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Abstract

The subject of the present thesis is the Chern-Simons-Schrödinger system, which is a gauge-covariant

Schrödinger system in two spatial dimensions with a long-range electromagnetic field. The present thesis

studies two aspects of the system: that of well-posedness and that of the long-time behaviour.

The first main result of the thesis concerns the large-data well-posedness of the initial-value problem

for the Chern-Simons-Schrödinger system. We impose the Coulomb gauge to remove the gauge-invariance,

in order to obtain a well-defined initial-value problem. We prove that, in the Coulomb gauge, the Chern-

Simons-Schrödinger system is locally well-posed in the Sobolev spaces Hs for s ě 1, and that the solution

map satisfies a weak Lipschitz continuity estimate. The main technical difficulty is the presence of a

derivative nonlinearity, which rules out the naive iteration scheme for proving well-posedness. The key

idea is to retain the non-perturbative part of the derivative nonlinearity in the principal operator, and

to exploit the dispersive properties of the resulting paradifferential-type principal operator, in particular

frequency-localised Strichartz estimates, using adaptations of the Up and V p spaces introduced by Koch

and Tataru in other contexts.

The other main result of the thesis characterises the large-time behaviour in the case where the

interaction potential is the defocusing cubic term. We prove that the solution to the Chern-Simons-

Schrödinger system in the Coulomb gauge, starting from a localised finite-energy initial datum, will

scatter to a free Schrödinger wave at large times. The two crucial ingredients here are the discovery of

a new conserved quantity, that of a pseudo-conformal energy, and the cubic null structure discovered

by Oh and Pusateri, which reveals a subtle cancellation in the long-range electromagnetic effects. By

exploiting pseudo-conformal symmetry, we also prove the existence of wave operators for the Chern-

Simons-Schrödinger system in the Coulomb gauge: given a localised finite-energy final state, there exists

a unique solution which scatters to that prescribed state.
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Chapter 1

Introduction

1.1 The Chern-Simons-Schrödinger system

The present thesis is concerned with the Chern-Simons-Schrödinger system [23, 24], which is a gauge-

covariant Schrödinger system in Rt ˆ R2
x. Precisely, it has the form

$

’

’

’

’

&

’

’

’

’

%

iDtϕ` DiDiϕ “ 2V 1p|ϕ|2qϕ ,

B1A2 ´ B2A1 “ ´ 1
2 |ϕ|2 ,

BtAi ´ BiA0 “ ´ϵijIm
`

ϕ Djϕ
˘

(1.1)

where Dt,D1,D2 are the covariant derivative operators defined by

Dt :“ Bα ` iA0 ,

Di :“ Bi ` iAi , i “ 1, 2 ,

and V is a (possibly zero) polynomial of the form

V pρq “ c2ρ
2 ` . . .` cdρ

d (1.2)

for some d ě 2, such that c2, . . . , cd are real numbers. Here and in the rest of this section, repeated

indices are always summed over, and ϵij denotes the standard anti-symmetric 2-form with ϵ12 “ 1.

The Chern-Simons-Schrödinger system (1.1) is a non-relativistic Lagrangian field theory whose action

is given by

LCSSpϕ,Aq :“

ĳ

RtˆR2
x

ˆ

1

2
Im

`

ϕDtϕ
˘

`
1

2
|Dxϕ|

2
` V p|ϕ|2q

˙

dx dt`
1

2

ĳ

RtˆR2
x

A^ dA

where A :“ A0dt ` A1dx1 ` A2dx2 is the electromagnetic potential 1-form. It describes the effective

dynamics of a large system of non-relativistic charged quantum particles, interacting with each other

via an interaction potential V , and also with the self-generated electromagnetic field. The Schrödinger

field ϕ is commonly called the “condensate wave-function” in the physics literature, and describes the

9



10 1.1. THE CHERN-SIMONS-SCHRÖDINGER SYSTEM

local quantum state of the particle system. The physical interpretation of the last two equations of (1.1)

is that the electric field is proportional to a rotation of the matter current, while the magnetic field is

proportional to the local charge density. The Chern-Simons-Schrödinger system (1.1) has been proposed

as a theoretical model for various condensed matter phenomena such as the quantum Hall effect and high

temperature superconductivity.

The Chern-Simons-Schrödinger system (1.1) enjoys the following two conservation laws: that of the

total mass,

Mptq :“
1

2

ż

R2

|ϕpt, xq|2 dx “ Mp0q ,

and that of the energy

Eptq :“

ż

R2

ˆ

1

2
|Dxϕpt, xq|

2
` V p|ϕpt, xq|2q

˙

dx “ Ep0q .

Another important aspect of the Chern-Simons-Schrödinger system (1.1) is that of gauge-invariance.

Indeed, if pϕ,Aq solves (1.1), then so does

`

eiχϕ,A` dχ
˘

for any sufficiently well-behaved function χ : Rt ˆ R2
x Ñ R. Such a gauge-invariance introduces an

unnecessary degree of freedom in the space of solutions. In order that the evolution of (1.1) be well-

defined, this gauge-invariance must be eliminated by imposing an additional constraint equation, that is,

by fixing a gauge. There are at least two gauge choices available.

• Throughout this thesis, we will work in the Coulomb gauge, which is defined by the condition

B1A1 ` B2A2 “ 0 .

With the Coulomb gauge condition, straightforward manipulations reduce (1.1) to the following

system,
$

’

’

’

’

&

’

’

’

’

%

pBt ´ i△qϕ “ ´2Ax ¨ ∇ϕ´ iA0ϕ´ i|Ax|2ϕ´ 2iV 1p|ϕ|2qϕ ,

´△Ai “ ´ 1
2ϵijBj

`

|ϕ|2
˘

,

´△A0 “ ´Im
`

∇ϕ^ ∇ϕ
˘

´ rot
`

Ax|ϕ|2
˘

.

(1.3)

Here, we have denoted the cross product a ^ b :“ a1b2 ´ a2b1, and Ax :“ pA1, A2q the spatial

components of A, and ∇ :“ pB1, B2q the spatial derivatives.

Observe that in the Coulomb gauge, the electromagnetic potentials A0, Ai are no longer dynamical

variables, but are uniquely determined at each time t by solving a Poisson equation. In particular,

for the initial value problem, one only prescribes ϕp0q :“ ϕin as the initial datum.

• Another possible gauge choice is the heat gauge introduced in [13], which is defined by the condition

A0 “ B1A1 ` B2A2 .
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In the heat gauge, (1.1) reduces to the following system

$

’

’

’

’

&

’

’

’

’

%

pBt ´ i△qϕ “ ´2Ax ¨ ∇ϕ´ p1 ` iqA0ϕ´ i|Ax|2ϕ´ 2iV 1p|ϕ|2qϕ ,

pBt ´ △qAi “ ´ϵij
`

1
2Bj

`

|ϕ|2
˘

´ Im
`

ϕBjϕ
˘

´Aj |ϕ|2
˘

,

pBt ´ △qA0 “ ´ϵijBi
`

Im
`

ϕBjϕ
˘

`Aj |ϕ|2
˘

.

(1.4)

Note that, in the heat gauge, the heat evolution imposed by the gauge choice destroys the time

reversibility of the Chern-Simons-Schrödinger system.

After imposing the heat gauge, one still needs to impose initial conditions for A in (1.4), but has the

freedom to do so in any way consistent with the last equation in (1.1). Perhaps the most natural

way to impose initial conditions for A is to require A0p0q “ 0, leading to

$

’

’

’

’

&

’

’

’

’

%

ϕp0q “: ϕin ,

Aip0q “ 1
2ϵij△

´1Bj
`

|ϕin|2
˘

,

A0p0q “ 0 .

(1.5)

We will not study the Chern-Simons-Schrödinger system in the heat gauge (1.4) in this thesis,

but only remark that the choice of the heat gauge is crucial in the small-data low-regularity well-

posedness theory of [36].

1.2 Statement of results

The first major result in the thesis, proved in Chapter 2, is that the Chern-Simons-Schrödinger system in

the Coulomb gauge, (1.3), is locally well-posed for large initial data in Hs, s ě 1. Denoting by BHspDq

the closed ball in Hs of radius D, we state this result as follows.

Theorem 1.1 (Well-posedness). Let s ě 1. Recall V is a (possibly zero) polynomial of the form (1.2).

(i) For any D ą 0, there exists T “ T ps,Dq ą 0 such that, given any initial datum ϕin P BHspDq, there

exists a unique solution ϕ P Cbpp´T, T q,Hsq to (1.3) with ϕp0q “ ϕin, which is the unique uniform

limit of smooth solutions.

(ii) With D ą 0 and T “ T ps,Dq as above, the solution map

BHspDq Q ϕp0q ÞÑ ϕ P Cbpp´T, T q,Hsq

is continuous, and satisfies the local-in-time weak Lipschitz bound

›

›ϕ´ ϕ1
›

›

L8
t pp´T,T q,Hs´1q

ď C
›

›ϕp0q ´ ϕ1p0q
›

›

Hs´1 . (1.6)

Moreover, persistence of regularity holds: for any D1 ą 0, there exists T‹ “ T‹ps,D1q ą 0 and

C‹ “ C‹ps,D1q ą 0 such that any Hs solution ϕ, whose initial datum satisfisfies

}ϕp0q}H1 ď D1 ,
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can be continued to p´T‹, T‹q, with the bound

}ϕ}L8
t pp´T‹,T‹q,Hsq ď C‹ }ϕp0q}Hs . (1.7)

Therefore we have the following blow-up criterion: A maximal-in-time Hs solution ϕ to (1.3) is global if

and only if }ϕptq}H1 does not blow up in finite time.

In particular, if V is a nonzero polynomial with cd ą 0, so that the conserved energy is coercive, then

(1.3) is globally well-posed in Hs, s ě 1.

The rest of the thesis concern the long-time behaviour of (1.3) in the particular case where the

interaction potential V gives a defocusing cubic nonlinearity. We define, for s ą 0, the spaces

Σs :“
␣

w P HspR2q
ˇ

ˇ |x|sw P L2pR2q
(

(1.8)

with the norm

}w}Σs :“ }w}Hs ` }|x|sw}L2
x
.

Then we have the following results establishing a form of asymptotic completeness for (1.3).

Theorem 1.2 (Scattering). Assume V p|ϕ|2q “ 1
4κ|ϕ|4 with κ ą 0. Suppose ϕ P Cpr0,8q,H1q is a

solution to (1.3) such that ϕp0q P Σ1. Then there exists ϕ8 P Σ1 such that

lim
tÑ8

›

›ϕptq ´ eit△ϕ8

›

›

L2
x

“ 0 .

Theorem 1.3 (Existence of wave operators). Assume V p|ϕ|2q “ 1
4κ|ϕ|4 with κ ą 0. Given ϕ8 P Σ1,

there exists a unique solution ϕ P Cpr0,8q, H1q to (1.3) such that e´it△ϕptq P L8
t pr0,8q, Σ1q, and

lim
tÑ8

›

›ϕptq ´ eit△ϕ8

›

›

L2
x

“ 0 .

Theorems 1.2 and 1.3 are proved in Chapter 3.

1.3 History of the problem and related models

Gauge theories from geometry and physics have been fertile sources of interesting problems in PDE theory.

Formally gauge fields are connections on some vector bundle, or more generally on some principal bundle,

over a smooth manifold. These arise in physics when the underlying manifold models space or space-time,

and where the bundle encodes local states of particles, and the curvature of the connection describes

fundamental forces such as electromagnetism or nuclear forces. On physical grounds, one is usually

interested in gauge fields which formally extremise some Lagrangian action; often the corresponding Euler-

Lagrange equations then give a gauge-invariant PDE system. Once the gauge invariance is eliminated by

fixing a gauge choice, one derives a well-defined evolution PDE system.

The present section aims to give an informal overview of certain gauge theories studied by the nonlinear

dispersive equations community, and with view towards motivating certain concepts that have been found

useful in the study of gauge theories related to the Chern-Simons-Schrödinger system.
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We will not develop in any generality the geometric and topological underpinnings of gauge theories,

and refer the interested reader to standard textbooks such as [37, 38]. Neither will we be very much

concerned with elliptic or parabolic systems (i.e. static solutions extremising energy functionals, or the

downward gradient flows of such functionals); our focus will be toward evolution problems of the wave

or dispersive type.

1.3.1 Geometric dispersive equations as gauge theories

These are equations governing maps ϕ : Rt ˆ Rd
x Ñ M for some Riemannian manifold M. We will be

primarily concerned with providing a gentle overview of wave maps and Schrödinger maps; the reader

may refer to [57] for a more technical account.

In this subsection, for convenience we will use Greek letters α, β, . . . for space-time indices, where

α “ 0 refers to the time coordinate and α “ 1, . . . , d refer to the spatial coordinates. We continue to use

Latin letters i, j, . . . to denote spatial coordinates 1, . . . , d.

There are two ways to formulate geometric dispersive equations as PDE.

• In the extrinsic formulation, one assumes M to be isometrically embedded as a hypersurface in

some Euclidean space Rm`1, where m :“ dimM. One then views ϕ as a map Rt ˆ Rd
x Ñ Rm`1

that happens to take values in M.

• In the intrinsic formulation, one considers the derivatives Bαϕ as sections of ϕ˚TM covering ϕ.

Since the domain space Rt ˆ Rd
x is simply-connected, one can choose an orthonormal frame for

ϕ˚TM and express Bαϕ in their components ψα : Rt ˆ Rd
x Ñ Rm with respect to this frame. The

pullback of the Levi-Civita connection on M then gives rise to gauge-covariant derivatives Dα.

The intrinsic formulation is arguably the more natural of the two formulations, and will be the focus

of the discussion in this section.

We remark that its main drawback, compared to the extrinsic formulation, is the difficulty arising

from the fact that the curvature components rDα,Dβs at a point pt, xq will in general depend not just

on the derivatives Bαϕpt, xq, but also on the target point ϕpt, xq itself. Thus, the intrinsic formulation is

mainly useful in the case where the target manifold M has constant curvature, i.e. M is either a sphere

or a hyperbolic space, so that this dependence on ϕpt, xq does not manifest.

We now explain how to derive a gauge theory from the intrinsic formulation of a geometric dispersive

equation. Let us be given a map ϕ : Rt ˆ Rd
x Ñ M, where M is a Riemannian manifold with constant

curvature κ P t˘1u. Suppose we have chosen an orthonormal frame e “ te1, . . . , emu for ϕ˚TM. We can

then define the corresponding differentiated fields ψα : Rt ˆ Rd
x Ñ Rm by

Bαϕ “:
m
ÿ

a“1

pψαqa ea .
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With respect to the frame e we also define the connection coefficients Aα : Rt ˆ Rd
x Ñ Rmˆm by

pϕ˚∇qα eb “:
m
ÿ

a“1

pAαqab ea

where ∇ is the Levi-Civita connection on M. Note that since e is an orthonormal frame, Aα take values

in the Lie algebra opmq of m ˆ m anti-symmetric matrices. With respect to the frame e, the covariant

derivative operators Dα are then defined as

Dα :“ Bα `Aα

acting on functions w : Rt ˆ Rd
x Ñ Rm. Equivalently, for any section

řm
a“1 waea of ϕ˚TM, we have

pϕ˚∇qα

˜

m
ÿ

a“1

waea

¸

“

m
ÿ

a“1

pDαwqa ea .

We observe the following two important constraint equations in the above framework.

• As the Levi-Civita connection is torsion-free we have ∇BαϕBβϕ “ ∇BβϕBαϕ, which translates to the

constraint

Dαψβ “ Dβψα . (1.9)

• Since M has constant curvature κ, it holds that r∇X ,∇Y sZ ´ ∇rX,Y sZ “ κpxY, ZyX ´ xX,ZyY q

for any vector fields X,Y, Z on M. On pulling back via ϕ, we find the constraint

BαAβ ´ BβAα ` rAα, Aβs “ κ
`

ψαψ
J
β ´ ψβψ

J
α

˘

. (1.10)

Now, the differentiated fields ψα and the connection coefficients Aα were defined above only with respect

to a frame e. Gauge-invariance is simply the freedom to work with a different frame. A different frame

re “ tre1, . . . ,remu will be related to the original frame e by reb “
řm

a“1 Uabea where U : Rt ˆ Rd
x Ñ Rmˆm

takes values in the orthogonal matrices. Correspondingly

rψα “ Uψα , rAα “ U´1AαU ` U´1BαU .

We note that the constraint equations (1.9) and (1.10) are automatically satisfied for rψα and rAα.

In the study of geometric dispersive equations, one needs to specify the orthonormal frame in order

to obtain a well-defined evolution equation for the differentiated fields ψα; this is called fixing the gauge.

It is natural to choose the orthonormal frame depending on ϕ so as to maximise the advantage to the

analysis. Indeed, in recent years, several major advances in obtaining optimal results on well-posedness

and large-data behaviour have relied crucially on making an appropriate gauge choice.

Example 1.4. The Coulomb gauge is the gauge choice defined by imposing

d
ÿ

i“1

BiAi “ 0 .

Substituting into (1.10) yields

△Aα “

d
ÿ

i“1

`

κBi
`

ψiψ
J
α ´ ψαψ

J
i

˘

´ Bi rAi, Aαs
˘

.
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Thus, at least when the ψα are small in some sense, the preceding equation can be solved uniquely to

yield Aα in terms of ψα. This gives a frame e, depending on ψα, whose connection coefficients are Aα.

If the ψα are large and m ě 3 so that gauge group is not commutative, then the Coulomb gauge need

not exist uniquely; this non-uniqueness is known as the Gribov ambiguity.

We now introduce the wave maps equation. Endow the domain space Rt ˆ Rd
x with the standard

p´ ` ¨ ¨ ¨ `q Minkowski metric, with respect to which we raise and lower space-time indices and employ

the Einstein summation convention of implicitly summing over each pair of repeated upper and lower

indices.

Definition 1.5. We say that a map ϕ : Rt ˆ Rd
x Ñ M is a wave map if it is a formal critical point of

the Lagrangian functional

LWMpϕq :“

ĳ

RtˆRd
x

xBαϕpt, xq, Bαϕpt, xqyϕpt,xq dxdt .

Using xBαϕ, Bαϕy “ xψα, ψαy and effecting the variation, we obtain

Dαψα “ 0 . (1.11)

The intrinsic formulation of the wave maps equation therefore consists of (1.9), (1.10) and (1.11).

We also note that, in the positive curvature case when M “ Sm Ă Rm`1 the wave maps equation

gives lϕ “ pϕ ¨ lϕqϕ where l :“ BαBα is the usual d’Alambertian operator. This gives the extrinsic

formulation

lϕ “ ´ pBαϕ ¨ Bαϕqϕ . (1.12)

The wave maps equation is arguably the simplest geometric wave equation, and naturally generalises

the classical harmonic maps equation to Lorentzian domains. Moreover, quite apart from its mathematical

interest, it also arises as a sigma model in physics; for example, [16] proposed the wave maps equation,

with d “ 3 and M “ S3, as a model for interactions between subatomic particles known as pions.

Tremendous progress was made over the past two decades on understanding various mathematical

aspects of the wave maps equation, on issues such as critical well-posedness and large-data behaviour

in the energy-critical d “ 2 setting. Again, we will refrain from providing a detailed overview of all the

mathematical work that has arisen out of the study of wave maps, but refer the interested reader to [51],

Chapter 6, to [57], and to the excellent recent textbook [15].

We now observe that the wave maps equation is invariant under the scaling symmetry

ϕpt, xq ÞÑ ϕ

ˆ

t

λ
,
x

λ

˙

.

Under this scaling symmetry the 9H
d
2 norm of ϕ is invariant. By standard scaling heuristics one would

expect ill-posedness of the initial value problem below the 9H
d
2 regularity, and one could at best hope for

local well-posedness above the 9H
d
2 regularity and small-data global well-posedness at the 9H

d
2 regularity.
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The problem becomes especially interesting in d “ 2 spatial dimensions, when the critical 9H1 norm

coincides with the conserved energy.

Almost optimal local well-posedness of the wave maps equation (1.12) in Hs for s ą d
2 and d ě 2 was

obtained by Klainerman-Machedon [28] and by Klainerman-Selberg [29], by exploiting the null structure

in (1.12) in the framework of hyperbolic Sobolev spaces. For the critical well-posedness of (1.12), two

major breakthroughs occurred at the turn of the century. Firstly, Tataru introduced Besov-space variants

of the hyperbolic Sobolev spaces in [54] and null-frame spaces in [55], with which small-data global well-

posedness in the scaling-invariant Besov space 9B
d
2
2,1 was shown for d ě 2. Secondly, Tao introduced a

geometric renormalisation procedure in [48] to prove global regularity of local solutions with small 9H
d
2

initial data when d ě 5, and refined the procedure in [49], using Tataru’s null frame spaces, to obtain the

analogous result for all d ě 2. The concepts provided by these advances were crucial to the small-data

global well-posedness of (1.12) in the Sobolev space 9H
d
2 , finally obtained by Tataru in [56].

Having obtained small-data global well-posedness in the energy-critical setting for wave maps in

d “ 2 spatial dimensions, the natural next step is to investigate the large-data scenario. Motivated by a

conjecture of Klainerman that large-energy wave maps into negatively curved targets should be globally

regular, Tao proposed in [50] a new geometric renormalisation procedure for the wave maps equation in

the intrinsic formulation, (1.11), when the target is a hyperbolic space, i.e. κ “ ´1. The key new idea is

a new gauge choice for (1.11) which we explain now.

Recall from our discussion in Example 1.4 that due to the Gribov ambiguity the Coulomb gauge need

not exist uniquely for large energy. Another drawback of the Coulomb gauge is that it exhibits, in low

dimensions, very poor high ˆ high Ñ low frequency interactions, which are not amenable to analysis at

the critical regularity.

To circumvent these limitations, Tao introduced a new gauge choice, the caloric gauge, which is based

on the harmonic map heat flow. To define the caloric gauge, augment the wave map ϕ by adding in a

new “heat time” coordinate s P r0,8q, so that ϕ “ ϕpt, x, sq. For any fixed physical time t, demand

ϕpt, ¨, s “ 0q to be the original wave map, and that ϕpt, ¨, sq solves the harmonic map heat flow in the

“heat time” s, i.e.

ψs “ D1ψ1 ` D2ψ2 .

Under the assumption of negative curvature of the target M, or under a “small mass” assumption of the

initial datum when M has positive curvature, the harmonic map heat flow with the 9H1 initial datum

ϕpt, ¨, s “ 0q will converge to a constant map ϕp8q as s Ñ 8. The caloric gauge is then constructed by

choosing an orthonormal basis for Tϕp8qM and parallel-transporting this basis back to s “ 0 via the

heat flow. More precisely, plugging the parallel-transport condition

As “ 0

into (1.10), one gets

BsAα “ κ
`

ψsψ
J
α ´ ψαψ

J
s

˘

,
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and therefore the caloric gauge condition is given by

Aαpt, xq “ ´κ

ż 8

0

`

ψsψ
J
α ´ ψαψ

J
s

˘

pt, x, sqds .

Apart from the fact that the caloric gauge exists for large-energy maps into hyperbolic space where the

Coulomb gauge does not exist, the caloric gauge also eliminates the bad frequency interactions present

in the Coulomb gauge. We refer the reader to [50] and to [51], Chapter 6, for further heuristic discussion.

In [52], Tao outlines an ambitious programme to prove global regularity of large-energy wave maps

from RtˆR2
x into hyperbolic space. The programme was subsequently completed in a series of unpublished

articles [53].

Eventually, however, Sterbenz and Tataru, using different arguments, obtained a more general global

regularity and scattering result for energy-critical wave maps to more general targets, including the

hyperbolic spaces. Their main result in [46] is that an energy-dispersion criterion is sufficient to imply

global regularity. Then, in [47], they showed that solutions with energy below that of the first nontrivial

harmonic map do indeed satisfy the energy-dispersion criterion. In particular, since there are no nontrivial

harmonic maps from R2
x to hyperbolic spaces, energy-critical wave maps to hyperbolic spaces are global.

Nevertheless, the caloric gauge proved to be of crucial importance in the study of another important

geometric dispersive equation, namely the Schrödinger map equation. In what follows we shall describe

only Schrödinger maps with target M “ S2, although Schrödinger maps can also be defined with any

Kähler manifold as a target.

Definition 1.6. A map ϕ : Rt ˆRd
x Ñ S2 Ă R3 is a Schrödinger map if it satisfies the Schrödinger maps

equation,

Btϕ “ ϕˆ △ϕ . (1.13)

Apart from its geometric interest, the Schrödinger maps equation (1.13) also arises in physics as a

Heisenberg model for ferromagnetic spin systems [40].

Like the wave maps equation, the Schrödinger maps equation exhibits a scaling symmetry: The

Schrödinger maps equation is invariant under

ϕpt, xq ÞÑ ϕ

ˆ

t

λ2
,
x

λ

˙

.

Under this scaling symmetry the 9H
d
2 norm of ϕ is invariant, and, again, scaling heuristics dictate that

a small-data global well-posedness at the 9H
d
2 regularity would be optimal. In particular, the problem

becomes especially interesting in two spatial dimensions, where the critical Sobolev regularity 9H1 coincides

with that of the conserved energy.

We now formulate the Schrödinger maps equation intrinsically as a gauge theory. As before, assume

we have selected an orthonormal frame te1, e2u for ϕ˚TS2 that is consistent with the orientation of S2.
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With respect to this frame we may associate differentiated fields ψα. However, it is fruitful here to exploit

the complex structure of S2 and consider ψα as taking values in C, by writing

ψα “ pψαq1 ` i pψαq2 .

The connection coefficients Aα take values in the Lie algebra op2q of skew-symmetric 2 ˆ 2 matrices,

which is a 1-dimensional Lie algebra and in particular is abelian. We may thus, instead, re-define Aα to

be real-valued, and re-define the covariant derivative operators by

Dα :“ Bα ` iAα .

Recalling also κ “ 1, the equation (1.10) for the curvature components becomes

BαAβ ´ BβAα “ Im
`

ψαψβ

˘

. (1.14)

The Schrödinger maps equation (1.13) is then written in terms of the differentiated fields as

ψt “ i
d
ÿ

i“1

Diψi

which, on differentiating and applying (1.9) and (1.14), reduces to

Dtψj “ i
d
ÿ

ℓ“1

DℓDℓψj ´

d
ÿ

ℓ“1

Im
`

ψℓψj

˘

ψℓ . (1.15)

The Schrödinger maps equation in intrinsic formulation thus consists of (1.15) along with the constraint

equations (1.9) and (1.14). Expanding (1.15) gives the equivalent equation

piBt ` △qψj “ ´2i
d
ÿ

ℓ“1

AℓBℓψj ´ i

˜

d
ÿ

ℓ“1

BℓAℓ

¸

ψj `
`

At ` |Ax|2
˘

ψj ´ i
d
ÿ

ℓ“1

Im
`

ψℓψj

˘

ψℓ .

