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Abstract 
 

Tumourigenesis occurs when a series of genome alterations occur in the same group of cells 

and cause uncontrolled cell proliferation. Therefore, to understand the journey from healthy to 

cancerous tissue, it is important to study the accumulation and spread of mutations in pre-

cancerous normal tissues. Recent studies have shown that apparently normal epithelium 

contains a high burden of mutations in cancer-associated genes. This thesis explores the 

behaviour of mutant clones in normal epithelium and how this affects cancer development.  

The nature of mutant clonal growth and competition in normal epidermis has been a 

subject of debate. A study found that mutant clone sizes inferred from DNA sequencing of 

normal human eyelid skin were consistent with a mathematical model of neutral cell dynamics, 

appearing to contradict a genetic analysis of the same dataset that found several genes under 

positive selection. I investigate this debate using computational modelling that takes into 

account the tissue structure and experimental tissue-sampling methods. The results show that 

mutant clone sizes in skin and oesophagus are consistent with non-neutral clonal competition.  

Further evidence for non-neutral selection in normal epithelium is found in patterns of 

mutations detected by DNA sequencing. By adapting a statistical method used for driver gene 

discovery, I look for enrichment or depletion of structural categories of missense mutations 

and find biologically meaningful patterns of selection in several proteins. The method can 

associate changes to protein structure or function with cell fitness, even in the absence of 

hotspot mutations and in the presence of passenger mutations. I demonstrate how the method 

is flexible and could be widely applicable, but can also produce misleading results if 

confounding sources of selection are not accounted for.  

Clonal competition in normal oesophageal epithelium is dominated by Notch1 loss-of-

function mutations. I fit stochastic models of clonal dynamics to lineage tracing data to show 

that haploinsufficiency greatly accelerates Notch1 mutant expansion and that the loss of the 

second Notch1 allele provides a further strong selective advantage, consistent with the high 

frequency of NOTCH1 loss-of-heterozygosity events observed in human oesophagus. Finally, 

I examine a consequence of the spread of these highly fit mutant clones in the normal tissue. I 

use a mathematical model to analyse the results of a series of experiments in mutagen-treated 

mouse oesophagus, finding that microscopic tumours can be eliminated by highly fit clones in 

the surrounding normal tissue.    
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Chapter 1  
 

Introduction 
 

 

1.1 Introduction 
Epithelial tissues in the adult body are maintained by a constant turnover of cells (1). The loss 

of cells from a tissue (for example, by the shedding of cells from the surface of the skin) must 

be exactly compensated for by the proliferation of stem cells. This balance is vitally important. 

An excess of differentiating cells can lead to tissue failure, whereas excessive production of 

proliferating cells is a hallmark of cancer (2). Carcinogenesis is thought to be a multi-stage 

process, where a series of genome alterations, such as mutations, increasingly disrupt the local 

homeostatic balance and ultimately lead to uncontrolled cell proliferation and cancer formation 

(3-6).  

 

Approximately 90% of human cancers develop in epithelial tissues that line the body’s surface 

and internal organs, protecting them from desiccation, radiation, and mechanical and chemical 

damage (7). Ongoing cell division and exposure to mutagens such as ultraviolet (UV) light or 

tobacco smoke leads to the accumulation of mutations in the DNA of epithelial stem cells (8). 

Two well-studied examples of epithelial tissues are the skin (epidermis) and the lining of the 

oesophagus. Both are squamous epithelia (made up of cells with a flattened shape) with a high 

rate of cell turnover (7). In recent years, DNA sequencing of aging normal healthy human skin 

and oesophageal epithelium has found that these tissues carry a high burden of somatic 

mutations (9-12). However, the tissues retain their normal appearance and function, meaning 

that the mutations present have not substantially altered the overall balance of cell production 

and loss. 
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The effect that mutations have on cell behaviour in the normal epidermis has been a subject of 

debate (9, 13-15). In particular, the debate centres on whether mutations are merely 

“passengers” that do not alter the usual rules of cell dynamics that govern the homeostatic 

maintenance of the tissue, or whether mutations can promote excess proliferation of the cells 

that carry them, driving the expansion of mutant clones. A greater spread of mutant cells would 

increase the chance of acquiring a combination of mutations that is oncogenic (3, 4, 16, 17). 

The presence of multiple expanding mutant clones within the same tissue may also lead to 

mutant clonal competition as clones collide and compete for the limited space in the 

proliferative compartment of the epithelium (18, 19). If cell dynamics are altered by mutations, 

it might be possible to develop interventions that manipulate cell dynamics or clonal 

competition to encourage the growth of benign clones and reduce the spread of more 

tumorigenic mutations (20). It is therefore important to study the dynamics and competition of 

mutant cells in normal epithelia. My thesis focuses on these processes in two epithelial tissues: 

the oesophageal epithelium and the skin.  

 

1.2 Squamous epithelia and cancer 
1.2.1 Stratified squamous epithelia 

Both the epidermis and the oesophageal epithelium are stratified squamous epithelia. They 

consist of layers of densely packed sheets of cells, where the bottom layer sits on a basement 

membrane (Figure 1.1).  

Mouse oesophageal epithelium is an architecturally simple and highly uniform tissue, 

containing no glands or papillae to interrupt the epithelial structure (21, 22). It is therefore an 

ideal experimental system for studying cell dynamics. Human oesophageal epithelium has 

more cell layers than mouse (22, 23) and contains tall papillary structures, which divide the 

basal layer into two zones: interpapillary and papillary (23). The epidermis has a slightly more 

complex architecture, with sweat glands and hair follicles punctuating the layers of 

keratinocytes (24, 25). Stem cells from hair follicles and sweat glands can contribute to the 

repair of the epidermis following injury, but do not play a role in the routine maintenance of 

the stratified epithelium (24-26).  
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Figure 1.1 The structure of stratified squamous epithelium. Proliferation is constrained to the basal layer. Differentiated 
basal cells stratify into the suprabasal layers and migrate towards the tissue surface, where they are shed. 

 

Although the oesophageal epithelium and epidermis differ in terms of architecture, they share 

a common mechanism of tissue maintenance. Cell division is restricted to the basal layer (21-

23, 27, 28) (Figure 1.1). Once a basal cell has committed to differentiation, it stratifies out of 

the basal layer and migrates up through the suprabasal layers to the tissue surface. During the 

differentiation process, cells become wider and flatter and – except for those in the human 

oesophagus – lose their nuclei (Figure 1.1) (24, 29). Fully differentiated cells are shed from the 

tissue surface (21, 27), meaning a constant turnover of cells is required to maintain the tissue. 

In homeostasis, there is a balance between the quantity of cells shed from the tissue surface 

and the number of cells produced by proliferation in the basal layer (21, 27, 28).  

 

1.2.2 Oesophageal and skin cancer 

Oesophageal cancer is the eighth most common form of cancer and the sixth most common 

cause of cancer death (22). There are two main types of oesophageal cancer: oesophageal 

squamous cell carcinoma (OSCC) and oesophageal adenocarcinoma (OAC) (30). OSCC 

accounts for most cases of oesophageal cancer worldwide, although the incidence of OAC is 

rising and has overtaken the incidence of OSCC in Europe and North America (30). OAC is 

associated with gastroesophageal reflux disease (GERD), and is thought to develop from 
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gastric cardia cells via a precursor lesion called Barrett’s oesophagus (30, 31). As the name 

suggests, OSCC develops from the squamous epithelium that lines the oesophagus.  

