
Eavesdropping risks of the

DisplayPort video interface

Dimitrije Erdeljan

University of Cambridge

Department of Computer Science and Technology

King’s College

October 2023

This dissertation is submitted for

the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except where specifically indicated in the text.

This dissertation does not exceed the regulation length of 60 000 words, including tables

and footnotes.

Eavesdropping risks of the DisplayPort video interface

Dimitrije Erdeljan

Summary

The switching activity of digital circuits unintentionally generates electromagnetic signals,

which may leak sensitive information processed by the device to nearby radio receivers.

This problem, known as compromising emanations or TEMPEST, has been demonstrated

for computer displays using analog video interfaces (VGA) and older digital interfaces

(LVDS, HDMI, DVI). DisplayPort is a newer interface with a significantly more complex

signal structure, and in particular uses a linear-feedback shift register to scramble the

transmitted pixel data. Due to scrambling, images produced by applying previously pub-

lished eavesdropping techniques to DisplayPort appear as random noise, and the interface

is thought to be a far more difficult target.

I start by showing that DisplayPort is vulnerable to electromagnetic eavesdropping, as-

suming that the displayed image mainly consists of a small set of colours. The attack

starts by recovering scrambler timing parameters and synthesising a replica of the scram-

bler synchronised with the target. This replica is then used to build templates for each

of the expected colours, and to identify pixel colours from short-term cross-correlation

between the received signal and templates.

The two main limitations of this initial attack are limited accuracy of the reset-timing

model and a requirement that the attacker already knows which colours are present in

the image. I address the former by designing a scrambler tracking algorithm based on

a phase-locked loop that keeps the local replica closely synchronised with the target.

For the latter, I exploit several properties of the 8b/10b encoding used together with

this accurate scrambler alignment to efficiently enumerate colours and produce a list of

candidate colours likely to be present in the image.

Finally, I extend the tracking algorithm to also align signal phase across frames, which

enables coherent periodic averaging of template correlations. This averaging technique

further improves the signal-to-noise ratio in the reconstructed image and thus increases

eavesdropping range. Accurate time alignment additionally improves horizontal resolution

over that achieved using the simpler timing model. I demonstrate that the algorithms

developed in this thesis can be used to recover clearly readable text from 8 m distance

in realistic circumstances, even using a software-defined radio receiver with a bandwidth

that is an order of magnitude lower than the bitrate used in the DisplayPort video link.

Acknowledgments

First of all, I am grateful to my supervisor, Markus Kuhn, for his guidance, advice, and

many technical discussions, without which this thesis and the ideas in it would never have

happened.

Thanks also to the Security Group, CyberSoc, and others for useful discussions and

making my time in Cambridge better.

I would also like to thank Zoran Kostić for taking the time to proofread this thesis, and

Stefan Velja for both proofreading and formatting advice.

My research was funded by Cambridge Trust and King’s College.

Finally, I would like to thank my family and friends for their support. Most of all, I am

grateful to Marijana, whose support and encouragement kept me going during these four

years.

Contents

1 Introduction 13

1.1 History of electromagnetic eavesdropping 16

1.1.1 TEMPEST: a signals intelligence problem 16

1.1.2 In academic literature . 17

1.2 Motivation and scope . 18

1.3 Outline . 19

2 Background 21

2.1 Image format . 21

2.2 Electromagnetic compatibility . 22

2.2.1 Electromagnetic radiation . 23

2.2.2 Noise sources . 24

2.2.3 Standards and measurement . 25

2.2.4 Design techniques . 26

2.3 Software-defined radio . 30

2.4 Antennas . 32

2.5 Introduction to video eavesdropping . 34

2.5.1 Timing parameters . 35

2.5.2 Rasterization . 36

2.5.3 Periodic averaging . 38

3 Basic image reconstruction 45

3.1 DisplayPort . 46

3.1.1 Reverse engineering . 46

5

3.1.2 Data framing . 48

3.1.3 Scrambling . 50

3.1.4 Encoding . 51

3.1.5 An Intel-specific quirk . 53

3.2 Eavesdropping overview . 53

3.3 Synchronisation . 55

3.3.1 Offset extraction . 55

3.3.2 Bitrate adjustment . 56

3.3.3 Parameter fit . 57

3.4 Image reconstruction . 58

3.5 Experimental results . 59

3.5.1 Setup . 60

3.5.2 Synchronisation . 61

3.5.3 Test image . 63

3.5.4 Slideshow . 66

3.5.5 Colours . 67

4 Accurate scrambler tracking for colour enumeration 69

4.1 Introduction . 69

4.2 Scrambler code phase tracking . 71

4.2.1 Overview . 73

4.2.2 Discriminators . 73

4.2.3 Tracking loop . 76

4.2.4 Parameter choice . 78

4.2.5 Performance . 79

4.2.6 Implementation . 80

4.3 Colour enumeration . 81

4.3.1 8b/10b encoding . 82

4.3.2 Template construction . 83

4.3.3 Sub-templates . 84

4.3.4 Cross-correlation . 86

6

4.3.5 Enumeration . 86

4.3.6 Averaging . 87

4.3.7 Implementation . 87

4.4 Experimental evaluation . 88

4.4.1 Images . 89

4.4.2 Setup . 90

4.4.3 Recordings . 91

4.4.4 Results . 91

5 Image reconstruction using phase tracking 95

5.1 Scrambler carrier phase tracking . 96

5.1.1 Approximate alignment . 97

5.1.2 Phase-locked loop . 99

5.2 Coherent averaging . 101

5.3 Phase adjustment . 102

5.4 Removing fill regions . 103

5.5 Practical demonstration . 104

5.5.1 Setup . 104

5.5.2 Image . 106

5.5.3 Reconstructed images . 106

5.5.4 Eavesdropping range . 108

5.5.5 Integration time . 111

5.5.6 Image characteristics . 113

5.5.7 256-colour grayscale image . 118

5.6 Extensions . 119

5.6.1 Black-and-white images . 119

5.6.2 Automated vertical alignment . 119

6 Concluding remarks 121

6.1 Countermeasures . 122

6.1.1 Hardware emission standards . 122

6.1.2 Software countermeasures . 124

7

6.2 Alternative designs . 126

6.2.1 Encoding . 127

6.2.2 Scrambling . 129

6.2.3 Order of operations . 130

6.3 Future work . 131

A 8b/10b encoding 133

B Farrow filter 137

8

Notation

j Imaginary unit satisfying j2 = −1

e Euler’s constant e = 2.71828 . . .

Zn Set of natural numbers smaller than n: Zn =
{

m ∈ Z
∣

∣ 0 ≤ m < n
}

a⊕ b Bitwise exclusive-or of integers a and b

R {x} Real part of x ∈ C

x∗ Complex conjugate of x ∈ C

|x| Argument of complex number x:
∣

∣µejϕ
∣

∣ = µ for µ, φ ∈ R

∠x Phase of complex number x: ∠
(

µejϕ
)

= φ for µ, φ ∈ R, 0 ≤ φ < 2π

⌊x⌋ Integer part of x ∈ R: ⌊x⌋ ∈ Z and 0 ≤ x− ⌊x⌋ < 1

⌈x⌉ x ∈ R rounded up: ⌈x⌉ ∈ Z and 0 ≤ ⌈x⌉ − x < 1

E [X] Expected value of random variable X

V [X] Variance of random variable X: V [X] = E [(X − E [X])2]

X ∼ N (µ, σ2) Random var. X has Gaussian distribution with mean µ and variance σ2

X ∼ U(a, b) Random var. X is uniformly distributed over interval [a, b]

X ∼ R(µ, σ) Random var. X has Rice distribution with centre µ and scale σ

sincx Normalised sinc function: sincx = sinπx
πx

F {h(t)} (f) Fourier transform of a time-domain function h(t) at frequency f

u ∗ v Convolution of discrete-time sequences u[n] and v[n]

δ(t) Dirac delta function

argmaxx∈S f(x) A value x ∈ S for which f(x) is maximal

9

10

Symbols

hd Displayed image height in pixels

wd Displayed image width in pixels

ht Total image height in pixels, including blanking regions

wt Total image width in pixels, including blanking regions

fv Frame rate

fh Line rate fh = ht · fv
fp Displayed pixel rate fp = wt · fh
fb DisplayPort bitrate

nL Number of active DisplayPort lanes

Ξ[n] DisplayPort scrambling byte sequence

ξ[n] DisplayPort scrambling bit sequence

np Total line length after padding, including the blanking period

nb Length of horizontal blanking period after padding

s[n] The received IQ sampled signal

fs Sampling rate of the received signal after preprocessing

z[n] A template

z+[n], z−[n] A positive-disparity (resp. negative-disparity) template

Xo The set of observed scrambler reset times

x0, R, P Reset model parameters: initial offset, reset period, and overflow period

11

12

Chapter 1

Introduction

The switching activity of digital circuits unintentionally generates tiny electromagnetic

pulses. These may not only interfere with radio reception nearby, but can also leak

information about processed confidential information. This problem is commonly referred

to as compromising emanations or TEMPEST, especially in government standards that

define emission-security limits for hardware as a protection [1].

Among the many radio emissions unintentionally generated by computer circuitry, infor-

mation leakage from video signals can be particularly easy to demonstrate, because these

tend to be highly redundant: text is typically displayed with only a small number of

colours, each character is represented by many pixels, and the content of these pixels is

typically retransmitted 60 times per second (frame refresh rate). Such redundancy helps

eavesdroppers to separate emissions from noise.

The readability of the received signals depends on both the video technology used and

the type of signal detection applied. The first published electromagnetic eavesdropping

demonstrations on video signals targeted cathode-ray tube (CRT) displays, which are

driven by analog video signals, in which pixel brightness is transmitted as a voltage on

a wire (or on three wires, for red, green and blue), one pixel at a time. IBM’s VGA

connectors were once a common example of this interface type.

In 1985, van Eck [2] used an amplitude modulation (AM) receiver, from a television set,

to detect the electromagnetic pulses generated whenever an analog video signal switched

the electron beam of a CRT on or off. Such a rising or falling edge can result in a posi-

tive impulse at the AM receiver’s output. If that is turned into a raster image with the

same line and frame rate as those of the eavesdropped display, a text, such as shown in

Figure 1.1(a), will appear to the AM eavesdropper as shown in Figure 1.1(b). Vertical

strokes appear doubled, because both bright/dark and dark/bright transitions result in an

impulse, whereas horizontal strokes appear only as two end points. The receiver’s band-

width should be at least as large as the pixel-clock frequency: with smaller bandwidths

the receiver’s impulse response becomes longer than the duration of a pixel, resulting in

13

14

(a) Original display image (Arial, 16 pixel/em, anti-aliased):

(b) AM demodulated analog video signal (VGA):

(c) AM demodulated 8 bit/pixel NRZ digital video signal:

(d) AM demodulated 10 bit/pixel TMDS video signal (DVI, HDMI):

(e) AM demodulated DisplayPort video signal:

Figure 1.1: Different types of video signals as they appear to eavesdroppers after

AM demodulation and rasterization. (The images above are the result of numeric

simulations of line encodings and demodulation, and are therefore free of background

noise.)

horizontal blurring of the reconstructed image.

While analog video signals may still be encountered today for backwards-compatibility

reasons, flat-panel displays are generally designed to receive digitally-encoded pixels, and

can similarly be vulnerable to video eavesdropping [3]. These synchronous serial interfaces

have transfer rates of up to a few Gbit/s and typically three or four such serial interfaces

(lanes) are used in parallel, often one for each primary colour. Early examples of such

panel interfaces, e.g. FPD-Link [4] and OpenLDI [5], also known as low-voltage differential

signalling (LVDS), use a simple non-return-to-zero (NRZ) line encoding: the bits of the

binary number that represents a pixel brightness appear directly, one after each other, as

high or low voltages on the wire. Figure 1.1(c) shows what the same grayscale text image

looks like if it was first NRZ encoded in a display device (least-significant bit first), and

then AM demodulated by an eavesdropper. Different gray values result in different AM

demodulation levels, due to the different amplitude spectra (Fourier transforms) of the

respective bit patterns. While the resulting brightness mapping is not monotonic, it can

preserve readable text.

NRZ-encoded LVDS video signals remain commonly used on flat cables inside devices,

such as desktop monitors, laptops or TV-sets, to connect a display panel to a display

controller on a separate printed circuit board. However, they are uncommon on exter-

nal, user-accessible video-cable interfaces, where, for reasons of robustness, slightly more

redundant and DC-free line encodings may be preferred.

CHAPTER 1. INTRODUCTION 15

Three standardised external video interfaces that use 8-to-10-bit line encodings have be-

come widely used. The first two are the Digital Video Interface (DVI) [6] and the High-

Definition Multimedia Interface (HDMI) [7]. Both use the same line encoding, known

as Transition Minimized Differential Signalling (TMDS), and can therefore be treated as

the same signal type by eavesdroppers. Rather than transmitting the eight bits of pixel

values directly, TMDS encodes them as one of several possible ten-bit symbols to ensure

a DC-balanced output with a reduced number of bit transitions.

Figure 1.1(d) shows what the example image looks like to an eavesdropper with an AM

demodulator if it was first TMDS encoded. Even though the encoding is more complex,

and shows for example the DC-balancing mechanism cycling through different states in

the uniform background, the text remains readable.

DisplayPort (DP) [8] is the third (and latest) major external digital video interface. It

was first standardised in 2006 and is now commonly used, especially for higher-resolution

desktop computer displays. Several aspects of the DisplayPort design suggest that its

encoding is a much harder target for electromagnetic eavesdroppers. Firstly, image data

is scrambled before transmission, to remove image-dependent spectral characteristics in

electromagnetic emissions. This is not only helpful for passing radio-interference tests,

but should also frustrate eavesdroppers using AM or FM demodulators. As Figure 1.1(e)

shows, AM demodulating the (simulated) voltage signal found on a DisplayPort lane

merely results in what looks like a random noise image. QAM or FM demodulation

attempts lead to similar results. Secondly, due to the scrambling process, DisplayPort

signals do not repeat at the frame rate, meaning that eavesdroppers cannot easily track

the frame frequency or perform periodic averaging at that rate to improve the signal-to-

noise ratio. Finally, the high bitrate (at least 1.62 Gbit/s) makes it hard to sample the

signal with enough radio frequency bandwidth to be able to distinguish individual bits.

And indeed, unlike for DVI or HDMI, there have been no published video eavesdropping

demonstrations that successfully target DisplayPort links. A 2019 study by Kubiak and

Przybysz [9] targeted a DisplayPort monitor. The authors concluded that the only recog-

nisable image they got was actually not from the DisplayPort cable, but from an LVDS

link inside the monitor, i.e. after the DisplayPort signal had been decoded by a display

controller into the NRZ-encoded signal that the panel used. They concluded that Dis-

playPort is “the safest in terms of electromagnetic security”. A 2016 TEMPEST guidance

document for designers of electronic voting machines [10], produced for the parliament

of the Netherlands, compared the emissions security of many different video interfaces,

and concluded already that eavesdropping on DisplayPort is “far more difficult, probably

even impractical”. It recommended the use of display panels with embedded DisplayPort

(eDP) interfaces, to directly connect the graphics controller with the display panel, and

thus avoid emissions from NRZ encodings.

DisplayPort is, however, vulnerable to eavesdropping using more sophisticated template-

16 1.1. HISTORY OF ELECTROMAGNETIC EAVESDROPPING

based algorithms, which I present in this thesis for the first time. Rather than directly

demodulating the received signal, the eavesdropper must first extract scrambler timing

information and from it create a local copy of the scrambler synchronised with the target.

They can then synthesise template signals for different colours in the image and classify

pixel colours based on correlation with these templates. In the demonstrations presented

in this thesis, I show that the algorithms I developed can be used to eavesdrop on a

DisplayPort monitor at 8 m distance in realistic conditions using commercially available

software-defined radio receivers.

1.1 History of electromagnetic eavesdropping

1.1.1 TEMPEST: a signals intelligence problem

Electromagnetic leakage of confidential data was first noticed as a problem in the First

World War. Military telephone systems used single-wire cables, with ground as the return

path, to halve cable cost and weight. It was soon discovered that the return current can

be picked up and amplified by an adversary, and that it was possible to eavesdrop on

these telephone communications from 100 yards away [11].

During World War II, British, American, and German intelligence agencies independently

discovered that electromechanical one-time tape cipher machines leak signals that com-

promise data secrecy. One-time pad encryption is (assuming correct key management)

mathematically unbreakable. However, plaintext could be recovered not from the cipher-

text, but from radiated and conducted signals that were unintentionally produced by the

machine. Plaintext processed by the “131-B2 mixer” used in American cipher machines

could be reconstructed from radiated signals captured at 25 m distance [12]. The response

to this finding was to require control of a 100-yard zone around the machine to ensure that

the signal received by potential eavesdroppers is sufficiently attenuated. Similar problems

were found in the British Rockex and German Siemens T43 machines [13].

Post-war, the problem was largely forgotten until the same issues were rediscovered in

SIGTOT machines used to encrypt highly sensitive US communications in 1951. The

same 131-B2 mixer was used in these machines, and the CIA discovered that it leaked

plaintext via conducted emissions that could be used to read the message from “a quarter

mile away” [12]. This discovery was a motivation for a research program on compromising

emanations in the newly-formed NSA. The “General Studies on Radiation Suppression”

program was established by 1954, with the cover name TEMPEST [14]. It took another

two years until a “reasonably well protected” cipher machine, the KW-26, was successfully

manufactured.

During the Cold War, compromising emanations were actively exploited by both sides of

the conflict. The techniques were kept secret from other NATO members to ensure that

CHAPTER 1. INTRODUCTION 17

the American and British signals intelligence agencies had an advantage: in 1960, during

negotiations on UK joining the European Economic Area, GCHQ tapped a teleprinter

cable leaving the French embassy in London and recovered plaintext messages from con-

ducted emissions [15].

Eavesdropping worries motivated governments to invest into shielded equipment and facil-

ities and develop standards for such equipment. The first classified TEMPEST standard in

the USA was NAG-1A in 1958, followed by a revised version FS-222 in the sixties. In 1970,

National Communications Security Emanations Memoranda (NACSIM) were published,

including test procedures and limits for electromagnetic emanations in NACSIM 5100. A

long list of updates and other similar standards followed [16].

After the Cold War, the approach shifted away from relying on special shielded equipment

due to decreased military budgets. A zone-based system where locations are classified

based on the proximity to a potential eavesdropper (accounting for room shielding and

building attenuation) was found to be more cost effective. The equipment certification

requirements in higher-distance zones are less strict and can sometimes be passed by

tested commercial off-the-shelf equipment, meaning that custom equipment is only needed

in rare situations where confidential information must be processed in a location where

the surroundings are not under control (e.g. a consulate) [17].

1.1.2 In academic literature

In the open literature, the possibility that unintended electromagnetic radiation might

compromise security was first briefly mentioned in a RAND report on computer security

and privacy in 1967 [18]. The first practical demonstration was in 1985, when Wim

van Eck showed that an amplitude modulation receiver could be used to eavesdrop on

an image displayed on a CRT monitor [2]. A number of papers also targeting CRTs

followed [19–21], as well as a demonstration that RS-232 cables similarly leak data [22].

In the early 2000s, the first eavesdropping demonstrations on digitally encoded NRZ (e.g.

LVDS) or TMDS (e.g. DVI or HDMI) signals appeared, using analog receivers [3, 23].

Later research on these targets mainly used digital software-defined radio receivers [24–31]

(although some authors [23, 24] did not document the targeted type of video interface).

One demonstration reports successful eavesdropping on a HDMI display from 80 m dis-

tance [28]. Other demodulation techniques successfully used include those for quadrature

amplitude modulation (QAM) [26] and frequency modulation (FM) [29], as well as at-

tempts to classify colours [26, 30].

Periodic averaging of the demodulator output at the frame rate is commonly used to im-

prove the signal-to-noise ratio or to separate image signals from several sources. The frame

rate is either adjusted based on image content [27, 31, 32], or automatically tracked with

a narrow-band phase-locked loop following a harmonic of the pixel-clock frequency [26].

18 1.2. MOTIVATION AND SCOPE

Recently, machine learning techniques have been applied as a post-processing tool to

denoise the recovered image and improve text readability [33, 34]. Classifiers have also

been used to show that an electromagnetic side channel leaks some data without directly

reconstructing an image. Such demonstrations include classifying the contents of a LCD

display (e.g. login screen, bank website, word processor, . . .) from the reflection of a

24 GHz probing signal [35] and extracting smartphone PIN digits from signals generated

by tapping the screen [36].

Targets other than computer displays are less common. Some demonstrations have used

TV sets [37], tablets [38], and printers [39]. Electromagnetic radiation has also been

used to profile program execution and detect deviations in behaviour [40], detect hidden

cameras [41], and monitor keypresses on USB keyboards [42].

Proposed countermeasures include jamming [43,44], dithered patterns that are invisible to

the user but cover the screen contents as seen by an amplitude demodulation receiver [45],

and specially designed fonts. These TEMPEST fonts are created either by lowpass filter-

ing glyphs of an existing font to eliminate high-frequency features that comprise most of

the radiated energy [45, 46], or by making letter shapes similar so that they are difficult

to distinguish by amplitude demodulation, which behaves as an edge detector for analog

signals [47].

There is little published academic work targeting DisplayPort. The only attempt to re-

construct an image from radiated emissions used a standard TEMPEST receiver, and the

authors conclude that the only usable signal was from LVDS circuitry inside the moni-

tor [9]. Another demonstration successfully recovered image contents of several monitors,

one of which used DisplayPort, from conducted power line emissions using an amplitude

demodulation receiver [48]. They identify that the source of these conducted emissions

is, however, likely monitor circuitry rather than the video interface. Research targeting

exclusively DisplayPort has so far been limited to field strength measurements without

any further discussion of image recovery [49,50].

1.2 Motivation and scope

The work described in this thesis started as a shorter investigation of electromagnetic

signals unintentionally emitted by DisplayPort interfaces. I had expected that the high

signal bandwidth, compared to that of the software-defined radio receiver I used, and the

use of scrambling and encoding would make image reconstruction impossible. I initially

focused on understanding the DisplayPort specification and reverse-engineering imple-

mentation details to the point where I could create an image that is transmitted as a

high-frequency square wave after scrambling and encoding. The resulting electromag-

netic radiation would thus only consist of a small number of frequency components, and

CHAPTER 1. INTRODUCTION 19

measuring those would allow me to estimate the total emitted energy and whether Dis-

playPort emissions could be used as a covert channel. To my surprise, it turned out that

I could not only recognise the signal emitted for specially designed images, but also that

for any known byte sequence, leading to the initial image reconstruction algorithms I

describe in Chapter 3 and motivating further research on the topic.

This thesis is the first in-depth treatment of unintentional DisplayPort emissions and

signal processing algorithms that extract information from them. I describe multiple novel

algorithms for timing extraction and image reconstruction, including the first successful

electromagnetic eavesdropping demonstration targeting DisplayPort. While I provide

some theoretical modelling and practical demonstrations, the focus is mainly on the design

of these algorithms.

Since I did not have access to a shielded facility, I performed all experiments and demon-

strations in a regular university building, without special measures to exclude outside

radio sources. I therefore present their results as an example of what is practically pos-

sible and an approximation of the limits of described algorithms, rather than definitive

measurements that can be used as a basis for equipment evaluation.

Overall, the main conclusion of the work presented here is that, contrary to existing

opinion, scrambled signals such as DisplayPort are still vulnerable to electromagnetic

eavesdropping. Despite the additional complexity, a periodic scrambling sequence followed

by encoding is not enough to prevent image reconstruction, even if the receiver bandwidth

is much lower than the interface bitrate.

1.3 Outline

The rest of this thesis is organised as follows:

• Chapter 2 is a summary of relevant electromagnetic eavesdropping theory and

current state of the art in the field. I start with a short introduction to electromag-

netic compatibility and a model of the unintentional electromagnetic emissions of

a differential signal such as DisplayPort, and then describe the hardware (antennas

and radio receivers) used in my demonstrations. The chapter ends with an overview

of the algorithms used for eavesdropping on older video interfaces (HDMI/DVI,

FPD-Link, VGA) and a novel comparison of processing gains for different averaging

methods.

• Chapter 3 introduces the DisplayPort video interface and basic synchronisation

and image reconstruction algorithms. I describe in detail parts of the DisplayPort

standard that are relevant for the rest of this thesis, including reverse-engineered

implementation details not specified by the standard. I then present two algorithms:

20 1.3. OUTLINE

the first computes a reset model that approximately describes scrambler timing in

the received signal, and the second then recovers the image, assuming that it consists

of a known small set of colours.

• Chapter 4 addresses the limitation of the second algorithm in Chapter 3 with

an efficient colour enumeration algorithm. This consists of two main components

as well: a PID-based scrambler tracking algorithm with improved scrambler timing

error compared to the reset model, and an efficient template decomposition approach

using properties of 8b/10b encoding which allows me to quickly compute a template

for any RGB colour as a sum of seven (out of 61) sub-templates.

• Chapter 5 applies these scrambler synchronisation and template generation tech-

niques to image reconstruction. I extend the tracking algorithm with a phase cor-

rection step, which enables coherent averaging and thus a higher signal-to-noise

ratio in the output image. Increased scrambler tracking accuracy also improves the

horizontal resolution such that one pixel wide features are visible in the output.

• Chapter 6 summarises the work described in the thesis, discusses possible coun-

termeasures to electromagnetic eavesdropping on scrambled video interfaces, and

finishes with suggested topics for further related research.

A repository containing a Julia implementation of the algorithms presented in the thesis,

as well as IQ recordings of DisplayPort emissions used for evaluation and practical demon-

strations, is available at https://www.cl.cam.ac.uk/~de298/tempest-displayport/.

https://www.cl.cam.ac.uk/~de298/tempest-displayport/

Chapter 2

Background

2.1 Image format

Cathode-ray tube (CRT) monitors display images one pixel at a time, using an electron

beam steered by a pair of magnetic deflection coils to scan over the display row by row.

Since horizontal deflection cannot change instantly from the last pixel to the first one

in the following row, video interfaces ensured that there is enough time to adjust the

deflection by inserting a block of padding pixels at the end of each line (Figure 2.1).

Several padding lines were similarly inserted at the end of each frame so that vertical

deflection can reset to the first image line. These two padding regions are referred to as

the horizontal and vertical blanking interval or blanking region in pre-DisplayPort video

standards, and as blanking periods in DisplayPort.

Although modern displays do not use an electron beam, blanking regions, albeit shorter

ones, are still used in newer video interfaces. They are separated from image data either

by using a different encoding scheme, such as in DVI/HDMI, or by control symbols,

such as in DisplayPort. Inside a blanking region, transmitted data is usually replaced

Figure 2.1: Diagram of a transferred image frame, showing padding bytes (gray)

in blanking regions.

21

22 2.2. ELECTROMAGNETIC COMPATIBILITY

with zero-valued padding, or alternatively with additional low bitrate information such

as audio samples.

Information about the image resolution, blanking regions and timing is collectively called

the video mode, sometimes formatted in configuration files as a modeline. The video mode

includes the following parameters:

• Displayed image width wd and height hd in pixels.

• Full image width wt and height ht in pixels, including blanking regions.

• Pixel clock rate fp.

• The position, width, and polarity of the horizontal and vertical sync pulses (only

relevant for analog interfaces).

Standard choices for these parameters and methods to compute them are defined in the

VESA Coordinated Video Timings (CVT) Standard [51], or the older Display Monitor

Timing (DMT) [52]. In this thesis, I will refer to video modes by their displayed dimen-

sions (wd, hd) and frame rate fv as wd × hd @ fv without specifying the full dimensions,

which will in all cases be those in the corresponding CVT mode.

The frame rate fv is not defined directly, since it can be computed from the pixel rate

and image dimensions as fv = fp/(wt · ht). Although the frame rate is commonly shown

rounded to zero or one decimal place, this is not an exact value. In CVT video modes,

the pixel rate fp is chosen instead to be a multiple of 0.25 MHz such that fv is as close

as possible to the desired frame rate. For example, the video mode 800× 600 @ 60.3 fps

with wt = 1056 and ht = 628 uses fp = 40 MHz, and so the exact frame rate is fv =

40 MHz/(1056 · 628) ≈ 60.317 Hz. Timing parameters for CVT video modes are chosen

such that this calculated frame rate differs from the desired rate by at most 0.5%.

2.2 Electromagnetic compatibility

Changes in current flow in electronic circuits produce electromagnetic waves. This is

usually not intended by the designer (except for transmitters), and can be undesirable if

the emissions are strong enough to cause interference in nearby radio receivers or other

devices. Electromagnetic compatibility (EMC) is an engineering discipline concerned with

the design of systems that are compatible with their environment by ensuring that such

unintended emissions are within acceptable levels. Although EMC compliance is a matter

of limiting interference rather than preventing information leakage, a basic understanding

of unintended electromagnetic emissions and design methods used to reduce them will be

useful before we turn to DisplayPort eavesdropping. The following section is a high-level

CHAPTER 2. BACKGROUND 23

introduction to the topic, including an overview of the relevant physical principles, EMC

standards and design techniques used in computer monitors, and a mathematical model

of emissions from a DisplayPort interface.

Apart from radiated emissions, the field of electromagnetic compatibility also includes

radiated susceptibility, which is the design of circuits that can tolerate external inter-

ference, as well as conducted emissions and susceptibility, where interference signals are

transmitted via cables (e.g. power line). This thesis focuses entirely on radiated emis-

sions, as does most academic research on electromagnetic eavesdropping. Existing HDMI

eavesdropping techniques have been shown to apply to conducted emissions as well, albeit

with a different measurement setup [48].

2.2.1 Electromagnetic radiation

Electromagnetic phenomena are described by Maxwell’s equations, which are a unified

theoretical framework describing the electrical field E and the magnetic field B. The

study of electromagnetism is a large and complex topic, and here I will only provide a

short introduction to the phenomenon of electromagnetic radiation. The interested reader

is encouraged to consult one of many available books for an in-depth treatment [53,54].

The magnetic field is produced by changes in the electric field and electric currents

(Ampère-Maxwell law)

∇×B = µ0

(

J + ε0
∂E

∂t

)

(2.1)

where µ0 and ε0 are constants (magnetic permeability and electric permittivity of free

space, respectively), and J is the density of current I through a point in space, i.e. an

infinitesimally small perpendicular cross-section ∂S:

J =
∂I

∂S
. (2.2)

Similarly, a change in the magnetic field produces an electric field (Faraday’s law):

∇×E = −∂B
∂t

. (2.3)

The electric field flows from positive to negative charges, and so has non-zero divergence

only in points where the charge density ρ is not zero (Gauss’s law):

∇ ·E =
ρ

ε0
. (2.4)

The magnetic field forms closed loops and no magnetic charges exist (Gauss’s law for

magnetic fields):

∇ ·B = 0. (2.5)

As a whole, these four laws are known as Maxwell’s equations.

24 2.2. ELECTROMAGNETIC COMPATIBILITY

Intuitively, a changing magnetic field produced by a periodically varying current will

induce a changing electric field, which in turn produces a magnetic field, and so on.

Mathematically, we can derive the wave equation from Maxwell’s equations by setting

J = 0 for space through which there is no current flow [53]:

∇2
E = µ0ε0

∂2E

∂t2
(2.6)

∇2
B = µ0ε0

∂2B

∂t2
. (2.7)

These equations describe the propagation of an electromagnetic wave through space, with

speed c =
√
µ0ε0 equal to the speed of light.

The behaviour of the electric and magnetic fields in the near field, close to a radiating

antenna, is complex. At sufficiently large distances, in the far field, the fields propagate

as a spherical wave, with amplitude at distance d proportional to 1/d. The boundary

between the near and far field is often taken to be λ/2π, where λ is the wavelength of the

emitted wave. This is the distance at which far-field behaviour becomes dominant, rather

than a sharp cutoff, and some authors recommend a more conservative 3λ boundary [55]

for a wire antenna, or 2D2/λ for a surface antenna whose largest dimension is D.

2.2.2 Noise sources

The main sources of electromagnetic noise in a radio receiver can broadly be classified

into three categories [58]:

• External natural sources, such as atmospheric gases, lightning discharges, and galac-

tic noise from celestial bodies.

• External man-made sources, including electronic equipment, electrical machinery,

power lines, and engine ignition.

• Thermal noise in the receiver due to the thermal energy of electrons in the receiving

circuit.

Kuhn provides a summary of the expected noise levels in frequency regions of interest to an

eavesdropper [56], based on survey data from the 2001 ITU-R Recommendation P.372 [57].

He concludes that in urban environments man-made noise is the most significant source

at frequencies from 80 kHz upwards. Man-made noise dominates other external noise

sources in all environments, with the exception of quiet rural sites, where it is exceeded

by galactic noise above 4 MHz.

In urban environments, surveyed man-made noise power is greater than thermal noise. In

rural environments, thermal noise exceeds external sources at high frequencies, starting

CHAPTER 2. BACKGROUND 25

approximately at 150 MHz. In such environments, reducing thermal noise by cooling the

receiving setup to very low temperatures can be a viable noise reduction approach.

It should be noted that the ITU man-made noise levels are based on data that is at least

30 years old; the most revision of the recommendation, from 2022, uses the same data [58].

Changes in technology, and in particular electronic devices using high clock rates, have

changed the characteristics of man-made noise since then.

2.2.3 Standards and measurement

EMC regulations are the main motivation a device designer has for reducing electromag-

netic emissions. These regulations impose a limit on the unintentionally emitted field

strength, and a prospective design must be tested to show it meets the criteria before

it can be marketed. Examples of such legislation are Directive 2014/30/EU (commonly

known as the “EMC Directive”) in the European Union [59], and the FCC Title 47 Part

15 regulations in the USA [60]. Most countries, with the USA as the main exception, base

their EMC regulations for IT equipment on CISPR 22 [61], a standard by the International

Electrotechnical Commission, or the newer CISPR 32 [62].