Note that the critical regularity of (1.15) is 9H
d
2 ´1 in the differentiated fields ψj . As usual, scaling

heuristics dictate that this is the best regularity at which one can hope for well-posedness.

Remark 1.7. The alert reader would have noticed the similarity between the intrinsic formulation of

the Schrödinger maps equation, (1.15), and the Chern-Simons-Schrödinger system (1.1) with a cubic

nonlinearity, i.e. with V p|ϕ|2q “ κ
4 |ϕ|4. In fact, much recent work on the Chern-Simons-Schrödinger

system was influenced by progress on understanding the Schrödinger maps equation.

Smith [45] explores in greater detail the relationship between the Schrödinger maps equation and

the Chern-Simons-Schrödinger system with a cubic nonlinearity. There, he derived the energy-critical

Schrödinger maps equation in d “ 2 spatial dimensions as the Euler-Lagrange equation associated to the

action

LSMpϕ,Aq :“

ĳ

RtˆR2
x

˜

Re
`

ψ2 Dtψ1

˘

´

2
ÿ

j“1

Im
`

Djψ2 Djψ1

˘

¸

dxdt

`
1

2

ĳ

RtˆR2
x

´

|ψ1|
2

` |ψ2|
2
¯

dxdt`
1

2

ĳ

RtˆR2
x

A^ dA

subject to the torsion-free constraint (1.9). Notice the remarkable appearance of the Chern-Simons term
ť

A^ dA in the action.
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The first critical well-posedness results for the Schrödinger maps equation were obtained by Ionescu-

Kenig [21, 22] and independently by Bejenaru [2], where small-data global well-posedness of the Schrödinger

maps equation in the extrinsic formulation, (1.13), in the critical Besov space 9B
d
2
2,1 for d ě 3. Well-

posedness in critical Sobolev spaces was later addressed in [3] for d ě 4, by working in the intrinsic

formulation (1.15) and imposing the Coulomb gauge; there the authors proved the small-data global

well-posedness of (1.15) with initial data ψj P 9H
d
2 ´1pRd

xq.

Unlike the wave maps equation, the Schrödinger maps equation is only first-order in time, and the

nonlinear term ´2i
ř

ℓAℓBℓψj involving a derivative term is consequently more difficult to handle in

a perturbative manner. A major advance in the above works is the discovery and exploitation of a

smoothing estimate for the Schrödinger propagator. For e P Sd´1, define for p, q ě 1 the function space

Lp,q
e by the norm

}f}Lp,q
e

:“

˜

ż

R

„
ż

R

ż

eK

ˇ

ˇfpt, re ` x1q
ˇ

ˇ

q
dHd´1px1q dt

ȷ

p
q

dr

¸
1
p

(1.16)

with the obvious modification when either p “ 8 or q “ 8. Then, when d ě 3, for any ϕ P L2
xpRdq whose

Fourier transform is supported in tλ
2 ď |ξ| ď 2λ, ξ ¨ e ě 1

2 |ξ|u, one has, for example, the estimate

›

›eit△ϕ
›

›

L2,8
e

ď Cλ´ 1
2 }ϕ}L2

x
. (1.17)

Notice that crucial gain of half a derivative of the solution from the initial datum. By using the TT˚

argument, one then obtains a gain of one full derivative from the nonlinearity, which is the key to closing

the iterative argument.

For the interesting energy-critical problem of obtaining small-data global well-posedness of (1.15)

with initial data ψj P L2pR2
xq, there are at least two additional hurdles. The first is the failure of the

smoothing estimate (1.17) in d “ 2 spatial dimensions. The other is the extremely bad highˆhigh Ñ low

interactions in the Coulomb gauge, which becomes problematic in low spatial dimensions. In the major

work [4], the authors overcame the former hurdle by introducing suitable refinements of the Lp,q
e spaces,

and the latter by imposing Tao’s caloric gauge in place of the Coulomb gauge. In doing so, they were able

to finally prove the small-data global well-posedness of the energy-critical Schrödinger maps equation in

d “ 2 spatial dimensions.

Following the small-data theory for energy-critical Schrödinger maps, the next step is to understand

the large-energy behaviour. Based on the results obtained for wave maps, it is natural to expect an energy-

dispersion continuation criterion for Schrödinger maps, and in particular global regularity of Schrödinger

maps with energy below the threshold energy, i.e. the energy of the first nontrivial harmonic map. This

programme was essentially completed by Smith. In [42], Smith showed that the caloric gauge exists at

all energies below the threshold energy, so that large-energy well-posedness can be obtained. Then, in

[44], Smith demonstrated energy-dispersion as a continuation criterion under the additional assumption

of an a priori L4
t,x bound on ψj . This conditional L

4
t,x assumption was later removed in [43].
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1.3.2 Earlier results on the Chern-Simons-Schrödinger system

To the author’s knowledge, most previous works on the Chern-Simons-Schrödinger system (1.1) dealt

with a cubic interaction where V p|ϕ|2q “ κ
4 |ϕ|4. All results in this subsection are restricted to

this case. We also note that in this case, the Chern-Simons-Schrödinger system is invariant under the

scaling symmetry

ϕpt, xq ÞÑ
1

λ
ϕ

ˆ

t

λ2
,
x

λ

˙

, Aipt, xq ÞÑ
1

λ
Ai

ˆ

t

λ2
,
x

λ

˙

, A0pt, xq ÞÑ
1

λ2
A0

ˆ

t

λ2
,
x

λ

˙

,

under which the L2
x norm of ϕ is also invariant. Hence, the Chern-Simons-Schrödinger system, with a

cubic nonlinearity, is mass-critical.

Well-posedness in H2 of the Chern-Simons-Schrödinger system in the Coulomb gauge, (1.3), was

established by Bergé-deBouard-Saut [6], by invoking an abstract theorem of Kato. By means of a

regularisation argument, they also established, in the same paper, global existence of H1 solutions for H1

initial data having sufficiently small total mass, but they did not prove that such solutions are unique.

In addition, in the focusing case κ ă 0 they proved the existence of the blow-up solutions to (1.3) using

a virial argument. Unconditional uniqueness in L8
t H

1 of solutions for (1.3) was later demonstrated by

Huh in [20] using clever energy estimates, but the continuous dependence of these H1 solutions on their

initial data remains open. We note that neither of these approaches require exploiting the dispersive

features of (1.3).

Motivated by the spectacular progress on the Cauchy problem for the Schrödinger maps equation,

Liu-Smith-Tataru investigated the low-regularity well-posedness of the Chern-Simons-Schrödinger system

[36]. In this very difficult and technical work, they obtained the almost-optimal local well-posedness for

small initial data in Hε for ε ą 0 of the Chern-Simons-Schrödinger system in the heat gauge, (1.4). The

obvious difficulty is that, unlike the Schrödinger maps equation, the caloric gauge does not exist in the

setting of the Chern-Simons-Schrödinger system as there is no natural analogue of the harmonic map

heat flow, while the Coulomb gauge still exhibits still exhibits bad frequency interactions. The choice

of the heat gauge serves to improve the regularity of the electromagnetic potentials Aj in the frequency

region |τ | " |ξ|. Several other key ideas in their work include:

• The discovery and exploitation of some null structure in the cubic derivative nonlinearities.

• A second iteration to solve the heat equation for the electromagnetic potentials Aα. This is where

the small-data hypothesis is crucial.

• The use of lateral Up and V p spaces to take advantage of smoothing estimates in the Lp,q
e type

spaces, defined in (1.16).

• Meshing together these Up and V p spaces with angular spaces, which are necessary to treat the

difficult long-range interactions in the Chern-Simons-Schrödinger system.

Unfortunately, in contrast to the successful use of the caloric gauge to obtain optimal well-posedness

of the Schrödinger maps equation at the critical regularity, the heat gauge still does not exhibit all
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the cancellations necessary to obtain critical well-posedness of the Chern-Simons-Schrödinger system.

Therefore the Liu-Smith-Tataru result remains the best low-regularity well-posedness result available.

The situation is markedly improved in the symmetry-reduced setting of equivariant solutions, which

are called vortex solutions in the physics literature. These are solutions of the Chern-Simons-Schrödinger

system in the Coulomb guage, (1.3), which have the form

ϕpt, xq “ eimθϕpt, rq , A “ A0pt, rqdt`Aθpt, rqdθ

for some m P Z. Under this ansatz, (1.3) reduces to
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

piBt ` △qϕ “
2m

r2
Aθϕ`A0ϕ`

1

r2
A2

θϕ` κ|ϕ|2ϕ ,

BrA0 “
1

r
pm`Aθqϕ ,

BtAθ “ rIm
`

ϕBrϕ
˘

,

BrAθ “ ´
1

2
r|ϕ|2 .

(1.18)

Liu-Smith studied the system (1.18) in [35]. Notice that there are no derivative nonlinearities on the

right-hand side of the first equation of (1.18), and already this makes the Cauchy problem considerably

simpler. A simple direct iteration argument yields the critical well-posedness of (1.18) in L2
x; more

precisely, this includes small-data global-wellposedness and large-data local existence and uniqueness in

L2
x, with the solution map being Lipschitz continuous on a sufficiently small open ball in L2

x, and also

on compact subsets of L2
x. To study large-data well-posedness and the behaviour of large-data solutions,

they adapted the arguments of Killip-Tao-Visan [27] in using the Kenig-Merle concentration-compactness-

rigidity paradigm; one supposes for a contradiction that there existed a large-data solution which does not

exist globally, then one can construct a minimal blow-up solution, show that it satisfies a certain phase-

space localisation property (namely, almost-periodicity modulo scaling) as well as additional regularity

properties, and finally rule out the existence of such a solution by virial and Morawetz identities. In this

way, Liu-Smith showed, among other results, that in the case κ ą ´1 all L2
x solutions to (1.18) are global

and scattering, while in the case κ ď ´1 solutions with L2
x norm below that of the minimal nontrivial

standing-wave solution are also global and scattering.

The only other work, known to the author, that studies the long-time behaviour of the Chern-Simons-

Scrhödinger system is that of Oh-Pusateri [39]. They obtained global existence and scattering for solutions

in the Coulomb gauge with initial data small in Σ2, which was defined in (1.8). They built upon

the bootstrap argument of Hayashi-Naumkin [19], which established scattering for various nonlinear

Schrödinger equations for initial data small in Σ2. The key novelty of [39] was the discovery of a strongly

cubic null structure in the Chern-Simons-Schrödinger system, which reveals a cancellation of the long-

range electromagnetic effects. This null structure allowed them to close their bootstrap argument and

obtain the optimal decay rate

}ϕptq}L8
x

ď Cpuinq|t|´1 . (1.19)

We remark that in the proof of our scattering result in Chapter 3, the cubic null structure also plays

a crucial role, even though the solutions we consider are less regular and in particular do not obey the

decay rate (1.19).
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Chapter 2

Large data local well-posedness in

the energy space of the

Chern-Simons-Schrödinger system

The present chapter is devoted to the proof of Theorem 1.1. Observe that (1.3) is time-reversible, therefore

we will, in the rest of this chapter, focus exclusively on proving well-posedness forward in time.

2.1 Overview of the proof

The primary difficulty in establishing a well-posedness result for (1.3) at limited regularity, when energy

methods alone are insufficient, is the presence of the nonlinear term 2Ax ¨ ∇ϕ, involving a derivative of

ϕ, in the right-hand side of the first equation of (1.3). Indeed, the application of standard dispersive

estimates, such as the Strichartz estimates, in the direct iteration scheme incurs a loss of derivatives on

the right-hand side, and the estimates will fail to close.

To make matters worse, the electromagnetic interaction is long-range in the sense that Ax does not

decay more quickly than |x|´1 for large |x|. This slow decay can be seen from the representation formula

Aipt, xq “
1

4π
ϵij

ż

R2

xj ´ yj
|x´ y|2

|ϕpt, yq|
2
dy

given by the Biot-Savart law. The slow decay causes severe difficulty in using local smoothing estimates,

such as those in [26], to recover the loss of derivatives by performing estimates in appropriate weighted

function spaces.

The above considerations suggest that the difficult nonlinearity 2Ax ¨ ∇ϕ is non-perturbative, and

motivates the strategy in the present work. Our strategy is primarily inspired by the proof, due to

Bejenaru-Tataru, of global well-posedness in the energy space of the Maxwell-Schrödinger system [5].

23



24 2.1. OVERVIEW OF THE PROOF

We perform a paraproduct decomposition on this derivative nonlinearity 2Ax ¨ ∇ϕ. For a time-

dependent spatial 1-form B “ B1dx1 ` B2dx2 : r0, T q ˆ R2 Ñ R2, define the operators PB and QB

by

PBw :“
ÿ

λě1

rPď2´5λBi PλBiw ` Pλ pPď2´5λBi Biwqs ,

QBw :“
ÿ

λě1

rPλBi Pă25λBiw ` Pă25λ pPλBi Biwqs ,

where Pλ are inhomogeneous Littlewood-Paley frequency restriction operators, i.e. P1 restricts to all low

frequencies, and the sum above is taken over dyadic frequencies. We refer the reader to the next section

for an explanation of the notations. We can then write

2Ax ¨ ∇ϕ “ PAxϕ` QAxϕ .

Heuristically, the term QAxϕ is well-behaved pertubatively. Indeed, because the derivative acts on a low

frequency term in the term QAxϕ, we expect to this term to obey better bounds than ϕ∇Ax. Now,

from the second equation in (1.3), we expect ∇Ax to have the regularity of |ϕ|2. Therefore, the term

QAxϕ should be better behaved than the standard power nonlinearity |ϕ|2ϕ, and in particular should be

amenable to a perturbative treatment.

The term PAxϕ is the truly non-perturbative part of the derivative nonlinearity 2Ax ¨∇ϕ. Therefore,

we retain it in our principal operator and rewrite the first equation of (1.3) as the quasilinear evolution

equation,

pBt ´ i△ ` PAxqϕ “ ´QAxϕ´ iA0ϕ´ i|Ax|2ϕ´ 2iV 1p|ϕ|2qϕ . (2.1)

An essential feature of the present chapter, then, is that of understanding the principal operators of

the form pBt ´ i△ ` PBq. At the very least, we require that the homogeneous linear equation

pBt ´ i△ ` PBqu “ 0 (2.2)

should be well-posed in Sobolev spaces, and the solutions should moreover satisfy appropriate dispersive

estimates. To this end, we need to impose the conditions that B P L8
t pr0, T q, L8

x q, B1B1 ` B2B2 “ 0 and

∇B P L1
t pr0, T q, L8

x q, and we shall call such time-dependent spatial 1-forms admissible forms. Note that

the condition B1B1 ` B2B2 “ 0 formally guarantees that the evolution of (2.2) conserves the L2
x norm.

We show that, provided B is an admissible form, (2.2) can be uniquely solved in Sobolev spaces on the

time interval r0, T q, and the solutions satisfy Strichartz estimates with a loss of derivatives.

In order to utilise this functional framework for solving the inhomogeneous equation

pBt ´ i△ ` PBqu “ f (2.3)

in an appropriate Sobolev space H, we define the associated Up and V p spaces [31, 32, 18], namely Up
BH

and V p
BH, which are adapted to the principal operator pBt ´ i△`PBq. This gives us a functional calculus

for solving (2.3) in the spaces U2
BH. The construction of our functional framework is accomplished in

Section 2.3.
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We can now apply our functional calculus to solve (1.3) using the following iteration scheme

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

´

Bt ´ i△ ` P
A

rn´1s
x

¯

ϕrns “ ´Q
A

rns
x
ϕrns ´ iA

rns
0 ϕrns ´ i

ˇ

ˇ

ˇ
Arns

x

ˇ

ˇ

ˇ

2

ϕrns ´ 2iV 1

ˆ

ˇ

ˇ

ˇ
ϕrns

ˇ

ˇ

ˇ

2
˙

ϕrns ,

´△Arns
i “ ´ 1

2ϵijBj

ˆ

ˇ

ˇ

ˇ
ϕrns

ˇ

ˇ

ˇ

2
˙

,

´△Arns
0 “ ´Im

´

∇ϕrns ^ ∇ϕrns
¯

´ rot

ˆ

Arns
x

ˇ

ˇ

ˇ
ϕrns

ˇ

ˇ

ˇ

2
˙

,

ϕrnsp0q “ ϕin ,

(2.4)

which is initialised with A
r0s
x “ 0. Our functional calculus now allows us to solve (2.4) at each iteration n,

via a contraction mapping argument, in the function space U2

A
rn´1s
x

H whereH is chosen to be a generalised

Sobolev space containing Hs. The key point is that every A
rns
x generated by this iterative scheme will be

an admissible form whose size depends only on the size D of the initial datum ϕin. As a consequence,

the existence time of (2.4) is bounded below independently of n, and the L8
t H norm of the iterates ϕrns

are also bounded above independently of n. These are accomplished in Section 2.4.

The convergence of the iteration scheme (2.4) is addressed in Section 2.5. We are able to obtain a

weak Lipschitz bound between the iterates,

›

›

›
ϕrn`1s ´ ϕrns

›

›

›

L8
t Hs´1

ď
1

2

›

›

›
ϕrns ´ ϕrn´1s

›

›

›

L8
t Hs´1

which shows that the iterates tϕrnsu8
n“1 converge in L8

t H
s´1. On the other hand, the iterates tϕrnsu8

n“1

are bounded uniformly in L8
t H

m for some generalised Sobolev space Hm, such that the embedding

Hs ãÑ Hm is compact. Thus, by interpolation, the iterates tϕrnsu8
n“1 converge in L8

t H
s as well, and it is

straightforward to check that the limit is the desired solution to the system (1.3). The same arguments

also prove the continuity of the solution map, and the weak Lipschitz bound between two solutions.

2.2 Notations and preliminaries

We fix s ě 1, and recall that V has the form (1.2); in the event that V “ 0, we set d “ 2 for convenience.

All constants in this chapter are allowed to depend on coefficients of the polynomial V , but, unless

otherwise stated, not on any other parameters. If A and B are nonnegative quantities, we write A À B

if there is a constant C such that A ď CB. We write A « B if A À B and B À A.

Throughout this chapter we will use the standard Lebesgue spaces Lr
x :“ LrpR2

xq, mixed space-

time Lebesgue spaces Lq
tL

r
x, and spaces Cbpr0, T q, Xq of continuous bounded functions where X is a

Banach space of functions on R2
x. Very often in this chapter, the time interval is not taken to be all

of R, but rather a finite time interval r0, T q for some T ą 0. For ease of notation, we therefore denote

Lq
tL

r
xrT s :“ Lq

t pr0, T q, Lr
xq and CbXrT s :“ Cbpr0, T q, Xq.
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2.2.1 Fourier analysis

We will occasionally require Fourier transforms over the spatial variables x, but never over the time

variable t. Our convention for the Fourier transform will be

pupξq :“ Fupξq :“

ż

R2

e´ix¨ξupxqdx .

We denote the Riesz transform by

Ri :“
Bi

|∇|
.

It is a standard fact in harmonic analysis that the Riesz transforms are bounded linear maps LppR2
xq Ñ

LppR2
xq for every p P p1,8q; see, for example, [14], Chapter 4.

We will very often make use of the Biot-Savart law,

Bi

p´△q
F pxq “ ´

1

2π

ż

R2

xi ´ yi
|x´ y|2

F pyq dy .

This formula is amenable to the Hardy-Littlewood-Sobolev inequality for functions supported at low

frequencies, when Bernstein’s inequality does not directly apply due to the presence of the singular

Fourier multiplier |Dx|´1.

We now recall the inhomogeneous Littlewood-Paley decomposition. Denote by

D :“
␣

2k
ˇ

ˇ k P Zě0

(

the set of all dyadic frequencies. Fix, once and for all, a smooth, radial, non-increasing function φ1 :

R2
ξ Ñ R such that φ1pξq ” 1 on |ξ| ď 1, and φ1pξq ” 0 on |ξ| ě 2. For λ P D, λ ě 2, set

φλpξq :“ φ1

`

1
λξ

˘

´ φ1

`

2
λξ

˘

.

For all λ P D, we define Pλ :“ φλpDxq the standard Littlewood-Paley restriction. Equivalently,

Pλupxq “

ż

R2

|φλpx´ yqupyqdy .

Henceforth, we will reserve the letters λ, µ, ν for dyadic frequencies, i.e. elements of D. For example,

when summing over λ, µ, ν, the summation is implicitly taken over all of D unless otherwise stated.

Using the Littlewood-Paley decomposition, we define the inhomogeneous Besov spaces in the usual

way:

}u}Bs
p,r

:“

˜

ÿ

λ

λsr }Pλu}
r
Lp

x

¸
1
r

with the obvious modification when r “ 8.

We define

Pďλ :“
ÿ

µďλ

Pµ , Păλ :“ Pď 1
2λ
.

We will also, for ease of exposition, abuse notation in using the following operators

P!λ :“ Pď2´mλ , PÀλ :“ Pď2mλ , P«λ :“ PÀλ ´ P!λ ,



CHAPTER 2. WELL-POSEDNESS OF CHERN-SIMONS-SCHRÖDINGER 27

where m denotes fixed universal positive integers, whose values may change from line to line and can be

appropriately chosen by the reader if so desired.

In this chapter, we will equip the Sobolev space Hσ with the equivalent Besov space norm,

}w}
2
Hσ :“

ÿ

λ

λ2σ }Pλw}L2
x
.

These norms will be consistent with those of the following family of function spaces.

Definition 2.1. A Sobolev weight is a function m : D Ñ p0,8q such that mp1q “ 1, and there exist

constants c ď 1 and C ě 1 such that

c ď
mp2λq

mpλq
ď C for all λ P D .

Given a Sobolev weight m, define the generalised Sobolev space Hm Ă S 1pR2
xq to be the Hilbert space

whose inner product is given by

pv, wqHm :“
ÿ

λ

mpλq2
ż

R2

PλvpxqPλwpxqdx .

Moreover, for a Sobolev weight m, define the quantities rms‹, rms‹, rms by

rms‹ :“ inf
λ

log2

ˆ

mp2λq

mpλq

˙

, rms‹ :“ sup
λ

log2

ˆ

mp2λq

mpλq

˙

,

rms :“ max p´rms‹, rms‹q .

Remark 2.2. It follows directly from the definition that

mpλq ď 2krmsmpµq whenever

ˇ

ˇ

ˇ

ˇ

log2

ˆ

λ

µ

˙ˇ

ˇ

ˇ

ˇ

ď k . (2.5)

Lemma 2.3. Let m be a Sobolev weight. Let pHmq˚ be the dual space of Hm extending the L2
x self-duality.

Then pHmq˚ is isomorphic to Hm´1

with equivalent norms. More precisely,

C1 prmsq }v}Hm´1 ď }v}pHmq˚ ď C2 prmsq }v}Hm´1 (2.6)

for some constants C2 ě C1 ą 0 depending only on rms.

Proof. Given v P Hm´1

, we may set

w :“
ÿ

µ

mpµq´2Pµv .

Clearly w P Hm, and from (2.5) we have

}w}Hm ď C prmsq }v}Hm´1 .

Therefore,

pw, vqL2
x

“
ÿ

µ

mpµq´2 pPµv, vqL2
x

ě
ÿ

µ

mpµq´2 }Pµv}
2
L2

x
ě C prmsq }v}Hm´1 }w}Hm .

This verifies the first inequality in (2.6).
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We turn to the second inequality in (2.6). Given v P Hm´1

, w P Hm, we have from the Cauchy-Schwarz

inequality that

ˇ

ˇpw, vqL2
x

ˇ

ˇ ď
ÿ

λ

ˇ

ˇ

ˇ
pPλw,P«λvqL2

x

ˇ

ˇ

ˇ
ď }w}Hm

˜

ÿ

λ

mpλq´2 }P«λv}
2
L2

x

¸
1
2

.

Since (2.5) gives us
ÿ

λ

mpλq´2 }P«λv}
2
L2

x
ď C prmsq }v}

2
Hm´1 ,

we deduce the second inequality in (2.6).

2.2.2 Strichartz estimates

We now recall the well-known Strichartz estimates [25, 9] for the Schrödinger equation in two space

dimensions.

Definition 2.4. We say pq, rq P r2,8s2 is a Strichartz pair if 2
q ` 2

r “ 1 and r ă 8.

Lemma 2.5 (Strichartz estimates). Suppose pq1, r1q and pq2, r2q are Strichartz pairs. Assume u : r0, T qˆ

R2
x Ñ C is an L2

x solution to the Schrödinger equation,

pBt ´ i△qu “ f .

Then the estimate

}u}Lq1
t L

r1
x rT s À }up0q}L2

x
` }f}

L
q1
2

t L
r1
2

x rT s

holds with the implicit constant depending on q1, q2 but not on T . Here q1
2, r

1
2 denote the Hölder conjugates

of q2, r2 respectively, i.e. 1 “ 1
q2

` 1
q1
2

“ 1
r2

` 1
r1
2
.

Proof. This is a well-known standard result; see, for example, [1], Section 8.2.

2.2.3 Up and V p spaces

As mentioned in Section 2.1, we need a functional framework built on spaces of the Up and V p type

[31, 32, 18]. In this section, we recall the definitions and basic properties of these spaces, and refer the

reader to [30] for a systematic exposition.

Definition 2.6. Let T ą 0 and let X be a separable Banach space over C. Let p P r1,8q. We define a

UpXrT s atom to be a function a : r0, T q Ñ X of the form

aptq “

K´1
ÿ

k“0

1rtk,tk`1qptqak

where K P Zą0, 0 “ t0 ă t1 ă . . . ă tK “ T , and
řK´1

k“0 }ak}
p
X “ 1.

The Banach space UpXrT s is defined to be the atomic space over the UpXrT s atoms. More precisely,

UpXrT s consists of all functions a : r0, T q Ñ X admitting a representation

u “

8
ÿ

j“1

cjaj , aj are UpXrT s atoms , tcju8
j“1 P ℓ1 ,
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equipped with the norm

}u}UpXrT s :“ inf

#

8
ÿ

j“1

|cj |

ˇ

ˇ

ˇ
u “

8
ÿ

j“1

cjaj , tcju8
j“1 P ℓ1 , aj are UpXrT s atoms

+

.

We define DUpXrT s to be the space of distributional derivatives of functions in UpXrT s, equipped

with the norm

}f}DUpXrT s :“

›

›

›

›

ż t

0

fpt1qdt1
›

›

›

›

UpXrT s

.

