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Abstract

Graph Neural Networks for Multi-Robot Coordination
Qingbiao Li

The rapid growth in population and ongoing urbanization yield the need for automatic
systems with high productivity and efficiency. Multi-robot systems are developed to respond
to this by controlling a team of robots to handle large-scale and complex tasks (i.e. conducting
search and rescue operations after earthquakes). The key component of controlling such
systems is guiding each robot from its starting place to its goal using a collision-free path in
a given environment, called multi-robot motion planning. As the size of the team increases,
it is getting computationally expensive and intractable to compute the solution based on the
centralized approach. Therefore, researchers have been investigating decentralized approach
to compute trajectories for each robot separately, and re-planning only in case of conflicts.
This method can minimise the task’s computing complexity, but it is prone to producing
suboptimal and partial solutions. Balancing optimality and completeness guarantees of
computing a solution is still an open problem.

In this thesis, we are particularly interested in investigating machine learning (especially
graph neural network) based approaches to find the trade-off between optimality and
complexity by offloading online computation into an offline training process. Yet,
learning-based methods also yield the need for sim-to-real systems and solutions to minimize
the gap and provide interpretability and guarantee for the generated solutions. Hence,
we first developed a framework that can learn to communicate between robots based on
Graph Neural Networks (GNNs) towards better individual decision-making given its local
information in a decentralized manner. This framework is composed of an encoder (i.e.
Convolutional Neural Network) that extracts adequate features from local observations, and
a GNN that learns to explicitly communicate these features among robots, and Multilayer
Perceptron for action selection. By jointly training these components, the system can learn to
determine best what information is relevant for the team as a whole and share this to facilitate
efficient path planning. Following up with that, we propose Message Aware Graph Attention
neTwork (MAGAT) to combine a GNN with a key-query-like attention mechanism to improve
the effectiveness of inter-robot communication. We demonstrate the generalizability of our
model by training the model on small problem instances and testing it on increasing robot
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density, varying map size, and much larger problem instances (up to ×100 the number of
robots).

To port our solution into the real world, we developed a ROS-based system that allows for
the fully decentralized execution of GNN-based policies. We demonstrated our framework
on a case study that requires tight coordination between robots, and presented first-of-a-
kind results that showed successful real-world deployment of GNN-based policies on a
decentralized multi-robot system relying on ad-hoc communication. Extending this system,
we proposed a vision-only-based learning approach that leverages a GNN to encode and
communicate relevant viewpoint information to the mobile robots. During navigation, the
robot is guided by a model that we train through imitation learning to approximate optimal
motion primitives, thereby predicting the effective cost-to-go (to the target). Our experiments
demonstrated its generalizability in guiding robots in previously unseen environments with
various sensor layouts.

Vanilla GNN-based decentralized path planning has demonstrated its performance em-
pirically via an end-to-end learning approach. However, these black box approaches are
facing challenges to directly deploy in the actual workplace, as they are hard to find a guaran-
teed and interpretable solution. Therefore, we designed Graph Transformer, as a heuristic
function, to accelerate the focal search within Conflict-Based Search (CBS) in a non-grid
setting, especially dense graphs. Our framework guarantees both the completeness and
bounded suboptimality of the solution. For the explainability and interpretability for RL, we
introduced a global path planning algorithm (for example, A*) to generate a globally optimal
path, which act as part of the reward function to encourage the robot to explore all potential
solutions ‘weekly supervised’ by the optimal path. As our reward function is independent of
the environment, our trained framework generalizes to arbitrary environments and can be
used to solve the multi-robot path planning problem in a fully distributed reactive manner.

Throughout my Ph.D. research, I first proposed communication-aware motion planning
for multi-robot coordination, where GNNs are introduced to build communication channels
for multi-robot teams so that they can learn how to communicate with each other explic-
itly. The feasibility of this novel research idea has been validated by various simulation
experiments based on an end-to-end imitation learning pipeline. To port them into reality,
we built a ROS2-based system with adhoc communication to demonstrate our idea in a
multi-robot passage scenario and single-robot navigation assisted by randomly sampled
camera-based sensors in an unknown environment. Finally, we developed methods that
provide interpretation and performance guarantees in the previous black box approaches by
introducing a heuristic function into the focal search of CBS and designing a novel reward
mechanism called G2RL.
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motion capture system, GPS, or simulator. The aggregator combines sensor
information with messages mt,i to produce observation zt,i and neighborhood
messages mt, j; j ∈N t,i, for the policy π i

θ
to generate action at,i. The control

node converts the action into velocity commands vt,i. In simulation mode,
control drives the simulator instead of the robot wheel motors. The state
server orchestrates termination, resets, and operational mode syncs during
sequential episodes. This system allows us to run agents in simulation and
the real-world concurrently, over multiple episodes, and without any human
intervention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 The framework configurations used in our experiments. The ROS2 infrastruc-
ture is either centralized or decentralized, with varying degrees of decentral-
ization depending on the network setup. We refer to these four configurations
as Centralized, Offboard, Onboard over Infrastructure, and Onboard over
Adhoc. Observations zt,1 . . .zt,n feed into centralized policy πθ or local poli-
cies π1

θ
. . .πn

θ
to produce actions at,1 . . .at,n for agents 1 . . .n. Local policies

consist of a GNN and pass messages mt,1 . . .mt,n to communicate. In the
centralized case, a single policy produces actions for all agents at once in
a synchronized manner. For Offboard, local policies run asynchronously,
exchanging messages over localhost. The PC is removed for Onboard
o/Infra, moving inference onto the robot computers. Onboard o/Adhoc is
fully decentralized – the agents forgo the router and communicate directly
using Adhoc networking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 We deploy a set of five DJI RoboMaster robots in a real-world setup using
GNNs and Adhoc communication. The robots navigate through a narrow
passageway to reconfigure on the other side, as quickly as possible. . . . . 77



x List of figures

4.5 We visualize a variety of makespan and position distributions over the six
experiments we conducted. The columns show the data of the centralized
simulation baseline in orange and the data of the corresponding real-world
experiment as labeled in the column headers in blue. For each experiment,
we run a total of 192 episodes with 16 different start and goal positions. The
last column compares the Onboard o/Adhoc experiment with a simulation
evaluated with communication delays. The first row shows the probability
densities of makespans of successful episodes (episodes that did not result in
a collision with the wall and for which all robots reached their goal, indicated
with N). The median makespan is indicated with a dashed line. The second
row shows the distribution of positions, indicating the position of the wall
and the passage. The third row shows the distribution of minimum distances
between robots at each time step dmin and distance from the origin or passage
dorigin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Our setup consists of (a) an environment populated with obstacles, visual
sensors (blue), a mobile robot equipped with a sensor, and a green target,
where the mobile robot has to find the shortest path (red, taken path orange)
to an occluded target by incorporating communicated sensor information
to enhance its navigation performance. Our framework leverages a setup
consisting of a simulation environment (b) that corresponds to the real-world
setup (c). The workspace is endowed with custom-built sensors with fish-eye
cameras (d, e) that are capable of communicating with each other. One sensor
is attached to a mobile robot (e) that acts on the output of that sensor. . . . . 82

4.7 We train a policy in simulation using simulated images oi
t . The CNN φ(·)

encodes images into features zi
t and the GNN θ(·) further encodes this

for multiple communication hops in L layers as zi,l
t . Eventually, the post-

processing MLP ψ(·) generates cost-to-go advantages Ai
t which are used to

sample a direction to the target along the shortest path as ui
t and eventually

to generate action at for the robot, which is equipped with sensor S1. . . . . 85
4.8 Our sim-to-real framework. (a) After training the policy in simulation,

we collect image pairs from simulation osim and the real world oreal and
use them to train a real-to-sim translator model φ̂ (gray) by reconstructing
latent features from the simulation domain z generated through the encoder
trained in simulation φ (orange) with real-world images. (b) We combine the
translator model φ̂ trained on real-world images (gray) with θ and ψ trained
in simulation (orange) to deploy the policy to a real-world setup. . . . . . . 88



List of figures xi

4.9 We record the performance of the policy trained for DS = 2 and L = 2 for a
range of different communication ranges and number of sensors. Left: The
large environment (blue) is populated with N = 13 sensors and the small
environment (orange) with N = 7 sensors. Right: The large environment
(blue) has a communication range of DS = 3.5m and the small environment
(orange) of DS = 1.5m. Both values result in peak performance for the
maximum number of sensors in the corresponding environment, as can be
seen on the left side. It can be seen that increasing communication range and
number of sensors benefits the SPL. . . . . . . . . . . . . . . . . . . . . . 91

4.10 (a) Evaluation of real-world results for three different environments for the
fully connected policy. We report success rate and SPL for runs where the
target was within line-of-sight (LOS, MA = 2, MB = 5, MC = 1) and outside
line-of-sight at the start of the experiment (NLOS, MA = 23, MB = 19, MC =

24). (b, c, d) A selection of two policy evaluations for NLOS configurations
for each real-world environment. Blue squares indicate sensor positions, the
green square the target position qG, the red path the robot’s initial position
qR

0 , the red path the shortest path computed by the expert P and the orange
path the path p chosen by the policy π . . . . . . . . . . . . . . . . . . . . . 92

5.1 Left: Examples of our graph-based MAPF instances. To construct the graph,
we sample vertices randomly from the free space and connect them with
collision-free edges. Right: Problem instances that our approach solves
while other baselines fail. Different colors represent the trajectories of
different agents. Vertices in the same trajectory have deeper colors if their
respective time steps are later. . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 The proposed Graph Transformer architecture. It has several desired prop-
erties that are specifically designed to deal with MAPF inputs. See Section
5.3.3 for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 The training framework. We use a supervised Contrastive Loss. The labels
are generated from the CBS search tree. . . . . . . . . . . . . . . . . . . . 104

5.4 Success rates, computation time, and flowtime within the runtime limit of
5 minutes, as functions of the number of agents. The results are averaged
over 100 test instances for each setting of the agent number. We evaluate our
approach with w ∈ [1.005,1.01,1.05,1.1,∞], and compare its performance
with CBS, ECBS (w = 1.1) and ORCA. Though trained with relatively few
agents, results have shown that our approach generalizes well and signifi-
cantly outperforms the baselines (CBS, ECBS, and ORCA). . . . . . . . . 104



xii List of figures

5.5 We conduct 4 various ablation studies to evaluate the proposed method
systematically. See Section 5.3.4 for more details. . . . . . . . . . . . . . . 106

5.6 The overall structure of our method. The input of each step is the concatena-
tion of the transformed local observation and the global guidance information.
A sequence of historical inputs is combined to build the input tensor of the
deep neural network, which outputs a proper action for the robot. . . . . . . 111

5.7 An illustration of our reward function. The green, black, yellow and red cells
represent the static obstacle, the global guidance, the dynamic obstacle and
the robot, respectively. At t = 7, the robot reaches a global guidance cell ci

and receives the reward based on the number of eliminated guidance cells. . 112
5.8 Map examples. The black and colored nodes represent the static and dynamic

obstacles respectively. Map parameters can be found in Section 5.4.3. . . . 115
5.9 Multi-robot path planning results. The upper row shows the number of

reached robots at different steps of different approaches in three testing
maps. The solid lines show the average number across 100 tests, and the
shadow areas represent the standard deviations. The lower row plots the
corresponding histograms of flowtime values. The flowtime of all the failure
cases is set to the maximum time step 100. . . . . . . . . . . . . . . . . . . 121

A.1 Two series maps from 28×28, 35×35, 40×40, 45×45 and 50×50 maps
as exampples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2 Illustration of the inference stage: for each robot, the input map Zi
t is fed

to the trained framework to predict the action; collisions are detected and
prevented by collision shielding. The input map Zi

t is continuously updated
until the robot reaches its goal or exceeds the timeout Tmax. . . . . . . . . . 150

A.3 Average frequency of the predicted collisions of individual robots (µ =

1
Ncases

∑
Ni

predictedcollision

T i
Steps

) for two different testing set. . . . . . . . . . . . . . . 151

B.1 Generation of training data. (a) We first create random maps; in the illus-
tration, blue points are sensor locations, the red square is the robot, green
square is the target and corresponding lines indicate the shortest path from
sensors and robots to the target. Black boxes indicate obstacles. (b) Random
maps are rendered in 3D in the simulation environment, Webots. Sensors are
blue, the target is green, the boxes brown and the robot black. (c) Sensors
are equipped with omnidirectional cameras. . . . . . . . . . . . . . . . . . 157



List of figures xiii

B.2 Sample of the Twin Environment setup. The simulated environment in
Webots can be seen on the left, and the corresponding real-world environment
on the right. Note the matching position and alignment of environment size
and obstacles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.3 Samples of the interpreter used to convert latent image encodings into inter-
pretable images. Columns: 8 independent samples. First row: Simulated im-
age osim. Second row: The image in the first row is encoded as zsim = φ(osim)

and reconstructed as φ−1(zsim). Third row: Corresponding real-world image
oreal. Fourth row: Reconstruction of the simulated image from the real image
as orealtosim = φ−1(φPOST(φ̂(oreal))). . . . . . . . . . . . . . . . . . . . . . 158

B.4 Generalizability to larger environments and larger number of agents N = 13
for GNN layers L = 2 and communication range DS = 3.5 m (SPL 0.91).
Blue squares indicate sensor positions, the green square the target position
qG, the red path the robot’s initial position qR

0 , the red path the shortest path
computed by the expert and the orange path the path chosen by the policy π . 158

B.5 All real-world evaluations for Environment A. Blue squares indicate sensor
positions, the green square the target position qG, the red path the robot’s
initial position qR

0 , the red path the shortest path computed by the expert and
the orange path the path chosen by the policy π . . . . . . . . . . . . . . . . 159

B.6 All real-world evaluations for Environment B. Blue squares indicate sensor
positions, the green square the target position qG, the red path the robot’s
initial position qR

0 , the red path the shortest path computed by the expert and
the orange path the path chosen by the policy π . . . . . . . . . . . . . . . . 160

B.7 All real-world evaluations for Environment C. Blue squares indicate sensor
positions, the green square the target position qG, the red path the robot’s
initial position qR

0 , the red path the shortest path computed by the expert and
the orange path the path chosen by the policy π . . . . . . . . . . . . . . . . 161

B.8 A selection of policy evaluations for NLOS configurations in simulation.
Blue squares indicate sensor positions, the green square the target position
qG, the red path the robot’s initial position qR

0 , the red path the shortest path
computed by the expert and the orange path the path chosen by the policy π . 162

C.1 Histograms of the number of eliminated global guidance cells which have
not been traveled by the robot across 100 tests in each environment map.
||cgoal− cstart ||L1 represents the Manhattan distances between the start and
goal cells, which are set to 50, 100, and 150. . . . . . . . . . . . . . . . . . 164





Acknowledgements

Inspired by the Chinese philosopher ’Mozi’ and his ideas on ’Universal Love’ and ’non-
attack’, I believe that technology should contribute to humanity by promoting a healthier,
safer, and higher quality of life.

I am an enthusiast and a firm believer in the new revolution of robotics, specifically
Artificial General Intelligence for Robotics and Embedded Agents. I firmly believe that
the concept of ’real2sim (meta-verse) and sim2real’ has the potential to bring together the
communities of machine learning, computer vision, graphics, and robotics, propelling us
into an era of technology beyond traditional first-principle-based methods and control theory.
However, there is a significant research gap that needs to be addressed in this revolution. I
believe that robotics can offer one of the solutions to the challenges posed by population aging
through the development of autonomous systems and human-robot collaboration. This Ph.D.
thesis marks the starting point of my contribution to this vibrant and innovative community.

Throughout the journey of completing this Ph.D. thesis, I would like to acknowledge
the invaluable support and assistance provided to me. This endeavor would not have been
possible without the contributions and guidance of numerous individuals and organizations,
to whom I am deeply grateful.

First and foremost, I express my deepest gratitude to my supervisor, Prof Amanda Prorok,
for her unwavering dedication, profound knowledge, and insightful guidance. Her expertise,
encouragement, and constructive feedback were instrumental in shaping this research and
refining my academic abilities. I am truly indebted to her for her patience, mentorship, and
the countless hours they dedicated to my intellectual growth.

I would also like to extend my sincere appreciation to the members of my supervisory
committee, Prof Guillaume Adrien Sartoretti and Prof Thomas Sauerwald, for their valuable
feedback, suggestions, and rigorous examination of my thesis. Their expertise and scholarly
contributions greatly enhanced the quality of this work, and I am grateful for their time and
expertise.

I am grateful to the University of Cambridge for providing me with the necessary
resources, facilities, and a stimulating academic environment to pursue my Ph.D. research.



8 List of figures

The support and encouragement from the faculty members, administrative staff (Lise Gough,
Joy Rook and Marketa Green), and my fellow colleagues have been invaluable in shaping my
research experience.

I would like to express my gratitude to my parents (Guojun Li and Cuizhao Ye) and
sister (Limin Li), and grandma (Julan Liang) for their unwavering support, understanding,
and patience throughout this demanding journey. Their encouragement, love, and belief in
my abilities have been a constant source of motivation, and I am forever grateful for their
presence in my life.

Lastly, I wish to acknowledge all the authors, researchers, and scholars (Dr Fernando
Gama, Prof Alejandro Ribeiro, Dr Alex Raymond, Dr Nikhil Churamani, Jan Blumenkamp,
Weizhe Lin, Prof Zhe Liu, and Binyu Wang) whose work has been a source of inspiration
and guidance for my research. Their contributions to the field have laid the foundation for
my study, and I am indebted to their dedication and commitment to advancing knowledge.

Although it is impossible to name everyone who has contributed to my Ph.D. journey,
I am sincerely thankful to each and every individual who has played a role, no matter how
big or small. Your support, encouragement, and belief in my abilities have been invaluable,
and I am truly honored to have had the opportunity to learn from and work alongside such
remarkable individuals.

Thank you all for being a part of this significant milestone in my academic and personal
life.



Chapter 1

Introduction

1.1 Introduction

(a) Mobility-on-demand [3] (b) Connected vehicles [4] (c) Automated warehouse [5]

Fig. 1.1 Typical application scenarios of multi-robot systems.

For the first time in human history, over half of the world’s population resides in cities,
and that figure is set to rise to two-thirds by 2050 [6]. This ongoing urbanisation is burdening
critical infrastructure and logistics systems. In order to relieve this pressure, we must look
towards systems that streamline and optimise operations.

The field of robotics research is posed to respond to these challenges by creating a new era
with precision agriculture, fast manufacturing processes, and smart cities by utilising various
kinds of robots and intelligent vehicles. The use of industrial robots and domestic mobile
robots has increased, gradually bringing the concept of robotics into everyday life. These
singleton robots have limited abilities to handle large-scale tasks, whereas cooperative robot
systems comprised of multiple robots can handle more complex missions. Examples of this
include the use of multi-robot systems for mobility-on-demand [3], connected vehicles [4],
and automated warehouses [7] (Fig. 1.1).

Research on multi-robot systems considers methods to control multiple robots to accom-
plish a common objective in dynamic environments, as well as methods that enable robots to
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understand and interpret their surrounding world [8]. A robot team would undertake a wide
range of tasks, from fundamental behaviours, such as navigation, movement and communica-
tions to complex behaviours like foraging and playing football [9]. However, multi-robot
systems face challenges in scalability and computational complexity. This challenge is
compounded by faults in the robot teams. The essential underlying function of controlling
multi-robot systems is to navigate individual robots to their target locations without collisions.
This field of research is called multi-robot motion planning. As illustrated in Fig. 1.2, there is
a heterogeneous robot team consisting of multiple ground robots (ri, for all i = 1, . . . ,6) and
aerial robots (ri, for all i = 7,8,9). The ground robots need to avoid static obstacles (trees,
stones, building, lake and desert) and other robots, while the aerial robots can fly over lakes
(i.e. for robot r7) and desert (i.e. for robot r8), while high trees and buildings will affect the
mobility of the drones (i.e. for robots r8 and r9). Therefore, collision-free paths are generated
to guide the ground robots (ri, for all i = i = 1, . . . ,6) to their goals (gi, for all i = 1, . . . ,6,
dash line), and the aerial robots (ri, for all i = 7,8,9) to their destinations (gi, for all i = 7,8,9,
solid line). However, the increasing number of robots and the heterogeneity of the team
expands the search space of the states of robots drastically, which makes it very hard to
generate collision-free trajectories optimally and quickly for such heterogeneous teams of
robots.
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Fig. 1.2 Visualization of multi-robot motion planning

There is a trade-off between the optimality, completeness and computational complexity
of the solution. For instance, the coupled approach considers all states of the robot as a
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composite so that it can find an optimal and complete solution. The required computation
grows exponentially as the number of robots increases. In decoupled approaches, the
independent paths will be generated for each robot, and then resolve conflicts between these
paths with specialised methods. This method sometimes cannot find an optimal solution
and/or guarantee completeness.

Efficient and collision-free navigation in multi-robot systems is fundamental to advancing
mobility. The problem, generally referred to as Multi-Robot Path Planning (MRPP) or
Multi-Agent Path Finding (MAPF), aims at generating collision-free paths leading robots
from their origins to designated destinations. Current approaches can be classified as either
coupled or decoupled, depending on the structure of the state space that is searched. While
coupled approaches are able to ensure the optimality and completeness of the solution, they
involve centralized components, and tend to scale poorly with the number of robots [10, 11].
Decoupled approaches, on the other hand, compute trajectories for each robot separately, and
re-plan only in case of conflicts [1, 12, 13]. This can significantly reduce the computational
complexity of the planning task, but generally produces sub-optimal and incomplete solutions.
Balancing optimality and completeness with the complexity of computing a solution, however,
is still an open research problem [14, 15].

Learning-based methods have proven effective at designing robot control policies for
an increasing number of tasks [16, 17]. The application of learning-based methods to
multi-robot planning has attracted particular attention due to their capability of handling
high-dimensional joint state-space representations, by offloading the online computational
burden to an offline learning procedure [18, 19]. We argue that these developments
point to a fundamental approach that combines ideas around the application of learning to
optimization and produce a flexible framework that could tackle many hard but important
problems in robotics, including multi-agent path planning [20], area coverage [21, 22],
task allocation [23–25], formation control [26], and target-tracking [27]. In this thesis, we
motivate this approach and discuss the crucial challenges and research questions.

The concepts presented here are part of a bigger picture of the use of learning to the
solving of optimization problems. In Fig 1.3, we consider how learning is applied to either
increase the scale of solvable problems or to increase the ability to deal with practical, partial-
information problems. Along the problem scale axis, for example, the operations research
community has made use of learned heuristics to solve TSPs [28, 29], VRPs [30], and general
MILPs [31]. Along the information axis, which includes dealing with POMDPs, techniques
such as RL play a major role, as well as ideas such as tuning Monte-Carlo Tree Search [32],
embedding learned components into optimal control frameworks [33], and learning how to
bias sampling planners [34].
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Fig. 1.3 Applications of learning to optimization problems. (A) embodies techniques for learning
optimization heuristics; (B) embodies techniques for learning to solve POMDPs; (C) is the emerging
topic discussed here, embodying techniques for learning to coordinate large systems in real-world
applications.

Practical multi-robot planning and control build on the progress along both of these
axes: the degrees of freedom and environment complexity increase, while the ability to
communicate and coordinate at scale decreases. Traditional centralized approaches would
use a planning unit to produce coordinated plans that agents use for real-time on-board
control; these have the advantage of producing optimal and complete plans in the joint config-
uration space but true optimality is NP-hard in many cases [20] and they will struggle when
communications are degraded and frequent replanning is required. By contrast, decentralized
approaches reduce the computational overhead [35] and relax the dependence on centralized
units [1, 2] to deal with challenged communications, but account for local objectives and
cannot explicitly optimize global objectives (e.g., path efficiency).

What the directions of Fig 1.3 teach us is that success follows from starting with simple
problems and using their examples to approach complex ones. This progression from example
to the application is reminiscent of Imitation Learning, and we use this crucial observation
to understand how learning can play a role in mitigating the shortcomings of decentralized
approaches in solving challenging multi-robot problems.

Bridging the gap between the qualities of centralized and decentralized approaches,
learning-based methods promise to find solutions that balance optimality and real-world
efficiency. The process of generating data-driven solutions for multi-robot systems, however,
cannot directly borrow from single-robot learning methods because (a) hidden (unobservable)
information about other robots must be incorporated through learned communication strate-
gies, and (b), although policies are executed locally, the ensuing actions should lead to plans
with a performance near to that of coupled systems. Vanilla machine-learning-based path
planning has demonstrated its performance empirically via an end-to-end learning approach.
However, these black box approaches are facing challenges to directly deploy in the actual
workplace, as these methods find it hard to guarantee a guaranteed and interpretable solution.
This agenda means that we need to address the following content:
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• how to generate multi-robot training data;

• how to generate decentralizable policies;

• how to transfer these policies to real-world systems;

• how to generate a bounded-optimality solution or interpret the solution.

The following section elaborates these four key challenges and indicates promising
directions.

Though planning complexity is reduced with a decentralized approach, the use of a
learning-based approach requires consideration of state-action space coverage, especially
since introducing multiple agents causes the exponential growth of the joint state-action
again. This core challenge is the reason why the development of learning-based multi-robot
controllers is a nascent field. While a number of learning paradigms have been applied to
this topic (e.g., RL [36, 37]), this direction of research initially focuses on imitation learning
strategies, and then extends into reinforcement learning approaches.

This research direction is motivated by developing machine learning solutions for multi-
robot motion planning, computing near-optimal solutions using minimal online computa-
tion. A decentralized planner with multiple communication channels is proposed to offload
the nominal online computation of coupled optimal plans to an offline learning proce-
dure. This series of work can be trained and self-improved until it is able to assign and guide
a large number of robots to their destination stably, optimally, and fast, which has not been
achieved before [38].

1.2 Achievements

We want to emphasize that the key contribution of this research includes the novel idea of
using Graph Neural Networks to build a communication channel between agents towards
decentralized multi-agent path planning framework [19], the capability of generalization in
this framework using attention mechanism [39]. This novel framework can also be deployed
into a different domain, including Sub-modular Action Selection for object tracking [40] and
navigation based on sensor network [41]. We then demonstrated how this GNN-based policy
can be used to navigate a robot team through a narrow passage in the real world [42].

I am the leading author of [19] and [39], which are also the unique contributions of my
doctoral research. I also shared the work in knowledge in GNN, conducting the physical
experiment and intellectual leadership in collaborative work within ProrokLab [2, 41, 42]
and KumarLab [40].
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The work developed for this thesis resulted in three conferences, and one journal publica-
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IEEE/RSJ International Conference on Intelligent Robots and Systems, 2023.
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“Synthesizing Decentralized Controllers with Graph Neural Networks and Imitation
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• Binyu Wang, Zhe Liu, Qingbiao Li, Amanda Prorok. “Mobile Robot Path Planning
in Dynamic Environments through Globally Guided Reinforcement Learning,” IEEE
Robotics and Automation Letters (RA-L). pp. 6932–6939, 2020.

• Jan Blumenkamp, Qingbiao Li, Amanda Prorok. “Evaluating the Sim-to-Real Gap of
Graph Neural Network Policies for Multi-Robot Coordination,” IEEE International
Conference on Robotics and Automation (ICRA), Real World Swarms Workshop,
2021.

• Jan Blumenkamp, Steven Morad, Jennifer Gielis, Qingbiao Li, Amanda Prorok. “A
Framework for Real-World Multi-Robot Systems Running Decentralized GNN-Based
Policies,” IEEE International Conference on Robotics and Automation (ICRA), 2021.
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• Amanda Prorok, Jan Blumenkamp, Qingbiao Li, Ryan Kortvelesy, Zhe Liu, Ethan
Stump The holy grail of multi-robot planning: Learning to generate online-scalable
solutions from offline-optimal experts. International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Blue-sky, 2022.

1.3 Organization

This thesis is organized as follows. State of the art in conventional-based and learning-based
path planning are reviewed in Chapter 2. Chapter 3 presents our decentralized framework in
multi-robot path planning in a homogeneous team and its extension that considers communi-
cation constraints. In Chapter 4, we conduct physical experiments to demonstrate how we
deploy GNN-based policy in the real world. Chapter 5 introduces two data-driven heuristic
approaches for multi-agent path planning towards interpretable and bounded guaranteed
solutions. Finally, Chapter 6 concludes the thesis.





Chapter 2

Literature Review and Background

The aim of research on multi-robot motion planning is to ensure that every robot in a
shared area can navigate to its destination using a collision-free trajectory or path, even in
environments with static or dynamic obstacles and other robots present. To achieve this, the
current methodologies can be generally classified as either reactive or deliberative approaches.
Therefore, Section 2.1 in this chapter, will first review the state-of-the-art methods in multi-
agent coordination, and discuss the strengths and limitations among different classifications.

Recently, the breakthroughs in utilizing the computational power of GPUs have acceler-
ated the training process of Convolutional Neural Networks (CNNs). These breakthroughs
have also attracted the attention of robotics scientists to apply them for path planning based
on imitation learning and reinforcement learning. Section 2.2 presents several of the most
recent studies in learning-based single agent path planning. It also discusses the performance
of Multi-Agent Reinforcement Learning (MARL) for multi-player games and the real world.
Recent studies in Graph Neural Networks (GNNs) present their potential in handling data
with rich relational information among elements as a graph. Preliminary work has been
carried out by using it to represent the communication between agents for multi-agent path
planning.

2.1 Multi-Robot Motion Planning

In this section, the state of the art methods in multi-agent coordination are classified into
table 2.1 and are discussed with respect to their strengths and limitations.
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Table 2.1 Summary of main multi-robot motion planning approaches.

Reactive techniques Coupled methods Decoupled methods

Guaranteed solution
No, deadlocks

may occur Yes No

Complexity
P;

Demonstrated on
thousands of agents

NP-hard
P;

Demonstrated on
tens of robots

Solution quality
Suitable in open

space; poor in clutter Optimal
Optimality and
completeness

not guaranteed;

Decentralization
Suited, needs to
observe states

of neighbor robots
Not suited

Suited,
requires

communication

2.1.1 Reactive Approaches

In reactive approaches, each robot generates an optimal path individually to its goal without
considering future interactions with other robots. Following a planned path, each robot
monitors the positions and velocities of the neighbouring robots. If there is a potential future
collision, the robot tries to resolve it by adjusting its immediate heading and current velocity
vector. These methods are computationally efficient but susceptible to deadlocks. Deadlock
is a scenario where two or more robots attempt to compute the collision avoiding velocity
but result in a zero-velocity vector when they meet within their collision detection distance.
The robot will stop without any further motion.

Many collision-avoiding velocity strategies have been proposed within the last three
decades. Lumelsky and Harinarayan et al. [43] firstly proposed an algorithm based on maze
searching called the cocktail party model, which is analogous to human behaviour in a
crowded place: when a guest decides to talk with someone, he will follow this collision-free
path towards the person without communicating with others about this intention by assuming
others act well. If someone steps in, he will try to avoid this interruption by increasing the
safety margin distance when passing this person. More recently, techniques based on the
velocity obstacle paradigm have become dominant [1, 44, 45]. One of the popular methods
in this approach is the optimal reciprocal collision avoidance (ORCA) formulation proposed
by Van Den Berg et al. [45]. In this method, each robot can observe the velocity of other
robots to avoid collisions with them, where the robot needs to select its own velocity from
its velocity space in which certain regions are marked as ‘forbidden’ due to the presence
of other robots. In their formulation, each robot owns a half-plane (in velocity-space) of
velocities that are allowed to be selected to guarantee collision avoidance. The robot then
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selects its optimal velocity from the intersection of all permitted half-planes, which can be
done efficiently using linear programming.

Approaches based on reciprocal velocity obstacles have been widely applied in real-world
tasks [46] because of their computational efficiency — a collision-avoiding velocity for a
robot or other type of agent can be computed in a fraction of a millisecond. Hence, these
methods can be used in systems with a large number of agents, including robotic swarms, and
crowd simulations in computer games. However, these reactive techniques are significantly
constrained due to their reactive-based nature. This causes such planners to be short-sighted
in time without considering future states of neighboring agents, and result in undesirable or
ineffective behaviour such as deadlock.

2.1.2 Deliberative Approaches

The deliberative approaches are the generalisation of a more widely studied solution for
single-robot motion planning, where a sequence of valid configurations is generated for all
robots before execution in a given environment. The team of robots will follow their planned
path from their start locations to their respective destinations without collision. A collision is
defined by a situation where any two agents are at the same location at the same time, or a
collision with obstacles in the environments.

