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Abstract

Sub-Riemannian geometry is the natural setting for studying dynamical systems, as noise

often has a lower dimension than the dynamics it enters. This makes sub-Riemannian

geometry an important field of study. In this thesis, we analysis some of the aspects of

sub-Riemannian diffusion processes on manifolds.

We first focus on studying the small-time asymptotics of sub-Riemannian diffusion bridges.

After giving an overview of recent work by Bailleul, Mesnager and Norris on small-time

fluctuations for the bridge of a sub-Riemannian diffusion, we show, by providing a specific

example, that, unlike in the Riemannian case, small-time fluctuations for sub-Riemannian

diffusion bridges can exhibit exotic behaviours, that is, qualitatively different behaviours

compared to Brownian bridges.

We further extend the analysis by Bailleul, Mesnager and Norris of small-time fluctuations

for sub-Riemannian diffusion bridges, which assumes the initial and final positions to lie

outside the sub-Riemannian cut locus, to the diagonal and describe the asymptotics of

sub-Riemannian diffusion loops. We show that, in a suitable chart and after a suitable

rescaling, the small-time diffusion loop measures have a non-degenerate limit, which we

identify explicitly in terms of a certain local limit operator. Our analysis also allows us to

determine the loop asymptotics under the scaling used to obtain a small-time Gaussian

limit for the sub-Riemannian diffusion bridge measures by Bailleul, Mesnager and Norris.

In general, these asymptotics are now degenerate and need no longer be Gaussian.

We close by reporting on work in progress which aims to understand the behaviour of

Brownian motion conditioned to have vanishing Nth truncated signature in the limit as

N tends to infinity. So far, it has led to an analytic proof of the stand-alone result that a

Brownian bridge in Rd from 0 to 0 in time 1 is more likely to stay inside a box centred at

the origin than any other Brownian bridge in time 1.
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Chapter 1

Preliminaries

Sub-Riemannian geometry is the study of geometric structures that arise on spaces where

motion is only possible along a given set of trajectories. The subject, which goes all the way

back to Carathéodory [Car09] and Cartan [Car31], has found motivation in various areas of

mathematics and physics, and has been studied from a number of different viewpoints such

as control theory, see Brockett [Bro82, Bro84] and Hermann [Her62, Her73], symplectic

and contact geometry, e.g. Chern and Hamilton [CH85], Cauchy-Riemann geometry, e.g.

Webster [Web78], or classical mechanics. As these investigations have been carried out

more or less independently each area provided its own technical terminology, which has led

to the same concepts being known under different names. Even sub-Riemannian geometry

is sometimes referred to as non-holonomic Riemannian geometry, Carnot geometry, or

singular Riemannian geometry. A notion underlying all different viewpoints is the concept

of a bracket generating distribution, also known as completely non-integrable distribution.

Definition (Bracket generating distribution). Let M be a connected smooth manifold and

let H be a distribution, i.e. a subbundle of the tangent bundle TM . We call H a bracket

generating distribution if, for all x ∈ M , the sections of H near x together with their

commutator brackets of all orders span the tangent space TxM .

A connected manifold equipped with a distribution can be considered as a space where

motion is only possible along directions given by tangent vectors in the distribution. If,

additionally, the distribution is bracket generating then, by the Chow-Rashevskii theorem,

any two points on the manifold can be connected by an admissible path.

Let us now compare the notion of a distribution being bracket generating to the similar

concept of a collection of vector fields satisfying the Hörmander condition.

Definition (Hörmander condition). Let M be a connected smooth manifold. A collection

of smooth vector fields X1, . . . , Xm on M is said to satisfy the Hörmander condition if,

for all x ∈M ,

span
⋃
k∈N

{
[Xi1 , [Xi2 , . . . , [Xik−1

, Xik ] . . . ]](x) : 1 ≤ i1, . . . , ik ≤ m
}

= TxM .
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Both a bracket generating distribution and a collection of smooth vector fields satisfying

the Hörmander condition give us a structure in the tangent bundle of a manifold from

which we can recover the entire tangent bundle by taking commutator brackets. The

main difference is that the structure induced by the collection of vector fields might be

rank-varying.

By the Hörmander hypoellipticity theorem, if X0, X1, . . . , Xm are smooth vector fields on

a manifold with X1, . . . , Xm satisfying the Hörmander condition then the operator

L =
1

2

m∑
i=1

X2
i +X0

is hypoelliptic. Thus, for a diffusion process on a connected manifold whose generator is

an operator of the above form, heat flows between any two points on the manifold. This is

another manifestation of the Chow-Rashevskii theorem in sub-Riemannian geometry. It

shows that the analysis and study of hypoelliptic operators and their associated diffusion

processes is yet another facet of sub-Riemannian geometry.

The purpose of this chapter is to provide an introduction to sub-Riemannian geometry, cf.

Section 1.1, and to the ideas from Malliavin calculus which are used to study hypoelliptic

diffusion processes, cf. Section 1.2. This sets up the relevant background and framework

for the research work we report on in Chapters 2, 3 and 4.

1.1 Sub-Riemannian geometry

We give a brief survey of sub-Riemannian geometry, where we shed light on a very limited

number of its features. We leave aside a lot of interesting aspects and phenomena, such as

the shape of spheres in a sub-Riemannian geometry, the Pansu derivative, or the existence

of singular geodesics, and only mention one of many challenging open problems. For more

elaborate introductions, consult Agrachev, Barilari and Boscain [ABB16], the collection

of lecture notes [BBS16a, BBS16b], Calin and Chang [CC09], Montgomery [Mon02], and

Strichartz [Str86, Str89]. Besides, see Hamenstädt [Ham90] for a different approach to

the theory of geodesics, Montgomery [Mon95] for a survey of singular curves, as well as

Pansu [Pan89] for the Pansu-Rademacher differentiation theorem. For open problems, see

Agrachev [Agr14] and Montgomery [Mon02, Chapter 10].

Let M be a connected smooth manifold and recall that a distribution on M is a subbundle

of the tangent bundle TM . A space where motion is restricted along a set of admissible

paths is understood as a sub-Riemannian manifold.

Definition 1.1.1. A sub-Riemannian structure on the manifold M consists of a bracket

generating distribution H and a fiber inner product 〈·, ·〉 on H. The triple (M,H, 〈·, ·〉) is

called a sub-Riemannian manifold.
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Sub-Riemannian manifolds naturally appear in the study of constrained physical systems.

For instance, the motion of robot arms, the orbital dynamics of satellites, the Heisenberg

group which plays an important role in quantum mechanics, and the fall of a cat all have

an underlying sub-Riemannian structure.

In subsequent chapters, we are mainly concerned with the situation where the bracket

generating distribution of a sub-Riemannian structure on M is given by a collection of

smooth vector fields X1, . . . , Xm on M satisfying the Hörmander condition. In this case,

we associate a fiber inner product as follows, cf. Belläıche [Bel96, Definition 1.1]. For all

x ∈M , we endow the subspace

Hx = span{X1(x), . . . , Xm(x)} ⊂ TxM

with the inner product 〈·, ·〉x obtained by polarising the quadratic form gx on Hx satisfying

gx(v) = inf

{
m∑
i=1

(
ui
)2

: u1, . . . , um ∈ R with
m∑
i=1

uiXi(x) = v

}
. (1.1.1)

To see that (1.1.1) indeed gives a positive definite quadratic form on Hx, consider the

linear map σx : Rm → Hx defined by

σx
(
u1, . . . , um

)
=

m∑
i=1

uiXi(x) .

The restriction of the map σx to the orthogonal complement (kerσx)
⊥ of kerσx ⊂ Rm with

respect to the Euclidean inner product is a linear isomorphism. Let ρx : Hx → (kerσx)
⊥

be the inverse of σx restricted to (ker σx)
⊥ and let ‖ · ‖2 denote the Euclidean norm. Then

for v ∈ Hx and any u = (u1, . . . , um) ∈ Rm with σx(u) = v, we have

‖ρx(v)‖2
2 ≤ ‖ρx(v)‖2

2 + ‖u− ρx(v)‖2
2 = ‖ρx(v) + u− ρx(v)‖2

2 = ‖u‖2
2

due to u− ρx(v) ∈ kerσx and ρx(v) ∈ (kerσx)
⊥. It follows that

gx(v) = ‖ρx(v)‖2
2

and, as ρx is a linear isomorphism, gx is a positive definite quadratic form on Hx. Moreover,

if X1, . . . , Xm are linearly independent at x ∈M then kerσx = {0}, which implies that

〈Xi, Xi〉x = gx (Xi(x)) = 1 for all i ∈ {1, . . . ,m} .

In particular, if the vector fields X1, . . . , Xm are linearly independent at every point then

(X1, . . . , Xm) is a global orthonormal frame with respect to the fiber inner product 〈·, ·〉
of the distribution spanned by X1, . . . , Xm.
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We note that in general a collection of smooth vector fields X1, . . . , Xm on M satisfying

the Hörmander condition induces a structure in the tangent bundle TM which might be

rank-varying. However, if we endow the resulting structure with the fiber inner product

obtained by polarising the positive definite quadratic form (1.1.1) the results discussed

below still apply. For simplicity of presentation, we therefore choose to not go into the more

general setting of rank-varying sub-Riemannian structures. For a complete presentation,

see Agrachev, Barilari and Boscain [ABB16, Section 3].

1.1.1 The sub-Riemannian distance

Let (M,H, 〈·, ·〉) be a sub-Riemannian manifold. We call H the horizontal distribution of

the sub-Riemannian manifold. An absolutely continuous path ω : [0, 1]→M is said to be

horizontal, or admissible, if ω̇t ∈ H(ωt) for almost all t ∈ [0, 1]. The first important result

in sub-Riemannian geometry is about the connectability of two points by a horizontal

path. It was independently proven by Chow [Cho39] and Rashevskii [Ras38].

Theorem (Chow-Rashevskii theorem). Any two points on a sub-Riemannian manifold

can be connected by a horizontal path in the manifold.

The length l(ω) of a horizontal path ω : [0, 1]→M is defined by

l(ω) =

∫ 1

0

√
〈ω̇t, ω̇t〉ωt dt . (1.1.2)

For x, y ∈M , let

Hx,y = {ω ∈ C ([0, 1],M) : ω horizontal path with ω0 = x and ω1 = y}

be the subset of C([0, 1],M) consisting of the horizontal paths connecting x to y, and set

d(x, y) = inf
ω∈Hx,y

l(ω) . (1.1.3)

By the Chow-Rashevskii theorem, the set Hx,y is non-empty and (1.1.3) defines a distance

function on M which is compatible with the topology of M . This distance function induced

by the sub-Riemannian structure on M is called the sub-Riemannian distance, or also the

Carnot-Carathéodory distance. Alternatively, one defines the sub-Riemannian distance by

considering the energy I(ω) of a horizontal path ω given as

I(ω) =

∫ 1

0

〈ω̇t, ω̇t〉ωt dt ,

and then setting

d(x, y) = inf
ω∈Hx,y

√
I(ω) .
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As a result of the Cauchy-Schwarz inequality, both approaches give rise to the same

distance function d on M . If (M,d) is a complete metric space then the corresponding

sub-Riemannian manifold is said to be complete. For instance, a sub-Riemannian manifold

(M,H, 〈·, ·〉) where the fiber inner product 〈·, ·〉 arises as the restriction of a complete

Riemannian metric on M to the horizontal distribution H is complete.

In the next section, we see that it is possible to define the sub-Riemannian distance using

ideas from control theory.

1.1.2 Connections to control theory

In control theory, one is interested in studying smooth control systems on Rd given, for a

smooth function f : Rd × Rm → Rd, as

q̇t = f(qt, ut) for t ∈ [0, 1] , (1.1.4)

where u : [0, 1] → Rm is called the control. A solution q : [0, 1] → Rd of the ordinary

differential equation (1.1.4) is called a controlled path. The first question which arises in

control theory is the question of controllability, i.e. if for any two points x, y ∈ Rd there

exists a control u such that the associated controlled path (qt)t∈[0,1] starting from q0 = x

satisfies q1 = y. Note the similarity with the question in sub-Riemannian geometry about

the connectability of two points by a horizontal path.

To analyse the controllability of a smooth control system, it is common to consider the

first-order approximation of the system. The reason for this is if the linearised system is

controllable then so is the original control system near the point of linearisation. Thus, by

also extending our consideration to the manifold setting, we become interested in studying

linear control systems of the form

q̇t =
m∑
i=1

uitXi(qt) for t ∈ [0, 1] , (1.1.5)

where X1, . . . , Xm are smooth vector fields on a connected smooth manifold M and the

path u = (u1, . . . , um) : [0, 1] → Rm is assumed to be measurable. Let us suppose that

the vector fields X1, . . . , Xm satisfy the Hörmander condition. Then X1, . . . , Xm together

with the fiber inner product 〈·, ·〉 on span{X1, . . . , Xm} defined by polarising the quadratic

form (1.1.1) induce a, potentially rank-varying, sub-Riemannian structure on M . From

the Chow-Rashevskii theorem, it follows that for any two points x, y ∈ M there exists a

horizontal path ω : [0, 1]→M with ω0 = x and ω1 = y. Since ω is horizontal there exists

a measurable path u : [0, 1]→ Rm such that

ω̇t =
m∑
i=1

uitXi(ωt) for almost all t ∈ [0, 1] .
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In the language of control theory, this says that (ut)t∈[0,1] is a control whose associated

controlled path (ωt)t∈[0,1] starting from x ends at y. Hence, as yet another manifestation

of the Chow-Rashevskii theorem, if the vector fields X1, . . . , Xm satisfy the Hörmander

condition then the linear control system (1.1.5) is controllable.

To see how to obtain the sub-Riemannian distance from the viewpoint of control theory,

we observe that the expression (1.1.1) of the quadratic form giving the fiber inner product

associated with the vector fields X1, . . . , Xm and the definition (1.1.2) of the length of a

horizontal path imply that

l(ω) = inf


∫ 1

0

√√√√ m∑
i=1

(uit)
2

dt : (ut)t∈[0,1] measurable with ω̇t =
m∑
i=1

uitXi(ωt)

 .

Therefore, the problem of finding the sub-Riemannian distance between x, y ∈M can be

formulated as the optimal control problem

minimise

∫ 1

0

√√√√ m∑
i=1

(uit)
2

dt

subject to q0 = x, q1 = y for q : [0, 1]→M satisfying q̇t =
m∑
i=1

uitXi(qt) .

(1.1.6)

We are additionally interested in not only the sub-Riemannian distance between points

but in the horizontal paths which achieve this minimal length.

1.1.3 Geodesic curves and the sub-Riemannian cut locus

As in Riemannian geometry, we can use the energy functional to define the notion of a

geodesic curve in a sub-Riemannian manifold.

Definition 1.1.2. A geodesic in a sub-Riemannian manifold is a horizontal path which

locally minimises the energy functional.

Using the Cauchy-Schwarz inequality, we can show that, as in Riemannian geometry, the

geodesics in a sub-Riemannian manifold are those horizontal paths (ωt)t∈[0,1] which locally

minimise the length functional and are parametrised to have constant speed
√
〈ω̇t, ω̇t〉ωt .

However, unlike the Riemannian case, it is an open question in sub-Riemannian geometry

if geodesics are always smooth, cf. Montgomery [Mon02, Problem 10.1].

There are further complications which make the study of geodesics in sub-Riemannian

geometry harder than in Riemannian geometry. Recall that in the Riemannian setting,

any maximal geodesic is uniquely determined by its initial point and its initial velocity.

This cannot be the case in a general sub-Riemannian geometry. By the Chow-Rashevskii

theorem, the geodesics starting from a point x in a sub-Riemannian manifold cover a full

neighbourhood of x, whereas the dimension of their admissible initial velocities equals the
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dimension of the rank of the sub-Riemannian structure at x, which in general is strictly

smaller than the dimension of the manifold. It turns out that the right approach to take

in sub-Riemannian geometry is to parametrise a geodesic by its initial point x and an

initial covector λ0 ∈ T ∗xM .

In the following, let us suppose that the sub-Riemannian structure on a connected smooth

manifold M is induced by smooth vector fields X1, . . . , Xm on M satisfying the Hörmander

condition. The theorem below, a weak version of the Pontryagin maximum principle,

provides a necessary condition satisfied by geodesics in a sub-Riemannian manifold. For

a proof, see Agrachev, Barilari and Boscain [ABB16, Section 3].

Theorem 1.1.3. Suppose that q : [0, 1] → M is a solution with constant speed of the

optimal control problem (1.1.6), and denote the corresponding control by u. Let (φ0,t) be

the flow of the nonautonomous vector field
∑m

i=1 u
i
tXi. Then there exists λ0 ∈ T ∗xM such

that the path (λt)t∈[0,ε(λ0)] in the cotangent bundle T ∗M defined by

λt =
(
φ−1

0,t

)∗
λ0 ∈ T ∗qtM

satisfies

(N) λt(Xi) = uit for all i ∈ {1, . . . ,m} , or

(A) λt(Xi) = 0 for all i ∈ {1, . . . ,m} .

In case (A), we have λ0 6= 0.

The path λ in the cotangent bundle is called a normal extremal if condition (N) is satisfied,

and an abnormal extremal if condition (A) is satisfied. We note that, unless (qt)t∈[0,1] is

a constant path, an associated path λ cannot satisfy both (N) and (A). However, it is

possible that for a given solution (qt)t∈[0,1] there exist two different covectors λ1
0 ∈ TxM

and λ2
0 ∈ TxM such that λ1

t =
(
φ−1

0,t

)∗
λ1

0 defines a normal extremal while λ2
t =

(
φ−1

0,t

)∗
λ2

0

gives an abnormal extremal. Whereas it is known that normal extremals are smooth, it

is still an open question if abnormal extremals are always smooth. Moreover, if (qt)t∈[0,1]

admits a normal extremal (λt)t∈[0,1] then (qt)t∈[0,1] is shown to be a geodesic, which need

not be the case if it admits an abnormal extremal defined up to time 1.

The notion of normal extremals is used in the definition of the sub-Riemannian cut locus.

Let (ψt(λ) : λ ∈ T ∗M, t ∈ (ζ−(λ), ζ+(λ))) be the maximal flow of the Hamiltonian vector

field V on T ∗M associated with the Hamiltonian H : T ∗M → R given by

H(λ) =
1

2

m∑
i=1

λ(Xi)
2 for λ ∈ T ∗M ,

i.e. V is the smooth vector field on T ∗M satisfying β(V, ·) = dH with β the canonical

symplectic two-form on T ∗M . We note that normal extremals are integral curves of the
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vector field V . Write π : T ∗M → M for the projection of the bundle. A path γ ∈ Hx,y is

said to be strongly minimal if there exist δ > 0 and a relatively compact open set U ⊂M

such that

I(γ) ≤ I(ω) for all ω ∈ Hx,y and I(γ) + δ ≤ I(ω) for all ω ∈ Hx,y which leave U .

Extending Bismut [Bis84] and Ben Arous [BA88], as in [BMN15], to manifolds which are

not assumed to be complete, we obtain the following definition of the sub-Riemannian

cut locus.

Definition 1.1.4. The pair (x, y) ∈ M ×M is said to lie outside the sub-Riemannian

cut locus if the following three conditions are satisfied.

(i) There is a unique strongly minimal path γ ∈ Hx,y.

(ii) There exists a normal extremal (λt)t∈[0,1] such that γt = πλt for all t ∈ [0, 1].

(iii) The linear map J1 : T ∗xM → TyM defined by

J1ξ0 =
∂

∂ε

∣∣∣∣
ε=0

πψ1 (λ0 + εξ0)

is invertible.

The original definition of the sub-Riemannian cut locus by Bismut [Bis84] assumes the

sub-Riemannian manifold to be complete and does not require the unique minimal path

γ ∈ Hx,y to be strongly minimal. By the Hopf-Rinow theorem any minimal path on a

complete sub-Riemannian manifold is indeed strongly minimal. Therefore, on a complete

sub-Riemannian manifold, Definition 1.1.4 reduces to the definition of the sub-Riemannian

cut locus by Bismut [Bis84].

The sub-Riemannian cut locus is less well understood than the Riemannian one, and shows

some peculiar behaviours which do not occur in Riemannian geometry. For instance, if x

is a point in a sub-Riemannian manifold where the rank of the horizontal distribution is

less than the dimension of the manifold then any neighbourhood of x contains a point y

such that the pair (x, y) lies inside the sub-Riemannian cut locus. What is known is that

the sub-Riemannian cut locus is a closed and symmetric subset of M ×M , and that the

squared sub-Riemannian distance function is a smooth function on the complement of the

cut locus, see Bismut [Bis84, Theorem 1.26 and Remark 11].

1.1.4 Sub-Riemannian Laplacians

The sub-Riemannian Laplacian, or short sub-Laplacian, on a sub-Riemannian manifold

is defined as the divergence of the horizontal gradient. It is the natural generalisation of

the Laplace-Beltrami operator in Riemannian geometry.
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Let (M,H, 〈·, ·〉) be a sub-Riemannian manifold and let ν be a positive smooth measure

on the manifold M . We define the horizontal gradient of a smooth function f on M as

the unique section ∇Hf of the distribution H such that, for all sections X of H,

〈∇Hf,X〉 = X(f) .

Note that this depends on the horizontal distribution H and the fiber inner product 〈·, ·〉
only. In a local orthonormal frame (Y1, . . . , Yk) of H, the horizontal gradient ∇Hf can be

written as

∇Hf =
k∑
i=1

Yi(f)Yi ,

because, for all j ∈ {1, . . . , k}, we have〈
k∑
i=1

Yi(f)Yi, Yj

〉
=

k∑
i=1

Yi(f) 〈Yi, Yj〉 = Yj(f) .

Furthermore, the divergence of a smooth vector field X on M with respect to the positive

smooth measure ν is defined to be the smooth function divX on M which satisfies, for

all smooth functions f on M of compact support, that∫
M

f divX dν = −
∫
M

X(f) dν .

This depends on the sub-Riemannian structure (H, 〈·, ·〉) and on our choice of measure ν.

The sub-Riemannian Laplacian ∆H on the sub-Riemannian manifold (M,H, 〈·, ·〉) acting

on smooth functions f on M is then given by

∆Hf = div (∇Hf) .

Due to the dependence of the divergence on the choice of measure ν, the sub-Riemannian

Laplacian also depends on this additional structure on M . In a local orthonormal frame

(Y1, . . . , Yk) of the horizontal distribution H, we obtain

∆H =
k∑
i=1

(
Y 2
i + (div Yi)Yi

)
.

On so-called equiregular sub-Riemannian manifolds, it is possible to define an intrinsic

positive smooth measure, the Popp measure, and to define an intrinsic sub-Riemannian

Laplacian by taking the divergence with respect to this intrinsic positive smooth measure.

See Montgomery [Mon02, Section 10.6] for a construction of the Popp measure.
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1.1.5 Examples of sub-Riemannian manifolds

To illustrate the notions introduced above, we provide a few examples of sub-Riemannian

manifolds. Some of these examples are revisited in subsequent chapters. We start off with

one of the simplest and most important sub-Riemannian geometries.

Example 1.1.5 (Heisenberg group). Let M = R3 and consider the distribution H on R3

which is given as

H(x1,x2,x3) =

{(
x1, x2, x3, v1, v2, v3

)
∈ TR3 : v3 −

1

2

(
x1v2 − x2v1

)
= 0

}
.

Let the fiber inner product 〈·, ·〉 on H be

dx1 ⊗ dx1 + dx2 ⊗ dx2 .

We note that H is a field of two-planes in R3 which is generated by the vector fields

X1 =
∂

∂x1
− 1

2
x2 ∂

∂x3
and X2 =

∂

∂x2
+

1

2
x1 ∂

∂x3
.

These vector fields are orthonormal with respect to the fiber inner product 〈·, ·〉 on H and

are left-invariant on the Lie group obtained by endowing R3 with the group law

(
x1, x2, x3

)
?
(
y1, y2, y3

)
=

(
x1 + y1, x2 + y2, x3 + y3 +

1

2

(
x1y2 − y1x2

))
.

