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Abstract

The high temporal resolution data created by smart metering, which has now been de-
ployed in many countries, provides an unprecedented opportunity to examine household
consumption behaviour in narrow time windows, whereas past studies could only look
at monthly or even yearly consumption. However, most studies that have used smart
meter data focused either on load management (load forecasting, theft detection, etc.)
or linked electricity usage to demographic and/or building characteristics. Few studies
have been conducted on the impacts of weather on intraday consumption behaviour.
Better appreciation of the influence of weather could improve pricing designs as well
as provide better understanding of household behaviour, which could, for example,
potentially increase energy efficiency. With knowledge of weather effects on residential
consumption, it could also be valuable for utilities to improve grid stability and reduce
operation cost.

To fill the gap, this dissertation analyses the impact of different weather variables as
well as consumption patterns through different tools based on smart metering data. This
thesis uses a three article format. Chapter 1 provides a general overview of the literature
on smart meters and empirical studies using smart metering data. Chapter 2 presents
an econometric analysis of the effect of weather factors in Ireland (such temperature,
rainfall and sun duration) at different periods of a day, and contrasts the impacts on
consumption for workdays versus weekends versus holidays. Chapter 3 employs machine
learning methods – clustering algorithms – to categorise households by their electricity
demand response to different weather variables. The results demonstrated that some
weather sensitivity patterns are closely associated with household characteristics. In
Chapter 4, smart meter data was gathered from a very different location, Chengdu,
the capital of Sichuan Province in China, which has more extreme weather and greater
variability. Three scenarios are analysed in Chapter 4: (1) weekly consumption
profiles in different seasons; (2) festival (major holiday) consumption profiles; and (3)
consumption patterns during extreme weather. Finally, the thesis is concluded by
Chapter 5, which summarises the main empirical and methodological contributions of
the three papers and lays out future work in this area.
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Chapter 1

Introduction

1.1 Overview of Smart Meter Development

History

Electricity grids around the world are currently undergoing drastic changes. In the
light of dramatic improvements in digital technologies and with the aim of combating
climate change and improving energy efficiency, building smart grids has become one
of the highest priorities in electricity system reforms. The current grids are mainly
electromechanical and there are few sensors through the systems (Wang et al., 2019).
Historically, grids have only supported one-way communication. In addition, they
generally require manual monitoring and restoration. The nature of these features
means that power systems have limited control over demand, so it is a huge challenge
for existing grids, particularly with the addition of photovoltaic systems and electric
vehicles. The reforms have therefore been prompted to improve the flexibility and
efficiency of the grids.

The basic arrangements of traditional power grids has been in place for almost a
century (Hoenkamp et al., 2011). In the context of grid modernisation, the integration
of advanced sensor information technologies with the communication infrastructure
can create an electricity network that operates at high levels of efficiency and security
(The European Commission Task Force for Smart Grid, 2010). Advanced metering
infrastructure (or AMI commonly known as smart metering) is viewed as the first step
in the infrastructure upgrade of the smart grids. Unlike traditional mechanical meters,
the smart meter can obtain real-time information from the end-users and provide
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added information to the utilities. Smart meters offer bidirectional communications
between the consumers and the operators and the electricity consumption information
transmission can reach a much higher frequency from every minute to every hour.

In the 1980s, the manufacture of meters and communication providers were pitching
“the unlimited potential of smart metering” (Sovacool et al., 2017). The highlighted
features of smart metering included possible cost saving through less labour required
in meter reading and time-of-use pricing schemes that can encourage greater energy
efficiency. However, utilities were suspicious of the benefits promoted. They claimed
that consumers were generally inflexible and insensitive to electricity pricing. Con-
sequently, interest in the advanced metering system shown from utilities were scarce.
They were reluctant to put efforts into large-scale smart meter rollouts in the residential
electricity sector (Marvin, Chappells and Guy, 1999). Until the 1990s, smart metering
services were firstly and widely introduced in the industry and commercial sectors. The
deployment of smart meters in the residential sector has only come into full view in the
2000s onwards with a renewed focus on energy security and climate change (Murphy,
2016).

Opportunities and concerns

In addition to the functions of a traditional meter, opportunities associated with
advanced metering infrastructure deployment mainly come from its advanced technical
features. When a smart meter is in place, it can implement real-time two-way commu-
nications between utilities and residential customers. It measures and records power
usage at certain pre-set short intervals, normally every 15 minutes, and the collected
data are sent to a central data management system. The immense amount of fine-
grained data generated by smart meters brings great potential for both policy-makers
and utilities to analyse the electric system from different disciplines and perspectives,
such as energy economics, electrical engineering, and environmental psychology.

From the perspective of customers, smart meters with in-home displays and/or
proper feedback on consumption enable households to better understand the billings
and their consumption habits at a greater detail level, which in the end helps households
to manage their energy consumption to reduce their electric bills (Wilson, Hargreaves
and Hauxwell-Baldwin, 2017). And for those households who prefer to live in a greener
way, AMI can also help to change behaviour and reduce the frequency they use some
energy-intensive electric appliances.
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From the perspective of utilities and policy-makers, the rich information from smart
meters can bring many benefits (Zhou and Matisoff, 2016): the advanced meters not
only reduce costs associated with manual labour, for example, meter reading, grid
monitoring and maintenance, they also enable more value-added services, such as
demand response (DR) scheme, dynamic pricing, and distributed renewable generation
(Electric Power Research Institute—EPRI, 2007; Leeds, 2009). Greater knowledge of
the details of peak or off-peak periods, demand patterns, higher frequency consumption
information can be extremely valuable for many stakeholders in the sector. Early
studies used highly aggregated data, normally grid-level data, for developing operational
strategies. Better understanding of customers’ consumption patterns, for utilities and
operators, can promote and enhance the efficiency and sustainability of the demand
side; while for policy-makers, such knowledge enables the development of more efficient
policies to guide the public to live in a more environmentally sustainable manner, which
can help to achieve decarbonisation targets or detect and relieve energy poverty.

However, the benefits also come along with deep concerns of data privacy and
security (Asghar et al., 2017). Some studies have shown that high-resolution electricity
consumption data may reveal private information or life pattern of a household, for
example, economic status, number of the people living in a household, the usage of
certain appliances, and household occupancy (Wood and Newborough, 2003; McDaniel
and McLaughlin, 2009; Kalogridis et al., 2011). Therefore, the work related to the
privacy protection of smart meters as another hot topic has also attracted attention
from both industry and the public (Wilson, Hargreaves and Hauxwell-Baldwin, 2017).
Studies have focused mainly on two aspects: 1) legislation – for example, how to regulate
utilities in terms of storing and employing the data; and 2) technical solutions such as
innovations in developing new smart meters with privacy-preserving technologies.

Smart meter deployment status

The rollouts of smart meter in the residential electricity market have been widely
discussed in the past decade among all the stakeholders, policy makers, utilities,
customers and researchers.

The deployment of smart meters around the world are at different stages. Consider
the cases of the European Union, United States and China. In the EU, driven by the
European Union Energy End-Use Efficiency and Energy Services Directive 2009/72/EC
(European Parliament, 2009) concerning the internal market in electricity, commitments
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to roll-outs of smart meters in EU member states started to slowly emerge. In January
2018, the average household electricity meter penetration rate was 34.5% in the EU-28
(European Commission, 2020). The residential smart meter penetration rates varied
widely within the EU. Some countries have already finished a wide-scale roll-out with
over 90% installation rate of SME and household smart meters by 2018, such as in
Sweden, Finland, Italy, Estonia, Malta, Spain, and Denmark. On the other hand, the
roll-out in some countries such as Croatia, Greece, Hungary and Lithuania was even
lower than 2.5% by 2018, although according to the report (European Commission,
2019) most countries will reach a wide-scale penetration (to at least 80%) during
2020-2025.

In the U.S., the Energy Independence and Security Act in 2007 (110th Congress,
2007; Simoes et al., 2012) urged federal, state, and utilities to increase the penetration
of smart meters in households (Hmielowski et al., 2019). The act contributed to a
wave of Installations of smart meters in the U.S. Until the end of 2017 (EIA, 2017) the
ownership had more than doubled since 2010—47% of all U.S. electricity customers now
have smart meters. Similar to the situation in the E.U., differences in the smart meter
rates among the states was huge (EIA, 2017). Washington, DC, has the highest smart
meter deployment rate at 97%, followed by Nevada at 96%, but only 16 states had a
residential AMI penetration rate higher than 60% in 2016. Differences in penetration
rates are often driven by state legislation and regulation.

China has invested heavily in the smart infrastructure project of modernising its grid
system. Back in 2011, State Grid Corporation of China (SGCC) began the deployment
of smart electricity meters in various parts of the country. In terms of the number of
smart meters installed, China is already the world’s largest market (Ngar-yin Mah,
Wu and Ronald Hills, 2017). The penetration rate reached 80% in China, although
the roll-out rates varied by province depending on the fiscal situation. For example,
by 2016, Qinghai in northwest China, one of the poorest provinces, only 45.17% of
households had installed smart meters, while Jiangsu, one of the richest provinces in
China, had already reached a 98% roll-out rate (SGCC news, 2016). The Chinese
government is committed to reaching an overall deployment rate of 90% across the
country by 2020 (National Energy Administration, 2015b).
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1.2 General Literature review

We present an overview of three main types of studies on smart meters, including smart
meter effectiveness, residential demand estimation through econometric tools, and load
management. Since the thesis mainly concerns the quantitative analysis of residential
consumption data, we will concentrate on the latter two topics. A more specific and
detailed review of studies on high-resolution smart meter data in the next section (2.4).
In addition, because of out of the scope of this study, this research review does not
include cost-benefit analysis studies of smart meters.

1.2.1 Effectiveness of smart meters

The belief and expectation that smart meters can lead to changing customer behaviour
may be explained by behavioural change models. In these models, there is a factor
named “evaluation of outcomes”, which is a part of the evaluation process before
people take actions (Martiskainen, 2007). In this case, smart meters provide more
transparent consumption information, and with less asymmetrical information the
possibility of accurately evaluating the outcomes can be improved. Furthermore,
considering another factor, the “facilitating conditions” proposed in Triandis’ Theory
of Interpersonal Behaviour (Triandis, 1994), smart meter installation establishes part
of a smart grid infrastructure and enables two-way communication between utility
providers and customers, which offers consumers a self-teaching opportunity to change
their behaviour.

The assumption behind the effect of smart meters on customers is that the provision
of detailed information on energy consumption will visualise energy use and raise
awareness to encourage end users to make rational decisions to reduce their consumption.
Darby (2006) believed that there is an association between the level of energy awareness,
the probability of efficiency measures installed, and whether or not they regularly check
their meter.

The discussion of smart meter effectiveness mainly emerged in the 2000s before
large-scale rollouts. Darby (2006) pointed out that there are mainly two types of
feedback affecting the effectiveness of smart meters: direct and indirect feedback. The
definitions she offers are: direct feedback is from learning from looking at the raw data
or paying for bills; whereas indirect feedback comes from reading and reflecting upon
the processed data/information provided by the utility. Darby (2010) also summarised
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some significant trials for smart metering and feedback effects and concluded that
the energy saving is between 5% and 15%. While many studies have tested the effect
of different types of feedback with ICTs involving a sample size from about 50 to
15,000, a key shortcoming is that, most fail to demonstrate the sustainability of the
impacts from the feedback due to a short period of observation. Van Dam et al.
(2010) argue that studies using feedback devices mostly have lasted for less than four
months, while the very few longer studies (van Houwelingen and van Raaij, 1989;
Mountain, 2006) reviewed by Van Dam et al. (2010) present unclear results. Fischer
(2008) also conducted a meta-analysis for ten countries over the period 1987–2006
where householders were given consumption feedback. She reports an average 1%–20%
reduction from overall feedback and argues that certain forms of feedback were more
effective, such as very frequent feedback or providing breakdown by appliance. However,
these results should be interpreted with caution, as some groups involved have a small
sample size.

1.2.2 Economic studies using residential consumption data

In the energy economics literature, research focused on residential consumption can
be divided into two sections based on the type of data used: macro models and micro
models.

Macro models use traditional aggregate macroeconomic data, such as GDP, income
level, population size, and energy prices to correlate residential electricity demand
with macro-data. Weather-related variables are the other important source of data
that are frequently used in these studies. The most common weather-related variables
used are temperature and related proxies (e.g. heating degree days (HDD) and cooling
degree days (CDD)) (Torriti, 2014). However, weather conditions usually act as control
variables but are not the focus of these studies. The objectives are mainly on the
effects of socio-economic indicators on power demand at aggregate large scales, for
example, regional, or even national level. For macro models, household-level smart
meter data are rarely used. Instead, monthly, daily, or even higher-resolution grid-level
data are usually chosen as input.

Cialani and Mortazavi (2018) used panel data covering 29 EU countries (EU-28
plus Norway) in a partial adjustment model to explain electricity consumption as a
function of several economic variables, such as GDP, price, and population, along with
temperature-proxy variables. They concluded that income elasticities in EU-29 are
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slightly higher than price elasticities and that short-term demand in EU-29 is inelastic
to its price. In terms of weather effects, the demand seems more sensitive to cold than to
hot weather in Europe. Salari and Javid (2016) estimated the residential energy demand
in the United States at the state level from 2005 to 2013. Similarly, the variables used
in the model included income, population, electricity price, and temperature proxies.
Additionally, educational level and general household conditions of states were taken
into consideration. They also compared two models in the static analysis – random
effects (RE) and fixed effects (FE), which was found to be more robust and better than
the RE model. The results showed that demographic characteristics such as household
size, educational level, and per capita income have a statistically significant impact
on the residential electricity. Other studies with similar objectives rely on a similar
group of variables (Holtedahl and Joutz, 2004; Dilaver and Hunt, 2011; Torriti, 2014)
to model residential electricity demand. Once again, it should be highlighted that
although weather variables are included in these models, the emphasis of the research
is given to the economic characteristics or to socio-demographic variables.

Compared with macro studies, micro studies are focused on household socio-
economic variables as well as building characteristics. The nature of microscopic
studies provides deeper insights into household-level consumption patterns and offers
better understanding of consumer responses and the impact of behavioural factors.
Before the deployment of smart meters, the electricity usage data used in research were
based on monthly bills. Detailed investigation of the connection between household
consumptions and weather conditions was almost infeasible and so researchers could
only look at the seasonality of residential demand instead.

Kavousian et al. (2013) examine structural and behavioural determinants of
residential electricity consumption based on a regression model. In their research, a
dataset of 10-minute interval smart meters for 1628 households with an associated
detailed survey was used. They identified four major groups of explanatory variables:
weather, building characteristics, appliance stock, and occupancy, of which weather
and floor size are the most important determinants. Iwafune and Yagita (2016) also
employed high-resolution smart meter data for their econometric models to assess
impact factors for residential electricity demand. They divided the fine-grained data
into four time periods of a day to better analyse the relationship between household
attribute data and consumption. The defined periods are midnight load between 23:00
and 7:00, morning load between 7:00 and 10:00, daytime load between 10:00 and 18:00,
and evening load between 18:00 and 23:00. The important variables were: household
size, floor area, outdoor temperature, and humidity. In terms of electric appliance
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ownership, the significant determinants were central ventilation systems, water servers,
and owning more than one refrigerator. While there is no consensus on the factor
importance for electricity demand modelling, Torriti (2014) summarised the five most
frequently seen variables in a systematic review of residential demand estimation, which
are: type of building, occupants’ income, appliance ownership, price of electricity/bills,
and number of occupants.

1.2.3 Load management studies

The main research objectives in load management originate from the urgent need
to improve operational efficiency and meet increasingly irregular electricity demand.
Thereby, the studies can be divided into four categories: 1) demand response scheme
(DR) design, 2) load analysis, 3) load forecasting, 4) customer characterisation. We
will only briefly discuss the first section here as a general overview of all the smart
meter data related research, since the focus of the thesis is not on electricity tariffs.
We describe some of the DR schemes and present the other three subjects separately
in the next section.

A common definition of DR is given by the U.S. Federal Energy Regulatory Com-
mission (FERC, 2010) as “the changes in electricity usage by end-use customers from
their normal consumption patterns in response to changes in the price of electricity”.
Generally, there are two types of current DR schemes: (i) incentive-based approaches,
for example, direct load controls, interruptible tariffs and emergency programs (Albadi
and El-Saadany, 2008), and (ii) price-based DR schemes (Shimomura et al., 2014).
Since incentives are seen more among commercial and industrial customers, we only
focus on the price-based DR schemes.

To encourage customers to respond to pricing signals, flexible pricing structures and
available advanced metering technology are the keys to implementing DR in the energy
system. Current price structures with fixed price electricity, however, cannot stimulate
consumers to reduce consumption or alter their consumption patterns (Borenstein,
2009). As an important part of DR schemes, it is understandable why the pricing tariff
design relevant topics have attracted a lot of attention. And the use of smart meter
data can be assistance of deciding a suitable tariff. The concept of dynamic pricing
schemes was proposed due to serious imbalance between supply and demand. During
the early 1970s, the residential electricity consumption in the U.S. soared significantly,
especially in space-conditioning loads (Caves, 1984). This pattern of residential usage
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growth resulted in serious load management issues during peak time. It called for
substantial interest and implementation activity in a wide range of rate-incentive
designs to replace a flat rate (EPRI, 1985). So far, four main time-varying alternatives
have been proposed: real-time pricing (RTP), time-of-use pricing (TOU), critical peak
pricing (CPP), and increasing block tariffs (IBT). The most common incentives in the
residential sector are time-of use (TOU) and increasing block tariff (IBT) (Sanghvi,
1989), where as later innovative rates, such as critical peak pricing (CPP) and real-time
pricing (RTP) are frequently examined after 2000 with the assistance of advanced
smart meters. In the household field, the majority of research studying the impact of
pricing structures on consumption were undertaken during the period between 2000
and 2010.

Borenstein, Rosenfeld and Jaske (2002) describe RTP as “the most natural or the
most extreme approach to price-responsive demand”. RTP charges customers differently
during different times of the day and on different days. Customers can purchase part
of their power through a long-term contract, though not necessarily at the real-time
price. However, there are only a few large-scale trials for RTPs and the results are
mixed: several researchers criticised that the use of RTP is a less cost-efficient way
than TOU and has no significant effect on improving demand response (Goulden et al.,
2014; Campillo et al., 2016).

While RTP has not been widely accepted in residential consumption, TOU has
been implemented around the world (Albadi and El-Saadany, 2008). Under TOU, a
day is divided into large time blocks of several hours, normally super off-peak time,
peak-time, off-peak time, and mid-peak time. And in each of the blocks, the price
is pre-determined, constant and normally will not be adjusted within 1-2 years. In
general, the rate for each time block varies in different seasons, with a higher price in
winter compared to summer (Newsham and Bowker, 2010).

Critical peak pricing (CPP) combines the features of RTP with some of the TOU
structure. CPP schemes usually adopt a TOU rate structure. Unlike the lack of price
signal for peak usage within a price block in TOU, CPP allows suppliers to add one
more price to capture “critical” peak hours, which can be imposed on short notice
(Herter, 2007).

As price-responsive tools, TOU and RTP are designed to encourage demand shift
via differentiated tariffs. IBT, on the other hand, is a price-based instrument for
reducing total consumption over a longer time scale, e.g. monthly (Mohsenian-Rad
and Leon-Garcia, 2010). The price of electricity depends on total consumption during
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a billing period (typically a month). The IBT structure divides electricity use into
blocks, where the price of electricity rises in line with increased consumption. The
higher price in the following blocks are set to induce energy savings among wealthier
households with nonessential use while allowing for basic needs of poorer households
to be met at a much lower price per unit (He and Reiner, 2016). A similar approach is
adopted in water IBT tariffs (Borenstein, 2012). It is clear that IBT is not exclusive
from other time-varying schemes. In fact, many countries use a complex price structure
with IBT and TOU, or fixed rate and IBT (Joskow and Wolfram, 2012).

1.2.4 Load profile related studies

A load profile represents the usage pattern or shape of a customer over a certain time
interval. It could be an hourly or daily profile depending on the context of the analysis.
Most policy-makers and utilities base their policies, tariffs, and operation strategies on
average load profiles. Before the smart meter era, the decisions and studies of load
management largely relied on high-resolution grid-level aggregate data. The technical
features of real-time two-way communication brought by smart meters greatly improve
the understanding of load profiles and related areas. As mentioned in the last section,
load analysis, load forecasting, and customer characterisation are the three types of
studies based on load profile analysis. To accord with the scope of the thesis, we will
focus on a review of customer characterisation with a summary of employed methods
as well as the results while still provide a general review of the other two subjects (load
forecasting and load analysis), the technical details of the methodologies are not the
main concerns of this review.

Load analysis

In studies of load analysis, the aims are to construct a series of algorithms to monitor
the grid and discover any irregularities in the load. Two classes of anomalies most
concern utilities and operators: bad data and energy theft. Bad data as discussed
here refer to any missing data caused by mechanical faults of smart meters, failures
of transmission or communication. Energy theft, as probably one of the most serious
concerns, accounts for up to 50% of electricity consumption in developing countries.
According to an annual report by the Northeast Group (2014), the annual loss of the
world to electricity theft is around USD 89.3 billion.
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To detect any anomalies, good knowledge of the fluctuation and uncertainty of
the load profiles is the fundamental step to handle the issues. More specifically, the
modelling can be divided into three methods (Wang et al., 2019): time series based
methods, low-rank matrix technique based methods, and time window based methods.

