 570.06.
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Figure 35

Quintiles of median amount spent from Oct 15 - Sept 16 on iron prescriptions in each health

board across the UK adjusted for IMD and the number of registered patients per health board.

Lowest Quintile [£6,499 − £64,205]
Second Quintile (£64,205 − £94,342]
Third Quintile (£94,342 − £129,300]
Fourth Quintile (£129,300 − £187,967]
Highest Quintile (£187,967 − £759,407]
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Figure 36

Quintiles of median amount spent from Oct 15 - Sept 16 on iron prescriptions in each health

board across the UK adjusted for IMD, bioavailable iron intake and the number of registered

patients per health board.

Lowest Quintile [£6,508 − £64,105]
Second Quintile (£64,105 − £94,378]
Third Quintile (£94,378 − £129,411]
Fourth Quintile (£129,411−£188,437]
Highest Quintile (£188,437−£761,669]
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5.10 Discussion

This work has produced two maps that show the geographic distribution of current ex-

penditure on prescriptions for iron in the UK by health boards both when the dietary

bioavailable iron intake is considered (Figure 36) and when it is not (Figure35). Pre-

senting the findings in choropleth maps such as these allows the amount of spending

by each health board to be easily examined, for example it is possible to see at a glance

that spending in Northern Ireland is generally lower than that in the east of England as

the colour of Northern Ireland health boards is lighter than those in the east of Eng-

land. The statistical method used for the analysis of costs considered the clustered

structure of the data, with prescriptions issued by GP practices nested within health

boards, whilst adjusting for the number of patients registered at each health board, and

bioavailable iron intake and deprivation status of registered patients. These methods

are widely applicable and can be used to examine inequalities in prescribing rates of

any medication prescribed. The findings show that out of the 235 health boards 105

had a significantly different expenditure than the reference board. Previous research

that does not consider the impact the health boards has on GP prescribing rates may

lead to biased findings. A strength of the current investigation is the inclusion of iron

bioavailability as an explanatory variable as this makes the comparison among health

boards fair and it improves the predictive power of the model. Each patient consultation

results in a cost to the practice and health board, in health boards suffering financial

constraints a consultation for iron supplements, that are available over the counter,

may be seen as an unnecessary cost that can be minimised. If information regard-

ing the financial status of each health boards in the UK were available then this could

be included as an explanatory variable in the model to explain some of the variation

in spending. Financial status of the health boards in England is measured using the

QOF, which reports that out of the 209 health boards, 52 required improvement and

33 were rated inadequate according to CCG Planning and Assessment National Team

(2016) (Table 22).
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Table 22

English health boards financial assessment.

Financial status Number of health boards

Outstanding 7

Good 117

Requires Improvement 52

Inadequate 33

Of the 7 health boards rated outstanding two spent significantly higher amounts on

iron prescriptions when excluding bioavailable iron (Dudley: 1930, 95% CI:1089, 2771,

p<0.001; Sandwell & West Birmingham 1916, 95% CI:1018, 2814, p<0.001) and 1

health board spent significantly less than the reference when bioavailable iron was in-

cluded (Salford: -2213, 95% CI:-2923, -1503, p<0.001). Similarly, health boards that

received an inadequate financial rating tended to have spent less on iron prescrib-

ing with 5 health boards spending significantly lower amounts on iron prescriptions

although 1 health board, Ipswich & East Suffolk, spent significantly more on iron pre-

scriptions compared to the reference in both models excluding and including bioavail-

able iron.

A strength of this work is the data used as it contained all dispensed prescriptions

for iron medication over the 12 month period from October 2015 to September 2016.

Along with the age and sex of patients registered at the GP practice and the IMD of the

practice itself. This is a comprehensive data set allowing for an accurate description of

the variation in the amount spent between Health boards. Furthermore the prescrip-

tions recorded refer to medication that is dispensed to the individual rather than simply

medication that is prescribed and not dispensed. All medication dispensed is recorded

otherwise the reimbursement would not be received by the issuing practice. This does

not ensure that the medication is taken as directed, however, as patients may not com-

plete the course prescribed. Indeed, it is estimated that adherence to medication can

be as low as 20% in chronic conditions, that is 80% of individuals do not complete the

course of medication (Haynes et al., 2008; Dolce et al., 1991).
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As the majority of the UK population are estimated to be registered with a GP this

allows for the investigation of iron prescriptions accurately at a national level. The

exact percentage of the population registered with a GP and therefore the validity in

representing the UK is unclear as the number of people registered with a GP is higher

than the estimated population of the UK. The reason for this is unclear but appears to

stem from potential over counting by GPs and an under estimate of the UK population

due to ambiguity over residency status (House of Commons Library, 2016). The over

counting may be due to patients who have died, moved outside of England or are simply

registered with another practise. To try to ensure list of registered patients is correct,

patients who have not attended the GP surgery for 5 years are contacted and are

removed from the practise registry if they fail to respond. This initiative was introduced

in 2016 and so should eventually reduce the discrepancy between the population and

patient numbers (Primary Care Support England, 2018).

For those who are time poor, buying supplements from the supermarket rather than a

pharmacy may offer advantages, however these individuals will not be captured here.

Advice to this effect has been issued by health boards to their practices (Mid Essex

CCG, 2015; Beechwood Medical Practice, Bristol CCG, 2016; Iacobucci, 2017). The

willingness to prescribe medication that may not be necessary or can be purchased

over-the-counter could be related to the time and work constraints reported by many

GPs. As an example, prescribing antibiotics rather than issuing advice has been found

to result in fewer repeat visits and therefore a reduced workload (Little et al., 1997).

There is a possibility, however, that if this becomes a policy for all health boards, those

unable to access supplements over the counter may not receive the medication re-

quired.

Some interesting mapping has been carried out by Rowlingson et al. (2013) who looked

at the variation in diabetes and attention deficit hyperactivity disorder medication in

England. The resultant maps were finer in resolution than those presented here as

the prescribing rate of each of the 8111 GP practices was plotted. This is an alternate

approach that allows smoothing to be used to consider the impact of GP practices.

However this does not consider the within health board dependency that impacts upon
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prescribing practice; instead treating each GP practice as an independent entity and

was carried out prior to the establishment of CCGs in England.
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6 Discussion

This thesis developed and applied novel statistical methods to estimate usual intake

of episodically and habitually consumed foods and nutrients collected from national

complex surveys, using iron as an exemplar.

6.1 Summary of novel methods

The methodological contributions of the thesis include the use, extension and com-

putational implementation of the two-part generalised gamma model and the quantile

linear mixed-effects model to accommodate a multistage complex survey design. To

the best of my knowledge, this work presents the first application of these models to

dietary data collected from complex surveys. The methods were applied to address

three different research questions within the field of dietary surveillance, with a focus

on the topic of iron deficiency which is one of the most common nutrient deficiencies in

the world.

The statistical methods developed in this thesis aimed to estimate the mean dietary

intake as a function of explanatory variables and to estimate quantiles of the intake

distribution also in terms of explanatory variables. These methods were developed to

take into consideration: (i) the shape of the distribution of dietary intake; (ii) the sources

of data variation for correct specification of the variance components of the underlying

model, and (iii) the data sampling method to allow extrapolation of results into the target

population.

Highlighted were three common features of dietary data that can affect the shape of

the distribution of intake data collected from national surveys. These included a large

number of zero observations for episodically consumed foods; non-symmetric distri-

butions of consumption, partly due to outlier observations which are very common in

survey data, and the fact that dietary intake can only take non-negative values. While

the traditional methods of analysis based on the normal distribution are convenient and

simple to implement, they are inadequate as they cannot handle the excess zeros or
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non-symmetric distributions, and the domain of the normal distribution includes nega-

tive values. Others had already pointed out these issues, explained the consequences

of undertaking a naive analysis based on the standard application of the normal dis-

tribution, offered alternative methods of analysis and adapted them to incorporate a

multistage sample design (Tooze et al., 2006) (see Section 1.12).

These methods included the use of a two-part model to deal with the high frequency of

zero observations found in episodically consumed foods where the first model compo-

nent is specified to estimate the probability of consumption and the second to estimate

the mean amount consumed, given a positive consumption. The first component is

typically modelled with a mixed-effects logistic regression model and the second with

a linear mixed-effects regression model.

The work presented here addressed the limitations of such methods, including NCI

(Tooze et al., 2006, 2010) and SPADE (Dekkers et al., 2014) methods of dietary in-

take assessment used to analyse the US NHANES and the Dutch DNFCS survey

data respectively. The NCI method uses a Box-Cox transformation to deal with the

non-symmetric distribution in the second model component; however, this approach

requires a back transformation of the results which can complicate their interpretation

and hinder the reproducibility of analysis.

In contrast, both the generalised gamma distribution used in the two-part model for the

analysis of episodically consumed foods, and the quantile regression model with an

asymmetric Laplace distribution for the analysis of habitually consumed foods, offer a

wide family of distributions with many different shapes including specific distributions

for non-negative data. This allows the location parameter in the model using the gener-

alised gamma distribution and the quantiles in the model using the asymmetric Laplace

distribution to be directly expressed as functions of explanatory variables. Thus the pro-

posed methods of analyses in this thesis are straightforward to carry out as no trans-

formations for normality are required; they are based on models that provide good fit

to the data; they are reproducible and the interpretation of results is transparent.
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An important step in statistical modelling is the incorporation of the sources of data

variation into the model. Failure to do this can lead to incorrect specification of the vari-

ance components of the model, which leads to bias in the model parameter estimates,

incorrect estimated variance of model parameters, and incorrect inferences as a re-

sult. These issues have been largely discussed in the statistical literature, for example

on methods for the analysis of repeated data and longitudinal data analysis (Diggle

et al., 2002). The sources of variability of dietary intake collected from a 4-day diary

were separated into between- and within-individual variability, where the latter includes

day-to-day variation in food consumption and measurement error.

Again, the prevalent traditional analysis would take the average intake of observations

from each individual and analyse these using a linear regression model, thus ignoring

the two different sources of variability. This would lead to biased regression estimates

and incorrect estimated variance of parameters estimates. Instead, here the within-

and between-person variability are incorporated into the two-part model by including a

random intercept in each model component to induce a correlation between any two

observations taken from each individual. These random effects would represent an

individual’s propensity to consume, and their propensity to consume greater or smaller

amounts of food. It seemed plausible that those who are more likely to consume, say

alcohol, would also tend to have greater alcohol consumption on the days of consump-

tion. To accommodate this the two random intercepts were allowed to be correlated.

This is an important improvement over the method for estimation of episodically con-

sumed foods presented by SPADE which does not include a correlation between the

two parts of their two-part model. As shown in the modelling of intake of iron intake

from vegetables (Figure 17 in Section 3.4.1), these correlations were estimated not to

be zero. Furthermore, Su et al. (2009) showed that failing to take this correlation into

account in a two-part model could lead to biased estimates of the regression parame-

ters.

Similarly, a random effect at the individual level to accommodate the within- and between-

individual variation was incorporated into a quantile regression model based on the re-

cently developed linear quantile mixed-effects regression model which uses the asym-
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metric Laplace distribution (Geraci and Bottai, 2007; Geraci, 2014). The extension of

the statistical methods developed in this thesis to incorporate the complex sample de-

sign into the parameters estimation required three steps. Firstly, the likelihood function

was multiplied by the survey weightings. Secondly, bootstrap methods were used for

the estimation of the variance of the parameters estimates to account for the correla-

tion among observations taken from the same PSU. Finally, the variance estimation of

the model parameters was stratified by the survey strata.

6.1.1 Software implementation

The computation implementation of this extension for the two-part model with a gen-

eralised gamma distribution was undertaken in SAS, as this program offers flexibility

at maximising a user’s defined likelihood function using Gaussian quadrature methods

for the approximation of the integrals required to integrate out the random effects of the

model. Likewise, bootstrap variance estimation was implemented using the same pro-

gram. The estimation of model parameters in the linear quantile mixed-effects model is

also complicated by the presence of random effects and is more computing intensive;

however, the R package lqmm was used as it provided a robust method of estimation

based on Gaussian quadrature numerical methods (Geraci, 2014).

6.2 Summary of findings

Three key areas of research relevant to dietary surveillance were addressed using the

methods developed here, and exemplified using data from the NDNS RP and electronic

records of iron prescription in the UK. First, the mean of dietary intake across sex, age

and socio-economic groups was modelled to assess the current dietary status of a

population, using the two-part model with generalised gamma distribution. This was

illustrated by modelling the mean consumption of iron intake from selected episodically

consumed food groups using data from the NDNS RP in Chapter 3. The analyses

showed that females were more likely to consume iron from breakfast cereals and
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vegetables than males but consumed smaller amounts, in addition both the probability

of consumption and the amount of iron consumed from bread was higher in males than

females. All age groups consumed greater amounts of iron from bread, vegetables,

and fruit and vegetables compared to those aged 1.5-3y. Of note, was the finding that

overall, those in lower NSSEC groups had lower probabilities of consuming iron from

fruit and vegetables and consumed lower amounts of iron from fruit and vegetables

when compared to those in the higher managerial and professional group.

6.2.1 Novel approach compared with the traditional approach: two-part model

A comparative analysis was undertaken using a survey weighted regression model that

did not include a random effect. A number of differences were found between regres-

sion parameters that were either statistically significant in the two-part model and not in

the survey weighted regression or vice versa, highlighting that under the wrong model

assumptions differences in findings are observed. In particular, the amount of iron

consumed from vegetables by females was significantly higher compared to males, as

indicated by the two-part model, but this was not seen in the survey weighed regression

model. Conversely, the intake of iron from fruit in females was significantly different to

males in the survey weighted regression model but not in the two-part model. Iron

intake from breakfast cereals and fruit and vegetables in those aged 11-18y, differed

to the reference group in the two-part model but not in the survey weighted regression

model, though the opposite finding was the case for iron intake from fruit in the 11-18y

group with the survey weighted regression model reporting a significant difference in

the amount consumed, whereas the two-part model found no difference. Differences

were also found when comparing intakes by NSSEC groups between the two models

with statistically significant differences reported in iron from bread in the two-part model

though not in the survey weighted model and differences in intakes found in the survey

weighted model for iron from vegetables, fruit, and fruit and vegetables that were not

found in the two-part model.
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6.2.2 Novel approach compared with the traditional approach: Quantile regres-

sion

Second, population groups with low or high levels of consumption of certain foods or

nutrients were identified using linear quantile mixed-effects models, to inform policy. I

demonstrated how quantile regression is well suited to describe the tails of the intake

distribution in relationship to factors such as age, sex and socio-economic status. This

was illustrated by comparing the quantiles of iron intake with LRNI recommendations

using NDNS RP years 1-4 data, in Chapter 4. The analyses showed that older age and

intake on a weekend day was associated with higher iron intakes in the 25th, 50th, 75th

and 97.5th quantiles, similarly, males consumed greater amounts of iron than females

across all five quantiles (2.5th, 25th, 50th, 75th and 97.5th). Iron intakes tended to be

associated with NSSEC groups, with lower consumption seen in the intermediate oc-

cupations group, the lower supervisory and technical occupations group, semi-routine

occupations group, the routine occupations group and those in the never worked group

for all five quantiles. Those in the lower managerial and professional occupations group

had lower iron intakes for the 2.5th, 25th, 50th and 75th quantiles. Also produced, were

intake curves of the quantiles that provide a useful tool to quickly assess intake defi-

ciency in a population. Using these plots it is straightforward to add intake thresholds

such as the LRNI to visualise the proportion of the population at risk of iron deficiency.

A comparison analysis was also presented highlighting the importance of using correct

model assumptions. Median iron intakes, as estimated using the quantile regression

methods presented here, were compared to mean iron intakes estimated using re-

gression that did consider the between- and within-person variation and the survey

weighting, though not the other elements of the complex survey design nor the skewed

distribution of the data and, as a result of this misspecification, differences in the results

were seen as significantly lower iron intake was reported for those in the semi routine

occupations group by the comparator weighted regression mixed-effects model but not

in the quantile regression case.
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6.2.3 Expenditure on iron prescriptions by health boards

Finally, the distribution of expenditure on iron deficiency medication across health

boards in the UK was investigated as this can highlight inequalities and inform pol-

icy. This analysis was based on the linear quantile mixed-effects model. Expenditure

on supplementation is likely to depend on the nutrient status of the population. For a

fair comparison of expenditure among health boards, the methods developed in Chap-

ter 4 were used to estimate nutrition status and this information was incorporated into

a model of expenditure on prescriptions for iron across health boards in the UK. This

analysis found that the number of patients registered at each health board was asso-

ciated with an increase in spending on iron prescriptions, and that a higher index of

multiple deprivation ranking along with an increase in regional iron intake were asso-

ciated with a decrease in spending. In total 36 health boards had significantly lower

spending and 10 were significantly higher (α < 0.001) than the reference health board,

Lincolnshire west. In addition, choropleth maps were presented, coloured according to

quintiles of spending on iron prescriptions. From these, for example 35, the lower than

expected spending rates in Scotland and Northern Ireland are apparent along with the

higher than expected spending in a belt across England, north of the midlands, and in

Cornwall.

6.2.4 Implications of findings

The results of comparisons between the methods developed here and the approaches

that are currently used have shown statistically significant associations in the current

methods that do not occur in the novel methods and vice versa. The traditional within-

person mean approach is used in the NDNS RP to estimate intakes with the findings

from the report used to inform policy. For example NDNS RP data was used in the

Healthy Lives, Healthy People white paper (Department of Health, 2010) to recom-

mend a reduction in sodium intake which lead to the public health campaign around

reducing sodium intakes, based on the association between sodium intake and heart

disease, however the shape of this association has been shown to depend on the anal-
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ysis method (He et al., 2018) highlighting the importance of correct methods. Sodium

is a habitually consumed nutrient. The methods of analysis presented in Chapter 3 can

be easily adapted to model intake of habitually consumed nutrients. Specifically, the

amount of food consumed can be modelled using a mixed-effects regression model

with a generalised gamma distribution. This modelling approach corresponds to us-

ing the second component of the two-part model described in Chapter 3 but without

conditioning on whether there was consumption or not. The advantage of this method

over standard analysis, is that it accounts for within-person variation in consumption,

through the inclusion of a random intercept, and for the skewed distribution commonly

observed in dietary intakes. This is achieved by using the generalised gamma distri-

bution. Model misspecification can affect both the magnitude and the standard error

of the regression parameters estimates. This has been demonstrated in the literature

describing methods of analysis of clustered data.