The regulations prescribe a standardised environment and procedure for measuring a

device’s emissions. The measurements are made either at an open-air site or in a semi-

anechoic chamber, with the device 1 m above the floor ground plane and the receiver

antenna at either 3 m or 10 m from the device (depending on the regulation and device

type). Field strength measurements are made using a spectrum analyser.

A spectrum analyser is a receiver that measures the amplitude of the incoming signal’s

spectrum within a specified bandwidth and using a specified detector, over a wide range of

frequencies. It contains an internal oscillator with tuneable frequency, which is swept over

the measurement range and mixed with the received signal to select a part of the spectrum.

The result is filtered to a fixed bandwidth, known as the resolution bandwidth. For

EMC measurements, the resolution bandwidth must be at least 120 kHz. At frequencies

above 1 GHz, the filtered signal’s amplitude is measured directly; below 1 GHz, EMC

standards specify a quasi-peak detector, a circuit designed to output a lower measurement

for infrequently-occurring interference (a simplified example would be a capacitor charged

by the input signal and slowly discharged through a resistor). Therefore, for example,

the CISPR limit value of 70.8 µV/m in the 230–1000 MHz range means that the field

strength measured using a quasi-peak detector in any 120 kHz band between 230 MHz

and 1000 MHz must not exceed 70.8 µV/m.

Examples of FCC and CISPR limit curves are shown in Figure 2.2. These limits are

chosen to constrain the noise emitted by the device below a level considered low enough

to prevent interference with broadcast radio receivers in a 10 m radius, and thus considered

compatible with the environment. EMC standards are not designed for confidentiality,

26 2.2. ELECTROMAGNETIC COMPATIBILITY

0 250 500 750 1000
0

10

20

30

40

Frequency [MHz]

F
ie
ld

st
re
n
g
th

[d
b
µ
V
/
m
]

FCC

CISPR

Figure 2.2: FCC and CISPR-32 radiated emissions limit curves for Class B (con-

sumer) devices, at 10 m measurement distance. FCC limits were rescaled from the

3 m definition. Two example amplitude spectra, shown in green and black, have the

same total power.

and signals below these limits may still contain information that can be extracted by an

eavesdropper.

Emissions standards concerned with data confidentiality have long been the domain of

militaries and intelligence agencies, and only high-level information is unclassified and

publicly available. The relevant NATO standard is SDIP-27 (SECAN1 Doctrine and

Information Publication), which defines limit curves for three certification classes: A to

C, from most to least strict. The accompanying SDIP-28 standard prescribes zoning

procedures which classify rooms into zones based on attenuation, which can be provided

by shielding or ensuring that adversaries cannot be close to the location. For example, only

class A devices may be used in zone 0, where an adversary may have almost immediate

access, while class B devices are allowed in zone 1, where adversaries can be kept at least

20 m away from the equipment (or the equivalent after accounting for building material

attenuation) [64]. A third standard, SDIP-29, details installation requirements for such

equipment for processing of classified information.

2.2.4 Design techniques

Many EMC design techniques exist, including signal design choices, shielding, circuit

board design, filtering, and others, encompassing a range that is too broad to cover here.

Below, I describe two that are used in DisplayPort and are relevant to the rest of this

thesis: scrambling and differential transmission.

1Military Committee Communication and Information Systems Security and Evaluation Agency.

CHAPTER 2. BACKGROUND 27

Scrambling

Emission limit curves define the maximum allowed field strength within any 120 kHz fre-

quency band (spectrum analyser resolution bandwidth), measured at a specified distance

from the device. This motivates the design of electronics where emissions are spread across

the spectrum, since a wideband signal can have significantly higher total power than a

sine wave or another narrowband signal while still staying below the limit (Figure 2.2).

Periodic signals are common in simple digital protocols, where short, repeating bit se-

quences can cause the unintended emissions to mainly consist of a small set of frequen-

cies. As an extreme example, imagine a simple NRZ serial protocol such as LVDS, where

the data bits are transmitted without any encoding at data rate fb. When transmitting

a stream of alternating zeroes and ones, the on-wire signal will be a square wave with

frequency fb/2, and all emissions will be at odd harmonics fb · (2k + 1)/2 (for k ∈ N) of

fb. More complex periodic data sequences, with a longer period T , similarly result only

in emitted frequencies which are multiples of T−1.

One common source of periodic data in computer display protocols are large image areas

of same-colour pixels, such as the background colour in a displayed document. In a

simple NRZ interface, where pixel encoding is stateless, the background has a one-pixel

period. TMDS-encoded interfaces such as HDMI/DVI cycle through multiple encoded

symbols for the same pixel value, and so the data period is a small multiple of the pixel

period. Another source of repeating data are blanking periods, during which the interface

transmits constant padding bytes if it is not sending other data (e.g. audio).

High-speed protocols such as Ethernet and DisplayPort scramble data before transmission

to remove correlation between bits. The transmitter generates a pseudorandom scrambling

sequence and combines it with the data using an invertible operation. For example, the

DisplayPort scrambling sequence is generated by a linear-feedback shift register, and data

bytes are replaced by their exclusive-or with the scrambler output. The receiver maintains

a copy of the same scrambling sequence synchronised with the transmitter and undoes

the scrambling operation before decoding. In DisplayPort, synchronisation is implemented

using “scrambler reset” control symbols.

Although superficially similar to a stream cipher, scrambling is not encryption, and scram-

bled data can be decoded without knowing any secret information. The design of the pseu-

dorandom generator and its parameters are publicly known and a part of the protocol

specification.

Scrambling allows the interface designer to assume that transmitted data bits are uncor-

related. This is useful from an EMC standpoint because the emissions from transmitting

a random bitstream will be spread over the entire spectrum, and short periods that would

result in narrowband emissions are vanishingly unlikely. Sometimes, other device com-

ponents can be simplified if the data can be assumed to be random, such as the clock

28 2.2. ELECTROMAGNETIC COMPATIBILITY

recovery circuit, for which randomness ensures frequent synchronisation opportunities on

bit transitions.

Differential transmission

Differential transmission is a physical-layer design technique used to reduce electromag-

netic interference emitted by high-speed interfaces such as HDMI and DisplayPort. The

signal is transmitted over two separate paths such that the currents I1(t) and I2(t) on

them are complementary: I1(t) = −I2(t). The receiver recovers the signal as the differ-

ence s(t) = I1(t) − I2(t). The two paths are usually a twisted pair of wires in a cable or

parallel traces on a PCB, manufactured to minimise the distance d between them. In the

limit where d → 0, the EM fields generated by the two currents are equal in magnitude

and have opposite signs. The total field is therefore zero, and the ideal differential pair

does not radiate electromagnetic waves.

In practice, the distance d cannot be infinitely small, and the currents are not perfectly

balanced. We can write the currents as a sum of a common-mode current Ic(t) and a

differential-mode current Id(t)

I1(t) = Ic(t) + Id(t) (2.8)

I2(t) = Ic(t)− Id(t) (2.9)

where

Ic(t) =
I1(t) + I2(t)

2
(2.10)

Id(t) =
I1(t)− I2(t)

2
. (2.11)

Approximate formulas for the magnitude of the radiated electric field, for a current with

amplitude I and frequency f , can be derived by assuming that the wire length l is small

compared to the wavelength and that the receiver is in the far field (i.e. that the wires

can be treated as Hertzian dipoles) [55]. With these assumptions, the maximal radiated

at distance L due to differential-mode current in two parallel wires is

|Ed,max| = 1.316 · 10−12 V

Hz2 m2 A
· Id,maxf

2ld

L
(2.12)

and that due to common-mode current is

|Ec,max| = 1.257 · 10−6 V

Hz m A
· Ic,maxfl

L
. (2.13)

Common-mode current generally contributes significantly more to the radiated field than

a differential-mode current of the same magnitude. Common-mode radiation increases

CHAPTER 2. BACKGROUND 29

linearly with f , while differential-mode radiation increases with f 2, and only exceeds

common-mode radiation at the frequency fe where

fe · d ≥
1.257 · 10−6 Hz−1 m−1 A−1

1.316 · 10−12 V Hz−2 m−2 A−1 = 9.55 · 105 Hz m. (2.14)

For example, I measured the wire separation in a DisplayPort cable as slightly less than

1 mm. Rounding up to d = 1 mm, |Ed,max| exceeds |Ec,max| at fe = 955 MHz (at which

point the Hertzian dipole approximation is no longer valid for typical cable lengths).

Additionally, I1(t) and I2(t) can differ due to a timing skew between the two wires, which

causes signal edges to arrive at different times. In DisplayPort, the maximal inter-pair

skew allowed by the standard is 50 ps (8% of the bit duration at 1.62 GHz). This causes

a pulse, whose width is equal to the skew, in the common-mode current Ic(t). Different

step responses of the line drivers due to transistor manufacturing tolerance can also cause

a mismatch between the rising edge on one wire and the corresponding falling edge on

the other. Both of these effects result in a larger Ic(t), and therefore a stronger emitted

field, mainly at signal transitions.

In some serial interfaces, such as Ethernet and the MIL-STD-1553 avionic data bus, the

transmitter is galvanically isolated from the cable using an isolation transformer. One

transformer coil is driven by the transmitter, which induces a current in the other coil,

connected across a differential pair. Such a circuit greatly reduces common-mode current,

since the two wires in the pair no longer have separate line drivers. Common-mode current

can be further reduced using a common-mode choke, a ferrite ring around which the two

wires are wound in opposite directions. This has no effect on differential-mode current,

but for common-mode currents it behaves as an inductor and therefore lowpass filter.

These measures are, however, typically not used in video interfaces, and the DisplayPort

standard only requires differential pairs to be AC-coupled.

We can model the radiated signal E(t) as a sum of pulses with shapes E↓(t) and E↑(t)

caused by the imbalance in I1(t) and I2(t) at falling and rising edges of s(t), respectively.

Write the wire voltage s(t) as a purely digital signal corresponding to a discrete bit

sequence b[n] ∈ {−1, 1}, sampled at rate fb:

s(t) = b[⌊t · fb⌋] (2.15)

where any analog effects such as non-zero rise and fall time are absorbed into E↓(t) and

E↑(t). Let V↓ = {n ∈ N | b[n− 1] > b[n]} be bit indices of falling edges in b[n], and V↑

those of rising edges. The radiated signal is then

E(t) =
∑

n∈V↓

E↓(t− nf−1
s) +

∑

n∈V↑

E↑(t− nf−1
s) (2.16)

or equivalently, in terms of a convolution with a Dirac pulse train,

E(t) = E↓(t) ∗

∑

n∈V↓

δ(t− nf−1
s)

+ E↑(t) ∗

∑

n∈V↑

δ(t− nf−1
s)

 . (2.17)

30 2.3. SOFTWARE-DEFINED RADIO

The two pulses E0(t) and E1(t) will have similar (but not necessarily identical) shape and

opposite sign. The sign does not necessarily match the change in s(t), and need not be

consistent for separate differential pairs: the signal emitted by one differential pair might

have opposite sign from that of a second one carrying the same data.

For the algorithms described in this thesis, it will be useful to approximate E(t) as a signal

containing all of s(t), rather than just bit transitions. The pulse train in Equation 2.17

is the derivative of s(t), and taking the derivative in the time domain is equivalent to

multiplication by 2πjf in the Fourier domain:

F
{

ds(t)

dt

}

(f) = 2πjf · F {s(t)} . (2.18)

This transformation preserves the phase of s(t) up to a constant π/2 rotation, and distorts

the Fourier spectrum by a factor f . If we only receive frequencies f0 ≤ f ≤ f1, the

distortion relative to the midpoint (f0 + f1)/2 is at most (f1 − f0)/(f1 + f0), and we can

consider s(t) and ds(t)
dt

approximately equal in band-limited signals where f1−f0 ≪ f1+f0,

as is the case in this thesis.

2.3 Software-defined radio

In his early research on electromagnetic eavesdropping of CRT monitors, van Eck based

the eavesdropping setup on a slightly modified broadcast TV receiver. Today, such experi-

ments are normally done with less specialised equipment. Laboratory tests for equipment

certification and research closely related to TEMPEST protection standards often use

TEMPEST measurement systems [65], which are wideband AM/FM receivers designed

to support frequency ranges and bandwidths needed for video eavesdropping. Most aca-

demic research, including this thesis, uses software-defined radio (SDR) technology in-

stead, which allows for significantly easier experimentation.

A software-defined radio receiver is a general-purpose data-acquisition device for sampling

a part of the radio spectrum and streaming the resulting time-series data to a computer,

such that all further demodulation and decoding steps can be performed there in software.

Such devices have become essential tools for emissions-security research, as they are not

limited to particular modulation techniques. The main configuration parameters of an

SDR are its tuning centre frequency fc and its sampling rate fs, which needs to be

larger than the desired reception bandwidth B (e.g. fs ≥ 1.25 · B, Nyquist limit plus

filter margin). The user chooses these parameters to acquire signals in the desired radio-

frequency interval [fc − B/2, fc +B/2].

The commonly used process for efficiently encoding a radio signal within such a frequency

band in digital form is known as IQ downconversion, as it involves shifting those frequen-

cies down by an offset −fc to the baseband interval [−B/2, B/2], where it can then be

CHAPTER 2. BACKGROUND 31

Figure 2.3: USRP X300 software-defined radio receiver.

sampled efficiently with sampling rate fs > B. While the input antenna waveform s0(t)

is real valued, the resulting time-domain samples will be complex numbers. This is be-

cause while the Fourier transform of a real-valued function is symmetric around 0 Hz (i.e.

negative and positive frequencies carry the same information), this symmetry is broken

by the −fc downwards frequency shift, resulting in a complex-valued time-domain signal.

In mathematical terms, what an SDR receiver does to the input antenna waveform s0(t)

is to downwards-shift its frequency spectrum by −fc to obtain the baseband signal

sd(t) = e−2πjfcts0(t) (2.19)

by multiplying with a phasor rotating with frequency −fc (where j2 = −1). This is then
lowpass filtered to

sf(t) =

∫

sd(t− τ)h(τ)dτ (2.20)

by convolving with the impulse response h(t) of a lowpass filter that removes signals

outside the frequency interval [−B/2, B/2] (e.g. h(t) = sinc(tB)w(t), where w(t) is some

window function). The result is then sampled into a discrete-time sequence

sr[n] = sf(n/fs) (2.21)

for sample indices n ∈ Z. These recorded samples are typically represented as (real,

imaginary) pairs of signed 16-bit integers or 32-bit floating-point numbers, and passed via

USB, Ethernet or PCIe bus to the receiving computer. Such a data stream is also known

as IQ samples, where in-phase (I) and quadrature (Q) are old-fashioned names for the

real/cosine and imaginary/sine branches of a QAM signal path.

In all experiments described in this thesis, I used an Ettus USRP X300 software-defined

radio receiver (Figure 2.3) [66]. The USRP is a platform that contains an analogue-to-

digital converter (ADC) with 200 MHz maximum sampling rate, an FPGA, and multiple

32 2.4. ANTENNAS

(a) Yagi–Uda, Sinclair SY307-SF6SNM (b) Log-periodic, Schwarzbeck

VULSP 9111B

Figure 2.4: Antennas used in experiments and demonstrations described in this

thesis.

high-speed interfaces. Analog signal processing (filtering and downconversion) is imple-

mented as a replaceable daughterboard, which the user chooses based on frequency and

bandwidth requirements. I used the UBX-160 daughterboard [67], which supports fre-

quencies from 10 MHz to 6 GHz, with 160 MHz bandwidth. The daughterboard contains

band selection filters, a local oscillator and mixer for downconversion, and low-noise am-

plifiers that can provide user-configurable gain between 0 dB and 31.5 dB.

At the sampling rate fs = 50 MHz I used, the SDR outputs 50 million IQ samples per

second, each represented as a pair of 32-bit floating-point numbers. The required data

rate is therefore 50 MHz ·2 ·4 byte = 400 MB/s, or 3.2 Gbit/s. Gigabit Ethernet does not

provide sufficient throughput, and so I used 10 Gigabit Ethernet over a fibre-optic cable

(10GBASE-SR), either directly connected to a desktop computer’s network card, or to a

laptop via an Ethernet-to-Thunderbolt adapter.

2.4 Antennas

Since unintentionally radiated signals from video interfaces are weak and wideband, eaves-

dropping on them requires a broadband directional antenna. Directionality increases the

received signal power relative to noise and interference from other sources, such as radio

transmissions and other electronic devices. It is measured as antenna gain, usually ex-

pressed either in dBi relative to an isotropic antenna (an idealised model of a non-directive

antenna), or in dBd relative to a half-wave dipole. Since the gain of a half-wave dipole is

2.15 dBi, a gain in dBi can be converted to dBd by subtracting 2.15 dB, and vice versa.

Increasing the bandwidth allows the video eavesdropper to capture a larger fraction of

the signal energy and improves time resolution.

The log-periodic antenna is a popular choice for EMC measurements that satisfies both

properties. It is formed from several dipole elements, connected with alternating polarity.

The element size decreases towards the tip of the antenna, forming a triangle where the

CHAPTER 2. BACKGROUND 33

ratio of adjacent element lengths is constant. The bandwidth ranges approximately from

the frequency at which the shortest element behaves like a half-wave dipole, i.e. where

the wavelength is twice the length of the element, to that where the wavelength is twice

the length of the longest antenna element. The directional gain of a log-periodic antenna

is typically 6–11 dBi [68].

In my earlier experiments, I used a Schwarzbeck VULSP 9111B log-periodic antenna

(Figure 2.4b). This is a calibrated antenna designed for reception in the 200–3000 MHz

frequency range. In the 300–500 MHz range that I mainly used, it has 6–7 dBi direc-

tional gain. The large bandwidth makes the antenna suitable for initial exploration and

characterising a potential target before a suitable eavesdropping frequency is known.

The Yagi–Uda antenna (often shortened to “Yagi”) is also formed from parallel dipole

elements, with three differences: only a single element is connected to the feed line, the

elements are close in size, and they are spaced farther apart. It is designed for a narrow

frequency range, where the wavelength is near one half of the element length. Unlike

a log-periodic antenna, additional elements do not increase the bandwidth, but instead

improve directional gain. Typical values range from 7 dBi to 20 dBi, depending on the

number of elements.

In later experiments, I used a Sinclair SY307-SF6SNM antenna (Figure 2.4a). This is

a Yagi–Uda antenna designed for 340–366 MHz, with Gy = 12.1 dBi directional gain.

Earlier measurements showed that there were no strong interfering signal sources in this

range at my location, and that it was suitable for DisplayPort eavesdropping. Knowing

this, a higher-gain antenna increased the range of my demonstrations.

Since the gains of the two antennas differ, experiments with the monitor at the same

distance but with different antennas cannot be compared directly. For a 350 MHz signal,

the log-periodic antenna has Gl = 6.4 dBi gain. Replacing it with the Yagi would increase

received signal power by Gy − Gl = 5.7 dB. As a crude approximation, let us assume

free-space propagation where, at distance d from the source, power is proportional to

1/d2. Measurements made at distance dl with the log-periodic antenna would, to an

eavesdropper, look the same as ones made at distance dy with the Yagi, where

d2y
d2l

= 105.7/10 = 3.72 = 1.922. (2.22)

In other words, a successful eavesdropping demonstration using the log-periodic antenna

suggests that the same would be possible at slightly less than twice the distance with the

Yagi.

The directionality of the receiving setup can be further increased with a phased array of

antennas, in which signals received from multiple antennas are added with phase offsets

chosen to produce constructive interference in the desired direction. The signal-to-noise

ratio can also be improved with more sophisticated signal conditioning, such as filters

34 2.5. INTRODUCTION TO VIDEO EAVESDROPPING

Figure 2.5: Image shown on the monitor used for demonstrations in this section.

that block known sources of interference (e.g. broadcast TV) and low-noise amplifiers. De

Meulemeester et al. used such a setup, with a two-antenna phased array followed by two

filtering and amplification stages, to successfully eavesdrop on an HDMI monitor from

80 m distance (compared to “around 10 metres” in previous research). While increasing

signal-to-noise ratio in this way increases the viable attack range, it does not affect signal

processing algorithms used after emissions have been captured by the SDR, and all work

presented in this thesis would be equally applicable.

2.5 Introduction to video eavesdropping

Before discussing DisplayPort, it will be useful to start with a short introduction to signal

processing algorithms used to eavesdrop on older video interfaces. I will use HDMI/DVI as

an example since it is the most common TEMPEST research target, but similar techniques

also apply to other non-scrambled interfaces such as VGA and FPD-Link.

Sample images in this section were reconstructed from a recording of the signals emitted by

a Raspberry Pi model B+ showing the image in Figure 2.5, connected to a Dell 1704FPT

monitor via a 1.8 m HDMI-to-DVI cable. This recording was made by Markus Kuhn

using a Rohde & Schwarz FSV7 spectrum analyser and the VULSP 9111B log-periodic

antenna, at approximately 1 m distance.

Let s[n] be the received sampled IQ signal, centred at frequency fc, with sampling rate

fs. If this is a recording of emissions from a simple NRZ interface, same-colour pixels in

the displayed image will correspond to same signal content in s[n]. HDMI uses a TMDS

encoder with multiple possible encodings for a byte, but there is only a small number

of such encodings for a colour. Additionally, repetitions of the same value cycle through

encodings in a fixed pattern.

At a high level, image reconstruction requires the eavesdropper to first extract timing

CHAPTER 2. BACKGROUND 35

information (pixel, line, and frame rate) from s[n], then demodulate it, optionally im-

prove image quality by periodically averaging multiple frames, and rasterize the output

to produce an image. Colours in the resulting image are not the same as the displayed

image, and are instead a visualisation of a demodulation method, usually amplitude de-

modulation, that ideally provides good contrast.

2.5.1 Timing parameters

An HDMI interface transmits the entire image every frame, over three differential pairs

for the red, green, and blue channel. Byte values are represented as 10-bit TMDS-encoded

symbols. There is no padding other than blanking regions, and so the pixel rate fp is

the lowest rate for which the image can be transferred in a single frame period, with

corresponding bitrate fb = 10fp.

If the eavesdropper knows which video mode the target monitor uses, they can approxi-

mately compute the pixel rate from the frame rate fv and total image dimensions wt×ht
as fp = fvhtwt. This nominal rate will, however, not be accurate enough for image re-

construction. The frequency of the oscillator which provides clock timing will be slightly

different from the desired value due to manufacturing errors and thermal effects, and the

same relative error will be reflected in the pixel rate. An error in the pixel rate assumed

by the eavesdropper will cause the reconstructed image to drift horizontally over time: if

the assumed rate is fp, and its true value is f̄p, over a single frame the image will drift by

d pixels, where

d =
f̄p − fp
f̄p

wtht. (2.23)

For example, for an 800 × 600 image where (wt, ht) = (1056, 628), a d < 1 drift would

require the error to be below 2 ppm (parts per million), an order of magnitude more

accurate than the 30–50 ppm tolerance of typical oscillators. Periodic averaging requires

even more accurate estimates: d < 1/10fv, i.e. better than 0.01 ppm, is required to align

frames for averaging over one second with at most 1/10 pixel misalignment.

Assuming that the displayed image is mostly static, the emitted signal will be periodic

at the frame rate, with period f−1
v . This period can be estimated from autocorrelation

Rss[d] of s[n]:

Rss[d] =
∑

n

s[n]s[n+ d]∗. (2.24)

The autocorrelation magnitude will show large peaks at multiples of the frame period, as

well as smaller ones at multiples of the line period (Figure 2.6). The frame rate can then

be estimated from the position of the largest peak in Rss, possibly restricted to a range

of possible values [d0, d1] for an assumed video mode:

fv ≈ fs ·
(

argmax
d0≤d≤d1

|Rss[d]|
)−1

. (2.25)

36 2.5. INTRODUCTION TO VIDEO EAVESDROPPING

0 1.0× 10
6

2.0× 10
6

3.0× 10
6

0.0

0.1

0.2

0.3

0.4

0.5

Offset d [samples]

R
s
s
[d
]

Figure 2.6: Plot of the autocorrelation Rss[d] of the received signal s[n] containing

emissions from an HDMI interface, showing peaks at multiples of the frame period.

The estimate can be further improved by searching for the k-th peak, located at k · f−1
v ,

using this initial estimate for the frame period f−1
v .

2.5.2 Rasterization

Next, s[n] is resampled from fs to f ′
s to produce s′[n], with the new sampling rate f ′

s

chosen so that one pixel period corresponds to an integer number of samples. The lowest

rate that satisfies this property and does not discard data by downsampling is

f ′
s = ⌈fs/fp⌉ · fp (2.26)

where the length of each pixel in samples is

l = ⌈fs/fp⌉ . (2.27)

A single image frame can then be reconstructed by taking l · wt · ht consecutive samples

in s′[n], demodulating them, mapping the result to colours and displaying it as a l ·wt ·ht
rectangle.

The most common approach is amplitude demodulation, with grayscale output pixels

whose brightness is proportional to |s′[n]| or |s′[n]|2. The simplest implementation of the

entire sample-to-colour mapping would be

s′[n]→ Gray

(|s′[n]| − smin

smax − smin

)

(2.28)

where Gray(b) is a grayscale pixel with brightness b ∈ [0, 1], and smin and smax the

minimum and maximum values of |s′[n]| in the frame.

CHAPTER 2. BACKGROUND 37

Figure 2.7: Sample from average of 60 amplitude-demodulated frames.

This mapping can unnecessarily discard a large part of the output dynamic range due to

outliers in |s′[n]|, and produce images that are almost entirely comprised of dark shades

of gray. For example, a short but strong signal burst unrelated to the eavesdropped image

(e.g. a radio transmission or interference from another device) will increase s′[n] in a small

number of samples, and consequently increase smax. These samples will be displayed as a

white dot or horizontal line, and the rest of the image will use a reduced level range.

The dynamic range can be increased by reducing the range [smin, smax] of amplitudes

that are mapped to possible pixel values in [0, 1], and clamping all values below and

above it to black and white, respectively. In my experience, choosing the thresholds

such that a small fraction of values |s′[n]| fall outside the range, between 1% and 5% on

both sides, produced visually acceptable results (Figure 2.7). O’Connell recommends [26]

choosing the thresholds based the sample average µ and standard deviation σ of |s′[n]| as
smin = µ− 3σ and smax = µ+ 3σ.

De Meulemeester et al˙ [29] showed that frequency demodulation of s′[n] can also be used

to eavesdrop on HDMI display units. They found that certain colour pairs that are difficult

to distinguish using amplitude demodulation are more easily visible in FM-demodulated

images, and suggested that using both methods could allow the eavesdropper to obtain

more information and defeat some countermeasures.

O’Connell [26] demonstrated that both amplitude and phase information can be included

in the same image using the hue-saturation-value (HSV) colour model. He represents

amplitude as value (brightness), and phase as hue:

s′[n]→ HSV

(

∠s′[n], U,
|s′[n]| − 3σ

6σ

)

(2.29)

where HSV(h, s, v) is a pixel with hue h ∈ [−π, π], saturation s ∈ [0, 1] and value v ∈ [0, 1]

(implicitly clamping values outside this range), µ and σ are the sample mean and standard

deviation of |s′[n]|, U is a user-defined constant, and ∠s′[n] is the phase of s′[n].

38 2.5. INTRODUCTION TO VIDEO EAVESDROPPING

Figure 2.8: Sample from average of 60 phase-stabilised frames showing both am-

plitude as pixel value and phase as hue.

If such phase demodulation is directly applied to s′[n], the output image shows a “rainbow-

banding” effect across single-colour areas, making text difficult to read and unsuitable for

coherent averaging. This happens because the phase of s′[n] rotates due to the difference

between HDMI clock rate fH and SDR frequency fc, with angular velocity 2π(fH − fc).
The rotation can be eliminated by downconverting the signal by fH − fc, i.e. multiplying

each sample by a complex phasor

s′[n]← s′[n]e2πj(fH−fc)n/f ′
s . (2.30)

For shorter observation times, fH can be estimated as a peak in the power spectral density

of s[n], and an example resulting image is shown in Figure 2.8. More accurate phase

stabilisation, as needed for long-term coherent averaging, can be achieved using a tracking

loop [26].

2.5.3 Periodic averaging

The noise level in the rasterized output can be reduced by periodic averaging of the signal

for several image frames, assuming that the displayed image does not change during

that period. One can average either the amplitude-demodulated signal (noncoherent

averaging), or complex-valued samples before demodulation (coherent averaging). As I

will show in this section, coherent averaging results in lower noise if the signal-to-noise

ratio of the input is not very high and efficiently rejects interference from other signal

sources.

I will first analyse an AWGN model of the received signal, and leave a discussion of non-

Gaussian noise for later. Let yk ∈ C be random variables describing IQ values that we

wish to demodulate, e.g. signal samples for a particular image position after preprocessing

CHAPTER 2. BACKGROUND 39

(resampling and phase alignment). We model yk as independent, identically distributed

random variables with mean µ ∈ R
+ and Gaussian noise with total variance σ2, or σ2/2

along the real and imaginary axis:

yk ∼
(

µ+N
(

0, σ2/2
))

+ j · N
(

0, σ2/2
)

. (2.31)

I assume that the samples have already been phase-aligned, and therefore choose µ to be

positive real-valued without loss of generality.

The coherently averaged estimate of µ from n random variables yk is

ψc = R

{

1

n

n
∑

k=1

yk

}

(2.32)

where the imaginary part is discarded since it only contains noise. This is an unbiased

estimator:

E [ψc] = E [yk] = µ. (2.33)

Since the yk are independent, averaging n values will decrease the variance by a factor

1/n (i.e. the standard deviation by 1/
√
n). We can rewrite the estimator as an average

of R {yk}

ψc =
1

n

n
∑

k=1

R {yk} (2.34)

each of which is distributed as N (µ, σ2/2), and so the variance of ψc is

V [ψc] =
σ2

2n
. (2.35)

The signal-to-noise ratio of an individual random variable yk before demodulation is

E [yk]
2 /V [yk] = µ2/σ2, and so the processing gain of n-sample coherent averaging rel-

ative to the input signal is

Gc =
E [yk]

2

V [yk]

/

E [ψc]
2

V [ψc]
= 2n (2.36)

or in decibels

GcdB = 3 dB + 10 dB · log10 n (2.37)

where the doubling comes from coherent demodulation discarding one half of the variance

by eliminating the imaginary component. The coherent estimator ψc is optimal: it is the

minimum variance unbiased estimator for µ [26].

Coherent averaging requires phase alignment that is accurate enough to ensure that the

phase of yk is stable over the averaging period. If such alignment is not available, we are

limited to noncoherent averaging, which discards phase information and operates on the

40 2.5. INTRODUCTION TO VIDEO EAVESDROPPING

−20 −10 0 10 20 30 40

0

5

10

15

20

µ2/σ2 [dB]

|y k
|[
d
B
]

−20 −15 −10 −5 0

−0.5

0.0

0.5

1.0

µ2/σ2 [dB]

|y k
|[
d
B
]

Figure 2.9: Plots of the expected value of amplitude-demodulated samples E [|yk|],
for varying input signal-to-noise ratio µ2/σ2.

magnitudes of yk. The noncoherent (amplitude averaged) estimate of µ from n random

variables yk is

ψn =
1

n

∣

∣

∣

∣

∣

n
∑

k=1

yk

∣

∣

∣

∣

∣

. (2.38)

The amplitude-demodulated variables |yk| follow a Rice distribution with centre µ and

scale σ:

|yk| ∼ R (µ, σ) (2.39)

which is a generalisation of the Rayleigh distribution with a nonzero centre (for µ = 0 the

two are equivalent). Its mean and variance are

E [|yk|] = σ

√

π

2
I0

(

− µ2

2σ2

)

(2.40)

V [|yk|] = 2σ2 + µ2 − πσ2

2
I20

(

− µ2

2σ2

)

(2.41)

where I0 is the order zero modified Bessel function of the first kind.

Since E [|yk|] ̸= µ, the noncoherent estimator is a biased estimator of µ. If the signal-to-

noise ratio is very low (µ ≪ σ), the distribution tends towards a Rayleigh distribution

with scale parameter σ, and E [ψn] = σ
√

π/2 only depends on the noise power. With

increasing SNR, E [ψn] becomes closer to the true mean µ, as shown in Figure 2.9.

For very high SNR (µ≫ σ), the Rice distribution tends towards a Gaussian distribution

with mean µ and variance σ2/2. Similarly to coherent demodulation, amplitude demod-

ulation of strong signals is not significantly affected by noise in the imaginary part of the

CHAPTER 2. BACKGROUND 41

signal. If yk = (µ + nx) + j · ny, where nx, ny ∼ N (0, σ2/2) are the real and imaginary

noise components, we can write the amplitude as

|yk| =
√

(µ+ nx)2 + n2
y = µ

√

1 +
2nx

µ
+
n2
x + n2

y

µ2
(2.42)

and, approximating
√
1 + a ≈ 1 + a/2 for |a| ≪ 1,

|yk| ≈ µ ·
(

1 +
nx

µ
+
n2
x + n2

y

2µ2

)

= µ+ nx + o(µ−1) (2.43)

and so for large µ the noise term from ny tends to zero.

From Figure 2.9, we can provide approximate thresholds for the two limiting cases:

• If the SNR of individual random variables yk (i.e. samples) is above 25 dB, co-

herent and noncoherent averaging are approximately equivalent (less than 0.01 dB

difference).

• If the SNR of individual yk is below −15 dB, the result of noncoherent averaging is

practically independent of the signal µ and therefore contains no information about

the image.