The implementation of optimally weighted average (OWA) method is based on
the time-series feature of smart meter data (Peppanen et al., 2016). The concept is
similar to the autoregressive moving average (ARIMA) model for time series, which
assumes that the data can be seen as a linear combination of the nearest neighbour
data. To look at smart meter data from another angle, since electricity demand
is both spatially and temporally correlated, low-rank matrix fitting based methods
are proposed, such as Alternating Direction Method of Multipliers (ADMM)-based
distributed technique (Mateos and Giannakis, 2013). Time window-based methods, on
the other hand, computes the discrepancy between two time windows to continuously
detect any dissimilarities within a certain time window rather than the whole load
profile. The methods run on segmented load profiles, rather than the entire profile,
which could be less computationally complex (Al-Wakeel, Wu and Jenkins, 2016).

Wang et al (2019) summarised energy theft detection methods into two categories:
supervised learning and unsupervised learning, which both belong to machine learning
methods. To train a system to identify theft by supervised classification methods,
feature extraction and classification are the two main stages. For feature extraction,
K-means and other clustering algorithms are often used (Jokar, Arianpoo and Leung,
2016; Tong et al., 2016). Clustering algorithms, such as K-means are normally used
to identify the similarities among clusters and in this case, could be helpful for those
un-labelled datasets to find similar features that can define clusters, where no prior
knowledge of similarities have been known. Support Vector Machin (SVM) and decision
trees are frequently used algorithms to train classifiers (Depuru et al., 2013; Jindal et
al., 2016). Compared to supervised algorithms, unsupervised learning does not require
prior knowledge of labels (e.g., a labelled training dataset where each entry is either
an energy theft or not). Therefore, unsupervised methods are less expensive and more
feasible. K-means, Birch, affinity propagation (AP), discrete Fourier transform (DFT),
and Gaussian mixture based models (GMM) are frequently used approaches (Botev et
al., 2016; Passos Júnior et al., 2016).
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Load forecasting

Load forecasting as the core of the grid operation has always been one of the hot topics in
the field of load management. Load forecasting at the regional or state level, or applied
to commercial and industrial sectors has been extensively discussed in the literature,
since the aggregate high-resolution data was always much easier to obtain, compared
to the individual-level data required for the residential sector. Unlike aggregate load
profiles representing larger scale loads, the load curves of individual households are
much more dynamic and volatile. Forecasting household loads, therefore, has posed
greater challenges to the utilities. Clearly, the studies providing better understanding
the factors that affect residential demand can improve stability and efficiencies of grid
operations.

Thanks to the deployment of residential smart meters, the analysis of behavioural
consumption patterns and predicting occupancy activities becomes possible. The
forecasting methods may vary depending on how far into the future the modelling is
expected to forecast. Generally, the three main objectives of forecasting are: short-
term (minutes to daily), medium-term (weekly to monthly), and long-term (yearly to
decades) (Khan et al., 2016). Although there are numerous methods proposed for load
forecasting, they, however, can be loosely divided into two groups: statistical modelling
and machine learning methods.

For statistical modelling, there are generally four specific methods employed: multi-
ple regressions, auto regressive (AR), auto regressive moving average (ARMA) and
auto regressive integrated moving average (ARIMA). Regression models are usually
used with weather data to predict load demand for certain regions (Barakat et al., 1990;
Javeed Nizami and Al-Garni, 1995; Hyde and Hodnett, 1997). In AR models, electricity
demand load is treated as time-series data that is correlated with previous usage. AR
models can also be adapted to specific modelling demands (El-Keib, Ma and Ma, 1995;
Huang, 1997). ARIMA models consider not only the previous linear connections of
the current values, the white noise of the values are also taken into account (Huang
and Shih, 2003). Similarly to AR and ARMA, ARIMA also treats consumption data
as time-series, but it can be used to deal with non-stationary processes (Seymour,
Brockwell and Davis, 1997).

Machine learning tools for load forecasting have emerged over the last decades. As
one of the most popular machine learning tools, an algorithm called Artificial Neural
Network (ANN) is frequently seen in the literature for electricity demand forecasting
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(Edwards, New and Parker, 2012; Javed et al., 2012). Apart from ANN, other artificial
intelligence tools frequently used include Decision Trees, Fuzzy Logic, support vector
regression (SVR), and SVR’s variant Least Square Support Vector Regression (LS-
SVR), (Chicco, Napoli and Piglione, 2006; Singh, Gao and Lizotte, 2012; Jain et al.,
2014). Compared to statistical modelling, weather-related variables are rarely seen in
the literature. The models mainly focus on unravelling the consumption patterns.

Consumer characterisation

Likewise, current studies on residential consumer characterisation largely rely on ma-
chine learning tools. However, most research aims to understand occupancy behaviour
and consumption patterns, rather than power usage itself. The objectives of these
studies are to bridge the load profiles to either/both socio-economic status and building
characteristics. In turn, greater knowledge of household characteristics associated with
demand patterns can help identify DR scheme options and also improve grid efficiency
(Chicco et al., 2004; Haben, Singleton and Grindrod, 2016; Ma et al., 2017).

Two methods commonly used in residential load curve analysis are unsupervised
algorithms and supervised methods. For unsupervised tools, clustering is the most
frequently used approach that can identify and group households with similar load
profiles into the same clusters. On the other hand, classification as one major class of
supervised methods is usually employed to predict households’ load profiles through
socio-demographic data as well as building characteristics, verse-visa. According to
a systematic review (Tureczek and Nielsen, 2017), unsupervised learnings are more
prevalent in related research.

For both clustering and classification methods, there are two main stages: data
cleaning (to decide suitable input for the models) and algorithm selection. For data
cleaning, there are two types of input in general: raw data and transformed electricity
consumption indexes. Some researchers (McLoughlin, Duffy and Conlon, 2013; Yildiz et
al., 2018) argue that transformed indices, such as maximum daily usage, a ratio of peak
to off-peak consumption, etc, can better cluster consumers with less noise/un-useful
information, while others insist that raw data with an hourly averaged day profile can
best represent households’ consumption patterns in greater detail (Gouveia and Seixas,
2016; Rajabi et al., 2019). In fact, the choice of the form of input depends on the
objective of the research, that is, whether the core of the study is to explore the shape
of daily profiles or reveal the association between demand patterns and household
characteristics.



14 Introduction

Data standardisation is one of the key questions that researchers need to consider.
Similarly, the decision of whether and how to standardise data needs to be made based
on the scope of research. To focus on the shape of load curves of each household, rather
than the magnitude, the standard process is to normalise each profile to its maximum
value (Panapakidis, Alexiadis and Papagiannis, 2012; Rhodes et al., 2014) where the
values lie over (0,1] or [0,1], depending on whether values with zero consumption are
dropped in data cleaning process. The alternative method is to subtract minimum
values before dividing by the maximum value of the daily profile, which ensures the
value domain is [0,1]. The latter technique therefore excludes the minimum values and
cannot represent the ratio of shape differences between maximum and minimum values.

In addition, load shapes based on raw data can be investigated from different
temporal perspectives. For instance, profiles have been defined by day of the week,
weekend versus workday, holidays, or seasons (Kwac, Flora and Rajagopal, 2014; Hsiao,
2015). Examining residential demand patterns on these different time scales can provide
important insights about the seasonality and periodicity of consumption behaviour
(Kavousian, Rajagopal and Fischer, 2013; Gouveia and Seixas, 2016). Furthermore,
more detailed studies of load shapes and the advent of smart meter data allows for the
analysis of daily profiles at different intervals, such as midnight, morning, afternoon,
and peak, etc (Quilumba et al., 2015; Haben, Singleton and Grindrod, 2016). The
authors attempted to link consumption behaviour in specific periods with household
characteristics, for example, whether air conditioning ownership is associated with peak
demand. In summary, the best method to choose for profile segmentation completely
depends on the aims of research and no optimal choices exist in the selection.

Another problem with daily profile clustering is that when the resolution is too
high, such as every 15-minutes or half-hourly, it could result in larger uncertainty and
less accuracy, since the useful information could be hidden in the high dimensional
datasets. That is when dimensionality reduction techniques like Fourier series, Wavelet
decomposition, and Principle Composition Analysis can help (Abreu, Câmara Pereira
and Ferrão, 2012; McLoughlin, Duffy and Conlon, 2013; Ozawa, Furusato and Yoshida,
2016). The tools remove correlated structures to combine and reduce features into new
sets of attributes. The methods can efficiently lower computational burden and are
generally preferred when the size of datasets makes them difficult to handle. However,
the cost of a lower computational requirement is interpretability of the new attributes.
It could be difficult to infer the relationship between the revised attributes and the
original features.



1.3 Connections of the thesis 15

In terms of algorithm selection, K-means and its variants (such as Fuzzy K-means,
K medians, etc.) are the most prevalent clustering algorithms in profile-clustering-
related research (Tureczek and Nielsen, 2017). The simplicity and generally stable
performances attribute to the popularity of K-means. One limitation of K-means is that
prior knowledge of cluster numbers is needed. The decision largely depends on practical
needs and previous experience. Hierarchical clustering, on the other hand, does not
require a pre-set number for clustering. As another popular choice, it offers the attractive
feature of being able to graphically display the class aggregation/disaggregation process
(depending on whether the algorithm is an agglomerative or a divisive method). Unlike
K-means, hierarchical clustering requires link functions (such as Euclidian, Wald and
average) to decide how to link measured distances (Tureczek and Nielsen, 2017).

The more technical details of clusterings will be discussed separately in the following
chapters, so here we mainly provide an overview of the clustering process.

1.3 Connections of the thesis

In reviewing the residential demand research described above, we noticed two main
gaps in the field of energy economics and load management work respectively.

Firstly, two aspects have been rarely explored in previous economic research.
Although many studies have used economic modelling to identify the relationship
between weather conditions and residential consumption, the majority were based on
macro-economic variables, such as GDP, income, and population. In addition, the scope
was frequently to examine residential demand at the grid-operational or national level,
rather at the household level. Furthermore, the data for the response variable used,
residential consumption, was not high-frequency and normally daily or even monthly
data. This set of studies would not be able to interpret the links between weather and
demand at specific periods of a day. Better understanding of impacts of weather on
electricity consumption would be beneficial for both utilities and policy makers. It
could increase the accuracy of electricity transmission models. In addition, residential
consumer responses to weather could help the design of policy instruments targeting
energy efficiency improvement. Using economic models to examine the relationship
between weather and household consumption would provide a general picture of how
people respond to weather changes.
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Secondly, weather factors have been left out in those studies based on household-
level demand. The scope of previous efforts were to discover how power demand was
associated with either socio-economic background (e.g., family income, education level,
social class, etc.) or building characteristics (floor area, heating type, bedroom number,
etc.). Similarly, this second type of study rarely concerns temporal consumption. It can
be seen that research based on high-resolution panel data could provide deeper insight
that how households’ electricity consumption patterns respond to weather changes,
specifically at different time of a day, for example, overnight, morning, afternoon, and
peak demand. Without the knowledge on household-level and pattern differences during
different intra-day periods, it could be difficult to design appropriate and efficient
policies to combat energy waste. If research findings were available on the matter, it
could show more insights on dynamic pricing schemes and energy efficiency policies.

The study in Chapter 2 therefore aims to fill the gap in the economic studies. In
the analysis, we used a panel dataset from the Commission for Energy Regulation
(CER) of Ireland, which includes over 3,000 Irish households over a period of 2009
to 2010. This dataset was compiled for the Electricity Customer Behaviour Trial,
which consisted of a very-detailed survey and high-resolution consumption with smart
meter recordings taken every 15 minutes. Using a series of Fixed-Effects models,
we examined the relationship between intra-day residential demand and five weather
variables – sun duration, outdoor temperature, precipitation, wind speed, and relative
humidity. In terms of household demand, we divided daily consumption into 9 usage
periods, defined as follows: early morning(6:00-8:00), day_1(8:00-10:00), day_2(10:00-
12:00), day_3(12:00-15:00), afternoon/day_4(15:00-17:00), peak(17:00-19:00), early
evening/evening_1 (19:00-21:00), evening_2 (21:00-23:00), and night (23:00-3:00).
The period (3:00-6:00) was not included in the research, since there was very limited
activities and consumption fluctuation occurred in the time scale.

Regarding the load profiling/customer characterisation, a similar issue to the
econometric studies is that the inclusion of weather-related information in the load
profile clustering is rare. When included, it is mainly used in load forecasting research
and primarily for controlling exogenous impacts, rather than being the highlight of
the work. For customer characterisation, the work mainly focuses on whole-day daily
profile clustering, although seasonality was considered in some research by providing
separate daily load curves for each season. Studies investigating intra-day profiles
dividing up daily consumption into segments (e.g. morning, afternoon, late evenings,
etc.) have not been fully explored.
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In fact, residential electricity consumption patterns are closely associated with the
timing of active occupancy. The traditional method of detecting household occupancy
is either through surveys or very high-resolution data, such as minutely. Both methods
can be particularly time- consuming and costly. Privacy is another barrier to obtaining
what can be highly sensitive data. However, there is potential that households’ demand
sensitivity to weather at temporal periods could be a good indicator for occupancy
detection and can therefore be used to infer the occupancy status at specific peridos
about certain combinations of household characteristics. Using this method can be
less intrusive and costly for policy makers and utilities to understand residential sector
from another and/or deeper perspective.

Chapters 3 is based on machine learning methods to fill the gap that limited
research have studied the weather effect at temporal periods. Similarly, the research in
Chapter 3 also used the CER datasets, although from the clustering perspective. In
Chapter 3, we clustered household responses to three weather attributes, temperature,
precipitation, and sun duration separately. The household demand profiles of a day
contain the usage in 9 periods and the definition of the periods was the same as in
Chapter 2. In addition, we further divided profiles by season, and weekend versus
workday. By clustering the demand change levels to different weather variables, we
expected to unravel the customers’ daily activity patterns in various weather conditions.
The underlying assumptions were as follow:

1. Demand response to temperature may indicate the seasonality of activities
occurred during selected periods

2. The sensitivity to rainfall implies whether regular outdoor activities occur in that
period or the household is used to going out during that period

3. The sun sensitivity can be seen as an indicator of whether the household is
flexible/does not have fixed schedules and has spare time so that they would be
able to respond to a sunny day

The correlation between weather sensitivity clusters and household features was
also examined by statistical tools.

Similarly, Chapter 4 used clustering methods, but focused on another geographic
location, Chengdu, the capital of Sichuan province in southwestern China, with a
sample size of smart meter readings from 2,000 households over a period of three years
from 2014 to 2016. Geographic zones, as mentioned in the literature, can massively
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affect the demand response to weather conditions. By contrast, Ireland, in the previous
chapter, has a milder and less variant weather whereas the climate in Chengdu is
more extreme than in Ireland with much hotter summers and colder winters. Due to
the limitation of data resolution, only three usage period in a day was included in
the dataset, and so the focus and method employed in Chapter 4 was different from
Chapter 3. There were three main objectives: 1) we investigated clustered day-of-week
profiles in three periods separately in different seasons, in order to understand weekly
residential consumption patterns. 2) how the demand profiles of the Chinese household
changed in two major festivals, the Spring Festival and the National Festival, and what
the changes meant. 3) how the different clusters of households responded to extreme
hot weather. The study provided a better understanding of the Chinese household
consumption habits in different scenarios.

Finally, Chapter 5 summarised some major conclusions and future work in Chapter
2 to 4. In Chapter 2, through fixed-effects models, we demonstrated that in general,
rain and sunshine duration have bigger potential to affect people’s behaviour and
daily routines, while temperature has robust and relatively flat impacts. Followed by
Chapter 3, We proposed a novice method of using the weather sensitivities as proxies
to identify the household daily life patterns. Similarly, temperature clusters, compared
to the rain and sun clusters, could reveal least information about the household life
styles. Chapter 4 focused on another geographical location, Chengdu. We identified
various consumption patterns and possible demographic groups associated with the
patterns.
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Chapter 2

What is the effect of weather on
household electricity consumption?
Empirical evidence from Ireland

2.1 Introduction

In recent years, there has been an increase in residential smart meter installations in
many jurisdictions as they move to modernise their electricity networks (Eid, Hakvoort
and De Jong, 2016). The old mechanical metering systems usually record monthly
energy consumptions of households, which limit the possibility of understanding
residential electricity consumptions in depth. Besides, dynamic pricing of electricity is
impossible using current metering infrastructures, due to the technical constraints of
having no real-time usage data. In light of these concerns, the deployment of Advanced
Metering Systems can potentially be part of the solution to achieve greater energy
efficiency. There is one significant advantage of smart metering that is widely accepted
— The new technologies record high-resolution data of household electricity usage and
increase the visibility of energy consumption. As a consequence, the availability of
high volumes of data enables more fine-grained studies of residential behaviour and
consumption patterns (Razavi et al., 2019).

Thus, one area that particularly benefits from the installation of smart meters is the
study of the effects of pricing structures on electricity consumption. Previous studies
in this area have focused either on longer-time frames, such as monthly household
usage, or relatively shorter periods (daily consumption) but at the regional level (Pardo,
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Meneu and Valor, 2002; Davies, 2010; Atalla and Hunt, 2016; Trotter et al., 2016).
High-frequency individual usage data makes it possible to examine the price effects
during a specific short period during a day rather than using daily or monthly time steps.
Although the results of the efficiency of different price schemes can be contradictory,
increasingly studies have been done in the field to examine the effects from different
perspectives.

However, the influence of weather in residential electricity consumption is one area
that has not been extensively studied, although it has been widely accepted as an
important factor affecting energy demand. The exploration of the relationship between
energy consumption and weather is often seen in two sets of studies: weather as control
variables in models focusing on price or on socio-economic effects (Wangpattarapong
et al., 2008; Newsham and Bowker, 2010; Di Cosmo and O ’hora, 2017). Alternatively
weather has been used as the main independent variables but only when investigating
the relationship between daily or even monthly regional demand and weather variables
(Moral-Carcedo and Vicéns-Otero, 2005; Costa and Kahn, 2010; Blázquez, Boogen
and Filippini, 2013). Weather variables such as temperature, precipitation, relative
humidity, wind speed, cloud cover, and sun duration are the most common variables
used in both types of research. In spite of interest in the relationship between electricity
consumption and weather, few studies have studied the possible association during
different periods of the day due to limitations on the frequency of energy use data
(Davies, 2010). Would specific findings hold in every period? For example, will
residential customers reduce their consumption in every period of a sunny day? Are the
weather responses, in fact, period-dependent? A better understanding of the weather
impact on electricity can assist researchers, policymakers and energy companies. A
study of how residential customers respond to weather in different periods can provide
insights into daily patterns of household behaviour, e.g during which periods a family
is more likely to be active or often go out.

We examine here the weather response at different times of day using fixed-effects
models on high-frequency usage data from Ireland’s Smart Metering Electricity Be-
havioural Trial (CER, 2012a) combined with weighted weather data from five weather
stations in Ireland. Due to the half-hourly data available from smart meters, we are
able to investigate the household response to weather during different periods. We
aim to provide evidence that the weather sensitivities are indeed period-dependent
and that weather factors may be good proxies for household behaviour patterns in
different periods of a day. In addition, this chapter explores the impact of weather
on the differences in electricity demand between weekends and workdays, thereby
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demonstrating that the relationships between weather and energy demand are not
universal.

The chapter continues by reviewing the related literature of weather effects in
Section 2 and the details of the dataset used are specified in Section 3. The two
main models used and the explanation of variable selection are described in Section 4.
Results of the models are presented in two parts in Section 5, and Section 6 provides a
discussion of potential implications and offers some conclusion.

2.2 Literature review

2.2.1 Weather effects on demand in general

The discussion of weather variables often appears in two sets of studies in this field:
one is model establishments for electricity consumption forecasting and usually at an
aggregated regional/national level. For example, Mirasgedis et al. (2006) summarise
the studies paying particular attention to short-term forecasting and the role of
weather variability. They claim that based on the experience of utilities, the main
weather factors affecting electricity consumption are temperature, humidity, wind, and
precipitation in decreasing order of importance, while wind speed and solar radiation
is not significant for the Greek mainland. Therefore, they only include the two weather
variables (temperatures and relative humidity) in the models predicting the mid-term
electricity consumption in Greece. Instead of using outdoor temperatures directly,
heating degree days (HDD) and cooling degree days (CDD) are used to reflect the non-
linear relationship between temperature and demand, which is particularly common in
electricity demand studies (Bessec and Fouquau, 2008; Alberini and Filippini, 2011).
However, in these studies the effects of weather are based on total consumption including
all sectors, not just on residential consumption specifically. Thus, the importance
of these factors still needs to be examined with a particular focus on residential
electricity demand. The second type of research where weather variables are often
included is in studies of the determinants of regional electricity consumption. Such
studies rarely focus solely on residential electricity demand but rather on total regional
consumption. Trotter et al. (2016) examined the relationship between climate and
daily electricity demand in Brazil where the only weather factors used are CDD, HDD,
and the lag effects of CDD and HDD. One compelling argument they make is that
the effect of temperature on the weekend is slightly different than on working days.
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Furthermore, a model based on aggregated monthly or annual data might not be able
to reveal differences between the two cases. In addition to temperature, rainfall is
another common variable examined. Hor et al. (2005) investigated monthly electricity
demand from 1983 to 1995 in the UK and found a very weak negative relationship
between rainfall and monthly demand. However, they argued that the correlation
between demand and rainfall should be stronger but that the weak unexpected negative
coefficient is mainly because they used only national-level data, while rainfall is very
location-specific. Davies (1958)’s work considered aggregated country-level electricity
demand in England and Wales arguing that five meteorological elements affect demand:
temperature, wind speed, cloudiness, visibility, and precipitation. Temperature allied
with wind speed determines the need for heat, while the remaining variables determine
the level of daylight illumination, affecting lighting demand. The study divides daily
demand into eight three-hour periods of demand to verify whether the effect of weather
is the same across different periods of a day. The results show that temperature
has a peak influence on demand around 9:00 and a lower coefficient during the 17:00
period. However, the direct effects of rainfall are only evident at 17:00. The findings
indicate that the effect of a weather variable is not constant through a day, and it
could be interesting to examine the differences in the residential sector specifically.
Many researchers (Pardo, Meneu and Valor, 2002; Räsänen et al., 2010; Albert and
Rajagopal, 2013) agree with Davies (1958) that weather indices such as humidity, wind
speed, cloudiness, and barometric pressure are suitable explanatory factors for weather
sensitivity, although those variables may have less significant influence on electricity
demand than temperature, rainfall and sun duration.