 

There are three major types of skin cancer: melanoma, basal cell carcinoma (BCC) and 

cutaneous squamous cell carcinoma (cSCC) (32). BCC and cSCC account for approximately 

75% and 25% of non-melanoma skin cancer (NMSC) respectively (33, 34), and NMSC of any 

kind is approximately 20 times more common than melanoma (32). The primary environmental 

risk factor for skin cancer is exposure to UV light (32). 

 

Cancer driver mutations produce a growth advantage in the cells that carry them and hence 

promote cancer development. Mutations in the genes TP53 and NOTCH1 are frequently 

detected in DNA-sequenced samples of squamous cell carcinoma, from both oesophagus and 

skin (33, 35-37). Therefore, based on the sequencing of tumour samples alone, both TP53 and 

NOTCH1 appear to be drivers of SCC. However, analysis of mutations in normal tissue 

suggests that each of these genes has a very different relationship with cancer, as discussed in 

the following section.  

 

1.2.3 Mutations in normal tissues 

DNA sequencing has revealed that normal human skin and oesophagus harbour large numbers 

of mutant clones, including many mutations in cancer genes (9-12). Similar studies have 

detected somatic mutations in many other normal tissues, including blood (38-40), 

endometrium (41, 42), colon (43, 44), small intestine (44), bladder (45, 46), liver (44, 47) and 

lung (48). The mutation burden of healthy tissues increases with age (10, 12, 44). 

 

Of particular interest is the prevalence of cancer-associated mutations in normal tissues. For 

example, TP53 was found to be mutated in 5–20% of the cells in normal oesophagus and in 

around 90% of OSCC tumours (10). This observation is consistent with the traditional multi-

stage model of carcinogenesis: mutating TP53 takes the normal tissue a step further towards 

cancer. In contrast, NOTCH1 mutations occupy 30–80% of the healthy oesophageal tissue in 

middle-aged and older individuals, but only around 10% of OSCC tumours are NOTCH1-

mutant (10). This raises the question whether NOTCH1 is truly a driver of oesophageal cancer, 

or whether the ability of NOTCH1 mutants to spread in the normal tissue merely means these 

mutants have an increased likelihood of appearing in a tumour as a passenger mutation (49). 
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The fact that NOTCH1 mutations are less prevalent in tumours than in the normal tissue may 

even suggest that NOTCH1 mutations have a protective effect against cancer (10).  

 

Mirroring these human studies, studies in mouse skin and oesophagus have shown that mutant 

clones can spread extensively in the normal epithelia without causing major disruption to the 

tissue. It has been found that mutations in cancer driver genes such as Trp53 and Notch1 

initially provide a strong competitive advantage over wild type cells (19, 50). However, the 

growth rate of the mutant clones slows over time due to cell crowding, competition with rival 

mutant clones or reaching the limits of the tissue capacity (19, 50). DNA sequencing following 

treatment with a chemical mutagen has also shown that the tissues can withstand a high 

mutation burden with no substantial changes to histology or tissue function (19, 51).  

 

1.3 Methods for studying squamous epithelia 
1.3.1 Lineage tracing experiments 

The behaviour of cells in the epidermis and oesophageal epithelium can be studied using 

transgenic lineage tracing experiments. These experiments genetically label cells of interest in 

the tissue and track their progeny. A major benefit of this technique is that the cell behaviour 

is studied in the cells’ native environment (52). 

 

The mice used for transgenic lineage tracing contain two genetically modified genes. The first 

of these genes expresses the enzyme Cre recombinase, which is often fused to a mutant 

oestrogen receptor (ERT). The CreERT fusion protein is restricted to the cytoplasm until 

administration of the drug tamoxifen, which allows CreERT to enter the cell nucleus. There, 

Cre excises a stop cassette from the second modified gene, triggering the expression of a 

fluorescent label such as green fluorescent protein (GFP) (52) (Figure 1.2). The DNA of the 

labelled cell is altered, meaning that the progeny of the labelled cell also express the fluorescent 

protein. If low doses of tamoxifen are administered, only a small proportion of cells in the 

tissue are induced to express the label, and the descendants of individual labelled cells can be 

tracked (52) (Figure 1.2). In this thesis, these cell lineages derived from single cells are referred 

to as clones.   
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Figure 1.2 Transgenic lineage tracing. a) Administration of the drug tamoxifen allows Cre recombinase (fused to a mutant 
oestrogen receptor, ERT) to enter the cell nucleus. Cre excises a LoxP-flanked stop cassette from a second transgenic gene, 
triggering the expression of a fluorescent labelling protein such as GFP. This excision alters the DNA of the labelled cell, 
meaning that the cell’s descendants also express GFP. b) If a low dose of tamoxifen is administered, only a small proportion 
of cells are induced to express the fluorescent label. The descendants of the original labelled cells can then be observed at a 
later time. Figure adapted from (52). 

 

The fluorescent labels do not alter the wild type behaviour of cells (21, 27, 28). However, 

additional genetic mutations can be induced alongside the fluorescent label, enabling the 

growth of mutant clones to be studied (19, 50).  

 

Modern live-imaging lineage tracing techniques can be used to directly observe each cell 

division outcome and track individual clones over time (53, 54). Unfortunately, in traditional 

lineage tracing, animals must be culled to observe the clone sizes, meaning that only a single 

snapshot of each clone can be obtained. To infer the rules governing cell behaviour, theoretical 

models of cell dynamics can be used to analyse the clone size distributions collected at various 

timepoints following induction (55) (section 1.4).  
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1.3.2 DNA sequencing 

By its nature, transgenic lineage tracing can only be performed in genetically modified 

organisms. However, the sizes of mutant clones can also be inferred through DNA-sequencing 

experiments. Next generation sequencing (NGS) technology hugely increased the capacity of 

DNA sequencing compared with Sanger sequencing, as well as greatly reducing its cost (56). 

However, the improvement in scale came at the cost of sequencing accuracy (56).  

 

Multiple NGS technology platforms are available (57). The sequencing methods used in these 

platforms differ in many details, but the general workflow is similar (57). DNA is extracted 

from the tissue sample and broken up into many short fragments (Figure 1.3a). Depending on 

the sequencing method, the DNA fragments may be amplified (duplicated many times) or 

particular regions of the genome may be targeted. The DNA fragments are attached to 

microbeads or a glass slide to be read by the sequencing machine (57). Only a fraction of the 

DNA fragments attach to a bead or the slide, meaning that not all the DNA from the original 

sample is sequenced. The sequencing outputs millions of short “reads”, which are then 

processed by a bioinformatics pipeline to identify (“call”) the mutations present in the tissue 

sample (Figure 1.3b).  

