
Genome-wide analyses using
bead-based microarrays

Mark James Dunning
Jesus College

A dissertation submitted to the University of Cambridge
for the degree of Doctor of Philosophy

Department of Oncology,
Cancer Research Uk, Cambridge Research Institute,

Li Ka Shing Centre Robinson Way,
Cambridge, CB2 0RE,

United Kingdom.

Email: md392@cam.ac.uk

September 4, 2008



Dedicated to my parents



This thesis is the result of my own work and includes nothing which is the
outcome of work done in collaboration except where specifically indicated in
the text.

This thesis does not exceed the specified length limit of 60,000 words as
defined by the Clinical Medicine Degree Committee.

This thesis has been typeset in 12pt font using LATEX2ε according to the
specifications defined by the Board of Graduate Studies and the Clinical
Medicine Degree Committee.

ii



Genome-wide analyses using bead-based microarrays

Summary

Mark James Dunning
September 4, 2008 Jesus College

Microarrays are now an established tool for biological research and have
a wide range of applications. In this thesis I investigate the BeadArray
microarray technology developed by Illumina. The design of this technology
is unique and gives rise to many computational and statistical challenges.
However, I show how knowledge from other microarray technologies can be
used to our advantage.

I describe the beadarray software package, which is now used by researchers
around the world. The development of this software was motivated by the
fact that Illumina’s software (BeadStudio) gives a summarised view of Illu-
mina data and does not gives users any control over several processing steps
that were found to be crucial for other microarray technologies. A main
feature of beadarray is the ability to access raw data. The advantages of
such data include the ability to perform more detailed quality assessment
and greater control over the analysis at all stages. The analysis of a con-
trol experiment shows that the processing steps used in BeadStudio can be
improved. In particular, utilising variances calculated from the raw data
can increase the ability to detect genes which have different expression lev-
els between samples, a common goal for microarray studies. The data from
the control experiment are made available for other researchers to use and
validate their own analysis methods.

One issue discovered during the analysis of the control experiment was
that only half of the intended genes could be reliably measured due to prob-
lems in the design of the probes targetting particular genes. By considering
a large set of publicly available Illumina arrays, I show how such unreliable
measurements can affect the analysis of Illumina data. I also show how poten-
tial problems can be identified in advance of an experiment and incorporated
into an analysis pipeline.
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Chapter 1

Introduction

This chapter gives a brief introduction to the use of microarrays for medical

research and motivates the need for statistical and computational tools to

deal with the vast amounts of data generated by such devices. I will also in-

troduce the technology behind bead-based microarrays, which are the subject

of investigation in this thesis.

1.1 Overview of DNA and RNA

Deoxyribonucleic acid (DNA) encodes the information required for the devel-

opment and function of a living organism. The structure of DNA is remark-

ably simple, being formed of a long chain of smaller units (nucleotides) joined

together. Each nucleotide can have one of four bases attached; Adenine (A),

Cytosine (C) Thymine (T) or Guanine (G). The order in which these bases

occur in a DNA molecule is known as the DNA sequence.

Structurally, a DNA molecule takes the form of a double helix formed

by two strands of DNA. This structure is held together by strong hydrogen

bonds between the two strands. The bonding takes place in such a way that

A base-pairs with a T base in the opposite strand, whereas C base-pairs with

G. This is known as the base complementarity property of DNA and effec-

tively means that the sequence of one strand can be determined by the other,

a fact that is exploited during DNA replication.

The entire DNA sequence of an organism is known as its genome. The

human genome is estimated to have 3.3 billion bases and can be found in the
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nucleus of every cell in the body. Rather than being one long DNA molecule,

a genome is divided into continuous regions of DNA known as chromosomes.

There are 24 chromosomes in the human genome, which are numbered 1 to

22 plus the sex chromosomes, X and Y. Most “healthy” cells in the human

body contain 46 chromosomes; two copies of chromosomes 1 to 22 (one copy

of the chromosome inherited from either parent) and either an X and Y chro-

mosome (for males) or two copies of the X chromosome (for females). Each

chromosome is divided into stretches of DNA called genes, which encode the

instructions to produce a particular protein. The estimated number of genes

in the entire human genome is between 25,000 and 30,000. However, rather

than being one continuous sequence of genes, there are many gaps in the

chromosome that are not genes and hence do not code for proteins. In fact,

only an estimated 5 − 10% of our genome is used to code for proteins. The

purpose of remaining “junk DNA” is a source of much debate, but increas-

ingly is considered to have regulatory function.

The instructions encoded in the DNA sequence are stored in the nucleus

and must be transported to the cytoplasm, where specialised molecules called

ribosomes help produce the required proteins. However, the DNA sequence

itself is too valuable to be transported. Therefore, sections of DNA are copied

(transcribed) into temporary messenger RNA (mRNA) molecules that con-

tain the same information as DNA, but in a slightly different form. The

main differences are that mRNA is single-stranded, degrades quickly and has

a Uracil (U) base instead of a T. The entire sequence of each gene is tran-

scribed, even though not all parts of the sequence take part in coding for

proteins. Such non-coding regions, known as introns, are removed by splic-

ing before the process of translation starts. Translation uses mRNA as a

template to assemble previously synthesised amino acids in the correct order

to make particular proteins, with groups of 3 successive bases used to specify

the amino acid located in that position in the chain.

Although each cell contains copies of the same genome, the cell will re-

quire different amounts and combinations of proteins in order to perform its

function within the body. Therefore, the genes that control the production

of these proteins may be turned on or off to varying degrees. These changes

confer unique properties to each cell type. The expression level of a gene

refers to the amount of mRNA that is made from the DNA template and
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subsequently translated into protein.

Given that the genome contains the complete set of instructions required

to develop and maintain a living organism, it is little wonder that medi-

cal research has invested heavily in methods for studying the genome, and

in particular the regulation of gene expression. Being able to understand

the differences between healthy and diseased cells, and the mechanisms that

bring about these differences is of chief importance. For example, the growth

of a cell is tightly regulated by proto-oncogenes which keep a cell dividing

and growing, whilst tumour-suppressor genes bring about the death of a cell

when required. Clearly, disruptions to the normal activity of these genes

could have serious implications for the development of cells, with diseases

such as cancer associated with cells that have grown out of control.

In the next section, I describe a popular experimental technique for de-

termining the expression level of a large set of genes in a given sample. The

data generated by these experiments require careful processing and statistical

analysis in order to draw valid biological conclusions. These issues will also

be addressed later in this chapter.

1.2 Gene expression microarrays

A microarray (sometimes referred to as an array) is a device for simultane-

ously measuring the expression level of thousands of genes. The technology

makes use of the base-complementarity property of DNA and the fact that

single-stranded mRNA is produced in order for a particular gene to be ex-

pressed. Thus, by measuring the amount of mRNA we can infer the expres-

sion level of the gene.

Microarrays are typically constructed by attaching single-stranded DNA

sequences, known as probes, to a surface such as a glass slide. Each probe is

complementary to the DNA sequence of a particular gene of interest and is

placed in spots (or features) at pre-defined locations. Single-stranded mRNA

from a sample of interest (called the target) is isolated, converted into single-

stranded DNA (cDNA) and then transcribed into cRNA. These cRNA are

then fluorescently labelled, and exposed to the microarray surface. The tar-

get RNA then binds (hybridises) to its complementary probe sequence on the
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microarray, whereas non-complementary sequences should fail to hybridise.

The amount of fluorescence observed at each feature can therefore be used

to determine the level of expression for each of the genes represented on the

array. In the earliest microarrays (Schena et al., 1995), each feature on

the array corresponded to a different gene of interest. However, subsequent

developments in microarray production have allowed the same gene to be rep-

resented multiple times, thus providing more reliable expression estimates.

Two-colour microarrays are used to compare two samples (e.g. cancer

and normal cells) on the same microarray. The RNA from the two samples

is extracted separately and fluorescently labelled with different dyes, usually

red and green. Therefore, after hybridisation, each feature is a mixture of

red and green fluorescence. A completely red or green feature indicates that

a particular gene is expressed in one sample, but not the other. In practice,

the mixture of red and green observed at each feature is not so clear-cut and

statistical methods are required to quantify the contribution of each colour,

as described later. A “differential expression” analysis aims to find genes that

have significantly different expression levels between different conditions un-

der investigation. Such genes are said to be differentially expressed (DE). See

Figure 1.1 for an illustration of a typical two-colour microarray experiment.

Microarrays have become an invaluable tool for medical research (Alli-

son et al., 2006) and provide a wealth of data that was previously unob-

tainable. The production of microarrays is a rapidly growing industry, with

many companies supplying variations of the technology for a wide range of

applications. Each company has a different method of manufacturing mi-

croarrays, the major differences being the production of the probe sequences

used and the method of depositing these sequences onto the array surface.

For instance, different length probe sequences (usually measured in the num-

ber of base-pairs) can be used as well as mRNA or cDNA probes, rather than

the cRNA probes described above.

Single-channel microrrays can also be produced to measure the absolute

expression level of every gene of interest in a given sample. Therefore, the

fluorescence of each feature is a measure of the expression level of a particu-

lar gene. Until recently, arguably the most popular single-channel microarray

technology was that of Affymetrix (Lockhart et al., 1996). These arrays

4



Figure 1.1: This public domain image shows a schematic diagram of a typical
two-colour microarray experiment to compare DNA from a cancer cell to that
of a normal cell. 5



use 25 base-pair probes that are synthesised on the array surface. Each gene

of interest is interrogated by a collection of 11-20 probe pairs, known as a

probe set. The expression level for a gene is then derived by combining all

measurements from a particular probe set.

Additionally, microarrays are manufactured for applications other than

gene expression. For instance, microarrays can be used to interrogate regions

of the genome where differences in a single base (Single Nucleotide Polymor-

phisms, or SNPs for short) are observed in a population, or regions where

long stretches of DNA are gained or lost (Copy Number Variation or CNV).

Adaptations of these technologies can also investigate changes to the genome,

such as methylation, that alter the structure of DNA but not the sequence,

and the locations where proteins might bind to the genome in order to en-

courage or impede expression

1.3 Illumina bead-based microarrays

In this thesis, I will concentrate on the BeadArray microarray technology

developed by Illumina, which is becoming widely used and offers many po-

tential benefits over other technologies. Rather than attaching probes onto

a microarray at known locations, BeadArrays are self-assembling arrays of

minute beads with probes attached. Each array is produced separately by

exposing an array surface (either a glass slide or fibre-optic bundle) to a large

collection of pre-prepared beads. This causes the beads to be randomly sam-

pled and assembled into wells on the surface of the array (Fan et al., 2006).

A specific DNA sequence is assigned to each bead type, which is replicated

on about 30 beads on an array. Each bead is 3 microns in diameter and

has many thousands of copies of the same probe sequence. Both the number

and location of the replicates for the same bead type are random on an array

(Kuhn et al., 2004). Therefore, an extra address sequence (an IllumiCode) is

attached to each bead for decoding (Gunderson et al., 2004), with beads of

the same type also having the same IllumiCode. Each IllumiCode is designed

to hybridise in a predictable way to a series of specially designed dye-labelled

sequences. After each hybridisation, each bead is assigned to one of two

states (e.g. red or green) depending on the amount of hybridisation. Thus,

after a number of such hybridisations, a binary sequence is determined for
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each bead. This binary sequence should then uniquely correspond to the

predicted response of an IllumiCode. These decoding hybrisidations are per-

formed by Illumina, with the guarantee that no array will be supplied to the

user with a bead type that has less than five replicates.

Along with the high degree of replication within an array, Illumina also

offer the capability of processing BeadArrays in parallel, making this tech-

nology desirable for high-throughput experiments. A Sentrix BeadChip is a

glass slide (chip) that allows a very high number of observations to be made

for a particular sample. Depending on the configuration of the chip, between

1 and 16 samples can be processed simultaneously with tens of thousands

of genes profiled per sample. A more detailed description of this chip tech-

nology is given in Chapter 2. The Sentrix Array Matrix (SAM) contains 96

arrays, each of which is a hexagonal fibre-optic bundle with approximately

50,000 beads and around 1,500 distinct bead types. Thus, 96 samples can be

interrogated simultaneously on a single SAM. See Figure 1.2 for a summary

of how these arrays are constructed.

1.4 Pre-processing and analysis of microar-

ray data

Despite differences in array production, the common goals of any gene expres-

sion study are roughly the same and one has to deal with similar statistical

issues when analysing microarray data. For instance, the intensities of the

features on a microarray are influenced by many sources of noise and re-

peated measurements made on different microarrays may also appear to dis-

agree. Therefore, a number of data-cleaning, or pre-processing steps, must

take place before being able to draw valid biological conclusions from a mi-

croarray experiment (Quackenbush, 2002; Smyth et al., 2003; Allison

et al., 2006).

These steps are well-understood for established microarray technologies

(e.g. Affymetrix or older two-colour arrays). However, at the start of my PhD

there was little coverage of the processing of Illumina data in the literature.

Therefore, the main theme of this thesis is to apply knowledge acquired from
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Figure 1.2: Constructing an Illumina “array of arrays”, in this case a SAM:
A) Each bead sits in a pre-created well on the surface of an array and has
probes attached that are complementary to a particular genomic sequence
of interest. In this figure, only one sequence is shown, although the bead
will have thousands of these sequences attached. The bead also has a unique
identifier sequence which is used for decoding purposes. B) Each array has
around 50,000 beads that are randomly arranged. Around 1,500 distinct
bead types are represented around 30 times each. C) A matrix of 96 arrays
is constructed, each array being uniquely prepared and thus having a different
arrangement of beads. Image from (Kuhn et al., 2004).
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other microarray technologies to the emerging Illumina technology.

1.4.1 Image Capture and Processing

A microarray surface is typically scanned by a laser to produce an image

representation of the fluorescence emitted by it. Thus, depending on the

resolution of the scanner, each feature will be represented by a number of

pixels. For two colour microarrays, separate red and green images are pro-

duced. These are known as the raw images and are usually in the 16-bit

TIFF image format. Therefore, the intensity of each pixel is a value in the

range 0 − [216 − 1]. These images are usually processed by the manufactur-

ers’ software, which involves locating all the features on the image and then

calculating foreground intensities using the pixels that make up each feature.

However, the pixel intensities measured on the image may be influenced by

factors other than hybridisation, such as optical noise from the scanner or

foreign items deposited on the array. Therefore, a background intensity is

estimated for each feature to account for such factors. The background and

foreground estimates generally act as a starting point for statistical analysis.

1.4.2 Background Correction

The aim of background correction is to reduce the impact of non-specific or

random contributions to the observed intensity for each feature on an array.

If the foreground (Xf ) and background intensities (Xb) of each feature on

an array have been obtained via image processing, then the simplest form of

background correction to give background corrected intensities (X) is:

X = Xf −Xb. (1.1)

However, background correction must be applied with care, as the back-

ground values Xb are not guaranteed to be greater than the foreground and

can yield negative intensities with this simple equation. Such negative inten-

sities become difficult to interpret in further analysis. Potential solutions to

this problem are discussed in Chapter 2.

A different approach to background correction is provided by Affymetrix.

Each pair in the probe set has one perfect match (PM) probe which is com-

plementary to the gene of interest, and one mismatch (MM) probe which
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is identical to the PM probe except for one base. The purpose of the MM

probes is to measure the background noise of the microarray. The PMs and

MMs for each probe set are combined into a single measurement for the gene.

1.4.3 Quality Assessment

Quality assessment (QA) is a crucial part of the analysis process as it can

help identify sources of technical variation, and arrays for which the hybridis-

ation failed to work and needs to be repeated. Figure 1.3 shows example QA

plots generated using data that accompanies the limma microarray analysis

software (Smyth, 2005). The data in question (the “swirl” dataset) compare

zebrafish RNA from samples with a mutation in an important gene to RNA

from a normal sample.

A typical QA includes boxplots, which give a convenient visual representa-

tion of the distribution of quantities of interest measured by the array. These

can include foreground and background intensities of each feature. For each

array, a box is constructed using the 25th, 50th and 75th quantiles. Thus,

the length of the box represents the inter-quartile range (IQR). Values that

are more than 1.5 IQR above the 75th quantile or 1.5 IQR below the 25th

quantile are usually plotted as individual points. When arranged side-by-

side, boxplots give a rough guideline of how the overall distributions on each

array differ. Figure 1.3A shows boxplots for the red foreground intensities

of the swirl dataset after applying a log2 transformation. This transforma-

tion is usually applied for QA plots as it reduces the spread of the data and

makes them easier to visualise (Smyth et al., 2003). In this figure we can see

the the first two arrays (swirl.1 and swirl.2 ) have a median intensity around

12, whereas arrays three and four (swirl.3 and swirl.4 ) have median intensity

around 11. Therefore, genes on the first two arrays might be considered more

expressed than on arrays three and four. The purpose of QA is to determine

whether this difference arises for biological or technical reasons.

MA-plots (Dudoit et al., 2002) are a common visual tool for comparing

arrays in a single-channel experiment, or the two channels in a two-colour

experiment. For two given samples (k1 and k2) the intensities for a given

gene, yk1 and yk2 , are used to calculate log-ratios M where

M = log2(yk1)− log2(yk2) (1.2)
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Figure 1.3: QA plots for a two-colour microarray experiment provided with
the limma user guide. A) Boxplots of the red foreground for four arrays in the
experiment, showing the median values and inter-quartile range of each array.
Ideally, the foreground measured on each array should have roughly similar
distributions. However, the intensities on the first two arrays are generally
higher. B) An MA-plot for the red and green channels for a particular array,
with the log-ratio (M) plotted on the y-axis and log-average (A) on the x-
axis. We would expect that most probes are not DE, and should therefore
be centred along M = 0. In this example, most points are away from this
line and adjustment is required to remove this trend. C) Imageplot of the
log-ratios for a particular array, with green and red representing low and high
intensities respectively. Ideally, a random scattering of colours should be seen.
However, a red streak is seen in the 3rd column of the array. Spots affected
by this artefact have log-ratios that are systematically higher and might not
be attributed to differences in the biological conditions being studied.
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and average log intensities A, where

A =
1

2
[log2(yk1) + log2(yk2)]. (1.3)

The M - and A-values for all genes are then plotted on the y and x axes

respectively, with a value of M=0 indicating that a gene is not DE between

arrays. Generally, it is assumed that most genes are not DE between different

samples and therefore most genes should have M-values near to 0. Figure

1.3B shows an MA plot for swirl.1, where the M and A values were calcu-

lated using intensities from the red and green channels for the array. Most

points deviate from the line M = 0 and this deviation is seen to increase

as the average intensity (A) increases. Such intensity-dependent effects are

common for two-colour microarrays and are attributed to different properties

of the dyes used to label the samples. Hence this effect is often referred to

as dye-bias (Smyth et al., 2003).

False-colour images (know as imageplots) can also be used to visualise the

intensities of all features on a given array, and to look for trends caused by

errors in the manufacturing of the array, rather than by biological differences.

Each point on the plot is coloured according to some measurement that we

want to compare, such as the foreground, background or log-ratios. Ideally

we would like to see a random scattering of colours across the image. Figure

1.3C shows an imageplot for the log-ratios of array swirl.1, with green and red

indicating low and high intensities respectively. This array was constructed

by spotting the probes in pre-defined locations on the array in a grid pattern

of four rows and four columns, and each grid cell further divided into 22 rows

and 24 columns. On the imageplot, we can see a red streak on the middle

rows of the 3rd column. Thus, points inside this so called spatial artefact

have a log-ratio that is probably due to manufacturing problem (e.g. scratch

or dust on the array surface) rather than biological variation. Microarray

manufacturers take many steps to ensure such artefacts do not occur. How-

ever, these can also occur during sample processing and an important step

in QA is identifying artefacts and ensuring that they do not influence the

conclusions drawn from the experiment.
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1.4.4 Normalisation

The process of normalisation involves reducing sources of systematic varia-

tion and making the intensities observed within the same array, and between

arrays in the same experiment, comparable (Smyth and Speed, 2003). For

a within-array normalisation, one might correct for any spatial effects de-

tected using imageplots. In the simplest case, a global constant (usually the

median or mean of all intensities on the array), may be subtracted from each

observed intensity. Or one might take the grid structure of the array into

account and normalise all genes in a location-dependent manner.

Between-array normalisation strategies may be used to correct intensity-

dependent trends such as that observed in the MA-plot of Figure 1.3. Such

methods usually make the assumption that the majority of genes are not DE

and correct M−values so they are centred around the line M = 0. Alterna-

tively, the popular method of quantile normalisation (Bolstad et al., 2003)

assures that each array has the same distribution.

1.4.5 Detecting DE genes

One of the main goals of a gene expression experiment is usually to derive a

list of DE genes, whose expression level is significantly different between the

samples under investigation. Various statistical approaches are applied to

the detection of DE genes, and these are described in more detail in Chapter

2. Generally, these involve calculating a test statistic for each gene, and then

ordering all statistics according to decreasing significance. A threshold may

then be used to identify which genes are most likely to be DE. With such

large numbers of genes being tested simultaneously, there is naturally the as-

sociated problem of multiple testing and the possibility of many false positive

results. Another complication is that the number of repeated observations

for a particular gene can be low, making it more difficult to obtain reliable

estimates of expression level and the associated variability. Several strategies

to overcome this problem are also discussed in Chapter 2.
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1.4.6 Further analysis

With the high number of features on a microarray, the researcher can some-

times be given a daunting list of genes declared to be DE. Being able to

experimentally validate each result can be expensive and time-consuming,

and lead to many blind alleys. Therefore, further analysis of the list of DE

genes is becoming increasingly common (Allison et al., 2006). To make

sense of a gene list, intuitively we look for similarities among the list. These

similarities can be found by considering prior biological knowledge of the

genes. Many online resources are available to allow researchers to gain extra

insight into their results. For instance, the gene ontology (GO) project (The

Gene Ontology Consortium, 2000) attempts to maintain a hierarchi-

cal model representing the involvement of genes in biological processes. A

particular GO category or term is a set of genes who share a common bi-

ological function. The tree-like structure of GO means that each GO term

may have a number of “parent” terms that are more general instances of that

term. Similarly, each term may have a number of “child” terms that describes

a more specific function. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa and Goto, 2000) is another comprehensive database

for relating genes with similar function.

Another common analysis technique applied to microarray data is clus-

tering, the purpose of which is to group together arrays or genes that show

similar expression patterns and to discover previously unknown similarities

(unsupervised) or to categorise according to pre-defined criteria (supervised).

A common application for clustering is to discover sets of genes that can be

used to classify samples from different patients into pre-defined clinical groups

in order to obtain accurate predictions about prognosis and most effective

treatment course based on prior knowledge of the groups (van ’t Veer

et al., 2002).

1.5 Computational challenges

As our knowledge of the human genome improves and the cost of microarray

production decreases, microarrays are being produced with increasing num-

bers of features and studies are being conceived with larger sample sizes.

Therefore, there is a great need for computational tools to handle the vast
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amount of data generated by microarray experiments. From the brief intro-

duction given in this chapter, it should be apparent that there are a number

of complex steps involved in converting the scanned images from a microar-

ray into valid biological information. To maxmise the utility of microarray

experiments, the steps taken in the analysis should therefore be documented

so that they can be validated by external parties if required.

Although many commercial products are available for the analysis of mi-

croarray data, the open-source Bioconductor project (Gentleman et al.,

2004) remains a popular choice. This is a repository of software written using

the R programming language (Ihaka and Gentleman, 1996) for the anal-

ysis of microarrays and similar high-throughput technologies. The project

promotes transparent, reproducible research and collaboration between the

software developers and end-users.

1.6 Thesis outline

This thesis deals with many aspects in the analysis of microarray data ob-

tained using Illumina bead-based technology. Chapter 2 describes the use

of this technology for whole genome gene expression studies, where up to

48,000 measurements can be made simultaneously. I will discuss how the Il-

lumina technology potentially overcomes some common issues in the analysis

of other microarrays. During a review of publications using Illumina arrays,

the wide range of analysis methods applied and reliance on Illumina’s pro-

prietary software (BeadStudio) becomes apparent. This software provides a

summarised overview of the data and does not utilise some of the unique

features of the technology. Also, it does not easily lend itself to integration

with existing microarrays analysis tools in Bioconductor.

In Chapter 3, I describe the development of the beadarray open-source

software tool that provides access to the data required to perform a full anal-

ysis. This software has proved extremely popular and is used by researchers

around the world. In Chapter 4, I describe the use of the software on arrays

from a pilot study on Illumina technology. This enabled the investigation

of several low-level properties of Illumina arrays that were not previously

reported. Chapter 5 describes the analysis of a specially designed “spike-in”

experiment where the “truth” about a small number of genes was known in
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advance of the experiment. Thus, the processing methods of Illumina could

be investigated in more detail to see how well they recover the predicted re-

sults. It is shown that measures presented by BeadStudio are reasonable, and

can be used in a successful analysis. However, access to the raw data allows

the variability of each gene to be taken into account to derive a more power-

ful test for differential expression. The method of normalisation implemented

in BeadStudio is shown to be incompatible with some current analysis ap-

proaches in Bioconductor. Alternatives to this normalisation are discussed

and an independently developed method is validated using the spike-in ex-

periment.

Analysis of the probe sequences used in spike-in experiment revealed that

around half of 48,000 probes are not optimally designed for their intended

genes, thus complicating the conclusions that can be drawn from an analysis.

In Chapter 6, I discuss how the identity of such misannotated probes can be

predicted and the consequences of not taking this information into account

by giving examples from previous studies. It will be shown that this problem

can be reduced with appropriate filtering or by using low density chips from

Illumina that include only reliable probes.

A list of publications that I have been involved with during the course of

this thesis is presented as an appendix.
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Chapter 2

Human whole expression
profiling using Illumina
microarrays

2.1 Introduction

Expression profiling studies aim to ascertain the expression level of many

genes simultaneously under different conditions of interest. In a simple case,

one might try to find genes that have aberrant differential expression be-

tween normal and healthy tissue. In order to avoid biases in the results, it

is advisable to make measurements for all possible genes that might be ex-

pressed in the samples of interest. This is especially important when we are

investigating a system for which we have little prior knowledge. A popular

use for microarrays is to look for genes that are associated with a particular

disease, in which case testing a large number of samples is advisable to ob-

tain meaningful conclusions. Ideally, microarrays should offer the flexibility

to interrogate a large number of genes without compromising on the number

of samples that can be investigated.