In terms of the structure of the searched state space, they can be mainly classified into
coupled and decoupled approaches:

• Coupled approaches: are analogous to single-robot motion planning, where the multi-
robot systems are considered as one composite robot with many degrees of freedom,
and generates a solution by planning a path in a joint configuration space of all robots.
Generally, the required computation time increases exponentially with the number of
robots;

• Decoupled approaches: compute plan for each robot independently, and resolve
conflicts between the paths of individual robots with specialised algorithms. This
approach can be computationally more efficient, but sometimes cannot provide a
solution. For example, the corridor swap scenario is described in the following section.

Multi-robot motion planning is known to be computationally intractable [47]. The main
concerns of this field of research are computation efficiency, optimality, and completeness.
The quality of the planning can be measured by makespan and flowtime. Makespan is the
maximum length of plans, which is calculated by the distance between the start time of the
first agent and the completion time of the last agent. Flowtime is the sum of the travel times
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of all robots, which is related to the energy consumption of the team. To find an optimal
solution that minimizes either makespan and flowtime is a NP-hard problem.

Coupled planning

Coupled approaches are the composition of single-robot path planning into a given multi-
robot path planning in a joint configuration space, which is constructed by a Cartesian product
of configuration spaces of individual robots. The search-based approach has been applied to
path planning in the joint configuration space [10, 11, 48]. Firstly, the joint configuration
space is discretized in the form of a graph, where vertices represent joint configurations, and
the edges represent joint moves that move robots from one joint configuration to another.
Search for the minimum cost path is carried out subsequently on this graph. Hence, coupled
approaches can find a joint path, which is optimal with respect to the given discretization.

However, coupled approaches have significant limitations in their inherent poor scalability:
if we assume a fixed graph discretization of the configuration space of a single robot, the
number of vertices in the discretization of the joint configuration space grows exponentially
with the number of robots. The worst-case time complexity of minimum-cost path search in
a graph is quadratic in the number of vertices, which brings difficulties to find the solution
based on a naive search in the joint configuration space.

To overcome this limitation, Standley et al. [49] proposed an idea named operator
decomposition. A customised discretisation strategy is applied in modelling the possible
combination of the actions of robots based on a tree of single robot motion, where at each
vertex only a single robot assigns a move to a joint move. Hence, the search becomes more
focused in the joint configuration space, because the heuristic estimate can be evaluated at
each state of the tree without exploring every combination of robots’ motion.

In addition, Wagner and Choset [48] proposed another method that brought significant
improvement of the scalability of search in the joint configuration space, which is called
independence detection. By this method, the multi-robot path planning problem can be
divided into several sub-problems of multi-robot path planning with fewer robots, under the
constraints that there is no collision between the optimal solution of these sub-problems. By
identifying and solving these independent sub-problems separately, the required dimension
of the joint configuration space to search can be significantly reduced and still guarantee
the optimality of the solution. However, this method mainly works well in sparse multi-
robot path planning problems, where sub-problems can be easily identified without much
interaction with others. For dense multi-robot path planning problems, the solution can only
be found by original high-dimensional joint search.
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Wagner and Choset [50] also proposed the M* algorithm based on sub-dimensional ex-
pansion to plan in the joint configuration space. The search will start from a low-dimensional
subspace representing configuration spaces of individual robots and increases the dimen-
sionality when the need for coordination is detected. Then Ferner et al. [51] extended M*
algorithm with operator decomposition method for an optimal solution, called ODrM*.

Coupled approaches have constraints to implement in a decentralised way, which might
affect robustness, execution speed and privacy. There are some proposed methods that can
be implemented in a distributed manner, privacy-preserving state space search algorithms
called MAD-A* proposed by Nissim and Brafman [52]. In extreme cases, these algorithms
may require that each expanded state can be passed through one message. It is impractical
because the communication bandwidth of current distributed robotic systems is insufficient
to handle large data, especially the expanding search state as the number of robots increases.

Decoupled planning

Decoupled approaches do not search in the joint configuration space, but instead, perform
a sequence of path or trajectory planning queries in the configuration space of each robot.
These techniques offer better scalability in the number of robots and computational efficiency.

𝐺𝐴𝑆𝐴 𝑆𝐵𝐺𝐵

(a) Corridor swap scenario

Optimal solution

Solution from prioritized planning

𝐺𝐵

𝐺𝐵𝑆𝐴
∗ 𝐺𝐴

∗ 𝑆𝐵

𝑆𝐵𝑆𝐴 𝐺𝐴

(b) Heads on scenario

Fig. 2.1 Examples of the scenario that result in incomplete (Fig.2.1a) or sub-optimal solutions
(Fig. 2.1b) in prioritized planning.

Prioritised planning [12] is one of the typical examples of the decoupled scheme for
multi-robot path planning. In prioritized planning, each robot is assigned a unique priority
and the algorithm proceeds sequentially from the highest priority robot to the lowest-priority
one. In each iteration, one of the robots plans its trajectory such that it avoids collisions with
all the higher-priority robots that follow the trajectories planned in previous iterations.
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However, there are several limitations to this method. Firstly, this method is likely to
work well in uncluttered environments, while it is difficult to find a complete solution if the
configuration of obstacles and start and goal are arbitrary for each robot. For example, in
the corridor swap scenario (Fig. 2.1a), robot A travels from SA to GA, and robot B travels
from SB to GB in a corridor that is only slightly wider than a body of a single robot. Both
robots can travel at identical maximum speeds. In this case, no matter which robot starts
planning first, its trajectory will be in conflict with all goal-achieving trajectories of the robot
that plans second.

Another issue that arises when decoupled methods are used is the suboptimality of the
generated solutions. Clearly, the quality of the generated solutions is highly sensitive to the
choice of priorities assigned to the robots, and some researchers investigate techniques for
choosing good priorities for the robots. For example, in the heads-on scenario (Fig. 2.1b),
two robots are assigned to move from SA to GA and SB to GB, respectively. In the optimal
solution (top picture), each robot can adjust its trajectory to split the total cost of collision-free
trajectory equally. However, in prioritized planning, robot A is set to have higher priority
than robot B. Therefore, robot A will move along a straight line, regarding the trajectory of
robot B, which results in a higher total cost of trajectory. To optimize the makespan (the
longest travel time is minimized), Van den Berg [12] proposes a heuristic that assigns a higher
priority to the robots with longer travel distances. Additionally, Bennewitz et al. [53] used
randomized hill-climbing to find a good priority sequence. Even with these improvements,
the optimal priority sequence may still result in an unsatisfactory result, especially when the
number of robots is large.

Different from the coupled methodologies, decoupled approaches can be easier to imple-
ment in a decentralized fashion. A decentralized prioritized planning technique proposed
by Velagapudi et al. [54] allows robots in a team to plan their paths in parallel and replan
if a conflict between two paths is detected. This technique can utilize the distributed pro-
cessing power onboard to generate individual paths in parallel, which can reduce the total
computation time to find the solution.

Recently, there has been a trend to explore potential solutions that lie between coupled
and decoupled approaches. These approaches allow the various robot-robot behaviors to
be achieved using decoupled planning methods while avoiding planning in the large joint
configuration space. The Conflict-Based Search (CBS) algorithm proposed by Sharon et
al. [55] utilizes a two-level algorithm to find an optimal solution based on a constraint tree,
where each node consists of a set of constraints. The conflict is defined by two or more agents
that occupy a particular vertex in the graph at the same time. At a high level, a search is
performed on a tree based on conflicts between agents. At a low level, a search is performed
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only for a single agent at a time. In many cases, this reformulation enables CBS to examine
fewer states than A* while still maintaining optimality. This algorithm can obtain an optimal
and complete solution and outperform A* in environments with more bottlenecks.

To mitigate the worst-case performance of CBS, Sharon et al. [56] generalised CBS into
Meta-Agent CBS (MA-CBS). MA-CBS employs a threshold for merging conflicting agents
into a meta-agent, which is then treated as a joint-composite agent by the low-level solver.
This framework for multi-agent motion planning is only activated if the number of conflicts
exceeds the specified threshold. In the low-level search, any completed multi-agent planner
can be utilized, rendering MA-CBS a flexible and adaptable solution for multi-agent motion
planning. The above CBS variants only consider the cost of the paths with potential conflicts
in the nodes of the CBS constraints tree as the costs of the nodes. Hence, Felner et al. [57]
extended this by calculating the admissible heuristics, which adds the h-values to the costs of
these nodes.

Li et al proposed an anytime algorithm called MAPF-LNS [58] that combines the
strengths of both worlds: anytime algorithms that quickly find an initial solution using
efficient existing MAPF algorithms, even for large problems, and that subsequently improve
the solution quality to near-optimal as time progresses by replanning subgroups of agents
using Large Neighborhood Search. This algorithm can be understood as a near-optimal algo-
rithm (with no guarantees), which combines the strengths of leading algorithms from across
the algorithmic spectrum in the sense that it computes initial solutions fast, find near-optimal
solutions eventually and scales to very large numbers of agents. Extended from this work,
they developed a suboptimal algorithm MAPF-LNS2 [59] based on a large neighborhood
search for solving Multi-Agent Path Finding efficiently. An efficient single-agent pathfinding
algorithm SIPPS based on SIPP is introduced to find a short path that avoids collisions with
a given set of paths and minimizes the number of collisions with another given set of paths.
Their comparison with state-of-the-art MAPF algorithms demonstrated that MAPF-LNS2 is
fast, scalable, and memory-efficient.

2.1.3 Communication-Aware Approaches

Effective communication within a robot team is crucial for decision-making during robot
movements. It enables robots to coordinate their actions, synchronize their movements, and
collaborate seamlessly toward a shared objective. By communicating, each robot can share its
current state and intended actions with other team members, fostering a cohesive and informed
decision-making process. Unfortunately, robust and continuous communication cannot be
guaranteed due to bandwidth limitations, or interference from the surroundings. These
limitations ultimately affect the optimality of solutions found and the overall resilience of the
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team to disruptions. Redundant communication may also burden the computational capacity
and adversely affect overall team performance. Hence, new trends of research have been
carried out in communication-aware path planning approaches by explicitly considering
communication during path generation, and optimizing this overreaching goal [60–63]: to
generate collision-free trajectories for multi-robot teams to reach their destinations.

Generally, the communication between robots in multi-robot systems can be obtained by
communicating via an intermediate unit or base station and communicating with individual
robots directly. Hence, communication-aware approaches have been explored in both cases.
Rahman et al. [61] introduced an algorithm designed to address the positioning of relay
robots within a multi-robot mission, with the aim of establishing or improving communication
between a static operator and multiple remote units in an obstacle-filled environment. To
accomplish this, they employed a layered graph known as a Communication map data
structure, which was constructed to encompass the potential relay positions as the unit moved.
By computing the communication map graph, it could be reused, thereby reducing the
computational load for re-planning. Additionally, they expanded a mini-arborescence tree to
establish connections between the operator, relays, and unit, minimizing communication costs.
The findings demonstrated that their approach optimally maintained communication quality
and exhibited robustness against unexpected malfunctions in the intermediate unit. Caccamo
et al. [60] developed the Resilient Communication-Aware Motion Planner (RCAMP), which
can be integrated with a robust and online radio signal mapping method based on Gaussian
Random Fields. Based on the available sensory information, both the environment and
the physical constraint of the robot are under the consideration of RCAMP. If there is a
communication loss, a self-repair strategy based on RCAMP can guide the robot into a
connection-safe position by considering the signal strength of the surrounding and goal
position. Their simulation results show that the robot can reach the goal along the path with
optimal communication quality avoiding signal strength drops.

Communications between robots is critical, particularly in decentralized approaches
where problems regarding what information should be delivered to whom and when are
raised. Fowler et al. [63] introduced a framework called Intelligent Knowledge Distribution
to determine the information, content computed by Kullback-Leibler Divergence. With this
framework, each agent can determine what information needs to be shared with whom at
an appropriate time. This can contribute to the optimal communication schedule, efficient
task arrangement and behaviour. Similarly, Best et al. [62] develop a scheduled strategy to
communicate valuable information between robots, where robots only start to share informa-
tion directly when necessary, and only to specific robots that need it. The communication is
requested based on the impact of the robot state uncertainty in the performance of the team.
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Overall, their method achieves comparable performance to methods that use continuous
communication. However, the threshold of when to communicate is manually tuned, and
the selection of the right agent to share information with defined through an oversimplified
heuristic. To overcome the aforementioned limitations, methods based on imitation learning
and reinforcement learning have been applied to multi-agent problems to learn communi-
cation protocols without prior definition to solve sophisticated tasks, which will be further
discussed in Section 2.2.2.

2.2 Learning-Based Path Planning

Recent breakthroughs have taken place in utilizing the computational power of GPUs to
accelerate the training process of convolutional neural networks. In 2012, Krizhevsky et
al. [64] developed a large and deep convolutional neural network, called AlexNet, to learn
the appearance of numerous and complex objects. The training time is decreased by using
Rectified Linear Units (ReLU) instead of using the conventional hyperbolic tangent function.
A regularisation method, called Dropout layers, was implemented to reduce overfitting.
Additionally, AlexNet was trained on GPUs, which further reduces the training time and
increases the acceptable dataset and scale of the images. These methods were widely adopted
in various applications of deep learning techniques.

This breakthrough is also promoting increasing activate research in the application of
deep learning in the field of robotics, including object detection for an automatic car, imitation
learning, and reinforcement learning for motion planning in manipulation. Notably, this trend
is also giving rise to exploring learning-based methods for handling path-planning problems
for single-agent and multi-agent teams. These learning-based methods have the potential to
offload the online computation (high dimensional joint space) to an offline learning procedure
effectively.

Multi-robot motion planning is a generalization of a more widely studied problem of
single-robot motion planning. Moreover, many of the algorithms for multi-robot motion
coordination, solve single-robot motion planning problems as a subroutine. Therefore, we
will start our explanation in Section 2.2.1 by reviewing the state of the art in the learning-
based method for single-robot motion planning by discussing recent work in search-based
and sampling-based motion planning. Section 2.2.1 will review learning-based methods for
multi-agent cases, where we will mainly talk about Multi-Agent Reinforcement Learning
(MARL).
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2.2.1 Learning-Based Path Planning for a Single Robot

Among the various kinds of motion planning methods, search-based motion planning is one
the most comprehensive frameworks for reasoning, where a search tree of feasible motion is
expanded from the start to its goal [65]. Heuristics are introduced to guide the search towards
potentially good directions and consequently minimize search effort, where A* is one of the
most popular algorithms. However, the current search-based methods do not explore enough
the effect of the heuristic in minimizing the search procedure. Hence, Mohak Bhardwaj et
al. [66] proposed a learning-based method where a heuristic policy can be trained to decide
wisely which node of the search tree to expand via imitation learning to minimize search
effort. Based on this method, the heuristic for search should evolve during the search progress,
where the search policy will actively interact with the valid configuration in the space, and
focus on searching the region with a higher probability towards its goal without collision.
Additionally, this heuristic is a data-driven policy, which can adapt to the distribution of data
changes. Imitation learning is introduced to train this sequential decision-making policy,
which can utilize the information extracted from an expert trajectory to decide the node to
expand next at the current interaction, and also influence the expansion of the wavefront in the
next iteration in turn. To achieve a faster convergence rate, full information, called clairvoyant
planner, can be observed by the heuristic, which uses dynamic programming (Dijkstra) to
efficiently compute the optimal decisions for any given wavefront. Their approach can pave
the way forward for learning heuristics that demonstrate an anytime nature, which finds
feasible solutions quickly and incrementally refining them over time.

Sampling-based search is also a popular approach for motion planning. Random-
exploring Random Trees (RRT) [67] is one of the most well-known methods in this approach,
where a tree is expanded iteratively from the start towards the goal by randomly selecting
the intermediate points. This approach can handle the constraints of non-holonomic robots,
including dynamics and motion planning with a high degree of freedom. However, the ran-
dom nature of this method cannot guarantee the optimality and completeness of the solutions.
For example, a different path with various lengths can be generated in the given same config-
uration. Therefore, a substantially improved RRT called Neural EXploration-Exploitation
Tree (NEXT) was proposed by Chen et al. [68] to train the neural network based experiences
the dependency between tasks structures and to reduce the sample requirement for growing
a random tree for agent from start to reach the goal. The neural architecture is developed
to extract the latent embedding of the task within its configuration space for a customised
planning module. Then, this trained network can be integrated with Upper Confidence Bound
(UCB)-type algorithm to obtain a balance online between exploration and exploitation in a
new task. These two components can improve the performance of both alternatively, where
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the UCB-type algorithm will be guided by the learned neural network, while the network will
be evolved through the successful path generated by the UCB-type algorithm. Their results
show that NEXT can generate the path with very small search tree, which also outperforms
previous methods, including RRT* [69], BIT* [70] and CAVE-plan [71].

Besides, Bency et al. [72] proposed a fast and optimal motion planner by using the
Long-Short Term Memory (LSTM), to mimic the stepwise output of an oracle planner. The
Oracle is the expert algorithm that can always generate optimal paths in a given configuration.
The network is trained by L2 norm between predicted output and the oracle, where A* is
introduced to be the oracle algorithm for generating the optimal path in a given configuration.
The proposed framework was validated in a 2D grid world as well as multi-link robot arm
with faster computation and comparable optimality with A* and RRT* [69].

2.2.2 Learning-Based Path Planning for Multi-Robot Systems

Among the family of learning-based methodologies, imitation learning (or supervised learn-
ing) and reinforcement learning are the most popular approaches that have been applied in
the field of robotics.

In imitation learning, the policy of agent is trained to make a sequential decision in an
environment, where the training signal comes from demonstrations of an expert (Oracle) [73].
This method has been widely applied in the scenario, where the tasks are trivial for human
expert, but very complex and challenging for a machine due to high dimensional search
space, i.e. robot manipulation with the high-degree freedom robotic arm.

The complexity and dynamics of the Multi-Agent Systems make it difficult for the system
to obtain the gold standard from a human expert. Reinforcement Learning (RL), however,
can be introduced to learn the policy by trial and error interaction in order to optimize their
task performance by defining reward and penalty mathematically based on the interaction
between an agent with the environment the collision-free path [74].

In 2015, Mnih et al. [75] first introduced deep Q-Networks (DQNs), which is a synthe-
sized model of deep convolutional neural networks with the Q-learning algorithm. This
model acts as a non-linear state abstraction tool, which deals with action decisions as well as
evaluations. This model outperforms the previous approaches that uses a neural network as a
function approximation for the Q-function. The experience replay is introduced in DQNs
to maintain a buffer to store and update previous experiences consisting of the current state
st , the chosen action at , the reward rt and the next state st+1. The mini-batch is applied
to update the samples of experience from this buffer. The back-propagation algorithm is
applied based on the sampled experiences. The DQNs employed experience replay and target
network, which contributes to the convincing performance of stability during the training of
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the Q action-value function approximation with deep neural networks. The rise of deep RL
has enhanced the capability of agents to perform more complex and dynamic tasks in high
dimensional continuous state and action spaces.

MARL has been widely explored to answer the research problem to control the multi-
robot teams in both cooperative/competitive game and motion planning. The MARL enables
the robot team involved in the tasks to learn and optimise the policy by rewards or payoffs
obtained through interacting with their environments during the mapping from their states for
their actions. As a rapidly expanding field, a wide variety of approaches have been proposed
in the MARL to exploit its benefits and address its challenges during recent decades. These
approaches integrate developments in the areas of single-agent RL, game theory, and deep
learning.

In recent decades, MARL has been rapidly developed and inspired various approaches to
accomplish tasks in the field of multi-robot systems based on the development of single-agent
reinforcement learning and game theory. In terms of the difference in reward functions, three
kinds of tasks are under consideration in MARL approach, including:

• Fully cooperative tasks: the reward functions are the same among the agents since
there is no conflict between their goals;

• Fully competitive tasks: the reward function would be opposite in fully competitive
tasks due to completely opposite goals;

• Cooperative and competitive tasks: the reward function doesn’t have specific con-
straint.

Incomplete information, large learning space, and dynamic environments are the three
main barriers to learning in multi-robot systems. There is a particular difficulty in scaling the
established MARL, i.e. Minimax-Q learning, Nash-Q learning, into MRS, which consists
of large and continuous state and action spaces. This will affect the learning performance,
including convergence, efficiency, and stability in the approximation and generalisation.

Reinforcement learning with imitation learning

Generally, it is also a good practice to train the policy by imitation learning and improve the
performance and convergence rate by reinforcement learning.

Chen et al. [76] proposed a decentralised multi-agent collision avoidance algorithm based
on deep reinforcement learning. A value network was developed to encode the estimated time
to the goal given an agent’s joint configuration (positions and velocities) with its neighbours.
After training this value network, the agent obtains the policy to efficiently compute the
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velocity vector to avoid collision and also to predict the uncertain motion of the other agents
from experience to avoid deadlock. Their result shows that their network can improve 26%
in the quality of the path (i.e., time to reach the goal) than ORCA [1].

Sartoretti et al. [15] developed a hybrid algorithm, called PRIMAL, based on reinforce-
ment learning (RL) and imitating from a centralised expert (IL) algorithm. In PRIMAL,
an individual agent is learned from a common single-agent policy and trained to consider
the consequences of actions on others to achieve optimal performance for the team, and
the final learned policy can be copied onto any number of agents. Agents controlled by
PRIMAL perform well in various team sizes in low obstacle densities, but overall, the method
does not generalise to a large number of agents and higher obstacle densities. Extended
on this work, Damani et al [77] proposed a distributed reinforcement learning framework,
PRIMAL2, for lifelong multi-agent pathfinding (LMAPF). In this algorithm, agents learn
fully decentralized policies to reactively plan paths online in a partially observable world to
coordinate considerable agents without any compromise on reactivity and scalability

Multiagent reinforcement learning with communication

Recently, there has been a rising trend to explore the impact of communication (message
passing or information sharing) between agents in MARL.

Foerster et al. [78] first developed a network to train agents to encode meaning in discrete
communicative actions to solve the ‘Switch Riddle’ problem. However, their method has
limitations when there is a fixed number of agents, and when there is a serial and sequential
communication between agents. Sukhbaatar et al. [79] proposed a simple neural model,
called CommNet for continuous communication for fully cooperative tasks. This model can
be applied in various tasks to train the policy of multi-agents and communication between
them. Their results show that the agents can learn to communicate with each other by this
model, and obtained improved performance against non-communicate agents.

The multiplayer game is one of the most popular test-beds for the multi-agent algorithm.
Peng et al. [80] introduced Multiagent Bidirectionally-Coordinated Network (BiCNet) with a
vectorized extension of the actor-critic formulation. Agents can communicate with each other
via BiCNet, while the network is trained by a multi-agent actor-critic framework. Various
experiments have been carried out on StarCraft to validate the robustness, scalability, and
generalization of the proposed network. The results show that the network can handle differ-
ent types of combats with an arbitrary number of agents and outperform multiple baselines
without any supervision, including human demonstration and labeled data. Jaderberg et
al. [81] devised a two-tier optimization process, where a number of the independent agents
are trained by reinforcement learning concurrently from thousands of parallel matches based
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on arbitrary setups, including various maps, number of players, and choice of team. Each
agent can be trained by its own internal reward function and rich representation of the world.
The proposed framework was validated by tournament-style competition, where the trained
policy presented a human-level performance in a three-dimensional multi-player first-person
video game, called Capture the Flag.

Wang et al [82] proposed a reinforcement learning-based approach called FCMNet that
allows agents to simultaneously learn an effective multi-hop communications protocol and
a common, decentralized policy that enables team-level decision-making. The proposed
method utilizes the hidden states of multiple directional recurrent neural networks as com-
munication messages among agents. Using a simple multi-hop topology, each agent can
receive information sequentially encoded by every other agent at each time step, leading to
improved global cooperation. The paper demonstrates the state-of-the-art performance of
FCMNet on a challenging set of StarCraft II micromanagement tasks with shared rewards
and a collaborative multi-agent path-finding task with individual rewards.

Recent research in machine learning has been attracted to GNNs, which utilize the
great expressive power of graphs to handle data with rich relational information among
elements [83]. Graph neural networks (GNNs) are connectionist models that capture the
dependence of graphs via message passing between the nodes of the graph. Different from
Convolutional Neural Networks (CNNs), GNNs retain a state that can represent information
from its neighborhood with arbitrary depth. GNNs have applied been applied with consider-
able success to various areas including social networks [84], the internet of things [85], and
natural science (protein-protein interaction network [86]). Therefore, there are some recent
attempts to apply GNNs in processing data from dynamic environments or communication
for Multi-Agent or multi-robot systems.

Malysheva et al. [87] proposed a framework called MAGnet and validate it in a coopera-
tive and competitive game called Pommerman game. The proposed framework consists of
the graph generation stage and decision-making stage, where the first graph-neural network is
introduced to process the relationship between agents and between agents and environments
represented by a relevant graph. Then state representation is passed into the decision-making
stage, which is trained by reinforcement learning to output action for each agent. Their results
show that it can obtain a better benchmark than other algorithms, including DQN, MADDPG
and MCTS. Besides, Tolstaya et al. [18] proposed a network where the local controllers
are trained to mimic the policy of a centralized controller using global information at the
training stage and achieve a comparable performance of it with only local information and
local communication at interference stage. Aggregation graph neural networks (AGNN) [88]
is extended to support the time-varying signal and network of the multi-robot teams, which
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makes the local controller able to exploit information from distant teammates based on only
local information. Their methods are also validated by training a decentralized flocking con-
troller, where the controller can achieve reasonable performance with only local information
via AGNN.

In this chapter, we gave a general classification of analytical approaches to multi-robot
motion planning problems, where their strengths and limitations of them have been ad-
dressed. Then we presented some state-of-the-art learning-based methods in single-agent
and multi-agent motion planning, which can potentially offload the online computation (high
dimensional joint space) to an offline learning procedure effectively. The work being done
in the area of multi-robot path planning using learning-based methods are inspiring and
will attract researchers to further explore this domain. In the next chapter, we will define a
specific formulation of the problem and our proposed method to be carried out.





Chapter 3

Decentralized Multi-Robot Motion
Planning
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3.1 Introduction

Efficient and collision-free navigation in multi-robot systems is fundamental to advancing
mobility. The problem, generally referred to as Multi-Robot Path Planning (MRPP) or
Multi-Agent Path Finding (MAPF), aims at generating collision-free paths leading robots
from their origins to designated destinations.

Our series of works focuses on multi-robot path planning for scenarios where the robots
are restricted in observation and communication range, and possess no global reference
frame for localization. This naturally arises when considering physical robots equipped with
hardware constraints that limit their perception and communication capabilities [89]. These
scenarios impose a decentralized structure, where at any given point in time, robots have
only partial information of the system state.

In Sec 3.4, we propose a combined architecture, where we train a convolutional neural
network (CNN) [90] that extracts adequate features from local observations, and a graph
neural network (GNN) to communicate these features among robots [91] with the ultimate
goal of learning a decentralized sequential action policy that yields efficient path plans for all
robots. The GNN implementation seamlessly adapts to the partial information structure of
the problem, since it is computed in a decentralized manner. We train this architecture to
imitate an optimal coupled planner with global information that is available offline at training
time. Further, we develop a dataset aggregation method that leverages an online expert (CBS
algorithm) to resolve hard cases, thus expediting the learning process. The resulting trained
model is used online in an efficient, decentralized manner, involving communication only
with nearby robots. Furthermore, We achieve performance that is close to that of optimal
planners in terms of success rate and flowtime (sum of path costs), while also being able to
generalize to previously unseen cases, such as larger robot teams and environments.

As the system scales, decentralized approaches become increasingly popular, where each
robot estimates or communicates others’ future trajectories via broadcasting or distance-based
communication. Unfortunately, if the communication happens concurrently and equivalently
among many neighboring robots, it is likely to cause redundant communication, burden the
computational capacity and adversely affect overall team performance. Besides, robust and
continuous communication cannot yet be guaranteed due to limited bandwidth, large data
volumes, and interference from the surroundings. Additionally, under a fully decentralized
framework without any priority of planning, it is very hard to ensure the convergence of the
negotiation process [12]. These limitations ultimately affect the optimality of solutions found
and the overall resilience of the team to disruptions. Hence, new trends of research focus
on communication-aware path planning approaches by explicitly considering communica-
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tion efficiency during path generation and path optimization [63], addressing to whom the
information is communicated, and at what time [62].

To overcome this, we propose to use a Message Aware Graph Attention neTwork (MA-
GAT) to extend our previous decentralized framework [19] in Sec 3.5.

• We combine a Graph Neural Network (GNN) with a key-query-like attention mechanism
to improve the effectiveness of inter-robot communication. We demonstrate the suitability
of applying our model on dynamic communication graphs by proving its permutation
equivariance and time invariance property.

• We investigate the impact of reduced communication bandwidth by reducing the size of
the shared features, and then deploy a skip-connection to preserve self-information and
maintain model performance.

• We demonstrate the generalizability of our model by training the model on small problem
instances and testing it on increasing robot density, varying map size, and much larger
problem instances (up to ×100 the number of robots. Our proposed model is shown to
be more efficient in learning general knowledge of path planning as it achieves better
generalization performance than the baseline systems under various scenarios. Note that
the baseline includes the prior algorithms (HCA and Replanning) and baseline neural
network model.

3.2 Related Work

Multi-robot path planning. Classical approaches to multi-robot path planning can generally
be described as either centralized or decentralized. Centralized approaches are facilitated
by a planning unit that monitors all robots’ positions and desired destinations, and returns
a coordinated plan of trajectories (or way-points) for all the robots in the system. These
plans are communicated to the respective robots, which use them for real-time on-board
control of their navigation behavior. Coupled centralized approaches, which consider the
joint configuration space of all involved robots, have the advantage of producing optimal and
complete plans, yet tend to be computationally very expensive. Indeed, solving for optimality
is NP-hard [92], and although significant progress has been made towards alleviating the
computational load [93, 94], these approaches still scale poorly in environments with a high
number of potential path conflicts.

Decentralized approaches provide an attractive alternative to centralized approaches,
firstly, because they reduce the computational overhead, and secondly, because they relax the
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dependence on centralized units. This body of work considers the generation of collision-free
paths for individual robots that cooperate only with immediate neighbors [95, 13], or with
no other robots at all [1]. In the latter case, coordination is reduced to the problem of
reciprocally avoiding other robots (and obstacles), and can generally be solved without the
use of communication. Yet, by taking purely local objectives into account, global objectives
(such as path efficiency) cannot be explicitly optimized. In the former case, it has been shown
that monotonic cost reduction of global objectives can be achieved. This feat, however, relies
on strong assumptions (e.g., problem convexity and invariance of communication graph
[96, 97]) that can generally not be guaranteed in real robot systems.

Learning-based methods. Learning-based methods have proven effective at designing
robot control policies for an increasing number of tasks [98, 99]. The application of learning-
based methods to multi-robot motion planning has attracted particular attention due to their
capability of handling high-dimensional joint state-space representations, by offloading the
online computational burden to an offline learning procedure. The work in [100] proposes
a decentralized multi-agent collision avoidance algorithm based on deep reinforcement
learning. Their results show that significant improvement in the quality of the path (i.e.,
time to reach the goal) can be achieved with respect to current benchmark algorithms (e.g.,
ORCA [1]). Also in recent work, Sartoretti et al. [15] propose a hybrid learning-based
method called PRIMAL for multi-agent path-finding that uses both imitation learning (based
on an expert algorithm) and multi-agent reinforcement learning. It is note-worthy that none
of the aforementioned learning-based approaches consider inter-robot communication, and
thus, do not exploit the scalability benefits of fully decentralized approaches. Learning what,
how, and when to communicate is key to this aim.

Of particular interest to us is the capability of learning-based methods to handle high-
dimensional joint state-space representations, useful when planning for large-scale collective
robotic systems, by offloading the online computational burden to an offline learning pro-
cedure [18, 101, 100]. The fact that each robot must be able to accumulate information
from other robots in its neighborhood is key to this learning procedure. From the point
of view of an individual robot, its local decision-making system is incomplete, since other
agents’ unobservable states affect future values. The manner in which information is shared
is crucial to the system’s performance, yet is not well addressed by current machine learning
approaches. Graph Neural Networks (GNNs) promise to overcome this deficiency [102, 91].
They capture the relational aspect of robot communication and coordination by modeling
the collective robot system as a graph: each robot is a node, and edges represent commu-
nication links [103]. Although GNNs have been applied to a number of problem domains,
including molecular biology [104], quantum chemistry [105], and simulation engines [106],
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they have only very recently been considered within the multi-robot domain, for applications
of flocking and formation control [103, 18, 101].