6.3 Strengths and limitations of this research

The strengths of this thesis include the development and use of contemporaneous sta-

tistical models to provide reliable and robust estimates of mean and quantile dietary

intake collected from complex survey data. The models were implemented in R and

SAS and code is provided for their implementation (Appendices G and I). The statis-

tical analyses of iron intake and iron prescription expenditure demonstrated the utility

of the methods, while addressing important dietary surveillance questions concern-

ing iron deficiency. The analyses were based on the NDNS RP data which are the

data of highest quality available on dietary consumption in the UK. The methods are

generalizable to the analysis of data from any national survey with multistage sam-

pling and readily available for implementation. There are some limitations of this work,

the proposed methods can be computing intensive due to the bootstrapping sampling,

however, compared to the effort required to undertake a national survey, this is a rel-

atively minor disadvantage. The methods presented here assume that dietary intake

is measured without systematic error and that any bias produced in the estimate of
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the dietary component is random in nature and is due to an insufficient number of

recorded measures. Thus increasing the number of diary days will minimise the dif-

ference between an individual’s reported and true intake. It has been demonstrated

that systematic error does indeed exist as energy intakes have been found to be lower

than expected, compared to an objective measure of energy intake. The data used

throughout this thesis were taken from years 1-4 of the NDNS RP and in years 1 and

3, energy intake was reported to be lower than DLW measured energy expenditure in

all age groups. This ranged from 11% lower in females aged 4-10 to 36% lower in

Females aged 16-49y (Lennox et al., 2014). Similarly, in a previous NDNS report sur-

veying adults aged 19-64y (Henderson et al., 2004), energy intakes were compared

to those measured using DLW and found that underreporting also occurred (Rennie

et al., 2007). It was found that 75% of men and 77% of women overall were classified

as under reporting energy intake. It was also found that the level of under reporting

was found to be higher in obese participants suggesting that weight has an important

role in the bias associated with reported intakes. Slightly lower, though still substantial,

levels of under reported energy intake has been seen over the course of the NHANES

(Archer et al., 2013). Using statistical methods such as those proposed here will re-

duce the assumed random bias; however, it is apparent that the systematic element

remains and that dietary assessment methods need to evolve before a truly unbiased

usual intake can be known.

Estimates of consumption based on consumers will often be unable to distinguish be-

tween those who are non-consumers for the period of reporting and those who will

never consume the food regardless of how many days of intake are collected. The

NDNS RP has recorded a limited number of questions regarding annual consumption

of foods in the Computer Assisted Personal Interview (CAPI) interview which relate to

the following food groups: Meat; poultry; Fish; Eggs; dairy products; Salad vegetables;

Cooked green vegetables; Root vegetables; fruit; Nuts; Offal along with 16 foods which

were chosen due to the high content of certain nutrients. As the questions only relate

to a small section it is not possible to use this information to attempt to validate overall

diary quality and, in addition, the quality of the data can be poor as the answers given
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by some participants are contradictory. For example, approximately 5% of respondents

stated that they avoided meat and fish consumption in the past 12 months yet recorded

consuming these foods in the diary. Other methods recognise the advantage of includ-

ing information on long term intake to distinguish between non- and never-consumers.

The ISU method allows for adjustment where the reporting of food consumption is re-

lated to the collection day. They showed that NHANES participants were more likely

to report higher intakes on the first day of data collection than on the second. This

adjustment however can only be made in the probability part of their method and not in

the amount part of the two-part model.

6.4 Comparison to previous results

Alternate approaches to estimating linear quantile mixed-effects models in R have

been proposed (Galarza and Lachos, 2015; Galarza et al., 2015). This is a method

of quantile estimation using likelihood based inference determined by an EM algorithm

in the qrLMM function in the qrLMM package that provides regression estimates using

a Stochastic Approximation of the EM algorithm (SAEM) (Delyon et al., 1999). Using an

expectation-maximisation algorithm offers a more precise estimation of the regression

parameters and convergence occurs with fewer Monte Carlo EM samples (≤ 10) than

would be required for typical Monte Carlo EM (Meza et al., 2012). A comparison be-

tween fitting the linear quantile mixed-effects model using lqmm and qrLMM has been

carried out (Galarza and Lachos, 2015), reporting lower root mean squared error with

the qrLMM method compared to estimates from the lqmm method, particularly when

estimating extreme quantiles. However, an important limitation of the qrLMM function

is that currently, sampling weights cannot be included in the model. A further method

of quantile estimation has been proposed using M-quantile regression, which has re-

cently been extended to include a random effect (Tzavidis et al., 2016), although the

interpretation of the linear quantile mixed-effects model is not synonymous with that

of the M-quantile regression. Moreover, running a simple weighted model took much

longer than the comparative linear quantile mixed-effects model fitted using lqmm and
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returned non-covergence warnings using the R code kindly shared by Tzavidis et al.

(2016). Because of the non-convergence warnings, the results were not considered

for comparison. Similar to the qrLMM package, currently sampling weights cannot be

included and random coefficients cannot be included along with the random intercept,

unlike in the lqmm package.

In this thesis, the use of the lqmm package was coupled with the survey package to

provide the first extension of quantile regression with random effects that can provide

variance estimates for survey data with multistage clustering and sampling weights in

a semi-parametric framework. The survey package (Lumley, 2014) allows for many

different complex sampling designs and can include a finite population correction if

required. Furthermore, there is flexibility in the resampling method with Jackknife, Bal-

anced Repeated Replication (BRR), and Fay’s modified BRR (Judkins, 1990), boot-

strap (Canty and Davison, 1999) n-1 bootstrap and multistage rescaled bootstrap (Pre-

ston, 2009) all easily implementable allowing these methods to be used in the analysis

of the NDNS RP dietary data. These methods can be extended with the implementa-

tion of a model selection criterion such as AIC or BIC, however, these are not easily

available as they involve estimation of the precision matrix.

In the methods developed in this thesis, the variance estimation at the PSU level of the

data sampled under multistage sampling has been carried out by bootstrap resampling,

alternate approaches exist but bootstrap resampling has the advantage of flexibility as

it can be used in almost all cases. The software used to estimate usual intakes in the

US, the NCI method, uses BRR (Kish and Frankel, 1970) to estimate standard errors.

BRR requires a balanced survey design that includes 2 PSU per stratum and works by

selecting first one PSU per stratum, performing the analysis, then taking the remaining

PSU in the stratum and the analysis is carried out once more with the average of the 2

runs taken. The NDNS RP does not follow this survey design, as the PSUs are not bal-

anced and there are often an odd number of PSUs per stratum. A modification to BRR,

known as the Grouped Balanced Half Sample (GBHS) method (Rao and Shao, 1996)

has been implemented in the Brazilian national diet survey (BRASIL IBGE, 2011) which

also does not have a survey design with 2 PSU per stratum. This method of standard
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error estimation randomly assigns the PSU with the stratum into two groups and then

carries out the BRR estimation. It is worth noting that were BRR to be carried out using

the GBHS method standard error estimation would still take significantly longer than a

similar estimate using NDNS RP data. This is due to the large difference in the num-

ber of strata between the two surveys with 16 strata in NHANES survey design versus

approximately 700 strata in the NDNS RP years 1-4 design. Using BRR for standard

error estimation would require the number of repetitions to be fixed at 700 whereas us-

ing bootstrap the number of iterations required can be varied and, as demonstrated in

Section 3.5, 50 bootstrap repetitions is suitable for obtaining standard errors with high

precision.

6.5 Areas of future research

Section 5.7.9 discussed the complexities of food and nutrient interactions providing an

example where the bioavailability of iron is impacted by, amongst other food compo-

nents, the amount of calcium and vitamin C consumed simultaneously. These interac-

tions occur throughout the diet between nutrients and food components and foods, both

at biological level, as discussed, and also when an individual makes choices over what

to consume at a given meal. This leads to a multitude of possible adjustments required

when modelling usual intake, in spite of the complexity methods of modelling intakes

from multiple foods have been proposed. One approach to estimate usual intake of

the healthy eating index has been presented by Zhang et al. (2011) that is capable of

presenting estimates for a combination of episodically and habitually consumed food

components therefore presenting an overall indication of diet quality although the com-

plexity of its implementation means that it is unlikely to be used by all (Carriquiry, 2017).

Extending the methods presented here to estimate intake that gives an overall measure

of usual intake, considering the interactions that occur with other dietary components

is a challenging area of future research.

A further area of future work is the distribution of these methods for use by those es-

timating usual intakes. As discussed in Section 1.5.2, a significant number of authors
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(Adams and White, 2015; McGeoghegan et al., 2015; Murakami and Livingstone, 2016;

Syrad et al., 2016; Ziauddeen et al., 2017; Hobbs et al., 2018), do not fully consider

the challenges of working with dietary data collected under a multistage sampling plan;

this, presumably, is in part due to the lack of easy to implement methods to properly

carry out this analysis. Therefore, whilst this thesis has developed and presented tech-

niques to overcome these challenges, ensuring that they are accessible to researchers

is of importance. Future work to this end involves the development and publication of

an R package containing the methods currently implemented in R (Chapters 4 and 5),

with the hope of implementing in R the work presented in Chapter 3 that is currently

implemented in SAS. Further methodological developments include the consideration

of alternative distributions to the generalised gamma distributions for the analysis of

intake in the two part model, and extension of the two part model to accommodate a

group population that never consume.

7 Conclusion

In summary, this thesis presented novel approaches to the analysis of dietary intake

collected using multistage sampling. The methods were carefully designed to provide

models of good fit to the data, account for the data variability and the sampling design.

The utility of the methods was demonstrated by addressing three common research

questions arising from dietary surveillance: analysing the mean dietary status of the

target population, identifying groups of low or high dietary consumption, and analysing

the distribution of prescription expenditure in a country, informed by nutrient status.

The computational implementation of these methods was also provided to make them

readily available.
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A Example of the advance letter sent to prospective

NDNS participants

The following is an example of the letter sent to participants selected to take part in the

NDNS RP Y1-4 (2008-2012). This is to inform individuals about the survey, the data

handling process and that an interviewer will be visiting from NatCen to invite them

to take part and that they will be compensated for their time. Also included is contact

details should further information be required.
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Figure 37

The letter sent in advance of an interviewer visit providing participant information on the NDNS

RP years 1-4 (2008-2012).

 

www.food.gov.uk 

         

 

 

          
 

 

www.dh.gov.uk 

 

 

 

www.natcen.ac.uk 

 

 

Department of Health, Wellington House, 

133 - 155 Waterloo Road, London SE1 8UG 

E-mail: gillian.swan@dh.gsi.gov.uk 

Operations Department, NatCen, Kings House,  

101-135 Kings Road, Brentwood, Essex CM14 4LX 

E-mail: ndns@natcen.ac.uk 
 

 
 
 
 
 
 
 
 
 
 

Dear Sir/Madam, 
 

National Diet and Nutrition Survey. 
 
We are writing to tell you about an important and unique study that collects information on the eating habits 
and health status of people in the United Kingdom. It involves gathering information about the food people 
eat, as well as their lifestyles and general health. All answers will be treated in strict confidence in 
accordance with the Data Protection Act, and the information will only be used for research purposes and 
food policy planning. 
 
In the next few days, an interviewer from the National Centre for Social Research (NatCen) will call at your 
address and will be able to explain more about the study. The interviewer will then select, at random, up to 
two people from your household whom we would like to take part in the survey. Each interviewer carries an 
identity card which includes their photograph and the NatCen logo shown on the top of this letter. 
 
We hope that your household will be willing to help us with this study. All parts of the study are optional and 
selected individuals can take part in some parts and not others. We rely on the goodwill of those invited to 
take part to make the study a success. As a token of our appreciation, everybody who provides information 

about their eating patterns will be given £30 in High Street Vouchers.  
 
Some questions that you may have about the study are answered on the back of this letter. We also enclose 
a leaflet which tells you more about the study and why it is being done. If you have any other queries or want 
further information please contact Pauline Burge at NatCen on 0800 652 4572 or visit the National Diet and 
Nutrition Survey (NDNS) website: www.natcen.ac.uk/NDNS. 
 
Many thanks in anticipation of your help. 
 
Yours sincerely,  
 

  
 

Gillian Swan Pauline Burge 
Nutrition Science and Delivery Branch   Operations Department    
Department of Health                  NatCen 
    

 
 
The interviewer who will be calling at your address is:____________________________________ 

199



B Variables collected during the NDNS

Table 23 contains a list of variables collected as part of the NDNS RP Y1-4 (2008-

2012). In total more than 2,000 variables are available covering socio-demographic

characteristics along with food preparation skils, health indicators, supplement and

medication intake along dietary intake data from the completed diet diary.

Table 23

Variables collected available from the NDNS Rolling Programme Years 1-4, (2008-2012)

Group Area Variables (n)

Classification Household 23

Individual 16

Admin 11

Booklet admin 3

Education 4

Employment 3

Ethnicity 4

Income 20

Nurse admin 8

Relationships 12

Sample 18

Weighting 26

Main food provider Admin 10

Cooking facilities 6

Shopping habits 4

Food preparation 29

Cooking skills 41

Ingredients 6

Cooking skills Adult cooking skills 71

Child cooking skills 17

School provision School provision 54

Eating out and other provision Eating out and other provision 17

Eating habits Eating habits 24

Continued on next page
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Table 23 – continued from previous page

Group Area Variables (n)

Food avoidance Food avoidance 13

General health General health 120

Self-assessed health 73

Longstanding illness 6

Prescribed medicines General 1

Drugs affecting blood analytes 17

Reasons for taking medicines 48

Sleep time 9

Oral health Oral health 66

Smoking Adult general health 16

Adult current smokers 16

Adult ex-smokers 7

Children 8-15 4

Drinking Adults general 2

Adults 7 days 6

Children 8-15 7

Children 13-15 43

Actigraph Admin 8

Measurements 13

Anthropometric measurements Demi-span admin 24

Height/weight/infant length admin 174

Mid upper arm circumference admin 19

Waist/hip admin 48

Measurements 9

Recent physical activity questionnaire Home activities 17

Activity at work/school/college 39

Travel to work/school/college 11

Leisure activities 6

Adult physical activity profile 7

Sun exposure Sun exposure at school 138

Continued on next page
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Table 23 – continued from previous page

Group Area Variables (n)

Sun exposure at work 18

General 24

Use of sun cream 12

Holidays 105

Supplements Supplements 51

Doubly labelled water (DLW) Admin 6

Measurements 10

Blood pressure Admin 32

Measurements 15

Urine sample Admin 40

Measurements 43

Blood sample Admin 190

Measurements 114

Food level dietary data Admin 11

Food groups 10

Nutrients 60

Disaggregated foods 30

Other information 6

Day level dietary data - Foods Admin 7

Food groups (not including disaggregated

foods)

66

Other dietary information 13

Day level dietary data - Nutrients Admin 7

Nutrients (diet only) 40

Nutrient (including supplements) 19

Disaggregated foods 30

Other dietary information 13

Supplements 12

Person level dietary data Admin 6

Nutrients (diet only) 41

Nutrients (including supplements) 19

Continued on next page
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Table 23 – continued from previous page

Group Area Variables (n)

Dietary reference values/nutrient intakes

(percentage of total/food energy)

154

Food groups (including disaggregated foods) 106

Supplements 26
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C Example pages from the NDNS RP food diaries

Contained here are some example pages from the three estimated diet NDNS RP

diaries that vary according to the age of the participant. The first is for those aged

19 and over, the second is participants aged 4-18y and the third is for infants aged

under 4 years. As each diary is approximately 70 pages long, for the sake of brevity,

a selection of example pages are included, though complete examples of the three

diaries are published as Appendix E of the NDNS report (Bates et al., 2014a).
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Figure 38

The title page of the food diary used for dietary assessment of adults in the NDNS RP years 1-4 (2008-2012).
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Figure 39

Participant instructions to be read before completing the NDNS RP years 1-4 (2008-2012) diet diary - part 1.
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Figure 40

Participant instructions to be read before completing the NDNS RP years 1-4 (2008-2012) diet diary - part 2.
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Figure 41

An example of a completed NDNS RP years 1-4 (2008-2012) diet diary - part 1.
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Figure 42

An example of a completed NDNS RP years 1-4 (2008-2012) diet diary - part 2.
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Figure 43

An example of a completed NDNS RP years 1-4 (2008-2012) diet diary - part 3.
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Figure 44

Questions covering whether the day’s intake is typical from a NDNS RP years 1-4 (2008-2012) diet diary - part 1.
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Figure 45

Questions covering whether the day’s intake is typical from a NDNS RP years 1-4 (2008-2012) diet diary - part 2.
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Figure 46

An example of a completed recipe from a NDNS RP years 1-4 (2008-2012) diet diary.
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Figure 47

Information covering the detail requested for commonly consumed foods from a NDNS RP years 1-4 (2008-2012) diet diary.
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Figure 48

An example of the food atlas from a NDNS RP years 1-4 (2008-2012) diet diary.
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Figure 49

General dietary intake questions from a NDNS RP years 1-4 (2008-2012) diet diary
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Figure 50

Front page from the NDNS RP years 1-4 (2008-2012) children’s diet diary
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Figure 51

An example of a completed NDNS RP years 1-4 (2008-2012) children’s diet diary - part 1.
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Figure 52

Front page from the NDNS RP years 1-4 (2008-2012) infant’s diet diary

219



Figure 53

An example of a completed NDNS RP years 1-4 (2008-2012) infants’s diet diary - part 1.
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D Two-part models of complex survey data using a gen-

eralised gamma distribution: supplementary tables

Appendix D contains tables relating to work carried out to determine an appropriate

number of bootstrap samples to conduct to ensure acceptable precision whilst min-

imising the duration of time taken for analysis, discussed in Section 3.5. Presented in

Section 3.5 are the estimated standard errors for iron from vegetable intake from an

average of 50, 100, 200 and 300 bootstrap samples, the following tables provide the

standard error estimates for the remaining food groups covered in Section 3 i.e. for iron

from breakfast cereals (Table 24a and b), iron from bread Table 24c and d), iron from

fruit Table 24e and f) and iron from the fruit and vegetable combined food group Table

24g and h). Also presented are the percentage differences between standard errors

estimated from the average 50 bootstrap samples compared to the average from 100,

200 and 300 bootstrap samples respectively for iron from breakfast cereals (Table 25a

and b), iron from bread (Table 25c and d), iron from fruit (Table 25e and f) and iron

from the fruit and vegetable combined food group (Table 25g and h)
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Table 24a