Observe that, if 0 ă T1 ă T2 then the restriction map

u ÞÑ 1r0,T1qptqu

is continuous linear UpXrT2s Ñ UpXrT1s and satisfies

}u}UpXrT1s :“
›

›1r0,T1qptqu
›

›

UpXrT1s
ď }u}UpXrT2s .

Definition 2.7. Let T ą 0 and let X be a separable Banach space over C. Let p P r1,8q. We define

V pXrT s to be the Banach space of functions v : r0, T q Ñ X with the norm

}v}V pXrT s :“ sup
t

˜

K´1
ÿ

k“0

}vptk`1q ´ vptkq}
p
X

¸

1
p

where the supremum is taken over all partitions t “ ttkuKk“0 with 0 “ t0 ă t1 ă . . . ă tK “ T , and we

define vpT q :“ 0.

Observe that a V pXrT s function possesses left and right limits at every t P r0, T q. We define V p
rcXrT s

to be the closed subspace of V pXrT s of right-continuous functions r0, T q Ñ X.

We will require the following two crucial properties of the Up and V p spaces.

Lemma 2.8 (Embeddings). Let T ą 0 and let X be a separable Banach space over C. Let 1 ď p ă q ă 8.

Then we have the continuous embeddings

UpXrT s ãÑ V p
rcXrT s ãÑ UqXrT s ãÑ L8

t XrT s

whose operator norms depend only on p, q and not on T or X.

Proof. This is proved in [18]. For the reader’s convenience, we provide the proof in the appendix to this

chapter.

Lemma 2.9 (Duality). Let T ą 0 and let X be a separable Banach space over C such that X˚ is also

separable. Let p P p1,8q and let p1 :“ p
p´1 be the Hölder conjugate of p. Then

pDUpXrT sq
˚

“ V p1

rc X
˚rT s

in the sense that, for f P DUpXrT s,

}f}DUpXrT s “ sup

#ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xvptq, fptqyX˚,X dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v P V p1

rc X
˚rT s, }v}

V p1
rc X˚rT s

ď 1

+

.

Proof. Again, the proof can be found in [18]. For the reader’s convenience, we provide the proof in the

appendix to this chapter.



30 2.3. THE MODIFIED PRINCIPAL OPERATOR

2.3 The modified principal operator

The goal of this section is to establish the basic properties of solutions to the linear equation

pBt ´ i△ ` PBqu “ 0 , (2.7)

and then use these properties to define function spaces for constructing the iterates in the iteration scheme

(2.4). The hypotheses we require on B are summarised in the following definition.

Definition 2.10. Let B “ B1pt, xqdx1 ` B2pt, xqdx2 be a time-dependent spatial 1-form defined on

r0, 1q ˆ R2
x. We say that B is an admissible form, if B P L8

t L
8
x r1s, and ∇B P L1

tL
8
x r1s, and

B1B1 ` B2B2 ” 0 .

The first basic question is that of whether (2.7) gives a well-defined evolution in the generalised

Sobolev spaces Hm. The following key Proposition will be proved in the Subsections 2.3.1 and 2.3.2.

Proposition 2.11. Let B be an admissible form and m be a Sobolev weight. Let T P p0, 1s and t0 P r0, T q.

Then, given uin P Hm, there exists a unique solution u P L8
t H

mrT s to (2.7) with upt0q “ uin. Moreover,

this solution satisfies

}u}L8
t HmrT s ď Ce

C1}∇B}
L1
tL8

x r1s
›

›uin
›

›

Hm (2.8)

where C,C1 ą 0 are constants depending only on rms.

Remark 2.12. Eventually, when establishing the continuity of the solution map in Theorem 1.1, we

will choose m depending on the profile of the initial datum. In Proposition 2.11 and other results in this

section, the fact that the various constants depend only on rms‹ and rms‹, and not on the finer details

of m, will be crucial for the fact that the existence time in Theorem 1.1 depends only on the size of the

initial datum, and not on its profile.

2.3.1 Proof of the uniqueness statement of Proposition 2.11

We first address the issue of uniqueness. Of course, if Hm is a sufficiently regular space, say if Hm “ Hs

for s ě 2, then unconditional uniqueness in L8
t H

mrT s follows from a simple energy argument. For lower

regularity Hm spaces, we have to work harder.

Lemma 2.13. Let B be an admissible form and m be a Sobolev weight. Then any solution u P L8
t H

mrT s

to (2.7) satisfies the differential inequality

Bt }Pµuptq}L2
x

ď C }∇Bptq}L8
x

ÿ

λ : |log2pλ
µ q|ď5

}Pλuptq}L2
x

(2.9)

where C is a universal constant independent of m.

Proof. Since u solves (2.7), we have

pBt ´ i△ ` PBqPµu “ pPBPµ ´ PµPBqu . (2.10)
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Now, from the definition we have

pPBPµ ´ PµPBqu “
ÿ

λ : |log2pλ
µ q|ď5

rPă2´5λBi PλPµBiu´ Pµ pPă2´5λBi PλBiuqs

`
ÿ

λ : |log2pλ
µ q|ď5

Pλ rPă2´5λBi PµBiu´ Pµ pPă2´5λBi Biuqs

“: I ` II .

We claim the estimate

}Iptq}L2
x

À }∇Bptq}L8
x

ÿ

λ : |log2pλ
µ q|ď5

}Pλuptq}L2
x
. (2.11)

Indeed, recalling that B1B1 ` B2B2 “ 0, we have
ˇ

ˇ

ˇ
Pă2´5λBi PλPµBiu´ Pµ

`

Pă2´5λBi PλBiu
˘

ˇ

ˇ

ˇ
pt, xq

“

ˇ

ˇ

ˇ

ˇ

ż

R2

|φµpx´ yq pPă2´5λBipt, xq ´ Pă2´5λBipt, yqq BiPλupt, yq dy

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R2

Bi|φµpx´ yq pPă2´5λBipt, xq ´ Pă2´5λBipt, yqqPλupt, yq dy

ˇ

ˇ

ˇ

ˇ

À }∇Bptq}L8
x

ż

R2

|x´ y| |∇|φµpx´ yq| |Pλupt, yq| dy .

Applying Young’s convolution inequality, and noting that }x∇|φµ}L1
x
is a constant independent of µ, we

obtain

›

›Pă2´5λBiptq PλPµBiuptq ´ Pµ

`

Pă2´5λBiptq PλBiuptq
˘›

›

L2
x

À }∇Bptq}L8
x

}Pλuptq}L2
x
.

Summing up over λ gives the desired estimate (2.11).

We can prove a similar estimate for IIptq. Precisely, we have

}IIptq}L2
x

À }∇Bptq}L8
x

ÿ

λ : |log2pλ
µ q|ď5

}Pλuptq}L2
x
. (2.12)

Indeed, observe that only frequency components of u near µ will make a nonzero contribution to the sum

defining IIptq. Therefore, we have

IIptq “
ÿ

ν : |log2p ν
µ q|ď5

Pν

¨

˚

˝

ÿ

λ : |log2pλ
µ q|ď5

rPă2´5νBi PλPµBiu´ Pµ pPă2´5νBi PλBiuqs

˛

‹

‚

.

For each ν, the expression Pνp¨ ¨ ¨ q above can be estimated in the exact same manner as our estimate of

Iptq. Then, since we sum only over finitely many ν, we obtain (2.12) as a result.

By combining the estimates (2.11), (2.12), we obtain

}ppPBPµ ´ PµPBquq ptq}L2
x

À }∇Bptq}L8
x

ÿ

λ : |log2pλ
µ q|ď5

}Pλuptq}L2
x
.

Hence, multiplying (2.10) by Pµu and integrating by parts, which is justified since the terms in (2.10)

are smooth, we obtain

Bt }Pµuptq}
2
L2

x
À }∇Bptq}L8

x
}Pµuptq}L2

x

ÿ

λ : |log2pλ
µ q|ď5

}Pλuptq}L2
x

which gives (2.9).
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Proof of the uniqueness statement of Proposition 2.11. By linearity, we shall only need to prove that any

L8
t H

mrT s solution to (2.7) with initial datum upt0q “ 0 must necessarily be zero.

Let ε0 “ ε0prmsq ą 0 be a small constant to be chosen later. Choose a sufficiently large positive integer

K such that, for any interval I Ă r0, T q of length ď 2TK´1, we have }∇B}L1
t pI,L8

x q ď ε0. Write r0, T q as

the union of the K´1 overlapping small intervals rkTK´1, pk`2qTK´1q with 0 ď k ď K´2. Therefore

it suffices to show, if J is one of these small intervals and there exists tJ P J such that uptJ q “ 0, then u

is zero on J .

For t P J , integrating (2.9) from tJ to t gives

mpµq }Pµuptq}L2
x

ď Cprmsq

ż

J

›

›∇Bpt1q
›

›

L8
x

ÿ

λ : |log2pλ
µ q|ď5

mpλq
›

›Pλupt1q
›

›

L2
x
dt1

where the constant Cprmsq comes from (2.5). Squaring both sides and applying Cauchy-Schwarz, we

obtain

mpµq2 }Pµuptq}
2
L2

x
ď Cprmsqε0

ż

J

›

›∇Bpt1q
›

›

L8
x

ÿ

λ : |log2pλ
µ q|ď5

mpλq2
›

›Pλupt1q
›

›

2

L2
x
dt1 .

By summing over µ and taking the supremum over t P J , we deduce

}u}
2
L8

t HmrJs ď Cprmsqε20 }u}
2
L8

t HmrJs .

Hence, if ε0 were chosen small enough so that Cprmsqε20 ă 1, then }u}L8
t HmrJs “ 0 as required.

2.3.2 Proof of the existence statement of Proposition 2.11

We now turn our attention to the existence statement of Proposition 2.11. We first prove existence of

solutions in the special case Hm “ L2
x. This is accomplished in Lemma 2.14 by extracting a weak-star

limit of solutions to regularised equations, which is possible due to the condition B1B1 ` B2B2 “ 0.

Lemma 2.14. Let B be an admissible form. Let T P p0, 1s and t0 P r0, t0q. Then, given uin P L2
x, there

exists u P CtL
2
xrT s solving (2.7) such that u is the unique L8

t L
2
xrT s weak-star limit of solutions to the

regularised equations
$

&

%

pBt ´ i△quµ “ χµpDxqPBuµ ,

uµpt0q “ χµpDxquin
(2.13)

as D P µ Ñ 8, where χµ is the indicator function of the ball of radius µ in R2. Furthermore,

}uptq}L2
x

“
›

›uin
›

›

L2
x

for all t P r0, T q . (2.14)

Proof. The proof is a standard application of the energy method. The point is, since B1B1 ` B2B2 “ 0,

the operator PB is formally skew-symmetric on L2
x, and so the evolution of pBt ´ i△`PBq conserves the

L2
x norm. We provide the details for the sake of completeness.

For ease of exposition, we assume that t0 “ 0 and remark that the proof below immediately generalises

to any other initial time in r0, 1q.
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For every µ P D, the right-hand side of the evolution equation in (2.13) is continuous linear on L2
x with

norm À µ}Bptq}L8
x
. Hence, (2.13) has a unique solution for given initial datum uin P L2

x. This solution

has compact frequency support and is thus smooth. Therefore, we may multiply by uµ and integrate by

parts to obtain Bt}uµ}2L2
x

“ 0. We conclude }uµ}L8
t L2

xrT s ď }uin}L2
x
.

By weak-star sequential compactness we may extract a subsequence uµk

‹
á u in L8

t L
2
xrT s. Then we

have

}u}L8
t L2

xrT s ď
›

›uin
›

›

L2
x
.

In particular, by linearity, this limit is unique: If }uin}L2
x

“ 0 then u “ 0.

Since PB is formally skew-symmetric, for any v P Cbpr0, T s,H1q we have

ż T

0

puptq, vptqqL2
x
dt “ lim

kÑ8

ż T

0

puµk
ptq, vptqqL2

x
dt

“ lim
kÑ8

ż T

0

ˆ

eit△uin `

ż t

0

eipt´t1q△PBpt1quµk
pt1q dt1 , χµk

pDxqvptq

˙

L2
x

dt

“ lim
kÑ8

˜

uin , χµk
pDxq

ż T

0

e´it△vptqdt

¸

L2
x

` lim
kÑ8

ż T

0

˜

uµk
pt1q , PBpt1q

ż T

t1
e´ipt´t1q△χµk

pDxqvpt1q dt

¸

L2
x

dt1

“

˜

uin,

ż T

0

e´it△vptq dt

¸

L2
x

`

ż T

0

˜

upt1q,PBpt1q

ż T

t1
e´ipt´t1q△vptqdt

¸

L2
x

dt1

“

ż T

0

B

eit△uin `

ż t

0

eipt´t1q△PBpt1qupt1qdt1 , vptq

F

H´1,H1

dt .

This verifies that

uptq “ eit△uin `

ż t

0

eipt´t1q△PBpt1qupt1q dt1

as Bochner integrals into H´1. In particular, u solves (2.7) with initial datum uin.

Now, we may also solve (2.13) backwards from any time in r0, T q. By applying the same argument

above, we have

}up0q}L2
x

ď }uptq}L2
x
.

This verifies (2.14).

Finally, as Btu P L8
t H

´2rT s, we have u P CbH
´2rT s. Since }uptq}L2

x
is conserved and L2

x is a uniformly

convex space, we deduce that u P CbL
2
xrT s.

We must now upgrade our L2
x existence result to other Hm spaces. Given an initial datum uin, it is

natural to split uin into its frequency components Pνu
in and solve (2.7) to get an L2

x solution uν with

initial datum uνpt0q “ Pνu
in for each ν. Then, by linearity, an obvious candidate for the solution with

initial datum uin is u “
ř

ν uν . However, since the evolution of (2.7) does not preserve the frequency

support, it is not immediately obvious that the sum
ř

ν uν converges in L8
t H

mrT s.
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The fact that B is an admissible form will be sufficient to guarantee this convergence. The key idea

is that initial datum, localised about a frequency scale ν, will launch a solution which, within a fixed

time interval, transfers only a very small amount of mass to frequency scales vastly different from ν. The

following lemma contains the precise, quantitative formulation of this idea.

Lemma 2.15. Let B be any admissible form. Let T P p0, 1s and let t0 P r0, T q. Let ν P D and let v be a

solution on r0, T q to (2.7), whose initial data vpt0q P L2
x is frequency supported in t 1

2ν ď |ξ| ď 2νu. Then

for ℓ P Zě0, we have

}Pµv}L8
t L2

xrT s
ď

´

C0}∇B}L1
tL

8
x r1s

¯ℓ

ℓ!
}vpt0q}L2

x
whenever

ˇ

ˇ

ˇ
log2

´µ

ν

¯ˇ

ˇ

ˇ
ě 5ℓ . (2.15)

Here C0 ą 0 is a universal constant independent of T, ν or ℓ.

Proof. For ease of exposition, we shall assume t0 “ 0 and remark that the proof for general t0 is similar.

Put C0 :“ 20C where C is the constant appearing in (2.9). It suffices to prove the stronger estimate

}Pµvptq}L2
x

ď Cℓ
0

ż t

0

ż tℓ

0

¨ ¨ ¨

ż t2

0

ℓ
ź

m“1

}∇Bptmq}L8
x
dt1 ¨ ¨ ¨ dtℓ }vp0q}L2

x

whenever
ˇ

ˇ

ˇ
log2

´µ

ν

¯ˇ

ˇ

ˇ
ě 5ℓ ,

(2.16)

for ℓ P Zě0, where, when ℓ “ 0, the integral is defined to be 1.

We establish (2.16) by induction on ℓ. The conservation of L2
x norm, from Lemma 2.14, gives the base

case ℓ “ 0. For ℓ ě 1, plugging the induction hypothesis for ℓ´ 1 into every summand on the right-hand

side of (2.9), we obtain

Bt }Pµvptq}L2
x

ď C0 }∇Bptq}L8
x
Cℓ´1

0

ż t

0

¨ ¨ ¨

ż t2

0

ℓ´1
ź

m“1

}∇Bptmq}L8
x
dt1 ¨ ¨ ¨ dtℓ´1 }vp0q}L2

x
. (2.17)

Since | log2pµ{νq| ě 5ℓ ě 5, we have by definition that Pµvp0q “ 0. Therefore, a direct integration of

(2.17) yields

}Pµvptq}L2
x

ď Cℓ
0

ż t

0

ż tℓ

0

¨ ¨ ¨

ż t2

0

ℓ
ź

m“1

}∇Bptmq}L8
x
dt1 ¨ ¨ ¨ dtℓ }vp0q}L2

x

which completes the induction step.

Proof of the existence statement of Proposition 2.11 and of (2.8). Let w P Hm be given. Let uν be the

solution of (2.7) with initial data uνpt0q “ Pνw. To complete the proof of Proposition 2.11, it suffices to

prove
›

›

›

›

!

mpµq }Pµuνptq}L2
x

)

µ,ν

›

›

›

›

ℓ2µℓ
1
ν

ď Ce
C1}∇B}

L1
tL8

x r1s }w}Hm (2.18)

for C,C1 as in the statement of Proposition 2.11. Indeed,

ÿ

µ

mpµq2

›

›

›

›

›

Pµ

ÿ

ν

uνptq

›

›

›

›

›

2

L2
x

ď

›

›

›

›

!

mpµq }Pµuνptq}L2
x

)

µ,ν

›

›

›

›

2

ℓ2µℓ
1
ν

which shows that the desired solution u “
ř

ν uν belongs to L8
t H

mrT s and satisfies the claimed estimate

(2.8).
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Now, recall that from the definitions, we have

mpµq ď 25pℓ`1qrmsmpνq whenever 5ℓ ď

ˇ

ˇ

ˇ
log2

´µ

ν

¯ˇ

ˇ

ˇ
ă 5pℓ` 1q .

Therefore, using Lemma 2.15, we have

mpµq
ÿ

ν

}Pµuνptq}L2
x

ď 25rms
8
ÿ

ℓ“0

ÿ

ν : 5ℓď|log2p ν
µ q|ă5pℓ`1q

´

C0 }∇B}L1
tL

8
x r1s

¯ℓ

ℓ!
25ℓrmsmpνq }Pνw}L2

x
.

We set C1 “ C1prmsq :“ C02
5rms once and for all. Then, by Cauchy-Schwarz,

ˆ

mpµq
ÿ

ν

}Pµuνptq}L2
x

˙2

ď Cprmsqe
C1}∇B}

L1
tL8

x r1s
8
ÿ

ℓ“0

¨

˚

˝

ÿ

ν : 5ℓď|log2p ν
µ q|ă5pℓ`1q

´

C1 }∇B}L1
tL

8
x r1s

¯ℓ

ℓ!
mpνq2 }Pνw}

2
L2

x

˛

‹

‚

.

Summing over µ then gives (2.18).

2.3.3 Local-in-time Strichartz estimates

Having proved Proposition 2.11 in the preceding two sections, we now show that the corresponding

solutions enjoy local-in-time Strichartz estimates with loss of derivatives.

Proposition 2.16. Let B be an admissible form and m be a Sobolev weight. Let T P p0, 1s and t0 P r0, T q,

and let w P Hm. Let u be the solution to (2.7) with initial data upt0q “ w. Let pq, rq be a Strichartz pair.

Then the estimate

}Pµu}Lq
tL

r
xrT s

ď C
´

1 ` }B}L8
t L8

x r1s

¯

e
C1}∇B}

L1
tL8

x r1sµ
1
q mpµq´1 }w}Hm (2.19)

holds for some constants C “ Cprms, qq ą 0 and C1 “ C1prmsq ą 0.

Proof. Following the strategy of [7], we divide r0, T q into disjoint intervals each of length ď µ´1, so that

there are ď µ such intervals. Consider one such interval J “ rt1, t2q. Applying the usual Strichartz

estimate to

pBt ´ i△qPµu “ ´PµPBu

over the interval J , we obtain

}Pµu}Lq
t pJ,Lr

xq
À }Pµupt1q}L2

x
` |J |µ }PµPBu}L8

t pJ,L2
xq

À }Pµupt1q}L2
x

` }B}L8
t L8

x r1s

ÿ

λ : |log2pλ
µ q|ď5

}Pλu}L8
t pJ,L2

xq .

Using (2.8) to bound the right-hand side, we obtain

}Pµu}Lq
t pJ,Lr

xq
ď C prms, qq

´

1 ` }B}L8
t L8

x r1s

¯

e
C1prmsq}∇B}

L1
tL8

x r1smpµq´1 }w}Hm . (2.20)

Note that the right-hand side of (2.20) is now independent of J . Hence, raising (2.20) to the q-th power

and summing over the intervals J , and recalling that there are ď µ such intervals, we obtain (2.19).
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2.3.4 Adapted Up and V p spaces

Having now established the basic properties of solutions to the linear homogeneous equation (2.7), we

define the function spaces which we will use to construct the iteration scheme (2.4).

Notation 2.17. Let B be an admissible form and m be a Sobolev weight. For t, t0 P r0, 1q, denote

SBpt, t0qw :“ Uptq

where U solves (2.7) on r0, 1q with initial data Upt0q “ w P Hm.

Definition 2.18. Let B be an admissible form and m be a Sobolev weight. Let T P p0, 1s.

Let p P r1,8q. Define Up
BH

mrT s to be the Banach space of functions u : r0, T q Ñ Hm such that

SBp0, tquptq belongs to UpHmrT s. The Up
BH

mrT s norm is given by

}u}Up
BHmrT s :“ }SBp0, tquptq}UpHmrT s .

Define DUp
BH

mrT s to consist of functions f : r0, T q ˆ R2
x Ñ C such that SBp0, tqfptq P DUpHmrT s,

equipped with the norm

}f}DUp
BHmrT s :“ }SBp0, tqfptq}DUpHmrT s “

›

›

›

›

ż t

0

SBp0, t1qfpt1q dt1
›

›

›

›

UpHmrT s

.

Lastly, define V p
BH

mrT s to be the Banach space of functions v : r0, T q Ñ Hm such that SBp0, tqvptq

belongs to V p
rcH

mrT s, equipped with the norm

}v}V p
BHmrT s :“ }SBp0, tqvptq}V pHmrT s .

As a first consequence of the definitions, of the uniqueness statement in Proposition 2.11, and of

Duhamel’s formula, we have the following result.

Lemma 2.19. Let B be an admissible form and m, n be Sobolev weights with n ď m, so that Hm ãÑ Hn.

Let T P p0, 1s and p P r1,8q.

Suppose u P L8
t H

nrT s and up0q “ uin P Hm and

pBt ´ i△ ` PBqu “ f

with f P DUp
BH

mrT s. Then, in fact, u must be given by

uptq “ SBpt, 0quin `

ż t

0

SBpt, t1qfpt1qdt1 , (2.21)

and in particular, u P Up
BH

mrT s and

}u}Up
BHmrT s À

›

›uin
›

›

Hm ` }f}DUp
BHmrT s . (2.22)

Proof. Let v be given by the right-hand side of (2.21). Clearly, v P Up
BH

mrT s and satisfies

}v}Up
BHmrT s À

›

›uin
›

›

Hm ` }f}DUp
BHmrT s .

Now, by Proposition 2.11 and the atomic structure of Up
BH

mrT s, we have Up
BH

mrT s ãÑ L8
t H

mrT s. Thus,

u´v P L8
t H

nrT s. But u´v is a solution to (2.7) with pu´vqp0q “ 0. Hence, by the uniqueness statement

in Proposition 2.11, we have u´ v “ 0.
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Observe that Lemma 2.8 generalises immediately to the above function spaces. More precisely, we

have the following embedding result.

Lemma 2.20 (Embeddings). Let B be an admissible form and m be a Sobolev weight. Let T P p0, 1s and

let 1 ď p ă q ă 8. Then we have the continuous embeddings

Up
BH

mrT s ãÑ V p
BH

mrT s ãÑ Uq
BH

mrT s

whose operator norms depend on p, q and not on T or B or m.

To use the Duhamel formula in Lemma 2.19, we will need to estimate the DUp
BH

mrT s norm of the

various nonlinearities we encounter. Such estimates can be efficiently obtained using the following duality

result, which is the obvious generalisation of Lemma 2.9.

Lemma 2.21 (Duality). Let B be an admissible form and m be a Sobolev weight. Let T P p0, 1s and

p P p1,8q, and let p1 :“ p
p´1 . Then

pDUp
BH

mrT sq
˚

“ V p1

B Hm´1

rT s

in the sense that

}f}DUpHmrT s ď C pp, rmsq sup
v

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

vpt, xq fpt, xqdx

ˇ

ˇ

ˇ

ˇ

ˇ

where the supremum is taken over all v P V p1

B Hm´1

rT s with }v}
V p1
B Hm´1

rT s
ď 1.

Proof. From Lemma 2.14 we have that SBpt1, t0q are unitary maps on L2
x. Additionally, Lemma 2.3

guarantees that Hm´1

and pHmq˚ are isomorphic with equivalent norms. Hence, Lemma 2.21 follows

immediately from Lemma 2.9.

Our next Lemma shows that generalises the energy and Strichartz estimates, established earlier for

free solutions to (2.7), to arbitrary Up
BH

mrT s functions.

Lemma 2.22. Let B be an admissible form and m be a Sobolev weight. Let T P p0, 1s and p P r1,8q,

and let pq, rq be a Strichartz pair. Then we have the estimates

}u}L8
t HmrT s ď C prmsq e

C1prmsq}∇B}
L1
tL8

x r1s }u}Up
BHmrT s (2.23)

and

}Pµu}Lq
tL

r
xrT s

ď C prms, qq

´

1 ` }B}L8
t L8

x r1s

¯

e
C1prmsq}∇B}

L1
tL8

x r1sµ
1
qmpµq´1 }u}Uq

BHmrT s (2.24)

Proof. Due to the atomic structure of the Up
BH

mrT s spaces, the asserted estimates are immediate conse-

quences of Propositions 2.11 and 2.16.

With the above machinery, the following result, which lets us compare Up spaces associated to different

admissible forms, is now straightforward.
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Proposition 2.23. Let m be a Sobolev weight and B,Γ be admissible forms. Let T P p0, 1s. Let p P p1,8q.

Then we have the embedding Up
BH

mrT s ãÑ Up
ΓH

λ´1mrT s with

}u}Up
ΓHλ´1mrT s

ď Cprmsqe
C1prmsq

´

}∇B}
L1
tL8

x r1s`}∇Γ }
L1
tL8

x r1s

¯

T }B ´ Γ }L8
t L8

x rT s }u}Up
BHmrT s .