As discussed above, studies involving weather effects have paid more attention
to total electricity consumption in a region. There has been a lack of panel data
to support deeper studies of the residential electricity sector – current panel studies
concerning weather and residential electricity are primarily based on aggregated regional
panel data. Atalla and Hunt (2016) looked at the residential electricity demand in
six Gulf Cooperation Council countries using a panel dataset of annual demand in
slightly different periods from country-to-country. CDD and HDD are the only weather
indicators used but do not necessarily have significant impacts on demand. It depends
on geographic locations and whether there is variation in the weather variable. Blázquez
et al. (2013) used aggregate monthly panel data at the province level for 47 Spanish
provinces from 2000 to 2008. The authors acknowledge that in panel data analysis, fixed-
effects models (FE) or random-effects models could be helpful to control unobserved
heterogeneity, however, neither of these was appropriate for their study since they
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include a lagged dependent variable in their model. Again, CDD and HDD are also
the only weather conditions considered, which is common in panel studies of regional
residential electricity consumption. Due to the lack of data at household level, very
little research has been done based on non-aggregate residential consumption. Henley
and Peirson (1998) studied residential energy demand and the interaction of price and
temperature based on a Time-of-Use (TOU) trial with 150 households between April
1989 and March 1990. Through a fixed-effects model, they found that the effect of
temperature is negative and non-linear, and the magnitudes vary for different periods.
Alberini and Towe (2015) attempted to estimate residential electricity usage savings
from energy efficiency programs. They assembled a panel dataset of monthly electricity
usage and bills for a sample of about 17,000 households in Maryland from 2008 to
2012. They used Difference-in-Difference” and fixed-effects models to capture annual
and seasonal household effects, and season-by-year effects. Weather effects are not the
focus of the study, but CDD and HDD were included for monthly consumption control.

2.2.2 Weather effects in studies using smart metering data

In light of the trend of smart meter installation around the world, availability of
household-level consumption data has begun to change. One of the main innovations
brought by smart meters is that electric utilities can obtain huge volumes of high-
resolution household usage data. A daily load profile of a household that depicts
daily consumption trends from midnight to 11:59 p.m can now be easily drawn. High
sampling frequencies provide operators with the opportunity to better understand
consumption patterns of their residential customers. The availability of household
consumption data enables researchers to identify the determinants of residential demand
and the difference of effects on the demand of different periods of a day in more depth.
One main strand of the literature using smart meter data investigates the effects of
socio-economic and house-specific variables on load profiles. Anderson et al. (2016)
summarised the existing evidence of household characteristics linked to load profiles and
categorisd those variables into three subgroups: 1) household features, such as number
of persons, number of children, and age distribution (Yohanis et al., 2008; Beckel et al.,
2015); 2) dwelling status: e.g. dwelling type, household tenure, number of rooms (Firth
et al., 2008; McLoughlin, Duffy and Conlon, 2012); and 3) householder characteristics:
employment status, social status, age and gender. Other Householder variables, such
as education level, ethnic group, marital status and household income are also found to
have significant impact on demand and load profiles (McLoughlin, Duffy and Conlon,
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2012; Carroll, Lyons and Denny, 2014). Nevertheless, research in5o electricity demand
and household features have rarely paid attention to weather variables. There is little
evidence of weather effects on residential demand from household-level data. Kavousian,
Rajagopal and Fischer (2013) examine structural and behavioural determinants of
residential consumption using a dataset of 10-minute interval smart meter readings
from 1628 households in California. They prove that weather and location are among
the most immportant determinants of residential electricity use. However, the only
weather variables, they include in their models are outdoor temperature and climate
zone.

Another set of studies use smart metering data and consider weather variables
to identify the effectiveness of time-of-use tariffs. Torriti (2012) took advantage of
data from a TOU and smart metering trial in Northern Italy involving quarter-hourly
readings from 1446 households from 1 July 2009 to 30 June 2011. The findings show
that peak load shifting took place for morning peaks and created a split into two peaks
for evening periods, while total consumption increased by 13.69%. The only weather
variable, temperature, is used to control for the effect of weather variation, but the
effect is not discussed in details. Other studies have used data from the large-scale trial
smart metering experiment or Consumer Behavioural Trial (CBT) carried out by the
Irish Commission for Energy Regulation (CER). Di Cosmo et al. (2014) utilise the CBT
panel data of over 4000 households to explore whether the designed TOU is efficient
in reducing peak demand. Two weather variables – sunshine duration and heating
degree days – are included. Their results show that HDD are positively associated with
consumption, while the opposite relationship is found for sunshine duration for the
three periods considered (day, peak, and night). They only used the weather data from
Dublin Airport weather station, as detailed information on household location is not
available. However, considering that the selected households were drawn from across
the country, a population-weighted weather dataset from different weather stations
would be more accurate for a study of weather effects. In addition, the time periods
may be too long since weather effects could change dramatically over the course of a
period lasting as long as 10 hours.

From the review above It can be easily seen that little research has focused on
weather effects and weather influences are usually introduced as control variables for
other research objectives. Generally, temperature is the main weather factor considered
and other variables, such as precipitation, wind speed, and sun duration, have not
been explored extensively. Furthermore, weather impacts are commonly discussed
at an aggregate level, e.g., daily or monthly level. However, as proposed in some
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studies (Davies, 1958; Henley and Peirson, 1998), the impact of weather indices might
differ depending on the time of a day. The lack of research could be due to the
limited availability of high-frequency household-level data. Even with greater access to
detailed household usage data, the focus of studies using smart meter data has been
on time-of-use tariffs, rather than weather effects. Therefore, a comprehensive study of
the weather effects on residential electricity demand and household behaviour patterns
during different periods of the day would be helpful to filling the gap.

2.3 Data

2.3.1 Residential electricity consumption data

The smart meter dataset used in this chapter was collected as part of Ireland’s Electricity
Smart Metering Consumer Behavioural Trial, which includes 4000 residential customers
(CER, 2012a).

Half-hourly readings of usage were recorded by meters installed in the trial from
15 July 2009 to 31 December 2010. During the benchmark period (July 2009 to Dec
2009) all households were charged a fixed tariff. From 1 January 2010, those who were
selected into treatment groups were charged time-of-use (TOU) tariffs. There were 4
TOU tariff periods: peak (17:00–18:59 Monday-Friday, excluding public holidays), day
(08:00–16:59; 19:00–22:59 Monday-Friday, plus 17:00–18:59 public holidays, Saturday
and Sunday) and night (23:00–07:59) periods. The tariff structure is shown in Table
2.1. In order to control the effects caused by the price incentives, our research only
includes data recorded from 1 January 2010 onward, where tariffs are constant across
all households during that period. In addition, homes with average daily consumption
of more than 54 kWh are also removed because these outliers may not be residential
consumers, but are more likely to be small enterprises or home-based enterprises 1

2.3.2 Weather data

To generate daily weather observations at specific times of day, hourly weather data
provided by the Irish Meteorology Office (Met Éireann) are matched with household

1Furthermore, the impacts of daylight saving time (31st October 2010 and 25th March 2010) are
taken into account. The data from the second 2 am (end of DST) is deleted from the dataset to avoid
double counting.
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Table 2.1 Residential Time-of-Use tariffs 1st January to 31st December 2010

electricity consumption data. Recorded hourly observations are dry-bulb (air) tem-
perature (°C), relative humidity (%), wind speed (kph), and fraction of sunshine per
hour (%). Since location information is not provided by CER due to privacy concerns,
a population-weighted weather dataset should be considered to reflect consumption
response to weather from families living across Ireland (Valor et al., 2001; Auffhammer
and Aroonruengsawat, 2012). As a result, four weather stations, Dublin Airport, Valen-
tia Observatory, Belmullet and Cork Airport, were chosen. The first three synoptic
stations are the choices of Met Éireann for regular Irish weather statements (Met Éire-
ann, 2018) and Cork was selected to ensure enough sufficient regional representation
because a significant number of participating households live in Cork (See Figure 2.1).
Since the distribution of the final acceptances onto the trial was similar to the total
population at county-level (Figure 2.1), the population ratios around the four stations
are aggregated and calculated as weights to create a new dataset to match with the
consumption data.

The weights of the population ratios used are 0.535 for Dublin, 0.175 for Cork, 0.16
for Belmullet and 0.11 for Valentia. The method of how to draw the boundaries of each
station is not ideal due to the absence of household location information. For example,
County Clare (CE in Figure 2.1) can be associated with Cork station or Belmullet
station. However, as the weather in Ireland is relatively similar, the boundaries/weights
hardly change the final results as we tried different weights for the analysis. The
datasets from different observatory stations have similar correlations between weather
variables and household consumptions (see Appendix A.1) and the Dublin and weighted
weather data have a higher and better correlation with the residential demand. The
descriptive statistics for the weather variables are described in Table 2.2.
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Fig. 2.1 Comparison of county level distribution between acceptances and total population

2.3.3 Time Use Study data

In order to help divide hourly data into several discrete periods, the Irish National
Time-Use Survey 2005 (Economic and Social Research Institute, 2005) is used. It
collected detailed national time-use statistics on over 1000 adult participants’ daily
activities, which includes two complete diaries of their activities over a 24-hour period
— one for a weekday and another for a weekend day. It provides a comprehensive
view of daily life in Ireland and possible behaviour during every 15-minute slot of a
day. As a result, the findings of the survey can be particularly helpful in two ways:
1) to divide hourly data more accurately and avoid splitting one major daily activity
into two periods, which may distort the actual response by either exaggerating or
underestimating the effects. For instance, separating 12:00-14:00 into two different
periods may cancel out part of the impacts of lunchtime; 2) to better understand how
people respond to weather changes. For example, if people are less sensitive to rainfall
during 12.00-14.00, it could be a lunchtime effect. Therefore, this survey data provides
a supplementary tool to explain and confirm the results obtained from the proposed
models.

2.4 Methodology

As seen in the literature review in Section 2, studies of the effects of weather variables
have mainly focused on relationships between daily electricity consumption and daily
weather change. It is not clear that how households respond to weather change at
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Table 2.2 Descriptive Statistics for the weather variables

different times of day. To investigate the weather sensitivities in different periods
of a day, it is reasonable to assume that households will not change their behaviour
immediately when the weather changes. In order to capture the lagged effects, the
hourly data is aggregated and divided into periods based on patterns of daily activities,
rather than using raw hourly data directly. Although autoregressive models can be
used on hourly data to control lagged effects, it might complicate the situation and the
lag lengths suitable for weather effects are not clear and there is no agreed lag time in
the literature.

Two rules are employed in separating the time periods: 1) To control for possible
price effects caused by the TOU tariffs, the time periods chosen should not cross over
two different tariffs (i.e., the tariff structure shown in Table 2.1); and 2) A period does
not split major activities. On the basis of these rules, the tariffs provides natural breaks
at the early morning, peak and night periods. However, the day price period (see
Table 1) is much longer than the other periods, which may obscure the real response,
and so needs to be sub-divided. In the end, 9 periods are set as follow with the help
of the time use study: early morning (6:00-8:00), day_1 (8:00-10:00), day_2 (10:00-
12:00), day_3 (12:00-15:00), afternoon/day_4 (15:00-17:00), peak (17:00-19:00), early
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evening/evening_1 (19:00-21:00), evening_2 (21:00-23:00) and night (23:00-3:00). The
period from 3:00 to 6:00 is not included in the night period, since no major activities
occur during that period and that could bias the analysis. The descriptions of the
four main activities with the highest proportions of people doing on workdays and
weekends are shown in Table 2.3. The numbers in each cell represent the minimum
and maximum percentages of people doing the activities during each period of a day.

As panel data allows for the exploitation of both time and cross-section dimensions,
it has the potential to eliminate unobserved heterogeneity in the data (Asteriou and
Hall, 2011). As a result, given the nature of the panel dataset, two fixed-effect models
are employed. Although random-effects (RE) models are also used in the related
literature, fixed effects (FE) models better suit the purposes of this study.

With FE models, the focus is given to weather variables, while the effects of variables
whose values are consistent across time (Wooldridge, 2013), such as demographics,
housing conditions, and electric appliance ownership, are captured in a single fixed-
effects estimator since the focus of the study is not on household characteristics. In
addition, the results of the Hausman test imply that FE models are more suitable,
since the null hypotheses of RE models is rejected (p-values of 0.0000).
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The first model (Model 1) explores the effects of selected weather variables on
electricity consumption and is as follows:

log (qhi,t) = αh
i + ζh ·H +

5∑
p=1

δhp ·Wp,t +
12∑

m=2

λh
m ·Mm,t +

7∑
j=2

θhj ·Dj,t + εhi,t (2.1)

where h = 1 − 9 for each of the 9 periods. log (qhi,t) denotes the logarithm of
household i’s daily electricity consumption in kilowatt-hours during one period of day
t. As discussed above, there are 9 periods in a day. The model therefore is run for
each period separately; Wp,t are the five weather variables; Mm,t are dummies of month
indicators, and January is selected as the baseline (when m=1) ; Dj,t indicate day of
week and the reference category is Monday (where j=1); the coefficient δ represents
the expected weather effect on consumption, while the coefficients λ and θ quantify the
consumption differences between the expected effect (the month i and the day j) and
the baseline (January and Monday); H is the public holiday dummy; αh

i are household
fixed effects and εhi,t is a stochastic disturbance term. There may also be unobserved
household-specific differences in consumer demand, for example, presence of electric
dryers or other appliances. The fixed-effects estimator used can handle it well as this
household-level heterogeneity is constant over time.

Although weather has been identified in many studies as an essential factor, no
agreement has been reached on which weather variables and in what form they should
be added into the modeling. However, heating/cooling degree days, hours of sunshine,
rainfall, wind speed and relative humidity are five leading variables that have been used
in the relevant research. Model 1 employs all these variables, apart from heating degree
days (HDD) and cooling degree days (CDD), which are replaced by air temperature in
the equation. The reason for this substitution is that HDD and CDD are used to reflect
the non-linear relationship between daily electricity demand and daily temperature.
However, although a non-linear response is found in other studies, there is no clear
non-linear relationship, but rather a linear correlation in Irish houses (Figure 2.2).
One reason may be that the temperature range in Ireland is relatively flat and air
conditioning uncommon in Ireland. In addition, Model 1 examines the weather during
different periods of the day, rather than daily changes, so the using CDD and HDD
would not suit the case.
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Fig. 2.2 Average daily electricity consumption per household

The second model (Model 2) is based on Model 1 but streamlined to focus on
estimating how differently households respond to weather changes on weekends and
weekdays. The different consumption patterns can be seen in Figure 2.3.

To estimate the differences, the following model is tested:

log (qhi,t) = αh
i +ϑh·Dx+ζh·H+

3∑
p=1

δhp ·Wp,t+
3∑

p=1

βh
p ·Wp,t·Dx+

12∑
m=2

λh
m·Mm,t+εhi,t (2.2)

The model is similar to Model 1, apart from the following changes:

1. Day of week dummies are replaced by a workday dummy Dx to estimate the
difference between workdays and weekends. It should be highlighted that the
definition of working days varies depending on the period of the day. Before
19:00 (peak period), the definition remains the same as the typical sense that
Monday to Friday are working days. However, the definitions of working days
from 19:00-03:00 are slightly different. For the evening_1 and evening_2, periods
workdays are defined as Monday to Thursday, which means 3 days for each
weekend because it is sensible to treat Friday evening as the start of a weekend.
Additionally, before 23:00 on a Sunday can also be regarded as part of a weekend.
However, it may be logical to assume that the behaviour/life pattern for the
night period (23:00-3:00) on a Sunday is more similar to a workday. During late
evenings/evening_2 on weekends eating out is still the second most common
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Fig. 2.3 Average daily electricity consumption per household

activity (Table 2.3) and so Sunday evenings should not be treated as workdays.
Therefore, the definition of workdays for the night period is Sunday to Thursday.
The analysis for holidays/public holidays applies the same rule.

2. Only three weather variables are included in this model. Wind speed and relative
humidity are excluded as they have less impact on demand. In addition, the
objectives of this model are to examine the differences in response in the main
weather factors between weekdays and weekends. Adding variables that have
limited effect can overfit the model and may lead to biased results. As a result,
Model 2 only keeps three weather variables. It is because: a) the results shown in
Model 1 prove that humidity and wind speed have the least and almost negligible
effects on demand. A model including the two variables would weaken the model
2) we tested the model with all five weather variables and their interactions,
which shows that with or without relative humidity and wind speed included,
the results for the other three variables remain almost the same. Therefore, the
more concise model with better explanatory power is employed.

In Model 2, the main coefficients of concern are βh
p and δhp . βh

i represents the differ-
ence in demand between workdays and weekends/holidays caused by weather variable
Wp,t. δhp indicates the possible effects of weather variable Wp,t on weekends/holidays.
Note that together holidays plus weekends act as the reference category and that
holidays are not separated from weekends because less than 10 days in a year are
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treated as holidays. Results from the interaction between the holiday dummy and
weather factors may be biased due to the limited sample size.

2.5 Results

2.5.1 General relationships between weather factors and de-
mands

Analysing the weather sensitivities on periods of day basis will allow us to answer
different questions. First, do consumers change their behaviour alongside changes in
weather and the seasons? And if so, which weather variables affect the consumption
behaviour most significantly? Is there any particular period in which the effect of one
specific weather factor dominates? The weather effects on electricity consumption
in Ireland do not reflect behaviour change related to heating demand since natural
gas is the main heating source in Ireland and electric heating appliance ownership is
low, around 10% (CER, 2012a). Instead, the changes in demand reflect how weather
factors will affect households’ daily behaviour for electricity-intensive activities such
as lighting, cooking, and other household appliances (washing machines, dishwashers,
dryers, televisions, etc) and so will reflect both variation in household chores and
activities as well as whether people are at home or whether have gone outside or away
from home.

As the models employ log-linear form, the coefficients describe the percentage
change in demand for a one unit increase in that variable. The table presents the
estimated coefficients from the models for the nine periods (Table 2.4).

Temperature

Temperature always has a negative effect on household electricity consumption. This
is in line with many previous research findings (Blázquez, Boogen and Filippini, 2013;
Cosmo et al., 2014) that daily electricity demand decreases when the daily temperature
rises. This result holds across all periods, not just for average daily consumption.
The reduction in demand with rising temperature could be caused by various drivers
including enaging in more outdoor activities and lower heating demand. Considering
that the Irish heating system largely depends on natural gas (CER, 2012b), with a
higher possibility that the reduction from temperature is from spending more time
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outside. By contrast, the reason for the negative effect on mornings (6:00-8:00) may
be different, since most households should be still asleep or in the bed. The negative
sign indicates that people tend to get up slightly later or spend less time on personal
care and cooking on warmer days. The response to temperature can be seen as the
sensitivity of the activities in this period to temperature change (warm/cold weather.
Hence, a higher sensitivity represents the activities/behaviour in that period are more
likely to be outdoor activities. From Table 2.4, it can be seen that night (23:00-03:00),
and especially early morning (6:00-8:00) are far less sensitive than other periods with
less than a 2% reduction. The highest coefficient is in the early afternoon (12:00-15:00),
which indicates that the activities in that period can be most sensitive to warmer
weather.

Rain

In terms of rainfall, our prior expectations were that higher rainfall could be associated
with an increase in electricity demand for all periods. It seems reasonable that the
heavier it rains the less likely that people would go outside. As expected, all periods
show a negative relationship between rainfall and consumption, except for mornings
(6:00-10:00) and late nights. The reversed sign in the early mornings (6:00-8:00) may
indicate that the households wake up later when it is raining outside. Moreover, the
electricity usage in mornings (8:00-10:00) and late nights are rarely affected by rain. By
the time many people have left home to work, while those who stay at home may not
be ready to go out immediately for shopping or exercises after breakfasts. Relatively
few households are awake after 23:00, most households tend to go to bed earlier on
workdays and even on weekends many households won’t stay up beyond midnight.
This assumption can be verified by the Time-Use Survey in Ireland (Economic and
Social Research Institute, 2005), which showed that more than 50% percent of people
are sleeping at 23:00-23:59. The figure soars to 85% for 0:00-1:00.
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Sun

The results of sun duration suggest two clear patterns over the course of a day. The
turning point seems to be 15:00, which is consistent with the findings of Harold, Lyons
and Cullinan (2015) and Di Cosmo and O ’hora (2017). The more sunshine observed In
that period, the less electricity consumed by households. Before 1500 it has an opposite
effect with the model producing a positive coefficient. The positive effect may be due
to the different nature of the activities during the two periods. Since, as discussed,
electricity consumption does not reflect heating demand, the results would indicate
that more indoor activities (e.g chores, DIY, gardening) tend to occur over 6:00-15:00
whereas there was greater chance of outdoor activities (e.g., shopping, sports) occurring
in the late afternoon and early evening. Furthermore, the larger coefficients in the
early evening (17:00-21:00) reveal that for the half year that has sunshine in the early
evening (mainly late Spring and summer), willingness to go out is particularly sensitive
to sunshine during that period.