SNRs that are of practical interest for electromagnetic eavesdropping are generally in the

middle region between these limiting cases. We can compare the performance of the two

estimators by evaluating their mean and variance directly (with a suitable approximation

for the Bessel function), or via a numerical simulation. It is enough to consider the signal-

to-noise ratio only for a single random variable yk after demodulation; averaging n such

values improves the SNR for both coherent and noncoherent demodulation by the same

10 dB · log10 n.

The usual definition of the signal-to-noise ratio of a random variable x, E [x2] /V [x], is only

applicable if x is zero-mean (E [x] = 0), and cannot be used for amplitude-demodulated

|yk|. This is particularly obvious for the case µ = 0, for which the expected value is

µ0 = E
[∣

∣N
(

0, σ2/2
)

+ j · N
(

0, σ2/2
)∣

∣

]

̸= 0 (2.44)

and so the SNR would be non-zero even though no signal is available.

The contrast-to-noise ratio (CNR) is a more suitable measurement. This is a common

image quality metric for instruments such as electron microscopes [69] and fMRI ma-

chines [70], which measures the contrast between two image features relative to noise. If

A0 and A1 are average image levels for the two features, and σ2 the noise variance, the

CNR is commonly defined as
|A1 − A0|

σ
. (2.45)

42 2.5. INTRODUCTION TO VIDEO EAVESDROPPING

−20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

30

40

Input SNR (µ2/σ2) [dB]

O
u
tp
u
t
C
N
R

[d
B
]

amplitude

coherent

Figure 2.10: Plot of CNR of coherently and noncoherently (amplitude) demodu-

lated random variables yk, for varying input signal-to-noise ratio µ2/σ2.

Applying this approach, with the first feature A0 = µ0 being only noise, and the sec-

ond A1 = E [|yk|] the average signal amplitude, I define the CNR for an amplitude-

demodulated image as

CNR =
(E [|yk|]− µ0)

2

V [|yk|]
(2.46)

where I have chosen to square the usual image processing definition to keep it analogous

to a power-ratio SNR instead of an amplitude ratio. For a zero-mean signal where µ0 = 0,

this definition of CNR is equivalent to SNR.

Scaling µ and σ by the same factor k scales both the numerator and denominator of

Equation 2.46 by k2. The amplitude demodulation CNR thus only depends on the received

SNR µ2/σ2, and not on µ or σ individually. Figure 2.10 shows the numerically computed

CNR for varying input SNR for both coherent and noncoherent demodulation. The

difference between the two is the maximum processing gain from coherent averaging,

relative to noncoherent averaging (Figure 2.11).

In a wideband radio signal, noise cannot be fully modelled as Gaussian, as it will contain

radio transmissions and interference from electronic devices other than the eavesdropping

target. Consider an extension to the AWGN signal model that includes an interference

term with constant amplitude µi and varying phase φ[k]:

yk ∼
(

µ+ µi cosφ[k] +N
(

0, σ2/2
))

+ j ·
(

µi sinφ[k] +N
(

0, σ2/2
))

. (2.47)

Assuming that the interference is not correlated with the signal we wish to extract µ, the

phase will be uniformly distributed over the entire range [−π, π]:

φ[k] ∼ U(−π, π). (2.48)

CHAPTER 2. BACKGROUND 43

−20 −10 0 10 20 30 40

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Input SNR (µ2/σ2) [dB]

G
a
in

fr
o
m

co
h
er
en
t
av
er
a
g
in
g
[d
B
]

Figure 2.11: Plot of processing gain for coherent demodulation, compared to

amplitude demodulation, as a ratio of CNR, for varying input signal-to-noise ratio

µ2/σ2.

If these yk are amplitude demodulated, the interference term biases the expected value

similarly to Gaussian noise. If µi is large compared to µ, the noncoherent average will tend

towards estimating the interference power rather than the desired signal µ, and amplitude

averaging is again only suitable if the input SNR is sufficiently high.

The expected value of coherently averaged ψc is equal to the expected value of R {yk}:

E [ψc] = E [R {yk}] = E
[

µ+ µi cosφ[k] +N
(

0, σ2/2
)]

. (2.49)

By linearity of expectation:

E [ψc] = E [µ] + E [µi cosφ[k]] + E
[

N
(

0, σ2/2
)]

. (2.50)

By symmetry E [µi cosφ[k]] = 0, and so the expected value of the interference is zero, i.e.

it will tend towards zero after coherent averaging, and ψc is still an unbiased estimator:

E [ψc] = µ. (2.51)

The main advantages of coherent demodulation and averaging are therefore its ability to

reject interference other than Gaussian noise, and increased processing gain for low to

moderate signal-to-noise ratios. While the processing gain of amplitude demodulation

approaches that of coherent demodulation at very high SNRs, such strong signals are not

encountered in practical electromagnetic eavesdropping attempts.

44 2.5. INTRODUCTION TO VIDEO EAVESDROPPING

Chapter 3

Basic image reconstruction

Before discussing specific eavesdropping algorithms, it is necessary to understand how

the target video interface represents and transfers image data. The first part of this

chapter gives an overview of DisplayPort, focusing in particular on how images are con-

verted into data packets and the on-wire representation of packet data. This informa-

tion is mostly based on the VESA DisplayPort 1.2 standard [8]. The standard allows

source designers some freedom to make implementation-specific choices for data packet

size and padding details, and so this overview will also describe such implementation-

specific choices, reverse-engineered from recordings of lane data.

The overview is followed by an eavesdropping attack that recovers an image transferred

via DisplayPort from captured electromagnetic emissions. I first recover the timing pa-

rameters of the scrambling sequence and construct a copy of the scrambler synchronised

with the target link. I then use this to build templates for a set of colours expected in

the target image, and identify pixels matching these colours from the short-term cross-

correlation between the recorded emissions and the templates. Such an attack would in

particular be practical in applications where the eavesdropper has a-priori knowledge of

the colours used in the user interface, as might be the case in specific applications, such

as electronic voting machines.

These algorithms show that electromagnetic eavesdropping on DisplayPort is possible, and

demonstrate a basic approach to two steps in such an attack: scrambler synchronisation

and image reconstruction. Later chapters will cover improvements and more sophisticated

algorithms which address limitations of this approach, by improving synchronisation ac-

curacy, inferring likely colours without prior knowledge, decreasing noise and improving

horizontal resolution in the recovered image.

This chapter begins with an overview of DisplayPort (Section 3.1). This is followed by

a description of the attack, summarised in Section 3.2, which consists mainly of two

algorithms: firstly I need to estimate some video timing parameters and synchronisation

points (Section 3.3), which then enables me in a second step to classify the transmitted

45

46 3.1. DISPLAYPORT

pixel colours (Section 3.4) and recover substantial parts of the displayed image. Finally,

I present practical demonstrations (Section 3.5).

3.1 DisplayPort

DisplayPort is a video interface designed for high-throughput unidirectional video data

transfer. Itsmain link consists of four twisted wire pairs, known as lanes, using differential

signalling.

Unlike DVI and HDMI, which base the clock rate on the video mode, a DisplayPort link

has only a few possible bitrates: 1.62 Gbit/s, 2.7 Gbit/s, and in later versions of the

standard also 5.4, 8.1, 10, 13.5, and 20 Gbit/s. The lowest bitrate that provides sufficient

capacity for the current video mode is used, and the space between packets of image data

is padded with fill bytes.

After inserting fill bytes and blanking periods, the data stream is scrambled by XOR-

ing it with the output of a 16-bit linear-feedback shift register and encoded using an

8b/10b encoder. The following subsections detail these steps, with Figure 3.1 providing

an example.

3.1.1 Reverse engineering

The DisplayPort standard leaves details of the transfer unit padding algorithm to the

implementer, and only specifies a high-level target (ratio of data bytes to transferred

bytes). Since accurately modelling the on-wire data depends on this algorithm, I made

several recordings of transmitted DisplayPort data for analysis and reverse-engineering. I

examined two graphics controllers, both manufactured by Intel:

• Intel HD Graphics 520 (Gen 9, “Skylake”)

• Intel HD Graphics 4600 (Gen 7.5, “Haswell”)

I made the recordings using a Tektronix TDS7254B oscilloscope and P7330 differential

probe, held to the connector pads on one of the ends of a DP cable (Figure 3.2a). Each

recording contained the differential voltage of a single DisplayPort lane and covered around

750 image lines. A short sample of the recorded voltage can be seen in Figure 3.2b. The

2.5 GHz oscilloscope bandwidth is not high enough to estimate the rise time of the signal

(and therefore the emitted bandwidth), but was sufficient to decode the data without

error.

The padding details described in this thesis are therefore possibly specific to the In-

tel implementation. The eavesdropping algorithms in this chapter do not rely on any

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 47

Figure 3.1: Overview of DisplayPort image framing and encoding, for a fictional

video mode with eight pixels per line.

48 3.1. DISPLAYPORT

(a)

0 2 4 6 8 10 12

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Time [ns]

D
iff
er
en
ti
a
l
vo
lt
a
g
e
[V

]

(b)

Figure 3.2: (a) Differential oscilloscope probe held to the pads of a DisplayPort

connector to measure differential lane voltage. (b) Single-shot recording of the

differential voltage of a 1.62 Gbit/s DisplayPort lane, measured at the monitor end

using an oscilloscope with 2.5 GHz bandwidth, sampled at 20 GHz, with a 0.3 pF

active differential probe.

implementation-defined behaviour, and ones described in the following chapters could be

trivially adapted to a different padding method.

In my experience, this is mostly a matter of testing small variations (e.g. rounding modes

and precision) of a straightforward implementation to find one that matches observed

data.

3.1.2 Data framing

The video mode used specifies the displayed image height hd and width wd, the vertical

(frame) refresh rate fv, and the total image dimensions ht and wt which include blanking

periods. The latter are areas of zero-valued invisible pixels inserted at the end of each

line and each frame to extend the hd × wd image to ht × wt.

Since each pixel consists of three bytes (for the most common 24bpp RGB colour format),

and each byte is encoded as ten bits, the minimal data rate required to transmit the

resulting image is 30 bits · ht · wt · fv. The transmitter selects the lane bitrate fb from

the previously mentioned list of available values and the number of lanes nL ∈ {1, 2, 4}
to provide sufficient capacity, by ensuring that 30 bits · ht ·wt · fv ≤ nL · fb, prioritising a

lower bitrate fb over a reduced lane count nL.

If nL > 1, the image is split into nL interleaved sub-images that will be transmitted on

separate lanes. For example, for nL = 4, every fourth pixel from each line is assigned to

the same lane, i.e. lane 0 contains pixels from columns 0, 4, 8, etc., while lane 1 contains

columns 1, 5, 9, etc. Each pixel is then converted into bytes according to the colour

format, so that all colour components of each pixel appear on the same lane.

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 49

Figure 3.3: Diagram of data mapped to one lane for a DisplayPort video frame,

including blanking periods and fill regions. Image data is shown in white, and zero-

valued padding bytes are shown in gray. Image dimensions are given in pixels, before

padding.

To meet the constant bitrate requirement, blocks (fill regions) of zero-valued fill bytes

delimited by control characters are interleaved with the image data. Fill region placement

does not respect pixel boundaries: fill bytes may be inserted in the middle of a pixel’s

three RGB bytes. A block of image data (except for the last block in each line) together

with the following fill region is referred to as a transfer unit (TU). All transfer units have

the same implementation-defined length lTU, which must be between 32 and 64 bytes. On

the video interfaces I analysed, I only saw 64-byte transfer units.

The image blocks and fill regions start and end at the same byte offsets in all lines, relative

to the first image byte in the line (see Figure 3.3). The average ratio of image bytes to

transmitted bytes is

ρ =
30 bits · ht · wt · fv

nL · fb
(3.1)

and the number of image bytes per transfer unit approximates ρ · lTU. The last block

of image data in each line is immediately followed by the (padded) horizontal blanking

period, the length of which is chosen such that the total number of bytes sent per (padded)

line is on average

np =
fb

10 bit
byte
· fv · ht

. (3.2)

As np may in practice not be an integer, the length of the horizontal blanking period, and

therefore the number of bytes transmitted for a line, can vary by one byte.

For example, for the 1920 × 1200 @ 59.95 fps video mode I used for demonstrations

(Section 3.5), the total height including the vertical blanking period is ht = 1235 lines,

and the frame rate is fv = 59.95 Hz. The lowest bitrate and lane count that provides

the required bandwidth is fb = 1.62 Gbit/s and nL = 4. The average length of a padded

line is therefore np = 2188.06 bytes. The fractional average length is met by choosing the

50 3.1. DISPLAYPORT

length of each padded line to be either 2188 or 2189 bytes, in a proportion that results in

the correct long-term average.

The padded sub-image is read out line-by-line to produce the byte stream that will be

transmitted over the corresponding lane. To provide resistance against bursty noise, a

two-byte inter-lane skew is introduced: lanes 1, 2, and 3 are delayed by two, four, and six

bytes, respectively, relative to lane 0. The resulting data is then scrambled, encoded, and

transmitted to the receiver.

Implementation-specific details

Algorithm 1 DisplayPort line padding (assumed Intel implementation)

procedure PadLine(d[], ρ, lTU) ▷ Image data d[], padding ratio ρ, TU size lTU.

N ← 223

M ← ⌊N · ρ⌋
(ni, nf) = (0, 0)

for b ∈ d do

if ni + nf + 1 ≥ lTU then

output lTU − ni fill bytes

(ni, nf)← (0, nf − (lTU − ni))

end if

output image byte b

(ni, nf)← (ni + 1, nf +N/M − 1)

end for

end procedure

The Intel video interfaces I analysed determine the number of fill bytes in transfer units

using an approach similar to Bresenham’s line-drawing algorithm [71] (Algorithm 1). The

interface keeps track of the number of output bytes in the current image block ni and the

number of fill bytes that should be output nf . The fill byte count is increased by ρ−1 − 1

after outputting an image byte. When ni + nf + 1 ≥ lTU, the image block is terminated

with lTU − ni fill bytes, and the fill byte count is decreased by the same. In other words,

fill region sizes are rounded up so that ni + nf never exceeds lTU.

Fractional byte counts are stored as rational numbers. The image-to-fill ratio ρ is rounded

to M/N , where N = 223 and M = ⌊ρ ·N⌋.

3.1.3 Scrambling

To flatten the frequency spectrum of electromagnetic interference generated, link data is

scrambled using a maximum-length 16-bit linear-feedback shift register (LFSR) defined

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 51

Bits
Encoded

RD = + RD = −

00 000 00000 1101 000110 0010 111001

ff 111 11111 0111 001010 1000 110101

c0 110 00000 0110 000110 0110 111001

1a 000 11010 0010 011010 1101 011010

25 001 00101 1001 100101 1001 100101

Table 3.1: Examples of 8b/10b encoded values for positive and negative initial

running disparity (RD). Binary values are shown here most significant bit first.

Note that the encoding first considers the lower 5-bit block, and that the output is

transmitted least significant bit first.

by the polynomial x16 + x5 + x4 + x3 + 1. For each value (data byte or control symbol)

transferred over the lane, the shift register is clocked eight times to produce a scrambler

byte Ξ[n]. If the current value is a data byte b[n], it is replaced by the exclusive-or

b[n]⊕Ξ[n] of that byte and the scrambler byte Ξ[n]. Control symbols are not scrambled,

but the shift register is still advanced. The same scrambling byte Ξ[n] is applied to each

lane, but delayed by 0, 2, 4, 6 bytes, respectively.

As it is defined by a degree-16 primitive polynomial, the scrambler has a period of 216−1 =

65535 bits. Since 216−1 is coprime with 8, the length of a byte, it takes eight shift-register

periods for the bits to be placed at the same offset within a byte. Therefore, the resulting

scrambler byte sequence has a period of 216 − 1 bytes.

Every 512 lines of image data, including the vertical blanking period, the scrambler is

reset to the initial state ffff at the beginning of the horizontal blanking period. The

receiver is notified of the reset by replacing a blanking start (BS) control character with

scrambler reset (SR). The 512-line period continues across frame boundaries and does not

need to start on any particular line of a frame.

In the above 1920× 1200 @ 59.95 fps example, the 512-line period is 512 · np ≈ 1.12 · 106
bytes long, and therefore, between resets, the scrambling sequence repeats 512 ·np/(2

16−
1) ≈ 17.09 times.

3.1.4 Encoding

Finally, the scrambled data is 8b/10b encoded, using the same encoder as in Gigabit

Ethernet over fibre [72], and transmitted least significant bit first. The encoding ensures

frequent transitions and also DC balance. This helps with clock recovery and allows links

to be AC-coupled.

52 3.1. DISPLAYPORT

Symbol
Encoded

RD = + RD = −

SR Scrambler Reset† 1101 000011 0010 111100

BS Blanking Start† 1010 000011 0101 111100

BE Blanking End 1110 100100 0001 011011

FS Fill Start 1110 100001 0001 011110

FE Fill End 1110 101000 0001 010111

Table 3.2: Control symbols used for transmitting video data, most significant bit

first. (Symbols related to secondary data packets or content protection not shown.)
†The SR and BS symbols may be replaced with four-symbol variants.

Each byte is encoded either as a DC-balanced 10-bit symbol containing five 0-bits and five

1-bits, or as an unbalanced symbol with four 0-bits and six 1-bits. In the latter case, the

byte can alternatively be encoded as a secondary symbol with six 0-bits and four 1-bits.

The choice is made depending on whether the output so far contains more 0- or 1-bits

(negative or positive running disparity).

Let n0 is the number of 0-bits output so far, and n1 the number of 1-bits. The running

disparity is then RD = n1 − n0 − 1, where −1 serves to break ties when the output so

far is balanced. Initially, RD = −1. After encoding a byte with a balanced encoding,

both n0 and n1 increase by 5, and the running disparity is unchanged. For bytes with

unbalanced encodings, if RD = −1 the encoding with six 1-bits will be chosen, and so

the new disparity will be (n1 + 6)− (n2 + 4)− 1 = RD + 2 = 1. Similarly, if RD = 1 the

encoding with four 1-bits will be chosen, and the new disparity will be −1. Therefore,

RD will always be ±1 (usually written as + or −), and the encoder only requires one bit

of state.

Encoding a single byte whose encoding is balanced always leaves the running disparity

unchanged, regardless of its value. Similarly, encoding a byte with unbalanced encodings

always inverts the disparity. Therefore, changing the initial disparity will result in all

unbalanced symbols being replaced by their respective alternate symbols.

To encode an 8-bit input, it is split into a 5-bit and a 3-bit block. These are encoded

as a 6-bit and 4-bit output, respectively, using a pair of lookup tables. Each block can

either have a single balanced encoding, with an equal number of zeroes and ones, or

two unbalanced encodings that are complements of each other. Inverting the running

disparity will therefore invert all bits in unbalanced output blocks, but leave balanced

blocks unchanged (see Table 3.1). A complete table of encoded values is available in

Appendix A.

Some 10-bit sequences that do not correspond to any 8-bit byte value represent control

symbols, such as those inserted at the beginning and end of fill and blanking periods,

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 53

and the scrambler reset symbol. Control symbols used when transmitting video data are

shown in Table 3.2.

3.1.5 An Intel-specific quirk

When examining oscilloscope recordings of DisplayPort lane data, I noticed that during a

vertical blanking period, blanking start symbols are inserted six bytes earlier than when

transmitting image data. If a scrambler reset replaces one of the misaligned symbols, the

scrambling sequence used in the following 512 lines will be shifted by six bytes compared

to behaviour if the bug was not present.

This contradicts the DisplayPort 1.2 specification, which states that they should be “in-

serted at the same symbol time during vertical blanking period as during vertical dis-

play.”1, and is likely a bug in the Intel implementation (possibly limited to certain gen-

erations). Mispositioned control symbols in the vertical blanking period do not change

the image decoded by the monitor, since the entire blanking period is discarded before

display.

Algorithms described in this chapter do not take this implementation-specific behaviour

into account. I will return to the topic in Section 5.6.2, where I describe how these

misaligned resets can be detected with accurate scrambler tracking and used to vertically

align the reconstructed image.

3.2 Eavesdropping overview

Figure 3.4 provides an overview of the eavesdropping attack. It begins by recording the

emissions of the target monitor using a software-defined radio receiver. Since practically

available SDR sampling rates fr (e.g., 50–200 MHz) are much lower than the DisplayPort

link bitrate fb, I can only capture a band-limited signal centred at a frequency of my

choosing; experimentally, centre frequencies fc around 400 MHz performed well at my

location2.

Before further processing, it was convenient to upsample the recording so that each sample

corresponds to an integer number of transferred bits. In my case, this meant resampling

to fs = 1.62 GHz/32 = 50.625 MHz.

I then process the recording to identify some time offsets Xo at which the target lane

scrambler is in its initial state (either because of a reset or a wraparound), by searching

for predictable scrambled byte sequences. I fit a set of parameters describing the reset

12.2.1.1 Control Symbols for Framing: Default Framing Mode
2William Gates Building, 15 JJ Thomson Avenue, Cambridge CB3 0FD

54 3.2. EAVESDROPPING OVERVIEW

Figure 3.4: Overview of the image reconstruction attack that identifies three

colours c1, c2, c3 in the target image.

times to these offsets (reset model), allowing me to synthesise a scrambler synchronised

with the recording.

I assume that the image mainly consists of a small set of colours C = {c1, c2, . . . , cn}, i.e.
this initial attack is more suited for text, line drawings or cartoon-like images, rather than

continuous-tone photographs or video. For each of these colours, I synthesise a template

signal based on the emulated scrambler. I then compute a short-term cross-correlation of

each template and the recording, producing a correlation channel for each colour.

Each such channel is periodically averaged at the frame rate, to reduce noise, resulting

in a single output frame. Such averaging can even be performed over multiple minutes,

since the scrambler timing parameters can be estimated accurately enough to allow for

precise long-term synchronisation.

Finally, all colour channels are combined into a single image. The image may need to be

circularly shifted vertically to align it properly, and pixels recorded inside blanking and

fill intervals can be removed before display.

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 55

3.3 Synchronisation

Let X be the set of time offsets at which the scrambler is in the starting state ffff.

This will contain the start of every 512th line, at which the scrambler resets, as well times

between resets when the initial state repeats, due to the 216− 1 byte period of the LFSR.

With the simplifying assumption that all line lengths are equal, we can fully describe X

by an initial offset x0, a reset period R, and an LFSR period P :

X =

{

x0 + aR + bP
∣

∣ a, b ∈ Z, 0 ≤ b <
R

P

}

. (3.3)

The goal of the reset model is to reconstruct X, so that I can align a synthesised signal

template with the recording. I first extract from the s[n] samples a set Xo of observed

offsets at which the scrambler resets. Assuming that Xo is a subset of X, up to a small

error due to noise, I then find the best-fitting parameters θ = (x0, R, P).

3.3.1 Offset extraction

To identify time offsets at which the scrambler state is ffff, I rely on the presence of long

blocks of consecutive zero bytes in the data prior to scrambling. Such blocks must occur

regardless of the image, since the vertical blanking period is entirely filled with zeroes.

I first synthesise the expected signal z0[i] for N consecutive zero bytes, starting with a

ffff scrambler state. The choice of N can be adapted to the expected length of the

blanking period. Let the blanking period be Nb bytes long; if Nb > 216−1, it will contain

at least one position at which the scrambler is in the initial state, followed by at least

N = Nb − (216 − 1) bytes. For the experiments described in this chapter, I optimise for

the 1920× 1200 @ 59.95 fps video mode and set N = 11407.

Let ξ[i] ∈ {−1, 1} be the ith bit of the 8b/10b encoding of the scrambler bytes following

a reset (for 0 ≤ i < 10N), fb the DisplayPort link bitrate, and fc the centre frequency

the receiver is tuned to. I first compute a template ξ̃[i] sampled at fb by downconverting

ξ[i], to match what the SDR does:

ξ̃[i] = e
−2πji fc

fb ξ[i] (3.4)

This is then downsampled to the receiver sampling rate fs to obtain the template sequence

z0[n] (for 0 ≤ n < 10Nfs/fb).

Finally, I compute the cross-correlation Rz0,s[d] of z0 and s as

Rz0,s[d] =
∑

i

z0[i]
∗s[i+ d] (3.5)

where ∗ denotes the complex conjugate and the offset d ranges over the length of s.

56 3.3. SYNCHRONISATION

−40 −20 0 20 40

0.2

0.4

0.6

0.8

Bitrate adjustment ε [ppm]

A
ve
ra
g
e
p
ea
k
h
ei
g
h
t
h
(ε
)

Figure 3.5: Plot of average peak height h(ε) as a function of bitrate correction ϵ,

for a recording made at 2 m antenna distance.

The offsets at which the scrambler state is ffff can be identified as peaks in |Rz0,s[d]|.
To eliminate false positives due to side peaks in the autocorrelation of z0, I only consider

local maxima that are the largest value within ±P/2 samples, using an estimate of P

computed from the link bitrate. I iterate through values of Rz0,s in descending order of

magnitude, adding the offsets to the output set Xo if they are at least P/2 samples away

from all values currently in Xo. Since the scrambler overflow period is shorter than the

length of the vertical blanking period, at least one identifiable overflow or reset occurs

in each frame. I therefore terminate this procedure once |Xo| ≥ tr/fv, where tr is the

duration of the recording s[n] and fv is the frame rate.

3.3.2 Bitrate adjustment

Small differences between the nominal bitrate fb and the rate actually used by the inter-

face, caused by oscillator manufacturing tolerance or thermal drift, accumulate over the

length of z0[n], and the misalignment can significantly reduce the signal-to-noise ratio in

the correlation Rz0,s[d]. For example, if fb differs from the nominal value by δ = 30 ppm

(a typical value I observed), the accumulated alignment error over N template bytes will

be 10N · δ = 3.3 bits.

The signal-to-noise ratio, and therefore also the distance at which synchronisation is

successful, can be improved by first searching for fb instead of using the nominal value.

Let ε be the bitrate relative error, and define the average peak height h(ε) for bitrate

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 57

(1 + ε)fb as

h(ε) =

⌊|s| fvfs ⌋
∑

k=0

max
k fs
fv

≤d<(k+1) fs
fv

|Rz0,s((1 + ε)fb)[d]| (3.6)

where Rz0,s(f
′
b)[d] is template cross-correlation as in Equation 3.5, except with the tem-

plate constructed using bitrate f ′
b instead of fb. Here I take only the highest peak in each

frame period, since each frame will contain at least one in the vertical blanking period,

but possibly no others at scrambler resets that happen inside the image region.

The average height will be maximal at ε for which (1 + ε)fb is the actual bitrate of the

target interface (Figure 3.5). The updated bitrate used for offset extraction is then

(1 + argmax
−εm≤ε≤εm

h(ε)) · fb (3.7)

where I set the range to εm = 50 ppm and sample h(ε) first with 10 ppm resolution, and

then more finely with 0.5 ppm resolution near the candidate maximum.

3.3.3 Parameter fit

Informally, the best-fitting reset model is described by parameters θ = (x0, R, P) that

produce a set of offsets X matching the observed Xo as closely as possible. Let us define

this formally as choosing these parameters, and coefficient mappings a, b : Xo → Z, as

those that minimise the sum-of-squares error

E(Xo|θ, a, b) =
∑

x∈Xo

(

x− (x0 + a(x)R + b(x)P)
)2
. (3.8)

As in (3.3) above, 0 ≤ b(x) < R
P
for all x.

I use an expectation-maximisation approach to find θ, a, b that minimise E(Xo|θ, a, b)
for a given Xo. The algorithm starts with an initial estimate for θ, and then alternates

between updating the a(x), b(x) and recomputing θ estimates that minimise the error.

Initial values

If known, the target display’s video mode can provide initial estimates for R and P . Let

fb be the lane bitrate used for the mode, fv the frame rate, and ht the total image height

including the blanking period. The scrambler resets every 512 lines, so R ≈ 512
htfv

. The

inner period P is independent of the line rate: 216 − 1 bytes, each encoded as 10 bits.

Therefore, P ≈ 10·(216−1)
fb

.

I do not attempt to estimate an initial x0, and instead try multiple initial values for x0,

ranging from 0 to R in steps of P
2
. For each of these I execute the parameter-fitting

algorithm below, and keep the result that minimises E(Xo|θ, a, b).

58 3.4. IMAGE RECONSTRUCTION

Similarly, if the video mode is unknown, it can be identified by repeating the algorithm

with initial R and P chosen for each likely video mode from a candidate list, and returning

the one for which the algorithm below converges to the smallest error E(Xo|θ, a, b).

EM algorithm

Let θ
(n) be the parameter values after n iterations, where θ

(0) are the initial values de-

scribed above. Similarly, let a(n)(x), b(n)(x) be the best-fitting coefficients corresponding

to θ
(n).

I alternate between computing the coefficients

a(n), b(n) = argmin
a,b

E(Xo|θ(n), a, b) (3.9)

and the next estimate of parameters

θ
(n+1) = argmin

θ

E(Xo|θ, a(n), b(n)) (3.10)

until convergence.

I compute the solution to (3.9) by assigning the values separately for each x ∈ Xo:

a(x) :=

⌊

x− x0
R

⌋

(3.11)

b(x) :=

⌊

x− x0 − a(x)R
P

+ 0.5

⌋

(3.12)

As a special case, if the offset is near a scrambler reset and so b(x) =
⌊

R
P

⌋

, incrementing

a(x) by 1 and setting b(x) = 0 can result in a lower error.

By taking partial derivatives with respect to x0, R, P , we can find the solution to (3.10)

by solving a system of linear equations:

∑

x∈Xo

1

a(x)

b(x)

1

a(x)

b(x)

T

x0

R

P

=
∑

x∈Xo

x

a(x)

b(x)

(3.13)

3.4 Image reconstruction

In the next step, I assume that the image displayed on the screen mostly contains a

small set of colours C = {c1, c2, . . . , cn}, as is the case for text and line drawings (e.g. for

demonstrations in Section 3.5, n ≤ 16). For each colour ck, I construct a pair of positive-

and negative-disparity templates z+k [i] and z−k [i] containing the expected signal from a

DisplayPort lane that only transmits repetitions of ck. These are constructed in the same

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 59

way as the template used for synchronisation, by scrambling and 8b/10b encoding the

data, then downconverting and resampling (see Section 3.3.1).

The difference between the two templates is the initial disparity of the 8b/10b encoder,

which is set to positive when generating z+k and negative for z−k . Since a change in disparity

propagates through the entire encoded stream, this ensures that one of the two templates

matches encoded image data, regardless of the running disparity after encoding preceding

pixels.

Next, I iterate through the received signal samples s[n], keeping track of the number is of

samples since the last scrambler reset to align the templates with the signal. This value

increases alongside n, and is reset to zero at predicted resets where n ∈ X. For each

colour k, I compute the cross-correlation (dot product) of a window of w samples in s

and both templates, and compute a score uk[n] by taking the template with the higher

correlation:

uk[n] = max
z∈z+

k
,z−

k

∣

∣

∣

∣

∣

w−1
∑

l=0

s[n+ l]z[is + l]∗

∣

∣

∣

∣

∣

2

(3.14)

The choice of window length w poses a tradeoff: longer windows reduce the noise level

in the final image, but result in a horizontally blurred output in which narrow features

cannot be distinguished. For the experiments presented in this chapter, I chose w = 5.

The score uk[n] for each colour is averaged over all frames, using a frame length (in

samples) (ht · R)/512 computed from the scrambler timing parameter R and the video

mode’s total height ht.

If there are multiple colours of interest, I assign the highest-scoring colour argmaxk ūk[i]

to each pixel (voting mode). If the target image mostly consists of a single background

and foreground colour, c1 and c2, for example if it mostly contains text, the scores can

alternatively be mapped to grayscale values by taking (after periodic averaging) the dif-

ference ū1[i] − ū2[i], and normalising the resulting values into pixel brightness values in

[0, 1] (silhouette mode).

At this stage, the image is still cyclically shifted by an unknown offset. I first shift it

such that the sample at time x0 maps to right after the last pixel in a line, since the

scrambler is always reset at the beginning of a horizontal blanking period. This ensures

horizontal image alignment. Vertical image alignment can be adjusted manually, or using

an automated algorithm described in Section 5.6.2.

3.5 Experimental results

Next, I first show measurements of the success rate and accuracy of the synchronisa-

tion algorithm from Section 3.3. I then present practical demonstrations of the image

60 3.5. EXPERIMENTAL RESULTS

reconstruction algorithm using three displayed target images: one containing text, both

with and without anti-aliasing, and with colours that are particularly difficult to distin-

guish for this technique (Section 3.5.3); a presentation slide that an eavesdropper might

be interested in (Section 3.5.4); and a cartoon image with a larger number of colours

(Section 3.5.5).

3.5.1 Setup

The eavesdropping target for all experiments described below was a laptop with Intel

Skylake GT2 graphics controller, connected via a miniDP-to-DP adapter and 1.5 m Dis-

playPort cable to an iiyama ProLite XUB2495WSU LCD monitor. I also tested the same

attacks targeting instead a desktop computer with Intel Xeon E3-1200 graphics controller,

for which it worked without modifications. For the image-reconstruction demonstrations

(Section 3.5.3 and later) the target used the highest-resolution video mode supported by

the display: 1920× 1200 @ 59.95 fps.

The emissions for image recovery demonstrations were recorded using the Schwarzbeck

VULSP 9111B log-periodic antenna directly connected via a 4.6 m long RG-213/U coax

cable to an Ettus USRP X300 software-defined radio receiver with Ettus UBX-160 daugh-

terboard. The receiver was tuned to a centre frequency of fc = 400 MHz, with sampling

rate fr = 50 MHz, streaming complex float32 values to a MacBook Pro via a 10GBASE-

SR optical-fibre Ethernet-to-Thunderbolt adapter.