Typically, the outcome of a gene expression study will be a list of candi-

date genes that are believed to be associated with the biological differences

being studied. Candidate genes may often be tested or validated using further

experimental techniques that are time-consuming and expensive (Chuaqui

et al., 2002). Therefore a great deal of attention needs to be paid to the re-

sults of a microarray experiment and one must be confident of their accuracy
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in order to minimise the number of false positives taken forward for further

analysis.

In this chapter, I give a more detailed description of the microarray analy-

sis steps introduced in Chapter 1 and some problems commonly encountered

during the analysis of such data. Then, after describing the technology Il-

lumina use for expression analysis, I discuss the analysis steps they propose

and how their technology might overcome some of the issues found for other

technologies. Finally, I discuss examples of how Illumina microarrays have

been used elsewhere in the literature for gene expression studies. I will first

introduce two key studies using older versions of the technology before mov-

ing on to studies that performed whole-genome expression profiling on the

human genome.

2.1.1 Background Correction

Image processing is an important consideration for conventional microarrays

and incorporates locating each feature on the array and estimating the true

amount of hybridisation. Locating features, known as segmentation, is usu-

ally performed according to the microarray manufacturers’ guidelines and

typically results in an estimate of the foreground and background signal for

each feature. The background estimate is generally obtained from the mean

or median of pixel intensities close to the feature. In other words, these values

are a local estimate for the underlying array intensity in a particular region of

the array. It has been shown that the segmentation method has less impact

than background correction (Yang et al., 2002b), and hence I will concen-

trate on background correction here. The simplest method of background

correction, as given by (1.1), is to subtract the background estimate for each

feature from the corresponding foreground. However, this method does not

guard against the negative values that arise whenever the background inten-

sity is larger than the foreground. Thus, when calculating log-ratios (M) from

the background corrected intensities (in the case of two-colour experiments)

using (1.2), many values are undefined and missing from further analysis.

The proportion of missing values is appreciable (e.g. up to 14% in Ritchie

et al. (2007)), and complicates further analysis. Furthermore, background

correction is also widely reported to increase the variability of observations,

especially at low intensity when Xf ≈ Xb. This is often visualised on an MA-
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Figure 2.1: Illustrative example of the “fanning effect” for microarray data.
This MA-plot compares two replicates of the same biological sample, and
hence no differential expression (M = 0) should be expected. However, for
A< 7, the M-values are seen to have a wide range of values. The coloured
spots indicate control probes on the array. Figure courtesy of Gordon Smyth.

plot as a “fanning effect” and has been noted many times in the literature

(Ritchie et al., 2007; Yang et al., 2001; Kooperberg et al., 2002). See

Figure 2.1 for an illustrative example of this effect.

Given these common problems, it is little wonder that there is no consen-

sus about whether microarray data should be background corrected or not,

and the decision is often made on personal preference (Scharpf et al., 2006).

Early work in this field demonstrated that background estimates based on the

median intensity of pixels surrounding a feature were noisy and increased the

standard deviation of the resulting log-ratios (Yang et al., 2001). In fact, the
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authors recommended avoiding a local background correction, even though in

the absence of background correction, the log-ratios produced by this method

were biased. An alternative method of background estimation employs a non-

linear filter which uses a structuring element to remove all features from the

image, thereby generating an image which is effectively background. This

morphological filtering approach (morph) was found to produce lower, less

variable estimates of background in the same study and performed well in

the detection of DE genes. However, this method is not commonly available

unless implemented in the manufacturers’ scanning software and cannot be

easily used retrospectively.

The problems of increased variability and missing values have been tackled

by developing alternative transformations to log2 that stabilise the variance

across the whole intensity range. Examples include the VSN method of Hu-

ber et al. (2002) and that of Durbin et al. (2002), that can handle negative

intensities and give similar results to a log transformation at high intensities.

However, these methods assume that negative values have already occurred

rather than avoiding them. Alternatively, more sophisticated model-based

methods of adjusting for background, rather than just subtracting, have been

proposed. These include the method of Kooperberg et al. (2002), which

assumes the observed intensities have normally distributed foreground and

background, and uses an empirical Bayes approach to obtain background ad-

justed intensities. A simpler approach is offered by Edwards (2002), which

uses the standard subtraction for high intensities, whereas for low intensities

(defined by a threshold) a smooth monotonic function is used to avoid neg-

ative values.

Finally, the normexp convolution model introduced by Ritchie et al.

(2007) was motivated by observing the different distributions of background

and foreground, and assuming that observed foreground for each feature (O)

is composed of true signal S (that we would like to estimate) and an addi-

tive background B. In other words O = S + B, with S being exponentially

distributed with mean α and B normally distributed with mean µ and stan-

dard deviation σ. The parameters α, µ and σ are estimated on a per-array

basis and used to calibrate the observed foreground and background for each

feature to obtain an estimate for the true signal.
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Ritchie et al. (2007) also compared different background correction

methods in terms of their variance and bias. The trade-off between these

two measures was again found to be an important consideration, as methods

which produced the least variable measurements also exhibited the most bias.

As with other studies, not background correcting at all gave rise to the most

biased but least variable data. However, methods that aim to reduce vari-

ance were found to be superior in terms of detecting DE genes in a control

experiment. The standard method of background subtraction, as given by

(1.1), was found to be much worse than other methods, leading the authors

to conclude that this method should be avoided in favour of model-based

approaches.

Although Affymetrix use a different approach for background correction,

some of the issues encountered are similar. In particular, the MM values were

found to have greater intensity than their corresponding PMs in around 1/3

of probes in a control experiment (Irizarry et al., 2003b). Most methods

for processing Affymetrix data do not make use of the MM probes, and

the popular RMA method uses a convolution model similar to normexp to

perform background correction (Irizarry et al., 2003b).

2.1.2 Normalisation

The normalisation of microarray data is a crucial step as it aims to correct

for biases caused by technical variation inherent in the technology (Smyth

and Speed, 2003; Quackenbush, 2002). For two-colour microarrays, the

log-ratios M for each gene are often corrected for the dye-bias effect. A sim-

ple approach is to correct each array independently and obtain normalised

M−values of the form M − c, where c is a global constant derived from

the mean or median of all log-ratios on the array. However, these methods

assume that the observed dye-bias is the same for all probes. In practice,

the amount of dye-bias is often found to be intensity-dependent, which is

manifested as curvature on an MA-plot (see Figure 1.3). If we are willing to

make the assumption that most probes should not be DE, (and thus should

be located at M = 0), then the curve in the MA-plot can be estimated and

normalised M-values are given by M − c(A), where c(A) represents the pre-

dicted value of the curve for a given A-value. This is the principle behind

the popular method of loess normalisation (Yang et al., 2002a). Variations
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on this method include fitting the curve through just the genes we expect

not to change (e.g. any control genes on the array) rather than all genes, or

to fit a separate curve to genes within different print-tip groups on the array

(Smyth and Speed, 2003).

Normalisation of single-channel arrays aims to make the intensities ob-

served on each array comparable. If the data have been log-transformed,

then one can adjust every array separately by subtracting a constant value

from all intensities on the array. Thus, we set all arrays to have the same

baseline. A common choice of a constant is the median intensity over all

arrays. Such methods are easy to implement, but they do not cope well in

situations where non-linear variation is observed between arrays (Bolstad

et al., 2003). For completeness, it should be noted that if data have been

transformed using VSN (Huber et al., 2002), rather than log2 transforma-

tion, they have already been normalised as part of the VSN algorithm.

The loess method used to calibrate log-ratios may be adapted to single-

channel data after they have been log-transformed. This cyclic loess approach

(Bolstad et al., 2003) uses pairwise combinations of arrays to estimate

intensity-dependent effects. However, for large experiments this method can

be time-consuming, as for a given array in an experiment with k arrays, we

have to define transformations with k − 1 arrays.

Arguably the most popular approach is quantile normalisation (Bolstad

et al., 2003), which adjusts all arrays to have the same intensity distribution.

It works by ranking the intensities on each array separately and then calculat-

ing the average across all arrays for each rank to form a “target distribution”.

The ranked intensities for a particular array are then re-assigned to the corre-

sponding value on the target array, so the highest intensity gene on the array

is assigned the average of all the highest intensity genes etc. The method was

shown to perform favourably compared to other normalisation methods for

Affymetrix data (Bolstad et al., 2003). An obvious drawback of quantile

normalisation is the assumption that all distributions should be the same.

This may not be realised in practice, especially for experiments involving

multiple biological sources that could have completely distributions. There-

fore potentially interesting biological variation could be removed by forcing

all arrays to have the same distribution.
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An alternative to the “global normalisation” approaches of quantile and

cyclic-loess are base-line methods which calibrate each array to a defined

target distribution using a smooth curve. For instance, qspline normalisa-

tion (Workman et al., 2002) defines a target distribution to be the average

quantiles across all arrays. In practice, the method is not too different from

quantile normalisation. An alternative is to base the normalising curves on

“rank-invariant” genes, whose expression levels do not change appreciably

across the experiment (Li and Wong, 2001).

2.1.3 Detecting DE genes

One of the main goals of any gene expression study is to identify which genes

show evidence for being DE. If we have measured n log-ratios for the gth gene

over multiple arrays, we might be tempted to use the average log-ratio, Mg,

as our statistic to find genes with most evidence for differential expression.

These log-ratios could be obtained from the two channels in a two-colour

experiment, or different arrays in a single-channel experiment. However, the

log-ratio turns out to be a poor choice for detecting differential expression, as

large values of M could be driven by outliers in the n observations, especially

if n is small. Therefore, the variability of each gene should be taken into

consideration. Using sg, the standard deviation of the log-ratios for the gth

gene, we can calculate a t-statistic to test the null hypothesis of M = 0, or

no differential expression:

tg =
Mg

sg/
√
n
. (2.1)

However, this statistic is not without its problems either (Lonnstedt and

Speed, 2002; Cui and Churchill, 2003; Tusher et al., 2001). Most no-

tably, a large value of tg could be caused by a small sg, even though the

average log-ratio is low. With such a large number of genes being tested on

an array, such genes with low standard deviation can occur by chance and

be incorrectly called as DE. Therefore, a method is required that does not

rely solely on the gene-specific variances, which may be unreliable in experi-

ments with few replicates. Proposed solutions “borrow information” from all

the genes on the array to reduce the impact of genes with extreme variances.

The resulting t-statistics use a modified value for the variance of gene g in the

denominator. For instance, the “significance analysis of microarrays” method
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(Tusher et al., 2001) adds a small positive constant to the denominator of

a gene-specific t-test. In this thesis, I will mainly use the linear modeling

approach of Smyth (2004) to detect DE genes. Up to now, I have described

testing each gene for differential expression between two samples using log-

ratios. However, with a linear modeling approach it is possible to test many

such comparisons simultaneously.

We define yyyg = (yg1 , ..., ygJ
) as the response vector of expression values

for gene g measured on J arrays. These can either be log-ratios in the

case of a two-colour experiment, or the intensities of each array in a single-

channel experiment. It is expected that these values have been appropriately

background corrected and normalised. We then assume the following linear

model:

E[yyyg] = XXXαααg (2.2)

where X is a design matrix with J columns that provides a representation

of the different samples hybridised to the J arrays and αααg is a vector of coef-

ficients to be estimated for each gene. Along with the estimated coefficients

obtained by least-squares, the sample variance s2
g and residual degrees of

freedom fg are obtained. If this model is fitted to the log-ratios derived from

a two-channel experiment, then the coefficients are the quantities that can

be tested for differential expression. In the case of single-channel arrays, a

contrast matrix (CCC) allows the coefficients from the design matrix to be com-

pared to give contrasts of interest βββg. Usually these contrasts are analogous

to the log-ratios obtained from a two-colour experiment,

βββg = CCCTαααg. (2.3)

An unscaled standard deviation for each contrast (ugk) is calculated and

may be used in conjunction with the sg to calculate a t-statistic, as in (2.1).

Alternatively, an empirical Bayes approach can be used to estimate new

sample variances s̃g by using information from all the sg. The moderated

t-statistic for contrast k of gene g is then given by

t̃gk =
β̂

ugks̃g

. (2.4)

Along with the moderated t-statistic for each gene, an associated log-odds

statistic is computed that gives that the posterior log-odds of a given gene
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being differentially expressed. However, these values are dependant upon an

assumption about the overall number of genes expected to be DE and are

more commonly used to rank genes according to their evidence for being DE.

The presence of poor quality replicate observations in the linear model

can affect our ability to detect DE genes. One solution to this problem

would be to remove these arrays from the analysis completely. However,

it is possible to adapt this linear model approach to incorporate weights

representing our confidence in the observations used in the linear model,

instead of all observations having equal influence (Ritchie et al., 2006).

This is done by assuming the gene-specific variances are of the form:

var(ygj) = σ2
g/wgj (2.5)

where wgj is a weighting factor for gene g on array j. The linear model to

estimate coefficients is then fitted using weighted least squares and contrasts

are calculated as above.

2.1.4 Filtering

Microarrays provide many thousands of gene measurements simultaneously,

and therefore the problem of multiple-testing becomes great. That is, with

every statistical test performed, there is an associated probability that we

will falsely choose a gene as being significantly DE in the study. Moreover,

not all genes will be expressed in a particular tissue (Su et al., 2002). There-

fore, applying filtering methods to microarray data is advocated in order to

remove genes that we do not believe to be informative and are likely false

positives. This is especially important if using an ordinary t-statistic with

few replicates, where genes with low expression level and extremely low stan-

dard deviation might be called DE. However, it is recommended that the

filtering criteria is statistically independent of the test statistic to be used.

However, choosing a filtering method is difficult and often derives from ad-

hoc criteria based on expression level and variability. For example, Scholtens

and Heydebreck (2005) restrict their analysis of a published acute lym-

phoblastic leukaemia (the ALL dataset) to probes that have intensity greater

than 100 units in at least 25% of samples and also have an interquartile range

(IQR) of at least 0.5 on the log2 scale. Obviously these cut-offs will remove
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different numbers of genes in different experiments and may not always be ap-

propriate. The code used to perform these, and other so-called “non-specific”

filters, are available in the genefilter Bioconductor package (Gentleman

et al., 2008). Alternative methods of filtering that use “Present / Absent”

calls or between-array variability have been shown to be effective in reducing

false positives for Affymetrix arrays (McClintick and Edenberg, 2006;

Calza et al., 2007).

2.1.5 Probe Annotation

The annotation of a microarray refers to the mapping of the probe sequences

to the genome being studied. As the size of probes used for microarrays are

small in comparison to the size of the sequences of genes they are intended to

target, the design of probes is a crucial step in the analysis. Also, the speed

at which knowledge about the human genome is being gathered means that

probe sequences created for microarrays may not reflect the current knowl-

edge of the genome. Problems that might arise include the probe matching

more than one gene, which can lead to non-specific hybridisation, or not

matching to the intended gene at all.

For Affymetrix data, it has been shown that the base composition of the

25-base probes can have an effect on the observed intensity and methods have

been proposed to deal with this effect (Wu and Irizarry, 2005). Other

probe effects have also been described for two-colour microarrays (Lynch

et al., 2007). Additionally, the reliability of Affymetrix probes has been called

into question, with a large percentage of probes on an array sometimes not

mapping to the intended transcript, which can lead to misleading conclusions

in a differential expression study (Dai et al., 2005; Harbig et al., 2005). By

considering the latest version of the genome and re-assigning probes appro-

priately, the results of a differential expression analysis have been found to

change by 30−50% and result in more precise expression measurements (Dai

et al., 2005; Gautier et al., 2004b; Sandberg and Larsson, 2007). The

problems caused by poor probe annotation are seen regardless of the process-

ing methods applied to the data. It is therefore of fundamental importance

that the annotation of a microarray be routinely checked as part of an anal-

ysis.
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2.2 Illumina BeadChip arrays

Illumina’s whole-genome expression arrays use the BeadChip technology de-

scribed on page 6, with each chip configured to interrogate 6 or 8 samples

simultaneously (the Human6 and Human8 respectively) using either 12 or 8

strips on the chip surface. Each strip has around 22,000 or 24,000 bead types.

In this chapter, I discuss the use of these chips for expression studies with

the human genome. The Human8 chip is designed to have bead types that

target genes from the Reference Sequence (RefSeq) database (Pruitt et al.,

2007). This public database funded by the National Center for Biotechnology

(NCBI) aims to provide a collection of non-redundant sequences for different

transcripts and proteins for an organism of interest. As all entries in the

database are curated, it is widely recognised as a gold-standard for reliable

genome annotation. The Human6 chip contains all the bead types used on

the Human8 chip, plus additional content from other public databases that

are not as well curated as RefSeq.

Human6 chips distributed prior to 2006 (Human6 Version 1) had the Ref-

Seq and additional content on adjacent, physically separated, strips on the

chip surface. Unless stated otherwise, the human data discussed in this thesis

are from Version 1 chips. On newer versions of the chip (versions 2 and 3),

the probe sequences were revised and the chip design altered so that all bead

types can be found on both strips.

In addition to sequences that target genes, Illumina also add a number

of control probes to each array. These are designed so that their behaviour

can be predicted and used for QA or normalisation purposes. For example,

a series of negative controls (around 1,500 on Human6 arrays) have been

designed so that they have no target in the genome. When used in an ex-

pression experiment, they should not hybridise to the target sample. Ideally,

these bead types should produce no signal and any intensity observed should

be measuring background noise. Thus, they perform a similar role to the

MM probes for Affymetrix, except the negative controls are not specific to

particular bead types. A number of positive controls are also included that

should produce signal on every array, regardless of the sample hybridised.
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Figure 2.2: A cartoon representation of a bead in the direct hybridisation
assay. Each bead has an address sequence attached for decoding purposes
and a 50 base sequence specific to each bead type. The probe sequence
is fluorescently labelled and designed to hybridise to a particular genomic
sequence. Note that the diagram is not shown to scale and many thousands
of sequences are attached to each bead. Figure courtesy of Illumina.

2.2.1 Direct hybridisation assay

The direct hybridisation assay is a single colour assay used in conjunction

with Illumina’s gene expression BeadChips. When these chips are supplied to

the user, the decoding hybridisations described in Gunderson et al. (2004)

have been performed to identify the beads. This includes a quality control

step to ensure all arrays have at least 5 replicates of each bead type. As

described on page 6, each array has a random configuration of beads, with

each bead type (in this case, representing a particular gene of interest) having

around 30 replicates. Figure 2.2 shows a cartoon diagram of a bead to be used

for the direct hybridisation assay. Directly attached to the decoding sequence

is a 50 base-pair sequence designed by Illumina to be complementary to a

particular gene or control. As for conventional microarrays, mRNA from

the target sample is converted into cRNA in a two-step process of reverse

transcription and then in-vitro transcription (IVT). After the IVT reaction,
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which also includes an amplification of the transcripts, the sequences are

labelled with biotin and allowed to hybridise onto the pre-prepared array.

The chips are then stained with fluorescently labelled streptavidin, which

forms strong bonds with biotin present on the array.

2.2.2 Illumina scanning and analysis software

The results of decoding are supplied to the user in the form of proprietary

(i.e., cannot be viewed without specialist software) dmap files. After hybridi-

sation and washing according the particular assay being used, BeadArrays are

scanned using hardware controlled by the BeadScan software. This automat-

ically handles the image processing of the raw images, including extraction

of foreground and background intensities for each bead, and background cor-

rection. In order to extract intensities, the software also locates each bead

on the array in a procedure known as registration (Gallinsky, 2003).

The following files are produced as standard output by BeadScan.

� Intensity data (.idat). These are proprietary files used by Illumina to

store intensity data.

� Location information (.locs). Proprietary files giving the locations of

all beads on an array.

� Image files (.jpg or .TIFF). The image produced by scanning in com-

pressed or uncompressed format, respectively.

� XML files. Information about the scanning settings used for each array

and the algorithm used to extract intensities.

� Metrics.txt file. Overall summary of the scanning quality of a chip.

Quality control scores between 0 and 1 are given for each array to

judge how well each array was registered and focused. The 5th and

95th quantiles of foreground intensity are also given.

� .txt file. Plain text file giving the identity, location and intensity of

each bead on the array.

Note that the list of files produced, and their contents, have changed a

few times since Illumina first started to produce arrays. In particular, the
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.txt files have only recently been produced as standard - and even then it is

only possible with modifications to the BeadScan software. We refer to the

collection of TIFF images and text files as the bead-level data for an experi-

ment. Each image has a corresponding text file, which gives the coordinates

of each bead on the image, a background corrected intensity and a numeric

code (ProbeID) identifying the bead type. In the case of two-channel arrays,

separate text files are given for the red and green channels. However, a key

point to note about bead-level data is that they can only be generated at

the time of scanning. I have spent a large amount of time publicising the

availability of bead-level data in both publications and presentations.

Illumina also supply the BeadStudio software to analyse their data. The

role of BeadStudio is to read the idat and locs files for each array separately

and create bead-summary data. The algorithm starts by taking the individ-

ual bead intensities (after background correction) and then excluding any

beads that are more than 3 median absolute deviations (MADs) from the

median of all replicate observations of the bead type. The remaining obser-

vations for a bead type are then used to calculate a mean expression level and

corresponding standard error, both of which are presented on the unlogged

scale.

2.3 Illumina analysis methods

I will now describe the algorithms employed by Illumina in the BeadScan and

BeadStudio software. The methods employed by BeadScan, and creation of

bead-summary data, are not under the control of the user and the analysis

done in BeadStudio is done on a per-array basis with summarised data as

described above. Furthermore, the image analysis and background correction

methods to be described are applied to all types of Illumina data, whereas

the methods I describe within BeadStudio are specific to the analysis of

expression data. Although I have worked with other types of Illumina data,

the analysis of such data will not be presented in this thesis.

2.3.1 Image processing and background correction

The foreground estimation algorithm used by Illumina is a two-step process

described in more detail in Kuhn et al. (2004). In brief, these steps are:
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i) All pixel intensities are altered using a sharpening transformation. The

intensity of a particular pixel is made higher (lower) if its intensity is

higher (lower) in comparison to the intensities of the pixels surrounding

it.

ii) Foreground intensities are calculated as a weighted average of signals

obtained using the four pixels nearest to each bead centre as a “virtual

bead centre”. Sharpened pixel intensities are used in the calculation

and the value returned is unlogged.

Background intensities are estimated using an average of the five dimmest

pixels (unsharpened intensities) within the 17 × 17 pixel area around each

bead centre. Background corrected intensities are then calculated by sub-

tracting the background estimate from the foreground, as in (1.1).

2.3.2 Normalisation

BeadStudio provides several normalisation options. All of these options use

background normalisation (BGN) as a first step to set the intensities on each

array to the same baseline. For a given array, this method involves subtract-

ing the mean intensity of the negative controls from each mean expression

value. This is intended to compensate for differences between arrays in both

non-specific binding of dye and cross-hybridisation. After BGN, an additional

normalisation can be carried out, the simplest being average normalisation

(AN) which scales the intensities of each array separately so that the mean of

each array is the same. Quantile normalisation is supported in later versions

of BeadStudio (version 3 and above), whilst a variation of quantile normal-

isation using cubic splines can also be carried out (CSN). Finally, the rank

invariant method (RIN) calibrates each array using the intensities of genes

whose overall rank does not vary greatly in the experiment. It is also possible

to analyse data in BeadStudio without applying any normalisation, although

BGN is performed by default for many analyses.

2.3.3 Filtering

The bead-summary data for a given array include a detection p-value for

each bead type. This is calculated using the relative rank (R) of a given type
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Figure 2.3: Diagram of the steps used for calculating the foreground and
background of a bead. Using the coordinates determined during the decoding
step, a centre for the bead is known, indicated by a cross in this figure. The
intensities of the four closest pixels in a 3× 3 square around the centre (red
square) are then used in a weighted average to calculate the foreground. The
five dimmest pixels within a 17× 17 square around the bead centre (orange
square) are averaged to give the background intensities. In this figure, the
five dimmest pixels are indicated by the yellow squares. Figure courtesy of
Dr. Matthew Ritchie.
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against all N negative controls on an array. The detection p-value is then

1−R/N . Thus, a bead type that ranks higher than all the negative controls

will be given a detection p-value of 0. The purpose of these detection values is

to assist in excluding bead types unlikely to be expressed above background

level, with a lower p-value indicating a lower probability that the intensity

of the given bead type is due to non-specific hybridisation.

2.3.4 Detecting DE genes

BeadStudio provides a statistical test to determine DE genes between sample

and treatments groups, with the user defining which arrays in the experiment

belong to the relevant groups. For a particular bead type, the mean across

the condition (cond) and reference (ref) arrays are calculated as Icond and Iref
respectively, with variances S2

cond and S2
ref . These quantities are derived from

the unlogged bead-type averages, although they may have been normalised

by methods such as BGN.

The variances of negative controls across the two groups are denoted as

S2
neg(cond) and S2

neg(ref) and used in the following regularised t-statistic:

t =
|Icond − Iref |√

S2
ref+S2

neg(ref)

Nref
+

S2
cond+S2

neg(cond)

Ncond

(2.6)

A p-value (p) is then calculated by assuming a two-sided standard normal for

the test statistics of all bead types. “DiffScores” are then derived according

to

DiffScore = 10sgn(Icond − Iref) log10(p) (2.7)

where the sgn operator returns 1 if Icond > Iref , or −1 otherwise. Thus, Diff-

Scores of 13 and 20 correspond to p-values of 0.05 and 0.01 respectively. The

sign of the DiffScore also indicates whether a gene is up- or down-regulated.