We compute

[X1, X2] =
∂

∂x3
,

which implies that the vector fields X1, X2 on R3 satisfy the Hörmander condition. In

particular, H is a bracket generating distribution and (H, 〈·, ·〉) defines a sub-Riemannian

structure on R3. The sub-Riemannian manifold (R3, H, 〈·, ·〉) is called Heisenberg group,

indicating its connection with the Lie group (R3, ?). The horizontal paths in this geometry

are the absolutely continuous curves (x1
t , x

2
t , x

3
t )t∈[0,1] which satisfy, for almost all t ∈ [0, 1],

ẋ3
t =

1

2

(
x1
t ẋ

2
t − x2

t ẋ
1
t

)
. (1.1.7)

We observe that, according to Stokes’ theorem, the integral

1

2

∫ t

0

(
x1
s dx2

s − x2
s dx1

s

)
gives the signed area of the closed curve in R2 obtained by first connecting the origin with

the point (x1
0, x

2
0) by a line segment, then traversing the path (x1

s, x
2
s)s∈[0,t] and finally

returning to the origin along a straight line segment. Hence, in the Heisenberg group
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particles are allowed to move freely in the (x1, x2)-plane with the third component being

related to the signed area of the curve traced out by this motion. The problem of finding

geodesics in the Heisenberg group then reduces to the Dido isoperimetric problem. We

find that the geodesics are helices which are arcs of circles lifted to R3 by relation (1.1.7),

with line segments included as a degenerate case, cf. Montgomery [Mon02, Chapter 1].

We finally remark that the Heisenberg group has an intrinsic sub-Riemannian Laplacian,

which is the sum of squares operator

∆H = X2
1 +X2

2 .

It is the sub-Riemannian Laplacian obtained by taking the divergence with respect to the

left Haar measure ν = dx1 ∧ dx2 ∧ dx3 on (R3, ?).

The Heisenberg group generalises to any odd dimension 2n+ 1 as follows.

Example 1.1.6 (Heisenberg group Hn). Let M = R2n+1. Take H to be the distribution

on R2n+1 defined by

Hx =

{
(x, v) ∈ TR2n+1 : v2n+1 −

1

2

n∑
i=1

(
xivn+i − xn+ivi

)
= 0

}

and set the fiber inner product 〈·, ·〉 on H to be

n∑
i=1

(
dxi ⊗ dxi + dxn+i ⊗ dxn+i

)
.

Let X1, . . . , Xn, Xn+1, . . . , X2n be the vector fields on R2n+1 given, for i ∈ {1, . . . , n}, by

Xi =
∂

∂xi
− 1

2
xn+i ∂

∂x2n+1
and Xn+i =

∂

∂xn+i
+

1

2
xi

∂

∂x2n+1
.

Then (X1, . . . , Xn, Xn+1, . . . , X2n) is a global orthonormal frame of the distribution H.

Moreover, the vector fields are left-invariant on the Lie group (R2n+1, ?) with group law

x ? y =

(
x1 + y1, . . . , x2n + y2n, x2n+1 + y2n+1 +

1

2

n∑
i=1

(
xiyn+i − yixn+i

))
.

We have, for all i ∈ {1, . . . , n},

[Xi, Xn+i] =
∂

∂x2n+1
.

Therefore, the vector fields X1, . . . , Xn, Xn+1, . . . , X2n satisfy the Hörmander condition

and the triple (R2n+1, H, 〈·, ·〉) is a sub-Riemannian manifold. It is called the Heisenberg

group Hn and it admits the intrinsic sub-Riemannian Laplacian ∆H =
∑n

i=1(X2
i +X2

n+i).

We note that H1 is the Heisenberg group described in Example 1.1.5.
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The next example is simpler than the Heisenberg group, but it is in fact a rank-varying

sub-Riemannian structure.

Example 1.1.7 (Grushin plane). Let M = R2 and let X1, X2 be the vector fields on R2

given by

X1 =
∂

∂x1
and X2 = x1 ∂

∂x2
.

We observe that [X1, X2] = ∂
∂x2

. Thus, the vector fields X1 and X2 satisfy the Hörmander

condition and therefore, induce a sub-Riemannian structure on R2. The induced fiber

inner product, defined by polarising (1.1.1), is equal to

dx1 ⊗ dx1 +
1

(x1)2 dx2 ⊗ dx2 ,

which is in fact Riemannian outside the line {x1 = 0}. Since the vector field X2 vanishes

along the line {x1 = 0}, all geodesics which cross this line do so parallel to {x2 = 0}.
For instance, the points (0, 0) and (0, 1) are connected by the two families of geodesics

(γk+ : k ∈ N) and (γk− : k ∈ N) given by

γk±t =

(
± sin(kπt)√

kπ/2
,
2kπt− sin(2kπt)

2kπ

)
for t ∈ [0, 1] ,

depending on which direction we leave the origin in. For further details about geodesics

in the Grushin plane, see Boscain and Laurent [BL13, Section 3.1].

A large class of examples of sub-Riemannian manifolds arises from contact geometry.

Example 1.1.8 (Contact manifold). Let M be a manifold of dimension 2n+ 1 and let H

be a field of hyperplanes on M , that is, a subbundle of codimension 1. The distribution

H can locally be written as the kernel of a one-form α, i.e.

H = kerα = {X ∈ TM : α(X) = 0} .

We call H a contact structure on M if its locally defining one-form α satisfies

α ∧ (dα)n 6= 0 (1.1.8)

at every point. This is referred to as the complete non-integrability condition in contact

geometry. It is independent of the local choice of α because, for any smooth function

f : M → R \ {0}, we have

(fα) ∧ (d (fα))n = fn+1α ∧ (dα)n .

If α is a globally defined one-form satisfying (1.1.8), it is called a contact form on M .

For a contact structure H on M , the pair (M,H) is called a contact manifold. Note that
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from the condition (1.1.8) it follows that H is a bracket generating distribution on M . In

particular, if we choose a fiber inner product 〈·, ·〉 on the distribution H then (M,H, 〈·, ·〉)
defines a sub-Riemannian manifold, also called a contact sub-Riemannian manifold.

We see that the Heisenberg group Hn from Example 1.1.6 can be described as a contact

manifold by taking the manifold R2n+1 and endowing it with the contact form

α = dx2n+1 − 1

2

n∑
i=1

(
xi dxn+i − xn+i dxi

)
.

Another important class of contact manifolds is the class of Sasakian manifolds, introduced

by Sasaki [Sas60], which now features prominently in theoretical physics and is thought

to be important in studying the anti-de Sitter/conformal field theory correspondence in

string theory.

The final example we present plays an important role in Chapter 4.

Example 1.1.9 (Carnot group). Let G be a simply connected Lie group whose associated

Lie algebra g can be written, for some N ∈ N, as

g = V1 ⊕ · · · ⊕ VN

such that, for all i, j ∈ {1, . . . , N},

[Vi,Vj] =

Vi+j if i+ j ≤ N

0 if i+ j > N
. (1.1.9)

We call G a Carnot group of step N . To see that a Carnot group can be considered as a

sub-Riemannian manifold, observe that V1 extends to a left-invariant subbundle H on G
which is bracket generating by (1.1.9). Hence, if we further fix an inner product on V1 and

extend it to a left-invariant fiber inner product 〈·, ·〉 on H, then the triple (G, H, 〈·, ·〉)
defines a sub-Riemannian manifold.

A Carnot group of step N is said to be free if its associated Lie algebra is isomorphic to the

free nilpotent Lie algebra of step N on d generators for some d ∈ N. Up to isomorphism,

there exists a unique free Carnot group with given step and given number of generators.

By [Bau04, Proposition 2.8], every free Carnot group is isomorphic to some Rm endowed

with a polynomial group law. In that representation the exponential map reduces to the

identity map. Alternatively, a free Carnot group can be represented as follows. Identify

the free nilpotent Lie algebra of step N on d generators with the Lie algebra gN(Rd)

generated by d indeterminates inside the set of formal series truncated at order N , i.e.

gN
(
Rd
)

= Rd ⊕
[
Rd,Rd

]
⊕ · · · ⊕

[
Rd,
[
Rd, . . . ,

[
Rd,Rd

]
. . .
]]︸ ︷︷ ︸

(N−1) brackets

.
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Here the commutators are taken with respect to the tensor multiplication ⊗. The free

Carnot group of step N is then given as GN(Rd) = exp(gN(Rd)), where we use the usual

exponential of formal series.

For instance, the Heisenberg group introduced in Example 1.1.5 is isomorphic to the free

Carnot group G2(R2) of step 2 over R2. On the other hand, by a dimensional argument,

we see that the Heisenberg group Hn introduced in Example 1.1.6, which generalises the

Heisenberg group from Example 1.1.5, is not free for n ≥ 2. We also remark that the

additive groups (Rd,+) are the only commutative Carnot groups.

1.2 Malliavin calculus

Malliavin calculus, or the stochastic calculus of variations, has been developed from the

program laid out by Paul Malliavin [Mal78a, Mal78b] to give a probabilistic proof of

the Hörmander hypoellipticity theorem. Hörmander [Hör67] studied hypoelliptic second

order differential operators with smooth coefficients using the theory of partial differential

equations, and established the criterion that an operator which can be written as the sum

of squares of smooth vector fields satisfying the Hörmander condition plus lower-order

terms is hypoelliptic. From this analytic result, it follows that the solution of a stochastic

differential equation with a generator of the above form has a smooth density at any

fixed positive time. Malliavin outlined a method for directly proving the existence and

smoothness of the density for the solution of such a stochastic differential equation, which

initiated the theory of an infinite-dimensional differential calculus on the Wiener space.

The theory was later expanded in different directions by Bismut [Bis81, Bis84], Kusuoka

and Stroock [KS84, KS85, KS87], Shigekawa [Shi80], Stroock [Str81a, Str81b, Str83],

Watanabe [Wat84, Wat87], and others.

Whereas Wiener functionals are not in a class of functionals to which the classical calculus

of variations can be applied, Malliavin calculus provides the tools to define a derivative

operator acting on Wiener functionals. With this in hand, one can investigate regularity

properties of the law of Wiener functionals, and in particular analyse when the density

for solutions of stochastic differential equations is smooth. A crucial tool in this analysis

is an integration by parts formula on Gaussian spaces.

Over the years, Malliavin calculus has also become a powerful mechanism beyond the

study of the regularity of probability laws, such as in developing a stochastic calculus for

non-adapted processes, cf. Nualart [Nua98], and in mathematical finance, see Karatzas,

Ocone and Li [KOL91], as well as Malliavin and Thalmaier [MT06].

In the following, we give an overview of the results and tools from Malliavin calculus

which we use for our analysis of the small-time fluctuations for sub-Riemannian diffusion

loops in Chapter 3. This exposition is by no means intended to be exhaustive. For the

proofs of the results stated and for further reading, we refer to Bell [Bel87], Norris [Nor86]

and Nualart [Nua06, Nua09]. We should also remark that, as in [Nor86], we are staying
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close to Bismut’s approach to Malliavin calculus, whereas [Nua06, Nua09] follow Stroock’s

formulation of Malliavin calculus. In the two approaches some terms differ by a Jacobian

factor, and for instance, what we define to be the Malliavin covariance matrix is called

the reduced Malliavin covariance matrix in Stroock’s formulation.

1.2.1 The Bismut integration by parts formula

We first introduce the notion of a derived process of a stochastic process, which we then

use to present Bismut’s integration by parts formula.

Let Z0, Z1, . . . , Zm be smooth vector fields on RN and assume that they have a graded

Lipschitz structure in the sense of Norris [Nor86]. This means that the vector fields and

their derivatives of all orders satisfy polynomial growth bounds, and that there exist k ∈ N
and N1, . . . , Nk ∈ N with N1 + · · · + NK = N such that under the identification of RN

with RN1 ⊕ · · · ⊕ RNk , giving the decompositions

z =
(
z1, . . . , zk

)
and Zi(z) =

(
Z1
i (z), . . . , Zk

i (z)
)

for i ∈ {0, 1, . . . ,m} ,

where zj ∈ RNj and Zj
i (z) ∈ RNj for j ∈ {1, . . . , k}, the component Zj

i (z) depends only on

(z1, . . . , zj) and the partial differential
∂Zji
∂zj

is uniformly bounded. We impose this cascade

structure as it ensures the existence and uniqueness of strong solutions to the stochastic

differential equations we look at below.

Let (Bt)t∈[0,1] be a Brownian motion in Rm, which is realised as the coordinate process on

the path space {w ∈ C([0, 1],Rm) : w0 = 0} under Wiener measure P. Consider the Itô

stochastic differential equation in RN

dzt =
m∑
i=1

Zi(zt) dBi
t + Z0(zt) dt , z0 = z , (1.2.1)

for z ∈ RN . By [Nor86, Proposition 1.3], there exists a unique strong solution (zt)t∈[0,1] to

this stochastic differential equation, and supt∈[0,1] |zt| has moments of all orders. Choose

a smooth and bounded function u : RN → Rm ⊗ Rd whose derivatives are of polynomial

growth. For η ∈ Rd, define a perturbed process (Bη
t )t∈[0,1] in Rm by

dBη
t = dBt + u(zt)η dt , Bη

0 = 0 .

Let (zηt )t∈[0,1] in RN be the strong solution of the stochastic differential equation

dzηt =
m∑
i=1

Zi(z
η
t ) dBη,i

t + Z0(zηt ) dt , zη0 = z ,

which is the equation (1.2.1) with Brownian motion (Bt)t∈[0,1] replaced by the perturbed

process (Bη
t )t∈[0,1]. From [Nor86, Proposition 2.2], it follows that we can choose a version
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of the family ((zηt )t∈[0,1] : η ∈ Rd) of processes which is almost surely smooth in η, and

that the process (z′t)t∈[0,1] in RN ⊗ Rd given by

z′t =
∂

∂η

∣∣∣∣
η=0

zηt

satisfies the stochastic differential equation

dz′t =
m∑
i=1

∇Zi(zt)z′t dBi
t +∇Z0(zt)z

′
t dt+

m∑
i=1

Zi(zt)⊗ u(zt)
i dt , z′0 = 0 . (1.2.2)

Here u(zt)
i denotes the ith row of u(zt). We call (z′t)t∈[0,1] a derived process associated

with the stochastic process (zt)t∈[0,1]. Using the notion of derived processes, Bismut’s

integration by parts formula, cf. [Bis81, Theorem 2.1] and [Nor86, Theorem 2.3], can be

stated as follows.

Theorem 1.2.1 (Bismut’s integration by parts formula). Let (z′t)t∈[0,1] be the derived

process associated to the process (zt)t∈[0,1] in RN for some choice of u : RN → Rm ⊗ Rd

smooth and bounded, with all its derivatives of polynomial growth. Then for any bounded

differentiable function φ : RN → R with bounded first derivatives, and for all t ∈ [0, 1], we

have

E [∇φ(zt)z
′
t] = E

[
φ(zt)

m∑
i=1

∫ t

0

u(zs)
i dBi

s

]
.

We note that the stochastic process (zt, z
′
t)t∈[0,1] is itself the strong solution of a stochastic

differential equation in RN ⊕RNd with smooth coefficients which have a graded Lipschitz

structure. In particular, we can iterate Bismut’s integration by parts formula. This is a

crucial observation in studying the regularity of probability laws, and is used in proving

the criterion for a stochastic process to have a smooth density which is presented next.

1.2.2 Smooth density and the Malliavin covariance matrix

We first define the Malliavin covariance matrix of a stochastic process and then give a

criterion for a stochastic process to have a smooth density which is expressed in terms of

the associated Malliavin covariance matrix.

Let X0, X1, . . . , Xm be smooth vector fields on Rd and define a vector field X0 on Rd by

X0 = X0 +
1

2

m∑
i=1

∇XiXi ,

where∇ is understood as the Levi-Civita connection with respect to the Euclidean metric.

Assume that the vector fields X0, X1, . . . , Xm have bounded first derivatives and higher

derivatives of polynomial growth.
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Fix x ∈ Rd, and define processes (xt)t∈[0,1] in Rd and (vt)t∈[0,1] in Rd⊗ (Rd)∗ as the strong

solutions of the system of stochastic differential equations

dxt =
m∑
i=1

Xi(xt) dBi
t +X0(xt) dt , x0 = x , (1.2.3)

dvt = −
m∑
i=1

vt∇Xi(xt) dBi
t − vt

(
∇X0 −

m∑
i=1

(∇Xi)
2

)
(xt) dt , v0 = I .

The process (vt)t∈[0,1] is in fact the inverse of the derivative of the flow associated with

the stochastic differential equation defining (xt)t∈[0,1]. It features in the expression for the

Malliavin covariance matrix.

Definition 1.2.2. For t ∈ [0, 1], we call

ct =
m∑
i=1

∫ t

0

(vsXi(xs))⊗ (vsXi(xs)) ds

the Malliavin covariance matrix of the random variable xt.

Let (x′t)t∈[0,1] be the derived process associated with the process (xt)t∈[0,1] for the choice

of u having u(xt)
i = vtXi(xt). The general form (1.2.2) implies that this derived process

satisfies the stochastic differential equation in Rd ⊗ Rd

dx′t =
m∑
i=1

∇Xi(xt)x
′
t dBi

t +∇X0(xt)x
′
t dt+

m∑
i=1

Xi(xt)⊗ (vtXi(xt)) dt , x′0 = 0 . (1.2.4)

Indeed, the stochastic process (xt, x
′
t)t∈[0,1] is the unique strong solution of the system of

stochastic differential equations given by (1.2.3) and (1.2.4). Similarly, (xt, v
−1
t )t∈[0,1] is the

unique strong solution of the system consisting of (1.2.3) and the stochastic differential

equation in Rd ⊗ (Rd)∗

d
(
v−1
t

)
=

m∑
i=1

∇Xi(xt)v
−1
t dBi

t +∇X0(xt)v
−1
t dt , v−1

0 = I . (1.2.5)

Using Definition 1.2.2 and (1.2.5), we further compute that

d
(
v−1
t ct

)
=

m∑
i=1

∇Xi(xt)
(
v−1
t ct

)
dBi

t +∇X0(xt)
(
v−1
t ct

)
dt

+ v−1
t

m∑
i=1

(vtXi(xt))⊗ (vtXi(xt)) dt .

Thus, the process (v−1
t ct)t∈[0,1] satisfies the stochastic differential equation (1.2.4), and by
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uniqueness, it follows that almost surely, for all t ∈ [0, 1],

x′t = v−1
t ct .

This observation and iterating Bismut’s integration by parts formula are the main tools in

proving the following criterion for a smooth density. For the details, see [Nor86, Section 3],

or [Nua09, Section 5] in Stroock’s formulation.

Theorem 1.2.3. Let t ∈ (0, 1]. Suppose that, for all p <∞, we have

E
[∣∣det c−1

t

∣∣p] <∞ .

Then the law of xt has a smooth density with respect to Lebesgue measure on Rd.

Equipped with this criterion, we can study the regularity of probability laws by analysing

associated Malliavin covariance matrices. The theorem becomes powerful in conjunction

with the next result, cf. [Nor86, Theorem 4.2].

Theorem 1.2.4. Fix x ∈ Rd. Suppose that the vectors X1(x), . . . , Xm(x) together with

the collection of vectors

[Xi1 , [Xi2 , . . . , [Xik−1
, Xik ] . . . ]](x) for k ≥ 2 and 0 ≤ i1, . . . , ik ≤ m (1.2.6)

span Rd. Then the Malliavin covariance matrix of the process (xt)t∈[0,1] defined by the

stochastic differential equation (1.2.3) satisfies, for all t ∈ (0, 1] and all p <∞,

E
[∣∣det c−1

t

∣∣p] <∞ .

We observe that the collection of vectors (1.2.6) contains commutator brackets, evaluated

at x, which use the vector field X0. Hence, the condition that the vectors X1(x), . . . , Xm(x)

together with the collection of vectors (1.2.6) span Rd is weaker than requiring the vector

fields X1, . . . , Xm to satisfy the Hörmander condition at x ∈ Rd. If this weaker condition

holds, we say that the vector fields X0, X1, . . . , Xm satisfy the weak Hörmander condition

at the point x.

By the Kusuoka-Stroock estimate, cf. [AKS93] or see Watanabe [Wat87, Theorem 3.2],

we know that under the weak Hörmander condition the quantity E[| det c−1
t |p], for p <∞

fixed, blows up at most polynomially as t → 0. The control provided by this estimate is

a crucial ingredient in the proof of Theorem 3.1.3 in Chapter 3.

Theorem 1.2.5 (Kusuoka-Stroock estimate). Suppose the vector fields X0, X1, . . . , Xm

satisfy the weak Hörmander condition at x. Then there exist a positive integer n and, for

all p <∞, constants C(p) <∞ such that, for all t ∈ (0, 1],

(
E
[∣∣det c−1

t

∣∣p])1/p ≤ C(p)t−n .
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Combining Theorem 1.2.3 with Theorem 1.2.4, or the stronger version Theorem 1.2.5, we

obtain the following result on the regularity of probability laws.

Theorem 1.2.6. Fix x ∈ Rd. Let X0, X1, . . . , Xm be smooth vector fields on Rd which

satisfy the weak Hörmander condition at x. Suppose that X0, X1, . . . , Xm have bounded

first derivatives and higher derivatives of polynomial growth. Let (xt)t∈[0,1] be the unique

strong solution of the Itô stochastic differential equation

dxt =
m∑
i=1

Xi(xt) dBi
t +X0(xt) dt , x0 = x .

Then, for all t ∈ (0, 1], the law of the random variable xt has a smooth density with respect

to Lebesgue measure on Rd.

Note that the second order partial differential operator L on Rd given by

L =
1

2

m∑
i=1

X2
i +X0

is the generator of the process (xt)t∈[0,1] defined as the unique strong solution of (1.2.3).

Thus, Theorem 1.2.6 says that the operator ∂
∂t
− L∗y has a smooth fundamental solution.

By transferring the consideration from the fundamental solution of ∂
∂t
−L∗y to the resolvent

kernel of the operator L, Kusuoka and Stroock [KS85] give a complete probabilistic proof

of the Hörmander hypoellipticity theorem, which circumvents the use of intermediate

subelliptic estimates. It is a consequence of [KS85, Corollary 8.18].

Theorem 1.2.7 (Hörmander’s hypoellipticity theorem). Let M be a connected smooth

manifold. Let X0, X1, . . . , Xm be smooth vector fields on M and let f be a smooth function

on M . Suppose that the vector fields X1, . . . , Xm satisfy the Hörmander condition. Then

the operator L on M given as

L =
1

2

m∑
i=1

X2
i +X0 + f

is hypoelliptic.





Chapter 2

Example illustrating fluctuations

results for sub-Riemannian bridges

We provide an example to illustrate the work by Bailleul, Mesnager and Norris [BMN15] on

the small-time fluctuations for the bridge of a sub-Riemannian diffusion process. From the

result [BMN15, Theorem 1.3] it follows, as asserted by Molchanov [Mol75], that the law of

the small-time fluctuations of a Brownian bridge on a Riemannian manifold between two

points which are connected by a unique strongly minimal path is absolutely continuous

with respect to the law of the parallel translation of a Brownian bridge from 0 to 0 in

the tangent space at the initial position along the unique minimal path. The example we

construct demonstrates that in the more general setting of sub-Riemannian geometry, the

small-time fluctuations for diffusion bridges can exhibit exotic behaviours, i.e. qualitatively

different behaviours compared to Brownian bridges.

2.1 Fluctuations results for sub-Riemannian bridges

We recall the results from [BMN15] on the small-time fluctuations for sub-Riemannian

diffusion bridges. To simplify the presentation, we avoid the full generality of [BMN15],

and instead restrict our attention to generators in divergence form. As our example in the

subsequent section falls into that class, this is sufficient for our considerations.

Let M be a connected smooth manifold of dimension d and let X1, . . . , Xm be smooth

vector fields on M which satisfy the Hörmander condition, i.e. the vector fields together

with their commutator brackets of all orders span the tangent space at every point in

the manifold. The energy function I on the set of continuous paths Ω = C([0, 1],M)

associated with these vector fields can be defined as follows. Suppose that ω ∈ Ω is an

absolutely continuous path and that there exists a measurable path ξ : [0, 1]→ T ∗M with

ξt ∈ T ∗ωtM and ω̇t =
∑m

i=1 ξt(Xi)Xi for almost all t ∈ [0, 1]. Then ω has energy

I(ω) =
m∑
i=1

∫ 1

0

ξt(Xi)
2 dt .
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Otherwise, we set I(ω) = ∞. For x, y ∈ M , the subset of Ω consisting of the horizontal

paths from x to y, which are the paths of finite energy connecting x to y, is given as

Hx,y = {ω ∈ Ω: I(ω) <∞ and ω0 = x, ω1 = y} .

Since X1, . . . , Xm satisfy the Hörmander condition, the set Hx,y is non-empty by the

Chow-Rashevskii theorem, and the topology induced by the sub-Riemannian distance

d(x, y) = inf
ω∈Hx,y

√
I(ω)

is equivalent to the topology of M . Recall that a path γ ∈ Hx,y is called strongly minimal

if there exist δ > 0 and a relatively compact open set U ⊂M such that

I(γ) ≤ I(ω) for all ω ∈ Hx,y and I(γ) + δ ≤ I(ω) for all ω ∈ Hx,y which leave U .