Attention mechanisms. GNNs have attracted increasing attention in various fields,
including the multi-robot field (flocking and formation control [18], and multi-robot path
planning [19]). However, how to effectively process large-scale graphs with noisy and
redundant information is still under active investigation. A potential approach is to introduce
attention mechanisms to actively measure the relative importance of node features. Hence,
the network can be trained to focus on task-relevant parts of the graph [107]. Learning atten-
tion over static graphs has been proved to be efficient. Besides, Liu et al. [108] developed a
learning-based communication model that constructed the communication group on a static
graph to address what to transmit and which agent to communicate for collaborative percep-
tion. However, its permutation equivariance, time invariance and its practical effectiveness in
dynamic multi-agent communication graphs have not yet been verified.

3.3 Problem formulation

3.3.1 Problem.

We set up a 2D grid world W , which contains a set of static obstacles C ⊂ W . A static
obstacle is a two-dimensional polygon. Let V = {v1, . . . ,vN} be the set of N robots with
independent pairs of the start and goal positions.

We formulate the multi-agent path planning problem as a sequential decision-making
problem that each robot solves at every time step t, with the objective of reaching its
destination. We assume that communication between robots and decision-making were
achieved instantly without delay. In this work, we initially approach the task in a discrete
domain, aligning with the subsequent definition of time presented in the follow-up content.
More formally, the goal of this work is to learn a mapping F that takes the maps {Zi

t}vi∈V
and the communication network Gt at time t and determines an appropriate action ut .

We want the action ut = F ({Zi
t},Gt) to be such that it contributes to the global objective

of moving the robots towards their destinations in the shortest possible time while avoiding
collisions with other robots and with obstacles that might be present.

The objective is to train the network to perform as well as a coupled centralized expert,
while restricting robots to partial observations. The mapping F has to be restricted to involve
communication only among nearby robots, as dictated by the network Gt at each time instant
t.
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Finally, note that for scalability, the mapping F cannot depend on time t, allowing the
system to process sequences of arbitrary duration.

3.3.2 Assumptions.

We have made assumptions as follows:

• There is no global positioning of the robots. The map perceived by robot i at time t is
denoted by Mi

t ∈ RWFOV×HFOV , where WFOV and HFOV are the width and height (in 2D
plane) of the rectangular Field of View (FOV).

• When the goal of the robot is outside the FOV, this information is clipped to the FOV
boundary in a local reference frame (see Fig. 3.1), resulting in only the awareness of
the direction of its goal. This design is inspired by the PRIMAL [15].

• Compared with the time for the robot’s movement, the communication between the
neighboring robots happens instantly without delay, and is not blocked by any static
obstacles C .

• We further limit the communication such that robots can only send out their features at
a specific bandwidth, but cannot access the ownership of the feature received.

3.3.3 Communications.

The definition of communication is the key difference between our previous work [19] (as
summarized in Sec. 3.3.3 and detailed in Sec. 3.4) and our Message-aware Graph Attention
Networks (MAGAT) [39] (as summarized in Sec. 3.3.4 and detailed in Sec. 3.5.1 and
Sec. 3.5.2), which demonstrated the greater generalized ability.

Vanilla graph neural network for multi-robot path planning

Let V = {v1, . . . ,vN} be the set of N robots. At the time t, each robot perceives its surround-
ings within a given field of vision; although the robot knows where its own target destination
is located, this information is clipped to the field of vision in a local reference frame (see
Fig. 3.1). Furthermore, we assume no global positioning of the robots. This map perceived
by robot i is denoted by Zi

t ∈ RWFOV×HFOV where WFOV and HFOV are the width and height,
respectively, and are determined by the field of vision radius rFOV.

Robots can communicate with each other as determined by the communication network.
We can describe this network at time t by means of a graph Gt = (V ,Et ,Wt) where V is the
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set of robots, Et ⊆V ×V is the set of edges and Wt : Et→R is a function that assigns weights
to the edges. Robots vi and v j can communicate with each other at time t if (vi,v j) ∈ Et . The
corresponding edge weight Wt(vi,v j) = wi j

t can represent the strength of the communication
(or be equal to 1 if we are only modeling whether there is a link or not). For instance, two
robots vi and v j, with positions pi,p j ∈ R2 respectively, can communicate with each other if
∥pi−p j∥ ≤ rCOMM for a given communication radius rCOMM > 0. This allows us to define
an adjacency matrix St ∈RN×N representing the communication graph, where [St ]i j = si j

t = 0
if (v j,vi) /∈ Et .

Message graph neural network for multi-robot path planning

Each robot can communicate, or share information with only adjacent robots. We formalize
this communication with a dynamic distance-based communication network. We can describe
this network at time t by means of a graph Gt = (V ,Et ,Wt) where V is the set of robots,
Et ⊆ V ×V is the set of edges and Wt : Et→R is a function that assigns weights to the edges.
The graph is distance-based because robots vi and v j can communicate with each other at time
t if and only if (vi,v j) ∈ Et . In addition to vanilla GNN, we introduce the corresponding edge
weight Wt(vi,v j) = wi j

t = [St ]i j[E]i j ∈ [0,1], where [St ]i j represents the graph connectivity
and [E]i j (will be introduced later in Eq. 3.9) indicates relative importance (attention) of the
information contained in the messages received from the neighboring robots.

3.3.4 Preliminaries

In order to guarantee that the mapping F is restricted to communications only among nearby
robots, we parametrize it by means of a GNN, which is a naturally decentralized solution
(Sec. 3.3.4). We then train this GNN to learn appropriate actions that contribute to the
global objective by means of supervised learning through an expert algorithm (i.e., imitation
learning) (Sec. 3.4.1).

Graph Convolutions

Assume that each robot has access to F observations x̃i
t ∈ RF at time t. Let Xt ∈ RN×F

be the observation matrix where each row collects these F observations at each robot x̃i
t ,

i = 1, . . . ,N,

Xt =



(x̃1

t )
Tr

...
(x̃N

t )
Tr


=

[
x1

t · · · xF
t

]
. (3.1)
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Note that the columns x f
t ∈ RN represent the collection of the observation f across all nodes,

for f = 1, . . . ,F . This vector x f
t is a graph signal [109], since it assigns a scalar value to each

node, x f
t : V → R so that [x f

t ]i = xi f
t ∈ R.

To formally describe the communication between neighboring agents, we need a concise
way of describing the graph Gt and relating it to the observations Xt . Towards this end, we
use the adjacency matrix St . We note that other matrix descriptions of the graph, such as the
Laplacian matrix or the Markov matrix are possible. We generically call St the graph shift
operator (GSO) [109].

The operation StXt represents a linear combination of neighboring values of the signal
due to the sparsity pattern of St . More precisely, note that the value at node i for observation
f after operation StXt ∈ RN×F becomes

[StXt ]i f =
N

∑
j=1

[St ]i j[Xt ] j f = ∑
j:v j∈Ni

si j
t x j f

t (3.2)

where Ni = {v j ∈ V : (v j,vi) ∈ Et} is the set of nodes v j that are neighbors of vi. Also, the
second equality in (3.2) holds because si j

t = 0 for all j /∈Ni.
The linear operation StXt is essentially shifting the values of Xt through the nodes, since

the application of St updates the value at each node by a linear combination of values in the
neighborhood. With the shifting operation in place, we can define a graph convolution [91]
as linear combination of shifted versions of the signal

A (Xt ;St) =
K−1

∑
k=0

Sk
t XtAk (3.3)

where {Ak} is a set of F×G matrices representing the filter coefficients combining differ-
ent observations. Several noteworthy comments are in order with respect to (3.3). First,
multiplications to the left of Xt need to respect the sparsity of the graph since these multipli-
cations imply combinations across different nodes. Multiplications to the right, on the other
hand, can be arbitrary, since they imply linear combination of observations within the same
node in a weight sharing scheme. Second, Sk

t Xt = St(Sk−1
t Xt) is computed by means of k

communication exchanges with 1-hop neighbors, and is actually computing a summary of
the information located at the k-hop neighborhood. Therefore, the graph convolution is an
entirely local operation in the sense that its implementation is naturally distributed. Third,
the graph convolution is actually computing the output of a bank of FG filters where we
take as input F observations per node and combine them to output G observations per node,
A (Xt ;St) ∈ RN×G. There are FG graph filters involved in (3.3) each one consisting of K
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filter taps, i.e., the ( f ,g) filter can be described by filter taps a f g = [a f g
0 , . . . ,a f g

K−1] ∈ RK and
these filter taps are collected in the matrix Ak as [Ak] f g = a f g

k .

Graph Neural Networks

A convolutional GNN [91] consists of a cascade of L layers, each of which applies a graph
convolution (3.3) followed by a pointwise nonlinearity σ : R→ R (also known as activation
function)

Xℓ = σ
[
Aℓ(Xℓ−1;S)

]
for ℓ= 1, . . . ,L (3.4)

where, in a slight abuse of notation, σ is applied to each element of the matrix Aℓ(Xℓ−1;S).
The input to each layer is a graph signal consisting of Fℓ−1 observations and the output has
Fℓ observations so that Xℓ ∈ RN×Fℓ . The input to the first layer is X0 = Xt so that F0 = F
and the output of the last layer corresponds to the action to be taken at time t, XL = Ut which
could be described by a vector of dimension FL = G. The GSO S to be used in (3.4) is the
one corresponding to the communication network at time t, S = St . At each layer ℓ we have
a bank of FℓFℓ−1 filters Aℓ described by a set of KℓFℓFℓ−1 total filter taps {Aℓk}K−1

k=0 .
We note that, in the present framework, we are running one GNN (3.4) per time instant t,

where each time step is determined by the moment the action is taken and the communication
network changes. This implies that we need to carry out ∑

L
ℓ=1(Kℓ−1) total communications

before deciding on an action. Therefore, it is important to keep the GNN shallow (small L)
and the filters short (small Kℓ).

In summary, we propose to parametrize the mapping F between maps Zt and actions Ut

by using a GNN (3.4) acting on observations Xt = CNN(Zt) obtained by applying a CNN to
the input maps. We note that, by choosing this parametrization we are obtaining a mapping
that is naturally distributed and that is adequately exploiting the network structure of the data.

3.4 Graph Neural Networks for Decentralized Multi-Robot
Path Planning

3.4.1 Architecture

The following sections describe the architecture, of which all components are illustrated in
Fig. 3.1.
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Fig. 3.1 Illustration of the proposed framework. (i) The input tensor is based on a binary
map representation (1st channel: partial observation of the environment; 2nd channel: the
position of goal (pi

goal), or its projection onto the boundary of the field-of-view; 3rd channel:
self (agent) at center, with other agents within its field-of-view). (ii) The decentralized
framework consists of a CNN to extract observations from the input tensor, a GNN to
exchange information between the neighboring agents, and an MLP to predict the actions.
(iii) Training is performed through cross-entropy loss over a discrete action space.

Processing Observations

In an environment (W ×H) with static obstacles, each robot has a local field-of-view (FOV),
the radius of which is defined by rFOV, beyond which it cannot ‘see’ anything. Inspired
by the observation space in PRIMAL [15], we set the robot itself located at the center of
this local observation without prior knowledge of its global position. The data available
at robot i is a map Zi

t of size WFOV×HFOV (Fig. 3.1 illustrates how we implement such
partial observations). The input map Zi

t is fed into a CNN that is run internally on each
robot. This results in a vector x̃i

t ∈RF containing F observations (3.1), x̃i
t = CNN(Zi

t). These
observations can then be communicated to nearby robots. The intuition behind using a CNN
is to process the input map Zi

t into a higher-level feature tensor x̃i
t describing the observation,

goal and states of other robots. This feature tensor is then transmitted via the communication
network, as described in the following section,Sec. 3.4.1.

Communication

Each individual robot communicates its compressed observation vector x̃i
t with neighbor-

ing robots within its communication radiGraph Neural Networks for Decentralized Multi-
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Robotus rCOMM over the multi-hop communication network, whereby the number of executed
hops is limited by K. As described in Sec. 3.3.4, we apply our GNN to aggregate and fuse
the states (x̃ j

t ) within this K-hop neighborhood of robots j ∈Ni, for each robot i. The output
of the communication GNN is a hyper-representation of the fused information of the robot
itself and its K-hop neighbors, which is passed to the action policy, as described in Sec. 3.4.1.
We note that each robot carries a local copy of the GNN, hence resulting in a localized
decision-making policy.

Action Policy

We formulate the path-finding problem as a sequential classification problem, whereby an
optimal action is chosen at each time step. We adopt a local multi-layer perceptron (MLP) to
train our action policy network. More specifically, each node applies a MLP to the aggregated
features resulting from the communication GNN. This MLP is the same across all nodes,
resembling a weight-sharing scheme. The action ũi

t taken by robot i is given by a stochastic
action policy based on the probability distribution over motion primitives, which in our case
consists of five discrete options (up, left, down, right, idle), and are represented by one-hot
vectors. The final path is represented by the series of sequential actions.

Network Architecture

We construct our CNN architecture by using Conv2d-BatchNorm2d-ReLU-MaxPool2d and
Conv2d-BatchNorm2d-ReLU blocks sequentially three times. All kernels are of size 3 with
a stride of 1 and zero-padding. In the GNN architecture, we deploy a single layer GNN
(as described in Sec. 3.3.4) and set 128 as the number of input observations F and output
observations G. Note that we can tune the filter taps K for non-communication (K = 1)
and multi-hop communication (K > 1). In the action policy, we use a linear soft-max layer
to decode the output observations G from the GNN with 128 features into the five motion
primitives.

Learning from Expert Data

To train our models, we propose a supervised learning approach based on expert data (i.e.,
imitation learning). We assume that, at training time, we have access to an optimal trajectory
of actions {U∗t } for all the robots, and the corresponding maps obtained for this trajectory
{Zi

t}, collected in a training set T = {({Ut},{Zi
t})}. Then, we train the mapping F so that

the output is as close as possible to the corresponding optimal action U∗ using a cross-entropy
loss L (·, ·). If the mapping F is parametrized in terms of a GNN (3.4) then this optimization
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problem becomes

min
CNN,{Aℓk},MLP

∑
({Ut},{Zi

t})∈T
∑

t∈[0,TMP∗ ]
L (U∗t ,F ({Zi

t},Gt)). (3.5)

where TMP∗ is the makespan (the time period from the first robot moves to the last robot
arrives its goal) of the expert solution.

We are optimizing over the filters in the CNN required to process the map as well
as the set of matrices {Aℓk} that contains the ∑

L
ℓ=1 KℓFℓ−1Fℓ learnable parameters of the

communication GNN. Note that the number of parameters is independent of the size of the
network N.

Imitation learning rests on the availability of an optimal solution (further elaborated in
the section ‘Expert Data Generation’, below). While this solution might be computationally
expensive, or even intractable for large networks, we only need it at training time. Once
trained, the GNN models can be deployed in different communication topologies [110],
including those with a larger number of robots as is evidenced in the numerical experiments
of Sec. 3.4.2. Given the decentralized nature of the parametrizations, the trained models are
efficient in the sense that their computation is distributed among the agents, demanding only
communication exchanges with one-hop neighbors.

Expert Data Generation

As described in our problem statement in Sec. 3.3, the robots operate in a grid world of size
W ×H with static obstacles randomly placed throughout the map. For each grid world, we
generate cases randomly, i.e., problem instances, which consist of pairs of start and goal
positions for all robots (we also refer to this as a configuration). We filter duplicates, invalid
cases, or unsolvable cases, and store the remaining cases in a setup pool, which is randomly
shuffled at training time. For each case, we generate the optimal solution. Towards this
end, we run an expert algorithm: Conflict-Based Search (CBS) [93] (which is a similar
approach as taken in [15] and explanation can be found in Sec. 5.3.2). This expert algorithm
computes our ‘ground-truth paths’ (the sequence of actions for individual robots), within
a 300s timeout, for a given initial configuration. Our data set comprises 30,000 cases for
any given grid world and number of agents. This data is divided into a training set (70%), a
validation set (15%), and a testing set (15%).
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Algorithm 1: Generation of sequential actions.
Input: Input tensor, xi

0, i ∈ [0,N], N is the number of robots; timeout Tmax = 3TMP∗ as
explained in Sec. 3.4.2; Policy π

Output: Predicted paths (χ̂i) for each robot (i), consisting of sequential predicted actions
ûi

t , for all t ∈ [0,TMP] from initial position pi
0

1 for t in [0,Tmax] do
2 while not all robots at their goals do
3 for robot i ∈ {1, . . . ,N} do
4 obtain input tensor xi

t and adjacency matrix St ;
5 ûi

t ← π(xi
t ,St) ;

6 if robot i with action ûi
t collides with obstacle then

7 ûi
t ← idle (collision shielding);

8 end
9 end

10 if robot i, with action ûi
t , performs an edge collision with robot j then

11 ûi
t ← idle (collision shielding);

12 else
13 record and update position pi

t+1 of robot i by ûi
t ; update input tensor xi

t and
adjacency matrix St .

14 end
15 end
16 end
17 Evaluate χ̂ according to metrics (Sec. 3.4.2).
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Fig. 3.2 Illustration of the inference stage: for each robot, the input map Zi
t is fed to the

trained framework to predict the action; collisions are detected and prevented by collision
shielding. The input map Zi

t is continuously updated until the robot reaches its goal or
exceeds the timeout Tmax.
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Policy Execution with Collision Shielding

Inspired by ideas from the community [15, 111], we execute the action policy with a
protective mechanism that we name collision shielding at the inference stage. Since it is not
guaranteed that robots learn collision-free paths, we require this additional mechanism to
guarantee that no collisions take place. Collision shielding is implemented as follows: (i) if
the inferred action would result in a collision with another robot or obstacle, then that action
is replaced by an idle action; (ii) if the inferred actions of two robots would result in an edge
collision (having them swap positions), then those actions are replaced by idle actions. It is
entirely possible that robots remain stuck in an idle state until the timeout is reached. When
this happens, we count it as a failure case. The overall inference process is summarized in
Alg. 1 and Fig. 3.2.

Algorithm 2: Training process with dataset aggregation.
Input: Input tensor, xi

t , t ∈ [0,TMP∗ ], i ∈ [0,N], N is the number of robots; and adjacency
matrix St ; target actions u∗,it generated expert algorithm; cross-entropy loss L ;
learning rate γ; (xi

t ,St ,u
∗,i
t ) ∈ offline dataset Doffline

Output: Proposed framework π(· : w)
1 D← Doffline ;
2 π(· : w)← initialize parameters w ;
3 for epoch ∈ {1, . . . ,epochmax} do
4 for {si

t ,St ,u
∗,i
t }N

i=1 ∈ D do
5 for i ∈ {1, . . . ,N} do
6 ûi

t = π(xi
t ,St : w) ;

7 w← w− γ ·∇wL (ûi
t ,u
∗,i
t )

8 end
9 end

10 if mod (epoch,C) = 0 then
11 for nOE randomly selected cases from Doffline do
12 Deploy π(· : w) based on Alg. 1;
13 Upon timeout, deploy expert algorithm to solve failure case DOE ;
14 D← D∪DOE

15 end
16 end
17 end

Dataset Aggregation during Training

The use of collision shielding leads to failure cases due to potential deadlocks in the actions
taken by the robots, where some of them remain stuck in an idle state. To overcome such
deadlocks, we propose a dataset aggregation method that makes use of an online expert (OE)
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algorithm, during training. More specifically, every C epochs, we select nOE random cases
from the training set and identify which ones are stuck in a deadlock situation. Then, we
run the expert starting from the deadlock configuration in order to unlock them into moving
towards their goal. The resulting successful trajectory is added to the training set and this
extended training set is then used in the following epochs. This process is detailed in Alg. 2.
We note that no change is made to the validation or test sets. This dataset aggregation method
is similar to the approach in DAgger [112], but instead of correcting every failed trajectory,
we only correct trajectories from a randomly selected pool of nOE cases, as calls to our expert
algorithm are time-consuming. Another key difference is that we need to resort to an explicit
measure of failure (i.e., through the use of a timeout), since focusing on any deviations from
the optimal path (as in the DAgger approach) may be misleading, because those paths may
still lead to very competitive solutions in our problem setting.

3.4.2 Performance Evaluation

To evaluate the performance of our method, we perform two sets of experiments, (i) on
networks trained and tested on the same number of robots, and (ii) on networks trained on a
given number of robots, and tested on previously unseen team sizes (both larger and smaller).

Metrics

We consider two key performance metrics:

Success Rate (α)

A case is considered successful (complete) when all robots reach their goal prior to the
timeout, i.e., when all robots find their paths from pi

0 to pi
goal for i ∈ [0,N]. The success rate

is hence quantified by the proportion of successful cases over the total number of tested cases
n:

α =
nsuccess

n
(3.6)

Flowtime Increase (δFT)

At the end of the system’s inference stage (see Fig. 3.2), the sequence of actions result in a
final path, for each robot. The sum of the executed path lengths (FT) may be larger than the
sum of expert (target) path lengths (FT∗). This deterioration is computed as

δFT =
FT−FT∗

FT∗
. (3.7)
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Note that if a robot does not reach its goal, the length of the predicted path is considered
to be the length of the maximum allowed path length (Tmax = 3TMP∗)(Alg. 1 and Fig. 3.2).
Here, TMP∗ is the makespan of the solution generated by the expert algorithm. We also note
that computing the flowtime increase with respect to an expert algorithm requires that we
can actually solve a case using the expert algorithm in tractable time.

Experimental Setup

Our simulations were conducted using a 12-core, 3.2Ghz i7-8700 CPU and an Nvidia
GTX 1080Ti GPU with 32 and 11GB of memory, respectively. The proposed network was
implemented in PyTorch v1.1.0 [113], and was accelerated with Cuda v10.0 APIs. We used
the Adam optimizer with momentum 0.9. The learning rate γ scheduled to decay from 10−3

to 10−6 within 150 epochs, using cosine annealing. We set the batch size to 64, and L2
regularization to 10−5. The online expert on the GNN is deployed every C = 4 epochs on
nOE = 500 randomly selected cases from the training set.

Results

We instantiate 600 different maps of size 20×20, of which 420 are used for training, 90 for
validation, and 90 for testing. We generate 50 cases for each map. The obstacle density is
set to 10%, corresponding to the proportion of occupied over free space in the environment.
We consider a field of view of radius rFOV = 4 and a communication radius of rCOMM = 5.
At each time step, each robot runs a forwards pass of its local action policy (i.e., the trained
network). At the end of each case (i.e., it is either solved or the timeout is reached), we
record the length of each robot’s path and the number of robots that reach their goals, to
compute performance metrics according to Sec. 3.4.2.

Effect of Communication on Flowtime and Success Rates

Figures 3.3a and 3.3b show results for the success rate and flowtime increase, respectively, as
a function of the number of robots. For each panel, we train a model for N ∈ [4,6,8,10,12],
and test it on instances of the same robot team size. In each experiment, we vary the number
of communication hops (K ∈ [1,2,3]). Note that for K = 1 there is no communication
involved. Similar to [1] and [2], we use a discrete version of a velocity-based collision-
avoidance method (Discrete-ORCA) as an additional benchmark against which to test our
method.
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Fig. 3.3 Results for success rate (α) and flowtime increase (δFT), as a function of the number
of robots. For each panel, we vary the number of communication hops (K ∈ [1,2,3]),
including results obtained through training with the online expert (OE). We also compare our
framework with Discrete-ORCA [1][2].

In both figures, we see a drop in performance for larger teams, but this drop is much more
pronounced for the non-communicative GNN (K = 1). Our framework generally outperforms
the Discrete-ORCA in terms of success rate and flowtime increase.

Generalization

Fig. 3.4a and 3.4b summarize the generalization capability of our model for success rate and
flowtime increase, respectively. The experiment was carried out by testing networks across
previously unseen cases. The tables specify the number of robots trained on in the rows, and
the number of robots tested on in the columns. The results demonstrate strong generalization
capabilities.

We perform subsequent experiments on larger robot teams to further test the generaliza-
tion. Results in Fig. 3.5 show that our network, trained on only 10 robots scales to teams of
sixfold size. We test the network in different grid map, where the map sizes are scaled to
preserve the effective robot density. Notably, the results show no degradation of performance.

We train the GNN (K ∈ [2,3]) with and without the online expert (OE) implementation on
10 robots, and test it on 60 robots in 50×50 environments, respectively. The grid maps are
scaled to preserve the same effective density β = nrobots+nobs

W×H , where the number of obstacles
nobs = ρ×W ×H, ρ is the obstacle density in the map (W ×H) and nobs is the number of
robots.

Different from our success rate metric, which only considers complete cases (all robots
reach their goals), Fig. 3.6 presents the proportion of cases distributed over the number of
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Fig. 3.4 Success rate and flowtime increase. The rows represent the number of robots on
which each model was trained, and columns represent the number of robots at test time. The
heatmap maps performance to a color range where purple indicates the best performance and
red indicates the worst performance.

robots reaching their goals. The distributions show that more than 75% of all robots always
reach their goals across all implementations. In 97% of cases, more than 95% of robots (57
out of 60) reach their goals. For instance, there are 995 out of 1000 cases (99.5%), where at
least 54 robots reach their goals with the GNN (K = 3) without OE implementation (worst
implementation). We see from Fig. 3.6a how the GNN network with OE tends to generalize
better than the GNN without OE, since the proportion of robots reaching the goal is larger.
In Fig. 3.6b, we see how an increased communication hop count (from K = 2 to K = 3)
contributes to a slightly larger proportion of robots reaching their goals.
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Fig. 3.5 Results for success rate and flowtime increase, as a function of the number robots
tested on. We vary the GNN implementation (K ∈ [2,3]), trained (‘TR10’) on a 20×20 map
with 10 robots, and GNN implementation (K = 3) trained (‘TR20’) on a 28×28 map with
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their goal; the network with hop count K ∈ [2,3], is trained on 10 robots and tested on 60
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Summary

Our results show that the decentralized framework generalizes to different numbers of robots,
as seen in Sec. 3.4.2 and Sec. 3.4.2. We note that a single forward pass of our model (enabling
a robot in a team of 10 robots to predict its action) takes only about 0.019±2.15e−3 s on the
workstation described in Sec. 3.4.2. In addition to the decentralized nature of our solution,
this speed of computation is beneficial in real-world deployments, where each robot runs its
own (localized) action policy. In contrast, the expert algorithm [93] is intractable for more
than 14 agents in dense environments within the given timeout; this is corroborated by results
in [14, 15].

The experiments in Sec. 3.4.2 showed the capability of our decentralized policy to
generalize to robot teams across different sizes. Fig. 3.4a and Fig. 3.4b showed that the
framework trained in smaller robot teams (n = 4, 6) tends to perform worse than those
trained in larger teams (n = 8, 10, 12), across any unseen instances (larger as well as smaller
in size). The intuition for the cause of this phenomenon can be due to two main factors.
Firstly, larger robot teams tend to cause more collisions, allowing the policy to learn how
to plan more efficient paths more quickly. Secondly, policies trained on very small robot
teams (e.g. 4 robots), tend to produce communication topologies that are idiosyncratic, and
hence, may generalize more poorly. Results in Fig. 3.5 showed very strong generalization
capabilities, with tests scaling to a factor of 6x of the instances trained on, without noticeable
performance deterioration.

We also demonstrated that the use of our online expert leads to significant improvements
(as seen in Fig. 3.3). Fig. 3.6a shows how the GNN with the online expert was able to
increase the success rate of all 60 robots reaching goal given a framework trained on 10
robots, and contribute to a right-shift of the distribution.
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3.5 Message-Aware Graph Attention Networks for
Large Scale Multi-Robot Path Planning

3.5.1 Message-Aware Graph Attention neTwork

In this work, we initially approach the task in a discrete domain, aligning with the subsequent
definition of time presented in the follow-up content. Inspired by the Graph Attention
neTworks (GATs) used on static knowledge graphs [107], we incorporate a key-query-like
attention mechanism [114] such that the weights on edges between nodes Wt(vi,v j) ∈ [0,1]
are determined by the relative importance of node features, which allows each robot to
aggregate message features received from neighbors with a selective focus. Formally,
inspired by [115], we define a generic GNN model as follows (affording flexibility to use
different weighing mechanism between neighboring nodes):

A (Xt ;St) =
K−1

∑
k=0

(E⊙St)
kXtAk , (3.8)

where E is an attention matrix of the same dimensions as S and “⊙” refers to an element-wise
product. The values of E are computed as follows:

[E]i j =
exp(LeakyReLU(ei j))

∑k∈Ni exp(LeakyReLU(eik))
, (3.9)

where Ni is the collection of all the neighboring nodes of node i, and ei j is obtained by:

ei j = x̃i
tW (x̃ j

t )
Tr , (3.10)

where W is a weight matrix serving as a key-query-like attention [114]. A softmax function
(as in Eq. 3.9) is applied to the attention so that the edge weights are constrained within [0,1].
Recall that x̃t is the input feature extracted by previous layers.

Similar to GNN, MAGAT generates output features based on a pointwise nonlinearity σ ,
but potentially the output can be a concatenation of the outputs of P attention heads:

Xℓ =
∥∥P

p=1

(
σ
[
A p

ℓ (Xℓ−1;S)
])

for ℓ= 1, . . . ,L , (3.11)

where P is the number of independent heads in the layer and || represents concatenation. Each
trainable weight matrix (e.g. W ) in each attention head p and each layer l is independent.

We introduce the original GAT [107] as a baseline in Sec. 3.4.2 by directly replacing our
core attention mechanism (Eq. 3.10) with the following original GAT attention mechanism
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while keeping other parts of our framework unchanged:

ei j = ((x̃i
t)

TrAk||(x̃ j
t )

TrAk)H, (3.12)

where H is a 2Gl×1 matrix and || represents concatenation. Note that in the original GAT,
the trainable linear-transformation matrix Ak serves both in the attention weight computation
(Eq. 3.12) and the feature aggregation (Eq. 3.8). However, we posit that computing
attention weights by Eq. 3.10 on the raw features extracted by the CNN instead of the
linear-transformed features, free Ak from serving two purposes simultaneously, and therefore
improves the model performance (as shown in Sec. 3.5.4).

3.5.2 Properties of MAGAT

Given our task formulation, the topology of the communication graph Gt changes with time.
Other robots can enter and leave the communication range of the robot at any time, leading
to a frequent change of the graph topology. Therefore, it is necessary to discuss whether our
trained MAGAT performs graph convolutions consistently regardless of agent permutation
and time shift.

Permutation Equivariance

MAGAT must satisfy permutation equivariance, which ensures that the trained MAGAT
is resistant to the change of robot orders and always gives the same convolution results
regardless of how we swap the order indices when constructing the dynamic graph.

We first define a permutation π as swapping the indices of robots. The permutation
results in a swapped order of features:

π(Xt) =



(x̃π−1(1)

t )Tr

...

(x̃π−1(N)
t )Tr


 . (3.13)

A permutation matrix Pπ ∈ {0,1}N×N is thus defined to swap graph features directly:

[
PπXt

]
i j
=
[
Xt

]
π−1(i) j

. (3.14)

Lemma 1 Given a permutation π , its corresponding permutation matrix Pπ , and the con-
volution operation AG of GNN defined in Eq. 3.3, the following equation can be derived
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from [110]:
PπAG(Xt ;St) = AG(PπXt ;PπSt) . (3.15)

Proposition 1 (Permutation Equivariance of MAGAT) For any permutation π , its corre-
sponding permutation matrix Pπ and the convolution operation AF of MAGAT defined in Eq.
3.8, the following equation holds:

PπAF(Xt ;St) = AF(PπXt ;PπSt) . (3.16)

Proof of Proposition 1 Recall that Eq. 3.10 implies that attention ei j is only determined by
the node features x̃i

t and x̃ j
t . Thus, using the permutation operation defined in Eq. 3.14, we

can permute the robot indices in the attention matrix as follows:

[
PπE

]
i j
= softmax(eπ−1(i) j) =

[
E
]

π−1(i) j
. (3.17)

This means that the swap of robots will only permute the attention matrix in a similar way
with graph features. Then we can show that in our MAGAT:

AF(PπXt ;PπSt) =
K−1

∑
k=0

(PπE⊙PπSt)
kPπXtAk

=
K−1

∑
k=0

(Pπ(E⊙St))
kPπXtAk

=Pπ

K−1

∑
k=0

(E⊙St)
kXtAk .

(3.18)

The last step uses the permutation equivariance property of GNN from Lemma 1, taking
E⊙St as a whole to replace the St in GNN.