For each image-recovery demonstration shown, I made ten two-second recordings. I chose

two seconds because, in my experience, that duration was sufficient to provide reliable

scrambler synchronisation. Significantly shorter recordings resulted in insufficient data

for accurate parameter estimation, whereas processing much longer recordings would have

exceeded the RAM available in the computer I used for analysis. Scrambler synchronisa-

tion was accurate enough to align all resulting images across the ten recordings (based on

recording timestamps) and produce a single averaged output. All recovered images shown

are such averages, each computed from a total of 20 seconds of recorded emissions.

Recordings used for the image-recovery demonstrations were made in a meeting room

of a university building, without any measures to reduce interference from other nearby

devices. A photo of the setup (antenna and target system) can be seen in Figure 3.6.

It should be noted that in this demonstration, the cable was (not deliberately) oriented

perpendicular to the antenna, and that for a straight cable this receiver position max-

imises directional gain. In an anechoic environment, this directionality would significantly

impact the received signal power, which would be minimal if the cable is oriented in the

same direction as the antenna. In my experience, this difference is less pronounced in

indoor environments, where multipath propagation reduces the impact of directionality.

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 61

Figure 3.6: Measurement setup with 2.0 m distance between the tip of the eaves-

dropping antenna and the surface of the targeted display, connected via a 1.5 m

DisplayPort cable (white) and short miniDP adapter cable (black) to a laptop.

Changing cable orientation would visibly affect the noise level in the reconstructed im-

age, but not to the point where, for example, previously legible text would be rendered

unreadable.

The evaluation of the synchronisation algorithm was carried out in a hallway in the same

building, with the same receiver hardware except for the antenna, which was the Sinclair

SY307-SF6SNM Yagi-Uda antenna, and the centre frequency fc = 350 MHz.

3.5.2 Synchronisation

I evaluated the synchronisation accuracy of the algorithm from Section 3.3 for antenna

distances between 2 and 16 metres, for three video modes (1920 × 1200 @ 59.95 fps,

1920 × 1080 @ 60 fps, and 800 × 600 @ 60.3 fps). For each distance and video mode,

I made 50 two-second recordings, for each of which I estimated the scrambler timing

parameters θ, the mean-square error E(Xo|θ, a, b) after convergence of the EM algorithm,

and the most likely video mode (i.e. the mode that provided the initial R and P values

that led the EM algorithm to the lowest E(Xo|θ, a, b)) out of 32 candidate modes.

I considered synchronisation successful if
√

E(Xo|θ, a, b) < 2 samples, which is accurate

enough to reconstruct an image. I chose this threshold after observing the distribution of

errors: for almost all recordings, it was either under 2 or above 100 samples; there were

none between 2 and 20.

62 3.5. EXPERIMENTAL RESULTS

2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

Distance [m] (m)

S
u
cc
es
s
ra
te

1920× 1080

1920× 1200

800× 600

Figure 3.7: Fraction of recordings where synchronisation was successful (solid

lines) and where the mode was correctly identified (dashed lines), depending on the

antenna distance.

2 4 6 8 10 12
0.0

0.5

1.0

1.5

Distance [m] (m)

A
ve
ra
ge

er
ro
r
[s
am

p
le
s]

1920× 1080

1920× 1200

800× 600

Figure 3.8: Root-mean-square error
√

E(Xo|θ, a, b) averaged over recordings where

synchronisation was successful, depending on the antenna distance.

Figure 3.7 shows that up to eight metres away, the video mode was always correctly

identified, and synchronisation was successful in over 90% of cases. With the target

farther away, performance drops off quickly. This change happens at the distance where

the signal-to-noise ratio is not high enough to reliably detect correlations between the

signal and expected scrambler data, meaning that some entries in the obtained Xo are

not actual scrambler resets.

Figure 3.8 shows that averaged root-mean-square synchronisation error after successful

synchronisation does not increase with distance significantly. This shows that the main

limiting factor for synchronisation is the identification of offsetsXo at which the scrambler

resets. After that, added noise does not impact accuracy significantly.

Note that the best-case mean-square error depends on the target video mode. This is

because the reset model is based on the simplifying assumption that the delay R between

scrambler resets is constant. In practice, this assumption is violated in two ways. First,

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 63

Figure 3.9: Test image.

since the average padded line length np is not an integer, the total length of a 512-line

period can vary by one byte. Additionally, as described in Section 3.1.5, 512-line periods

whose first line is in the vertical blanking period start six bytes earlier than what the

DisplayPort standard specifies. Therefore, even with perfectly accurate Xo, this model

cannot achieve a zero error. The fraction of inter-reset periods that are one byte longer

depends on the video mode, which causes the average error to depend on the mode.

3.5.3 Test image

Figure 3.9 shows a test image to demonstrate the behaviour of this attack. It contains

mainly six colours: white background (#ffffff), dark gray foreground (#282828), black

(#000000), red (#ff0000), green (#00ff00) and blue (#0000ff), plus two gradient bars

(and some gray edge pixels in anti-aliased text).

Figure 3.10 shows a two-channel grayscale image reconstructed from emissions recorded

2 m from the display that shows Figure 3.9. The brightness of pixels in this output

is proportional to the difference ū2[i] − ū1[i] between the foreground and background

channels (silhouette mode). The gray areas on the left and bottom of Figure 3.10 are the

horizontal and vertical blanking periods, respectively, and the vertical stripes are the fill

bytes inserted as padding with each transfer unit.

In the reconstructed image, the 00 padding bytes appear more similar to the white back-

ground than the dark gray foreground, because the 00 bytes are a complement of the

64 3.5. EXPERIMENTAL RESULTS

Figure 3.10: Silhouette mode reconstructed test image from Figure 3.9, showing

the difference between the foreground (dark gray) and background (white) channels.

The image was not yet rescaled or processed to remove fill and blanking periods.

The image was reconstructed from 10 recordings, each 2 s long, made at 2 m antenna

distance.

0 32 64 96 128 160 192 224 256

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

c1 ⊕ c2

C
ro
ss
-c
or
re
la
ti
on

|Rc1,c2 |

Rc1,c2

Figure 3.11: Cross-correlation Rc1,c2 of scrambled and encoded data for two

constant-value streams with byte values c1 and c2, as a function of their exclusive-or

c1 ⊕ c2.

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 65

Table 3.3: Samples of reconstructed channels corresponding to each colour in the

test image (rows), showing the output for each coloured square (columns).

Channel Colour in displayed image

#FFFFFF #282828 #000000 #FF0000 #00FF00 #0000FF

ff bytes of the background, and therefore the respective scrambled byte sequences will

also be complements. As explained in Section 3.1.4, inverting a byte often also inverts

the corresponding 10-bit symbol. Therefore, the bitstreams transmitted for a byte and

its complement are negatively correlated, which results in similar output because we look

only at the absolute value of the correlation.

Similarly, the bitstreams corresponding to colours that match or complement each other

in either encoder block (5-bit or 3-bit) will be correlated, as can be seen in Figure 3.11. As

a result, a byte value and its complement are the most difficult pair of values to distinguish

from the magnitude of the correlation.

Table 3.3 shows in six rows the six channels ū1, . . . , ū6 corresponding to the six main

colours used in the test image, and shows in six columns the respective section of the

test image that contains that colour. This demonstrates a limitation of this attack:

it is not able to distinguish pure red, green, and blue areas from each other, because

the corresponding pixel values are cyclic shifts of the same three-byte sequence. (This

limitation does not apply to colour combinations where the corresponding RGB byte

sequences are not exact cyclic shifts of each other, as we will see later in Section 3.5.5.)

This limitation exists because the templates I build are not always aligned with the same

colour component (red, green, or blue) in the datastream. If the datastream only contained

pixel data, a template corresponding to the byte sequence ff 00 00 ff 00 00 . . . would

always match one of the three colours, with ff always aligned with the same component.

However, since the blanking periods and fill regions are not an integer number of pixels

long (i.e. their lengths in bytes are not divisible by 3), such a template can match one

66 3.5. EXPERIMENTAL RESULTS

(a) Original displayed image:

0 100 200 300 400 500 600
0

50

100

150

(b) Reconstructed from 2 m antenna distance:

0 100 200 300 400 500 600
0

50

100

150

(c) Reconstructed from 5 m antenna distance:

0 100 200 300 400 500 600
0

50

100

150

Figure 3.12: Cropped original and silhouette mode reconstructed images, showing

the channel difference ū2[i] − ū1[i] between the foreground (gray) and background

(white) channels. Channel scores were periodically averaged over 10 recordings, each

2 s long.

colour before a fill region, but another afterwards.

A more accurate model of the scrambler resets is necessary to avoid this issue. When

constructing the templates, one would have to incorporate the predicted positions of the

fill regions to calculate which byte corresponds to which component. Both accurate reset

tracking and fill-aware templates will be discussed in Chapter 4.

3.5.4 Slideshow

As a more realistic scenario, I tested the attack with the monitor showing a fullscreen

Google Slides presentation, with the default theme and settings. A cropped sample of the

slide used is shown in Figure 3.12(a).

The slide mainly uses three colours: white (#ffffff) background, black (#000000) title

text and gray (#595959) body text. Due to anti-aliasing, some other colours also appear

at character edges.

CHAPTER 3. BASIC IMAGE RECONSTRUCTION 67

0 200 400 600 800 1,000 1,200 1,400 1,600

(d)
(c)
(b)
(a)

Figure 3.13: Displayed Google Slides text (a), background (b) and foreground (c)

channels reconstructed from emissions recorded at a distance of 2 m, and the final

channel-difference image (d).

Cropped samples of the reconstructed images, using emissions recorded at 2 m and 5 m

distance, are shown in Figures 3.12(b) and 3.12(c). I rescaled the image horizontally by

a factor 4:3 (4 lanes, 3 bytes per pixel) to match the monitor’s aspect ratio, and removed

columns containing fill bytes. Since the sliding-window width w contains fill bytes when

centred on an image byte near a fill region, narrow vertical stripes are still present in the

output.

Figure 3.13 shows another zoomed-in line of slide text, the foreground and background

channels computed from emissions captured 2 m away from the monitor, and the recon-

structed image. Due to antialiasing, only a small number of consecutive gray pixels with

the foreground colour appear in the displayed image. Because of this, the reconstructed

foreground channel contains little information about the text other than horizontal lines,

such as in those in “T” and “e”. The antialiased text, however, is still readable in the

background channel, which lets the eavesdropper distinguish the background from all

other pixel colours.

3.5.5 Colours

To demonstrate that the attack is capable of distinguishing more than just a single colour

pair, I use the sixteen-colour test image shown in Figure 3.14, which features characters

from the Noto Emoji font. I suppressed antialiasing to ensure that the image contains

exactly sixteen different colours. As described in Section 3.4, I produce a multi-coloured

output image by colouring each pixel according to the channel argmaxk ūk with the highest

score at that position. The raw reconstructed image, without rescaling or removing fill

regions, is shown in Figure 3.15.

Large single-colour areas are reconstructed correctly, with only occasional errors. Most

misclassified pixels are near boundaries between colours or adjacent to fill regions, where

the sliding window used to compute correlations covers different-coloured pixels.

Figure 3.16 shows the same reconstruction with fill byte regions removed and the rest of

the image rescaled accordingly. Narrow vertical stripes remain at image pixels where the

correlation window partially overlaps fill regions.

68 3.5. EXPERIMENTAL RESULTS

0 200 400 600 800 1,000 1,200 1,400
0

100

200

300

Figure 3.14: Sixteen-colour test image.

0 200 400 600 800 1,000 1,200 1,400 1,600
0

100

200

300

400

Figure 3.15: Image from Figure 3.14 reconstructed from 2 m antenna distance,

with pixel colours chosen using voting mode, before post-processing.

0 200 400 600 800 1,000 1,200 1,400
0

100

200

300

Figure 3.16: Image from Figure 3.14 reconstructed from 2 m antenna distance,

after removing fill regions and rescaling horizontally to match the original aspect

ratio.

Chapter 4

Accurate scrambler tracking for

colour enumeration

4.1 Introduction

In the previous chapter, I demonstrated that an eavesdropper can reconstruct the im-

age shown on a monitor from several metres away, by exploiting electromagnetic emis-

sions which are unintentionally radiated from a DisplayPort cable carrying the image.

I described a synchronisation algorithm that identifies times at which the DisplayPort

scrambler is in its initial state, allowing the eavesdropper to synthesise a local replica

of the scrambler byte sequence. I then assumed that the eavesdropper is interested in a

small set of colours that they know are present in the image (e.g. common slideshow or

document theme colours, or those used in specialised software such as the user interface

of a voting machine). For each colour, my second algorithm creates a template of the

expected emitted signal, based on the scrambler replica, and reconstructs the image from

short-term correlations between the templates and the received signal.

In this chapter, I will extend these two algorithms to address their shortcomings. First,

I describe a synchronisation algorithm that uses a tracking loop to significantly reduce

the synchronisation error. I then introduce an efficient algorithm for colour enumeration,

which allows the eavesdropper to express template correlations for all 224 RGB colours

using only 61 dot products, and from these efficiently extract a set of most likely colours

for an image region.

The previous synchronisation algorithm describes scrambler timing with three parameters:

a reset period R between consecutive “scrambler reset” symbols, which are inserted every

512 lines, an overflow period P corresponding to the 216−1 byte period of the scrambling

sequence, and a time offset x0. I demonstrated that this simple model cannot fully describe

the reset times, i.e. that its error (difference between observed and predicted reset times)

will be non-zero even if the input is completely accurate. For low-noise recordings, the

69

70 4.1. INTRODUCTION

average error was between 0.5 and 1.7 samples, or between 1.6 and 5.4 transmitted bytes,

depending on the target display video mode. This error cannot be eliminated by improving

the signal-to-noise ratio or with better algorithms using the same reset model, since it

is caused by a simplifying assumption that the reset period R is constant. In practice,

the length of a video line in a DisplayPort data stream can vary by a byte, due to what

we might call leap bytes, which are inserted at the end of some lines to meet the target

average padded length. Since the number of such leap bytes will not be the same in every

512-line interval between scrambler resets, the reset period varies.

The second source of inaccuracy is the assumption that the bitrate of the DisplayPort

link is exactly equal to the nominal 1.62 GHz specified by the standard. Due to clock

inaccuracy (caused both by manufacturing tolerance and thermal drift), this means that

the local scrambler replica’s timing slowly drifts out of sync with the actual scrambler.

Frequent resynchronisations after each overflow period P limit the impact of this drift on

the previous algorithm, since the error only accumulates within a single period, but the

total timing error for a scrambler byte in the middle of the stream is still greater than

the reset model’s error.

The first algorithm presented in this chapter addresses the latter by treating the bitrate as

time-variable. The algorithm maintains an estimate of the bitrate fb(t) by measuring the

offset between tracked and real scrambler positions every line and updating the estimate

using a tracking loop. I do not try to eliminate the error in scrambler reset times, and

still use the same algorithm that assumes a constant period R. Leap bytes therefore still

contribute to the synchronisation error, but the tracking loop brings the error back close to

zero quickly. I chose this approach because the DisplayPort standard does not fully specify

how the data is padded, and in my reverse engineering attempts, while I determined how

fill bytes are inserted (Algorithm 1), I did not yet manage to fully deterministically model

the algorithm determining which lines contain an additional leap byte. Additionally, since

the padding details are implementation-defined, a model relying on a reverse-engineered

leap byte algorithm might only be applicable to the specific video display controller I

analysed.

Section 4.2 describes the architecture of a scrambler tracking delay-locked loop based on a

proportional-integral-derivative (PID) controller, and two discriminators I use to measure

the tracking error: a slow search for a cross-correlation maximum, used during acquisition

(before the controller locks on, i.e. while the error is still large), and a fast estimate similar

to the early power minus late power discriminator used in GPS receivers [73]. I also de-

scribe an efficient implementation of arbitrary-offset sampling used by the discriminators.

Next, Section 4.3 describes the properties of the 8b/10b encoder used in DisplayPort which

allow me to significantly reduce the computational cost of correlating the received signal

with templates for all 224 RGB colours. I describe an algorithm that takes advantage

of these properties to express the correlation between the received signal and a colour

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 71

template as a sum of seven correlations with sub-templates, and only requires 61 such

sub-template correlations which fully describe the result for all 224 colours. Using this

optimisation, my algorithm can return a sorted list of the 1000 highest-correlation colours

for an image line in 4 ms.

4.2 Scrambler code phase tracking

To reconstruct image information from a signal s[i] containing DisplayPort emissions,

the eavesdropper needs to construct a local replica of the scrambler, phase-aligned with

the received signal. This is similar to the code tracking portion of a GPS receiver [74],

which aligns the received signal with a replica of the pseudorandom code transmitted by

a satellite.

We can represent this alignment as an array is[i] of scrambler byte positions (i.e. code

phase) corresponding to each signal sample, meaning that at the time when sample s[i]

was taken, the DisplayPort LFSR produced the is[i]-th byte of the (periodic) scrambling

sequence. As the sample can be taken between two bytes, these positions are real-valued.

The synchronisation algorithm presented in this chapter builds upon the reset model

described in Chapter 3. I first search for a subset of times at which the scrambler resets

or overflows, and from these predict a set of reset times X. Our previous scrambler

alignment algorithm would then assume that the DisplayPort bitrate is constant and

equal to the nominal fb = 1.62 GHz (or, depending on the video mode, a higher bitrate

from the DisplayPort standard). The scrambler positions would then be

is[i] =

0, if i ∈ X

is[i− 1] + fb/(10fs), otherwise
(4.1)

The factor 10 here converts from bit positions to byte positions, since each 8b/10b-encoded

byte is 10 bits long. Note that for simplicity, this equation assumes that all resets in X

happen at integer sample positions.

Assuming that the bitrate is exactly fb limits the accuracy that can be achieved by this

model. In practice, the bitrate is not exactly equal to the nominal rate, since the oscillator

that clocks the DisplayPort signal is not perfectly accurate. The maximum in-spec differ-

ence between the nominal and actual frequency is stated by the oscillator manufacturer

as its frequency tolerance. The frequency will also vary over time, mainly due to changes

in temperature, changes in crystal structure, and ageing, up to the oscillator’s frequency

stability. For common crystal oscillators, both frequency tolerance and frequency stability

are in the 0–50 ppm (parts per million) range.

The clock rate of the SDR receiver, and therefore also the sampling rate fs, can similarly

vary due to oscillator frequency error. For the USRP X300 I used, the specified reference

72 4.2. SCRAMBLER CODE PHASE TRACKING

0 2000 4000 6000
−6

−4

−2

0

2

4

6

512

Line number

C
o
d
e
tr
a
ck
in
g
er
ro
r
e s
[n
]
[b
y
te
s]

4600 4700 4800 4900 5000 5100 5200 5300
0

1

2

3

Figure 4.1: Scrambler tracking error when only using the reset model (Equa-

tion 4.1), measured once per line as the position of the cross-correlation maximum

es[i], for a recording made at 2 m antenna distance.

clock accuracy is 2.5 ppm [75]. The algorithms described in this thesis only use the ratio

fb/fs, rather than the individual values, and I will consider fs to be exact and absorb any

errors into the tracked bitrate fb(t).

We can roughly estimate the actual bitrate from the reset model’s overflow period P .

The scrambler overflows every 216 − 1 bytes, meaning that P = (216 − 1) fb
10fs

. In my

experiments, after all devices warmed up for a few minutes to minimise thermal drift, the

bitrate estimate computed from P differed from the nominal value by around 30 ppm.

Due to the mismatch between the nominal and real bitrate, the estimated scrambler

position is[i] will drift over time from the actual position. Resetting the scrambler replica

(at times in X), also resets the accumulated position drift, which keeps the maximal code

phase error due to bitrate mismatch bounded. This happens every 216 − 1 bytes, or P

samples, at the overflow period of the LFSR. Assuming that the relative frequency error

is δf = 30 ppm (i.e. the real bitrate is (1 + δf)fb), the accumulated code phase error over

that time period will be

δf · (216 − 1) ≈ 1.97 bytes. (4.2)

Figure 4.1 shows a plot of the code phase error of the output of this algorithm (Equa-

tion 4.1), measured in the horizontal blanking region of each line using an approach de-

scribed later in Section 4.2.2. The short “zig-zag” period is the scrambler overflow period

P , after which the accumulated error is eliminated by resetting the scrambler position to

zero, as predicted by the reset model. Every 512 lines, when the scrambler is reset, there

is another change in the error due to the total length of the lines not being constant. The

total number of bytes may differ by one between reset periods, since the number of lines

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 73

containing more fill bytes than average may vary by one in a 512-line period. Therefore,

the total number of bytes between consecutive scrambler resets is either slightly lower

than the average period R computed by the reset model (resulting in increased error), or

slightly higher (decreased error).

In the 512-line period from line 3171 to line 3682, the code phase error is shifted by six

bytes compared to the rest of the recording. I believe that this is due to a bug in the

display controller described in Section 3.1.5: in the vertical blanking region, blanking

start symbols are inserted six bytes earlier than they would be in displayed image lines.

Scrambler alignment only using a reset model is insufficient for byte-level alignment, but

still tolerable for image reconstruction: since s[i] is band-limited, the expected autocor-

relation of received emissions is still non-zero with a two-byte lag. Additionally, the

1.97 sample drift between resets estimated in Equation 4.2 is an upper bound, and the ac-

tual drift will be lower for samples that are well before an overflow period. More complex

image reconstruction algorithms that make use of the exact position of fill and blanking

regions, such as the colour enumeration algorithm in Section 4.3, however, benefit from

more accurate synchronisation.

In the rest of this section, I present an algorithm that aligns the scrambler with s[i]

more accurately than the simple nominal-frequency model. I start with a short high-level

overview, and then discuss the details of code phase discriminators, the tracking loop used

to estimate the bitrate, and my approach for choosing its controller parameters.

4.2.1 Overview

The tracking algorithm is based on a delay-locked loop, which maintains an estimate fb[i]

of the bitrate. This loop consists of two components: an estimator for the difference

between the output position is[i] and the true scrambler position (i.e. code phase error),

and a PID controller which updates the bitrate based on this error. This update is made

once per line, in the horizontal blanking region, since I use the known zero bytes in the

blanking region to measure the error.

The scrambler positions are then calculated similarly to Equation 4.2:

is[i] =

0, if i ∈ X

is[i− 1] + 10fb[i]/fs, otherwise.
(4.3)

Figure 4.2 illustrates the main signal processing components of the tracking algorithm.

4.2.2 Discriminators

The algorithm uses two phase discriminators to estimate the code phase error e[i], both of

which are based on the cross-correlation between s[i] and templates for the expected signal

74 4.2. SCRAMBLER CODE PHASE TRACKING

Figure 4.2: Overview of the scrambler tracking algorithm.

in the blanking region. The first, es, searches for the scrambler position near is[i] that

maximises that cross-correlation. This search is slow, but it computes the offset directly

and is correct for large offsets, which makes it suitable in the acquisition phase, where

the tracking loop is not yet tracking the scrambler closely. The second discriminator, ef ,

is an early power minus late power discriminator, similar to that used in a noncoherent

GPS delay-locked loop. This is significantly cheaper to compute, since the discriminator

only evaluates the cross-correlation at four offsets, but it is only a reliable estimate if the

code phase error is low (in the tracking phase).

The algorithm starts in acquisition mode, where e[i] := es[i], and stays there for the

first 200 lines to give the tracking loop time to lock onto the scrambler. Afterwards, it

switches to tracking mode, where e[i] := ef [i], to reduce computational load. Every 512

lines, when the scrambler resets, the offset between the received signal and our scrambler

replica increases if scrambler reset byte is not exactly at the position in X predicted by

the reset model. At these resets, the algorithm briefly switches back to acquisition mode

for ten lines to give the tracking loop time to bring the error down to the range where

ef-based tracking can work.

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 75

The templates used by the discriminators are the expected emissions from a scrambled,

8b/10b encoded DisplayPort data stream containing only zero bytes, as it would be re-

ceived by the eavesdropper (i.e. downconverted and lowpass filtered by an antialiasing

filter) during a blanking period. Because the 8b/10b encoder has one bit of internal

state, the running disparity, the emissions in a blanking region will match one of the two

templates: z+(i), with positive initial running disparity, and z−(i), with negative initial

disparity.

I treat the templates as continuous functions that map a real-valued scrambler byte posi-

tion i to z+(i) and z−(i), the downsampled and filtered signals sampled at time i/(fb/10).

I will discuss the details of template construction and an efficient implementation of such

arbitrary-offset sampling later in Section 4.2.6.

Let nb be the length of the horizontal blanking region in samples, computed from the

sampling rate fs and the target display’s video mode displayed width wd, full width

(including the blanking region) wt, and pixel rate fp. The value is rounded to the nearest

sample, since we will use it as the length of the correlation window:

nb =

⌊

(wt − wd)fs
fp

+ 0.5

⌋

. (4.4)

Both discriminators are based on cross-correlations R+(i, δ) and R−(i, δ) between s[i]

and the templates, starting at signal sample i and the corresponding scrambler position

is[i] + δ. They are computed over the length of the blanking region (i.e. from the current

index i to i+ nb − 1):

R+(i, δ) =
∑

0≤d<nb

s[i+ d]z+(is[i] + 10dfb/fs + 10δ)∗ (4.5)

with R− defined analogously as cross-correlation with z−. Figure 4.3 shows the expected

shape of R+ and R−, and parameters used for the discriminators.

For both discriminators, I first evaluate R+(i, 0) and R−(i, 0), at the zero offset, to select

the template best matching the current encoder running disparity. For the rest of this

section, I will assume (without loss of generality) that |R+(i, 0)| > |R−(i, 0)|, and therefore

that the encoder state matches z+; if |R+(i, 0)| < |R−(i, 0)|, the only change is in the

choice of template.

The slow discriminator es then simply samples the cross-correlation at a range of offsets

δ ∈ D and computes the phase offset as the position of the maximum. The offsets in D

range from −6 to 6, with dense sampling near zero in steps of 0.025, and coarser steps

farther away.

es[i] = argmax
δ∈D

|R+(i, δ)| (4.6)

The fast discriminator ef is an early power minus late power discriminator. It computes

the difference between the squared magnitude of outputs of an early and a late correlator,

76 4.2. SCRAMBLER CODE PHASE TRACKING

−5.0 −2.5 0.0 2.5 5.0

0.00

0.25

0.50

0.75

1.00 max
prompt

early

late

∆ ∆
ε

Offset [scrambler bytes]

N
o
rm

a
li
ze
d
co
rr
el
a
to
r
o
u
tp
u
t

Matching RD

Opposite RD

Figure 4.3: Expected correlation R+(i, δ) and R−(i, δ), for varying offset δ, showing

points of interest for the code phase discriminators.

which are positioned at is[i] ±∆. The difference is normalised by the prompt power (at

the zero offset) to reduce dependence on signal power.

ef [i] =
|R+(i,−∆)|2 − |R+(i,∆)|2

|R+(i, 0)|2 (4.7)

The discriminator output is only meaningful if at least one of the correlators is on the

main slope of the correlation shown in Figure 4.3. If the current code phase error is small,

and so the early and late correlator are on opposite sides of the slope near the peak, it is

well-estimated by the discriminator. As this error increases, the sign of ef [i] stays correct

until both correlators are no longer on the slope, but the magnitude is no longer accurate.

Choosing a large value of ∆ would make the discriminator more robust, but would also

make it a worse estimate of the true code phase error, since the approximation ef [i] ≈ es[i]

is closer for small values of ∆. I set ∆ = 1.5 bytes, for which, as shown in Figure 4.4, the

discriminator is linear if the error is under 0.5 bytes for the receiver bandwidth I used.

4.2.3 Tracking loop

The tracking controller is updated every line, in the horizontal blanking region. We can

compute the positions in the signal s[i] at which the blanking region begins from the reset

model. Since the scrambler resets at the beginning of a blanking region, one blanking

region begins at x0. The reset period is 512 lines, and so the average length of a line

is np = R/512, and the line rate fh = fs/np = 512fs/R. Updates, therefore, happen at

indices i ∈ B, where

B = {⌊x0 + knp + 0.5⌋ : k ∈ Z} (4.8)

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 77

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Code phase error [scrambler bytes]

E
a
rl
y
/
la
te

d
is
cr
im

in
a
to
r
o
u
tp
u
t

Figure 4.4: Plot of early power minus late power discriminator output as the

function of the true code phase offset. Dotted line y = x added as a guideline.

Between updates, the tracked bitrate fb[i] stays constant.

Let i ∈ B be the current index in s[i], and k the corresponding line number. The input to

the PID controller is an exponential moving average ē[k] of the code phase error estimate

e[i], with α = 0.8:

ē[k] = αē[k − 1] + (1− α)e[i] (4.9)

The averaging is done to reduce the impact of outliers due to noise or large values e[i], so

that the controller adjusts fb[i] gradually instead of a large change in a single update.

The smoothed offset is then used as the input to a PID controller with coefficients

(KP, KI, KD), which outputs a frequency correction ∆fb[i]: the difference between the

nominal bitrate and the current estimate. A typical continuous-time PID controller would

compute the correction as

∆fb(t) = KPē(t) +KI

∫

t′≤t

ē(t′)dt+KD
dē(t)

dt
(4.10)

which I discretise as

∆fb[k] = KPē[k] +KIf
−1
h

∑

m≤k

ē[m] +KDfh(ē[k]− ē[k − 1]) (4.11)

by approximating the integral as a sum of samples multiplied by the controller update

period f−1
h , corresponding to the video line rate fh, and the derivative as a similarly scaled

difference.

The output of the tracking loop is then simply fb[i] = fb +∆fb[k].

78 4.2. SCRAMBLER CODE PHASE TRACKING

4.2.4 Parameter choice

I chose the PID controller parameters using a “black-box optimiser” provided by the

BlackBoxOptim.jl Julia package [76], which uses an adaptive differential evolution opti-

miser. I made ten recordings of DisplayPort emissions at a short distance, approximately

1 m, with the screen showing a single-colour image for a randomly chosen colour. The

goal function minimised by the optimiser was the average of |ef [i]| over the first three

frames in each of the recordings, with 10% of the largest and smallest values removed to

ignore the lines in which the controller did not yet lock onto the scrambler.

The optimiser was used to find the sampling rate dependent values (KP, KIf
−1
h , KDfh)

from Equation 4.11. The search range for all three values was [0, 2 MHz/byte], chosen to

be a few times larger than the highest values that for which tracking was successful in my

initial (manual) tuning experiments.

The optimiser converged after 43 steps (≈ 2.5 hours on a single Intel i5-6300U core). The

best-performing coefficients found were

(KP, KIf
−1
h , KDfh) = (446.2, 46.6, 584.9) kHz/byte. (4.12)

The corresponding rate-independent coefficients, substituting fh = 37.88 kHz, are

(KP, KI, KD) = (446.2 kHz/byte, 1767 kHz2/byte, 15.44 byte−1). (4.13)

While these parameters were optimised using only short-distance recordings, scrambler

tracking in later experiments was also successful at longer distances. As we will see below,

they result in a wide loop bandwidth, and therefore fast settling time after scrambler

resets.

To calculate the loop bandwidth, let is[k] be the DLL-tracked code phase at line k, and

ir[k] the true code phase of the incoming signal. After the loop locks onto the signal and

is[k]− ir[k] is small, we can approximate the discriminator output as a true measurement

of the phase error:

e[k] = ir[k]− is[k]. (4.14)

LetX(z), Y (z), and E(z) be the z-transforms of ir[k], is[k], and e[k] respectively, and G(z)

the z-transform of the open-loop transfer function of the DLL, where Y (z) = G(z)E(z)

(i.e. G(z) jointly describes the lowpass filter, PID controller, and integrator). The corre-

sponding closed-loop transfer function H(z) is then

H(z) =
Y (z)

X(z)
=

G(z)

1 +G(z)
. (4.15)

We can write G(z) = G1(z)G2(z)G3(z) as the product of transfer functions for each of

the three stages: the lowpass filter

G1(z) =
1− α

1− αz−1
, (4.16)

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 79

the PID controller

G2(z) = KP +KIf
−1
h

1

1− z−1
+KDfh(1− z−1), (4.17)

and the integrator which computes the current code phase (note that here we also treat

is[k] as sampled at the line rate)

G3(z) =
1

10
f−1
h

z−1

1− z−1
(4.18)

where the 1/10 factor converts from the tracked bitrate to bytes, since discriminators

measure the phase error in bytes.

Substituting all into Equation 4.15 lets us compute H(z), and from it the 3 dB loop

bandwidth f3 dB by numerically solving

∣

∣H(e2πf3 dB/fh)
∣

∣ =
1√
2

(4.19)

which results in f3 dB ≈ 6.45 kHz, i.e. approximately 17% of the line rate (and therefore

the controller update rate), or 4 · 10−6 · fb in terms of the DisplayPort bitrate.

This wide loop bandwidth results in a short impulse response, at the cost of relatively little

phase noise attenuation. A short impulse response is desirable for scrambler tracking, as

it ensures that the loop settles quickly after phase jumps happening at scrambler resets.

4.2.5 Performance

Figure 4.5 shows the tracking error, measured using es, at the end of each line of a sample

recording made at 2 m antenna distance. The recording is the same as the one used in

the no-tracking Figure 4.1, which is also shown in the plot.

Table 4.1 shows the mean and standard deviation of the absolute value of tracking error

|es[i]|, averaged over five recordings in the colour enumeration dataset (Section 4.4.3) for

each antenna distance.

Table 4.1: Code tracking error (measured as |es[i]|) mean and standard deviation,

averaged over five recordings for each antenna distance.