2.3.5 Other analysis options supported by BeadStudio

Bead-summary data can either be analysed through BeadStudio or exported

into tab-delimited text format, with one row per bead type (“Sample Probe

Profile”), or one row per gene (“Sample Gene Profile”). In practice, each
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gene is usually represented by one bead type, so the contents of these files

do not differ much. The bead-summary data for the control probes can

also be exported on a per-bead-type basis (“Control Probe Profile”) or by

summarising all control types (e.g. the negative controls) into one set of

observations (“Control Gene Profile”). The columns exported from Bead-

Studio can be defined by the user, but generally include average expression

(AVG Signal), standard error (BEAD STDERR), number of beads on an ar-

ray (Avg NBEADS) and detection score (DETECTION Pval). DiffScores,

if they are available, can also be exported.

Analysis options within BeadStudio include common visualisation tools

such as heatmaps and cluster dendrograms. More sophisticated options also

allow expression levels to be viewed according to their position along the

genome, potentially allowing genomic regions with aberrant expression to be

identified.

2.4 Why Illumina arrays are attractive to re-

searchers

Illumina expression arrays afford the opportunity to measure a very large

number of transcripts at once, giving researchers a detailed picture of gene

expression in their sample of interest. The ability to make 30 observations

for a particular gene of interest is advantageous and it might reduce some

of the measurement error inherent in microarrays. Since the replicates of

a particular gene are spread across the array surface, the effects of spatial

artefacts should be minimised. Moreover, the probe sequences are attached

to beads rather than the array surface. Therefore, hybridisation should only

take place only at a bead and all locations between beads should show no

fluorescence. Hence we would expect the background levels to be low and

consistent on the array surface.

A concern for traditional microarrays is the low number of available repli-

cates, making reliable estimates of variance across samples problematic. Not

only do BeadArrays offer more replicates of a particular gene on one array,

but the ability to process more arrays in parallel should make it feasible and
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cost-effective to add more samples to an experiment and gain better esti-

mates of gene-specific mean and variances. Furthermore, by being able to

hybridise and scan multiple arrays simultaneously, we would hope to reduce

the batch effects associated with running microarrays on different days or

months, which complicate analysis.

2.5 Early uses of Illumina arrays in the liter-

ature

Confidence in the Illumina microarray technology can be measured in the

number of publications using the technology, and particularly in high-profile

studies. A notable project, the International Hapmap project (HapMap

Consortium, 2003) describes patterns of common genetic variation in four

different populations. A crucial part of the project was to identify SNPs in

the genome and determine which genotypes were present at these SNPs. A

large portion of this genotyping was done using two-colour Illumina arrays

in the SAM format. Data from the project are available online and are a

valuable resource for researchers investigating genetic variation in diseased

or normal populations. Along with these data, the cell lines used can also be

obtained to perform other studies.

One publication to make use of this resource is Stranger et al. (2005).

In this paper, expression data for lymphoblastoid cell lines from 60 unrelated

individuals of central European origin (commonly denoted as CEU) from the

Hapmap project were generated using an early version of Illumina expression

arrays. The arrays used were in the SAM format, with 1,433 bead types rep-

resenting 630 genes. These genes were chosen as RefSeq genes lying within

well-characterised regions of the genome. The intention of the project was

to find associations between the expression levels of the genes and SNPs al-

ready genotyped in the same individuals. Each sample was hybridised to six

separate arrays and distributed randomly among the SAMs used in the ex-

periment. These experiments were processed using BeadStudio and exported

as a sample probe profile with 1,433 rows and one column for each hybridis-

ation. Normalisation was done with quantile normalisation before averaging

the values for each individual. The 688 probes with the most variation were
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then taken forward for further analysis. A simple linear regression model was

fitted to each probe intensity and to each SNP to see which SNPs are most

correlated with gene expression level. Such SNPs may be regulatory element

variants. Naturally, such a large number of tests (one per gene, per SNP)

can lead to a lot of false positives if not treated carefully. Therefore, the

authors used a number of methods to control the number of false positives

or false discoveries, resulting in a modest number of genes with significant

association.

The study of Barnes et al. (2005) aimed to answer the key question of

whether Illumina expression data can be compared to data generated using

Affymetrix platforms. Their experiment was a dilution design, where two

distinct RNA samples are mixed in known amounts. The proportions of the

two samples are expected to give a large number of DE genes, although the

identities of these genes are not known in advance of the experiment. Mix-

tures of blood and placenta at percentages 100 to 0, 95 to 5, 75 to 25, 50 to

50, 25 to 75 and 0 to 100 were used on a pre-release version of the Human8

chip. BeadStudio was used to process the arrays, although the authors com-

ment that BGN had a negative impact on data quality, and therefore elected

to use quantile normalisation from within an existing Bioconductor package.

In a dilution design, the expression level of a given gene should corre-

late with the change in sample composition in a positive or negative direc-

tion. In Barnes et al. (2005) the proportion of genes that correlated with

concentration was quite low on both platforms (35% and 33% for Illumina

and Affymetrix respectively). However, correlation was more pronounced for

probes with higher expression level. In other words, probes with low expres-

sion level tended to be consistently low, and measuring background noise

rather than biological differences. Furthermore, the sequences provided by

Illumina were compared to the genome using the BLAT tool (Kent, 2002).

This revealed that out of the 24,114 probes supplied by Illumina, 19,924

matched known genes, with 2,978 probes unassigned. The correlation with

the dilution series was found to be greater for probes targeting known genes,

and was consistent for both Illumina and Affymetrix. Similarly, correlation

of measurements of the same gene on both platforms was improved for genes

with higher expression level and reliable annotation.
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Citation # Arrays Filtering Normalisation
Elvidge et al. (2006) 18 None Quantile
MAQC Consortium (2006) 59 Cross-Platform RIN
Golubkov et al. (2006) 6 Detection Quantile
Greber et al. (2007) 18 None RIN
Ramilo et al. (2007) 24 None AN
Bykhovskaya et al. (2007) 12 Detection AN
Stranger et al. (2007) 480 Variance Quantile
Krig et al. (2007) 12 None AN
Wang et al. (2007) 4 Detection AN
Platts et al. (2007) 12 None RIN
Deregibus et al. (2007) 6 None Loess
Lenk et al. (2007) 15 Cross-Platform CSN
Tesar et al. (2007) 6 Detection RIN

Table 2.1: Summary of GEO datasets derived using Human6 chips. For each
entry we list the citation, number of arrays used, type of filtering applied to
the data, and normalisation method applied. All datasets had preliminary
analysis done using BeadStudio.

The work of Stranger et al. (2005) and Barnes et al. (2005) details two

of the earliest uses of Illumina technology. Although both used versions of

the technology that were never commercially available, these results demon-

strate the potential for Illumina to be used for high-throughput expression

studies. Moreover, from an analysis point of view, they show the willingness

of researchers to use analysis strategies other than those recommended by

Illumina. Barnes et al. (2005) also showed that probe annotation should

be accounted for in the analysis. I will explore this effect for commercial

Illumina arrays in Chapter 6. The significance of Stranger et al. (2005)

will become apparent in Chapters 3 and 4 when discussing the development

of open-source software for Illumina and pre-processing issues for Illumina

data.

2.5.1 Publicly available Human6 data

A standard requirement for publication is that the data supporting the anal-

ysis presented in a paper are made available. One such site that allows
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experimental data to be deposited is the Gene Expression Omnibus (GEO)

(Barrett et al., 2007). On 8th February 2008, I queried GEO for Illu-

mina Human6 datasets and 22 were returned. Only 9 Human8 datasets were

found, perhaps indicating a preference for the higher density arrays.

The datasets found in GEO were manually curated to exclude datasets

that did not have a Pubmed reference listed. Some datasets were also found

to relate to the same publication and therefore counted as the same dataset.

A total of 13 datasets were then selected for further analysis. The charac-

teristics of these datasets are summarised in Table 2.1, and a more detailed

discussion of the results will be given in Chapter 6.

A number of commonalities were revealed when reviewing the use of Il-

lumina technology in the literature. Firstly, BeadStudio was used to obtain

bead-summary data and subsequent analyses were done with these quantities.

Therefore, the common microarray tasks of image processing and background

correction were already performed by internal Illumina methods and not ac-

counted for in any of the GEO papers.

The analysis of many experiments included a filtering step to remove

unexpressed probes from the analysis and reduce the amount of multiple

testing. Commonly, this was done using the detection scores provided by

Illumina (Golubkov et al., 2006; Bykhovskaya et al., 2007; Wang et al.,

2007; Tesar et al., 2007), setting an arbitrary cut-off and requiring probes

to exceed this cut-off on all arrays. Where the focus of the paper was to com-

pare the results of different platforms (MAQC Consortium, 2006; Lenk

et al., 2007), a common list of transcripts was used in the analysis by com-

paring the list of transcripts available for Illumina to another platform.

A wide range of normalisation methods were applied to the data, possibly

reflecting a lack of guidelines for the analysis of Illumina data. The major-

ity of publications analysed data through BeadSudio using either AN, CSN

or RIN. These methods also incorporate BGN, which some authors point

out has the effect of producing negative intensities. These negative intensi-

ties could cause problems for further analysis, as noted previously (Barnes

et al., 2005). Some authors sought to avoid negative intensities by adding a

small offset to the intensities on each array (Greber et al., 2007; MAQC
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Consortium, 2006).

Some papers used the detection scores as the outcome of the experiment

(Wang et al., 2007; Tesar et al., 2007), whereas others went on to produce

a list of DE genes between biological samples of interest (Golubkov et al.,

2006; Greber et al., 2007; Krig et al., 2007; Lenk et al., 2007; Dereg-

ibus et al., 2007; Elvidge et al., 2006; Platts et al., 2007; Greber et al.,

2007). In keeping with recent trends in microarray analysis (Allison et al.,

2006), many authors also sought relevant GO terms or pathways amongst

the significant findings (Greber et al., 2007; Krig et al., 2007; Lenk et al.,

2007; Platts et al., 2007).

One notable study using the Human6 platform was provided by MAQC

Consortium (2006). This was a global collaboration aimed at assessing

reproducibility of microarray results both between platforms and within the

same platform. Ten microarray platforms were used, including six high-

density platforms with over 30,000 unique probe sequences. Similar to Barnes

et al. (2005), a dilution design was used with Universal Human Reference

RNA (UHRR) and Universal Human Brain Reference RNA (UHBRR) at

varying mixtures (100 to 0 and 75 to 25). These four samples were replicated

5 times and this set of 20 arrays was hybridised at three different locations.

The project provides a public resource, all data derived being freely available

and the samples used available for purchase.

To assist in comparing the performance of the different microarray plat-

forms, a list of genes common to all platforms was drawn up by first matching

all probes on every platform to the RefSeq database, and then seeing the over-

lap between all platforms. This list was condensed to 12,091 common genes

by selecting only one probe for each gene from each platform. The repro-

ducibility of each platform was assessed using the ratio of standard deviation

to the mean of replicate observations, known as coefficient of variation (CV).

The CV was calculated for all genes across all replicates within the same site,

and then across all sites. Both Affymetrix and Illumina achieved the lowest

median CV (< 10% within a site and < 12% across all sites, respectively)

and therefore the most reproducible measurements. These CV calculations

were made including only genes that were generally detected for each plat-

form (genes that were detected in at least three of the five replicates). The
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definition of detection was unique for each platform, with genes requiring a

detection p-value of less than 0.05 for Illumina. For Illumina, 85% of these

calls were found to be in agreement, which was the highest percentage of the

platforms compared in the study.

Finally, the platforms were judged on their ability to detect differential

expression. For this, a simple t-test was performed, on a per-site basis,

between all replicates of 100% UHRR and 100% UHBRR. Differentially ex-

pressed genes were then selected with a p-value cutoff of 0.001 and a two-fold

change in intensity between the two samples. The composition of the re-

sultant gene lists was then compared between platforms by calculating the

percentage of genes in list X that were also present in list Y. This percentage

was over 60% for all comparisons between the high-density arrays. For Illu-

mina arrays processed at different sites, the percentage overlap was greater

than 87%, and for Affymetrix agreement was on average 80%.

In summary, aside from providing a valuable research tool, the MAQC

project showed that although being a relatively new technology, Illumina mi-

croarrays could produce high-quality data. Promotional literature produced

by Illumina indicated that the cost of running Illumina arrays was substan-

tially less expensive and required less biological material than its competi-

tors. Therefore, it is not surprising that interest in using Illumina arrays is

increasing.

2.6 Conclusions

The Illumina gene expression platform has many unique features that makes

it appealing to genomics researchers planning high-throughput experiments.

The relatively high number of observations for each gene and the random ar-

rangement of beads should produce high-quality, reliable results. The volume

and profile of publications using Illumina technology show that researchers

are willing to trust the technology. A survey of publicly deposited data

also showed the diversity of projects carried out on the Illumina Human6

platform. However, the analyses of all these projects were performed using

Illumina’s BeadStudio software.

BeadStudio has a number of restrictions that limit its use for bioinformat-
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ics research. The main restriction is the lack of choice over image processing.

This has been found to have a dramatic effect on the analysis of other mi-

croarray platforms. Therefore, for the bioinformatician, it is difficult to know

if these methods are appropriate for the data without in-depth exploratory

analysis. Whilst Illumina data are believed to minimise the spatial effects

seen on other arrays and produce robust measurements, there is no way to

assess this with the summarised data output from BeadStudio. Given the

random nature of the arrays, one would need both the individual bead lo-

cations and intensities to inspect this, and these are lost once the data are

summarised.

There are also practical issues to consider regarding the software. For in-

stance, BeadStudio only runs on Windows-based computers and is not avail-

able without a licence. To assist reproducible research it would be beneficial

if analyses could be repeated on any computer without the need for special-

ist software. There are already many microarray software packages available

and it would be useful if the analysis of Illumina data could interface with

these. Illumina’s primary focus is not to supply state-of-the-art bioinformat-

ics methods, and therefore the tools implemented in their software may not

reflect current trends in the field. An open-source framework should facilitate

the implementation of new methods and tailor-made solutions, rather than

relying on the company to update their software. I will discuss the develop-

ment of open-source software for the analysis of Illumina arrays in Chapter 3.

Although two dilution experiments have been published comparing Illu-

mina favourably with other platforms (Barnes et al., 2005; MAQC Con-

sortium, 2006), these publications do not look into the processing of Illumina

data in detail. A caveat in such dilution experiments is that it is not known

what genes are DE in advance of the experiment. Therefore, we cannot truly

quantify the ability of the technology, and the processing methods used, to

identify DE genes correctly without incurring too many false positives. The

use of a more informative control experiment will be discussed in Chapter 5.
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Chapter 3

beadarray: open-source
software for Illumina
bead-based microarrays

3.1 Introduction

Previously, I have shown that although Illumina arrays were well-received,

little was known about their pre-processing steps. Furthermore, the software

provided by Illumina did not accommodate some of the QA tools commonly

applied to other microarray technologies. In this chapter, I describe the de-

velopment of open-source software (beadarray) for the analysis of Illumina

microarray data. This project was instigated in early 2005 to investigate

the processing of Illumina data and to assist in the analysis of a pilot study

conducted by the Wellcome Trust Sanger Institute, which later formed part

of an association study (Stranger et al., 2005). As part of this pilot study,

we were able to gain advanced access to bead-level data.

After describing the Bioconductor project, the framework on which the

software is based, I give the details of the beadarray software. A key fea-

ture of the package is the ability to read both bead-level and bead summary

data. The data structures employed to store these two types of data are de-

scribed, along with the QA and analysis options implemented in the package.

This chapter is based on the peer-reviewed work presented in Dunning

et al. (2006a) and Dunning et al. (2007), along with documentation for the
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beadarray package.

3.2 The Bioconductor project

The Bioconductor project (Gentleman et al., 2004) is an online reposi-

tory of freely available genomics software. Bioconductor covers a wide range

of tools for the analysis and visualisation of microarrays and related high-

throughput technology. All software is primarily written using the R sta-

tistical programming language (Ihaka and Gentleman, 1996). This is a

natural choice as R is well-known for its wide range of statistical and visual-

isation tools. The open-source nature of Bioconductor gives users full access

to these statistical and visualisation tools and allows them to understand

what is being done at each stage of the analysis, rather than relying on pro-

prietary software that may not be fully explained. Therefore they are able

to judge if the methods are appropriate to their data and to modify them to

their own needs if required.

Bioconductor is made up of software packages, each package providing

functionality to analyse a particular microarray technology, or implementing

a new algorithm. Many publicly available datasets are also released through

Bioconductor, along with the annotation for many popular microarray plat-

forms. It is recommended that Bioconductor software is written to make use

of common data structures. Not only does this promote re-usable code and

interaction between packages, but it also reduces the learning curve for users.

A key feature of the Bioconductor project is the interaction between devel-

opers and users. The mailing list encourages users to ask questions about the

use of a particular package and also to report bugs and suggest improvements.

A software package included in Bioconductor consists of the following

elements

� R code - Code to achieve the functionality of the package and also

defining the data structures employed. These are primarily written

in the R language, although functions that are more memory-intensive

and time-consuming may be written in other languages such as C or

Fortran, and then called from within the R code of the package.
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� Documentation - Each separate function must have documentation giv-

ing adequate instructions to users, including descriptions of the input

to the function and the output to be expected. Some example code

segments should also be provided to demonstrate the use of the func-

tion.

� Example data - A small illustrative dataset exemplifying the use of the

package.

� Package vignette - More detailed documentation of the package and

methods used. This should give a step-by-step guide about how a

typical analysis using the package may be performed. The Sweave

tool (Leisch, 2002) provides a convenient framework for creating such

documents with embedded R code that may be reproduced by users.

Microarray technologies are being continually updated to have higher den-

sity and revised annotation. Therefore packages within Bioconductor must

be constantly upgraded to meet the demands of data derived from these new

technologies. Bioconductor operates a six month release cycle to ensure that

all packages are up-to-date. Two versions of the Bioconductor project ex-

ist: the release version that has been rigorously checked for errors, and the

developmental version where more cutting-edge code is available. Prior to

release, all packages are checked to ensure that documentation can be found

for all functions and example code runs without error. Failure to comply to

either of these requirements results in the package being withdrawn from the

release version.

3.3 Processing bead-level data using beadar-
ray

I now describe the main features of the beadarray package and the object types

and classes used to represent Illumina data in an efficient manner. One main

goal of the software is to utilise tools from existing microarray technologies

in the analysis of Illumina data. Therefore it was always our intention to

implement the software in R and submit to the Bioconductor project. Figure

3.1 gives an overview of the package and the different entry-points for the
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user. Whilst we wanted to focus on the ability to use bead-level data, we

also wanted to cater for users with only bead-summary data. However, as

explained later in the chapter, downstream analysis can be performed in the

same way regardless of whether the analysis started with bead-level or bead

summary data.

3.3.1 Reading bead-level data into beadarray

Bead-level data can be read into memory using the readIllumina function.

This function was designed to run in the same way as ReadAffy function

within the affy package for Affymetrix data (Gautier et al., 2004a), where

the user does not need to set complicated parameters in order for the func-

tion to run. Such a function is therefore appealing to inexperienced R users.

By default, readIllumina will find all images and text files within the

current R working directory and apply the image processing steps used by

Illumina. Users are able to choose whether to use the sharpening procedure

or choose a different window size to calculate the local background (rather

than the default 17×17). Alternatively, the background corrected intensities

can be taken directly from the text file to save time and memory.

Other parameters to readIllumina include the option to import a tar-

gets file that specifies the samples hybridised to each array. Such a file is

commonly used when analysing two-colour arrays via limma and can contain

other information such as the date of hybridisation, which could be useful for

diagnostic purposes. The metrics file created by BeadScan may also be im-

ported to give an indication of the scanning diagnostics assigned by Illumina.

The following code executed within an R session will read bead-level data

from the current working directory

> BLData <- readIllumina(textType = ".txt", )

As a rough guideline, this function takes about a minute to read the data

from a BeadChip on a PC with 2GB of RAM and a 3Ghz processor. Initial

code to read bead-level data was developed for the low-density arrays from

the Sanger pilot study and written entirely in R. However, this proved too

slow when attempting to read BeadChip data. Therefore, the majority of
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Figure 3.1: An overview of the beadarray software and the various tasks it can
perform compared to BeadStudio. The software can be used to analyse either
bead-level data or data exported from BeadStudio, although availability of
bead-level data allows a more flexible analysis.
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the readIllumina function was written in C.

3.3.2 Representation of bead-level data in beadarray

Once imported, the bead-level data are stored in an object of type BeadLev-

elList (called BLData in the example code above). In the current version of

beadarray, this is stored as an R environment variable. Earlier versions of

beadarray used a list variable to store bead-level data, similar to the RG-List

object in limma. This data structure stores data for a microarray experiment

with F features on K arrays by having a series of F ×K matrices in a list.

Typically, there will be a matrix of green and red intensities in the case of

two-channel data. Many processing and QA options are then defined for this

class.

Whilst we wanted to make full use of existing software tools, it quickly

became apparent that the RG-List would not be suitable for Illumina data.

The main problem is that we cannot always assume the same number of

beads on each array. Whilst this was true for our preliminary bead-level

data, once bead-level became widely available it was seen that the text files

had differing numbers of beads. This is due to the scanning software remov-

ing beads that are not decoded by Illumina, or sometimes beads that are

found to be outliers for their bead type. Therefore the number of features

(F ) varies and we cannot construct the required matrices directly from the

data. One solution to the problem would be to pad-out the values in each

column to ensure we have an equal number of observations. However, this is

not very satisfactory as the differences in features between arrays may be on

the order of tens of thousands.

The major difference between a list and environment is the way that sub-

setting is done. In a list structure, BLData would be divided into matrices of

equal dimensions, each matrix representing a different set of information (e.g.

foreground intensities) and having the same number of columns as arrays in

the experiment. However, in an environment , we subset first by array, and

then by the information stored for each array. This allows for a different

number of features on each array.

47



The list structure in R can also be memory inefficient when operated on,

usually creating many copies of itself. Such behaviour is obviously unde-

sirable when dealing with large datasets. An environment does not create

multiple copies of itself, but instead keeps modifying the same object. As a

consequence, users are not allowed to modify the environment easily.

The BeadLevelList class has been developed to contain useful information

for describing Illumina data at the bead level. This information is broken into

different sections, or slots, including data for each bead (beadData), experi-

mental information about the arrays (arrayInfo) and phenotypic information

(phenoData). For convenience, the function getArrayData can be used to

retrieve the data for a particular array, including foreground and background

intensities, coordinates and ProbeIDs. Therefore, users of the package do not

need to understand the internal representation of the BeadLevelList in order

to extract the information they need.

The bead-level data for any Illumina assay are stored in the same text

and image format. Therefore, the same call to the readIllumina function

and BeadLevelList objects can be used. A slight exception is that two-colour

Illumina arrays incorporate extra information for the red channel.

It should also be noted that for BeadChips where more than one strip

represents the same sample (e.g. the Human6 chip), a separate image and

text file is produced for every strip, and therefore separate entries for each

strip are created in the BeadLevelList object for QA purposes.

3.3.3 Visualisation of bead-level data

I now describe the main diagnostic functions available within beadarray for

plotting per-bead quantities of interest. These include boxplots (boxplotBeads),

imageplots (imageplot) and density plots (plotBeadDensities). All of

these functions make use of the getArrayData function to retrieve the quan-

tities of interest, which are specified by using the whatToPlot argument. Op-

tions are G, Gb and residG (green residuals) for single channel data with the

addition of R, Rb, residR, M (log-ratios) residM or A (average log-intensities)

for two-colour data. The qcBeadLevel function can be used to generate these

48



plots automatically for all arrays in the BeadLevelList object.

As described previously, the imageplot function can be used to identify

spatial artefacts. Similar functionality can be found in the limma package,

although it was not immediately applicable to Illumina data as it assumes

equal spacing of features on the microarray. Because of the large number of

beads on each array, imageplot maps a grid of size specified by the nrow

and ncol arguments onto the array surface and averages the intensities of

the beads within each section of the grid.

Being able to view the arrays in this manner is a clear advantage over

viewing each image individually in high resolution. This kind of visualisa-

tion is not possible when using the summarised BeadStudio output, as the

summary values are averaged over spatial positions. Imageplots in R are also

more convenient than scrutinising the original tiffs, as multiple arrays can be

visualised on the one page. Additionally, imageplots can be generated for the

background intensities or residuals, which would not be possible by viewing

the TIFF images directly. An added avantage is being able to associate the

imageplots with the positions of beads that are outliers for their bead types.

Firstly, outliers are identified using the findAllOutliers function, the result

being a vector of identifiers for each outlier bead. The plotBeadLocations

function will then plot the x and y coordinates of the relevant beads.

Such spatial artefacts would be a concern for conventional microarrays

where a fixed position on the array is allocated to a particular gene. Thus,

genes on a particular part of an array would be inaccurately measured. The

outlier removal method used by Illumina is supposed to account for such re-

gions of unusual intensity. Therefore, it is after summarised data have been

created that we can assess the impact of possible problems observed at the

bead level.

3.3.4 Creating bead-summary data

The createBeadSummaryData function can be used to summarise the values

for each bead type. Outlier removal is performed by findAllOutliers, which

excludes outliers as defined by Illumina (see Page 30) using a 3 MAD cut-
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off from the median of each bead type as the default. However, users are

able to specifiy whether to perform a log2 transformation prior to excluding

outliers, change the MAD cut-off, or use a trimmed mean or median of all

bead intensities. For some two-colour arrays, the user can also choose to

summarise other quantities of interest, such as red intensities or log-ratios.

In the case of some BeadChip arrays where two items in the BeadLevelList

correspond to the same array, we may collect together all replicates of each

bead type that appear on both strips. This is done by specifying the argument

imagesPerArray to be 2. Otherwise the function will treat each item in the

BeadLevelList as a different entity to be summarised. The call to create

bead-summary data is simply:

> BSData = createBeadSummaryData(BLData)

By default, we summarise the values for the green channel. In the case

of two-colour data, one may wish to create summary values for the red and

green channels separately, or summarise the log-ratios for each bead. This

can be achieved by setting the what argument to RG or M respectively.

The default settings for createBeadSummaryData assume that the same

bead types are to be found on each array in the experiment, which will be

true in general. Alternatively, one might wish to summarise only the genes

present on the array and not the control probes. This is possible with use of

the probes argument, which is used to specify the identity of bead types to

be summarised.