 

The reads are mapped to the location on the reference genome that best matches the read 

sequence. Multiple reads are required at each targeted location in the genome so that mutations 

can be identified. For germline mutation calling, variants are identified as differences between 

the reference genome and the sequenced reads. On chromosomes with two copies, these 

germline mutations will either be homozygous (on both alleles, and therefore present in all 

sequenced reads at a location) or heterozygous (on one allele only, and therefore present in half 

of the sequenced reads). For somatic mutation calling, (at least) two tissue samples are taken 

(for example, a tumour sample and a normal blood or muscle sample), and the sequences of 

the two samples are compared to identify somatic variants (Figure 1.3b). Somatic mutations 

may only occur in a subset of the cells in a tissue sample. The fraction of sequenced reads 

containing the mutation will therefore depend on both the fraction of sampled cells carrying 

the mutation and whether the mutation is homozygous or heterozygous (and any copy number 

changes) (9).   
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Figure 1.3 Next generation DNA sequencing. a) DNA is extracted from the tissue sample and broken into short fragments 
for sequencing. Images from smart.servier.com, licensed under CC BY 3.0, edited from the original. b) The sequences of the 
DNA fragments are mapped to a reference genome. Blue bars are DNA reads aligned to the forward strand, and red bars are 
reads aligned to the reverse strand. The highlighted bases (green, red, blue or orange) differ from the reference genome 
sequence. For analysis of a tumour or mutated normal tissue sample, a sample of normal, non-mutated tissue is taken from the 
same individual for comparison. Bases that frequently differ between the two samples are identified as somatic mutations (e.g. 
the mutation of C>A in the tumour sample, indicated with an arrow). Bases that differ only infrequently may be sequencing 
artefacts (arrowheads). Image generated using JBrowse (58) 

 

Copy number changes are additional or missing copies of chromosomes or chromosome 

sections in a cell’s DNA. Changes to copy number can alter the number of copies of DNA that 

a mutation appears on. Therefore, to estimate the fraction of sampled cells containing the 

mutation, the local copy number should also be considered (10). In normal human oesophagus, 

NOTCH1 is frequently affected by copy-neutral loss-of-heterozygosity (LOH) events, but copy 

number changes affecting other genes are rare (10). Therefore, except for NOTCH1 LOH in 

human oesophagus samples (Chapter 2), I have estimated mutant clone sizes in this thesis using 

the assumption of wild type copy number.  
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Errors can occur during various stages of DNA processing and sequencing (56). Error rates in 

NGS are far higher than those in the “first generation” technology of Sanger sequencing (57). 

To increase sensitivity to detect somatic mutations and filter out false calls, variant calling 

methods use the information from multiple reads covering the same genomic location, along 

with information regarding the background error rate at that location (59). However, because 

not all DNA in the tissue sample is sequenced, and because at low frequencies it is harder to 

distinguish a real mutation from a sequencing artefact, mutant clones occupying only a very 

small proportion of the tissue sample can be difficult to detect. The smallest size of mutant 

clone that can be reliably detected will depend on both the coverage of the DNA sequencing 

and the size of the tissue sample (9). New sequencing protocols are being developed to increase 

the sensitivity of mutation calling (60); however, this thesis does not use any data generated by 

these new protocols.  

 

1.3.3 Mutational signatures 

There are many processes that can introduce mutations into the DNA of cells in the body. These 

include errors made during the DNA replication of cell division, and mutations caused by 

exposure to mutagens – for example tobacco smoke or UV light (8). Different mutational 

processes produce different patterns of mutations, known as signatures. Single base 

substitution signatures have been identified using the trinucleotide context of the substitutions 

(including the bases immediately 5’ and 3’ of the mutated nucleotide) (Figure 1.4) (8). The 

pattern of mutations observed in a tissue sample is a combination of the signatures of all the 

mutational processes that have affected that tissue (Figure 1.4) (8). 

 

The trinucleotide context is not the only factor that affects the likelihood of a nucleotide 

substitution (61). Nonetheless, the use of mutational spectra to model expected mutation 

patterns has been found to improve the statistical detection of driver genes (section 1.3.4 below) 

(62, 63).  
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Figure 1.4 Mutational spectra. a) The trinucleotide mutational spectrum for normal human oesophagus (10). b) The 
trinucleotide mutational spectrum for normal human skin (11). The high numbers of C>T mutations are due to the mutational 
signature of ultraviolet light.  

 

1.3.4 Identification of driver genes  

In somatic evolution, ongoing genetic mutation (section 1.3.3) creates phenotypic diversity, 

which is then subject to natural selection (4, 17, 64). Positive selection increases the frequency 

of genotypes that convey a proliferative or survival advantage to a cell, and negative selection 

reduces the frequency of genotypes that are deleterious. Driver mutations provide the cells 

carrying them with a growth advantage and they occur, by definition, in “driver genes” (17). 

The term is usually used to describe genes that are frequently mutated in cancer and are thought 

to play a role in tumourigenesis or tumour expansion (17). However, driver mutations can also 

promote clonal expansion in normal tissues, and these are not necessarily the same mutations 

that promote the growth of cancers (10, 12, 65).   

 

Cancer driver genes can be broadly categorised into two groups: tumour suppressors and 

oncogenes (66). Tumour suppressors protect against cancer by slowing cell division, repairing 

DNA or triggering cell death (66). Oncogenic mutations in tumour suppressors are those that 

inactivate the gene (66). In contrast, oncogenes promote cell growth; consequently, oncogenic 

mutations in oncogenes are those that increase the activity of the gene (66). Many tumour 

suppressor genes are recessive, i.e. both copies of the gene must be mutated before the mutant 
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phenotype is observed (5, 67, 68). In contrast, many oncogenes are dominant, i.e. an activating 

mutation in a single allele of an oncogene is sufficient to produce the driver phenotype (67, 

69). Many genes, however, do not fit neatly into these tumour suppressor or oncogene 

paradigms (67, 68).  

 

Identifying driver genes is crucial for understanding the causes of cancer and for developing 

targeted cancer treatments; consequently, much research has been dedicated to developing 

methods for driver gene detection. Many of the methods start from a “neutral” null hypothesis 

model, which uses knowledge of patterns of mutation accumulation (section 1.3.3) to predict 

the mutations that would be expected to appear in a gene, assuming that no selection, positive 

or negative, was acting upon the gene. The observed data from DNA-sequencing studies is then 

statistically compared with the null model to identify genes in which the pattern of mutations 

significantly deviates from the expected neutral pattern. In studies of cancer, the focus is 

usually on detecting positively selected genes, as these may be the “drivers” of the cancer. 

Various types of mutational patterns can signal that a gene is not neutrally selected (Figure 

1.5), which has led to the development of a variety of driver detection methods.  

 

One commonly used method is dN/dS. Originally used to analyse the evolution of protein-

coding genes (70), it has been adapted for use in the somatic context (62). It looks at the ratio 

of non-synonymous mutations (dN) to synonymous (dS) mutations. It is assumed that 

synonymous mutations have no effect on gene function and are therefore under neutral 

selection. If the dN/dS ratio is significantly higher than expected under the neutral hypothesis, 

i.e. if there is an excess of non-synonymous mutations, this indicates positive selection of the 

protein-altering mutations in the gene (Figure 1.5). A low dN/dS ratio signifies negative 

selection (Figure 1.5).  