Estimated parameters of the two-part model for iron intake from breakfast cereals in the UK using data from NDNS RP Years 1-4 (2008-2012)

showing the impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females 0.41 0.10185 0.10168 0.10182 0.10184

Age Group 1.5 -3y (Reference)

4-10y 0.91 0.33331 0.33194 0.33270 0.33249

11-18y -0.10 0.32629 0.32494 0.32566 0.32545

19-64y -0.88 0.28951 0.28810 0.28874 0.28857

65y and older 0.80 0.31047 0.30898 0.30978 0.30963

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations 0.02 0.16171 0.16135 0.16182 0.16172

Intermediate occupations 0.10 0.21893 0.21818 0.21890 0.21893

Small employers & own account workers -0.003 0.20080 0.19974 0.20039 0.20051

Lower supervisory & technical occupations 0.005 0.20601 0.20490 0.20521 0.20534

Semi-routine occupations -0.10 0.19097 0.19082 0.19113 0.19099

Routine occupations -0.40 0.20183 0.20148 0.20194 0.20192

Never worked -0.001 0.36100 0.35977 0.36001 0.36041

Other 0.50 0.38884 0.39148 0.39104 0.39173
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Table 24b

Estimated parameters of the two-part model for iron intake from breakfast cereals in the UK using data from NDNS RP Years 1-4 (2008-2012)

showing the impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females -0.11 0.03123 0.03122 0.03124 0.03122

Age Group 1.5 -3y (Reference)

4-10y 0.48 0.08895 0.08866 0.08900 0.08878

11-18y 0.84 0.09054 0.09023 0.09060 0.09030

19-64y 0.37 0.07760 0.07729 0.07758 0.07738

65y and older -0.002 0.08302 0.08270 0.08305 0.08284

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations 0.03 0.04784 0.04780 0.04796 0.04786

Intermediate occupations 0.01 0.06463 0.06456 0.06476 0.06466

Small employers & own account workers -0.01 0.06101 0.06081 0.06096 0.06095

Lower supervisory & technical occupations -0.01 0.06361 0.06316 0.06313 0.06242

Semi-routine occupations 0.01 0.05763 0.05766 0.05775 0.05760

Routine occupations 0.01 0.06217 0.06225 0.06245 0.06229

Never worked -0.002 0.11086 0.11026 0.11067 0.11066

Other -0.002 0.11644 0.11801 0.11766 0.11771

k̂, GG distribution shape parameter 2.93 0.07427 0.07415 0.07345 0.07440

σ̂, GG distribution scale parameter 0.01 0.05543 0.05531 0.05489 0.05544

Variance components σ̂u 6.01 0.20948 0.20848 0.20850 0.20899

σ̂v 0.32 0.01840 0.01860 0.01866 0.01802

ˆcov(u, v) 0.24 0.06453 0.06458 0.06475 0.06503
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Table 24c

Estimated parameters of the two-part model for iron intake from bread in the UK using data from NDNS RP Years 1-4 (2008-2012) showing the

impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females -0.38 0.08346 0.08097 0.08182 0.08142

Age Group 1.5 -3y (Reference)

4-10y 0.38 0.26927 0.26347 0.26581 0.26465

11-18y -0.04 0.25845 0.25312 0.25528 0.25414

19-64y 0.01 0.23197 0.22728 0.22918 0.22823

65y and older 1.01 0.25167 0.24669 0.24861 0.24764

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.56 0.13378 0.13120 0.13199 0.13153

Intermediate occupations -0.61 0.17834 0.17531 0.17621 0.17576

Small employers & own account workers -0.26 0.16508 0.16267 0.16362 0.16285

Lower supervisory & technical occupations -0.47 0.16879 0.16564 0.16660 0.16594

Semi-routine occupations -0.48 0.15519 0.15226 0.15332 0.15274

Routine occupations -0.54 0.16419 0.16083 0.16197 0.16136

Never worked -0.99 0.28528 0.27647 0.28102 0.27915

Other -0.45 0.31010 0.30341 0.30437 0.30416
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Table 24d

Estimated parameters of the two-part model for iron intake from bread in the UK using data from NDNS RP Years 1-4 (2008-2012) showing the

impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females -0.24 0.01745 0.01735 0.01734 0.01733

Age Group 1.5 -3y (Reference)

4-10y 0.32 0.05790 0.05772 0.05770 0.05763

11-18y 0.49 0.05640 0.05626 0.05625 0.05617

19-64y 0.58 0.05044 0.05028 0.05026 0.05020

65y and older 0.44 0.05347 0.05329 0.05237 0.05321

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.07 0.02804 0.02794 0.02792 0.02790

Intermediate occupations -0.13 0.03795 0.03746 0.03735 0.03743

Small employers & own account workers -0.07 0.03408 0.03410 0.03404 0.03397

Lower supervisory & technical occupations -0.04 0.03527 0.03502 0.03503 0.03497

Semi-routine occupations -0.09 0.03283 0.03271 0.03269 0.03266

Routine occupations -0.05 0.03451 0.03438 0.03441 0.03437

Never worked -0.04 0.06383 0.06322 0.06366 0.06349

Other 0.04 0.06635 0.06589 0.06575 0.06592

k̂, GG distribution shape parameter 0.50 0.09989 0.09935 0.09907 0.09921

σ̂, GG distribution scale parameter 1.22 0.04712 0.04702 0.04689 0.04693

Variance components σ̂u 1.93 0.15788 0.14410 0.14827 0.14648

σ̂v 0.11 0.00629 0.00618 0.00613 0.00612

ˆcov(u, v) 0.20 0.02176 0.02092 0.02118 0.02105
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Table 24e

Estimated parameters of the two-part model for iron intake from fruit in the UK using data from NDNS RP Years 1-4 (2008-2012) showing the

impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females 0.13 0.08105 0.08073 0.08089 0.08080

Age Group 1.5 -3y (Reference)

4-10y 0.07 0.27256 0.27143 0.27175 0.27147

11-18y -0.64 0.26554 0.26452 0.26492 0.26451

19-64y -0.23 0.23837 0.23748 0.23786 0.23752

65y and older 0.86 0.25500 0.25500 0.25420 0.25418

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.52 0.12988 0.12957 0.12966 0.12955

Intermediate occupations -0.93 0.17642 0.17506 0.17533 0.17512

Small employers & own account workers -0.36 0.15921 0.15842 0.15844 0.15870

Lower supervisory & technical occupations -0.80 0.16335 0.16281 0.16286 0.16291

Semi-routine occupations -1.16 0.15160 0.15122 0.15137 0.15122

Routine occupations -1.18 0.16003 0.15923 0.15942 0.15926

Never worked -1.01 0.29357 0.29173 0.29192 0.29231

Other -0.39 0.31379 0.31241 0.31393 0.3135
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Table 24f

Estimated parameters of the two-part model for iron intake from fruit in the UK using data from NDNS RP Years 1-4 (2008-2012) showing the

impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females -0.02 0.03159 0.03125 0.03142 0.03138

Age Group 1.5 -3y (Reference)

4-10y 0.15 0.09598 0.09483 0.09256 0.09520

11-18y 0.20 0.09739 0.09626 0.09673 0.09662

19-64y 0.34 0.08344 0.08246 0.08286 0.08279

65y and older 0.56 0.08896 0.08796 0.08837 0.08828

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.15 0.04803 0.04755 0.04772 0.04767

Intermediate occupations -0.16 0.06800 0.06691 0.06727 0.06712

Small employers & own account workers -0.13 0.05980 0.05903 0.05942 0.05934

Lower supervisory & technical occupations -0.22 0.06212 0.06145 0.06177 0.06177

Semi-routine occupations -0.23 0.05855 0.05808 0.05827 0.05820

Routine occupations -029 0.06343 0.06255 0.06297 0.06282

Never worked -0.13 0.11668 0.11507 0.11539 0.11530

Other -0.13 0.11485 0.11404 0.11555 0.11494

k̂, GG distribution shape parameter 0.60 0.07278 0.07130 0.07175 0.07158

σ̂, GG distribution scale parameter 0.22 0.05048 0.04957 0.04932 0.04968

Variance components σ̂u 2.22 0.12774 0.12703 0.12735 0.12714

σ̂v 0.38 0.01894 0.01827 0.01858 0.01849

ˆcov(u, v) 0.55 0.04161 0.04067 0.04105 0.04098
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Table 24g

Estimated parameters of the two-part model for iron intake from fruit and vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012)

showing the impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females 0.58 0.08985 0.08905 0.08877 0.08896

Age Group 1.5 -3y (Reference)

4-10y 0.15 0.29815 0.29603 0.29628 0.29559

11-18y -0.46 0.28346 0.28211 0.28227 0.28175

19-64y 0.49 0.25891 0.25738 0.25772 0.25716

65y and older 1.15 0.28348 0.28133 0.28188 0.28124

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.23 0.15037 0.14846 0.14886 0.14845

Intermediate occupations -0.85 0.19320 0.19150 0.19175 0.19139

Small employers & own account workers -0.17 0.18407 0.18150 0.18198 0.18140

Lower supervisory & technical occupations -0.67 0.18307 0.18122 0.18150 0.18111

Semi-routine occupations -1.02 0.16773 0.16619 0.16615 0.16588

Routine occupations -1.01 0.17421 0.17277 0.17280 0.17249

Never worked -0.99 0.30608 0.30650 0.30632 0.30631

Other -0.38 0.34662 0.34588 0.34692 0.34662
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Table 24h

Estimated parameters of the two-part model for iron intake from fruit and vegetables in the UK using data from NDNS RP Years 1-4 (2008-2012)

showing the impact upon standard error estimation from the average of 50, 100, 200 and 300 bootstrap samples: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE (100) SE (200) SE (300)

Sex Males (Reference)

Females -0.02 0.02945 0.02951 0.02954 0.02946

Age Group 1.5 -3y (Reference)

4-10y 0.30 0.09464 0.09440 0.09468 0.09439

11-18y 0.36 0.09188 0.09369 0.09358 0.09354

19-64y 0.79 0.08204 0.08190 0.08215 0.08190

65y and older 0.76 0.08731 0.08717 0.08745 0.08716

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.08 0.04590 0.04588 0.04598 0.04585

Intermediate occupations -0.10 0.06301 0.06322 0.06339 0.06319

Small employers & own account workers -0.03 0.05681 0.05675 0.05690 0.05674

Lower supervisory & technical occupations -0.09 0.05892 0.05891 0.05899 0.05882

Semi-routine occupations -0.15 0.05519 0.05522 0.05520 0.05506

Routine occupations -0.19 0.05820 0.05836 0.05833 0.05822

Never worked -0.11 0.10574 0.10734 0.10707 0.10699

Other -0.11 0.11096 0.11161 0.11175 0.11159

k̂, GG distribution shape parameter 0.91 0.09581 0.09475 0.09487 0.09440

σ̂, GG distribution scale parameter 0.25 0.04761 0.04820 0.04837 0.04830

Variance components σ̂u 1.66 0.14924 0.14733 0.14699 0.14685

σ̂v 0.23 0.02464 0.02362 0.02449 0.02415

ˆcov(u, v) 0.35 0.04227 0.04184 0.04204 0.04184
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Table 25a

Percentage difference between standard error estimates for iron intake from breakfast cereals in the UK using data from NDNS RP Years 1-4

(2008-2012), with 100, 200 and 300 bootstrap samples and 50 replicas: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females 0.41 0.10185 0.17 0.03 0.01

Age Group 1.5 -3y (Reference)

4-10y 0.91 0.33331 0.41 0.18 0.25

11-18y -0.10 0.32629 0.41 0.19 0.26

19-64y -0.88 0.28951 0.49 0.27 0.32

65y and older 0.80 0.31047 0.48 0.22 0.27

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations 0.02 0.16171 0.22 -0.07 -0.01

Intermediate occupations 0.10 0.21893 0.34 0.01 0

Small employers & own account workers -0.003 0.20080 0.53 0.20 0.14

Lower supervisory & technical occupations 0.005 0.20601 0.54 0.39 0.33

Semi-routine occupations -0.10 0.19097 0.08 -0.08 -0.01

Routine occupations -0.40 0.20183 0.17 -0.05 -0.04

Never worked -0.001 0.36100 0.34 0.27 0.16

Other 0.50 0.38884 -0.68 -0.57 -0.74
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Table 25b

Percentage difference between standard error estimates for iron intake from breakfast cereals in the UK using data from NDNS RP Years 1-4

(2008-2012), with 100, 200 and 300 bootstrap samples and 50 replicas: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females -0.11 0.03123 0.03 -0.03 0.03

Age Group 1.5 -3y (Reference)

4-10y 0.48 0.08895 0.33 -0.06 0.19

11-18y 0.84 0.09054 0.34 -0.07 0.27

19-64y 0.37 0.07760 0.40 0.03 0.28

65y and older -0.002 0.08302 0.39 -0.04 0.22

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations 0.03 0.04784 0.08 -0.25 -0.04

Intermediate occupations 0.01 0.06463 0.11 -0.20 -0.05

Small employers & own account workers -0.01 0.06101 0.33 0.08 0.10

Lower supervisory & technical occupations -0.01 0.06361 0.71 0.75 1.87

Semi-routine occupations 0.01 0.05763 -0.05 -0.21 0.05

Routine occupations 0.01 0.06217 -0.13 -0.45 -0.19

Never worked -0.002 0.11086 0.54 0.17 0.18

Other -0.002 0.11644 -1.35 -1.05 -1.09

k̂, GG distribution shape parameter 2.93 0.07427 0.48 0.47 0.23

σ̂, GG distribution scale parameter 0.01 0.05543 -1.09 -1.41 2.07

Variance components σ̂u 6.01 0.20948 0.16 1.1 -0.18

σ̂v 0.32 0.01840 0.22 0.97 -0.02

ˆcov(u, v) 0.24 0.06453 -0.08 -0.34 -0.77
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Table 25c

Percentage difference between standard error estimates for iron intake from bread in the UK using data from NDNS RP Years 1-4 (2008-2012),

with 100, 200 and 300 bootstrap samples and 50 replicas: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females -0.38 0.08151 -0.06 -0.52 0.02

Age Group 1.5 -3y (Reference)

4-10y 0.38 0.26540 0.15 -0.21 0.21

11-18y -0.04 0.25475 0.07 -0.26 0.16

19-64y 0.01 0.22879 0.1 -0.27 0.17

65y and older 1.01 0.24822 0.09 -0.24 0.16

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.56 0.13152 -0.21 -0.46 -0.07

Intermediate occupations -0.61 0.17622 0.23 -0.15 0.21

Small employers & own account workers -0.26 0.16310 -0.06 -0.26 0.08

Lower supervisory & technical occupations -0.47 0.16614 0.11 -0.34 0.05

Semi-routine occupations -0.48 0.15300 -0.01 -0.27 0.10

Routine occupations -0.54 0.16165 -0.09 -0.20 0.12

Never worked -0.99 0.28115 0.91 0.30 0.65

Other -0.45 0.30509 0.49 -0.16 0.32
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Table 25d

Percentage difference between standard error estimates for iron intake from bread in the UK using data from NDNS RP Years 1-4 (2008-2012),

with 100, 200 and 300 bootstrap samples and 50 replicas: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females -0.24 0.01743 0.80 0.63 0.57

Age Group 1.5 -3y (Reference)

4-10y 0.32 0.05795 0.78 0.47 0.55

11-18y 0.49 0.05646 0.76 0.41 0.51

19-64y 0.58 0.05047 0.79 0.40 0.53

65y and older 0.44 0.05351 0.78 0.47 0.54

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.07 0.02805 0.75 0.57 0.57

Intermediate occupations -0.13 0.03746 0.51 0.13 0.13

Small employers & own account workers -0.07 0.03412 0.53 0.53 0.47

Lower supervisory & technical occupations -0.04 0.03510 0.83 0.37 0.43

Semi-routine occupations -0.09 0.03293 1.00 0.88 0.85

Routine occupations -0.05 0.03458 0.84 0.69 0.61

Never worked -0.04 0.06361 0.72 0.06 0.14

Other 0.04 0.06612 1.04 0.24 0.41

k̂, GG distribution shape parameter 0.50 0.0992 0.42 0.02 0.03

σ̂, GG distribution scale parameter 1.22 0.04706 0.57 0.30 0.30

Variance components σ̂u 1.93 0.14740 0.47 -1.39 0.38

σ̂v 0.11 0.0062 1.61 2.42 1.45

ˆcov(u, v) 0.20 0.02134 1.87 0.80 1.31
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Table 25e

Percentage difference between standard error estimates for iron intake from fruit in the UK using data from NDNS RP Years 1-4 (2008-2012), with

100, 200 and 300 bootstrap samples and 50 replicas: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females 0.13 0.08105 0.39 0.20 0.31

Age Group 1.5 -3y (Reference)

4-10y 0.07 0.27256 0.41 0.30 0.40

11-18y -0.64 0.26554 0.24 0.17 0.25

19-64y -0.23 0.23837 0.37 0.21 0.36

65y and older 0.86 0.25500 0.31 0.16 0.32

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.52 0.12988 0.24 0.17 0.25

Intermediate occupations -0.93 0.17642 0.77 0.62 0.74

Small employers & own account workers -0.36 0.15921 0.50 0.23 0.32

Lower supervisory & technical occupations -0.80 0.16335 0.33 0.30 0.27

Semi-routine occupations -1.16 0.15160 0.25 0.15 0.25

Routine occupations -1.18 0.16003 0.50 0.38 0.48

Never worked -1.01 0.29357 0.63 0.56 0.43

Other -0.39 0.31379 0.44 -0.04 0.09
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Table 25f

Percentage difference between standard error estimates for iron intake from fruit in the UK using data from NDNS RP Years 1-4 (2008-2012), with

100, 200 and 300 bootstrap samples and 50 replicas: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females -0.02 0.03159 1.08 0.54 0.66

Age Group 1.5 -3y (Reference)

4-10y 0.15 0.09598 1.20 0.75 0.81

11-18y 0.20 0.09739 1.16 0.68 0.79

19-64y 0.34 0.08344 1.17 0.70 0.78

65y and older 0.56 0.08896 1.12 0.66 0.76

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.15 0.04803 1.00 0.65 0.75

Intermediate occupations -0.16 0.06800 1.60 1.07 1.29

Small employers & own account workers -0.13 0.05980 1.29 0.64 0.77

Lower supervisory & technical occupations -0.22 0.06212 1.08 0.56 0.56

Semi-routine occupations -0.23 0.05855 0.80 0.48 0.60

Routine occupations -0.29 0.06343 1.39 0.73 0.96

Never worked -0.13 0.11668 1.38 1.11 1.18

Other -0.13 0.11485 0.71 -0.61 -0.08

k̂, GG distribution shape parameter 0.60 0.07278 2.03 1.42 1.65

σ̂, GG distribution scale parameter 0.22 0.05048 1.8 2.3 1.58

Variance components σ̂u 2.22 0.12774 0.56 0.31 0.47

σ̂v 0.38 0.01894 3.54 1.9 2.38

ˆcov(u, v) 0.55 0.04161 2.26 1.35 1.51
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Table 25g