3.3.5 Proceeding with bead-summary analysis

The object type used to store bead-summary data depends upon the type of

Illumina technology assay analysed. The default class for expression data,

ExpressionSetIllumina, is an adaptation of the ExpressionSet class, written

by the Bioconductor core development team to store and manipulate data

from high-throughput genomics experiments. The ExpressionSet structure

was devised for single-channel data, with an n × k matrix used to hold the

expression values of n probes on k arrays. Obviously, this structure can only

be used for Illumina data after the summarisation step. Within an Expres-

sionSet , the expression matrix can be accessed at any time by the convenient

exprs function. Similarly, standard errors are found in an n× k matrix and
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accessed by the se.exprs function.

By basing ExpressionSetIllumina on ExpressionSet , we automatically in-

herit the ability to extract expression and standard errors using the same

exprs and se.exprs functions. Therefore Bioconductor users who are new

to Illumina data will be able to access data in a familiar way. We also chose to

store the number of replicates for each bead type on each array in a NoBeads

matrix with a NoBeads accessor function and detection scores in the Detec-

tion matrix with a Detection accessor function.

3.4 Analysing Gene expression bead-summary

data

I will now discuss the analysis of bead-summary data using beadarray. The

data in question could be the result of performing a QA on bead-level data

as described above, or alternatively, beadarray is able to read the result of

processing expression data using BeadStudio. At present, beadarray does not

directly support the reading of summarised data from other Illumina assays.

This is mainly because the majority of my research has involved the analysis

of expression data, or exploratory analysis of bead-level data.

3.4.1 Reading BeadStudio output into beadarray

The format of the “Sample Probe Profile” (SPP) file exported from BeadStu-

dio is already similar to that required by an ExpressionSetIllumina object as

it has one row for each bead type. However, the columns in the SPP file are

arranged with the expression values, standard errors and number of beads in

adjacent columns for the same array. Therefore, the main challenge of read-

ing BeadStudio output into beadarray is how to recognise the correct columns

for each array and assigning to the correct part of an ExpressionSetIllumina

object. A complication is that no standard format of the BeadStudio output

exists and users are able to select as many columns as they like. Most column

headings used by BeadStudio are generally the same between versions of the

software (e.g. AVG Signal for the expression values), but the column names

for the standard errors have been known to change. We therefore assume

the column headings from the latest version of BeadStudio (version 3 at the
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time of writing), but give users the chance to define alternative headings.

Probably the most important column heading to specify denotes the column

containing an identifier for each bead type. By default, this is assumed to be

the column which contains unique numeric codes for each bead type.

In BeadStudio, it is also possible to export annotation information. How-

ever, we recommend that this information is not exported if the file is to be

read into beadarray, as some of the special characters used in the annotation

fields cause problems in R. Also, the inclusion of the annotation is unneces-

sary as it can be retrieved later on from other Bioconductor packages, such

as illuminaHumanv1.

The function readBeadSummaryData is used to read exported BeadStu-

dio data into beadarray. The minimum requirements for the function are

the specification of a file name in the dataFile parameter, relating to the

SPP file to be read. The complicated nature of BeadStudio output means

that the list of parameters to this function can potentially be quite long and

therefore full details will not be presented here (see the beadarray documen-

tation for more information). Key points to note are the columns parameter,

which allows the user to specify the names of the columns in the SPP file

containing expression values, standard errors, the number of beads and de-

tection scores. The ProbeID parameter also allows the column containing

the unique identifiers for each bead type to be specified. This is a crucial

step, as the ExpressionSetIllumina class does not allow repeated row names.

Other parameters such as skip, sep and quote are important in specifying

the format of the file. The default values of these are set to read BeadStudio

version 3 output. Many common errors encountered during the execution

of readBeadSummaryData can be solved by correctly setting these parame-

ters, and wherever possible, beadarray will try to provide informative error

messages. If problems using this function are reported to the Bioconductor

mailing list, then the responses may be used to assist users with similar error

messages.

Once the SPP file has been successfully read into memory by the read-

BeadSummaryData function and the contents have been verified, a valid Ex-

pressionSetIllumina object is created. Essentially, this process involves match-

ing the column names supplied by the user to columns in the SPP file and
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then creating a separate matrix for the expression values, standard errors,

number of beads and detection values. The column and row names of these

matrices are then set to the names of the arrays being read (determined from

the SPP file) and the ProbeID values respectively. These matrices are then

stored in the assayData slot of a newly created ExpressionSetIllumina ob-

ject. Slots such as assayData are accessed using the “at” operator, with the

$ operator then required to access the individual matrices. However, acces-

sor functions such as exprs make this process convenient as the user does

not need to know the details of how the class is implemented. Hence, the

following two lines of code produce the same result.

e = BSData@assayData$exprs

e = exprs(BSData)

If quality control information has also been exported from BeadStudio,

the name of this file can be supplied as the qcFile parameter. As with the

SPP file, the columns exported from BeadStudio can be specified by the user,

and therefore parameters can be set to specify the contents of this file. If

imported, the quality control information is stored in a separate slot (QC) to

the data imported from the SPP file and accessed using the QCInfo function.

Additional information about the samples can be imported through the

sampleSheet parameter. This is a text file, usually created by Excel, that

allows users to specify what samples were hybridised to each array and any

grouping of the samples. This information is stored in the phenoData slot of

ExpressionSetIllumina, which is a standard feature of an ExpressionSet and

can be accessed using the pData function.

3.4.2 Visualisation of bead-summary data

beadarray provides a way of displaying MA (see page 10) and scatter (XY)

plots for a set of arrays. We call this a MAXY plot with the MA plots for

the arrays in the upper right and XY plots in the lower left.

Boxplots cannot be generated directly from an ExpressionSetIllumina ob-

ject. However, they can be produced by only a few lines of additional code.

First, one would need to extract the data to be plotted using one of the acces-

sor functions (e.g. exprs). This returns a matrix which must be converted

53



into a data frame, using data.frame, before plotting with the boxplot func-

tion.

Plots of the quality control information, if available, can also be useful for

diagnostic purposes. The automatic generation of such plots is not currently

supported, but can be easily generated by the user. The QCInfo function re-

turns a matrix with rows for each control probe and columns for each array.

Therefore it is straightforward to plot the response of a particular control

across all arrays.

Other plotting tools available in Bioconductor, such as cluster diagrams

and heatmaps, generally require an expression matrix and therefore can easily

be applied to Illumina data in the ExpressionSetIllumina format.

3.4.3 Further analysis of bead-summary data

Representation of bead-summary data using the ExpressionSet allows for

existing methods within Bioconductor to be applied to Illumina data. For

instance, the possible normalisation methods are extended beyond the meth-

ods given in BeadStudio. The normaliseIllumina function within beadarray

can be used for normalisation by taking an ExpressionSetIllumina object and

returning a copy of the object with modified expression values. Options sup-

ported by normaliseIllumina include quantile, qspline, and rank invariant,

which are called directly from other packages such as affy. Alternatively, the

expression matrix can be normalised by any other methods existing in Bio-

conductor.

The linear modelling approach described in Chapter 2 can be applied to

Illumina data via limma. In particular, one needs the expression matrix re-

turned by exprs and a design matrix defining the assignment of samples in

the experiment. The construction of an appropriate design matrix can be

assisted by information stored in the phenoData slot. The function lmFit

can then be used to estimate coefficients as in (2.2). Once a model has been

fitted, the analysis would proceed exactly as the examples given for single-

channel data in the limma user guide.

After performing a differential expression test, it is often useful to relate
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the results back to prior knowledge of the probes on the array to ascertain

if the results are biologically meaningful. As for most microarrays, annota-

tion for popular Illumina chips can be obtained through Bioconductor (e.g.

illuminaHumanV1 for Human6 version 1 arrays). These annotation packages

provide a series of environments, each environment providing a mapping from

the identifiers on the array to a particular genomic property. The mget func-

tion can be used along with a set of keys to be looked up (unique identifiers

for each probe) and the environment name. For instance, the environment

illuminaHumanV1CHR maps probes on the Human6 chip to a chromosome

number and is used as follows.

ids = rownames(exprs(BSData))

chrs= mget(ids, illuminaHumanV1CHR)

The resulting vector gives the chromosome that each probe on the Hu-

man6 chip resides on. The consistent naming conventions for environment

packages mean that repeating the same command for the MouseV1 chip re-

quires the use of the illuminaMouseV1CHR environment with a list of appro-

priate identifiers. Access to this annotation information enables interaction

with packages such as GOstats (Falcon and Gentleman, 2007) in order

to find enriched GO terms or pathways among the results of a differential

expression analysis.

3.5 Conclusions

BeadArray technology will become increasingly popular and I anticipate that

beadarray will become an important tool in the analysis of Illumina data. The

main benefit of beadarray is its flexibility. The package offers a variety of im-

age processing and background correction methods, rather than the default

methods used by Illumina. Having access to the bead-level data provides

scope for users to develop their own analysis methods, or to interact with

methods not supported by BeadStudio. Example usage of the package is

given in Chapter 4.

The uniformity of bead-level data means that beadarray is able to read

the output from any Illumina experiment. I have been able to process the

results of Illumina expression, SNP, CNV and methylation experiments on
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both SAMs and BeadChips using the same commands for bead-level pro-

cessing and QA. The format of bead-level data seems to be more stable than

bead-summary data. With each new version of BeadStudio, the column

names used within the software are changed slightly and it is problematic to

support all possible options within beadarray without requiring the user to

know some information about which software version was used.

I also find bead-level data more convenient as I perform most of my

analysis on Linux, which is unable to run the BeadStudio software. With

beadarray, a simple script can be used to read raw data, produce diagnos-

tic plots and create summarised data. Therefore, the package is amenable

for use in core facilities producing large numbers of arrays where process-

ing data using BeadStudio may not be feasible and reproducible research is

required. The R language also offers the opportunity for parallel processing

and using more than 3Gb of RAM (which is the limit of current Windows

machines), which should be beneficial for large datasets. I have not yet in-

vestigated the prospect of running beadarray in parallel, although it is clear

that functions such as readIllumina and createBeadSummaryData could be

termed “embarrassingly parallel”. This means that they involve many iden-

tical operations that are performed independently, when in fact they could

be performed simultaneously.

Other analysis options for Illumina data have arisen since the creation of

the beadarray package. The BeadExplorer package is available in Bioconduc-

tor and gives a graphical user interface for users not familiar with R to read

the output of BeadStudio and analyse the data through other existing pack-

ages such as limma. This package does not appear to be actively maintained.

The IlluminaGUI project (Eggle and Schultze, 2007) offers a similar in-

terface to other Bioconductor packages, although it is web-based rather than

hosted in Bioconductor itself. Another Bioconductor package, beadarraySNP

has been developed, although it is only for the output of Illumina SNP assays.

Finally, the lumi Bioconductor package (Du et al., 2008) has also become

a popular choice. Users are able to import bead-summary data with a sim-

ple command and the processing steps applied to the data are recorded as

a history. The package also includes a number of unique features such as

a novel annotation method for microarrays, nuID (Du et al., 2007), and a
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transformation method, VST, based on the popular VSN method applied to

microarrays (Lin et al., 2008).

Despite these recent additions, beadarray has an important role to play in

the analysis of Illumina data. The packages listed above all have advantages,

but only deal with the summarised output of one technology (i.e., expression

or SNP). On the other hand, beadarray is able to analyse the raw data from

any experiment due to the uniformity of the bead-level data. The ability to

perform detailed diagnostics and flexible analyses should be very appealing

to bioinformatics researchers. The package is frequently discussed on the

Bioconductor list and use of the package has been reported in institutes such

as National Institute for Health, Harvard Medical School, Virginia Bioinfor-

matics Institue, Walter and Eliza Hall Institute (Melbourne), University of

Illinois, The Netherlands Cancer Institute, Leiden University, Turku Cen-

tre for Biotechnology (Finland), Australian Genome Research, University of

Manchester, The European Bioinformatics Institute, as well as many users

at the University of Cambridge.
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Chapter 4

Investigation into the
pre-processing of Illumina data

4.1 Introduction

In this chapter, I describe the low-level properties and processing of an ex-

periment for which bead-level data were made available. The chapter is

presented in the form of a worked example and goes through the steps one

might perform when analysing Illumina data. The functionality of beadarray

is also demonstrated.

As previously described, Stranger et al. (2005) studied the expression

levels of 630 genes in 60 individuals from the Hapmap project. The published

data comprised of five SAMs with each of the 60 individuals replicated 4 to 6

times. By special arrangement with Illumina, we were able to gain access to

bead-level data before this type of data was available to the wider community.

We also had access to a larger dataset than described in Stranger et al.

(2005). This consisted of 15 SAMs profiling all 270 HapMap individuals,

each individual replicated 4 to 6 times. This enabled us to evaluate the tech-

nology and develop beadarray with a view to handling large-scale experiments.

In this chapter I use a subset of 10 arrays from Stranger et al. (2005)

to describe how the unique features of bead-level data allow a more detailed

QA, as opposed to the summarised data used in most studies (see Chapter

2). I will also show how importing the data into R allows methods from other

microarray technologies to be applied. This dataset is intended for teaching
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purposes and was presented as a tutorial at the BioC07 conference in Seattle.

Hence, it shall be referred to as the BioC07 dataset. In the second part of

the chapter, I show how the beadarray package can be used to process all 15

SAMs (referred to as the HapMap dataset) without the need for BeadStudio.

This chapter is based on Dunning et al. (2006b) and user guides distributed

with the beadarray package. It will also demonstrate the importance of the

processing steps introduced in Chapter 2 before these are investigated in

more detail in Chapter 5.

The R code to reproduce the figures in this chapter is provided as an

Appendix.

4.2 Investigating the BioC07 dataset

The BioC07 dataset consists of 10 arrays with five replicates of two indi-

viduals, which we will refer to as samples A and B for convenience. For

each array, there is a 6Mb TIFF image and a 1.6Mb csv file, the csv file

containing 49,777 rows of data. Note that these csv files were generated

using an early version of BeadScan and may not reflect the current output

from the scanner. In particular, all beads are reported including those that

failed the decoding process (these are assigned a ProbeID 0) and beads that

are outliers for their bead type (these are sometimes removed by BeadScan).

These bead-level data can be read using the readIllumina function, which

creates a BeadLevelList object as described in Chapter 3. I now explore the

bead-level data for the BioC07 dataset.

4.2.1 Image Processing

Firstly, I use the boxplotBeads function to plot various per-bead quantities

for all 10 arrays. The raw foreground intensities are shown in Figure 4.1A.

These are the raw values obtained by using the image processing steps de-

scribed by Illumina and the boxes are colour-coded according to sample type

(A or B). The design of the experiment meant that replicates of the same sam-

ple were randomly located on different SAMs. Therefore, some differences

in underlying intensity between the different replicates could be expected.

However, the raw foreground intensities show good consistency, with a me-

dian of around 10 and 25th and 75th quantiles of around 9.8 and 10.3 for
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C) Background Corrected Intensities
Sample A
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Figure 4.1: Foreground (A), background (B) and background corrected (C)
intensities of all beads in the BioC07 dataset. Arrays are coloured separately
for Sample A (blue) and Sample B (red). The foreground intensities are
seen to be consistent across the dataset, with the exception of arrays 1 and
6 which are generally have higher intensity. The background intensity has
extremely low variability on all arrays.

all arrays, except Array 1 and Array 6. Even though Array 1 has the same

median value as the others, there are many more beads with high intensity.

For all arrays, the intensities are skewed towards lower values. The spread

of background intensities is extremely low (Figure 4.1B), and the majority

of beads have background intensities around 9.5 on the log2 scale. With the

exception of arrays 1 and 6, the other arrays do not have background values

that exceed 10.

Background adjustment was applied to these 10 arrays separately using

the backgroundCorrect function in beadarray with the default options. The

default background correction method is the simple subtraction given by (1.1)

and thus mimics the background correction performed by BeadScan. After

this adjustment, the spread of the data is seen to increase further with Array

1 and Array 6 standing out even more as possible outliers (Figure 4.1C).
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In other words, the differences in median levels between arrays are seen to

be increased. Comparing these background corrected levels to the example

two-colour experiment in Figure 1.3, we see a much tighter range in Figure

4.1. In fact, the array that most resembles the arrays we have seen before is

Array 1, whilst the other arrays in the BioC07 dataset are found to have a

very low range of intensity values.

Given that the background level lies just above the lowest values of the

foreground, we might be concerned that background correction could cause

negative values to appear, which would be removed from the analysis af-

ter log2 transformation. This is major concern for two-colour arrays and a

motivation for more complicated background correction approaches than the

simple subtraction applied to the data. However, a simple calculation reveals

the largest number of negative intensities on any of these arrays is only 105

after background correction, even for Array 1.

4.2.2 Spatial Plots

The imageplots of the background adjusted intensities of the BioC07 data

are shown in Figure 2, with yellow and red indicating low and high intensity

regions respectively. These were generated using the imageplot function in

beadarray and imageplots of the residuals for each bead had similar results.

The colours on each plot are calibrated in such a way that the same shade

always corresponds to the same intensity. A saturation intensity threshold

is set for each array, with all intensities outside these limits given the same

colour. For these plots, the saturation levels have been set to 6 and 16

respectively. Ideally, we would like to see a random distribution of colours

and no tendency for any part of an array to have higher or lower intensity

than any other. Our expectations are generally met for the dataset with

the exception of arrays 1, 3 and 6. On Array 1, the left side of the array is

consistently higher than the rest of the array. Moreover, as the imageplots

for the other arrays are dominated by yellow or orange, these high intensity

values are higher than most beads seen in the dataset. This agrees with

the observation made from Figure 4.1 that this array has a much higher

percentage of higher intensity beads. By eye, spatial artefacts are seen for

Array 3 (bottom-left of the array) and Array 6 (bottom-right of the array).
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Array 4
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z−range 7.8 to 12.2 (saturation 6, 16)

Array 5
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Array 6
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Figure 4.2: Imageplots of foreground intensity for the BioC07 dataset, with
replicates of sample A in the top row, and sample B in the bottom row. Red
and yellow denote high and low intensity regions respectively. Clear spatial
artefacts can be seen for arrays 1, 3 and 6.

Whilst such spatial artefacts are relatively commonplace for other microarray

technologies (see Figure 1.3), they have not previously been seen for Illumina

data as it is assumed that the random arrangement of beads and robust

summary mechanism will reduce the effect of such artefacts. I now use some

of the plotting facilities from within beadarray to see how the outlier removal

approach used by Illumina deals with these artefacts.

4.2.3 Outlier Detection

The findAllOutliers function was used on each of the 10 arrays separately.

The result of the function is a vector of numeric values, each of which indexes

a particular bead on a given array. For the BioC07 dataset, the number of

outliers expressed as a percentage of beads on the array are 27.55, 5.44, 6.00,

5.53, 5.19, 12.02, 4.88, 5.43, 5.48 and 4.07 for arrays 1 through 10 respec-

tively. In other words, two of the arrays identified from Figure 4.1 as having
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different distributions are found to have the most outliers, whereas the other

arrays have around 5% outliers. This suggests that a crude cut-off could

be derived to identify poor quality arrays based on a higher than expected

percentage of outliers.

After identifying the outlier beads using findAllOutliers, we can pro-

ceed to find the location of these beads on the array. We would hope that the

summary method used by Illumina would exclude any beads lying within spa-

tial artefacts from the analysis. Figure 4.3 shows the location of the outlier

beads on arrays 1, 3 and 6 plotted using the plotBeadLocations function.

These plots make the spatial artefacts on arrays 1 and 6 even more obvious.

We can also see that Array 1 has a dense concentration of outliers over the

entire array. However, it is initially quite puzzling why we do not see a spatial

artefact in the bottom left corner for Array 3. If anything, a spatial artefact

is suggested in the top of the array. The reason for the apparent discrepancy

between Figures 4.2 and 4.3 for Array 3 could be the choice of scales used to

create the plots. Figure 4.2 was generated after applying a log2 transforma-

tion to the data to compress them into a convenient scale for visualisation.

Without this, the images would have been completely dominated by low in-

tensity beads. However, the Illumina method for removing outliers was used

for Figure 4.3, and this does not perform a log2 transformation to the data.

Therefore the outliers we see by eye after a log2 transformation may not nec-

essarily be the same beads picked as outliers from unlogged data. This will

be explored in more detail later on in this chapter. For completeness, the

TIFF images for arrays 1, 3 and 6 are shown in Figure C.1 in Appendix C.

This figure was generated by adjusting the contrast and colour-balance of the

original TIFF images to enhance our ability to identify the spatial artefacts.

Obviously such adjustments are impractical for large-scale experiments.

Another factor to consider is the location of beads that could not be de-

coded by Illumina. On Array 3 a large area in the bottom left corner is seen

to coincide with undecoded beads (data not shown). In the bead-level data

for the BioC07 dataset, these beads are present but have a ProbeID of 0. In

beadarray these beads are not used in bead-summary analysis as it does not

make sense to average over them, therefore they would not be highlighted as

outliers.
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Figure 4.3: The locations of beads that are found to be outliers on arrays
1, 3 and 6, which were seen to have spatial artefacts in Figure 4.2. With
the exception of Array 3, the locations of outliers correspond well with the
spatial artefacts seen by eye. The outlier removal method implemented by
Illumina was used, which excludes beads using a cut-off of 3 MADs from the
median of the unlogged bead intensities for each bead type.

We will now proceed to analyse the bead-summary data for this example

by running the function createBeadSummaryData on the background cor-

rected bead-level data. This would have been the starting point for analysis

if the raw data had been processed using BeadStudio.

4.2.4 Analysis of summarised BioC07 data

Figure 4.4 shows the summarised expression values and number of observa-

tions for all bead types on the 10 arrays. Both these matrices can be easily

retrieved from the ExpressionSetIllumina object, as described in Chapter 3.

Note that these plots have a much lower density as we now have 1,471 obser-

vations in each box, rather than the 49,777 in Figure 4.1. If we were looking

at these data for the first time (for example, if the data had been processed

using BeadStudio) we might think that the data do not need much normal-

isation. It is interesting that Array 1 does not look like such as extreme

an outlier as it did in Figure 4.1. The median level of this array is slightly

higher, which is not surprising by itself as these arrays were all hybridised

and processed on different dates. Similarly, Array 6 also has higher median
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Figure 4.4: An overview of the BioC07 dataset after summarising the bead-
level data. The summarised expression levels for all arrays are seen to be in
good agreement, although arrays 1 and 6 have slightly higher medians. Array
1 also has fewer bead types with extreme high intensities. The number of
beads after outlier removal are also shown for all arrays in the BioC07 dataset.
The average number of beads for a bead type in a given array is generally
around 30, although arrays 1, 3 and 6 have lower numbers of replicates. No
bead type on any array has fewer than 10 replicates.

intensity. The IQRs of all arrays are roughly the same, although Array 1

now has a lower number of extreme high intensities.

This reduction in extreme high values for Array 1 can also be seen in a

boxplot of the number of observations (see Figure 4.4). Whilst most arrays

have around 30 observations for each bead type, Array 1 has around 24 ob-

servations on average, which is a noticeable decrease. We also observe that

despite the severe artefacts on some arrays, no bead type in the dataset was

left with fewer than 10 replicates after outlier removal. We now look at how

comparisons between arrays might be affected by such spatial artefacts.

In Figure 4.5, MA-plots are shown for selected pairwise comparisons of

Sample A and Sample B without having applied any normalisation. For the

plots involving Array 1, many points are found away from the M = 0 line,

indicating genes that have greater intensity in Array 1 than the other ar-

ray, or vice-versa. It is unlikely that any normalisation approach would be

able to fix this problem, as most methods attempt to correct for curvature

seen in the MA-plots. At the same time, MA-plots of other pairwise com-
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Figure 4.5: MA plots constructed using selected replicates of Sample A (top
row) and replicates of Sample B (bottom row). Comparing Array 1 to arrays
that have the same biological sample hybridised yields many genes with log-
ratios away from 0 in a non-linear fashion. This trend is not seen for other
comparisons of Sample A. The log-ratios generated using Array 6 are more
variable than other comparisons of this sample and also systematically greater
than 0. However there are many normalisation schemes that might correct
for this.
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parisons of this sample do not appear to show differential expression. Given

our previous knowledge from the bead-level data, it would be a reasonable

assumption that the spatial artefact on this array is having a dramatic effect

on the observed intensities. Correlation coefficients of Array 1 with the other

replicates of sample A are 0.039, 0.035 and 0.039 respectively, giving further

indication that this array is unreliable.

The replicates of Sample B are very consistent. Despite Array 6 hav-

ing a spatial artefact, it appears to agree well with other replicates, having

correlations between 0.77 and 0.79. In Figure 4.5 when comparing Array 6

to Arrays 7 and 8, the M -values are shifted above 0, which is concordant

with our observation that this array has generally higher intensity. Also, the

M-values involving Array 6 have a slightly larger range than those for other

replicates of Sample B. Such trends should be removed by methods which

scale each array to have the same average intensity or overall distribution.

4.2.5 A simple differential expression analysis

In order to demonstrate the benefit of removing problematic arrays from the

analysis, I consider an example of finding DE genes between the two sample

types A and B, which was not the intention of Stranger et al. (2005), but

is a common goal for microarray analysis. Using limma, the linear model

given by (2.3) was fitted to the quantile normalised expression values, with

the design matrix XXX being the 5× 2 matrix,

XXX =



1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1


.