 

A similar approach compares observed and expected scores of mutational functional impact 

(63, 71). These scores are generated using machine-learning approaches to estimate which 

mutations will have a highly disruptive impact on gene function (e.g. nonsense mutations or 

mutations in highly evolutionarily conserved positions) or a low functional impact (e.g. 

synonymous mutations). A bias towards or away from high functional impact mutations in the 

observed data indicates positive and negative selection respectively (Figure 1.5). The principles 

behind the functional impact and dN/dS methods are discussed in more detail in Chapter 3.  
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Figure 1.5 Approaches for driver gene detection. The neutral null hypothesis estimates the pattern of mutations that is 
expected to appear in the gene if it is not under positive or negative selection (top). Positive selection in a gene may be indicated 
by a relative excess of high-impact mutations (e.g. nonsense/missense mutations or high estimated functional impact) 
compared with low-impact mutations (synonymous mutations or low estimated functional impact); an overall excess of 
mutations; clustering of mutations either linearly in the gene sequence or in the 3D protein structure; or high-frequency hotspot 
mutations. Negative selection may be indicated by a lack of high-impact mutations relative to low-impact mutations, or an 
overall lack of mutations.  

 

Other driver detection methods calculate an expected mutation rate for each gene based on a 

combination of factors, including the number of silent mutations, chromatin state and level of 

transcription (72, 73). In these methods, positively selected driver genes are identified by the 

presence of a larger number of mutations than expected by chance (72, 73) (Figure 1.5).  

 

In some driver genes, the selected mutations cluster in key functional areas, meaning these 

genes can be identified by detecting linear clusters of mutations in the gene sequence (74), 

enrichment of mutations in particular protein domains (75), clusters of mutations in the 3D 

structure of the protein (76), or frequently mutated hotspots (77) (Figure 1.5). If the mutation 

clusters occur in well-characterised domains, these methods can associate selection with 

particular functional changes to a protein (78). 

 

A combination of approaches can be used to detect a more comprehensive set of driver genes. 

This is achieved either by taking the union of the driver genes detected by each method, or by 

using the various data sources as inputs to a machine-learning algorithm (67, 79, 80).  
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1.4 Modelling cell dynamics in epithelia 
Mathematical and computational models of epithelial cell dynamics have been developed to 

investigate how homeostasis is maintained and how mutant clones spread in the tissue. By 

comparing model predictions with experimental observations, it is possible to infer the rules 

that govern cell behaviour. In this section I describe and compare the three main stochastic 

models that I use in this thesis, and briefly discuss alternative models that have previously been 

applied to the epithelial tissue.  

 

1.4.1 Single progenitor model 

Lineage tracing experiments (section 1.3.1) in mouse skin and oesophagus have shown that the 

growth of wild type clones is consistent with a model of cell dynamics in which the tissue is 

maintained by a single population of functionally equivalent progenitor cells (21, 27, 28, 81, 

82). Due to the assumption that the tissue only contains one type of dividing cell, as opposed 

to a hierarchy of multiple dividing cell types, this model is sometimes referred to as the single 

progenitor (SP) model. In this model, the basal layer of the epithelium consists of two types of 

cells: progenitor cells and differentiated cells (Figure 1.1). The differentiated cells do not 

divide, and will stratify into the suprabasal layers. Each progenitor cell divides to form either 

two progenitor cells, two differentiated cells, or one cell of each type (Figure 1.6a). The 

outcome of each cell division is random. This leads to a variance in clone sizes, even though 

all clones originate from functionally equivalent cells. Some clones lose all dividing cells and 

are lost from the tissue, while other clones expand (Figure 1.6b). This variance due to the 

stochastic nature of the system is known as drift (81). In homeostasis the proportions of the 

two symmetric division types are balanced so that the total cell population and proportion of 

each cell type are maintained. 
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Figure 1.6 Single progenitor model. a) Progenitor cells (red) can divide symmetrically to produce two progenitor cells, two 
differentiated cells (beige) or asymmetrically to produce one cell of each type. The parameter l is the division rate. The 
parameter r is the probability of each symmetric division type in neutral growth. The parameter ∆ determines the imbalance 
between the production of dividing and non-dividing cells. For neutral growth, ∆=0. Differentiated cells stratify into the 
suprabasal layers at rate G. b) Through random chance, neutral clones can be lost when all cells in the clone differentiate (top) 
or they can grow to large sizes (bottom). c) Simplified single progenitor model that only considers changes to progenitor cell 
numbers. 

 

The SP model reproduces the key hallmarks of lineage tracing data of neutral clones. The total 

number of labelled cells remains constant (Figure 1.7a), the number of surviving clones falls 

(Figure 1.7b) and the mean size of surviving clones increases linearly (Figure 1.7c). The clone 

size distributions widen over time and have a characteristic long-term scaling pattern (Figure 

1.7d,e).  

 

For the SP model, explicitly modelling clone sizes including both the progenitor cells and 

differentiated basal cells requires the use of either a complex solution to the master equations 

(83) or simulations that include both cell types (84). Alternatively, the full basal clone sizes 

can be approximated by calculating the clone size distribution including only the proliferating 

cells and scaling this distribution by a factor representing the proportion of differentiated basal 

cells (27). This simple scaling relationship between the full clone size distribution and the 

progenitor-cell-only clone size distribution means that key features of the full SP model can be 

well approximated by a simplified model that only considers the progenitor cells (13). In this 

simplified model, the asymmetric divisions do not affect the number of progenitor cells and 

therefore do not have to be explicitly included (Figure 1.6c).  
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Figure 1.7 Lineage tracing hallmarks of the neutral single progenitor model. The average proportion of labelled cells is 
constant over time. Orange markers and error bars show observed data and SEM; the green line and shaded region show the 
mean and SEM across all time points. b,c) The number of surviving clones falls (b) and the average surviving clone size 
increases linearly (c) over time. Orange markers and error bars show observed data and SEM; green lines show the prediction 
of the single progenitor model fit to the data. d) Basal clone size distributions widen over time. e) The clone size distributions 
exhibit long-term scaling behaviour. The cumulative clone size distribution is plotted as a function of the clone size divided 
by the average clone size for each time point. Figures taken from (21).  

 

1.4.1.1. More complex model variations 

Various models of epithelial cell dynamics involving proliferative cell hierarchies or multiple 

stem cell populations have been proposed for mouse epithelium (85-87). However, the cell 

dynamics in these models are still assumed to be stochastic, and the clone size predictions are 

similar to those of the SP model (84). An analysis of multiple lineage-tracing experiments in 

murine epidermis and oesophagus epithelium found that, with the exception of the inter-scale 

compartment of tail skin, the SP model fits the data at least as well as the more complex models 

do (84). 

 

1.4.1.2. Non-neutral growth in the single progenitor model 

Mutations may disrupt the balance between proliferation and differentiation (Figure 1.6a). 

Mutants that tip the scales towards division will cause clones to (on average) expand 
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exponentially (88). However, this simple model contains no mechanism to limit the cell 

population, and any imbalance towards proliferation will therefore cause the total cell 

population to expand indefinitely (Figure 1.9e). Consequently, it may not be an appropriate 

model for normal tissues where mutant clones expand without altering the overall tissue 

architecture. This topic is discussed in more detail in Chapter 2.  