Distance Mean (bytes) Standard deviation (bytes)

2 m 0.176 0.1646

3 m 0.178 0.1564

4 m 0.224 0.2032

80 4.2. SCRAMBLER CODE PHASE TRACKING

0 500 1000 1500
−2

−1

0

1

2

3

4

Line number

C
o
d
e
tr
a
ck
in
g
er
ro
r
e s
[n
]
[b
y
te
s]

tracking

no tracking

Figure 4.5: Code tracking error of PID-based scrambler tracking output, compared

to alignment only using a reset model. The offset is measured as es[i] once per line,

for a recording made at 2 m antenna distance.

4.2.6 Implementation

The code phase discriminators require us to be able to efficiently sample templates z+(i)

and z−(i) at arbitrary real-valued indices i. I will first show how z+(i) is constructed

(z−(i) is identical, up to the initial running disparity), and then describe an efficient

implementation using the Farrow filter structure, which is further detailed in Appendix B.

The template z+(i) contains the IQ-downconverted emissions resulting from a scrambled,

8b/10b-encoded DisplayPort lane transferring only zero-valued bytes. Since the template

should match the output of our software-defined radio receiver, the emissions are down-

converted by the tuning frequency fc and lowpass filtered with cutoff frequency B/2,

where B is the bandwidth of the SDR anti-aliasing filter.

Let ξ[n] ∈ {−1, 1} be the array of scrambler bits transmitted over the targeted DisplayPort

lane if the data is zero-valued, computed by 8b/10b encoding the scrambler output. We

can model the emissions as a sampled signal with rate fb, and values s1[n] = ξ[n].

After downconverting, we have:

s2[n] = s1[n]e
−2πjnfc/fb (4.20)

We can reconstruct the continuous-time emissions by sinc interpolating s2[n]. If we scale

the sinc kernel width by (B/2)/fb, the interpolation can also serve as the antialiasing

lowpass filter (constant factors ignored for simplicity):

z+(i) =
∑

n

s2[n] sinc

(

i− n(B/2fb)−1

(B/2fb)−1

)

=
∑

n

s2[n] sinc (iB/2fb − n). (4.21)

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 81

Directly computing z+(i) using sinc interpolation would require recomputing and convolv-

ing with the sinc kernel for every desired fractional offset i. I instead use a Farrow filter,

which is an efficient implementation of sinc interpolation and arbitrary-offset sampling

further described in Appendix B. It is enough to construct the filter for a single period of

the scrambler, instead of interpolating it over the entire length of the input recording.

The scrambler output ξ[n] is periodic with period T = 10 · (216 − 1), i.e. ξ[n+ T] = ξ[n].

After downconversion, the sampled template s2[n] is almost periodic, up to a constant

phase shift each period:

s2[n+ T] = e−2πjTfc/fbs2[n] (4.22)

Substituting into Equation 4.21, we can see that the same holds for the interpolated

template:

z+(i+ T) = e−2πjTfc/fbz+(i) (4.23)

We can therefore use the Farrow filter to compute z+(i) for 0 ≤ i < T , constructed from

s2[n] in that range (and sufficient samples to the left and right for the sinc kernel). For

other positions i + kT , we can use the Farrow filter output with the appropriate phase

correction:

z+(i+ kT) = ∆φ[k]z+(i) (4.24)

where ∆φ[k] = e−2πjkTfc/fb is a precomputed table of corrections.

4.3 Colour enumeration

In this section, I describe an algorithm for efficient colour enumeration for DisplayPort

eavesdropping. The core of the algorithm is an efficient representation of templates (i.e.

expected signals) for each colour as a linear combination of sub-templates, such that only

a small number of sub-templates is needed.

I use the algorithm to search for the likely background colour of the target image, since my

previous experiments showed that due to antialiasing, the text information an eavesdrop-

per would likely be interested in is almost entirely contained in the background channel,

in which the text shows up as a negative. After identifying the background colour, the

image can be reconstructed using the same methods I previously demonstrated, possibly

aided by the tracking loop.

I start this section with an overview of the relevant properties of the 8b/10b encoder,

and then describe how they lead to the sub-template representation and how I prune

sub-template combinations to efficiently compute a list of likely colours.

82 4.3. COLOUR ENUMERATION

4.3.1 8b/10b encoding

Before transmission, DisplayPort pixel values are scrambled and then encoded using an

8b/10b encoder. The encoder can be thought of as two separate sub-encoders: 5b/6b,

which uses the five low bits in the input byte and outputs six bits, and 3b/4b, which uses

the three high bits and outputs four bits. The encoder has a single bit of state, shared

between the sub-encoders: the running disparity, which is positive if the output so far

contains more ones than zeroes, and negative otherwise.

For both sub-encoders, an input value can either have a single balanced encoding, with the

same number of zeroes and ones, or two alternate unbalanced encodings, chosen depending

on the running disparity to maintain balance in the output.

Due to the running disparity, changing a byte can affect not only the corresponding

output symbol, but also later output. For example, consider a stream of pixels, all with

the same colour (r, g, b). If one of the channel values is changed, for example r, the parts

of the byte stream corresponding to the other two channels can change as well: a change

in the running disparity (e.g. if a balanced symbol is replaced with an unbalanced one)

can propagate to the other channels and change the selected encoding for an unbalanced

sub-symbol.

Therefore, because of unbalanced symbols, the encoded output cannot be described as

three interleaved symbol streams, one for each channel, which are encoded independently.

Since my optimisations rely on splitting the output into independently encoded sub-

templates, I will restrict the templates to only use balanced symbols. Due to scrambling,

template bytes can be treated as independently chosen random values, and so they will

include the same expected number of bits belonging to balanced symbols: ≈ 54% of the

output.

Let us define a balanced 8b/10b encoding as an analogue of the 8b/10b encoder, which

behaves the same way for balanced sub-symbols, and outputs “nothing” for unbalanced

sub-symbols. I will represent the output as a series of three-valued symbols in {−1, 0, 1},
where −1 and 1 correspond to zeroes and ones in the balanced output, and 0 to “nothing”,

meaning that the output is unbalanced and thus depends on the running disparity. Let

the encoding function be

e : Z28 ∪ {∅} → {−1, 0, 1}10 (4.25)

where we will write the output tuple from least to most significant bit, and ∅ is used

to denote a “don’t care” input symbol that should be not included in the output and is

encoded as e(∅) = (0, 0, . . . , 0). This is equal to the expected value of e(b) averaged over

a uniformly distributed b ∈ Z28 .

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 83

Data-independence property

As already discussed, the balanced encodings do not depend on the running disparity.

Therefore, the balanced encoding of any byte in the data stream only depends on that

specific byte, and is unaffected by other surrounding values.

This means, for example, that the balanced encoding of a stream corresponding to a colour

(r, g, b) can be thought of as separately applying the balanced encoding to the streams

for r, g, and b, with the remaining two channels set to “nothing” in each, and taking the

sum of the results.

Sub-block independence property

Since the running disparity only affects sub-blocks with unbalanced encodings, which are

ignored in e, the encoding function can be written as a concatenation of two sub-encoders:

a 5b/6b encoder that outputs the six low bits, and a 4b/6b encoder outputs the four high

bits. Let us label these sub-encoders e5 : Z25 → {−1, 0, 1}6 and e3 : Z23 → {−1, 0, 1}4:

e(b) = e3(
⌊

b/25
⌋

)||e5(b mod 25). (4.26)

Complementation property

In both of the sub-encoder tables, if an input x is encoded as a balanced sub-symbol y,

the complement of x will be encoded as the complement of y. Since we represent output

bits as −1 and 1, this can be formally stated as

e5(b⊕ 0x1f) = −e5(b) (4.27)

e3(b⊕ 0x07) = −e3(b) (4.28)

The equations above hold even if the encoding of b is unbalanced, since 0 = −0.

4.3.2 Template construction

A template for a balanced 8b/10b encoded bit stream b[n] is an array of complex-valued

samples describing the signal that the eavesdropper would receive from DisplayPort emis-

sions of a cable transferring the bits b[n]. Let fc be the centre frequency the eavesdropper’s

receiver is tuned to, fs the sampling rate, and B the receiver bandwidth.

In the receiving band, we can model the received signal s(b)[i] as a sinc interpolation

of b[n] (which is a sampled signal with rate fb), assuming that the frequency response

of the entire system (transmitter, propagation medium, and receiver) is flat over the

frequency range [fc − B/2, fc + B/2]. The received signal z(b)[i] can be obtained by

84 4.3. COLOUR ENUMERATION

modelling the function of the software-defined radio receiver, as in Section 3.3.1. The

receiver downconverts the signal s(b)[i] by −fc, filters it with a lowpass antialiasing filter

which has a cutoff frequency B/2, and samples the result at rate fs.

Since both downconversion and resampling are linear, their composition, the template

construction function z(b), is also linear. In other words, if a bitstream b[n] is represented

as a sum of m terms b1[n], b2[n], . . . , bm[n] such that b[n] = b1[n] + b2[n] + · · ·+ bm[n], the

corresponding template can be computed by separately constructing templates for the

individual terms:

z(b)[n] = z(b1)[n] + z(b2)[n] + · · ·+ z(bk)[n] (4.29)

While template construction is linear for any input, the algorithms in this chapter use

only non-overlapping sub-bitstreams, such that for any n at most one of bk[n] is non-zero

(i.e. each bit is assigned to exactly one bk).

4.3.3 Sub-templates

Before scrambling, the bytes in a DisplayPort stream can be classified into five categories:

three colour channels (red, green, and blue), zero-valued fill bytes in fill and blanking

regions, and control symbols (fill start, fill end, etc.). A template containing expected

emissions for a region filled by a single colour can be described by a colour triple (r, g, b)

and the scrambler position is at the beginning of the template.

Since we only reset the scrambler position at scrambler reset symbols, which are always

the first byte of a horizontal blanking region, the scrambler position provides enough

information to predict the location of fill regions. Let t[n] be the array of predicted byte

types, where t[n] ∈ {r, g, b, f, c} is the type of the n-th byte in the template: red, green,

blue, fill, and control, respectively. If we label the scrambling byte sequence Ξ[n], the byte

stream used for template construction, after scrambling and before 8b/10b encoding, is

brgb[n] =

r ⊕ Ξ[is + n], if t[n] = r

g ⊕ Ξ[is + n], if t[n] = g

b⊕ Ξ[is + n], if t[n] = b

Ξ[is + n], if t[n] = f

∅, if t[n] = c

(4.30)

The byte stream does not include control symbols, since all control symbols have un-

balanced encodings. And as described above, the templates I use only include balanced

encoded symbols.

Using the data-independence property of our balanced encoding, we can split brgb[n] into

three colour terms br[n], bg[n] and bb[n], and a fourth term containing fill bytes bf [n]:

e(brgb[n]) = e(br[n]) + e(bg[n]) + e(bb[n]) + e(bf [n]) (4.31)

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 85

where the red term is

br[n] =

r ⊕ Ξ[is + n], if t[n] = r

∅, otherwise
(4.32)

and the others are defined analogously.

We can further split the templates for the three colour terms into a 5b/6b and a 3b/4b

sub-template. As an example, let us consider the red channel. We can write the colour

as r = 25rh + rl, where rl ∈ Z25 are the five low bits of r that will be encoded with the

5b/6b sub-encoder, and rh ∈ Z23 are the three high bits that will be encoded with the

3b/4b sub-encoder. In the same way, we can split the scrambler Ξ[n] = 25Ξh[n] + Ξl[n]

into high and low bits. Red channel bits in 5b/6b-encoded blocks only depend on rl, and

those in 3b/4b-encoded blocks only depend on rh. We can separately compute the 5b/6b

blocks brh for all rh

brh [n] =

rh ⊕ Ξh[is + n] t[n] = r

∅ otherwise
(4.33)

and analogously the 3b/4b blocks brl for all rl.

Using the sub-block independence property, we can now encode e(br) by separately en-

coding these two:

e(br) = e5(brl) + e3(brh). (4.34)

The number of sub-templates can be further optimised using the complementation prop-

erty. It is sufficient to encode brh for those rh where the top bit is zero, i.e. 0 ≤ rh < 22,

and similarly only 0 ≤ rl < 24. For rh ≥ 22, let r̂h = rh ⊕ 7 be its complement. From

Equation 4.33, we can see that brh = br̂h⊕7 (or they are both ∅). By the complementation

property, then,

e3(brh) = −e3(br̂h) (4.35)

Using everything described above, we can write the balanced encoding of DisplayPort

data e(brgb[n]) as a sum of seven separately encoded sub-bitstreams: two each (3b/4b

and 5b/6b) for the red, green, and blue channel, and one for fill bytes. Since template

construction is linear, we can create separate sub-templates for each of these terms, and

express z(e(brgb[n])) as their linear combination. We compute the following sub-templates:

zah = z(e3(bah)) : a ∈ {r, g, b}, 0 ≤ ah < 22 (4.36)

zal = z(e5(bal)) : a ∈ {r, g, b}, 0 ≤ al < 24 (4.37)

zf = z(e(bf)) (4.38)

With these precomputed, any z(e(brgb))[n] can be computed by adding seven terms:

• Split each channel byte into a 3b and a 5b value, e.g. r = 25 · rh + rl.

86 4.3. COLOUR ENUMERATION

• If rh ≥ 22, replace it with rh ⊕ 7 and set frh = −1. Otherwise, set frh = 1.

• Similarly, if rl ≥ 24, replace it with rl⊕ 31 and set frl = −1. Otherwise, set fbl = 1.

• Apply the same to the green and blue channel to obtain 0 ≤ rl, gl, bl < 24, 0 ≤
rh, gh, bh < 22, and sign indicators frh , fgh , fbh , frl , fgl , fbl .

• Finally:

z(e(brgb))[n] = zf [n]+

frlzrl [n] + frhzrh [n]+

fglzgl [n] + fghzgh [n]+

fblzbl [n] + fbhzbh [n].

(4.39)

This requires 22 + 24 = 20 sub-templates each for the red, green, and blue channel, and

one sub-template for fill bytes, so a total of 3 · 20 + 1 = 61 sub-templates.

4.3.4 Cross-correlation

For colour identification or image reconstruction, the eavesdropper is interested in finding

the RGB triple (r, g, b) that maximises the magnitude of the complex-valued dot product

xrgb =
∑

n∈W s[n]zrgb[n]
∗ of the received signal s[n] and template zrgb[n] over a window W

containing samples of interest. Let us compute the dot product of s[n] with each of the

61 sub-templates:

xa =
∑

n∈W

s[n]za[n]
∗. (4.40)

Using linearity of dot products, we can write xrgb as a sum of seven complex numbers:

xrgb = xf + frhxrh + frlxrl + · · ·+ fblxbl . (4.41)

4.3.5 Enumeration

Given the 61 dot products xa, we could directly find the colour with the highest correlation

as the one maximising xrgb, using Equation 4.41 to evaluate it efficiently:

(r, g, b) = argmax
0≤r,g,b≤255

|xrgb| (4.42)

If the eavesdropper knows that the target image is grayscale, the most likely colour or a

list of colours sorted by xrgb can be found quickly by checking the 256 possible triples.

For colour images, testing all 224 possible RGB values takes approximately 0.5 seconds

on the laptop I used. This is acceptable for a one-time colour identification for a single

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 87

image region, but is not practical if there are many such regions of interest. For example,

in my evaluation dataset, I attempt to identify the colour of each image line, and so have

628 such regions per frame, or 37680 per second.

To speed up the search, I first compute sub-template correlations only using fill bytes and

one of the colour channels. For example, for the red channel, these would be

|xf + frhxrh + frlxrl | (4.43)

I then only include the K candidates for r with highest correlation, and similarly select

top K green and blue bytes. I then find the final (r, g, b) triple using the same correlation

maximisation approach as above, limited to K3 candidate values.

4.3.6 Averaging

Colour enumeration accuracy can be improved by assuming that the region of interest

does not change between frames, similarly to how periodic averaging is used to reduce the

noise level in electromagnetically eavesdropped images (Section 3.4). Since this tracking

algorithm does not align the phase of samples in s[n] with the template, an unknown

phase shift exists between dot products xa in differing frames. They, therefore, cannot

be averaged coherently, and only the absolute value computed in Equation 4.42 can be

replaced by an average over the frames.

Let xrgb[i] be the correlation for the region of interest in the i-th frame. I search for the

colour maximising the average (equivalently, total) correlation magnitude over all frames:

(r, g, b) = argmax
0≤r,g,b≤255

∑

i

|xrgb[i]| . (4.44)

The top-K optimisation described above can similarly use averaged correlation magnitude

instead of a single value.

4.3.7 Implementation

In my implementation of the colour enumeration algorithm, the most computationally

expensive step is sub-template resampling from fb to fs. My initial implementation using

the resampling function from the DSP.jl Julia package took 23 ms to resample the bit-

stream for a single image line on an Intel i5-6300U processor. Only 1.5 ms of this was the

resampling operation, and the rest of the time was spent computing coefficients for the

antialiasing filter.

If we use the tracked DisplayPort bitrate, the resampling ratio fb[i]/fs will change every

line, and so the resampling filters could only be cached between sub-templates in a single

line. The processing time is further increased because the ratio is real-valued, and not

88 4.4. EXPERIMENTAL EVALUATION

a rational number with a small numerator and denominator, for which more efficient

resampling algorithms can be used. Because of this, I chose to only use the tracked bitrate

to maintain the scrambler position is[i], and use the nominal bitrate fb = 1.62 GHz for

template construction.

For the 800× 600 @ 60.3 fps video mode used for evaluation, a padded line is on average

np = 4276.8 bytes long. Assuming that the real bitrate differs from the nominal value by

at most δf = 30 ppm, the difference between the predicted scrambler position at the last

byte using nominal or tracked bitrate would be at most δfnp = 0.13 bytes. This is similar

in magnitude to the accuracy obtained by PID-based scrambler code phase tracking, and

(as can be seen in Figure 4.3) still in the region where the correlation of the band-limited

signal and template is large.

I further simplify resampling by upsampling s[i] = 50 MHz from fs to the first larger

divisor of fb = 1.62 GHz, which is fb/32 = 50.625 MHz. This one-time operation simplifies

the resampling ratio to 1 : 32, a decimation operation which can be implemented more

efficiently.

With the optimisations described so far, using the resampling function from DSP.jl, re-

sampling a single template took 600 µs. I further improve this to 230 µs by first decimating

the input by 1 : 16 using a fast cascaded integrator-comb (CIC) filter, and using the DSP.jl

FIR-based resampling in a second 1 : 2 decimation stage. I do not use the CIC filter for

the entire 1 : 32 resampling, since it introduces significant frequency distortion in higher

frequencies.

For the CIC filter with decimation rate R = 16, I use N = 3 stages and aM = 1 lag. After

decimating, I apply a 3-coefficient FIR filter with taps [−1/4, 3/2,−1/4], suggested by

Jovanovic Dolecek and Mitra as a compensating filter that produces a more flat response

up to 3/5 of the Nyquist rate (i.e. up to 6/5fs) [77].

4.4 Experimental evaluation

The goal of this evaluation is to test the performance of colour enumeration over a single

image line, where the eavesdropper’s primary goal is to find the background colour. As

shown by demonstrations in Section 3.5.4, knowing this is enough to recover readable

text, since the letters are visible as negatives in the background channel. The foreground

channel is not needed for successful eavesdropping, and for anti-aliased text contains much

less human-readable information.

The dataset includes both grayscale and colour images. I include both single-colour lines

and lines containing text, which would be present in at least a part of a realistic image

and represent a more challenging target (since not all pixels have the same colour).

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 89

Figure 4.6: An example colour image with text used for evaluation. Text was

taken from the “TEMPEST” Wikipedia page [78].

4.4.1 Images

The dataset contains 214 images, split into four categories:

• 32 grayscale images without text.

• 75 colour images without text.

• 32 grayscale images with text.

• 75 colour images with text.

Each 800 × 600 test image is split into eight horizontal 800 × 75 strips. Each strip is

assigned a single background colour and, if the image contains text, a text colour. The

strip is entirely filled with the background colour, with random text chosen to fill the

entire strip drawn on top using 16 pixel-per-em Arial, with antialiasing enabled. The text

was rendered using the Python library Pillow 10.0. A sample colour image with text is

shown in Figure 4.6.

Each of the 256 grayscale colours is used once as a background colour in images without

text, and once each as a background and a text colour in images with text. The colours

were randomly assigned to strips, such that the background and text colours are different,

but without any other restrictions such as a minimum contrast.

The background and text colours for colour images were chosen uniformly at random.

Again, the only restriction was that they should not be exactly equal (at least one of the

red, green, or blue values must differ).

90 4.4. EXPERIMENTAL EVALUATION

Figure 4.7: Antenna and monitor used to record the evaluation dataset.

4.4.2 Setup

The eavesdropping target used for my evaluation was again a laptop with Intel Skylake

GT2 graphics controller, connected via a miniDP-to-DP adapter and a 1.5 m DisplayPort

cable to an iiyama ProLite XUB2495WSU LCD monitor (as in Section 3.5.1) configured

with the VESA DMT 800× 600 @ 60.3 fps video mode.

I recorded the emissions using a log-periodic antenna (0.2–3 GHz, Schwarzbeck VULSP

9111B) directly connected via a 4.6 m long RG-213/U coax cable to an Ettus USRP X300

software-defined radio receiver with Ettus UBX-160 daughterboard. The receiver was

tuned to a centre frequency of fc = 400 MHz, with sampling rate fs = 50 MHz, streaming

float32 IQ values to a desktop computer via a 10GBASE-SR optical-fibre link.

All devices (software-defined radio, laptop, monitor) had been powered up at least 30

minutes before I started recording, to allow their temperature to stabilise and reduce any

temperature-related changes in oscillator frequency.

I made all recordings in the corridor of a university building, without any measures to

shield the setup from other signal sources. A photo of the setup (antenna and target) can

be seen in Figure 4.7.

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 91

4.4.3 Recordings

For each image and antenna distance, I made a 3 s recording. I extracted scrambler reset

times and computed timing parameters for the reset model from the entire recording.

To reduce the size of individual recordings and allow me to include more images in the

dataset, after computing the timing parameters, I saved only 0.2 s of recorded emissions

(12 frames), starting from 1 s into the recording.

To detect any outliers, e.g. due to a bursty radio transmission in the band I was record-

ing in, I made two validation checks for each recording. The first was to test if reset

model synchronisation was successful, which I accepted if the mean square error between

observed and predicted reset times was under 2 samples. The second check was a com-

parison between the Welch periodogram for the current recording and the ten preceding

recordings. I computed a 2048-point periodogram with 1024-sample overlaps, and labelled

the recording as an outlier if any frequency bin in the power spectrum was 7 dB above

the mean value in the previous ten recordings.

In the 642 recordings, there was only a single outlier, for which synchronisation was

unsuccessful. I re-recorded it, and used the new (successful) one for evaluation.

4.4.4 Results

I evaluated the colour enumeration algorithm by measuring the success rate when identify-

ing the background colour from a single image line, using images in the dataset described

above. I computed a sorted list of the 1000 highest-correlation colours (256 for grayscale

images) separately for each line. Since each recording is 100 ms long (12 frames), the

output for a recording consists of 12 × ht − 1 = 7535 such lists (minus one since the

recording does start on a line boundary). I also computed one list of candidate colours

for each line from all 12 occurrences of that line in the recording, using the averaging

approach described in Section 4.3.6.

The timing parameters and tracking computed by my algorithm only provide horizontal

alignment, and are insufficient to match the identified line colours with correct values:

without vertical alignment, this pairing is only known up to a cyclic shift. I align the

algorithm output with the correct colours by selecting the shift that maximises the number

of lines where the highest-correlation colour is correct.

Table 4.2 shows the fraction of lines where the highest-correlation colour returned by the

colour enumeration algorithm is the displayed background colour.

In practice, an eavesdropper does not need to limit demodulation to the first colour

returned by the algorithm. One could select several top colours, reconstruct the image

channel for each of them, and then have the human operator (or an image quality metric)

select the colour that results in a meaningful image. In Figure 4.8, I show the average

92 4.4. EXPERIMENTAL EVALUATION

Table 4.2: Percentage of lines where the most likely colour returned by the colour

enumeration algorithm was correct, averaged over same-category images in the

dataset for each antenna distance.

Image category
Single line 12-frame average

2 m 3 m 4 m 2 m 3 m 4 m

Grayscale, no text 99.6% 98.7% 94.3% 100% 100% 100%

Grayscale, with text 82.4% 76.5% 65.4% 97.1% 96.7% 95.6%

Colour, no text 74.7% 57.3% 17.4% 92.9% 85.6% 71.1%

Colour, with text 39.2% 30.0% 8.9% 51.9% 48.4% 38.3%

1 2 3 5 10 20 50 100 256
0.00

0.25

0.50

0.75

1.00

Number of guesses

S
u
cc
es
s
ra
te

2 m

3 m

4 m

(a) Grayscale, no text

1 2 3 5 10 20 50 100 256
0.00

0.25

0.50

0.75

1.00

Number of guesses

S
u
cc
es
s
ra
te

2 m

3 m

4 m

(b) Grayscale, with text

1 2 3 5 10 20 50 100 200 5001000
0.00

0.25

0.50

0.75

1.00

Number of guesses

S
u
cc
es
s
ra
te

2 m

3 m

4 m

(c) Colour, no text

1 2 3 5 10 20 50 100 200 5001000
0.00

0.25

0.50

0.75

1.00

Number of guesses

S
u
cc
es
s
ra
te

2 m

3 m

4 m

(d) Colour, with text

Figure 4.8: Average rank of correct line colour for single-line enumeration (solid

lines) and 12-frame averaged correlation (dashed lines). Markers denote the guessing

entropy (average rank of correct value).

CHAPTER 4. ACCURATE TRACKING FOR COLOUR ENUMERATION 93

rank of the correct colour, i.e. the average number of channels the eavesdropper would

need to examine before encountering the correct one. This metric is commonly used in

side-channel research, where the average rank of the correct value is known as the guessing

entropy [79, 80].

94 4.4. EXPERIMENTAL EVALUATION

Chapter 5

Image reconstruction using phase

tracking

In Chapter 3, I described a DisplayPort image reconstruction algorithm for which I made

two simplifying assumptions: that the lane bitrate is constant and equal to the nominal

value, and that every 512-line interval between scrambler resets has the same length. With

these assumptions, I described times at which the scrambler is in the initial state with

a three-parameter reset model, which I used to align a synthesised scrambling sequence

with the received signal. I showed that it is possible to classify pixel colours in the

eavesdropped image by comparing the magnitude of short-term correlations of the received

signal and templates synthesised using the aligned scrambler. The algorithm required

lengthy averaging times to reduce noise, as well as a correlation window that resulted

in a horizontally blurred image in which narrow features (e.g. vertical lines in letters)

were difficult to distinguish. This was in part necessary because the simplified scrambler

reset model is not sufficient to fully accurately align templates, and so the computed

correlations were lower off-peak values.

In Chapter 4, I showed that the received signal and scrambler can be accurately aligned

using a delay-locked loop. This improves the signal-to-noise ratio in signal-template corre-

lations, and also provides information about the current pixel’s horizontal position in the

received signal, which can be used to include fill bytes in the templates. With these im-

provements, I could efficiently identify candidate colours in the image. I will now return

to the image reconstruction problem, and describe a more sophisticated eavesdropping

algorithm that uses scrambler code phase and carrier phase tracking to enable coherent

averaging of template correlations. The improved signal-to-noise ratio addresses both

weaknesses of the algorithm in Chapter 3: a clear image can be recovered with signifi-

cantly lower averaging times and without a correlation window, i.e. without horizontal

blurring.

Following from the previous chapters, I will start with a delay-locked loop that tracks the

scrambler position, and extend it with a phase correction based on the tracked position

95

96 5.1. SCRAMBLER CARRIER PHASE TRACKING

that approximately aligns signal and template phases. Next, I measure the phase align-

ment error after each image line, and use a phase-locked loop to compute a more precise

phase correction (Section 5.1). I then construct phase-aligned templates for each colour

in the image, and compute a correlation in a similar way to the previous eavesdropping

algorithm. Instead of averaging correlation magnitudes as before, phase alignment al-

lows coherent averaging (Section 5.2) of complex-valued correlations. This reduces the

noise level in the output, and does not discard sign information, which lets the eaves-

dropper distinguish between positive and negative correlations, improving contrast for

complementary colour pairs.

After computing the averaged template products, I apply a final phase adjustment to

remove any constant offset or drift within a line, between updates to the phase-locked

loop (Section 5.3). I also suggest an interpolation method that rescales the image data in

the recovered output to the original resolution while suppressing fill regions (Section 5.4).

Section 5.5 presents a practical demonstration of the eavesdropping attack in which I

reconstruct readable text from 8 m distance from the target monitor. I discuss the effect

of increasing averaging time and show that it is possible to compute a coherent average

of multiple recordings made even multiple minutes apart. I also discuss factors limiting

the maximum eavesdropping distance, and provide an estimate for the longest distance at

which my implementation of code and carrier phase tracking would work for the antenna

and receiver I used. I also discuss how image characteristics such as choice of font, textured

backgrounds, and partially static images influence the resulting image, and demonstrate

successful 256-colour image reconstruction at 2 m distance.

Finally, in Section 5.6, I briefly describe two practical enhancements based on scrambler

tracking: automated vertical alignment if the eavesdropping target is one of the Intel

video controllers I tested, and an optimised implementation for black-and-white images.

5.1 Scrambler carrier phase tracking

Let us start with a brief recap of the scrambler tracking and colour enumeration algorithm

from the previous chapter. Given a received IQ signal s[n], centred at frequency fc, with

sampling rate fs (a divisor of the DisplayPort bitrate fb), I used a delay-locked loop to

compute an array of scrambler code phase estimates is[n], meaning that at the time when

sample s[n] was taken, the scrambler produced the is[n]-th byte. This index is real-valued,

since samples need not be aligned with data bytes.

I then used this information to create templates for pixel colours or fill bytes by scrambling

and encoding data, and then downconverting and resampling to match the behaviour of

a software-defined radio receiver. The templates were aligned with s[n] in time using

the scrambler indices is[n], but not in phase of individual samples: all templates were

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 97

generated with the same starting phase (specifically, the first sample was real-valued).

The phase of the complex-valued signal-template correlation was therefore not meaningful,

and I could only average the magnitude after discarding phase information.

In GPS literature, the phase correction applied to the local code replica is referred to

as carrier phase. Although electromagnetic emissions of a DisplayPort interface do not

contain an explicit carrier, the tracking problem described in this section is analogous to

GPS carrier phase tracking, and I will analogously refer to the phase adjustment applied

to template samples using the same term.

In this section, I will describe a two-step algorithm that adjusts carrier phase to match

the received signal by first applying an approximate correction based on is[n], followed by

a fine-tuning phase-locked loop. The resulting template should be phase-aligned with the

signal, meaning that for a part of the received signal s[n], s[n+ 1], . . . , s[n+m] (e.g. one

image line) and the corresponding template z[i], their dot product should be real-valued:

∠

(

m
∑

i=0

s[n+ i]z[i]∗

)

≈ 0. (5.1)

In practice, an eavesdropper cannot measure the carrier phase error directly, since they

do not (yet) know the image contents and therefore cannot synthesise z[i]. I will therefore

only include fill bytes in the template when estimating the carrier phase error using a

discriminator eϕ[n], which I will use as feedback for the phase-locked loop

eϕ[n] = ∠

(

m
∑

i=0

s[n+ i]zf [i]∗

)

(5.2)

and minimise |eϕ[n]|.

5.1.1 Approximate alignment

Consider a template for an image region starting at sample n, at which time the scram-

bler index is is[n]. Since the template is created by downsampling a downconverted bit

sequence, in which each sample is one DisplayPort bit, the scrambler position at the

first template sample is rounded to the nearest bit ⌊10is[n] + 0.5⌋. Assuming for a mo-

ment that the DisplayPort bitrate fb is constant and exactly equal to the nominal value,

we can compute the time at which the template begins as ⌊10is[n] + 0.5⌋ /fb, and the

corresponding phase shift for a signal centred at fc:

2πfc ⌊10is[n] + 0.5⌋ /fb. (5.3)

Using the nominal bitrate is usually not accurate enough for this phase correction to be

useful. For example, for a monitor using the 800× 600 @ 60.3 fps video mode, one image

98 5.1. SCRAMBLER CARRIER PHASE TRACKING

0 100 200 300

−π

−π/2

0

π/2

π

Line number

P
h
a
se

er
ro
r
[r
a
d
]

Figure 5.1: Plot of carrier phase error eϕ[n] for a recording made at 8 m antenna

distance, after initial correction but without tracking.

line takes around 26.5 µs to transfer, corresponding to a ∆φ = 2π · 400 MHz · 26.5 µs ≈
66601 rad phase change. A 10 ppm change in fb (a somewhat optimistic estimate) would

introduce a 10 · 10−6 ·∆φ ≈ 0.67 rad phase jump between templates for adjacent lines.

I instead use an average f̄b of the estimate fb[n] computed by the scrambler code tracking

delay-locked loop. I use the same averaged rate to compute the phase correction for all

lines to keep the rate at which the error accumulates stable and independent of changes

in fb[n], which simplifies later PID-based tracking:

f̄b =
1

|s|

|s|
∑

n=1

fb[n] (5.4)

I then compute the approximate carrier phase correction ∆ϕ[n] from Equation 5.3, using

the averaged bitrate:

∆ϕ[n] = 2πfc ⌊10is[n] + 0.5⌋ /f̄b (5.5)

The correction can then be applied directly to templates by multiplying each sample by

ej∆ϕ[n], or more efficiently by just multiplying any correlations with that template by the

conjugate e−j∆ϕ[n].