Proof. Suppose first that u “ SBpt, t0qw is a free solution on r0, T q to (2.7) with w P Hm, so that

pBt ´ i△ ` PΓ qu “ PΓ´Bu . (2.25)

Now, observe that }Pbw}Hλ´1mrT s
ď Cprmsq}b}L8

x
}w}HmrT s. Therefore, for v P V p1

Γ Hλm´1

rT s, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

vPΓ´Bu dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CprmsqT }v}L8
t Hλm´1

rT s
}B ´ Γ }L8

t L8
x rT s }u}L8

t HmrT s .

Using Lemma 2.22, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

vPΓ´Bu dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cprmsqe
C1prmsq

´

}∇B}
L1
tL8

x r1s`}∇Γ }
L1
tL8

x r1s

¯

¨ T }v}
V p1
Γ Hλm´1

rT s
}B ´ Γ }L8

t L8
x r1s }w}Hm .

Thus, by the duality principle of Lemma 2.21,

}PΓ´Bu}DUp
BHλ´1mrT s

ď Cprmsqe
C1prmsq

´

}∇B}
L1
tL8

x r1s`}∇Γ }
L1
tL8

x r1s

¯

T }B ´ Γ }L8
t L8

x r1s }w}Hm .

Plugging into the Duhamel formula in Lemma 2.19, we find

}u}Up
BHλ´1mrT s

ď Cprmsqe
C1prmsq

´

}∇B}
L1
tL8

x r1s`}∇Γ }
L1
tL8

x r1s

¯

T }B ´ Γ }L8
t L8

x r1s }w}Hm .

This proves Proposition 2.23 in the special case when u is a free solution to (2.7).

In particular, if now u is a Up
BH

mrT s atom, then

}u}Up
BHλ´1mrT s

ď Cprmsqe
C1prmsq

´

}∇B}
L1
tL8

x r1s`}∇Γ }
L1
tL8

x r1s

¯

T }B ´ Γ }L8
t L8

x r1s .

The assertion of Proposition 2.23 now follows from the atomic structure of Up
BH

mrT s.

2.4 Construction of the iteration scheme

The goal of the present section is to set up the iteration scheme (2.4), and show that the iterates ϕrns exist

on a common time interval T “ T p}ϕin}Hsq. The convergence of the iteration scheme to a solution of the

Chern-Simons-Schrödinger system in the Coulomb gauge, (1.3), will be addressed in the next section.
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2.4.1 Setting up the iteration scheme

For convenience, we introduce the following notation. Define the bilinear maps N 2
t ,N 2

1 ,N 2
2 and the

quadrilinear maps N 4
t ,N 4

x on SpR2
x,Cq, by

N 2
i ru1, u2s :“ ϵij

Bj

p´△q
pu1u2q ,

N 2
t ru1, u2s :“ p´△q

´1
p∇u1 ^ ∇u2q ,

N 4
t ru1, u2, u3, u4s :“

rot

p´△q

`

N 2
x ru1, u2su3u4

˘

,

N 4
x ru1, u2, u3, u4s :“ ´ iN 2

x ru1, u2s ¨ N 2
x ru3, u4s ,

where we have also denoted N 2
x :“ pN 2

1 ,N 2
2 q. We warn the reader that, despite the similar notation, N 2

x

is C2-valued while N 4
x is C-valued. Define also the trilinear map

Q ru1, u2, u3s :“
ÿ

λ

“

PλN 2
x ru1, u2s ¨ ∇Pă25λu3 ` Pă25λ

`

PλN 2
x ru1, u2s ¨ ∇u3

˘‰

,

so that, in the notation of the Introduction, Qrϕ, ϕ, ϕs “ QAxϕ for a solution ϕ to (1.3).

Then the Chern-Simons-Schrödinger system in the Coulomb gauge, (1.3), can be written as

$

’

’

’

’

&

’

’

’

’

%

pBt ´ i△ ` PAxqϕ “ Q
“

ϕ, ϕ, ϕ
‰

` N 2
t

“

ϕ, ϕ
‰

ϕ` N 4
t

“

ϕ, ϕ, ϕ, ϕ
‰

ϕ

` N 4
x

“

ϕ, ϕ, ϕ, ϕ
‰

ϕ´ 2iV 1
´

|ϕ|
2
¯

ϕ ,

Ax “ ´ 1
2N

2
x

“

ϕ, ϕ
‰

.

(2.26)

Similarly, the iteration scheme (2.4) can be written succinctly as

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´

Bt ´ i△ ` P
A

rn´1s
x

¯

ϕrns “ Q
”

ϕrns, ϕrns, ϕrns
ı

` N 2
t

”

ϕrns, ϕrns
ı

ϕrns

` N 4
t

”

ϕrns, ϕrns, ϕrns, ϕrns
ı

ϕrns

` N 4
x

”

ϕrns, ϕrns, ϕrns, ϕrns
ı

ϕrns ´ 2iV 1

ˆ

ˇ

ˇ

ˇ
ϕrns

ˇ

ˇ

ˇ

2
˙

ϕrns ,

Arns
x “ ´ 1

2N
2
x

”

ϕrns, ϕrns
ı

,

ϕrnsp0q “ ϕin .

(2.27)

We record the following easy estimate, which will play a key role in formulating the existence result

for the iteration scheme, Theorem 2.25.

Lemma 2.24. We have the estimate

›

›N 2
x ru1, u2s

›

›

L8
x

ď C }u1}H1 }u2}H1 . (2.28)

Proof. By Bernstein’s inequality, it suffices to prove the stronger estimate

›

›N 2
x ru1, u2s

›

›

B1
4,8

ď C }u1}H1 }u2}H1 . (2.29)

By Hardy-Littlewood-Sobolev,

›

›PµN 2
x rPλu1,Pďλu2s

›

›

L4
x

ď C }Pλu1 Pďλu2}
L

4
3
x

ď Cλ´1 }u1}H1 }u2}H1 .
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Summing up over λ Á µ, and noting that N 2
x ru1, u2s is symmetric in u1, u2, we obtain

›

›PµN 2
x ru1, u2s

›

›

L4
x

ď Cµ´1 }u1}H1 }u2}H1

which is (2.29).

2.4.2 Statement of the existence result

We will construct the iterates to (2.27) by solving the more general initial value problem
$

’

’

’

’

&

’

’

’

’

%

pBt ´ i△ ` PBqψ “ Q
“

ψ,ψ, ψ
‰

` N 2
t

“

ψ,ψ
‰

ψ ` N 4
t

“

ψ,ψ, ψ, ψ
‰

ψ

` N 4
x

“

ψ,ψ, ψ, ψ
‰

ψ ´ 2iV 1
´

|ψ|
2
¯

ψ ,

ψp0q “ ψin P Hm .

(2.30)

Recall that s ě 1 is fixed and d is the degree of V . We impose the following hypotheses.

(I) m is a Sobolev weight satisfying

s ď rms‹ ď rms‹ ď s`
1

8
. (2.31)

Note that, in particular, this implies

λs ď mpλq ď λs` 1
8 ,

and more generally
ˆ

λ

µ

˙s

ď
mpλq

mpµq
ď

ˆ

λ

µ

˙s` 1
8

whenever λ ě µ .

(II) B is an admissible form which satisfies

}∇B}L1
tL

8
x r1s ď 1 . (2.32)

Under these hypotheses, Lemma 2.24 and (2.23) guarantee the existence of a constant K ą 0, which we

fix once and for all, such that

›

›N 2
x rψ1, ψ2s

›

›

L8
t L8

x rT s
ď
K

2
}ψ1}U2

BH1rT s }ψ2}U2
BH1rT s . (2.33)

The main result of this section is that the iterates to the iteration scheme (2.27) can be constructed, and

they satisfy certain useful bounds. More precisely, we have the following.

Theorem 2.25. Assume the hypotheses (I), (II) above. Let M ą 0 and let ψin P Hm with }ψin}Hm ď M .

Suppose additionally that

}B}L8
t L8

x r1s ď KM2 (2.34)

where K is the constant appearing in (2.33).

Then, for sufficiently small T “ T ps,Mq ď 1, there exists a unique solution ψ P U2
BH

mrT s to the

initial value problem (2.30). This solution satisfies

}ψ}U2
BHmrT s ď 2M .

Moreover, letting Γ be the extension by zero of ´ 1
2N

2
x rψ,ψs from r0, T q to r0, 1q, we have that Γ is an

admissible form which also verifies hypothesis (II) and (2.34).
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The basic idea of the proof of Theorem 2.25 is to choose T so that an appropriate contraction map

can be set up in the same

EM,T :“
!

ψ P U2
BH

mrT s

ˇ

ˇ

ˇ
}ψ}U2

BHmrT s ď 2M
)

.

The task of proving Theorem 2.25 thus reduces to establishing multilinear estimates for each nonlinearity

on the right-hand side of (2.30).

2.4.3 Preliminary bounds

In proving our multilinear estimates we will heavily rely on the estimates in Lemma 2.22. Due to our

hypotheses (I) and (II), and also because of (2.34), the estimates provided by Lemma 4.13 simplify

considerably. For ease of exposition we will re-state these estimates here.

Definition 2.26. Let m be a Sobolev weight. Let T P p0, 1s. We define the seminorm } ¨ }FmrT s on

functions ψ : r0, T q ˆ R2
x Ñ C by

}ψ}FmrT s :“ }ψ}L8
t HmrT s ` sup

µ
µ´ 1

4mpµq }Pµψ}L4
tL

4
xrT s

` sup
µ
µ´ 1

2dmpµq }Pµψ}
L2d

t L
2d

d´1
x rT s

.

For σ P R, we define Fσ to be Fm corresponding to mpλq “ λσ.

Lemma 2.27. Let m be a Sobolev weight such that rms ď Cpsq. Assume the hypothesis (II) and assume

B satisfies (2.34). Let T P p0, 1s. If ψ P V 2
BH

mrT s, and rψ is either ψ or ψ, then we have

›

›

›

rψ
›

›

›

FmrT s
ď Cpsq p1 `Mq

2
}ψ}V 2

BHmrT s . (2.35)

Proof. Due to the V 2
rc ãÑ U4 ãÑ U2d embedding, (2.35) is simply a restatement of Lemma 2.22.

Lemma 2.28. Let m be a Sobolev weight such that rms ď Cpsq. Let T P p0, 1s. Then

}Pµψ}L4
tL

8
x rT s

ď Cpsqµ
3
4mpµq´1 }ψ}FmrT s

and

}Pµψ}L2d
t L8

x rT s
ď Cpsqµ1´ 1

2dmpµq´1 }ψ}FmrT s .

In particular, if ψ P F 1rT s then ψ P L4
tL

8
x rT s X L2d

t L
8
x rT s with

}ψ}L4
tL

8
x rT s ` }ψ}L2d

t L8
x rT s ď C }ψ}F 1rT s .

Proof. Using Bernstein’s inequality, we have

}Pµψ}L4
tL

8
x rT s

ď Cpsqµ
1
2 }Pµψ}L4

tL
4
xrT s

and also

}Pµψ}L2d
t L8

x rT s
ď Cpsqµ

d´1
d }Pµψ}

L2d
t L

2d
d´1
x rT s

.

The lemma follows from recalling the definition of FmrT s.
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2.4.4 Estimates for the gauge fields

In this subsection, we collect various space-time estimates for the gauge fields N 2
t ,N 2

x ,N 4
t , which we will

need for our multilinear estimates, and also for our difference estimates in Section 2.5.

Lemma 2.29. Assume the hypothesis (I). Let T P p0, 1s. Then

›

›PµN 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

ď Cpsqµ´ 1
4mpµq´1

´

}ψ1}FmrT s }ψ2}F 1rT s ` }ψ1}F 1rT s }ψ2}FmrT s

¯

. (2.36)

Proof. For the case µ “ 1, the Bernstein and Hardy-Littlewood-Sobolev inequalities give

›

›P1N 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

À T
1
2 }ψ1ψ2}L8

t L1
xrT s ď C }ψ1}F 1rT s }ψ2}F 1rT s .

For µ ě 2, Bernstein’s inequality and Lemma 2.28 give

›

›PµN 2
x rPλψ1,Pďλψ2s

›

›

L2
tL

8
x rT s

À µ´1 }Pλψ1}L4
tL

8
x rT s }ψ2}L4

tL
8
x rT s

À µ´1λ
3
4mpλq´1 }ψ1}FmrT s }ψ2}F 1rT s

ď Cpsqµ´1`sλ
3
4 ´smpµq´1 }ψ1}FmrT s }ψ2}F 1rT s

where the last inequality is due to hypothesis (I). Summing over λ Á µ and noting the symmetry of

N 2
x rψ1, ψ2s in ψ1, ψ2, we obtain (2.36).

Lemma 2.30. Assume the hypothesis (I). Let T P p0, 1s. Then, for µ ě 2,

›

›PµN 2
t rψ1, ψ2s

›

›

L8
t L1

xrT s
ď Cpsqµ´1mpµq´1

´

}ψ1}FmrT s }ψ2}F 1rT s ` }ψ1}F 1rT s }ψ2}FmrT s

¯

. (2.37)

We also have the estimate

›

›N 2
t rψ1, ψ2s

›

›

L4
tL

8
x rT s

ď C }ψ1}F 1rT s }ψ2}F 1rT s . (2.38)

Proof. For the proof of (2.37), we have

›

›PµN 2
t rPλψ1,Pďλψ2s

›

›

L8
t L1

xrT s
À µ´1 }Pλψ1}L8

t L2
xrT s }∇ψ2}L8

t L2
xrT s

À µ´1mpλq´1 }ψ1}FmrT s }ψ2}F 1rT s

ď Cpsqµ´1mpµq´1
´µ

λ

¯s

}ψ1}FmrT s }ψ2}F 1rT s

where the last inequality follows from the hypothesis (I). Summing over λ Á µ, and noting thatN 2
t rψ1, ψ2s

is skew-symmetric in ψ1, ψ2, we obtain (2.37).

We turn to the proof of (2.38). By Bernstein (and also Hardy-Littlewood-Sobolev for µ “ 1) and

Lemma 2.28, we have

›

›PµN 2
t rPλψ1,Pďλψ2s

›

›

L4
tL

8
x rT s

À µ
1
2 }Pλψ1 ∇Pďλψ2}

L4
tL

4
3
x rT s

À µ
1
2 }Pλψ1}L4

tL
4
xrT s }∇Pďλψ2}L8

t L2
xrT s

À µ
1
2λ´ 3

4 }ψ1}F 1rT s }ψ2}F 1rT s

The right-hand side is summable over λ Á µ. Since N 2
t is skew-symmetric, we have (2.38).
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Lemma 2.31. Assume the hypothesis (I). Let T P p0, 1s. Then

›

›PµN 4
t rψ1, ψ2, ψ3, ψ4s

›

›

L2
tL

8
x rT s

ď Cpsqµ´ 1
4mpµq´1

4
ÿ

ℓ“1

}ψℓ}FmrT s

4
ź

k“1
k‰ℓ

}ψk}F 1rT s . (2.39)

Proof. We first deal with the case µ “ 1. By Bernstein, Hardy-Littlewood-Sobolev, and Lemma 2.24, we

find

›

›P1N 4
t rψ1, ψ2, ψ3, ψ4s

›

›

L2
tL

8
x rT s

À
›

›N 2
x rψ1, ψ2sψ3ψ4

›

›

L8
t L1

xrT s
À

4
ź

ℓ“1

}ψℓ}F 1rT s

as required.

Suppose now µ ě 2. Then, by Bernstein,

›

›PµN 4
t rψ1, ψ2, ψ3, ψ4s

›

›

L2
tL

8
x rT s

À
›

›PÁµN 2
x rψ1, ψ2sψ3ψ4

›

›

L2
tL

2
xrT s

` µ´1
›

›P!µN 2
x rψ1, ψ2sP«µ pψ3ψ4q

›

›

L2
tL

8
x rT s

À
›

›PÁµN 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

}ψ3}L8
t L4

xrT s }ψ4}L8
t L4

xrT s

` µ´1
›

›N 2
x rψ1, ψ2s

›

›

L8
t L8

x rT s
}P«µ pψ3ψ4q}L2

tL
8
x rT s

“: I ` II .

Using Lemma 2.29 and the Sobolev embedding H1 ãÑ L4
x,

I ď Cpsqµ´ 1
4mpµq´1

´

}ψ1}FmrT s }ψ2}F 1rT s ` }ψ1}F 1rT s }ψ2}FmrT s

¯

}ψ3}F 1rT s }ψ4}F 1rT s .

Now, we have

}Pλψ3 Pďλψ4}L2
tL

8
x rT s À }Pλψ3}L4

tL
8
x rT s }ψ4}L4

tL
8
x rT s

À λ
3
4mpλq´1 }ψ3}FmrT s }ψ4}F 1rT s

ď Cpsqλ
3
4 ´smpµq´1µs }ψ3}FmrT s }ψ4}F 1rT s

where the last inequality is due to the hypothesis (I). Summing over λ Á µ we obtain, by symmetry,

}P«µ pψ3ψ4q}L2
tL

8
x rT s

ď Cpsqµ
3
4mpµq´1

´

}ψ3}FmrT s }ψ4}F 1rT s ` }ψ3}F 1rT s }ψ4}FmrT s

¯

.

Hence, by Lemma 2.24,

II ď Cpsqµ´ 1
4mpµq´1 }ψ1}F 1rT s }ψ2}F 1rT s

´

}ψ3}FmrT s }ψ4}F 1rT s ` }ψ3}F 1rT s }ψ4}FmrT s

¯

.

The proof is complete.

2.4.5 Multilinear estimates

We now estimate each of the nonlinearities in (2.30) in DU2
BH

mrT s. This is accomplished with the aid

of the duality principle, Lemma 2.21.

Lemma 2.32. Assume the hypotheses (I), (II). Let T P p0, 1s. Then

}Q rψ1, ψ2, ψ3s}DU2
BHmrT s ď CpsqT

1
2

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s .
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Proof. By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ψ0 Q rψ1, ψ2, ψ3s dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s . (2.40)

Using Lemma 2.29, we have

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PµN 2
x rψ1, ψ2s ¨ ∇Pλψ3 dxdt

ˇ

ˇ

ˇ

ˇ

À T
1
2 }Pνψ0}L8

t L2
xrT s

›

›PµN 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

}Pλψ3}L8
t H1rT s

ď CpsqT
1
2mpνqµ´ 1

4mpµq´1 }ψ0}V 2
BHm´1

rT s

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s

ď CpsqT
1
2 νs` 1

8µ´ 1
4 ´s }ψ0}V 2

BHm´1
rT s

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s

where the last two inequalities follow from the hypotheses (I), (II). Now, the right-hand side is summable

over tµ « maxpλ, νqu to give (2.40).

Lemma 2.33. Assume the hypotheses (I), (II). Assume also that B satisfies (2.34). Let T P p0, 1s.

Then
›

›N 2
t rψ1, ψ2sψ3

›

›

DU2
BHmrT s

ď Cpsq p1 `Mq
2
T

1
2

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s .

Proof. By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ψ0N 2
t rψ1, ψ2sψ3 dxdt

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
2 }ψ0}V 2

BHm´1
rT s

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s . (2.41)

By (2.38), Hölder’s inequality gives

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PÀνN 2
t rψ1, ψ2s P«νψ3 dxdt

ˇ

ˇ

ˇ

ˇ

À

ż T

0

›

›N 2
t rψ1, ψ2s

›

›

L8
x

ÿ

ν

}Pνψ0}L2
x

›

›P«νψ3

›

›

L2
x
dt

À T
3
4 }ψ0}L8

t Hm´1
rT s

›

›N 2
t rψ1, ψ2s

›

›

L4tL8
x rT s

}ψ3}l8
t HmrT s

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

}ψ1}F 1rT s }ψ2}F 1rT s }ψ3}FmrT s

where the last inequality follows from Lemma 2.30 and the hypotheses (I) and (II).

By the Littlewood-Paley trichotomy, to prove (2.41) it remains to show

˜

ÿ

µ«λ"ν

`
ÿ

ν«λ"µ

¸ ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PµN 2
t rψ1, ψ2s Pλψ3 dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
2 }ψ0}V 2

BHm´1
rT s

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s .



CHAPTER 2. WELL-POSEDNESS OF CHERN-SIMONS-SCHRÖDINGER 45

For this, we note using (2.37) and Lemmas 2.27, 2.28 that
ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PµN 2
t rψ1, ψ2s Pλψ3 dxdt

ˇ

ˇ

ˇ

ˇ

À T
1
2 }Pνψ0}L4

tL
8
x rT s

›

›PµN 2
t rψ1, ψ2s

›

›

L8
t L1

xrT s
}Pλψ3}L4

tL
8
x rT s

ď Cpsq p1 `Mq
2
T

1
2 ν

3
4mpνqµ´1mpµq´1λ

3
4 ´1 }ψ0}V 2

BHm´1
rT s

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s

ď Cpsq p1 `Mq
2
T

1
2 ν

3
4 `sµ´1´sλ´ 1

4 }ψ0}V 2
BHm´1

rT s

3
ÿ

ℓ“1

}ψℓ}FmrT s

3
ź

k“1
k‰ℓ

}ψk}F 1rT s .

The right-hand side is summable over tµ « λ " νu and over tµ « ν " λu, as desired.

Lemma 2.34. Assume the hypotheses (I), (II). Let T P p0, 1s. Then

›

›N 4
t rψ1, ψ2, ψ3, ψ4sψ5

›

›

DU2
BHmrT s

ď CpsqT
1
2

5
ÿ

ℓ“1

}ψℓ}FmrT s

5
ź

k“1
k‰ℓ

}ψk}F 1rT s .

Proof. By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ψ0N 4
t rψ1, ψ2, ψ3, ψ4sψ5 dx dt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

5
ÿ

ℓ“1

}ψℓ}FmrT s

5
ź

k“1
k‰ℓ

}ψk}F 1rT s . (2.42)

Firstly, using Hölder’s inequality and Lemma 2.31, we have

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PÀνN 4
t rψ1, ψ2, ψ3, ψ4s P«νψ5 dx dt

ˇ

ˇ

ˇ

ˇ

À

ż T

0

›

›N 4
t rψ1, ψ2, ψ3, ψ4s ptq

›

›

L8
x

ÿ

ν

}Pνψ0ptq}L2
x

}P«νψ5ptq}L2
x
dt

ď CpsqT
1
2 }ψ0}L8

t Hm´1
rT s

›

›N 4
t rψ1, ψ2, ψ3, ψ4s

›

›

L2
tL

8
x rT s

}ψ5}L8
t HmrT s

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

˜

4
ź

ℓ“1

}ψℓ}F 1rT s

¸

}ψ5}FmrT s .

By the Littlewood-Paley trichotomy, to prove (2.42) it remains to show that
˜

ÿ

µ«ν"λ

`
ÿ

µ«λ"ν

¸ ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PµN 4
t rψ1, ψ2, ψ3, ψ4s Pλψ5 dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

5
ÿ

ℓ“1

}ψℓ}FmrT s

5
ź

k“1
k‰ℓ

}ψk}F 1rT s .

(2.43)

For this, using Hölder’s inequality and Lemma 2.31 again, we find
ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PµN 4
t rψ1, ψ2, ψ3, ψ4s Pλψ5 dxdt

ˇ

ˇ

ˇ

ˇ

À T
1
2 }Pνψ0}L8

t L2
xrT s

›

›PµN 4
t rψ1, ψ2, ψ3, ψ4s

›

›

L2
tL

8
x rT s

}Pλψ5}L8
t L2

xrT s

ď CpsqT
1
2mpνqµ´1mpµq´1λ´1 }ψ0}V 2

BHm´1
rT s

¨

˚

˝

4
ÿ

ℓ“1

}ψℓ}FmrT s

4
ź

k“1
k‰ℓ

}ψk}F 1rT s

˛

‹

‚

}ψ5}F 1rT s .

Due to hypothesis (I), the right-hand side is summable over tµ « maxpν, λqu. Therefore we obtain (2.43)

as required.
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Lemma 2.35. Assume the hypotheses (I), (II). Let T P p0, 1s. Then

›

›N 4
x rψ1, ψ2, ψ3, ψ4sψ5

›

›

DU2
BHmrT s

ď CpsqT
1
2

5
ÿ

ℓ“1

}ψℓ}FmrT s

5
ź

k“1
k‰ℓ

}ψk}F 1rT s .

Proof. By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ψ0N 4
x rψ1, ψ2, ψ3, ψ4sψ5 dxdt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

5
ÿ

ℓ“1

}ψℓ}FmrT s

5
ź

k“1
k‰ℓ

}ψk}F 1rT s . (2.44)

By the Littlewood-Paley trichotomy and symmetry, it suffices to verify the estimates

ÿ

µ,ν : µÁν

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 PµN 2
x rψ1, ψ2s ¨ PÀµN 2

x rψ3, ψ4s ψ5 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

5
ÿ

ℓ“1

}ψℓ}FmrT s

5
ź

k“1
k‰ℓ

}ψk}F 1rT s

(2.45)

and

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 P!νN 2
x rψ1, ψ2s ¨ P!νN 2

x rψ3, ψ4s P«νψ5 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

5
ÿ

ℓ“1

}ψℓ}FmrT s

5
ź

k“1
k‰ℓ

}ψk}F 1rT s .

(2.46)

Using Lemmas 2.24 and 2.29, a typical summand on the left-hand side of (2.45) is controlled by

T
1
2 }Pνψ0}L8

t L2
xrT s

›

›PµN 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

›

›N 2
x rψ3, ψ4s

›

›

L8
t L8

x rT s
}ψ5}L8

t L2
xrT s

ď CpsqT
1
2mpνqµ´ 1

4mpµq´1 }ψ0}V 2
BHm´1

rT s

¨

´

}ψ1}FmrT s }ψ2}F 1rT s ` }ψ1}F 1rT s }ψ2}FmrT s

¯

}ψ3}F 1rT s }ψ4}F 1rT s }ψ5}F 1rT s .

Summing over tµ Á νu, we obtain (2.45) as required.

As for (2.46), we use Lemma 2.24 to obtain the the left-hand side by

ż T

0

›

›N 2
x rψ1, ψ2s ptq

›

›

L8
x

›

›N 2
x rψ3, ψ4s ptq

›

›

L8
x

˜

ÿ

ν

}Pνψ0ptq}L2
x

}P«νψ5ptq}L2
x

¸

dt

ď CpsqT }ψ0}L8
t Hm´1

rT s

›

›N 2
x rψ1, ψ2s

›

›

L8
t L8

x rT s

›

›N 2
x rψ3, ψ4s

›

›

L8
t L8

x rT s
}ψ5}L8

t HmrT s

ď CpsqT
1
2 }ψ0}V 2

BHm´1
rT s

˜

4
ź

k“1

}ψk}F 1rT s

¸

}ψ5}FmrT s .