Thus, the two coefficients for each gene (αααg) estimate the expression level

of that gene in samples A and B respectively. The contrast between sam-
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Figure 4.6: Comparison of the volcano plots produced for a differential ex-
pression analysis involving all arrays (left) and with Array 1 removed (right).
The y-axis shows a measure of evidence for differential expression (log-odds)
and the x-axis shows the estimated coefficients from the linear model. Red
dots indicate genes with positive log-odds (roughly corresponding to greater
than 50% chance of being DE) in the analysis that excludes Array 1. Re-
moval of Array 1 from the analysis is seen to improve our ability to detect
DE genes.

ples A and B was estimated using the contrast matrix CCC = (1,−1) and

followed by empirical Bayes shrinkage of variances (the eBayes function) to

give moderated t-statistics and log-odds for each gene. Separate analyses

were performed before and after removing Array 1 from the analysis (by

modifying XXX accordingly). Figure 4.6 shows the volcano plots for the analy-

sis with and without Array 1. This is a common plotting tool as it displays

the evidence for differential expression (log-odds) on the y-axis and estimated

log fold-change on the x-axis. Ideally, we should see any DE genes having

both high log-odds and fold change. It should be noted that we have no prior

knowledge about how many DE genes to expect in this analysis.

The base of the plot is quite wide, indicating that while many genes that

have high fold change, they do not have much evidence for being DE. Re-

moving Array 1 produces a much more desirable picture, with many genes

having higher log-odds than before. Red dots indicate genes with log-odds

scores > 0 (greater than 50% chance of being DE under the assumptions of

the model) in the analysis that excluded Array 1. By removing Array 1 from
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the analysis, we have removed noise from the experiment and increased our

ability to detect DE genes in this simple example.

Rather than removing Array 1 completely, we could also consider down-

weighting it in the analysis. Such an approach is described in Ritchie

et al. (2006). Computing array weights (using the arrayWeights function in

limma) for our 10 arrays gives values of (0.02, 1.93, 1.23, 1.68, 1.64, 0.72 1.09,

2.21, 1.82 and 2.53), suggesting that Array 1 should be given little influence

in the analysis.

4.3 Observations from the HapMap dataset

I now consider the bead-level data for the HapMap dataset, consisting of 15

SAMs and 270 individuals. Such large-scale experiments are made afford-

able by the high-thoughput nature of Illumina arrays. The readIllumina

function has a path argument allowing multiple directories to be specified.

Thus, the files in these directories can be read with the same function call

and stored in a BeadLevelList object, allowing the same diagnostic plots to

be accessed as for the smaller dataset already described in this chapter.

Figure 4.7 shows the percentage of outliers detected on a random sample

of 200 arrays using Illumina’s method, and after a log2 transformation. This

percentage is broken down into beads that were removed due to being below

the median, and those removed for being above the median. The total num-

ber of outliers is seen to be less than 5% for most arrays, with the majority of

these outliers being above the median. By removing the outliers on the log2

scale, we get a more symmetric distribution of outliers above and below the

median, as the log2 transformation reduces the spread of the data. Hence,

the percentage of outliers is roughly the same in both directions. Across the

entire set of over 1,400 arrays, the number of observations of a given bead

type on an array was around 30 with 25th and 75th quantiles of 27 of 35

respectively. Furthermore, the lowest number of replicates on any array was

8. These quantities were similar regardless of whether outliers were removed

on the log2 or raw scale.

Figure 4.8 gives an impression of how the overall intensity level of an

array changes with the date of hybridisation. The median intensity of each
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Figure 4.7: The percentage of outliers for a random selection of 200 arrays
from the HapMap dataset, with outliers below and above the median shown in
blue and red respectively. On the left, outliers were removed on the unlogged
scale using a 3 MAD cut-off, and on the right a log2 transformation was
applied prior to removing outliers. Without applying a log2 transformation,
we find many more outliers above the median than below, whereas we get a
more even distribution of outliers after a log2 transformation.

array was calculated and then plotted according to which SAM the array

belonged to (i.e., each box has 96 observations within it). Clear differences

can be seen between SAMs. For instance, arrays on SAM 1269941 have

higher median values than arrays from other SAMs. The median levels on

this SAM are about 1 unit on the log2 scale higher, or double on the original

scale. This was the first SAM to be hybridised and some time had elapsed

before hybridising the other SAMs. Therefore it is possible that some of

the scanning conditions had changed before running the other SAMs. The

SAM with the consistently lowest median is 1318811, with genes on this SAM

measured to be about half the intensity of other SAMs (1 unit on the log2

scale). Clearly this needs to be accounted for in an analysis of gene expression

levels and when trying to combine replicates of the same sample hybridised on

different SAMs. Interestingly, the background estimates for this SAM were

not noticeably lower. In fact, the background estimates across all arrays

showed remarkable consistency (data not shown).
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Figure 4.8: An overview of the overall array intensities for the HapMap
dataset. The median intensities were calculated for each of the 1400 arrays
and plotted according to which SAM (indicated by a 7 digit number) the
arrays belong to. Clear differences are seen between the chips.

4.4 Discussion

The beadarray software described in Chapter 3 was used in conjunction with

a specially obtained dataset to explore some of the general characteristics of

Illumina data for the first time. All other publications using Illumina data

take these steps of image analysis, background correction and summarisation

as given.

The extra information given by bead-level data appeared to be benefi-

cial in a small example with two samples replicated five times each. Using

beadarray to make imageplots we were able to see significant spatial artefacts

on three of these arrays (arrays 1, 3, and 6). The main design features of

Illumina arrays, namely the randomisation of beads on an array and robust

summarisation, are expected to cope with such artefacts. Indeed, the lo-

cation of beads that would be called as outliers by Illumina are generally

consistent with the regions seen by eye. The same artefacts were visible on

the original TIFF images after some image manipulation. Performing the

same manipulations on a large dataset would be time-consuming, whereas

the imageplot function can provide the same information and does not re-

quire the storage of each TIFF image. In the BioC07 dataset, the two arrays

with the most obvious spatial artefacts were are found to have higher num-
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bers of outliers in total. This suggests that the total number of outliers on an

array (easily calculated by beadarray) could serve as a proxy for the quality of

an array. When looking at a much larger dataset, we found that the number

of outliers on an array was generally around 5%, and that observing more

than 10%, such as seen twice in our small example of ten arrays, is extremely

uncommon. The calculation of outliers is only possible with bead-level data,

although the number of observations reported as part of the bead-summary

data could also be used for QA purposes.

Array 3 from the BioC07 dataset was seen to have an obvious region of

lower intensity beads. However, not all the beads inside this region were

called as outliers by Illumina. This is partly due to Illumina using an un-

logged scale to call outliers and a symmetrical MAD cut-off. Also many

beads in this region could not be decoded by Illumina and were not used in

the outlier calculations. It would be interesting to investigate if undecoded

beads are often associated with areas of low intensity.

Due to the distribution of intensities on the unlogged scale being skewed

towards lower values, Illumina’s outlier calling method is more likely to chose

beads higher than the median as being outliers. As expected, when looking

at the number of outliers across all 1,400 arrays, more outliers were called

above the median than below. An implication of this result is that by includ-

ing more beads with lower intensity, the bead type summary values could

be underestimated. Applying a log2 transformation prior to outlier removal

was seen to remove roughly the same amount of outliers above and below

the median. Thus the choice of scale used to create outliers has an impact

on the beads excluded from the analysis and the variability of the resulting

summary values. If further downstream analysis is planned on the log2 scale,

which is usually the case for microarray analysis, then it might be advisable

to remove the outliers on this scale too.

We attempted a differential expression analysis between the two sample

types using all 10 arrays in the linear model. It was found that the intensi-

ties on Array 1 (with 27.55% outliers removed) were dramatically different to

other replicates of the same sample, whereas Array 6 (with 12.55% outliers)

was more comparable to other replicates. Array 1 had to be excluded in or-

der to find a greater number of DE genes between the two samples. It could
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be that we are able to tolerate a certain percentage of outliers on an array

before the results become compromised. This will be investigated further in

Chapter 5.

In this experiment, each biological sample of interest was replicated five

times, which is quite a large number of replicates for a gene expression study.

We therefore had the flexibility to remove one of the replicates before the

analysis. However, for some genotyping studies it is common to hybridise

each sample only once. Additionally, large-scale expression studies that in-

volve many hundreds (or thousands) of samples may not have the ability to

perform replicate observations. Therefore, it is essential that outlier arrays

can be detected so that the conclusions of the experiment are valid.

Despite the varying numbers of outliers found on the arrays and possi-

bility of spatial artefacts, the lowest number of replicates for any bead type

in the HapMap dataset was 8. Even Array 1 from the BioC07 dataset still

had an average of over 20 replicates for each bead type despite the spatial

artefact. This is still a reasonable number of replicates compared to other

technologies. However, it should be noted that lower numbers of replicates

will occur by chance on the higher density BeadChips.

The results of estimating foreground and background were investigated

for the BioC07 dataset. It was found that the foreground values themselves

had a very narrow range of values that are skewed towards lower intensities.

The background estimates were remarkably similar both within and between

arrays. This seems to be intentional since Illumina pick so few pixels from

a relatively large area to estimate the background. Such low background

estimates, such as calculated using the morph method, have previously been

found to be beneficial for gene expression studies (see page 18). Therefore,

there is a hope that Illumina’s method might work well. Unfortunately, with

this dataset we are unable to quantify the effect that increased variability

has on the analysis of Illumina data. Usually there is a trade-off between

variance and bias, whereby some variance can be tolerated as long as the

bias is small, or vice-versa. We cannot judge this using this dataset as no

truth is known about the probes used in the experiment.

In this chapter I have demonstrated how beadarray can be used for QA
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and low-level analysis for large-scale experiments and have presented some

findings about the impact of the image processing steps used by Illumina. It

should be noted that this experiment used a version of Illumina expression

arrays that was never made commercially available. Even so, it should serve

to demonstrate that Illumina technology is not infallible and that Illumina

data should be treated with the same careful QA principles as other microar-

ray data. In particular, such large-scale experiments need careful planning

and analysis to account for systematic trends that may arise when running

many samples over an extended period of time. Although the results obtained

within a batch may be similar, comparing batches may not be straightfor-

ward. The possibility of outlier arrays also needs to be accounted for. This

is entirely consistent with experiences from other microarray technologies.
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Chapter 5

Analysis of an Illumina spike-in
experiment

5.1 Introduction

In previous chapters, I have introduced the Illumina BeadArray technology

that uses randomly organised arrays of beads. As described in Chapter 2,

analysis of Illumina data is routinely carried out using BeadStudio. Whilst

this software provides an intuitive graphical user interface, there is no control

over image processing and the details of the algorithms used by the software

are not easily visible to the user. Such processing steps are known to be

critical for other microarrays. In Chapter 3, I introduced the beadarray soft-

ware package that allows a thorough investigation into the pre-processing of

Illumina data to be performed.

A recent high-profile study found that data from Illumina expression ar-

rays had good reproducibility and agreement with Affymetrix data (MAQC

Consortium, 2006). A similar conclusion was reached by an earlier study

(Barnes et al., 2005). However, in comparison to Affymetrix, which is an

established technology, there is a lack of in-depth literature on the low-level

analysis of Illumina data. Information about how to obtain bead-level data

has only recently been released and these data cannot be generated retro-

spectively. Therefore, no publications have taken the processing of bead-level

data into account apart from our own preliminary investigations (Dunning

et al., 2006b) and the work presented in Chapter 4. Although the two dilu-

tion studies for Illumina (Barnes et al., 2005; MAQC Consortium, 2006)
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made their data publicly available, these data were the summarised output

from BeadStudio. Therefore, there is no publicly available dataset for which

the bead-level data may be obtained and for which there is some expecta-

tion about the results. Such datasets are available for Affymetrix and have

allowed researchers to understand more about the technology and to develop

and evaluate analysis methods (Cope et al., 2004).

The focus of (Barnes et al., 2005; MAQC Consortium, 2006) was to

compare the results of Illumina to other platforms, rather than to discuss

the optimal processing of Illumina data. To make the comparisons more

realistic, the current best-practice guidelines were used to process each mi-

croarray technology. In the case of Affymetrix, these methods have been

developed and refined over a number of years, perhaps giving Affymetrix an

unfair advantage over Illumina in such comparisons. It is possible that bet-

ter understanding of Illumina data could give a more accurate comparison to

other technologies.

This chapter is divided into two parts and describes a specially designed

experiment (a spike-in experiment) performed on Illumina arrays. The first

part of the chapter describes how the the spike-in experiment was used to

investigate the background correction, summarisation, and normalisation of

Illumina data, and was published in Dunning et al. (2008a). I also demon-

strate how to use bead-level data to derive improved measures of differential

expression and how probe annotation also has an effect on the observed in-

tensities.

Around the same time as the publication of Dunning et al. (2008a),

a new transformation method for Illumina data was published (Lin et al.,

2008). The validation of this method was done using Barnes et al. (2005),

although the authors suggest that a spike-in experiment would have be use-

ful in further validating their method. Thus, the second part of this chapter

describes how I used the spike-in experiment to validate this new method

(Dunning et al., 2008b).

The contributions of other authors to the work presented in this chapter

are clearly stated.
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5.2 Control experiments for microarrays

There is a wide range of statistical tools available for the analysis of mi-

croarray data and knowing which methods work best is difficult without an

effective means of comparison. It is common practice when developing a new

analysis technique, or when evaluating different microarray technologies, to

use a dataset where there is some expectation about the results. Such vali-

dation methods are crucial in the development of new algorithms (Allison

et al., 2006).

Dilution experiments such as Barnes et al. (2005) and MAQC Consor-

tium (2006) are easy to perform, and if the samples being mixed are chosen

appropriately, the analysis can yield many DE genes. One disadvantage of

this approach is that we cannot be certain of which genes are expected to be

DE. However, the ability of probes to respond to the change in concentration

of the samples can be used as a criterion to judge the precision of different

methods or technologies (Holloway et al., 2006).

Alternatively, a spike-in experiment may be used whereby particular genes

are added at known concentrations on each array. The genes chosen are usu-

ally artificial, or not found in the genome of the organism under investigation.

The concentration at which the genes are added may vary between arrays,

which allows the change in expression level between arrays to be predicted.

Different methods may then be assessed to judge how well they recover the

predicted change in expression, usually as a measure of bias and variability.

Other than the spiked genes, the concentration of all other genes remain the

same. Therefore, a measure of the number of false positives may be obtained

by seeing how many non-spiked genes are called as DE.

Affymetrix technology has benefitted greatly from the use of a publicly

available dataset to development new methods. One such spike-in experi-

ment was performed by Affymetrix themselves, with the full data available

online for other researchers. The design of the experiment is described in

detail in Irizarry et al. (2003a). To summarise, 14 distinct spike genes

were added to each array at concentrations 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,

128, 256, 512 and 1024pM, with the concentration of a particular gene on

an array assigned by a “Latin square” system. This ensures that each spike
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gene on a given array is added at a different concentration. This dataset

was used to develop the RMA method to summarise probe level intensities,

which offered significant improvements over the default method implemented

by Affymetrix (MAS5). The main difference is that RMA produces more pre-

cise expression measurements, at the cost of increased bias. This method is

now widely used, although subsequent improvements have been proposed to

account for sequence-specific intensity differences (Wu and Irizarry, 2005).

The ability of such spike-in experiments to compare methods is exploited by

the affycomp (Cope et al., 2004) package, which provides a number of graph-

ical and statistical benchmarks for the dataset. Users are able to submit to

a server the results of processing the spike data using their own algorithm.

A series of metrics are then calculated and used to compare to other method

submissions. One potential disadvantage of affycomp is that the purpose of

the package is to compare summarisation and normalization methods. Ther-

fore, for simplicity, it uses fold-changes to call DE genes, rather than some

of the more sophisticated methods that are used in practice. This point has

recently been addressed by the creation of a AffyDEComp Bioconductor pack-

age that compares different methods of detecting DE genes (Pearson, 2008).

Another drawback of the original Affymetrix spike-in experiments is the

small number of spiked probes. The“Golden Spike”experiment (Choe et al.,

2005) was an effort to create a control dataset with many expected DE probes

(1,331) and also included many probes (2,535) spiked-in at equal concentra-

tions. Two conditions were used in the experiment (control and sample) and

replicated three times. However, there have been several criticisms in the

literature regarding the analysis of these data and the experimental design

(Dabney and Storey, 2006; Irizarry et al., 2006).

In summary, there is plenty of evidence of the utility of control experi-

ments in the literature, and in particular for Affymetrix arrays. Although

some publications from Illumina described the use of spike-in experiments

(Chudin et al., 2006; Kuhn et al., 2004), data from these publications were

never made available. I now describe the spike-in experiment analysed in

this chapter, which has now been made publicly available to accompany the

publication of Dunning et al. (2008a).
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5.3 The Illumina spike-in experiment

The Illumina spike-in experiment consists of eight customised Mouse-6 ver-

sion 1 BeadChips hybridised with a complex mouse background. In ad-

dition to the ∼48,000 bead types included as standard, the bead pool for

these chips was modified to include 33 bead types chosen to target 9 dif-

ferent bacterial and viral genes absent from the Mouse genome. These

33 bead types are referred to as spikes in this chapter and the remain-

ing bead types on the array are referred to as non-spikes. Each array

also had a number of standard Illumina controls, including 1,616 negative

controls. Each BeadChip comprises six arrays and each array is made up

of two strips on the chip surface. Similar to the Human6 chips described

previously, Strip 1 interrogates targets from the curated MEEBO database

(http://www.microarray.org/sfgf/meebo.do), and Strip 2 contains tar-

gets from other sources.

The spikes were added at concentrations of 1000, 300, 100, 30, 10 and

3 pM on the six arrays from the first four BeadChips. A further four chips

were hybridised with spikes at concentrations of 1, 0.3, 0.1, 0.03, 0.01 and

0 pM. Unlike the Affymetrix spike-in experiment, the spikes on a given ar-

ray in the Illumina spike-in were all added at the same concentration. Each

concentration was allocated to the same position on all replicate BeadChips.

For example, 1000pM was always array 1 on a chip and 300pM was array 2

and so on. Thus, when comparing the observed intensities of any given spike

between array 1 and array 2 we would expect to see a fold-change of 3.33 on

the original scale or log2(3.33) = 1.74 on the log2 scale.

The spike-in experiment was designed and scanned by Illumina. Raw

data from the experiment, which includes the TIFF image and text file for

each strip, are available online along with annotation information and sup-

plementary materials (see Dunning et al. (2008a) for details).

5.4 Topics of investigation and methods

In this section I describe how the spike-in experiment was used to investigate

various issues in the processing of Illumina data.

79



5.4.1 Image analysis and background correction

The function readIllumina was used to obtain the foreground (Xf ) of each

bead and corresponding background estimate (Xb). Background correction

was then performed by the following methods:

� No adjustment - Use the estimated foreground (X = Xf ) in the analysis

(assume Xb = 0).

� Subtract - The estimated background is subtracted from the foreground

for each bead (X = Xf −Xb).

� Normexp - A normal-exponential convolution model was fitted to the

background subtracted signal (X = Xf −Xb) to adjust the intensities

from each strip separately. In order for the code to run more efficiently,

we took the background corrected intensities directly from the bead-

level data (the option useImages=FALSE in readIllumina), and then

performed normexp on these values using the implementation within

limma.

5.4.2 Summarisation

Most analyses in this chapter used the background adjusted (see above), log2

transformed data from replicate beads on a given array and summarised these

values using Illumina’s default method. To look at how robust this method

is relative to other summarisation methods (mean, trimmed mean removing

10% of highest and lowest intensities or median), we measured the bias for

each method from simulated data, where varying numbers of outliers were

added (from 0% to 40% in increments of 5%). The true values were assumed

to be the means calculated from the original data. Data from a good quality

BeadChip from this experiment were replaced at random by intensities at

the saturation level (216).

By varying the number of outliers, we can roughly assess the break-down

point of Illumina’s summary method. Data for each simulation were sum-

marised on the original and log2 scale. Bias was computed by subtracting the

summary values obtained from the simulated BeadChip from the the sum-

mary values obtained from the original data for each probe on each array.

Per array, per probe variances were also calculated within each simulated
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dataset. This simulation study was carried out by Dr. Matthew Ritchie.

5.4.3 Normalisation

The log2 summarised data were quantile normalised as in Barnes et al.

(2005). This approach is reasonable given that the majority of genes do not

change between arrays, and hence the distribution of intensities on different

arrays should be the same. Background normalisation (BGN) (see page 31)

was carried out on the non-normalised, background subtracted data by sub-

tracting the average value of the negative controls on each array output by

BeadStudio, from the summarised intensities of the non-control probes. M -

and A-values were calculated to allow comparison with quantile normalised

results.

5.4.4 Linear models and contrasts

The limma Bioconductor package was used in order to assess differential ex-

pression. Bead-level data were created using different background correction

methods and then summarised to give an expression matrix of g = 1, . . . ,∼
48, 000 rows and k = 1, . . . , 48 columns, each row being a bead type and

each column an array (12 spike concentrations, each of which was replicated

four times). The linear model E[y[y[yg] = XαXαXαg was used where yyyT
g is the gth

row of quantile normalised expression matrix, XXX is a 48 × 12 design ma-

trix defined to denote the concentration of spikes on each array and αααg is a

vector of coefficients to be estimated for each probe at the 12 different con-

centrations. The function lmFit in limma was used to fit this model. The

contrasts of interest are given by βββg = CCCTαααg is a contrasts matrix created

to make all pairwise comparisons between concentrations (e.g. 1000pM vs

300pM, 300pM vs 100pM etc). After empirical Bayes variance shrinkage,

the moderated-t statistics and log-odds scores for each contrast were anal-

ysed separately to assess the performance of different background correction

methods.

A second series of linear models was fitted to take the variability of bead

types into account. We now assume that var(ygk) = σ2
g/wgk where wgk is a

weighting factor for bead type g on array k. Weights wgk = 1/s2
gk, where s2

gk
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is the sample variance calculated using the standard error and the number

of observations of bead type g on array k, were used. Using inverse vari-

ances as weights gives less influence to observations with higher variability in

the linear model. The coefficients, αg, were estimated using weighted least

squares and contrasts, βg, were calculated as before. This weighted approach

will be referred to as a weighted log2 analysis and can be done by setting the

weights argument in lmFit. The variances required for this analysis are

retrieved using the getVariances function in beadarray.

5.4.5 Annotation

The sequences for all probes used in the experiment were acquired after corre-

spondence with Illumina. This included the sequences for the spikes and con-

trol probes, which are not usually part of the Illumina annotation files. Probe

sequences were BLASTed and BLATed against the corresponding mouse

genome and transcriptome, which included UCSC Genome Browser (Kuhn

et al., 2007), RefSeq, and GenBank transcripts. The subsequent annotation

and probe classification were performed with a Perl script, comprising BioPerl

modules (Stajich et al., 2002), and relied on transcriptomic annotation ta-

bles downloaded from the UCSC Genome Browser. The script to perform this

reannotation was written by Dr. Nuno Barbosa-Morais (Barbosa-Morais

et al., 2008). The resulting table supplements the annotation information

supplied by Illumina by giving details of where each probe sequence was

found to map in the genome and the matching transcripts. Using the rean-

notation information, we were able to assign each probe sequence to various

broad categories according to the quality of the match. I now describe each

of these categories.

� Intronic - The probe matches to an intronic region of a gene.

� Intergenic - The probe matches to a region without genes.

� Unreliable - The probe perfectly matched a known transcript, but that

transcript could not be aligned to the genome.

� Mismatch - The probe did not perfectly match a transcript, but it is

likely (based on BLAST criteria) that a transcript match can be found.
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� No Match - Probe is not likely to match any region of the genome.

� Multiple Match - Entire probe sequence is likely to match to more than

one genomic region.

The impact of these annotation assignments was assessed by boxplots of

all the summarised intensities on an arbitrary array, grouped according to

the category of the probe sequence.

The possible relationship between probe composition and observed inten-

sity was investigated as follows. We defined A,C,G and T to be matrices

of binary values with j = 1, . . . ,∼ 48, 000 rows and p = 1, . . . , 50 columns

to represent the sequence of each probe, where Ajp = 1 if the sequence for

probe j contained an “A” at position p, or 0 otherwise. The total number of

As (aj) in the sequence of the jth probe is simply aj =
∑50

p=1 ajp. The total

number of Cs (cj), Gs (gj) and Ts (tj) were defined in a similar fashion. The

GC content for probe j was then defined as gj + cj.

We then plotted the normalised intensities of the Strip 1 probes on a given

array in terms of their aj, cj, gj, tj and GC content. Similarly, for a particular

contrast in the differential expression analysis, we ranked the same probes

according to their log-odds scores and plotted probes with the same GC con-

tent together.

The linear model E[y[y[yk] = AAAαααk +CCCβββk +GGGγγγk, was fitted to the intensities

and variances of the kth array to estimate coefficients ααα, βββ, γγγ representing

the effect of having an A, C or G at each position, relative to having a T at

that position.

5.5 Results

5.5.1 Bead-level issues

Figure 5.1 shows the raw foreground intensities and local background esti-

mates for all beads on each strip from a typical BeadChip. We see that the

signal on Strip 1 is generally higher and has a greater dynamic range than

the signal from Strip 2. This might be expected since Strip 1 contains probes
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Figure 5.1: Raw foreground and background intensities for each strip on a
typical BeadChip. Each BeadArray is made up of two strips (colour-coded)
on the chip surface. The consistency of foreground and background signals
between arrays is evident from this plot, as is the tendency for beads from
Strip 1 to have higher intensities than those from Strip 2.

from a curated database, whereas Strip 2 contains probes targetting rarer

transcripts. Concordant with observations from Chapter 4, the local back-

ground estimates show very low variability both within and between arrays,

with a median of 634 on the original scale (9.3 on the log2 scale). The distri-

bution of background signal is the same for all strips, despite differences in

foreground signal.

Access to the bead-level data allowed us to identify a significant spatial

artefact on one BeadChip in the experiment. An error in the scanning of

the chip resulted in the the x coordinates of many beads on the left-hand

side taking negative values. Consequently, the Illumina algorithm for image

processing was unable to calculate foreground and background intensities for

these beads and set their foreground intensities to zero. This problem af-

fected between 4.4% and 7.3% of beads from each strip on this chip, with
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Figure 5.2: The average bias (A) and log2 variance (B) versus percentage
of simulated outliers plotted for each summary method. In panel A, we see
that Illumina’s summary method can handle up to about 30% of saturated
intensities before the bias starts to increase dramatically. The trimmed mean
breaks down much earlier, at around 5%. The median is comparable to
Illumina’s method. Similar trends can be noticed in the variance (B).

the percentage of affected beads decreasing from the top to the bottom of

the chip. These beads were subsequently removed as outliers by Illumina’s

summary algorithm. We note that after background correcting the bead-level

data, the median percentage of beads with negative intensities on a strip was

0.32% with a 75th percentile of 0.56%.