 

1.4.1.3. 2D single progenitor model 

The rules of the SP model have been applied to 2D sheets of cells representing the basal layer 

of epithelium. However, this has led to some unbiological behaviour in the model. In the SP 

model, the outcome of each cell division is determined independently, i.e. fates of neighbouring 

cells are not coordinated. This means there is no mechanism to ensure an even spread of 

dividing cells in the tissue, and patches of high and low cell density occur (89). The variation 

in cell density observed in the 2D SP models was greater than the density variation observed 

in microscopy images of murine oesophageal tissue (89). In high-density regions, dividing cells 

are surrounded by other dividing cells and have nowhere to place offspring. In low-density 

areas, differentiated cells that are not adjacent to a dividing cell leave the tissue without being 

replaced. To counteract this, feedbacks can be added to bias the cell fate towards maintaining 

local cell density (89). Although this is biologically plausible, it adds complexity to the model. 

 

1.4.1.4. Single progenitor model summary 

This model can recreate the key hallmarks of neutral clonal growth in mouse epithelia, and was 

crucial for showing that cell dynamics are consistent with a stochastic system rather than a 

deterministic stem cell–transit-amplifying cell system (27). However, when applied to the 

spatial tissue structure, or to mutant cells with growth biases, the SP model predicts outcomes 

that are not consistent with the biology of normal epithelial tissues.  

 

Therefore I have also considered the Moran (90) and Wright–Fisher models (91). These models 

originated in the study of species evolution and are conceptually simple, share the stochastic 

nature of the SP model and are readily applicable in 2D space. 



 17 

 
Figure 1.8 Moran model. a) One step of the Moran model. The pale-yellow cell dies and the dark-blue cell divides so the 
total population size remains constant. b) The Moran model in a 2D grid. A cell is selected to die (thick black border with red 
X) and a dividing cell is selected from the immediate neighbours (marked with black dots). The new cell takes the place of the 
dead cell. 

 

1.4.2 Moran model 

This model assumes there are a fixed number of cells in the population. At each step in the 

process, one cell is randomly selected to divide, and a different cell is randomly selected to 

“die” (Figure 1.8a). This means that the overall cell population is maintained, while the sizes 

of individual cell lineages can vary. The cells in this model can be thought of as equivalent to 

the progenitor cells in the SP model, and a similar scaling factor can be applied to account for 

the differentiated cells in the basal layer (51). Alternatively, the cell population in the model 

can be assumed to represent all cells in the basal layer, and cell loss in the model can be 

interpreted as the stratification of differentiated cells out of the basal layer. For large population 

sizes (where clone sizes are far smaller than the total population size), the results of the neutral 

Moran model are almost identical to the results of the neutral SP model (Figure 1.9a-d). 

 

1.4.2.1. Selection in the Moran model 

Each cell in the model has a “fitness”. A higher cell fitness relative to the rest of the population 

will increase the probability that the cell will be selected to divide. Mutations can provide a 

growth advantage by increasing the fitness of a cell (which is then inherited by the cell’s 

offspring).  

 

At the initial stages of mutant clone growth, when the majority of the tissue is still wild type, 

the Moran model results are very similar to the results of the non-neutral SP model (if the 

equivalent parameter values are found in each model) (Figure 1.9e). However, for larger clone 

sizes or where multiple mutant clones coexist in the tissue (chapters 2 and 5), the results of the 
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two models differ (Figure 1.9e). This is because of the fundamental difference between the SP 

model and the Moran model: that in the Moran model the key fate-determining property of a 

cell is its relative fitness, whereas in the SP model the cell fate bias is absolute, and each cell 

division is considered independently. The expansion of a mutant clone in the SP model has no 

effect on any other clone, and there are no external factors that can limit the expansion. In 

contrast, all cells in the Moran model are competing. The fixed population size means that the 

expansion of one clone must be compensated for by the loss of cells from other clones.  

 

As the mutant clone approaches the size of the full population, its growth slows (Figure 1.9e). 

The chance that a wild type cell is randomly selected to die reduces as the wild type proportion 

of the population decreases. Therefore, an increasing number of division/death events involve 

a mutant cell replacing a mutant cell and thus the overall mutant cell population size does not 

change. The growth observed is sigmoidal (Figure 1.9e) and is similar to the long-term growth 

of mutations that expand without fundamentally altering the structure of the normal tissue (50).  

 

The cell competition seen in the Moran model also has consequences for tissues in which 

multiple clones are present. The survival and growth prospects of a clone depend not only on 

the phenotype of the clone itself, but also on the phenotypes of the other clones in the 

surrounding tissue (Chapter 2) (51).  

 

1.4.2.2. 2D Moran model 

The Moran model can be easily adapted to run on a 2D grid (92). Each location in the grid is 

occupied by a cell. At each step of the process a cell is selected to die and is removed from the 

simulation, leaving an empty space in the grid. A cell from the immediate neighbourhood of 

the empty space is then selected to divide and fill the vacated grid location with a copy of itself 

(Figure 1.8b). The probability of the cell being picked to divide depends on its fitness relative 

to the other cells in the neighbourhood.  
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Figure 1.9 Comparison of outputs of non-spatial stochastic models. In all panels, SP refers to the simplified single 
progenitor model containing only progenitor cells (Figure 1.6c). Except for the WF double speed simulations, the average 
division rate is once per time unit. For the WF double speed simulations, the division rate was twice per time unit. a-d) Neutral 
simulations of 90000 clones starting from single cells. a) Mean size of surviving clones increases linearly. b) The number of 
surviving clones reduces over time. c) The SP model, the Moran model and the Wright–Fisher model (with division rate 
doubled to account for the difference in drift) produce highly similar clone size distributions. d) Scaling behaviour of the clone 
size distributions. The shape of the cumulative clone size distribution plotted as a function of the clone size divided by the 
average clone size remains approximately constant over time. Scaled cumulative clone size distributions are shown at two 
time points for each simulation: vertical lines represent the distribution after 5 time units; horizontal lines represent the 
distribution after 10 time units. e) Non-neutral growth starting from 1000 mutant cells. The horizontal dashed line shows the 
total cell population (90000) in the Moran and WF simulations; the non-mutant cells had fitness 1. In the SP model, the mutant 
had parameter ∆=10%; in the Moran simulation the mutant had fitness 1.5; in the WF simulations the mutant had fitness 1.25. 
SP, single progenitor. WF, Wright–Fisher. 

 

At later time points, the growth of neutral clones in the 2D Moran model is slightly slower than 

that in the non-spatial Moran model (Figure 1.10a). This is because a clone can only grow at 

its boundary – for a clone to expand, one of the clone cells must divide and replace a cell that 

is not in the clone. As the clones grow larger, the proportion of cells on clone boundaries 

reduces, meaning a higher proportion of divisions involve a cell replacing another cell from 
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the same clone. The rate of drift is therefore slightly reduced because a greater proportion of 

divisions do not alter clone sizes (Figure 1.10a-c).  