We are interested in the small-time fluctuations of the diffusion bridge measures associated

with the vector fields X1, . . . , Xm. Choose a positive smooth measure ν on M and define

a second order partial differential operator L on M by

L =
1

2

m∑
i=1

(
X2
i + (divXi)Xi

)
, (2.1.1)

where the divergence is understood with respect to ν. If the vector fields X1, . . . , Xm are

linearly independent at every point then the operator L is exactly the sub-Riemannian

Laplacian with respect to the measure ν associated with the sub-Riemannian structure

on M induced by X1, . . . , Xm. We also remark that L is an operator in divergence form

because, for all smooth functions f of compact support in M , we have

Lf =
1

2
div

(
m∑
i=1

Xi(f)Xi

)
.

Let p be the Dirichlet heat kernel for L with respect to ν. Fix x ∈ M and let ε > 0.

Consider the diffusion process (xεt)t<ζ defined up to explosion time ζ which starts from x

and has generator εL. This process may explode with positive probability before time 1,

but on the event {ζ > 1}, the process (xεt)t∈[0,1] has a sub-probability law µxε on Ω. We

can disintegrate µxε uniquely as

µxε(dω) =

∫
M

µx,yε (dω)p(ε, x, y)ν(dy) ,

where (µx,yε : y ∈M) is a family of probability measures on Ω, which is weakly continuous

in y, with the diffusion bridge measure µx,yε supported on Ωx,y = {ω ∈ Ω: ω0 = x, ω1 = y}
for all y ∈M .
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Let the endpoints x, y ∈M be such that the pair (x, y) lies outside the sub-Riemannian cut

locus. In particular, there exists a unique strongly minimal path γ ∈ Hx,y. Write TγΩ
x,y

for the set of continuous paths v : [0, 1] → TM over γ, i.e. vt ∈ TγtM for all t ∈ [0, 1],

with v0 = v1 = 0. Choose a smooth map θ : M → Rd which restricts to a diffeomorphism

on a neighbourhood of {γt : 0 ≤ t ≤ 1}, and define a rescaling map σε : Ωx,y → TγΩ
x,y by

σε(ω)t =
(dθγt)

−1 (θ(ωt)− θ(γt))√
ε

.

Let µ̃x,yε be the pushforward measure of µx,yε by σε, i.e. the probability measure on TγΩ
x,y

given by

µ̃x,yε = µx,yε ◦ σ−1
ε .

According to [BMN15, Theorem 1.3], the rescaled diffusion bridge measures µ̃x,yε converge

weakly to a zero-mean Gaussian measure µγ on TγΩ
x,y as ε→ 0. One way of characterising

the resulting limit measure is in terms of the bicharacteristic flow of L. Set H : T ∗M → R
to be the Hamiltonian

H(λ) =
1

2

m∑
i=1

λ(Xi)
2 for λ ∈ T ∗M .

Let β be the canonical symplectic two-form on T ∗M and let V denote the smooth vector

field on T ∗M given by β(V, ·) = dH. The bicharacteristic flow of L is the maximal flow

(ψt(λ) : λ ∈ T ∗M, t ∈ (ζ−(λ), ζ+(λ))) of the vector field V . This means, for all λ ∈ T ∗M ,

we have ψ0(λ) = λ as well as ζ−(λ) < 0 < ζ+(λ), and

ψ̇t(λ) = V (ψt (λ)) for t ∈ (ζ−(λ), ζ+(λ)) ,

and ψt(λ) leaves all compact sets in T ∗M as t→ ζ+(λ) if ζ+(λ) <∞ and as t→ ζ−(λ) if

ζ−(λ) > −∞. The integral curves of V are called bicharacteristics. Write π : T ∗M → M

for the projection of the bundle. Since (x, y) is assumed to lie outside the sub-Riemannian

cut locus, there exists, as detailed in [BA88], a unique bicharacteristic (λt)t∈[0,1] such that

γt = πλt for all t ∈ [0, 1]. The covariance structure of the zero-mean Gaussian limit

measure µγ on TγΩ
x,y is given in terms of the following linear maps. For t ∈ [0, 1], define

Jt : T
∗
xM → TγtM and Kt : T

∗
yM → TγtM by

Jtξ0 =
∂

∂ε

∣∣∣∣
ε=0

πψt (λ0 + εξ0) and Ktξ1 =
∂

∂ε

∣∣∣∣
ε=0

πψ−(1−t) (λ1 − εξ1) . (2.1.2)

Due to Definition 1.1.4 of the sub-Riemannian cut locus, we are guaranteed that the linear

map J1 is invertible. Thus, the linear map, for 0 ≤ s ≤ t ≤ 1,

JsJ
−1
1 K∗t : T ∗γtM → TγsM
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is well-defined. Combining the result [BMN15, Theorem 1.3] on the weak convergence of

the rescaled diffusion bridge measures µ̃x,yε and the characterisation [BMN15, Theorem 2.1]

of the zero-mean Gaussian limit measure µγ on TγΩ
x,y, and by restricting our attention

to the class of operators which are of the divergence form (2.1.1), we obtain the following

theorem on the small-time fluctuations for the bridge of a sub-Riemannian diffusion.

Theorem 2.1.1. Let M be a connected smooth manifold and fix x, y ∈ M . Let L be a

second order partial differential operator on M of the form

L =
1

2

m∑
i=1

(
X2
i + (divXi)Xi

)
,

where the divergence is taken with respect to a positive smooth measure ν on M , and where

X1, . . . , Xm are smooth vector fields on M satisfying the Hörmander condition. Suppose

there exists a unique strongly minimal path γ ∈ Hx,y and that the pair (x, y) lies outside

the sub-Riemannian cut locus. Then, as ε→ 0, the rescaled diffusion bridge measures µ̃x,yε

converge weakly to the unique zero-mean Gaussian measure µγ on TγΩ
x,y whose covariance

is given, for 0 ≤ s ≤ t ≤ 1, by∫
TγΩx,y

vs ⊗ vt µγ(dv) = JsJ
−1
1 K∗t .

In the following section, we determine the two families of linear maps (Jt : t ∈ [0, 1]) and

(Kt : t ∈ [0, 1]) for a particular choice of sub-Riemannian geometry, and thereby show

that the small-time fluctuations for the bridge of a sub-Riemannian diffusion process can

exhibit qualitatively different behaviours compared to Brownian bridges.

2.2 Bridge with exotic small-time fluctuations

By means of a specific example, we show that the small-time fluctuations for the bridge of

a sub-Riemannian diffusion can exhibit exotic behaviours. Fix M = R3. Choose a smooth

and bounded function ϕ : R→ R and let X1, X2, X3 be the vector fields on R3 defined by

X1 =
∂

∂x1
, X2 =

(
ϕ(x1) + x3

) ∂

∂x2
and X3 =

∂

∂x3
.

Note that [X3, X2] = ∂
∂x2

and in particular, that X1, X3, [X3, X2] span the tangent space

at every point in R3. Hence, the vector fields X1, X2, X3 satisfy the Hörmander condition.

Let ν be Lebesgue measure on R3. Since
∑3

i=1 (divXi)Xi = 0 with respect to ν, the

operator L on R3 given by (2.1.1) is the sum of squares operator

L =
1

2

3∑
i=1

X2
i =

1

2

(
∂2

∂(x1)2
+
(
ϕ(x1) + x3

)2 ∂2

∂(x2)2
+

∂2

∂(x3)2

)
. (2.2.1)
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Fix the initial position to be x = (0, 0, 0) and the final position to be y = (1, 0, 0). Let

us consider an absolutely continuous path ω : [0, 1] → R3 with ω0 = x and ω1 = y. Since

X1 = ∂
∂x1

is orthogonal to both X2 and X3 at every point, we obtain

I(ω) ≥
∫ 1

0

(
ω̇1
t

)2
dt ,

with equality if and only if ω̇2
t = ω̇3

t = 0 for almost all t ∈ [0, 1]. Using the Cauchy-Schwarz

inequality, we further deduce

I(ω) ≥
(∫ 1

0

ω̇1
t dt

)2

= 1 ,

with equality if and only if ω1
t = t and ω2

t = ω3
t = 0 for all t ∈ [0, 1]. This shows that the

path γ ∈ Hx,y given by

γt = (t, 0, 0) for t ∈ [0, 1]

is the unique minimal path in Hx,y. Moreover, by the Hopf-Rinow theorem, the path γ is

strongly minimal because R3 endowed with the sub-Riemannian distance function induced

by the vector fields X1, X2, X3 is a complete metric space.

Applying the bicharacteristic flow approach from [BMN15, Section 2], which we recalled

in Section 2.1, we determine the small-time fluctuations for the bridge from x to y of the

sub-Riemannian diffusion process with generator L. Changing to a Hamiltonian point of

view, we denote the coordinates on T ∗R3 by (q, p) = (q1, q2, q3, p1, p2, p3). The Hamiltonian

H : T ∗R3 → R associated with the operator L in (2.2.1) is

H(q, p) =
1

2

(
p2

1 +
(
ϕ
(
q1
)

+ q3
)2
p2

2 + p2
3

)
for (q, p) ∈ T ∗R3 .

The bicharacteristics, i.e. the integral curves of the corresponding Hamiltonian vector

field, are the solutions to the Hamiltonian equations

q̇k =
∂H
∂pk

, ṗk = −∂H
∂qk

.

In our example, these equations read as follows.

q̇1
t = pt,1 ṗt,1 = −

(
ϕ
(
q1
t

)
+ q3

t

)
ϕ′
(
q1
t

)
p2
t,2

q̇2
t =

(
ϕ
(
q1
t

)
+ q3

t

)2
pt,2 ṗt,2 = 0

q̇3
t = pt,3 ṗt,3 = −

(
ϕ
(
q1
t

)
+ q3

t

)
p2
t,2

(2.2.2)

In particular, the curve (λt)t∈[0,1] given by λt = (t, 0, 0, 1, 0, 0) is a bicharacteristic which

projects onto the unique minimal path γ ∈ Hx,y. We now aim to determine the linear

maps Jt : T
∗
xR3 → TγtR3 and Kt : T

∗
yR3 → TγtR3 which are defined by (2.1.2). It is in fact
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enough to find the maps Jts : T ∗γsR
3 → TγtR3, for 0 ≤ s ≤ t ≤ 1, given as

Jtsξs =
∂

∂ε

∣∣∣∣
ε=0

πψt−s (λs + εξs) ,

since Jt = Jt0 by definition, and K∗t = J1t by a generalisation of a calculation performed

in [BMN15, Section 2]. The underlying idea for computing the linear maps Jts is to use

approximate solutions of the Hamiltonian equations (2.2.2) which are close enough to the

actual solutions so that they have the same limit behaviour as ε→ 0.

Before we proceed, let us recall the following theorem on the dependence of solutions of

ordinary differential equations on initial conditions, cf. Dieudonné [Die69, Section 10.8].

It ensures the existence of bicharacteristics through λs+ εξs up to sufficiently large times,

for small enough ε.

Theorem 2.2.1. Let U ⊂ Rn be open and let V : U → Rn be a locally Lipschitz vector

field. For z ∈ U , we denote the lifetime of the unique solution of the ordinary differential

equation

żt = V (zt) subject to z0 = z

by ζ(z). Then, for all T < ζ(z), there exists some ε0 = ε0(T ) > 0 such that Bε0(z) ⊂ U

and ζ(z̃) > T for all z̃ ∈ Bε0(z).

Fix s ∈ [0, 1]. Let a, b, c ∈ R be arbitrary and set ξs = (s, 0, 0, a, b, c). Since (λt)t∈[0,1]

extends to an integral curve for all times, Theorem 2.2.1 implies that there exists some

ε0 > 0 such that, for all ε ∈ (0, ε0), the bicharacteristic

(qεt , p
ε
t) =

(
qε,1t , qε,2t , qε,3t , pεt,1, p

ε
t,2, p

ε
t,3

)
through (qεs, p

ε
s) = λs + εξs = (s, 0, 0, 1 + εa, εb, εc) exists for all t ∈ [0, 1]. Note that here

we fix the initial condition at time t = s. Besides, for t ∈ [0, 1], let

Qε,1
t = t+ εa(t− s) P ε

t,1 = 1 + εa

Qε,2
t = εb

∫ t

s

ϕ2(r) dr P ε
t,2 = εb

Qε,3
t = εc(t− s) P ε

t,3 = εc

(2.2.3)

and set

(Qε
t , P

ε
t ) =

(
Qε,1
t , Qε,2

t , Qε,3
t , P ε

t,1, P
ε
t,2, P

ε
t,3

)
.

We show that (2.2.3) is an approximate solution of the Hamiltonian equations (2.2.2),

which is close enough to the actual solution so that the following proposition holds. The

result is used in determining the linear map Jts.
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Proposition 2.2.2. For all t ∈ [s, 1], we have

∂

∂ε

∣∣∣∣
ε=0

qεt =
∂

∂ε

∣∣∣∣
ε=0

Qε
t .

In proving this proposition, we need control over how far Qε
t deviates from qεt . Observe

(Qε
s, P

ε
s ) = (s, 0, 0, 1 + εa, εb, εc) = (qεs, p

ε
s) ,

and that for the functions F,G : [0, 1]× T ∗R3 → R3 defined by

F (t, q, p) =
(
p1, ϕ

2(t)p2, p3

)
, (2.2.4)

G (t, q, p) = 0 ,

it holds true that

Q̇ε
t = F (t, Qε

t , P
ε
t ) ,

Ṗ ε
t = G (t, Qε

t , P
ε
t ) .

Similarly, let f, g : T ∗R3 → R3 be such that the Hamiltonian equations (2.2.2) write as

q̇t = f (qt, pt) ,

ṗt = g (qt, pt) .

The proof of Proposition 2.2.2 relies on the lemma below, which is used to gain control

over the quantity ‖qεt −Qε
t‖1 for t ∈ [s, 1] and ε > 0 small enough. Here ‖ · ‖1 denotes the

`1-norm of a vector.

Lemma 2.2.3. Suppose that ε ∈ (0, 1). Then there exist constants D1 and D2, which

depend on a, b and c but are independent of ε, such that, for all t ∈ [0, 1],

‖f (Qε
t , P

ε
t )− F (t, Qε

t , P
ε
t )‖1 ≤ D1ε

2 and (2.2.5)

‖g (Qε
t , P

ε
t )−G (t, Qε

t , P
ε
t )‖1 ≤ D2ε

2 . (2.2.6)

Proof. From (2.2.3) and the Hamiltonian equations (2.2.2), it follows that

f (Qε
t , P

ε
t ) =

(
P ε
t,1,
(
ϕ
(
Qε,1
t

)
+Qε,3

t

)2
P ε
t,2, P

ε
t,3

)
=
(
1 + εa, (ϕ(t+ εa(t− s)) + εc(t− s))2 εb, εc

)
.

Using (2.2.4) yields

F (t, Qε
t , P

ε
t ) =

(
P ε
t,1, ϕ

2(t)P ε
t,2, P

ε
t,3

)
=
(
1 + εa, ϕ2(t)εb, εc

)
,
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and therefore, by subtracting the two equations, we obtain

f (Qε
t , P

ε
t )− F (t, Qε

t , P
ε
t ) =

(
0,
(
(ϕ(t+ εa(t− s)) + εc(t− s))2 − ϕ2(t)

)
εb, 0

)
. (2.2.7)

Applying Taylor’s theorem with the Lagrange form of the remainder, we deduce that

ϕ2(t+ εa(t− s)) = ϕ2(t) + 2εa(t− s)ϕ(t)ϕ′(t) + ε2a2(t− s)2
(

(ϕ′(η))
2

+ ϕ(η)ϕ′′(η)
)

for some η ∈ (t − εa|t − s|, t + εa|t − s|). Since ϕ : R → R is smooth and as continuous

functions on bounded intervals are bounded, there exist constants A,B,C > 0 such that,

for all t ∈ [0, 1] and all ε ∈ (0, 1),∣∣∣2εa(t− s)ϕ(t)ϕ′(t) + ε2a2(t− s)2
(

(ϕ′(η))
2

+ ϕ(η)ϕ′′(η)
)∣∣∣ ≤ (2aAB + a2

(
B2 + AC

))
ε

as well as

∣∣2εc(t− s)ϕ(t+ εa(t− s)) + ε2c2(t− s)2
∣∣ ≤ (2cA+ c2

)
ε .

In total, we have

∣∣(ϕ(t+ εa(t− s)) + εc(t− s))2 − ϕ2(t)
∣∣ ≤ (2aAB + a2

(
B2 + AC

)
+ 2cA+ c2

)
ε ,

which by (2.2.7) implies that, for all t ∈ [0, 1],

‖f (Qε
t , P

ε
t )− F (t, Qε

t , P
ε
t )‖1 ≤ D1ε

2

for some constant D1 depending on a, b and c but which is independent of ε ∈ (0, 1). In

a similar way, we compute that g(Qε
t , P

ε
t ) = (g1(Qε

t , P
ε
t ), g2(Qε

t , P
ε
t ), g3(Qε

t , P
ε
t )) has

g1 (Qε
t , P

ε
t ) = −

(
ϕ
(
Qε,1
t

)
+Qε,3

t

)
ϕ′
(
Qε,1
t

) (
P ε
t,2

)2

= − (ϕ (t+ εa(t− s)) + εc(t− s))ϕ′ (t+ εa(t− s)) ε2b2 ,

g2 (Qε
t , P

ε
t ) = 0 ,

g3 (Qε
t , P

ε
t ) = −

(
ϕ
(
Qε,1
t

)
+Qε,3

t

) (
P ε
t,2

)2
= − (ϕ (t+ εa(t− s)) + εc(t− s)) ε2b2 .

Under the assumption that ε ∈ (0, 1), we have, for all t ∈ [0, 1],

|ϕ (t+ εa(t− s)) + εc(t− s)| ≤ A+ c

and

|(ϕ (t+ εa(t− s)) + εc(t− s))ϕ′ (t+ εa(t− s))| ≤ (A+ c)B .
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Since G ≡ 0, it follows that, for all t ∈ [0, 1],

‖g (Qε
t , P

ε
t )−G (t, Qε

t , P
ε
t )‖1 ≤ D2ε

2

for some constant D2 which depends on a, b and c but is independent of ε ∈ (0, 1).

Equipped with this lemma, we can prove our proposition.

Proof of Proposition 2.2.2. Due to the continuous dependence of the solutions to systems

of ordinary differential equations on initial conditions, cf. Theorem 2.2.1, the set

N1 = {(qεt , pεt) : 0 ≤ ε ≤ ε0, 0 ≤ t ≤ 1} ⊂ T ∗R3

is compact, where (q0
t , p

0
t ) = λt. Likewise, as an immediate consequence of (2.2.3), the set

N2 = {(Qε
t , P

ε
t ) : 0 ≤ ε ≤ ε0, 0 ≤ t ≤ 1} ⊂ T ∗R3

is also compact. Since ϕ : R→ R is smooth, we see from the Hamiltonian equations (2.2.2)

that the functions f and g are differentiable. Hence, they are locally Lipschitz on T ∗R3,

which implies that f and g are Lipschitz on the compact subset N = N1 ∪ N2 ⊂ T ∗R3.

Let L1 and L2 denote the Lipschitz constants of the functions f and g on the compact

set N with respect to the `1-norm. Using the fact that (qεs, p
ε
s) = (Qε

s, P
ε
s ) as well as the

estimates (2.2.5) and (2.2.6), we conclude that, for t ∈ [s, 1] and ε < min(1, ε0),

‖(qεt , pεt)− (Qε
t , P

ε
t )‖1

=

∥∥∥∥∫ t

s

(f(qεr , p
ε
r)− F (r,Qε

r, P
ε
r )) dr

∥∥∥∥
1

+

∥∥∥∥∫ t

s

(g(qεr , p
ε
r)−G(r,Qε

r, P
ε
r )) dr

∥∥∥∥
1

≤
∫ t

s

‖f(qεr , p
ε
r)− F (r,Qε

r, P
ε
r )‖1 dr +

∫ t

s

‖g(qεr , p
ε
r)−G(r,Qε

r, P
ε
r )‖1 dr

≤
∫ t

s

‖f(qεr , p
ε
r)− f(Qε

r, P
ε
r )‖1 dr +

∫ t

s

‖f(Qε
r, P

ε
r )− F (r,Qε

r, P
ε
r )‖1 dr

+

∫ t

s

‖g(qεr , p
ε
r)− g(Qε

r, P
ε
r )‖1 dr +

∫ t

s

‖g(Qε
r, P

ε
r )−G(r,Qε

r, P
ε
r )‖1 dr

≤
∫ t

s

(L1 + L2)‖(qεr , pεr)− (Qε
r, P

ε
r )‖1 dr + (D1 +D2)ε2(t− s) .

By the Gronwall inequality, it follows that, for t ∈ [s, 1],

‖(qεt , pεt)− (Qε
t , P

ε
t )‖1 ≤ Dε2(t− s) eL(t−s) ,

where D = D1 + D2 and L = L1 + L2. Thus, there exists some constant E > 0, which

depends on a, b and c but is independent of ε ∈ (0,min(1, ε0)), such that, for t ∈ [s, 1],

‖qεt −Qε
t‖1 ≤ Eε2 .
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We deduce that, for all k ∈ {1, 2, 3},

Qε,k
t − Eε2 ≤ Qε,k

t − ‖qεt −Qε
t‖1 ≤ qε,kt ≤ Qε,k

t + ‖qεt −Qε
t‖1 ≤ Qε,k

t + Eε2 .

Subtracting Q0,k
t = γkt = q0,k

t from this chain of inequalities and dividing through by ε > 0

yields
Qε,k
t −Q

0,k
t

ε
− Eε ≤ qε,kt − q

0,k
t

ε
≤ Qε,k

t −Q
0,k
t

ε
+ Eε .

Letting ε decrease to 0 gives the desired result.

Using Proposition 2.2.2, we compute the maps Jts : T ∗γsR
3 → TγtR3, for 0 ≤ s ≤ t ≤ 1, as

follows.

Jtsξs =
∂

∂ε

∣∣∣∣
ε=0

πψt−s (λs + εξs) =
∂

∂ε

∣∣∣∣
ε=0

qεt =
∂

∂ε

∣∣∣∣
ε=0

Qε
t

=

(
t, 0, 0, a(t− s), b

∫ t

s

ϕ2(r) dr, c(t− s)
)

In particular, the linear map J1 : T ∗xM → TyM is given by

J1ξ0 = J10ξ0 =

(
1, 0, 0, a, b

∫ 1

0

ϕ2(r) dr, c

)
. (2.2.8)

Assume the restriction ϕ|[0,1] : [0, 1]→ R is non-zero. Then the expression (2.2.8) implies

that J1 is invertible. As the endpoints x = (0, 0, 0) and y = (1, 0, 0) are connected by the

unique strongly minimal path γ ∈ Hx,y, which is the projection of a bicharacteristic, the

pair (x, y) lies outside the sub-Riemannian cut locus. Hence, Theorem 2.1.1 applies and

the small-time fluctuations for the bridge from x to y are characterised by the zero-mean

Gaussian measure µγ whose covariance structure is given, for 0 ≤ s ≤ t ≤ 1, by

JsJ
−1
1 K∗t (t, 0, 0, a, b, c) = Js0J

−1
10 J1t(t, 0, 0, a, b, c)

=

(
s, 0, 0, as(1− t),

b
∫ s

0
ϕ2(r) dr

∫ 1

t
ϕ2(r) dr∫ 1

0
ϕ2(r) dr

, cs(1− t)

)
.

Let (Bt)t∈[0,1] be a Brownian motion in R3. We observe that the measure µγ is the law of

the Gaussian bridge(
B1
t − tB1

1 ,

∫ t

0

ϕ(r) dB2
r −

∫ t
0
ϕ2(r) dr∫ 1

0
ϕ2(r) dr

∫ 1

0

ϕ(r) dB2
r , B

3
t − tB3

1

)
t∈[0,1]

, (2.2.9)

which is the Gaussian process(
B1
t ,

∫ t

0

ϕ(r) dB2
r , B

3
t

)
t∈[0,1]
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conditioned to go from 0 to 0 in time 1. Moreover, if we choose ϕ : R→ R to be a bump

function of the form

ϕ(t) =

exp
(
− 1

(t−t1)(t2−t)

)
if t1 < t < t2

0 otherwise
,

for t1, t2 ∈ (0, 1) with t1 < t2 fixed, then the second component

∫ t

0

ϕ(r) dB2
r −

∫ t
0
ϕ2(r) dr∫ 1

0
ϕ2(r) dr

∫ 1

0

ϕ(r) dB2
r

of the Gaussian bridge (2.2.9) is constant on the intervals [0, t1] and [t2, 1]. It follows that

the corresponding zero-mean Gaussian limit measure µγ is not absolutely continuous with

respect to the law of a Brownian bridge in R3 from 0 to 0 in time 1. This shows that the

small-time fluctuations for the bridge of a sub-Riemannian diffusion can indeed exhibit

exotic behaviours.