Percentage difference between standard error estimates for iron intake from fruit and vegetables in the UK using data from NDNS RP Years 1-4

(2008-2012), with 100, 200 and 300 bootstrap samples and 50 replicas: Part 1

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females 0.58 0.08985 0.89 0.78 0.99

Age Group 1.5 -3y (Reference)

4-10y 0.15 0.29815 0.71 0.63 0.86

11-18y -0.46 0.28346 0.48 0.42 0.60

19-64y 0.49 0.25891 0.59 0.46 0.68

65y and older 1.15 0.28348 0.76 0.56 0.79

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.23 0.15037 1.27 1.00 1.28

Intermediate occupations -0.85 0.19320 0.88 0.75 0.94

Small employers & own account workers -0.17 0.18407 1.40 1.14 1.45

Lower supervisory & technical occupations -0.67 0.18307 1.01 0.86 1.07

Semi-routine occupations -1.02 0.16773 0.92 0.94 1.10

Routine occupations -1.01 0.17421 0.83 0.81 0.99

Never worked -0.99 0.30608 -0.14 -0.08 -0.02

Other -0.38 0.34662 0.21 -0.09 0
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Table 25h

Percentage difference between standard error estimates for iron intake from fruit and vegetables in the UK using data from NDNS RP Years 1-4

(2008-2012), with 100, 200 and 300 bootstrap samples and 50 bootstrap samples: Part 2

Standard Error (Number of bootstrap samples)

Estimates SE (50) SE

(100)

SE

(200)

SE

(300)

Percent difference from 50

bootstrap samples

Sex Males (Reference)

Females -0.02 0.02945 -0.2 -0.31 -0.03

Age Group 1.5 -3y (Reference)

4-10y 0.30 0.09464 0.25 -0.04 0.26

11-18y 0.36 0.09351 0 -0.26 -0.01

19-64y 0.79 0.08204 0.17 -0.13 0.17

65y and older 0.76 0.08731 0.04 -0.17 0.11

NS-SEC Higher managerial & professional occupations (Reference)

Lower managerial & professional occupations -0.08 0.04590 0.04 -0.17 0.11

Intermediate occupations -0.10 0.06301 -0.33 -0.6 -0.29

Small employers & own account workers -0.03 0.05681 0.11 -0.16 0.12

Lower supervisory & technical occupations -0.09 0.05892 0.02 -0.12 0.17

Semi-routine occupations -0.15 0.05519 -0.05 -0.02 0.24

Routine occupations -0.19 0.05820 -0.27 -0.22 -0.

Never worked -0.11 0.10574 -1.51 -1.26 -1.18

Other -0.11 0.11096 -0.59 -0.71 -0.57

k̂, GG distribution shape parameter 0.91 0.09581 1.11 0.98 1.47

σ̂, GG distribution scale parameter 0.25 0.04761 -1.24 -1.6 -1.45

Variance components σ̂u 1.66 0.14924 1.28 1.51 1.6

σ̂v 0.23 0.02464 4.14 0.61 1.99

ˆcov(u, v) 0.35 0.04227 1.02 0.54 1.02

237



E Two-part models of complex survey data using a gen-

eralised gamma distribution: quadrature point com-

parison

Specifying the number of quadrature points used in maximum likelihood estimation of

the two part model can have an impact upon time taken for the model to converge

with little advantage in increasing from 5 to 10 points (Liu et al., 2010). To test this

claim here four scenarios were explored estimating iron intake from vegetables using

5, 10, 15 and 20 quadrature points using 50 bootstrap replications to estimate standard

errors. Figure 54 shows the variation in each of the 31 estimated standard errors for

each of the 4 scenarios and highlights that there was little difference in the standard

errors of the four models.

The time taken to run of the 50 fitted models is presented in Table 26, which shows

using 5 quadrature points takes an average of 18 minutes and 16 seconds to run each

model and 15 hours 13 minutes and 7 seconds in total for 50 bootstrap replications.

This increased dramatically when using 10 quadrature points taking an average of 1

hour and 41 minutes and a little over 89 hours in total, to run 50 bootstrapped models

with 15 quadrature points took more than 313 hours and using 20 quadrature points

took more than 577 hours or 24 days to run 50 models.

Table 26

Difference in time taken for model convergence using 5,10,15 and 20 quadrature points when

estimating iron intake from vegetables of 50 bootstrap replicates using data from the NDNS RP

Y1-4 (2008-2012) for 4156 participants aged 1.5 years and over.

Quadrature points

5 10 15 20

Average time (h:m:s) 0:18:16 1:41:00 6:16:26 11:33:15

sd (h:m:s) 0:04:15 0:50:53 2:51:36 4:44:21

Total time (h:m:s) 15:13:08 84:09:49 313:41:47 577:42:19

238



Figure 54

A boxplot showing the difference in estimated standard errors of iron intake from vegetables

from four models using 5,10,15 and 20 quadrature points using data from NDNS RP Years 1-4

(2008-2012) for 4156 participants aged 1.5 years and over.
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F Two-part models of complex survey data using a gen-

eralised gamma distribution: data table

Below is a sample of the NDNS RP data used to fit a two-part model for iron intake from

bread, where seriali is the participant’s ID number, typically over 4 rows representing

each of the 4 collected days of intake. BREAD is the amount of iron consumed in the

bread food group this is used to model the amount of iron consumed in part 2 of the

two-part model. IndicatorBread is a binary variable used to indicate consumption or

zero consumption used in the logistic regression model (part 1) of the two-part model.

The next variable agegr1 indicates the age group the participant belongs to, out of

a possible 5 groups. the variable area refers to the primary sampling unit within the

strata named cluster. The variable wti_Y1234 is the sample weighting and nssec8 is

the categorical variable denoting the 9 groups of the NSSEC.
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Table 27

Sample of NDNS RP Y1-4 (2008-2012) data used to estimate iron intake from the bread food

group

seriali BREAD IndicatorBread agegr1 Sex area cluster wti_Y1234 nssec8

10101032 0 0 3 1 10101 1081 0.848841418 6

10101032 4.56768 1 3 1 10101 1081 0.848841418 6

10101032 0 0 3 1 10101 1081 0.848841418 6

10101032 2.45952 1 3 1 10101 1081 0.848841418 6

10101042 0 0 2 1 10101 1081 0.731303388 5

10101042 0 0 2 1 10101 1081 0.731303388 5

10101042 0.864 1 2 1 10101 1081 0.731303388 5

10101042 0 0 2 1 10101 1081 0.731303388 5

10101111 1.728 1 4 1 10101 1081 1.421674093 7

10101111 5.588 1 4 1 10101 1081 1.421674093 7

10101111 4.5502 1 4 1 10101 1081 1.421674093 7

10101111 1.728 1 4 1 10101 1081 1.421674093 7

10101151 4.33536 1 4 0 10101 1081 1.886809257 6

10101151 6.10176 1 4 0 10101 1081 1.886809257 6

10101151 1.94992 1 4 0 10101 1081 1.886809257 6

10101151 1.93536 1 4 0 10101 1081 1.886809257 6

10101161 1.44 1 4 1 10101 1081 0.715086395 7

10101161 1.152 1 4 1 10101 1081 0.715086395 7

10101161 1.152 1 4 1 10101 1081 0.715086395 7

10101161 1.728 1 4 1 10101 1081 0.715086395 7
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G Two-part models of complex survey data using a gen-

eralised gamma distribution: code

This script was used to implement the mixed-effects two-part model developed in Chap-

ter 3 and was implemented in SAS software (v9.3) (SAS Institute Inc, 2011). The code

is written in two parts: the first to calculate empirical point estimates that do not ad-

just for the survey design and the second, which produces bootstrapped estimates of

variance. The first section of code opens the NDNS RP dataset and creates dummy

variables for the five age group categories and nine NSSEC categories.

1 /*Input NDNS*/

2 proc import datafile="H:\PhD\Dropbox\Two-Part Model\code\ndns.csv" out=NDNS

dbms=csv replace;

3 getnames=yes;

4 run;

5 DATA NDNS;

6 SET NDNS;

7 agegroup_2 = 0;

8 agegroup_3 = 0;

9 agegroup_4 = 0;

10 agegroup_5 = 0;

11 IF (agegr1=2) THEN agegroup_2 =1;

12 IF (agegr1=3) THEN agegroup_3 =1;

13 IF (agegr1=4) THEN agegroup_4 =1;

14 IF (agegr1=5) THEN agegroup_5 =1;

15 RUN;

16 DATA NDNS;

17 SET NDNS;

18 nssec_2 = 0;

19 nssec_3 = 0;

20 nssec_4 = 0;

21 nssec_5 = 0;
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22 nssec_6 = 0;

23 nssec_7 = 0;

24 nssec_8 = 0;

25 nssec_9 = 0;

26 IF (nssec8=2) THEN nssec_2 =1;

27 IF (nssec8=3) THEN nssec_3 =1;

28 IF (nssec8=4) THEN nssec_4 =1;

29 IF (nssec8=5) THEN nssec_5 =1;

30 IF (nssec8=6) THEN nssec_6 =1;

31 IF (nssec8=7) THEN nssec_7 =1;

32 IF (nssec8=8) THEN nssec_8 =1;

33 IF (nssec8=99) THEN nssec_9 =1;

34 RUN;

This example is for iron in bread and the continuous variable is denoted as Bread

with the binary indicator denoted as IndicatorBread. The function used to obtain max-

imum likelihood estimates is NLMIXED and arguments of interest include the number

of quadrature points specified QPOINTS which equals 5 and TECH = QUANEW which

specifies the optimization algorithm. In this case QUANEW refers to the quasi-Newton

which approximates second-order derivatives and is thus faster for problems of the size

used here. Also specified are the convergence criteria using GCONV and textitmax-

func. Model starting parameters were specified using the PARMS command, this can

be modified to take intial parameters estimated using simple regression. In the follow-

ing section Loglikelihood: Part 1 (ll1), the first part of the two-part model is specified

using a logit model with a random intercept then the second part is detailed in Loglike-

lihood: Part 1 (ll1), where the generalised gamma distribution is used and a random

intercept is incorporated. The two parts are summed and the random intercepts are

allowed to be correlated and the survey weighting is applied using the REPLICATE

function and the model is then fitted. The correlated random effects are specified at

the participant level using the RANDOM and SUBJECT arguments.

1 /* define some macro terms */
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2 %let Amount = BREAD;

3 %let Indicator = IndicatorBREAD;

4 /*Save parameter estimates to be used in variance procedure*/

5 /* Reference agegroup is 1 (1.5-3years) */

6 /* Reference nssec8 is 1 (Higher managerial and professional) */

7 /* Reference sex is 0 (Females) */

8 ods output "Parameter Estimates"=parest;

9 PROC NLMIXED DATA=NDNS MAXITER=10000 QPOINTS=5

GCONV=1e-3 TECH=QUANEW maxfunc=10000;

10 PARMS a0=1.8 a1=0.4 a2=0.0 a3=-0.5

a4=0.4 a5=1.0 a6=-0.4 a7=-0.9 a8=-0.2 a9=-0.7

a10=-1.1 a11=-1.0 a12=-1.0 a13=-0.4

11 b0=-0.3 b1=0.0 b2=0.3

b3=0.4 b4=0.8

b5=0.7 b6=-0.1

b7=-0.1 b8=-0.0

b9=-0.1 b10=0.0

b11=-0.2 b12=-0.1

b13=-0.1

12 sda=1.6 sdb=0.2 k=4.4

d0=1

13 covab=0.3;

14

15 *Loglikelihood: Part 1 (ll1);

16 y=a0+au0+a1*sex + a2*agegroup_2 + a3*agegroup_3 +

a4*agegroup_4 + a5*agegroup_5 +

17 a6*nssec_2 + a7*nssec_3 + a8*nssec_4 + a9*nssec_5

+ a10*nssec_6 + a11*nssec_7 + a12*nssec_8 +

a13*nssec_9;

18 p=exp(y)/(1+exp(y));

19 ll1= log((1-p)**(1-&Indicator)) +

log(p**(&Indicator));
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20 IF &Indicator=0 THEN L=ll1;

21

22 *Loglikelihood: Part 2 (ll2);

23 IF &Indicator=1 THEN DO;

24 mu=b0+bu0+ b1*sex + b2*agegroup_2 + b3*agegroup_3

+ b4*agegroup_4 + b5*agegroup_5 +

25 b6*nssec_2 + b7*nssec_3 + b8*nssec_4 + b9*nssec_5

+ b10*nssec_6 + b11*nssec_7 + b12*nssec_8 +

b13*nssec_9;

26 sigma=exp((d0)/2);

27 eta=abs(k) ** (-2);

28 u=sign(k)*(log(&Amount)-mu)/sigma;

29 value1=eta *log (eta) - log(sigma) -.5 *log(eta) -

lgamma(eta);

30 ll2 = value1 + u *sqrt(eta) - eta * exp(abs(k)*u);

31 L=ll1+ll2;

32 REPLICATE wti_Y1234;

33 END;

34 MODEL &Amount ~ GENERAL(L);

35 RANDOM au0 bu0 ~ NORMAL([0,0],[sda, covab, sdb])

SUBJECT=seriali;

36 RUN;

37 quit;

38 /*model end */

39 ods output close;

The following code details the step used to obtain bootstrapped variance estimates that

accounts for the clustering of the NDNS RP. The first step extracts a list of PSUs then

a loop is used to sample the PSUs with replacement. The next steps merge the NDNS

RP data with the list of PSUs and their selection weights and then repeat the rows

based on the selection weight. The model is then ran on each of the created datasets.
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1 /*return total number of clusters*/

2 proc freq data=NDNS noprint;

3 tables area / out=ClusterIDList(drop=count percent);

4 run;

5 /***************LOOP THROUGH THIS TO GET N REP WEIGHTS****************/

6 /*produce cluster weights*/

7 %macro ClusterWeights(n);

8 %do i=1 %to &n;

9 proc surveyselect data=ClusterIDList out=Sample&i method=urs

n=722 noprint;

10 run;

11 %end;

12 %mend ClusterWeights;

13 %ClusterWeights(50)

14 /****************LOOP TO CREATE DATASETS CONTAINING REP WEIGHTS AND NDNS

DATA**********/

15 %macro DataGen(n);

16 %do i=1 %to &n;

17 data Sample&i;

18 merge Sample&i(in=sample) NDNS(in=all);

19 by area;

20 if Sample and All;

21 run;

22 %end;

23 %mend DataGen;

24 %DataGen(50)

25 /***********************LOOP TO REPLICATE OBSERVATIONS BASED ON NEW

VARIABLE***********/

26 %macro RepObs(n);

27 %do i=1 %to &n;

28 Data Sample&i (drop=i);

29 set Sample&i;
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30 do i =1 to NumberHits;

31 output;

32 end;

33 run;

34 %end;

35 %mend RepObs;

36 %RepObs(50) /*here RepObs contains the number of iterations to be carried out*/

37 /*-----------------------------------------------------------------------------------------*/

38 /*ODS TRACE ON;*/

39 /*now n data sets have been created loop through each one and apply the

following code*/

40 %macro GG2pmBoot(n);

41 %do i=1 %to &n;

42 ODS OUTPUT ParameterEstimates = _parest&i;

43 PROC NLMIXED DATA=Sample&i MAXITER=10000 QPOINTS=5

GCONV=1e-3 TECH=QUANEW maxfunc=10000;

44 PARMS a0=1.8 a1=0.4 a2=0.0 a3=-0.5

a4=0.4 a5=1.0 a6=-0.4 a7=-0.9 a8=-0.2 a9=-0.7

a10=-1.1 a11=-1.0 a12=-1.0 a13=-0.4

45 b0=-0.3 b1=0.0 b2=0.3

b3=0.4 b4=0.8

b5=0.7 b6=-0.1

b7=-0.1 b8=-0.0

b9=-0.1 b10=0.0

b11=-0.2 b12=-0.1

b13=-0.1

46 sda=1.6 sdb=0.2 k=4.4

d0=1

47 covab=0.3;

48

49 *Loglikelihood: Part 1 (ll1);
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50 y=a0+au0+a1*sex + a2*agegroup_2 + a3*agegroup_3 +

a4*agegroup_4 + a5*agegroup_5 +

51 a6*nssec_2 + a7*nssec_3 + a8*nssec_4 + a9*nssec_5

+ a10*nssec_6 + a11*nssec_7 + a12*nssec_8 +

a13*nssec_9;

52 p=exp(y)/(1+exp(y));

53 ll1= log((1-p)**(1-IndicatorBread)) +

log(p**(IndicatorBread));

54 IF IndicatorBread=0 THEN L=ll1;

55

56 *Loglikelihood: Part 2 (ll2);

57 IF IndicatorBread=1 THEN DO;

58 mu=b0+bu0+ b1*sex + b2*agegroup_2 + b3*agegroup_3

+ b4*agegroup_4 + b5*agegroup_5 +

59 b6*nssec_2 + b7*nssec_3 + b8*nssec_4 + b9*nssec_5

+ b10*nssec_6 + b11*nssec_7 + b12*nssec_8 +

b13*nssec_9;

60 sigma=exp((d0)/2);

61 eta=abs(k) ** (-2);

62 u=sign(k)*(log(BREAD)-mu)/sigma;

63 value1=eta *log (eta) - log(sigma) -.5 *log(eta) -

lgamma(eta);

64 ll2 = value1 + u *sqrt(eta) - eta * exp(abs(k)*u);

65 L=ll1+ll2;

66 REPLICATE wti_Y1234;

67 END;

68 MODEL BREAD ~ GENERAL(L);

69 RANDOM au0 bu0 ~ NORMAL([0,0],[sda, covab, sdb])

SUBJECT=seriali;

70 RUN;

71 %end;

72 %mend GG2pmBoot;
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73 %GG2pmBoot(50);

74 ODS OUTPUT CLOSE;
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H Quantile regression of dietary intake in complex sam-

ples: data table

Table 28 displays a sample of the data used for the analysis described in Chapter 4.