 

This boundary growth in clones in the 2D Moran model also means that long-term non-neutral 

clonal expansion is slower than in a non-spatial Moran model (Figure 1.10e,f). The reduction 

in drift also reduces the loss of clones in the 2D Moran model. Together, this means that in 

simulations with multiple expanding non-neutral clones, the 2D Moran model results in a 

population made up of a larger number of smaller mutant clones than in the equivalent non-

spatial Moran model (Figure 1.10e,f).  

 

 
Figure 1.10 Comparison of output of spatial stochastic models. a-d) Neutral simulations in 300×300 cell hexagonal grids. 
A non-spatial SP model simulation is shown for comparison. Descriptions as in Figure 1.9a-d. e-f) Non-neutral simulations. 
Growth of 900 evenly-spaced single mutant cells in 300×300 cell hexagonal grids in 2D Moran and 2D WF models. Non-
spatial Moran model shown for comparison. The horizontal dashed line shows the total cell population (90000) in the 
simulations; the non-mutant cells had fitness 1. The mutant had fitness 1.5 in the Moran and 2D Moran models and 1.2 in the 
WF2D models. SP, single progenitor. WF, Wright–Fisher.  



 21 

 
Figure 1.11 Wright–Fisher model. a) One step in a Wright–Fisher model. Each cell in Generation 2 picks a parent cell at 
random from the cells in Generation 1. b) The 2D Wright–Fisher model. Each cell in Generation 2 picks a parent cell from the 
neighbouring cells in the previous generation. The potential parent cells of the cell with the black border in Generation 2 are 
shown with black dots in Generation 1. A cell with a fitness advantage (blue cells) has a larger probability of being selected 
as a parent and therefore has a higher chance of expanding into a large clone. 

 

1.4.3 Wright–Fisher model 

The Wright–Fisher (WF) model is very similar to the Moran model, but instead of individual 

cells dividing one at a time, the entire population of cells is replaced in a single step to create 

the next generation of cells (91). In the new generation, each cell randomly “picks its parent” 

from the cells in the previous generation (Figure 1.11a).  

 

Drift in the WF model is half that of the Moran model (90). This means that if the time between 

generations in the WF model is equal to the average division time in the Moran model, the 

growth of neutral clones (which depends on the drift rate) is halved. By doubling the division 

rate of the WF model, this produces the same trends as those observed for the Moran model 

(Figure 1.9a-d).  

 

1.4.3.1. Selection in the Wright–Fisher model 

The WF model has a similar mechanism of selection to the Moran model. The fitter a cell is 

relative to the rest of the population, the more likely it will be picked as a parent by cells in the 
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next generation. When Moran and WF simulations are run using the same (non-neutral) value 

as the fitness parameter, the two models have different outputs. However, since this parameter 

does not have a direct biological counterpart, the actual value of the fitness parameter itself is 

not of great importance. If the appropriate corresponding fitness parameters are used, and the 

WF model division rate is double that of the Moran model, the outputs of the Moran and the 

WF models are very similar (Figure 1.9e).  

 

1.4.3.2. 2D Wright–Fisher model 

The WF model can be adapted to run on a 2D lattice following the same logic as the Moran 

model. A cell picks its parent from its immediate neighbourhood in the previous generation 

(Figure 1.11b). The neutral and non-neutral 2D WF models produce outputs very similar to the 

equivalent Moran processes (Figure 1.10). Again, to match the rate of drift between the two 

models, the division rate of the 2D WF model must be double that of the 2D Moran model.  

 

1.4.4 Alternative spatial models of epithelial cell dynamics 

In addition to the models described above, many other methods have been applied to study cell 

dynamics in epithelia. Each modelling approach will be best suited to studying a particular 

aspect of the tissue, from small-scale mechanical forces to large-scale cell density, and will 

strike a different balance between model complexity and computational efficiency.  

 

Continuum models do not model individual cells; instead, cell boundaries are ignored and 

continuous variables are used to describe properties of regions of cells (93). These models can 

be used to study phenomena such as mechanical stress, migration, proliferation and cell 

adhesion (93), and are suited to large-scale analysis of tissue. However, because individual 

cells are not explicitly modelled, continuum models are less suitable for studying mutations or 

heterogeneity in the tissue (93, 94). 

 

Cell-based models represent cells as discrete entities and generally model cell division, death 

and migration as stochastic processes (95). They are broadly split into two categories – lattice-

based models and off-lattice models. Lattice-based models (such as the Moran and WF models 

described above) use a mesh or grid to represent the tissue. The simplest lattice-based models 

are cellular automata (CA), in which each lattice site can hold a single cell. The cells follow a 
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set of rules that allow them to divide, die or migrate to other lattice sites. Even from simple 

rules, highly complex behaviour can emerge (96). Several variations of CA models have been 

used to model skin and oesophageal epithelium, with a variety of rules applied to model wild 

type and mutant cell behaviour (51, 86, 92, 97-99). 

 

Other lattice-based models include lattice gas cellular automata (LGCA) and cellular Potts (CP) 

models. In LGCA models, each site in the lattice can be occupied by multiple cells. The number 

of cells within each lattice site and moving between each lattice site is tracked (95). LGCA 

models allow efficient simulation of large numbers of cells but lack the single-cell resolution 

of CA models (95). In CP models, individual cells occupy multiple contiguous lattice sites, 

which enables the modelling of individual cell morphology and mechanical properties of the 

system (100, 101). However, CP models are far more computationally expensive than CA 

models (102).   

 

Off-lattice models do not restrict cells to fixed positions on a grid. The cells are free to move 

and interact based on the forces that the cells exert on each other (102). These models can 

simulate cells by tracking either the position of the cell centre (centre-based models) (51, 102, 

103) or the boundaries of cells (vertex-based models) (102, 104), and are suited to studying the 

mechanics and cell morphology of the tissue (102).  

 

1.4.5 Modelling summary 

Biology is very complex, and theoretical models are necessarily simplified and abstracted by 

comparison (105-107). It is important to use models with an appropriate level of abstraction so 

that the model is complex enough to recreate the key behaviours of the true system, but simple 

enough that the model can be interpreted and used to make inferences and predictions (106, 

108). In this thesis I err on the side of simplicity: I do not look to add complexity in order to 

match every detail of the experimental data, but instead use simple models that can illustrate 

the general principles underlying clonal dynamics.  

 

The SP model provides a good fit to wild type clonal dynamics (84) and early exponential-like 

expansion of mutant clones (19, 50), but it is less appropriate for modelling the long-term 

expansion and competition of mutations (19) (Chapter 2). The Moran and WF models can 

simulate both non-neutral and spatial competition of mutations while maintaining the fixed 
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population of the tissue. This assumption of a fixed cell population is appropriate for the 

modelling of normal epithelial tissues because homeostasis in wild type tissue means the cell 

population remains constant (21, 27), and even with a high burden of mutations, the normal 

tissues only display small increases in cell density and tissue thickness (10, 11, 19, 51). 

 

The WF and Moran models are very similar. The major advantage of the WF model over the 

Moran is that it can be several orders of magnitude faster to run than the Moran model (Table 

1.1). The high speed of the WF simulations enables the use of parameter-fitting methods that 

require large numbers of simulations to be run (Chapter 5).  