Chapter 3

Small-time fluctuations for

sub-Riemannian diffusion loops

We study the small-time fluctuations for diffusion processes which are conditioned by their

initial and final positions, under the assumptions that the diffusivity has a sub-Riemannian

structure and that the drift vector field lies in the span of the sub-Riemannian structure.

In the case the endpoints agree and the generator of the diffusion process is non-elliptic

at that point, the deterministic Malliavin covariance matrix is always degenerate. We

identify, after a suitable rescaling, another limiting Malliavin covariance matrix which

is non-degenerate, and we show that, under the same scaling, the diffusion Malliavin

covariance matrices are uniformly non-degenerate. We further show that the suitably

rescaled fluctuations of the diffusion loop converge to a limiting diffusion loop, which is

equal in law to the loop we obtain by taking the limiting process of the unconditioned

rescaled diffusion processes and condition it to return to its starting point. The generator

of the unconditioned limiting rescaled diffusion process can be described in terms of the

original generator.

3.1 Introduction

The small-time asymptotics of heat kernels have been extensively studied over the years,

from an analytic, a geometric as well as a probabilistic point of view. Bismut [Bis84]

used Malliavin calculus to perform the analysis of the heat kernel in the elliptic case

and he developed a deterministic Malliavin calculus to study hypoelliptic heat kernels of

Hörmander type. Following this approach, Ben Arous [BA88] found the corresponding

small-time asymptotics outside the sub-Riemannian cut locus and Ben Arous [BA89] and

Léandre [Léa92] studied the behaviour on the diagonal. In joint work [BAL91a, BAL91b],

they also discussed the exponential decay of hypoelliptic heat kernels on the diagonal.

Recently, there has been further progress in the study of heat kernels on sub-Riemannian

manifolds. Barilari, Boscain and Neel [BBN12] found estimates of the heat kernel on the
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cut locus using an analytic approach, and Inahama and Taniguchi [IT17] combined rough

paths theory and Malliavin calculus to determine small-time full asymptotic expansions on

the off-diagonal cut locus. Moreover, Bailleul, Mesnager and Norris [BMN15] studied the

asymptotics of sub-Riemannian diffusion bridges outside the cut locus. We extend their

analysis to the diagonal and describe the asymptotics of sub-Riemannian diffusion loops.

In a suitable chart, and after a suitable rescaling, we show that the small-time diffusion

loop measures have a non-degenerate limit, which we identify explicitly in terms of a

certain local limit operator. Our analysis also allows us to determine the loop asymptotics

under the scaling used to obtain a small-time Gaussian limit of the sub-Riemannian

diffusion bridge measures in [BMN15]. In general, these asymptotics are now degenerate

and need no longer be Gaussian.

Let M be a connected smooth manifold of dimension d and let a be a smooth non-negative

quadratic form on the cotangent bundle T ∗M . Let L be a second order differential operator

onM with smooth coefficients, such that L1 = 0 and such that L has principal symbol a/2.

One refers to a as the diffusivity of the operator L. We say that a has a sub-Riemannian

structure if there exist m ∈ N and smooth vector fields X1, . . . , Xm on M satisfying the

Hörmander condition, i.e. the vector fields together with their commutator brackets of all

orders span TyM for all y ∈M , such that

a(ξ, ξ) =
m∑
i=1

〈ξ,Xi(y)〉2 for ξ ∈ T ∗yM .

Thus, we can write

L =
1

2

m∑
i=1

X2
i +X0

for a vector field X0 on M , which we also assume to be smooth. Note that the vector

fields X0, X1, . . . , Xm are allowed to vanish and hence, the sub-Riemannian structure

(X1, . . . , Xm) need not be of constant rank. To begin with, we impose the global condition

M = Rd and X0, X1, . . . , Xm ∈ C∞b
(
Rd,Rd

)
,

subject to the additional constraint that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ Rd.

Subsequently, we follow Bailleul, Mesnager and Norris [BMN15] and insist that there exist

a smooth one-form β on M with ‖a(β, β)‖∞ <∞, and a locally invariant positive smooth

measure ν̃ on M such that, for all f ∈ C∞(M),

Lf =
1

2
div(a df) + a(β, df) . (3.1.1)

Here the divergence is understood with respect to ν̃, and the measure ν̃ is said to be

locally invariant for L if, for all smooth functions f of compact support in M , we have∫
M
a(β, df) dν̃ = 0. If the operator L is of the form (3.1.1) then X0 =

∑m
i=1 αiXi with
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αi = 1
2

divXi + β(Xi) and in particular, X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ M .

We are interested in the associated diffusion bridge measures. Fix x ∈ M and let ε > 0.

If we do not assume the global condition then the diffusion process (xεt)t<ζ defined up to

the explosion time ζ starting from x and having generator εL may explode with positive

probability before time 1. Though, on the event {ζ > 1}, the process (xεt)t∈[0,1] has a

unique sub-probability law µxε on the set of continuous paths Ω = C([0, 1],M). Choose

a positive smooth measure ν on M , which can differ from the locally invariant positive

measure ν̃ on M , and let p denote the Dirichlet heat kernel for L with respect to ν. We

can disintegrate µxε to give a unique family of probability measures (µx,yε : y ∈ M) on Ω

such that

µxε(dω) =

∫
M

µx,yε (dω)p(ε, x, y)ν(dy) ,

with µx,yε supported on Ωx,y = {ω ∈ Ω: ω0 = x, ω1 = y} for all y ∈ M and where the

map y 7→ µx,yε is weakly continuous. Bailleul, Mesnager and Norris [BMN15] studied the

small-time fluctuations of the diffusion bridge measures µx,yε in the limit ε → 0 under

the assumption that (x, y) lies outside the sub-Riemannian cut locus. Due to the latter

condition, their results do not cover the diagonal case unless L is elliptic at x. We show

how to extend their analysis in order to understand the small-time fluctuations of the

diffusion loop measures µx,xε .

As a by-product, we recover the small-time heat kernel asymptotics on the diagonal shown

by Ben Arous [BA89] and Léandre [Léa92]. Even though our approach for obtaining

the small-time asymptotics on the diagonal is similar to [BA89], it does not rely on

the Rothschild and Stein lifting theorem, cf. [RS76]. Instead, we use the notion of an

adapted chart at x, introduced by Bianchini and Stefani [BS90], which provides suitable

coordinates around x. We discuss adapted charts in detail in Section 3.2. The chart Ben

Arous [BA89] performed his analysis in is in fact one specific example of an adapted

chart, whereas we allow for any adapted chart. In the case where the diffusivity a has a

sub-Riemannian structure which is one-step bracket-generating at x, any chart around x

is adapted. However, in general these charts are more complex and for instance, even if

M = Rd there is no reason to assume that the identity map is adapted. Paoli [Pao17]

successfully used adapted charts to describe the small-time asymptotics of hypoelliptic

operators of Hörmander type with non-vanishing drift at a stationary point of the drift

field.

To a sub-Riemannian structure (X1, . . . , Xm) on M , we associate a linear scaling map

δε : Rd → Rd in a suitable set of coordinates, which depends on the number of brackets

needed to achieve each direction, and the so-called nilpotent approximations X̃1, . . . , X̃m,

which are homogeneous vector fields on Rd. For the details see Section 3.2. The map δε

allows us to rescale the fluctuations of the diffusion loop to high enough orders so as

to obtain a non-degenerate limit measure, and the nilpotent approximations are used to

describe this limit measure. Let (U, θ) be an adapted chart around x ∈ M . Smoothly
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extending this chart to all of M yields a smooth map θ : M → Rd whose derivative

dθx : TxM → Rd at x is invertible. Write TΩ0,0 for the set of continuous paths v = (vt)t∈[0,1]

in TxM with v0 = v1 = 0. Define a rescaling map σε : Ωx,x → TΩ0,0 by

σε(ω)t = (dθx)
−1
(
δ−1
ε (θ(ωt)− θ(x))

)
and let µ̃x,xε be the pushforward measure of µx,xε by σε, i.e. µ̃x,xε is the unique probability

measure on TΩ0,0 given by

µ̃x,xε = µx,xε ◦ σ−1
ε .

Our main result concerns the weak convergence of these rescaled diffusion loop measures

µ̃x,xε . To describe the limit, assuming that θ(x) = 0, we consider the diffusion process

(x̃t)t≥0 in Rd starting from 0 and having generator

L̃ =
1

2

m∑
i=1

X̃2
i .

A nice cascade structure of the nilpotent approximations X̃1, . . . , X̃m ensures that this

process exists for all time. Let µ̃0,Rd denote the law of the diffusion process (x̃t)t∈[0,1] on

the set of continuous paths Ω(Rd) = C([0, 1],Rd). By disintegrating µ̃0,Rd , we obtain the

loop measure µ̃0,0,Rd supported on the set Ω(Rd)0,0 = {ω ∈ Ω(Rd) : ω0 = ω1 = 0}. Define

a map ρ : Ω(Rd)0,0 → TΩ0,0 by

ρ(ω)t = (dθx)
−1ωt

and set µ̃x,x = µ̃0,0,Rd ◦ ρ−1. This is the desired limit probability measure on TΩ0,0.

Theorem 3.1.1 (Convergence of the rescaled diffusion bridge measures). Let M be a

connected smooth manifold and fix x ∈ M . Let L be a second order partial differential

operator on M such that, for all f ∈ C∞(M),

Lf =
1

2
div(a df) + a(β, df) ,

for the divergence taken with respect to a locally invariant positive smooth measure, and

where the smooth non-negative quadratic form a on T ∗M has a sub-Riemannian structure

and the smooth one-form β on M satisfies ‖a(β, β)‖∞ < ∞. Then the rescaled diffusion

loop measures µ̃x,xε converge weakly to the probability measure µ̃x,x on TΩ0,0 as ε→ 0.

We prove this result by localising Theorem 3.1.2. As a consequence of the localisation

argument, Theorem 3.1.1 remains true under the weaker assumption that the smooth

vector fields giving the sub-Riemannian structure are only locally defined. The theorem

below imposes an additional constraint on the map θ which ensures that we can rely

on the tools of Malliavin calculus to prove it. As we see later, the existence of such a

diffeomorphism θ is always guaranteed.
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Theorem 3.1.2. Fix x ∈ Rd. Let X0, X1, . . . , Xm be smooth bounded vector fields on Rd,

with bounded derivatives of all orders, which satisfy the Hörmander condition and suppose

that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ Rd. Set

L =
1

2

m∑
i=1

X2
i +X0 .

Assume the smooth map θ : Rd → Rd is a global diffeomorphism with bounded derivatives

of all positive orders and an adapted chart at x. Then the rescaled diffusion loop measures

µ̃x,xε converge weakly to the probability measure µ̃x,x on TΩ0,0 as ε→ 0.

Note the limit measures with respect to two different choices of admissible diffeomorphisms

θ1 and θ2 are related by the Jacobian matrix of the transition map θ2 ◦ θ−1
1 .

The proof of Theorem 3.1.2 follows [BMN15]. The additional technical result needed in our

analysis is the uniform non-degeneracy of the δε-rescaled Malliavin covariance matrices.

Recall that we consider Malliavin covariance matrices in the sense of Bismut and refer

to what is also called the reduced Malliavin covariance matrix simply as the Malliavin

covariance matrix. Under the global assumption, there exists a unique diffusion process

(xεt)t∈[0,1] starting at x and having generator εL. Choose θ : Rd → Rd as in Theorem 3.1.2

and define (x̃εt)t∈[0,1] to be the rescaled diffusion process given by

x̃εt = δ−1
ε (θ(xεt)− θ(x)) .

Denote the Malliavin covariance matrix of x̃ε1 by c̃ε1. We know that, for ε > 0, the matrix c̃ε1

is non-degenerate because the vector fields X1, . . . , Xm satisfy the Hörmander condition.

We prove that these Malliavin covariance matrices are in fact uniformly non-degenerate.

Theorem 3.1.3 (Uniform non-degeneracy of the rescaled Malliavin covariance matrices).

Let X0, X1, . . . , Xm be smooth bounded vector fields on Rd, with bounded derivatives of all

orders, which satisfy the Hörmander condition. Suppose X0(y) ∈ span{X1(y), . . . , Xm(y)}
for all y ∈ Rd. Fix x ∈ Rd and consider the diffusion operator

L =
1

2

m∑
i=1

X2
i +X0 .

Then the rescaled Malliavin covariance matrices c̃ε1 are uniformly non-degenerate, i.e. for

all p <∞, we have

sup
ε∈(0,1]

E
[∣∣det (c̃ε1)−1

∣∣p] <∞ .

We see that the uniform non-degeneracy of the rescaled Malliavin covariance matrices c̃ε1

is a consequence of the non-degeneracy of the limiting diffusion process (x̃t)t∈[0,1] with

generator L̃. The latter is implied by the nilpotent approximations X̃1, . . . , X̃m satisfying

the Hörmander condition on Rd, as proven in Section 3.2.



48 CHAPTER 3. SMALL-TIME FLUCTUATIONS FOR LOOPS

This chapter is organised as follows. In Section 3.2, we introduce the notion of an adapted

chart and define the scaling operator δε with which we rescale the fluctuations of the

diffusion loop to obtain a non-degenerate limit. It also sets up notations for subsequent

sections and proves preliminary results from which we deduce properties of the limit

measure. In Section 3.3, we characterise the leading-order terms of the rescaled Malliavin

covariance matrices c̃ε1 as ε→ 0 and use this to prove Theorem 3.1.3. Equipped with the

uniform non-degeneracy result, in Section 3.4, we adapt the analysis from [BMN15] to

prove Theorem 3.1.2. The approach presented is based on ideas from Azencott, Bismut and

Ben Arous and relies on tools from Malliavin calculus. Finally, in Section 3.5, we employ

a localisation argument to prove Theorem 3.1.1 and provide an example to illustrate the

result. Moreover, we discuss the occurrence of non-Gaussian behaviour in the
√
ε-rescaled

fluctuations of diffusion loops.

3.2 Graded structure and nilpotent approximation

We introduce the notion of an adapted chart and of an associated dilation δε : Rd → Rd

which allows us to rescale the fluctuations of a diffusion loop in a way which gives rise

to a non-degenerate limit as ε → 0. To be able to characterise this limiting measure

later, we define the nilpotent approximation of a vector field on M and show that the

nilpotent approximations of a sub-Riemannian structure form a sub-Riemannian structure

themselves. This section is based on Bianchini and Stefani [BS90] and Paoli [Pao17], but

we made some adjustments because the drift term X0 plays a different role in our setting.

At the end, we present an example to illustrate the various constructions.

3.2.1 Graded structure induced by a sub-Riemannian structure

Let (X1, . . . , Xm) be a sub-Riemannian structure on M and fix x ∈M . For k ≥ 1, set

Ak =
{

[Xi1 , [Xi2 , . . . , [Xik−1
, Xik ] . . . ]] : 1 ≤ i1, . . . , ik ≤ m

}
and, for n ≥ 0, define a subspace of the space of smooth vector fields on M by

Cn = span
n⋃
k=1

Ak ,

with the linear combinations taken over R. Note that C0 = {0}. Let C = Lie{X1, . . . , Xm}
be the Lie algebra over R generated by the vector fields X1, . . . , Xm. We observe that

Cn ⊂ Cn+1 as well as [Cn1 , Cn2 ] ⊂ Cn1+n2 for n1, n2 ≥ 0 and that
⋃
n≥0Cn = C. Hence,

C = {Cn}n≥0 is an increasing filtration of the subalgebra C of the Lie algebra of smooth
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vector fields on M . Consider the subspace Cn(x) of the tangent space TxM given by

Cn(x) = {X(x) : X ∈ Cn} .

Define dn = dimCn(x). Since X1, . . . , Xm are assumed to satisfy the Hörmander condition,

we have
⋃
n≥0Cn(x) = TxM , and it follows that

N = min{n ≥ 1: dn = d}

is well-defined. We call N the step of the filtration C at x.

Definition 3.2.1. A chart (U, θ) around x ∈M is called an adapted chart to the filtration

C at x if θ(x) = 0 and, for all n ∈ {1, . . . , N},

(i) Cn(x) = span

{
∂

∂θ1
(x), . . . ,

∂

∂θdn
(x)

}
, and

(ii)
(
D θk

)
(x) = 0 for every differential operator D of the form

D = Y1 . . . Yn with Y1, . . . , Yn ∈ {X1, . . . , Xm}

and all k > dn .

Note that condition (ii) is equivalent to requiring that (D θk)(x) = 0 for every differential

operator D ∈ span{Y1 · · ·Yj : Yl ∈ Cil and i1 + · · ·+ ij ≤ n} and all k > dn. The existence

of an adapted chart to the filtration C at x is ensured by [BS90, Corollary 3.1], which

explicitly constructs such a chart by considering the integral curves of the vector fields

X1, . . . , Xm. However, we should keep in mind that even though being adapted at x is a

local property, the germs of adapted charts at x need not coincide.

Unlike Bianchini and Stefani [BS90], we choose to construct our graded structure on Rd

instead of on the domain U of an adapted chart, as this works better with our analysis.

Define weights w1, . . . , wd by setting wk = min{l ≥ 1: dl ≥ k}. The definition immediately

implies 1 ≤ w1 ≤ · · · ≤ wd = N . Let δε : Rd → Rd be the anisotropic dilation given by

δε(y) = δε
(
y1, . . . , yk, . . . , yd

)
=
(
εw1/2y1, . . . , εwk/2yk, . . . , εwd/2yd

)
,

with (y1, . . . , yd) Cartesian coordinates on Rd. For a non-negative integer w, a polynomial

g on Rd is called homogeneous of weight w if it satisfies g ◦ δε = εw/2g. For instance,

the monomial yα1
1 . . . yαdd is homogeneous of weight

∑d
k=1 αkwk. We denote the set of

polynomials which are homogeneous of weight w by P(w). Note that the zero polynomial

is contained in P(w) for all non-negative integers w. Following [BS90], the graded order

O(g) of a polynomial g is defined by the property

O(g) ≥ i if and only if g ∈
⊕
w≥i

P(w) .
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Thus, the graded order of a non-zero polynomial g is the maximal non-negative integer i

such that g ∈ ⊕w≥iP(w) whereas the graded order of the zero polynomial is set to be ∞.

Similarly, for a smooth function f ∈ C∞(V ), where V ⊂ Rd is an open neighbourhood of

0, we define its graded order O(f) by requiring that O(f) ≥ i if and only if each Taylor

approximation of f at 0 has graded order at least i. We see that the graded order of a

smooth function is either a non-negative integer or ∞. Furthermore, for an integer a, a

polynomial vector field Y on Rd is called homogeneous of weight a if, for all g ∈ P(w),

we have Y g ∈ P(w − a). Here we set P(b) = {0} for negative integers b. The weight of

a general polynomial vector field is defined to be the smallest weight of its homogeneous

components. Moreover, the graded order O(D) of a differential operator D on V is given

by saying that

O(D) ≤ i if and only if O(D g) ≥ O(g)− i for all polynomials g .

For example, the polynomial vector field y1 ∂
∂y1

+ (y1)2 ∂
∂y1

on Rd has weight −w1 but

considered as a differential operator it has graded order 0. It also follows that the graded

order of a differential operator takes values in Z ∪ {±∞} and that the zero differential

operator has graded order −∞. In the remainder, we need the notions of the weight of a

polynomial vector field and the graded order of a vector field understood as a differential

operator. For smooth vector fields X1 and X2 on V , it holds true that

O([X1, X2]) ≤ O(X1) +O(X2) . (3.2.1)

Further observe that for any smooth vector field X on V and every integer n, there exists

a unique polynomial vector field X(n) of weight at least n such that O(X−X(n)) ≤ n−1,

namely the sum of the homogeneous vector fields of weight greater than or equal to n in

the formal Taylor series of X at 0.

Definition 3.2.2. Let X be a smooth vector field on an open neighbourhood V of 0. We

call X(n) the graded approximation of weight n of X.

Note that X(n) is a polynomial vector field and hence, it can be considered as a vector

field defined on all of Rd.

3.2.2 Nilpotent approximation

Let (U, θ) be an adapted chart to the filtration induced by a sub-Riemannian structure

(X1, . . . , Xm) on M at x and set V = θ(U). Note that, for i ∈ {1, . . . ,m}, the pushforward

vector field θ∗Xi is a vector field on V and write X̃i for the graded approximation (θ∗Xi)
(1)

of weight 1 of θ∗Xi.

Definition 3.2.3. The polynomial vector fields X̃1, . . . , X̃m on Rd are called the nilpotent

approximations of the vector fields X1, . . . , Xm on M .
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By [BS90, Theorem 3.1], we know that O(θ∗Xi) ≤ 1. Thus, the formal Taylor series of

θ∗Xi at 0 cannot contain any homogeneous components of weight greater than or equal

to two. This implies that X̃i is a homogeneous vector field of weight 1 and therefore,

(
δ−1
ε

)
∗ X̃i = ε−1/2X̃i for all i ∈ {1, . . . ,m} .

Moreover, from O(θ∗Xi − X̃i) ≤ 0, we deduce that

√
ε
(
δ−1
ε

)
∗ (θ∗Xi)→ X̃i as ε→ 0 for all i ∈ {1, . . . ,m} .

This convergence holds on all of Rd because for y ∈ Rd fixed, we have δε(y) ∈ V for ε > 0

sufficiently small.

Remark 3.2.4. The vector fields X̃1, . . . , X̃m on Rd have a nice cascade structure.

Since X̃i, for i ∈ {1, . . . ,m}, contains the terms of weight 1 the component X̃k
i , for

k ∈ {1, . . . , d}, does not depend on the coordinates with weight greater than or equal to

wk and depends only linearly on the coordinates with weight wk − 1. �

We show below that the nilpotent approximations X̃1, . . . , X̃m inherit the Hörmander

property from the sub-Riemannian structure (X1, . . . , Xm). This result plays a crucial

role in the subsequent sections as it allows us to describe the limiting measure of the

rescaled fluctuations by a stochastic process whose associated Malliavin covariance matrix

is non-degenerate.

Lemma 3.2.5. Let Ãk(0) =
{

[X̃i1 , [X̃i2 , . . . , [X̃ik−1
, X̃ik ] . . . ]](0) : 1 ≤ i1, . . . , ik ≤ m

}
.

Then

span
n⋃
k=1

Ãk(0) = span

{
∂

∂y1
(0), . . . ,

∂

∂ydn
(0)

}
. (3.2.2)

Proof. We prove this lemma by induction. For the base case, note that O(θ∗Xi− X̃i) ≤ 0

implies X̃i(0) = (θ∗Xi)(0). Hence, by property (i) of an adapted chart θ, we obtain

span Ã1(0) = span
{
X̃1(0), . . . , X̃m(0)

}
= (θ∗C1)(0) = span

{
∂

∂y1
(0), . . . ,

∂

∂yd1
(0)

}
,

which proves (3.2.2) for n = 1. Let us now assume the result to be true for n− 1. Due to

O(θ∗Xi− X̃i) ≤ 0 and using (3.2.1) as well as the bilinearity of the Lie bracket, it follows

that

O
(
θ∗[Xi1 , [Xi2 , . . . , [Xin−1 , Xin ] . . . ]]− [X̃i1 , [X̃i2 , . . . , [X̃in−1 , X̃in ] . . . ]]

)
≤ n− 1 .
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Applying the induction hypothesis, we deduce that(
θ∗[Xi1 , [Xi2 , . . . , [Xin−1 , Xin ] . . . ]]− [X̃i1 , [X̃i2 , . . . , [X̃in−1 , X̃in ] . . . ]]

)
(0)

∈ span

{
∂

∂y1
(0), . . . ,

∂

∂ydn−1
(0)

}
= span

n−1⋃
k=1

Ãk(0) .

This gives

span

{
∂

∂y1
(0), . . . ,

∂

∂ydn
(0)

}
= (θ∗Cn)(0) ⊂ span

n⋃
k=1

Ãk(0)

and since O
(

[X̃i1 , [X̃i2 , . . . , [X̃in−1 , X̃in ] . . . ]]
)
≤ n, the other inclusion holds as well. Thus,

we have established equality, which concludes the induction step.

The lemma allows us to prove the following proposition.

Proposition 3.2.6. The nilpotent approximations X̃1, . . . , X̃m on Rd of the vector fields

X1, . . . , Xm on M satisfy the Hörmander condition everywhere on Rd.