Time Invariance

MAGAT must satisfy the time invariance criterion, in order to generate consistent output
when the same situation appears again in a different step of the simulation.

Proposition 2 (Time Invariance of MAGAT) Given t1 ̸= t2, Xt1 = Xt2 and St1 = St2 , and
the convolution operation AF of MAGAT in Eq. 3.8, the following equation holds:

AF(Xt1;St1) = AF(Xt2 ;St2) . (3.19)

Proof of Proposition 2 This criterion is satisfied intrinsically by our imitation strategy
(Sec. 3.5.3): the decentralized framework is trained to enable the robot to predict consistent
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action U∗it only with respect to input tensor Zi
t and communication network St regardless of

the time instant t.
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Fig. 3.7 Our proposed decentralized framework. (i) illustrates how we process the partial
observations of each robot into input tensor Zi

t , and how we construct the dynamic communi-
cation network. (ii) demonstrates the processing pipeline consisting of a feature extractor,
a graph convolution module, and an Multi-layer Perceptron (MLP). The optional skip con-
nection represents the bottleneck structure discussed in Sec. 3.4.1. (iii) visualizes how our
model gathers features, computes attention weights by a key-query-like attention mechanism
(sandy brown), and selectively aggregates useful features.

3.5.3 Architecture

In this section, we start by introducing the dataset creation (Sec. 3.5.3), and move on to show
how we process the observations (Sec. 3.4.1) and the detailed architecture of our proposed
model (Sec. 3.4.1). Finally, we present the training process, which is enhanced by an online
expert (Sec. 3.5.3).

Dataset Creation

We generate grid worlds of size W ×H and randomly place static obstacles of a given density.
For each grid world, we generate cases where the start positions and goal positions are
not duplicated. We filter duplicates and then call an expert algorithm to compute solutions.
Invalid cases (those who do not have a solution, e.g., robots are trapped by static obstacles)
are removed at this stage. Towards this end, we run a coupled centralized expert algorithm:
Enhanced Conflict-Based Search (ECBS) 1 with optimality bound 1.1 [14]. This expert

1https://github.com/whoenig/libMultiRobotPlanning
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algorithm computes our ‘ground-truth paths’ (the sequence of actions for individual robots)
for a given initial configuration. Our data set comprises 30,000 cases for any given map size
and number of robots. This data is divided into a training set (70%), a validation set (15%),
and a testing set (15%). The three sets do not overlap with each other.

Processing Observations

Limited by the local FOV, each robot perceives an observation and processes it to be Zi
t ∈

R3×Win×Hin , which consists of three channels, representing static obstacles, robots, and goal
respectively. Note that, Win =WFOV +2 and likewise for Hin: when the goal is outside the
FOV, we mark a point on the edge of the goal channel of Zi

t to indicate the direction of the
target (Fig. 3.7). This ensures that each robot has only the direction of the target when the
goal is outside the FOV.

Network Architecture

CNN-based Perception. Compared to our previous work [19], we upgrade the CNN mod-
ule with ResNet blocks as follows: we implement a feature extractor with 3 stacked residual
blocks. Different from the conventional Conv2d-BatchNorm2d-ReLU-MaxPool2d structure,
there is a skip connection in each block joining the features before and after the block together.
This type of residual connection has been widely used in feature extraction work, and it has
been shown to be beneficial to reducing overfitting and improving performance [116].

Graph-based Communication. Each individual robot carries a local copy of the graph
convolution layers and communicates its compressed observation vector x̃i

t with neighboring
robots within its communication radius rCOMM. The resulting fused feature is then passed
to the next stage for selecting the action primitive, leading to a localized decision-making
scheme.

In the graph convolution architecture, we explore several models with two main types
of graph convolution layers: GNN and MAGAT. To better demonstrate the improvements
that MAGAT can make in our task, we compare each MAGAT model with the corresponding
GNN model with the same configuration except the graph convolution layers. These models
are defined in the form of “[Config_Label]-[Type]-[Num_Features]”:

1. Config_Label: can be GNN or MAGAT. It refers to the graph convolution layer used in this
model.

2. Type: “F” refers to normal CNN-MLP-GraphConvLayer
-MLP-Action pipeline, while “B” refers to a bottleneck structure (Fig. 3.7), which con-
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catenates the feature before the graph convolution layers with those processed features
after the graph convolution layers. This bottleneck structure augments the features after
communication with the features extracted by the robot itself.

3. Num_features: the dimensions of features that engage in communication. In this work,
we experiment with 128, 64, 32, and 16.

To demonstrate the information reduction in communication, we constrain the dimensions
of extracted features from the CNN module to be 128, and further reduce the dimensionality
using an additional MLP layer. The number of input observations F and output observations
G are the same and set to Num_features. This effectively reduces the dimensions of features
that can be shared by the communication network.

In this work, we focus on L = 1 (one layer of graph convolution) and K = 2 (one-
hop communication). Each robot is required to send all its extracted features and receive
information from neighboring robots only once. With the help of our mechanism, the robot
is able to direct its attention toward specific communication links, based on the relative
importance of the information contained in the messages it is receiving from neighboring
robots.

Action Policy. In the last stage, an MLP followed by a softmax function is used to decode
the aggregated features resulting from the communication process into the five motion
primitives (up, down, left, right, and idle). During the simulation, the action ũi

t taken by
robot i is predicted by a stochastic action policy based on the probability distribution over
motion primitives (weighted sampling). We deployed collision shielding in [19] to ensure
collision-free paths. Compared to our previous framework [19], we change the action policy
used in the simulations of the validation process from a softmax function (deterministic
policy) to weighted sampling (stochastic policy), as using a consistent action policy for
validation and test can better indicate which models to select after training.

Training and Online Expert

After training cases are generated and the optimal trajectory of each robot is computed by
a centralized controller, the model is trained by the trajectory data, such that it imitates
the actions and behaviors of the “expert”. We train the model with the pair collection
T = {(Zi

t ,U∗it )}i=1,...,Ncase,t=1,...,T i
max

, where Zi
t is the processed observation (Sec. 3.5.3) at

time t of case i, while U∗it is the expert action at this situation consisting of ũ∗it taken by robot
i = 1, ...,Nrobot . Note that Ncase and T i

max are the total number of cases and the total steps of
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case i, respectively. Thus, our training does not involve time sequence information, requiring
the model to learn “instant” reactions based on observations at any given time t.

To further enhance model learning, we deploy the Online Expert proposed in our previous
work [19] right after every validation process: We select nOE cases randomly from the
training set and run the simulation. New solutions are generated for the failed cases using the
ECBS solver.

These new solutions become new cases and are appended to the training set: Tnew =

T ∪{(Zi
t ,U∗it )}i=1,...,nOE ,t=1,...,T i

max
.

Therefore, our training objective is to obtain a classifier F with trainable parameters θ

given the training dataset T that is gradually augmented. L is the loss function.

θ̂ = argmin
θ

∑
(Zi

t ,U∗it )∈T
L (U∗t ,F (Zi

t ,Gt(Zi
t))) . (3.20)

Recall that Gt is the status of the communication network at time t depending on current
situation Zi

t .

3.5.4 Experiments

In this section, we firstly provide details of the experimental setup (Sec. 3.5.4). We then
move on to introduce the map sets we use in the experiments (Sec. 3.5.4) and the baselines
against which we compare our proposed methods (Sec. 3.5.4). Note that the baseline includes
the prior algorithms (HCA and Replanning) and baseline neural network model. Finally, we
present and discuss our experimental results (Sec. 3.5.4). For fair comparison, we used the
same metrics as in 3.4.2.

Experimental Setup

Our simulations were conducted using the Cambridge High-Performance Computing Wilkes2-
GPU NVIDIA P100 cluster with Intel(R) Xeon(R) CPU E5-2650 v4 (2.20GHz). We used
the Adam optimizer with momentum 0.9. The learning rate γ was scheduled to decay from
10−3 to 10−6 within 300 epochs, using cosine annealing. We set the batch size to 64, and L2
regularization to 10−5. The online expert was deployed every C = 4 epochs on nOE = 500
randomly selected cases from the training set. Validation was carried out every 4 epochs with
1000 cases that were exclusive of the training/test set.
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Table 3.1 Two major map sets with 10% obstacle density for generalization test. Training
scenario 20×20 with 10 robots has 30000 cases, partitioned into 70% training set, 15%
validation set, and 15% test set. Other scenarios have 1000 testing cases for the generalization
test.

Same Robot Density Set Increasing Robot Density Set

Map (nrobot) Robot Density Map (nrobot) Robot Density

20x20 (10) 0.025 50x50 (10) 0.004
28x28 (20) 0.025 50x50 (20) 0.008
35x35 (30) 0.025 50x50 (30) 0.012
40x40 (40) 0.025 50x50 (40) 0.016
45x45 (50) 0.025 50x50 (50) 0.02
50x50 (60) 0.025 50x50 (60) 0.024

65x65 (100) 0.025 50x50 (100) 0.04

Table 3.2 Large Scale Map Set. The expert computation time in the 3rd column is the
time cost of using the ECBS solver with an optimality bound 5 to solve the case on a
high-performance CPU core. The computation time (successful cases) of our proposed
model MAGAT-B-32-P4 in the same machine is reported in the 4th column. Statistics in bold
highlight the significant reduction in the computation time of our model.

Map (nrobot) ρrobot Expert time cost (s) Time cost (s) (std.)

200x200 (500) 0.0125 ~3,000 - 4,000 510.1 (135.0)
200x200 (1000) 0.025 ~33,000. - 35,000 1286.8 (368.0)
100x100 (500) 0.05 ~1,100 - 1,200 279.92 (83.0)
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Scenarios

To better compare the generalization capability, we prepare training/valid/test datasets ac-
cording to Table 3.1. We train and validate our models with 20×20 maps and 10 robots, and
then test on all scenarios shown in Table 3.1.

In practice, robot density (ρrobot), simply computed by nrobot
W×H , is an effective metric

measuring how crowded a scenario is. Note that the obstacle densities in all scenarios in
Table 3.1, 3.2 are 10%. We test model generalization ability with two sets of maps. One
is “Same Robot Density Set”, with all scenarios having the same robot density. Using this
map set, we are able to test the generalization of the models on the maps with similar robot
density to the training sets. On the other hand, “Increasing Robot Density Set” is a set with
increasing robot density, but the map size remains the same. With this map set, we gradually
increase the crowdedness, leading to our evaluation of how our model can perform under
sparser or more congested environments.

Additionally, we prepare a super-large-scale test set, which has over 500 robots and a
very large map size (Table 3.2). There are 50 test cases in each large-scale scenario.

Baselines

We introduce two models and two non-learning based methods as our baselines.

1. GNN_baseline-F-128: The GNN framework we proposed in previous work [19]. Since
then, we have upgraded the CNN module for feature extraction and the action policy in
the validation process (details in Sec. 3.5.3). Therefore, it represents a good baseline
demonstrating the basic improvement that we make to the framework.

2. GAT-F-128: The framework is the same as our MAGAT, but instead of our attention
mechanism (Eq. 3.10), the mechanism of GAT [107] (introduced in Eq. 3.12) is used.

3. HCA: A simple domain abstraction with a heuristic to improve the performance of central-
ized multi-robot path planning [10].

4. Replan: Global Re-planning (Replan) is an interaction-aware path planning method [2].
If the robot encounters a conflict, the A* method is used to find an alternative path from
the current cell to the goal cell, considering all other robots as obstacles.
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Fig. 3.8 The success rate (α) and flowtime increase (δFT) against the change of environ-
ment setup. Here we present the results of GNN models on the left two columns and
MAGAT models on the right; we include HCA and Replan as baselines. The first row is
for “Same Robot Density Set”, while the second is for “Increasing Robot Density Set”.
These figures show the effects of reducing bandwidth or using bottleneck structure. In the
legend ([Graph_Layer_Name]-[Type]-[Num_Features]), Graph_Layeer_Name are GNN
or MAGAT, while Type - “F” and solid line refer to normal CNN-MLP-GNN/MAGAT-MLP-
Action pipeline, and “B” and dashed line refer to a bottleneck structure. [Num_Features]
includes 128 (red), 64 (blue), 32 (black), and 16 (purple).
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Results

All the results shown in this section are obtained by training on a dataset composed of 20×20
maps with 10 robots (21000 training cases).

Comparison with baselines. As shown in Fig. 3.8, our GNN-F-128 and MAGAT-F-128
both outperform their baseline models, GNN_baseline-F-128 and GAT-F-128 respectively.
For instance, at “Same Robot Density Set”, GNN-F-128 (solid red line) performs slightly
better than its baseline GNN_baseline-F-128 (solid yellow line) when the map size is lower
than 40. The gap becomes significant (> 5% in success rate) as we scale the testing set
beyond 40×40 with 40 robots. Similar results are observed at “Increasing Robot Density
Set”, and these demonstrate that our upgrades on the CNN module and the action policy are
useful. Under both map sets, MAGAT-F-128 (solid red line) outperforms GAT-F-128 (solid
yellow line) in both success rate and flowtime increase significantly, whose performance
is only close to that of MAGAT-F-16 (solid purple line). The underlying reasons for this are
discussed in Sec. 3.5.1. HCA (light brown) performs quite well with a high success rate
and small flowtime increase when cases are simple, but its performance suddenly drops
down starting from 40 robots; it cannot find a solution for 100 robots. The success rate
(completeness) of Replan (dark red) is generally low compared with our methods, with a
higher flowtime increase.

Effect of reducing the information shared among robots. We further experiment with
limited communication bandwidth, i.e., limiting the size of the shared features from 128 (red),
64 (blue), 32 (black) to 16 (purple), where the full communication bandwidth is set as 128.
In Fig. 3.8, we show the success rate and flowtime increase of GNN and MAGAT family,
respectively. With both GNN and MAGAT configurations, the performance will decrease
as we reduce the size of shared features. E.g., as the shared features decrease from 128, 64,
32 to 16, the success rate of MAGAT models at 65×65 with 100 robots drop from 91%,
85%, 81% to 78% respectively. Yet, the drop of MAGAT is less pronounced than with GNN,
where the performance of GNN models decreases from 83%, 78%, 82% to 77% respectively,
as the shared features reduce from 128, 64, 32 to 16.

Generalization under different robot densities. Recall that the “Same Robot Density
Set” has the same robot density for all its cases. Generalizability is an essential factor to
evaluate a machine learning model in real-world applications. The mobility of multi-robot
systems naturally leads to time-varying communication topologies. Thus, “Increasing Robot
Density Set” allows us to better evaluate the model’s flexibility from sparse to more crowded
situations. As shown in the Fig. 3.8e, Fig. 3.8f, Fig. 3.8g and Fig. 3.8h, most MAGAT models
can maintain the success rate above 92% and the flowtime increase lower than 10% even as
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we increase robot number from 10 to 60 on the same map size (50×50), which demonstrates
their good adaptation to different crowdedness.

Effect of bottleneck architecture. Fig. 3.8 also explores the performance of the skip-
connected bottleneck structure with GNN and MAGAT. In real-world applications, the com-
munication bandwidth is usually limited which yields the need to have fewer features being
shared but performance maintained. For fair comparisons, models are compared to their “base-
line” models, for example, comparing GNN-F-64 (solid blue line) and GNN-B-64 (dashed
blue line) because they have the same size of features shared across the communication
network. With the bottleneck setting, GNN-B-64 outperforms GNN-F-64 by around 8% in
success rate under the scenario of 65×65 maps with 100 robots (Fig. 3.8a). In Fig. 3.8c,
even though the performance of MAGAT drops dramatically from 90% (MAGAT-F-128, solid
red line) to around 78% (MAGAT-F-16, solid purple line) in success rate at 65×65 maps
with 100 robots, the bottleneck structure retains its performance such that it is comparable
with MAGAT-F-128. This gives the insight that the good generalization ability of MAGAT
rests on a sufficient size of the shared features, but it can be preserved by introducing the
bottleneck structure. We can conclude that though GNN models do not significantly benefit
from a bottleneck structure, this structure helps MAGAT models maintain generalization
performance significantly.

Effect of multi-head attention. We also evaluate MAGAT-F-32 (solid blue line) and
MAGAT-B-32 (dashed blue line) on their multi-head versions MAGAT-F-32-P4 (solid green line)
and MAGAT-B-32-P4 (dashed green line). Note that P = 4 parallel MAGAT convolution lay-
ers allow larger model capacities, and individual heads can learn to focus on different
representation subspaces of the node features [114]. For these two models, as there are
P×F = 4× 32 = 128 features being shared, the total bandwidth (or the size of shared
features) is the same as MAGAT-F-128, leading to a fair comparison. In Fig. 3.8c, Fig. 3.8d,
Fig. 3.8g and Fig. 3.8h, the multi-head version demonstrates better performance across all
the tests regardless of the robot density and map size. Both multi-head models achieve 95%
success rate in 50×50, 100 robots, and their results for flowtime increase under “Same Robot
Density Set” remain at low values (δFT < 0.065) even with increasing robot numbers.

Super-large-scale generalization. We also test GNN and MAGAT with the large-
scale map set, which consists of harder cases that set high requirements for such a model
that is trained only on 20×20 with 10 robots. Table 3.2 shows that, with such a large
amount of robots (1000 robots), traditional expert algorithms are not capable of solving
the problem within an acceptable time. Given the decentralized nature of our framework,
the trained models are efficient in the sense that their computation is distributed among the
robots, demanding only communication exchanges with neighboring robots. Even though
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Fig. 3.9 Generalization test on Large Scale Map Set. a) shows the success rate. b) shows
the percentage of successful robots (prg =

nrobots reachgoal
nrobot

), indicating that those model with low
success rates can still successfully navigated most of the robots to their goals.

MAGAT-B-32-P4 is only trained by the expert solutions of 20×20 with 10 robots, it can
obtain a success rate above 80% at 200× 200 map with 1000 robots, with only 1

30 of the
computation time taken by the centralized coupled expert (Table 3.2). Fig. 3.9b demonstrated
that in all cases, at least 98.6% robots have already reached their goals. At 100×100 map
with 500 robots, MAGAT models successfully achieve at least prg = 99.6% robot navigation,
but for GNN this number drops down to 98.6%.

Summary. In conclusion, we note that MAGAT has very promising potential in learning
a generalizable and flexible dynamic decision-making policy. In general, even in some cases
where MAGAT and GNN have a similar success rate, MAGAT reduces the flowtime further,
leading to more robots achieving their goals and more optimal paths. MAGAT also shows
its ability to learn more general knowledge about path finding, which is supported by the
fact that it can achieve high performance in large-scale and challenging cases even though
it is trained in very simple cases. We also demonstrate that the multi-head attention of
MAGAT can improve performance. The trained model achieves a 47% improvement over the
benchmark success rate in the 200×200 map with 1000 robots, where the testing instances
are ×100 larger than the training instances.

3.6 Conclusion and Future Work

We considered the problem of collision-free navigation in multi-robot systems where the
robots are restricted in observation and communication range, and possess no global reference
frame for localization. We proposed a combined architecture, composed of a convolutional
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neural network that extracts adequate features from local observations, and a graph neural
network that communicates these features among robots. The key idea behind our approach
is that we jointly trained these two components, enabling the system to best determine what
information is relevant for the team of robots as a whole. This approach was complemented
by a data aggregation strategy that facilitated the learning process.

This work is the first to apply GNNs to the problem of multi-robot path planning. Our
results show that we are very close to achieving the same performance as first-principles-
based methods; in particular, we showed our model’s capability to generalize to previously
unseen cases involving much larger robot teams. Of particular importance is the fact that
we can already scale our system to sizes that are intractable for coupled centralized solvers,
while remaining computationally feasible through our decentralized approach.

Then, we incorporate an attention mechanism to enable the GNN to selectively aggregate
message features. We prove theoretically and empirically that MAGAT is capable of dealing
with dynamic communication graphs, and that it demonstrates good generalizability on
unseen environment settings and strong scalability on super large-scale cases while we train
the model with only very simple cases. We also show that the skip-connected bottleneck
structure is a way to maintain model performance while reducing the information being
shared. This feature enables MAGAT to achieve good performance while transmitting less
data, leading to significant value in practice and applications. The results demonstrate that
the multi-head attention is beneficial to MAGAT models, where individual heads can learn to
focus on different representation subspaces of the node features [114].

There are some assumptions and corresponding limitations in the current implementation,
which will be improved in future work. Firstly, we assumed that communication between
robots was achieved instantly without delay. Time-delayed aggregation GNNs [18] can be
introduced to extend our framework to handle time-delayed scenarios. Secondly, inter-robot
live-locks and position swaps remain a challenge impeding 100% success. One potential
solution to this is to deploy a policy gradient to add a penalty on the action causing such
scenarios.



Chapter 4

Real World Deployment of Data-driven
Policies for Multi-Robot Motion Planning

4.1 Introduction

Significant effort has been invested into finding analytical solutions to multi-robot problems,
balancing optimality, completeness, and computational efficiency [11–14]. Data-driven
approaches can find near-optimal solutions to NP-hard problems, enabling fast on-line plan-
ning and coordination, as typically required in robotics. This has thus provided alternatives
for the aforementioned challenges [15, 39, 40, 117]. GNNs, in particular, demonstrate
remarkable performance and generalize well to large-scale robotic teams for various tasks
such as flocking, navigation, and control [18, 19, 37, 118, 117, 119]. In such multi-robot
systems, GNNs learn inter-robot communication strategies using latent messages. Individual
robots aggregate these messages from their neighbors to overcome inherently local (partial)
knowledge and build a more complete understanding of the world they are operating in.

While GNN-based policies are typically trained in a centralized manner in simulation,
and therefore assume synchronous communication, resulting policies can be executed either
in a centralized or decentralized mode. Evaluating a GNN in the centralized mode typically
requires execution on a single machine decoupled from the robots that are acting according
to the policy [19, 42, 117]. This (i) introduces a single point of failure, (ii) requires all
robots to maintain constant network connectivity, and (iii) introduces scalability issues due
to computational complexity O(N2) where N is the number of robots. In contrast, in the
decentralized mode, each robot is responsible for making its own decisions. With fully
decentralized evaluation, (i) there is no single point of failure, resulting in higher fault
tolerance, (ii) agents do not need to remain in network range of a router that orchestrates
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the evaluation, and (iii) computation is parallelized across N robots, decoupling the time
complexity from the number of robots.

Even though GNNs have an inherently decentralizable mathematical formulation, pre-
vious work on GNN-based multi-robot policies was conducted exclusively in centralized
simulations using synchronous communication [19, 118, 18]. For practical reasons, decentral-
ized execution is often unavoidable in the real-world, but it is currently unknown whether this
contributes to a shift of domains, and how resulting policies are affected. Multi-robot GNNs
require inter-robot communication, but real-world wireless communication is noisy, and
messages can be lost or delayed, leading to significant performance loss—this is exemplified
in prior work that demonstrates the need for appropriate models to overcome these challenges
[120–123]. Further compounding these issues, decentralized policies are typically executed
asynchronously, resulting in system states not previously encountered during training.

Extending from our ROS2-based decentralized communication system, we are interested
in navigating in an unknown environment to find a target under the guidance of a static
visual sensor network. Prior work has provided effective solutions employing low-cost
wireless sensors to guide robotic navigation [124, 125]. These studies demonstrate that at a
small additional cost—i.e., the deployment of cheap static sensors with local communication
capabilities—the requirements for the robot’s capabilities can be significantly reduced while
simultaneously improving its navigation efficiency.

4.2 Related Work

In this section, we first review related multi-robot systems testbeds and frameworks. Our
survey includes centralized frameworks as well as decentralized methods that either use
machine-learning-based approaches or communication. We emphasize that none of these
methods combine learning-based methods and communication. Lastly, we review the related
work on robotic communication frameworks and standards to evaluate an appropriate choice
for our use case.

Multi-Robot Systems Testbeds Remotely accessible mobile and wireless sensor testbeds
are in high demand both in research and industry. Mobile Emulab [126] and CrazySwarm [127]
were developed as centrally controlled real-world multi-robot research platforms. As decen-
tralized platforms gained popularity, roboticists developed a variety of systems for small-
footprint robot swarms, including Robotarium [128], Micro-UAV [129] or IRIS [130] to large
scale platforms such as HoTDeC [131]. These platforms provide testbeds for decentralized
control and communication. However, none of these systems utilize machine-learning-based
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policies, and only a few learning-based methods have demonstrated real-world experi-
ments [15]. Although work at the intersection of machine-learning and multi-robot control
shows remarkable performance [15, 117, 19, 132, 2, 133], little work has been done to show
how to make these methods practical (i.e., real-world). Of particular interest is how explicit
inter-robot communication [18, 19, 134] plays a role in accumulating information from other
robots. A recent study investigates the robustness of decentralized inference of binary classi-
fier GNNs in wireless communication systems [135], but their work is limited to simulation
and does not focus on communication contention and latency. These learning-based multi-
agent platforms and multi-robot frameworks are either restricted to simulation [117, 19, 2],
rely on centralized evaluation [15, 42], or are only evaluated in simulated experiments for
decentralized wireless communication. There is a gap between simulation-based testbeds and
testbeds that facilitate the deployment of policies derived from machine-learning methods to
the real-world.

Robotic Communications Frameworks Communications between agents and controllers
is a ubiquitous requirement on experimental robotics platforms, either for experimental
control or operational messaging. For these functions, the IEEE 802.11 (commonly WiFi) and
802.15 protocol suites are commonly used [136], with various communications frameworks
are overlaid on top of these low-level technologies (e.g. RTPS, MQTT [130] or standard
IP [131]). Whatever the specific technology, the underlying protocol suites and the nature
of wireless communication set fundamental limitations [137] on available messaging rates
when multiple agents are communicating in a decentralized manner. Multiple strategies
exist that attempt to maximize protocol performance under specific conditions [138, 139],
including dynamic centralization using homogeneous agents [140]. Despite these strategies,
the performance of these systems at scale remain poorly tested in real-world robotics systems,
which often entail unexpected overheads [141].

Sensor Network-Guided Navigation Most early approaches for sensor network-guided
robot navigation assume that either the robot [124, 142] or the sensors [143, 144] are fully
positioned in an absolute reference frame, so that an explicit environment map can be created.
This information is leveraged to plan the shortest multi-hop route from sensor to sensor, even-
tually arriving at the target. Shah et al [145] propose a vision-based decentralized controller
to aggregate a swarm of agents without relying on inter-agent communication. Methods
such as Gaussian Belief Propagation [146] or Factor Graphs [147] use probabilistic models
to estimate information such as the position of nodes in a graph using local information
iteratively in a computationally efficient manner, which are typically used in robot mapping.
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These methods require human prior knowledge to design and tune the model and to extract
relevant local features. In contrast, our method is completely data-driven and trained end-to-
end, using visual images to directly navigate the robot towards its destination in an unknown
environment. Our method promises to scale to any complex real-world scene, where feature
extraction for the use of previously mentioned methods can be challenging. Deep Learning
(DL)-based methods are becoming more attractive, but approaches such as [148], still require
anchor-nodes with access to global positioning information. To the best of our knowledge,
there is no related work that uses first-person-view visual observations.

Visual Navigation Learning efficient features from the raw image data is challenging.
Hence, auxiliary tasks [149, 150] are used to increase the quality of extracted feature.
Curriculum learning [150] is often used for overcoming low sample efficiency and reward
sparsity. In contrast to prior work, we consider a novel problem formulation in which the
navigating robot is guided by a network of visual sensor that are communicating with the
robot and amongst each other. Instead of introducing auxiliary tasks or learning curricula, we
use a joint training scheme to directly learn what information needs to be communicated and
how to aggregate the communicated information to ensure efficient navigation in unknown
environments.

GNNs for sensor networks and mobile robot systems. As an effective method to aggre-
gate and learn from relational, non-Euclidean data, GNNs have achieved promising results
in numerous domains [151]. In [19, 39], a fully decentralized local motion coordination
framework is proposed to solve the multi-robot path-planning problem. In [37], GNNs are
used to elicit adversarial communications for self-interested objectives. However, these
methods have not considered first-person-view observations. VGAI [152] uses first-person
view visual information to imitate a flocking policy in a swarm of drones using GNNs. That
problem is different, though, since it is sufficient to extract proximity information from the
local robot neighborhood for a reasonable flocking policy. On the other hand, for target
navigation, information about the direction to the target has to propagate through the network
and reach the navigating robot such that it moves along the shortest collision-free path.
Furthermore, no real-world experiments were conducted.

Imitation Learning for Navigation. In its early phases, IL was addressed as a standard
supervised learning problem. This approach assumes that data are i.i.d, which is not true
as a learned policy influences the future test inputs on which it will be evaluated. This can
be alleviated by training over multiple rounds of interaction [153]. DAgger is able to learn
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a stationary deterministic policy guaranteed to perform well under its induced distribution
of states improves by using reduction-based approaches that enable using supervised learn-
ing [112]. AggreVate improves further on this by iteratively estimating a cost-to-go function
[112]. Traditional approaches for navigation in unknown environments usually utilize the
greedy search with Euclidean heuristic or Manhattan heuristic, which are in-efficient in
detecting and escaping local minima [66]. Recent learning-based approaches imitate oracles
such as MPC to offer better sample efficiency [154]. In this paper, we employ a visual sensor
network to implicitly learn the cost-to-go by predicting the direction corresponding to the
shortest path to the target.

Sim-to-Real Transfer and Real-World GNN Implementation. The gap between the
simulator and the real world, where dynamics and vision differ, makes it difficult to transfer
learned policy. RCANs [155] are proposed to close the gap without using real-world data.
Church et al. [156] use image-to-image translation [157] to minimize the difference between
real and simulated tactile images. VR-Goggles [158] uses a real-to-sim approach to sim-to-
real transfer, where real-world images are first transformed into simulated images, based on a
modified CycleGAN [159], so that the policy trained in simulation can be directly deployed.
In this paper, we leverage GNNs for robot navigation tasks. Recent work [42] builds the first
real-world deployment of GNN-based policies on a decentralized multi-robot platform, but
relies on global positioning and a relatively simple state space.

4.3 ROS2-based System for Deploying Decentralized GNN-
based Policies

In this section, we developed a framework that facilitates the decentralized execution of
GNN-based multi-robot policies. In this work, we initially approach the task in a continuous
domain, aligning with the subsequent definition of time presented in the follow-up content.
We present the results of a suite of real-robot experiments (see Fig. 4.4) to demonstrate
the consequences of this decentralized execution. To that end, we introduce a taxonomy of
different evaluation modes and networking configurations. Specifically, we contribute:

1. A ROS2-based software and networking framework for GNNs and other message-
passing algorithms to facilitate operation in both simulation and the real-world, and to
permit GNN-based policy execution in either a centralized or decentralized manner.
We provide the source code online. 1

1github.com/proroklab/ros2_multi_agent_passage

https://github.com/proroklab/ros2_multi_agent_passage
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Fig. 4.1 The robots form a graph based on their separation and communication range RCOM.
They leverage communication via latent messages mi,t generated from local observations zi,t

propagated over graph edges (wireless Adhoc communication links) to overcome the partial
observability of the workspace. To solve this task, we utilize and deploy GNN-based policies
that aggregate messages of robots within the local neighborhood N t,i and compute a local
action.

2. An ablation study on several forms of execution to quantify performance shifts between
centralized execution and three forms of decentralized policy execution, (i) offboard
(non-local), (ii) onboard over routing infrastructure, and (iii) onboard with Adhoc
networking.

4.3.1 Preliminaries

In this section, we review the formalization of GNNs as well as the basic functionalities of
Robot Operating System (ROS), the software library that we build on.

Graph Neural Networks

A multi-robot system can be defined as graph G = ⟨V ,E ⟩, where each robot is represented as
a node in the node set V = {1, . . . ,n}. The inter-robot relationships are represented as edge
set E = V ×V with edge features et, ji ∈ E at each time step t. If robot j is in communication
range RCOM of robot i, it is in robot i’s neighborhood j ∈N t,i and robot i can emit a message
mt,i that is broadcast to its neighbors.

Neural message passing [105] updates the hidden state ht+1,i
k of each robot i for each

neural network layer k using the message function M and the vertex update function U
according to

ht+1,i
k =Uθ

k

(
ht,i

k−1,∑ j∈N t,i Mθ
k

(
ht,i

k−1,h
t, j
k−1,e

t, ji
))

, (4.1)
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where U and M are functions with learnable parameters θ . The decentralized evaluation
is explained in Fig. 4.1. Although centralized formulations also exist, according to (4.1),
evaluating a GNN is a fully decentralizable operation depending only on received messages
and local information.