SubjectID refers to the participant’s ID number, Age gives the participant’s age, sex is

a binary variable with categories female (2) and male (1), Ironmg indicates the partic-

ipant’s iron intake (mg) for the day, NSSEC8 is the NSSEC group that the participant

belongs to. The survey design elements, PSU and Strata, are given in the next two

variables along with the survey weighting given by the variable Weighting. Weekday is

a binary variable indicating a weekend (0) or weekday (1). Age2 and Age3 are cubic

and quadratic terms relating to age.
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Table 28

Sample of NDNS RP Y1-4 (2008-2012) data used to estimate quantiles of dietary iron intake

Subject ID Age Sex Ironmg NSSEC8 PSU Strata Weighting Weekday Age2 Age3

10101032 11 2 7.98378 6 10101 1081 0.848841418 1 1.21 0.1331

10101032 11 2 7.2149 6 10101 1081 0.848841418 1 1.21 0.1331

10101032 11 2 6.52425 6 10101 1081 0.848841418 0 1.21 0.1331

10101032 11 2 7.29087 6 10101 1081 0.848841418 0 1.21 0.1331

10101042 10 2 5.9214 5 10101 1081 0.731303388 0 1 0.1

10101042 10 2 7.9447 5 10101 1081 0.731303388 1 1 0.1

10101042 10 2 5.6914 5 10101 1081 0.731303388 1 1 0.1

10101042 10 2 5.6531 5 10101 1081 0.731303388 0 1 0.1

10101111 32 2 10.6905 7 10101 1081 1.421674093 0 10.24 3.2768

10101111 32 2 7.4665 7 10101 1081 1.421674093 0 10.24 3.2768

10101111 32 2 15.327 7 10101 1081 1.421674093 1 10.24 3.2768

10101111 32 2 22.8288 7 10101 1081 1.421674093 1 10.24 3.2768

10101151 64 1 13.72186 6 10101 1081 1.886809257 0 40.96 26.2144

10101151 64 1 12.45836 6 10101 1081 1.886809257 0 40.96 26.2144

10101151 64 1 18.19694 6 10101 1081 1.886809257 1 40.96 26.2144

10101151 64 1 12.54572 6 10101 1081 1.886809257 1 40.96 26.2144

10101161 61 2 10.188 7 10101 1081 0.715086395 0 37.21 22.6981

10101161 61 2 6.337 7 10101 1081 0.715086395 0 37.21 22.6981

10101161 61 2 7.9696 7 10101 1081 0.715086395 1 37.21 22.6981

10101161 61 2 10.306 7 10101 1081 0.715086395 1 37.21 22.6981
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I Quantile regression of dietary intake in complex sam-

ples: code

The following is R code (R Core Team, 2016) (v3.3.2) used to compute the point es-

timates of the quantile regression parameters using NDNS RP y1-4 data in Chapter

4. Here the 2.5th, 25th, median, 75th and 97.5th quantiles of dietary iron intake are

modelled as a function of age, age2, age3, sex, NSSEC and day of the week. A se-

lection weighting is applied to ensure that estimates are adjusted according to survey

non-response, for unequal selection probability and to compensate for over- and under-

representation of some individuals within the population. Note that the clustering in the

NDNS RP survey design will only impact upon variance estimation and is therefore not

included in the point estimation code.
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The first section of the code calls the lqmm and survey packages and then opens the

NDNS RP data that has undergone some cleaning, following this participants with a

missing NSSEC value are removed from the dataset. The weekend indicator variable

is created in the next line, with weekdays counted as Monday, Tuesday, Wednesday,

Thursday and Friday. Weekend days are Saturday and Sunday.

1 library(lqmm)

2 library(survey)

3 source("H:/PhD/Analysis/R/Quantile Regression/AmountOnly/NDNSData.r")

4 NDNS <- NDNS[complete.cases(NDNS[,2]),]

5 NDNS$weekday <- ifelse(NDNS$Day.of.Week == "Saturday"|

NDNS$Day.of.Week=="Sunday",1,0)

6 NDNS$Age2 <- (I(NDNS$Age^2)/100)

7 NDNS$Age3 <- (I(NDNS$Age^3)/10000)

This section details the model implementation. The first line specifies the model then in

the second line gauss-laguerre quadrature is specified using the command type=robust,

5 quadrature points are specified. The tau argument takes the value for the quantile:

here the median is specified. The convergence criteria are given in the control argu-

ments.

1 LQMM05PE <- lqmm(Iron~Age + Age2 + Age3 + Gender + nssec8 + weekday,

2 random =~1, type="robust", group=ISerial, nK=5, tau=0.5,

3 weights=NDNS$wti_Y1234, data=NDNS,

4 control=list(LP_tol_ll=1e-4, LP_max_iter=2000))

In this part the variance estimates are calculated. The survey design is implemented

using the withReplicates, as.svrepdesign and svydesign functions. The two survey

design functions include the PSU and strata variables together with a weighting. The

withReplicates function then takes this information and creates a number of data sets

sampled using type="bootstrap and the replicates=50 function. Then the model is ran,

in this case 50 times, using the bootstrap weights. The coefficients are then extracted
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and averaged to give an output which contains bootstrapped point and variance esti-

mates.

1 LQMM05 <- withReplicates(as.svrepdesign(

2 svydesign(id=~point,strata=~strata,weights=~wti_Y1234,data=NDNS),type="bootstrap",

replicates=50),

3 quote(coef(lqmm(Iron~Age + Age2 + Age3 + Gender + nssec8 + weekday,

4 random =~1, type="robust", group=ISerial, nK=5, tau=0.5,

5 weights=.weights, data=NDNS,

6 control=list(LP_tol_ll=1e-4, LP_max_iter=2000)))))
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J Iron prescription costs across the UK: code

The following is R code (R Core Team, 2016) (v3.3.2) used to compute the median

amount spent on iron medication by health boards in the UK adjusting for the number

of registered patients, index of multiple deprivation and a second model as previously

that includes bioavailable iron intake. Regression coefficients are presented in Table

30 in Appendix M. The code is in two main parts; the first section of the code involves

cleaning and preparing the data prior to fitting models in the second part. The first few

lines (2:7) call the relevant libraries used, then the data from each country is compiled

into a single data frame (lines 10:13). The next section (lines 16:27) create a data frame

with containing index of multiple deprivation values as a percentage, firstly within each

country, then overall.

1 #Libraries

2 library (lqmm) #for quantile regression

3 library (data.table) #for data handling

4 library ( plyr ) #for faster aggregate

5 library (dplyr) #to create sample data frame

6 library (reshape2) #for long to wide

7 library (doBy) #for summaryBy

8

9 #Combine data into a single file

10 Wales <− as.data.frame(fread("/IronUk/Wales.csv",header=TRUE))

11 England <− as.data.frame(fread("/IronUk/England.csv", header=TRUE))

12 NorthernIreland <− as.data.frame(fread("/IronUK/NorthernIreland.csv",header=TRUE))

13 Scotland <− as.data.frame(fread("/IronUK/Scotland.csv",header=TRUE))

14

15 #CREATE overall IMD percentage

16 IMD <− rbindlist ( list (data.frame(PRACTICE=Wales$PRACTICE,IMD=Wales$IMD_RANK/max(Wales$IMD_RANK)),

17 data.frame(PRACTICE=England$PRACTICE,IMD=England$IMD_RANK/max(England$IMD_RANK)),

18 data.frame(PRACTICE=Scotland$PRACTICE,IMD=Scotland$IMD_RANK/max(Scotland$IMD_RANK)),

19 data.frame(PRACTICE=NorthernIreland$PRACTICE,IMD=NorthernIreland$IMD_RANK/max(NorthernIreland$IMD_RANK))))

20

21 IMD <− aggregate(IMD,by=list(PRACTICE=IMD$PRACTICE),FUN=mean)

22 IMD <− IMD[ −c(2) ]

23 IMD$RANK <− rank(IMD$IMD,ties.method= "random")

24

25 #Combine into one object

26 UKData <− as.data.frame(rbindlist( list (Wales,Scotland,England,NorthernIreland), fill =TRUE))

27 UKData <− merge(x = UKData, y = IMD[ , c("PRACTICE", "RANK")], by = "PRACTICE", all.x=TRUE)
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This next section makes adjustments to the names of health boards to ensure they

match those used in the map data, removing "NHS", "CCG", "University" and "and"

replacing this last case with "&". Following this the health boards are matched to the

government office regions used by the NDNS RP (lines 11:245).

1 UKData$HEALTHBOARD <− gsub(’NHS ’ , ’’ , UKData$HEALTHBOARD)

2 UKData$HEALTHBOARD <− gsub(’ CCG’ , ’’ , UKData$HEALTHBOARD)

3 UKData$HEALTHBOARD <− gsub(’ University’, ’’ , UKData$HEALTHBOARD)

4 UKData$HEALTHBOARD <− gsub(’ and ’ , ’ & ’ , UKData$HEALTHBOARD)

5

6 ################################################################################

7 #Match HEALTHBOARD to GOR

8 ################################################################################

9 UKData$GOR <− NA

10

11 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Cambridgeshire & Peterborough","East of England",UKData$GOR)

12 UKData$GOR ifelse(UKData$HEALTHBOARD=="Ipswich & East Suffolk","East of England",UKData$GOR)

13 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Herts Valleys","East of England",UKData$GOR)

14 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Mid Essex","East of England",UKData$GOR)

15 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Norfolk","East of England",UKData$GOR)

16 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Norfolk","East of England",UKData$GOR)

17 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Essex","East of England",UKData$GOR)

18 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Suffolk","East of England",UKData$GOR)

19 UKData$GOR=ifelse(UKData$HEALTHBOARD=="East & North Hertfordshire","East of England",UKData$GOR)

20 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Great Yarmouth & Waveney","East of England",UKData$GOR)

21 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Luton","East of England",UKData$GOR)

22 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North East Essex","East of England",UKData$GOR)

23 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Norwich","East of England",UKData$GOR)

24 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Thurrock","East of England",UKData$GOR)

25 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Norfolk","East of England",UKData$GOR)

26 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Basildon & Brentwood","East of England",UKData$GOR)

27 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Southend","East of England",UKData$GOR)

28 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Corby","East Midlands",UKData$GOR)

29 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Erewash","East Midlands",UKData$GOR)

30 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Leicester City","East Midlands",UKData$GOR)

31 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Mansfield & Ashfield","East Midlands",UKData$GOR)

32 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Nene","East Midlands",UKData$GOR)

33 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Derbyshire","East Midlands",UKData$GOR)

34 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Nottingham North & East","East Midlands",UKData$GOR)

35 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Rushcliffe","East Midlands",UKData$GOR)

36 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Southern Derbyshire","East Midlands",UKData$GOR)

37 UKData$GOR=ifelse(UKData$HEALTHBOARD=="East Leicestershire & Rutland","East Midlands",UKData$GOR)

38 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hardwick","East Midlands",UKData$GOR)

39 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Lincolnshire West","East Midlands",UKData$GOR)

40 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Milton Keynes","East Midlands",UKData$GOR)
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41 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Newark & Sherwood","East Midlands",UKData$GOR)

42 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Nottingham City","East Midlands",UKData$GOR)

43 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Nottingham West","East Midlands",UKData$GOR)

44 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South West Lincolnshire","East Midlands",UKData$GOR)

45 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Leicestershire","East Midlands",UKData$GOR)

46 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bedfordshire","East Midlands",UKData$GOR)

47 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Barnet","London",UKData$GOR)

48 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Brent","London",UKData$GOR)

49 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Camden","London",UKData$GOR)

50 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Croydon","London",UKData$GOR)

51 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Enfield","London",UKData$GOR)

52 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Greenwich","London",UKData$GOR)

53 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Haringey","London",UKData$GOR)

54 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Havering","London",UKData$GOR)

55 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Islington","London",UKData$GOR)

56 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Lambeth","London",UKData$GOR)

57 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Newham","London",UKData$GOR)

58 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Richmond","London",UKData$GOR)

59 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Merton","London",UKData$GOR)

60 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Tower Hamlets","London",UKData$GOR)

61 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wandsworth","London",UKData$GOR)

62 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Central London (Westminster)","London",UKData$GOR)

63 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Barking & Dagenham","London",UKData$GOR)

64 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bexley","London",UKData$GOR)

65 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bromley","London",UKData$GOR)

66 UKData$GOR=ifelse(UKData$HEALTHBOARD=="City & Hackney","London",UKData$GOR)

67 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Ealing","London",UKData$GOR)

68 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hounslow","London",UKData$GOR)

69 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hammersmith & Fulham","London",UKData$GOR)

70 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Harrow","London",UKData$GOR)

71 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hillingdon","London",UKData$GOR)

72 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Kingston","London",UKData$GOR)

73 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Lewisham","London",UKData$GOR)

74 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Redbridge","London",UKData$GOR)

75 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Southwark","London",UKData$GOR)

76 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Sutton","London",UKData$GOR)

77 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Waltham Forest","London",UKData$GOR)

78 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West London","London",UKData$GOR)

79 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Durham Dales, Easington & Sedgefield","North East",UKData$GOR)

80 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hartlepool & Stockton−on−Tees","North East",UKData$GOR)

81 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Tees","North East",UKData$GOR)

82 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Sunderland","North East",UKData$GOR)

83 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Darlington","North East",UKData$GOR)

84 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Durham","North East",UKData$GOR)

85 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Northumberland","North East",UKData$GOR)

86 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Tyneside","North East",UKData$GOR)
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87 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Tyneside","North East",UKData$GOR)

88 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Newcastle Gateshead","North East",UKData$GOR)

89 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Blackpool","North West",UKData$GOR)

90 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bury","North West",UKData$GOR)

91 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Chorley & South Ribble","North West",UKData$GOR)

92 UKData$GOR=ifelse(UKData$HEALTHBOARD=="East Lancashire","North West",UKData$GOR)

93 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Heywood, Middleton & Rochdale","North West",UKData$GOR)

94 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Halton","North West",UKData$GOR)

95 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Cumbria","North West",UKData$GOR)

96 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Lancashire North","North West",UKData$GOR)

97 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Manchester","North West",UKData$GOR)

98 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Sefton","North West",UKData$GOR)

99 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Stockport","North West",UKData$GOR)

100 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Tameside & Glossop","North West",UKData$GOR)

101 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Vale Royal","North West",UKData$GOR)

102 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Cheshire","North West",UKData$GOR)

103 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wigan Borough","North West",UKData$GOR)

104 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Airedale, Wharfedale & Craven","North West",UKData$GOR)

105 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bassetlaw","North West",UKData$GOR)

106 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Calderdale","North West",UKData$GOR)

107 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wirral","North West",UKData$GOR)

108 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Liverpool","North West",UKData$GOR)

109 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Blackburn with Darwen","North West",UKData$GOR)

110 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bolton","North West",UKData$GOR)

111 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Central Manchester","North West",UKData$GOR)

112 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Oldham","North West",UKData$GOR)

113 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Eastern Cheshire","North West",UKData$GOR)

114 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Greater Preston","North West",UKData$GOR)

115 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Salford","North West",UKData$GOR)

116 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Knowsley","North West",UKData$GOR)

117 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Manchester","North West",UKData$GOR)

118 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Cheshire","North West",UKData$GOR)

119 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Southport & Formby","North West",UKData$GOR)

120 UKData$GOR=ifelse(UKData$HEALTHBOARD=="St Helens","North West",UKData$GOR)

121 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Trafford","North West",UKData$GOR)

122 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Warrington","North West",UKData$GOR)

123 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Lancashire","North West",UKData$GOR)

124 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Fylde & Wyre","North West",UKData$GOR)

125 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Northern","Northern Ireland",UKData$GOR)

126 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Belfast","Northern Ireland",UKData$GOR)

127 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Western","Northern Ireland",UKData$GOR)

128 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Eastern","Northern Ireland",UKData$GOR)

129 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Southern","Northern Ireland",UKData$GOR)

130 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Borders","Scotland",UKData$GOR)

131 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Fife","Scotland",UKData$GOR)

132 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Grampian","Scotland",UKData$GOR)
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133 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Highland","Scotland",UKData$GOR)

134 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Lothian","Scotland",UKData$GOR)

135 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Shetland","Scotland",UKData$GOR)

136 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Western Isles","Scotland",UKData$GOR)

137 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Ayrshire & Arran","Scotland",UKData$GOR)

138 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Dumfries & Galloway","Scotland",UKData$GOR)

139 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Forth Valley","Scotland",UKData$GOR)

140 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Greater Glasgow & Clyde","Scotland",UKData$GOR)

141 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Lanarkshire","Scotland",UKData$GOR)

142 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Orkney","Scotland",UKData$GOR)

143 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Tayside","Scotland",UKData$GOR)

144 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Brighton & Hove","South East",UKData$GOR)

145 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Eastbourne, Hailsham & Seaford","South East",UKData$GOR)

146 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Crawley","South East",UKData$GOR)

147 UKData$GOR=ifelse(UKData$HEALTHBOARD=="East Surrey","South East",UKData$GOR)

148 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hastings & Rother","South East",UKData$GOR)

149 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Horsham & Mid Sussex","South East",UKData$GOR)

150 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Kent Coast","South East",UKData$GOR)

151 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Swale","South East",UKData$GOR)

152 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bracknell & Ascot","South East",UKData$GOR)

153 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Hampshire","South East",UKData$GOR)

154 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Isle of Wight","South East",UKData$GOR)

155 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North & West Reading","South East",UKData$GOR)

156 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Portsmouth","South East",UKData$GOR)

157 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Eastern Hampshire","South East",UKData$GOR)

158 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Southampton","South East",UKData$GOR)

159 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Hampshire","South East",UKData$GOR)

160 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wokingham","South East",UKData$GOR)

161 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Castle Point & Rochford","South East",UKData$GOR)

162 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Surrey Downs","South East",UKData$GOR)

163 UKData$GOR=ifelse(UKData$HEALTHBOARD=="High Weald Lewes Havens","South East",UKData$GOR)

164 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Ashford","South East",UKData$GOR)

165 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Canterbury & Coastal","South East",UKData$GOR)

166 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Coastal West Sussex","South East",UKData$GOR)

167 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Dartford, Gravesham & Swanley","South East",UKData$GOR)

168 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Guildford & Waverley","South East",UKData$GOR)

169 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Medway","South East",UKData$GOR)

170 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North West Surrey","South East",UKData$GOR)

171 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Surrey Heath","South East",UKData$GOR)

172 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Thanet","South East",UKData$GOR)

173 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Chiltern","South East",UKData$GOR)

174 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Fareham & Gosport","South East",UKData$GOR)