Proof. By definition, we have dN = d, and Lemma 3.2.5 implies that

span
N⋃
k=1

Ãk(0) = span

{
∂

∂y1
(0), . . . ,

∂

∂yd
(0)

}
= Rd ,

i.e. X̃1, . . . , X̃m satisfy the Hörmander condition at 0. In particular, there are vector fields

Y1, . . . , Yd ∈
N⋃
k=1

{
[X̃i1 , [X̃i2 , . . . , [X̃ik−1

, X̃ik ] . . . ]] : 1 ≤ i1, . . . , ik ≤ m
}

such that Y1(0), . . . , Yd(0) are linearly independent, i.e. det(Y1(0), . . . , Yd(0)) 6= 0. By

continuity of the map y 7→ det(Y1(y), . . . , Yd(y)), there exists a neighbourhood V0 of 0 on

which the vector fields X̃1, . . . , X̃m satisfy the Hörmander condition. Since the Lie bracket

commutes with the pushforward, the homogeneity property (δ−1
ε )∗ X̃i = ε−1/2X̃i of the

nilpotent approximations shows that the Hörmander condition is in fact satisfied on all

of Rd.

We conclude with an example.

Example 3.2.7. Let M = R2 and fix x = 0. Let X1 and X2 be the vector fields on R2

defined by

X1 =
∂

∂x1
+ x1 ∂

∂x2
and X2 = x1 ∂

∂x1
,

with respect to Cartesian coordinates (x1, x2) on R2. We compute

[X1, X2] =
∂

∂x1
− x1 ∂

∂x2
and [X1, [X1, X2]] = −2

∂

∂x2
.
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It follows that

C1(0) = C2(0) = span

{
∂

∂x1
(0)

}
, C3(0) = R2 and d1 = d2 = 1 , d3 = 2 .

We note that the Cartesian coordinates are not adapted to the filtration induced by

(X1, X2) at 0 because, for instance, ((X1)2 x2) (0) = 1. Following the constructive proof

of [BS90, Corollary 3.1], we find a global adapted chart θ : R2 → R2 at 0 given by

θ1 = x1 and θ2 = −1

2
(x1)2 + x2 .

The corresponding weights are w1 = 1, w2 = 3 and the associated anisotropic dilation is

δε(y
1, y2) =

(
ε1/2y1, ε3/2y2

)
,

where (y1, y2) are Cartesian coordinates on our new copy of R2. For the pushforward

vector fields of X1 and X2 by θ, we obtain

θ∗X1 =
∂

∂y1
and θ∗X2 = y1

(
∂

∂y1
− y1 ∂

∂y2

)
.

From this we can read off that

X̃1 =
∂

∂y1
and X̃2 = −

(
y1
)2 ∂

∂y2

because y1 ∂
∂y1

is a vector field of weight 0. We observe that the nilpotent approximations

X̃1 and X̃2 are indeed homogeneous vector fields of weight 1 on R2 which satisfy the

Hörmander condition everywhere.

3.3 Rescaled diffusion Malliavin covariance matrices

We prove the uniform non-degeneracy of suitably rescaled Malliavin covariance matrices

under the global condition

M = Rd and X0, X1, . . . , Xm ∈ C∞b
(
Rd,Rd

)
,

and the additional assumption that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ Rd. We

further suppose that θ : Rd → Rd is a global diffeomorphism with bounded derivatives of

all positive orders and an adapted chart to the filtration induced by the sub-Riemannian

structure (X1, . . . , Xm) at a point x ∈ Rd fixed. Such a diffeomorphism always exists as

[BS90, Corollary 3.1] guarantees the existence of an adapted chart θ̃ : U → Rd and due to

[Pal59, Lemma 5.2], we can construct a global diffeomorphism θ : Rd → Rd with bounded

derivatives of all positive orders which agrees with θ̃ on a small enough neighbourhood
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of x in U . We note that θ∗X0, θ∗X1, . . . , θ∗Xm are also smooth bounded vector fields on

Rd with bounded derivatives of all orders. In particular, to simplify the notation in the

subsequent analysis, we may assume x = 0 and that θ is the identity map. By Section 3.2,

this means that, for Cartesian coordinates (y1, . . . , yd) on Rd and for all n ∈ {1, . . . , N},
we have

(i) Cn(0) = span

{
∂

∂y1
(0), . . . ,

∂

∂ydn
(0)

}
, and

(ii)
(
D yk

)
(x) = 0 for every differential operator

D ∈ {Y1 · · ·Yj : Yl ∈ Cil and i1 + · · ·+ ij ≤ n}

and all k > dn .

Write 〈·, ·〉 for the standard inner product on Rd and, for n ∈ {0, 1, . . . , N}, denote the

orthogonal complement of Cn(0) with respect to this inner product by Cn(0)⊥. As defined

in the previous section, we further let δε : Rd → Rd be the anisotropic dilation induced by

the filtration at 0 and we consider the nilpotent approximations X̃1, . . . , X̃m of the vector

fields X1, . . . , Xm.

Let (Bt)t∈[0,1] be a Brownian motion in Rm, which we assume is realised as the coordinate

process on the path space {w ∈ C([0, 1],Rm) : w0 = 0} under Wiener measure P. Define

X0 to be the vector field on Rd given by

X0 = X0 +
1

2

m∑
i=1

∇XiXi ,

where ∇ is the Levi-Civita connection with respect to the Euclidean metric. Under our

global assumption, the Itô stochastic differential equation in Rd

dxεt =
m∑
i=1

√
εXi(x

ε
t) dBi

t + εX0(xεt) dt , xε0 = 0

has a unique strong solution (xεt)t∈[0,1]. Its law on Ω = C([0, 1],Rd) is µ0
ε. We consider

the rescaled diffusion process (x̃εt)t∈[0,1] which is defined by x̃εt = δ−1
ε (xεt). It is the unique

strong solution of the Itô stochastic differential equation

dx̃εt =
m∑
i=1

√
ε
((
δ−1
ε

)
∗Xi

)
(x̃εt) dBi

t + ε
((
δ−1
ε

)
∗X0

)
(x̃εt) dt , x̃ε0 = 0 .

Let us further look at

dx̃t =
m∑
i=1

X̃i(x̃t) dBi
t + X̃0(x̃t) dt , x̃0 = 0 ,
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where X̃0 is the vector field on Rd defined by

X̃0 =
1

2

m∑
i=1

∇X̃i
X̃i .

Due to the nice cascade structure noted in Remark 3.2.4 and by [Nor86, Proposition 1.3],

there exists a unique strong solution (x̃t)t∈[0,1] to this Itô stochastic differential equation

in Rd. We recall that
√
ε (δ−1

ε )∗Xi → X̃i as ε → 0 for all i ∈ {1, . . . ,m} and because

X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ Rd, we further have ε (δ−1
ε )∗X0 → 0 as

ε→ 0. It follows that, for all t ∈ [0, 1],

x̃εt → x̃t as ε→ 0 almost surely and in Lp for all p <∞ . (3.3.1)

For the Malliavin covariance matrices c̃ε1 of x̃ε1 and c̃1 of x̃1, we also obtain that

c̃ε1 → c̃1 as ε→ 0 almost surely and in Lp for all p <∞ . (3.3.2)

Proposition 3.2.6 shows that the nilpotent approximations X̃1, . . . , X̃m of the vector fields

X1, . . . , Xm satisfy the Hörmander condition, which implies the following non-degeneracy

result.

Corollary 3.3.1. The Malliavin covariance matrix c̃1 is non-degenerate, i.e. we have, for

all p <∞,

E
[∣∣det (c̃1)−1

∣∣p] <∞ .

In particular, the rescaled diffusion processes (x̃εt)t∈[0,1] have a non-degenerate limiting

diffusion process as ε → 0. This is an important observation in establishing the uniform

non-degeneracy of the rescaled Malliavin covariance matrices c̃ε1. In the following, we first

gain control over the leading-order terms of c̃ε1 as ε→ 0, which then allows us to show that

the minimal eigenvalue of c̃ε1 can be uniformly bounded below on a set of high probability.

Using this property, we prove Theorem 3.1.3 at the end of the section.

3.3.1 Properties of the rescaled Malliavin covariance matrices

Let (ṽεt )t∈[0,1] be the unique stochastic process in Rd ⊗ (Rd)∗ such that (x̃εt , ṽ
ε
t )t∈[0,1] is the

strong solution of the following system of Itô stochastic differential equations.

dx̃εt =
m∑
i=1

√
ε
((
δ−1
ε

)
∗Xi

)
(x̃εt) dBi

t + ε
((
δ−1
ε

)
∗X0

)
(x̃εt) dt , x̃ε0 = 0

dṽεt =−
m∑
i=1

√
εṽεt∇

((
δ−1
ε

)
∗Xi

)
(x̃εt) dBi

t

− εṽεt

(
∇
((
δ−1
ε

)
∗X0

)
−

m∑
i=1

(
∇
((
δ−1
ε

)
∗Xi

))2

)
(x̃εt) dt , ṽε0 = I
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The Malliavin covariance matrix c̃εt of the rescaled random variable x̃εt is then given by

c̃εt =
m∑
i=1

∫ t

0

(
ṽεs
(√

ε
(
δ−1
ε

)
∗Xi

)
(x̃εs)

)
⊗
(
ṽεs
(√

ε
(
δ−1
ε

)
∗Xi

)
(x̃εs)

)
ds .

It turns out that we obtain a more tractable expression for c̃εt if we write it in terms of

(xεt , v
ε
t )t∈[0,1], which is the unique strong solution of the following system of Itô stochastic

differential equations.

dxεt =
m∑
i=1

√
εXi(x

ε
t) dBi

t + εX0(xεt) dt , xε0 = 0

dvεt = −
m∑
i=1

√
εvεt∇Xi(x

ε
t) dBi

t − εvεt

(
∇X0 −

m∑
i=1

(∇Xi)
2

)
(xεt) dt , vε0 = I

One can check that the processes (vεt )t∈[0,1] and (ṽεt )t∈[0,1] are related by ṽεt = δ−1
ε vεt δε ,

where the map δε is understood as an element in Rd ⊗ (Rd)∗. This implies that

c̃εt =
m∑
i=1

∫ t

0

(√
ε δ−1

ε (vεsXi(x
ε
s))
)
⊗
(√

ε δ−1
ε (vεsXi(x

ε
s))
)

ds . (3.3.3)

We are interested in gaining control over the leading-order terms of c̃ε1 as ε → 0. In the

corresponding analysis, we frequently use the lemma stated below.

Lemma 3.3.2. Let Y be a smooth vector field on Rd. Then

d(vεtY (xεt)) =
m∑
i=1

√
εvεt [Xi, Y ](xεt) dBi

t + εvεt

(
[X0, Y ] +

1

2

m∑
i=1

[Xi, [Xi, Y ]]

)
(xεt) dt .

Proof. To prove this identity, we switch to the Stratonovich setting. The system of

Stratonovich stochastic differential equations satisfied by the processes (xεt)t∈[0,1] and

(vεt )t∈[0,1] is

∂xεt =
m∑
i=1

√
εXi(x

ε
t) ∂B

i
t + εX0(xεt) dt , xε0 = 0

∂vεt = −
m∑
i=1

√
εvεt∇Xi(x

ε
t) ∂B

i
t − εvεt∇X0(xεt) dt , vε0 = I.

By the product rule, we have

∂(vεtY (xεt)) = (∂vεt )Y (xεt) + vεt∇Y (xεt) ∂x
ε
t .

Using

(∂vεt )Y (xεt) = −
m∑
i=1

√
εvεt∇Xi(x

ε
t)Y (xεt) ∂B

i
t − εvεt∇X0(xεt)Y (xεt) dt
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as well as

vεt∇Y (xεt) ∂x
ε
t =

m∑
i=1

√
εvεt∇Y (xεt)Xi(x

ε
t) ∂B

i
t + εvεt∇Y (xεt)X0(xεt) dt

yields the identity

∂(vεtY (xεt)) =
m∑
i=1

√
εvεt [Xi, Y ](xεt) ∂B

i
t + εvεt [X0, Y ](xεt) dt .

It remains to change back to the Itô setting. We compute that, for i ∈ {1, . . . ,m},

d
[√
εvε[Xi, Y ](xε), Bi

]
t

=
m∑
j=1

εvεt∇[Xi, Y ](xεt)Xj(x
ε
t) d[Bj, Bi]t −

m∑
j=1

εvεt∇Xj(x
ε
t)[Xi, Y ](xεt) d[Bj, Bi]t

= εvεt∇[Xi, Y ](xεt)Xi(x
ε
t) dt− εvεt∇Xi(x

ε
t)[Xi, Y ](xεt) dt

= εvεt [Xi, [Xi, Y ]](xεt) dt

and the claimed result follows.

The next lemma, which is enough for our purposes, does not provide an explicit expression

for the leading-order terms of c̃ε1. However, its proof shows how one could recursively obtain

these expressions if one wishes to do so. To simplify notations, we introduce (B0
t )t∈[0,1]

with B0
t = t.

Lemma 3.3.3. For every n ∈ {1, . . . , N}, there are finite collections of vector fields

Bn =
{
Y

(n,i)
j1,...,jk

: 1 ≤ k ≤ n, 0 ≤ j1, . . . , jk ≤ m, 1 ≤ i ≤ m
}
⊂ Cn+1 and

B̃n =
{
Ỹ

(n,i)
j1,...,jk

: 1 ≤ k ≤ n, 0 ≤ j1, . . . , jk ≤ m, 1 ≤ i ≤ m
}
⊂ Cn+2

such that, for all u ∈ Cn(0)⊥ and all i ∈ {1, . . . ,m}, we have that, for all ε > 0,

〈
u, ε−n/2vεtXi(x

ε
t)
〉

=

〈
u,

n∑
k=1

m∑
j1,...,jk=0

∫ t

0

∫ t2

0

. . .

∫ tk

0

vεs

(
Y

(n,i)
j1,...,jk

+
√
ε Ỹ

(n,i)
j1,...,jk

)
(xεs) dBjk

s dB
jk−1

tk
. . . dBj1

t2

〉
.

Proof. We prove this result iteratively over n. For all u ∈ C1(0)⊥, we have 〈u,Xi(0)〉 = 0

because C1(0) = span{X1(0), . . . , Xm(0)}. From Lemma 3.3.2, it then follows that

〈
u, ε−1/2vεtXi(x

ε
t)
〉

=

〈
u,

m∑
j=1

∫ t

0

vεs[Xj, Xi](x
ε
s) dBj

s +

∫ t

0

√
εvεs

(
[X0, Xi] +

1

2

m∑
j=1

[Xj, [Xj, Xi]]

)
(xεs) ds

〉
.
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This gives us the claimed result for n = 1 with

Y
(1,i)
j =

0 if j = 0

[Xj, Xi] if 1 ≤ j ≤ m
and

Ỹ
(1,i)
j =

[X0, Xi] + 1
2

∑m
l=1[Xl, [Xl, Xi]] if j = 0

0 otherwise
.

Let us now assume the result to be true for n − 1. Due to Cn(0)⊥ ⊂ Cn−1(0)⊥, the

corresponding identity also holds for all u ∈ Cn(0)⊥. Using Lemma 3.3.2, we obtain that

vεsY
(n−1,i)
j1,...,jk

(xεs) = Y
(n−1,i)
j1,...,jk

(0) +
m∑
j=1

∫ s

0

√
εvεr

[
Xj, Y

(n−1,i)
j1,...,jk

]
(xεr) dBj

r

+

∫ s

0

εvεr

([
X0, Y

(n−1,i)
j1,...,jk

]
+

1

2

m∑
j=1

[
Xj,

[
Xj, Y

(n−1,i)
j1,...,jk

]])
(xεr) dr .

Note that Y
(n−1,i)
j1,...,jk

∈ Cn implies 〈u, Y (n−1,i)
j1,...,jk

(0)〉 = 0 for all u ∈ Cn(0)⊥. We further observe

that [
Xj, Y

(n−1,i)
j1,...,jk

]
, Ỹ

(n−1,i)
j1,...,jk

∈ Cn+1 as well as[
X0, Y

(n−1,i)
j1,...,jk

]
+

1

2

m∑
j=1

[
Xj,

[
Xj, Y

(n−1,i)
j1,...,jk

]]
∈ Cn+2

and collecting terms shows that the claimed result is also true for n.

These expressions allow us to characterise the rescaled Malliavin covariance matrix c̃ε1

because, for all n ∈ {0, 1, . . . , N − 1} and all u ∈ Cn+1(0) ∩ Cn(0)⊥, we have

〈u, c̃ε1u〉 =
m∑
i=1

∫ 1

0

〈
u, ε−n/2vεtXi(x

ε
t)
〉2

dt . (3.3.4)

By the convergence result (3.3.2), it follows that, for u ∈ C1(0),

〈u, c̃1u〉 = lim
ε→0
〈u, c̃ε1u〉 =

m∑
i=1

∫ 1

0

〈u,Xi(0)〉2 dt

and Lemma 3.3.3 implies that, for all n ∈ {1, . . . , N − 1} and all u ∈ Cn+1(0) ∩ Cn(0)⊥,

〈u, c̃1u〉 =
m∑
i=1

∫ 1

0

〈
u,

n∑
k=1

m∑
j1,...,jk=0

∫ t

0

∫ t2

0

. . .

∫ tk

0

Y
(n,i)
j1,...,jk

(0) dBjk
s dB

jk−1

tk
. . . dBj1

t2

〉2

dt ,

(3.3.5)

which describes the limiting Malliavin covariance matrix c̃1 uniquely.
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3.3.2 Proving uniform non-degeneracy

By definition, the Malliavin covariance matrices c̃ε1 and c̃1 are symmetric tensors. Thus,

their matrix representations are symmetric in any basis and we can think of them as

symmetric matrices. Let λεmin and λmin denote the minimal eigenvalues of c̃ε1 and c̃1,

respectively. As we frequently use the integrals from Lemma 3.3.3, it is convenient to

consider the stochastic processes (I
(n,i),+
t )t∈[0,1], (I

(n,i),−
t )t∈[0,1] and (Ĩ

(n,i)
t )t∈[0,1] given by

I
(n,i),+
t =

n∑
k=1

m∑
j1,...,jk=0

∫ t

0

∫ t2

0

. . .

∫ tk

0

(
vεsY

(n,i)
j1,...,jk

(xεs) + Y
(n,i)
j1,...,jk

(0)
)

dBjk
s dB

jk−1

tk
. . . dBj1

t2 ,

I
(n,i),−
t =

n∑
k=1

m∑
j1,...,jk=0

∫ t

0

∫ t2

0

. . .

∫ tk

0

(
vεsY

(n,i)
j1,...,jk

(xεs)− Y
(n,i)
j1,...,jk

(0)
)

dBjk
s dB

jk−1

tk
. . . dBj1

t2 ,

Ĩ
(n,i)
t =

n∑
k=1

m∑
j1,...,jk=0

∫ t

0

∫ t2

0

. . .

∫ tk

0

vεsỸ
(n,i)
j1,...,jk

(xεs) dBjk
s dB

jk−1

tk
. . . dBj1

t2 .

For α, β, γ, δ > 0, define subspaces of the path space {w ∈ C([0, 1],Rm) : w0 = 0} by

Ω1(α) = {λmin ≥ 2α} ,

Ω2
ε(β, γ) =

{
sup

0≤t≤1

∣∣∣I(n,i),+
t

∣∣∣ ≤ β−1 , sup
0≤t≤1

∣∣∣Ĩ(n,i)
t

∣∣∣ ≤ γ−1 : 1 ≤ i ≤ m, 1 ≤ n ≤ N

}
, and

Ω3
ε(δ) =

{
sup

0≤t≤1
|xεt | ≤ δ , sup

0≤t≤1
|vεt − I| ≤ δ

}
∪
{

sup
0≤t≤1

∣∣∣I(n,i),−
t

∣∣∣ ≤ δ : 1 ≤ i ≤ m, 1 ≤ n ≤ N

}
.

Note that the events Ω2
ε(β, γ) and Ω3

ε(δ) depend on ε as the processes (I
(n,i),+
t )t∈[0,1],

(I
(n,i),−
t )t∈[0,1] and (Ĩ

(n,i)
t )t∈[0,1] depend on ε. We show that, for suitable choices of α, β, γ

and δ, the rescaled Malliavin covariance matrices c̃ε1 behave nicely on the set

Ω(α, β, γ, δ, ε) = Ω1(α) ∩ Ω2
ε(β, γ) ∩ Ω3

ε(δ)

and that its complement is a set of small probability in the limit ε → 0. As we are only

interested in small values of α, β, γ, δ and ε, we may make the non-restrictive assumption

that α, β, γ, δ, ε < 1.

Lemma 3.3.4. There exist positive constants χ and κ, which do not depend on ε, such

that if

χε1/6 ≤ α , β = γ = α and δ = κα2

then, on Ω(α, β, γ, δ, ε), it holds true that

λεmin ≥
1

2
λmin .
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Proof. Throughout, we shall assume that we are on the event Ω(α, β, γ, δ, ε). Let

Rε(u) =
〈u, c̃ε1u〉
〈u, u〉

and R(u) =
〈u, c̃1u〉
〈u, u〉

be the Rayleigh-Ritz quotients of the rescaled Malliavin covariance matrix c̃ε1 and of the

limiting Malliavin covariance matrix c̃1, respectively. As a consequence of the Min-Max

Theorem, we have

λεmin = min{Rε(u) : u 6= 0} as well as λmin = min{R(u) : u 6= 0} .

Since λmin ≥ 2α, it suffices to establish that |Rε(u)−R(u)| ≤ α for all u 6= 0. Set

K = max
1≤i≤m

sup
y∈Rd
|Xi(y)| , L = max

1≤i≤m
sup
y∈Rd
|∇Xi(y)|

and note the global condition ensures K,L < ∞. Using the Cauchy-Schwarz inequality,

we deduce that, for u ∈ C1(0) \ {0},

|Rε(u)−R(u)| ≤

m∑
i=1

∫ 1

0

∣∣〈u, vεtXi(x
ε
t)〉

2 − 〈u,Xi(0)〉2
∣∣ dt

〈u, u〉

≤
m∑
i=1

∫ 1

0

|vεtXi(x
ε
t) +Xi(0)||vεtXi(x

ε
t)−Xi(0)| dt

≤ m((1 + δ)K +K)(δK + δL) .

Applying Lemma 3.3.3 as well as the expressions (3.3.4) and (3.3.5), we obtain in a similar

way that, for all n ∈ {1, . . . , N − 1} and all non-zero u ∈ Cn+1(0) ∩ Cn(0)⊥,

|Rε(u)−R(u)| ≤
m∑
i=1

∫ 1

0

∣∣∣I(n,i),+
t +

√
εĨ

(n,i)
t

∣∣∣ ∣∣∣I(n,i),−
t +

√
εĨ

(n,i)
t

∣∣∣ dt

≤ m
(
β−1 +

√
εγ−1

) (
δ +
√
εγ−1

)
.

It remains to perform the analysis for the cross-terms. For n1, n2 ∈ {1, . . . , N − 1} as well

as u1 ∈ Cn1+1(0) ∩ Cn1(0)⊥ and u2 ∈ Cn2+1(0) ∩ Cn2(0)⊥, we polarise (3.3.4) to conclude

that

〈u1, c̃ε1u
2〉 − 〈u1, c̃1u

2〉
|u1||u2|

≤
m∑
i=1

∫ 1

0

∣∣∣∣∣I(n1,i),+
t + I

(n1,i),−
t

2
+
√
εĨ

(n1,i)
t

∣∣∣∣∣ ∣∣∣I(n2,i),−
t +

√
εĨ

(n2,i)
t

∣∣∣ dt

+
m∑
i=1

∫ 1

0

∣∣∣I(n1,i),−
t +

√
εĨ

(n1,i)
t

∣∣∣ ∣∣∣∣∣I(n2,i),+
t − I(n2,i),−

t

2

∣∣∣∣∣ dt

≤ m
(
β−1 + δ +

√
εγ−1

) (
δ +
√
εγ−1

)
.
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Similarly, if n1 = 0 and n2 ∈ {1, . . . , N − 1}, we see that

〈u1, c̃ε1u
2〉 − 〈u1, c̃1u

2〉
|u1||u2|

≤ m

(
(1 + δ)K

(
δ +
√
εγ−1

)
+ (δK + δL)

(
β−1 + δ

2

))
.