Humidity and wind speed

Relative humidity and wind speed show similar patterns in affecting residential elec-
tricity demand. They increase demand for electricity for all periods after 10:00. In
terms of wind speed, it has limited impact on electricity demand in the early mornings
(6:00-10:00) with less than a 0.005% reduction in demand during 6:00-8:00 and with
an insignificant coefficient at 8:00-10:00. On the other hand, relative humidity has
a negative relationship with consumption during the same period. Humidity have a
compounding effect with temperature, where air temperature with higher humidity
may give a colder apparent temperature. However, all the impacts from humidity and
wind speed are of negligible magnitude with under 0.5% change in demand. Therefore,
these two variables will be removed in the following model where the focus is to identify
the differences between weekdays and weekends for each of the main weather factors.

2.5.2 Behaviour difference between weekends and workdays

Based on the overview of the effects of the weather factors, this section attempts to
identify and answer the following questions: are there differences in demand between
weekends and workdays in weather sensitivities? What differences in daily routine
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between weekends and workdays can cause any discrepancies? Estimated results are
shown in Table 2.5.

Temperature

As expected, the results suggest that temperature have a negative effect on the demand
among both weekends and workdays of all periods. However, the exception is weekend
early mornings. The reason for this unexpected impact of temperature is not particularly
clear. However, it may be that while most families are asleep during that period,
early birds are willing to get up earlier on warmer weekend days. Of all periods, early
weekend mornings (6:00-10:00) have the least impact, which suggests that the early
morning is the most insensitive period. The behaviour during that period is robust
and less likely to be changed by temperature.

Furthermore, weekends are in general more sensitive to temperature change than
weekdays. This difference can be explained by more activities occurring indoors.
However, the difference in the early evening (19:00-21:00) seems negligible. It could be
explained by that limited activities would occur during the post-dinner time on both
weekends and workdays, since many would enjoy an indoor relaxing time after dinner.
The largest difference appears at night (23:00-3:00), which is in line with expectations.
People would be more likely to go out later and stay out later on weekends/holidays,
especially on warmer days, whereas people tend to go to sleep earlier on workdays even
on warmer days.

Rainfall

The effects of rain represent to what percentage the electricity demand would change
by the rainfall. From the results it is possible to infer how flexible plans or activities
are in a given period. A period with higher sensitivity to rain that there may be more
outdoor activities or households prefer to go out during that period.

The midday (10:00-15:00) and early evening (19:00-21:00) periods on workdays are
the only time slots with greater sensitivities than their counterparts on weekends. It is
noteworthy that the sensitivities during the midday period (10:00-15:00) on weekdays
are exceptionally higher than any other period in either weekends or workdays. It
indicates that stay-at-home family members tend to go out during that period on
weekdays. While on weekends, the households may not be able to go out early
due to more chores and family care. This period actually shows the largest gap
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between weekends and workdays, which indicates the large underlying difference in
daily routines between weekends and workdays are in the midday period. For example,
people might regularly go out on workdays while stay at home on weekends during this
period. Likewise, the significant high coefficients of over 0.1 are also found on weekend
mornings (8:00-10:00) and nights (23:00-3:00). The unusually high sensitivities on
weekend mornings may be due to more chores done or sports activities.

Interestingly, in spite of a smaller difference compared to the 10:00-15:00 period,
workdays in the early evening (19:00-21:00) are surprisingly more sensitive than on
weekends, whereas a plausible hypothesis would be that evenings should be more
sensitive on weekends. It could be a result of the timing of outdoor activities on
weekdays since people would only be able to go out during that period on weekdays
while they could choose other time periods on weeknds. In addition, households may
have dinner at a slightly later period on weekends. For many, this period may be
post-dinner on workdays (19:00-21:00) but may actually be dinner time for weekends.
Therefore, whether there is rain or not may have a greater effect on workdays, due to
the lower probability of going out in the evenings on workdays.

The only negative effects are for early mornings (6:00-10:00) on workdays. It is
possible that the heavier it rains, the earlier people may feel to leave houses to avoid
the traffic jam, although the effect significantly drops from -3.3% to -0.8% at 8:00-10:00.
It is a solid proof that the negative effect mainly comes from the behaviour of workers
in the house since the effect falls to nearly zero when it reaches the start of work hours.
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Sun

The prior expectation was that longer sun duration should be associated with decreased
electricity demand, as people are more likely to go out on a sunny day. However, contrary
to this expectation, the opposite findings are found in the weekend mornings (6:00-
12:00) and the early mornings on workdays (6:00-8:00). The increased consumption in
sunny early mornings for both weekends and workdays could be partly explained by a
relatively early wake-up times. It may be that sunshine gives individuals the feeling of
being energetic and increases the possibility of going out later. This effect is especially
clear on weekends since on workdays people are more likely to maintain their routines
in the early evenings and may not change their behaviour easily in response to greater
sunlight.

In the mornings, from 8:00 until 12:00, interesting and unusual differences between
weekends and workdays appear. While sunshine hours now have a negative effect on
workdays, the positive effects continue on weekends during this period. The increased
demand reverse the common idea that families or individuals are more willing to spend
time outside, especially on a sunny weekend. However, this may be capturing an effect
of preferences of specific activities/routines on weekend mornings. The positive results
could be due to the fact that households have propensities to carry out housework on
weekend mornings, before heading out in the afternoons. Additionally, some types of
chores are more likely to give a rise to electricity consumption on a sunny day. For
example, roughly 30% of households do not own a dryer (Leahy, Lyons and Walsh,
2012), so they would choose to do laundry on a sunny day and even households with
dryers might choose to reduce their bills and dry their clothes outside. Thus, the
positive effects may reflect the behavioural habits on weekend mornings. It should
be highlighted that the positive impacts are decreasing from the 8:00-10:00 morning
period and becomes insignificant by mid-afternoon (12:00-15:00), which is the only
insignificant period. The reason may be that on weekends, family meals are common
at lunchtime and sun duration does not affect these behaviour patterns. After that
point, sun sensitivities on weekends gradually increase from -7.6% to -9% during the
15:00—21:00 period. This may indicates more sun-related outdoor activities later on
weekend days, compared to “housework mornings”.

On the other hand, negative effects are seen during almost every weekday period.
However, it is still important to note that compared to a relatively constant sensitivity
of -1.8% in the period 8:00-15:00 on workdays, a clear increasing pattern is shown for
the period after 15:00. The sensitivities are much higher than during the first half of
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day, with values over 5%. This provides strong evidence that similar to behavioural
patterns on weekends, afternoons are generally more flexible on workdays. Higher
negative coefficients imply that the households have more free or flexible time and are
more likely to go out. Nevertheless, it should be pointed out that a weaker sensitivity
to sunshine duration does not necessarily mean that people are less likely to go out
during that period. Unlike for rain, whether or not there is sunshine would generally
not affect people’s movements or activities. For instance, if one is used to shopping for
groceries for the family in the morning, he/she would not cancel or delay the shopping
just because of cloudy weather. Therefore, a relatively smaller sensitivity should be
interpreted as a higher possibility that one’s time is occupied by regularly scheduled
plans, which could be either indoors or outdoors.

Similar to the results shown in the rain effects above, early evening (19:00-21:00) is
the only period when workdays are more sensitive than holidays. It should be kept in
mind that only half of a year (mainly late spring and summer) has sunshine during
the period. The findings in this period therefore largely limit and reflect the behaviour
in summer. As suggested in the rain section, only in this evening period are people
still able and more willing to go out on workdays, compared to late evenings and
nights. Another interesting finding is that sun duration in this period (19:00-21:00) of
workdays has the largest effect among all other sunshine effects on encouraging people
to go out. Note that as no sunshine exists after 21:00, no sun effect can be tested for
those periods.

2.6 Discussion and conclusion

This study set out to examine the behaviour of residential customers exposed to different
weather conditions in different periods of a day using unbalanced panel data from the
Irish Smart Metering Electricity Consumer Behavioural Trial (CER, 2012a). To conduct
the analysis, half-hourly electricity consumption data from 3827 household meters over
one year were aggregated into daily usage for every period of a day. Together with
the weather variables, fixed-effects models with robust standard errors clustered at the
household level were used to control for unobserved household-specific factors, which
gives a better understanding of households’ response to weather factors at different
times of the day.

Overall, this chapter has demonstrated from the first model that in general although
temperature has robust and relatively flat effects on electricity demand across all periods,
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rain and sunshine duration show greater potential to affect individual behaviour and
daily routines. The demand response to temperature could be interpreted as warm/cold
sensitivities of the activities in that period. As expected, the periods from 10:00-21:00
present higher sensitivities than early mornings and nights, since more activities occur
in those periods. Although night time periods (21:00-3:00) have smaller sensitivities
than daytime, they are still much more sensitive than early mornings. Not many
activities occur over 6:00-10:00 when most people are getting up and going off to
work. The rainfall sensitivity may act as an indicator of whether outdoor activities
occur more often in that period. It should be noted that the results mainly reflect the
behaviour of the households who are in the house during day-time, and the proportion
of these households account for over 68% of the sample. One of the lowest rainfall
sensitivities appears at 12:00-15:00 which is cooking and lunchtime that the possibility
of going outdoor would be relatively small. This finding is consistent with the Irish
Time Use Survey (Table 3) that for those who are not working (61 82%), eating is
one of the main activities. Apart from the similar pattern of lower sensitivities at the
start and end of a day, the relatively high coefficients at two periods 10:00-12:00 and
15:00-17:00 reveal that individuals could be more used to or prefer going out during
these periods. On the other hand, the impact of sunshine on households’ behaviour
differs from rainfall, although both affect the chances of going out. Negative sunshine
sensitivities represent the time availability and willingness to go out of households, in
other words, how flexible the period so that one can response to good weather. The
results strongly support the interpretation that the sensitivity gradually increases from
late afternoon (15:00) and peaks in early evening (19:00-21:00), compared to the small
and positive sensitivities shown in the mornings.

The responses to weather factors for weekends and workdays are tested in the second
model. The differences are caused by different household patterns between weekends
and workdays. In terms of temperature sensitivities, weekends are more sensitive than
workdays because households have more available time to spend, while the sensitivity
difference is minimal. The biggest difference is seen on the night period (23:00-3:00),
where people would care less about the cold weather and be more likely to go out
on weekends. Moreover, the rainfall results suggest two clear patterns: before 15:00
workdays are more sensitive than weekends, although the effects of workday mornings
are insignificant; after 15:00, weekends show higher sensitivities than workdays, apart
from 19:00-21:00. The findings imply that more rain-sensitive activities occur before
mid-afternoon during weekdays, while these activities (e.g. outdoor activities) occur
at 15:00 afterward in general. The difference in life patterns between workdays and
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weekends are also revealed by sun duration. In the mornings (6:00-12:00), while sunlight
has positive effects on weekends: the longer the duration of sunshine, the greater the
consumption during those periods on the weekend. It could be associated with more
sun-sensitive chores on the weekend mornings. The pattern changes after 15:00 –
households seem more flexible at this time on weekends. And both weekends and
workdays reveal increasing sensitivities during that period, especially workdays, which
soars after 15:00 from -1.6% to a maximum of 13%. One especially interesting finding
is that early evening (19:00-21:00) is the one period when weekends are less sensitive to
all weather factors than workdays. This may be unexpected but could be explained by
the fact: Compared to weekends, early evenings on weekdays might be the most flexible
time where outdoor activities are possible, especially for those employed households,
so the period is more sensitive to weather.

The study could be instructive for understanding household energy consumption
behaviour. First, the weather sensitivity analysis provides an overview of households’
behaviour/life pattern without the assistance of a survey. Especially, sunshine and rain
sensitivities may be considered as proxies of whether a period is with more flexibility
and whether people tend to leave home (or use less) at certain periods respectively.
Furthermore, analysing the differences in patterns between weekdays and weekends can
help identify which periods on weekends or workdays are more sensitive and flexible.
With more knowledge of people’s life pattern among different periods the tariff structure
design could be more efficient in shifting energy demand. Secondly, with deeper analysis
on individual level, for example, combing the attitude and behaviour data in the survey
with the weather sensitivity patterns, it could create an initial profile of a family’s daily
activities. For instance, if a family displays relatively higher weather sensitivities, this
may reflect greater flexibility in their living patterns. A target tariff aimed at those
families may help shift peak electricity demand. These potential implications lead
to possible future research in improving residential customers’ consumption profiles.
It would be interesting to categorise the households by their weather sensitivities
and to examine if the weather sensitivities are associated with certain demographic
factors, which may provide a cheaper and faster means of understanding a household’s
social-economic profile. Data mining tools are helpful in this case to cluster and classify
the residential customers, which offers a new angle to summarise and depict customers’
activity patterns by using only weather and consumption data. By using only weather
indicators this approach can be faster and simpler than traditional methods —such
as surveys or questionnaires — in identifying which period are more flexible at the
household level.
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Chapter 3

Machine Learning and residential
electricity consumption: Which
households are more responsive to
weather?

3.1 Introduction

Past quantitative studies of residential energy consumption have mainly focused on
energy tariff pricing, explanations for differences in energy consumption, and models
to predict consumption. However, many of these studies are based on aggregate levels
of consumption, particularly those using econometrics (Bianco, Manca and Nardini,
2009; Karanfil, 2009; Sanquist et al., 2012). The objectives of these studies are various,
including the research on relationships between daily consumption and household
social-economic background (Hackett and Lutzenhiser, 1991; Druckman and Jackson,
2008; Jones, Fuertes and Lomas, 2015); studies focused on effects of weather variables
on the total regional electricity consumption (Valor, Meneu and Caselles, 2001; Pardo,
Meneu and Valor, 2002; Hor, Watson and Majithia, 2005). Due to the limitations in
the resolution of their data however, these researchers were unable to conduct more
detailed studies. As installation of smart metering in households has increased in recent
years, analysis of high-resolution electricity consumption data becomes possible. The
nature of high-frequency data brings opportunities to understand energy consumption
with a granularity that would have been unimaginable even a few years ago. As a



56
Machine Learning and residential electricity consumption: Which households are more

responsive to weather?

result, there are now new areas of research available arising from this high-resolution
data in the energy sector.

One main area of focus is load management, especially the prediction of electricity
consumption, which is of interest to both utilities and policymakers. Previous prediction
models have generally been based on aggregated grid consumption data. Now with the
technological advancements in metering, the high-frequency load data has the potential
to help related parties to understand consumer behaviour better to achieve higher
efficiencies. Prediction models can massively benefit from such data and significantly
improve their accuracy (Beccali et al., 2008; Ghofrani et al., 2011). Another research
question which has been constantly discussed is dynamic pricing of electricity (Faruqui
and Malko, 1983; Sanghvi, 1989; Herter, McAuliffe and Rosenfeld, 2007; Faruqui and
Sergici, 2010; Alberini and Filippini, 2011). The deployment of smart meters enables
utilities to set dynamic pricing structures than flat prices. There have been a great
number of trials for various types of pricing schemes (Newsham and Bowker, 2010;
Haider, See and Elmenreich, 2016), e.g. time-of-use tariffs, critical peak prices and etc.
By introducing fluctuating prices, it could be helpful to reduce energy consumption
and save the environment to some extent. Another motivation for dynamic pricing
is that utilities intend to encourage customers to shift away from the peak times to
reduce the power load during critical periods (Herter, 2007; Faruqui and Sergici, 2010).
To analyse the efficiency of the tariff design, the effects of the pricing structures can be
investigated thoroughly using high-resolution data.

Furthermore, understanding the correlations between customers’ social-economic
profiles and electricity consumption is also one of the classic applications of smart
metering data (McLoughlin, Duffy and Conlon, 2012; Beckel et al., 2015). Accurate
segmentation of electricity customers can assist in higher energy efficiencies and
lower operation losses. Previously, using only aggregated daily or monthly household
consumption data, it was difficult to look into the details of how and why households’
consumption behaviours differ during specific time periods (Cramer et al., 1984; Silk
and Joutz, 1997; Kaza, 2010). Previous studies therefore could only focus on longer
periods of household consumption to explore differences in social-economic backgrounds
or of property characteristics of houses. With smart metering data, utilities and
researchers can finally create and understand the customer demand curves and the
habits and behavioural patterns underlying the profiles. Due to the huge volumes of
data involved and the complexity of the data processing, machine learning techniques,
such as clustering and classification, have been increasingly adopted rather than more
traditional econometric tools.
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The majority of research featuring data mining techniques is focused on how to
cluster customers based on their load curves (Räsänen et al., 2010; McLoughlin, Duffy
and Conlon, 2012; Razavi et al., 2019). The objectives of those studies are to identify
the connections between the demand curves and the characteristics of households.
However, there have been few studies using these tools on smart metering data for
behavioural studies, and in particular there has been limited work on the effects of
weather on household behavioural patterns. Load curves can partially reflect households’
consumption patterns, for instance, identifying peak times or the amount consumed
during a specific period. Nevertheless, an aggregated curve cannot reveal household
preferences in any detail. Greater understanding of household behavioural patterns
could benefit both policymakers and utilities.

To fill the gap, our main objectives are to understand how household daily life
patterns are reflected in the demand response to weather sensitivities. This study
brings together the smart metering and the survey data from the Irish Electricity
Smart Metering Customer Behaviour Trials in 2012 with the weather data during
the trial. Weather sensitivities of electricity consumption of each household during
different periods of the day are the core of this study. They are used as proxies to
discover household behaviour patterns, for example, when members of a household
normally need to go out and at what time of day people are more likely to have spare
time (or at least when they are most flexible in terms of their behaviour). The work
proposes a novel method using machine learning techniques to identify the patterns
using a two-step process: 1) Define the demand change indexes under different weather
conditions; and 2) Employ clustering techniques on the indexes defined in Step 1 to
generate representative sensitivity curves. With this method, the study offers a new
perspective on the differences in household responses to weather changes drawing on
time of use preferences derived from smart metering data. Combining these results
with load curves can provide a better understanding of daily residential electricity
consumption patterns.

This remainder of the paper is organised as follows: Section 2 presents a literature
review of past studies of smart metering data, especially works on electricity consumer
segmentation and the correlations between weather and electricity consumption. Both
the scope and methods are discussed. Section 3 includes the data and the methodology
used here, consisting of data prepossessing, definition of demand change indexes, and
the algorithms and a brief description of the clustering process. In Section 4, the results
of the weather sensitivity curves are presented and explained in detail. A summary of
the work and the conclusions are drawn in Section 5.
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3.2 Literature review

Among all the grid operation improvements, the deployment of smart meters particularly
benefit short-term load management. While short-term (hourly to daily) load forecast
plays a critical role in load management, it has been rather difficult to model the
demands by low-frequent data. Under this circumstance, forecasting for residential
electricity demand particularly benefits from smart meter data. With household level
load data, the models for both long-term and short-term demand forecasting have been
well-established. Quilumba et al. (2015) propose improving the accuracy of short-term
load forecasts by considering customer behaviour. Using clustering techniques on
smart meter data, they create models for load forecasts from 30 minutes up to one
day-ahead predictions. Taieb et al. (2016) prove that for disaggregated demand, an
additive quantile regression model outperforms the traditional model with an normality
assumption, based on the smart metering data from a trial in Ireland over a period of
1.5 years. Ghofrani et al. (2011) combines traditional Gauss-Markov process modelling
with automatic meter readings to achieve a higher prediction accuracy, although it
increases the computational cost. Some other studies using smart meter data focus
on identifying the efficiencies of domestic appliances. Firth et al. (2008) attempt to
reveal the trends in the use of appliances from a high-resolution dataset. They found
that a 10.2% rise of “standby” appliances (such as consumer electronics) consumption
accounts for the largest share of the overall demand increase. Weiss et al. (2012) prove
that disaggregation of individual appliances is possible by using a set of algorithms on
smart metering data.

Apart from the modelling-related research, another stream of studies using smart
meter focus on the effects of household characteristics on residential consumption.
Gouveia and Seixas (2016) combine the meter readings with a door-to-door survey
of 110 questions administered to 265 households in Portugal to unravel residential
consumption profiles. They carried out clustering analysis using daily consumption and
formed three profiles. The main variables used for profile analysis included: dwelling
location and type, age, gender and educational attainment of household members. A
U-shape pattern with higher consumptions at the beginning and end of a year and lower
demand in the middle was found to be the most common type accounting for 77% of the
households. Beckel et al. (2014) attempted to reveal household characteristics purely
from consumption data with a supervised method. In their work the Irish CER trial
data was used and the household’s socio-economic status, appliance stock, properties
of the dwelling, and the consumption behaviour of the occupants were considered as
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class labels in the research. The electricity consumption profiles were firstly formed
through different indexes of consumption behaviour, for instance, the ratio of peak to
off-peak. Then by a supervised-learning process, with input of electricity consumption
data, the model would be able to identify household characteristics only depending
on the consumption patterns. The experimental results show that among all other
household characteristics, the occupancy state of the house, the number of persons in
the house and the appliance stock can be identified directly from the consumption load
profiles very well with an accuracy of more than 70%.