ROS and ROS2

ROS is a set of open-source libraries for messaging, device abstraction, and hardware control
[160]. ROS generates a peer-to-peer graph of processes (Nodes), communicating over edges
(Topics). ROS requires a master node to connect to all other nodes, preventing its use in fully
decentralized systems. ROS2 is a redesign of ROS that solves the master node issue, enabling
completely decentralized systems [161]. Many popular frameworks have not migrated from
ROS to ROS2, preventing their use in fully decentralized multirobot systems. Our software
infrastructure leverages ROS2 to create fully independent agents.

4.3.2 Approach

Our framework can be separated into software and networking infrastructure. In this section,
we first explain our software framework. Our framework is capable of running policies in a
fully decentralized asynchronous Adhoc mode, but for the purpose of an experimental abla-
tion analysis, we identify a range of sub-categories with different degrees of decentralization.

Specifically, we introduce the four modes: Centralized (fully centralized evaluation),
Offboard (asynchronous evaluation on a central computer), Onboard o/Infra (decentral-
ization using existing centralized networking infrastructure) and Onboard o/Adhoc (full
decentralization using Adhoc communication networks), as visualized in Fig. 4.3. We de-
scribe the networking considerations that allow ROS2 to be used for decentralized Adhoc
communication between agents.

ROS2 Infrastructure

Our multi-agent ROS2 infrastructure (see Fig. 4.2) allows us to run both simulated and real-
world agents concurrently, over multiple episodes, in centralized or decentralized mode, and
without human intervention (facilitated through automated resets). An episode is one instance
of one experimental trial and a reset is a scenario-specific resetting operation, e.g., requiring
robots to move to initial positions. These two actions are repeated for a set number of
iterations and different initial states. Our infrastructure follows the Reinforcement Learning
(RL) paradigm of delineating the agent from the world.
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Fig. 4.2 Our ROS2 architecture is composed of the world and agents. There is one agent
i = 1 in the centralized case, and multiple i ∈ {1 . . .n} in the decentralized case. The agents
receive sensor information ẑt from either the motion capture system, GPS, or simulator. The
aggregator combines sensor information with messages mt,i to produce observation zt,i and
neighborhood messages mt, j; j ∈N t,i, for the policy π i

θ
to generate action at,i. The control

node converts the action into velocity commands vt,i. In simulation mode, control drives
the simulator instead of the robot wheel motors. The state server orchestrates termination,
resets, and operational mode syncs during sequential episodes. This system allows us to run
agents in simulation and the real-world concurrently, over multiple episodes, and without
any human intervention.

Agent Each agent receives raw sensor data and emits motor commands. The agent is
composed of the cache/filter, policy, and control nodes. The cache/filter node uses sensor
information ẑt,i to determine neighboring agents j ∈N t,i within the specified communication
radius. It caches neighborhood messages mt, j and sensor information zt,i over ∆t for the
policy. The policy node wraps a trained policy π i

θ
. It receives the observation zt,i and

messages mt, j and emits a message mt,i and action at,i. The action feeds into the control
node, which emits motor commands vt,i.

World The world is everything external to the agent. The world can be either real, sim-
ulated, or a mix of both. In the real-world, an external system like GPS or motion capture
produces state estimates for the agents. In the simulated world, a rigid-body dynamics
simulator receives agent control commands and moves the agents in simulation accordingly.
All sim-to-real abstraction is contained within the world, so the agents are unaware if they
are operating in the real-world or the dynamics simulator.

The state server is a state machine that coordinates asynchronous episode execution
and resets between independent agents. It enables back-to-back episodes and large-scale
experimental data collection. It records agent heartbeats, then broadcasts a global operating
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Fig. 4.3 The framework configurations used in our experiments. The ROS2 infrastructure is
either centralized or decentralized, with varying degrees of decentralization depending on
the network setup. We refer to these four configurations as Centralized, Offboard, Onboard
over Infrastructure, and Onboard over Adhoc. Observations zt,1 . . .zt,n feed into centralized
policy πθ or local policies π1

θ
. . .πn

θ
to produce actions at,1 . . .at,n for agents 1 . . .n. Local

policies consist of a GNN and pass messages mt,1 . . .mt,n to communicate. In the centralized
case, a single policy produces actions for all agents at once in a synchronized manner. For
Offboard, local policies run asynchronously, exchanging messages over localhost. The
PC is removed for Onboard o/Infra, moving inference onto the robot computers. Onboard
o/Adhoc is fully decentralized – the agents forgo the router and communicate directly using
Adhoc networking.

mode and initial conditions. Agents use the global operating mode to determine if they
should reset or execute the policy.

Communications Networks

Our evaluations consider four different configurations, as summarized in Fig. 4.3, which
take the form of variable execution locations (i.e., offboard vs onboard) for policies, and the
networks used for messaging between agents and policy execution points. Centralized and
Offboard run policies on an external computer, with the remaining two Onboard configura-
tions running them on robots’ computers. These varied modes allowed us to separate sources
of error and performance drop during evaluation.

Our framework uses two wireless communications methods over the various config-
urations. Both use 802.11, with the first being an Infrastructure mode network, and the
second being Adhoc mode. We selected 802.11 in preference to other Adhoc capable wireless
standards, such as IEEE 802.15 due to achievable data rates and compatibility with IP-based
networking.
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Infrastructure Mode This mode is characterized by a central access point being respon-
sible for managing the network’s functions. For Centralized and Offboard configurations
only agent actions are sent, which is easily handled by the network. For the Onboard o/Infra
configuration, agents forward messages to one another using this message, with observations
from the agent location system sharing the network. Finally, in the Onboard o/Adhoc config-
uration, it handles only the delivery of agent location observations. The implications of each
of these modes are discussed further in [42].

Adhoc mode We use this network mode only in the Onboard o/Adhoc mode, where it
handles messages between agents. Physically, this network is supported by distinct wireless
transceivers carried with each agent, allowing fully decentralized operation. This network
takes the form of an 802.11n IBSS, which means that no agent has any special priority access
to the wireless medium. Note that this is not a mesh network, as there is no facility for
multi-hop communications.

ROS2 Middleware Communications with agents exclusively use ROS2 provided middle-
ware for message passing, specifically the eProsima Fast-DDS implementation of RTPS. Due
to the fact that we use dynamic agent discovery rather than setting explicit communications
routes, an agent-based firewall is deployed to block RTPS messaging traffic from using the
incorrect network interface.

4.3.3 Network Infrastructure

We investigate the effects of networking, ROS2, and Fast DDS settings on performance. The
evaluation experiment is designed and conducted by our co-author, Jennifer Gielis, which is
not the major contribution of the author of this thesis. Therefore, the author will refer the
reader to read our paper [42] for the details of network infrastructure.

4.3.4 Case Study: Navigation Through A Narrow Passage

We showcase the capabilities of our framework in a case-study requiring tight coordination
between multiple mobile robots. We consider a team of n = 5 agents that start in a cross-
shaped formation and need to move through a narrow passage to reconfigure on the other
side of the wall, as seen in Fig. 4.4. The robots are required to reach their goal positions
through collision-free trajectories. Each robot only has knowledge of its own position and
goal (i.e., does not directly observe the other robots), and is trained to leverage a GNN-based
communication strategy to share this local information with neighbors to find the fastest
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Fig. 4.4 We deploy a set of five DJI RoboMaster robots in a real-world setup using GNNs
and Adhoc communication. The robots navigate through a narrow passageway to reconfigure
on the other side, as quickly as possible.

collision-free trajectory to its respective goal. An image of this setup can be seen in Fig. 4.4
and a video demonstration is available online2. We briefly explain the training and provide
the code with implementation details online.3

Environment At each time step t, each agent i has a position pt,i, a desired velocity vi,t
d ,

a measured velocity vi,t
m , and a desired acceleration ai,t

d . We approximate each agent to
be circular and implement a simple holonomic motion model that integrates acceleration-
constrained velocities into positions. Collisions between agents and the wall result in an
immediate stop of the agent. Note that the desired velocity is dictated by the control policy
and the measured velocity is current true velocity of the agent. Each agent is assigned a goal
position pi

g. An episode ends if all agents have reached their goal or after the episode times
out.

Reward We train agents using RL. The objective of each agent is to reach its goal position
pi

g as quickly as possible while avoiding collisions. We use a shaped reward that guides
individual agents to their respective goal positions as quickly as possible while penalizing
collisions.

Observation and Action The observation zi,t consists of locally available information,
specifically the absolute position pi,t , the relative goal position pi

g−pi,t , as well as a predicted

2youtube.com/watch?v=COh-WLn4iO4
3github.com/proroklab/rl_multi_agent_passage

https://youtube.com/watch?v=COh-WLn4iO4
https://github.com/proroklab/rl_multi_agent_passage
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position pt,i +vi,t . The desired velocity is the policy’s action output vi,t
d = ai,t . We constrain

acceleration and velocity to amax = 1m/s2 and vmax = 1.5m/s.

Model As the model for the policy π i
θ

we use the GNN introduced in Sec. 4.3.1. The
number of layers is constrained by our communication framework. Since more layers
result in multiple rounds of communication exchanges at the same time step, we set k = 1.
Each message is an encoding of the observation so that mt,i = ht,i

0 = θENC(zt,i). We define
our message function and vertex update function as Mθ

1 (h
t,i
0 ,ht, j

0 , ·) = θGNN(ht,i
0 −ht, j

0 ) and
Uθ

1 (·,x) = θACT(x). Furthermore, we include self-loops and thus consider agent i as part
of its own neighborhood so that N t,i = N t,i∪{i}. The output of the GNN is the desired
velocity vt,i

d = at,i = ht,i
1 . θENC, θGNN and θACT are learnable Multilayer Perceptrons (MLPs).

We use the same approach as described in [37] to train our model using PPO with local
rewards for each agent.

Experimental Setup In total, we run a series of six different real-world experiments for the
four modes (Fig. 4.3) to demonstrate the capabilities and performance of our framework and
two additional experiments to demonstrate the robustness of our policy against changes to
the communication radius in the real-world. In addition to using a set communication radius
of RCOM = 2m, we (i) run the policy in a fully connected communication topology, and (ii)
run the policy in a noisy communication topology by modeling the communication range
as a Gaussian with a mean of RCOM = 2 m and a standard deviation of 0.5 m (the policy is
trained with RCOM = 2 m).

To collect a statistically significant amount of data, we generate E = 16 episodes, each
with a different set of random start and goal positions, and repeat each episode for each
experiment K = 12 times, resulting in K ·E episodes in the training environment (simulation)
and on real robots. We use customized DJI RoboMaster robots equipped with Raspberry
Pi’s that locally run policies. The robots are provided with state information as explained in
Sec. 4.3.2.

Results
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Table 4.1 Overview of performance metrics for all case study experiments.

simulation Centralized Offboard Onboard o/Infra Onboard o/Adhoc
Onboard o/Adhoc

RCOM = ∞

Onboard o/Adhoc
Noise

Success Rate 95.8% 90.1% 85.9% 59.4% 70.3% 66.7% 62.5%
Median Makespan 6.3 s 9.1 s 9.1 s 9.8 s 9.9 s 9.6 s 10.7 s

We use two metrics to evaluate the performance of our model in simulation and real-world.
The success rate is the fraction of collision-free episodes for which all robots reached their
goal. The makespan is the time it takes for the last agent to reach its goal. For both metrics,
episodes with wall or inter-agent collisions are excluded. Inter-agent collisions are defined
as two agents approaching each other closer than 0.32 m. We compare it to a simulation
baseline, for which the policy is evaluated during training conditions. We show distributions
of makespans and positions in Fig. 4.5 and show quantitative results in Tab. 4.1.

The Centralized case reflects the performance gap caused by dynamic constraints that are
not considered in simulation. Since the GNN is evaluated synchronously, communication is
not affected by real-world effects. The makespan is about 1.5 times worse and the success
rate 5.7 percentage points (pp) worse than in simulation.

The Offboard mode evaluates the GNN asynchronously across different processes on
the same physical computer. Compared to the Centralized mode, it features asynchronous
evaluation but little to no inter-process communication delays, resulting in slightly worse
performance of 4.2 pp and worse median makespan of 0.2s wrt the Centralized mode.

The Onboard o/Infra mode moves the decentralized GNN from a central computer to
the on-board computers of each individual robot and therefore adds communication delays
caused by wireless routing and contention. We notice a decrease in performance of 26.5
pp in terms of success, and a deterioration of 1.0 s of median makespan w.r.t. the Offboard
mode. Onboard o/Adhoc mode improves the performance by 10.9 pp, with a similar median
makespan. This can be attributed to less contention.

Setting RCOM = ∞ results in an identical median makespan and a slight decrease in
performance of 3.6 pp. This decrease is expected due to out-of-distribution neighborhoods
that never occur during training (while the agents are typically fully connected in the start
and the beginning of each episode, they are not when moving through the passage). When
adding noise to the communication range, the success rate drops by another 4.2 pp (or 7.8 pp
wrt the Onboard o/Infra mode) and 0.9 s median makespan.

The second and third row in Fig. 4.5 visualize distributions over positions. The second
row shows that the distribution of absolute positions over all experiments are consistent, even
when comparing to the centralized simulation. In the third row, we compare the distribution
of distance to the origin (or the passage) dorigin over minimum distance between agents dmin.
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While the simulation and real distributions are overlapping in the Centralized and Offboard
mode, there is a noticeable discrepancy in all Onboard modes, especially for small dmin, for
which dorigin is shifted towards higher values, indicating that the robots are further away from
each other when close to the passage, which can be attributed towards slower reaction times
caused by communication delays.

We run an additional simulation that evaluates the GNN in a decentralized mode with
communication delays. We observed that for higher delays, the success rates dropped
significantly, while the makespan decreased much less notably. The distribution of dmin

over dorigin shifted slightly towards the real-world distribution. This indicates that the shift
in makespan we observe is mostly due to robot dynamics, and real-world communication
latency causes the agents to be less responsive and therefore to collide.

4.4 Learning to Navigate using Visual Sensor Networks

The implementation of traditional sensor network-guided navigation may be cumbersome.
It commonly consists of five main steps: (1) estimate robot and sensor positions through
external positioning systems, (2) process sensor data to detect the target, (3) transmit target
information to the robot, (4) build the environmental map and plan a target path, and (5)
control the robot to follow the path according to its motion model. This framework has
several drawbacks. First, parameters need to be hand-tuned, and data pre-processing steps are
required. Second, isolating the perception, planning, and control modules hinder potential
positive feedback among them, and make the modeling and control problems challenging.
Finally, this approach requires the availability of an absolute positioning system, to build on
step (1).

In this section, we explore a learning-based approach where we introduce a static visual
sensor network that can acquire the ability to guide a robot toward its intended destination.
The nodes in this sensor network are endowed with policies that are learned through a
machine learning architecture that leverages a Graph Neural Network (GNN). Successful
navigation requires the robot to learn the relationship between its surrounding environment,
raw sensor data, and its actions. In this work, we initially approach the task in a continuous
domain, aligning with the subsequent definition of time presented in the follow-up content.
Our contributions are as follows:

• We present a framework that demonstrates, for the first time, how low-cost sensor
networks can help robots navigate to targets in unknown environments, where neither
the robot nor the sensors possess any absolute positioning information.
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(a) Map (b) Webots (c) Real world (d) Sensor (e) Robot

Fig. 4.6 Our setup consists of (a) an environment populated with obstacles, visual sensors
(blue), a mobile robot equipped with a sensor, and a green target, where the mobile robot
has to find the shortest path (red, taken path orange) to an occluded target by incorporating
communicated sensor information to enhance its navigation performance. Our framework
leverages a setup consisting of a simulation environment (b) that corresponds to the real-
world setup (c). The workspace is endowed with custom-built sensors with fish-eye cameras
(d, e) that are capable of communicating with each other. One sensor is attached to a mobile
robot (e) that acts on the output of that sensor.

• We provide an end-to-end visual navigation policy that leverages GNNs to learn what
needs to be communicated (among sensors and robot) and how to aggregate the visual
scene for effective navigation.

• Experimental results demonstrate generalizability to unseen environments with various
sensor layouts. In particular, by introducing a real-to-sim image translator, our policy
(which is trained entirely in simulation) can be transferred to the real world without
additional tuning (i.e., in a zero-shot manner).

4.4.1 Problem Formulation

Our setup consists of a cluttered environment, a mobile robot, and a set of visual sensors. The
environment W contains a set of randomly placed static obstacles C ⊂W and N randomly
placed visual sensors S = {S1, . . . ,SN}. As shown in Fig. 4.6 (c), at every time step t,
each sensor Si is capable of taking an omnidirectional RGB image oi

t of its surrounding
environment, but has no positioning information. Each sensor Si can communicate with
nearby sensors within communication range, i.e., S j ∈N i. A target object G is located
randomly in the 2D ground plane at position qG. Each sensor predicts the direction ui

t ∈U

along the shortest path towards the target G. The mobile robot R is located at position qR
t and

moves in the ground plane in W \C . It is equipped with any one of the sensors (we choose
sensor S1) and uses the directional output u1

t of that sensor to execute an action at ∈A by
applying a velocity of the same direction. The robot’s objective is to move to the target G
along the shortest collision-free path. It utilizes the information shared through the sensor



4.4 Learning to Navigate using Visual Sensor Networks 83

network to make an informed decision about how to reach the (potentially occluded) target,
while avoiding time-consuming exploration.

We formalize this as a sequential decision making problem under uncertainty about
the underlying world [66], and define a corresponding Markov Decision Process (MDP).
At time step t, let st ∈ O be the observed state of the environment, i.e st = {o1

t , . . . ,o
N
t }.

On executing at , the new state st+1 is determined by the underlying world W , which is a
hidden variable, sampled from a prior P(W ) and in turn induces a state transition distribution
P(st+1|st ,at). The one-step cost c(st ,at) is the distance travelled since the previous time step
and a consequence of action at .

Let π(st) be a policy that maps the state st to an action at . The policy represents the
navigation strategy that we wish to learn. An episode continues until either the goal is reached
(∥qG−qR

t ∥< DG) or continuous time horizon T is reached. Given a prior distribution over
worlds P(W ) and a distribution over start and goal positions P(qR

0 ,q
G), we can estimate the

cost of moving from position qR
0 to qG as

V (st) =
T

∑
t=1

Est∼dt
π
[c(st ,π(st))] (4.2)

where dt
π = P(st |π,W ,qt ,qG) is the distribution over states induced by running π on the

problem (W ,qt ,qG) for T steps [112], and we evaluate the performance of a policy as

J (π) = E W ∼P(W ),

(qR
0 ,q

G)∼P(qR
0 ,q

G)

[V (st)] . (4.3)

Assumptions. The robot has no knowledge of its own position, nor the environment map,
nor the target location. The target has to be within visibility range at least one sensor within
multi-hop communication to the robot, but it is not necessary for the robot itself to observe
the target. In order for the sensors to be able to localize themselves within the environment
and with respect to the robot, a minimum overlapping field of view is required. We do not
assume any ordering or identification of sensor nodes. Our approach is stateless, and we do
not use memory to store information over multiple time steps (i.e., we do not build a map).

4.4.2 Visual Navigation using Sensor Networks

This section describes our approach to training the navigation policy π . Fig. 4.6 shows the
simulation environment and Fig. 4.7 shows an overview of our architecture. The objective
of each sensor Si is to predict a direction ui

t along the shortest path to the target (with the
consideration of static obstacles) by using its own observation oi

t and the messages shared by
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other sensors. We use a variant of Imitation Learning (IL) using expert solvers (i.e., cheap
and fast path planning algorithms).

Our method does not rely on any positioning information whatsoever, and as explained
in Sec. 4.4.1, the neighborhood N i is defined through sensors within communication range.
During training and evaluation in simulation, we have to model this communication range.
We assume a disk model, where the neighbor set is defined as N i = {S j|L(Si,S j) ≤ DS},
where L(Si,S j) is the euclidean distance between Si and S j, and DS is the communication
range.

In Sec. 4.4.2, we explain how we generate the dataset DIL = {(oi,m
0 , Âi,m

0 )}M,N
m=1,i=1 con-

sisting of M per-sensor cost-to-go advantage labels Â and observations o. In Sec. 4.4.2, we
detail the neural network model ψ ◦θ ◦φ(·) consisting of the feature extractor φ , the feature
aggregator θ and the post-processor ψ to predict the advantages. The architecture is depicted
in Fig. 4.7. This neural network is optimized with the objective JIL as

JIL(ψ ◦θ ◦φ) = Eo,Â∼DIL

[
∥ψ ◦θ ◦φ(o)− Â∥2] . (4.4)

While we train our policy in simulation, we take an approach that facilitates sim-to-real
transfer (see Sec. 4.4.3).

Data Generation

Imitation learning can be treated as supervised learning problem. Since future states are
influenced by previous actions in IL, the i.i.d. assumption of supervised learning is invalidated.
AGGREVATE [112] proposes one possible solution to this problem by iteratively learning
cost-to-go estimates for trajectories of data using an online procedure. For the type of
navigation policy that we wish to learn, it is trivial to compute cost-to-go estimates, and
therefore we treat it as standard supervised learning problem with an i.i.d. assumption for
each sample.

Let Qi be the cost-to-goal for sensor Si. Let the set of possible directions be U =

{u1, . . . ,uK}. Let Qi
uk be the cost-to-goal for sensor Si upon moving towards direction ui

k.
To simplify the training procedure and facilitate better generalization, instead of learning
absolute cost-to-goal values Qi, we learn a relative cost-advantage vector Ai = [Qi

a1 −
Qi, . . . ,Qi

ak −Qi]⊺ that subtracts the cost from the current state to the goal for each of
the K possible directions and thus is scale-invariant (since the scale of the cost-to-go values
are not relevant for a sequential decision making problem).
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Fig. 4.7 We train a policy in simulation using simulated images oi
t . The CNN φ(·) encodes

images into features zi
t and the GNN θ(·) further encodes this for multiple communication

hops in L layers as zi,l
t . Eventually, the post-processing MLP ψ(·) generates cost-to-go

advantages Ai
t which are used to sample a direction to the target along the shortest path as ui

t
and eventually to generate action at for the robot, which is equipped with sensor S1.

We generate the dataset DIL consisting of M = 40,000 environment samples for N = 7
sensors for training the policy π . We provide further details on the dataset and the training in
Sec. B.1.

GNN-based Feature Aggregation across Sensor Network

The neural network is homogeneous across all sensors (and robot) and is divided into the
three sub-modules feature extractor φ(·), feature aggregator θ(·) and post-processor ψ(·).

Local feature extraction. We first use a Convolutional Neural Network (CNN) φ(·),
specifically MobileNet v2 [162], to extract features zi

t from the image oi
t of each sensor

Si. MobileNet is optimized for the evaluation on mobile devices, which makes it an ideal
candidate for the application in a distributed sensor network. For the sim-to-real transfer,
we replace the encoder, as explained in detail in Sec. 4.4.3 and visualized in Fig. 4.7. The
encoding is communicated to other sensors within communication range.

Neighborhood feature aggregation. In order to predict the target direction, our models
need to be able to aggregate information across the whole sensor network. In other words,
each sensor requires effective information from those sensors that can directly see the target.
This feature aggregation task is more challenging than the traditional GNN-based feature
aggregation for information prediction [151] or robot coordination tasks [39, 152]. Specifi-
cally, in the aforementioned papers, each agent only needs to aggregate information from the
nearest few neighbors as their tasks can be achieved by only considering local information.
For each agent, information contributed by a very remote agent towards improving the
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prediction performance can vanish as the network becomes larger. Additionally, in our task,
only a limited number of sensors can directly ‘see’ the target. Yet, crucially, information
about the target from these sensors should be transmitted to the whole network, thus enabling
all the sensors to predict the target direction from their own location (which is potentially
in NLOS). In addition, as we do not introduce any global nor relative pose information, in
order to predict the target direction, each sensor must implicitly learn the ability to estimate
the relative pose to its neighbors by aggregating image features. Furthermore, generating an
obstacle-free path in the target direction by only using image features (without knowing the
map) is also very challenging.

The multi-layer GNN model θ (L)(·) consists of L layers and generates a new encoding
zi,l
t for each layer L. It takes the image encoding generated by the encoder zi,1

t = zi
t as input

to the first layer, aggregates communicated neighbors’ features using the neighborhood N i

over multiple layers, and extracts fused features xi
t = zi,L

t where zi,L
t is the encoding generated

by the last GNN layer for each sensor Si so that θ (L)(zi
t) = xi

t .
A GNN model consists of a stack of neural network layers, where each layer aggregates

local neighborhood information, i.e., features of neighbors, around each node and then passes
this aggregated information on to the next layer. Specifically, our method builds on the GNN
layer introduced in [163]. We use a recursive definition for a multi-layer GNN where each
layer L > 0 computes new features as

θ
(L)(zi,L

t ) = σ

(
θ
(L−1)(zi,L

t ) ·W (L)
1 + ∑

j∈N i

θ
(L−1)(z j,L

t ) ·W (L)
2

)
(4.5)

that are communicated in the neighborhood N i where W (L)
1 and W (L)

2 are trainable parameter
matrices, and σ denotes a component-wise non-linear function, e.g., a sigmoid or a ReLU.

Cost-to-goal prediction. Lastly, we utilize a post-processing Multi-Layer Perceptron
(MLP) to predict a set of cost-to-go advantages for each sensor so that ψ(xi

t) = Ai
t , which is

eventually used to sample a target direction ui
t and eventually transform it to an action at .

Policy. This results in the composition ψ ◦ θ ◦ φ(oi
t) = Ai

t to compute a cost-to-go ad-
vantages from the local image oi

t and features zi,l
t communicated through the neighbor-

hood N i. We model the set of target directions U as a discrete distribution so that
ui

t = cat(softmax(−αAi
t)) where cat(·) samples from a categorical distribution and α is

a hyperparameter to adjust the stochasticity. As explained in Sec. 4.4.1, the relationship
between direction u and action a is bijective. Hence, any sensor can be used as part of a
mobile robot (to command its motion). In this work, we denote that sensor as S1. So far, we
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have used a distributed notation to compute a direction ui
t for any given sensor. We formulate

the target navigation problem as centralized MDP relying on a central state st = {o1
t , . . . ,o

N
t }

consisting of the observation of all sensors. Therefore, we can define the policy π as

π({o1
t , . . . ,o

N
t }) = cat(softmax(−α(ψ ◦θ ◦φ(o1

t ))))β = u1
t β = at , (4.6)

where β is a hyperparameter to scale the magnitude and thus transforming a direction into
a velocity action at ∈A . Note that even though the notation of the policy is centralized, the
execution is inherently decentralized, and instead of depending on raw image observations
for other sensor nodes, the robot only depends on the local observation o1

t and latent encod-
ings communicated through the GNN θ . We provide more details on the neural network
architecture in Sec. B.1.

4.4.3 Zero-Shot Real World Transfer

To demonstrate the feasibility of a zero-shot transfer4 of our model, we design a twin
environment setup, consisting of both real and digital copies of the operational space, see
Fig. 4.6. The real setup includes custom-built sensors that provide local visual sensing to
nearby nodes within the communication network. Later, in Sec. 4.4.4, we report results
that demonstrate the effectiveness our sim-to-real approach for the real-world scenario. We
provide more details on the real-world transfer in Sec. B.1.

Setup

Twin Environments. The real-world environment is 5.7 m × 4.2 m, and is cluttered with
three to five obstacles of different size. We use standard cardboard boxes for obstacles and
blue and green building blocks to identify sensor locations and target location, respectively.
In order to facilitate zero-shot transfer, we design a digital twin of our real-world environment.
This digital twin (i.e., a simulation environment) is built within the Webots simulator [165]
and is illustrated in Fig. 4.6.

Custom-made sensor nodes. We design and construct six sensor nodes that consist of a
contraption holding the downward-facing camera with fisheye lens as well as a local data
processing unit. The sensor nodes are equipped with a Raspberry Pi running local processing
and image reprojection according to a custom camera calibration procedure, and streaming

4Zero-shot learning is a feature of a model to be able to adapt to new task without the need for additional
learning/fine-tuning [164].



88 Real World Deployment of Data-driven Policies for Multi-Robot Motion Planning

𝑜𝑠𝑖𝑚

𝑜𝑟𝑒𝑎𝑙

Minimize

𝜙 𝒐𝒓𝒆𝒂𝒍 − 𝜙 (𝒐𝒔𝒊𝒎)
2

𝜙

𝜙

(a) Translator training

𝑜𝑟𝑒𝑎𝑙

S
𝑧𝑡
1 𝑥𝑡

1 𝐴𝑡
1

𝑎𝑡
𝑢𝑡
1

(b) Real-world deployment

Fig. 4.8 Our sim-to-real framework. (a) After training the policy in simulation, we collect
image pairs from simulation osim and the real world oreal and use them to train a real-to-sim
translator model φ̂ (gray) by reconstructing latent features from the simulation domain z
generated through the encoder trained in simulation φ (orange) with real-world images. (b)
We combine the translator model φ̂ trained on real-world images (gray) with θ and ψ trained
in simulation (orange) to deploy the policy to a real-world setup.

of image data at a frame rate of 12 Hz. The sensor was designed so that it can be used
stand-alone, as well as mounted on a mobile robot.

Mobile robot. We use the DJI RoboMaster as mobile robot platform. A seventh sensor
node that also serves as controller for the robot is mounted on top. During navigation, the
robot employs a collision shielding mechanism, that takes as input distance measurements
to detect the near-sided static obstacles and the border of environment. Repulsive force
against detected obstacles are generated through a potential field [166]. This mechanism
only triggers for near collisions and is a safety mechanism.

Domain Adaptation

As outlined in Fig. 4.7, we first train the policy using simulated images through IL. Fig. 4.8
outlines how we perform the sim-to-real transfer. We create a real-world environment
and map it using a motion capture system. We transfer this map into Webots to have an
identical representation of the environment in the real world and in simulation. To train
the translator, we tele-operate the robot in this environment to collect M image pairs of
real-world images oreal and corresponding simulated images osim and store them in a dataset
Dtransfer = {(o j

real,o
j
sim)}M

m=0.
In total, we construct 8 different environments, each populated with 6 sensors and one

robot. We collect 2000 image pairs for each sensor in each environment (this is achieved
within 5 minutes with images being recorded at 10 Hz). Constructing and mapping each
environment and setting up the data collection procedure takes 30 minutes per environment.
We automatically filter the images in post processing for the sensor images to only be included
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when the robot is moving within the field of view of the sensors. This results in a dataset of
M = 80,000 image pairs for the training set and 10,000 images for the test set.

We use a similar approach to [158], where a neural network based translator model is
trained to map real-world images to simulated images, which are then fed to the policy, but
instead of mapping to simulated images, we map to their respective encoding. Specifically, we
train a translator model φ̂(·) that maps real images oreal to the encoding of the corresponding
simulated image φ(osim) by minimizing the objective Jtransfer(·) while keeping φ(·) fixed,

Jtransfer(φ̂) = Eosim,oreal∼Dtransfer

[
∥φ̂(oreal)−φ(osim)∥2

]
. (4.7)

4.4.4 Results

We first introduce the metrics we use for evaluation and then demonstrate the performance of
our method in simulation, based on the methodology introduced in Sec. 4.4.2. Second, we
demonstrate successful zero-shot transfer to the real-world setup introduced in Sec. 4.4.3.
We provide additional results in Sec. B.1.

Performance Metrics

We evaluate the trained policies on the unseen test split of the training dataset as well as a
generalization set that has been generated with a larger environment and more sensors.

We consider two primary metrics for our evaluation. A run is considered successful if
the robot arrives at the target without collisions and within a pre-defined time horizon T ,
captured by the boolean success indicator Cm for case m. The boolean success rate fraction
of all successful runs is 1

M ∑
M
m=1Cm. We furthermore report the success weighted by path

length, or SPL [167], as 1
M ∑

M
m=1Cm

Pm
max(pm,Pm)

, where Pm is the shortest path length from
the robot’s initial position to the target, and pm the length of the path actually taken. We
visualize a selection of paths in Fig. 4.10. We report all results for environment configurations
where the target is within line-of-sight (LOS) initially (therefore trivially solvable without
communication) and where the target is in non-line-of-sight (NLOS, therefore requiring
additional sensor coverage for an efficient solution) separately.