Figure 5.1 shows an example of the remaining carrier phase error eϕ[n] after applying this

correction. A small amount of drift due to the difference between f̄b and the true value

remains, as well as an unknown initial phase offset between s[n] and the templates. The

jump around line 200 is due to a mispredicted scrambler reset caused by a leap byte.

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 99

5.1.2 Phase-locked loop

After approximate phase correction, I use a phase-locked loop to eliminate the remaining

drift and the initial offset, so that template correlation is real-valued (i.e. eϕ[n] = 0).

The structure of this controller is similar to that used for scrambler code phase tracking

(Section 4.2.3): I measure the carrier phase error, lowpass filter it, and use the result as

an input to a PID controller that computes a fine-tuning adjustment ∆′
ϕ[n].

Every line, I synthesise a fill byte template zf [i] (code-aligned using is[n]), and shift its

phase in two steps: by the coarse adjustment ∆ϕ[n] and the previous output of the phase-

locked loop ∆′
ϕ[n− 1]. I then estimate the carrier phase tracking error as

eϕ[n] = ∠

(

ej(−∆ϕ[n]−∆′
ϕ[n−1])

m
∑

i=0

s[n+ i]zf [i]∗

)

(5.6)

and lowpass filter it by computing an exponential average ēϕ[n] = α̃ēϕ[n−1]+(1−α̃)eϕ[n].

Note that −π < eϕ[n] ≤ π, and an error near ±π can wrap around between lines.

This is unlikely after the tracking loop locks onto the phase, but might happen in the

beginning, and a robust averaging implementation should handle this case: for example,

if ēϕ[n− 1] ≈ π and eϕ[n] ≈ −π, the unwrapped error eϕ + 2π should be used instead.

I then compute the fine-tuning adjustment for the next line using a PID controller, dis-

cretised in the same way as the scrambler code phase tracking controller (Equation 4.11):

∆′
ϕ[k] = K̃Pēϕ[k] + K̃If

−1
h

∑

m≤k

ēϕ[m] + K̃Dfh(ēϕ[k]− ēϕ[k − 1]) (5.7)

Figure 5.2 shows the resulting carrier phase error after applying the PID-based fine-tuning

correction, which eliminates the drift and offset from Figure 5.1.

Coefficients

I chose the PID controller parameters using the same approach I used for the code phase

tracking controller, a “black-box optimiser” provided by the BlackBoxOptim.jl Julia pack-

age, which uses an adaptive differential evolution optimiser. I used a recording from the

colour enumeration dataset, made at 2 m antenna distance, and computed the signal-

template carrier phase offset after initial correction ∠e−j∆ϕ[n]
(
∑m

i=0 s[n+ i]zf [i]∗
)

. I could

then quickly evaluate the performance of a chosen set of PID parameters, without having

to build any templates or compute correlations, since I could emulate the phase-locked

loop behaviour by directly applying the correction to this error.

I used the optimiser to find sampling rate dependent parameters (K̃P, K̃If
−1
h , K̃Dfh) and

the exponential averaging coefficient α̃ that minimise the average of the absolute carrier

100 5.1. SCRAMBLER CARRIER PHASE TRACKING

0 100 200 300

−π

−π/2

0

π/2

π

Line number

P
h
a
se

er
ro
r
[r
a
d
]

Figure 5.2: Plot of carrier phase error eϕ[n] for a recording made at 8 m antenna

distance, after PID-based tracking.

phase error |eϕ[n]| over all image lines in the recording. The search range for the former

was [0, 50], and the range for α̃ was [0, 1].

The best-performing coefficients found were

(K̃P, K̃If
−1
h , K̃Dfh, α̃) = (24.09, 4.34, 6.88, 0.99). (5.8)

The corresponding rate-independent coefficients, substituting fh = 37.88 kHz, are

(K̃P, K̃I, K̃D, α̃) = (24.09, 164.4 kHz, 0.18 kHz−1, 0.99). (5.9)

We can compute the loop bandwidth following the same approach as Section 4.2.4. The

transfer function of the lowpass filter is

G1(z) =
1− α̃

1− α̃z−1
, (5.10)

and the PID controller

G2(z) = K̃P + K̃If
−1
h

1

1− z−1
+ K̃Dfh(1− z−1). (5.11)

Since this PLL directly outputs a phase correction, rather than a frequency correction,

there is no final integrator and the open-loop response is G(z) = G1(z)G2(z).

The 3 dB loop bandwidth f3 dB, at which the closed-loop frequency response is 1/
√
2, is

f3 dB ≈ 2.06 kHz, or 5% of the line rate. With my carrier tracking implementation, much

narrower bandwidths are undesirable since they would result in a long impulse response,

and therefore a long settling time after a scrambler reset (Figure 5.1).

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 101

5.2 Coherent averaging

Now that we can align the phase of template samples with the received signal, we can

revisit the image reconstruction algorithm described in Section 3.4. Recall that I had as-

sumed that the target image mostly consisted of a small set of colours C = {c1, c2, . . . , cn},
constructed a pair of templates z+k , z

−
k for each colour ck, and computed a score uk[n] for

each received sample s[n] and colour ck as a short-term correlation between the received

signal and the two templates (Equation 3.14):

uk[i] = max
z∈z+

k
,z−

k

∣

∣

∣

∣

∣

w−1
∑

l=0

s[i+ l]z[is + l]∗

∣

∣

∣

∣

∣

2

(5.12)

Note that the z+k and z−k are one scrambler period long and are entirely filled with colour

bytes, unlike templates I used for tracking and colour enumeration, which are one line

long and include fill regions.

The alignment-assisted image reconstruction algorithm similarly computes a score uk[n]

for each input sample n and colour ck, with three differences:

• Since s[n] and zk are now phase-aligned, periodic averaging can be done coher-

ently, on the complex values instead of magnitudes, and the score uk[i] is therefore

complex-valued.

• Accurate alignment and coherent averaging reduce the noise level enough that the

short-term correlation window w is not necessary. A one-sample product (w = 1)

resulted in clear images, without horizontal blurring that would occur with w > 1.

• Instead of comparing two templates corresponding to the two possible encoder states

(positive and negative running disparity), I compute the product with a single bal-

anced template zk, such that the result can be averaged without terms due to

opposite-disparity unbalanced symbols cancelling.

The score for colour ck is then simply

uk[n] = s[n]z̃k[is[n]]
∗ (5.13)

where z̃k[n] is a template for a colour ck that is time- and phase-aligned with s[n], at

scrambler position is[n]. Here, I implicitly assume that the template was synthesised such

that lines begin at positions predicted by code tracking; in practice, my implementation

achieves this by computing z̃k[n] one line at a time when the line number corresponding

to is[n] increments.

Finally, I average the scores uk at the frame period, using is[n] to compute the image

position (line number and horizontal offset) corresponding to each input sample n. The

output is then a single complex-valued score ūk[i] for each colour ck and image position i.

102 5.3. PHASE ADJUSTMENT

Figure 5.3: Example from a two-channel output image showing the difference

between the white (c1) and black (c2) channel. Pixel brightness is proportional to

R {ū1[i]− ū2[i]}, and the image is rescaled to the original aspect ratio after removing

fill regions. The image was produced by averaging scores for a 2 s long signal

(≈ 120 frames), recorded at 2 m antenna distance.

Since the carrier phase tracking controller adjusts template phase such that the expected

correlation is real-valued and positive, I can now create an output image by assigning

the colour with the largest real part argmaxk R {ūk[i]} to each pixel (voting mode, as

in Section 3.4). If the image mostly consists of only two colours c1 and c2, the output

can alternatively be a grayscale image with pixel brightness proportional to ū1[i] − ū2[i]
(silhouette mode).

An example of a grayscale image produced by this algorithm, with fill bytes removed and

rescaled to the original dimensions, is shown in Image 5.3.

5.3 Phase adjustment

The contrast between the two channels in Figure 5.3 is high at the beginning of each line,

but fades towards the right side of the image due to phase drift within each line. Line

templates are aligned with the received signal such that the total correlation over the fill

regions is near-zero (Equation 5.2), but the phase difference between s[n] and the template

drifts slightly between samples in the line since the real DisplayPort bitrate differs from

the nominal rate fb used in template construction for efficiency.

Consequently, while signal-template correlation is on average real-valued, individual values

ūk[n] will be offset in phase, and for them taking the real part results in a lower signal-to-

noise ratio (up to no signal at all, if the phase drifts by π/2). We can measure the drift

by plotting the angle ∠ūf [i] at horizontal positions i inside fill regions, where ūf [i] is the

score for a template containing fill bytes averaged over all image lines (Figure 5.4).

Since the remaining phase error is largely due to a mismatch between the nominal and

real bitrate, it is a linear function of the horizontal position I. I compensate for this drift

by approximating the phase error as

∠ūf [i] = ∆φ0 + kϕi (5.14)

and compute ∆φ0 and kϕ using a least-squares fit.

I then unrotate the scores for all channels by multiplying ūk[n] by ej(−∆ϕ0−kϕnt), where nt

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 103

0 200 400 600 800 1000 1200

−π/2

−π/4

0

π/4

π/2

Horizontal position [samples]

A
ve
ra
g
e
a
n
g
le

∠
ū
f
[i
]

Figure 5.4: Plot of angle ∠ūf [i] for the reconstructed image in Figure 5.3, averaged

over all image lines, for horizontal positions i in the fill region.

Figure 5.5: Output image sample for recording in Figure 5.3, after final phase

correction.

is the horizontal image position for sample n, before creating an output image as before

(Figure 5.5).

5.4 Removing fill regions

Rasterizing ūk[n] directly results in an image with height ht and width fs/(htfv) containing

alternating image pixels and fill regions. Before producing the final output image, it should

be rescaled to the displayed width wd, and fill and blanking regions should be suppressed.

Let ūk[n] be a single line of colour scores with length L, and ū′k[n] the rescaled output with

length wd. If there were no fill regions, ū′k[n] could be computed by linearly interpolating

ūk[n]. With fill regions, my rescaling algorithm is still based on linear interpolation, with

different weights assigned to computed scores ūk[n] based on the fraction of bytes covered

by that value that are image bytes.

Let wp be the length of a transferred line, including the blanking period, after padding.

I compute these weights by starting with a length wp array p[n] containing a mask that

includes image bytes: p[n] = 1 if the n-th byte in a line is part of an image pixel, and

p[n] = 0 if it is part of a fill or blanking region. I then linearly rescale p[n] to w[n] to obtain

the interpolation weights for ūk[n]. Finally, I linearly interpolate ūk[n] to the length wd

104 5.5. PRACTICAL DEMONSTRATION

Algorithm 2 Output line rescaling and fill region suppression

procedure Rescale(ūk[n], wd, wp)

p← {1 if byte n in a line is an image byte, otherwise 0
∣

∣ 1 ≤ n ≤ wp}
w ← {0, 0, . . . , 0} ▷ Length-|ūk[n]| array of weights

∆m← |w| /wp

for 1 ≤ n ≤ wp do ▷ Rescale mask p[n] to weights w[m]

(m1,m2)← (⌈∆m · n⌉ , ⌈∆m · (n+ 1)⌉) ▷ Indices in w covered by p[n]

k ← (m1 −∆m · n)/∆m ▷ Fraction of p[n] covering w[m1]

w[m1]← w[m1] + p[n] · k
w[m2]← w[m2] + p[n] · (1− k)

end for

ū′k ← {0, 0, . . . , 0}
(n, r)← (1, 3) ▷ Output index n and remaining weight r

for 1 ≤ m ≤ |w| do ▷ Linearly interpolate ūk[n] to ū
′
k[n] using weights w[n]

while w[m] > 0 do

if r = 0 then ▷ Next image pixel

(n, r)← (n+ 1, 3)

end if

wc ← min(w[m], r) ▷ Weight for ū′k[n]

ū′k[n]← ū′k[n] + wc · ūk[m]

w[m]← w[m]− wc

end while

end for

return ū′k
end procedure

output ū′k[n], such that the total weight contributing to each output value is equal to 3,

the number of image bytes in one pixel (Algorithm 2).

5.5 Practical demonstration

5.5.1 Setup

The eavesdropping target was the same laptop used in previous chapters, with Intel

Skylake GT2 graphics controller, connected via a miniDP-to-DP adapter and a 1.5 m

DisplayPort cable to an iiyama ProLite XUB2495WSU LCD monitor configured with the

800 × 600 @ 60.3 fps video mode. I left the cable hanging behind the monitor and did

not adjust its position to potentially improve signal quality.

I recorded the monitor emissions using a Yagi antenna (340–360 MHz, Sinclair SY307-

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 105

Figure 5.6: Antenna and monitor used for practical demonstrations described in

this chapter.

SF6SNM(ABK)), connected via a 4.6 m long RG-213/U coax cable and a 3 dB attenuator

to an Ettus USRP X300 software-defined radio receiver with Ettus UBX-160 daughter-

board. The receiver was tuned to a centre frequency of fc = 350 MHz, with sampling

rate fs = 50 MHz, streaming float32 IQ values to a desktop computer via a 10GBASE-SR

optical-fibre link.

All devices (software-defined radio, laptop, monitor) were powered up at least 30 minutes

before I started recording, to allow their temperature to stabilise and reduce temperature-

related changes in oscillator frequency.

I made all recordings in the corridor of a university building, without any measures to

shield the setup from other signal sources. A photo of the setup can be seen in Figure 5.6.

I also tested the eavesdropping attack separately with one different DisplayPort cable,

video interface (Intel Xeon E3-1200 graphics controller in a desktop computer), and mon-

itor (LG 32UD59). The attack worked without modification in all cases, and I did not

notice any significant differences when compared to the evaluation target.

106 5.5. PRACTICAL DEMONSTRATION

Figure 5.7: Test image containing four text paragraphs (Arial, top to bottom:

without antialiasing, 14 and 18 pixels per em; with antialiasing, 14 and 18 pixels

per em) and a 16-colour image. Text from van Eck [2]. Image from the Noto Emoji

font.

5.5.2 Image

The test image (Figure 5.7) I used to showcase the eavesdropping attack includes multiple

font sizes and rendering options, as well as the 16-colour image used to demonstrate the

image reconstruction algorithm in Section 3.5.5. Two text paragraphs above the colour

image were rendered with antialiasing disabled, and therefore only consist of two pixel

colours: white (#ffffff) background and black (#000000) text. The remaining two

paragraphs below the image use the same font size, but are antialiased.

5.5.3 Reconstructed images

Figure 5.8 shows the test image reconstructed from a 2 s long signal recorded at 8 m

distance from the antenna to the target monitor, chosen as a distance near the upper

bound at which initial scrambler timing parameters can be reliably estimated. Image

reconstruction is done in voting mode, with pixels assigned the colour with the highest

periodically averaged score ūk[n], out of the foreground, background, and sixteen colours

in the emoji part of the image. Large single-colour areas are clearly visible, and while

colour classification is noisy, the original colour of the areas can still be identified. Text

with larger font size and without antialiasing is clear, and other text is harder to read

from the colour output.

As was the case for the initial eavesdropping algorithm from Chapter 3, text can be made

more readable by using silhouette mode and displaying the difference between the fore-

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 107

Figure 5.8: Test image reconstructed at 8 m antenna distance from a 2 s-long

recording, with the highest-score colour argmaxk ūk[i] assigned to each pixel (voting

mode). Manually aligned vertically and trimmed to remove the horizontal blanking

region.

ground and background channel ū1[n]− ū2[n], instead of a hard-cutoff colour classification

that includes colours that are only present in the illustration but not in text. Figure 5.9

shows this grayscale output for the same recording.

Silhouette mode is particularly helpful for antialiased text, where edge pixels are neither

the background nor the text colour. They are therefore classified as the colour that

happens to have the highest correlation with the pixel value, which is not necessarily

visually similar. They are, however, clearly visible in the background channel as a negative

image (Figure 5.10a).

The initial image reconstruction algorithm described in Chapter 3 produced horizontally

blurred images due to a correlation window. This algorithm does not use one, and allows

us to see vertical lines that are as thin as a single pixel (Figure 5.10b). The 50 MHz

sampling rate used in this demonstration is near the 1.62 Gbit/s
30

= 54 MHz padded pixel

rate (shared by all video modes using the 1.62 Gbit/s data rate), and so an output pixel

before rescaling is only slightly larger than a single displayed pixel.

As previously discussed in Section 3.5.3, complementary colours such as black and white

108 5.5. PRACTICAL DEMONSTRATION

Figure 5.9: Difference between text (#000000) and background (#ffffff) channels

in reconstructed image shown in Figure 5.8 (silhouette mode).

are particularly difficult to distinguish for an eavesdropper without carrier phase informa-

tion. Balanced symbols in the scrambled and encoded data for such colours are encoded

as complementary 10-bit symbols, and the emitted signals are thus significantly nega-

tively correlated. If only the magnitude of correlation is available, complementary colours

will seem similar, since sign information has been discarded. With this new algorithm, I

not only recover the magnitude of the correlation between the received signal and colour

templates, but also the sign, and can therefore distinguish the two.

Figure 5.11 shows reconstructed images for a range of antenna distances. The images were

produced by averaging 30 frames, as opposed to 120 in Figure 5.8, to make differences

in noise level more visible. Initial scrambler synchronisation was successful up to 9 m;

at 10 m, the output only contains noise due to failed synchronisation. Note that the

output noise level does not always increase with distance due to complex indoor signal

propagation characteristics (e.g. reflections and scattering).

5.5.4 Eavesdropping range

Successful DisplayPort eavesdropping using techniques described in this thesis requires a

received signal-to-noise ratio that is sufficient for three algorithm stages to succeed:

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 109

(a) Antialiased text (b) One pixel wide text

(1)

(2)

(3)

Figure 5.10: Samples of (1) original image, (2) voting mode output, and (3) silhou-

ette mode output showing difference between foreground and background channels.

(a) 5 m (b) 6 m (c) 7 m

(d) 8 m (e) 9 m (f) 10 m

Figure 5.11: Test image reconstructed using voting-mode at varying antenna dis-

tances for 30 periodically averaged frames.

1. The scrambler timing predicted by the reset model (Section 3.3) must be approxi-

mately correct to provide an initial position estimate and reset signal for tracking.

2. The scrambler code phase tracking (Section 4.2) and carrier phase tracking (Sec-

tion 5.1) loops must successfully lock onto the scrambler signal.

3. After coherent averaging, the noise level must be low enough to distinguish the

candidate colours and produce an acceptable reconstructed image.

Reset model range was evaluated in Chapter 3 (Figures 3.7, 3.8). To investigate the

limitations of the later algorithm stages, I used the same recordings as above, combined

with a noise recording to simulate varying levels of attenuation. I made the noise recording

with the target monitor off, without otherwise changing the setup, immediately before

recording the dataset used for the image reconstruction demonstration.

Under free-space propagation, received power at distance d from the monitor decreases

with 1/d2. Samples returned by the SDR are measurements of antenna voltage, which is

110 5.5. PRACTICAL DEMONSTRATION

Voting mode Silhouette mode

60
55
50
45
40
35
30
25
20
15
10

S
im

u
la
te
d
d
is
ta
n
ce

[m
]

60
55
50
45
40
35
30
25
20
15
10

S
im

u
la
te
d
d
is
ta
n
ce

[m
]

Figure 5.12: Samples of images reconstructed from 2 s long weighted combina-

tions of received signal and recorded noise, simulating what the eavesdropper would

receive at larger distances, with initial reset model parameters computed from the

original 8 m antenna distance recording.

proportional to field strength at the antenna, i.e. to the root of received power. There-

fore, given a recording s[n] made at distance d0 = 8 m and a noise recording sn[n], we

can compute a synthetic ss[n] recording close to what the eavesdropper would record at

distance d > d0 as a weighted linear combination:

ss[n] =
d0
d
s[n] +

(

1− d0
d

)

sn[n] (5.15)

While indoor signal propagation differs in practice from free-space propagation, this ap-

proximation was found by O’Connell to be useful for evaluating electromagnetic eaves-

dropping algorithms [26]. He concluded that such simulated recordings are favourable to

the eavesdropper since they do not account for additional distortion (e.g. due to multipath

propagation) that would exist in a real environment at larger distances, but the two have

comparable signal-to-noise ratios and signal amplitudes [26].

I used the original reset model parameters (x0, R, P) computed from s[n], and in later

stages of the eavesdropping algorithm (scrambler tracking, demodulation) reconstructed

an image from ss[n]. This allowed me to estimate the range at which the later stages could

be successful if the reset model algorithm was improved. Figure 5.12 shows samples from

reconstructed images for such synthetic recordings and the equivalent distance assuming

uniform propagation.

Up to a simulated distance of 35 m, the image quality mainly decreases due to a lowered

signal-to-noise ratio. The grayscale text image is more robust to added noise than colour

classification, and remains readable up to this point. At larger simulated distances, image

quality decreases sharply: the colour output is indistinguishable from noise, and the text

in the grayscale image is no longer readable.

This sharp decrease happens when the signal-to-noise ratio falls below the threshold re-

quired for successful scrambler tracking. Figure 5.13 shows a plot of the average tracking

error for a range of simulated distances, which increases slowly up to 35 m and becomes

significantly higher at larger distances. At 50 m simulated distance, the π/2 average error

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 111

10 20 30 40 50 60

0

π/4

π/2

Simulated distance [m]

A
ve
ra
g
e
|e ϕ

[n
]|
[r
a
d
]

Figure 5.13: Average phase tracking error at differing simulated distances, based

on a recording made at 8 m antenna distance.

is no better than random chance. At shorter distances, the noise amplitude in the recon-

structed image increases due to two factors: a lower signal-to-noise ratio in the received

signal and an increase in phase alignment error.

While an evaluation of eavesdropping range using simulated noisy recordings does not

fully model realistic conditions, successful image reconstruction at 35 m distance provides

an upper bound for the performance of the current algorithm with the setup (receiver,

bandwidth, antenna, target) I used. The initial scrambler search and reset model com-

putation fails well before scrambler tracking, at around 12 m, and so extending the range

algorithmically would require improving this initial stage of the eavesdropping algorithm

first.

5.5.5 Integration time

Assuming that the image shown on the monitor is stationary (e.g. a presentation slide)

and that synchronisation and tracking are successful, the noise level in the reconstructed

image can be reduced to produce a readable output by averaging sufficiently many frames.

The tracked scrambler position is[n] allows the eavesdropper to align recorded frames over

a long time period. Further, the 512-line reset period can be used to align recordings made

several minutes apart, since the resulting images can be vertically aligned by calculating

the number of such periods between the recordings.

Figure 5.14 shows samples of the image reconstructed from a contiguous 2 s recording

for varying averaged frame counts, up to the 120 frames spanning the entire recording

(equivalent to Figure 5.8).

112 5.5. PRACTICAL DEMONSTRATION

Voting mode Silhouette mode

120
110
100
90
80
70
60
50
40
30
20
10
5
4
3
2
1

A
ve
ra
g
ed

fr
a
m
es

120
110
100
90
80
70
60
50
40
30
20
10
5
4
3
2
1

A
ve
ra
g
ed

fr
a
m
es

Figure 5.14: Samples from an image reconstructed from recording made at 8 m

antenna distance, for a varying number of coherently averaged frames.

Voting mode Silhouette mode

10

9

8

7

6

5

4

3

2

1

A
ve
ra
ge
d
re
co
rd
in
gs

10
9
8
7
6
5
4
3
2
1

A
ve
ra
ge
d
re
co
rd
in
gs

Figure 5.15: Samples from an image reconstructed by combining multiple outputs

from two-second recordings made at 8 m antenna distance.

To demonstrate the feasibility of long-term averaging, I made ten recordings, each 2 s long,

and for the i-th recording I stored the starting time ti, as measured by the software-defined

radio receiver clock. The time between the first and last recording was t10 − t1 = 130 s,

and the average time between them was 130/9 ≈ 14.5 s.

For each recording i, I separately computed the reset model parameters θi = (x0i, Ri, Pi).

The number of image lines li between x01 and x0i can be estimated by the number of

512-line reset periods as

li = 512 ·
⌊

x0i − x01
Ri

+ 0.5

⌋

(5.16)

and the number of image lines between the start of the recording (i.e. the first image line

in the output) and x0i as ki = ⌊x0i/(R/512) + 0.5⌋.

The image outputs for all recordings were already horizontally aligned, since the eaves-

dropping algorithm operates on entire lines. I vertically aligned the colour scores ūk[n]

for each recording by vertically shifting them by li + k1 − ki. Samples from the resulting

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 113

images are shown in Figure 5.15. The improvement is small for silhouette mode, but

noticeable for voting mode.

This vertical alignment is possible even for a very long delay between recordings. Let R

be the average reset period over the time period between two recordings, R2 the period

estimated by the E/M scrambler synchronisation algorithm, and ∆x the time between

recordings in samples. The recordings will be misaligned if
∣

∣

∣

∣

∆x

R
− ∆x

R2

∣

∣

∣

∣

> 0.5 (5.17)

or, writing ∆x = l · R/512 in terms of the number of lines l between the recordings and

rearranging:
∣

∣

∣

∣

1− R

R2

∣

∣

∣

∣

>
256

l
(5.18)

Assuming that R ≈ R2, the left-hand side is approximately equal to the relative error

δR = |R−R2| /R, and we can estimate the maximal distance in lines as

l >
256

δR
(5.19)

A very pessimistic δR = 30 ppm error (i.e. if the reset model is no better than estimating

R from the nominal bitrate) gives l = 8.5 · 106 frames, meaning that for the 800 ×
600 @ 60.3 fps video mode, vertical alignment is still possible for recordings made l

htfv
=

l
628·60.3 Hz

= 225 s apart.

5.5.6 Image characteristics

In this section, I present several cropped image samples that show the behaviour of the

image reconstruction algorithm when applied to images, with emphasis on different char-

acteristics: various fonts, the use of antialiasing, textured backgrounds, colours that are

particularly different to distinguish, and combinations of static text and video. All record-

ings featured in this section were made at 2 m distance, with the same recording setup

as before. This short eavesdropping distance allows us to more clearly see the impact of

these features and identify limitations present even in recordings with a high signal-to-

noise ratio.

Fonts and antialiasing

Figure 5.16a shows a cropped sample of the displayed image, which contains two sans-serif

typefaces (Arial and Open Sans) and three serif typefaces (Garamond, Crimson, and Noto

Serif), rendered with antialiasing disabled at 16 pixel per em size. Without antialiasing,

the image only contains two colours: white (#ffffff) background and black (#000000)

foreground.

114 5.5. PRACTICAL DEMONSTRATION

(a) (b) (c)

Figure 5.16: (a) Displayed image featuring five fonts rendered with antialiasing

disabled, at 16 pixel/em size, and (b) voting and (c) silhouette-mode reconstructions

from 2 s long emissions recorded at 2 m distance.

(a) (b) (c)

Figure 5.17: (a) Displayed image featuring five fonts rendered with antialiasing

enabled, at 16 pixel/em size, and (b) voting and (c) silhouette mode images recon-

structed from 2 s long emissions recorded at 2 m distance.

The reconstructed text in both voting-mode (Figure 5.16b) and silhouette-mode (Fig-

ure 5.16c) images is readable, regardless of the font. The main difference in readability is

not due to the choice between serif and sans-serif, but rather due to thin vertical strokes

in Garamond and Crimson, and to a lesser extent in Open Sans.

If the text is rendered with antialiasing enabled (Figure 5.17a), voting-mode reconstructed

text (Figure 5.17b) becomes nearly unreadable, since most pixels in a letter no longer

match the assumed foreground colour. Only boldface text in fonts featuring wider strokes,

in particular Arial, remains legible, since it still contains black pixels after anti-aliasing.

When the image is reconstructed in silhouette mode, however, antialiased text can be

clearly seen, regardless of font, as regions that do not match the background colour

(Figure 5.17c). This was also demonstrated for the initial attack in Section 3.5.4.

Textured background

Since antialiased text can still be recovered from the background channel, one possible

countermeasure might be to replace the single-colour background with a textured image.

Figure 5.18 shows one such image and corresponding reconstructed outputs, using a pho-

tograph of a desk surface as the background behind black text rendered with antialiasing

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 115

(a) (b) (c)

Figure 5.18: (a) Displayed image with a textured background and text as in

Figure 5.16, and (b) voting and (c) silhouette-mode reconstructions from 2 s long

emissions recorded at 2 m distance.

(a) (b) (c)

Figure 5.19: (a) Displayed image with a textured background and text as Fig-

ure 5.17, and (b) voting and (c) silhouette-mode reconstructions from 2 s long emis-

sions recorded at 2 m distance.

disabled. A second example, with antialiasing enabled, can be seen in Figure 5.19.

We can see that a textured background alone is not a sufficient mitigation against eaves-

dropping, but can be in combination with antialiased text, particularly for non-bold fonts

where few pixels are rendered as black and thus visible in the foreground channel.

Cyclically shifted colour channels

One limitation of the attack described in Chapter 3 was the inability to distinguish

between cyclically shifted colour channels, since scrambler alignment was not accurate

enough to correctly assign channels to transferred bytes when constructing templates.

Even though scrambler code tracking allows us to accurately align the received signal

with the scrambler replica, the algorithm presented in this chapter suffers from the same

limitation: this channel assignment requires not only accurate scrambler tracking, but

also a byte-accurate model of DisplayPort data framing. As discussed in Section 4.1, I

have successfully reverse-engineered the algorithm used for line padding in the targeted

Intel video interfaces, but not the algorithm used to insert leap bytes.

Figure 5.20 shows the effect of this limitation in practice, with two sample sub-images

containing cyclically shifted colours: in the first, cyclic shifts of (0x00, 0x00, 0x00), and

116 5.5. PRACTICAL DEMONSTRATION

(a) (b) (c) (d)

Figure 5.20: (a), (c): test patterns featuring cyclically shifted RGB colours, and

(b), (d): voting-mode reconstructions from 2 s long emissions captured at 2 m

distance. Pixels are assigned the highest-scoring colour from five candidates: black,

white, and the three colours in the displayed image, namely (a), (b): cyclic shifts of

(0x00, 0x00, 0x00), and (c), (d): cyclic shifts of (0xca, 0xb1, 0xe5).

in the second, cyclic shifts of (0xca, 0xb1, 0xe5). In both voting-mode reconstructed

images, each pixel was assigned the highest-scoring colour from five candidates: black,

white, and the three colours present in the displayed image. In both cases, the resulting

colour regions are indistinguishable and contain an even mixture of all three candidate

colours. The three pure RGB colours are also frequently misclassified as black, since the

data will match the black template in two bytes out of three for each pixel, as opposed

to (3 + 1 + 1)/3 = 1.67 matches on average for random channel alignment.

Video

All image reconstruction algorithms in this thesis assume that the image is static, and

that channel scores can, therefore, be periodically averaged at the frame rate to improve

the signal-to-noise ratio. Image regions with changing content, such as video players,

are therefore not suitable targets. One might expect that this would also affect image

reconstruction on the right of the changing region, as a changing pixel causes the encoder

state to unpredictably invert between frames and the change propagates until the end of

the line.

However, since templates used in the coherent demodulation algorithm only include bal-

anced symbols, the resulting correlation is unaffected by changes in the running disparity.

Therefore, any static region in the displayed image can be reconstructed, regardless of

changes in the rest of the image.

As a demonstration, consider the screenshot in Figure 5.21a containing a (paused) video

player and a text editor. Figure 5.21b shows the reconstructed silhouette-mode image

with the video paused, and Figure 5.21c the same for a recording made while the video

was playing. As expected, the static text editor is unaffected by the player, and there is

no observable difference between lines that also contain a video on the left of the editor

and those that do not. The text-editor window can be seen in more detail in Figure 5.22.

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 117

(a) (b) (c)

Figure 5.21: (a) Screenshot of monitor showing a video-player and text-editor

window, (b) silhouette-mode image reconstructed from a 2 s long recording made

at 2 m distance with the video paused, and (c) reconstructed image with the same

parameters and the video playing. Reconstructed images show the difference be-

tween channels corresponding to the editor background (#ededed) and foreground

(#2e3436) colours.

(a) (b)

Figure 5.22: Cropped samples of reconstructed images shown in Figure 5.21, with

the video (a) paused and (b) playing.

118 5.5. PRACTICAL DEMONSTRATION

(a) (b)

Figure 5.23: Grayscale 768× 512 test images, created by converting images from

the Kodak Lossless True Color Image Suite [81] to grayscale without rescaling.

5.5.7 256-colour grayscale image

Voting-mode image reconstruction can be used to produce not only readable text, but

also continuous-tone photographs, if the set of candidate colours is small enough that

constructing templates for each colour is computationally feasible. Here, I demonstrate

that a recogniseable image can be reconstructed from the emissions of a monitor showing

a grayscale photograph, with 256 candidate colours, captured at 2 m distance. This shows

that unlike eavesdropping on HDMI interfaces using amplitude or phase demodulation,

which results in false-colour images where visually similar colours yield unrelated de-

modulation outputs, template-based DisplayPort eavesdropping can target photographic

images.

The displayed images, shown in Figure 5.23, were created by converting photos from the

Kodak Lossless True Color Image Suite [81] to grayscale. They were displayed without

rescaling, with the original 768× 512 dimensions. Figure 5.24 shows the result of voting-

mode reconstruction, where each pixel is assigned the highest-correlation grayscale colour

out of 256 possible values.

This is, however, a computationally expensive demonstration. With my implementation

of the attack, processing each of the 2 s long recordings took approximately 90 minutes

without sub-template optimisations described in Section 4.3. These optimisations would

reduce the number of required templates from 256 to 61, and since the computational

cost is dominated by template construction, the processing time would decrease to around

20 minutes. This is still far from a practical real-time attack (although an eavesdropper

can make recordings to be processed at a later time, like this demonstration). Significant

improvements in efficiency would likely require either algorithmic improvements, or an

implementation leveraging e.g. a highly parallel GPU rather than a four-core CPU.