 
Table 1.1 Timings of simulations. Neutral competition starting from 90,000 single-cell clones (in 300×300 hexagonal grids 
for the 2D simulations) over 25 average cell divisions (Moran) or 50 cell generations (WF). All simulations were written using 
the same underlying Python framework and were run on a single core of the same laptop. 

 Moran WF 

Non-spatial 487s 0.25s 

2D 79s 0.94s 

 

 

1.5  Aims of the thesis 
Mutations are widespread in normal epithelium of the skin and the oesophagus. The nature of 

somatic evolution and mutant clonal competition in these normal tissues has been a subject of 

debate, with the discussion centred around whether cell competition is neutral or non-neutral. 

This project had two main aims: first, to examine the evidence for non-neutral selection of 

mutations in DNA-sequencing datasets of normal human skin and oesophageal epithelium 

(chapters 2, 3 and 4); and second, to investigate the consequences of mutant clonal expansion 

and competition, in particular the impact on the earliest stages of cancer formation (Chapter 5). 

 

My thesis is organised as follows: 

 

In Chapter 2, I examine the debate regarding the neutrality or non-neutrality of mutations in 

human eyelid skin. Specifically, I use stochastic simulations of clonal competition that take 

into account the tissue structure and the experimental tissue-sampling method, enabling me to 

demonstrate how the experimental clone size distributions and the genetic analysis of driver 
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genes are both consistent with non-neutral competition. I further validate the conclusions using 

a dataset of mutations from normal human oesophagus.  

 

In Chapter 3 I introduce a statistical method for testing selection of functional categories of 

mutations and validate the method using NOTCH1 mutations in normal skin and oesophagus.  

 

In Chapter 4, I use the method described in Chapter 3 to examine patterns of mutations in five 

further genes sequenced in the normal human skin and oesophagus. I use these genes to 

demonstrate various benefits and limitations of the method, and present an extension to the 

method that enables comparison of selection between datasets. The results of chapters 3 and 4 

provide further evidence of non-neutral clonal competition in the normal skin and oesophageal 

epithelium.  

 

In Chapter 5 I investigate the expansion of super-competitive mutant clones in the mouse 

oesophagus. Firstly, I fit a stochastic spatial model of clonal growth to lineage tracing data, to 

show that cell fitness is strongly dependent on the level of Notch1 signalling and that the 

haploinsufficiency of Notch1 greatly enhances the spread of high-fitness Notch1 loss-of-

function mutant clones. I then use a mathematical model to analyse the disappearance of micro-

tumours from mutagen-treated mouse oesophagus, showing that the tumours can be eliminated 

by highly competitive mutant clones in the surrounding tissue.  
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Chapter 2  
 

Relating evolutionary selection and mutant 
clonal dynamics in normal epithelia 
 

 

2.1 Introduction 
Approximately 90% of human cancers arise from squamous epithelia (7), which consist of 

layers of keratinocytes (109) (Chapter 1, section 1.2.1). Cells are continually shed from the 

tissue surface and replaced by proliferation in the basal cell layer (Figure 2.1a). The 

proliferating cells accumulate mutations over time, and may generate mutant clones (110). If 

such clones persist within the otherwise normal tissue, they may acquire the multiple genomic 

alterations that lead to cancer (110). A key question is whether these large, persistent clones 

arise by neutral competition or are a consequence of cancer-associated mutations increasing 

the competitive fitness of mutant cells above that of wild type cells. If the former, little can be 

done to alter the risk of cancers emerging from mutant clones in normal tissue. However, if the 

founding clones of cancers emerge by competitive selection, it is possible that interventions 

that alter the fitness of mutant cells may decrease cancer risk. A dataset of mutant clones 

detected in normal human eyelid skin appears to contain conflicting evidence supporting both 

neutral and non-neutral mutant cell dynamics (9, 13). This “paradox” has yet to be resolved 

(14, 15), leading to uncertainty over the somatic mutant cell dynamics in normal epithelial 

tissues (111). My aim with this work was to unpick this apparent inconsistency. 

 

The dataset in question is from a study of mutations in normal human eyelid skin epidermis 

(9). DNA was extracted from small samples of epidermis. About 500 DNA molecules of each 

targeted gene were sequenced and compared to the genome of the same tissue donor (Figure 
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2.1b). Somatic mutations were detected as altered sequences present in one or more samples 

(9). The proportion of altered DNA reads containing a mutation, the variant allele fraction 

(VAF), was assumed to be proportional to the size of the mutant clone (Figure 2.1b). 

 

An analysis of inferred sizes of the mutant clones in the human eyelid data argues for neutral 

dynamics (13). Observed clone sizes can be compared to the predictions of candidate 

mathematical models of cell dynamics to determine the best fitting model (81). Lineage tracing 

experiments in homeostatic, unmutated mouse epidermis and oesophagus suggest that these 

tissues are maintained by a single population of equipotent progenitor cells (Figure 2.1c) (19, 

21, 27). The outcome of individual cell divisions is unpredictable but on average 50% of the 

progeny of dividing cells differentiate, exit the proliferative compartment and are eventually 

shed from the tissue while 50% remain to divide again. Such balanced stochastic cell fate leads 

to wide variation in clone sizes while the total cell population remains constant. Mutant clone 

sizes observed in the human eyelid skin have been compared to predictions from this neutral 

stochastic model (13).  

 

The comparison is made using the first incomplete moment of the clone size distribution 

(Chapter 2 methods), which has been used in several studies to shed light on mutant clone 

growth dynamics (13, 88, 98, 112, 113). In economics the first incomplete moment is used to 

study inequality – the value of the incomplete moment at £X shows how much of the wealth is 

held by those with a fortune of £X or higher (114). It has a similar role for the clone size 

analysis – it shows the proportion of the mutated cells that are in clones of size x or larger. 

Using the first incomplete moment has two advantages over using the clone size distribution 

directly. Firstly, the first incomplete moment reduces the fluctuations caused by low sample 

size (88) and secondly it simplifies the comparison of data to the neutral theory. The neutral 

model predicts that the first incomplete moment of mutant clone sizes will have a negative 

exponential form (13) – where there are many small clones and few large clones. A deviation 

from the exponential shape could indicate non-neutral competition – some clones have 

expanded to take over more than their expected share of the tissue. The logarithm of an 

exponential curve forms a straight line. Therefore it is proposed that there will be a clear 

distinction between the logarithm of the first incomplete moment (LFIM) from neutral and 

non-neutral competition: neutral competition will lead to a straight line whereas non-neutral 

competition will be indicated by a curved/kinked line (13). Using this criterion, the inferred 
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mutant clone sizes from the human eyelid appear largely consistent with the neutral model 

(13). 

 

However, the theory of neutral competition of cancer-associated mutations appears to be 

incompatible with results from several mouse and human studies that observed non-neutral 

mutant expansions in normal epithelial tissues (19, 50, 88). Furthermore, signs of non-neutral 

clonal competition in the eyelid mutational data can be detected using dN/dS analysis, a method 

from population genetics. This examines the ratio of protein-altering mutations (dN) to silent 

mutations (dS) for each gene (62). Once relevant corrections have been applied, a dN/dS ratio 

of 1 is indicative of neutral behaviour. A dN/dS value of less than 1 indicates the mutated gene 

has a negative effect on the competitive fitness of mutant cells compared with normal cells. 