3.2.1 Data mining methods in smart metering data

The rich information brought by high resolution real-time smart meter data can
improve the efficiency of grid operations. However, such massive data flows pose a
major challenge for the utilities to store and extract knowledge from the data (Viegas et
al., 2015). Traditional tools such as database software are inadequate when dealing with
huge amounts of data. In response, computational techniques, particularly, machine
learning, have become increasingly appealing.

The applications can vary from operations, such as load forecasting, simulating
Demand Side Management (DSM), and detecting bad data, to marketing – tariff
design and potential customer identification. The core of the implementation is the
segmentation of electricity consumers and load clustering. Wijaya et. al. (2015) use a
cluster-based method to achieve short-term (1 hour and 24 hours ahead) electricity
demand forecasting. Some argue that Support Vector Regression (SVR) is one of the
most effective models to forecast electricity consumption (Chen, Chang and Lin, 2004;
Sapankevych and Sankar, 2009; Cao and Wu, 2016; Chen et al., 2017). Wijaya et al.
(2015) compared different algorithms including SVR, linear regression, and cluster-based
aggregate forecasting (CBAF) and they suggest there is no single best algorithm in
forecasting and use their own algorithm for clustering. From a review of load forecasting
studies, it can be seen that Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) are the three most widely used
metrics to evaluate the accuracy of forecasting algorithms. However, it should be noted
that those effectiveness metrics are not the only basis for algorithm measurement. Data
structure and other relevant practical issues should also be considered.

McLoughlin et al. (2015), also drawing on Irish CER trial data, use clustering ap-
proaches to explore household load profile information. Unlike forecasting studies, they
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focused on the effectiveness of customer clustering by their household characteristics.
The diurnal, intra-daily and seasonal consumption patterns were all examined. In order
to evaluate the different clustering techniques, three of the most widely used algorithms
are investigated: k-means; k-medoid and Self Organising Maps (SOM). They use a
Davies–Bouldin (DB) validity index to compare the effectiveness of the algorithms as
well as to determine an appropriate number of clusters. Across the three techniques,
the number of clusters was varied between 2 and 16. The results show that SOM and
K-means have similar higher clustering power and that 8 to 10 clusters are the optimal
numbers in this case. It is important to note that the optimal cluster number can
vary depending on the objectives of the research, the features of datasets and even
the selection of validity indices. Hierarchical clusterings are another popular set of
algorithms for residential customer segmentation (Chicco, Napoli and Piglione, 2006;
Chicco, 2012). Al-Wakeel et al. (2017) use k-means cluster analysis for load estimation
study on the CER trial data. They suggest that compared to other algorithms, the
significant advantages of k-means are simplicity and efficiency, particularly when con-
sidering the computational cost. Four different varieties of K-means distance functions
are compared: Average Euclidean distance, Average Manhattan distance, Average
Canberra distance, and Average Pearson correlation distance. The results of MAPE
and RMSE indexes reveal that Canberra produces more accurate forecasts and the
smallest error distributions. Gouveia and Seixas (2016) employ hierarchical clustering
using Ward’s Method based on the Squared Euclidean distance. They tested a range
of numbers for cluster from 3 to 12. Since they conclude that increasing the number
of clusters captures more information, they opted for the 10 clusters variant. One
difference in conducting their cluster analysis is that they used mean daily consumption
data to create a year profile, rather than using hourly data for a daily profile in other
studies. In addition, the raw data was not normalised and the shapes of the profiles
mainly reflect the magnitude of the consumption.

In summary, the key process of applying clustering analysis is to determine suitable
algorithms and the number of clusters. No single algorithm outperforms the others in
all situations with regard to residential electricity customer clustering. Any decision or
selection must be based on the aims of the research and nature of the data structures.
In particular, K-means and its relevant algorithms are mainstream choices that have
been abundantly discussed for the case of residential load profile clustering. However,
clustering on the basis of weather sensitivities has rarely been explored in the past.
Traditional consumption load profiles mainly focus on load forecasting (and forecast
accuracy). On the other hand, clustering on weather sensitivities, might offer new
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perspectives and approaches to customer behaviour pattern studies that the weather
response may be a good indicator for behavioural patterns.

3.2.2 Weather factors in residential electricity demand

Due to the lack of high-resolution consumption data at household level, past weather
studies have mainly been conducted at the regional level using aggregated data. There
are two types of research typically incorporating the weather factors: (i) demand forecast
models and (ii) econometric models to identify the effect of different factors on electricity
demand. Taieb et al. (2016) conducted a quantile regression to improve forecasting
accuracy based on the Irish CER trial. In their model, the only weather variable included
is outdoor temperature to control its effect in forecasting demand. Beccali et. al (2008)
assessed the weather sensitivity on short-term household electricity consumption using
cooling and heating degree-days (CDDs and HDDs) as temperature proxies. These two
proxies are commonly employed when a non-linear relationship between temperature
and demand is assumed (Fan and Hyndman, 2011; Blázquez Gomez, Filippini and
Heimsch, 2013). Other weather factors that have been considered are relative humidity,
humidex index, global solar radiation, wind speed, and atmospheric pressure. Some
researchers (Albert and Rajagopal, 2012; Fikru and Gautier, 2015) claim that the main
contributors are humidity index, CDDs, and HDDs while other variables are negligible
in affecting residential electricity consumption. Henley and Peirson (1998) modelled
the relationship between residential demand and price and temperature in the UK
using a fixed-effects model and found a negative correlation. The opposite result was
also shown in Wangpattarapong et al. (2008) in examining the impacts of climatic and
economic factors on energy consumption in Bangkok. They use cooling-degree days
as their temperature variable and find that a significant positive relationship exists.
Although the results in these two studies seem contradictory, the different effects of
temperature may be the product of geographical location or climate zone. Whereas
peak consumption in Bangkok is from air conditioning on the hottest summer days,
peak UK electricity demand comes in winter. Hor, Watson and Majithia (2005) find a
very weak negative effect of rainfall for monthly demand from 1983 to 1995 in the UK.
Apart from temperature, which is usually seen as the main driver of a weather effect,
humidity, wind speed, degree of cloudiness, and barometric pressure are also often
discussed in related studies (Pardo, Meneu and Valor, 2002; Albert and Rajagopal,
2013).
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However, to the extent they are considered, weather conditions have been treated as
exogenous variables to control the effects of interest. Perhaps surprisingly, investigating
the impacts of weather changes on households’ daily life patterns through the electricity
demand response to weather variables have been rarely seen. In the next section on
Methodology, a novel approach for using weather sensitivities of consumption as proxies
for household behaviour pattern will be explored in detail.

3.3 Data and methodology

In this study, three datasets are used for the clustering analysis of customers’ life
patterns: meter readings and survey results from the Customer Behaviour Trials (CBT)
conducted by the Commission for Energy Regulation (CER) in Ireland, and hourly
weather data collected by the Irish Meteorology Office. We begin with an overview of
the data sources followed by a discussion of the data pre-processing needed. Finally,
the algorithms and the performance measures used are presented.

3.3.1 Data preparation

The metering data from the CBT contains 15-minute consumption data from over
4,000 respondents during the period from July 2009 to December 2010. Since around
1,000 commercial customers participated, we only selected the sample of 3000 which
are defined as residential customers.

Before the cluster analysis for load profiles, higher-resolution data (e.g. quarter-
hourly) is often aggregated into hourly consumption profiles of 24 hours as part of data
pre-processing. However, in this study, due to the different objectives, the data cleaning
process is different than in most previous studies. The weather sensitivities of electricity
consumption in households are not real-time responses but involve lags. Therefore,
the quarter-hourly data is aggregated into larger chunks of time to accommodate the
lag effects. Another consideration is the effect of various time-of-use (TOU) tariffs
during the trial. The periods of the tariffs are: off-peak (8:00-17:00 and 19:00-23:00
weekdays and 17:00-19:00 weekends and bank holidays), peak (17:00-19:00 Monday to
Friday, excluding bank holidays), and super off-peak (23:00-8:00). To control for the
effects of the tariffs, all data aggregation should be within the period division with the
same TOUs. Apart from the two-hour peak period, the off-peak and super-off-peak
periods are much longer, which might hide some weather effects in specific sub-periods.
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For example, the demand response at lunch time might be clearer or stronger if the
lunchtime from 12.00-14.00 were to be analysed separately. Otherwise, the demand
change would seem minimal during the longer 9 hour off-peak period from 8.00 to
17.00. As a result, subdivisions of these two periods are created by considering the time
use of the households during different periods of a day: Morning (6:00-8:00), Day_1
(8:00-10:00), Day_2 (10:00-12:00), Day_3 (12:00-15:00), Day_4(15:00-17:00), Peak
(17:00-19:00), Evening_1 (19:00-21:00), Evening_2 (21:00-23:00) and Night (23:00-
3:00). We exclude the period 3:00-6:00 from the analysis for two reasons: 1) From the
Irish time use survey, it can be seen that over 99% of the households are sleeping after
2:00. 2) The demand response is minimal in that period. The metering data are then
aggregated accordingly and transformed to indexes for the clustering.

Since the location of each household is not provided for confidentiality reasons, it is
impossible to match exact local weather data with the households. The half-hourly
weather data at Dublin airport from the Irish Meteorology Office is used because the
participants were concentrated around Dublin according to the CER report (CER,
2012). Moreover, Ireland is a relatively small country and the weather variations across
the country are limited (Ben Taieb et al., 2016). We assume that the weather at Dublin
airport is sufficient to be representative for the weather elsewhere in the country at any
given time. A weighted-average approach was also explored using several Irish weather
stations but the differences from the Dublin-only approach were relatively minor (the
weather data from the two datasets was compared by the t-test and the results is shown
in Appendix B.1). Three weather variables in the downloaded dataset, temperature,
precipitation, and sun duration, are selected for the weather sensitivity estimations.
As discussed in the literature review, the impacts of other weather variables, such as
wind speed and humidity, might be negligible for which are not included in the analysis.
The weather data is then aggregated and prepared for the clustering model.

3.3.2 Clustering input

To identify how people respond differently to weather variations we use a novel index
to measure electricity demand changes under different weather conditions, including
temperature, rainfall, and sun duration. Considering the behavioural response to
weather may vary seasonally and on different days of week, we explore four combinations
for each weather variable: summer workdays (SW), summer rest-days/weekends (SR),
winter workdays (WW), and winter rest-days/weekends (WR). To ensure seasonality is
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as representative as possible, we define summer as from May to August and the winter
from December to February.

In order to ensure a wide-enough fluctuation in weather variables while maintaining
a relatively robust sample size, we selected the top 20% and bottom 20% of days in
each period for all weather variables. It should be noted that in choosing days of two
ends of temperatures, we excluded the days with medium or heavy rain before the
day selection to control the precipitation effect. In addition, Christmas and New Year
holidays are not included in the selection pools for weather variations in the winter
rest-day scenarios, since it is expected that the behavioural sensitivity to weather would
be completely different than usual weekends. The statistical summaries of the three
weather variables are shown as below in Table 2.2.

The new index for clustering is defined as follows and is calculated for each scenario
separately:

Iw,p,i =
Ew,p,i,low − Ew,p,i,high

Ew,p,i,high

× 100% (3.1)

Iw,p,i denotes the revised demand change index for the ith household for the weather
variable w in period p. It shows by what percentage that energy demand changes
towards the weather changes in the pth period. Ew,p,i,low indicates the average electricity
demand for household i in the pth period on days with the bottom 20% of values for
weather variable w. For example, for temperature in the morning period, we first
selected the bottom 20% of the days in terms of temperature value and then calculated
the average morning demand for those selected days based on household consumption.
Similarly, Ew,p,i,high represents the demand of the pth period for the top 20% of days
for weather variable w. Therefore, the vector Cw,i(Iw,p1,i, Iw,p1,i, . . . , Iw,n,i) consists of
the weather sensitivities of household i of periods of day in certain scenario and the
vectors are then directly used as inputs for the household clustering.

3.3.3 Algorithms and performance measures

The aim of cluster analysis is to identify weather sensitivity patterns. The sensitivity
of the three weather variables can be regarded as different proxies for households’ daily
patterns:
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1. The demand response to temperature may indicate the seasonality of activities
during a certain period

2. The sensitivity to rainfall may imply that regular outdoor activities occur in that
period or that the household is used to going out during that period

3. The sun sensitivity can be seen as an indicator of whether the household has spare
time and to what extent their behaviour or activities are sensitive to sunshine
over a given period

The weather sensitivity profile of a day for each household is obtained and consists of
nine coefficients for each period of a day. The cluster analysis generates representative
pattern curves for each weather variable.

The literature review shows that K-means is among the most widely used techniques
for analysing load profiles. K-means have significant advantages in terms of being
simpler and demanding less computational capacity. In addition, cluster analysis using
K-means on index-based clustering results have been widely discussed in the past
studies and have proved efficient. Hierarchical algorithms can be helpful to determine
cluster numbers and also as cross-validation.

There are two important issues which must be addressed before clustering: how to
decide on the number of clusters for the algorithms, and the effectiveness of the data
partitioning. Performance can be measured using different clustering validity indicators
but the indices used in previous studies vary. Moreover, Chicco (2012) finds that no
single measure consistently prevails over the others. Therefore, most previous research
into electricity consumption clustering adopts at least two different indices in order to
address concerns over robustness and obtain a reliable and valid result (Yang and Sun,
2013; Räsänen et al., 2010; Ramos et al., 2015). We use two indicators, the Silhouette
score and Davies–Bouldin index (DBI), which are widely used in electricity demand
clustering studies, to assist in the selection. Silhouette score is defined by the mean
intra-cluster distance and the mean nearest-cluster distance for each observation. A
higher Silhouette score means clusters are farther apart and less dispersed, while values
near 0 indicate overlapping clusters. The DBI score measures the average similarity of
each cluster with its most similar cluster. The similarity is calculated using the ratio of
within-cluster distances to between-cluster distances. A lower value indicates a better
clustering.

Considering the load profile clusterings in the literature (Gouveia and Seixas, 2015),
a series of numbers of clusters from 5 to 15 are examined. It should be noted that no
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absolute optimal number exists in the cluster analysis. The choice of the final number
of clusters is based on the indicators and the practical experience.

3.3.4 Statistical inferences

After the representative weather sensitivity curves are created by the clustering al-
gorithms, we want to investigate the relationships between household background
variables and clustering of weather sensitivity patterns from two perspectives: 1)
whether the household features could affect the clustering in each scenario, in other
words, whether the clusters are independent of each household feature; and 2) whether
certain dominated profiles are correlated with a particular cluster of weather sensitivity
or daily behaviour patterns. To answer the first question, Chi-square tests of indepen-
dence are employed to identify whether in a certain group the distribution/structure of
one social variable is different from each other. On the second question, Chi-square
goodness of fit test is adopted to examine whether the clusters statistically differ from
that of the population as a whole. Effect sizes are calculated for both to compare
which variable potentially has more effect on the sensitivity pattern segmentations.
The demographic variables we are interested in are gender, age, employment status,
social class, whether they live with other people, how many adults/children are in the
household, education, and income (see Table 3.1).

3.4 Results and Discussion

In this section, we start by comparing algorithms and selecting a suitable number of
clusters for each weather sensitivity analysis. The results for sunshine duration, rainfall
and temperature are discussed separately and followed by the results of the statistical
tests for the relationships between demographics and weather. With the assistance of
DBI and Silhouette analysis, we chose seven as the cluster number for the workday
scenarios for sun as well as all the scenarios for temperature, while six was the optimal
number for the sun and rain weekend scenarios. In order to stay focused on the results
here, the DBI and Silhouette results are included in the Appendix B.2 to B.5.
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3.4.1 Clustering results

In each sub-section, the weather sensitivity patterns for both workdays and weekends
are briefly described. In the legends, the first number describes the cluster number, the
second is how many households are categorised into that group and the third reflects
the ratio of the households in that group to the whole sample.

Sun

The usage change in the Figure 3.1 represents the percentage change in electricity
demand changes from the bottom 20% to the top 20% of sunny days. If the number
is positive, it indicates that households use less electricity on a sunny days. As
discussed under Methodology, the sun duration sensitivities represent the availability
of discretionary time in certain periods. The sensitivity curves therefore can be seen
as indicators of the extent to which households are able to allocate their time freely
through a day. The sensitivity patterns are presented in Figure 3.1. Given the shortened
days, in Winter (December to February), there is no direct sunlight for any periods
after the Peak. Therefore, the sensitivity curves for sun duration only include periods
from Morning through Day_4 in the winter scenarios.

In general, for all four scenarios, afternoons (Day_3 and Day_4) are more responsive
to sunlight than mornings, indicating that people tend to have more discretionary
time during the afternoon. In terms of the seasonal difference between workdays and
weekends, mornings in summer are more sensitive to sun duration changes, while
households are more responsive during afternoons in winter than in summer. The only
exception is the morning period where responses are drastically stronger in winter. It
could be explained by people tending to get up earlier on sunny days, since most of
winter mornings would be dark and sunny mornings might wake people up earlier. In
summer, especially on weekends, households respond even more dramatically in the
evenings. In terms of winter, the trends are generally similar to the shapes in summer,
although the responsive curves in the mornings of summer are more diverse. The
possible explanation could be that people have less variety of outdoor/indoor activities
in winter in general. For example, even if the weather conditions are good, households
would be relatively unlikely to plan a picnic for weekend mornings in winter.

From the distribution/number of households in the clusters, we found that the
segmentation is more dense and less balanced when dividing up into clusters on
weekends. Group 0, the largest and least sensitive group, accounts for around 40%
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Fig. 3.1 Sun duration sensitivity

of households in the clusterings for both summer and winter. However, Group 0 on
weekends is still less flat and more sensitive than its counterpart group on workdays,
especially for the mid-day periods (Day_2 to Day_4). It could be caused by less
flexibility on workdays for employed households. Although in both summer and winter
the largest group gives a negative score, which indicates the households use more
electricity during a sunny day, the reason or behaviour behind it could be different.
For winter, the increase in energy demand could be driven by the sun-related indoor
activities, such as laundry or car washing or gardening. Because sunny days are rarer
in winter people would take advantage of the weather to plan for weather-related
activities. For summer with plenty of sunlight and better weather, the increase is likely
to be from hosting parties especially on weekends or enjoying sunlight at home, rather
than rushing to arrange the chores because of a good weather. And it should also be
noted that even as the largest group, it still only accounts for 30% of the whole sample
and the majority is positively sensitive to sunlight and would prefer outdoor activities
in a sunny day.
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Rainfall

From the negative response to rainfall one can infer whether a period is normally
occupied by outdoor activities. The positive response reflects households using more
electricity during the bottom 20% of rainy days (normally non-raining days). Thus,
one can identify whether the period is typically used for rain-sensitive activities. Figure
3.2 shows that on summer workdays there is no single preferred outdoor period for all
groups. The preferences are more evenly spread throughout the daytime, although
there are slightly more groups affected during the before and after lunchtime periods
(Day_2 and Day_4). People in winter workdays are clearly more responsive to rain.
And the majority of groups, except Groups 4 and 5, prefer to go out during the
midday periods of 10:00-15:00. One possible reason to prefer the mid-day periods
may be that for stay-at-home family members those periods are more flexible and less
likely to be occupied by fixed house-bound activities, such as picking up children and
preparing meals for families. The sensitivity decreases as it is getting late and it could
be argued that as evening approaches, more indoor activities/house chores take place
and households are less likely to choose these later periods to go out.

Fig. 3.2 Rain sensitivity
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In terms of seasonal differences, it can be seen that all groups in the mornings of
winter workdays have non-negative responses, while the changes in summer varies. One
possible reason could be that people are more likely to be affected by rain on winter
workdays and tend to leave home earlier to avoid possible traffic jams. However, on
winter weekends almost all groups, apart from Group 5, display slightly non-positive
changes. This could be caused by those who typically have outdoor morning plans,
such as jogging, where rainfall interrupt their schedules, although the responses are
still minimal compared to Day_1. The magnitude of the sensitivity demonstrates that
Day_1 is the period most affected, which indicates a preference of going out during
mornings on winter weekends. It is clear from the Figure that workdays evenings
in summer are slightly more likely to be affected. This may be because that people
usually tend not to go out on workday evenings, especially in winter, and rain would be
less disruptive in the winter evenings. The greater fluctuation in responses on summer
weekends could reflect the fact that more outdoor activities are planned at those times
and people would be more willing to go out than winter. Relatively bad weather in
winter is expected and households would not easily alter their behaviour due to rainy
weather.

To explore the differences between workdays and weekends, we examined the
household distributions into clusters in all the scenarios. One finding is that, regardless
of season, people are much more densely segregated into one group on weekends. With
over 37% of households clustered into one group, which is also the most sensitive group,
it could reflect the fact that most families would generally spend some time outdoors
during weekends, since weekends are more flexible than workdays. However, it can
be seen that there is no obvious peak/preferred period for the majority group since
the curve is smoother than its counterpart in winter. On the other hand, Day_2 and
Day_4 are preferred by many households in the largest group on winter weekends.
The more significant positive responses at different periods of time could mean that
many households may prefer specific time periods for outdoor activities on weekends,
especially rain-sensitive work, for instance, washing cars or gardening.