This verifies (2.46) and hence completes the proof of (2.44).

Lemma 2.36. Assume the hypotheses (I), (II). Assume also that B satisfies (2.34). Let T P p0, 1s. Let

b P t2, . . . , du. Then we have the estimate

}ψ1 ¨ ¨ ¨ψ2b´1}DU2
BHmrT s ď Cpsq p1 `Mq

2
T

1
d

2b´1
ÿ

ℓ“1

}ψℓ}FmrT s

2b´1
ź

k“1
k‰ℓ

}ψk}F 1rT s .
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Proof. By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ψ0ψ1ψ2ψ3 ¨ ¨ ¨ψ2b´1 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
d }ψ0}V 2

BHm´1
rT s

2b´1
ÿ

ℓ“1

}ψℓ}FmrT s

2b´1
ź

k“1
k‰ℓ

}ψk}F 1rT s .

(2.47)

By the Littlewood-Paley trichotomy and symmetry, (2.47) follows from the two estimates

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 P«νψ1 PÀνψ2 PÀνψ3 ¨ ¨ ¨PÀνψ2b´1 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
d }ψ0}V 2

BHm´1
rT s

2b´1
ÿ

ℓ“1

}ψℓ}FmrT s

2b´1
ź

k“1
k‰ℓ

}ψk}F 1rT s

(2.48)

and

ÿ

λ,ν : λ"ν

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 Pλψ1 P«λψ2 PÀλψ3 ¨ ¨ ¨PÀλψ2b´1 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
d }ψ0}V 2

BHm´1
rT s

2b´1
ÿ

ℓ“1

}ψℓ}FmrT s

2b´1
ź

k“1
k‰ℓ

}ψk}F 1rT s .

(2.49)

Using Lemma 2.28, we easily obtain (2.48) as follows,

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνψ0 P«νψ1 PÀνψ2 PÀνψ3 ¨ ¨ ¨PÀνψ2b´1 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

ÿ

ν

}Pνψ0ptq}L2
x

}P«νψ1ptq}L2
x

}ψ2ptq}L8
x

}ψ3ptq}L8
x

¨ ¨ ¨ }ψ2b´1ptq}L8
x
dt

ď CpsqT
d´b`1

d }ψ0}L8
t Hm´1

rT s
}ψ1}L8

t HmrT s }ψ2}L2d
t L8

x rT s }ψ3}L2d
t L8

x rT s ¨ ¨ ¨ }ψ2b´1}L2d
t L8

x rT s

ď CpsqT
1
d }ψ0}V 2

BHm´1
rT s

}ψ1}FmrT s }ψ2}F 1rT s }ψ3}F 1rT s ¨ ¨ ¨ }ψ2b´1}F 1rT s .

We now turn to the proof of (2.49). Using Lemma 2.22, a typical summand on the left-hand side of

(2.49) is controlled by

CpsqT
d´b`1

d }Pνψ0}L2d
t L8

x rT s }Pλψ1}L8
t L2

xrT s }P«λψ2}L8
t L2

xrT s

2b´1
ź

ℓ“3

}ψℓ}L2d
t L8

x rT s

ď CpsqT
1
d p1 `Mq

2
ν1´ 1

2dmpνqmpλq´1λ´1 }ψ0}V 2
BHm´1

rT s
}ψ1}FmrT s }ψ2}F 1rT s

2b´1
ź

ℓ“3

}ψℓ}F 1rT s .

Summing up over tλ " νu, we obtain (2.49) as required.

2.4.6 Proof of Theorem 2.25

Let T P p0, 1s be fixed later. Define Σ : EM,T Ñ U2
BH

mrT s by

Σpψqptq :“ SBpt, 0qψin `

ż t

0

SBpt, t1q

„

Q
“

ψ,ψ, ψ
‰

pt1q `
`

N 2
t

“

ψ,ψ
‰

ψ
˘

pt1q

`
`

N 4
t

“

ψ,ψ, ψ, ψ
‰

ψ
˘

pt1q `
`

N 4
x

“

ψ,ψ, ψ, ψ
‰

ψ
˘

pt1q ´ 2i
`

V 1
`

|ψ|2
˘

ψ
˘

pt1q

ȷ

dt1 .

Our goal is to show that Σ defines a contraction map EM,T Ñ EM,T .
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Suppose ψ1 P EM,T . By Lemma 2.27, we have

›

›

›

rψ1

›

›

›

FmrT s
ď Cpsqp1 `Mq2M

for every ψ P EM,T , where rψ1 is either ψ1 or ψ1. Now, applying Lemmas 2.32, 2.33, 2.34, 2.35, 2.36,

bounding the F 1rT s norm above by the FmrT s norm, we have

›

›Q
“

ψ1, ψ1, ψ1
‰›

›

DU2
BHmrT s

ď CpsqT
1
2 p1 `Mq

6
M3 ,

›

›N 2
t

“

ψ1, ψ1
‰

ψ1
›

›

DU2
BHmrT s

ď CpsqT
1
2 p1 `Mq

8
M3 ,

›

›N 4
t

“

ψ1, ψ1 ψ1, ψ1
‰

ψ1
›

›

DU2
BHmrT s

ď CpsqT
1
2 p1 `Mq

10
M5 ,

›

›N 4
x

“

ψ1, ψ1 ψ1, ψ1
‰

ψ1
›

›

DU2
BHmrT s

ď CpsqT
1
2 p1 `Mq

10
M5 ,

›

›V 1
`

|ψ1|2
˘

ψ1
›

›

DU2
BHmrT s

ď CpsqT
1
d p1 `Mq

4d
M2d´1 .

Summing these up, we obtain

›

›Σpψ1q
›

›

U2
BHmrT s

ď M ` CpsqT
1
2 p1 `Mq

14
M ` CpsqT

1
d p1 `Mq

6d´2
M .

If ψ2 is another element of EM,T , then a similar argument shows

›

›Σpψ1q ´Σpψ2q
›

›

U2
BHmrT s

ď Cpsq
´

T
1
2 p1 `Mq

14
` T

1
d p1 `Mq

6d´2
¯

›

›ψ1 ´ ψ2
›

›

U2
BHmrT s

.

Hence, we see that by choosing T “ T ps,Mq P p0, 1s sufficiently small, we could ensure that Σ indeed

defines a contraction map EM,T Ñ EM,T .

The unique fixed point ψ P EM,T is then the desired solution to (2.30). Moreover, by (2.33),

›

›N 2
x

“

ψ,ψ
‰›

›

L8
t L8

x r1s
ď 2KM2 .

Thus, letting Γ be the extension by zero of ´ 1
2N

2
x rψ,ψs to r0, 1q, we have that Γ satisfies (2.34).

It remains to check that Γ verifies the hypothesis (II), provided we choose T ps,Mq smaller if necessary.

For this, we need the following estimate.

Lemma 2.37. Let T P p0, 1s. Then

›

›∇N 2
x rψ1, ψ2s

›

›

L1
tL

8
x rT s

À T
1
2 }ψ1}F 1rT s }ψ2}F 1rT s .

Proof. Recalling that R denotes the Riesz transform, observe that ∇N 2
x rv1, v2s and R2pv1v2q have the

same components. By Bernstein’s inequality, the boundedness of the Riesz transform on L4
x, and Lemma

2.28, we have

›

›∇N 2
x rPλψ1,Pďλψ2s

›

›

L1
tL

8
x rT s

À T
1
2µ

1
2 }Pλψ1 Pďλψ2}L2

tL
4
xrT s

À T
1
2µ

1
2 }Pλψ1}L4

tL
4
xrT s }ψ2}L4

tL
8
x rT s

À T
1
2µ

1
2λ´ 3

4 }ψ1}F 1rT s }ψ2}F 1rT s .

Summing up over tλ Á µu and noting the symmetry of N 2
x rv1, v2s in v1 and v2, we obtain the desired

estimate.
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By Lemma 2.37, noting that }ψ}F 1rT s ď Cpsqp1 `Mq2M , we have

}Γ }L1
tL

8
x rT s ď CpsqT

1
2 p1 `Mq

4
M2 .

Hence, by choosing T “ T ps,Mq smaller if necessary, we can ensure that the right-hand side is ď 1 and,

consequently, (II) holds for Γ .

The proof of Theorem 2.25 is complete.

2.5 Convergence of the iteration scheme

Using Theorem 2.25, we may inductively construct the iterates ϕrns of the iteration scheme (2.27) which

is initialised with A
r0s
x “ 0. For the proof of Theorem 1.1, it remains to show that the iterates ϕrns

converge to a solution ϕ of the Chern-Simons-Schrödinger system in the Coulomb gauge, (2.26), and to

verify the Hs continuity of the solution map and the weak Lipschitz estimate (1.6).

The technical core of both tasks is that of estimating }ψ´ψ1}L8
t Hs´1rT s where both ψ,ψ

1 solve (2.30)

with possibly different admissible forms B,B1 respectively, and possibly different initial data. This is

provided for by the following result.

Theorem 2.38. Let M ą 0, let ε P p0, 1s and suppose B,B1, B: are admissible forms satisfying the

hypothesis (II) and (2.34). Assume that mpλq “ λs. Then, for sufficiently small T “ T ps,M, εq ď 1, the

following is true.

Let ψ P U2
BH

srT s and ψ1 P U2
B1HsrT s are solutions given by Theorem 2.25 to (2.30), with admissible

forms B,B1 respectively, such that }ψp0q}Hs ď M , }ψ1p0q}Hs ď M . Then

›

›ψ ´ ψ1
›

›

U2

B:H
s´1rT s

ď ε
´

›

›B ´B:
›

›

L2
tL

8
x rT s

`
›

›B1 ´B:
›

›

L2
tL

8
x rT s

¯

` Cpsq
›

›ψp0q ´ ψ1p0q
›

›

Hs´1 . (2.50)

Note that Proposition 2.23 already guarantees that ψ,ψ1 P U2
B:H

s´1rT s. Thus, the left-hand side of

(2.50) is finite.

The proof of Theorem 2.38 is straightforward but rather labourious. The rest of this section will be

devoted to this proof.

Explicitly, the difference equation for ψ ´ ψ1 can be written

pBt ´ i△ ` PB: q
`

ψ ´ ψ1
˘

“ PB:´Bψ ` PB1´B:ψ1

`
`

Q
“

ψ,ψ, ψ
‰

´ Q
“

ψ1, ψ1, ψ1
‰˘

`
`

N 2
t

“

ψ,ψ
‰

ψ ´ N 2
t

“

ψ1, ψ1
‰

ψ1
˘

`
`

N 4
t

“

ψ,ψ, ψ, ψ
‰

ψ ´ N 4
t

“

ψ1, ψ1, ψ1, ψ1
‰

ψ1
˘

`
`

N 4
x

“

ψ,ψ, ψ, ψ
‰

ψ ´ N 4
x

“

ψ1, ψ1, ψ1, ψ1
‰

ψ1
˘

´ 2i
´

V 1
´

|ψ|
2
¯

ψ ´ V 1
´

ˇ

ˇψ1
ˇ

ˇ

2
¯

ψ1
¯

.

(2.51)

The proof of Theorem 2.38 proceeds in the exact same manner as that of Theorem 2.25. We estimate the

DU2
B:H

s´1rT s norm of each term of the right-hand side of (2.51), by testing against a V 2
B:H

´ps´1qrT s

function and invoking the duality principle of Lemma 2.21.



50 2.5. CONVERGENCE OF THE ITERATION SCHEME

2.5.1 Difference estimates for the gauge fields

First we need the following preliminary estimates, which are analogous to those of Lemmas 2.29, 2.30,

2.31. Eventually, the indeterminate function ω will be substituted with ψ ´ ψ1 or its complex conjugate.

Lemma 2.39. Let T P p0, 1s. Then

›

›PµN 2
x rψ1, ωs

›

›

L2
tL

8
x rT s

ď Cpsqµ
3
4 ´s }ψ1}F srT s }ω}F s´1rT s . (2.52)

Proof. For µ “ 1, Bernstein and Hardy-Littlewood-Sobolev give us

›

›P1N 2
x rψ1, ωs

›

›

L2
tL

8
x rT s

À T
1
4 }ψ1ω}

L4
tL

4
3 rT s

À }ψ1}L4
tL

4
xrT s }ω}L8

t L2
xrT s

ď Cpsq }ψ1}F srT s }ω}F s´1rT s .

Now, suppose instead that 2 ď µ P D. By Bernstein,

›

›PµN 2
x rPλψ1,Pνωs

›

›

L2
tL

8
x rT s

À µ´ 1
2 }Pλψ1 Pνω}L2

tL
4
xrT s

À µ´ 1
2 }Pλψ1}L4

tL
8
x rT s }Pνω}L4

tL
4
xrT s

ď Cpsqµ´ 1
2λ

1
4 ´sν

1
4 ´ps´1q }ψ1}F srT s }ω}F s´1rT s .

Performing the relevant summations, we obtain

›

›PµN 2
x rPÀµψ1,P«µωs

›

›

L2
tL

8
x rT s

`
›

›PµN 2
x rP«µψ1,PÀµωs

›

›

L2
tL

8
x rT s

ď Cpsqµ
3
4 ´s }ψ1}F srT s }ω}F s´1rT s .

By the Littlewood-Paley trichotomy, to prove (2.52) it remains to show

ÿ

λ : λ"µ

›

›PµN 2
x rPλψ1,P«λωs

›

›

L2
tL

8
x rT s

ď Cpsqµ
3
4 ´s }ψ1}F srT s }ω}F s´1rT s . (2.53)

For this, we use Bernstein to estimate

›

›PµN 2
x rPλψ1,P«λωs

›

›

L2
tL

8
x rT s

À }Pλψ1 P«λω}L2
tL

2
xrT s

À }Pλψ1}L4
tL

4
xrT s }P«λω}L4

tL
4
xrT s

ď Cpsqλ
1
4 ´sλ

1
4 ´ps´1q }ψ1}F srT s }ω}F s´1rT s ,

and (2.53) follows immediately.

Lemma 2.40. Let T P p0, 1s. Then

›

›PµN 2
t rψ1, ωs

›

›

L8
t L1

xrT s
ď Cpsqµ´s }ψ1}F srT s }ω}F s´1rT s for µ ě 2 . (2.54)

We also have
›

›PÀµN 2
t rψ1, ωs

›

›

L8
t L8

x rT s
ď Cpsqµ }ψ1}F srT s }ω}F s´1rT s . (2.55)

Proof. We first observe the preliminary estimate

}Pµ p∇P"µψ1 P"µωq}L1
x

ď Cpsqµ´2ps´1q }ψ1}Hs }ω}Hs´1 . (2.56)
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Indeed, since s ě 1, for λ Á µ we have

}∇Pλψ1 P«λω}L1
x

ď Cpsqµ´p2s´2qλ2s´1 }Pλψ1}L2
x

}P«λω}L2
x
.

Summing over λ " µ, (2.56) follows using Cauchy-Schwarz.

We turn to the proof of (2.54). Let µ ě 2 be fixed. We have

›

›PµN 2
t rP«µψ1,PÀµωs

›

›

L8
t L1

xrT s
À µ´1 }∇P«µψ1 PÀµω}L8

t L1
xrT s

ď Cpsqµ´s }ψ1}L8
t HsrT s }ω}L8

t Hs´1rT s

and similarly

›

›PµN 2
t rPÀµψ1,P«µωs

›

›

L8
t L1

xrT s
À Cpsqµ´s }ψ1}L8

t HsrT s }ω}L8
t Hs´1rT s .

On the other hand, by (2.56),

›

›PµN 2
t rP"µψ1,P"µωs

›

›

L8
t L1

xrT s
ď Cpsqµ1´2s }ψ1}L8

t HsrT s }ω}L8
t Hs´1rT s .

Hence, due to the Littlewood-Paley trichotomy, we obtain (2.54).

We now prove (2.55). By Bernstein, Hardy-Littlewood-Sobolev and Hölder, we have

›

›P1N 2
t rψ1, ωs

›

›

L8
t L8

x rT s
À }∇ψ1 ω}L8

t L1
xrT s ď Cpsq }ψ1}L8

t HsrT s }ω}L8
t Hs´1rT s .

For ν ě 2, Bernstein’s inequality and (2.54) give

›

›PνN 2
t rψ1, ωs

›

›

L8
t L8

x rT s
ď Cpsqν }ψ1}F srT s }ω}F s´1rT s

since 2 ´ s ď 1. Hence, (2.55) follows by summing the preceding estimates.

Lemma 2.41. Let T P p0, 1s. Then

›

›PµN 4
t rψ1, ω, ψ2, ψ3s

›

›

L2
tL

8
x rT s

ď Cpsqµ
3
4 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s (2.57)

and
›

›PµN 4
t rψ1, ψ2, ψ3, ωs

›

›

L2
tL

8
x rT s

ď Cpsqµ
3
4 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s (2.58)

Proof. We first prove (2.57) in the case µ “ 1. By the Bernstein, Hardy-Littlewood-Sobolev and Hölder

inequalities, we have

›

›P1N 4
t rψ1, ω, ψ2, ψ3s

›

›

L2
tL

8
x rT s

À
›

›N 2
x rψ1, ωs

›

›

L2
tL

8
x rT s

}ψ2}L8
t L2

xrT s }ψ3}L8
t L2

xrT s

ď Cpsq }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s

where we have used (2.52) to estimate }N 2
x rψ1, ωs}L2

tL
8
x rT s.

Suppose now 2 ď µ P D. Then, by Bernstein,

›

›PµN 4
t rψ1, ω, ψ2, ψ3s

›

›

L2
tL

8
x rT s

À µ´1
›

›Pµ

`

N 2
x rψ1, ωsψ2ψ3

˘›

›

L2
tL

8
x rT s

.
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By Bernstein, Hölder and (2.52),

µ´1
›

›Pµ

`

PÁµN 2
x rψ1, ωs ψ2ψ3

˘›

›

L2
tL

8
x rT s

À
›

›PÁµN 2
x rψ1, ωs

›

›

L2
tL

8
x rT s

}ψ2}L8
t L4

xrT s }ψ3}L8
t L4

xrT s

ď Cpsqµ
3
4 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s .

On the other hand, for λ Á µ, we have

µ´1
›

›

›
Pµ

`

P!µN 2
x rψ1, ωs Pλψ2 Pďλψ3

˘

›

›

›

L2
tL

8
x rT s

À
›

›N 2
x rψ1, ωs

›

›

L2
tL

8
x rT s

}Pλψ2}L8
t L4

xrT s }ψ3}L8
t L4

xrT s

ď Cpsqλ
1
2 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s .

By summing over λ Á µ and noting the symmetry in ψ2, ψ3, we have

µ´1
›

›Pµ

`

P!µN 2
x rψ1, ωs ψ2ψ3

˘›

›

L2
tL

8
x rT s

ď Cpsqµ
1
2 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s .

This completes the proof of (2.57).

We turn to the proof of (2.58). The case µ “ 1 is handled in exactly the same fashion as above.

Suppose now 2 ď µ P D. Then, by Bernstein,

›

›PµN 4
t rψ1, ψ2, ψ3, ωs

›

›

L2
tL

8
x rT s

À µ´1
›

›Pµ

`

N 2
x rψ1, ψ2sψ3ω

˘›

›

L2
tL

8
x rT s

.

By Bernstein, Hölder and (2.36),

µ´1
›

›Pµ

`

PÁµN 2
x rψ1, ψ2s ψ3ω

˘›

›

L2
tL

8
x rT s

À µ
1
2

›

›PÁµN 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

}ψ3}L8
t L4

xrT s }ω}L8
t L2

xrT s

ď Cpsqµ
1
4 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s .

On the other hand, by Bernstein, Hölder and (2.28) we have

µ´1
›

›

›
Pµ

`

P!µN 2
x rψ1, ψ2s Pλψ3 PÀλω

˘

›

›

›

L2
tL

8
x rT s

À
›

›N 2
x rψ1, ψ2s

›

›

L8
t L8

x rT s
}Pλψ3}L4

tL
8
x rT s }ω}L8

t L2
xrT s

ď Cpsqλ
3
4 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s

which is summable over λ Á µ; and also we have

µ´1
›

›

›
Pµ

`

P!µN 2
x rψ1, ψ2s P!µψ3 P«µω

˘

›

›

›

L2
tL

8
x rT s

À µ´1
›

›N 2
x rψ1, ψ2s

›

›

L8
t L8

x rT s
}ψ3}L4

tL
8
x rT s }ω}L4

tL
8
x rT s

ď Cpsqµ
1
4 ´s }ω}F s´1rT s

3
ź

ℓ“1

}ψℓ}F srT s .

By the Littlewood-Paley trichotomy, (2.58) is proved.
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2.5.2 Difference estimates for nonlinearities

We are now ready to estimate the DU2
B:H

s´1rT s norm of each term of the right-hand side of (2.51).

Lemma 2.42. Assume the hypothesis (II). Let T P p0, 1s. Let Θ be an admissible form. Then

}PΘψ1}DU2

B:H
s´1rT s ď CpsqT

1
2 }Θ}L2

tL
8
x rT s }ψ1}F srT s .

Proof. By duality, it suffices to prove

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

ω0 PΘψ1 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }Θ}L2

tL
8
x rT s }ψ1}F srT s . (2.59)

By Hölder and Bernstein, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

ω0 PΘψ1 dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

À

ż T

0

ÿ

ν

}Pνω0ptq}L2
x

}Θptq}L8
x
ν }P«νψ1ptq}L2

x
dt

ď CpsqT
1
2 }ω0ptq}L8

t H´ps´1qrT s }Θ}L2
tL

8
x rT s }ψ1}L8

t HsrT s .

Now use Lemma 2.22 to replace the L8
t H

´ps´1qrT s norm of ω0 by the V 2
B:H

´ps´1qrT s. We thus obtain

(2.59).

Lemma 2.43. Assume the hypothesis (II). Let T P p0, 1s. Then we have

}Q rψ1, ω, ψ2s}DU2

B:H
s´1rT s ď CpsqT

1
2 }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s (2.60)

and

}Q rψ1, ψ2, ωs}DU2

B:H
s´1rT s ď CpsqT

1
2 }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s (2.61)

Proof. By duality, the proof of (2.60) reduces to verifying the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

ω0 Q rψ1, ω, ψ2s dxdt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s . (2.62)

By Lemma 2.39, we have

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

Pνω0 PµN 2
x rψ1, ωs ¨ ∇Pλψ2 dx dt

ˇ

ˇ

ˇ

ˇ

À T
1
2 }Pνω0}L8

t L2
xrT s

›

›PµN 2
x rψ1, ωs

›

›

L2
tL

8
x rT s

λ }Pλψ2}L8
t L2

xrT s

ď CpsqT
1
2 νs´1µ

3
4 ´sλ1´s }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

The right-hand side is summable over tµ Á maxpλ, νqu. This gives (2.60).

We now turn to proving (2.61). By duality, it suffices to prove

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

ω0 Q rψ1, ψ2, ωs dxdt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s . (2.63)
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By Lemma 2.29,

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

Pνω0 PµN 2
x rψ1, ψ2s ¨ ∇Pλω dx dt

ˇ

ˇ

ˇ

ˇ

À T
1
2 }Pνω0}L8

t L2
xrT s

›

›PµN 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

λ }Pλω}L8
t L2

xrT s

ď CpsqT
1
2 νs´1µ´ 3

4 ´sλ2´s }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

The right-hand side is summable over tµ Á maxpλ, νqu to give (2.63).

Lemma 2.44. Assume the hypothesis (II). Assume also that the admissible form B satisfies (2.34). Let

T P p0, 1s. Then we have

›

›N 2
t rψ1, ωsψ2

›

›

DU2

B:H
s´1rT s

ď Cpsq p1 `Mq
2
T

1
2 }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s (2.64)

and
›

›N 2
t rψ1, ψ2sω

›

›

DU2

B:H
s´1rT s

ď Cpsq p1 `Mq
2
T

1
2 }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s . (2.65)

Proof. By duality, the proof of (2.64) reduces to verifying the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ω0 N 2
t rψ1, ωsψ2 dx dt

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

(2.66)

Using (2.55) we have

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PÀνN 2
t rψ1, ωs P«νψ2 dx dt

ˇ

ˇ

ˇ

ˇ

À

ż T

0

›

›N 2
t rψ1, ωs ptq

›

›

L8
x

ÿ

ν

}Pνω0ptq}L2
x

}P«νψ2ptq}L2
x
dt

ď CpsqT }ω0}L8
t H´ps´1qrT s }ψ1}F srT s }ω}F s´1rT s }ψ2}L8

t HsrT s

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

By the Littlewood-Paley trichotomy, to prove (2.66) it remains to prove

˜

ÿ

µ«λ"ν

`
ÿ

µ«ν"λ

¸

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PµN 2
t rψ1, ωs Pλψ2 dx dt

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

(2.67)

For this, we have from (2.54) and the hypotheses that, for µ ě 2,

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PµN 2
t rψ1, ωs Pλψ2 dxdt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }Pνω0}L4

tL
8
x rT s

›

›PµN 2
t rψ1, ωs

›

›

L8
t L1

xrT s
}Pλψ2}L4

tL
8
x rT s

ď CpsqT
1
2 p1 `Mq

2
ν

3
4 `ps´1qµ´sλ

3
4 ´s }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .
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Therefore we have (2.67). Hence we have proved (2.64).

The proof of (2.65) is similar. By duality, it suffices to verify the estimate
ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ω0 N 2
t rψ1, ψ2sω dx dt

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

(2.68)

Indeed, using (2.38) and arguing as above, we obtain

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PÀνN 2
t rψ1, ψ2s P«νω dxdt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
3
4 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

By the Littlewood-Paley trichotomy, to prove (2.68) it remains to prove
˜

ÿ

µ«λ"ν

`
ÿ

µ«ν"λ

¸

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PµN 2
t rψ1, ψ2s Pλω dx dt

ˇ

ˇ

ˇ

ˇ

ď Cpsq p1 `Mq
2
T

1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2
ź

ℓ“1

}ψℓ}F srT s .

(2.69)

Arguing as before, we have from (2.37) and the hypotheses that, for µ ě 2,
ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PµN 2
t rψ1, ψ2s Pλω dx dt

ˇ

ˇ

ˇ

ˇ

À T
1
2 }Pνω0}L4

tL
8
x rT s

›

›PµN 2
t rψ1, ψ2s

›

›

L8
t L1

xrT s
}Pλω}L4

tL
8
x rT s

ď CpsqT
1
2 p1 `Mq

2
ν´ 1

4 `sµ´s´1λ
7
4 ´s }ω0}V 2

B:H
´ps´1qrT s }ω}U2

BHs´1rT s

2
ź

ℓ“1

}ψℓ}U2
BHsrT s .