Writing a general non-zero u ∈ Rd in its orthogonal sum decomposition and combining

all the above estimates gives

|Rε(u)−R(u)| ≤ κ1δ + κ2β
−1δ + κ3

√
εβ−1γ−1 + κ4εγ

−2

for constants κ1, κ2, κ3 and κ4, which depend on K,L and m but are independent of

α, β, γ, δ and ε. If we now choose κ and χ in such a way that both κ ≤ 1/(4 max{κ1, κ2})
and χ3 ≥ 4 max{κ3, κ

1/2
4 }, and provided that χε1/6 ≤ α, β = γ = α as well as δ = κα2,

then

κ1δ + κ2β
−1δ + κ3

√
εβ−1γ−1 + κ4εγ

−2 ≤ κ1κα
2 + κ2κα + κ3χ

−3α + κ4χ
−6α4 ≤ α .

Since κ and χ can always be chosen to be positive, the desired result follows.

As a consequence of this lemma, we are able to control det (c̃ε1)−1 on the good set

Ω(α, β, γ, δ, ε). This allows us to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. Recall that by Proposition 3.2.6, the nilpotent approximations

X̃1, . . . , X̃m do satisfy the Hörmander condition everywhere on Rd. Then the proof of

[Nor86, Theorem 4.2] shows that

λ−1
min ∈ Lp(P) , for all p <∞ . (3.3.6)

By the Markov inequality, this integrability result implies that, for all p <∞, there exist

constants D(p) <∞ such that

P
(
Ω1(α)c

)
≤ D(p)αp. (3.3.7)

Using the Burkholder-Davis-Gundy inequality and Jensen’s inequality, we further show

that, for all p <∞, there are constants E1(p), E2(p) <∞ such that

E
[

sup
0≤t≤1

|xεt |p
]
≤ E1(p)εp/2 and E

[
sup

0≤t≤1
|vεt − I|p

]
≤ E2(p)εp/2 .

Similarly, by repeatedly applying the Burkholder-Davis-Gundy inequality and Jensen’s

inequality, we also see that, for all p <∞ and for all n ∈ {1, . . . , N} and i ∈ {1, . . . ,m},
there exist constants E(n,i)(p) <∞ and D(n,i)(p), D̃(n,i)(p) <∞ such that

E
[

sup
0≤t≤1

∣∣∣I(n,i),−
t

∣∣∣p] ≤ E(n,i)(p)εp/2
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as well as

E
[

sup
0≤t≤1

∣∣∣I(n,i),+
t

∣∣∣p] ≤ D(n,i)(p) and E
[

sup
0≤t≤1

∣∣∣Ĩ(n,i)
t

∣∣∣p] ≤ D̃(n,i)(p) .

As the sets Ω2
ε(β, γ) and Ω3

ε(δ) are defined by only finitely many constraints, the bounds

established above and the Markov inequality imply that, for all p <∞, there are constants

D(p) <∞ and E(p) <∞ such that

P
(
Ω2
ε(β, γ)c

)
≤ D(p) (βp + γp) and (3.3.8)

P
(
Ω3
ε(δ)

c
)
≤ E(p)δ−pεp/2 . (3.3.9)

Moreover, from the Kusuoka-Stroock estimate, cf. [AKS93], as stated by Watanabe

[Wat87, Theorem 3.2], we know that there exist a positive integer S and, for all p < ∞,

constants C(p) <∞ such that, for all ε ∈ (0, 1],

‖ det(c̃ε1)−1‖p =
(
E
[∣∣det (c̃ε1)−1

∣∣p])1/p

≤ C(p)ε−S/2 .

Let us now choose α = χ3/4ε1/8, β = γ = α and δ = κα2. We note that χε1/6 = α4/3 ≤ α

and hence, from Lemma 3.3.4 it follows that

λεmin ≥
1

2
λmin

on Ω(α, β, γ, δ, ε). Thus, we have

det(c̃ε1)−1
1Ω(α,β,γ,δ,ε) ≤ (λεmin)−d1Ω(α,β,γ,δ,ε) ≤ 2dλ−dmin1Ω(α,β,γ,δ,ε)

and therefore,

det(c̃ε1)−1 ≤ 2dλ−dmin + det(c̃ε1)−1
(
1Ω1(α)c + 1Ω2

ε(β,γ)c + 1Ω3
ε(δ)

c

)
.

Using the Hölder inequality, the Kusuoka-Stroock estimate as well as the estimates (3.3.7),

(3.3.8) and (3.3.9), we further deduce that, for all q, r <∞,

‖ det(c̃ε1)−1‖p

≤ 2d‖λ−1
min‖dp + C(2p)ε−S/2

(
P
(
Ω1(α)c

)1/2p
+ P

(
Ω2
ε(β, γ)c

)1/2p
+ P

(
Ω3
ε(δ)

c
)1/2p

)
≤ 2d‖λ−1

min‖dp + C(2p)ε−S/2
(

(D(q)αq)1/2p +
(
E(r)δ−rεr/2

)1/2p
)
.

Hence, we would like to choose q and r in such a way that we can control both ε−S/2αq/2p

and ε−S/2δ−r/2pεr/4p. Since δ = κα2 and α = χ3/4ε1/8, we have

ε−S/2αq/2p = χ3q/8pε−S/2+q/16p as well as ε−S/2δ−r/2pεr/4p =
(
κχ3/2

)−r/2p
ε−S/2+r/8p .
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Thus, picking q = 8pS and r = 4pS ensures both terms remain bounded as ε→ 0 and we

obtain

‖ det(c̃ε1)−1‖p ≤ 2d‖λ−1
min‖dp + C(2p)

(
D(8pS, χ)1/2p + E(4pS, κ, χ)1/2p

)
.

This together with the integrability (3.3.6) of λ−1
min implies the uniform non-degeneracy of

the rescaled Malliavin covariance matrices c̃ε1.

3.4 Convergence of the diffusion bridge measures

We give the proof of Theorem 3.1.2 in this section with the extension to Theorem 3.1.1

left to Section 3.5. For our analysis, we adapt the Fourier transform argument presented

in [BMN15] to allow for the higher-order scaling δε. As in Section 3.3, we may assume

that the sub-Riemannian structure (X1, . . . , Xm) has already been pushed forward by the

global diffeomorphism θ : Rd → Rd which is an adapted chart at x = 0 and which has

bounded derivatives of all positive orders.

Define TΩ0 to be the set of continuous paths v = (vt)t∈[0,1] in T0Rd ∼= Rd with v0 = 0 and

set

TΩ0,y = {v ∈ TΩ0 : v1 = y} .

Let µ̃0
ε denote the law of the rescaled process (x̃εt)t∈[0,1] on TΩ0 and write q(ε, 0, ·) for

the law of v1 under the measure µ̃0
ε. To obtain the rescaled diffusion bridge measures, we

disintegrate µ̃0
ε uniquely, with respect to the Lebesgue measure on Rd, as

µ̃0
ε(dv) =

∫
Rd
µ̃0,y
ε (dv)q(ε, 0, y) dy , (3.4.1)

where µ̃0,y
ε is a probability measure on TΩ0 which is supported on TΩ0,y, and the map

y 7→ µ̃0,y
ε is weakly continuous. We can think of µ̃0,y

ε as the law of the process (x̃εt)t∈[0,1]

conditioned by x̃ε1 = y. In particular, this construction is consistent with our previous

definition of µ̃0,0
ε . Similarly, write µ̃0 for the law of the limiting rescaled diffusion process

(x̃t)t∈[0,1] on TΩ0, denote the law of v1 under µ̃0 by q̄(·) and let (µ̃0,y : y ∈ Rd) be the

unique family of probability measures we obtain by disintegrating the measure µ̃0 as

µ̃0(dv) =

∫
Rd
µ̃0,y(dv)q̄(y) dy . (3.4.2)

In order to keep track of the paths of the diffusion bridges, we fix t1, . . . , tk ∈ (0, 1) with

t1 < · · · < tk as well as a smooth function g on (Rd)k of polynomial growth, and consider

the smooth cylindrical function G on TΩ0 defined by G(v) = g(vt1 , . . . , vtk). For y ∈ Rd
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and ε > 0, set

Gε(y) = q(ε, 0, y)

∫
TΩ0,y

G(v)µ̃0,y
ε (dv) and

G0(y) = q̄(y)

∫
TΩ0,y

G(v)µ̃0,y(dv) .

Both functions are continuous integrable functions on Rd and in particular, we can consider

their Fourier transforms Ĝε(ξ) and Ĝ0(ξ) given by

Ĝε(ξ) =

∫
Rd
Gε(y) ei〈ξ,y〉 dy and Ĝ0(ξ) =

∫
Rd
G0(y) ei〈ξ,y〉 dy .

Using the disintegration of measure property (3.4.1), we deduce that

Ĝε(ξ) =

∫
Rd

∫
TΩ0,y

q(ε, 0, y)G(v)µ̃0,y
ε (dv) ei〈ξ,y〉 dy

=

∫
TΩ0

G(v) ei〈ξ,v1〉 µ̃0
ε(dv)

= E [G(x̃ε) exp {i〈ξ, x̃ε1〉}] .

Similarly, by using (3.4.2), we show that

Ĝ0(ξ) = E [G(x̃) exp {i〈ξ, x̃1〉}] .

We recall that x̃εt → x̃t as ε→ 0 almost surely and in Lp for all p <∞, which implies that

Ĝε(ξ)→ Ĝ0(ξ) as ε→ 0 for all ξ ∈ Rd. To be able to use this convergence result to make

deductions about the behaviour of the functions Gε and G0 we need Ĝε to be integrable

uniformly in ε ∈ (0, 1]. This is provided by the following lemma, which is proven at the

end of the section.

Lemma 3.4.1. For all smooth cylindrical functions G on the path space TΩ0 there are

constants C(G) <∞ such that, for all ε ∈ (0, 1] and all ξ ∈ Rd, we have

|Ĝε(ξ)| ≤
C(G)

1 + |ξ|d+1
. (3.4.3)

Moreover, in the case where G(v) = |vt1 − vt2|4, there exists a constant C <∞ such that,

uniformly in t1, t2 ∈ (0, 1), we can choose C(G) = C|t1 − t2|2, i.e. for all ε ∈ (0, 1] and

all ξ ∈ Rd,

|Ĝε(ξ)| ≤
C|t1 − t2|2

1 + |ξ|d+1
. (3.4.4)

With this setup, we can prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Applying the Fourier inversion formula and using (3.4.3) from
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Lemma 3.4.1 as well as the dominated convergence theorem, we deduce that

Gε(0) =
1

(2π)d

∫
Rd
Ĝε(ξ) dξ → 1

(2π)d

∫
Rd
Ĝ0(ξ) dξ = G0(0) as ε→ 0 . (3.4.5)

Let Q =
∑N

n=1 ndn be the homogeneous dimension of the sub-Riemannian structure

(X1, . . . , Xm). Due to the change of variables formula, we have

q(ε, 0, y) = εQ/2p(ε, 0, δε(y)) ,

where p and q are the Dirichlet heat kernels, with respect to the Lebesgue measure on Rd,

associated to the processes (x1
t )t∈[0,1] and (x̃1

t )t∈[0,1], respectively. From (3.4.5), it follows

that

εQ/2p(ε, 0, 0)

∫
TΩ0,0

G(v)µ̃0,0
ε (dv)→ q̄(0)

∫
TΩ0,0

G(v)µ̃0,0(dv) as ε→ 0 . (3.4.6)

Choosing g ≡ 1 shows that

εQ/2p(ε, 0, 0)→ q̄(0) as ε→ 0 , (3.4.7)

which agrees with the small-time heat kernel asymptotics established in [BA89] and

[Léa92]. We recall that q̄ : Rd → [0,∞) is the density of the random variable x̃1, where

(x̃t)t∈[0,1] is the limiting rescaled process with generator

L̃ =
1

2

m∑
i=1

X̃2
i .

By Proposition 3.2.6, the nilpotent approximations X̃1, . . . , X̃m satisfy the Hörmander

condition everywhere on Rd and since L̃ has vanishing drift, the discussions in [BAL91b]

imply that q̄(0) > 0. Hence, we can divide (3.4.6) by (3.4.7) to obtain∫
TΩ0,0

G(v)µ̃0,0
ε (dv)→

∫
TΩ0,0

G(v)µ̃0,0(dv) as ε→ 0 .

Thus, the finite-dimensional distributions of µ̃0,0
ε converge weakly to those of µ̃0,0 and it

remains to establish tightness in order to deduce the desired convergence result. Taking

G(v) = |vt1 − vt2|4 as well as using the Fourier inversion formula and the estimate (3.4.4)

from Lemma 3.4.1, we conclude that

εQ/2p(ε, 0, 0)

∫
TΩ0,0

|vt1 − vt2|4 µ̃0,0
ε (dv) = Gε(0) ≤ C|t1 − t2|2 .

From (3.4.7) and due to q̄(0) > 0, it further follows that there exists a constant D < ∞
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such that, for all t1, t2 ∈ (0, 1),

sup
ε∈(0,1]

∫
TΩ0,0

|vt1 − vt2|4 µ̃0,0
ε (dv) ≤ D|t1 − t2|2 .

Standard arguments finally imply that the family of laws (µ̃0,0
ε : ε ∈ (0, 1]) is tight on

TΩ0,0 and hence, µ̃0,0
ε → µ̃0,0 weakly on TΩ0,0 as ε→ 0.

It remains to prove Lemma 3.4.1. We closely follow [BMN15, Proof of Lemma 4.1], where

the main adjustments needed arise due to the higher-order scaling map δε. In addition

to the uniform non-degeneracy of the rescaled Malliavin covariance matrices c̃ε1, which is

provided by Theorem 3.1.3, we need the rescaled processes (x̃εt)t∈[0,1] and (ṽεt )t∈[0,1] defined

in Section 3.3.1 to have moments of all orders bounded uniformly in ε ∈ (0, 1]. The latter

is ensured by the following lemma.

Lemma 3.4.2. There are moment estimates of all orders for the stochastic processes

(x̃εt)t∈[0,1] and (ṽεt )t∈[0,1] which are uniform in ε ∈ (0, 1], i.e. for all p <∞, we have

sup
ε∈(0,1]

E
[

sup
0≤t≤1

|x̃εt |p
]
<∞ and sup

ε∈(0,1]

E
[

sup
0≤t≤1

|ṽεt |p
]
<∞ .

Proof. We exploit the graded structure induced by the sub-Riemannian structure

(X1, . . . , Xm) and we make use of the properties of an adapted chart. For τ ∈ [0, 1],

consider the Itô stochastic differential equation in Rd

dxεt(τ) =
m∑
i=1

τ
√
εXi(x

ε
t(τ)) dBi

t + τ 2εX0(xεt(τ)) dt , xε0(τ) = 0

and let {(xεt(τ))t∈[0,1] : τ ∈ [0, 1]} be the unique family of strong solutions which is almost

surely jointly continuous in τ and t. Observe that xεt(0) = 0 and xεt(1) = xεt for all t ∈ [0, 1],

almost surely. Moreover, for n ≥ 1, the rescaled nth derivative in τ

x
ε,(n)
t (τ) = ε−n/2

(
∂

∂τ

)n
xεt(τ)

exists for all τ and t, almost surely. For instance, (x
ε,(1)
t (τ))t∈[0,1] is the unique strong

solution of the following Itô stochastic differential equation subject to x
ε,(1)
0 (τ) = 0.

dx
ε,(1)
t (τ) =

m∑
i=1

Xi(x
ε
t(τ)) dBi

t + 2τ
√
εX0(xεt(τ)) dt

+
m∑
i=1

τ
√
ε∇Xi(x

ε
t(τ))x

ε,(1)
t (τ) dBi

t + τ 2ε∇X0(xεt(τ))x
ε,(1)
t (τ) dt

In particular, we compute that x
ε,(1)
t (0) =

∑m
i=1Xi(0)Bi

t. As 〈u,Xi(0)〉 = 0 holds true for
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all i ∈ {1, . . . ,m} and all u ∈ C1(0)⊥, we deduce〈
u, x

ε,(1)
t (0)

〉
= 0 for all u ∈ C1(0)⊥ . (3.4.8)

By looking at the corresponding stochastic differential equation for (x
ε,(2)
t (τ))t∈[0,1], we

further obtain that

x
ε,(2)
t (0) =

m∑
i=1

∫ t

0

2∇Xi(0)xε,(1)
s (0) dBi

s + 2X0(0)t .

Due to (3.4.8), the only non-zero terms in ∇Xi(0)x
ε,(1)
s (0) are scalar multiples of the first

d1 columns of ∇Xi(0), i.e. where the derivative is taken along a direction lying in C1(0).

Thus, by property (ii) of an adapted chart and since X0(0) ∈ span{X1(0), . . . , Xm(0)}, it

follows that 〈
u, x

ε,(2)
t (0)

〉
= 0 for all u ∈ C2(0)⊥ .

In general, continuing in the same way and by appealing to the Faà di Bruno formula, we

prove iteratively that, for all n ∈ {1, . . . , N − 1},〈
u, x

ε,(n)
t (0)

〉
= 0 for all u ∈ Cn(0)⊥ . (3.4.9)

Besides, let us consider the stochastic process (xεt(τ), x
ε,(1)
t (τ), . . . , x

ε,(N)
t (τ))t∈[0,1]. It is

the solution of a stochastic differential equation with graded Lipschitz coefficients in the

sense of Norris [Nor86]. As the coefficient bounds of the graded structure are uniform in

τ ∈ [0, 1] and ε ∈ (0, 1], we obtain, uniformly in τ and ε, moment bounds of all orders for

(xεt(τ), x
ε,(1)
t (τ), . . . , x

ε,(N)
t (τ))t∈[0,1]. Finally, due to (3.4.9) we have, for all n ∈ {1, . . . , N}

and all u ∈ Cn(0) ∩ Cn−1(0)⊥,

〈u, x̃εt〉 =
〈
u, ε−n/2xεt

〉
=

〈
u,

∫ 1

0

∫ τ1

0

. . .

∫ τn−1

0

x
ε,(n)
t (τn) dτn dτn−1 . . . dτ1

〉
.

This together with the uniform moment bounds implies the claimed result that, for all

p <∞,

sup
ε∈(0,1]

E
[

sup
0≤t≤1

|x̃εt |p
]
<∞ .

We proceed similarly to establish the second estimate. Let {(vεt (τ))t∈[0,1] : τ ∈ [0, 1]} be

the unique family of strong solutions to the Itô stochastic differential equation in Rd

dvεt (τ) =−
m∑
i=1

τ
√
εvεt (τ)∇Xi(x

ε
t(τ)) dBi

t

− τ 2εvεt (τ)

(
∇X0 −

m∑
i=1

(∇Xi)
2

)
(xεt(τ)) dt , vε0(τ) = I
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which is almost surely jointly continuous in τ and t. We note that vεt (0) = I and vεt (1) = vεt

for all t ∈ [0, 1], almost surely. For n ≥ 1, the derivative

v
ε,(n)
t (τ) = ε−n/2

(
∂

∂τ

)n
vεt (τ)

exists for all τ and t, almost surely. For n1, n2 ∈ {1, . . . , N} and u1 ∈ Cn1(0) ∩ Cn1−1(0)⊥

as well as u2 ∈ Cn2(0) ∩ Cn2−1(0)⊥, we have

〈
u1, ṽεtu

2
〉

= ε−(n1−n2)/2
〈
u1, vεtu

2
〉
.

Therefore, if n1 ≤ n2, we obtain the bound |〈u1, ṽεtu
2〉| ≤ |〈u1, vεtu

2〉|. On the other hand,

if n1 > n2 then 〈u1, u2〉 = 0 and in a similar way to proving (3.4.9), we show that〈
u1, v

ε,(k)
t (0)u2

〉
= 0 for all k ∈ {1, . . . , n1 − n2 − 1}

by repeatedly using property (ii) of an adapted chart. This allows us to write, for n1 > n2,

〈
u1, ṽεtu

2
〉

=

〈
u1,

(∫ 1

0

∫ τ1

0

. . .

∫ τn1−n2−1

0

v
ε,(n1−n2)
t (τn1−n2) dτn1−n2 dτn1−n2−1 . . . dτ1

)
u2

〉
.

As the stochastic process (xεt(τ), vεt (τ), x
ε,(1)
t (τ), v

ε,(1)
t (τ), . . . , x

ε,(N)
t (τ), v

ε,(N)
t (τ))t∈[0,1] is

the solution of a stochastic differential equation with graded Lipschitz coefficients in the

sense of Norris [Nor86], with the coefficient bounds of the graded structure being uniform

in τ ∈ [0, 1] and ε ∈ (0, 1], the second result claimed follows.

We finally present the proof of Lemma 3.4.1. For some of the technical arguments which

carry over unchanged, we simply refer the reader to [BMN15].

Proof of Lemma 3.4.1. Let (xεt)t∈[0,1] be the process in Rd and (uεt)t∈[0,1] as well as (vεt )t∈[0,1]

be the processes in Rd ⊗ (Rd)∗ which are defined as the unique strong solutions of the

following system of Itô stochastic differential equations.

dxεt =
m∑
i=1

√
εXi(x

ε
t) dBi

t + εX0(xεt) dt , xε0 = 0 (3.4.10)

duεt =
m∑
i=1

√
ε∇Xi(x

ε
t)u

ε
t dBi

t + ε∇X0(xεt)u
ε
t dt , uε0 = I

dvεt = −
m∑
i=1

√
εvεt∇Xi(x

ε
t) dBi

t − εvεt

(
∇X0 −

m∑
i=1

(∇Xi)
2

)
(xεt) dt , vε0 = I

Fix k ∈ {1, . . . , d}. For η ∈ Rd, consider the perturbed process (Bη
t )t∈[0,1] in Rm given by

dBη,i
t = dBi

t + η
(√

ε δ−1
ε (vεtXi(x

ε
t))
)k

dt , Bη
0 = 0 ,
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where (
√
ε δ−1

ε (vεtXi(x
ε
t)))

k denotes the kth component of the vector
√
ε δ−1

ε (vεtXi(x
ε
t)) in

Rd. Write (xε,ηt )t∈[0,1] for the strong solution of the stochastic differential equation (3.4.10)

with the driving Brownian motion (Bt)t∈[0,1] replaced by (Bη
t )t∈[0,1]. We choose a version

of the family of processes (xε,ηt )t∈[0,1] which is almost surely smooth in η and set

((xε)′t)
k

=
∂

∂η

∣∣∣∣
η=0

xε,ηt .

The derived process ((xε)′t)t∈[0,1] = (((xε)′t)
1, . . . , ((xε)′t)

d)t∈[0,1] in Rd⊗Rd associated with

the process (xεt)t∈[0,1] then satisfies the Itô stochastic differential equation

d(xε)′t =
m∑
i=1

√
ε∇Xi(x

ε
t)(x

ε)′t dBi
t + ε∇X0(xεt)(x

ε)′t dt

+
m∑
i=1

√
εXi(x

ε
t)⊗

(√
ε δ−1

ε (vεtXi(x
ε
t))
)

dt

subject to (xε)′0 = 0. Using the expression (3.3.3) for the rescaled Malliavin covariance

matrix c̃εt , we show that (xε)′t = uεt δε c̃
ε
t . It follows that for the derived process ((x̃ε)′t)t∈[0,1]

associated with the rescaled process (x̃εt)t∈[0,1] and the stochastic process (ũεt)t∈[0,1] given

by ũεt = δ−1
ε uεt δε, we have

(x̃ε)′t = ũεt c̃
ε
t .

Note that both ũε1 and c̃ε1 are invertible for all ε > 0 with (ũε1)−1 = ṽε1. Let (rεt )t∈[0,1] be

the process defined by

drεt =
m∑
i=1

√
ε δ−1

ε (vεtXi(x
ε
t)) dBi

t , rε0 = 0

and set

y
ε,(0)
t =

(
xεt∧t1 , . . . , x

ε
t∧tk , x

ε
t , v

ε
t , r

ε
t , (x

ε)′t
)
.

The underlying graded Lipschitz structure, in the sense of Norris [Nor86], allows us, for

n ≥ 0, to recursively define

z
ε,(n)
t =

(
y
ε,(0)
t , . . . , y

ε,(n)
t

)
by first solving for the derived process ((zε,(n))′t)t∈[0,1], then writing

(
zε,(n)

)′
t

=
((
yε,(0)

)′
t
, . . . ,

(
yε,(n)

)′
t

)
and finally setting y

ε,(n+1)
t = (yε,(n))′t .