Temperature

In general, response on workdays are less sharp than on weekends due to more limited
flexibility (as can be seen in Figure 3.3). The sensitivities in winter are more vibrant
than those in summer. The differences among clusters in winter is much bigger – for
example, the difference between the top 20% and the bottom 20% of day in summer is
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much smaller than in winter. The temperature difference is around 3-4 ºC in every
period in summer versus 7-8 ºC in winter. As an island in the North Atlantic with
mild summers and moderate winters, the maximum summer temperature in Ireland
is only above 23 ºC, while the minimum in winter is -8ºC. It might be imagined
that such a narrow range of summer temperature fluctuations would result in fairly
limited behaviour changes moderating any swings in electricity demand. As expected,
temperature response curves in winter are much more stronger than in summer. The
majority group (G0) in summer show a relatively flat response. Meanwhile, the
household distribution in the clusters confims the hypothesis that individuals are less
likely to be affected by temperature changes in summer, notably the largest and the
least sensitive groups on both workday and weekends accounts for over 32% of all
households. The situation in winter is more evenly spread and even the largest group
is more responsive than in summer.

Fig. 3.3 Temperature sensitivity

Another seasonal difference is that whereas the peaks/the most sensitive periods in
winter fall during midday periods in winter, the counterparts in summer do not see a
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clear trend and can occur at any periods throughout the day. Unlike summer, almost
all groups are sensitive to temperature in winter, especially the periods from Day_3
onward. For winter workdays, Day_2 and Day_4 appear to be the most responsive
periods where people tend to go out if it is not extremely cold; On the other hand, we
see all groups respond to Evening_1 on summer workdays. In addition, the sensitivities
of temperature show a non-increasing trend after Evening_1 (19:00-21:00) in summer,
but the responses in winter reflect an opposite tendency of non-decreasing. This
contrary result is even more non-considerable on weekends. The possible explanation
could be that due to the limited change of temperature in summer, the chance that
temperature affects peoples’ outdoor plans at night could be minimal, compared to the
effect in winter. People would be more willing to go out during a warm day in winter.

3.4.2 Statistical results

In this part, we focused on the questions at two levels: 1) In general, whether the
clustering is associated with some of the selected socio-economic variables and whether
the variables are more connected to a season or workdays/weekends. 2) At the cluster
level, is there clear household profiles behind some groups?

3.4.3 Features reflecting weather sensitivity clustering

To answer the first question, we used chi-square tests of independence as well as effect
sizes to identify the variables that affect the clustering.

The Chi-squared test of independence is used to determine whether a relationship
exists between two nominal/categorical variables. The frequency of each category for
one nominal variable is compared across the categories of the second nominal variable.
Here, we compare the frequency distribution of each social-economic variable for each
cluster category separately. The observed frequencies are the total counts for each level
of one variable at each level of the cluster category. The expected frequency counts are
computed separately for each level of one categorical variable at each cluster1. The

1Er,c =
nr∗nc

n , where Er,c is the expected frequency count for level r of a social-economic variable
A and level c of Cluster C, nr is the total number of sample observations at level r of Variable A , nc

is the total number of sample observations at level c of Cluster C, and n is the total sample size.
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chi-square test is then performed based on the expected and observed frequencies2.
For example, to investigate the relationship between education levels and clusters,
the observed frequencies are the counts of each education level for each cluster. The
expected frequencies are the calculated frequencies of each education level at each
cluster based on the distribution of the total sample.

The list of variables we tested can be seen in Table 3.1. Table 3.2 shows the results
that with p-value lower than 0.05 and the questions are ranked in descending order of
effect size, which is indicated in parentheses.

Table 3.1 Code list

From a quick glance at the number of variables in each column in Table 3.2, it can be
seen that in general more socio-economic features are associated with rain sensitivities.
In other words, compared to other weather variables, the behaviour patterns affected
by precipitation are more related to multiple household characteristics. In terms of
seasonal differences, the clustering in the workday scenarios are associated with more
household demographic variables during winter although a number of the significant
variables overlap. By contrast, for rest-days there is no consistent pattern or many
significant variables that repeat for different seasons.

2The test statistic is a chi-square random variable (χ2) defined as: χ2 =
∑ (Or,c−Er,c)

2

Er,c
, where

Or,c is the observed frequency count at level r of Variable A and level c of Cluster C, and Er,c is the
expected frequency count at level r of Variable A and level c of Cluster C.
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Table 3.2 Significant variables for each scenario

Regarding the specific variables, living status (Q410) is the most relevant variable
to affect clustering and is statistically significant in 10 out of 12 scenarios (across all
weather variables in summer and winter workdays). For sun sensitivity clustering,
how many people in the household are over 15 years old (Q420), whether they are at
home during daytime (Q430), and employment status (Q310) are the next three most
commonly significant variables. For rain sensitivities, age (Q300) affects all scenarios,
although Q310 and Q420 also often play roles. Likewise, age (Q300) and employment
status(Q310) are significant for certain temperature profiles. However, the effect of
living status dominates other variables with the highest effect sizes regardless of seasons
or workdays/weekends.

The effects of income-related variables are not as significant as the occupancy-
related variables in the clustering of weather sensitivity. Yet with lower differentiating
power, it stills has a role in pattern segmentations. In general, social-class variables
are least likely to affect temperature sensitivity: Education level (Q5418) is the only
income-related variable that is linked with the temperature sensitivity clustering and
even then only exists in summer scenarios. Rain patterns, on the other hand, are
frequently associated with a number of variables of this kind, for example social class
(Q401) and income level (Q402), especially Q401, which affects three out of four rainfall
scenarios. In terms of sun clustering, it appears that only winter scenarios are related
to income-related variables. However, it should be highlighted that the scenario of
sun sensitivity in winter weekends is mostly associated with socio-economic variables,
notably income, social class, and education level.
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3.4.4 Clusters with clear background profiles

To investigate if any groups are dominated by specific demographic profiles of households,
we look into the distributions of each variable to identify the differences in household
characteristics between each group and the population using Chi-square tests. The
variables we chose to test are the same as used in the last section and listed in Table
3.1. We selected the top two distinguished groups (the representative curves shown in
in Figure 3.4) that have at least three profile variables statistically significant (p values
less than 0.05) for the weather sensitivity clusterings. The meaning of the labels in the
legends is as follows: SW for summer workdays, WW for winter workdays, and WR
for winter weekends. The latter part starting with “g” indicates the group number in
that scenario.

Fig. 3.4 Representativ curves for selected groups

Table 3.3 shows which questions are statistically significant for each group. We
further examined how the group differs from the overall sample by comparing the
distribution of the variables that are listed in Table 3.3. In terms of sun sensitivity,
Group 5 on the winter workdays is notably sensitive to sunlight during early mornings.
In looking at the demographic break-down, this group has the largest number of
full-time workers. In addition, it includes the highest share among all groups of
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those belonging to higher managerial and professional class (AB) and supervisory and
junior managerial (C1), as well as lowest percentage of those in the DE social class.
The group also includes both moe 18-35 and 36-45 year olds and is also the group
with largest percentage of households with no person staying in the house during the
daytime. Meanwhile, Group 1 on the winter weekends seems more likely to have their
entertainment/spare time during the later periods of the day. Indeed, G1 has the
highest ratio of younger employed/self-employed individuals. In addition, it is also a
relatively affluent group, since it includes the largest percent of people in AB and C1
social class, as well as the lowest in DE.

Table 3.3 Statistically significant variables

For the rainfall clustering, Group 5 is more likely to include employed young families
or singles (within the 18-35 or 36-45 age categories) compared to other groups on
summer workdays. The demographic analysis shows that the households include mainly
those who live alone or live with children, but with the fewest number of families where
all people are over 15 years old. Moreover, it has the highest percent of respondents
where no one or at most one adult person remain in the house during the daytime. It
also appears that this group would prefer to arrange their external activities during
the mornings. On winter workdays, Group 1 have a wider and more sensitive response
to rainfall, which could indicate more regular outdoor time for those households. This
group is also more likely to have a higher educational degree and higher social class
(AB and C1) with the fewest in the lowest social class (DE). In addition, it has the
highest percentage of households that are employed or self-employed. Group 1 is most
likely to include those with incomes above €50,000 and least likely to include those
with incomes of less than €15,000.

There are also some interesting differences between groups for the temperature
clustering. Group 5 in the summer workday scenarios appears to be most sensitive
during the early mornings. This group is most likely to have the highest education
level, a family structure with significantly lower possibility of living alone or consisting
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of less than 2 adults and a greater likelihood of children and adults living together.
Looking to age and employment status, it is seen that the group has an extremely high
ratio of middle-age people (36-45) and fewer older members, as well as a much larger
proportion of members of households bing employed full time. By contrast, Group 6
is sensitive throughout the day on winter workdays. Households in this group have
a greater possibility of including those living alone and in low income groups. The
ratio of being older than 65 years old and retired is dramatically higher in Group 6
and it also shows the highest number belonging to the DE social class. The structure
explained why the group could be sensitive to temperature changes all day, since they
are mainly staying at home.

3.5 Conclusion

The introduction of smart meters has brought opportunities for both utilities and
policymakers to understand residential electricity consumption in greater depth. Due
to the extremely large volume of high-resolution data, machine learning techniques
have been used to investigate the information buried in metering data. Most studies
have focused on load management, especially for demand forecasting and customer
load profile segmentation and most implementation of clustering algorithms has been
applied directly to metering data. There have been, however, few studies using the
techniques to study daily life patterns within households. We introduce a novel method
to detect household behaviour/daily patterns using clustering algorithms applied to
weather variables. Our analysis proposes using the weather sensitivities as proxies
for the household daily life patterns, for instance, when a household tends to go out
and at which periods of a day they have more spare time. The clusterings are not
applied to meter readings but to the weather sensitivity coefficients. To reflect the
differences in behaviour patterns between workdays and weekends in different seasons,
the clusterings were conducted separately for seasons as well as for weekends versus
workdays and for three weather variables – sun duration, temperature, and rainfall.

We are able to characterize clear differences in the daily patterns between workdays
and weekends in summer and winter and how households respond to changing weather
patterns. Based on the sun sensitivities, households are found to be less flexible and
have less spare time during the middle of a workday while enjoying greater freedom
during the afternoons. Households are more responsive to sun on summer weekends,
which indicates greater discretionary time and outdoor activities during summer. The
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rain sensitivity profile curves tell us that stay-at-home family members tend to go
out during late mornings and early afternoons regardless of season, probably due
to having fewer fixed housework commitments such as cooking dinner and picking
up children. Meanwhile, people are more likely to arrange outdoor activities in the
evenings on summer weekends compared to workdays. The profiles which yield the
fewest noteworthy differences are the temperature sensitivity curves. The statistical
tests suggest that demographic features are most connected to rain sensitivities. In
terms of seasonal differences, the clustering in workday scenarios reflect more about
the household features in winter.

Loooking across all factors, the effect of social class in the clustering of weather
sensitivity was not as significant as the occupancy-related variables. Living status,
employment status, and the number of adults of the household are the main classifiers
for all the clusterings. Among all weather variables, rain patterns are relatively more
associated with variables of this kind, especially social class and income level.

This analysis could also serve as a starting point for classifying customers by their
daily life patterns. Understanding during which periods individuals may prefer to be
outside of the home and when they are more likely to have spare time or be more flexible
in their behavior patterns could be important when designing customised electricity
price schemes. This work and the methods presented herein could be the basis of a
new prediction model to classify existing or new customers’ behaviour patterns and
responses to weather conditions.
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Chapter 4

Identifying residential consumption
patterns using data-mining
techniques: A large-scale study of
smart meter data in Chengdu, China

4.1 Introduction

Driven by continued rapid growth in urbanisation and the improvement of living
standards in China, residential electricity demand has been increasing for the last
two decades. Despite slower energy consumption growth from 2014, the growth rate
of the residential consumption recovered in 2018 and spiked to a seven-year high of
10.4% (People’s Daily, 2019). In addition, China Bureau of Statistics (2020) reported
that around 60.6% of the population live in cities in 2019. The residential energy
consumption is likely to continue its rapid growth. To achieve the national low-carbon
plan, the Chinese government has been devoted to delivering smart energy systems,
including smart meters, efficient grid operation, and improved electricity transport
network. State Grid Corporation of China (SGCC) has been deploying smart meters
along with data acquisition systems since 2009. By the end of 2018, more than 457
million smart meters had been installed by SGCC covering 99.57% of the customers it
serves (CPNN, 2018).

In the context of promoting energy efficiency and energy conservation, it is es-
sential for policymakers and the utilities to understand any differences in residential
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consumption patterns. Before the widespread rollout of smart meters, door-to-door
questionnaires were the traditional method that had been widely used to identify
household electricity behavioural patterns (Fu et al., 2018). However, the limitations
of the method are non-negligible: To avoid statistical biases, large-scale data collection
is essential, but the financial and time costs are generally very high. Meanwhile, the
reliability of findings highly depends on the quality of the survey design, sampling
method and response rate. Another popular method is the case study, which is a
more specific but also time-consuming approach. It often involves detailed investiga-
tion and modelling of typical dwellings, however, it is not suitable for comprehensive
studies of the behaviour distribution of population since the sample is too small to be
representative (An, Yan and Hong, 2018).

With greater availability of digital information and communication technologies
(ICTs), especially the deployment of smart meters, obtaining high-resolution energy
consumption data becomes realistic. These meters are equipped with real-time or
short-interval communication capabilities that enable them to transmit fine-grained
consumption information to the utilities or other data aggregators. Establishing the
smart grid has fundamentally changed the communication between customers and
utilities and creates opportunities for researchers and companies to understand customer
demands and offer new services, such as customised tariff structures and energy-efficient
demand response programmes.

The sheer volume of data available has naturally led to numerous researchers using
data mining techniques in an effort to chcracterise the consumption behaviour of
residential customers. Clustering is one of the most popular techniques for identifying
similar patterns and grouping them into a set of clusters. The most discussed topic in
this field is how to improve load forecasting accuracy by analysing load profiles and
understanding demand patterns, as well as to design demand response programmes.
Both short-term and long-term load forecasting can benefit from studies using high-
resolution smart meter data (Mirasgedis et al., 2006; Chaturvedi, Sinha and Malik,
2015; Atalla and Hunt, 2016). Clustering also assists in studies of tariff design, since it
can divide different customers based on similar load profiles. Its objective is to separate
customers by the shape of daily load profiles over time. For example, those customers
with peak loads at the same time can be grouped together and offered a customised
tariff (D’hulst et al., 2015; Fu et al., 2018). Some studies combine clustering and
questionnaire results. The characteristics of households and of the buildings themselves
are common questions asked in the surveys, such as social-economic features of the
household (income, education, age, gender, size of the family, etc.), and information of
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the house (ownership of appliances, size of house, number of bedrooms, etc.) (Firth et
al., 2008; Beckel et al., 2016; Satre-Meloy, 2019). The mixed-method approach often
offers a deeper and more comprehensive understanding of customer behaviour, although
questionnaires are often not available due to privacy and research cost considerations.
There is a large family of algorithms applied to electricity demand cluster analysis.
K-means, Hierarchical and self-organising map (SOM) clustering are among those most
frequently used, although there is no consensus in the literature on the application
of clustering approaches (Räsänen et al., 2010; Chicco, 2012; Gouveia and Seixas,
2016a). Depending on the research objectives, household electricity consumption
has been clustered based on different aggregation levels, including workday/weekend
profiles, seasonal profiles and/or even longer periods, such as monthly or yearly profiles
(McLoughlin, Duffy and Conlon, 2012; Afzalan and Jazizadeh, 2019). Approaching
consumption profiles from different angles can offer a more complete picture of how
households behave under different situations and the similarities as well as discrepancies
among clusters.

There has been a wide range of studies investigating the residential electricity
demand profiles around the world, including in the U.S, Spain, Italy, U.K., and
Denmark (Blázquez, Boogen and Filippini, 2013; Rhodes et al., 2014; Alberini et
al., 2019; Andersen et al., 2019; Satre-Meloy, Diakonova and Grünewald, 2020). The
characteristics of the clustered household profiles among the countries exhibit distinct
patterns and are country-wise. For example, the demands of U.K. households were
almost insensitive in summer but would respond to winter weather, while the opposite
was found in Spain households. These differences are understandable since the profile
curves reflect not only the social-economic differences of the countries, but also the
cultural and geographical disparities. However, the vast majority of studies using
clustering methods have mainly been in advanced economies. The few studies conducted
in developing countries, such as Brazil and Turkey (Dilaver and Hunt, 2011; Villareal
and Moreira, 2016) have been in a more general filed investigating aggregated residential
consumption, which may be due to less penetration rates of smart meters in the less
developed countries.

Despite being the leading country in terms of building area, electricity consumption
and smart meter deployment, there has been a notable lack of literature that examines
household electricity demand profiles in China. The majority of research on China’s
residential electricity consumption focuses on microeconomic analysis using survey
data (Zhou and Teng, 2013; Zheng et al., 2014; Du et al., 2015). The limitation of
those studies is because of the reliance on aggregate consumption data. The electricity
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data involved are mainly monthly billing data or even based on the interviewee’s
recollection rather than records from the utility. This type of information clearly would
not reflect households’ daily consumption profiles, due to the low resolution of the data.
Although a few studies have investigated residential profiles used data-mining tools,
these profiles have been based on either monthly or yearly load curves (Zhou, Yang and
Shen, 2017; Guo et al., 2018). A few papers use high-resolution one-minute data to
form clustered load curves, but unfortunately, these samples have included electricity
data from all sectors and the type of costumers are not distinguishable from the data.
A key contribution of this paper is to investigate the residential consumption patterns
using higher resolution data taken directly from smart meters of three intra-day periods
(super off-peak (23:00-7:00), peak (7:00-11:00 plus 19:00-23:00), and off-peak (11:00-
19:00)). We also examine the differences between seasonal workday/weekend profiles,
festival profiles, and extreme weather profiles to provide a comprehensive overview of
residential demand.

The chapter is organised as follows: Section 2 provides a review of the application
of clustering to residential electricity as well as past studies of China’s residential
sector. The datasets and the methodology including data preparation and clustering
techniques used are presented in Section 3. Section 4 shows the comparison of two
clustering approaches (K-means and Hierarchical) and a possible explanation of the
results based on the cluster analysis. Section 5 provides discussion and conclusions.

4.2 Literature review

This section firstly surveys the application of data mining to the study of electricity
demand. Then, a more specific review of the studies of electricity consumption of
the residential sector in China follows. In that part, the characteristics of household
consumption in literature are presented as well as the important features that affect
Chinese electricity consumption behaviour. Finally, limited research based on the
clustering technique is discussed.

The large-scale deployment of smart meters around the world has opened up possibil-
ities for researchers to analyse residential electricity consumption on an unprecedented
and fine-grained scale. Traditionally, high-resolution data are only stored at the grid
level, which has meant that although utilities and researchers could run forecasting
models at the very short term (minute or hour) level, uncertainties in those models
are large. The fluctuations are often caused by differences in customer behaviour.
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However, more detailed consumption information for individual households was not
available. Now equipped with advanced metering technologies, the scope of residential
electricity demand research have broadened. The technique that has attracted the
most attention is residential consumption pattern clustering (Räsänen et al., 2010;
Ramos et al., 2015; Gouveia and Seixas, 2016) since it allows for more detailed analy-
sis of customer demand. There are two key technical steps needed for consumption
pattern clustering: 1) Algorithm selection and 2) Cluster number decision by cluster
validity index. Researchers agree that there is no single standard optimal algorithm or
cluster validity index for all scenarios. K-means and its algorithm family (K-medoids,
K-medians, etc.) are the most popular method (McLoughlin, Duffy and Conlon, 2012;
Al-Wakeel, Wu and Jenkins, 2016; Razavi et al., 2019) although hierarchical algorithm
is another common choice (Chicco, Napoli and Piglione, 2006; Razavi et al., 2019).
Possible choices of cluster validity indexes include Davies–Bouldin (DB) validity index,
which measures the average similarity of each cluster with its most similar cluster
(McLoughlin, Duffy and Conlon, 2012; Ozawa, Furusato and Yoshida, 2016; Viegas et
al., 2016), and Silhouette scores, which defines how similar a object is to the objects in
the same cluster compared to other clusters (Yilmaz et. al, 2019).

The applications using smart meter data and data mining techniques include both
short-term and long-term forecasting model improvement, tariff structure design, con-
sumption pattern modelling through electric appliance use detection, and classification
of new customers. For instance, for clustering-based load forecasting, Fu et al. (2019)
applied Fuzzy C-means algorithm to cluster the daily household-level data of 533
households from Quanzhou city, over the period April 2014 to February 2015 under
increasing-block pricing, which achieved a high accuracy of load forecasting through bet-
ter customer consumption profile classifications than the traditional K-means method;
Chaturvedi et al. (2018) adopted hybrid clustering methods—Artificial Neural Network
(ANN) and wavelet transform and fuzzy system on 1-hour level data from India to
optimise the short-term load forecast performance. There have been a number of
other load forecast studies based on clustering. Kavousian et al. (2015), which used
a hierarchical algorithm on smart meter data to identify appliance energy efficiency
based on a 30-min interval dataset of 4231 households in Ireland. Mahmoudi-Kohan, et
al. (2010) optimised selling price to each cluster of customers to maximise the annual
profits for utilities based on a profit function using a weighted fuzzy K-means algorithm.
Flath et al. (2012) employed a K-means algorithm on customers in Germany and
a segment-specific rate design of different prices for each group of the customers; A
study by Viegas et al. (2016) combined smart meter data and survey data to classify
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new customers using a K-means clustering algorithm on the representative curves.
They advise that age, employment status and appliances are crucial factors for the
classification.