175 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Newbury & District","South East",UKData$GOR)

176 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Oxfordshire","South East",UKData$GOR)

177 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Slough","South East",UKData$GOR)

178 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Reading","South East",UKData$GOR)
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179 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Aylesbury Vale","South East",UKData$GOR)

180 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Windsor, Ascot & Maidenhead","South East",UKData$GOR)

181 UKData$GOR=ifelse(UKData$HEALTHBOARD=="West Kent","South East",UKData$GOR)

182 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North East Hampshire & Farnham","South East",UKData$GOR)

183 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bristol","South West",UKData$GOR)

184 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Gloucestershire","South West",UKData$GOR)

185 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Somerset","South West",UKData$GOR)

186 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Gloucestershire","South West",UKData$GOR)

187 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wiltshire","South West",UKData$GOR)

188 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Devon & Torbay","South West",UKData$GOR)

189 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bath & North East Somerset","South West",UKData$GOR)

190 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Dorset","South West",UKData$GOR)

191 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Kernow","South West",UKData$GOR)

192 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Somerset","South West",UKData$GOR)

193 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Swindon","South West",UKData$GOR)

194 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Northern, Eastern & Western Devon","South West",UKData$GOR)

195 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Abertawe Bro Morgannwg","Wales",UKData$GOR)

196 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Betsi Cadwaladr","Wales",UKData$GOR)

197 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Cwm Taf","Wales",UKData$GOR)

198 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Powys","Wales",UKData$GOR)

199 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Aneurin Bevan","Wales",UKData$GOR)

200 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Cardiff & Vale","Wales",UKData$GOR)

201 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hywel Dda","Wales",UKData$GOR)

202 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Birmingham South & Central","West Midlands",UKData$GOR)

203 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Coventry & Rugby","West Midlands",UKData$GOR)

204 UKData$GOR=ifelse(UKData$HEALTHBOARD=="East Staffordshire","West Midlands",UKData$GOR)

205 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Staffordshire","West Midlands",UKData$GOR)

206 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Redditch & Bromsgrove","West Midlands",UKData$GOR)

207 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Shropshire","West Midlands",UKData$GOR)

208 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South East Staffordshire & Seisdon Peninsula","West

Midlands",UKData$GOR)

209 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Worcestershire","West Midlands",UKData$GOR)

210 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Stoke on Trent","West Midlands",UKData$GOR)

211 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Walsall","West Midlands",UKData$GOR)

212 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wyre Forest","West Midlands",UKData$GOR)

213 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Cannock Chase","West Midlands",UKData$GOR)

214 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Dudley","West Midlands",UKData$GOR)

215 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Herefordshire","West Midlands",UKData$GOR)

216 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Warwickshire North","West Midlands",UKData$GOR)

217 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Sandwell & West Birmingham","West Midlands",UKData$GOR)

218 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Solihull","West Midlands",UKData$GOR)

219 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Warwickshire","West Midlands",UKData$GOR)

220 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Stafford & Surrounds","West Midlands",UKData$GOR)

221 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Telford & Wrekin","West Midlands",UKData$GOR)

222 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wolverhampton","West Midlands",UKData$GOR)

223 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Birmingham Crosscity","West Midlands",UKData$GOR)
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224 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bradford City","Yorkshire and the Humber",UKData$GOR)

225 UKData$GOR=ifelse(UKData$HEALTHBOARD=="East Riding of Yorkshire","Yorkshire and the Humber",UKData$GOR)

226 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Leeds West","Yorkshire and the Humber",UKData$GOR)

227 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Harrogate & Rural District","Yorkshire and the Humber",UKData$GOR)

228 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Leeds South & East","Yorkshire and the Humber",UKData$GOR)

229 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Kirklees","Yorkshire and the Humber",UKData$GOR)

230 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Rotherham","Yorkshire and the Humber",UKData$GOR)

231 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Sheffield","Yorkshire and the Humber",UKData$GOR)

232 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Wakefield","Yorkshire and the Humber",UKData$GOR)

233 UKData$GOR=ifelse(UKData$HEALTHBOARD=="South Lincolnshire","Yorkshire and the Humber",UKData$GOR)

234 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Barnsley","Yorkshire and the Humber",UKData$GOR)

235 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Bradford Districts","Yorkshire and the Humber",UKData$GOR)

236 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Leeds North","Yorkshire and the Humber",UKData$GOR)

237 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Doncaster","Yorkshire and the Humber",UKData$GOR)

238 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Greater Huddersfield","Yorkshire and the Humber",UKData$GOR)

239 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hambleton, Richmondshire & Whitby","Yorkshire and the

Humber",UKData$GOR)

240 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Hull","Yorkshire and the Humber",UKData$GOR)

241 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North East Lincolnshire","Yorkshire and the Humber",UKData$GOR)

242 UKData$GOR=ifelse(UKData$HEALTHBOARD=="North Lincolnshire","Yorkshire and the Humber",UKData$GOR)

243 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Scarborough & Ryedale","Yorkshire and the Humber",UKData$GOR)

244 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Vale of York","Yorkshire and the Humber",UKData$GOR)

245 UKData$GOR=ifelse(UKData$HEALTHBOARD=="Lincolnshire East","Yorkshire and the Humber",UKData$GOR)

The following continues with the preparation of the data prior to model fitting and in-

cludes collapsing age groups provided to where extra information on age in provided,

reducing the size of the data frame, dropping practices with 0 patients and merging

bioavailable iron data.

1 ############################################################################

2 #merge old age groups

3 ############################################################################

4 UKData$M65plus <− UKData$M6574 + UKData$M7584 + UKData$M85plus

5 UKData$F65plus <− UKData$F6574 + UKData$F7584 + UKData$F85plus

6 UKData <− UKData[ , c("PRACTICE","BNFCODE","ITEMS","COST","QUANTITY","PERIOD","COUNTRY.ID","HEALTHBOARD",

7 "M04","M514","M1544","M4564","M65plus","F04","F514","F1544","F4564","F65plus",

8 "IMD_RANK","RANK","GOR"), drop = FALSE]

9

10 #make wales country id uppercase

11 UKData$COUNTRY.ID <− toupper(UKData$COUNTRY.ID)

12

13 #drop practices without patients

14 UKData <− UKData[UKData$PRACTICE!=30561 & UKData$PRACTICE!=46589, ]

15 UKData <− UKData[UKData$PRACTICE!=65931 & UKData$PRACTICE!=70963, ]
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16

17 #Open adjusted NDNS Iron

18 source("IronAlgorithm.R")

19

20 #create a mean iron intake value for each age and sex group

21 #but first create age groups

22 NDNS$AgeGroups <− cut(NDNS$age, c(0,4,14,44,64,max(NDNS$age)))

23

24 #recode NDNS gor into names

25 NDNS$GOR <− as.factor(NA)

26 NDNS$GOR <− ifelse(NDNS$gor==1,"North East",NDNS$GOR)

27 NDNS$GOR <− ifelse(NDNS$gor==2,"North West",NDNS$GOR)

28 NDNS$GOR <− ifelse(NDNS$gor==3,"Yorkshire and the Humber",NDNS$GOR)

29 NDNS$GOR <− ifelse(NDNS$gor==4,"East Midlands",NDNS$GOR)

30 NDNS$GOR <− ifelse(NDNS$gor==5,"West Midlands",NDNS$GOR)

31 NDNS$GOR <− ifelse(NDNS$gor==6,"East of England",NDNS$GOR)

32 NDNS$GOR <− ifelse(NDNS$gor==7,"London",NDNS$GOR)

33 NDNS$GOR <− ifelse(NDNS$gor==8,"South East",NDNS$GOR)

34 NDNS$GOR <− ifelse(NDNS$gor==9,"South West",NDNS$GOR)

35 NDNS$GOR <− ifelse(NDNS$gor==10,"Wales",NDNS$GOR)

36 NDNS$GOR <− ifelse(NDNS$gor==11,"Scotland",NDNS$GOR)

37 NDNS$GOR <− ifelse(NDNS$gor==12,"Northern Ireland",NDNS$GOR)

38

39 #create model

40 model <− lqmm(AvailableIron~GOR+AgeGroups+as.factor(Sex), random = ~ 1, group=seriali, data=NDNS)

41

42 #create data frame with variable groups

43 basic_summ = data.frame(summarise(group_by(NDNS, Sex, AgeGroups, GOR)))

44

45 #combine predicted values by multiplying design matrix by model coefficients

46 results <− cbind(basic_summ,

47 Iron = as.matrix(model.matrix(~basic_summ$GOR + basic_summ$AgeGroups + as.factor(basic_summ$Sex))) %*%

48 as.vector(model$theta[1:17]))

49

50 #aggregate to the practice level to speed things up

51 aggdata <− ddply(UKData, "PRACTICE", head, 1)

52

53 #create a dataframe with columns to work out percentages on

54 pc <− data.frame(aggdata[,c("PRACTICE","M04","M514","M1544","M4564","M65plus",

55 "F04","F514","F1544","F4564","F65plus")])

56 pc[,c(2:11) ] = apply(pc[,c(2:11) ], 2, function(x) as.numeric(as.character(x)))

57

58 #work out percentage contribution of each age group to total

59 pc <− cbind(pc[1], prop.table(as.matrix(pc[−1]), margin = 1))

60

61 #merge in gor
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62 aggdata <− merge(x=pc,y=aggdata[,c("PRACTICE","GOR")], by="PRACTICE",all=T)

63

64 #Go Long to wide

65 IronWide <− setnames(dcast(data=results, GOR ~ Sex+AgeGroups, value.var =

"Iron"),c("GOR","M04","M514","M1544","M4564","M65plus"

66 , "F04","F514","F1544","F4564","F65plus"))

67 #merge on GOR

68 Iron <− merge(x=aggdata,y=IronWide,by="GOR", all.x=T)

69

70 #multiply columns together

71 Iron$M04 <− Iron$M04.x * Iron$M04.y

72 Iron$M514 <− Iron$M514.x * Iron$M514.y

73 Iron$M1544 <− Iron$M1544.x * Iron$M1544.y

74 Iron$M4564 <− Iron$M4564.x * Iron$M4564.y

75 Iron$M65plus <− Iron$M65plus.x * Iron$M65plus.y

76 Iron$F04 <− Iron$F04.x * Iron$F04.y

77 Iron$F514 <− Iron$F514.x * Iron$F514.y

78 Iron$F1544 <− Iron$F1544.x * Iron$F1544.y

79 Iron$F4564 <− Iron$F4564.x * Iron$F4564.y

80 Iron$F65plus <− Iron$F65plus.x * Iron$F65plus.y

81

82 #drop variables

83 drops <− c("M04.x","M04.y","M514.x","M514.y","M1544.x","M1544.y","M4564.x","M4564.y","M65plus.x","M65plus.y",

84 "F04.x","F04.y","F514.x","F514.y","F1544.x","F1544.y","F4564.x","F4564.y","F65plus.x","F65plus.y")

85 Iron <− Iron[ , ! (names(Iron) %in% drops)]

86

87 #add iron intakes together

88 Iron$Iron <− rowSums(Iron[,3:12])

89

90 #tidy up

91 rm( list = setdiff ( ls () , c("Iron" , "UKData")))

92

93 #merge with ukdata

94 Iron <− merge(x=Iron[,c("PRACTICE","Iron")],

y=UKData[c("PRACTICE","COST","HEALTHBOARD","IMD_RANK")],by="PRACTICE",all.x=T)

95

96 #make healthboard a factor

97 Iron$HEALTHBOARD <− as.factor(Iron$HEALTHBOARD)

98

99 ##############################################################################################

100 #add in total number of patients per practice

101 #scaled row sum

102 # UKData$TotalPatients <− scale(rowSums(UKData[,c("M04", "M514", "M1544","M4564",

"M65plus","F04","F514","F1544","F4564","F65plus")]))

103 UKData$TotalPatients <− rowSums(UKData[,c("M04", "M514", "M1544","M4564",

"M65plus","F04","F514","F1544","F4564","F65plus")])
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104 #aggregate to the practice level to speed things up...although its not very fast

105 UKData <− ddply(UKData[,c("PRACTICE","TotalPatients")], "PRACTICE", head, 1)

106 #merge

107 Iron <− merge(x=Iron,y=UKData, by=c("PRACTICE"), all.x=TRUE)

108

109 #sum prescription cost at practice level

110 Iron <− merge(x=aggregate(COST ~ PRACTICE, data=Iron, sum),

111 y= unique(Iron[,c("PRACTICE","Iron","HEALTHBOARD","IMD_RANK","TotalPatients")]),

112 by=c("PRACTICE"), all = TRUE)

In this final section estimates for both models (including and excluding bioavailable iron)

are fitted, this includes an explicit command to use Lincolnshire West as the reference

health board and tau = 0.5 specifies the median value.

1 HealthboardIronIMDTotalPatients <− summary(lqmm(COST ~ IMD_RANK + Iron + TotalPatients + relevel(HEALTHBOARD, ref

= "Lincolnshire West"), random=~1, group=PRACTICE, tau=0.5,data=Iron,

2 control = lqmmControl(method="gs",UP_max_iter = 200, LP_tol_ll = 1e−2, LP_max_iter = 10000)))

3

4 HealthboardIMDTotalPatients <− summary(lqmm(COST ~ IMD_RANK + TotalPatients + relevel(HEALTHBOARD, ref =

"Lincolnshire West"), random=~1, group=PRACTICE, tau=0.5,data=Iron,

5 control = lqmmControl(method="gs",UP_max_iter = 200, LP_tol_ll = 1e−2, LP_max_iter = 10000)))

Welsh map

1

2 library ( latticeExtra )

3 library (maptools)

4 library (gpclib)

5 library (sp) #for joining spatialpolygons

6 library ( raster ) #to join spatialpolygons − union function

7 library (rgdal)

8 library (rgeos) #unionspatialpolygons

9 library (readxl)#read.xls

10

11 gadm <− readRDS("IronUK/GBR_adm2.rds")

12 gadm@data$HealthRegion <− NA

13

14 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

15 #WALES

16 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

17

18 #Abertawe Bro Morgannwg

19 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Bridgend","Abertawe Bro

Morgannwg",gadm@data$HealthRegion)
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20 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Neath Port Talbot","Abertawe Bro

Morgannwg",gadm@data$HealthRegion)

21 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Swansea","Abertawe Bro

Morgannwg",gadm@data$HealthRegion)

22 #Aneurin Bevan

23 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Blaenau Gwent","Aneurin Bevan",gadm@data$HealthRegion)

24 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Caerphilly","Aneurin Bevan",gadm@data$HealthRegion)

25 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Monmouthshire","Aneurin Bevan",gadm@data$HealthRegion)

26 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Newport","Aneurin Bevan",gadm@data$HealthRegion)

27 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Torfaen","Aneurin Bevan",gadm@data$HealthRegion)

28 #Betsi Cadwaladr

29 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Anglesey","Betsi Cadwaladr",gadm@data$HealthRegion)

30 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Conwy","Betsi Cadwaladr",gadm@data$HealthRegion)

31 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Denbighshire","Betsi Cadwaladr",gadm@data$HealthRegion)

32 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Flintshire","Betsi Cadwaladr",gadm@data$HealthRegion)

33 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Gwynedd","Betsi Cadwaladr",gadm@data$HealthRegion)

34 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Wrexham","Betsi Cadwaladr",gadm@data$HealthRegion)

35 #Cardiff & Vale University

36 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Cardiff","Cardiff & Vale",gadm@data$HealthRegion)

37 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Vale of Glamorgan","Cardiff & Vale",gadm@data$HealthRegion)

38 #Cwm Taf

39 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Merthyr Tydfil","Cwm Taf",gadm@data$HealthRegion)

40 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Rhondda, Cynon, Taff","Cwm Taf",gadm@data$HealthRegion)

41 #Hywel Dda

42 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Carmarthenshire","Hywel Dda",gadm@data$HealthRegion)

43 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Ceredigion","Hywel Dda",gadm@data$HealthRegion)

44 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Pembrokeshire","Hywel Dda",gadm@data$HealthRegion)

45 #Powys Teaching

46 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Powys","Powys",gadm@data$HealthRegion)

47

48 #this function firstly takes the text argument removes formatting (spaces and &), then extracts the matching data to a

seperate data frame

49 #the id number is set to start from zero

50 #then borders within areas matching the area are removed

51 #assign allows strings to be modified and then savevd as an object

52 area.sub <− function(region){

53 Carrier <− assign(paste0(gsub("[[:punct :]]|\\ s" , "" ,region)) ,gadm[ grep(region, gadm@data$HealthRegion) , ])

54 Carrier@data$id <− seq(length(Carrier@data$OBJECTID)) − 1 ## add ’id’ column

55 Carrier .sub <− unionSpatialPolygons(Carrier, IDs = rep(1, length(Carrier) ) ) ## unify polygons

56 return(Carrier .sub)

57 }

58

59 #Create a new environment that takes all of the newly created objects in the loop

60 Country.env <− new.env()

61

62 for ( i in 171:192){#pretty sure this just over writes previously created health board spatialpolygons within the loop

265



63 assign(paste0(gsub("[[:punct :]]|\\ s" , "" ,gadm@data$HealthRegion[i])),area.sub(region=gadm@data$HealthRegion[i]),

64 envir=Country.env)

65 }

66

67

68 #this takes all of this objects in the environment (ls() ) as objects (eval(parse(text=paste(i) ) ) )

69 #and combines them into a list ( lapply) then into an object of spatialpolygon class (bind)

70 Wales <− do.call(bind,lapply( ls (Country.env), function( i ) {(eval(parse(text=paste0("Country.env$",i)))) }) )

71 #Combine into dataframe

72 Wales = SpatialPolygonsDataFrame(Sr=Wales, data=data.frame(HealthRegions=ls(Country.env)),FALSE)

73

74 #Tidy up

75 rm(Country.env,i,area.sub,gadm)

English Map

1 #current as of Apr 2015

2 #downloaded from here: https://www.england.nhs.uk/resources/ccg−maps/

3 #ccg

4 England <− readOGR(dsn="IronUK/England/EnglandMap/ccg−boundaries−0415−tab/CCG_BSC_Apr2015.TAB",

layer="CCG_BSC_Apr2015")

5 England<−spTransform(England,CRS("+proj=longlat")) #change scale to longlat from UTM

6 #Rename ccgs to Health regions

7 colnames(England@data)[colnames(England@data) == "CCGname_short"] <− "HealthRegions"