Before proceeding with an analysis of summarised data, we investigated

how robust Illumina’s technology is to the spatial effects observed above.

Arrays with varying numbers of saturated beads were simulated as described

on page 80. These datasets aimed at assessing how many outliers could be

tolerated by Illumina’s default summary method compared to other methods

(mean, trimmed mean and median).

Figure 5.2 shows the average bias and variance versus the percentage of

outliers introduced. Illumina’s summary method performs best overall, with

the lowest bias (Figure 5.2A) and variance (Figure 5.2B). After around 20%

of the bead intensities become saturated, the bias and variance start to in-
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crease. Using a trimmed mean that excludes 10% of the smallest and largest

intensities, we see an increase in bias and variance after more than 5% of the

beads are saturated. This is not surprising as the outliers are not simulated

to be symmetric around the mean, which this method is suited to handle.

The median offers similar robustness to Illumina’s method. Similar results

were obtained if the analysis was performed on the log scale, or if the data

were censored at 0 rather than at 216 (data not shown).

After applying the Illumina summary method, the median number of

beads per bead type on an array was 36 with 25th and 75th percentiles of 31

and 41 respectively. The median number of beads per bead type per array

removed as outliers was 1 with a 95th percentile of 4.

5.5.2 The effects of pre-processing on differential ex-
pression analysis

In Figure 5.3 we show the bead type means and variances calculated on the

log2 scale, for the 33 spikes across all arrays in the experiment using three

background correction methods (no background adjustment, background sub-

traction and normexp). These boxplots of non-normalised data are arranged

according to the concentration of the spikes on the array. Different back-

ground correction methods are shown in different colours and data from each

array are plotted in a separate boxplot. Given the design of the experiment,

we would expect to see a decrease in observed intensity as the concentration

of the spikes decreases.

Note that even though the data shown are not normalised, we can see

that the replicates of the same array processed using the same method show

low variability and only slight differences in the medians. The same trend

can be seen for all background correction methods. A saturation effect can

be seen between 300pM and 1000pM, as the increase in the concentration of

the spikes is not reflected in a change in observed intensity. At 3pM, there is

a clear difference between arrays with no background adjustment and arrays

where a local background estimate has been subtracted. The linear rela-

tionship between spike concentration and observed intensity persists below

3pM for the background subtracted data, whereas without background ad-
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Figure 5.3: Boxplots of the means (A) and variances (B) for the 33 spikes
on all arrays in the experiment after outlier removal. The boxplots are ar-
ranged in decreasing order of spike concentration, with different background
correction methods labeled in different colours. The no background adjust-
ment option shows dramatic attenuation in signal, which begins at a higher
concentration than the other background correction options.
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justment, an attenuation in signal is evident below 3pM.

The variances of each method are similar in the range 1000pM to 100pM.

However, at 10pM we see a steep decrease in the variability for the non-

adjusted data, whilst the background subtracted data show a slight increase.

The rate of decrease in variability for the no background adjustment option

is greater than the rate of increase in variability for the subtracted data.

For concentrations of 0.1pM and below, the variance of the spikes does not

decrease any further with decreasing concentration.

We now quantify how well the expected change in spike concentration

is recovered by different background correction methods. In Figure 5.4 we

show an MA-plot of the log2 transformed data from an array with spikes at

3pM and an array with spikes at 1pM. The data shown in Figure 5.4A were

not background adjusted and we can see that the range of M -values is very

low for all genes. The largest M -value we see is around 1.2 and the A-values

are in the range 10 to 15. The observed log-ratios for the spikes are much

lower than the expected value of 1.73. Figure 5.4B shows the same data after

background subtraction. We see a wider range of M and A values compared

to Figure 5.4A, and the log-ratios for the spikes are closer to the expected

value on average. Notice that although these data have not been normalised,

the non-spikes lie around M=0, indicating no differential expression.

In Figure 5.4C we show the same comparison for data that have been

background subtracted and background normalised. This is equivalent to

processing the raw data using BeadStudio’s recommended settings. For vi-

sualisation purposes, and to compare with the other methods, we log2 trans-

formed the background normalised data. The difference that this makes to

the MA-plot is striking. We see a much increased range of M -values as A de-

creases. There are clearly a large number of genes that would be selected as

DE if a simple cut-off approach were used, even though few genes are expected

to change for this comparison. In addition, the log-ratios of the spikes are

systematically over-estimated by this method. There are also a large number

of bead types with negative intensities on each array after applying BGN,

ranging from 11.2% to 49.4% (median 39.1%). These become missing val-

ues after a log2 transformation, which is undesirable in downstream analyses.
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Figure 5.4: MA-plots comparing the bead-summary values for one array with
spike concentration 3pM to an array with spike concentration 1pM. An in-
creased density of points is indicated by darker shades of blue. Red points
highlight the spike genes. The horizontal line at M=1.73 represents the in-
tended log-ratio for the spike genes, and the line at M=0 is the desired level
for the remaining non-spikes. Each panel shows the data processed using dif-
ferent background correction methods. Panel A shows the data with no back-
ground adjustment, while in panel B local background has been subtracted
and in panel C the data have been background subtracted and background
normalised. When the data are background subtracted, the range of M and
A-values increases and the spike genes are closer to the true value than for the
non-adjusted data. BGN (see page 31) produces the most variable M -values
and over-estimates the M -values for the spikes.
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Figure 5.5: The distribution of background subtracted and summarised in-
tensities for 50 negative controls across all arrays in the experiment, ordered
by increasing median. Each control is a bead type with a random sequence
attached that should not hybridise to any target in the genome. Despite
this, some controls clearly appear to show consistently higher intensity than
others.

I also looked at the intensities of the negative controls that are used in the

creation of background normalised data. In Figure 5.5, for 50 negative con-

trols picked at random, we plot the (background adjusted) averaged values

for each control over all arrays. As expected, each control shows intensities

at the lower end of the values observed on an array (Figure 5.1). However,

we do see some variation in median intensity between the different probes,

with a greater than two-fold difference in intensity measured between the

bead type on the far left and far right of the plot.

The linear modelling approach of Smyth (2004) was used to detect DE

genes. Figure 5.6A shows the log-odds scores for the contrast between 3pM

and 1pM and for data processed using different background correction meth-

ods. Separate boxplots are shown for the spikes and non-spikes (solid and

transparent colour respectively) and results are shown for a standard linear

model and a weighted log2 analysis (see Page 81). Outliers for the non-spikes

are indicated by crosses. Background subtraction is seen to increase the log-

odds of being DE for the spikes. Moreover, a greater distinction between the

log-odds of the spikes and non-spikes is seen after background subtraction.
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Figure 5.6: Boxplots of the log-odds scores (A) and log-ratios (B) obtained
after fitting a linear model to all genes across all arrays in the spike experi-
ment and making contrasts between 3pM and 1pM. A separate box is shown
for each background correction method with a standard linear model and a
weighted log2 analysis. Two separate boxplots are shown for each method and
weighting scheme to indicate the log-odds scores for the spikes (bold colours)
and non-spikes (transparent). The weighted log2 analysis improves the log-
odds scores for the spikes without increasing the log-odds for the non-spikes,
which represents an increase in power to detect true differential expression.
In panel B, we show that the log-ratios for the spikes are under-estimated
when the data are not background adjusted, whereas the background sub-
tracted and normexp processed data recover values much closer to the true
log fold-change (dashed line, M=1.73).
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Five non-spikes are seen to have high log-odds in both linear model fits.

These bead types were ranked amongst the spikes for all contrasts and had

a similar expression profile to the spikes. Personal communication with Il-

lumina revealed these probes are controls from the MEEBO database and

not used in current Illumina chips. Generally, the spikes were the top ranked

probes for each contrast, with very few false discoveries. The choice of back-

ground correction method was found to have little impact on the number of

false discoveries (data not shown).

When using a weighted log2 analysis, we see an increase in the log-odds

scores calculated for the spikes. At the same time, we do not see a substantial

change for the non-spikes. The most dramatic increase in log-odds after a

weighted log2 analysis is seen for the non-adjusted data. It is interesting to

note that the log-odds of the different methods are more comparable under a

weighted log2 analysis. We produced the same plot for all contrasts in the lin-

ear model (data not shown). The log-odds typically increased for all contrasts

in the middle of the concentration range. However, for contrasts comparing

0.3pM to lower concentrations, we found little improvement, or sometimes

a decrease in log-odds. Figure 5.6B shows the estimated coefficients for the

comparison between 3pM and 1pM. For this contrast, we would expect the

spikes to have a log-ratio of 1.73. For data processed without background

adjustment, the highest log-ratio seen for the spikes is not much greater than

1. For the subtract and normexp methods, the log-ratios are centered around

the expected value. For other contrasts (data not shown), the log-ratios were

often underestimated by all methods, especially at high and low concentra-

tions. Pairwise contrasts 30pM to 10pM, 10pM to 3pM and 3pM to 1pM

accurately recovered the predicted log fold-changes. The non-adjusted data

consistently produced the most biased values for all contrasts.

5.5.3 Probe properties and annotation considerations

We now repeat a similar analysis to Figure 5.3, but consider the behaviour

of each spike separately. In Figure 5.7, we show the coefficients for each

spike estimated by fitting the first linear model described on page 81 with-

out weights to the background subtracted data. For clarity, each spike was

labelled and coloured according to its target gene. A smoothed curve was
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Figure 5.7: The log2 intensities for the 33 spikes on each array estimated
using the linear model. Each spike is indicated by a different colour and
line. Despite being added at the same concentration, consistent differences
are seen between the spikes, for example, ela 2 consistently has the lowest
intensity.
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Strip 1 Strip 2
Total 23983 22022
Intronic 682 6094
Intergenic 78 2124
Unreliable 951 3031
Mismatch 7789 4178
No Match 173 1514
Multiple Match 849 817
Percentage of good probes 57% 22%

Table 5.1: Table showing the reannotation of the probes sequences for all
non-spikes in the spike-in experiment. The 23,983 probes on Strip 1 and
22,022 probes on Strip 2 are divided into categories (see page 82) describing
various annotation problems.

fitted to the coefficients for each spike. Note that bead types with the same

target name (e.g. ela 2 ) have the same probe sequence attached, but are

located on different strips.

We can clearly see different intensities for spikes at the same concentra-

tion. These differences are consistent across the concentration series. For ex-

ample, ela 2 always shows the lowest intensity at all concentrations, whereas

gus 2 and lux 2 tend to have the highest intensity. This is consistent with

a previous Illumina spike-in study that used the same spikes (Kuhn et al.,

2004). The intensity difference between the spikes is quite dramatic for some

concentrations. For instance, at 30pM the highest intensity spikes are mea-

sured at 14, whereas the lowest intensities are at 11. It is also apparent that

the spikes respond differently to the decrease in concentration. The ela 2

spikes show a larger decrease between 1000pM and 300pM than the other

spikes and the curve for these spikes flattens out at a higher concentration.

Conversely, the spikes for gus 2 are flatter for concentrations 1000pM to

100pM, but attenuate at lower concentrations than the other spikes. Some

small differences can be seen for bead types having the same probe sequence,

but hybridised to different strips.

After reannotation of all probe sequences, bead types were categorised ac-

cording to where they map in the genome. The results are shown in Table 5.1
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with the various categories explained on page 82. As expected, reannotation

of the spikes and negative controls produced no genomic or transcriptomic

matches. Some probe sequences among the non-spikes were found to match

to intronic and intergenic regions. The percentages of bead types on Strip

2 with intronic and intergenic matches were 27.67% and 9.64%, respectively,

compared to 2.84% and 0.32% on Strip 1. Any bead types that fall into these

categories are potentially uninformative, as intronic or intergenic regions of

the genome will be spliced out during transcription and therefore we would

not expect any signal from these bead types. Bead types whose sequences

match to more than one transcript could also complicate analysis as we might

not be able to tell apart the contributions of the different transcripts to the

observed signal. However, the impact of having a mismatch in the probe

sequence, or mapping to an unreliable transcript, is less easy to predict.

Figure 5.8 shows the summarised intensities for all bead types on a rep-

resentative Strip 1 array, grouped according to where the probe sequence

for that bead type matched to. Bead types that had perfect matches to a

known transcript are termed a “Good” match. As one might expect, bead

types with intronic, intergenic or no matches are seen to have a lower median

and IQR compared to bead types with good annotation. However, it is still

possible to find intronic or intergenic matches with high intensity (say, more

than 13 on the log2 scale). The same trends were observed on all arrays in

the experiment.

In Figure 5.9 we see the normalised intensity of all non-spikes on Strip 1

of a particular array grouped according to how many A, C, T or G bases are

found in the sequence attached to each bead type. Generally, we see that

an increase in the number of As or Ts in the sequence is associated with

a decrease in mean intensity, whereas an increase in the number of Cs or

Gs results in an increase in mean intensity. Moreover, as the GC content

increases, the variance of the bead types decreases. We also see that probes

with either a G or C as the first base have a higher normalised intensity and

lower variance relative to having a T at that position. We note that the dis-

tribution of GC content for the spikes was skewed towards higher GC content

and showed little variation. Therefore, we did not have sufficient information

to conclude a GC-related effect for these probes alone (data not shown). We

could find no evidence for an effect of the GC content on the intensity of the
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Figure 5.8: Boxplots of all bead types intensities on an arbitrary Strip 1 array
grouped according to the reannotation of the probe sequence assigned to the
bead type. Bead types with reliable annotation (the “Good” category) are
seen to have higher intensity compared to others.

negative controls.

Ideally, we would like such probe effects to be removed when comparisons

are made between arrays. In Figure 5.10 we show the ranking of the log-

odds scores of the contrast shown in Figure 5.5 for all non-spikes on Strip 1.

Clearly there is a preference for bead types with 18 to 21 GCs in the sequence

to be higher in the list. On average, sequences with 19 GCs are 10,000 places

higher in the list than sequences with 24 GCs. The “hump” seen in Figure 9

was evident for most contrasts in the linear model.

5.6 Discussion

In this chapter, I have described a dataset that can be used to perform a

thorough investigation into the processing of Illumina data. Unlike previous

data described in this thesis (e.g. Chapter 4), some degree of truth is known

about a small subset of probes and how they should behave between arrays.

I hope that the release of these data into the public domain will result in

improved methodologies for Illumina data and encourage researchers to utilise
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Figure 5.9: Normalised log2 intensities for all non-spikes on Strip 1 of a
particular array in the experiment grouped according to the number of As,
Ts, Gs or Cs in the sequence for the probe. The normalised log2 intensities
and bead type variances are also shown in terms of GC content. The width
of each box is proportional to the number of observations. Probes with
higher GC content are shown to have higher intensity on average and a lower
variance. Finally, estimated effect sizes are shown for each base position
relative to having a T at that position. The normalised intensities are seen
to be higher if a G or C is present at the first base in the sequence and have
a lower variance. However, no other systematic trend is seen.
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Figure 5.10: The log-odds ranking of all non-spikes on Strip 1 in the contrast
between 3pM and 1pM aggregated according to the GC content of each probe.
Probes with a GC content of 18-21 are generally ranked higher in the list.
The width of each box is proportional to the number of observations.

the availability of bead-level data rather than the output of BeadStudio. I

will now discuss some of the main points raised by this analysis of the dataset.

5.6.1 Data quality

The data produced using Illumina technology are widely reported to be of

high quality. Naturally, we would still recommend careful QA of Illumina

arrays and not to take high data quality for granted. Whilst initial QA using

the raw data showed little variation between arrays, we were able to detect

a consistent spatial effect on a particular BeadChip. However, we found

that in this case, there was no impact on further analysis due to the random

placement of beads and robust summary method used by Illumina. Although

BeadStudio is capable of giving a good overview of an experiment, it may

miss important artefacts on arrays, as spatial information is lost when the

data are summarised.

We found that the two strips for each array show consistently different

intensity distributions, with Strip 1 showing a wider range of expression val-

ues. It is important to determine if this difference arises due to annotation
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differences (i.e, curated probes on Strip 1, and other transcripts on Strip 2),

or is a manufacturing issue with the chips. In the Version 2 whole genome

BeadChips produced from 2007 onwards, the replicates of each bead type

are spread between the two strips. Whilst the quality control steps used by

Illumina ensure that any bead type is represented at least five times on an

array, there is no guarantee that these replicates will be evenly distributed

between the two strips. Clearly, the summary value could be affected by any

differences in underlying intensity between the strips if a disproportionate

number of replicates appear on one of the strips. The default options within

the BeadStudio software combine the two strips for every array on a whole

genome BeadChip. Therefore, any systematic difference between the strips

would be hidden from the researcher if data are processed by BeadStudio, in

which case analysing strips separately would be appropriate.

5.6.2 Local background estimation and subtraction

It is interesting to note the consistency of the estimated background for in-

dividual beads that is observed within and between arrays. As described

in Chapter 4, the background estimation used by Illumina takes an aver-

age of the five dimmest pixels within a comparatively large area surrounding

each bead. This gives a very low estimate for background that is related to

the optical properties of the array surface rather than being specific to the

sequence attached to each bead. In contrast, background estimation for two-

colour arrays typically uses the mean or median value of pixels surrounding

each feature, producing higher, more variable estimates. The approach Illu-

mina uses is more akin to a morphological background estimation, and that

has been shown to perform well for two-colour arrays (Ritchie et al., 2007;

Yang et al., 2002b).

As suggested in Chapter 4, the predictability of the background signal

could be used as a simple diagnostic to identify poor quality arrays on which

the background level is considerably higher and more variable than usual.

When analysing this experiment, we found that subtracting this low esti-

mate of the background was beneficial for detecting DE genes. At low spike

concentrations (around 1pM), the observed values for the spikes are close

to the negative controls. Therefore, when comparing arrays with low spike
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concentrations that have not been background subtracted, the calculated

log-ratios will be biased towards zero as the difference in spike concentration

is obscured by the background noise. Background subtraction reduces this

bias, although, as anticipated, we see an increase in variability after a log2

transformation of the subtracted data. The results of the simplest method of

subtracting the background estimates are comparable to those of the model-

based approach of normexp. This is due to the low percentage (less than 1%)

of negative intensities produced using the subtract method, hence methods

that avoid these negative values have little scope for improvement. This is

encouraging for users without access to raw data who perform pre-processing

using Illumina’s default settings. Moreover, the current implementation of

normexp in limma is too time-consuming to make it practical for the analysis

of a large number of arrays.

5.6.3 Summarisation

In our simulations, Illumina’s default summary method was able to handle

around 30% of outlier beads before the estimates became noticeably biased.

This provides a rough guideline on how much of an array can be corrupted be-

fore the analyst needs to worry about biases creeping into the estimates and

inflating the variances. In addition, Illumina’s method is better at accommo-

dating asymmetric outliers than regular trimmed means. This is desirable,

as these artefacts arise frequently in datasets we have analysed.

5.6.4 Normalisation

In this study we did not conduct a thorough investigation into normalisa-

tion methods. Although some degree of normalisation is always required,

given the low variability of replicate observations for Illumina data it is im-

portant that the data are not “over-normalised”, thus removing potentially

interesting biological information. An important conclusion from the spike-

in experiment is that the BGN recommended by Illumina is not appropriate

for some analyses. This method is seen to introduce substantial variability

into the data, particularly at low intensities, and also to increase the num-

bers of false positives. Another consequence of this normalisation is that low

expression values become negative and cannot be log2 transformed. In the
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spike-in experiment, we found that around 40% of the data were missing on

average per array. This is comparable to the situation described in early in-

vestigations into background correction and it is widely recognised that such

missing values are problematic for analysis.

Illumina keep the bead-summary data on the unlogged scale and their

model for differential expression takes the relationship between the mean

and variance of each bead type into account (Chudin et al., 2006). Differ-

ential expression analyses performed outside of BeadStudio usually require

data that have been subjected to a log2, or similar, transformation to ensure

the gene-wise variances are comparable. Therefore we recommend that only

non-normalised data are exported from BeadStudio if they are to be anal-

ysed using established statistical methods. Otherwise, a small offset could

be added to the intensities to ensure positivity of the background normalised

data. However, optimal methods for deciding this offset require investigation.

Another option would be to use normexp or other model-based approaches

instead for this type of background adjustment.

5.6.5 Differential expression analysis

We find that the weighted log2 approach increases the evidence for differen-

tial expression for the spikes for each background correction method in most

contrasts. At the same time, the log-odds scores for the non-spikes are not

affected; this represents a gain in statistical power. The weighted log2 ap-

proach also produces more comparable log-odds between processing methods.

Less precise observations arising from arrays with quality issues, or intensity-

dependent trends in variablity introduced by the chosen pre-processing op-

tion, are down-weighted in the analysis. At very low concentrations (less than

1pM), this improvement was reversed, with differential expression statistics

decreasing for the spikes. Although this would seem undesirable, it indicates

that after considering the underlying variability of the observations, it is dif-

ficult to distinguish between very small changes in concentration, which is

a limitation of any microarray technology. Having access to the bead-level

data allows bead type variances to be calculated on the appropriate scale,

and suitable outliers removed, so that they may be used in the linear model.
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5.6.6 Annotation

We found the intensities of probes on an array to be related to base compo-

sition. In particular, probes with a higher GC content were seen to have a

higher intensity, as were probes with a G or C at the first base. These effects

were observed on normalised data from Strip 1 and persisted in the between-

array comparisons. Inflated differential expression statistics were found for

non-spikes with 17 to 21 GCs in their sequence. Crucially, we do not expect

any of these bead types to show any differential expression.

A possible probe effect is also suggested by the intensity differences be-

tween spikes fixed to have the same concentration. Even the negative controls

themselves show different intensity profiles across the experiment. Given

these observations and previous work for Affymetrix arrays, it would seem

that more sophisticated methods than BGN are needed to account for sequence-

specific hybridisation effects.

Reannotation of the probe sequences provided by Illumina revealed that a

large number of probes did not uniquely target their intended gene, or did not

target the exonic region of the intended gene. Such problems are more preva-

lent on Strip 2, presumably because the transcripts targeted by this strip are

less well understood and more challenging to design probes for. Nevertheless,

many probes on Strip 1 were also found to map to intronic and intergenic

regions, map to unreliable transcripts or have mismatches compared to the

intended transcripts. The expression levels arising from probes with intronic

and intergenic matches were generally low, although the exceptions where

intergenic or intronic matches produce high expression levels require further

investigation. Thus, in Chapter 6, I investigate the consequences of such

annotation problems in more realistic experiments with a larger number of

DE genes.

Finally, a fundamental design issue is raised by the inclusion of around

24,000 non-expressed probes on such whole-genome chips. Specifically, Illu-

mina also offer the RefSeq content (roughly equivalent to Strip 1 of a Mouse6

or Human6 chip) as a separate product, with 8 samples interrogated on the

same chip. Therefore we can obtain measurements for the reliable genes in

a greater number of samples. If we were taking a naive approach of looking
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for the genes with the highest expression, then it is easy to imagine that the

results will be comparable regardless of the choice of Human6 or Human8

chip. This issue will also be explored in Chapter 6 by looking at previously

described experiments using the Human6 chip.

5.6.7 Application to other Illumina technologies

In this chapter, I describe the advantages of analysing a gene expression

experiment using bead-level data. I anticipate that the analysis of other Il-

lumina assays (e.g. GoldenGate, Infinium, DASL) can benefit from using

bead-level data. For instance, recent genotyping methods for Affymetrix

technology successfully use the full raw data and therefore having access to

the bead-level data is likely to be useful in developing similar methods for

Illumina. If log-ratios are required for genotyping, the situation is similar

to expression data where the values output by BeadStudio are not on the

desired scale. With the bead-level data, it is possible to obtain log-ratios for

every bead and then calculate an average and variance for each bead type to

be used in existing methods.

5.7 Validating a variance-stabilising transfor-

mation

In this section I describe how the spike-in experiment was used to validate

an independently developed transformation method for Illumina data (Dun-

ning et al., 2008b). The data from microarray experiments generally re-

quire transformation in order to facilitate simple analyses such as the confi-

dent fitting of basic linear models. Variance-stabilising transformations are

applied to microarray data in order to remove the mean-variance relation-

ship in intensities. A log2 transformation is the simplest variance-stabilising

transformation commonly applied to microarray data. Other more sophisti-

cated variance-stabilising approaches have been developed, such as the VSN

method (Huber et al., 2002) and that of Durbin et al. (2002).

The VST method was introduced in Lin et al. (2008) as an adaptation of

the VSN methodology for Illumina data, exploiting the abundance of repli-

cate beads on each array. The authors show that VST outperforms log2
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transformation, based on the results of Barnes et al. (2005). However, the

authors commented on the (then) lack of a publicly available spike-in exper-

iment, a dataset that would have provided an ideal test for their method.

The motivation for VST is given by assuming an error model that in-

corporates additive and multiplication errors, which give the variance of a

measured intensity u, denoted by v(u), as

v(u) = (c1u+ c2)
2 + c3, (5.1)

thus highlighting an undesirable property of microarrays that the variance of

observations increases with the mean. The goal of variance-stabilising trans-

formations in general is to define a function h that removes this dependancy.

As shown in Lin et al. (2008), a suitable transformation is given by

h(y) =
arcsinh(c2/

√
c3 + c1y

√
c3)

c1
(5.2)

for constants c1, c2 and c3. Central to the VST method is the fact that the

relatively large number of replicates available on Illumina arrays allow the

estimation of v and u and therefore the constants c1, c2, c3. The general pro-

cedure for VST first estimates c3 by determining which bead types are not

significantly expressed above background level (using the detection scores)

and using the variance of these bead types as the estimate of the background

noise, or c3. Rearrangement of (5.1) then allows c1 and c2 to be estimated

using a linear fit of the bead type means and variances (see Figure 5.11). The

transformed values are then calculated according to (5.2).