Thus (2.69) is immediate, and we have completed the proof of (2.65).

Lemma 2.45. Assume the hypothesis (II). Let T P p0, 1s. Then we have the estimates

›

›N 4
t rψ1, ω, ψ2, ψ3sψ4

›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s , (2.70)

›

›N 4
t rψ1, ψ2, ψ3, ωsψ4

›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s , (2.71)

›

›N 4
t rψ1, ψ2, ψ3, ψ4sω

›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s . (2.72)

Proof. We first prove (2.70). By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ω0 N 4
t rψ1, ω, ψ2, ψ3sψ4 dx dt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .

For this, using (2.57) from Lemma 2.41 gives
ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PµN 4
t rψ1, ω, ψ2, ψ3s Pλψ4 dxdt

ˇ

ˇ

ˇ

ˇ

ď }Pνω0}L8
t L2

xrT s

›

›PµN 4
t rψ1, ω, ψ2, ψ3s

›

›

L2
tL

8
x rT s

}Pλψ4}L8
t L2

xrT s

ď CpsqT
1
2 νs´1µ

3
4 ´sλ´s }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s
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which is certainly summable over the regime where the larger two of tν, µ, λu are comparable. Therefore

we have proved (2.70).

The proof of (2.71) is exactly the same, except that (2.58) is used in place of (2.57).

We turn to the proof of (2.72). By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

ω0 N 4
t rψ1, ψ2, ψ3, ψ4sω dx dt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s . (2.73)

Firstly, using Lemma 2.31, we have

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PÀνN 4
t rψ1, ψ2, ψ3, ψ4s P«νω dxdt

ˇ

ˇ

ˇ

ˇ

À

ż T

0

ÿ

ν

}Pνω0ptq}L2
x

›

›N 4
t rψ1, ψ2, ψ3, ψ4s ptq

›

›

L8
x

}P«νωptq}L2
x
dt

ď CpsqT
1
2 }ω0}L8

t H´ps´1qrT s

›

›N 4
t rψ1, ψ2, ψ3, ψ4s

›

›

L2
tL

8
x rT s

}ω}L8
t Hs´1rT s

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .

By the Littlewood-Paley trichotomy, it remains to prove

˜

ÿ

ν«µ"λ

`
ÿ

λ«µ"ν

¸

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PµN 4
t rψ1, ψ2, ψ3, ψ4sPλω dxdt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .

(2.74)

For this, using Lemma 2.31 we have

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2

Pνω0 PµN 4
t rψ1, ψ2, ψ3, ψ4sPλω dx dt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }Pνω0}L8

t L2
xrT s

›

›PµN 4
t rψ1, ψ2, ψ3, ψ4s

›

›

L2
tL

8
x rT s

}Pλω}L8
t L2

xrT s

ď CpsqT
1
2 νs´1µ´ 1

4 ´sλ´ps´1q }ω0}V 2

B:H
´ps´1qrT s }ω}L8

t Hs´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .

Therefore (2.74) follows immediately.

Lemma 2.46. Assume the hypothesis (II). Let T P p0, 1s. Then we have the estimates

›

›N 4
x rψ1, ψ2, ψ3, ωsψ4

›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s (2.75)

and
›

›N 4
x rψ1, ψ2, ψ3, ψ4sω

›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s . (2.76)

Proof. By duality, the proof of (2.75) reduces to proving the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

ω0 N 4
x rψ1, ψ2, ψ3, ωsψ4 dx dt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .
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This, in turn, follows from using Lemmas 2.24 and 2.39 to obtain

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

Pνω0 Pµ1
N 2

x rψ1, ψ2s ¨ Pµ2
N 2

x rψ3, ωs Pλψ4 dx dt

ˇ

ˇ

ˇ

ˇ

ď T
1
2 }Pνω0}L8

t L2
xrT s

›

›Pµ1N 2
x rψ1, ψ2s

›

›

L8
t L8

x rT s

›

›Pµ2N 2
x rψ3, ωs

›

›

L2
tL

8
x rT s

}Pλψ4}L8
t L2

xrT s

ď CpsqT
1
2 νs´1µ

1
4 ´s
1 µ

3
4 ´s
2 λ´s }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s ,

and observing that the right-hand side is summable over the regime where the two largest of tν, µ1, µ2, λu

are comparable.

We now turn to the proof of (2.76). By duality, this reduces to proving

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

ω0 N 4
x rψ1, ψ2, ψ3, ψ4sω dxdt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .

Firstly, we have, using Lemma 2.24, that

ÿ

ν

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

Pνω0 P!νN 2
x rψ1, ψ2s ¨ P!νN 2

x rψ3, ψ4s P«νω dx dt

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

ÿ

ν

}Pνω0ptq}L2
x

›

›N 2
x rψ1, ψ2s ptq

›

›

L8
x

›

›N 2
x rψ3, ψ4s ptq

›

›

L8
x

}P«νωptq}L2
x
dt

ď CpsqT }ω0}L8
t H´ps´1qrT s

›

›N 2
x rψ1, ψ2s

›

›

L8
t L8

x rT s

›

›N 2
x rψ3, ψ4s

›

›

L8
t L8

x rT s
}ω}L8

t Hs´1rT s

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .

By the Littlewood-Paley trichotomy and symmetry, it remains to show that

ÿ

µ,ν : µÁν

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

Pνω0 PµN 2
x rψ1, ψ2s ¨ PďµN 2

x rψ3, ψ4s ω dx dt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s .

(2.77)

Indeed, by Lemmas 2.24 and 2.29, we have

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

Pνω0 PµN 2
x rψ1, ψ2s ¨ PďµN 2

x rψ3, ψ4s ω dxdt

ˇ

ˇ

ˇ

ˇ

ď T
1
2 }Pνω0}L8

t L2
xrT s

›

›PµN 2
x rψ1, ψ2s

›

›

L2
tL

8
x rT s

›

›N 2
x rψ3, ψ4s

›

›

L8
t L8

x rT s
}ω}L8

t L2
xrT s

ď CpsqT
1
2 νs´1µ´ 1

4 ´s }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

4
ź

ℓ“1

}ψℓ}F srT s ,

and then (2.77) follows immediately.

Lemma 2.47. Assume the hypothesis (II). Let T P p0, 1s. Let b P t2, . . . , du. Then we have the estimate

}ψ1ψ2 ¨ ¨ ¨ψ2b´2ω}DU2

B:H
s´1rT s ď CpsqT

1
d }ω}F s´1rT s

2b´2
ź

ℓ“1

}ψℓ}F srT s . (2.78)

Proof. By duality, it suffices to prove the estimate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

ω0 ψ1ψ2 ¨ ¨ ¨ψ2b´2ω dx dt

ˇ

ˇ

ˇ

ˇ

ď CpsqT
1
d }ω0}V2

BH´ps´1qrT s }ω}F s´1rT s

2b´2
ź

ℓ“1

}ψℓ}F srT s .
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For this, using Lemma 2.28 we have
ˇ

ˇ

ˇ

ˇ

ż T

0

ż

R2
x

Pνω0 Pµ1
ψ1 Pµ2

ψ2 ¨ ¨ ¨ Pµ2b´2
ψ2b´2Pλω dx dt

ˇ

ˇ

ˇ

ˇ

ď T
d´b`1

d }Pνω0}L8
t L2

xrT s }Pλω}L8
t L2

xrT s

2b´2
ź

ℓ“1

}Pµℓ
ψℓ}L2d

t L8
x rT s

ď CpsqT
1
d νs´1λ´ps´1qµ

1´ 1
2d ´s

1 µ
1´ 1

2d ´s
2 ¨ ¨ ¨µ

1´ 1
2d ´s

2b´2 }ω0}V 2

B:H
´ps´1qrT s }ω}F s´1rT s

2b´2
ź

ℓ“1

}ψℓ}F srT s .

Now simply observe that the right-hand side is summable over the regime where the two largest frequencies

among tν, µ1, µ2, . . . , µ2b´2, λu are comparable. Therefore we obtain (2.78).

2.5.3 Proof of Theorem 2.38

By Theorem 2.25, with T “ T ps,Mq ď 1 sufficiently small, we have the bounds }ψ}U2
BHsrT s ď 2M and

}ψ1}U2
B1H

srT s ď 2M . Thus, by Lemma 2.27 and the U2 ãÑ V 2
rc embedding, we have

}ψ}F srT s `
›

›ψ1
›

›

F srT s
ď Cpsq p1 `Mq

3
.

Similarly,
›

›ψ ´ ψ1
›

›

F s´1rT s
ď Cpsq p1 `Mq

2 ›
›ψ ´ ψ1

›

›

U2
BHs´1rT s

.

Now, apply Lemmas 2.42, 2.43, 2.44, 2.45, 2.46, 2.47, with each ψℓ being ψ or ψ1 or their complex

conjugates, and ω being ψ ´ ψ1 or its complex conjugate. We find, respectively,

}PB:´Bψ}DU2

B:H
s´1rT s

ď CpsqT
1
2 p1 `Mq

3 ›
›B ´B:

›

›

L2
tL

8
x rT s

,

›

›PB1´B:ψ1
›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 p1 `Mq

3 ›
›B1 ´B:

›

›

L2
tL

8
x rT s

,

›

›Q
“

ψ,ψ, ψ
‰

´ Q
“

ψ1, ψ1, ψ1
‰›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 p1 `Mq

8 ›
›ψ ´ ψ1

›

›

U2

B:H
s´1rT s

,

›

›N 2
0

“

ψ,ψ
‰

ψ ´ N 2
0

“

ψ1, ψ1
‰

ψ1
›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 p1 `Mq

10 ›
›ψ ´ ψ1

›

›

U2

B:H
s´1rT s

,

›

›N 4
t

“

ψ,ψ, ψ, ψ
‰

ψ ´ N 4
t

“

ψ1, ψ1, ψ1, ψ1
‰

ψ1
›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 p1 `Mq

14 ›
›ψ ´ ψ1

›

›

U2

B:H
s´1rT s

,

›

›N 4
x

“

ψ,ψ, ψ, ψ
‰

ψ ´ N 4
x

“

ψ1, ψ1, ψ1, ψ1
‰

ψ1
›

›

DU2

B:H
s´1rT s

ď CpsqT
1
2 p1 `Mq

14 ›
›ψ ´ ψ1

›

›

U2

B:H
s´1rT s

,

›

›V 1
`

|ψ|2
˘

ψ ´ V 1
`

|ψ1|2
˘

ψ1
›

›

DU2

B:H
s´1rT s

ď CpsqT
1
d p1 `Mq

6d´4 ›
›ψ ´ ψ1

›

›

U2

B:H
s´1rT s

.

Hence, applying Duhamel’s formula to (2.51) and using the above estimates, we obtain

›

›ψ ´ ψ1
›

›

U2

B:H
s´1rT s

ď
›

›ψp0q ´ ψ1p0q
›

›

Hs´1

` CpsqT
1
2 p1 `Mq

3
´

›

›B ´B:
›

›

L2
tL

8
x rT s

`
›

›B1 ´B:
›

›

L2
tL

8
x rT s

¯

` Cpsq
´

T
1
2 p1 `Mq

14
` T

1
d p1 `Mq

6d´4
¯

›

›ψ ´ ψ1
›

›

U2

B:H
s´1rT s

.

Therefore, by choosing T “ T ps,M, εq even smaller if necessary, we can subtract the last term on the

right-hand side from the left, and conclude

›

›ψ ´ ψ1
›

›

U2

B:H
s´1rT s

ď ε
´

›

›B ´B:
›

›

L2
tL

8
x rT s

`
›

›B1 ´B:
›

›

L2
tL

8
x rT s

¯

` C
›

›ψp0q ´ ψ1p0q
›

›

Hs´1 .

The proof of Theorem 2.38 is complete.
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2.6 Completion of the proof of the Theorem 1.1

We are now ready to complete the proof of Theorem 1.1. We first prove the following auxiliary lemma,

which will be necessary to upgrade L8
t H

s´1rT s convergence to L8
t H

srT s convergence in the following

proofs.

Lemma 2.48. Let s ě 1 and let K be a compact subset of Hs. Then there exists a Sobolev weight m

satisfying the hypothesis (I), which additionally satisfies

lim
λÑ8

mpλq

λ
“ 8 (2.79)

and

sup
wPK

}w}Hm ď 2 sup
wPK

}w}Hs . (2.80)

Proof. By rescaling, we may assume without loss of generality that

sup
wPK

}w}Hs “ 1 .

We claim that, for every ε P p0, 1s, there exists Λ “ Λpεq P D such that

sup
wPK

˜

ÿ

λěΛ

λ2s }Pλw}
2
L2

x

¸
1
2

ď ε .

Indeed, suppose for a contradiction that our claim was false. Then, for every µ P D there exists wµ P K

such that
˜

ÿ

λ : λěµ

λ2s }Pλwµ}
2
L2

x

¸
1
2

ą ε .

Since K is compact, there exists a subsequence µm Ñ 8 such that wµm converges to some w8 P K in

Hs. As w8 P Hs, there exists ν P D such that

˜

ÿ

λ : λěν

λ2s }Pλw8}
2
L2

x

¸
1
2

ď
ε

2
.

However, the triangle inequality gives, for µm ě ν,

˜

ÿ

λ : λěν

λ2s }Pλ pw8 ´ wµmq}
2
L2

x

¸
1
2

ě

˜

ÿ

λ : λěν

λ2s }Pλwµm}
2
L2

x

¸
1
2

´

˜

ÿ

λ : λěν

λ2s }Pλw8}
2
L2

x

¸
1
2

ą
ε

2

which contradicts the aforementioned convergence wµm Ñ w8.

Set ν0 :“ 1 and for m P t1, 2, 3, . . .u let νm be the smallest element of D strictly greater than νm´1

such that

sup
wPK

˜

ÿ

λěνm

λ2s }Pλw}
2
L2

x

¸
1
2

ď 2´m .

Set mpλq :“ 2
1
8mλs for νm ď λ ă νm`1. Clearly m satisfies the hypothesis (I) and (2.79), and it is

straightforward to verify that (2.80) also holds.
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2.6.1 Existence of solutions

Given D ą 0 as in the statement of Theorem 1.1, let ε “ εps,Dq P p0, 1s be a small constant which we

will choose later. Let M :“ 2D, and let T “ T ps,M, εq be that given in Theorem 2.38.

Now, let the initial data ϕin P Hs be given with }ϕin}Hs ď D. By Lemma 2.48, we may choose a

Sobolev weight m satisfying the hypothesis (I) and (2.79), such that }ϕin}Hm ď M . Using Theorem 2.25,

starting from A
r0s
x “ 0, we construct the iterates ϕrns P U2

A
rn´1s
x

HmrT s solving the iteration scheme (2.27).

We claim that, provided ε “ εps,Dq was chosen small enough, tϕrnsu8
n“1 will be a Cauchy sequence

L8
t H

srT s. Indeed, applying Theorem 2.38 with B: “ A
rn´1s
x and pψ,Bq “ pϕrns, A

rn´1s
x q and pψ1, B1q “

pϕrn`1s, A
rns
x q, we find

›

›

›
ϕrns ´ ϕrn`1s

›

›

›

U2

A
rn´1s
x

Hs´1rT s
ď ε

›

›

›
Arn´1s

x ´Arns
x

›

›

›

L2
tL

8
x rT s

.

By Lemma 2.39 and Lemma 2.27, we may replace the right-hand side as follows,

›

›

›
ϕrns ´ ϕrn`1s

›

›

›

U2

A
rn´1s
x

Hs´1rT s
ď Cpsqε

ˆ

›

›

›
ϕrns

›

›

›

F srT s
`

›

›

›
ϕrn´1s

›

›

›

F srT s

˙

›

›

›
ϕrn´1s ´ ϕrns

›

›

›

F s´1rT s

ď Cpsqε p1 `Mq
5
›

›

›
ϕrn´1s ´ ϕrns

›

›

›

U2

A
rn´2s
x

Hs´1rT s
.

Choose ε “ εps,Dq sufficiently small so that Cpsqεp1 `Mq5 ă 1
2 on the right-hand side. Then

›

›

›
ϕrns ´ ϕrn`1s

›

›

›

U2

A
rn´1s
x

Hs´1rT s
ď

1

2

›

›

›
ϕrn´1s ´ ϕrns

›

›

›

U2

A
rn´2s
x

Hs´1rT s
.

Now, Lemma 2.27 gives the estimate

›

›

›
ϕrns ´ ϕrn`1s

›

›

›

F s´1rT s
ď Cpsq p1 `Mq

2
›

›

›
ϕrns ´ ϕrn`1s

›

›

›

U2

A
rn´1s
x

Hs´1rT s
.

Thus, tϕrnsu8
n“1 is a Cauchy sequence in F s´1rT s and hence in L8

t H
s´1rT s. On the other hand, Lemma

2.22 also guarantees that tϕrnsu8
n“1 is a bounded sequence in L8

t H
mrT s. Due to (2.79), we deduce that

tϕrnsu8
n“1 is also a Cauchy sequence in L8

t H
srT s, as claimed.

Let ϕ be the limit of tϕrnsu8
n“1 in L8

t H
srT s. By Lemma 2.24,

Arns
x Ñ Ax :“ ´ 1

2N
2
x

“

ϕ, ϕ
‰

in L8
t L

8
x rT s .

Moreover, since Hs controls the L4
x norm, it is easy to see that

}ϕ}F srT s ď lim inf
nÑ8

›

›

›
ϕrns

›

›

›

F srT s
.

In particular, }ϕ}F srT s ď Cpsqp1 ` Mq3. By our choice of T “ T ps,M, εq, Lemma 2.37 guarantees that

}∇Ax}L1
tL

8
x rT s ď 1. Hence Ax is an admissible form satisfying the hypothesis (II) and also (2.34).

Since A
rns
x Ñ Ax in L8

t L
8
x rT s and ϕrns Ñ ϕ in L8

t H
srT s, we have

P
A

rn´1s
x

ϕrns Ñ PAxϕ in L8
t H

s´1rT s .
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Since ϕrns Ñ ϕ in F s´1rT s, Lemmas 2.43, 2.44, 2.45, 2.46, 2.47 guarantee that

Q
”

ϕrns, ϕrns, ϕrns
ı

Ñ Q
“

ϕ, ϕ, ϕ
‰

,

N 2
0

”

ϕrns, ϕrns
ı

ϕrns Ñ N 2
0

“

ϕ, ϕ
‰

ϕ ,

N 4
t

”

ϕrns, ϕrns, ϕrns, ϕrns
ı

ϕrns Ñ N 4
t

“

ϕ, ϕ, ϕ, ϕ
‰

ϕ ,

N 4
x

”

ϕrns, ϕrns, ϕrns, ϕrns
ı

ϕrns Ñ N 4
x

“

ϕ, ϕ, ϕ, ϕ
‰

ϕ ,

V 1

ˆ

ˇ

ˇ

ˇ
ϕrns

ˇ

ˇ

ˇ

2
˙

ϕrns Ñ V 1
´

|ϕ|
2
¯

ϕ

in DU2
B:H

s´1rT s for any admissible form B:, and in particular for B: “ Ax.

Hence, ϕ P U2
Ax
Hs´1rT s is indeed a solution to the Chern-Simons-Schrödinger system in the Coulomb

guage, (2.26). Furthermore, since ϕ P F srT s, Lemmas 2.32, 2.33, 2.34, 2.35, 2.36 guarantee that the

right-hand side of (2.26) belongs to DU2
Ax
HsrT s. In particular, ϕ P U2

Ax
HsrT s and }ϕ}U2

Ax
HsrT s ď 2M .

This concludes the proof of the existence of solutions.

2.6.2 Uniqueness of solutions, continuity of the solution map, regularity

The uniqueness of a solution, given initial data, is a consequence of the weak Lipschitz bound (1.6).

In turn, the weak Lipschitz bound (1.6) is a straightforward consequence of Theorem 2.38. Indeed, let

ε “ εps,Dq P p0, 1s a small constant (possibly smaller than the one chosen before) which we will choose

later, and let T “ T ps,M, εq be given by Theorem 2.38. Then, for two solutions pϕ,Axq and pϕ1, A1
xq to

the Chern-Simons-Schrödinger system (2.26) with ϕp0q, ϕ1p0q P BHspDq, we have the estimate

›

›ϕ´ ϕ1
›

›

U2
Ax

Hs´1rT s
ď ε

›

›Ax ´A1
x

›

›

L2
tL

8
x rT s

`
›

›ϕp0q ´ ϕ1p0q
›

›

Hs´1 .

Arguing as before using Lemma 2.39, we have

›

›ϕ´ ϕ1
›

›

U2
Ax

Hs´1rT s
ď Cpsqεp1 `Dq5

›

›ϕ´ ϕ1
›

›

U2
Ax

Hs´1rT s
`
›

›ϕp0q ´ ϕ1p0q
›

›

Hs´1 ,

so that, with ε “ εps,Dq chosen sufficiently small, we obtain by Lemma 2.22,

›

›ϕ´ ϕ1
›

›

L8
t Hs´1rT s

ď Cpsq
›

›ϕ´ ϕ1
›

›

U2
Ax

Hs´1rT s
ď Cpsq

›

›ϕp0q ´ ϕ1p0q
›

›

Hs´1 .

This completes the proof of (1.6), which also implies the uniqueness statement for solutions.

Next, we address the issue of the continuity of the solution map into L8
t H

srT s. Let ϕin,rns be a

sequence of initial data converging to ϕin in Hs. By Lemma 2.48, we may pick a Sobolev weight m

for K :“ tϕin,rnsu8
n“1 Y tϕinu. By the weak Lipschitz bound (1.6), the solutions ϕrns converge to ϕ in

L8
t H

s´1rT s. On the other hand, tϕrnsu8
n“1 is bounded in L8

t H
mrT s. Hence, (2.80) guarantees that

tϕrnsu8
n“1 is a Cauchy sequence in L8

t H
srT s. Thus, the solution map is continuous.

We now turn to proving the norm growth estimate (1.7). By Theorem 2.25, there exists T1 “

T1pD1q ą 0 such that any H1 solution ϕ to (1.3) with }ϕp0q}H1 ď D1 exists up to r0, T1q, and satisfies

}ϕ}U2
Ax

H1rT1s ď 2D1 and thus, by Lemma 2.27,

}ϕ}F 1rT1s À p1 `D1q2D1 .
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Moreover Ax satisfies (2.34) with M “ D1. If additionally ϕ P Cbpr0, Tsq,Hsq with Ts ď T1, then using

Lemmas 2.32, 2.33, 2.34, 2.35, 2.36 respectively, we obtain

›

›Q
“

ϕ, ϕ, ϕ
‰›

›

DU2
Ax

HsrTss
ď CpsqT

1
2
s p1 `D1q

6
D2

1 }ϕ}U2
Ax

HsrTss ,

›

›N 2
0

“

ϕ, ϕ
‰

ϕ
›

›

DU2
Ax

HsrTss
ď CpsqT

1
2
s p1 `D1q

8
D2

1 }ϕ}U2
Ax

HsrTss ,

›

›N 4
t

“

ϕ, ϕ, ϕ, ϕ
‰

ϕ
›

›

DU2
Ax

HsrTss
ď CpsqT

1
2
s p1 `D1q

10
D4

1 }ϕ}U2
Ax

HsrTss ,

›

›N 4
x

“

ϕ, ϕ, ϕ, ϕ
‰

ϕ
›

›

DU2
Ax

HsrTss
ď CpsqT

1
2
s p1 `D1q

10
D4

1 }ϕ}U2
Ax

HsrTss ,
›

›

›
V 1

´

|ϕ|
2
¯

ϕ
›

›

›

DU2
Ax

HsrTss
ď CpsqT

1
d
s p1 `D1q

4d
D2d´2

1 }ϕ}U2
Ax

HsrTss .

Summing the above estimates, we conclude from Duhamel’s formula that there exists a constant C0 “

C0psq ą 0 such that

}ϕ}U2
Ax

HsrTss ď }ϕp0q}Hs ` C0psq
´

T
1
2
s p1 `D1q

14
` T

1
d
s p1 `D1q

6d´2
¯

}ϕ}U2
Ax

HsrTss .

Choose T‹ “ T‹ps,D1q such that T‹ ď T1 and

C0psq
´

T
1
2
s p1 `D1q

14
` T

1
d
s p1 `D1q

6d´2
¯

ď
1

2
.

Therefore, if Ts ď T‹ we have }ϕ}U2
Ax

HsrTss ď 2}ϕp0q}Hs and hence, by Lemma 2.27,

}ϕ}L8
t HsrTss ď Cpsq p1 `D1q

2
}ϕp0q}Hs “: C‹ps,D1q }ϕp0q}Hs .

2.6.3 Global regularity

It remains to prove the final statement that, if V is a nonzero polynomial with positive leading coefficient

cd ą 0, then global well-posedness holds for (1.3) in Hs for every s ě 1. For this, it suffices to show that

the H1 norm of a solution ϕ to (1.3) is controlled by the conserved mass Mp0q and energy Ep0q.

An easy application of Hölder’s inequality gives, for b P t2, . . . , d´ 1u,

}ϕptq}L2b
x

ď }ϕptq}
d´b
d´1

L2
x

}ϕptq}
b´1
d´1

L2d
x

.

Therefore, using Young’s inequality, we have for any ε ą 0 the estimate

}ϕptq}
2b
L2b

x
ď ε }ϕptq}

2d
L2d

x
` C

´

}ϕptq}L2
x
, ε
¯

.

By choosing ε ą 0 sufficiently small depending on cd ą 0, and we deduce

1

2
}Dxϕptq}

2
L2

x
`
cd
2

}ϕptq}
2d
L2d

x
ď Eptq ` C

´

}ϕptq}L2
x

¯

ď C pMp0q, Ep0qq .

Thus, }ϕptq}L2d
x

ď CpMp0q, Ep0qq, and therefore, by an easy interpolation,

}ϕptq}L4
x

ď C pMp0q, Ep0qq .

Now, by the Hardy-Littlewood-Sobolev inequality, we have

}Axptq}L4
x

À

›

›

›
|ϕptq|

2
›

›

›

L
4
3
x

À }ϕptq}L2
x

}ϕptq}L4
x
.
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Hence, we find

}ϕptq}
2
H1 À }ϕptq}

2
L2

x
` }Dxϕptq}

2
L2

x
` }Axptq}

2
L4

x
}ϕptq}

2
L4

x

À Mp0q ` }Dxϕptq}
2
L2

x
` Mp0q }ϕptq}

4
L4

x

ď C pMp0q, Ep0qq

from which we conclude that }ϕptq}H1 remains uniformly bounded, controlled by the conserved quantities.