Consider the random variable yε = ((x̃ε)′1)−1 in (Rd)∗ ⊗ (Rd)∗ and let φ = φ(yε, z
ε,(n)
1 )

be a polynomial in yε, where the coefficients are continuously differentiable in z
ε,(n)
1 and

of polynomial growth, along with their derivatives. Going through the deductions made
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from Bismut’s integration by parts formula in [BMN15, Proof of Lemma 4.1] with R ≡ 0

and F ≡ 0 shows that for any continuously differentiable, bounded function f : Rd → R
with bounded first derivatives and any k ∈ {1, . . . , d}, we have

E
[
∇kf(x̃ε1)φ

(
yε, z

ε,(n)
1

)]
= E

[
f(x̃ε1)∇∗kφ

(
yε, z

ε,(n+1)
1

)]
,

where

∇∗kφ
(
yε, z

ε,(n+1)
1

)
= τk (yε ⊗ rε1 + yε(x̃ε)′′1y

ε)φ
(
yε, z

ε,(n)
1

)
+ τk

(
yε ⊗

(
∇yφ

(
yε, z

ε,(n)
1

)
yε(x̃ε)′′1y

ε
))

− τk
(
yε ⊗

(
∇zφ

(
yε, z

ε,(n)
1

) (
zε,(n)

)′
1

))
,

and τk : (Rd)∗ ⊗ (Rd)∗ ⊗ Rd → R is the linear map given by τk(e
∗
l ⊗ e∗k′ ⊗ el′) = δkk′δll′ .

Starting from

φ
(
yε, z

ε,(0)
1

)
= G(x̃ε) = g

(
x̃εt1 , . . . , x̃

ε
tk

)
we see inductively that, for any multi-index α = (k1, . . . , kn),

E [∇αf(x̃ε1)G(x̃ε)] = E
[
f(x̃ε1)(∇∗)αG

(
yε, z

ε,(n)
1

)]
.

Fixing ξ ∈ Rd and choosing f(·) = ei〈ξ,·〉 in this integration by parts formula yields

|ξα||Ĝε(ξ)| ≤ E
[∣∣∣(∇∗)αG(yε, zε,(n)

1

)∣∣∣] .
To deduce the bound (3.4.3), it remains to establish that Cε(α,G) = E[|(∇∗)αG(yε, z

ε,(n)
1 )|]

can be controlled uniformly in ε. Due to yε = (c̃ε1)−1ṽε1, Theorem 3.1.3 and the second

estimate from Lemma 3.4.2 immediately imply that, for all p <∞,

sup
ε∈(0,1]

E [|yε|p] <∞ . (3.4.11)

Moreover, from the first moment estimate in Lemma 3.4.2, it follows that all processes

derived from the rescaled process (x̃εt)t∈[0,1] have moments of all orders bounded uniformly

in ε ∈ (0, 1]. Similarly, for n = d+ 1 and all p <∞, we obtain

sup
ε∈(0,1]

E
[∣∣∣zε,(n)

1

∣∣∣p] <∞ , (3.4.12)

where we observe that, for all n ∈ {0, 1, . . . , N − 1} and all u ∈ Cn+1(0) ∩ Cn(0)⊥,

〈u, rεt 〉 =
m∑
i=1

∫ t

0

〈
u, ε−n/2vεsXi(x

ε
s)
〉

dBi
s ,
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and use Lemma 3.3.3 to show that there is no singularity in the process (rεt )t∈[0,1] as

ε → 0. Since (∇∗)αG is of polynomial growth in the argument (yε, z
ε,(n)
1 ), the moment

estimates (3.4.11) and (3.4.12) show that Cε(α,G) is bounded uniformly in ε ∈ (0, 1].

This establishes (3.4.3).

Finally, the same proof as presented in [BMN15, Proof of Lemma 4.1] shows that we have

(3.4.4) in the special case where G(v) = |vt1− vt2|4 for some t1, t2 ∈ (0, 1). Let the process

(x̃
ε,(0)
t )t∈[0,1] be given by x̃

ε,(0)
t = x̃εt and, recursively for n ≥ 0, define (x̃

ε,(n+1)
t )t∈[0,1] by

x̃
ε,(n+1)
t = (x̃εt , (x̃

ε,(n))′t). Then, for all p ∈ [1,∞), there exists a constant D(p) < ∞ such

that, uniformly in t1, t2 ∈ (0, 1) and in ε ∈ (0, 1],

E
[∣∣∣x̃ε,(n)

t1 − x̃ε,(n)
t2

∣∣∣4p] ≤ D(p)|t1 − t2|2p .

Furthermore, from the expression for the adjoint operator∇∗k we deduce that, for all n ≥ 1

and any multi-index α = (k1, . . . , kn), there exists a random variable Mα, with moments

of all orders which are bounded uniformly in ε ∈ (0, 1], such that

(∇∗)αG
(
yε, z

ε,(n)
1

)
= Mα

∣∣∣x̃ε,(n)
t1 − x̃ε,(n)

t2

∣∣∣4 .
By using Hölder’s inequality, we conclude that there exists a constant C(α) < ∞ such

that, uniformly in t1, t2 ∈ (0, 1) and ε ∈ (0, 1], we obtain

Cε(α,G) ≤ C(α)|t1 − t2|2 ,

which implies (3.4.4).

3.5 Localisation argument

In proving Theorem 3.1.1 by localising Theorem 3.1.2, we employ the same localisation

argument as used in [BMN15, Section 5]. This is possible due to [BMN15, Theorem 6.1],

which provides a control over the amount of heat diffusing between two fixed points on a

manifold without leaving a fixed closed subset, also covering the diagonal case. After the

proof, we give an example to illustrate Theorem 3.1.1 and we remark on deductions made

for the
√
ε-rescaled fluctuations of diffusion loops.

Let L be a differential operator on M satisfying the conditions of Theorem 3.1.1 and let

(X1, . . . , Xm) be a sub-Riemannian structure for the diffusivity of L. Define X0 to be the

smooth vector field on M given by requiring

L =
1

2

m∑
i=1

X2
i +X0

and recall that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈M . Let (U0, θ) be an adapted
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chart to the filtration induced by (X1, . . . , Xm) at x ∈M and extend it to a smooth map

θ : M → Rd. By passing to a smaller set if necessary, we may assume that the closure of

U0 is compact. Let U be a domain in M containing x and compactly contained in U0.

We start by constructing a differential operator L̄ on Rd which satisfies the assumptions

of Theorem 3.1.2 with the identity map being an adapted chart at 0 and such that

L(f) = L̄(f ◦ θ−1) ◦ θ for all f ∈ C∞(U).

Set V = θ(U) and V0 = θ(U0). Let χ be a smooth function on Rd which satisfies the

condition 1V ≤ χ ≤ 1 and where {χ > 0} is compactly contained in V0. The existence of

such a function is always guaranteed. Besides, we pick another smooth function ρ on Rd

with 1V ≤ 1 − ρ ≤ 1V0 and such that χ + ρ is everywhere positive. Define vector fields

X̄0, X̄1, . . . , X̄m, X̄m+1, . . . , X̄m+d on Rd by

X̄i(z) =

χ(z) dθθ−1(z) (Xi (θ
−1(z))) if z ∈ V0

0 if z ∈ Rd \ V0

for i ∈ {0, 1, . . . ,m} ,

X̄m+k(z) = ρ(z)ek for k ∈ {1, . . . , d} ,

where e1, . . . , ed is the standard basis in Rd. Note that X0(y) ∈ span{X1(y), . . . , Xm(y)}
for all y ∈ M implies that X̄0(z) ∈ span{X̄1(z), . . . , X̄m(z)} for all z ∈ Rd. Moreover,

the vector fields X̄1, . . . , X̄m satisfy the Hörmander condition on the set {χ > 0}, while

X̄m+1, . . . , X̄m+d themselves span Rd on {ρ > 0}. As U0 is assumed to have compact

closure, the vector fields constructed are all bounded with bounded derivatives of all

orders. Hence, the differential operator L̄ on Rd given by

L̄ =
1

2

m+d∑
i=1

X̄2
i + X̄0

satisfies the assumptions of Theorem 3.1.2. We further observe that, on V ,

X̄i = θ∗(Xi) for all i ∈ {0, 1, . . . ,m} ,

which yields the the desired property that L̄ = θ∗L on V . Additionally, we see that

the nilpotent approximations of (X̄1, . . . , X̄m, X̄m+1, . . . , X̄m+d) are (X̃1, . . . , X̃m, 0, . . . , 0)

which shows that the limiting rescaled processes on Rd associated to the processes with

generator εL̄ and εL, respectively, have the same generator L̃. Since (U0, θ), and so in

particular the restriction (U, θ) is an adapted chart at x, it also follows that the identity

map on Rd is an adapted chart to the filtration induced by the sub-Riemannian structure

(X̄1, . . . , X̄m, X̄m+1, . . . , X̄m+d) on Rd at 0. Thus, Theorem 3.1.2 holds with the identity

map as choice for the global diffeomorphism and we associate the same anisotropic dilation

δε : Rd → Rd with the adapted charts (U, θ) at x and (V, I) at 0. We use this to finally

prove our main result.
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Proof of Theorem 3.1.1. Let p̄ be the Dirichlet heat kernel for L̄ with respect to the

Lebesgue measure λ on Rd. Choose a positive smooth measure ν on M which satisfies

ν = (θ−1)∗λ on U and let p denote the Dirichlet heat kernel for L with respect to ν. Write

µ0,0,Rd
ε for the diffusion loop measure on Ω0,0(Rd) associated with the operator εL̄ and

write µ̃0,0,Rd
ε for the rescaled loop measure on TΩ0,0(Rd), which is the image measure of

µ0,0,Rd
ε under the scaling map σ̄ε : Ω0,0(Rd)→ TΩ0,0(Rd) given by

σ̄ε(ω)t = δ−1
ε (ωt) .

Moreover, let µ̃0,0,Rd be the loop measure on TΩ0,0(Rd) associated with the stochastic

process (x̃t)t∈[0,1] on Rd starting from 0 and having generator L̃ and let q̄ denote the

probability density function of x̃1. From Theorem 3.1.2, we know that µ̃0,0,Rd
ε converges

weakly to µ̃0,0,Rd on TΩ0,0(Rd) as ε→ 0, and its proof also shows that

p̄(ε, 0, 0) = ε−Q/2q̄(0)(1 + o(1)) as ε→ 0 . (3.5.1)

Let pU denote the Dirichlet heat kernel in U of the restriction of L to U and write µx,x,Uε

for the diffusion bridge measure on Ωx,x(U) associated with the restriction of the operator

εL to U . For any measurable set A ⊂ Ωx,x(M), we have

p(ε, x, x)µx,xε (A) = pU(ε, x, x)µx,x,Uε (A ∩ Ωx,x(U)) + p(ε, x, x)µx,xε (A \ Ωx,x(U)) . (3.5.2)

Additionally, by counting paths and since ν = (θ−1)∗λ on U , we obtain

p̄(ε, 0, 0)µ0,0,Rd
ε (θ(A ∩ Ωx,x(U))) = pU(ε, x, x)µx,x,Uε (A ∩ Ωx,x(U)) , (3.5.3)

where θ(A∩Ωx,x(U)) denotes the subset {(θ(ωt))t∈[0,1] : ω ∈ A∩Ωx,x(U)} of Ω0,0(Rd). Let

B be a bounded measurable subset of the set TΩx,x(M) of continuous paths v = (vt)t∈[0,1]

in TxM with v0 = 0 and v1 = 0. For ε > 0 sufficiently small, we have σ−1
ε (B) ⊂ Ωx,x(U)

and so (3.5.2) and (3.5.3) imply that

p(ε, x, x)µx,xε
(
σ−1
ε (B)

)
= p̄(ε, 0, 0)µ0,0,Rd

ε

(
θ
(
σ−1
ε (B)

))
.

Since µx,xε (σ−1
ε (B)) = µ̃x,xε (B) and

µ0,0,Rd
ε

(
θ
(
σ−1
ε (B)

))
= µ0,0,Rd

ε

(
σ̄−1
ε (dθx(B))

)
= µ̃0,0,Rd

ε (dθx(B)) ,

we established that

p(ε, x, x)µ̃x,xε (B) = p̄(ε, 0, 0)µ̃0,0,Rd
ε (dθx(B)) . (3.5.4)

Moreover, it holds that µ0,0,Rd
ε (θ(Ωx,x(U))→ 1 as ε→ 0. Therefore, taking A = Ωx,x(M)
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in (3.5.3) and using (3.5.1) gives

pU(ε, x, x) = ε−Q/2q̄(0)(1 + o(1)) as ε→ 0 .

By [BMN15, Theorem 6.1], we know that

lim sup
ε→0

ε log p(ε, x,M \ U, x) ≤ −d(x,M \ U, x)2

2
,

where p(ε, x,M \U, x) = p(ε, x, x)− pU(ε, x, x) and d(x,M \U, x) is the sub-Riemannian

distance from x to x through M \ U . Since d(x,M \ U, x) is strictly positive, it follows

that

p(ε, x, x) = pU(ε, x, x) + p(ε, x,M \ U, x) = ε−Q/2q̄(0)(1 + o(1)) as ε→ 0 .

Hence, due to (3.5.4), we have that µ̃x,xε (B) = µ̃0,0,Rd
ε (dθx(B))(1 + o(1)) for any bounded

measurable set B ⊂ TΩx,x(M). From the weak convergence of µ̃0,0,Rd
ε to µ̃0,0,Rd on the

space TΩ0,0(Rd) as ε → 0 and since µ̃0,0,Rd(dθx(B)) = µ̃x,x(B), we conclude that the

diffusion loop measures µ̃x,xε converge weakly to the loop measure µ̃x,x on TΩ0,0(M) as

ε→ 0.

We close with an example and a remark.

Example 3.5.1. Consider the same setup as in Example 3.2.7, i.e. M = R2 with x = 0

fixed and the vector fields X1, X2 on R2 defined by

X1 =
∂

∂x1
+ x1 ∂

∂x2
and X2 = x1 ∂

∂x1

in Cartesian coordinates (x1, x2). We recall that these coordinates are not adapted to the

filtration induced by (X1, X2) at 0 and we start off by illustrating why this chart is not

suitable for our analysis. The unique strong solution (xεt)t∈[0,1] = (xε,1t , xε,2t )t∈[0,1] of the

Stratonovich stochastic differential equation in R2

∂xε,1t =
√
ε ∂B1

t +
√
εxε,1t ∂B2

t

∂xε,2t =
√
εxε,1t ∂B1

t

subject to xε0 = 0 is given by

xεt =

(√
ε

∫ t

0

e
√
ε(B2

t−B2
s) ∂B1

s , ε

∫ t

0

(∫ s

0

e
√
ε(B2

s−B2
r) ∂B1

r

)
∂B1

s

)
.

Though the step of the filtration induced by (X1, X2) at 0 isN = 3, rescaling the stochastic

process (xεt)t∈[0,1] by ε−3/2 in any direction leads to a blow-up in the limit ε→ 0. Instead,

the highest-order rescaled process we can consider is (ε−1/2xε,1t , ε−1xε,2t )t∈[0,1] whose limit
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process, as ε→ 0, is characterised by

lim
ε→0

(
ε−1/2xε,1t , ε−1xε,2t

)
→
(
B1
t ,

1

2

(
B1
t

)2
)
.

We see that these rescaled processes localise around a parabola in R2. As the Malliavin

covariance matrix of (B1
1 ,

1
2
(B1

1)2) is degenerate, the Fourier transform argument from

Section 3.4 cannot be used. Rather, we first need to apply an additional rescaling along

the parabola to recover a non-degenerate limit process. This is the reason why we choose

to work in an adapted chart because it allows us to express the overall rescaling needed

as an anisotropic dilation.

Let the map θ : R2 → R2 be the same global adapted chart as used in Example 3.2.7

and let δε : R2 → R2 be the associated anisotropic dilation. We showed that the nilpotent

approximations X̃1, X̃2 of the vector fields X1, X2 are

X̃1 =
∂

∂y1
and X̃2 = −

(
y1
)2 ∂

∂y2
,

with respect to Cartesian coordinates (y1, y2) on the second copy of R2. The convergence

result (3.3.1) implies that, for all t ∈ [0, 1],

δ−1
ε (θ(xεt))→

(
B1
t ,−

∫ t

0

(
B1
s

)2
∂B2

s

)
as ε→ 0 .

Since dθ0 : R2 → R2 is the identity map, Theorem 3.1.1 says that the suitably rescaled

fluctuations of the diffusion loop at 0 associated to the stochastic process with generator

L =
1

2
(X2

1 +X2
2 )

converge weakly to the loop obtained by conditioning the process (B1
t ,−

∫ t
0
(B1

s )
2 ∂B2

s )t∈[0,1]

to return to 0 at time 1.

Remark 3.5.2. We demonstrate that Theorem 3.1.1 and Theorem 3.1.2 allow us to make

deductions about the
√
ε-rescaled fluctuations of diffusion loops. For the rescaling map

τε : Ωx,x → TΩ0,0 given by

τε(ω)t = (dθx)
−1
(
ε−1/2θ(ωt)

)
,

we are interested in the behaviour of the measures µx,xε ◦ τ−1
ε in the limit as ε → 0. Let

e1, . . . , ed be the standard basis in Rd and define ψ : TΩ0,0 → TΩ0,0 by

ψ(v)t =

d1∑
i=1

〈dθx(vt), ei〉 (dθx)−1 ei .
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The map ψ takes a path in TΩ0,0 and projects it onto the component living in the subspace

C1(x) of TxM . Since the maps τε and σε are related by

τε(ω)t = (dθx)
−1 (ε−1/2δε (dθx (σε(ω)t))

)
and because ε−1/2δε(y) tends to (y1, . . . , yd1 , 0, . . . , 0) in the limit as ε→ 0, it follows that

the
√
ε-rescaled diffusion loop measures µx,xε ◦ τ−1

ε converge weakly to µ̃x,x ◦ψ−1 on TΩ0,0

as ε → 0. Provided L is non-elliptic at x, the latter is a degenerate measure which is

supported on the set of paths (vt)t∈[0,1] in TΩ0,0 which satisfy vt ∈ C1(x), for all t ∈ [0, 1].

Hence, the rescaled diffusion process (ε−1/2θ(xεt))t∈[0,1] conditioned by θ(xε1) = 0 localises

around the subspace (θ∗C1)(0).

Finally, by considering the limiting diffusion loop from Example 3.5.1, we show that the

degenerate limit measure µ̃x,x ◦ ψ−1 need not be Gaussian. Going back to Example 3.5.1,

we first observe that the map ψ is simply projection onto the first component, i.e.

ψ(v)t =

(
1 0

0 0

)
vt .

Thus, to show that the measure µ̃x,x ◦ψ−1 is not Gaussian, we have to analyse the process(
B1
t ,−

∫ t

0

(B1
s )

2 ∂B2
s

)
t∈[0,1]

conditioned to return to 0 at time 1 and show that its first component is not Gaussian.

Using the tower property, we first condition on B1
1 = 0 to see that this component is equal

in law to the process (B1
t − tB1

1)t∈[0,1] conditioned by
∫ 1

0
(B1

s − sB1
1)2 ∂B2

s = 0, where the

latter is in fact equivalent to conditioning on
∫ 1

0
(B1

s − sB1
1)2 dB2

s = 0. Let µB denote the

Brownian bridge measure on Ω(R)0,0 = {ω ∈ C([0, 1],R) : ω0 = ω1 = 0} and let ν be the

law of −
∫ 1

0
(B1

s − sB1
1)2 dB2

s on R. Furthermore, denote the joint law of

(
B1
t − tB1

1

)
t∈[0,1]

and −
∫ 1

0

(
B1
s − sB1

1

)2
dB2

s

on Ω(R)0,0×R by µ. Since −
∫ 1

0
ω2
s dB2

s , for ω ∈ Ω(R)0,0 fixed, is a normal random variable

with mean zero and variance
∫ 1

0
ω4
s ds, we obtain that

µ(dω, dy) =
1√

2πσ(ω)
e
− y2

2σ2(ω) µB(dω) dy with σ(ω) =

(∫ 1

0

ω4
s ds

)1/2

. (3.5.5)

On the other hand, we can disintegrate µ as

µ(dω, dy) = µyB(dω)ν(dy) ,
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where µyB is the law of (B1
t − tB1

1)t∈[0,1] conditioned by −
∫ 1

0
(B1

s − sB1
1)2 dB2

s = y, i.e. we

are interested in the measure µ0
B. From (3.5.5), it follows that

µ0
B(dω) ∝ σ−1(ω)µB(dω) =

(∫ 1

0

ω4
s ds

)−1/2

µB(dω) .

This shows that µ0
B is not Gaussian, which implies that the

√
ε-rescaled fluctuations

indeed admit a non-Gaussian limiting diffusion loop. �





Chapter 4

Brownian motion conditioned to

have trivial signature

We report on work in progress studying Brownian motion which is conditioned to have

vanishing iterated integrals of all orders. The idea for this project resulted from dialogue

with Terry Lyons. Chen [Che58] studied the formal series of iterated integrals of a path,

called the signature, and proved uniqueness, up to translation and reparametrisation, in

a class of piecewise regular paths. Hambly and Lyons [HL10] extended Chen’s theorem

and showed that two paths of bounded variation have the same signature if and only if

they differ by a tree-like path. They left the question open if the same is true for weak

geometric p-rough paths with p > 1. Le Jan and Qian [LJQ13] first proved that almost

all Brownian motion sample paths are determined by their signature, and Boedihardjo,

Geng, Lyons and Yang [BGLY16] then positively answered the question in the general

case subject to the appropriate definition of a path to be tree-like. This shows that the

signature of a path encodes enough information to completely determine it up to tree-like

paths. In particular, the law of Brownian motion conditioned to have vanishing iterated

integrals up to order N concentrates for large N around the set of tree-like paths. We

conjecture that the laws in fact converge weakly to the unit mass at the zero path. Our

work in relation with this conjecture has led to an analytic proof of the stand-alone result

that a Brownian bridge in Rd from 0 to 0 in time 1 is more likely to stay inside a box

centred at the origin than any other Brownian bridge in time 1.

4.1 Signature of Brownian motion

We set up conventions used and recall results needed in our analysis of the behaviour of

Brownian motion which is conditioned to have vanishing iterated integrals of all orders.

Following Lyons, Caruana and Lévy [LCL07], the signature and the truncated signature

of a continuous path of bounded variation, also called of finite 1-variation, are defined as

follows.
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Definition 4.1.1. The signature of a continuous path z : [0, 1]→ Rd of bounded variation

is the element S(z) in the space of formal series of tensors of Rd defined by

S(z) =

(
1,

∫ 1

0

dzt, . . . ,

∫ 1

0

∫ tk

0

. . .

∫ t2

0

dzt1 ⊗ · · · ⊗ dztk , . . .

)
.

The truncated signature of order N of the continuous path z of bounded variation is the

element SN(z) in the truncated tensor algebra of order N of Rd given by

SN(z) =

(
1,

∫ 1

0

dzt, . . . ,

∫ 1

0

∫ tN

0

. . .

∫ t2

0

dzt1 ⊗ · · · ⊗ dztN

)
.

Let (Bt)t∈[0,1] be a Brownian motion in Rd, which we assume is realised as the coordinate

process on the set Ω0(Rd) = {w ∈ C([0, 1],Rd) : w0 = 0} under Wiener measure P. Note

that Definition 4.1.1 does not yet allow us to speak of the signature of Brownian motion

as almost all its sample paths are of unbounded variation. By using rough paths theory, it

is possible to extend the notion of signature to sets of continuous paths which are not of

bounded variation. For details on rough paths theory, see Friz and Victoir [FV10]. Almost

all Brownian sample paths are of finite p-variation for p > 2, and we obtain the canonical

Brownian rough path, using ∂ to denote the Stratonovich differential,(
1, Bt,

∫ t

0

∫ s

0

∂Br ⊗ ∂Bs

)
t∈[0,1]

,

which is indeed a geometric p-rough path for 2 < p < 3. As a consequence of the extension

theorem [LCL07, Theorem 3.7], every p-rough path has a full signature. Thus, we can use

the canonical Brownian rough path to define the signature of Brownian motion. To present

the definition obtained by this construction, we change tack and start following notations

in Baudoin [Bau04] as our problem can be fully understood in terms of stochastic integrals.

Definition 4.1.2. The signature of Brownian motion (Bt)t∈[0,1] in Rd is the element of the

non-commutative algebra R[[X1, . . . , Xd]] of formal series with d indeterminates defined

by

S(B) = 1 +
∞∑
k=1

d∑
i1,...,ik=1

Xi1 . . . Xik

∫ 1

0

∫ tk

0

. . .

∫ t2

0

∂Bi1
t1 . . . ∂B

ik
tk
.

The truncated signature of order N of Brownian motion (Bt)t∈[0,1] is the element of the

set RN [X1, · · · , Xd] of formal series with d indeterminates truncated at order N given by

SN(B) = 1 +
N∑
k=1

d∑
i1,...,ik=1

Xi1 . . . Xik

∫ 1

0

∫ tk

0

. . .