In this section, we apply VST to data from the spike-in experiment. This

offers further validation of the VST method, not only because the estima-

tion of differential expression can be objectively assessed, but because the

BeadArray technology used is different. The mixture data used in Barnes

et al. (2005) is from a Human8 BeadChip with some 22,000 probes rather

than the 48,000 used in the spike experiment. The Human8 chip is roughly

equivalent to using only Strip 1 of a Human6 chip and we have already seen

that the Mouse6 chip includes many low intensity probes that are only found

on Strip 2. Therefore a similar effect should be expected for Human6 chips.

Since the 48,000 probe Human6 is more widely used (see Chapter 2), it is

important to confirm that VST can be applied to these higher density arrays
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Figure 5.11: Demonstrating the VST transformation for an array in the
spike-in experiment. A) The undesirable relationship between bead type
means and standard deviations is shown. The linear fit shown in green is
used to estimate the parameters c1 and c2. B) Comparison of VST and log2

transformed values for this array with the green line representing VST =
log2. Figure created using the lumi package.

with no impairment due to the different distribution of intensities. Addi-

tionally, we will investigate whether VST can reduce the problem of missing

values encountered when applying a standard log2 transformation after BGN.

A key feature of VST is calculating the offset that must be added to each

array to avoid negative intensities.

5.7.1 Methods

The bead-level data for the spike-in experiment were read by beadarray us-

ing the default background subtraction method. These bead intensities were

then summarised using a 3 MAD cut-off to remove outliers. The data were

summarised and transformed (VST or a log2) as appropriate, and the arrays

were then quantile normalised. The bead-level data were also processed us-

ing both background subtraction and BGN after summarisation. The lumi

software package (Du et al., 2008) was then used to apply either a VST or a

modified log2 transformation that avoids negative values.
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The linear model described on Page 81 and subsequent analyses were used

to find DE genes between arrays with different spike concentrations. We ob-

tained log-odds scores quantifying the evidence for differential expression for

both the spike and non-spike probes. The 12 spike concentrations allow for

construction of 6 independent contrasts. We considered two sets: one where

neighbouring concentrations are compared to provide the greatest challenge

for differentiation (1000pM vs 300pM, 100pM vs 30pM etc.) and one where a

range of effect sizes would be observed by contrasting pairs symmetric about

the middle concentrations (1000pM vs 0pM, 300pM vs 0.01pM etc.). Finally,

a series of smaller models were fitted, where only the 8 (of the 48) arrays

featuring in the contrast of interest (4 arrays for each concentration) were

considered.

5.7.2 Applying VST to the spike-in experiment

Figure 5.12 shows MA-plots comparing arrays with spikes at 3pM and 1pM.

When BGN is not used, VST reduces the range of observed log-ratios for

the probes we expect not to change. In the absence of BGN, both the log2

transformation and VST separate the spikes well from the non-spikes, but

the log-fold changes achieved from the log2 transformation exhibit less bias.

Applying the transformations after BGN, we see that the MA-plot for

VST is little changed. By contrast, the combination of BGN and log2 trans-

formation is to be avoided, with much-reduced ability to separate out the

spikes from the non-spikes by considering the log2 ratio, as we have previ-

ously noted.

Three linear models were fitted to the entire spike-in experiment: one

using VST, one using a log2 transformation, and one using the weighted log2

analysis. For two of the linear models at a time, Figure 5.13 displays the

differences in log-odds calculated for six contrasts. VST is seen to lead to

a more powerful test than a standard log2 transformation, producing higher

log-odds values for the spikes (Figure 5.13a/5.13c). At the same time, values

for the non-spikes were not appreciably altered (data not shown). The dif-

ference between VST and log2 is seen to decrease as the spike concentrations

get closer together (Figure 5.13c).
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Figure 5.12: Here, we show the MA-plots for an array with spikes at concen-
tration 3pM against spikes at concentration 1pM. In the top row, the arrays
were transformed with a log2 transformation or VST. In the bottom row, the
arrays were background normalised before transformation. In all plots, red
dots mark the values for the spike probes and the dotted lines indicate the
predicted log fold-change of spikes (1.73) and non-spikes (0) respectively.
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When comparing VST to a weighted log2 analysis (Figure 5.13b/5.13d),

VST is seen to be more powerful for detecting differential expression for large

differences, but the weighted log2 analysis outperforms VST for finer com-

parisons (such as 100pM vs 30pM and 3pM vs 1pM).

When the models are fitted to only the arrays involved in the contrast

of interest (Figure 5.14), the same broad trends are seen. The weighted log2

analysis, however, begins to show more sensitivity than VST even at quite

extreme comparisons (e.g. 100pM vs 0.03pM).

5.7.3 Discussion

In agreement with Lin et al. (2008), we find that VST offers improvements

over a standard log2 analysis. Thus, users with only the summarised output

from BeadStudio will find this method beneficial. In particular, VST can

cope with data that have been background normalised (BGN is implemented

as the “subtract background” option in recent versions of BeadStudio).

Using a published spike-in experiment we are also able to show that VST

offers greater ability to detect DE genes compared to a log2 transformation.

This improvement was seen to diminish as the spike concentrations being

compared become closer. At the same time, a weighted log2 analysis had

more power than VST for finer concentration differences.

In our initial analysis of the spike-in experiment, we used all 48 arrays

in the linear model. The size of such an experiment may not be typical for

some researchers and therefore we repeated the analysis using fewer arrays.

In this smaller experiment, VST was seen to have marginally improved log-

odds over a regular log2 analysis. Under these conditions the weighted log2

analysis was seen to improve the detection of DE genes in most cases, es-

pecially when comparing arrays with similar spike concentrations. We note

that a weighted log2 analysis is compromised without access to bead-level

data. It would be beneficial if Illumina’s software had the option to work

with data on the log2 scale when creating summarised data.
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Figure 5.13: Comparison of spike log-odds obtained for a particular contrast
in the linear model fitted to the entire spike-in experiment of 48 arrays. On
the left we show the difference between the log-odds obtained after VST and
the log-odds obtained after a log2 transformation. On the right, we show the
difference between VST and a linear model incorporating log2 variances as
weights. In the top panels, we show six independent contrasts with the closest
spike concentrations. The bottom panel shows six independent contrasts from
the same linear model, but chosen to provide a range in anticipated log-ratios
(the finer differences being to the right of the panel). In all cases, a positive
value indicates greater log-odds obtained (i.e., more evidence for differential
expression) after VST.
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Figure 5.14: Comparison of spike log-odds obtained for a particular contrast
in the linear model fitted to the 8 arrays involved in that contrast. On the
left we show the difference between the log-odds obtained after VST and the
log-odds obtained after a log2 transformation. On the right, we show the
difference between VST and a linear model incorporating log2 variances as
weights. In the top panels, we show six independent contrasts with the closest
spike concentrations. The bottom panel shows six independent contrasts
chosen to provide a range in anticipated log-ratios (the finer differences being
to the right of the panel). In all cases, a positive value indicates greater log-
odds obtained (i.e., more evidence for differential expression) after VST.
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In summary, we have shown that the VST method does indeed perform

well, and can be applied to the popular 48,000 probe BeadArrays. However,

there are still benefits to having access to the raw data.
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Chapter 6

Optimising the analysis of
Illumina data by using prior
knowledge

6.1 Introduction

In the previous chapter, various improvements to the analysis of Illumina

data were described that take advantage of the availability of bead-level data.

However, I recognise that many microarray facilities might not have the re-

sources to analyse bead-level data. For a simple comparison of two samples

types, where a swift conclusion is required, users may prefer to work with

bead-summary data. Therefore it is important to understand how our expe-

rience of analysing the spike-in and other experiments can benefit these users.

There are many sources of error in a microarray experiment and differ-

ent challenges are faced at each stage of the analysis. However, arguably

the most fundamental issue is that of probe annotation. For without de-

tailed knowledge of where the sequences designed for the array map to, we

cannot hope to gain biologically meaningful conclusions. Several efforts to

reannotate Affymetrix probe sequences have been presented (Harbig et al.,

2005; Dai et al., 2005; Gautier et al., 2004b) and it is generally believed

that such redefinitions drastically improve the reliability of a differential ex-

pression analysis study (Harbig et al., 2005; Dai et al., 2005; Gautier

et al., 2004b; Sandberg and Larsson, 2007). Given the unique design of

Affymetrix arrays, one has to combine the different intensities measured for
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the probes within the probe set for each gene. Clearly the summarised value

for a particular gene could be severely altered if not all the probes in the

probe set map to the correct location, or map to multiple locations. Thus,

reannotation of Affymetrix probes centres around reorganising the existing

probe sets to more accurately reflect the targets of the individual probe se-

quences. Alternative annotations based around genes, exons or transcripts

(Dai et al., 2005) can also be constructed. To my knowledge, similar rean-

notations have not been done for other technologies.

Reannotation of the probe sequences used in the Illumina spike-in exper-

iment revealed many probes matching to intronic or intergenic regions. The

spike-in experiment was not the ideal scenario to judge if probe annotation

can affect the results of a differential expression analysis, as all non-spikes

were essentially constant throughout the experiment and all spike probes had

reliable annotation. In a more realistic experiment, no matter what combi-

nation of background correction and normalisation methods are applied, we

would not expect to recover the true expression level of a gene whose probe

matches to an intronic or intergenic region, as such probes may not accu-

rately measure the transcription of the gene. Whilst measurements made in

intergenic and intronic regions could be potentially interesting, the Human6

chip is intended to be a gene expression platform and for studies interested in

measuring expression at all points along the genome, or alternative splicing,

there are much more suitable platforms such as tiling or exon arrays. The

reannotation of Illumina data poses a different problem from Affymetrix, as

the replicated observations for the same bead type all have the same probe

sequence attached. For an Affymetrix probe set, if one probe is defective then

there are still multiple probes that can potentially be used to interrogate the

gene. However, if an Illumina probe is defective, then all measurements for

that bead type are compromised. Moreover, each gene is usually represented

by only one bead type.

In this chapter, I focus on the MAQC dataset, which was specifically de-

signed to have many DE genes, and other publicly available datasets that use

the Human6 chip. A typical microarray analysis will often include a filtering

step to remove probes that are uninformative. Such filtering techniques are

applied after considering expression level and variability, and we have already

seen in Chapter 5 that probes with intronic or intergenic matches tend to have
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lower signal. Therefore, I investigate whether some commonly applied filter-

ing techniques eliminate these misleading probes from the analysis. I also

show the effect that filtering has on the number of significant findings arising

from a differential expression analysis, by looking at the MAQC dataset and

other Human6 experiments as examples.

6.2 Data and Methods

6.2.1 The MAQC dataset

This chapter presents an analysis of the Illumina portion of the MAQC

project. As described previously, the MAQC dataset consists of four samples

(A, B, C and D), each sample being a mixture of Universal Human Reference

RNA (UHRR) and Universal Human Brain Reference RNA (UHBRR). The

mixtures were defined to be 100% UHRR and 0% UBRR (A), 0% UHRR

and 100% UHBRR (B) , 75% UHRR and 25% UHBRR (C) and 25% UHRR

and 75% UHBRR (D). Each sample was replicated five times and the entire

experiment repeated independently in three different locations, giving a to-

tal of 60 arrays. However, only 59 of the Illumina samples passed the QC

standards set by the MAQC. The analysis presented in the original MAQC

paper was aimed at comparisons between microarray platforms and quanti-

fying the agreement between the various platforms. For between-platform

comparisons, the probes on each platform had to be filtered to obtain a list

of common genes interrogated by all platforms. Thus, there was no investi-

gation involving the entire set of probes for each platform. For this chapter,

non-normalised bead-summary data were downloaded for the Illumina ar-

rays, which included the summarised expression values for each bead type,

standard errors, detection scores and number of beads. All 48,000 probes

were included in the analysis, although no control information was available.

6.2.2 The GEO dataset

Datasets from Human6 Version 1 chips (GPL2507) performed in a wide va-

riety of experimental conditions and tissue types (e.g. breast, blood, artery,

stem cell, sperm) were taken from the Gene Expression Omnibus (GEO)
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(Barrett et al., 2007). These datasets have been previously summarised in

Table 2.1. Although this is not the most up-to-date version of the Illumina

chip available, it provides the greatest amount of publicly available data.

The GEOquery Bioconductor package (Davis, 2008) was extremely useful in

reading the GEO data into R for further analysis, as each dataset is converted

into an ExpressionSet structure, including detailed metadata recording the

samples hybridised to the arrays and processing methods used. The Expres-

sionSet representations of each GEO entry were collated into a list object,

and this is referred to as the GEO dataset. The expression values for each

GEO entry were also joined together into a large matrix with 684 columns

and used to illustrate general properties of probes across a large collection of

arrays from various sources.

6.2.3 Filtering Methods Used

A series of filtering approaches were applied to the entire MAQC dataset of

all 59 arrays from the three locations.

� Detection - The function detectionCall in lumi was used to determine

how many of the 59 arrays each gene was detected on. This uses the

detection p-values provided by Illumina and a fixed p-value threshold,

with values below this threshold deemed to be detected. Genes detected

on at least one array passed the filter.

� Expression Level - The kOverA function from genefilter was applied

to the non-normalised expression values to determine which genes had

expression level higher than “A” on at least “k” of the 59 arrays. The

value of k was set to 10 for varying values of A.

� IQR - The IQR of each probe was calculated from log2 normalised data

and genes greater than a given cut-off passed the filter.

A range of different cut-offs were used for each of the methods, and the

number of probes in each of the annotation categories (see page 82) retained

by the filter were recorded, along with the number of Strip 1 and Strip 2

probes.
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As the data in the GEO dataset were generated from a diverse set of tissue

types and processed using different normalisation methods, direct compar-

isons between all arrays are not possible. Therefore, all intensities on each

array were ranked separately to see how the relative expression level of par-

ticular probes changes on different arrays. The average rank for each bead

type was then calculated and used to assess differences between the different

annotation categories.

6.2.4 Use of annotation information

The Human6 Version 1 chip was reannotated according to Barbosa-Morais

et al. (2008), resulting in a tab-delimited file. The file has one row for each

bead type and a number of columns that can be used to judge the reliability

of the probe sequence. Full details of the file contents are given in Barbosa-

Morais et al. (2008).

This file can be easily read into R and incorporated into an analysis. For

instance, one can use grep or match on the Target column to find the rows in

the file that correspond to a given set of IDs. Similarly, the probes that have

a particular property (such as having an intronic match) can be returned.

Online resources can also be used to retrieve information about the probe

sequences used on Illumina arrays. In this chapter, I used the UCSC browser

(Kuhn et al., 2007) to manually align particular sequences to the latest ver-

sion of the human genome.

6.2.5 Differential expression analysis

I performed a simple differential expression analysis for the MAQC dataset

using limma. A gene-wise linear model was fitted to quantile normalised

data from each location separately to estimate coefficients for each of the

samples (A, B, C and D) for all 48,000 probes. All pairwise contrasts were

then formed (six in total) and empirical Bayes shrinkage used to produce

differential expression statistics. The same linear model was fitted to different

subsets of the data.
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Strip 1 Strip 2
Total 26097 21198
Intronic 819 5890
Intergenic 838 8055
Unreliable 1256 3719
Mismatch 1663 629
No Match 444 964
Multiple Match 1024 470
Percentage of Good Probes 78% 9%

Table 6.1: Results of reannotation of the Illumina Human6 Version 1 plat-
form. The 26,091 probes on Strip 1 and 21,198 probes on Strip 2 are di-
vided into categories describing various annotation problems. “Good” de-
notes probes that had a complete genomic match to the exonic region of a
known transcript.

� Fit 1 - Linear model fitted to all 48,000 probes simultaneously.

� Fit 2 - Linear model fitted only to probes that can be found on Strip

1. Around 26,000 probes were used in this analysis.

� Fit 3 - Linear model fitted only to probes with “Good” annotation.

Around 20,000 probes were used in this analysis.

The decideTests function in limma was then used to find the number of

significant findings for each contrast after multiple testing correction using

Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) and a

false discovery rate (FDR) set at 0.05.

6.3 Results

6.3.1 General Observations

The reannotation of the Human6 Version 1 platform is shown in Table

6.1. A striking conclusion is the difference in overall reliability between the

two strips. As for the spike-in experiment, we see far fewer probes with re-

liable annotation on Strip 2 than Strip 1. With the exception of mismatch

probes, all other undesirable properties (intronic, intergenic, unreliable and
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no match) were more prevalent on Strip 2. The number of probes in each

category are roughly the same as for the Mouse6 chip (see Page 94). How-

ever, the number of intergenic probes is far greater for the Human6 chip,

especially on Strip 2. At the same time, the Human6 chip has far fewer mis-

match probes compared to the Mouse6 chip.

Figure 6.1A shows the non-normalised Illumina MAQC data from one lo-

cation after a log2 transformation. Note that one of the replicates of Sample

C was removed during quality control by the MAQC, otherwise all samples

are replicated five times. As these data were exported from BeadStudio, all

48,000 observations for each array are given by default. However, based on

previous experience in analysing the Mouse6 spike-in experiment, we have

good reason to suspect an intensity difference between the two strips on the

Human6 chips. Therefore, the data for each array were also split up into

Strip 1 and Strip 2 probes (by knowing which probes were located on each

strip) to produce Figure 6.1B. Consecutive pairs of boxes represent the Strip

1 and Strip 2 probes for the same array. The difference between the two

strips is obvious and seen for all arrays. For every array, the Strip 1 probes

have higher median and higher IQR than Strip 2. For most arrays, the 75th

percentile on Strip 2 is around the same as the 25th percentile for probes on

Strip 1. This difference would not have been immediately obvious from the

bead-summary output provided online.

6.3.2 Filtering

Figure 6.2 shows the number of probes retained under three different filtering

methods for the MAQC dataset. A variety of different cut-offs were used for

each method. For filtering based on expression level (labelled Detection and

Expression), we see that Strip 1 probes are more readily retained than Strip

2. Requiring a detection p-value of at least 0.1 on any array retains around

91% of the Strip 1 probes, compared to around 63% of Strip 2 probes. As

we make the detection cut-off more stringent fewer probes are retained, al-

though more Strip 1 probes are retained than Strip 2 at each cut-off. This is

in agreement with previous observations that Strip 2 probes generally have

lower expression levels. With a cut-off of 0.05, commonly used in the litera-

ture, 86% of Strip 1 probes pass the filter compared to 49% of Strip 2 probes.

In terms of the annotation categories, intronic and intergenic probes are also
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Figure 6.1: Two different views of non-normalised Illumina data from the
MAQC study. In A, we show data from one location. One array was re-
moved during quality assessment by the MAQC so in total there are 19
arrays with 48,000 observations each. In B, the same arrays are divided into
the probes found on Strip 1 and Strip 2. Similar boxplots were seen for all
three locations.
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more often removed at a given cut-off, although this is confounded by the

fact that most of these probes are located on Strip 2. On the other hand,

probes with mismatches are less often removed by filtering, suggesting that

hybridisation is possible even if the probe and target sequences do not match

perfectly.

By filtering based on minimum expression level across all arrays, we are

more likely to retain Strip 1 probes and remove Strip 2 probes. If the cut-off

is suitably low (e.g. 60) then nearly all probes are retained. However, choos-

ing a cut-off of 120 retains 66% of Strip 1 probes and only 19% of Strip 2

probes. Filtering based on IQR gives broadly similar results, with an IQR

of around 0.2 being the point at which dramatic differences are seen in the

numbers of Strip 1 and Strip 2 probes removed. A cut-off of 0.5 (suggested

by other authors (Scholtens and Heydebreck, 2005)) will retain 35% of

Strip 1 probes, but less than 10% of Strip 2 probes.

We conclude that simple filtering schemes with arbitrary cut-offs tend to

remove Strip 2 probes and probes in intronic and intergenic regions more

often than probes on Strip 1. Not only do probes on Strip 2 have lower

expression on a given array, their expression levels also vary little between

arrays. Ideally a filter would remove a reasonable percentage of uniforma-

tive probes, without removing too many useful probes. However, deriving

a suitable cut-off is not trivial. Since some analyses of Human6 chips de-

scribed in Chapter 2 used a filtering step akin to those used for Figure 6.2,

we might reasonably question if the majority of the analyses in the literature

are reporting results that came from Strip 1, and if Strip 2 added any useful

information to the analysis.

For instance, in MAQC Consortium (2006) the first stage of the anal-

ysis was to find probes that were common to all platforms being studied. A

filtered list of 12,091 probes was derived using the RefSeq database, so it is

not surprising that 99% of the probes used in the analysis were found on the

Human8 chip. In other words, the analysis did not use the vast majority of

the additional content added to the Human6 chip, and the same analysis con-

clusions could have been reached using Human8 chips. Similar experiments

that use Illumina technology as a validation of other results, or to compare

with other platforms, also had to filter to a set of genes that would be almost
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Figure 6.2: For different filtering methods (see Section 6.2.3) we show the
percentage of genes belonging to Strip 1 and Strip 2 and different annotation
categories retained by the filter.
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Figure 6.3: Average ranks of probes across all Illumina Human6 arrays in
GEO. A) shows the average ranks of probes on Strip 1 versus probes on
Strip 2. Probes on Strip 1 (roughly equivalent to the lower-density Human8
arrays) are found to be ranked higher than those on Strip 2. In B) the probes
on Strip 1 are split into different annotation categories.

entirely probes found on the Human8 chip (Ramilo et al., 2007; Lenk et al.,

2007).

As the arrays in the GEO dataset were analysed differently and some-

times on different scales, applying the same filtering methods as above is not

possible. Instead, the probes on the same array were ranked and the average

rank for each probe over all arrays was computed. Figure 6.3A shows the

ranks in terms of the probes on the Human6 chip that are present on Strip

1 or Strip 2. A clear preference is seen for Strip 1 probes to be found at the

top of the list.

Figure 6.3B shows how the ranks of genes vary between different cate-

gories of probes on Strip 1 (in order to account for the perceived difference in

reliability between Strip 1 and Strip 2). The result is similar to Figure 5.8.

As we would hope, probes with good annotation are seen to have a high rank

(around 30,000 on average), whereas probes with annotation problems (e.g.

matching to an intronic or intergenic region, or with no complete matches),

with the exception of mismatch probes, have a much lower rank of around

20,000. We would expect such regions of the genome to not produce any sig-

nal in a gene expression study. However, there are a few examples of probes
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that fall into this category and are also highly ranked on all arrays.

A total of 132 bead types were found to have an average rank of higher

than 46,800 (roughly equivalent to the 99th percentile of the ranks). Of these

bead types, 36 (27%) were found to target ribosomal proteins, which func-

tion in protein biosynthesis and some of which have been previously found

to be housekeeping or reference genes (de Jonge et al., 2007; Thorrez

et al., 2008). Thus, these genes are often considered useful for normalisation.

Indeed, 5 genes from this crudely derived list were also found in the table of

top 15 candidate housekeeping genes presented in de Jonge et al. (2007),

which included 13 ribosomal proteins. Another common feature of these 132

probes was that 32 had multiple matches to other regions of the genome.

Surprisingly, a handful of these 132 bead types with consistently high

rank had intergenic (4), intronic (5) or no matches (2). Our reannotation

of the probe sequences for these misannotated probes did not immediately

explain the high rank. After a manual BLAT search using the UCSC genome

browser, one intergenic probe and one intronic probe were found to map to

regions with SINE repeated DNA. Such regions of DNA are found through-

out the genome and hence the search returned many matches. The two bead

types that were reannotated as having “no match” did, in fact, map to multi-

ple locations, although the sequence mapped to splice junctions. These two

probes with no matches were intended to target transcripts related to ribo-

somal proteins.

In Golubkov et al. (2006), data were processed using BeadStudio, al-

though analysed through Bioconductor and GeneSpring. The first step of the

analysis was to remove unexpressed probes using the detection p-values. For

a probe to pass the filter (i.e. be included in further analysis) it had to be

significant at the 0.1 level in at least one of the arrays (confirmed by personal

communication with GEO submitter). After this filtering step, 21,892 probes

out of the original 47,293 remained. Unfortunately, as detection scores were

not available for this dataset, we were not able to reproduce this filtering.

As an approximation, I ranked the intensities for each array and used the

21,892 probes with the highest average ranks for further analysis. Around

80% of our filtered list appeared on the Human8 chip. Also, around 74%

of the 21,892 probes had good annotation. Thus, many probes with poor
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annotation, including intronic and intergenic matches were still present in

the analysis despite filtering.

In Greber et al. (2007), no mention is made of filtering prior to testing

for DE genes. However, the detection scores for each array are provided as

supplementary material. We were therefore able to ascertain that if filter-

ing had been used at the 0.05 level, 72% of the resulting list would have

been probes present on the Human8 chip. This same list is also dominated

by good probes (68%) but also with 20% intronic or intergenic probes and

around 10% mismatch or unreliable probes.

One of the few papers to refer to the different annotation sources for the

Human6 chip was Bykhovskaya et al. (2007). The analysis presented in

that paper used a detection p-value filter of 0.05, which resulted in a list of

12,983 detected probes. Although no detection scores were provided we are

able to estimate that 86% of this list is from the Human8 chip, with 81% of

filtered probes having good annotation.

In summary, the intensity difference between Strip 1 and Strip 2 seems

to be universal for Human6 Version 1 arrays, and by performing filtering we

restrict the analysis to mostly Strip 1 probes. Also, from looking at probe

behaviour over the large set of arrays in the GEO dataset, we saw that high

probe signal is observed for many probes that we previously believed to have

poor annotation. Certain probes also have consistently high signal, regard-

less of the sample type. Many analyses in the literature include misannotated

probes that pass the first round of filtering. However, investigation of these

anomalies revealed other causes of signal, such as the presence of repeated

DNA, and matching multiple genomic locations, rather than just intended

gene transcript. In the following results, it will be shown that such bead

types can be reported in the results of a differential expression analysis if due

care is not taken.
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6.3.3 Differential expression

The MAQC dataset

For each pairwise contrast in the differential expression analysis described on

Page 116, I ranked all 48,000 probes according to the evidence for differential

expression (as measured by the log-odds score). Thus, the probe ranked 1 is

the most likely to be DE and so on. Note that we are not trying to impose

any cut-offs to decide which probes are truly DE at this stage.