The proof of Theorem 1.1 is complete.

2.7 Appendix: Proofs of basic properties of the Up and V p spaces

In this appendix, we provide the proofs of Lemmas 2.8 and 2.9, which describe the properties of the Up

and V p spaces that we use in this chapter. These proofs are mainly taken from [18], Section 2, while the

proof of Lemma 2.9 is taken from [33], Appendix B.

Proof of Lemma 2.8. We first remark that the embeddings V p
rcXrT s ãÑ L8

t XrT s and UqXrT s ãÑ L8
t XrT s

are trivial, with

}v}L8
t XrT s ď }v}V pXrT s

and

}u}L8
t XrT s ď }u}UqXrT s .

Since UpXrT s atoms are right-continuous r0, T q Ñ X, and a general UpXrT s function is a uniform

limit of UpXrT s atoms, we see that UpXrT s functions are right-continuous. To verify the UpXrT s ãÑ

V pXrT s embedding, it suffices by the atomic structure of UpXrT s to check that UpXrT s atoms belong

to V pXrT s. Let

aptq “

K´1
ÿ

k“0

1rtk,tk`1qptqak

be a UpXrT s atom. Consider a partition t “ tsjuJj“0 with 0 “ s0 ă s1 ă . . . ă sJ “ T . For 0 ď j ď J

let kpjq P t0, 1, . . . ,Ku be maximal such that tkpjq ď sj . Observe that apsj`1q ´ apsjq “ akpj`1q ´ akpjq,

and in particular vanishes when kpj ` 1q “ kpjq. Therefore, we see that

J´1
ÿ

j“0

}apsj`1q ´ apsjq}
p
X ď 2p

K´1
ÿ

k“0

}ak}
p
X ď 2p .

Since t was arbitrary, we deduce }a}V pXrT s ď 2. This establishes the embedding UpXrT s ãÑ V p
rcXrT s.

It remains to demonstrate the embedding V p
rcXrT s ãÑ UqXrT s with q ą p. Let v P V p

rcXrT s be such

that }v}V pXrT s “ 1. We construct, for n P Zě0, partitions trns of r0, T q and functions urns : r0, T q Ñ X

such that

(i) tr0s Ď tr1s Ď tr2s Ď . . . with
ˇ

ˇ

ˇ
trns

ˇ

ˇ

ˇ
ď 2pn`1qp .
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(ii) ur0s “ 0, and for each n, urns is a right-continuous step-function with jumps only at trns, and

›

›

›
urns

›

›

›

L8
t XrT s

ď 21´n .

(iii) Defining vr0s :“ v and inductively vrn`1s :“ vrns ´ urn`1s, we have vrns P V p
rcXrT s and

›

›

›
vrns

›

›

›

L8
t XrT s

ď 2´n .

We proceed by induction on n. Defining tr0s :“ t0, T u, we see that the relevant properties above are

satisfied for n “ 0. Now, having constructed trns, urns, vrns, we construct trn`1s, urn`1s, vrn`1s as follows.

Denote trns :“ t0 “ t
rns
0 ă . . . ă t

rns

Kn
“ T u. For k “ 0, 1, . . . ,Kn, define t

rn`1s

k,0 :“ t
rns

k and if k ă Kn

construct the sequence t
rn`1s

k,1 , t
rn`1s

k,2 , . . . by

t
rn`1s

k,j :“ inf

"

t P

´

t
rn`1s

k,j´1 , t
rns

k`1

ı

ˇ

ˇ

ˇ

ˇ

›

›

›
vptq ´ vpt

rn`1s

k,j´1q

›

›

›

X
ą 2´n´1

*

provided the latter set is nonempty; otherwise t
rn`1s

k,j :“ t
rns

k`1. Since v is right-continuous we see that

}vpt
rn`1s

k,j q ´ vpt
rn`1s

k,j´1q}X ě 2´n´1 and since v P V pXrT s the sequence t
rn`1s

k,1 , t
rn`1s

k,2 , . . . is finite. We may

thus define the partition trn`1s :“ t0 “ t
rn`1s
0 ă . . . ă t

rn`1s

Kn`1
“ T u to consist of all the elements tt

rn`1s

k,j u.

Now, define

urn`1sptq :“

Kn`1
ÿ

k“0

1”
t

rn`1s
k , t

rn`1s
k`1

¯ptq vrnspt
rn`1s

k q

and vrn`1s :“ vrns ´ urn`1s. Then (ii) is trivially satisfied for urn`1s. Next, note that, for each t P r0, T q

there is a unique k such that t P rt
rn`1s

k , t
rn`1s

k`1 q, then because vrn`1s ´ v is a step function with jumps

in trn`1s, we have }vrn`1sptq}X “ }vrnsptq ´ vrnspt
rn`1s

k q}X “ }vptq ´ vpt
rn`1s

k q}X ď 2´n´1. Thus (iii) is

verified for vrn`1s. Finally, 1 “ }v}
p
V p ě |trn`1s|2´pn`1qp, which verifies (i) for trn`1s. This completes the

induction step.

We thus have v “
ř8

n“0 u
rns where the sum strongly converges in L8

t XrT s. Now, every urns, being

a right-continuous step function, clearly belongs to UqXrT s, with }urns}
q
UqXrT s

ď |trns|}urns}
q
L8

t XrT s
.

Plugging in the above bounds, we obtain

›

›

›
urns

›

›

›

UqXrT s
ď 21`

p
q 2´np1´

p
q q .

Since q ą p we conclude that v P UqXrT s with }v}UqXrT s ď Cpp, qq.

The proof of Lemma 2.9 requires us to first characterise the dual space of UpXrT s. In the rest of this

section, X is a separable Banach space over C, such that its dual space X˚ is also separable.

Lemma 2.49. Let 1 ă p ă 8. For a partition t “ t0 “ t0 ă . . . ă tK “ T u of r0, T q, define the bilinear

form Bt : U
pXrT s ˆ V p1

X˚rT s Ñ C by

Btpu, vq :“
K´1
ÿ

k“0

xuptkq, vptk`1q ´ vptkqyX,X˚ .

Then, viewing the family of all partitions of r0, T q as a directed set under inclusion, the limit

Bpu, vq :“ lim
t
Btpu, vq (2.81)
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exists. More precisely, given u P UpXrT s and v P V p1
X˚rT s, there exists Bpu, vq P C such that for every

ε ą 0 there exists t such that whenever t1 Ě t it holds that |Bt1 pu, vq ´Bpu, vq| ă ε.

Moreover, B defines a continuous bilinear form B : UpXrT s ˆ V p1
X˚rT s Ñ C with

|Bpu, vq| ď }u}UpXrT s }v}V p1X˚rT s . (2.82)

Proof. Let t “ t0 “ t0 ă . . . ă tK “ T u be a partition of r0, T q and v P V p1
X˚rT s. Let a be a

UpXrT s atom, so that aptq “
řJ´1

j“0 1rsj ,sj`1qptqaj for a partition s “ t0 “ s0 ă . . . ă sJ “ T u of

r0, T q, with
řJ´1

j“0 }aj}
p
X “ 1. Then, for tk P t, there exists a unique jpkq P t0, 1, . . . , J ´ 1u such that

sjpkq ď tk ă sjpk`1q. By definition,

Btpa, vq :“
K´1
ÿ

k“0

@

ajpkq , vptk`1q ´ vptkq
D

X,X˚ .

Let t‹ be the partition of r0, T q formed by removing all tk`1 from t whenever jpkq “ jpk ` 1q. Writing

t‹ :“ t0 “ t‹0 ă . . . ă t‹L “ T u and defining j‹pℓq P t0, 1, . . . , J ´ 1u similarly as above, we have that

j‹p0q ă . . . ă j˚pL´ 1q, and

Btpa, vq :“
L´1
ÿ

ℓ“0

@

aj‹pℓq , vpt‹ℓ`1q ´ vpt‹ℓq
D

X,X˚ .

Thus, a simple application of Hölder’s inequality gives

|Btpa, vq| ď }v}V p1X˚rT s .

By the atomic structure of UpXrT s, we deduce that

|Btpu, vq| ď }u}UpXrT s }v}V p1X˚rT s (2.83)

for any partition t of r0, T q, and any u P UpXrT s and v P V p1
X˚rT s.

Now, let u P UpXrT s and v P V p1
X˚rT s be given. Write u “

ř8
j“1 cjaj with tcju8

j“1 P ℓ1 and aj

being UpXrT s atoms. Given ε ą 0, pick J P Zą0 so that
ř8

j“J`1 |cj | ď ε
2 p1 ` }v}V p1X˚rT sq

´1. Set uJ :“
řJ

j“1 cjaj . Notice that uJ is a right-continuous step function and }u´uJ}UpXrT s ď ε
2 p1`}v}V p1X˚rT sq

´1.

Let t be the partition of r0, T q subordinate to uJ . Then, for any t1 Ě t, we have Bt1 puJ , vq “ BtpuJ , vq,

so that

|Bt1 pu, vq ´Btpu, vq| ď |Bt1 pu, vq ´Bt1 puJ , vq| ` |Btpu, vq ´BtpuJ , vq|

ď 2 }u´ uJ}UpXrT s }v}V p1X˚rT s

ă ε .

This implies the existence of the limit (2.81). The bound (2.82) is immediate from (2.83).

Lemma 2.50. Let 1 ă p ă 8. Then

pUpXrT sq
˚

“ V p1
X˚rT s .

More precisely, with B : UpXrT s ˆ V p1
X˚rT s Ñ C defined in the previous Lemma, the map

V p1
X˚rT s Q v ÞÑ Bp¨, vq P pUpXrT sq

˚

is an isometric isomorphism.



66 2.7. APPENDIX: PROOFS OF BASIC PROPERTIES OF THE UP AND V P SPACES

Proof. Let L P pUpXrT sq˚ be given. For any t P r0, T s define vptq P X˚ by

xw, vptqyX,X˚ :“ ´L
`

1rt,T qp¨qw
˘

.

This gives us a function v : r0, T s Ñ X˚ with vpT q “ 0.

We claim that v P V p1
X˚rT s with

}v}V p1X˚rT s ď }L}pUpXrT sq˚ . (2.84)

Indeed, let t “ t0 “ t0 ă . . . ă tK “ T u be any partition and let ε P p0, 1q. Choose a0, a1, . . . , aK´1 P X

such that

}ak}X “
}vptk`1q ´ vptkq}

p1´1
X˚

´

řK´1
ℓ“1 }vptℓ`1q ´ vptℓq}

p1

X˚

¯
1
p

and

xak, vptk`1q ´ vptkqyX,X˚ ě p1 ´ εq }ak}X }vptk`1q ´ vptkq}X˚ .

Then a :“
řK´1

k“0 1rtk,tk`1qp¨qak is a UpXrT s atom, so }a}UpXrT s ď 1. We thus obtain

}L}pUpXrT sq˚ ě

ˇ

ˇ

ˇ

ˇ

ˇ

K´1
ÿ

k“0

L
`

1rtk,tk`1qp¨q ak
˘

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

K´1
ÿ

k“0

xak, vptk`1q ´ vptkqyX,X˚

ˇ

ˇ

ˇ

ˇ

ˇ

ě p1 ´ εq

˜

K´1
ÿ

k“0

}vptk`1q ´ vptkq}
p1

X˚

¸

1
p1

.

Since ε and t were arbitrary, we deduce (2.84).

To complete the proof of the Lemma, it suffices to show that Bp¨, vq “ L. Let a “
řK´1

k“0 1rtk,tk`1qp¨q ak

be any UpXrT s atom. Then, if t1 is any partition containing t0 “ t0 ă . . . ă tK “ T u, we have

Bt1 pa, vq “

K´1
ÿ

k“0

xak, vptk`1q ´ vptkqyX,X˚ “

K´1
ÿ

k“0

L
`

1rtk,tk`1qp¨q ak
˘

“ Lpaq .

Therefore, in the limit,

Bpa, vq “ Lpaq .

Since a was an arbitrary UpXrT s atom, we see from the atomic structure of UpXrT s that

Bpu, vq “ Lpuq

for any u P UpXrT s, as required.

Proof of Lemma 2.9. Let f P DUpXrT s, so that uptq :“
şt

0
fpt1qdt1 defines a function u P UpXrT s. Notice

that it suffices to show, for v P V p1
X˚rT s, that

Bpu, vq “ ´

ż T

0

xfptq, vptqyX,X˚dt . (2.85)



CHAPTER 2. WELL-POSEDNESS OF CHERN-SIMONS-SCHRÖDINGER 67

This follows from the characterisation of pUpXrT sq˚ in Lemma 2.50, and the fact that the integral on

the right-hand side remains unchanged if we modify vptq for countably many t P r0, T q so that, we could

have taken v P V p1

rc X
˚rT s.

We may assume that }v}V p1X˚rT s “ 1. Let the functions v`, w : r0, T q Ñ X˚ be given by

v`ptq :“ vpt`q , wptq :“ vptq ´ v`ptq .

Since v is continuous except at countably many points, we see that w is nonzero only at countably many

points. Moreover, it is easy to see that v` P V p1

rc X
˚rT s.

We claim that Bpu,wq “ 0. Indeed, if t “ t0 “ t0 ă . . . ă tK “ T u is a partition, then recalling

up0q “ 0 we find

Btpu,wq “ ´

K´1
ÿ

k“1

xuptkq ´ uptk´1q, wptkqyX,X˚dt

“ ´

K´1
ÿ

k“1

ż tk

tk´1

xfptq, wptkqyX,X˚dt .

(2.86)

For m P Zą0, let

Pm :“
␣

t P p0, T q
ˇ

ˇ }wptq}X˚ ě 2´m
(

,

and listing the points of Pm as s1 ă . . . ă sN , denote s1
j :“ maxt 1

2 psj´1 ` sjq, sj ´ 4´mT u with s0 :“ 0,

and set P 1
m :“ ts1

1, . . . , s
1
ju. Let Irms :“

ŤN
j“1rs1

j , sjq. Since Pm has at most 2m points, we see that

|Irms| ď 2´mT . Now, if t “ t0 “ t0 ă . . . ă tK “ T u is any partition containing all points of Pm Y P 1
m,

then using (2.86) we easily obtain

|Btpu,wq| ď 2´m

ż T

0

}fptq}X dt`

ż

Irms
}fptq}X dt .

Since u is a well-defined element of L8
t XrT s we have f P L1

tX
˚rT s, and hence the right-hand side vanishes

in the limit m Ñ 8.

In particular, to show (2.85) we may assume without loss of generality that v P V p1

rc X
˚rT s.

Fix q P pp1,8q and note that, due to the V p1

rc X
˚rT s ãÑ UqX˚rT s embedding given by Lemma 2.8,

we may assume that v was a UqX˚rT s atom. Write vptq “
řK´1

k“0 1rtk,tk`1qptq ak and the partition

t :“ t0 “ t0 ă . . . ă tK “ T u. Recalling that up0q “ 0, we see that for any partition t1 containing t,

Bt1 pu, vq “ Btpu, vq

“ ´

K´1
ÿ

k“1

xuptkq ´ uptk´1q, vptkqyX,X˚

“ ´

K´1
ÿ

k“1

ż tk

tk´1

xfptq, vptkqyX,X˚ dt

“ ´

ż T

0

xfptq, vptqyX,X˚dt .

Thus, (2.85) holds by taking the limit.
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Chapter 3

Asymptotic completeness of the

Chern-Simons-Schrödinger system

with a defocusing cubic nonlinearity

In this chapter we will prove Theorems 1.2 and 1.3 establishing a kind of asymptotic completeness for the

Chern-Simons-Schrödinger system in the Coulomb gauge, for a defocusing cubic nonlinearity. Physically,

this describes a repulsive binary interaction between the quantum particles in the system. Henceforth in

this chapter, we specialise to the case V p|ϕ|2q “ 1
4κ|ϕ|4 with κ ą 0, whereby (1.3) becomes

$

’

’

’

’

&

’

’

’

’

%

pBt ´ i△qϕ “ ´2Ax ¨ ∇ϕ´ iA0ϕ´ i|Ax|2ϕ´ iκ|ϕ|2ϕ ,

´△Ai “ ´ 1
2ϵijBj

`

|ϕ|2
˘

,

´△A0 “ ´Im
`

∇ϕ^ ∇ϕ
˘

´ rot
`

Ax|ϕ|2
˘

.

(3.1)

3.1 Heuristic ideas

We first remark that the proof of linear scattering, Theorem 1.2, reduces to showing that

ż 8

1

›

›

`

´2Ax ¨ ∇ϕ´ iA0ϕ´ i|Ax|2ϕ´ iκ|ϕ|2ϕ
˘

ptq
›

›

L2
x
dt ă 8 . (3.2)

Unfortunately, the only global-in-time a priori bounds we currently have do not seem sufficient to

deduce (3.2). Indeed, the conserved mass and energy do not give any decay in time, and we do not have

estimates on global-in-time Strichartz norms of ϕ. The only other global-in-time a priori bound for H1

solutions, known to the author, is

}ϕ}L4
tL

8
x

À

›

›

›
|∇|

1
2 ϕ

›

›

›

L4
tL

4
x

À C p}ϕp0q}H1q ,

which can be derived using interaction Morawetz estimates (see [11, 12, 41, 10]). However, this bound,

too, seems to be inadequate to deduce (3.2).

69
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We also recall that the electromagnetic interaction is long-range in that, from the representation

formula

Aipt, xq “
1

4π
ϵij

ż

R2

xj ´ yj
|x´ y|2

|ϕpt, yq|
2
dy

given by the Biot-Savart law, the electromagnetic potentials Ax do not decay more quickly than |x|´1

for large |x|. In principle, such a long range interaction could lead to complicated long-time dynamics

such as modified scattering or even finite-time blow up. Therefore, in order to prove that solutions to

(3.1) scatter to a free Schrödinger wave, one must identify and exploit some kind of cancellation in the

long-range effects.

In fact, such a cancellation is indeed present in the long-range electromagnetic interaction, more

precisely in the cubic terms ´2Ax ¨ ∇ϕ and ´iA1
0ϕ where A1

0 :“ △´1Imp∇ϕ ^ ∇ϕq is the quadratic

part of A0. This cancellation was first observed by Oh and Pusateri [39], who named it the cubic null

structure and exploited it in Fourier space to close their bootstrap argument. We can, however, already

heuristically see the cancellation in physical space as follows. Write

´2Ax ¨ ∇ϕ´ iA1
0ϕ “ ϵij

Bj

△
`

|ϕ|2
˘

Bjϕ´ ϵijϕ
Bi

△
`

ϕBjϕ
˘

“
1

2π
ϵij

ż

R2

ϕpyq
xi ´ yi
|x´ y|2

rϕpxqBjϕpyq ´ ϕpyqBjϕpxqs dy .

(3.3)

Now, let us plug in the approximation ϕptq « eit△w and motivate the idea that this approximation is

consistent. We formally have

ϕpt, xq «
1

4πit

ż

R2

ei
|x´y|2

4t wpyqdy

«
1

4πit
ei

|x|2
4t

ż

R2

ei
x¨y
2t wpyqdy “

1

4πit
ei

|x|2
4t

pw
´ x

2t

¯

,

(3.4)

an expression known as the Fraunhofer approximation of the solution ϕ. On differentiating, we expect

Bjϕpt, xq «
1

8πit2

´

Bξj pw
´ x

2t

¯

` ixj pw
´ x

2t

¯¯

. (3.5)

Intuitively, of the two terms on the right-hand side of (3.5), the first term t´2∇ξ pwpx{2tq should exhibit

better time decay than the second term t´2x pwpx{2tq; this is true, for example, of the Lp
x norms. However,

the contribution of the slowly decaying part t´2x pwpx{2tq in (3.3) cancels out exactly. This suggests that

our initial approximation ϕptq « eit△w could be consistent.

Working with solutions with initial data in the space Σ1, defined in (1.8), simultaneously provides

new a priori bounds on the solution ϕ, and renders the approximation (3.4) effective. The crux is the

discovery of a new conserved quantity for solutions to (3.1), namely that of the pseudo-conformal energy,

Hptq :“

ż

R2

ˆ

1

2
|xϕpt, xq ` 2itDxϕptqpxq|

2
` κt2 |ϕpt, xq|

4

˙

dx “ Hp0q . (3.6)

This is the direct analogue of the pseudo-conformal energy conservation law for mass-critical nonlinear

Schrödinger equations [17]; note that, both the cubic nonlinear Schrödinger equation on R2
x and the

Chern-Simons-Schrödinger system (3.1) are mass-critical. However, the proof of the pseudo-conformal

energy conservation law (3.6) is slightly more involved due to the fact that covariant derivatives do not
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commute. In fact, (3.6) crucially relies on the very special form of the curvature components in the last

two equations in (3.1).

Using the fact that κ ą 0, we will be able to deduce from (3.6) the bound

›

›xe´it△ϕptq
›

›

L2
x

ď C p}ϕp0q}Σ1q ,

which imply in particular that the solution ϕ decays in time essentially like a free Schrödinger wave,

}ϕptq}Lp
x

ď C pp, }ϕp0q}Σ1q t´p1´ 2
p q , 2 ď p ă 8 .

This allows us to immediately close the estimates on all the source terms on the right-hand side of the first

equation of (3.1), except for the cubic null term ´2Ax ¨ ∇ϕ ´ iA1
0ϕ. Exploiting the cubic null structure

to estimate the cubic null term is slightly tricky, but the essential ideas are already contained in the

heuristic computations above.

We end this section with a comment on the proof of Theorem 1.3. The key here is that of uncovering

a very remarkable pseudo-conformal symmetry of the system (3.1). Indeed, the function ψ “ ψps, yq :

p0,8q ˆ R2 Ñ C, defined by

ψps, yq :“
1

2s
ei

|y|2
4s ϕ

ˆ

1

4s
,´

y

2s

˙

,

turns out to satisfy a PDE system which is almost identical to (3.1) and in particular is also globally

well-posed. The solution of the initial-value problem for ψ then gives the desired wave operator.

3.2 Notations and preliminaries

As in the previous chapter, we will need to perform Fourier transforms over the spatial variable x, but

never over the time variable t. Our convention for the Fourier transform is

pupξq :“ Fupξq :“

ż

R2

e´ix¨ξupxqdx .

Using the Fourier transform we may define the inhomogeneous Littlewood-Paley decomposition. We

denote the set of dyadic frequencies by

D :“
!

2k
ˇ

ˇ

ˇ
k P Zě0

)

.

Fix, once and for all, a smooth radial non-increasing function φ1 : R2
ξ Ñ R such that φ1pξq ” 1 on |ξ| ď 1

and φ1pξq ” 0 on |ξ| ě 2. Then, for λ P D, λ ě 2, define

φλpξq :“ φ1

`

1
λξ

˘

´ φ2

`

2
λξ

˘

.

Now, we define the Littlewood-Paley frequency projectors as Pλ :“ φλpDxq. Equivalently,

Pλupxq :“

ż

R2

|φλpx´ yqupyqdy .

In this chapter, we reserve the letters λ, µ to denote elements of D. In particular, when summing over λ

or µ, the summation is implicitly over D unless otherwise stated.
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Finally, we define the frequency projection operators

Pďλ :“
ÿ

µďλ

Pµ , Păλ :“ Pď 1
2λ
, Pěλ :“ 1 ´ Păλ .

3.3 The pseudo-conformal energy conservation law

In this section we prove the pseudo-conformal energy conservation law (3.6). We shall deduce it as a

special case of the following computation.

Proposition 3.1. Consider, on Rt ˆ Rn
x, the gauged Schrödinger equation

Dtu´ i
n
ÿ

i“1

DiDiu “ ´2iV 1p|u|2qu (3.7)

where

Dt :“ Bt ` iA0 ,

Di :“ Bi ` iAi , i “ 1, . . . , n ,

and A0, A1, . . . , An : Rt ˆ Rn
x Ñ R and V : r0,8q Ñ R are sufficiently smooth functions. Denote

F0i :“ BtAi ´ BiA0 , i “ 1, . . . , n ,

Fij :“ BiAj ´ BjAi , i, j “ 1, . . . , n .

Then, for a sufficiently smooth solution u to (3.7), the pseudo-conformal energy

Hptq :“
1

2
}xuptq ` 2itDxuptq}

2
L2

x
` 4t2

ż

Rn

V
`

|upt, xq|2
˘

dx

satisfies

BtH “ 2t

„

p2n` 4q

ż

Rn

V
`

|u|2
˘

dx´ 2n

ż

Rn

V 1
`

|u|2
˘

|u|2 dx

´ 2
n
ÿ

i,j“1

ż

Rn

FijxjIm puDiuq dx´

n
ÿ

i“1

ż

Rn

F0ixi|u|2 dx

ȷ

.

(3.8)

Proof. We follow the strategy of [8], Section 7.2, the only difference being that we account for the fact

that the covariant derivatives do not commute, but instead,

rDt, Dis “ iF0i , i “ 1, . . . , n ,

and

rDi, Djs “ iFij , i, j “ 1, . . . , n .

Note that the solution u to (3.7) also satisfies the energy conservation law,

Eptq :“
1

2
}Dxuptq}

2
L2

x
`

ż

Rn

V
`

|upt, xq|2
˘

dx ” E .
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Firstly, we note the identity

}xuptq ` 2itDxuptq}
2
L2

x
“ }xuptq}

2
L2

x
` 4t

n
ÿ

i“1

Re

ˆ

i

ż

Rn

uptqxiDiuptqdx

˙

` 4t2 }Dxuptq}
2
L2

x

“ }xuptq}
2
L2

x
` 4t

n
ÿ

i“1

Re

ˆ

i

ż

Rn

uptqxiDiuptqdx

˙

` 4t2
ˆ

2E ´ 2

ż

Rn

V p|upt, xq|2q dx

˙

.

From this, we may rewrite Hptq as

Hptq “
1

2
}xuptq}

2
L2

x
` 2t

n
ÿ

i“1

Re

ˆ

i

ż

Rn

uptqxiDiuptqdx

˙

` 4Et2 .

On differentiating, we find

BtH “ Re

ˆ
ż

Rn

|x|2uDtudx

˙

` 2
n
ÿ

i“1

Re

ˆ

i

ż

Rn

uxiDiu dx

˙

` 2t
n
ÿ

i“1

BtRe

ˆ

i

ż

Rn

uxiDiu dx

˙

` 8Et .