Simulations

We train five variants of our policy to evaluate our approach. We first train a policy with
communication range DS = 0.0 as a baseline (i.e., no communication). We also train three
policies with communication ranges of DS = 2.0, DS = 4.0 and DS = ∞ (fully connected)
respectively, all with a single GNN layer. Lastly, we train a policy with a communication
range of DS = 2.0 and two GNN layers. The results can be seen in Tab. 4.2.
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We evaluate all policies on M = 250 unseen maps on the small test set and M = 100 maps
on the large test set. All policies have a nearly perfect success rate of close to 1.0 for LOS,
which is to be expected as navigating to the target using local information is trivial. The
baseline policy without communication has an NLOS success rate of 0.827 and an SPL of
0.719 in the small environment. These values are the lower bound for what is possible without
communication. We ensure that all environments are solvable. Even without communication,
the target can be discovered through random exploration. The success metrics increase over
all experiments with increasing communication ranges, up to 1.0 success and 0.925 SPL
for the policy trained with DS = 2 and L = 1. The policies with DS = 2.0 and L = 2 layers
perform similar to the policy with DS = 4. The policy with DS = ∞ and L = 1 layers performs
slightly worse. This can be attributed to the unfiltered inclusion of information from all
sensors. Adding locality through a neighborhood and considering multiple neighborhood
through multi-hop communication helps in building a more appropriate global representation.

We furthermore test the generalizability to larger environments. The baseline policy has
a success rate of 0.619 and an SPL of 0.492, while the fully connected policy has a success
rate of up to 0.952 and an SPL of 0.853.

In Fig. 4.9 we further analyze the benefit of communication on our method. We use
the policy trained for DS = 2 and L = 2 on the small and the large test set and evaluate
the performance for a variety of communication ranges and number of sensors. Note that
the results in Tab. 4.2 for the large environment are suboptimal due to the constrained
communication range, since DS = 2.0 for L = 2 covers sensors at most 4.0 m away, while
the maximum environment length is 14.0 m. We find that the SPL in the large environment
increases approximately linearly from 0.45 for DS = 0.0 to 0.91 for DS = 3.5 and then
slightly decreases to a constant of 0.85 for DS ≥ 4.0, resulting in a performance increase of
2.0× compared to the communication-free baseline. The small environment performs at 0.72
SPL without communication and 0.93 with communication, resulting in a 1.3× performance
increase. Decreasing the number of sensors correspondingly decreases the SPL for a similar
minimum and maximum performance. It is to be expected that both environments perform
similarly well with the maximum number of sensors and a communication range that results
in a coverage of the whole environment, whereas in the no communication case and with
only one sensor, the small environment performs better (since less exploration is required to
navigate to the target).

Sim-to-Real Policy Transfer

After performing the domain adaptation, we evaluate the performance of the policy on the
real-world setup as described in Sec. 4.4.3. We use a motion capture system to create a map
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Table 4.2 Evaluation of simulation result for five different policies trained for different
communication ranges DS and number of GNN layers L. We report the success rate and SPL
for runs where the target was within line-of-sight (LOS) and outside line-of-sight at the start
of the experiment (NLOS) as well as the number of samples M on a small test set as well as
a generalization set of a larger environment.

Training Distribution
(W = 8, H = 10, N = 7)

Generalization
(W = 16, H = 20, N = 13)

LOS (M = 198) NLOS (M = 52) LOS (M = 58) NLOS (M = 42)
DS L Success SPL Success SPL Success SPL Success SPL

0.0 1 1.000 0.958 0.827 0.719 1.000 0.945 0.619 0.492
2.0 1 1.000 0.963 1.000 0.925 0.983 0.935 0.833 0.742
4.0 1 1.000 0.963 0.981 0.912 1.000 0.945 0.905 0.804
2.0 2 1.000 0.964 1.000 0.909 1.000 0.954 0.857 0.756
∞ 1 1.000 0.962 0.962 0.880 1.000 0.940 0.952 0.853
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Fig. 4.9 We record the performance of the policy trained for DS = 2 and L = 2 for a range
of different communication ranges and number of sensors. Left: The large environment
(blue) is populated with N = 13 sensors and the small environment (orange) with N = 7
sensors. Right: The large environment (blue) has a communication range of DS = 3.5m and
the small environment (orange) of DS = 1.5m. Both values result in peak performance for
the maximum number of sensors in the corresponding environment, as can be seen on the
left side. It can be seen that increasing communication range and number of sensors benefits
the SPL.

of the environment and track the robot and target position for the evaluation. We construct
three different environments, two of which are taken from the test set (Env. A and B) and a
random environment (Env. C) created by us with a similar sensor layout to Env. B but with a
different obstacle placement. We run 25 evaluation runs for each environment, resulting in a
total of 75 evaluation runs, of which 66 are NLOS runs.

The results for all environments are shown in Fig. 4.10. The total success rate across
all environments is 0.745 and 0.577 SPL for NLOS. Environment A is the least challenging
environment, with only three small obstacles in total, and has the highest NLOS success
rate of 0.895 and SPL of 0.662. Environment B is, with an NLOS success rate of 0.625,
the most challenging one, with a total of five obstacles, ranging from small to large, and
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LOS NLOS
Env Success SPL Success SPL

A 0.833 0.679 0.895 0.662
B 0.875 0.791 0.625 0.497
C 1.000 0.897 0.700 0.559

All 0.895 0.783 0.745 0.577

(a) Real-world results (b) Env. A (c) Env. B (d) Env. C

Fig. 4.10 (a) Evaluation of real-world results for three different environments for the fully
connected policy. We report success rate and SPL for runs where the target was within
line-of-sight (LOS, MA = 2, MB = 5, MC = 1) and outside line-of-sight at the start of the
experiment (NLOS, MA = 23, MB = 19, MC = 24). (b, c, d) A selection of two policy
evaluations for NLOS configurations for each real-world environment. Blue squares indicate
sensor positions, the green square the target position qG, the red path the robot’s initial
position qR

0 , the red path the shortest path computed by the expert P and the orange path the
path p chosen by the policy π .

narrow passages between obstacles. Environment C is a variation of Environment B and lies
in between Environment A and C with an NLOS success rate of 0.7 and an SPL of 0.577.
Even though the sim-to-real transfer is generally successful, there is a noticeable reality gap.
We found that the real-world sensors have a much smaller visibility range than the simulated
sensors, and even though we did not conduct any real-world baseline experiments, it is to be
expected that the SPL for DS = 0 (i.e., no communication) would be significantly smaller.

Limitations

All communication between sensors is synchronous, and we do not consider any communi-
cation time delays or message dropouts. Asynchronous evaluation and message delays can
negatively affect the performance of GNN-based control policies [42]. These effects could
potentially be counteracted by incorporating such message delays into the training procedure.

The target must be within line-of-sight of at least one sensor within multi-hop commu-
nication to the sensor node attached to the mobile robot. In future work, this problem can
be resolved by replacing the static sensors with mobile robots that dynamically cover the
environment.

Due to limitations of the expert solver, our current approach does not consider dynamic
obstacles. This limitation can be alleviated by using a more capable solver or augmenting our
learning paradigm to include interactive components (e.g., through Reinforcement Learning).

Lastly, the local coordinates of the robot and all the sensors are aligned, i.e. they are
facing the same direction. We do not assume knowledge of the global nor relative positioning
of the robot or sensors. This limitation can be circumvented by using a magnetic field sensor
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to align the visual sensors or by introducing a random rotation of cameras into the dataset
to learn an equivariant mapping of the camera heading. Due to architectural constraints,
learning this can be challenging, and rotation equivariant architectures such as [168] have to
be considered.

4.5 Discussion and Further Work

In this chapter, we first demonstrated the real-world deployment of a GNN-based policy to
a fully decentralized real-world multi-robot system using ROS2 and an Adhoc communi-
cation network. We performed a suite of experiments that discuss the selection of suitable
networking settings, and subsequently presented results on a real-world scenario requiring
tight coordination among robots.

Our results showed that our framework allows for the successful deployment of our
control policy in an Adhoc configuration, albeit with a performance that is 22 pp worse in
terms of success rate and 9 pp worse in terms of median makespan wrt the centralized mode.
Even though the deployment of our scenario was successful, we reported a degradation of
performance when moving from simulation to the real world, which can be attributed to
real-world effects such as communication delays.

Extending from the ROS2-based system, we propose a vision-only-based learning ap-
proach that leverages a Graph Neural Network (GNN) to encode and communicate relevant
viewpoint information to the mobile robot. In our experiments, we first demonstrate general-
ization to previously unseen environments with various sensor network layouts. Our results
show that by using communication between the sensors and the robot, we achieve a 1.3×
improvement on small environments and a 2.0× improvement in SPL on large environments,
when compared to the communication-free baseline, hence showing increasing improvement
for larger environment sizes. This is done without requiring a global map, positioning
data, nor pre-calibration of the sensor network. The benefit of utilizing communication
in wireless sensor networks increases as the size of the environment increases, since the
robot is less likely to discover the goal through random (unguided) exploration using the
communication-free baseline.

We perform a zero-shot transfer of our model from simulation to the real world. To this
end, we train a translator model that translates between real and simulated images so that
the navigation policy (which is trained entirely in simulation) can be used directly on the
real robot, without additional fine-tuning. Physical experiments demonstrate first-of-a-kind
results that show successful real-world demonstrations on a practical robotic platform with
raw visual inputs.
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In future work, we will evaluate the impact of asynchronous and delayed communication
between sensors and the robot. Furthermore, we plan to analyze the impact of small vs large
visual overlaps (among sensor nodes) on the overall navigation performance. We will use our
software framework to validate novel mechanisms that are robust to communications-specific
domain shifts and thus aid in closing the sim-to-real gap for GNNs. We believe that the
presented framework will facilitate the deployment of robot systems into more complex
environments and the unstructured outdoors, potentially leveraging more complex networking
architectures such as mesh networks and on-board sensing.



Chapter 5

Data-driven Heuristic for Path Planning

5.1 Introduction

Path planning is one of the fundamental problems in robotics. It can be formulated as: given
a robot and a description of the environment, plan a conflict-free path between the specified
start and goal locations. Multi-Agent Path Finding (MAPF) is central to many multi-agent
problems. The solution to MAPF is to generate collision-free paths guiding agents from their
start positions to designated goal positions.

Conflict-Based Search (CBS) is one of the most popular planners for MAPF [93]. It is
provably complete and optimal. However, solving MAPF optimally is NP-hard [169, 170].
Consequently, CBS suffers from scalability, as the search space grows exponentially with
the number of agents. Bounded-suboptimal algorithms [14, 171] guarantee a solution that is
no larger than a given constant factor over the optimal solution cost. Though these methods
often run faster than CBS for grid-based MAPF instances, their effectiveness remains an
open question for non-grid-based problem settings, wherein agents can move in an arbitrary
continuous domain. In addition, since most of these heuristics rely heavily on collision
checking for conflicts, their computational costs may become considerable when the graphs
are dense.

Learning-based methods have shown their potential in solving MAPF tasks efficiently [172,
173, 15], which offload the online computational burden into an offline learning procedure.
Vanilla GNN-based decentralized path planning [19] has demonstrated its performance empir-
ically via an end-to-end learning approach. However, this black box approaches are arguably
deployable in the actual workplace, as they are hard to find a guaranteed and interpretable
solution.

To solve this problem, we designed Graph Transformer, as a heuristic function, to accel-
erate the focal search within Conflict-Based Search (CBS) in a non-grid setting, especially
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dense graphs. Such that our framework guarantees both the completeness and bounded
suboptimality of the solution.

Re-planning strategies are commonly used to cope with dynamic obstacles, where a
planning algorithm searches for an alternative path whenever the robot encounters a conflict.
For the explainability and interpretability for RL, we introduced a global path planning
algorithm (for example, A*) to generate a globally optimal path, which act as part of the
reward function to encourage the robot to explore all potential solutions ‘weekly supervised’
by the optimal path. This novel reward structure is called globally Guided Reinforcement
Learning approach (G2RL), which provides not only the interpretability of our framework
but also dense rewards. It does not require the robot to strictly follow global guidance at every
step, thus encouraging the robot to explore all potential solutions. As our reward function
is independent of the environment, our trained framework can be generalized to arbitrary
environments and used to solve the multi-robot path planning problem in a fully distributed
reactive manner.

5.2 Background and Related Work

Traditional path planning approaches. Path planning can be divided into two categories:
global path planning and local path planning [174]. The former approach includes graph-
based approaches (for example, Dijkstra and A* [175]) and sampling-based approaches (for
example, RRT and its variant [71]), in which all the environmental information is known to
the robot before it moves. For local path planning, at least a part or almost all the information
on the environment is unknown. Compared to global path planners, local navigation methods
can be very effective in dynamic environments. However, since they are essentially based on
the fastest descent optimization, they can easily get trapped in a local minimum [176]. A
promising solution is to combine the local planning with global planning, where the local
path planner is responsible for amending or optimizing the trajectory proposed by the global
planner. For instance, [177] proposed a global dynamic window approach that combines path
planning and real-time obstacle avoidance, allowing robots to perform high-velocity, goal-
directed, and reactive motion in unknown and dynamic environments. Yet their approach can
result in highly sub-optimal paths. The authors in [178] adopt multi-policy decision making
to realize autonomous navigation in dynamic social environments. However, in their work,
the robot’s trajectory was selected from closed-loop behaviors whose utility can be predicted
rather than explicitly planned.

Conflict-Based Search (CBS) is one of the most popular planners for MAPF [93]. It is
provably complete and optimal. However, solving MAPF optimally is NP-hard [169, 170].
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Consequently, CBS suffers from scalability, as the search space grows exponentially with
the number of agents. Bounded-suboptimal algorithms [14, 171] guarantee a solution that is
no larger than a given constant factor over the optimal solution cost. Though these methods
often run faster than CBS for grid-based MAPF instances, their effectiveness remains an
open question for non-grid-based problem settings, wherein agents can move in an arbitrary
continuous domain. In addition, since most of these heuristics rely heavily on collision
checking for conflicts, their computational costs may become considerable when the graphs
are dense.

Learning based approaches. Benefiting from recent advances in deep learning techniques,
learning-based approaches have been considered as a promising direction to address path
planning tasks. Reinforcement Learning (RL) has been implemented to solve the path
planning problem successfully, where the robot learns to complete the task by trial-and-error.
Traditionally, the robot receives the reward after it reaches the target location [74]. As the
environment grows, however, the robot needs to explore more states to receive rewards.
Consequently, interactions become more complex, and the learning process becomes more
difficult. Other approaches apply Imitation Learning (IL) to provide the robot dense rewards
to relieve this issue [15, 179]. However, basing the learning procedure on potentially biased
expert data may lead to sub-optimal solutions [180, 19, 66]. Compounding this issue, the
robot only receives rewards by strictly following the behavior of expert demonstrations,
limiting exploration to other potential solutions. Also, over-fitting remains a problem. This is
clearly exemplified in [181], where the robot follows the previously learned path, even when
all obstacles have been removed from the environment.

5.3 Accelerating Multi-Agent Planning using Graph Trans-
formers with Near-Optimal Guarantees

In this section, we propose to use a Graph Transformer as a heuristic function to accelerate
Conflict-Based Search (CBS) in a non-grid setting. Similar to previous works [173], by
introducing focal search to CBS, our framework guarantees both the completeness and
bounded-suboptimality of the solution. Our contributions are as follows:

• We propose a novel architecture, i.e., the Graph Transformer, which leverages the un-
derlying structure of the MAPF problem. The proposed architecture has several desired
properties, e.g., dealing with an arbitrary number of agents, making it a natural fit for
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the MAPF problem. To our knowledge, our work is one of the first works to introduce a
learning component to MAPF problems under non-grid-based problem settings.

• We design a novel training objective, i.e., Contrastive Loss, to learn a heuristic that ranks
the search nodes. Unlike [173], our loss can be directly optimized without introducing an
upper bound, which is suitable for deep learning.

• We demonstrate the generalizability of our model by training with relatively few agents
and testing in unseen instances with larger agent numbers. Results show that our approach
can accelerate CBS significantly while ECBS, using handcrafted heuristics [14], fails.

5.3.1 Problem Formulation

We study Multi-Agent Path Finding (MAPF) in the 2D continuous space C ⊆ R2. The
configuration space C consists of a set of obstacles Cobs ⊆ C and free space C f ree : C \Cobs.
Note that Cobs could be different from what appears in the workspace, since it also considers
the geometric shape of the agent, which may not solely be a point mass.

A random geometric graph G = ⟨V,E⟩ is sampled uniformly from the 2D space. Every
sampled vertex v ∈ V is collision-free, i.e., v ∈ C f ree. A directed edge e ∈ E : (vi → v j)

connects vi to v j, if (i) v j is one of the neighbors of vi, and (ii) the edge is collision-free, i.e.,
e⊆ C f ree. The neighbor set can be defined as the r-radius or k-nearest neighbors.

Suppose there are M agents on this graph G. Each agent i occupies a region R(q)⊆ C ,
associated with a vertex q ∈V . We assign a start vertex si and a goal vertex gi to each agent i.
We denote the path of agent i as σi : {vt

i}t∈[1···Ti], where Ti ∈ Z>0, and agent i is on vertex vt
i

at time step t. We denote et
i as the edge (vt

i→ vt+1
i ). In this work, we initially approach the

task in a discrete-time domain, aligning with the subsequent definition of time presented in
the follow-up content.
Problem Description. We consider a tuple (G,S ,G ,C ,R) as a problem instance of MAPF,
where S : {si}i∈[1···M] and G : {gi}i∈[1···M] are the start and goal vertices. A conflict-free
solution {σi}i∈[1···M], should satisfy the following objectives, given arbitrary time t and pair
of agents i, j [182]:
(Endpoint) v0

i = si∧ vTi
i = gi

(Obstacle) vt
i ∈ C f ree∧ et

i ⊆ C f ree

(Inter-agent) R(qi)∩R(q j) = /0, for allqi ∈ et
i,q j ∈ et

j

Note: If t ≥ Ti, we assume the corresponding vt
i is equal to vTi

i . This means that the agent
will stay at the goal starting from time step vTi

i .
Solution Quality. We assume each edge requires one time step to traverse. The quality of
the solution is measured by the sum of travel times (flowtime): ∑i∈[1···M]Ti.
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5.3.2 Background: Conflict-Based Search with Biased Heuristics

In this section, we first introduce Conflict-Based Search (CBS), an optimal multi-agent
planner [93]. Then we introduce focal search [183, 184], which incorporates the biased
heuristic into the CBS framework, while preserving the guarantees of bounded-suboptimality
and completeness [14].

Conflict-Based Search

Conflict-Based Search (CBS) is an optimal bi-level tree search algorithm of MAPF. The high-
level planner aims to solve inter-agent conflicts, while the low-level planner aims to generate
optimal individual paths. Here we denote an inter-agent conflict as (i, j, t,vt−1

i ,vt−1
j ,vt

i,v
t
j),

which implies two edges, (vt−1
i → vt

i) and (vt−1
j → vt

j), dissatisfy the inter-agent objective
mentioned in Section 5.3.1.

The high-level planner maintains a tree and decides which search node to expand in a
best-first manner. To this end, each search node N stores the following information:

(1) A set of constraints N.T . A constraint (i,v, t) indicates that agent i should not traverse
to graph vertex v at time t.

(2) A solution N.σ : {σi}i∈[1···M]. The solution satisfies the endpoint and obstacle objec-
tive, but it may or may not satisfy the inter-agent objective. In addition, the solution should
obey the constraints N.T , i.e., for alli, for allvt

i ∈ σi,(i,v, t) ̸∈ N.T .
(3) The cost of the solution N.c. The high-level planner prioritizes which search node to

expand based on this metric.
On the high level, CBS first creates a root search node with no constraints, then keeps

selecting a search node and expanding it. A search node N∗ is selected if it is a leaf node
with the lowest cost. CBS then checks whether the solution σ of N∗ has an inter-agent
conflict. If there is no conflict, σ will be returned as the final result. Otherwise, CBS chooses
the first conflict C: (i, j, t,vt−1

i ,vt−1
j ,vt

i,v
t
j), and splits it into two constraints C(1): (i, t,vt

i)

and C(2): ( j, t,vt
j). Two child search nodes N1 and N2 are then generated, with constraints

for alli = 1,2,Ni.T = N∗.T ∪{C(i)} respectively. Then an optimal low-level planner, e.g.,
A* [185], is called by each child search node, which replans the path for each affected agent
and records the respective solution and cost. CBS guarantees completeness and optimality,
since both the high-level and low-level planners are performing best-first search [93].

Incorporating Biased Heuristics using Focal Search

CBS is an optimal planner, but it does not scale well even for grid-based problems settings.
To improve the scalability, focal search [183, 184] was introduced by previous works, e.g.,
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Bounded CBS (BCBS) and Enhanced CBS (ECBS) [14]. Here we describe a simplified
version of BCBS.

We present the pseudocode of focal search in Algorithm 3. Focal search introduces the
focal set to the CBS framework. A focal set (Focal) maintains a fraction of the leaf search
nodes in the CBS tree (i.e., Open). We denote LB as the lowest solution cost in leaf search
nodes. All the leaf search nodes that satisfy a near-optimal solution quality cost ≤ w ·LB will
be added to Focal. This new CBS will select a search node from Focal to expand, instead
of that from Open. Compared to the original CBS, the new algorithm also performs the
best-first search on Focal, but the search priority changes from the solution cost to a new
heuristic function ψ . Typically, ψ is a handcrafted function that takes a solution as the input,
and outputs a value that prefers solutions with fewer conflicts. We instead use a learned
heuristic function based on the Graph Transformer.

Algorithm 3: CBS with Biased Heuristics [14, 173]
Input: A MAPF instance and suboptimality factor w
Input: Heuristic function ψ (e.g., Graph Transformer)
Generate the root search node R with an initial solution
Initialize open list Open←{R}
LB← R.cost, and initialize focal list Focal←{R}
while Open is not empty

N∗← argminN∈Focal ψ(N.solution)
C← first conflict in N∗.solution
if C does not exist

return N∗.solution
Remove N∗ from Open and Focal
if minN∈Open N.cost > LB

LB = minN∈Open N.cost
Focal = {N ∈ Open : N.cost ≤ w ·LB}

Generate two children nodes N1 and N2 from node N∗

Add C(i) to Ni.constraints, for i = 1,2
Call low-level planner to get Ni.solution, for i = 1,2
Add Ni to Open, for i = 1,2
Add Ni to Focal if Ni.cost ≤ w ·LB, for i = 1,2

return No solution

Proposition. Algorithm 3 is complete and bounded-suboptimal with a factor of w≥ 1, as
mentioned in [14].

Suppose the problem is feasible, but Algorithm 3 does not find a solution given a sufficient
time budget. Then for an arbitrary search node N with a feasible solution, there exists an
ancestor search node N p added to Open but not expanded. Suppose N p∗ is the search node
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Fig. 5.1 Left: Examples of our graph-based MAPF instances. To construct the graph, we
sample vertices randomly from the free space and connect them with collision-free edges.
Right: Problem instances that our approach solves while other baselines fail. Different colors
represent the trajectories of different agents. Vertices in the same trajectory have deeper
colors if their respective time steps are later.

with the lowest cost among these unexpanded ancestors. N p∗ is not selected by Focal, since
it is not expanded. Thus, either (i) N p∗ is not in Focal, or (ii) N p∗ is in Focal but not selected.
(i) is impossible, because there do not exist infinitely many solutions that have costs lower
than 1

w ·N p∗.c. (ii) cannot happen, because there do not exist infinitely many solutions with
costs lower than or equal to w ·N p∗.c. As a result, N p∗ will be selected eventually and
expanded. Therefore, we have proved the algorithm to be complete by contradiction. The
focal search never expands search nodes with costs higher than w times the optimal solution;
therefore, it is bounded-suboptimal with a factor of w.

We note that the focal search described here is a special case of Bounded-CBS [14], i.e.,
Bounded-CBS (w,1), as the focal search is only applied to the high-level planner. In our
graph-based problem settings, there is no significant improvement when applying the focal
search to the low-level planner. Rather, if we introduce the focal search to the low-level
planner, it would consume a notable portion of computation on the collision checking of
edges, which has no improvement in the overall performance. We refer readers to Question 4
in Section 5.3.4 for further details.
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5.3.3 Graph Transformers as Heuristic Functions

In this section, we describe the architecture of the Graph Transformer and how to train it
represent a heuristic function that accelerates CBS.

Task Graph
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Fig. 5.2 The proposed Graph Transformer architecture. It has several desired properties that
are specifically designed to deal with MAPF inputs. See Section 5.3.3 for more details.

Network Architecture

The input to the graph transformer φ is a graph G, and a solution σ = {σi}i∈[1···M]. The
output φ(G,σ) predicts a scalar value. The prediction is related to the chance that the current
search node will yield descendant search nodes with feasible solutions: If the chance is high,
then φ(G,σ) should be low. Otherwise, φ(G,σ) should be high. The graph transformer has
two stages: (i) graph tokenization and (ii) attentive aggregation. We describe each stage as
follows.

Stage 1: Graph Tokenization. The graph tokenization transforms each graph vertex
into an embedding using a Graph Neural Network (GNN). Here we use Message-Passing
Neural Networks [105] (MPNN) as the GNN architecture. The input to the MPNN is a
graph G = ⟨V,E⟩, where the feature dv

i for each graph vertex vi ∈ V is its respective 2D
position, and the feature de

l for each edge el = (vi→ v j) is the relative position of v j to vi.
With two linear layers fx and fy, the vertices and edges are first encoded as x and y using
for all vi ∈ V,xi = fx(dv

i ); for all el ∈ E,yl = fy(de
l ). Then, using three MLPs { fk}k∈[1,2,3],

the MPNN updates the information for each graph vertex vi ∈V as follows:

xi← xi +max{ fk(xi,x j,yl)}, for all el : (vi→ v j) ∈ E (5.1)
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After all xi are updated using f1, the MPNN continues to update xi using f2 and so on.
The max denotes the max-pooling over the feature dimension. Since max-pooling can take a
set with an arbitrary number of elements and is invariant to the permutation of these elements,
the MPNN here can take graphs with an arbitrary number of vertices and edges, but also is
permutation invariant by construction.

Stage 2: Attentive Aggregation. After we compute the token xi for each graph vertex
vi from Stage 1, we model the inter-agent interactions using the Transformer [114]. The
path of each agent σi is first tokenized as ρi = {x j, for allv j ∈ σi}. To inject the temporal
information of these tokenized solutions, we introduce Temporal Encoding. The approach
is similar to [114, 186] (as positional encoding in their settings). We denote ρ t

i ∈ RD as the
vertex token of agent i at time step t. For each token ρ t

i , we add it element-wisely with a
temporal encoding ρ t

i ← ρ t
i +T E(t) ∈ RD. The 2k-th and 2k+1-th dimensions of T E(t) are

as follows:

T E(t)2k = sin(t/100002k/D) (5.2)

T E(t)2k+1 = cos(t/100002k/D) (5.3)

The hyperparameter 10000 is used following the common practice [114]. To encourage
the model to be aware of which agent each token ρ t

i belongs to, we concatenate the Agent
Identifier τi to each token ρ t

i ← ρ t
i ||τi, similar to [187]. For each agent i, the agent identifier

τi is calculated by taking the max-pooling over all its vertex tokens: τi = max{ρ t
i }, for allt ∈

[1 · · ·Ti]. Then, all tokens from the solution of all agents {ρ t
i : for alli ∈ [1 · · ·M], for allt ∈

[1 · · ·Ti]} will be fed as the input to the Transformer Encoder. For global prediction, we
append an extra trainable token global to the input, following the common practice [188, 189].
The Transformer Encoder predicts an output for each input token, and we use the output
of the global token as ζ . With a linear layer fφ : RD→ R, the final output is computed as
φ(G,σ) = fφ (ζ ).

Here we use the Transformer Encoder, since it enables the Graph Transformer to take a
variable number of tokens and model their dependencies, while preserving the invariance to
the permutation of tokens. For more details on the Transformer Encoder, we refer readers to
[114].

Properties of the Graph Transformer. By construction, the Graph Transformer is able
to handle the input graph with a variable number of vertices and edges, agents with a variable
total number, and the input solution with a variable length. Additionally, it is aware of the
temporal information, and inter-agent interactions. Its output is permutation invariant to both
the orders of graph vertices and the agents.
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Training Graph Transformers

a. CBS Finds a Feasible Solution b. Labelling Samples c. Contrastive Training
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Fig. 5.3 The training framework. We use a supervised Contrastive Loss. The labels are
generated from the CBS search tree.
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Fig. 5.4 Success rates, computation time, and flowtime within the runtime limit of 5 minutes,
as functions of the number of agents. The results are averaged over 100 test instances for each
setting of the agent number. We evaluate our approach with w ∈ [1.005,1.01,1.05,1.1,∞],
and compare its performance with CBS, ECBS (w = 1.1) and ORCA. Though trained with
relatively few agents, results have shown that our approach generalizes well and significantly
outperforms the baselines (CBS, ECBS, and ORCA).

Data Generation. Given a MAPF instance, we first use CBS to generate feasible solutions.
No data will be collected if CBS fails to solve the instance. If it succeeds, we start to collect
positive and negative samples from its search tree. A positive sample will be collected by
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dataset D+, if itself or one of its descendant search nodes contains the feasible solution. A
negative sample will be collected by dataset D−, if it is a sibling search node of a positive
sample. We record each sample’s graph G and solution σ . In addition, we record the value d
as its respective depth in the search tree.
Supervised Contrastive Learning. The objective of the model is to learn a ranking of
the samples. Namely, given an arbitrary pair of positive sample (G,σ+,d+) and a negative
sample (G,σ−,d−) from the same MAPF graph G, we learn the following ranking:

φ(G,σ+)< φ(G,σ−), if d+ ≥ d−

We illustrate the intuition here. Imagine such ranking is learned perfectly and w = ∞,
meaning all the leaf search nodes will be in Focal. Suppose at some time point, Focal
includes one positive sample p+. Focal may or may not include negative samples. If they
exist, then their depths are no deeper than p+.d. Recalled that d is its respective depth in
the search tree. Define this condition as a loop invariant. Then p+ will be selected and
expanded first according to the ranking. If p+ is the feasible solution, then the algorithm
terminates. Otherwise, Focal will have one positive sample p′+ and some negative samples,
and all negative samples have depths no deeper than p′+.d. Thus, the loop invariant remains
true. The loop invariant is also true for the base case, where Focal only has the root search
node. Therefore, by learning such ranking, we encourage Algorithm 3 to expand positive
samples first and expand the negative samples as few as possible, which could save significant
computation and greatly accelerate CBS.

We use supervised contrastive learning to train a Graph Transformer φ that ranks the
positive samples above the negative samples. Given an arbitrary pair of positive and negative
samples, p+ : (G+,σ+,d+) ∈ D+, p− : (G−,σ−,d−) ∈ D−, this pair is defined to be valid
as: I(p+, p−) : (G+ = G−)∧ (d+ ≥ d−). With a hyperparameter γ = 0.1, we define δ (x) :
max(0,γ + x). We aim to minimize the Contrastive Loss as follows:

1
L ∑

p+∈D+
p−∈D−

δ (φ(G+,σ+)−φ(G−,σ−)) · I(p+, p−) (5.4)

where L = ∑
p+∈D+

p−∈D− I(p+, p−) is the total number of valid sample pairs.
Once the training of Graph Transformer φ reaches convergence, we could deploy it as the

heuristic function ψ in Algorithm 3. However, in practice, we found that the model would
predict relatively low values for multiple search nodes in the focal set, indicating that all of
them may lead to feasible solutions. To break the tie, we instead represent ψ as the depth d
combined with φ , i.e., ψ = ⟨−d,φ⟩. It means that the algorithm would first prefer the search
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nodes with deeper depths; if there exist multiple search nodes with the deepest depths, then it
would prefer the search nodes with lower φ . Such a design enables the algorithm to make
decisions consistently if multiple promising nodes exist. Without further specification, we
denote our approach with such a heuristic as Graph φ .

5.3.4 Experiments

Main Experiments

(a) Heuristic (b) Network Architecture (c) Runtime Limit (d) Time Profiling (Seconds)
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Fig. 5.5 We conduct 4 various ablation studies to evaluate the proposed method systematically.
See Section 5.3.4 for more details.

Experimental Setup. We design two types of environments for evaluation: Maze and Box
(see Fig. 5.1). Each environment includes 2700 MAPF instances with samples generated by
CBS for training. For testing, there are 100 MAPF test instances w.r.t. each agent number
setting. We generate a random map for each Maze instance and a set of random obstacles for
each Box instance. The graph and start and goal vertices are also generated randomly for
each instance.