Figure 6.4 represents how far down the ranked list of genes we have to

go before finding a particular percentage of Strip 1 or Strip 2 probes. Sep-

arate curves are shown for each of the pairwise contrasts. For example, for

each contrast in Fit 1, after looking at the 10,000 highest ranked probes, we

have encountered around 35% of the Strip 1 probes and less than 5% of the

Strip 2 probes. A common strategy for selecting interesting genes for further

validation is to select the N genes with the strongest evidence of differen-

tial expression. Therefore, applying this strategy to the results of Fit 1, we

would be more likely to pick probes from Strip 1, whereas Strip 2 probes

very rarely appear amongst the top-ranked probes for a given contrast. For

practical and financial reasons, the number of genes chosen for validation

is restricted. In such a scenario, Strip 2 probes would be chosen rarely. On

average, only 5 out of the top 250 ranked probes for each contrast were found

to be from Strip 2. However, it should be noted that there are likely to be

many thousands of DE genes in this analysis due to the samples chosen, with

many genes found to be uniquely expressed in the brain.

Rather than relying on ad-hoc criteria to filter the data based on ex-

pression level or variability, Fit 2 used the same arrays, but only the probes

from Strip 1. A different set of moderated-t statistics is obtained due to

the variance smoothing using a different set of gene-specific standard errors.

The prior degrees of freedom output from the model indicates the amount of

information that has been “borrowed” in order to smooth the variances. The

values of this parameter were 11.00 and 7.32 for Fit 1 and Fit 2 respectively,

thus indicating a greater degree of smoothing performed in the first model.

Figure 6.4 shows the composition of the ranked gene lists from Fit 2 in

terms of the annotation categories. As we expect, bead types with good an-
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Figure 6.4: Representing the composition of ranked lists of genes obtained
from the MAQC dataset after a differential expression analysis. Separate
curves are shown for each pairwise contrast of samples. For the linear model
fitted to all probes (Fit 1), we show the proportion of Strip 1 or Strip 2 probes
encountered along the length of the gene list. For the linear model fitted to
probes from Strip 1 only (Fit 2), we show the composition of the gene list in
terms of the annotation categories.
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notation occur towards the top of the list. On the other hand, genes mapping

to intronic and intergenic regions, or having no match at all, are found to be

ranked low in the list. Probes with mismatches still appear high in the list,

although such mismatches should be treated with caution.

It is possible to find some examples of intergenic or intronic probes that

appear to be DE in this analysis. For instance, the bead type labelled

“GI 8922831-S” is supposed to target a gene with the symbol “FLJ11029”.

This bead type has high evidence for being DE (log-odds scores > 35 in 5

of the 6 contrasts) and yet the reannotation for the bead type reveals that

it maps to the intronic region of the gene. Manual BLAT search with the

UCSC genome browser reveals that the primary match for the gene lies in

a region of SINE repetitive DNA sequence and therefore has many matches

throughout the genome. We should not conclude that the apparent differen-

tial expression for this bead type is due to biological variation.

Another interesting example is bead type “GI 5174761-S”, found on Strip

1, which is annotated by Illumina as targeting the gene MT3, and described as

“Homo sapiens metallothionein 3 (growth inhibitory factor (neurotrophic))”.

This bead type is ranked within the top 25 genes in contrasts A vs B, A vs C

and A vs D in the analysis of data from two locations. Our reannotation flags

the probe for this bead type as having no match in the genome, and manual

BLAT of the probe sequence reveals that it matches a 53 base sequence in

the MT3 gene. However, the normalised expression values shows that this

probe is highly expressed in samples B, C and D (which contain some UH-

BRR sample), but not detected above background in Sample A. Moreover,

checking the GeneCard for MT3 (www.genecards.org), we find it is commonly

expressed in the brain, as the description of the bead type implies. Therefore,

it could be that the signal measured by this probe is plausible and capturing a

difference between biological samples, despite the gaps in the probe sequence.

Figure 6.5 shows the number of significant Strip 1 probes from Fit 1,

compared to the number of significant probes in Fit 2. Bear in mind that Fit

1 was fitted to 47,289 probes compared to 26,091 probes in Fit 2. Despite

the reduction in the number of probes used, Fit 2 achieves a great number of

significant genes for every contrast. Each increase corresponds to genes that

were not deemed to be significant in the original model.
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Figure 6.5: Improvements to the detection of DE genes by filtering. On the
left, the number of significant findings (after multiple testing correction) for
Strip 1 probes using Fit 1 and Fit 2 are shown. For all the contrasts, the
number of significant probes is greater using Fit 2. On the right, the number
of probes with good annotation is shown under Fit 1 and Fit 2. Fit 3 is also
seen to increase the number of significant findings.

Removing all the Strip 2 probes from the analysis might seem a bit heavy-

handed as we are ignoring any potentially useful probes on Strip 2. Therefore,

Fit 3 was used to find DE genes among those with reliable annotation, which

includes both Strip 1 and Strip 2 probes. For each of the six contrasts, a

greater number of significant genes are found by fitting the model to just the

probes with good annotation. This suggests that if we restrict our analysis

to genes with reliable annotation we can achieve greater power to detect DE

genes. By using only reliably annotated genes, we would also be more likely

to obtain further biological information for the genes in the analysis, such as

the names of pathways or gene ontologies.

The GEO dataset

A Welch t-test was performed in Golubkov et al. (2006) to determine differ-

ential expression in the contrast of interest with an additional requirement

of 2-fold change between the two groups. This resulted in the 207 genes
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given in Supplementary Table 1 of Golubkov et al. (2006). Our attempt

to repeat this analysis gave 205 genes, which shows that our method of fil-

tering was comparable to the original approach. Of the 207 hits reported in

Golubkov et al. (2006), only 7 findings were not present on the Human8

chip (Hs.28792-S, GI 27498491-S, Hs.196008-S, GI 30156248-S, Hs.445581-S,

GI 27485722-S, Hs.370806-S). The four probes with prefix“Hs”are probes ab-

sent from the RefSeq database, whereas the other three are predicted genes

(“XM”). If the authors had wished to use an analysis of GO terms, then

these four “Hs” probes would not contribute to the analysis as tools such

as GOstats (Falcon and Gentleman, 2007) generally require a RefSeq, or

similar, identifier for each probe used in the analysis.

When ranking the 207 significant genes based on log2 fold-changes, five

of the new findings from the Human8 chip showed log2 fold-changes around

0.43 to 0.48 and ranked lowly in the list (186 -195). The highest ranking for

these 7 new findings is Hs.28792-S with a log2 fold-change of 5.16 between

the two conditions. However, our reannotation shows this probe to have

an unreliable transcript mapping (using the Comments column). It would

be at the discretion of the researcher whether to follow up this finding or not.

Overall, the list of 207 reported genes comprised “good” probes, with the

exception of 17 mismatch probes, 3 unreliable probes and 1 intergenic probe.

The 3rd ranked gene in the list (GI 40316911-S) was found to be a mismatch

probe based on the “Comments” column and was found to have an additional

identical match on the same chromosome. The inclusion of an intergenic

probe (GI 37549959) in the list of 207 DE genes is intriguing. This probe

is intended to target a gene with symbol “LOC375459” on chromosome 5

with a description provided by Illumina of “Homo sapiens similar to Protea-

some activator complex subunit 2 (Proteasome activator 28-beta subunit)

(PA28beta) (PA28b) (Activator of multicatalytic protease subunit 2) (11S

regulator complex beta subunit) (REG-beta)”. After performing a manual

BLAT search against the genome, we verify that this probe indeed targets

an intergenic region. Additionally, it also shows a match of 47 bases to a se-

quence on chromosome 14 lying in the transcribed region of the gene PSME2

which is described as “Homo sapiens cDNA: FLJ22927 fis, clone KAT07022,

highly similar to HUMPHPA28A Human mRNA for proteasome activator

hPA28 subunit beta”. Strikingly, the correlation of bead types GI 37549959
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and GI 30410791 (targetting PSME2) in this dataset is 0.98. Furthermore,

if we take a larger, unrelated, dataset such as Stranger et al. (2007) (with

480 arrays), we find a correlation between the two bead types to be 0.94.

The two bead types seem to be related in function, and we might interpret

the results of Golubkov et al. (2006) as the rarer transcript represented by

GI 37549959 showing significant biological differences. However, this bead

type is reporting the same transcript as GI 37549959, with the added uncer-

tainty caused by the multiple matches of the probe sequence.

Six gene lists are provided as supplementary material to Greber et al.

(2007), consisting of over- and under-expressed genes when each of three

transcription factors were knocked down. For each transcription factor, the

number of reported DE genes from the Human8 chip is 94% (Oct4), 93%

(Nanog) and 95% (Sox2) and 515 probes were found to appear in each of the

three lists of DE genes. Of these 515 probes, 5 were found to be intronic,

5 intergenic, 40 mismatches and 15 unreliable. The reannotation of the 5

intergenic probes did not give any further information on why these probes

should be called DE. However, the manual BLAT of probe GI 42657060-S

(shown in Figure 6.6) revealed a large number of partial matches of the probe

sequence. Further investigation of the primary match for the probe shows

that the probe does not lie within any RefSeq genes, but is found within an

LTR region found many times throughout the genome. This explains the

large number of partial matches.

Using the vast amount of Human6 data obtained from GEO, we can look

at the performance of GI 42657060-S on a typical array. Figure 6.7 shows the

rank of this probe on all arrays in the GEO dataset. There is a clear tendency

for this probe to be among the highest intensity probes on a given array, in

a similar way to the 132 highly ranked probes found previously. Therefore

this probe would almost certainly be retained after filtering using expression

or detection levels. However, due to the saturation effect seen (see Chapter

5), there is much uncertainty in measurements of genes at high intensity. We

should therefore be cautious about declaring such probes to be DE. I will

now give an example where reannotation can drastically change some of the

conclusions of an experiment.

In Bykhovskaya et al. (2007), data were normalised using average nor-
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Figure 6.6: Screenshots of the BLAT search for probe GI 42657060-S. The
top screen just some of the locations that the probe matched to. The bottom
screen shows the genomic location of the top match. The probe sequence is
seen to be outside any RefSeq genes and matching a region of the genome
with a long-term repeat item.
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Figure 6.7: The rank of probe GI 42657060-S across all Illumina Human6
Version 1 arrays in GEO. It can be seen that regardless of sample or process-
ing method, the probe is generally among the highest ranked probes on an
array. The different colours represent the different datasets.

malisation (see page 31) and a list of 897 transcripts were identified as being

significantly different after statistical testing using Illumina’s DiffScore statis-

tic. Of these 816 probes, 90% were present on the Human8 chip. Biological

significance in the findings was assessed using the online DAVID resource

(Dennis et al., 2003) and relevant groups of genes were discovered, some of

which are presented in the paper.

Table 3 of Bykhovskaya et al. (2007) lists 31 genes from the human

ribosome KEGG pathway which were all found to be statistically significant

when tested individually. Moreover, testing the pathway as a whole using

the DAVID software gave a p-value of 2.8 ×10−19, which is fairly convincing

evidence that this pathway is biologically relevant for the biological condition

under investigation. However, we have already seen that the genes that have

this particular biological function tend to have very high rank on any array

we look at. Also, 10 out of the 31 probes have an “OtherHit” and actually

target other known transcripts.

In the case of the gene representing the protein S16 (accession number

NM 001010), the median rank across all arrays is 47,236. This gene gave a p-

value of 0.000414 in the statistical test, but it is easy to imagine that this is an
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artefact of data processing, especially if the mean-variance dependancy has

not been accounted for appropriately in data processing or statistical testing.

By using the function normalize.invariantset in affy, I calculated a set

of rank-invariant genes for each array with respect to a target distribution

containing the average intensity of each gene over all arrays. The results

showed that 25 of the genes in Table 3 of Bykhovskaya et al. (2007) are

considered part of the rank-invariant set of genes for every array. In other

words their ranks are not significantly different from the distribution of an

average array. It is likely that the perceived differential expression is due to

the inability to measure accurately intensities at the high end of the intensity

range, which are easily affected by batch effects. The normalisation used for

this dataset would be unable to cope with such effects, since the calibration

of each array by the mean value will have little effect at high intensities.

6.4 Discussion

After investigating a large collection of datasets derived using Illumina’s Hu-

man6 chips, it seems that the issue of probe annotation is also important for

more realistic experimental setups than the spike-in experiment. Firstly, not

only are probes located on Strip 1 more often expressed, they are also more

often called DE by a variety of analysis methods. Despite the technology

providing measurements for around 48,000 transcripts, a filtering procedure

will reduce this list by about 50% (depending on the samples used and fil-

tering criteria). Moreover, the probes included in this reduced list are not

represented equally by the two strips and the majority will be found on Strip

1. Carrying through to statistical testing, we again see that most significant

findings are from Strip 1.

An important design issue is raised by this chapter: if the majority of

significant findings are due to Strip 1, which is roughly equivalent to the

Human8, should all experiments be run on the Human8 chip? The answer to

this question largely depends on the expected outcomes of the microarray ex-

periment. For studies involving multiple platforms, there generally needs to

be a set of genes that are represented on all platforms. Although there might

be a temptation to use “state-of-the-art” arrays with the most coverage, the

extra genes included on these high-density arrays might not be present on all
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platforms in the study.

Human8 chips can be run at lower cost, with more samples in parallel

and provide transcript measurements for curated, reliable content. Moreover,

these transcripts can be more readily used for pathway or GO enrichment

analysis. If a researcher has a small number of samples and wants to find

what pathways are relevant to their study, then using these chips may be

more cost-effective. The down-side to using the Human8 is that they poten-

tially will not discover anything about the rarer transcripts that are provided

on the Human6. One solution would be to use a Human6 chip to discover

pathways in the analysis and then keep the data for the rare transcripts for

reference in case they are required at a later date.

Reannotation of the Human6 chip also reveals many Strip 2 probes to be

unreliable or mapping to regions not expected to produce signal. This might

be expected as these probes generally represent less common transcripts, and

therefore it is more challenging to design probes for them. If a Strip 2 probe

were to appear to be statistically significant, one would have to refer to the

reannotation to help judge if it is biologically relevant or not. Accommodat-

ing all 48,000 probes into the analysis may result in many false negatives and

potentially interesting findings being missing. This is shown by the results of

filtering on the MAQC dataset which already had many DE genes. Ideally,

standard filtering techniques are designed to remove uninformative probes

from the analysis. Having access to our reannotation information provides

extra information that can be used to decide which genes are uninformative,

rather than just relying on arbitrary cut-offs.

For Illumina data, the most common approach is to use the detection

scores provided by Illumina, which concentrates on removing probes with

low expression level across all samples being investigated. Whilst this should

work in most cases, it is not difficult to find examples in the literature of

probes mapping to intronic or intergenic regions with high expression level

in any sample. Moreover, many housekeeping genes can be found that have

high expression levels on all arrays. Such probes would not be removed by

filtering, and in some cases can be selected as being DE due to inadequate

data processing. The expression level of a gene should not be used as the

sole criterion to judge whether to exclude genes from the analysis. A cut-
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off based on variability might be preferred in conjunction with annotation

considerations. It seems apparent that intronic or intergenic probes are not

likely to appear as significant in a differential expression analysis, and even

if they do, the results are difficult to interpret. However, probes with mis-

matches compared to the genome could carry some useful information and

are often found to be DE. Future versions of the reannotation script will

report the base positions at which the mismatches occur and this could be

used to inform the filtering, as we would expect mismatches in the middle of

the sequence to affect the hybridisation to a greater degree.

Misannotated probes should be treated with care as they complicate our

interpretation of the analysis. Single instances of misannotated probes oc-

curring in a list of DE genes are easily dealt with if we are seeking a list

of the top ranked N genes, since they can simply be removed. However,

following up such findings may be a waste of resources and may have meant

the exclusion of other genes which just missed the cut-off for being declared

DE. Another problem occurs when we try to make inferences based on the

list of DE genes, in particular when trying to find common properties such

as pathways of functional annotation.

Unfortunately, it seems that the reported observation about ribosomal

proteins in Bykhovskaya et al. (2007) is nothing more than a technical

artefact. Looking at the behaviour of these genes over a large collection of

arrays revealed them to have high rank regardless of the sample processing.

Thus, the intensities of the genes are susceptible to batch effects and inade-

quate processing or transformation. A simple log2 transformation would have

reduced the influence of these genes. Because a large collection of genes from

the same pathway were considered to be DE when tested individually, the

pathway as a whole was deemed to have high biological relevance. However,

when the p-value for the pathway is calculated by DAVID (or similar tool)

the calculation generally assumes a certain size of genes in the pathway. Care

should be taken to make sure that these calculations are not affected by bi-

ases caused by many genes in the pathway having unreliable annotation. The

results of smaller pathways could be dramatically affected, even if one gene

was incorrectly called DE, which could falsely increase the evidence for the

whole pathway to be DE. Further research is required into how annotation

may be weighted in a GO analysis.
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In summary, this chapter demonstrates the importance of probe annota-

tion for Illumina arrays and shows how it can be incorporated into a standard

differential expression analysis. The development of the script to perform the

reannotation was refined in response to the results of this chapter. In par-

ticular the existence of repetitive elements will be accounted for in future

versions, along with the position in the sequence that a mismatch occurs.

The resulting annotation tables are freely available for researchers. In the

future these will be incorporated into a Bioconductor annotation package, re-

placing the existing illuminaHumanV1 package, for ease of use. The beadarray

package will also include functionality to incorporate annotation information

into a standard analysis.

It should be noted that subsequent revisions of the annotation used on the

Illumina Human6 chips have taken place, with versions 2 and 3 now available.

Naturally, there would need to be a thorough investigation into the properties

of these annotations. Such an investigation can be informed by the results

from Version 1 and these platforms have already been reannotated using the

script presented in (Barbosa-Morais et al., 2008). However, data from

these platforms are still quite scarce.
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Conclusions

During the course of this thesis, I have described many important aspects in

the analysis of Illumina microarray data. Investigations into new method-

ologies were initially hampered by the default analysis pipeline using bead-

summary data as the starting point for analysis and the lack of a suitable

dataset. The work presented in this thesis has made significant contributions

in this regard.

The beadarray software allows analysis to commence with the raw data

and puts every step under the control of the analyst. Therefore, the entire

analysis can be documented and researchers are also able to judge the per-

formance of each step and evaluate alternatives. Thus, a custom analysis can

be produced without relying on the summarised data produced by Illumina,

which may not be appropriate for all use-cases. Improved QA is also possible

with bead-level data using methods arising from other microarray technolo-

gies. For example, imageplots can identify significant spatial artefacts, which

were not previously reported for Illumina data as the facility did not exist to

visualise them systematically. These and other bead-level diagnostics can be

generated for any Illumina assay due to the raw data being identical for all

assays. One ongoing project is to develop better diagnostic plots for Illumina

data that can be generated automatically for large scale experiments. Guide-

lines should also be derived on how users can identify “bad” arrays without

having to manually check all the diagnostic plots.

The publication of an Illumina spike-in dataset should encourage the de-

velopment of new methods, especially as the bead-level data are available.

In this thesis, the spike-in data were used to investigate background correc-

tion, summarisation and, to some extent, normalisation. Background cor-

rection applied at the bead-level was found to be adequate, but accounting
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for non-specific hybridisation using the negative control probes (“background

normalisation”) was found to be sub-optimal is its current form, especially if

combined with a log2 transformation. An independently-developed transfor-

mation for Illumina data was found to alleviate some of these problems in the

context of a gene expression study. However, similar performance was found

by using the variances obtained from bead-level data to weight observations

accordingly. Further investigation is required into the best way of correcting

for effects such as non-specific hybridisation, as background normalisation

seems a crude way of doing so given that sequence-specific effects are seen

for non-spikes, which are not expected to show differential expression.

As well as the base-compostion of probe sequences, I also considered the

fundamental problem of where these sequences map in the genome. A sur-

prising conclusion from the spike-in analysis is the frequency with which

sequences may not map to the intended transcript. Such issues have been

reported for Affymetrix, but not for Illumina at the time of writing. Inclu-

sion of these misannotated probes in the analysis could lead to significant

findings being missed or declaring something to be significant, when actually

the signal being measured is due to hybridisation of targets other than the

intended one. This is important information to communicate to Illumina

users, and the planned release of the reannotation of popular Illumina arrays

to Bioconductor should also help in this regard. The reannotation can be

used as criteria for excluding misleading probes instead of having to rely on

ad-hoc criteria such as expression level or variability. In this thesis, these an-

notation issues have only been investigated for Version 1 Human and Mouse

chips. At the time of writing, these are the chips with the most data avail-

able. Naturally, one should check if the annotation of subsequent version of

Illumina chips has been improved.

The newer Illumina chips also have a different design in that all 48,000

probes are located on both strips for a given array. Thus, we should not see

the intensity difference observed due to all curated content being placed on

one strip. If the intensity differences persist on these newer chips, then the

summarised values for each gene could be significantly affected by unequal

numbers of beads between the two strips. The default processing methods

within BeadStudio will ignore this effect and hence being able to analyse

bead-level data through beadarray will be essential. A fundamental design
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question is raised by the strip difference seen for Version 1 chips and re-

searchers should question whether the inclusion of rare transcripts is bene-

ficial for their particular study. For published studies using Human6 chips,

the number of significant findings arising from Strip 2 was very low. Also,

for GO term enrichment and pathways analysis and comparisons between

platforms, reliable probe annotation is a necessity and therefore Strip 2 is of

little benefit.

To conclude, this thesis gives an in-depth portrayal of the process of de-

veloping new tools for an emerging technology. Although this technology has

many unique features appealing to bionformaticians and biologists alike, the

analysis of Illumina data can benefit greatly from lessons learnt from other

microarray technologies. Although the work described in this thesis concen-

trates on gene expression studies, I have worked on data from other Illumina

assays and the issues of QA and starting analysis at the bead-level are still

relevant. Researchers are becoming increasingly aware of bead-level data and

this is due to my efforts in publicising these data. The provision of open-

source software and example datasets provided by this work should further

advance our understanding of this technology and the unique challenges it

offers.
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work
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Appendix B

Code for Chapter 4

This chapter contains the R code required for the analysis of the BioC07
dataset in Chapter 4 (Preliminary Investigation into low-level Illumina data)
and assumes that the beadarray has been installed and file SAMExample.zip
downloaded into the current R working directory. These commands are in-
tended to give a guide to how the figures and data referred to in the chapter
were generated. Therefore to save space, some of the graphical options (e.g.
colours and labels of plots have been omitted.

First we load the package and read the bead level data

library(beadarray)

targets = read.table("targets.txt", sep="\t", header=TRUE, as.is=TRUE)

BLData = readIllumina(arrayNames=targets$arrayID, textType=".csv",
+ targets=targets, backgroundMethod="none")
BLData.bc = backgroundCorrect(BLData)
an=arrayNames(BLData)

Boxplots of the foreground, background and background corrected inten-
sities can be generated as follows

##Boxplots of foreground and background

ylim = c(4,16)
par(mfrow=c(1,3))
boxplotBeads(BLData,ylim=ylim)
boxplotBeads(BLData,ylim=ylim)
boxplotBeads(BLData.bc,ylim=ylim)
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Now generating imageplots and plots of outlier locations

par(mfrow=c(2,5))
zlim = c(6,16)
for(i in 1:10){
imageplot(BLData.bc, array=i, nrow=50, ncol=50, high="red", low="yellow")

}

##Plot outlier locations for 3 arrays with apparent spatial aretefacts

par(mfrow=c(1,3))
for(i in c(1,3,6)){
o=findAllOutliers(BLData.bc, array=i)
plotBeadLocations(BLData.bc, array=i, BeadIDs=o,SAM=TRUE)

}

##Calculate number of outliers

outliers = NULL
for(i in 1:10) {
outliers[i] = length(findAllOutliers(BLData.bc, array=i))

}

outliers/numBeads(BLData)*100

Now create bead summary data, which uses the default method of Illu-
mina, and make boxplots of expression values and number of beads.

BSData = createBeadSummaryData(BLData, imagesPerArray=1)

##Boxplots of expression values and number of beads

par(mfrow=c(1,2))
boxplot(as.data.frame(log2(exprs((BSData)))))
boxplot(as.data.frame(NoBeads(BSData)[-1265,]))

par(mfrow=c(2,3))
plotMA(exprs(BSData), 1,2)
plotMA(exprs(BSData), 1,3)
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plotMA(exprs(BSData), 2,3)
plotMA(exprs(BSData),6,7)
plotMA(exprs(BSData),6,8)
plotMA(exprs(BSData),7,8)

##Correlations between replicates

cor(exprs(BSData))

A simple DE analysis after applying a quantile normalisation on log2

transformed data. We will fit two linear models using limma; the first model
to all 10 arrays and the second with Array 1 removed. The effect on the
volcano plot can be used to judge the difference of removing the array.

normData = normaliseIllumina(BSData,transform="log2")

design = matrix(nrow=10, ncol=2,0)
design[1:5,1]=1
design[6:10,2]=1
colnames(design) = LETTERS[1:2]

fit = lmFit(exprs(normData), design)

contrast = makeContrasts(AvsB = A -B, levels=design)

AvsB = contrasts.fit(fit,contrast)

ebFit = eBayes(AvsB)

fit2 = lmFit(exprs(normData)[,-1], design[-1,])

AvsB2 = contrasts.fit(fit2, contrast)

ebFit2 = eBayes(AvsB2)

par(mfrow=c(1,2))

volcanoplot(ebFit)
volcanoplot(ebFit2)
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Appendix C

Supplementary Figures

This appendix shows modified versions of selected TIFF images from the
BioC07 dataset. The contrast and colour balance of each image have been
modified in order to highlight spatial artefacts on the arrays. Obviously mak-
ing such adjustments manually is time-consuming for large experiments and
unnecessary if we have tools to automatically detect such artefacts.

Figure C.1: Modified TIFF images for arrays 1, 3 and 6 from the BioC07
dataset.
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