(3.9)

Using (3.7) we observe

Re

ˆ
ż

Rn

|x|2uDtu dx

˙

“

n
ÿ

i“1

Re

ˆ

i

ż

Rn

|x|2uDiDiudx

˙

“ ´ 2
n
ÿ

i“1

Re

ˆ

i

ż

Rn

xiuDiudx

˙

.

Therefore, the first two terms on the right-hand side of (3.9) cancel out, and we are left with

BtH “ 2t
n
ÿ

i“1

BtRe

ˆ

i

ż

Rn

uxiDiudx

˙

` 8Et . (3.10)

We now compute

n
ÿ

i“1

BtRe

ˆ

i

ż

Rn

uxiDiu dx

˙

“

n
ÿ

i“1

Re

ˆ

i

ż

Rn

DtuxiDiudx

˙

`

n
ÿ

i“1

Re

ˆ

i

ż

Rn

uxiDtDiudx

˙

“

n
ÿ

i“1

Re

ˆ

´i

ż

Rn

xiDiuDtudx

˙

`

n
ÿ

i“1

Re

ˆ

i

ż

Rn

uxiDiDtudx

˙

´

n
ÿ

i“1

ż

Rn

xiF0i|u|2 dx

“ ´ 2
n
ÿ

i“1

Re

ˆ

i

ż

Rn

xiDiuDtudx

˙

´ nRe

ˆ

i

ż

Rn

uDtudx

˙

´

n
ÿ

i“1

ż

Rn

xiF0i|u|2 dx . (3.11)
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For the first term on the right-hand side of (3.11), we compute

n
ÿ

i“1

Re

ˆ

i

ż

Rn

xiDiuDtu dx

˙

“ ´

n
ÿ

i,j“1

Re

ˆ
ż

Rn

xiDiuDjDju dx

˙

` 2
n
ÿ

i“1

Re

ˆ
ż

Rn

xiV
1p|u|2quDiudx

˙

“

n
ÿ

i,j“1

Re

ˆ
ż

Rn

DjuDj pxiDiuq dx

˙

`

n
ÿ

i“1

ż

Rn

xiV
1p|u|2qBi

`

|u|2
˘

dx

“

ż

Rn

|Dxu|
2
dx`

n
ÿ

i,j“1

Re

ˆ
ż

Rn

DjuxiDjDiu dx

˙

´ n

ż

Rn

V p|u|2qdx

“

ż

Rn

|Dxu|
2
dx`

n
ÿ

i,j“1

Re

ˆ
ż

Rn

DjuxiDiDju dx

˙

`

n
ÿ

i,j“1

Re

ˆ

i

ż

Rn

DjuxiFjiu dx

˙

´ n

ż

Rn

V p|u|2qdx

“

ż

Rn

|Dxu|
2
dx`

1

2

n
ÿ

i“1

ż

Rn

xiBi

´

|Dxu|
2
¯

dx

`

n
ÿ

i,j“1

ż

Rn

FijxjIm puDiuq dx´ n

ż

Rn

V p|u|2qdx

“

´

1 ´
n

2

¯

ż

Rn

|Dxu|
2
dx`

n
ÿ

i,j“1

ż

Rn

FijxjIm puDiuq dx´ n

ż

Rn

V p|u|2q dx

while for the second term in (3.11), we have

Re

ˆ

i

ż

Rn

uDtu dx

˙

“ ´

n
ÿ

i“1

Re

ˆ
ż

Rn

uDiDiudx

˙

`

ż

Rn

2V 1p|u|2q|u|2 dx

“

ż

Rn

|Dxu|
2
dx`

ż

Rn

2V 1p|u|2q|u|2 dx .

Plugging the above expressions into (3.11), we find

n
ÿ

i“1

BtRe

ˆ

i

ż

Rn

uxiDiu dx

˙

“ ´ 2

ż

Rn

|Dxu|
2
dx` 2n

ż

Rn

V
`

|u|2
˘

dx´ 2n

ż

Rn

V 1
`

|u|2
˘

|u|2 dx

´ 2
n
ÿ

i,j“1

ż

Rn

FijxjIm puDiuq dx´

n
ÿ

i“1

ż

Rn

F0ixi|u|2 dx .

Substituting this expression into (3.10) completes the proof of the identity (3.8) as desired.

Corollary 3.2. Let ϕ be a solution to (3.1) with ϕp0q P Σ1, so that Hp0q ă 8. Then the pseudo-

conformal energy conservation law (3.6) holds.

Moreover, we have a uniform bound

›

›e´it△ϕptq
›

›

Σ1 ď C p}ϕp0q}Σ1q , (3.12)

as well as, for t ą 0, the decay rate

}ϕptq}Lp
x

ď C pp, }ϕp0q}Σ1q t´p1´ 2
p q , 2 ď p ă 8 . (3.13)

Proof. For a sufficiently smooth solution ϕ to (3.1), the right-hand side of (3.8) vanishes identically so

that the pseudo-conformal energy (3.6) is conserved. For general ϕp0q, let tϕmu8
m“1 be a sequence of

solutions to (3.1) whose initial data ϕmp0q are Schwartz functions, and such that ϕmp0q Ñ ϕp0q in Σ1
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and also pointwise a.e.. By the well-posedness result, Theorem 1.1, for a fixed t ą 0, we have that

ϕmptq Ñ ϕptq in H1 and, passing to a subsequence if necessary, also pointwise a.e.. Using Fatou’s lemma,

we find

Hptq “
1

2
}xϕptq ` 2itDxϕptq}

2
L2

x
` κt2 }ϕptq}

4
L4

x

ď lim
mÑ8

ˆ

1

2
}xϕmptq ` 2it pDxqm ϕmptq}

2
L2

x
` κt2 }ϕmptq}

4
L4

x

˙

“ lim
mÑ8

1

2
}xϕmp0q}

2
L2

x

“ Hp0q .

By a similar argument, we can obtain Hp0q ď Hptq, and this establishes the conservation of the pseudo-

conformal energy (3.6).

Since κ ą 0, the conserved pseudo-conformal energy H provides the control

}ϕptq}L4
x

ď C p}ϕp0q}Σ1q t´
1
2 .

The second equation of (3.1) then gives, using the Hardy-Littlewood-Sobolev inequality,

}Axptq}L4
x

ď C
›

›|ϕptq|2
›

›

L
4
3
x

ď C }ϕptq}L2
x

}ϕptq}L4
x

ď C p}ϕp0q}Σ1q t´
1
2 .

Since xj ` 2itBj “ eit△xje
´it△ as operators, we obtain

›

›xe´it△ϕptq
›

›

L2
x

“ }xϕptq ` 2it∇ϕptq}L2
x

ď }xϕptq ` 2itDxϕptq}L2
x

` 2t }Axptqϕptq}L2
x

ď C p}ϕp0q}Σ1q ` Ct }Axptq}L4
x

}ϕptq}L4
x

which proves (3.12).

To prove (3.13), recall that for p ě 2 the Schrödinger semigroup eit△ has the continuity property

›

›eit△w
›

›

Lp
x

ď C }w}
Lp1

x
t´p1´ 2

p q .

Therefore, for 2 ď p ă 8, Hölder’s inequality gives

}ϕptq}Lp
x

ď C
›

›e´it△ϕptq
›

›

Lp1
x
t´p1´ 2

p q ď C
›

›

›
p1 ` |x|q

´1
›

›

›

L
2p

p´2
x

›

›p1 ` |x|q e´it△ϕptq
›

›

L2
x
t´p1´ 2

p q

ď C pp, }ϕp0q}Σ1q t´p1´ 2
p q

as desired.

3.4 Proof of Theorem 1.2

Our goal in the present section is to prove (3.2), which would immediately imply Theorem 1.2. To this

end, we rewrite the first equation of (3.1) as

pBt ´ i△qϕ “ N pϕ, ϕ, ϕq ´ 2 pPě2Axq ¨ ∇ϕ´ i
`

Pě2A
1
0

˘

ϕ´ iA2
0ϕ´ i |Ax|

2
ϕ´ iκ|ϕ|2ϕ , (3.14)
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where

A1
0 :“ ϵij△´1BiIm

`

ϕ Bjϕ
˘

,

A2
0 :“ △´1rot

`

Ax|ϕ|2
˘

,

are the quadratic and quartic parts of A0 respectively, and

N pu1, u2, u3q :“ ϵij
`

P1△´1Bi pu1u2q
˘

Bju3 ´ ϵiju1P1△´1Bi pu2 Bju3q

is such that N pϕ, ϕ, ϕq “ ´2pP1Axq ¨ ∇ϕ ´ ipP1A
1
0qϕ. The point here is that the long-range effects are

only present in the low-frequency components of Ax and A1
0, and at low-frequencies we can replace the

L8
x norm by some Lp

x norm for p ă 8 using Bernstein’s inequality, in order to circumvent the failure of

the Hardy-Littlewood-Sobolev inequality for p “ 8.

We first dispense with all the easy terms on the right-hand side of (3.14), namely every term except

for the cubic null term N pϕ, ϕ, ϕq.

Proposition 3.3. Let ϕ be a solution to (3.1) with ϕp0q P Σ1. Then

ż 8

1

´

2 }ppPě2Axq ¨ ∇ϕq ptq}L2
x

`
›

›

``

Pě2A
1
0

˘

ϕ
˘

ptq
›

›

L2
x

`
›

›

`

A2
0ϕ
˘

ptq
›

›

L2
x

`
›

›

`

|Ax|2ϕ
˘

ptq
›

›

L2
x

` κ
›

›

`

|ϕ|2ϕ
˘

ptq
›

›

L2
x

¯

dt ă 8 .

(3.15)

Proof. Using the second equation of (3.1) and the Hölder and Bernstein inequalities, we have for λ ě 2

that

}ppPλAxq ¨ ∇ϕq ptq}L2
x

ď Cλ´1
›

›Pλ

`

|ϕ|2
˘

ptq
›

›

L8
x

}∇ϕptq}L2
x

ď Cλ´ 1
2

›

›|ϕ|2ptq
›

›

L4
x

}∇ϕptq}L2
x

ď Cλ´ 1
2 }ϕptq}

2
L8

x
}∇ϕptq}L2

x
.

We sum over λ ě 2 and recall Corollary 3.2 to deduce

}ppPě2Axq ¨ ∇ϕq ptq}L2
x

ď C }ϕptq}
2
L8

x
}∇ϕptq}L2

x
ď C p}ϕp0q}Σ1q t´

3
2 . (3.16)

Next, using the Hölder and Bernstein inequalities, we have for λ ě 2 that

›

›

``

PλA
1
0

˘

ϕ
˘

ptq
›

›

L2
x

ď Cλ´1
›

›Pλ

`

ϕ∇ϕ
˘

ptq
›

›

L
8
3
x

}ϕptq}L8
x

ď Cλ´ 1
2

›

›

`

ϕ∇ϕ
˘

ptq
›

›

L
8
5
x

}ϕptq}L8
x

ď Cλ´ 1
2 }ϕptq}

2
L8

x
}∇ϕptq}L2

x
.

We sum over λ ě 2 and recall Corollary 3.2 to deduce

›

›

``

Pě2A
1
0

˘

ϕ
˘

ptq
›

›

L2
x

ď C }ϕptq}
2
L8

x
}∇ϕptq}L2

x
ď C p}ϕp0q}Σ1q t´

3
2 . (3.17)

Using the Hölder and Hardy-Littlewood-Sobolev inequalities, we have

›

›

`

A2
0ϕ
˘

ptq
›

›

L2
x

ď
›

›A2
0ptq

›

›

L4
x

}ϕptq}L4
x

ď C
›

›

`

Ax|ϕ|2
˘

ptq
›

›

L
4
3
x

}ϕptq}L4
x

ď C }Axptq}L4
x

}ϕptq}
3
L4

x
ď C

›

›|ϕ|2ptq
›

›

L
4
3
x

}ϕptq}
3
L4

x
ď C }ϕptq}L2

x
}ϕptq}

4
L4

x
.
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Then Corollary 3.2 gives
›

›

`

A2
0ϕ
˘

ptq
›

›

L2
x

ď C p}ϕp0q}Σ1q t´2 . (3.18)

Next, again using the Hölder and Hardy-Littlewood-Sobolev inequalities, we have

›

›

`

|Ax|2ϕ
˘

ptq
›

›

L2
x

ď }Axptq}
2
L6

x
}ϕptq}L6

x
ď C

›

›|ϕ|2ptq
›

›

2

L
3
2
x

}ϕptq}L6
x

ď C }ϕptq}
2
L2

x
}ϕptq}

3
L6

x
.

Then Corollary 3.2 gives
›

›

`

|Ax|2ϕ
˘

ptq
›

›

L2
x

ď C p}ϕp0q}Σ1q t´2 . (3.19)

Finally, using Hölder’s inequality and Corollary 3.2 we get

›

›

`

|ϕ|2ϕ
˘

ptq
›

›

L2
x

ď }ϕptq}
3
L6

x
ď C p}ϕp0q}Σ1q t´2 . (3.20)

The assertion (3.15) then follows from (3.16), (3.17), (3.18), (3.19), (3.20).

We now turn to estimating the remaining cubic null term N pϕ, ϕ, ϕq. In order to be able to exploit

the cancellation in the cubic null structure, we will need to know that the kernel of P1△´1Bi has the

following form.

Lemma 3.4. The distributional kernel of the operator P1△´1Bi is xiKp|x|q, where K “ Kprq is a

continuous function which satisfies the estimate

Kprq ď
C

p1 ` rq2
. (3.21)

Proof. We shall in fact prove the following exact formula

Kprq “
1

2πr2

ż

t|y|ăru

|φ1pyq dy

which clearly is continuous and satisfies (3.21). From the Biot-Savart law, the operator P1△´1Bi has a

kernel given by 1
2π

xi

|x|2
˚ |φ1. Since |φ1 is a radial Schwartz function, it suffices to prove that if χ “ χprq is

a radial Schwartz function then

ż

R2

xi ´ yi
|x´ y|2

χp|y|qdy “
xi

|x|2

ż

t|y|ă|x|u

χp|y|qdy . (3.22)

By a simple scaling argument, it suffices to prove (3.22) in the special case where |x| “ 1.

Let e be the unit vector in the direction of x. We effect a change of variables for the integral on the

left-hand side of (3.22), setting r :“ |y| and θ to be the angle between x and y. Then

ż

R2

px´ yq ¨ e

|x´ y|2
χp|y|qdy “

ż 8

0

χprqr

ż 2π

0

1 ´ r cos θ

1 ` r2 ´ 2r cos θ
dθ dr . (3.23)

The θ integral in (3.23) may, in fact, be evaluated exactly. Indeed, effecting the change of variables

z :“ eiθ, we obtain

ż 2π

0

1 ´ r cos θ

1 ` r2 ´ 2r cos θ
dθ “

1

2i

ż

BD

z2 ´ 2
r z ` 1

z pz ´ rq
`

z ´ 1
r

˘ dz “ 2π1tră1u
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where BD denotes the boundary of the closed unit disc in C, and the second equality is a simple application

of Cauchy’s residue theorem. Plugging into (3.23), we have

ż

R2

px´ yq ¨ e

|x´ y|2
χp|y|qdy “ 2π

ż 1

0

χprqr dr “

ż

t|y|ă1u

χp|y|q dy . (3.24)

On the other hand, if eK is any unit vector perpendicular to the direction of x, then
ż

R2

px´ yq ¨ eK

|x´ y|2
χp|y|qdy “

ż 8

0

χprqr

ż 2π

0

´r sin θ

1 ` r2 ´ 2r cos θ
dθ dr “ 0 . (3.25)

Hence (3.22) follows from (3.24) and (3.25).

Definition 3.5. For w P Σ1 and t ą 0, we define the Fraunhofer lift of w at time t to be the function

Ftwpxq :“
1

4πit
ei

|x|2
4t

pw
´ x

2t

¯

.

The following is the crucial estimate for the cubic null term N .

Lemma 3.6. For t ě 1 and w P Σ1, we have the estimate

}N pFtw,Ftw,Ftwq}L2
x

ď Ct´
3
2 }p1 ` |x|qw}

3
L2

x
.

Proof. We first record the easy expression

BjFtwpxq “
1

8πit2
ei

|x|2
4t

´

Bξj pw
´ x

2t

¯

` ixj pw
´ x

2t

¯¯

. (3.26)

Let K “ Kprq be the function given in Lemma 3.4. From the definition, we have

N pFtw,Ftw,Ftwq pxq

“

ż

R2

K p|x´ y|q ϵij pxi ´ yiq pFtwpyqBjFtwpxq ´ FtwpxqBjFtwpyqqFtwpyqdy

“
1

128π3it4
ei

|x|2
4t

ż

R2

K p|x´ y|q ϵij pxi ´ yiq
´

pw
´ y

2t

¯

Bξj pw
´ x

2t

¯

´ pw
´ x

2t

¯

Bξj pw
´ y

2t

¯¯

pw
´ y

2t

¯

dy

where, in the second equality, we have noted the exact cancellation of the contribution from the second

term on the right-hand side of (3.26). Therefore we may write

N pFtw,Ftw,Ftwq pxq “
1

128π3it4
ei

|x|2
4t ϵij

´

P1△´1Bi

´

| pw|
2
´

¨

2t

¯¯¯

pxqBξj pw
´ x

2t

¯

´
1

128π3it4
ei

|x|2
4t

pw
´ x

2t

¯

ϵij

´

P1△´1Bi

´´

pwBξj pw
¯´

¨

2t

¯¯¯

pxq

“: I ` II .

Using Hölder, Bernstein and Hardy-Littlewood-Sobolev inequalities, we may estimate

}I}L2
x

ď Ct´3
›

›

›
P1△´1∇

´

| pw|
2
´

¨

2t

¯¯›

›

›

L8
x

}∇ξ pw}L2
ξ

ď Ct´3
›

›

›
△´1∇

´

| pw|
2
´

¨

2t

¯¯›

›

›

L4
x

}xw}L2
x

ď Ct´3
›

›

›
| pw|

2
´

¨

2t

¯›

›

›

L
4
3
x

}p1 ` |x|qw}L2
x

ď Ct´
3
2 } pw}

2

L
8
3
x

}p1 ` |x|qw}L2
x

ď Ct´
3
2 }w}

2

L
8
5
x

}p1 ` |x|qw}L2
x

ď Ct´
3
2 }p1 ` |x|qw}

3
L2

x
,
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and

}II}L2
x

ď Ct´
7
2 } pw}L4

ξ

›

›

›
△´1∇

´´

pw∇ξ pw
¯´

¨

2t

¯¯›

›

›

L4
x

ď Ct´
7
2 } pw}L4

ξ

›

›

›

´

pw∇ξ pw
¯´

¨

2t

¯›

›

›

L
4
3
x

ď Ct´2 } pw}L4
ξ

›

›

›
pw
›

›

›

L4
ξ

}∇ξ pw}L2
ξ

ď Ct´2 }w}
2

L
4
3
x

}xw3}L2
x

ď Ct´2 }p1 ` |x|qw}
3
L2

x
.

This completes the proof of the Lemma.

Proposition 3.7. Let ϕ be a solution to (3.1) with ϕp0q P Σ1. Then

ż 8

1

}N pϕptq, ϕptq, ϕptqq}L2
x
dt ă 8 .

Proof. Note that

ϕptq “
1

4πit

ż

R2

ei
|x´y|2

4t

`

e´it△ϕptq
˘

pyqdy “ Ft

ˆ

ei
|¨|2
4t e´it△ϕptq

˙

.

Thus, by Lemma 3.6 and Corollary 3.2, we have for t ě 1 that

}N pϕptq, ϕptq, ϕptqq}L2
x

ď Ct´
3
2

›

›p1 ` |x|q e´it△ϕptq
›

›

3

L2
x

ď C p}ϕp0q}Σ1q t´
3
2 ,

which completes the proof.

Theorem 1.2 follows immediately from Propositions 3.3 and 3.7.

3.5 Proof of Theorem 1.3

Let ϕ8 P Σ1 be given. Consider on ps, yq P R ˆ R2 the following initial value problem

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pBs ´ i△yqψ “ ´2By ¨ ∇yψ ´ iB0ψ ´ i|By|2ψ ´ iκ|ψ|2ψ ,

By1
B2 ´ By2

B1 “ 1
2 |ψ|2 ,

BsBi ´ ByiB0 “ ϵijImpψpByjψ ` iBjψqq ,

By1B1 ` By2B2 “ 0

(3.27)

which, after straightforward manipulations, is equivalent to

$

’

’

’

’

&

’

’

’

’

%

pBs ´ i△yqψ “ ´2By ¨ ∇yψ ´ iB0ψ ´ i|By|2ψ ´ iκ|ψ|2ψ ,

´△Bi “ 1
2ϵijByj

`

|ψ|2
˘

,

´△B0 “ Im
`

∇yψ ^ ∇yψ
˘

` roty
`

By|ψ|2
˘

.

(3.28)

We impose initial conditions ψp0q “ ψin where

´
1

2πi
x

ψin :“ ϕ8 . (3.29)
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Since ϕ8 P Σ1, we also have ψin “ ψinpyq P Σ1.

By the same iteration scheme as that used in Chapter 2 to prove Theorem 1.1, there exists a unique

global solution ψ P CpRs, H
1
y q to (3.28) with initial datum ψin given by (3.29). Moreover, by Proposition

3.1, the system (3.28) enjoys conservation of the pseudo-conformal energy, and the proof of Corollary 3.2

also shows that e´is△yψpsq P L8pRs, Σ
1
yq. The crucial observation is the following.

Lemma 3.8. On pt, xq P p0,8q ˆ R2, set

ϕpt, xq :“
1

2t
ei

|x|2
4t ψ

ˆ

1

4t
,´

x

2t

˙

,

Aipt, xq :“
1

2t
Bi

ˆ

1

4t
,´

x

2t

˙

,

A0pt, xq :“
1

4t2

ˆ

B0

ˆ

1

4t
,´

x

2t

˙

´ 2xjBj

ˆ

1

4t
,´

x

2t

˙˙

.

Then pϕ,Aq satisfies the Chern-Simons-Schrödinger system (3.1).

Proof. This is really a direct but somewhat tedious computation. We assist the reader by providing some

of the details below.

We first record for convenience that

Biϕpt, xq “ ´
1

4t2
ei

|x|2
4t

`

Byi
ψ ´ ixiψ

˘

. (3.30)

Now, we have

B1A2 ´ B2A1 “ ´
1

4t2
pBy1B2 ´ By2B1q “ ´

1

8t2
|ψ|2 “ ´

1

2
|ϕ|2 .

Since the last equation of (3.27) implies the Coulomb gauge condition B1A1 ` B2A2 “ 0, we immediately

obtain the second equation of (3.1).

Next, we compute

BtAi ´ BiA0 “ ´
1

8t3
pBsBi ´ ByiB0q `

xj
4t3

`

ByjBi ´ ByiBj

˘

“ ´
1

8t3
pBsBi ´ ByiB0q ´

1

4t3
ϵijxj pBy1B2 ´ By2B1q

“
1

8t3
ϵijIm

`

ψ
`

Byjψ ´ iBjψ
˘˘

´
1

8t3
ϵijxj |ψ|2

“
1

8t3
ϵijIm

`

ψ
`

Byjψ ´ ixjψ
˘˘

´
1

8t3
ϵijBj |ψ|2

“ ´ ϵijIm
`

ϕBjϕ
˘

´ ϵijAj |ϕ|2 .

Then the Coulomb gauge condition B1A1 ` B2A2 “ 0 gives the third equation of (3.1).

It remains to derive the first equation of (3.1). We leave it to the reader to verify, with the help of
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(3.30), that

Btϕ “ ´
1

8t3
ei

|x|2
4t

`

Bsψ ´ 2xjByjψ `
`

i |x|2 ` 4t
˘

ψ
˘

,

´i△ϕ “ ´
1

8t3
ei

|x|2
4t

`

i△yψ ` 2xjByjψ ´
`

i |x|2 ` 4t
˘

ψ
˘

,

2Ax ¨ ∇ϕ “ ´
1

8t3
ei

|x|2
4t

`

2By ¨ ∇yψ ´ 2ixjBjψ
˘

,

iA0ϕ “ ´
1

8t3
ei

|x|2
4t

`

´iB0ψ ` 2ixjBjψ
˘

,

i|Ax|2ϕ “ ´
1

8t3
ei

|x|2
4t

`

´i|By|2ψ
˘

,

iκ|ϕ|2ϕ “ ´
1

8t3
ei

|x|2
4t

`

´iκ|ψ|2ψ
˘

.

On adding these up, we obtain

pBt ´ i△qϕ` 2Ax ¨ ∇ϕ` iA0ϕ` i|Ax|2ϕ` iκ|ϕ|2ϕ

“ ´
1

8t3
ei

|x|2
4t

`

pBs ` i△yqψ ` 2By ¨ ∇yψ ´ iB0ψ ´ i|By|2ψ ´ iκ|ψ|2ψ
˘

“ 0 ,

thus giving the first equation of (3.1).

Therefore, we solve the initial value problem (3.28), with initial datum (3.29), uniquely to s “ 1
2 .

Then, applying the transformation in Lemma 3.8, we obtain ϕpt “ 1
2 q with which we may solve (3.1)

uniquely backwards to find ϕp0q. This constructs the desired wave operator.

It remains to show that the solution ϕ so constructed does indeed scatter to ϕ8. We calculate

`

e´it△ϕptq
˘

pxq “ ´
1

4πit

ż

R2

e´i
|x´x1|2

4t
1

2t
ei

|x1|2
4t ψ

ˆ

1

4t
,´

x1

2t

˙

dx1

“ ´
1

2πi
e´i

|x|2
4t

ż

R2

e´ix¨zψ

ˆ

1

4t
, z

˙

dz

“ ´
1

2πi
e´i

|x|2
4t

pψ

ˆ

1

4t
, x

˙

.

Thus, we get

ˇ

ˇ

`

e´it△ϕptq ´ ϕ8

˘

pxq
ˇ

ˇ ď
1

2π

ˇ

ˇ

ˇ

ˇ

pψ

ˆ

1

4t
, x

˙

´
pψp0, xq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1 ´ e´i
|x|2
4t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ϕ8pxq

ˇ

ˇ

ˇ

ď
1

2π

ˇ

ˇ

ˇ

ˇ

pψ

ˆ

1

4t
, x

˙

´
pψp0, xq

ˇ

ˇ

ˇ

ˇ

` C
|x|

t
1
2

|ϕ8pxq| ,

which shows
›

›e´it△ϕptq ´ ϕ8

›

›

L2
x

ď C

›

›

›

›

ψ

ˆ

1

4t

˙

´ ψp0q

›

›

›

›

L2
y

` Ct´
1
2 }|x|ϕ8}L2

x
.

This completes the proof of Theorem 1.3.
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