Northern Ireland map

1

2 #Created on 11/7/2016

3 #https: / /www.opendatani.gov.uk/dataset/department−of−health−trust−boundaries

4 NorthernIreland = readOGR("IronUK/NorthernIreland/NorthernIrelandMap/health−trust−boundaries.geojson", "OGRGeoJSON")

5 #Currently, because of lakes and whatnot, there are 22 areas for the 5 health boards combine these into 5

6

7 NorthernIreland@data$id <− NA

8 NorthernIreland@data$id <− ifelse(NorthernIreland@data$LGDNAME=="Northern Trust",1,NorthernIreland@data$id)

9 NorthernIreland@data$id <− ifelse(NorthernIreland@data$LGDNAME=="South Eastern Trust",2,NorthernIreland@data$id)

10 NorthernIreland@data$id <− ifelse(NorthernIreland@data$LGDNAME=="Belfast Trust",3,NorthernIreland@data$id)

11 NorthernIreland@data$id <− ifelse(NorthernIreland@data$LGDNAME=="Southern Trust",4,NorthernIreland@data$id)

12 NorthernIreland@data$id <− ifelse(NorthernIreland@data$LGDNAME=="Western Trust",5,NorthernIreland@data$id)

13 NorthernIreland_union <− unionSpatialPolygons(NorthernIreland, IDs = NorthernIreland@data$id) ## unify polygons

14 NorthernIreland <− SpatialPolygonsDataFrame(NorthernIreland_union,data=data.frame(HealthRegions = c("Northern",

15 "South Eastern",

16 "Belfast" ,

17 "Southern",

18 "Western")))
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19 rm(NorthernIreland_union)

Scottish Map

1

2 library ( latticeExtra )

3 library (maptools)

4 library (gpclib)

5 library (sp) #for joining spatialpolygons

6 library ( raster ) #to join spatialpolygons − union function

7 library (rgdal)

8

9 gadm <− readRDS("IronUK/GBR_adm2.rds")

10 gadm@data$HealthRegion <− NA

11

12 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

13 #CREATE GROUPS

14 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

15

16 #Aryshire & Arran

17 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="East Ayrshire","Ayrshire & Arran",gadm@data$HealthRegion)

18 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="North Ayshire","Ayrshire & Arran",gadm@data$HealthRegion)

19 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="South Ayrshire","Ayrshire & Arran",gadm@data$HealthRegion)

20 #Borders

21 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Scottish Borders","Borders",gadm@data$HealthRegion)

22 #Dumfries & Galloway

23 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Dumfries and Galloway","Dumfries &

Galloway",gadm@data$HealthRegion)

24 #Fife

25 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Fife","Fife",gadm@data$HealthRegion)

26 #Forth Valley

27 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Clackmannanshire","Forth Valley",gadm@data$HealthRegion)

28 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Falkirk","Forth Valley",gadm@data$HealthRegion)

29 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Stirling","Forth Valley",gadm@data$HealthRegion)

30 #Grampian

31 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Aberdeenshire","Grampian",gadm@data$HealthRegion)

32 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Moray","Grampian",gadm@data$HealthRegion)

33 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Aberdeen","Grampian",gadm@data$HealthRegion)

34 #Greater Glasgow & Clyde

35 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="East Dunbartonshire","Greater Glasgow &

Clyde",gadm@data$HealthRegion)

36 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="East Renfrewshire","Greater Glasgow &

Clyde",gadm@data$HealthRegion)

37 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Inverclyde","Greater Glasgow &

Clyde",gadm@data$HealthRegion)
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38 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Renfrewshire","Greater Glasgow &

Clyde",gadm@data$HealthRegion)

39 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="West Dunbartonshire","Greater Glasgow &

Clyde",gadm@data$HealthRegion)

40 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Glasgow","Greater Glasgow &

Clyde",gadm@data$HealthRegion)

41 #Highland

42 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Argyll and Bute","Highland",gadm@data$HealthRegion)

43 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Highland","Highland",gadm@data$HealthRegion)

44 #Lanarkshire

45 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="North Lanarkshire","Lanarkshire",gadm@data$HealthRegion)

46 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="South Lanarkshire","Lanarkshire",gadm@data$HealthRegion)

47 #Lothian

48 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="East Lothian","Lothian",gadm@data$HealthRegion)

49 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Midlothian","Lothian",gadm@data$HealthRegion)

50 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="West Lothian","Lothian",gadm@data$HealthRegion)

51 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Edinburgh","Lothian",gadm@data$HealthRegion)

52 #Orkney

53 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Orkney Islands","Orkney",gadm@data$HealthRegion)

54 #Shetland

55 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Shetland Islands","Shetland",gadm@data$HealthRegion)

56 #Tayside

57 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Angus","Tayside",gadm@data$HealthRegion)

58 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Perthshire and Kinross","Tayside",gadm@data$HealthRegion)

59 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Dundee","Tayside",gadm@data$HealthRegion)

60 #Western Isles

61 gadm@data$HealthRegion <− ifelse(gadm@data$NAME_2=="Eilean Siar","Western Isles",gadm@data$HealthRegion)

62

63 #this function firstly takes the text argument removes formatting (spaces and &), then extracts the matching data to a

seperate data frame

64 #the id number is set to start from zero

65 #then borders within areas matching the area are removed

66 #assign allows strings to be modified and then savevd as an object

67 area.sub <− function(region){

68 Carrier <− assign(paste0(gsub("[[:punct :]]|\\ s" , "" ,region)) ,gadm[ grep(region, gadm@data$HealthRegion) , ])

69 Carrier@data$id <− seq(length(Carrier@data$OBJECTID)) − 1 ## add ’id’ column

70 Carrier .sub <− unionSpatialPolygons(Carrier, IDs = rep(1, length(Carrier) ) ) ## unify polygons

71 return(Carrier .sub)

72 }

73

74 #Create a new environment that takes all of the newly created objects in the loop

75 Country.env <− new.env()

76 ls (Country.env)

77 for ( i in 141:170){#pretty sure this just over writes previously create health board spatialpolygons

78 assign(paste0(gsub("[[:punct :]]|\\ s" , "" ,gadm@data$HealthRegion[i])),area.sub(region=gadm@data$HealthRegion[i]),

79 envir=Country.env)
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80 }

81

82 #this takes all of this objects in the environment (ls() ) as objects (eval(parse(text=paste(i) ) ) )

83 #and combines them into a list ( lapply) then into an object of spatialpolygon class (bind)

84 Scotland <− do.call(bind,lapply( ls (Country.env), function( i ) {(eval(parse(text=paste0("Country.env$",i)))) }) )

85 #then combine them in THE SAME ORDER AS IN THE ENVIRONMENT into a labelled spatialpolygonsdataframe

86 #Note there is no check performed to ensure that the correct area matches the coordinates it is done on order and then once

the graphs are constructed by eye to see if the coordinates match the label

87 Scotland = SpatialPolygonsDataFrame(Sr=Scotland, data=data.frame(HealthRegions=ls(Country.env)),FALSE)

88

89 #Tidy up

90 rm(Country.env,i,area.sub,gadm)

Combined mapping

1

2 #CONVERT LQMM OUTPUT TO DATA FRAME

3 HITP <− data.frame(HealthboardIMDTotalPatients$tTable)

4

5 #CHANGE TEXT TO MATCH HEALTHBOARDS

6 HITP$HealthRegions <− gsub("relevel\\(HEALTHBOARD, ref = \"Lincolnshire West\"\\)","", rownames(HITP))

7

8 #DROP ROWS

9 HITP <− HITP[!HITP$HealthRegions == "(Intercept)",]

10 HITP <− HITP[!HITP$HealthRegions == "IMD_RANK",]

11 HITP <− HITP[!HITP$HealthRegions == "TotalPatients",]

12

13 #CREATE QUINTILES OF INTAKE

14 HITP$quintiles <− cut(HITP$Value, quantile(HITP$Value, seq(0, 1, .2)), include.lowest = TRUE, dig.lab=6)

15

16

17 #CREATE COLOURS BASED ON QUINTILES

18 rbPal <− colorRampPalette(c("red","blue"))

19 HITP$Colour <− rbPal(5)[as.numeric(HITP$quintiles)]

20

21 #MERGE

22 UK@data <− data.frame(UK@data, HITP[match(UK@data[,"HealthRegions"], HITP[,"HealthRegions"]),])

23

24

25 #CHANGE REFERENCE CATEGORY COLOUR

26 UK@data$Colour <− ifelse(is.na(UK@data$Colour),"#A3A3A3",UK@data$Colour)

27

28 #PLOT

29 pdf("UKxIron.pdf", width = 6, height = 8 )

30 plot (UK, col=UK@data$Colour)

31 legend(−14,61, c("Lowest Quintile [−2676,−1128]",
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32 "Second Quintile (−1128,−642]",

33 "Third Quintile (−642,−132]",

34 "Fourth Quintile (−132,505]",

35 "Highest Quintile (505,4619]"),

36 col=rbPal(5), bty="n", pch=15, cex=0.6)

37 dev.off ()

38

39 ###############################################################################

40 #START AGAIN FOR MAP WITH IRON

41 rm( list =ls () )

42

43 ###############################################################################

44 #OPEN MAP

45 ###############################################################################

46

47 load("~/IronPrescriptions /IronPrescriptionModels.RData")

48

49 ###############################################################################

50 #OPEN MAP

51 ###############################################################################

52

53 load("~/IronPrescriptions /UKMap.RData")

54

55 ###############################################################################

56 #CONVERT LQMM OUTPUT TO DATA FRAME

57 ###############################################################################

58

59 HIITP <− data.frame(HealthboardIronIMDTotalPatients$tTable)

60

61 ###############################################################################

62 #CHANGE TEXT TO MATCH HEALTHBOARDS

63 ###############################################################################

64

65 HIITP$HealthRegions <− gsub("relevel\\(HEALTHBOARD, ref = \"Lincolnshire West\"\\)","", rownames(HIITP))

66

67 ###############################################################################

68 #DROP ROWS

69 ###############################################################################

70

71 HIITP <− HIITP[!HIITP$HealthRegions == "(Intercept)",]

72 HIITP <− HIITP[!HIITP$HealthRegions == "IMD_RANK",]

73 HIITP <− HIITP[!HIITP$HealthRegions == "TotalPatients",]

74

75 ###############################################################################

76 #CREATE QUINTILES OF INTAKE

77 ###############################################################################
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78

79 HIITP$quintiles <− cut(HIITP$Value, quantile(HIITP$Value, seq(0, 1, .2) ) , include.lowest = TRUE, dig.lab=6)

80

81 ###############################################################################

82 #CREATE COLOURS BASED ON QUINTILES

83 ###############################################################################

84

85 rbPal <− colorRampPalette(c("red","blue"))

86 HIITP$Colour <− rbPal(5)[as.numeric(HIITP$quintiles)]

87

88 ###############################################################################

89 #MERGE

90 ###############################################################################

91

92 UK@data <− data.frame(UK@data, HIITP[match(UK@data[,"HealthRegions"], HIITP[,"HealthRegions"]),])

93

94 ###############################################################################

95 #CHANGE REFERENCE CATEGORY COLOUR

96 ###############################################################################

97

98 UK@data$Colour <− ifelse(is.na(UK@data$Colour),"#A3A3A3",UK@data$Colour)

99

100 ###############################################################################

101 #PLOT

102 ###############################################################################

103

104 pdf("UKIron.pdf", width = 6, height = 8 )

105 plot (UK, col=UK@data$Colour)

106 legend(−14,61, c("Lowest Quintile [−3138,−2015]",

107 "Second Quintile (−2015,−1394]",

108 "Third Quintile (−1394.23,−876]",

109 "Fourth Quintile (−876,−191]",

110 "Highest Quintile (−191,2781]"),

111 col=rbPal(5), bty="n", pch=15, cex=0.6)

112 dev.off ()
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K Iron prescription costs across the UK: data sources

Prescription, registered patients and IMD data were downloaded from open source

repositories managed by each country and are available from the following locations.

Prescription data:

From the English data.gov.uk website

https://data.gov.uk/dataset/prescribing-by-gp-practice-presentation-level

Northern Ireland from the open data NI

https://www.opendatani.gov.uk/dataset/gp-prescribing-data

From the Scottish information services division

http://www.isdscotland.org/Health-Topics/Prescribing-and-Medicines/Publications/2017-01-17/

opendata.asp

Wales from the primary care services website.

http://www.primarycareservices.wales.nhs.uk/general-practice-prescribing-data-extrac

The number of patients registered at a GP practice in England were downloaded from

http://content.digital.nhs.uk/catalogue/PUB19775/gp-reg-patients-prac-quin-age.csv

which contains data from January 2016. IMD values were obtained through postcodes

using http://imd-by-postcode.opendatacommunities.org/ which contains a lookup table

that returns the corresponding IMD value. GP addresses were taken from: https://

digital.nhs.uk/services/organisation-data-service/data-downloads/gp-and-gp-practice-related-data

Data containing the number of patients registered at Scottish GP practices were ex-

tracted from

http://www.isdscotland.org/Health-Topics/General-Practice/Publications/2015-12-15/Table6_

Practice_ListSizes_by_gender_age_2005_2015.xlsx and values were taken as of 1st of Oc-

tober 2015. Scottish IMD information was obtained from http://www.gov.scot/Topics/

Statistics/SIMD and matched to GP practice postcodes found at

http://www.isdscotland.org/Health-Topics/General-Practice/Workforce-and-Practice-Populations/

Practices-and-Their-Populations/

Welsh GP practice addresses and GP registered patient numbers were found at

http://gov.wales/docs/statistics/2016/160330-gp-practice-populations-gender-age-group-2015-en.

xls,

Welsh IMD information was obtained from

http://gov.wales/docs/statistics/2015/150812-wimd-2014-overall-domain-ranks-each-lsoa-revised-en.

xlsx
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Patient information regarding the age and sex distribution of patients registered at GP

practices in Northern Ireland were requested from the health and social care North-

ern Ireland team as only the total number of registered patients were available on the

website. Northern Irish IMD was not available at the postcode level but was provided

in small geographical units (LSOA). Then the LSOA of the GP practice was found by

converting the postcode from http://mapit.mysociety.org/postcode/# (where # is the GP

practice postcode). The IMD scores were then found from: http://www.nisra.gov.uk/

deprivation/nimdm_2010.htm. The latest available IMD data is from 2010.

273

http://mapit.mysociety.org/postcode/#
http://www.nisra.gov.uk/deprivation/nimdm_2010.htm
http://www.nisra.gov.uk/deprivation/nimdm_2010.htm


L Iron prescription costs across the UK: data table

Table 29 contains the first 20 rows of the data used to estimate the amount spent of iron

prescriptions per health board. The first column practice relates to the GP practices

that are clustered within health boards. The second column is the total amount spent

by that GP practice in the 12 month period from September 2015 to August 2016. The

column titled Iron relates to an estimated median iron intake for patients registered at

that GP practice based on the geographic location and the sex and age composition

of the patients. The next column, IMD Rank is the ranking of the index of multiple

deprivation for the area the GP practice is situated in and finally Total Patients is sum

of all patients registered at that GP practice.
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Table 29

Sample of data used to estimate health board spending on iron prescriptions

Practice Cost Iron Healthboard IMD Rank Total Patients

1 165.59 3.742 Belfast 2202 1170

3 1647.11 3.687 Belfast 2202 6583

5 420.42 3.798 Belfast 535 1351

6 1882.59 3.665 Belfast 4483 10068

10 622.56 3.733 Belfast 359 2375

13 553.53 3.676 Belfast 359 3227

14 2720.96 3.631 Belfast 2887 7271

15 3977.4 3.711 Belfast 2202 5034

16 1039.02 3.692 Belfast 4792 5011

17 1294.5 3.679 Belfast 2202 4990

18 1881.71 3.700 Belfast 484 6183

19 832.72 3.628 Belfast 1799 3350

20 850.91 3.706 Belfast 2202 2761

23 1396.56 3.668 Belfast 2202 5055

24 962.95 3.739 Belfast 473 2655

28 765.2 3.696 Belfast 2202 3136

29 865.99 3.668 Belfast 4732 4633

30 1029.99 3.679 Belfast 131 2748

31 1870.11 3.658 Belfast 2545 6693

32 1289.24 3.702 Belfast 535 3465
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M Iron prescription costs across the UK: Estimated re-

gression parameters for the amount spent by health

boards in the UK

Table 30 presents regression coefficients for two models estimating spending on iron

prescriptions by health board that adjusts for the number of patients registered at each

GP practice within the health board, the index of multiple deprivation ranking for the GP

practices within each health board and excluding and including estimated bioavailable

iron intakes for those living within the same region as the health board. Coefficients are

grouped alphabetically by country with England first then Northern Ireland, Scotland

and finally Wales.
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Table 30

Estimated regression parameters for Median with standard errors for amount spent by health boards in the UK

Excluding Bioavailable Iron

Value SE P value

Including Bioavailable Iron

Value SE P value

Registered Patients 0.40 0.01 <0.001 0.39 0.01 <0.001

Index of Multiple Deprivation -0.04 0.003 <0.001 -0.04 0.002 <0.001

Iron -2395.40 296.10 <0.001

England

Airedale, Wharfedale & Craven -118.20 609.46 0.847 -1613.48 515.62 0.003

Ashford -368.76 380.66 0.337 -905.72 356.56 0.014

Aylesbury Vale -1881.00 492.61 <0.001 -2384.32 397.48 <0.001

Barking & Dagenham -792.13 354.29 0.030 -1222.63 265.21 <0.001

Barnet 42.60 360.05 0.906 -255.01 326.91 0.439

Barnsley 247.14 417.33 0.556 -1557.19 330.84 <0.001

Basildon & Brentwood -915.87 301.30 0.004 -830.32 280.86 0.005

Bassetlaw 493.30 567.07 0.389 -907.04 717.14 0.212

Bath & North East Somerset -401.10 370.72 0.285 -1475.25 286.76 <0.001

Bedfordshire 155.50 373.02 0.679 100.17 314.18 0.751

Bexley -308.97 313.19 0.329 -592.95 372.51 0.118

Birmingham Crosscity 1521.28 411.37 0.001 505.78 464.00 0.281

Birmingham South & Central 252.05 433.64 0.564 -791.56 432.52 0.073

Blackburn with Darwen 2580.81 722.94 0.001 990.84 832.68 0.240

Blackpool 1643.71 506.12 0.002 295.25 535.26 0.584

Bolton -825.66 380.73 0.035 -2412.44 366.71 <0.001

Bracknell & Ascot -2084.52 465.08 <0.001 -2610.27 339.43 <0.001

Bradford City 4056.04 1064.45 <0.001 1903.20 840.74 0.028

Bradford Districts 1779.71 444.43 <0.001 -169.89 550.86 0.759

Brent -771.87 346.31 0.030 -959.77 247.19 <0.001
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Excluding Bioavailable Iron