The training instances vary between 2 and 10 agents for Maze, and vary between 1 and 5
agents for Box. The test instances vary between 2 and 26 agents (2-10, 12, 14, 16, 18, 20, 22,
24, 26) for Maze, and vary between 1 and 10 agents (1-5, 6, 8, 10) for Box. We ensure that the
test instances are unseen in the training set. All experiments were conducted using a 12-core,
3.2Ghz i7-8700 CPU and 4 Nvidia GTX 1080Ti GPUs. We test w∈ [1.005,1.01,1.05,1.1,∞]

for our method. For all methods, we set the runtime limit as 5 minutes, following the common
practice [173].
Baselines. We compare our method with 3 baselines: (i) Conflict-Based Search. (ii)
Enhanced Conflict-Based Search (ECBS): a bounded-suboptimal version of CBS [14]. It
applies focal search to both high-level and low-level planners, using hand-crafted heuristic
functions. We choose its w = 1.1. (iii) ORCA [1]: a reactive collision avoidance algorithm,
which works effectively in low density environments.
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We find that there are very few open-source implementations that could directly apply
CBS and ECBS to non-grid-based problems. As a result, we implement all tree-search
methods (CBS, ECBS, and our method) from scratch using Python. We use basically the same
framework when implementing CBS, ECBS, and our approach. To make the comparison fair,
we ensure that all these 3 methods are aggressively optimized by strictly following the C++
implementations 1 and original paper [93, 14], and using Bayesian hyperparameter search
for the w of ECBS.
Evaluation Metrics. Our evaluation includes 3 metrics: 1) Success Rate, the ratio of the
number of successful instances to the total number of test instances. An instance is successful
if all agents reach their goals with no collision before the timeout happens. 2) Computation
Time, the average computational time for each instance, including the failed ones. 2 3)
Flowtime, which only compares the solution quality of the optimal CBS to our method, given
the instances where both methods succeed, to validate our approach’s bounded-suboptimality
guarantees.
Overall Performance. We demonstrate the overall performance in Figure 5.4. Our method
significantly outperforms the three baselines in both Maze and Box. It requires much less
computation time and achieves significantly higher success rates. Furthermore, though only
trained with relatively few numbers of agents, our method generalizes remarkably well
to a higher number of agents. For example, our network trained by 2 to 10 agents can
be generalized up to 26 agents in Maze, while our policy trained by 1 to 5 agents can be
generalized up to 10 agents in Box. In particular, with w = 1.1, our method achieves the
success rates of 47%,23%,10%,1% in Maze with 14, 18, 22, and 26 agents, and achieves
the success rates of 62%,30%.4%,0.5% in Box with 4, 6, 8, and 10 agents. On the other
side, CBS fails to solve Maze with 18 agents and Box with 10 agents within the timeout.
Similarly, ECBS starts to fail in all instances with 20 agents for Maze and with 10 agents for
Box. In addition, since the bounded-suboptimality of our algorithm is proved theoretically, it
is not surprising to see that the solution qualities (flowtime) of our method are very close to
the optimal solutions. Finally, ORCA easily fails in highly dense environments, and such
performance is consistent with previous works [190].

Ablation Study

In this section, we investigate four questions:

1https://github.com/whoenig/libMultiRobotPlanning/
2Since CBS and ECBS call different low-level planners (A* and A*-ε), we consider the computation

time to be the fairest metric to evaluate the efficiency, instead of counting the number of expanded nodes, for
instance.
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(a) Is incorporating depth information into the heuristic beneficial to the perfor-
mance? Fig. 5.5 (a) illustrates the comparison between the heuristic with only φ , and with
depth d and φ , on tests from 2 to 10 agents in Maze. The result shows the effectiveness of
introducing depth information. The improvement becomes more noteworthy as the number
of agents grows, which validates our choice.

(b) Do the Temporal Encoding and the Agent Identifier improve the performance?
Fig. 5.5 (b) demonstrates the performances in Box with and without the Temporal Encoding
and Agent Identifier. The results show that Agent Identifier and Temporal Encoding improve
the success rate. The average improvement of introducing Agent Identifier and Temporal
Encoding over the non-default settings is 16±33%.

(c) How will the runtime limit affect the performance? We take the tests with 14
agents in Maze as an example. We set different runtime limits from 25 seconds to 300
seconds with the interval as 25 seconds. In Fig. 5.5 (c), we show that our methods outperform
the baselines regardless of how the runtime limit changes. When the limit is 300 seconds,
our method achieves a success rate of 64% (w = ∞), while CBS, ECBS, and ORCA only
have 5%, 3%, and 1% respectively.

(d) Time profiling each module of the planners. Finally, we wish to answer the question
of why the performances of ECBS considerably degrade once we apply it to non-grid-based
MAPF instances, compared to the traditional grid-based settings. We profile each method,
and average the results over the Maze tests with 2-10 agents.

Fig. 5.5 (d) illustrates that ECBS spends considerable computation on the focal heuristic
calculation. Such behavior is reasonable, since now for dense graphs, the heuristic is
calculated by checking the collisions along edges. Such collision checking is often the main
bottleneck for planning and by itself NP-hard in general [191, 192]. Meanwhile, our method
uses a learned function for the focal heuristic calculation (the GPU part), which only takes
15% computation cost compared with ECBS. Compared with CBS and ECBS, our method
only requires 50% of the total computation time.

5.4 Mobile Robot Path Planning in Dynamic Environments
through Globally Guided Reinforcement Learning

In order to overcome the limitation of sparse reward in larger environment, we develop a
hierarchical path-planning algorithm that combines a global guidance and a local RL-based
planner. Concretely, we first utilize a global path planning algorithm (for example, A*) to
obtain a globally optimal path, which we refer to as the global guidance. During robot motion,
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the local RL-based planner generates robot actions by exploiting surrounding environmental
information to avoid conflicts with static and dynamic obstacles, while simultaneously
attempting to follow the fixed global guidance.

Our main contributions include:

• We present a hierarchical framework that combines global guidance and local RL-based
planning to enable end-to-end learning in dynamic environments. The local RL planner
exploits both spatial and temporal information within a local area (e.g., a field of view) to
avoid potential collisions and unnecessary detours. Introducing global guidance allows
the robot to learn to navigate towards its destination through a fixed-sized learning model,
even in large-scale environments, thus ensuring scalability of the approach.

• We present a novel reward structure that provides dense rewards, while not requiring the
robot to strictly follow the global guidance at every step, thus encouraging the robot to
explore all potential solutions. In addition, our reward function is independent of the
environment, thus enabling scalability as well as generalizability across environments.

• We provide an application of our approach to multi-robot path planning, whereby robot
control is fully distributed and can be scaled to an arbitrary number of robots.

• Experimental results show that our single-robot path planning approach outperforms local
and global re-planning methods, and that it maintains consistent performance across
numerous scenarios, which vary in map types and number of obstacles. In particular,
we show that our application to multi-robot path planning outperforms current state-of-
the-art distributed planners. Notably, the performance of our approach is shown to be
comparable to that of centralized approaches, which, in contrast to our approach, assume
global knowledge (i.e., trajectories of all dynamic objects).

5.4.1 Problem Description

Environment representation. Consider a 2-dimensional discrete environment W ⊆ R2 with
size H×W and a set of Ns static obstacles Cs = {s1, ...,sNs}, where si ⊂W denotes the ith

static obstacle. The free space W \Cs is represented by a roadmap G = ⟨C f ,E ⟩, where
C f = {c1, ...,cN f }= W \Cs represents the set of free cells and ei j = (ci,c j)⊂ E represents
the traversable space between free cells ci and c j that does not cross any other cell (the
minimum road segment). In this work, we initially approach the task in a discrete-time
domain, aligning with the subsequent definition of time presented in the follow-up content.
The set of dynamic obstacles Cd(t) = {d1(t), ...,dNd(t)} denotes the position of Nd dynamic
obstacles at time t, where for alli, j, t, di(t)⊂ C f , (di(t),di(t +1))⊂ E or di(t) = di(t +1),
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and di(t) ̸= d j(t). In addition, if di(t + 1) = d j(t), then d j(t + 1) ̸= di(t), i.e., any motion
conflict should be avoided.

Global guidance. A traversable path G = {g(t)} is defined by the following rules: 1) the
initial location g(0) = cstart and there is a time step t f that for allt ≥ t f , g(t) = cgoal . Note
that, cstart ,cgoal ∈ C f ; 2) for allt, g(t) ∈ C f , (g(t),g(t + 1)) ∈ E . The global guidance G ∗

is the shortest traversable path, defined as G ∗ = argmint f G , between the initial location
cstart and the goal cgoal . Note that the global guidance is generated by A∗ here and it can be
other shortest path algorithms. It may not be unique in the discrete world, and therefore, we
randomly choose one instance in this work.

Assumptions. We assume that the robot knows the information of all the static obstacles
and calculates the global guidance at the start of each run. Note that the global guidance is
only calculated once and remains the same. During robot motion, we assume that the robot
can obtain its global location in the environment and acquire global guidance information.
However, we do not assume that the trajectories of dynamic obstacles are known to the robot.
The robot can only obtain the current location of dynamic obstacles when they are within its
local field of view.

Local observation. The robot has a local field of view (FOV) within which it observes the
environment. More specifically, at each time step t, the robot collects the local observation
Ot = {o f

t ,os
t ,o

d
t } which is a collection of the location of free cells o f

t , static obstacles os
t

and dynamic obstacles od
t , within the local FOV with the size of Hl×Wl . In addition, we

also define a local segment of the global guidance G ∗ as the local path segment G ∗t , which
is located within the robot local FOV. Both Ot and G ∗t are considered as the system input
information at each time t.

Robot action. The robot action set is defined as A = {Up,Down,Left,Right, Idle}, i.e., at
each time step, the robot can only move to its neighboring locations or remain in its current
location.

Objective. Given as input the local segment G ∗t of the global guidance, the current local
observation Ot , and a history of local observations Ot−1,..., Ot−(Nt−1), output an action
at ⊂ A at each time step t that enables the robot to move from the start cell cstart to the
goal cell cgoal with the minimum number of steps while avoiding conflicts with static and
dynamic obstacles.
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Fig. 5.6 The overall structure of our method. The input of each step is the concatenation
of the transformed local observation and the global guidance information. A sequence of
historical inputs is combined to build the input tensor of the deep neural network, which
outputs a proper action for the robot.

5.4.2 RL-Enhanced Hierarchical Path Planning

In this section, we first describe the overall system structure and then present details of our
approach.

System Structure

Figure 5.6 illustrates the overall system structure, which shows that our local RL planner
contains four main modules:

1. Composition of network input: Firstly, we transform the local observation Ot into a
graphic, and use its three channels (RGB data) in combination with a guidance channel to
compose the current input. Then a sequence of historical inputs is used to build the final
input tensor;

2. Spatial processing: Secondly, we utilize a series of 3D CNN layers to extract features
from the input tensor, then reshape the feature into Nt one-dimensional vectors;

3. Temporal processing: Thirdly, we use an LSTM layer to further extract the temporal
information by aggregating the Nt vectors;

4. Action policy: Finally, we use two fully connected (FC) layers to estimate the quality qi

of each state-action pair and choose the action ai ⊂A with maxi qi.
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...

Fig. 5.7 An illustration of our reward function. The green, black, yellow and red cells repre-
sent the static obstacle, the global guidance, the dynamic obstacle and the robot, respectively.
At t = 7, the robot reaches a global guidance cell ci and receives the reward based on the
number of eliminated guidance cells.

Global Guidance and Reward Function

The main role of global guidance is to provide long-term global information. By introducing
this information, the robot receives frequent feedback signals in arbitrary scenarios, no matter
how large the environment and how complex the local environments are. We achieve this
by proposing a novel reward function that provides dense rewards while simultaneously not
requiring the robot to follow global guidance strictly. In this manner, we encourage the robot
to explore all the potential solutions while also promoting the convergence of learning-based
navigation.

More specifically, at each step, the reward function offers: 1) A small negative reward
r1 < 0 when the robot reaches a free cell which is not located on the global guidance; 2) A
large negative reward r1 + r2 when the robot conflicts with a static obstacle or a dynamic
obstacle, where r2 < r1 < 0; 3) A large positive reward r1 +Ne× r3 when the robot reaches
one of the cells on the global guidance path, where r3 > |r1| > 0 and Ne is the number of
cells removed from the global guidance path, between the point where the robot first left that
path, to the point where it rejoins it.

The reward function can be defined formally as:

R(t) =





r1 if cr(t +1) ∈ C f \G ∗

r1 + r2 if cr(t +1) ∈ Cs∪Cd(t +1)

r1 +Ne× r3 if cr(t +1) ∈ G ∗ \Cd(t +1)

(5.5)

where cr(t +1) is the robot location after the robot takes the action at at time t, R(t) is the
reward value of action at .

Figure 5.7 shows an example of our reward function. At t = 0, since there is a dynamic
obstacle in front, our RL planner moves the robot to the lower cell to avoid conflict. From
t = 1 to t = 6, the robot does not need to return to the global guidance path immediately, but
can continue to move left until it reaches one cell ci located on the global guidance path at
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t = 7. Here R(0) = R(1) = R(2) = R(3) = R(4) = R(5) = r1 and R(6) = r1 +7× r3, since
at t = 7, Ne = 7 cells have been removed in the global guidance.

We remove the path segment up to ci as soon as the robot obtains the reward R(6) to
ensure that the reward of each cell on the global guidance path can only be collected once.
The removed guidance cells will be marked as normal free cells (white cells) in the graphic
images inputted in the following iterations. In contrast to IL-based methods, we do not
require the robot to strictly follow the global guidance at each step, since the robot receives
the same cumulative reward as long as it reaches the same guidance cell given from the
same start cell. As a result, our model can also be trained from scratch without IL, which
circumvents potentially biased solutions [180].

In the training process, we stop the current episode once the robot deviates from the
global guidance too much, namely, if no global guidance cell can be found in the FOV of the
robot.

Local RL Planner

As shown in Figure 5.6, we transform a robot’s local observation into an observation image
defined as: 1) The center pixel of the image corresponds to the current robot position, the
image size is the same as the robot’s FOV Hl×Wl , i.e., one pixel in the image corresponds
to one cell in the local environment; 2) All the static and dynamic obstacles observed are
marked in the image, where we use one color to represent static obstacles and another color
to denote dynamic ones. In addition, a guidance channel that contains the local path segment
G ∗t of the global guidance is introduced to combine with the three channels (RGB data) of
the observation image, to compose the current input It . Our RL planner takes the sequence
St = {It ,It−1...It−(Nt−1)} as the inputs at step t.

We use Double Deep Q-Learning (DDQN) [193] for our RL planner. At time step t, the
target value Yt = R(t), if ct+1 = cgoal , otherwise,

Yt = R(t)+ γQ(St+1,argmax
at

Q(St+1,at ;θ);θ
−) (5.6)

where Q(.) is the quality function, θ and θ− are the current and target network parameters
respectively, γ is the discount value and R(t) is defined in (5.5). To update the parameters θ ,
we sample Nb transitions from the replay buffer, and define the loss L as:

L =
1

Nb

Nb

∑
j=1

(Y j
t −Q(S j

t ,a
j
t ;θ))2. (5.7)
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As shown in Figure 5.6, our model is comprised of 3D CNN layers followed by LSTM
and FC layers. The input is a five-dimensional tensor with size Nt×Hl×Wl×4, where Nb is
the batch size sampled from the replay buffer.

We first use 3D CNN layers to extract spatial information. The size of the convolutional
kernel is 1×3×3. We stack one CNN layer with kernel stride 1×1×1 and another with
stride 1×2×2 as a convolutional block, which repeats Nc times for downsampling in the
spatial dimension. The embeddings extracted by the CNN layers are reshaped into Nt one-
dimensional vectors and fed into the LSTM layer to extract temporal information. Two FC
layers are attached to the LSTM layer, where the first layer (followed by a ReLU activation
function) reasons about the extracted information and the second layer directly outputs the
value qi of each state-action pair (St ,ai) with a Linear activation function.

Application to Reactive Multi-Robot Path Planning

The main idea of our local RL planner is to encourage the robot to learn how to avoid
surrounding obstacles while following global guidance. Since robots only consider local
observations and global guidance, and do not need to explicitly know any trajectory in-
formation nor motion intentions of other dynamic obstacles or robots, the resulting policy
can be copied onto any number of robots and, hence, scales to arbitrary numbers of robots.
Based on the aforementioned rationale, our approach is easily extended to resolving the
multi-robot path planning problem in a fully distributed manner, whereby dynamic obstacles
are modeled as independent mobile robots. Each robot considers its own global guidance and
local observations to generate actions. Since we do not require communication among robots,
this is equivalent to an uncoordinated reactive approach. Note that the above extension
is fully distributed, can be trained for a single agent (i.e., robot) and directly used by any
number of other agents.

5.4.3 Implementation

In this section, we introduce the network parameters and describe our training and testing
strategies.

Model Parameters

In the experiments, we use the A* algorithm to generate the global guidance. The default
parameters are set as follows: robot local FOV size Hl =Wl = 15, the length of input sequence
Nt = 4, the reward parameters r1 =−0.01, r2 =−0.1, and r3 = 0.1. The convolutional block
is repeated Nc = 3 times with input batch size Nb = 32. The activation functions are ReLU.
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(a) Regular map (b) Random map (c) Free map

Fig. 5.8 Map examples. The black and colored nodes represent the static and dynamic
obstacles respectively. Map parameters can be found in Section 5.4.3.

We use 32 convolution kernels in the first convolutional block and double the number of
kernels after each block. After the CNN layers, the shape of feature maps is 4×2×2×128.
In the LSTM layer and the two FC layers, we use 512, 512, and 5 units, respectively.

Environments

As shown in Figure 5.8, we consider three different environment maps to validate our
approach, i.e., a regular map, a random map, and a free map. The first one imitates warehouse
environments and contains both static and dynamic obstacles, where the static obstacles are
regularly arranged and the dynamic ones move within the aisles. In the random map, we
randomly set up a certain density of static obstacles and dynamic obstacles. In the free map,
we only consider a certain density of dynamic obstacles. The default size of all the maps is
100×100. The static obstacle density in each map is set to 0.392, 0.15, and 0, respectively,
and the dynamic obstacle density is set to 0.03, 0.05, and 0.1, respectively.

Dynamic obstacles are modeled as un-controllable robots that are able to move one
cell at each step in any direction. Their start/goal cells are randomly generated, and their
desired trajectories are calculated through A* by considering the current position of any other
obstacles. During training and testing, each dynamic obstacle continuously moves along its
trajectory, and when motion conflict occurs, it will: 1) with a probability of 0.9, stay in its
current cell until the next cell is available; 2) otherwise, reverse its direction and move back
to its start cell.
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Training and Testing

We train our model with one NVIDIA GTX 1080ti GPU in Python 3.6 with TensorFlow
1.4 [194]. The learning rate is fixed to 3×10−5, and the training optimizer is RMSprop. We
use ε-greedy to balance exploration and exploitation. The initial value is set to be ε = 1
and decreases to 0.1 linearly when the total training steps reach 200,000. In training, we
randomly choose one of the three maps as the training map and configure the dynamic
obstacles by following the settings in Section 5.4.3. Then we randomly select two free cells
as the start and goal cells. During the training, we end the current episode and start a new one
if one of the following conditions is satisfied: 1) the number of training steps in the current
episode reaches a maximum defined as Nm = 50+10×Ne; 2) the robot can not obtain any
global guidance information in its local FOV; 3) the robot reaches its goal cell cgoal . In
addition, after the robot completes 50 episodes, the start and goal cells of all the dynamic
obstacles are re-randomized.

Before learning starts, one robot explores the environment to fill up the replay buffer,
which is comprised of a Sumtree structure to perform prioritized experience replay [195].
Note that Sumtree is a binary tree, which computes the sum of the values of its children as
the value of a parent node. In each episode, the robot samples a batch of transitions from
the replay buffer with prioritized experience replay (PER) based on the calculated temporal
difference error by the DDQN algorithm. During testing, all methods are executed on an
Intel i7-8750H CPU.

Performance Metrics

The following metrics are used for performance evaluation:

• Moving Cost:

Moving Cost =
Ns

||cgoal− cstart ||L1
(5.8)

where Ns is the number of steps taken and ||cgoal − cstart ||L1 is the Manhattan distance
between the start cell and the goal cell. This metric is used to indicate the ratio of actual
moving steps w.r.t the ideal number of moving steps without considering any obstacles.

• Detour Percentage:

Detour Percentage =
Ns−LA∗(cstart ,cgoal)

LA∗(cstart ,cgoal)
×100% (5.9)
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Table 5.1 Single robot path planning results: Moving costs and detour percentages of different
approaches. Values are listed as “mean (standard deviation)" across 100 instances. The
lowest (best) values are highlighted.

Moving Cost Detour Percentage Computing Time (s)
Local Global Naive Ours Local Global Naive Ours Local Global Ours

Regular-50 1.58(0.50) 1.31(0.29) 1.38(0.35) 1.18(0.16) 36.7(46)% 23.7(27)% 31.5(34)% 15.2(15)% 0.004 0.003 0.011
Regular-100 1.57(0.35) 1.23(0.21) 1.42(0.31) 1.12(0.12) 36.3(34)% 18.7(20)% 39.5(30)% 10.7(12)% 0.005 0.004 0.012
Regular-150 1.50(0.32) 1.19(0.14) 1.36(0.26) 1.09(0.08) 33.3(32)% 16.0(14)% 35.0(36)% 8.2(8)% 0.007 0.004 0.015
Random-50 1.35(0.28) 1.28(0.18) 1.36(0.28) 1.21(0.13) 25.1(26)% 21.1(17)% 30.1(35)% 16.7(12)% 0.005 0.004 0.013
Random-100 1.43(0.27) 1.26(0.14) 1.34(0.29) 1.15(0.10) 30.0(26)% 20.5(14)% 32.3(34)% 13.0(10)% 0.006 0.006 0.015
Random-150 1.37(0.17) 1.17(0.09) 1.40(0.28) 1.11(0.08) 27.0(17)% 14.5(9)% 39.4(40)% 9.1(8)% 0.010 0.006 0.018

Free-50 1.27(0.20) 1.24(0.15) 1.31(0.24) 1.14(0.09) 21.2(20)% 19.4(15)% 28.9(23)% 12.3(9)% 0.008 0.007 0.018
Free-100 1.31(0.13) 1.21(0.11) 1.34(0.25) 1.11(0.07) 23.6(13)% 17.3(11)% 33.6(25)% 9.1(7)% 0.015 0.011 0.022
Free-150 1.27(0.12) 1.14(0.06) 1.32(0.22) 1.07(0.05) 21.2(12)% 12.3(6)% 31.5(22)% 6.5(5)% 0.017 0.013 0.028

where LA∗(cstart ,cgoal) is the length of the shortest path between the start cell and the goal
cell, which is calculated with A* algorithm by only considering the static obstacles. This
metric indicates the percentage of detour w.r.t the shortest path length.

• Computing Time: This measure corresponds to the average computing time at each step
during the testing.

5.4.4 Results

In this section, we present comparative results for both the single-robot and multi-robot path
planning tasks.

Single-Robot Path Planning Results

We compare our approach with dynamic A* based methods with global re-planning and local
re-planning strategies, and we call these two methods Global Re-planning and Local
Re-planning respectively. For Global Re-planning, each time the robot encounters a
conflict, an alternative path is searched for from the current cell to the goal cell by using
the A* method, considering the current position of all the dynamic obstacles. For Local
Re-planning, an alternative path is searched for from the current cell to the farthest cell
within the robot’s FOV. We also compare our reward function with a naive reward function,
which strictly encourages the robot to follow the global guidance. Concretely, if the robot’s
next location is on the global guidance, we give a constant positive reward R(t) = 0.01.
Otherwise, we give a large negative reward R(t) = r1 +Dr× r4, where r4 =−0.03 and Dr

is computed by calculating the distance between the robot’s next location with the nearest
global guidance cell. We set a time-out for all the tests, within which time if the robot can
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not reach its goal, this test is defined as a failure case. In each test, the time-out value is
set as double of the Manhattan distance between the start cell and the goal cell of the robot.
We train our model and the naive reward-based model by using both the three environments
shown in Figure 5.8, and then compare our testing results with Global Re-planning and
Local Re-planning in the three environments separately. For each map, we separate the
comparison into three groups with different Manhattan distances between the start cell and
the goal cell, which are set to 50, 100, and 150, respectively. For each group, 100 pairs of
start and goal locations are randomly selected and the mean value and its standard deviation
are calculated. The desired trajectories of dynamic obstacles are consistent among the testing
of each method for a fair comparison.

The comparison results in Table 5.1 validate that: 1) Compared with Local Re-planning
and Global Re-planning, our approach uses the smallest number of moving steps in all
the cases. 2) Our approach has the smallest standard deviations in all the cases, which
demonstrates our consistency across different settings. 3) Since under the naive reward
function, the robot is encouraged to follow the global guidance strictly, its performance is
much worse than when utilizing our reward function. The naive reward introduces more
detour steps and waiting time steps in the presence of motion conflicts, and may even cause
deadlocks (which further lead to failure cases). In contrast, our reward function ensures the
convergence of the navigation tasks while simultaneously encouraging the robot to explore
all the potential solutions to reach the goal cell with the minimum number of steps. Please
note that the Moving Cost and Detour Percentage are calculated by only considering the
successful cases. The range of success rate of the naive reward based approach is between
68%− 89%, whereas for ours it is consistently 100%. 4) Our computing time is slightly
higher than Local Re-planning and Global Re-planning, but still remains within an
acceptable interval. Our maximum computing time is about 28ms, which means that our
RL planner achieves an update frequency of more than 35Hz on the given CPU platform,
fulfilling the real-time requirements of most application scenarios.

Table 5.2 Ablation study on different robot FOV sizes. Values are the mean values of the
Moving Cost index.

Hl×Wl 7×7 9×9 11×11 13×13 15×15
Random-50 1.49 1.35 1.32 1.24 1.21

Random-100 1.33 1.25 1.23 1.17 1.15
Random-150 1.27 1.21 1.18 1.14 1.13
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Table 5.3 Ablation study on different input sequence lengths. Values are the mean values of
the Moving Cost index.

Nt 1 2 3 4
Random-50 1.42 1.28 1.22 1.21

Random-100 1.48 1.34 1.21 1.15
Random-150 1.56 1.31 1.19 1.13

We further test the effect of different robot FOV size and input sequence length Nt on
the performance. The random map in Figure 5.8 is used, and the start and goal cells are
generated with fixed Manhattan distances of 50, 100, and 150. For each value, 100 pairs of
start and goal cells are tested. We first choose different values of the FOV size of Hl×Wl

for comparison. The results in Table 5.2 show that: 1) As the FOV size increases, the robot
reaches the goal cell in less average steps. 2) The performance improvement is not significant
when the FOV size is large than 13×13. Since a smaller FOV size implies a smaller learning
model, a FOV size of 15×15 is large enough for our cases to balance the performance and
computation cost. We then compare different values of the input sequence length Nt for
comparison. For ease of implementation, we keep the same network input size in all the
cases and use empty observation images for the cases with Nt < 4. Note that if Nt = 1, the
robot loses all the temporal information of the dynamic obstacles and only considers the
current observation. The results in Table 5.3 show that: 1) Introducing the historical local
observation information improves the system performance in all the cases significantly. 2)
When Nt > 3, increasing Nt only marginally improves the performance. Since a smaller
Nt implies a smaller learning model, Nt = 4 is large enough for our cases to balance the
performance and computation cost.

Table 5.4 Experiment results in unseen environments

Local Global Ours
Moving Cost 1.46(0.19) 1.21(0.08) 1.12(0.06)

Detour Percentage 42.8(19)% 20.5(8)% 9.6(6)%

Next, we test our approach in an unseen environment to validate its generalizability. The
environment is an enlarged version of the random map in Figure 5.8 with a size 200×200.
The densities of static and dynamic obstacles are set to 0.15 and 0.05, respectively. We
randomly generate 100 pairs of start and goal cells with a constant Manhattan distance of
200. Note that we directly use the model trained in the small maps for testing. The results in
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Table 5.5 Multi-robot path planning results: success rate and computational time of different
approaches

Success Rate Computing Time (ms)
ECBS HCA* Global Re-planning Discrete-ORCA PRIMAL Ours Discrete-ORCA PRIMAL Ours

Regular 100% 100% 95.7% 88.7% 92.3% 99.7% 2.064(0.107) 5.892(0.104) 6.367(0.337)
Random 100% 100% 98.2% 55.0% 80.6% 99.7% 1.233(0.044) 6.620(0.280) 6.206(0.260)

Free 100% 100% 98.8% 99.5% 75.7% 99.8% 1.480(0.050) 7.319(0.300) 6.246(0.277)

Table 5.1 and Table 5.4 show that our approach performs consistently well, under different
environments, which validates the scalability and generalizability of our approach.

Comparison with Multi-Robot Path Planning Methods

We apply our method to the problem of multi-robot path planning, and compare it to five state-
of-the-art benchmarks: (i) a decoupled dynamic A* based method, Global Re-planning,
(ii) a decoupled path planning method, HCA∗[10], (iii) a centralized optimal path planning
method, Conflict-Based Search (CBS)[14], (iv) a velocity-based method ORCA[45] and, (v),
the RL based approach PRIMAL[15]. For HCA∗, the priorities of the robots are randomly
chosen. For CBS, since computing an optimal solution when the robot number is larger than
50 is often intractable, we use its sub-optimal version ECBS [14] with a sub-optimality bound
set to 1.03. For ORCA, we calculate the next position of the robot by only considering the
angle of the velocity output and thus transform the continuous-space ORCA into a discrete
version Discrete-ORCA. It should be noted that neither our approach nor PRIMAL has been
trained in the testing maps. For PRIMAL, we directly use the trained model provided online
by the authors 3. In our approach, we directly use the model trained in a single robot case.

Comparisons are performed in three different maps with size 40×40 and varying numbers
of robots, which are smaller versions of the maps in Figure 5.9. The static obstacle densities
are set to 0.45, 0.15, and 0 in the regular, random, and free maps, respectively, and the robot
numbers are set to 32, 64, and 128. In each map, we generate 100 random configurations of
robots with different start and goal cells. To ensure the solvability of the problem, once each
robot arrives at its goal cell, we remove the robot from the environment to avoid conflicts. We
set a time-out of 100 time-steps for all the tests, within which time, if any robot can not reach
its goal, this test is defined as a failure case. In Figures 5.9 (a)-(c), we compare the number of
robots that have reached their goals as a function of time. In Figures 5.9 (d)-(f), we compare
the flowtime of the different approaches, which is defined as the sum of traversal time steps
across all the robots involved in the instance. In Table 5.5, we compare their success rates
and computing times. Since in Global Re-planning, ECBS and HCA∗, the robot action is

3https://github.com/gsartoretti/distributedRL_MAPF

https://github.com/gsartoretti/distributedRL_MAPF


5.4 Mobile Robot Path Planning in Dynamic Environments through Globally Guided
Reinforcement Learning 121

0 20 40 60 80 100
Time steps

0

4

8

12

16

20

24

28

32

N
um

be
r 

of
 r

ob
ot

s r
ea

ch
ed

 g
oa

ls

ECBS

HCA*  

G2RL
PRIMAL
Discrete-ORCA

Global Re-planning

(a) Regular map

0 20 40 60 80 100
0

8

16

24

32

40

48

56

64

Time steps

N
um

be
r 

of
 r

ob
ot

s r
ea

ch
ed

 g
oa

ls

ECBS

HCA*  

PRIMAL 
G2RL

Discrete-ORCA

Global Re-planning

(b) Random map

0 20 40 60 80 100
0

16

32

48

64

80

96

112

128

Time steps

N
um

be
r 

of
 r

ob
ot

s r
ea

ch
ed

 g
oa

ls

ECBS

HCA*  

PRIMAL 
G2RL

Discrete-ORCA

Global Re-planning

(c) Free map

600 800 1000 1200 1600 1800 200014000.000

0.002

0.004

0.006

0.008

0.010

Pr
ob

ab
ili

ty
 d

en
si

ty

Flowtime

ECBS
Global Re-planning 
HCA*  
Discrete-ORCA 
PRIMAL
G2RL

(d) Regular map (Flowtime)

1500 2000 2500 3000 3500 4000 4500 5000
Flowtime

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
Pr

ob
ab

ili
ty

 d
en

si
ty

ECBS
Global Re-planning 
HCA*  
Discrete-ORCA 
PRIMAL
G2RL

(e) Random map (Flowtime)

3000 4000 6000 70005000 0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Pr
ob

ab
ili

ty
 d

en
si

ty

Flowtime

ECBS
Global Re-planning 
HCA*  
Discrete-ORCA 
PRIMAL
G2RL

(f) Free map (Flowtime)

Fig. 5.9 Multi-robot path planning results. The upper row shows the number of reached
robots at different steps of different approaches in three testing maps. The solid lines show
the average number across 100 tests, and the shadow areas represent the standard deviations.
The lower row plots the corresponding histograms of flowtime values. The flowtime of all
the failure cases is set to the maximum time step 100.

not generated online at each step, we only compare the computing time of Discrete-ORCA,
PRIMAL and our approach. The computing time is normalized by the average flowtime.