CHAPTER 5. IMAGE RECONSTRUCTION USING PHASE TRACKING 119

(a) (b)

Figure 5.24: Grayscale photographs reconstructed a 2 s long recording of emana-

tions made at 2 m distance. Each pixel is assigned the highest-scoring colour from

256 candidate colours (voting mode).

5.6 Extensions

Finally, let us look at two extensions to the eavesdropping algorithm that are not directly

related to image quality: an optimisation for black-and-white images, and automated

vertical alignment that assumes the bug present in the tested Intel display controllers.

5.6.1 Black-and-white images

Consider a situation where the eavesdropper is only interested in a grayscale image show-

ing the difference between a pair of complementary colours, such as white (c1 = #ffffff)

and black(c2 = #000000). The output image is created by rasterizing the perodically

averaged score difference ū1[i]− ū2[i]. Before periodic averaging, the scores are computed

as (Equation 5.13)

uk[n] = s[n]z̃k[nt]
∗ (5.20)

and since the two colours are complementary z̃1[nt] = −z̃2[nt]. Therefore, ū1[i] − ū2[i] =
2ū1[i], and it is enough to synthesise only one of the templates and rasterize the resulting

score ū1[i].

5.6.2 Automated vertical alignment

While analysing recordings of DisplayPort data, I discovered that, for the Intel video

interfaces I examined, blanking start symbols are inserted six bytes earlier in the vertical

blanking period than at the end of an image data line (Section 3.1.5). If one of these is

replaced by a scrambler reset, the entire scrambling sequence in the following 512 lines

will be shifted by the same offset.

120 5.6. EXTENSIONS

We can detect the reset periods in which this happens by measuring the error of scrambler

positions predicted by the reset model without tracking, with the slow error function es

used in the acquisition phase of scrambler tracking (Section 4.2.2). In periods that start in

the vertical blanking period, the es is six bytes lower than in other periods, and therefore

always negative, unlike small positive errors in other periods.

Detecting a single such reset period provides information about the vertical position of

the line at which it starts, since it is guaranteed to be in the vertical blanking period, i.e.

between hd and ht. This is enough information for useful vertical alignment: if the image

is vertically shifted such that this line is the bottom-most, the image contents will always

be contiguous and will not wrap around the bottom. The remaining blanking lines will

appear at the top of the image if the eavesdropper cannot find the first blanking line.

However, even such partial alignment can be helpful.

The probability that a randomly-chosen reset period starts in the blanking region is

p = ht−hd

ht
. Assuming for simplicity that this choice is made independently for each period,

the expected number of periods before observing one that is useful for vertical alignment

is p−1, or 512p−1/ht =
512

ht−hd
frames. For example, for the 1920 × 1200 @ 59.95 fps and

800 × 600 @ 60.3 fps video modes used in demonstrations in this thesis, the expected

number of frames needed would be 15 and 20 respectively.

Exact alignment requires a reset to happen in the first line of the vertical blanking period,

which can take significantly longer. If gcd(512, ht) = 1, the line positions at which resets

occur cycle through all lines in the image before repeating, and so the expected number

of periods before seeing any particular position is ht/2. Each period is 512 lines long, and

so the expected number of frames is 512ht/2
ht

= 256, or around 4.3 s (twice as long, 8.5 s, to

guarantee success). If the total height ht is divisible 2, the scrambler will never reset on

an odd-numbered line, halving the expected time (or reducing it further if ht is divisible

by a larger power of 2).

Chapter 6

Concluding remarks

The main contribution of this thesis was to demonstrate that electromagnetic eavesdrop-

ping on DisplayPort interfaces is possible. Scrambled and encoded signals cannot be

eavesdropped on using amplitude demodulation receivers or other techniques that have

been previously described in the literature, and have been considered a difficult and possi-

bly infeasible target. I have shown that a short, fixed scrambling sequence is not sufficient

to protect information, and that template-based algorithms can be used to classify image

pixels based on colour.

In Chapter 3, I presented an overview of DisplayPort, focusing in particular on data

framing, scrambling, and encoding. This overview is primarily based on the protocol

specification, but also includes reverse-engineered details of the implementation-specific

padding algorithm used by the interfaces I examined. I then described a two-part eaves-

dropping attack, in which I first estimate the target’s scrambler timing structure using a

three-parameter reset model, which I then use to classify transmitted pixels based on the

received signal’s correlation with templates for a set of candidate colours. I demonstrated

that the reset model parameters can be successfully estimated at up to 8 m to 12 m dis-

tance, depending on the target video mode, and that the image reconstruction algorithm

can recover readable text at 5 m distance.

Next, in Chapter 4, I extended the scrambler synchronisation algorithm with a code track-

ing delay-locked loop based on a PID controller. This code tracking approach, similarly

to a GPS receiver, uses two discriminators to estimate the code phase error: the first com-

putes the correlation of the received and expected signals at many points, while the second

quickly estimates the error from only four such correlations. The output of the discrimi-

nators is used to update the current estimate of the target link bitrate and keep the local

scrambler replica synchronised with the target. I then described three properties of the

8b/10b encoding used in DisplayPort, which enabled me to describe correlations between

the received signal and templates for all 224 RGB triples using only 61 sub-templates. I

showed that this efficient representation, together with code phase tracking, can be used

121

122 6.1. COUNTERMEASURES

to enumerate all colours in an image region of interest and identify the background colour

of the image without any prior knowledge.

In Chapter 5, I extended the scrambler tracking algorithm to also track the carrier phase

using a phase-locked loop, which eliminates the previously arbitrary phase offset be-

tween the received signal and colour templates. This enabled coherent averaging of the

complex-valued colour scores, which allows the eavesdropper to distinguish complemen-

tary colours based on their sign, and also increases the output signal-to-noise ratio. This

increased signal-to-noise ratio allowed me to also improve the horizontal resolution in the

reconstructed image by eliminating a correlation window used in the initial algorithm in

Chapter 3. I demonstrated that, using carrier code and phase tracking together with

coherent averaging, I can recover clearly readable text from 8 m distance under realistic

conditions. This distance was primarily limited by initial timing parameter estimation,

and I showed that later parts of the image reconstruction algorithm succeed at up to 35 m

simulated distance.

The work described in previous chapters has all been from the perspective of an attacker.

Finally, before suggesting directions for future research on the topic, I will briefly discuss

the same problem from a defender’s point of view and suggest some possible countermea-

sures that would make eavesdropping more difficult.

6.1 Countermeasures

Electromagnetic eavesdropping could be made significantly harder by modifying the Dis-

playPort protocol, for example such that it uses a much longer and variable scrambling

sequence with parameters chosen randomly when the connection is established. However,

such a redesign of an existing standard to mitigate a threat that only affects a very small

fraction of its users is hardly practical. Even if it was possible, substantial changes to the

protocol would not be compatible with the many existing DisplayPort devices.

I will therefore limit my discussion of possible countermeasures to those that do not require

protocol-level changes. These include measurement standards used to certify devices as

secure against electromagnetic eavesdropping, and software countermeasures that do not

require any hardware modifications.

6.1.1 Hardware emission standards

TEMPEST certification for government and military use is based on a zone model. The

relevant NATO standards, SDIP-27/28/29, are classified, but publicly available docu-

ments state that locations are classified into zones based on the distance from a potential

eavesdropper [64]. A zone 0 classification implies that an attacker can come very close

CHAPTER 6. CONCLUDING REMARKS 123

to the location where sensitive data is processed, and zones 1 and 2 mean that no at-

tacker can be closer than 20 m or 150 m respectively. Equipment is certified to levels

matching these zones [82] if it passes the relevant compliance tests. Details of the test-

ing procedure are classified, but some information is available in unclassified documents:

radiated power limits are significantly lower than civilian EMC limit curves [63], and un-

like EMC measurements, TEMPEST labs evaluate if signals are correlated with processed

data [83], using data designed to produce specific signal characteristics [84] such as images

containing vertical black and white stripes.

While radiated power measurements are a useful tool for estimating the signal power

available to an eavesdropper, limit curves designed for non-scrambled interfaces might

be too lax to ensure that DisplayPort devices are secure. One of the main motivations

for scrambling data transmitted over a high-speed interface is to reduce peak levels in

the radiated power spectrum by spreading power that would otherwise be contained in a

narrow frequency range (e.g. a square wave for a bitstream with alternating zeroes and

ones) across the spectrum. This is a useful mechanism for meeting commercial EMC

regulations, since strong emissions at a single frequency are more likely to interfere with

nearby receivers than weak emissions across a broader frequency range with the same

combined power. The same argument does not necessarily hold for security, since an

attacker with a sufficiently broadband receiver can still receive a substantial part of the

unintentionally radiated scrambled signal. The designer of limit curves for TEMPEST-

certified equipment which uses scrambling should therefore consider imposing stricter

limits than those for earlier video interfaces.

A certification lab can use specially designed displayed images which undo the scrambling

to estimate the total signal power available to an eavesdropper using a narrowband mea-

surement. Let p[x, y] be the RGB pixel value in column x and row y, and let Ξ[n] be

the n-th scrambler byte applied in the image region after a reset, skipping the scrambling

sequence used in blanking periods and fill regions. An image that undoes the scrambling

in every line following a reset can be designed, for example, by setting

p[x, y] = (Ξ[3 · x]⊕ 0x4a,Ξ[3 · x+ 1]⊕ 0x4a,Ξ[3 · x+ 2]⊕ 0x4a) (6.1)

such that all scrambled image bytes will be 0x4a, which is 8b/10b encoded as alternating

zeroes and ones. The transmitted bitstream will then contain a large frequency com-

ponent at fb/2 every 512 lines, which will be visible as a single peak in the measured

power spectrum. A longer identifiable signal could be produced by choosing pixel data in

subsequent rows to undo later parts of the scrambling sequence, at the cost of a longer

wait before a scrambler reset happens at a line where this pattern begins. In either case,

the measurement procedure must allow enough time for such infrequent signals to be

identified.

The part of the scrambling sequence used for image bytes b[n] depends on padding im-

plementation specifics used by the device being examined. This means that rather than

124 6.1. COUNTERMEASURES

using a single test image, it would have to be tailored to the implementation used by

the device under test. It might be helpful to maintain a collection of test images, and to

require that manufacturers seeking TEMPEST certification disclose the specifics of their

padding algorithm.

Autocorrelation can be used to test that a signal possibly contains compromising emana-

tions from a non-scrambled interface such as DVI and HDMI. Since the transmitted data

is periodic at the frame period, and also to a lesser extent at the line period, autocorre-

lation peaks at these positions suggest that a signal contains image-related data. This

does not hold for DisplayPort, since scrambled data is not frame-periodic. An equivalent

correlation test would have to search for correlations at a significantly longer delay T

at which the scrambling sequence repeats and is aligned with image data at the same

position. The period T = kf−1
v is then a multiple of the frame period such that the

scrambler resets in the same image line k frames apart. Since resets happen every 512

lines, significant correlation is expected at T = 512f−1
v ≈ 8.53 s (for fv = 60 Hz) for

all video modes. Significant correlation at smaller multiples of the frame period is only

present in some video modes, where the padded image height is even (i.e. shares a factor

with 512).

Finally, the test might include computing a cross-correlation between the received signal

and a synthesised scrambling sequence similar to that used to identify scrambler reset

times in Section 3.3.1. This should be done while the target monitor displays an all-black

image to maximise the number of resets that can be identified and emulate the best-case

scenario of an attacker.

6.1.2 Software countermeasures

Several software countermeasures that reduce the effectiveness of electromagnetic eaves-

dropping have been proposed for non-scrambled video interfaces. These include fonts

designed to be difficult to read in an eavesdropped image [45–47], colour combinations

that look similar after demodulation [3], and partial randomisation of image contents [3].

Both types of proposed TEMPEST fonts are designed specifically for analog interfaces,

which leak mainly high-frequency components of the displayed image, and demodulation

behaves similarly to an edge detector. The resulting text can be made harder to read either

by lowpass filtering the glyphs to eliminate said high-frequency components [45, 46], or

by making the outlines similar and therefore difficult to distinguish in an image only

containing edges [47]. Both of these techniques are of limited use for digital interfaces,

and are not applicable at all for DisplayPort. Scrambling spreads emitted power across

the spectrum, and so filtering displayed glyphs has no effect on the emitted spectrum.

Additionally, the attacks described in this thesis are based on pixel classification rather

than edge detection.

CHAPTER 6. CONCLUDING REMARKS 125

In digital interfaces such as HDMI, certain colour pairs produce similar images after

demodulation because their TMDS-encoded representations are similar, even though the

colours are visually distinct [3]. Due to scrambling and 8b/10b encoding, such low-

contrast pairs only partially exist for DisplayPort. A pair of colours that share the same

five least-significant bits will have identical balanced 6b encoded blocks, but will differ

unpredictably due to scrambling in the top four bits, and will therefore reduce but not

eliminate the available signal-to-noise ratio. Circularly shifted colours can also be effective

against an attacker who cannot exactly align templates with the received signal, since a

RGB colour (r, g, b) will match a template for (g, b, r) that is misaligned by one byte.

Eliminating such misalignment requires that the attacker can both track the scrambler

accurately and predict the exact padding in blanking regions, including leap bytes.

Information from the lower 6b encoder block can also be eliminated by randomising five

low bits in displayed colours. This can be an effective countermeasure for TMDS-encoded

pixel data, where changes in the low bits can affect the entire encoded symbol [3]. Since

the 8b/10b encoder used in DisplayPort encodes low and high bits separately, randomising

low bits does not affect high bits other than possibly inverting the running disparity. A

randomisation method that scrambles both low and high bits would at a minimum have

to be applied to the lower six bits of each byte and therefore produce a visually noisy

image.

If possible, randomising padding bytes in fill and blanking regions can serve as a counter-

measure against synchronisation and tracking algorithms described in this thesis, which

exploit the known region of zero bytes to align the received signal with a scrambler replica.

DisplayPort allows an interface to replace padding bytes by secondary data packets de-

limited with “secondary start” and “secondary end” control characters. This is commonly

used to transport audio, video metadata, or vendor-specific information [85]. A modified

video driver could be used to replace most of the padding with random secondary packets

and eliminate known zero-valued regions.

The most effective digital countermeasure is encryption: instead of trying to minimise the

amount of information about transferred data an attacker can extract from unintended

emissions, encrypting this data will ensure that this information cannot be used to re-

cover an image. Modern video standards, including DisplayPort, support encrypted video

streams using High-bandwidth Digital Content Protection (HDCP). This is an encryption

layer designed for use as a copy protection mechanism. Only devices certified by Digi-

tal Content Protection LLC, the organisation which manages the HDCP ecosystem, are

issued keys to ensure that an unauthorised device such as a capture card cannot receive

HDCP-encrypted video.

The first version of the HDCP standard was a custom cipher, designed to be imple-

mentable using fewer than 10000 gates. A 2001 cryptanalytic attack targeted a weakness

in the authentication protocol, showing that extracting 40 keypairs from different devices

126 6.2. ALTERNATIVE DESIGNS

would allow an attacker to compute the authority’s master key and produce forged key-

pairs [86]. The attack was demonstrated practically in 2011 [87], and the master key

was separately leaked online in 2010 [88]. The newer HDCP 2 protocol uses standard

primitives (RSA, AES-CTR, HMAC-SHA256) and a key establishment step similar to

TLS [89]. The only published weakness targets the key exchange, and has been addressed

by newer revisions of the standard. Devices that claim to remove or downgrade HDCP 2

encryption are available online, but the vendors do not provide information on whether

they rely on leaked keys or protocol vulnerabilities [90].

Even weak encryption would be enough to prevent an eavesdropper from extracting image

data from the unintentional emissions of an interface transmitting encrypted data. The

eavesdropper in this scenario can at most see the encrypted video stream, and cannot

modify the transmitted data in any way or see the key exchange (which only happens

once, when the display is powered on). In practice, the leaked signal only contains a

noisy and distorted representation of the data, and the attacker is weaker than even a

passive man-in-the-middle observer. Even HDCP 1 should be secure with this noise-

limited passive eavesdropper threat model.

6.2 Alternative designs

Eavesdropping algorithms described in the previous chapters have been specifically de-

signed for the scrambling and encoding used in DisplayPort. In this section, I will consider

other possible encoder and scrambler choices, as well as the order in which they are layered.

I will focus on choices that are used in either video interfaces or other existing high-speed

serial interfaces. Table 6.1 summarises these options, together with an estimate of their

vulnerability to electromagnetic eavesdropping using either techniques similar to earlier

TEMPEST research, or the template-based approaches that DisplayPort is vulnerable to.

Displays are an attractive electromagnetic eavesdropping target because the image con-

tents are highly redundant (e.g. one letter consists of many pixels), meaning that demod-

ulation can tolerate many errors or signal distortion and still produce readable text. The

data is also frame-periodic for static images, which allows the eavesdropper to improve

the signal-to-noise ratio by periodic averaging. Estimating the vulnerability of other pro-

tocols to eavesdropping is more difficult, and depends on the attack goal: for example, a

template-based attempt to identify USB keyboard packets (and therefore keystroke tim-

ing) would be more tolerant to noise and errors than one that tries to identify the key that

was pressed. Additionally, common-mode emission-reduction techniques, such as galvanic

isolation and common-mode chokes used in twisted-pair Ethernet (Section 2.2.4) reduce

the signal power available to an eavesdropper when compared to DisplayPort.

I therefore limit the discussion in this section to the impact of protocol design choices.

In Table 6.2, I list the choices made in several commonly used protocols and label them

CHAPTER 6. CONCLUDING REMARKS 127

Scrambler Order
Encoder

TMDS block scrambler

synchronous scramble first ✓ ✓†
self-synchronising scramble first

synchronous encode first ✓⋆ ✓⋆

self-synchronising encode first

Table 6.1: Summary of possible scramblers, encoders, and their layering, and an

estimate of their possible vulnerability to electromagnetic eavesdropping. Block en-

coders include 8b/10b and other fixed-codebook codes. Scrambler encoders include

64b/66b, 128b/130b, and similar codes based on a self-synchronising scrambler. ✓:

likely vulnerable to template-based attacks. ⋆: possibly vulnerable to earlier TEM-

PEST attacks after scrambler synchronisation and despreading. †: the DisplayPort

protocol.

based on theoretical susceptibility to attacks similar to those targetting DisplayPort.

Establishing practical limits, due to e.g. signal power, available integration or averaging

time, and tolerance to errors, will require in-depth protocol-specific research.

6.2.1 Encoding

Fixed-codebook block codes

The 8b/10b code used in DisplayPort is one of several balanced block codes using a

fixed encoding table. It is the most commonly used such code, for example in USB 3.0,

Thunderbolt 1 and 2, and 1000BASE-X Gigabit Ethernet. Another example of such a

code is 8b/12b, used in the low-cost, low-latency IEEE 1335 communications standard.

Since the 8b/10b encoder state consists of only one bit, scrambler synchronisation al-

gorithms, such as discriminators in Section 4.2.2, only need two correlations to identify

the scrambler state during a blanking period. Additionally, approximately 54% bits in

8b/10b-encoded data are independent of the state, which allows the eavesdropper to only

include those balanced symbols in templates.

Transition Minimised Differential Signaling (TMDS)

A TMDS encoder maps also bytes to 10-bit symbols. Data bits are first transformed to

reduce the number of transitions by either replacing each data bit with its XOR with

the previous encoded bit, or by the XNOR. The choice of transformation is indicated by

the ninth bit. Finally, data bits may be inverted to maintain balance, as indicated by

128 6.2. ALTERNATIVE DESIGNS

Protocol Encoder Scrambler Attack

DisplayPort 8b/10b synchronous ✓

DisplayPort 2.0, < 10 Gbit/s 8b/10b synchronous ✓

DisplayPort 2.0, ≥ 10 Gbit/s 128b/132b self-synchronising

USB 3.0 8b/10b synchronous ✓

USB 3.1 (≥ 10 Gbit/s) 128b/132b self-synchronising

Gigabit Ethernet (1000BASE-T) TCM + PAM synchronous ✓∗

Gigabit Ethernet (1000BASE-X) 8b/10b – †
10 Gigabit Ethernet 64b/66b self-synchronising

PCI Express 2.0 8b/10b synchronous ✓

PCI Express 3.0 128b/130b self-synchronising

Table 6.2: List of commonly used scrambled serial protocols with encoder and

scrambler choices, highlighting those to which techniques described in this thesis

might be adaptable. ∗Likely complicated by the use of five-level pulse amplitude

modulation instead of two-level signalling. †Usually used over fibre, so sufficient

electromagnetic leakage is unlikely.

the tenth bit. A data byte can therefore be TMDS-encoded as two (possibly identical)

codewords, one used when the running disparity is positive, and the other when it is

negative. Unlike 8b/10b, the running disparity cannot be treated as a single bit of state,

since it can have any even value from −8 to 8.

All algorithms presented in this thesis can be adapted to TMDS-encoded scrambled data

with little modification. Including only balanced symbols in templates, as in Section 5.2,

allows us to demodulate signals independently of the encoder state. Out of 256 byte

values, 52 are TMDS-encoded as balanced symbols that do not depend on the current

disparity. Additionally, the bit indicating the choice between XOR and XNOR is not

inverted and is thus independent of the disparity. On average, 28% of TMDS-encoded

bits would be included in a balanced template, compared to 54% for DisplayPort. The

processing gain of template correlation would, therefore, approximately be halved when

compared to a 8b/10b encoding. Due to the larger number of encoder states, scrambler

tracking would also become more computationally expensive, since 9 prompt correlators

would be required to identify the initial state inside a blanking period.

Scrambler-based codes

Very high data rate (≥ 10 Gbit/s) digital interfaces commonly use one of several scrambler-

based codes designed to have lower overhead than the 25% of 8b/10b encoding. The most

common such code is 64b/66b, used in 10 Gigabit Ethernet and Thunderbolt 3. A 64-bit

CHAPTER 6. CONCLUDING REMARKS 129

symbol is first prefixed with either 01, indicating data, or 10, indicating control informa-

tion possibly followed by data. The remaining 64 bits of the output symbol are produced

by scrambling the input with a 58-bit self-synchronising scrambler. The encoder state is

therefore 58 bits long. In some protocols, this is followed by a separate scrambler, even

though 64b/66b encoded data is inherently scrambled: for example, the Ethernet data

framing layer uses an additional 8-bit scrambler.

Unlike TMDS or 8b/10b encoding, 64b/66b encoding does not guarantee a bound on

the output’s running disparity. It instead only produces a probabilistically DC balanced

output, since approximately one half of scrambled bits will be zeroes.

Other scrambler-based codes include 128b/130b, used in PCIe 3+, and 128b/132b, used

in USB 3.0 and high-bitrate DisplayPort 2.0. These are based on the same approach, only

with an increased payload size, and in the case of 128b/132b, a longer prefix to reduce

the impact of bit errors.

Scrambler-based codes pose the same challenges to an eavesdropper as the self-synchronising

scrambler they are based on. As I will discuss below, the algorithms in this thesis are not

suitable for systems using self-synchronising scramblers.

6.2.2 Scrambling

Synchronous

A synchronous scrambler, such as the one used in DisplayPort, is applied to the data

stream by replacing each data byte with its exclusive-or with the output of a pseudoran-

dom sequence, usually generated by a linear-feedback shift register. The receiver main-

tains a replica of this LFSR, which is synchronised with the transmitter by periodically

resetting the state and notifying the receiver (e.g. with a control symbol).

The algorithms in this thesis do not depend on any special properties of the DisplayPort

scrambler, and would be usable with any synchronous scrambler which is reset at an

(approximately) constant rate. Increasing the scrambler period by using a longer LFSR

would increase the computational cost of the initial synchronisation search, but would not

affect later scrambler tracking or image reconstruction.

With the 16-bit DisplayPort scrambler, this initial search is approximately 100 to 1000

times faster than the remaining image reconstruction algorithm, depending on the number

of candidate colours. An at least thousandfold increase in the scrambler period would

therefore be necessary to significantly increase the total computational cost. This would

require the scrambler reset period to be longer than 1000 · (216 − 1) bytes, or around 3 s

for a 1.62 Gbit/s interface, which would cause undesirably long startup times and data

interruptions if a scrambler reset symbol is incorrectly decoded.

130 6.2. ALTERNATIVE DESIGNS

Self-synchronising

The state of a self-synchronising scrambler is long-term data-dependent, since the input

to the LFSR is the exclusive-or of its previous output and the next data bit. The inverse

operation in the receiver is exclusive-or of several previous scrambled bits, at positions

determined by LFSR taps. For a degree-n LFSR, the receiver must therefore maintain a

state containing the previous n scrambled bits. A one-bit change in the scrambler input

will propagate through the entire remaining output stream, while a one-bit change in the

output will only affect the following n bits after unscrambling.

The initial correlation search for known scrambler states in the blanking period can be

adapted to a self-synchronising scrambler, since its output will cycle through a 2n− 1 bit

periodic sequence as long as the input is constant. All later algorithms are, however, not

applicable. Since the scrambler state depends on image data, successful synchronisation

in the blanking period will only last until the first incorrectly identified image byte.

6.2.3 Order of operations

Scramble then encode

Almost all commonly-used protocols scramble data before encoding, either using a sepa-

rate scrambler or implicitly as part of 64b/66b (or similar) encoding. The nonlinear en-

coder prevents us from treating the scrambler like a spreading code in a spread-spectrum

signal, and so all image reconstruction algorithms in this thesis are template-based in-

stead.

Encode then scramble

If data is first encoded and then scrambled, we can treat the two stages separately, simi-

larly to a spread-spectrum receiver. Multiplying the received signal by a scrambler replica

removes the effect of scrambling, and leaves us with a signal like that from an encoded,

but not scrambled, interface. The result can then be attacked using eavesdropping tech-

niques like those used for HDMI, such as amplitude or phase demodulation, at a much

lower computational cost compared to template-based techniques. Such an attack would

have the same limitation as those targetting HDMI: although computationally efficient,

the colours in the resulting image do not meaningfully correspond to those displayed on

the monitor.

CHAPTER 6. CONCLUDING REMARKS 131

6.3 Future work

Some possible directions for future research on DisplayPort electromagnetic eavesdropping

are:

• As shown in Section 5.5, the range of eavesdropping algorithms described in this

thesis is limited by the initial reset model search. A more sophisticated algorithm

might include more information than just a correlation-based search for scrambler

reset times. The EM algorithm that estimates the (x0, R, P) timing parameters

can also be made more robust to misidentified reset times, for example by fitting

the parameters to a subset of the observed times and using the result as an initial

estimate to eliminate outliers.

• My reverse-engineering of the implementation-specific padding algorithm was suffi-

cient to develop eavesdropping algorithms and demonstrate that they can be used

to target Intel interfaces. The same work can be repeated for other manufacturers,

and extending it to predict lines in which fill bytes are inserted would increase the

accuracy of template alignment and defeat the low-contrast colour pairs based on

cyclical shifts I suggested above.

• The Julia implementation I used to produce reconstructed images in Chapter 5 is

entirely CPU-based. It is parallelised and processes different colour channels on

separate CPU cores, but is still two orders of magnitude slower than what would be

necessary for real-time operation. This is a good candidate for a GPU-based imple-

mentation, since different colours and image lines can be processed independently.

• Another possible implementation-heavy project would be to implement the proposed

software countermeasure where a custom video driver replaces the zero bytes in

blanking periods with random secondary data packets.

• Ignoring leap bytes, a scrambled DisplayPort signal is periodic after 512/gcd(512, ht)

frames, when the scrambler resets in the same lines. This period is greatest for odd

ht, and for fv = 60 Hz it is approximately 512/60 Hz = 8.53 s. Periodic averaging

with this period, before any DisplayPort-specific processing, might improve the

signal-to-noise ratio and extend viable eavesdropping distance.

• The techniques in this thesis can possibly be adapted to other DisplayPort-based

video interfaces: embedded DisplayPort (eDP) and DisplayPort over USB-C. My

current obstacle here is the lack of public information about these protocols, since the

relevant standards are only provided to members of the Video Electronics Standards

Association (VESA).

132 6.3. FUTURE WORK

• More sophisticated equipment, including higher-gain antennas and larger receivers

bandwidths, could be used for longer-distance demonstrations. At receiver band-

widths significantly higher than the 50 MHz I used, choosing a reception range that

is free of interference becomes difficult, and preprocessing the received IQ data to

reduce narrow-band interference would likely be necessary.

Appendix A

8b/10b encoding

The 8b/10b encoder used in DisplayPort encodes each data byte or control symbol as one

of two (possibly identical) ten-bit symbols, depending on the current running disparity

(RD). The running disparity is either +1, indicating that the output so far contained more

one-bits than zero-bits, or −1, indicating that it contained more zero-bits. The symbols

are chosen such that the number of zeroes and ones in the output is always either equal

or differs by ±2.

Table A.1 lists all control symbols supported by the 8b/10b encoder, with their generic

(ANSI) names, and for those used in DisplayPort, the names and meanings used in the

DisplayPort standard. Tables A.2 and A.3 show the encodings of all 256 byte values.

Table A.1: 8b/10b encoded control symbols.

Symbol DisplayPort meaning Encoded

ANSI DP RD = + RD = −

K.28.0 SR Scrambler Reset 1101 000011 0010 111100

K.28.1 CP Copyright Protection Blanking Start 0110 000011 1001 111100

K.28.2 SS Secondary-data Start 0101 000011 1010 111100

K.28.3 BF Copyright Protection Scrambler Reset 0011 000011 1100 111100

K.28.5 BS Blanking Start 1010 000011 0101 111100

K.23.7 FE Fill End 1110 101000 0001 010111

K.27.7 BE Blanking End 1110 100100 0001 011011

K.29.7 SE Secondary-data End 1110 100010 0001 011101

K.30.7 FS Fill Start 1110 100001 0001 011110

K.28.4 – 1011 000011 0100 111100

K.28.6 – 1001 000011 0110 111100

K.28.7 – 1110 000011 0001 111100

133

134

Table A.2: 8b/10b encoded byte values from 0x00 to 0x7f.

Bits
Encoded

Bits
Encoded

Bits
Encoded

Bits
Encoded

RD = + RD = − RD = + RD = − RD = + RD = − RD = + RD = −

00 000 00000 1101 000110 0010 111001 20 001 00000 1001 000110 1001 111001 40 010 00000 1010 000110 1010 111001 60 011 00000 0011 000110 1100 111001

01 000 00001 1101 010001 0010 101110 21 001 00001 1001 010001 1001 101110 41 010 00001 1010 010001 1010 101110 61 011 00001 0011 010001 1100 101110

02 000 00010 1101 010010 0010 101101 22 001 00010 1001 010010 1001 101101 42 010 00010 1010 010010 1010 101101 62 011 00010 0011 010010 1100 101101

03 000 00011 0010 100011 1101 100011 23 001 00011 1001 100011 43 010 00011 1010 100011 63 011 00011 1100 100011 0011 100011

04 000 00100 1101 010100 0010 101011 24 001 00100 1001 010100 1001 101011 44 010 00100 1010 010100 1010 101011 64 011 00100 0011 010100 1100 101011

05 000 00101 0010 100101 1101 100101 25 001 00101 1001 100101 45 010 00101 1010 100101 65 011 00101 1100 100101 0011 100101

06 000 00110 0010 100110 1101 100110 26 001 00110 1001 100110 46 010 00110 1010 100110 66 011 00110 1100 100110 0011 100110

07 000 00111 0010 111000 1101 000111 27 001 00111 1001 111000 1001 000111 47 010 00111 1010 111000 1010 000111 67 011 00111 1100 111000 0011 000111

08 000 01000 1101 011000 0010 100111 28 001 01000 1001 011000 1001 100111 48 010 01000 1010 011000 1010 100111 68 011 01000 0011 011000 1100 100111

09 000 01001 0010 101001 1101 101001 29 001 01001 1001 101001 49 010 01001 1010 101001 69 011 01001 1100 101001 0011 101001

0a 000 01010 0010 101010 1101 101010 2a 001 01010 1001 101010 4a 010 01010 1010 101010 6a 011 01010 1100 101010 0011 101010

0b 000 01011 0010 001011 1101 001011 2b 001 01011 1001 001011 4b 010 01011 1010 001011 6b 011 01011 1100 001011 0011 001011

0c 000 01100 0010 101100 1101 101100 2c 001 01100 1001 101100 4c 010 01100 1010 101100 6c 011 01100 1100 101100 0011 101100

0d 000 01101 0010 001101 1101 001101 2d 001 01101 1001 001101 4d 010 01101 1010 001101 6d 011 01101 1100 001101 0011 001101

0e 000 01110 0010 001110 1101 001110 2e 001 01110 1001 001110 4e 010 01110 1010 001110 6e 011 01110 1100 001110 0011 001110

0f 000 01111 1101 000101 0010 111010 2f 001 01111 1001 000101 1001 111010 4f 010 01111 1010 000101 1010 111010 6f 011 01111 0011 000101 1100 111010

10 000 10000 1101 001001 0010 110110 30 001 10000 1001 001001 1001 110110 50 010 10000 1010 001001 1010 110110 70 011 10000 0011 001001 1100 110110

11 000 10001 0010 110001 1101 110001 31 001 10001 1001 110001 51 010 10001 1010 110001 71 011 10001 1100 110001 0011 110001

12 000 10010 0010 110010 1101 110010 32 001 10010 1001 110010 52 010 10010 1010 110010 72 011 10010 1100 110010 0011 110010

13 000 10011 0010 010011 1101 010011 33 001 10011 1001 010011 53 010 10011 1010 010011 73 011 10011 1100 010011 0011 010011

14 000 10100 0010 110100 1101 110100 34 001 10100 1001 110100 54 010 10100 1010 110100 74 011 10100 1100 110100 0011 110100

15 000 10101 0010 010101 1101 010101 35 001 10101 1001 010101 55 010 10101 1010 010101 75 011 10101 1100 010101 0011 010101

16 000 10110 0010 010110 1101 010110 36 001 10110 1001 010110 56 010 10110 1010 010110 76 011 10110 1100 010110 0011 010110

17 000 10111 1101 101000 0010 010111 37 001 10111 1001 101000 1001 010111 57 010 10111 1010 101000 1010 010111 77 011 10111 0011 101000 1100 010111

18 000 11000 1101 001100 0010 110011 38 001 11000 1001 001100 1001 110011 58 010 11000 1010 001100 1010 110011 78 011 11000 0011 001100 1100 110011

19 000 11001 0010 011001 1101 011001 39 001 11001 1001 011001 59 010 11001 1010 011001 79 011 11001 1100 011001 0011 011001

1a 000 11010 0010 011010 1101 011010 3a 001 11010 1001 011010 5a 010 11010 1010 011010 7a 011 11010 1100 011010 0011 011010

1b 000 11011 1101 100100 0010 011011 3b 001 11011 1001 100100 1001 011011 5b 010 11011 1010 100100 1010 011011 7b 011 11011 0011 100100 1100 011011

1c 000 11100 0010 011100 1101 011100 3c 001 11100 1001 011100 5c 010 11100 1010 011100 7c 011 11100 1100 011100 0011 011100

1d 000 11101 1101 100010 0010 011101 3d 001 11101 1001 100010 1001 011101 5d 010 11101 1010 100010 1010 011101 7d 011 11101 0011 100010 1100 011101

1e 000 11110 1101 100001 0010 011110 3e 001 11110 1001 100001 1001 011110 5e 010 11110 1010 100001 1010 011110 7e 011 11110 0011 100001 1100 011110

1f 000 11111 1101 001010 0010 110101 3f 001 11111 1001 001010 1001 110101 5f 010 11111 1010 001010 1010 110101 7f 011 11111 0011 001010 1100 110101

A
P
P
E
N
D
IX

A
.
8B

/10B
E
N
C
O
D
IN

G
135

Table A.3: 8b/10b encoded byte values from 0x80 to 0xff.