∫ t2

0

∂Bi1
t1 . . . ∂B

ik
tk
.

This is also called the (truncated) Stratonovich signature of Brownian motion to stress

the fact that the integrals are understood in the Stratonovich sense.
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The first observation we make is that the truncated signature SN(B) of Brownian motion

in Rd takes values in the free Carnot group GN(Rd) of step N . This follows from

SN(B) = exp

(
N∑
k=1

d∑
i1,...,ik=1

Λ(i1,...,ik)(B)[Xi1 , [Xi2 , . . . , [Xik−1
, Xik ] . . . ]]

)
, (4.1.1)

where

Λ(i1,...,ik)(B) =
∑
σ∈Sk

(−1)e(σ)

k2

(
k − 1

e(σ)

) ∫ 1

0

∫ tk

0

. . .

∫ t2

0

∂B
iσ−1(1)

t1 . . . ∂B
iσ−1(k)

tk

with Sk the group of permutations of the set {1, . . . , k} and e(σ) denoting the cardinality

of the set {i ∈ {1, . . . , k − 1} : σ(i) > σ(i+ 1)}. The expansion (4.1.1) is a consequence of

the Chen-Strichartz development formula [Bau04, Theorem 1.1], which is a restatement

of a result by Chen [Che57] and Strichartz [Str87], and whose proof uses the generalised

Baker-Campbell-Hausdorff formula.

Let us further understand the X1, . . . , Xd as left-invariant vector fields on the free Carnot

group GN(Rd) and define a process (Bt)t∈[0,1] in GN(Rd) as the unique strong solution of

the Stratonovich stochastic differential equation

∂Bt =
d∑
i=1

Xi (Bt) ∂B
i
t , B0 = 1 .

We call (Bt)t∈[0,1] the lift of Brownian motion to GN(Rd). Note that the generator of this

process is 1
2

∑d
i=1X

2
i , which is hypoelliptic by construction. In particular, the law of B1

on GN(Rd) is absolutely continuous with respect to Lebesgue measure. Hence, using the

theory of disintegration of measures, we can make sense of the loop in GN(Rd) obtained

by conditioning the lift (Bt)t∈[0,1] on B1 = 1. For details, see Section 4.2. The projection of

the loop in GN(Rd) onto the base space Rd is called the Brownian loop of step N . For an

alternative construction using Doob h-transforms, see Baudoin [Bau04, Section 3.6]. We

observe that [Bau04, Proposition 2.3] implies that B1 = SN(B). Therefore, the study of

Brownian motion conditioned to have trivial signature can be seen as analysing Brownian

loops of step N in the limit N →∞. Using this terminology, our conjecture is as follows.

Conjecture 4.1.3. Let d ≥ 2. Then the laws of Brownian loops of step N converge to

the unit mass δ0 at the zero path weakly on Ω0(Rd) as N →∞.

Our work towards validating this conjecture is included in the next section.

4.2 Outline of ideas

We show how to define a Brownian loop of step N using disintegration of measures and

then present ideas which could be useful in proving Conjecture 4.1.3. As a by-product,
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we obtain an analytic proof of the stand-alone result that a Brownian bridge in Rd from

0 to 0 in time 1 is more likely to stay inside a box centred at the origin than any other

Brownian bridge in time 1.

Throughout, we use the characterisation of the free Carnot group GN(Rd) of step N given

by [Bau04, Proposition 2.8]. It allows us to consider GN(Rd) as some RdN endowed with a

polynomial group law which is unimodular, i.e. the left Haar measure and the right Haar

measure are the same on the corresponding Lie group. They agree with the Lebesgue

measure and it follows that translations leave the Lebesgue measure invariant. In this

setting, the identity element of GN(Rd) is 0, and there exist left-invariant polynomial

vector fields Y1, . . . , Yd on RdN such that the lift (Bt)t∈[0,1] of Brownian motion to GN(Rd)

becomes the unique strong solution of the Stratonovich stochastic differential equation

∂Bt =
d∑
i=1

Yi (Bt) ∂B
i
t , B0 = 0 .

Let pN denote the law of B1 = SN(B) on the free Carnot group GN(Rd) considered as

the appropriate RdN endowed with a unimodular group law. Since the generator of the lift

process (Bt)t∈[0,1] in RdN is hypoelliptic, the law pN is absolutely continuous with respect

to Lebesgue measure on RdN . Disintegrating Wiener measure P with respect to pN gives a

unique family of probability measures (PxN : x ∈ RdN ) on Ω0(Rd), with SN(B) = x almost

surely under PxN for all x ∈ RdN , which is weakly continuous in x, and such that

P(dw) =

∫
RdN

PxN(dw)pN(x) dx . (4.2.1)

Here SN(B) is indeed well-defined, because (Bt)t∈[0,1] is still a semimartingale under the

measure PxN , cf. [Bau04, Proposition 3.5]. By construction, P0
N is the law of the Brownian

loop of step N . Therefore, Conjecture 4.1.3 states that, provided d ≥ 2, the measures P0
N

converge to δ0 weakly on Ω0(Rd) as N →∞. Our current idea for proving this conjecture

is as follows.

Let qN denote the law of
∫ 1

0
(B1

t )
N−1 ∂B2

t on R, which is absolutely continuous with respect

to Lebesgue measure. We disintegrate Wiener measure P with respect to qN to obtain a

unique family of probability measures (Qy
N : y ∈ R) on Ω0(Rd), which is weakly continuous

in y, where
∫ 1

0
(B1

t )
N−1 ∂B2

t = y almost surely under Qy
N for all y, and such that

P(dw) =

∫
R
Qy
N(dw)qN(y) dy . (4.2.2)

It is possible to recover the probability measures (PxN : x ∈ RdN ) from the probability

measures (Qy
N : y ∈ R) by disintegrating with respect to an appropriate measure. The

idea is that first conditioning (Bt)t∈[0,1] on
∫ 1

0
(B1

t )
N−1 ∂B2

t = 0 and then conditioning the

resulting process to have trivial truncated signature of order N yields the same process as
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just conditioning (Bt)t∈[0,1] to have trivial truncated signature of order N . Define RdN
y to

be the subset of RdN of all values taken by the truncated signature of order N of Brownian

motion subject to the condition that
∫ 1

0
(B1

t )
N−1 ∂B2

t = y. Let pyN be the law of SN(B)

under the measure Qy
N .

Lemma 4.2.1. For all y ∈ R, it holds true that

Qy
N(dw) =

∫
RdNy

PxN(dw)pyN(x) dx .

Proof. We can disintegrate the measure Qy
N uniquely as

Qy
N(dw) =

∫
RdNy

Px,yN (dw)pyN(x) dx (4.2.3)

to obtain a family of probability measures (Px,yN : x ∈ RdN
y ) on Ω0(Rd), which is weakly

continuous in x and where SN(B) = x almost surely under Px,yN for all x ∈ RdN
y . Since pyN

is the law of SN(B) under Qy
N , we have

pN(x) =

∫
R
pyN(x)qN(y) dy . (4.2.4)

Observe that∫ 1

0

(B1
t )
N−1 ∂B2

t = (N − 1)!

∫ 1

0

∫ tN

0

. . .

∫ t2

0

∂B1
t1
. . . ∂B1

tN−1
∂B2

tN

is a multiple of the coefficient of (X1)N−1X2 in SN(B). In the free Carnot group of step N

several coefficients in the truncated signature of order N are combined into one component

of RdN , so that the lift process (Bt)t∈[0,1] is hypoelliptic. However, it is possible to recover

all the coefficients in SN(B) and we choose φ : RdN → R such that φ(x) = y if and only

if x ∈ RdN
y . Using (4.2.2), (4.2.3) and (4.2.4), we deduce that

P(dw) =

∫
R
Qy
N(dw)qN(y) dy =

∫
R

∫
RdNy

Px,yN (dw)pyN(x)qN(y) dx dy

=

∫
RdN

Px,φ(x)
N (dw)pN(x) dx .

Since SN(B) = x holds almost surely both under Px,φ(x)
N and under PxN , uniqueness of the

disintegration (4.2.1) implies that PxN = Px,φ(x)
N . The lemma follows due to Px,φ(x)

N = Px,yN
for x ∈ RdN

y .

Our reason for considering the measures Qy
N is that, whereas it appears to be challenging

to analyse the Brownian loop laws P0
N directly, we have an explicit expression for the first

marginal of Qy
N , see Lemma 4.2.2 below. We hope to later use this explicit expression to

prove weak convergence of the first marginals of Q0
N to the Dirac delta mass δ0 on Ω0(R)
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as N →∞. Provided we further obtained sufficient control over the measures PxN in terms

of P0
N , e.g. as in Conjecture 4.2.4 or Conjecture 4.2.5, we could then use Lemma 4.2.1 to

bootstrap information about the loop measures P0
N to prove weak convergence of their

first marginals to δ0 on Ω0(R) as N → ∞. By conditioning on the value of the iterated

integral
∫ 1

0
(Bi

t)
N−1 ∂Bj

t instead of
∫ 1

0
(B1

t )
N−1 ∂B2

t , we would similarly deduce that any

marginal of P0
N converges weakly on Ω0(R) to the unit mass δ0 as N →∞, which would

imply Conjecture 4.1.3.

Let π : Ω0(Rd) → Ω0(R) denote the projection onto the first component of a path. Our

expression for the first marginal of Qy
N is given by the following lemma.

Lemma 4.2.2. For v ∈ Ω0(R), set σN(v) =
(∫ 1

0
v

2(N−1)
t dt

)1/2

. Then, for y ∈ R, we have

(π∗Qy
N) (dv) =

1√
2πσN(v)qN(y)

exp

(
− y2

2σ2
N (v)

)
(π∗P) (dv) .

Proof. Note that
∫ 1

0
(B1

t )
N−1 ∂B2

t =
∫ 1

0
(B1

t )
N−1 dB2

t by independence of the Brownian

motions (B1
t )t∈[0,1] and (B2

t )t∈[0,1] in R. In particular, the first marginal π∗Qy
N is the law

of the process (B1
t )t∈[0,1] conditioned on

∫ 1

0
(B1

t )
N−1 dB2

t = y. Let µN denote the joint law

of (B1
t )t∈[0,1] and

∫ 1

0
(B1

t )
N−1 dB2

t on Ω0(R)× R. Since, for a path v ∈ Ω0(R), the random

variable
∫ 1

0
vN−1
t dB2

t is normal with mean zero and variance σ2
N(v), we obtain

µN(dv, dy) =
1√

2πσN(v)
exp

(
− y2

2σ2
N (v)

)
(π∗P) (dv) dy . (4.2.5)

On the other hand, by the disintegration (4.2.2), we also have

µN(dv, dy) = (π∗Qy
N) (dv)qN(y) dy . (4.2.6)

The result follows by comparing expressions (4.2.5) and (4.2.6).

Taking y = 0 in Lemma 4.2.2 yields, for v ∈ Ω0(R),

(
π∗Q0

N

)
(dv) =

1√
2πσN(v)qN(0)

(π∗P) (dv) .

Due to the reweighting factor σN(v) =
(∫ 1

0
v

2(N−1)
t dt

)1/2

, the first marginals π∗Q0
N appear

to localise for large N around the zero path in Ω0(R). We make the following conjecture.

Conjecture 4.2.3. The first marginals π∗Q0
N converge to δ0 weakly on Ω0(R) as N →∞.

We further conjecture that we can control the mass the first marginals π∗PxN put on balls

around the zero path in terms of the Brownian loop marginals π∗P0
N . For r > 0, set

Dr =

{
v ∈ Ω0(R) : sup

0≤t≤1
|vt| < r

}
.
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Conjecture 4.2.4. For all x ∈ RdN and all r > 0, it holds true that

(π∗PxN) (Dr) ≤
(
π∗P0

N

)
(Dr) .

We show how Conjecture 4.2.3 and Conjecture 4.2.4 imply Conjecture 4.1.3. As argued

previously, it is enough to show that they imply the weak convergence of the first marginals

π∗P0
N to δ0 on Ω0(R) as N → ∞. By the Portmanteau theorem, the latter follows if, for

all open sets U ⊂ Ω0(R),

δ0(U) ≤ lim inf
N→∞

(
π∗P0

N

)
(U) . (4.2.7)

This inequality is indeed implied by Conjecture 4.2.3 and Conjecture 4.2.4. If U ⊂ Ω0(R)

is an open subset not containing the zero path then δ0(U) = 0 and (4.2.7) follows from the

non-negativity of measures. Let us now suppose that U ⊂ Ω0(R) is an open subset which

does contain the zero path. In particular, there exists some r > 0 such that Dr ⊂ U .

Assuming Conjecture 4.2.4 and using Lemma 4.2.1, we can deduce that

(
π∗Q0

N

)
(Dr) =

∫
RdN0

(π∗PxN) (Dr) p
0
N(x) dx

≤
∫
RdN0

(
π∗P0

N

)
(Dr) p

0
N(x) dx =

(
π∗P0

N

)
(Dr) ≤

(
π∗P0

N

)
(U) .

Conjecture 4.2.3 says that the first marginals π∗Q0
N converge to δ0 weakly as N →∞ and

therefore,

1 = δ0 (Dr) ≤ lim inf
N→∞

(
π∗Q0

N

)
(Dr) . (4.2.8)

Combining the last two inequalities gives

δ0(U) = 1 ≤ lim inf
N→∞

(
π∗Q0

N

)
(Dr) ≤ lim inf

N→∞

(
π∗P0

N

)
(U) .

Thus, assuming Conjecture 4.2.3 and Conjecture 4.2.4, we obtain (4.2.7), as desired. As

argued below, the inequality (4.2.7) still holds if, instead of Conjecture 4.2.4, we assume

the following weaker conjecture.

Conjecture 4.2.5. For all x ∈ RdN and all r > 0, it holds true that

(π∗PxN) (Dr) ≤
√

(π∗P0
N)
(
D√2r

)
.

Assuming Conjecture 4.2.5 instead of Conjecture 4.2.4, we get (4.2.7) as follows. By using

Lemma 4.2.1, we this time deduce

(
π∗Q0

N

) (
Dr/

√
2

)
=

∫
RdN0

(π∗PxN)
(
Dr/

√
2

)
p0
N(x) dx

≤
∫
RdN0

√
(π∗P0

N) (Dr)p
0
N(x) dx =

√
(π∗P0

N) (Dr) ≤
√

(π∗P0
N) (U) ,
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which together with (4.2.8) yields

δ0 (U) = 1 ≤ lim inf
N→∞

((
π∗Q0

N

) (
Dr/

√
2

))2

≤ lim inf
N→∞

(
π∗P0

N

)
(U) ,

as required.

Our proofs of Conjecture 4.2.4 and Conjecture 4.2.5 for N = 1, i.e. in the case of Brownian

bridges, make it apparent why we include both conjectures. The proof of Conjecture 4.2.5

for N = 1, which uses a coupling argument, is much shorter than the analytic proof we

have of Conjecture 4.2.4 for N = 1. Both conjectures remain open for N ≥ 2.

Lemma 4.2.6 (Conjecture 4.2.5 for N = 1). For all x ∈ Rd and all r > 0, we have

(π∗Px1) (Dr) ≤
√

(π∗P0
1)
(
D√2r

)
.

Proof. We note that the marginal π∗Px1 is the law of a Brownian bridge in R from 0 to x1 in

time 1, and that (π∗Px1)(Dr) = (π∗P−x1 )(Dr) by symmetry. Let (W 1
t )t∈[0,1] and (W 2

t )t∈[0,1] be

independent standard Brownian motions in R. Consider the Brownian bridge (W1
t )t∈[0,1]

in R from 0 to x1 given by

W1
t = W 1

t − tW 1
1 + tx1

and the Brownian bridge (W2
t )t∈[0,1] in R from 0 to −x1 obtained as

W2
t = W 2

t − tW 2
1 − tx1 .

By independence of the Brownian motions (W 1
t )t∈[0,1] and (W 2

t )t∈[0,1], the Brownian bridges

(W1
t )t∈[0,1] and (W2

t )t∈[0,1] are also independent, and the process 1√
2
(W 1

t + W 2
t )t∈[0,1] is a

standard Brownian motion in R. We further observe

W1
t + W2

t√
2

=
W 1
t +W 2

t√
2

− tW
1
1 +W 2

1√
2

,

and it follows that 1√
2
(W1

t + W2
t )t∈[0,1] is a Brownian bridge in R from 0 to 0 in time 1.

Phrased differently, the law of (W1
t )t∈[0,1] is π∗Px1 , the law of (W2

t )t∈[0,1] is π∗P−x1 and the

law of 1√
2
(W1

t + W2
t )t∈[0,1] is π∗P0

1. By using

{
sup

0≤t≤1
|W1

t | < r, sup
0≤t≤1

|W2
t | < r

}
⊂
{

sup
0≤t≤1

|W1
t + W2

t |√
2

<
√

2r

}
as well as the property (π∗Px1)(Dr) = (π∗P−x1 )(Dr), and the independence of the Brownian

bridges (W1
t )t∈[0,1] and (W2

t )t∈[0,1], we deduce that

((π∗Px1) (Dr))
2 = ((π∗Px1) (Dr))

((
π∗P−x1

)
(Dr)

)
≤
(
π∗P0

1

) (
D√2r

)
.

The claimed result follows upon taking square roots.
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We turn to the proof of Conjecture 4.2.4 for N = 1.

Lemma 4.2.7 (Conjecture 4.2.4 for N = 1). For all x ∈ Rd and all r > 0, we have

(π∗Px1) (Dr) ≤
(
π∗P0

1

)
(Dr) .

To prove Lemma 4.2.7, we need the following result from convex geometry. Its proof is

due to Katarzyna Wyczesany.

Lemma 4.2.8. Let U, V ⊂ Rk be open convex subsets which are point-symmetric about

the origin. Let µ denote Lebesgue measure on Rk. Then, for all x ∈ Rk, we have

µ (U ∩ (V + x)) ≤ µ (U ∩ V ) ,

where V + x = {y + x : y ∈ V } ⊂ Rk.

Proof. Since U and V are point-symmetric about the origin, it follows that

U ∩ (V + x) = − (U ∩ (V − x)) ,

and therefore

µ (U ∩ (V + x)) = µ (U ∩ (V − x)) . (4.2.9)

The convexity of U implies that y+z
2
∈ U for y, z ∈ U . Similarly, if y ∈ V +x and z ∈ V −x

then the convexity of V and
y + z

2
=
y − x+ z + x

2

give y+z
2
∈ V . We deduce that

1

2
(U ∩ (V + x)) +

1

2
(U ∩ (V − x)) =

{
y + z

2
: y ∈ U ∩ (V + x), z ∈ U ∩ (V − x)

}
=

{
y + z

2
: y, z ∈ U and y ∈ V + x, z ∈ V − x

}
⊂ U ∩ V ,

which yields

µ

(
1

2
(U ∩ (V + x)) +

1

2
(U ∩ (V − x))

)
≤ µ (U ∩ V ) . (4.2.10)

By a multiplicative version of the Brunn-Minkowski inequality, cf. [Gru07, Theorem 8.15],

we have

µ (U ∩ (V + x))1/2 µ (U ∩ (V − x))1/2 ≤ µ

(
1

2
(U ∩ (V + x)) +

1

2
(U ∩ (V − x))

)
.

From (4.2.9) we further obtain µ(U ∩ (V +x))1/2µ(U ∩ (V −x))1/2 = µ(U ∩ (V +x)), and

the claimed result follows by (4.2.10).
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This lemma allows us to generalise standard rearrangement inequalities as needed in the

following proof.

Proof of Lemma 4.2.7. For t1, . . . , tk ∈ (0, 1), we deduce that

(π∗Px1) ({v : vt1 ∈ (−r, r), . . . , vtk ∈ (−r, r)})

= (π∗P)
({
v : vt1 − t1v1 + t1x

1 ∈ (−r, r), . . . , vtk − tkv1 + tkx
1 ∈ (−r, r)

})
= (π∗P)

({
v : vt1 − t1v1 ∈ (−r − t1x1, r − t1x1), . . . , vtk − tkv1 ∈ (−r − tkx1, r − tkx1)

})
=
(
π∗P0

1

) ({
v : vt1 ∈ (−r − t1x1, r − t1x1), . . . , vtk ∈ (−r − tkx1, r − tkx1)

})
. (4.2.11)

Let Rx ⊂ Rk be the open subset which is enclosed by the hyperrectangle whose vertices

are

(−r − t1x1, 0, . . . , 0), (r − t1x1, 0, . . . , 0), . . . , (0, . . . , 0,−r − tkx1), (0, . . . , 0, r − tkx1) .

Recall that the random vector (B1
t1
−t1B1

1 , . . . , B
1
tk
−tkB1

1) in Rk has a multivariate normal

distribution with mean zero and k × k covariance matrix Σ given by

Σij = min{ti, tj} − titj for 1 ≤ i, j ≤ k .

In particular, the level sets of the corresponding density function ρ : Rk → R are ellipsoids,

all of which are similar to each other and oriented along the same axes. By the layer cake

representation of a non-negative measurable function, we have

ρ(z) =

∫ ∞
0

1{y : ρ(y)>s}(z) ds .

Using this expression, we obtain

(
π∗P0

1

) ({
v : vt1 ∈ (−r − t1x1, r − t1x1), . . . , vtk ∈ (−r − tkx1, r − tkx1)

})
=

∫
Rk
ρ(z)1Rx(z) dz

=

∫
Rk

∫ ∞
0

1{y : ρ(y)>s}(z)1Rx(z) ds dz

=

∫ ∞
0

µ ({ρ > s} ∩Rx) ds , (4.2.12)

where µ denotes Lebesgue measure on Rk. We observe that, for all s ∈ (0,∞), the set

{ρ > s} ⊂ Rk is an open subset enclosed by an ellipsoid centred at the origin. Thus,

both {ρ > s} and R0 are open convex subsets of Rk which are point-symmetric about

the origin. We further have Rx = R0 − (t1x
1, . . . , tkx

1). Therefore, Lemma 4.2.8 applies

to give

µ ({ρ > s} ∩Rx) ≤ µ
(
{ρ > s} ∩R0

)
.
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It follows, upon reversing the steps in (4.2.12), that

(
π∗P0

1

) ({
v : vt1 ∈ (−r − t1x1, r − t1x1), . . . , vtk ∈ (−r − tkx1, r − tkx1)

})
=

∫ ∞
0

µ ({ρ > s} ∩Rx) ds

≤
∫ ∞

0

µ
(
{ρ > s} ∩R0

)
ds

=
(
π∗P0

1

)
({v : vt1 ∈ (−r, r), . . . , vtk ∈ (−r, r)}) .

Together with the identity (4.2.11) and using the notation

(π∗Px1)t1,...,tk (Dr) = (π∗Px1) ({v : vt1 ∈ (−r, r), . . . , vtk ∈ (−r, r)}) ,

this implies that, for all k ∈ N and t1, . . . , tk ∈ (0, 1),

(π∗Px1)t1,...,tk (Dr) ≤
(
π∗P0

1

)
t1,...,tk

(Dr) . (4.2.13)

By continuity of almost all Brownian motion sample paths, we have

(π∗Px1) (Dr) = (π∗P)

 ⋂
t∈Q∩(0,1)

{
v : vt − tv1 + tx1 ∈ (−r, r)

} .

Let (tk)k∈N be an enumeration of the rationals inside the interval (0, 1). Due to the reverse

monotone convergence theorem, it follows that

(π∗P)

 ⋂
t∈Q∩(0,1)

{
v : vt − tv1 + tx1 ∈ (−r, r)

} = lim
k→∞

(π∗Px1)t1,...,tk (Dr) .

Using (4.2.13), we conclude

(π∗Px1) (Dr) = lim
k→∞

(π∗Px1)t1,...,tk (Dr) ≤ lim
k→∞

(
π∗P0

1

)
t1,...,tk

(Dr) =
(
π∗P0

1

)
(Dr) ,

as claimed.

We finally remark that Lemma 4.2.7 together with independence of the components of a

Brownian bridge in Rd give the following result.

Theorem 4.2.9. Set

Er =

{
v ∈ Ω0(Rd) : max

1≤i≤d
sup

0≤t≤1

∣∣vit∣∣ < r

}
.

Then, for all x ∈ Rd and all r > 0, we have Px1(Er) ≤ P0
1(Er).
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331, 1988.
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Birkhäuser, 1996.

[BGLY16] Horatio Boedihardjo, Xi Geng, Terry Lyons, and Danyu Yang. The signature

of a rough path: Uniqueness. Advances in Mathematics, 293:720–737, 2016.

[Bis81] Jean-Michel Bismut. Martingales, the Malliavin calculus and hypoellipticity
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