These results show that: 1) Our approach maintains consistent performance across dif-
ferent environments, outperforming Global Re-planning and PRIMAL, also outperforming
Discrete-ORCA in most cases (Discrete-ORCA can not handle the crowded static obsta-
cles, so it is only effective in the free map). ECBS and HCA∗ achieve the best performance
overall, since they are both centralized approaches that have access to all robots’ trajectory
information. In HCA∗, the trajectory information of all robots with higher priorities is shared
and utilized in the planning of the robots with lower priorities. Our approach is in stark
contrast to these approaches, since it is fully distributed and non-communicative (i.e., re-
quiring no trajectory information of other robots). 2) Our success rate is similar to that of
ECBS and HCA∗, and higher than Global Re-planning, Discrete-ORCA and PRIMAL. The
results show that our approach outperforms all the distributed methods, which validates its
robustness, scalability, and generalizability. We note that in contrast to PRIMAL, which uses a
general ‘direction vector’[15], we utilize the global guidance instead. The global guidance
provides dense global information which considers all the static obstacles. Thus, our method
is able to overcome many of the scenarios (e.g., deadlocks) where PRIMAL gets stuck.
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5.5 Conclusion

In this chapter, we explored two approaches to maintain the interpretability and guarantee
bounded optimality of solutions when deploying a machine learning approach to solving
path planning problems.

Firstly, we proposed the Graph Transformer as a heuristic function to accelerate CBS
by guiding the tree search toward promising nodes with feasible solutions. While achiev-
ing significant acceleration, our approach guarantees provable completeness and bounded-
suboptimality. We show that in two continuous environments with dense motion graphs,
our method outperforms three classical MAPF baselines (CBS, ECBS, and ORCA), while
generalizing to unseen tests with a higher number of agents remarkably well.

Secondly, we introduced G2RL, a hierarchical path-planning approach that enables end-
to-end learning with a fixed-sized model in arbitrarily large environments. We provided
an application of our approach to distributed uncoupled multi-robot path planning that is
naturally scaled to an arbitrary number of robots. Compared with traditional path planning ap-
proaches, our proposed method is able to exploit both spatial and temporal information from
raw sensory observations, which avoids unnecessary detours in large complex environments.
Compared with other learning-based approaches, our proposed method has the advantage
of being able to keep a fixed learning model in arbitrarily large environments. It avoids
over-fitting as the map grows larger and reduces the computation cost. Experimental results
validated the robustness, scalability, and generalizability of this path-planning approach.
Notably, we demonstrated that its application to multi-robot path planning outperforms
existing distributed methods and that it performs similarly to state-of-the-art centralized
approaches that assume global dynamic knowledge.



Chapter 6

Conclusion and Future Work

In this thesis, I address (i) how to use GNN-based decentralized approaches to compute
near-optimal solutions fast, (ii) how we build a ROS2-based decentralized system to port our
solution to reality, (iii) how to generate a bounded-optimality solution or interpret the solution.
These three components can also be broken into four key topics, as they are central to the
learning process: expert and data generation, communication strategies for decentralized
control, sim-to-real transfer, and bounded optimality and interpretability. We will discuss
them in detail as follows.

6.1 Experts and Data Generation

How to generate expert data? In the Section ‘Expert Data Generation’ from Chapter. 3,
we showed that it is possible to train decentralized controllers to learn communication and
action policies that optimize a global objective by imitating a centralized optimal algorithm
(CBS) as the expert. The former work considered the specific case-study of multi-agent path
planning, and used Conflict-Based Search (CBS) [196] to find optimal solutions (i.e., sets of
optimal, collision-free paths). CBS was deployed offline to generate sets of optimal, collision-
free paths, and used it only during the training stage. Although their results demonstrated
unprecedented performance in decentralized systems (i.e., achieving higher than 96% success
rates with single-digit flowtime increases, compared to the expert solution), but observed
poor generalization. Simply training the models through behavior cloning leads to bias and
over-fitting, since the performance of the network is intrinsically constrained by the dataset.
Alternative approaches include learning curricula [197] to optimize the usage of the existing
training set, or the introduction of data augmentation mechanisms, which allow experts to
teach the learner how to recover from past mistakes.
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How to augment existing datasets? One of the major limitations of behavior cloning is
that it does not learn to recover from failures, and is unable to handle unseen situations [198].
For example, if the policy has deviated from the optimal trajectory at one-time step, it will
fail in getting back to states seen by the expert, hence, resulting in a cascade of errors. One
solution (i.e., DAgger [112]) is to introduce the expert during training to teach the learner
how to recover from past mistakes.

In Section ‘Expert Data Generation’ from Chapter. 3, we demonstrated the utility of
this approach by making use of a novel dataset aggregation method that leverages an online
expert to resolve hard cases during training. Other approaches are to directly extract a policy
from training data, such as GAIL [199]. More broadly speaking, with data augmentation,
one can produce arbitrary amounts of training data from arbitrary probability distributions
to account for a variety of factors, such as roadmap structure, local environment, obstacle
density, motion characteristics, and local robot configurations. Such carefully controlled
distributions enable us to introduce different levels of local coordination difficulties and
generate the most challenging instances at each training stage, inherently achieving a form
of curriculum learning. In addition, data augmentation allows us to understand the ability
boundary of the trained model, to analyze the correlation between different factors, and to
find identify factors that have the strongest effect on the system performance.

6.2 Communication Strategies for Decentralized Control

What, how and when to send information? While effective communication is key to
decentralized control, it is far from obvious what information is crucial to the task, and
what must be shared among agents. This question differs from problem to problem and
the optimal strategy is often unknown. Hand-engineered coordination strategies often fail
to deliver the desired performance, and despite ongoing progress in this domain, they still
require substantial design effort. Recent work has shown the promise of Graph Neural
Networks (GNNs) to learn explicit communication strategies that enable complex multi-
agent coordination [118, 117, 18, 19]. In the context of multi-robot systems, individual robots
are modeled as nodes, the communication links between them as edges, and the internal
state of each robot as graph signals. By sending messages over the communication links,
each robot in the graph indirectly receives access to the global state. The key attribute of
GNNs is that they compress data as it flows through the communication graph. In effect, this
compresses the global state, affording agents access to global data without inundating them
with the entire raw global state. Since compression is performed on local networks (with
parameters that can be shared across the entire graph), GNNs are able to compress previously
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unseen global states. In the process of learning how to compress the global state, GNNs
also learn which elements of the signal are the most important, and discard the irrelevant
information [118]. This produces a non-injective mapping from global states to latent states,
where similar global states ‘overlap’, further improving generalization. SchedNet[200] was
proposed based on a multi-agent deep reinforcement learning framework that enables agents
to schedule communication, encode messages, and select actions based on received messages

Are all messages equally important? Unfortunately, if communication happens concur-
rently and equivalently among many neighboring robots, it is likely to cause redundant
information, burden the computational capacity and adversely affect overall team perfor-
mance. Hence, new approaches towards communication-aware planning are required. A
potential approach is to introduce attention mechanisms to actively measure the relative
importance of messages (and their senders). Attention mechanisms have been actively stud-
ied and widely adopted in various learning-based models [114], which can be viewed as
dynamically amplifying or reducing the weights of features based on their relative importance
computed by a given mechanism. Hence, the network can be trained to focus on task-relevant
parts of the graph [107].

In Sec. 3.5 from Chapter. 3, we integrated an attention mechanism with a GNN-based
communication strategy to allow for message-dependent attention in a multi-agent path
planning problem. A key-query-like mechanism determines the relative importance of
features in the messages received from various neighboring robots. Their results show that it
is possible to achieve performance close to that of a coupled centralized expert algorithm,
while scaling to problem instances that are ×100 larger than the training instances.

6.3 Sim-to-Real Transfer

Expert data is typically generated in a simulation, yet policies trained in simulation often do
not generalize to the real world. This is referred to as the reality gap [201].

Why is sim-to-real transfer difficult? Even though simulations have become more realistic
and easily accessible over recent years [202, 203], it is computationally infeasible to replicate
all aspects of real-world physics in a simulation since the uncertainty and randomness
of complex robot-world interactions are difficult to model. Domain randomization is an
intuitive solution to this problem, but also makes the task of learning harder than necessary
and therefore results in sub-optimal policies. While the reality gap is a major challenge in
computer vision, robotics also deals with the physical interaction with the real world and
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physical constraints such as inertia, for example in robotic grasping [155, 204], drone flight
[205, 206] or robotic locomotion [207, 208].

Why is sim-to-real transfer even more difficult for multi-robot systems? While sim-to-real
in the single-robot domain typically deals with robot-world interaction, the multi-robot
domain is also concerned with robot-robot interactions. An example of this is a swarm of
drones flying closely to each other and turbulence affecting the motions of other drones in
the vicinity. We already have established that communication is key to efficient multi-robot
interaction, but it is not obvious how such communications are affected by the reality gap.
Multi-robot coordination is typically trained in a synchronous manner, but when deploying
these policies to the real-world, decentralized communication is asynchronous. Further-
more, randomness such as message dropouts and delays are typically not considered during
synchronous training. To the best of our knowledge, no research has been conducted that
evaluates those factors and the impact they have on the performance of policies. Decentraliza-
tion is key to successful multi-agent systems, therefore decentralized mesh communication
networks are required to operate multi-robot systems in the real world, which may pose
additional challenges to the sim-to-real transfer. Lastly, during cooperative training it is
typically assumed that all agents are being truthful about their communications, but faulty
and malicious agents can be part of the real world and cause additional problems [37, 209].

How do we build up decentralized multi-robot systems? Even though GNNs have an
inherently decentralizable mathematical formulation, previous work on GNN-based multi-
robot policies was conducted exclusively in centralized simulations using synchronous
communication [19, 118, 18]. To port our solution into reality, in Sec. 4.3 from Chapter 4,
we developed a ROS2-based system that allows for the fully decentralized execution of
GNN-based policies. With this, the policies derived through GNN-based learning schemes
can be deployed to the real world on physical multi-robot systems. We demonstrated our
framework on a case study that requires tight coordination between robots, and presented
first-of-a-kind results that showed the successful real-world deployment of GNN-based
policies on a decentralized multi-robot system relying on Adhoc communication. In the case
study of this work, we used domain randomization to facilitate the process of making the
real-world a permutation of the training environment as a simple solution before deploying
the trained policy into real-world. Yet, it led to an observable sim-to-real gap.

How can we close the reality gap? In Sec. 4.4 from Chapter. 4, we proposed a vision-
only-based learning approach that leverages a GNN to encode and communicate relevant
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viewpoint information to the mobile robot. During navigation, the robot is guided by a
model that we train through imitation learning to approximate optimal motion primitives,
thereby predicting the effective cost-to-go (to the target). Our experiments demonstrated its
generalizability in guiding robots in previously unseen environments with various sensor
layouts.

We see a few possible avenues to tackle the sim-to-real transfer for multi-robot com-
munication. More realistic (network) simulations [120] are always helpful, but also costly
alternatives. Methods such as sim-to-real via real-to-sim [210] or training agents in the
real-world in a mixed reality setting [211] and federated, decentralized learning where indi-
vidual robots collect data and use it to update a local model that is then aggregated into a
global model can benefit the sim-to-real transfer [212, 213]. Federated learning allows each
robot to keep its local data private, as the training process occurs locally without sharing the
raw data with a central server. Federated learning can accommodate large-scale multi-robot
systems since the training process is distributed across multiple robots. This enables efficient
utilization of computational resources and can handle a growing number of robots. Each
robot in a decentralized multi-robot system may have different sensory inputs, environmental
conditions, or task requirements. Federated learning allows individual robots to adapt their
local models based on their unique experiences, enhancing the system’s overall performance
and versatility.

6.4 Bounded-suboptimality and Interpretability

Vanilla GNN-based decentralized path planning has demonstrated its performance empirically
via an end-to-end learning approach. However, these black box approaches are facing
challenges to directly deploy in the actual workplace, as they are hard to find a guaranteed
and interpretable solution.

How to generate a bounded-suboptimal solution? In Sec. 5.3, we designed Graph Trans-
former, as a heuristic function, to accelerate the focal search within Conflict-Based Search
(CBS) in a non-grid setting, especially dense graphs. Our framework guarantees both the
completeness and bounded suboptimality of the solution. This approach also can be our first
attempt to deploy our method from a discrete into a continuous domain.

How to make the reward mechanism in RL interpretable? Re-planning strategies are
commonly used to cope with dynamic obstacles, where a planning algorithm searches for an
alternative path whenever the robot encounters a conflict. To avoid the unnecessary detours
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caused by re-planning strategies, For the explainability and interpretability of reinforcement
learning, in Sec. 5.3, we introduced a globally Guided Reinforcement Learning approach
(G2RL), which first utilizes a global path planning algorithm (for example, A*) to obtain a
globally optimal path, called the global guidance. This novel reward structure provides not
only the interpretability of our framework but also dense rewards. It does not require the
robot to strictly follow global guidance at every step, thus encouraging the robot to explore
all potential solutions. As our reward function is independent of the environment, our trained
framework generalizes to arbitrary environments and can be used to solve the multi-robot
path planning problem in a fully distributed reactive manner.

6.5 Future Avenues

The sections above lay out the challenges entailed by the described approach. Yet, this begs
the following two questions:

Is imitation learning the right paradigm? There are two main approaches to training
a controller for a multi-robot system: imitation learning (e.g., [214]) and reinforcement
learning (e.g., [215]). The most obvious benefit to RL is that it does not require an expert
algorithm, as it simply optimizes a reward. However, the reward function requires careful
consideration to guarantee that the learned controller does not exploit it by using unsafe or
inappropriate actions. Conversely, IL is often biased around regions that can be reached
by the expert and, consequently, if the controller ever finds itself in a previously unseen
situation, it might exhibit unpredictable behavior. Finally, IL is inherently limited by the
expert algorithm. As such, possible future directions should explore the combination of both
IL and RL (e.g., [36]) in the context of decentralized multi-robot systems.

Is it possible to learn small-scale coordination patterns for large-scale systems? Ide-
ally, we hope that controllers trained on only a few robots (which not only facilitates data
generation, but also accelerates the training process), can then be deployed on large-scale
systems with hundreds and even thousands of robots. Achieving this expectation may be
within our reach. A recent example can be found in [77], where the local coordination
behaviors and conventions learned in a partially observable world successfully scales up
to 2048 mobile robots in crowded and highly-structured environments. In Sec. 3.5 from
Chapter. 3, a promising demonstration shows that a policy trained in 20×20 maps with only
10 robots obtains a success rate above 80% in 200×200 maps with 1000 robots in different
environments with 10% obstacle density, and more impressively, the learned policy only
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spends 1
30 computation time compared to the centralized expert. Overall, these preliminary

results give us confidence that we should continue leveraging methods, such as IL, to distill
offline-optimal algorithms to online-scalable controllers.
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Appendix for Chapter 3

]

(a) Random map

Fig. A.1 Two series maps from 28× 28, 35× 35, 40× 40, 45× 45 and 50× 50 maps as
exampples.

1) Dataset Generation Generate a set of large maps (50× 50), then crop to the right
size, where the effective density is consistent β = nrobots+nobs

W×H , where number of obstacles
nrobots = ρ×W ×H, is obstacle density in the map (W ×H), and nrobots is the number of
robots, W , H

• 28×28 map with 20 robots –> 20 cases per map -> Choose 1000 cases for testing

• 35×35 map with 30 robots –> 20 cases per map -> Choose 1000 cases for testing



150 Appendix for Chapter 3

Encoder

Framework (Trained)

Action
𝑢𝑡

MLPCNN

Action
Policy

Detect 
Collision

Reach Goal
YesNo

Yes

Collision
Shielding

Update 𝑍t
𝑖 by action 𝑢𝑡until all robots reach goals or the loop exceeds maximum step

D

Communication

𝑆𝑡

GNN

𝑍t
𝑖

B
A

C

F
in

ish

Fig. A.2 Illustration of the inference stage: for each robot, the input map Zi
t is fed to the

trained framework to predict the action; collisions are detected and prevented by collision
shielding. The input map Zi

t is continuously updated until the robot reaches its goal or
exceeds the timeout Tmax.

• 40×40 map with 40 robots –> 20 cases per map -> Choose 1000 cases for testing

• 45×45 map with 50 robots –> 20 cases per map -> Choose 1000 cases for testing

• 50×50 map with 60 robots –> 20 cases per map -> Choose 1000 cases for testing

2) Effectiveness of Collision Shielding Mechanism As illustrated in Fig. A.2: for each
robot, the input map Zi

t is fed to the trained framework to predict the action; collisions are
detected and prevented by a protective mechanism called collision shielding. The input
map Zi

t is continuously updated until the robot reaches its goal or exceeds the timeout TMax.
Frankly, our model is not guaranteed that robots learn collision-free paths due to the limitation
of imitation learning without explicit collision penalty. We require this additional mechanism
to guarantee that no collisions take place. Collision shielding is implemented as follows:

• if the inferred action would result in a collision with another robot or obstacle, then
that action is replaced by an idle action;

• if the inferred actions of two robots would result in an edge collision (having them
swap positions), then those actions are replaced by idle actions. It is entirely possible
that robots remain stuck in an idle state until the timeout is reached. When this happens,
we count it as a failure case.

In order to verify that our proposed framework does not heavily rely on such protective
mechanisms, we also recorded the average frequency of the predicted collisions of individual
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(a) Increase Robot Density Set (b) Same Robot Density Set

Fig. A.3 Average frequency of the predicted collisions of individual robots (µ =

1
Ncases

∑
Ni

predictedcollision

T i
Steps

) for two different testing set.

robots, which are prevented by the collision shielding mechanism introduced above. As
shown in the above figure, given a communication bandwidth of 128, our MAGAT (Blue) can
reduce the frequency of predicted collisions, compared with the GNN baseline (yellow) [19]
and the original GAT [107] (red).

In all cases, our MAGAT (Blue) and the multi-head attention version (MAGAT-F-32-P4,
green) can maintain the frequency of predicted collisions in low values. This video of the
experiment on 50x50 with 50 robots also demonstrates how the robot makes collaborative
decisions in crowded scenarios. Please also find this link1 for the video demonstration.

1https://youtu.be/YKbhOlBqiOI?t=33
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Appendix for Chapter 4

B.1 Appendix for Learning to Navigate using Visual Sensor
Network

Parameters

1) Dataset In order to train the policy π , we imitate an expert path planner that operates in
the continuous domain. The dataset is composed of random environment layouts and sensor
placements. Each environment in the dataset has the same dimension W ×H but is populated
with a random number of obstacles of variable size. Obstacles are placed with a constraint on
distance to other obstacles so that each obstacle C is placed not closer than DC

min to any other
obstacle. After placing obstacles, the target and sensors S2, . . . ,SN are placed randomly in
the environment, with the same distance constraint between sensors and obstacles, but with a
separate distance constraint DS

min between sensors and sensors. Lastly, the sensor node S1

representing the robot R is placed with a distance of at least DR
min to any obstacle or sensor.

Eventually, we construct a visibility graph on an expanded map that accounts for the size
of the robot, and we compute the shortest path from all sensors and the robot to the target
using an any-angle variation of Lee’s algorithm [216] computing a path P(qR

0 ,q
G). If no

valid path can be found for any of the sensors or robot, the map is discarded.
The dataset for all experiments, unless otherwise specified, contains environments of size

W ×H where W = 9 and H = 12, both units are number of boxes. Each box has has a size
of 0.5 m × 0.3 m × 0.3 m, which is similar to the boxes used in the real-world setup. When
placing obstacles, each obstacle is placed at least DC

min = 0.51 m from any other obstacle,
including the border. The robot and sensors are placed at a similar distance between each
other and any obstacle, so that DR

min = DC
min. This is to ensure that the robot can always

pass between any two sensors or obstacles. N = 6 Sensors are placed with a distance of
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DS
min = 0.75 between each other, to avoid a placement of multiple sensors too close to each

other.
We compute 40000 environment layouts and then render the sensor views in Webots.

We assume that sensor cameras are placed facing downwards with a fisheye lens, resulting
in a 360◦ view of the environment. Due to OpenGL constraints, Webots does not support
rendering of fisheye lenses. Instead, it supports a mode in which six camera images are
automatically stitched together into a projection similar to a fisheye projection. Specifically,
it projects the merged image to a square of configurable size, in our case 320 px × 320 px.
We post-process this by projecting from a square to a circle and then projecting to a polar
representation, using OpenCV, resulting in images of size 320 px × 120 px.

An environment sample, the corresponding environment in Webots and sensor samples
can be seen in Fig. B.1.

2) Training
Policy. We use supervised learning to predict the pre-computed cost-to-go advantages.

We predict K = 8 advantages (unless specified otherwise). The minibatch size is 16. The
dataset contain 40000 samples, of which we use 80% for training, 29% for evaluation and
1% for testing. The test set is used for all evaluations and path visualization in this paper. The
learning rate is 0.001 with an exponential decay of 0.98 with a seed of 1265. All experiments
are trained for 200 training iterations, and the experiments with the best performance on
the evaluation set is used to avoid overfitting. For evaluation, we use the L1 distance (mean
absolute error) between predicted and ground truth cost-to-go advantages. We train with
16-bit floating-point precision.

Domain Adaptation. Training the translator is done with similar settings as the policy.
We use the L2 distance (mean squared error) to evaluate the performance on the evaluation
test. We use image augmentation to artificially increase the size of the dataset to avoid
overfitting and increase robustness. We perform shifting (specifically rolling, as the image
is a 360◦ view of the environment) of both the real image and the corresponding simulated
image. We apply a random change of 50% to 150% in brightness, a random shift of ±9◦ in
the hue color space, a random change of ±10% in contrast and ±5% in saturation as well as
a random affine transformation with a rotation of ±3◦, a translation and scale of ±3% and a
shear of ±3◦ to the real image. Samples of this augmentation are also depicted in row 3 of
Fig. B.3.
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3) Neural Network Architecture The CNN is split in two halves for the sim-to-real domain
adaptation process, where the first half creates an internal latent embedding as φPRE = y and
the second half the communicated output features z so that φ(o) = φPOST(φPRE(o)) = z.

The feature extractor φ(·) uses MobileNet v2 [162] to extract features z from the input
omnidirectional image o. φPRE contains the first 14 residuals and φPOST all others. The latent
encoding z is a vector of size 64. We use PyTorch Geometric’s GraphConv implementation
for GNN layers with an output size of 256. The post-processing MLP consists of four layers
with 128, 64, 64 and 64 neurons each and an output size of K for the number of cost-to-go
advantages.

Real-world Experiments

The environment in Webots was co-designed with the real-world setup used for our experi-
ments. We use cardboard paper boxes of size 0.5 m × 0.3 m × 0.3 m as obstacle and colored
building boxes of size 0.1 m × 0.1 m × 0.1 m as sensor and target indicator. As sensor, we
use a Raspberry Pi High Quality Camera equipped with a lens with a field of view (FOV)
of 180◦. The camera is connected to a Raspberry Pi 4 that runs Ubuntu 20.04 and ROS2
Foxy and performs image reading, performs projection from raw image to equirectangu-
lar [217] images, compression and streaming at a frame rate of 12 Hz. We use OpenCV and
a custom-made camera calibration tool [218, 219] that allows us to automate most of the
image calibration and cropping required to run the policy.

We use the same sensor contraption on the mobile robot. The Raspberry Pi is connected
to the RoboMaster and performs low-level control using a custom made interface to the
RoboMaster and the Freyja control suite [220].

1) Real World Dataset Collection We construct eight different environments and create
a map using a motion capture system that we then transfer into our Webots simulation. A
sample of a Twin Environment setup can be seen in Fig. B.2. We remote-control the robot
manually while recording synchronized real and corresponding simulated images.

2) Interpreter To verify the functionality of our translator, which generates latent image
encodings from real-world images, and to support debugging in the real-world deployment,
we train a decoder φ−1(·) that maps the latent encodings z back to image observations o.
Samples of reconstructions generated by the translator and the interpreter can be seen in
Fig. B.3.
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Table B.1 Analysis of the effect of number of cost-to-go advantages on performance.

LOS NLOS
K Success SPL Success SPL

8 1.000 0.945 0.837 0.711
16 1.000 0.967 0.913 0.801

Results

1) Trajectories In the following panels, we show all evaluation runs from the three real-
world environments in Fig. B.5 (Environment A), Fig. B.6 (Environment B), and Fig. B.7
(Environment C).

We also report a broader selection of path evaluations in simulation in Fig. B.8.

2) Number of cost-to-go advantages We compare the effect a varying number of cost-to-
go advantages have on the policy. We compute K = 8 and K = 16 cost-to-go advantages and
train two policies. The results can be seen in Tab. B.1 and show that the overall success rate
increases and detour decreases with a larger K.
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(a) Random map (b) Webots environment (c) Omnidirectional images from sen-
sors

Fig. B.1 Generation of training data. (a) We first create random maps; in the illustration,
blue points are sensor locations, the red square is the robot, green square is the target and
corresponding lines indicate the shortest path from sensors and robots to the target. Black
boxes indicate obstacles. (b) Random maps are rendered in 3D in the simulation environment,
Webots. Sensors are blue, the target is green, the boxes brown and the robot black. (c)
Sensors are equipped with omnidirectional cameras.

(a) Simulation in Webots. (b) Corresponding real-world setup.

Fig. B.2 Sample of the Twin Environment setup. The simulated environment in Webots can
be seen on the left, and the corresponding real-world environment on the right. Note the
matching position and alignment of environment size and obstacles.
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Fig. B.3 Samples of the interpreter used to convert latent image encodings into interpretable
images. Columns: 8 independent samples. First row: Simulated image osim. Second row:
The image in the first row is encoded as zsim = φ(osim) and reconstructed as φ−1(zsim). Third
row: Corresponding real-world image oreal. Fourth row: Reconstruction of the simulated
image from the real image as orealtosim = φ−1(φPOST(φ̂(oreal))).

Fig. B.4 Generalizability to larger environments and larger number of agents N = 13 for
GNN layers L = 2 and communication range DS = 3.5 m (SPL 0.91). Blue squares indicate
sensor positions, the green square the target position qG, the red path the robot’s initial
position qR

0 , the red path the shortest path computed by the expert and the orange path the
path chosen by the policy π .
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Fig. B.5 All real-world evaluations for Environment A. Blue squares indicate sensor positions,
the green square the target position qG, the red path the robot’s initial position qR

0 , the red
path the shortest path computed by the expert and the orange path the path chosen by the
policy π .
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Fig. B.6 All real-world evaluations for Environment B. Blue squares indicate sensor positions,
the green square the target position qG, the red path the robot’s initial position qR

0 , the red
path the shortest path computed by the expert and the orange path the path chosen by the
policy π .
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Fig. B.7 All real-world evaluations for Environment C. Blue squares indicate sensor positions,
the green square the target position qG, the red path the robot’s initial position qR

0 , the red
path the shortest path computed by the expert and the orange path the path chosen by the
policy π .
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Fig. B.8 A selection of policy evaluations for NLOS configurations in simulation. Blue
squares indicate sensor positions, the green square the target position qG, the red path the
robot’s initial position qR

0 , the red path the shortest path computed by the expert and the
orange path the path chosen by the policy π .



Appendix C

Appendix for Chapter 5

C.1 Appendix for Mobile Robot Path Planning in Dynamic
Environments through Globally Guided Reinforcement
Learning

Based on our reward function, there is no prior for the agent to strictly follow the global
guidance. As long as the robot starts from the same location and chooses different paths
(with the same number of movements) to reach the same guidance cell, the accumulated
reward is the same. In order to validate this, we provide statistical results of our single robot
experiments in Table. C.1 and Figure. C.1. More specifically, in Table. C.1, we first show the
average number of eliminated global guidance cells that have not been traveled by the robot
(non-visited guidance cells) in each environment map and its standard deviation across 100
tests. In Figure. C.1, we provide detailed results by using the histograms to show the data
distribution. The results show that a large number of non-visited guidance cells exist in each
experiment, which validates that our reward function provides dense rewards to ensure the
convergence of the navigation task while simultaneously not requiring the robot to follow the
global guidance strictly.

In addition, we also provide additional experiments to compare our reward function with
a naive reward function, which encourages the robot to follow the global guidance strictly.
The naive reward function is defined as follows: 1) A small negative reward r1 each time
the robot makes a movement; 2) An extra large negative reward r2 if the robot conflicts with
an obstacle, i.e., R = r1 + r2 < 0, where r2 < r1 < 0; 3) An extra large positive reward r3

if the robot’s next location is located on the global guidance, i.e., R = r1 + r3 > 0, where
r3 > |r1| > 0; 4) An extra large negative reward r4×Dr if the robot’s next location is not
located on the global guidance, where Dr is computed by calculating the distance between
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Table C.1 The number of eliminated global guidance cells which have not been travelled by
the robot

Mean Standard Deviation

Regular-50 4.35 6.49

Regular-100 9.06 8.42

Regular-150 14.57 12.83

Random-50 5.08 5.01

Random-100 11.20 8.53

Random-150 15.29 11.43

Free-50 3.04 2.40

Free-100 7.12 4.45

Free-150 10.54 6.79
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(a) The results with ||cgoal −
cstart ||L1 = 50.
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(b) The results with ||cgoal −
cstart ||L1 = 100.
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(c) The results with ||cgoal −
cstart ||L1 = 150.

Fig. C.1 Histograms of the number of eliminated global guidance cells which have not been
traveled by the robot across 100 tests in each environment map. ||cgoal− cstart ||L1 represents
the Manhattan distances between the start and goal cells, which are set to 50, 100, and 150.

the robot’s next location with the nearest global guidance cell, i.e., R = r1 +Dr× r4 < 0,
where r4 < r1 < 0; 5) A small negative reward r5 if the robot stays in its current location
and does not move, i.e., R = r5 +Dr × r4 < 0, where r5 < r1 < 0. In the experiments,
we set r1 = −0.01, r2 = −0.1, r3 = 0.02, r4 = −0.03, and r5 = −0.015. In experiments,
we set a time-out for all the tests, within which time if the robot can not reach its goal,
this test is defined as a failure case. In each test, the time-out value is set as double the
Manhattan distance between the start cell and the goal cell of the robot. The results are
shown in Table. C.2, in which the Moving Cost and Detour Percentage are calculated
by only considering the successful cases. Since under the naive reward function, the robot
is encouraged to follow the global guidance strictly, its performance is much worse than
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those under our reward function. Strictly following the global guidance will introduce more
detour steps and waiting time steps in the presence of motion conflicts, and may even cause
deadlocks (which further lead to failure cases). In contrast, our reward function provides
dense rewards while simultaneously not requiring the robot to follow the global guidance
strictly. In this manner, we encourage the robot to explore all the potential solutions to reach
the goal cell with the minimum number of steps.

Table C.2 Single robot path planning results: Comparing with naive reward based planner

Success Rate Moving Cost Detour Percentage

Naive Reward Our Reward Naive Reward Our Reward Naive Reward Our Reward

Regular-50 75% 100% 1.38(0.35) 1.18(0.16) 31.5(34)% 15.2(15)%

Regular-100 71% 100% 1.42(0.31) 1.12(0.12) 39.5(30)% 10.7(12)%

Regular-150 68% 100% 1.36(0.26) 1.09(0.08) 35.0(36)% 8.2(8)%

Random-50 80% 100% 1.36(0.28) 1.21(0.13) 30.1(35)% 16.7(12)%

Random-100 77% 100% 1.34(0.29) 1.15(0.10) 32.3(34)% 13.0(10)%

Random-150 73% 100% 1.40(0.28) 1.11(0.08) 39.4(40)% 9.1(8)%

Free-50 89% 100% 1.31(0.24) 1.14(0.09) 28.9(23)% 12.3(9)%

Free-100 83% 100% 1.34(0.25) 1.11(0.07) 33.6(25)% 9.1(7)%

Free-150 81% 100% 1.32(0.22) 1.07(0.05) 31.5(22)% 6.5(5)%

Values are listed as “mean (standard deviation)" across 100 instances. The lowest (best) values are
highlighted.