Knowledge of domestic energy use behaviour is one of the key pieces of the puzzle
to better understand Chinese residential electricity consumption. In many countries,
regular surveys of household residential energy by government or other institutions
provide one part of the knowledge base. For example, the US Energy Information
Administration has tracked energy data of US households since 1978. In China, by
contrast, similar surveys of its kind, are rare and the most comprehensive survey
of residential energy consumption to date was carried out by Zheng et al. (2014)
conducted in 2012, involving 1450 total observations from 26 provinces. They found
that space heating and cooking were the most energy-intensive activities for the Chinese
families, accounting for 54% and 23% of total energy consumption respectively. They
also compared the international differences of energy consumption by end-use activities.
One extraordinary difference is that the share of cooking in China is far bigger versus
nearly 0% to 6% in other developed countries, such as the US and EU-27. Chinese
households mainly use gas for cooking purposes and only families in Southern China
use electricity for space heating. Since the survey was for all energy types used,
not exclusively for the electricity, the findings may only be partial referential to the
residential electricity usage in China. Zhou and Teng (2013) also used survey data
to estimate the urban residential electricity in Sichuan Province. In the study, they
found that both price and income were inelastic to electricity demand. The results also
show that on a per capita basis, smaller households seem to consume more electricity.
Another finding was that the households that included those aged 50 years or more
consumed more electricity, because older people generally tend to stay at home longer.
In terms of examined appliances (refrigerator, computer, TV, washing machine, and air
conditioner), although refrigerators currently are the largest consumers of electricity
due to the highest ownership rate, demand from air conditioners and computers will
increase substantially as their penetration rate and utilisation grows.

Hekkenberg et al (2009) pointed out that geography is one of the main factors
influencing electricity demand, since weather conditions are mainly determined by
region. Murata et al. (2008) advances a similar argument in comparing household
electricity consumption from 13 cities among 5 different climate conditions, cold (Class
I), moderately cold (Class II), hot in summer and cold in winter (Class III), hot in
summer and warm in winter (Class IV), and warm all year (Class V). They confirmed
that the variation in demand for space cooling and hot-water supply lead to the



4.2 Literature review 91

differences in electricity consumption across the classes. For example, cities in Class IV
usually have more than one room air-conditioner and are used more frequently, while
the consumption for space cooling in Class V households is very low. In addition, Class
IV cities have much higher unit consumption of electricity for water heaters than any
other classes. Another stream of research study could also be helpful for assessing the
electricity demand behaviour from a unique angle – The findings of residential building
occupancy rate could be good indicators for the possibility of presence of the family
members at home and their activities at different time of the day. Hu et al. (2019)
investigated the occupancy schedules of different room types in residential buildings
in 3 cities in China –Beijing, Chengdu, and Yinchuan – representing different climate
zones. The authors conducted a survey for half-hourly occupancy rate for living rooms,
bedrooms, study(rooms) and kitchens. The results are a useful guide for the time use
of end-users of electricity demand at home. It can be seen that the daytime occupancy
rate of around 50% in Beijing is higher than in Chengdu or Yinchuan, which are in
the range of 20-40%. Each room, nevertheless, has a similar shape of the occupancy
schedules regardless of location. The living room is mainly used from 6:00 to 23:00, and
most intensively during the evening period from 18:00 to 22:00. Bedroom occupancy is
usually during the night time, from 22:00 to 6:00. Meal times can be surmised based
on the kitchen occupancy schedule: 6:00 to 8:00 (breakfast), 11:00 to 13:00 (lunchtime),
and 17:00 to 19:30 (dinner). Another regional difference is that kitchen occupancy or
meal time schedule is later in Chengdu, which indicate a potential different life style
existed.

Studies of household consumption patterns in China using data mining are rare,
especially true in terms of intra-daily residential load profiles. A case study from
Shanghai by Pan et al. (2017) collected 15-minute residential consumption data from
138 households in Shanghai between May and December 2013. Shanghai is in the
hot summer and cold winter zone (Class III) and no large central heating systems
(normally run jointly by the State companies and local governments) is operated in
Shanghai. They summarised that 4 cluster algorithm families are often used in the field
of residential consumption, including K-means, fuzzy K-means clustering, Hierarchical
clustering, and SOM. And K-means is one of the most popular cluster algorithms and
the one that they adopted. They divided customers into 10 clusters where different
profiles indicate differences in lifestyle. For instance, three of the 10 groups with double
peaks and low morning and longer evening consumption levels are categorised as mostly
white-collar workers. Apart from the routine analysis of the hourly consumption, their
study also reports the results based on seasonal load and differences between weekdays
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and weekends. They categorised the ten consumption patterns into four sub-groups: (i)
dominated by heating period, (ii) dominated by the cooling period, (iii) dominated by
transitional seasons; and (iv) no distinguished features. The limitation of the research
is that the sample of 138 families is small and so the clustering results may be biased
and not stable, especially given that the cluster number is large.

Additional clustering research on the Chinese residential sector is based on lower-
resolution data, e.g daily usage. Guo et al. (2018) collected daily household electricity
demand data from January 1, 2014 to December 31, 2014 for 3,000 households in
Nanjing and 1,399 households in Yancheng city, which are both in Jiangsu Province,
China. They employed the K-means algorithm and attempted to depict the clustered
household profiles at two levels: 1) The daily electricity consumption patterns during
three Chinese major festivals, the Spring Festival, the National Day holiday and the
Labour Day; 2) Daily residential profiles of a month for each season. The households
were divided into 9 groups for each festival. The nine groups can be summarised in to
three types of customers on the Spring Festival were found and represented different
life-styles of the households. While the patterns in the National Holiday and the Spring
Festival are diverse, the load curves during the Labour Day holiday are relatively flat
and less diverse. The seasonal curves reveal that the fluctuation in winter is much
higher than in spring. A similar kind of the research but only focused on general
residential consumption profiles was conducted by Zhou et al. (2017) using Fuzzy
K-means algorithm based on daily consumption data from 1,312 households in Jiangsu
Province during the month of December 2014. They found 6 and 9 are the appropriate
cluster numbers for two different scenarios. However, one issue of these studies should
be pointed out is that the monthly profile including every day of a month could be less
insightful to distinguish the activity differences of customers, since household activities
normally do not follow a cyclic pattern based on the day of a month, while a week
profile could reflect more about the consumption patterns. Besides, the number of
the clusters may be too large which may lead to a biased and less meaningful result,
given that the sizes of the samples are not large enough. Another problem is that the
authors used raw consumption data to cluster, while the cluster results more reflect
the magnitude differences of consumption, rather than the fluctuation of consumption
behaviour. The number of the pattern groups in the similar literature conducted in
other countries is around 3 to 6 with larger sample sizes (Viegas et al., 2016; Ramos et
al., 2007).
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4.3 Data and methodology

4.3.1 Overview

As seen in the review above, studies on residential consumption patterns in China are
scarce. Research into higher-resolution data normally involves a limited number of
households participating, whereas studies based on over 1,000 households unfortunately
have lower time resolution (normally monthly). The objectives of this paper are to fill
this gap by using a large dataset ( 2000 households) and greater time resolution. We
will structure three-level residential consumption patterns using three intra-day period
usage data (peak, offpeak and super-offpeak): 1) The daily consumption patterns of a
week in summer and winter for each intra-day period; 2) holiday load profiles; and 3)
load profiles for extremes of hot and cold weather.

4.3.2 Datasets

The electricity data was provided by the Electric Power Company of Sichuan Province,
SGCC. The daily electricity consumption data collected contains three points rep-
resenting three intra-day periods (super off-peak (23:00-7:00), peak (7:00-11:00 plus
19:00-23:00), off-peak (11:00-19:00)). The analysis period is from January 2014 to
January 2017 and includes 2,000 randomly selected households from Chengdu. Chengdu
City is a sub-provincial city and the capital of Sichuan, a southwestern province of
China, which is known for being a major agricultural heartland. Chengdu is the
fifth-most populous agglomeration in China. As of 2018, the resident population of
Chengdu was over 14.76 million, and the city’s total number of households was over
5.63 million (Chengdu, 2019). The average size of the resident household was 2.76
people per household in 2011 (Chengdu Bureau of Statistics, 2011). In 2018, Chengdu
was ranked the best-performing city in China in terms of economic growth, with great
potential of electricity demand growth (Bloomberg, 2018).

Chengdu is located in the southern monsoon climate zone and within humid
subtropical climate. From both Murata et al. (2008) and Hu et al., (2019), Chengdu
was categorised as being in Class III (hot summer and cold winter). The weather is
generally warm with high relative humidity all year and it has four distinct seasons.
Due to the high humidity, summer can be extremely uncomfortable and hot. However,
no centralised heating supply is operated in Chengdu. The space heating in winter, if
needed, is normally done by electrical appliances. Statistics from the Chengdu branch
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of the National Bureau of China (2019) shows that air-conditioner ownership per 100
urban households in 2017 is 148.8, which demonstrates that the air-conditioner related
consumption in summer could be very high, given around 1.5 air conditioners per
household.

The weather dataset for the extreme weather analysis include six variables: min-
imum daily temperature, maximum daily temperature, average daily temperature,
precipitation, average wind speed, and average cloud cover. And the data source is the
land SYNOP (surface synoptic observations) alphanumeric messages that are managed
by the World Meteorological Organization (WMO) (Meteomanz, 2019).

4.3.3 Data Preparation

The data we requested from the SGCC was for residential customers as defined in
their system. However, a small number of the sample, which report an unusual and
extreme high consumption, may be small busineses run out of the family home. For
example, online store owners. Through the boxplots, the outliers that those households
used more than 350kWH for an average monthly consumption were removed from
the dataset. The households who have more than 5% of the values missing were also
removed.

A common approach for data preparation before undertaking the clustering is to
create average daily load profiles for each household, depending on the objectives of
the research. Alternatively, profiles can be created to distinguish seasons or workdays
from weekends. In our case, average load profiles were calculated separately at three
levels:

1. Seasonal weekend/workday profiles: The Monday to Sunday profile for every
household during different seasons were created. For each season, it consisted
of three load profiles representing intra-day period separately. In total, each
household had 3*4 load curves. To better reveal the differences between workdays
and weekends, we standardised the consumptions using the following formula:

Di,j =
Ui − Uw

Uw

× 100% and Uw =
5∑

i=1

Ui (4.1)

where Ui is the consumption on the ith day of a week for the family j, represents
the average usage of weekdays. The clustering was based on the profile Dj
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for each household (D1,j, D2,j, . . . , D7,j) which reflects the change percentage of
consumption between each day of a week with the average usage.

2. Holiday profiles. We chose the Spring Festival and National Day holidays since
these are the two longest and most important holidays in China. The potential
changes in behaviour or electricity consumption during those holidays would
be very different from other holidays. To identify the consumption change, we
extend the clustering period to three weeks – 7 days before the holidays, 7 days
during the holidays, and 7 days after the holidays.

• The Spring Festival period: the holiday dates are not fixed, since the date
of the Spring Festival changes every year

• The National Day Holiday period: 23th September to 14th October

Similarly to the seasonal profile standardisation, we wanted to compare the usage
changes between a normal day and a festival day. In this scenario, we used the
average daily consumptions in January and in September as the baselines for the
Spring Festival and the National Day holidays respectively. The calculation was
as follow:

Fi,j =
Fi − F h

F h

× 100% and F h =
21∑
i=1

Fi (4.2)

where Fi is the consumption on the ith day of the 21-day observation period for
the family j, F h represents the average daily usage before the holidays. The
clustering input for each household is a vector Hj(H1,j, H2,j, . . . , H21,j) which
reflects the change percentage of consumption between holidays and the average
consumption.

3. Extreme weather event profiles: Since there is no universally agreed definition of
extreme heatwaves or cold-waves in Chengdu, we used the following rule for this
paper:

• For heatwaves: the consumption data of a day that the maximum or average
temperature of a day is over the top 95th percentile in July and August.

• For cold-waves: the consumption data of a day that the maximum or
average temperature of a day is lower than the 5th percentile in January
and February.

• For the baselines: the day with average temperature falls in between the
45th and 55th percentile.
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The standardisation process is similar to the 1st and 2st scenarios and the final
input will be a daily profile of consumption changes including three periods
(off-peak, super off-peak, and peak) between extreme weather days and average
summer/winter days.

Although the only papers on Chinese residential consumption pattern clustering by
Zhou et al. (2014) and Guo et al. (2018) used raw data, normalisation is necessary
as a standard step (Panapakidis et al., 2012; Rhodes et al., 2014a), especially given
the samples were not large enough to eliminate biases and outliers. In addition, the
primary focus of this research is to examine the households with similar behavioural
change in electricity use (i.e. variation in profile shape). The direct use of raw data
results in clusters, such as done by Guo et al. (2018), only reflect load magnitudes and
cannot reflect the consumption variations within a day. The raw data method would
also be much more sensitive to the outliers.

4.3.4 Algorithm selection

There is no consensus on the most suitable clustering approaches to residential metering
data. The selection of algorithms should be based on the objectives of the study and the
data structure. Yildiz et al. (2017) and Zhang et al. (2012) provide a detailed discussion
of clustering methods. Among the reviewed methods of K-means, fuzzy c-means, and
SOM, K-means is considered the most consistent clustering method based on their
analysis. The K-means clustering method is one of the most widely used algorithms
in the residential sector, due to its fast computation time and applicability to large
datasets. This algorithm starts with the desired number of clusters K and randomly
inserts the K data pattern into the initial centroids for each cluster (Hernández et
al., 2012). The algorithm then iterates until the local minimum Euclidean distance
between pattern xi and its closest cluster centroid is reached. The obvious disadvantage
is that the results are affected by the initial set-up for each cluster.

Hierarchical clustering has also been explored in many clustering studies of electricity
data (Chicco, Napoli and Piglione, 2006; Gounveia and Seixas, 2016). The method
starts with each object as a separate cluster and in each successive iteration it merges
the clusters with minimum distances in the distance matrix, until no cluster can
be merged, or a termination condition is triggered. The advantage compared to
K-means is that hierarchical algorithms do not need to pre-set the number of the
clusters. Although the number of clusters is not necessary for hierarchical clustering
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preparation, a distance metric and a linkage criterion need to be decided before running
the algorithms. Different distance metrics calculate the distances between each pair of
data points through various formulations. The distance metrics we tested included:
Euclidean, sqeuclidean (squared Euclidean), Chebyshev, cityblock, seuclidean (squared
Euclidean), and Minkowski. Linkage criteria defines the dissimilarity between sets of
the clusters and we examined the following criteria: single, complete, average, weighted,
centroid, median, and ward To obtain the optimal performance of the clustering results,
both K-means and Hierarchical approaches were examined to decide which technique
would be most suitable. The effectiveness of the data partition as well the decision of
the number of clusters were measured by clustering validity indexes. It is important to
note that none of them prevails over the others uniformly compared by Chicco (2012).
For cross-validation we used two indexes in this study, including DB and Silhouette
score. The experience from the similar research show that the appropriate number of
clusters of residential customers are usually between 3 and 10. Although more clusters
can distinguish small groups with unusual consumption patterns, over-clustering should
be avoided since results with few observations may be biased and less meaningful.

The data preparation and clustering were processed using Python.

4.4 Results and Discussion

In this section, we aim to explore the results from the clustering analysis describing
the household electricity consumption profiles from the following perspectives: 1)
Work/Weekend consumption patterns in different seasons; 2) Major festival demand
patterns, including the National Day holidays and the Spring Festival; 3) Patterns of
consumption changes associated with extreme weather.

In comparing the K-means and Hierarchical algorithms, we found that K-means
was more suitable in this case based on the clustering validity indexes. Although
the hierarchical algorithm using the the linkage method of Ward and with distance
defined by Sqeuclidean and Chebyshev matrix has similar performance to K-means.
However, this approach was slower and less robust than K-means. Therefore, we
adopted K-means in our study. In order to focus on the clustering results, we did not
show the comparison results between K-means and Hierarchical here but include them
in the Appendix C.1 to C.7.
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4.4.1 Seasonal workday/weekend profiles

The profiles shown in Figure 4.1 describe residential consumption trends over the course
of a week. One distinct seasonal difference in the patterns is that almost all groups
have an increasing demand on weekends in summer, apart from Cluster 2. However,
around half of the consumers use less-than-average-workday electricity on weekends
(C0 and C4) in winter. In addition, it can be seen that both in summer and winter, the
majority of people falls into the group with the least fluctuation. In summer, for the
majority there is a slight increase of total consumption on weekends, while the opposite
is found in winter. The differences between the seasons could be explained by the use
of space cooling appliances. In summer, the longer the households are in the home,
the more electricity they may use on the appliances. The slightly less consumption in
winter weekends could be led by the outdoor activities, while the summer in Chengdu is
muggy and uncomfortable and people would tend to stay inside at home when possible.
It should be highlighted that despite the stuffy hot weather, there was still a small part
of households (Cluster 2) that would go outside during the summer. To understand
the reasons and the specific differences in demand, the patterns divided to the intraday
periods can be helpful.

Fig. 4.1 Consumption patterns of total usage
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Off-peak (11:00-19:00) usage patterns are shown in Figure 4.2. Of the three periods,
behaviour patterns during the off-peak (daytime) period is least divided and more
similar among all households. For both summer and winter, there is a group with a
significant drop in demand on weekends (C4 in two seasons). This decline may indicate
the nature of the property or the household: Those people are more likely to be local
white-collar workers that are relatively richer with more than one property in the city,
rather than immigrant workers. Because it appears that they only or mainly live in
those properties during workdays and probably go back to their real home or another
property for weekends. On the other hand, C3 in winter and summer show the exact
opposite pattern with the lowest demand on workdays and highest on weekends. They
are possibly the “holiday” properties for the people that work (and live) at another
location during the workweek and only go home during weekends. Those clusters may
also include richer households since they can afford the cost of living in two properties.

Fig. 4.2 Consumption patterns for off-peak (11:00-19:00)

To continue the analysis of intra-day patterns, evidence from super-off peak (night-
time) (23:00-7:00) shows even more clearly that there are residents (C3 or C4) who
may only be living in the property during either weekend or workday (Figure 4.3). For
Cluster 3 and 4, the greater differences in demand at bedtime between workdays and
weekends, compared to other clusters, indicate the possible non-occupancy during some
days of a week, since they are not sleeping at the property and the least electricity
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usage is needed. One interesting seasonal difference is on Monday night. The weekend
effect of delayed bed-time appears to extend to Monday in summer, where half of the
households (C1, C2, C4) still have a significant higher demand. However, the similar
trend is not found in winter. This could be explained by the summer effect that people
would tend to sleep later at night, especially on weekends. Furthermore, the increase
in demand on weekends in night-time exist in other groups as well. It may be due to
the delayed bed-time and more activities after 23:00 during the weekends including
watching TV, playing computer games, etc. The household with the larger magnitude
difference could be the young adult group, for example, C1 in summer, compared with
the older people that would tend not to stay up late even at weekends (C0).

Fig. 4.3 Consumption patterns for Super off-peak(23:00-7:00)

The peak time profiles resemble the total consumption patterns (Figure 4.4). In
both seasons, the majority of households have relatively flat consumption on weekdays,
while experiencing higher demand on weekends. However, C1 (summer) and C2 (winter)
show an opposite trend. In winter, households who prefer to go outside during weekend
peak times (C2) tend to stay outdoors longer than their counterparts in summer (C1),
since the magnitude of the fall in winter is much bigger than it is in summer. One
reason people may tend to stay inside in summer rather than enjoy outdoor activities
during their spare time could be the uncomfortable humid summer weather in Chengdu.
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Nevertheless, it should be noted that C1 in summer still includes more households
than C1 in winter, which demonstrates that despite the hot weather, a larger fraction
of households would prefer to go outside at weekend peak times, even if they stay out
for shorter than those in winter.

Fig. 4.4 Consumption patterns for Peak (7:00-11:00 and 19:00-23:00)

4.4.2 Festival consumption patterns

Spring Festival

The Spring Festival is the most important family gathering holiday for the Chinese
and it is also one of only two continuous 7-day public holidays in China. Electricity
consumption fluctuates dramatically between the start and end of the Festival, which
reflect the different holiday patterns during that period. On the first evening of the
Spring Festival holidays, it has become costumery to sit in front of the television and
watch the Spring Festival Gala and TV programs with families. From Figure 4.5 and
Figure 4.6 of the consumption patterns in peak and super off-peak times, we can
identify four distinct types of households:

Type I: Cluster 0 (in both plots) is likely to be local families that their children
live with or closer to them. It is highly likely that the peak of Cluster 0 on the first
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Fig. 4.5 Super off-peak demand for Spring Festival

day comes from watching the gala with their family members. However, due to no
extra people added in the house, the increase is not significant, compared to the other
clusters.

Type II: Similarly, Cluster 2 (in both plots) also spike at that time with a much
sharper rise, compared to Cluster 0. The extremely high demand indicates that Cluster
2 may also be older adult households but have guests and relatives come to visit, which
add to the household demand. The spike is caused by more people at home as well
as more electrical equipment usage. For example, for snack preparation/cooking and
space-lighting demand.

Type III: Cluster 3 (in both plots) represents another classic holiday pattern in
China and could be the younger white-collar workers, while Cluster 1 could be the
older or senior workers. The drop in electricity consumption at night on the days
before the Spring Festival may largely be explained by workers leaving their residences
for their hometown or to travel. The Spring Festival travel season can be extremely
hectic and many migrants will choose to leave days before the public holidays start to
avoid the terrible traffic. The differences between Cluster 1 and Cluster 3 are mainly
at the timing they leave the residence (where the drop starts) and when they return
(when the consumption resumes to normal). It can be easily seen that Cluster 3 has
a latter leaving date — around three days before the Festival, while Cluster 1 leaves
the town earlier at about 5 days before. The difference could be largely explained by
the fact that it would be almost impossible for the younger/junior workers in China
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to leave their work many days before the Spring Festival, while the senior employees
would be more likely to be approved to leave earlier before the holiday. Another piece
of evidence is that Cluster 3 starts to return to their residences days before the Festival
ends and the demand rapidly resumes to the normal level after the Spring Festival
holidays. Meanwhile Cluster 1 returns to the normal day consumptions much slower.