Value SE P value

Including Bioavailable Iron

Value SE P value

Brighton & Hove -2089.58 354.13 <0.001 -2452.67 286.42 <0.001

Bristol -1045.00 320.89 0.002 -2140.79 350.77 <0.001

Bromley -878.92 313.46 0.007 -1133.36 236.84 <0.001

Bury 548.91 356.19 0.130 -996.55 359.04 0.008

Calderdale -209.63 388.70 0.592 -1735.47 435.53 <0.001

Cambridgeshire & Peterborough -567.53 338.70 0.100 -436.94 300.55 0.152

Camden -186.85 387.93 0.632 -303.66 415.22 0.468

Cannock Chase -205.50 313.46 0.515 -1071.53 262.41 <0.001

Canterbury & Coastal -930.77 412.96 0.029 -1361.49 320.06 <0.001

Castle Point & Rochford -837.84 338.44 0.017 -1247.08 260.27 <0.001

Central London (Westminster) -1487.14 392.73 <0.001 -1404.68 328.87 <0.001

Central Manchester -268.22 400.83 0.507 -1826.87 445.59 <0.001

Chiltern -1434.39 371.82 <0.001 -1977.53 296.45 <0.001

Chorley & South Ribble -211.18 310.29 0.499 -1695.67 330.23 <0.001

City & Hackney -1456.91 336.40 <0.001 -1674.22 320.90 <0.001

Coastal West Sussex -131.56 316.79 0.680 -561.34 284.22 0.054

Corby -2675.69 1530.55 0.087 -2699.05 1448.30 0.068

Coventry & Rugby -1114.12 347.31 0.002 -2044.52 280.64 <0.001

Crawley 2169.92 558.87 <0.001 1625.62 412.66 <0.001

Croydon -1908.62 273.02 <0.001 -2142.50 281.56 <0.001

Cumbria -254.30 318.89 0.429 -1614.83 288.72 <0.001

Darlington -518.40 498.97 0.304 -1785.46 460.60 <0.001

Dartford, Gravesham & Swanley 495.55 390.58 0.211 -62.43 431.79 0.886

Doncaster 963.76 350.77 0.008 -860.66 416.88 0.044

Dorset 395.24 336.85 0.246 -624.99 276.33 0.028

Dudley 1930.00 418.29 <0.001 1003.80 434.29 0.025
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Excluding Bioavailable Iron

Value SE P value

Including Bioavailable Iron

Value SE P value

Durham Dales, Easington & Sedgefield 156.02 311.65 0.619 -1042.18 382.45 0.009

Ealing -108.30 317.84 0.735 -339.32 272.92 0.220

East & North Hertfordshire -375.92 353.79 0.293 -263.80 311.66 0.401

East Lancashire 1352.79 441.90 0.004 -167.12 441.43 0.707

East Leicestershire & Rutland 104.03 435.24 0.812 134.47 362.46 0.712

East Riding of Yorkshire 1578.02 553.88 0.006 -178.54 404.15 0.661

East Staffordshire -335.25 342.70 0.333 -1246.85 304.77 <0.001

East Surrey -507.12 378.60 0.187 -1051.08 305.82 0.001

Eastbourne, Hailsham & Seaford -171.28 356.83 0.633 -607.65 302.50 0.050

Eastern Cheshire -761.48 393.00 0.058 -2145.34 347.19 <0.001

Enfield -547.73 353.02 0.127 -884.01 305.22 0.006

Erewash -1095.57 428.07 0.014 -1046.90 371.83 0.007

Fareham & Gosport -810.75 305.29 0.011 -1276.84 325.38 <0.001

Fylde & Wyre 395.74 582.12 0.500 -998.44 490.87 0.047

Gloucestershire -797.14 284.98 0.007 -1846.02 267.56 <0.001

Great Yarmouth & Waveney -1415.93 413.54 0.001 -1187.47 355.16 0.002

Greater Huddersfield 681.59 386.07 0.084 -1173.09 447.33 0.012

Greater Preston 229.82 524.74 0.663 -1274.98 473.27 0.010

Greenwich -1334.15 339.83 <0.001 -1625.91 332.27 <0.001

Guildford & Waverley -2043.30 412.60 <0.001 -2537.82 413.36 <0.001

Halton 557.37 525.14 0.294 -943.11 499.59 0.065

Hambleton, Richmondshire & Whitby -488.58 311.67 0.123 -2232.59 394.87 <0.001

Hammersmith & Fulham -1893.79 331.28 <0.001 -2046.84 337.56 <0.001

Hardwick 71.07 407.11 0.862 146.21 425.97 0.733

Haringey -1317.89 358.57 0.001 -1497.63 259.74 <0.001

Harrogate & Rural District -1208.49 458.28 0.011 -2981.89 423.60 <0.001
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Excluding Bioavailable Iron

Value SE P value

Including Bioavailable Iron

Value SE P value

Harrow 977.17 466.73 0.041 706.51 361.99 0.057

Hartlepool & Stockton-on-Tees 940.39 636.00 0.146 -315.27 568.86 0.582

Hastings & Rother -485.35 341.95 0.162 -863.84 323.53 0.010

Havering -841.02 269.73 0.003 -1098.77 253.21 <0.001

Herefordshire -2086.82 327.87 <0.001 -2892.12 313.37 <0.001

Herts Valleys -1066.37 291.24 0.001 -987.07 304.05 0.002

Heywood, Middleton & Rochdale 1413.04 435.12 0.002 -164.51 486.40 0.737

High Weald Lewes Havens -991.33 274.09 0.001 -1442.37 288.24 <0.001

Hillingdon -36.93 377.04 0.922 -336.77 364.70 0.360

Horsham & Mid Sussex -188.90 394.74 0.634 -681.66 357.01 0.062

Hounslow -384.45 286.44 0.186 -637.45 270.97 0.023

Hull 1532.89 488.46 0.003 -289.00 426.45 0.501

Ipswich & East Suffolk 1996.29 520.23 <0.001 2198.19 420.15 <0.001

Isle of Wight 80.24 449.65 0.859 -267.02 396.23 0.504

Islington -2197.83 351.26 <0.001 -2317.37 337.93 <0.001

Kernow 934.59 318.39 0.005 -60.99 321.46 0.850

Kingston -1951.59 373.57 <0.001 -2200.92 418.67 <0.001

Knowsley 655.91 405.99 0.113 -736.47 491.40 0.140

Lambeth -1850.95 305.28 <0.001 -1984.16 241.71 <0.001

Lancashire North -908.82 677.26 0.186 -2329.03 644.68 0.001

Leeds North -39.34 428.78 0.927 -1907.83 402.44 <0.001

Leeds South & East -853.82 279.16 0.004 -2729.18 350.00 <0.001

Leeds West -1347.82 544.36 0.017 -3138.41 477.12 <0.001

Leicester City 569.10 677.67 0.405 489.47 486.42 0.319

Lewisham 370.69 381.65 0.336 108.04 301.60 0.722

Lincolnshire East 1359.65 752.08 0.077 -370.68 715.21 0.607
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Including Bioavailable Iron

Value SE P value

Liverpool 2014.94 392.59 <0.001 567.86 386.87 0.149

Luton 173.66 443.40 0.697 140.38 401.85 0.728

Mansfield & Ashfield -504.18 450.50 0.269 -471.84 357.91 0.194

Medway 126.89 341.58 0.712 -406.11 286.77 0.163

Merton -1346.65 453.83 0.005 -1614.12 300.52 <0.001

Mid Essex 241.17 311.19 0.442 390.57 243.61 0.115

Milton Keynes 251.12 374.06 0.505 137.50 325.93 0.675

Nene -1221.51 312.96 <0.001 -1234.62 233.60 <0.001

Newark & Sherwood 472.79 426.06 0.273 530.47 404.32 0.196

Newbury & District -1676.84 381.23 <0.001 -2163.50 332.79 <0.001

Newcastle Gateshead -223.83 379.95 0.558 -1473.02 300.28 <0.001

Newham 68.31 358.97 0.850 -215.84 329.37 0.515

North & West Reading -370.58 880.65 0.676 -908.84 528.89 0.092

North Derbyshire 109.36 389.01 0.780 204.97 293.49 0.488

North Durham -129.94 482.07 0.789 -1374.50 514.79 0.010

North East Essex 862.84 504.79 0.094 1038.65 404.87 0.013

North East Hampshire & Farnham -1922.80 365.43 <0.001 -2472.06 252.06 <0.001

North East Lincolnshire 315.83 466.36 0.501 -1482.13 454.07 0.002

North Hampshire -920.49 355.76 0.013 -1437.48 354.53 <0.001

North Kirklees 2161.05 629.47 0.001 277.99 590.97 0.640

North Lincolnshire 2458.49 792.05 0.003 663.13 744.75 0.378

North Manchester 1391.87 565.29 0.017 -212.20 537.19 0.695

North Norfolk 248.48 454.06 0.587 521.99 398.20 0.196

North Somerset -219.21 301.67 0.471 -1319.99 376.30 0.001

North Staffordshire 627.17 383.64 0.109 -186.95 371.76 0.617

North Tyneside 374.66 344.70 0.282 -902.70 372.08 0.019
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North West Surrey -824.75 301.51 0.009 -1363.75 255.46 <0.001

Northern, Eastern & Western Devon -445.91 280.96 0.119 -1495.93 287.92 <0.001

Northumberland 518.86 374.65 0.172 -660.99 311.78 0.039

Norwich -724.78 448.44 0.112 -557.08 386.45 0.156

Nottingham City -254.69 386.41 0.513 -316.23 451.74 0.487

Nottingham North & East 145.32 379.00 0.703 170.20 338.25 0.617

Nottingham West -648.72 304.62 0.038 -622.50 254.53 0.018

Oldham 3081.90 535.38 <0.001 1426.43 665.06 0.037

Oxfordshire -563.72 327.54 0.092 -1034.29 271.99 <0.001

Portsmouth -686.90 631.83 0.282 -1068.54 422.22 0.015

Redbridge 71.46 320.30 0.824 -281.08 346.55 0.421

Redditch & Bromsgrove -951.22 331.18 0.006 -1832.36 337.44 <0.001

Richmond -1840.59 371.15 <0.001 -2123.11 248.86 <0.001

Rotherham 4618.98 745.63 <0.001 2781.21 932.33 0.004

Rushcliffe 187.23 310.33 0.549 154.00 364.57 0.675

Salford -645.42 327.90 0.055 -2212.77 353.25 <0.001

Sandwell & West Birmingham 1916.13 446.98 <0.001 941.73 350.11 0.010

Scarborough & Ryedale -443.37 327.71 0.182 -2180.24 378.60 <0.001

Sheffield 1565.21 449.81 0.001 -273.27 437.37 0.535

Shropshire 351.88 296.90 0.242 -464.29 302.99 0.132

Slough 2016.68 796.98 0.015 1354.93 850.96 0.118

Solihull 949.59 420.11 0.028 17.00 346.06 0.961

Somerset -1041.74 317.53 0.002 -2093.77 278.17 <0.001

South Cheshire -183.19 537.97 0.735 -1618.50 578.97 0.007

South Devon & Torbay 793.79 405.85 0.056 -208.59 388.58 0.594

South East Staffordshire & Seisdon Peninsula -1020.24 360.44 0.007 -1879.93 299.56 <0.001
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South Eastern Hampshire -672.82 313.01 0.037 -1118.30 386.89 0.006

South Gloucestershire -901.77 388.01 0.024 -2016.10 297.38 <0.001

South Kent Coast -371.68 396.40 0.353 -816.32 309.31 0.011

South Lincolnshire 3137.65 769.67 <0.001 1343.06 800.75 0.100

South Manchester -629.62 360.65 0.087 -2162.84 394.86 <0.001

South Norfolk 122.16 392.47 0.757 305.75 386.52 0.433

South Reading -900.23 340.39 0.011 -1442.61 372.24 <0.001

South Sefton 620.01 357.92 0.090 -824.22 380.19 0.035

South Tees 1876.87 599.43 0.003 605.79 521.45 0.251

South Tyneside -538.33 338.27 0.118 -1717.76 350.36 <0.001

South Warwickshire -1138.13 361.74 0.003 -1999.97 292.32 <0.001

South West Lincolnshire 814.57 521.59 0.125 872.31 464.98 0.067

South Worcestershire -89.30 350.32 0.800 -909.83 283.03 0.002

Southampton -1924.46 375.98 <0.001 -2379.66 365.84 <0.001

Southend -990.57 291.34 0.001 -757.42 212.17 0.001

Southern Derbyshire -862.42 430.19 0.051 -858.25 462.72 0.070

Southport & Formby -561.10 344.81 0.110 -2014.65 311.12 <0.001

Southwark 422.21 358.19 0.244 230.24 328.43 0.487

St Helens 234.35 399.52 0.560 -1206.58 409.13 0.005

Stafford & Surrounds -587.90 386.49 0.135 -1387.26 312.19 <0.001

Stockport -546.62 296.51 0.071 -2031.67 345.75 <0.001

Stoke on Trent 1192.77 379.15 0.003 264.64 374.73 0.483

Sunderland -709.18 302.57 0.023 -1876.32 296.08 <0.001

Surrey Downs -1145.53 320.98 0.001 -1666.46 295.77 <0.001

Surrey Heath -2094.60 698.55 0.004 -2601.61 577.38 <0.001

Sutton -1305.10 279.98 <0.001 -1573.61 269.70 <0.001
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Swale -403.69 346.41 0.250 -912.08 292.55 0.003

Swindon 1207.42 379.36 0.003 68.53 397.06 0.864

Tameside & Glossop 475.60 341.98 0.171 -1047.35 387.72 0.009

Telford & Wrekin 1736.89 600.25 0.006 791.95 644.86 0.225

Thanet -211.23 422.27 0.619 -681.70 355.11 0.061

Thurrock -1133.97 323.26 0.001 -1099.73 254.38 <0.001

Tower Hamlets -779.88 368.64 0.039 -1014.77 337.21 0.004

Trafford 389.78 358.12 0.282 -1172.93 498.87 0.023

Vale of York -509.55 466.29 0.280 -2268.48 443.05 <0.001

Vale Royal 229.27 568.57 0.689 -1230.35 563.43 0.034

Wakefield -596.94 326.91 0.074 -2374.46 393.77 <0.001

Walsall 64.96 311.56 0.836 -951.34 374.81 0.014

Waltham Forest -1418.73 300.17 <0.001 -1678.96 276.32 <0.001

Wandsworth -1727.56 419.71 <0.001 -1944.61 326.10 <0.001

Warrington 667.89 381.59 0.086 -819.12 417.88 0.056

Warwickshire North -813.97 322.27 0.015 -1686.44 347.83 <0.001

West Cheshire 1239.76 387.34 0.002 -191.71 386.64 0.622

West Essex -724.52 379.04 0.062 -607.74 303.08 0.050

West Hampshire -1123.73 331.33 0.001 -1572.10 218.30 <0.001

West Kent -604.70 337.35 0.079 -1097.89 246.95 <0.001

West Lancashire -231.15 325.84 0.481 -1663.00 313.93 <0.001

West Leicestershire 147.44 395.72 0.711 171.95 331.00 0.606

West London -1640.97 319.68 <0.001 -1702.14 277.69 <0.001

West Norfolk -527.76 453.53 0.250 -288.09 367.20 0.436

West Suffolk -1005.81 364.68 0.008 -798.51 309.40 0.013

Wigan Borough -63.51 321.41 0.844 -1561.17 318.08 <0.001
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Wiltshire -882.53 278.85 0.003 -1951.26 284.28 <0.001

Windsor, Ascot & Maidenhead -1464.32 421.03 0.001 -1989.04 373.47 <0.001

Wirral -1107.46 277.22 <0.001 -2589.40 326.04 <0.001

Wokingham -1669.46 731.50 0.027 -2201.90 688.23 0.002

Wolverhampton 559.33 316.40 0.083 -394.76 353.53 0.270

Wyre Forest -271.23 415.50 0.517 -1099.28 358.61 0.004

Northern Ireland

Belfast -1925.84 287.64 <0.001 -2561.60 233.05 <0.001

Northern -1878.17 318.97 <0.001 -2556.34 273.81 <0.001

Western -2162.45 334.30 <0.001 -2822.83 269.70 <0.001

Southern -2305.69 275.27 <0.001 -3026.29 258.89 <0.001

South Eastern -2150.34 291.14 <0.001 -2839.59 269.88 <0.001

Scotland

Ayrshire & Arran 39.82 298.90 0.895 -909.00 268.84 0.001

Borders -2036.61 297.34 <0.001 -2987.89 273.28 <0.001

Dumfries & Galloway -2024.88 298.73 <0.001 -2942.92 276.38 <0.001

Fife 898.25 395.99 0.028 -106.22 380.37 0.781

Forth Valley -948.59 328.24 0.006 -1946.61 292.18 <0.001

Grampian -1082.81 308.22 0.001 -2068.00 283.79 <0.001

Greater Glasgow & Clyde -133.98 300.17 0.657 -1101.63 270.99 <0.001

Highland -762.50 301.78 0.015 -1633.89 273.28 <0.001

Lanarkshire -953.35 327.06 0.005 -1953.24 283.47 <0.001

Lothian -1108.07 306.63 0.001 -2117.30 293.55 <0.001
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Orkney -1331.92 314.74 <0.001 -2148.09 334.06 <0.001

Shetland -652.50 312.81 0.042 -1678.37 323.15 <0.001

Tayside -2063.25 311.63 <0.001 -3054.80 252.30 <0.001

Western Isles -1189.52 316.93 <0.001 -2094.73 335.98 <0.001

Wales

Abertawe Bro Morgannwg 104.21 350.16 0.767 -320.58 291.41 0.277

Aneurin Bevan -556.51 365.47 0.134 -1002.43 300.05 0.002

Betsi Cadwaladr -342.50 320.36 0.290 -769.62 214.57 0.001

Cardiff & Vale 20.39 291.87 0.945 -462.89 287.96 0.114

Cwm Taf -1523.39 321.77 <0.001 -1987.06 274.90 <0.001

Hywel Dda -652.46 301.37 0.035 -1040.15 313.70 0.002

Powys -1468.75 359.09 <0.001 -1812.61 275.16 <0.001

σ̂ AL distribution scale parameter 570.06 570.84
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