Bits
Encoded

Bits
Encoded

Bits
Encoded

Bits
Encoded

RD = + RD = − RD = + RD = − RD = + RD = − RD = + RD = −

80 100 00000 1011 000110 0100 111001 a0 101 00000 0101 000110 0101 111001 c0 110 00000 0110 000110 0110 111001 e0 111 00000 0111 000110 1000 111001

81 100 00001 1011 010001 0100 101110 a1 101 00001 0101 010001 0101 101110 c1 110 00001 0110 010001 0110 101110 e1 111 00001 0111 010001 1000 101110

82 100 00010 1011 010010 0100 101101 a2 101 00010 0101 010010 0101 101101 c2 110 00010 0110 010010 0110 101101 e2 111 00010 0111 010010 1000 101101

83 100 00011 0100 100011 1011 100011 a3 101 00011 0101 100011 c3 110 00011 0110 100011 e3 111 00011 1000 100011 0111 100011

84 100 00100 1011 010100 0100 101011 a4 101 00100 0101 010100 0101 101011 c4 110 00100 0110 010100 0110 101011 e4 111 00100 0111 010100 1000 101011

85 100 00101 0100 100101 1011 100101 a5 101 00101 0101 100101 c5 110 00101 0110 100101 e5 111 00101 1000 100101 0111 100101

86 100 00110 0100 100110 1011 100110 a6 101 00110 0101 100110 c6 110 00110 0110 100110 e6 111 00110 1000 100110 0111 100110

87 100 00111 0100 111000 1011 000111 a7 101 00111 0101 111000 0101 000111 c7 110 00111 0110 111000 0110 000111 e7 111 00111 1000 111000 0111 000111

88 100 01000 1011 011000 0100 100111 a8 101 01000 0101 011000 0101 100111 c8 110 01000 0110 011000 0110 100111 e8 111 01000 0111 011000 1000 100111

89 100 01001 0100 101001 1011 101001 a9 101 01001 0101 101001 c9 110 01001 0110 101001 e9 111 01001 1000 101001 0111 101001

8a 100 01010 0100 101010 1011 101010 aa 101 01010 0101 101010 ca 110 01010 0110 101010 ea 111 01010 1000 101010 0111 101010

8b 100 01011 0100 001011 1011 001011 ab 101 01011 0101 001011 cb 110 01011 0110 001011 eb 111 01011 0001 001011 0111 001011

8c 100 01100 0100 101100 1011 101100 ac 101 01100 0101 101100 cc 110 01100 0110 101100 ec 111 01100 1000 101100 0111 101100

8d 100 01101 0100 001101 1011 001101 ad 101 01101 0101 001101 cd 110 01101 0110 001101 ed 111 01101 0001 001101 0111 001101

8e 100 01110 0100 001110 1011 001110 ae 101 01110 0101 001110 ce 110 01110 0110 001110 ee 111 01110 0001 001110 0111 001110

8f 100 01111 1011 000101 0100 111010 af 101 01111 0101 000101 0101 111010 cf 110 01111 0110 000101 0110 111010 ef 111 01111 0111 000101 1000 111010

90 100 10000 1011 001001 0100 110110 b0 101 10000 0101 001001 0101 110110 d0 110 10000 0110 001001 0110 110110 f0 111 10000 0111 001001 1000 110110

91 100 10001 0100 110001 1011 110001 b1 101 10001 0101 110001 d1 110 10001 0110 110001 f1 111 10001 1000 110001 1110 110001

92 100 10010 0100 110010 1011 110010 b2 101 10010 0101 110010 d2 110 10010 0110 110010 f2 111 10010 1000 110010 1110 110010

93 100 10011 0100 010011 1011 010011 b3 101 10011 0101 010011 d3 110 10011 0110 010011 f3 111 10011 1000 010011 0111 010011

94 100 10100 0100 110100 1011 110100 b4 101 10100 0101 110100 d4 110 10100 0110 110100 f4 111 10100 1000 110100 1110 110100

95 100 10101 0100 010101 1011 010101 b5 101 10101 0101 010101 d5 110 10101 0110 010101 f5 111 10101 1000 010101 0111 010101

96 100 10110 0100 010110 1011 010110 b6 101 10110 0101 010110 d6 110 10110 0110 010110 f6 111 10110 1000 010110 0111 010110

97 100 10111 1011 101000 0100 010111 b7 101 10111 0101 101000 0101 010111 d7 110 10111 0110 101000 0110 010111 f7 111 10111 0111 101000 1000 010111

98 100 11000 1011 001100 0100 110011 b8 101 11000 0101 001100 0101 110011 d8 110 11000 0110 001100 0110 110011 f8 111 11000 0111 001100 1000 110011

99 100 11001 0100 011001 1011 011001 b9 101 11001 0101 011001 d9 110 11001 0110 011001 f9 111 11001 1000 011001 0111 011001

9a 100 11010 0100 011010 1011 011010 ba 101 11010 0101 011010 da 110 11010 0110 011010 fa 111 11010 1000 011010 0111 011010

9b 100 11011 1011 100100 0100 011011 bb 101 11011 0101 100100 0101 011011 db 110 11011 0110 100100 0110 011011 fb 111 11011 0111 100100 1000 011011

9c 100 11100 0100 011100 1011 011100 bc 101 11100 0101 011100 dc 110 11100 0110 011100 fc 111 11100 1000 011100 0111 011100

9d 100 11101 1011 100010 0100 011101 bd 101 11101 0101 100010 0101 011101 dd 110 11101 0110 100010 0110 011101 fd 111 11101 0111 100010 1000 011101

9e 100 11110 1011 100001 0100 011110 be 101 11110 0101 100001 0101 011110 de 110 11110 0110 100001 0110 011110 fe 111 11110 0111 100001 1000 011110

9f 100 11111 1011 001010 0100 110101 bf 101 11111 0101 001010 0101 110101 df 110 11111 0110 001010 0110 110101 ff 111 11111 0111 001010 1000 110101

136

Appendix B

Farrow filter

The Farrow filter [91] is a polyphase structure that allows us to preprocess a discrete-time

sequence x[n], and then efficiently sample the corresponding continuous, sinc-interpolated

signal s(t) at arbitrary real-valued offsets t. It is based on a polynomial approximation of

coefficients of a fractional delay filter, which shift their discrete-time input by 0 ≤ δ < 1

(left half of Figure B.1). Convolving x[n] with the array of polynomial coefficients for

each term gives a polynomial approximation for s(t) (bottom right).

Let fs be the sampling rate of x[n]. The interpolated signal can be computed by convolving

with a scaled sinc function

s(t) =
∑

i

x[i] sinc

(

t− if−1
s

f−1
s

)

(B.1)

where sinc x = sinπx
πx

.

If we write t = (n + δ)f−1
s as a sum of an integer part n and a fractional part 0 ≤ δ < 1

(in samples), this is equivalent to taking the n-th element of the discrete-time convolution

of x[n] and an impulse response hδ with coefficients

hδ[n] = sinc

(

δ − nf−1
s

f−1
s

)

= sinc (δfs − n) (B.2)

which shifts the signal by a fractional delay δ.

This impulse response is infinitely long for δ ̸= 0, but values for large n tend to zero, since

|sinc(n)| < n for n ̸= 0. Using the usual approach for designing a windowed-sinc FIR filter,

we can truncate the impulse response by keeping coefficients h[n] where M
2
≤ n ≤ M

2
, for

a desired filter order M , and set all other coefficients to zero.

Now consider a collection of R such fractional delay filters h0/R[n], h1/R[n], . . . , h(R−1)/R[n],

where the m-th filter shifts its input by m
R
fs. Using such a collection, we could sample

s(t) at any t = (n+ m
R
)f−1

s for n,m ∈ Z by taking the n-th sample of the convolution of

x and hm.

137

138

Figure B.1: Construction of a Farrow filter from R fractional delay filters, using

degree N −1 interpolating polynomials. For simplicity, the sampling rate is omitted

(assuming fs = 1).

The Farrow filter allows us to sample at other offsets by interpolating between the frac-

tional delay filters using a degree N − 1 polynomial (i.e. with N coefficients). Consider

each index n separately, and compute an approximation to hδ[n], the n-th impulse re-

sponse coefficient of a filter that delays the input by δf−1
s , by interpolating the known

values hm/R[n] to obtain a series of coefficients bn,k where

hδ[n] ≈ bn,0 + bn,1δ + bn,2δ
2 + · · ·+ bn,N−1δ

N−1. (B.3)

We can now compute s(t) by convolving with hδ[n]:

s(t) = s((n+ δ)f−1
s) =

M/2
∑

i=−M/2

x[n− i]hδ[i] =
M/2
∑

i=−M/2

x[n− i]
N−1
∑

k=0

bi,kδ
k (B.4)

This is still inefficient, requiring O(NM) multiplications for a single evaluation of s(t).

We can simplify the expression by swapping the order of the sums

s(t) =
N−1
∑

k=0

M/2
∑

i=−M/2

x[n− i]bi,kδk (B.5)

and introducing a new set of coefficients cn,k defined as

cn,k =

M/2
∑

i=−M/2

x[n− i]bi,k (B.6)

to obtain a simplified expression

s(t) =
N−1
∑

k=0

cn,kδ
k (B.7)

APPENDIX B. FARROW FILTER 139

that can now be evaluated with only N additions and multiplications.

To sum up, we preprocess x[n] by creating R order-M fractional delay filters, interpolating

their coefficients with degree-N−1 polynomials, and computing the sums cn,k for all indices

n in x[n] and 0 ≤ k < N . These sums can be efficiently computed with k convolutions

of x[n] and a length-M +1 filter kernel, in O(N |x| log |x|) time. Once the coefficients are

available, s(t) can be easily computed in O(N).

Note that since the fractional delay filter order M only affects the preprocessing time,

which is dominated by a convolution with x[n] (where |x| ≫ M), we can use a long

impulse response to minimise distortion added by truncating. In my implementation, I

use M = 351. Similarly, the number of filters R only affects preprocessing time, and I set

R = 20M . The cost of evaluation s(t) only depends on the interpolation degree N , where

I use N = 5.

140

Bibliography

[1] Markus G. Kuhn. Tempest. In Sushil Jajodia, Pierangela Samarati, and Moti Yung,

editors, Encyclopedia of Cryptography, Security and Privacy. Springer, Berlin, Hei-

delberg, 2023.

[2] Wim van Eck. Electromagnetic radiation from video display units: an eavesdropping

risk? Computers & Security, 4(4):269–286, 1985.

[3] Markus G. Kuhn. Electromagnetic eavesdropping risks of flat-panel displays. In

David Martin and Andrei Serjantov, editors, Privacy Enhancing Technologies, Lec-

ture Notes in Computer Science, pages 88–107, Berlin, Heidelberg, 2005. Springer.

[4] Ankur Verma. AN-1032: An introduction to FPD-Link. Texas Instruments, 1998.

[5] Open LVDS Display Interface (OpenLDI) specification. National Semiconductor,

1999.

[6] Digital Visual Interface DVI, revision 1.0. Digital Display Working Group, 1999.

[7] High-Definition Multimedia Interface, specification version 1.3a. HDMI Licensing,

LLC, 2006.

[8] VESA DisplayPort standard, version 1, revision 2. Video Electronics Standards

Association, January 2010.

[9] Ireneusz Kubiak and Artur Przybysz. DVI (HDMI) and DisplayPort digital video

interfaces in electromagnetic eavesdropping process. In 2019 International Sympo-

sium on Electromagnetic Compatibility – EMC EUROPE, pages 388–393, September

2019. ISSN: 2325-0364.

[10] Markus G. Kuhn. Ballot printer – protection against eavesdropping attacks – guid-

ance for system designers. Bijlage 2016D17984: Richtlijnen ter voorkoming van

compromitterende straling. Tweede Kamer der Staten-Generaal (House of Represen-

tatives, Netherlands), kamerstuk, Apr 2016.

[11] Major-General RFH Nalder. The Royal Corps of Signals. Royal Signals Institution,

1958.

141

142 BIBLIOGRAPHY

[12] David G. Boak. A History Of U.S. Communications Security. National Security

Agency, July 1973. Declassified 2008-10-12.

[13] David Easter. The impact of ‘Tempest’ on Anglo-American communications security

and intelligence, 1943–1970. Intelligence and National Security, 36(1):1–16, 2021.

[14] National Security Agency. Engstrom study for proposed Office of Research in AFSA;

task list for Office of Research and Development. William F. Friedman Collection of

Official Papers (Folder 369), 1952–1954. Declassified 2015-04-20.

[15] Peter Wright and Paul Greengrass. The candid autobiography of a senior intelligence

officer. Heinemann, 1987.

[16] TEMPEST timeline. https://cryptome.org/tempest-time.htm, 2002. Accessed:

2023-09-14.

[17] Ross Anderson. Security engineering: a guide to building dependable distributed

systems. John Wiley & Sons, 2020.

[18] Willis H. Ware. Security and Privacy in Computer Systems. RAND Corporation,

Santa Monica, CA, 1967.

[19] Han Fang. Radiated emission from CRT of computer VDU. In IEEE International

Symposium on Electromagnetic Compatibility, pages 58–61, August 1990.

[20] N. E. Koksaldi, I. Olcer, U. Yapanel, and U. Sarac. Signal processing applications

for information extraction from the radiation of VDUs. October 1998.

[21] N. E. Koksaldi, S. S. Seker, and B. Sankur. Information extraction from the radiation

of VDUs by pattern recognition methods. 2000.

[22] Peter Smulders. The threat of information theft by reception of electromagnetic

radiation from RS-232 cables. Computers & Security, 9(1):53–58, February 1990.

[23] Hidema Tanaka, Osamu Takizawa, and Akihiro Yamamura. A trial of the interception

of display image using emanation of electromagnetic wave. Journal of the National

Institute of Information and Communications Technology, 52(1/2):213–223, 2005.

[24] Fürkan Elibol, Uğur Sarac, and Işin Erer. Realistic eavesdropping attacks on com-

puter displays with low-cost and mobile receiver system. In Proceedings of the 20th

European Signal Processing Conference (EUSIPCO), pages 1767–1771, 2012.

[25] Martin Marinov. Remote video eavesdropping using a software-defined radio plat-

form. Master’s thesis, University of Cambridge, Computer Laboratory, June 2014.

https://cryptome.org/tempest-time.htm

BIBLIOGRAPHY 143

[26] Christian David O’Connell. Exploiting quasiperiodic electromagnetic radiation using

software-defined radio. PhD thesis, University of Cambridge, Computer Laboratory,

2019.

[27] Ho Seong Lee, Dong Hoon Choi, Kyuhong Sim, and Jong-Gwan Yook. Information

recovery using electromagnetic emanations from display devices under realistic en-

vironment. IEEE Transactions on Electromagnetic Compatibility, 61(4):1098–1106,

August 2019. Conference Name: IEEE Transactions on Electromagnetic Compati-

bility.

[28] Pieterjan de Meulemeester, Bart Scheers, and Guy A.E. Vandenbosch. Eavesdrop-

ping a (ultra-)high-definition video display from an 80 meter distance under realistic

circumstances. In 2020 IEEE International Symposium on Electromagnetic Compat-

ibility & Signal/Power Integrity (EMCSI), pages 517–522, July 2020.

[29] Pieterjan De Meulemeester, Bart Scheers, and Guy A.E. Vandenbosch. Differen-

tial signaling compromises video information security through AM and FM leakage

emissions. IEEE Transactions on Electromagnetic Compatibility, 62(6):2376–2385,

December 2020.

[30] Pieterjan De Meulemeester, Bart Scheers, and Guy A.E. Vandenbosch. Reconstruct-

ing video images in color exploiting compromising video emanations. In 2020 Inter-

national Symposium on Electromagnetic Compatibility – EMC EUROPE, pages 1–6,

September 2020. ISSN: 2325-0364.

[31] Dong-Hoon Choi, Euibum Lee, and Jong-Gwan Yook. Reconstruction of video in-

formation through leakaged electromagnetic waves from two VDUs using a narrow

band-pass filter. IEEE Access, 10:40307–40315, 2022.

[32] Ireneusz Kubiak and Artur Przybysz. Fourier and chirp-Z transforms in the estima-

tion values process of horizontal and vertical synchronization frequencies of graphic

displays. Applied Sciences, 12(10):5281, January 2022. Number: 10 Publisher: Mul-

tidisciplinary Digital Publishing Institute.

[33] Florian Lemarchand, Cyril Marlin, Florent Montreuil, Erwan Nogues, and Maxime

Pelcat. Electro-magnetic side-channel attack through learned denoising and classifi-

cation. In ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 2882–2886, May 2020. ISSN: 2379-190X.

[34] J. Galvis, S. Morales, C. Kasmi, and F. Vega. Denoising of video frames resulting from

video interface leakage using deep learning for efficient optical character recognition.

IEEE Letters on Electromagnetic Compatibility Practice and Applications, 3(2):82–

86, June 2021. Conference Name: IEEE Letters on Electromagnetic Compatibility

Practice and Applications.

144 BIBLIOGRAPHY

[35] Zhengxiong Li, Fenglong Ma, Aditya Singh Rathore, Zhuolin Yang, Baicheng Chen,

Lu Su, and Wenyao Xu. WaveSpy: Remote and through-wall screen attack via

mmWave sensing. In 2020 IEEE Symposium on Security and Privacy (SP), pages

217–232, May 2020. ISSN: 2375-1207.

[36] Wenqiang Jin, Srinivasan Murali, Huadi Zhu, and Ming Li. Periscope: a keystroke

inference attack using human coupled electromagnetic emanations. In Proceedings

of the 2021 ACM SIGSAC Conference on Computer and Communications Security,

pages 700–714. ACM, November 2021.

[37] Markus G. Kuhn. Compromising emanations of LCD TV sets. IEEE Transactions

on Electromagnetic Compatibility, 55(3):564–570, June 2013.

[38] Yuichi Hayashi, Naofumi Homma, Mamoru Miura, Takafumi Aoki, and Hideaki Sone.

A threat for tablet PCs in public space: Remote visualization of screen images using

EM emanation. In Proceedings of the 2014 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS ’14, pages 954–965, New York, NY, USA,

November 2014. Association for Computing Machinery.

[39] Ireneusz Kubiak and Joe Loughry. LED arrays of laser printers as valuable sources of

electromagnetic waves for acquisition of graphic data. Electronics, 8(10):1078, 2019.

[40] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos

Prvulovic. EDDIE: EM-based detection of deviations in program execution. In

Proceedings of the 44th Annual International Symposium on Computer Architecture,

ISCA ’17, pages 333–346, New York, NY, USA, June 2017. Association for Comput-

ing Machinery.

[41] Ziwei Liu, Feng Lin, Chao Wang, Yijie Shen, Zhongjie Ba, Li Lu, Wenyao Xu, and

Kui Ren. CamRadar: Hidden camera detection leveraging amplitude-modulated

sensor images embedded in electromagnetic emanations. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(4):173:1–173:25, Jan-

uary 2023.

[42] Yihua Peng, Jiemin Zhang, Jian Mao, and Mengmeng Cui. A signal-denoising method

for electromagnetic leakage from USB keyboards. Electronics, 12(17):3647, 2023.

[43] Yasunao Suzuki and Yoshiharu Akiyama. Jamming technique to prevent information

leakage caused by unintentional emissions of PC video signals. In 2010 IEEE Inter-

national Symposium on Electromagnetic Compatibility, pages 132–137, July 2010.

ISSN: 2158-1118.

[44] Tae-Lim Song, Yi-Ru Jeong, Han-Shin Jo, and Jong-Gwan Yook. Noise-jamming

effect as a countermeasure against TEMPEST during high-speed signaling. IEEE

BIBLIOGRAPHY 145

Transactions on Electromagnetic Compatibility, 57(6):1491–1500, December 2015.

Conference Name: IEEE Transactions on Electromagnetic Compatibility.

[45] Markus G. Kuhn and Ross J. Anderson. Soft Tempest: Hidden data transmission

using electromagnetic emanations. In David Aucsmith, editor, Information Hid-

ing, Lecture Notes in Computer Science, pages 124–142, Berlin, Heidelberg, 1998.

Springer.

[46] Hidema Tanaka. Information leakage via electromagnetic emanations and evaluation

of Tempest countermeasures. In Patrick McDaniel and Shyam K. Gupta, editors,

Information Systems Security, Lecture Notes in Computer Science, pages 167–179,

Berlin, Heidelberg, 2007. Springer.

[47] Ireneusz Kubiak. Computer font resistant to electromagnetic infiltration. Publisher

House of Military University of Technology, Warsaw, January 2014.

[48] Bogdan Trip, Vlad Butnariu, Mădălin Vizitiu, Alexandru Boitan, and Simona

Halunga. Analysis of compromising video disturbances through power line. Sensors,

22(1):267, January 2022. Number: 1 Publisher: Multidisciplinary Digital Publishing

Institute.

[49] Stanislav Subbotin, Dmitry Volchkov, Alexander Zabokritski, and Elena Dymova.

Justification of the relevance of developing a test program for special studies of the

DisplayPort interface. In 2021 Ural Symposium on Biomedical Engineering, Radio-

electronics and Information Technology (USBEREIT), pages 0500–0502, May 2021.

[50] Egor A. Simakhin, Danil A. Shinyaev, Igor I. Kagin, Leonid N. Kessarinskiy, and

Anatoly P. Durakovskiy. Analysis of electromagnetic radiation of LCD monitor with

DisplayPort interface. In 2022 Moscow Workshop on Electronic and Networking

Technologies (MWENT), pages 1–5, June 2022.

[51] VESA Coordinated Video Timings (CVT) standard, version 1.2. Video Electronics

Standards Association, February 2013.

[52] VESA and Industry Standards and Guidelines for Computer Display Monitor Tim-

ing (DMT) standard, version 1, rev. 12. Video Electronics Standards Association,

November 2008.

[53] Daniel Fleisch. A student’s guide to Maxwell’s equations. Cambridge University

Press, 2008.

[54] Tze-Chuen Toh. Electromagnetic theory for electromagnetic compatibility engineers.

CRC Press, 2013.

[55] Clayton R Paul. Introduction to electromagnetic compatibility. John Wiley & Sons,

2006.

146 BIBLIOGRAPHY

[56] Markus G. Kuhn. Compromising emanations: eavesdropping risks of computer dis-

plays. Technical Report UCAM-CL-TR-577, University of Cambridge, Computer

Laboratory, December 2003.

[57] Recommendation ITU-R P.372-7: Radio noise. Technical report, International

Telecommunication Union, 2001.

[58] Recommendation ITU-R P.372-16: Radio noise. Technical report, International

Telecommunication Union, 2022.

[59] Directive 2014/30/EU of the European Parliament and of the Council of 26 February

2014 on the harmonisation of the laws of the Member States relating to electromag-

netic compatibility (recast). OJ, L 96:79–106, 2014-03-29.

[60] Code of Federal Regulations, Part 15 – Radio frequency devices, 1989-04-25.

[61] CISPR 22:2008 Information technology equipment – radio disturbance characteristics

– limits and methods of measurement. International Electrotechnical Commission,

2008-09-24.

[62] CISPR 32:2015 Electromagnetic compatibility of multimedia equipment – emission

requirements. International Electrotechnical Commission, 2015-03-31.

[63] T Frenzel, J Rohde, and J Opfer. Elektromagnetische Schirmung von Gebäuden –

Theoretische Grundlagen. Technical Report BSI TR-03209-1, Bundesamt für Sicher-

heit in der Informationstechnik, 2008.

[64] T Frenzel, J Rohde, and J Opfer. Elektromagnetische Schirmung von Gebäuden –

Praktische Messungen. Technical Report BSI TR-03209-2, Bundesamt für Sicherheit

in der Informationstechnik, 2008.

[65] R&S FSWT test receiver: TEMPEST measuring receiver with digital signal eval-

uation. Rohde & Schwarz, 2014. https://www.rohde-schwarz.com/us/brochure-

datasheet/fswt/.

[66] Ettus Technologies. USRP hardware driver and USRP manual – USRP X3x0 series.

https://files.ettus.com/manual/page_usrp_x3x0.html. Accessed: 2023-09-18.

[67] Ettus Technologies. USRP hardware driver and USRP manual – daughterboards.

https://files.ettus.com/manual/page_dboards.html. Accessed: 2023-09-18.

[68] Karl Rothammel and Alois Krischke. Rothammels Antennenbuch. Franckh-Kosmos,

1995.

[69] F Timischl. The contrast-to-noise ratio for image quality evaluation in scanning

electron microscopy. Scanning, 37(1):54–62, 2015.

https://www.rohde-schwarz.com/us/brochure-datasheet/fswt/
https://www.rohde-schwarz.com/us/brochure-datasheet/fswt/
https://files.ettus.com/manual/page_usrp_x3x0.html
https://files.ettus.com/manual/page_dboards.html

BIBLIOGRAPHY 147

[70] Marijke Welvaert and Yves Rosseel. On the definition of signal-to-noise ratio and

contrast-to-noise ratio for fMRI data. PloS one, 8(11):e77089, 2013.

[71] Jack E Bresenham. Algorithm for computer control of a digital plotter. In Seminal

graphics: pioneering efforts that shaped the field, pages 1–6. 1998.

[72] IEEE standard for Ethernet. IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-

2015), pages 1404–1679, 2018.

[73] Pratap Misra and Per Enge. Global Positioning System: Signal, measurement, and

performance. Ganga-Jamuna Press, 2004, 2004.

[74] Elliott D. Kaplan and Christopher J. Hegarty. Understanding GPS/GNSS: Principles

and Applications. Artech House, 2017.

[75] Ettus Technologies. USRP X300 and X310 series spec sheet.

https://www.ettus.com/wp-content/uploads/2019/01/X300_X310_Spec_Sheet_

9.20.2022.pdf. Accessed: 2023-09-27.

[76] Robert Feldt and Alexey Stukalov. BlackBoxOptim.jl, v0.6.2. https://github.com/

robertfeldt/BlackBoxOptim.jl, 2023.

[77] G Jovanovic Dolecek and Sanjit K Mitra. Simple method for compensation of CIC

decimation filter. Electronics Letters, 44(19):1, 2008.

[78] Wikipedia. Tempest (codename) – Wikipedia, the free encyclopedia.

http://en.wikipedia.org/w/index.php?title=Tempest%20(codename)&oldid=

1175260499, 2023. Accessed: 2023-05-26.

[79] James L Massey. Guessing and entropy. In Proceedings of 1994 IEEE International

Symposium on Information Theory, page 204. IEEE, 1994.

[80] Boris Köpf and David Basin. An information-theoretic model for adaptive side-

channel attacks. In Proceedings of the 14th ACM conference on Computer and com-

munications security, pages 286–296, 2007.

[81] Kodak Lossless True Color Image Suite. Eastman Kodak Company. Photos by Steve

Kelly and Alfons Rudolph. https://r0k.us/graphics/kodak/

[82] Interelectronix. TEMPEST.

https://www.interelectronix.com/tempest.html. Accessed: 2023-10-11.

[83] National Security Telecommunications and Information Systems Security Committee.

NSTISSAM TEMPEST/1-92. Technical report, National Security Agency, 1922.

Declassified 1999-10-21.

https://www.ettus.com/wp-content/uploads/2019/01/X300_X310_Spec_Sheet_9.20.2022.pdf
https://www.ettus.com/wp-content/uploads/2019/01/X300_X310_Spec_Sheet_9.20.2022.pdf
https://github.com/robertfeldt/BlackBoxOptim.jl
https://github.com/robertfeldt/BlackBoxOptim.jl
http://en.wikipedia.org/w/index.php?title=Tempest%20(codename)&oldid=1175260499
http://en.wikipedia.org/w/index.php?title=Tempest%20(codename)&oldid=1175260499
https://r0k.us/graphics/kodak/
https://www.interelectronix.com/tempest.html

148 BIBLIOGRAPHY

[84] NACSIM 5000 – TEMPEST fundamentals. Technical report, National Security

Agency. Declassified 2000-12-18.

[85] CTA-861-G: A DTV profile for uncompressed high speed digital interfaces. Consumer

Technology Association, November 2016.

[86] Scott Crosby, Ian Goldberg, Robert Johnson, Dawn Song, and David Wagner. A

cryptanalysis of the high-bandwidth digital content protection system. In Secu-

rity and Privacy in Digital Rights Management: ACM CCS-8 Workshop DRM 2001

Philadelphia, PA, USA, November 5, 2001 Revised Papers, pages 192–200. Springer,

2002.

[87] Rob Johnson, Mikhail Rubnich, and Andres DelaCruz. Implementing a key recovery

attack on the high-bandwidth digital content protection protocol. In 2011 IEEE

Consumer Communications and Networking Conference (CCNC), pages 313–317.

IEEE, 2011.

[88] Ars Technica. Intel confirms HDCP key is real, can now be broken at will.

https://arstechnica.com/tech-policy/2010/09/intel-confirms-the-hdcp-

key-is-real-can-now-be-broken-at-will/. Accessed: 2023-10-11.

[89] High-bandwidth Digital Content Protection System – Mapping HDCP to Display-

Port, revision 2.3. Digital Content Protection LLC, January 2019.

[90] HD Fury. https://www.hdfury.com/. Accessed: 2023-10-11.

[91] C.W. Farrow. A continuously variable digital delay element. In 1988., IEEE Inter-

national Symposium on Circuits and Systems, pages 2641–2645 vol.3, 1988.

https://arstechnica.com/tech-policy/2010/09/intel-confirms-the-hdcp-key-is-real-can-now-be-broken-at-will/
https://arstechnica.com/tech-policy/2010/09/intel-confirms-the-hdcp-key-is-real-can-now-be-broken-at-will/
https://www.hdfury.com/

	Introduction
	History of electromagnetic eavesdropping
	TEMPEST: a signals intelligence problem
	In academic literature

	Motivation and scope
	Outline

	Background
	Image format
	Electromagnetic compatibility
	Electromagnetic radiation
	Noise sources
	Standards and measurement
	Design techniques

	Software-defined radio
	Antennas
	Introduction to video eavesdropping
	Timing parameters
	Rasterization
	Periodic averaging

	Basic image reconstruction
	DisplayPort
	Reverse engineering
	Data framing
	Scrambling
	Encoding
	An Intel-specific quirk

	Eavesdropping overview
	Synchronisation
	Offset extraction
	Bitrate adjustment
	Parameter fit

	Image reconstruction
	Experimental results
	Setup
	Synchronisation
	Test image
	Slideshow
	Colours

	Accurate scrambler tracking for colour enumeration
	Introduction
	Scrambler code phase tracking
	Overview
	Discriminators
	Tracking loop
	Parameter choice
	Performance
	Implementation

	Colour enumeration
	8b/10b encoding
	Template construction
	Sub-templates
	Cross-correlation
	Enumeration
	Averaging
	Implementation

	Experimental evaluation
	Images
	Setup
	Recordings
	Results

	Image reconstruction using phase tracking
	Scrambler carrier phase tracking
	Approximate alignment
	Phase-locked loop

	Coherent averaging
	Phase adjustment
	Removing fill regions
	Practical demonstration
	Setup
	Image
	Reconstructed images
	Eavesdropping range
	Integration time
	Image characteristics
	256-colour grayscale image

	Extensions
	Black-and-white images
	Automated vertical alignment

	Concluding remarks
	Countermeasures
	Hardware emission standards
	Software countermeasures

	Alternative designs
	Encoding
	Scrambling
	Order of operations

	Future work

	8b/10b encoding
	Farrow filter