Type IV: Cluster 4 could be retirees who tends to travel or labourers. By contrast
with other groups, the cluster has a much earlier departure date and a longer period
to get back to normal after the Festival. Compared to Type III, they seem to be able
to leave their residences much earlier and are not rush to back for work. Thus, two
plausible hypothese are that this cluster reflects either 1) retiree households leaving to
visit their adult migrant children; or 2) labourers who normally leave their work one
or even two weeks before the Spring Festival and would not return until the Lantern
Festival (14 days after the Spring Festival).

Fig. 4.6 Peak demand for Spring Festival

National Day holidays

National Day holidays are the other public holidays that last for seven consecutive days.
However, the behaviour patterns are completely different from the Spring Festival. In
general, the behaviour patterns among households are relatively similar and notably
less diverse, compared to the Spring Festival. One of the reasons behind the lower
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Fig. 4.7 Total consumption profiles in National Holidays

dissimilarity is that fewer immigrants will choose to return to their hometown during
National Day Holidays. Most Chinese treat the National Holidays as an opportunity for
relaxation whereas the Spring Festival is the most important time for family gatherings.
It would be expected therefore that residential demand during these holidays would
not see dramatic fluctuations.

As we can see from the total consumption patterns in Figure 4.7, the shapes of the
clusters are similar during the 7-day national holiday and consumption remains almost
unchanged. Unlike the Spring Festival holiday, the majority of households fall into one
group (C0), which accounts for over 65% of the sample, which demonstrates that the
consumption patterns are much less diverse and more concentrated over the National
Day Holiday. The fact that over 95% of households (i.e., all clusters apart from Cluster
3) do not show a dramatic drop in total consumption confirms the relatively minimal
travel during the Holiday. This may reflect shorter duration trips, apart from the much
larger decrease in Cluster 3, which may reflect relatively longer-distance journeys.

In order to identify the daytime activities during the holidays, we examined con-
sumption patterns in the off-peak period (Figure 4.8). The trends in demand across
the groups are similar to the total consumption curves: Three clusters are similar while
Cluster 3 may indicate long-distance and/or longer-duration travel. One interesting
finding is that a temporary rise in demand occurs in the middle of the holidays for all
groups.
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Fig. 4.8 Offpeak consumption profiles in National Holidays

4.4.3 Extreme weather profiles

Figure 4.9 and Figure 4.10 describe the patterns of change in residential electricity
demand under the extreme weather in both summer and winter. The consumption
changes in winter and summer can be easily distinguished from each other. And the
differences in the patterns are largely driven by the popularity of air conditioners and
limited ownership of space-heating appliances, due to local climate conditions (typical
temperatures in Chengdu in January are 9 °C for typical high and 2 °C for the typical
low).

Fig. 4.9 Extreme hot days
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In general, all customers in summer increase their consumptions rapidly, although
to a different degree (Figure 4.9). During extremely hot weather, the most affected
period is the night-time when around 65% of households doubled their usage, apart
from Cluster 0. The cluster (C0) with the smallest rise in the super-off peak may
be those who are most concerned with energy saving or relatively poorer families,
which do not own air conditioners. While other clusters have the highest increase
in super off-peak time, Cluster 3 have slightly different patterns that experience a
higher increment in the off-peak/day-time. The group is likely to include those who
are retired or self-employed and financially free, leading to the growth of the electricity
during the daytime. Cluster 4, on the other hand, could be those who are more affluent
than other groups. The highest surge in consumptions, where sees an almost tripled
demand, could be led by either larger house sizes or/and more air conditioners.

Fig. 4.10 Extreme cold days

The consumption patterns in winter differ significantly from the summer profiles
(Figure 4.10). The categorisation is heavily concentrated on two clusters (C0 and C1)
accounting for over 80% of households. In other words, the majority of families share
similar patterns of consumption change during the top 5% coldest days. C0, the largest
group, even have a slightly lower than usual winter consumption during the bed-time,
which could be caused by an earlier bed-time. It should be noted that the ownership
of space-heating appliances is not common in Chengdu. Although portable heaters
have become increasingly popular in recent years possibly led by the rising household
income, the possibility of leaving the heaters on for the whole night is low due to safety
concerns. In addition, it is also because although the sensible temperature could be
very cold due to the high relative humidity, the 5th percentile of winter temperatures in
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Chengdu is still much higher than for major cities in Northern China – around average
minimum temperature of 3ºC versus -15ºC at night. Therefore, no such large central
heating system run in the northern cities has been operated in Chengdu. The people
in Chengdu generally have used to the winter coldness and heating appliances are not
seen as necessities among most Chengdu residents.

4.5 Conclusion

This paper presented a data-mining based approach to explore and structure a group
of electricity demand profiles for 2,000 households in Chengdu, China. The clustering
analysis was applied to average household electricity profiles in three different contexts
(weekday/weekend; holidays; and extreme weather). Our innovative approach allows us
to unravel or infer the life style and household characteristics from residential electricity
demand profiles, without the assistance of traditional survey tools. Our study addressed
the problem of the lack of studies on intra-day clustering on the Chinese residential
sector, with the majority of the literature focusing on monthly profiles.

First, the results of the weekend/workday profiles show that there are two groups of
households that appear to be following a pattern of moving between properties within
the week. We surmise those clusters are white-collar or relatively affluent families. In
terms of the seasonal differences between the weekend/workday, the summer weekend
consumption for most of the households is up to some degree, while the counterpart in
winter remains unchanged or even slightly drops. Furthermore, the demand patterns in
the major festivals in China unveil various types of lifestyle and behaviour, especially
for the Spring Festival. For one group of older adults living with or close to their
offspring and close family will see a limited increase in electricity use during the
Spring Festival’s Eve. Compared to the Spring Festival, the patterns found during the
National Day Holidays are less diverse and more similar to each other. In terms of
the demand changes resulting from extreme weather, we learned that most strikingly,
at night-time, over 72% of households doubled their electricity usage. We expect
that the huge increase is driven by air conditioners due to the high penetration rate
of space-cooling appliances. The consumption changes in cold days, however, does
not seem to be significant, which might be explained by the limited popularity of
space-heating appliances in Chengdu and less harsh winter weather than colder regions
such as Northern China.
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This chapter extends the current knowledge of Chinese residential behaviour pat-
terns. Further research on customer classifications and load forecasting could benefit
from the study. For example, a better understanding of customer consumption patterns
during festivals and under extreme weather conditions would assist in load manage-
ment on special occasions or under special circumstances. Implementation could be
extremely helpful because the critical demand peak in Chengdu is in summer driven
by air-conditioner spikes. In addition, the clustering algorithms based on weather
sensitivities can reveal new information about household consumption patterns which
cannot be revealed by surveys alone. Although the results from Chengdu cannot be
directly generalised to other areas due to different climatic and cultural backgrounds,
the methodology proposed in the study can be applied to any region and to build
the geographic-specific knowledge of the consumption behaviour in local areas for
further studies. Meanwhile, the clustered results can be used as the base for future
customer classifications. The different clustering methods offer a unique approach to
classifying (new) customers and it could help build better/specific tariffs. For instance,
classification based on the temperature sensitivity in summer could create a new tariff
scheme that aims for shift in the critical peak, and result in better load management.

There are, of course, some limitations of the current study and further investiga-
tion is needed. First, hourly (or at least higher resolution) consumption data could
undoubtedly offer more detailed information on consumption behaviour. The non-time
continuous data would conceal important information. For example, peak-time con-
sumption includes both usage in the 7:00-9:00 and 19:00-23:00 time slots, although
consumption in early morning should be far lower than in the evening period. Second,
it would be very useful to have customer-related attributes and that could assist with
new customer classification with greater accuracy. Not having socio-demographic
or dwelling characteristic data available hinders the possibility of exploring the con-
sumption patterns and the underlying reasons in more depth. The absence of reliable
electricity consumption data that can be associated with household information in
China has been a logstanding problem. We encourage more studies aimed at identifying
the residential consumption patterns without the need of such data.
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Chapter 5

Conclusion

Electricity demand and weather have always been closely tied together but the
widespread deployment of smart meters finally begins to allow for a detailed ex-
ploration of the relationship between the two. In particular, the thesis focuses on
residential electricity consumption and weather. As one of the main drivers of electricity
demand, residential consumption has long been at the centre of demand-side studies
(Albadi and El-Saadany, 2008; Haider et.al, 2016). Many past studies have examined
the influence of weather conditions on residential electricity demand (Torriti, 2014;
Alberini, A. et al., 2019). However, using high-resolution data to better understand
weather-related impacts on changing household consumption behavioural patterns has
received limited attention. In Chapter 1, we provided a comprehensive overview of the
literature including the history and current status of smart meter development, which
has enabled and led to an explosion of studies focused on the residential sector. The
review revealed several gaps in the current literature and so the following chapters
have tried to address some of those gaps.

Over the past decades, econometric techniques have been preferred to study resi-
dential demand at a macro level. In such analyses, climatic variables were included
purely to improve the model (Cialani and Mortazavi, 2018; Dilaver and Hunt, 2011).
On the other hand, in any micro studies, weather attributes were usually completely
neglected (Iwafune and Yagita, 2016; Kavousian et al., 2013). Instead, the focus was
almost exclusively on household-level characteristics, such as socio-economic or building
variables. Notably, panel data analysis for weather impacts on residential demand has
been missing in the jigsaw.
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Unlike most studies using longitudinal datasets to study the effects of socio-economic
factors on energy consumption, in Chapter 2 a high-resolution panel dataset (obtained
from CER, the Irish electricity regulator) was used to examine the weather effects
on household consumers at different periods in time. In order to control for the
endogenous and time-invariant variables at household level, we used Fixed-Effects
models to differentiate socio-economic factors (education, income, etc.), building
characteristics (floor size, bedroom number, etc.), and electric appliance ownership
(TVs, kettles, etc.). We demonstrated that in general, rain and sunshine duration have
a greater potential to affect people’s behaviour and daily routines, while temperature
has robust and relatively small impacts.

The findings from Chapter 2 have the potential to contribute towards not only
greater appreciation of residential consumption behaviour, but can inform the opera-
tional strategies of utilities. Firstly, our study provides a comprehensive picture of how
weather conditions interact with household occupancy and lifestyle patterns in different
scenarios. Secondly, gaining greater understanding of consumer behaviour patterns
without needing to employ relatively intrusive and costly approaches like surveys
could be very attractive to, for example, utilities who could use such an approach
as a preliminary tool before conducting smaller, more targeted surveys for certain
value-added services. One shortcoming is the limited longitudinal data – the dataset
only contains one-year of consumption data and the weather variation in Ireland is
generally small. With data from more than one year, the models would be more robust.
In addition, additional studies could be conducted on how people would respond to
specific weather scenarios, such as extreme cold/hot weather. With more and more
extreme weather events occurring, the findings for different weather conditions would
be insightful for both researchers and policy makers to understand the effect of climate
change on residential electricity consumption.

The traditional approach of using econometric tools would be better suited to
providing preliminary results on the impacts of weather in general, however, it cannot
be used to unravel differences in consumption patterns. Over the last decade as more
and more jurisdictions have deployed smart meters at scale, the analysis of residential
demand has greatly improved, allowing for the possibility of focusing on differences
in consumption patterns for households, rather than only at the grid level. However,
customer characterisation has not been explored extensively for load management
or load forecasting, due to the dependence on the availability of survey information.
Instead, most work on customer profiling has been based on the relationship between
electricity demand and household socio-economic background. Furthermore, even less
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research has been carried out on clustering residential customers by their weather
sensitivities. In Chapter 3 and 4 we contributed to the academic literature by conducting
clustering techniques to explore the issue from different perspectives.

In Chapter 3, we used the same dataset as in Chapter 2, the CER trial data. Unlike
the econometric models employed in Chapter 2, we introduced clustering algorithms
to detect household behaviour/daily patterns using weather variables. We adopted
K-means for the task of weather sensitivity clustering due to its proven capability of
handling high-resolution household consumption data. We proposed a novel method of
using the weather sensitivities as proxies to identify the daily patterns in the household.
Apart from profiling customers using different weather variables, we analysed the
profiles from two additional perspectives: seasonality and workday/weekend differences.
In addition, the correlations between weather sensitivity clusters and socio-economic
attributes were also examined using statistical tests. One main finding was that
living status (i.e., whether living alone or with only adults or with young children),
employment status, and the number of adults in the household are the main variables
that can help explain the differences in the consumption patterns.

The major contribution of Chapter 3 is the novel approach that enables utilities or
other researchers to understand the consumption patterns from a brand new angle by
weather responses and it could be used to reveal the different patterns of occupancy
based on the weather sensitivity clusters. Having a better grasp of the main types of
residential customer occupancy patterns could serve as the basis for adopting various
demand-side management strategies, from better peak control to electricity price design..
Traditionally, occupancy patterns were detected either by small-scale trials with higher
resolution/electrical appliance level data or surveys. Examining weather sensitivity
groups offers a quicker way of identifying occupancy and behavioural patterns, and
so can deliver insights in a much less time-consuming and much more cost-efficient
manner, for example, if a utility wanted to gain a general picture of its customers.
In terms of limitations, two main aspects should be pointed out. Most importantly,
the relatively short time series affects the robustness of the clustering. Secondly, the
relationship between the socio-demographic profiles and weather sensitivities were not
significant. There could be two reasons: 1) the unbalanced dataset is not representative
and has too many respondents from certain socio-economic profiles, such as retirees,
but also far too few high-income and younger consumers; and 2) Irish weather is
generally mild and so there are only moderate weather fluctuations both on a daily
and seasonal basis, and so would not be expected to have a large impact on people’s
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behaviour compared to countries or regions with greater variation in temperature and
other weather variables.

In Chapter 4, we examined a different location with more extreme weather conditions,
Chengdu, the capital of Sichuan in southwestern China. The data we used included
smart meter recordings from 2,000 households over a much longer period of 4 years,
compared to the CER dataset. The larger sample size offered more robust clustering
results by limiting the impacts of outliers. Unlike Chapter 3, the objectives did not
focus on the sensitivity clustering of different weather variables. Instead, there were
three main aims to build up a richer analysis of residential consumption patterns in
a humid subtropical area of China. Firstly, we compared weekly profiles at different
temporal periods of a day in summer and winter. Secondly, the consumption patterns in
two major holidays in China (the Spring Festival and the National Day) were examined.
While the demand clusters were extremely divided during the Spring Festival, changes
during the National Day holidays were not significant. Lastly, we identified how
households responded to extremely hot weather and concluded that essentially all
households would heavily increase their consumption, especially at bedtime.

By investigating the usage habits from these three perspectives, we were able to
structure and analyse urban households’ behaviour patterns on different days and
under extreme weather conditions without the assistance of socio-economic data. It is
a common dilemma when analysing Chinese residential consumption that very few if
any surveys have been done of electricity consumption behaviour. Chapter 4 solves
the problem by using clustering methods and provides better approaches to unravel
household behaviour patterns. Research relating to residential demand in China has
been highly concentrated on macro-level analysis, that is, how residential electricity
consumption is influenced by macroeconomic data, such as GDP, population, income
level, etc. Few studies have used aggregate usage data at finer than monthly resolution.
In micro-level studies, due to data availability considerations, most studies used recalled
monthly bill data gathered in surveys, which gives rise to concerns over the accuracy of
the residential consumption data. The methodology employed in Chapter 4 proposed
a new direction to cluster the consumption patterns by comparing the fluctuations
within a given period. In addition, the innovation of using new indexes to cluster
(reflecting demand change percentages) produces more robust results than from either
employing direct usage data or standardising the analysis using maximum/minimum
usage. One shortcoming of this study comes from needing to rely on lower-resolution
data, compared to the CER dataset. The daily consumption dataset only included
three data points per day, which explains why it would also be unrealistic to examine
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the weather sensitivities in a similar way to Chapter 2 and 3. As more refined data
becomes available either in China or elsewhere there will be opportunities to reinsert
weather sensitivities into analysis of residential consumption.

Based on the research in this thesis, some interesting future work can be done if data
becomes available. 1) whether people facing different electricity pricing schemes would
respond to weather changes differently at various periods of day? The current trials
normally lasted less than 2 years, which limits the possibility of doing such research
in the scope of this research. The findings of the suggested topic could shed light
on designing efficient and equal pricing strategies that would not punish households
in energy poverty; 2) this analysis could also serve as a starting point for classifying
customers by their daily life patterns. Understanding during which periods individuals
may prefer to be outside of the home and when they are more likely to have spare time
or be more flexible in their behaviour patterns could be important when keeping load
peak under control. This work and the methods presented herein could be the basis
of a new prediction model to classify existing or new customers’ behaviour patterns
and responses to weather conditions; 3) the methodology here can be applied to other
regions and enhance understanding of local electricity consumption behaviour, since
the findings here could not be generalised and the responses to weather largely depends
on cultural, economic, and geographic factors. The model can then serve as a module
for an integrated model of consumer classification and load management.
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Appendix A

Chapter 2 appendices

A.1 Weather dataset comparison

We investigated which datasets could better reflect the consumption responses to
weather changes through correlation analysis. First, we calculated the correlation
coefficients of each household to the weather variables separately. Secondly, the average
correlation coefficients for the weather factors were obtained for each weather dataset
and shown in Figure A.1. The weighted method seems the most balanced dataset that
is with higher correlations across different weather variables.

Fig. A.1 Average correlations between weather variables and household demands





Appendix B

Chapter 3 appendices

B.1 Weather data comparison

We tried two weather datasets, 1) from the Dublin Airport station; 2) from the weighted
weather dataset from four weather observatory stations (see Chapter 2 Section 2.3.2).
We examined the data similarity with the t-test. The result in Figure B.1 demonstrated
that the two datasets were highly similar. We further looked at the representative curves
generated from these datasets and found that the trends are similar and comparable.
Therefore, we decided to use the Dublin dataset for the following reasons:

• The differences between using the two datasets were not statistically significant.

• The Dublin dataset could retain the information of extreme weather conditions,
while this information could be cancelled out when calculating the weighted
dataset.

Fig. B.1 Weather data t test results
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B.2 Cluster number selection

To cross-validate the suitable cluster numbers for different scenarios, we used combined
techniques, including silhouettes scores, DBI scores, and silhouettes analysis. In general,
the higher the silhouette score/the lower the DBI score it is, the better the clustering
performance it means. It should be noted that no absolute optimal cluster number
exists and it largely depends on the objectives of the research as well as the selection
of validity indices. Based on these rules, we chose seven as the cluster number for the
workday scenarios for the sun duration as well as all the scenarios for temperature,
while six was the optimal number for the sun and rain weekend scenarios.

Fig. B.2 Clustering validity indexes for temperature
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Fig. B.3 Clustering validity indexes for rainfall

Fig. B.4 Clustering validity indexes for sun duration
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We only showed one of the silhouette analysis as an example here (Figure B.5), since
the actual analysis was significantly longer and remained irrelevant to the objective of
this paper. In principle, a silhouette plot with evenly distributed areas across clusters
and a high silhouette coefficient would be ideal. In this case, the right plot (cluster=7)
would be better than the left (cluster = 6).

Fig. B.5 Silhouette analysis for daily profiles, when cluster = 6 (left) and 7 (right)
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Chapter 4 appendices

To compare K-means with hierarchical clustering, linkages and distance matrixes need
to be selected for hierarchical algorithms before performing clustering. The next
sections present how the selection process was done. The hierarchical algorithms with
the most suitable linkages and distance matrixes were then picked to compare with
K-means.

C.1 Hierarchical alogirthm: Linkage selection

This appendix contains the linkage selection process. As a first step we compared the
clustering results produced by different linkages. The standardised total demands of
families on the selected periods, Saturday and Monday is shown on Figure C.1. It
can be seen that only Ward and Average linkages are not sensitive to outliers and can
divide households better.

The comparison between these two linkages is followed (See Figure C.2 and Figure
C.3). The linkages with higher Silhouette scores and/or lower DBI scores were selected
for different scenarios separately.
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Fig. C.1 household demand between two periods – Linkage selection
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Fig. C.2 Silhouette score for selected linkages

Fig. C.3 DBI score for selected linkages

C.2 Hierarchical alogirthm: Distance matrix selec-
tion

In this section, we used two methods to decide distance matrixes for hierarchical
clustering. Firstly, the Cophenet score was adopted (Figure C.4) and a distance matrix
with a higher Cophenet score is regarded as a better-performed choice. To cross-validate
the results, we also employed DBI scores to help the decision process (Figure C.5).
Similarly, a lower DBI score would suggest a higher clustering quality.
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Fig. C.4 Cophenet score for distance matrixes

Fig. C.5 Silhouette score for distance matrixes
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C.3 Hierarchical and K-means comparison

Based on the selection process shown above, we compared the selected hierarchical
algorithms with K-means through the clustering validity indexes, Silhouette scores,
and DBI scores. Figure C.6 and C.7 demonstrated that irrelevant to cluster numbers,
K-means outperformed the hierarchical clustering (A higher Silhouette core or/and a
lower DBI score means clusters are well apart from each other and clearly distinguished).
Therefore, K-means was chosen for the analysis. Here we only present the clustering
results for total demand profiles, because the conclusion and findings remain the same
to the intra-day period profiles.

Fig. C.6 Silhouette score

Fig. C.7 DBI score
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