However, if a disruption of the protein provides a growth advantage to the cell, then the number 

of protein-altering mutations that expand to a clone of detectable size will be increased, leading 

to a dN/dS ratio greater than 1. Analysis of the human eyelid mutations found 6 of the 74 

sequenced genes had significantly raised dN/dS ratios ranging from 3 to over 30, consistent 

with mutations in those genes driving clonal expansion (9). Additionally, protein-altering 

missense mutations in some driver genes, e.g. NOTCH1, NOTCH2 and TP53, were not 

randomly distributed but concentrated in functional domains. This suggests positive selection 

of function-altering mutations, which is also incompatible with neutrality (9). 

 

In this work I show that in some conditions non-neutral competition can produce a straight-

line LFIM, and therefore a straight LFIM alone is not a clear indicator of neutral dynamics. 

This work can thus reconcile the observed clone size distributions and positive genetic 

selection.  
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Figure 2.1 Data collection and cell dynamics. a) Proliferation occurs in the basal layer of the epithelium. After 
differentiation, cells migrate through the suprabasal layers before being shed. Image from smart.servier.com, licensed under 
CC BY 3.0, edited from original. b) DNA from a biopsy (left) containing mutant clones (red and blue) is sequenced and the 
variant allele fraction (proportion of reads containing the mutation, middle) used to infer clone sizes (right). c) The stochastic 
single progenitor model of cell dynamics. Each dividing cell (red) can produce two dividing cells (a), two non-dividing 
differentiated cells (brown) (c), or one of each type (b). In a homeostatic tissue or neutral clone, the probabilities of each 
symmetric division option are balanced (left). An advantageous mutation would increase the proportion of dividing cells 
produced (middle), and a deleterious mutation would increase the proportion of differentiated cells (right). Note that in the 
non-neutral case, the probabilities of each division type do not have to be fixed over time, but can depend on the cell context. 
d) Simulation of the model shown in c). If mutations introduce perpetual positive fate imbalances then the population will 
eventually explode. Total population of 20 simulations with mutations introducing only small fate imbalances drawn from 
N(mean = 0.25%, std = 1.25%). e) In the spatial Moran process, a differentiating cell (red) is replaced by the division of a 
neighbouring cell (light blue). 

 

2.2 Results 
I will start by considering several important constraints that apply to the mutant clones in 

normal epithelia. Firstly, the cellular structure and composition of the tissue remains at least 

approximately constant. Secondly, the proliferative compartments of the epidermis and 

oesophageal epithelium contain few barriers to mutant clone expansion. In a tissue with a high 

burden of mutations like the human eyelid, this means that expanding clones will soon collide 

and compete with each other as well as with unmutated cells. These two constraints were not 

included in the mathematical model used in the first incomplete moment analysis of the human 
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eyelid data (13), meaning mutant clones in this model with a growth advantage (Figure 2.1c, 

middle) could expand without limit (Figure 2.1d). 

 

2.2.1 Spatial constraints alter clone size distributions of non-neutral 
mutations 
 

To address the effect of clonal competition I used a mathematical model drawn from the study 

of population genetics. I ran Moran-type simulations (90, 92) (Chapter 1, Chapter 2 methods) 

of cell competition on a 2D grid to represent the epidermis (Figure 2.1e). Cells lost through 

differentiation are replaced by the division of a neighbouring cell (Figure 2.1e), similar to 

behaviour observed in mouse epidermis (115). During each division, there is a small chance 

that one of the daughter cells will acquire a mutation (Chapter 2 methods). 

 

Simulations of a 2D neutral model produced an approximately straight LFIM (Figure 2.2a). A 

non-neutral spatial model in which a small proportion of mutations change the fitness of a cell 

(Chapter 2 methods) may deviate from a neutral appearance by curving away from the straight 

line (Figure 2.2b). This is due to the contrast between the relatively large non-neutral clones 

and the smaller clones growing neutrally. Surprisingly, however, simulations with a higher 

proportion of non-neutral mutations may generate a straight line (Figure 2.2c). This is because 

almost all of the simulated tissue is taken over by non-neutral clones (Figure 2.2d). The only 

neutral mutations that persist are those that occur in clones with non-neutral mutations, carried 

as “passengers”. As all remaining clones exhibit similar behaviour, the LFIM is straightened. 

This shows that a straight-line LFIM does not necessarily imply neutral competition and is 

consistent with positive dN/dS ratios (Figure 2.2e). I concluded that since there is a high burden 

of mutant clones in the eyelid (9), the tissue is likely to be extensively colonised by non-neutral 

mutant cells, contributing to the apparently neutral appearance of the clone size distribution.   
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Figure 2.2 2D simulations of clonal competition. a-c) First incomplete moments of 2D simulations (Chapter 2 methods). 
The average of 1000 simulations is shown in black, a selection of 20 individual simulations is shown in blue. a) Neutral 
simulations. b) Simulations where 1% of mutations are non-neutral. A deviation from the straight line is seen at clone sizes of 
approximately 100 cells. c) Simulations where 25% of mutations are non-neutral. d) Proportion of cells at the end of the 
simulations with a fitness altered by non-neutral mutations. In the 25% non-neutral simulations, by the end of the simulation 
almost the entirety of the tissue has been colonised by non-neutral mutant clones. e) dN/dS values from the simulations shown 
in a-c). To enable this calculation for the neutral simulations, a proportion of neutral mutations were labelled as non-neutral 
but did not alter cell fitness. 

 

2.2.2 Impact of sampling methods on measurement of clone size 
distributions  
 

Another consideration that may impact the measurement of clone size distributions and hence 

inference of mutant clone dynamics is experimental design. In the human eyelid study, spatially 

separated tissue samples were collected (Figure 2.3a) (9). The area of the sample defines an 

upper limit on the reliable estimation of clone size. In the eyelid experiment, the area of each 

sample was less than that of the largest clones. The lower limit of clone size detection is also 

related to the sample area, since mutations present in only a small fraction of the cells in the 

sample may not be detected due to the technical noise in DNA sequencing (59). I simulated the 

combined effects of spaced samples in which only clones occupying 1% or more of the area of 

the sample can be detected (Chapter 2 methods). Figure 2.3b,c,d show these effects on the first 

incomplete moments of the simulations from Figure 2.2a,b,c respectively. The results lead me 

to conclude that these experimental factors may artefactually reduce a deviation of LFIM from 

a straight line caused by non-neutral competition (Figure 2.2b, Figure 2.3c). 
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Figure 2.3 First incomplete moments of 2D simulations with biopsy sequencing. a) The method of taking biopsies can 
affect the observed mutant clone size distribution. Isolated punch biopsies (top) may not capture the entirety of a mutant clone; 
in the analysis in (13), clones which spanned multiple biopsies (shown in the dashed area) were excluded. Ungapped gridded 
biopsies (bottom) enable the reconstruction of larger clone sizes. b-d) The simulations from Figure 2.2a,b,c respectively, with 
the effects of isolated punch biopsies and sequencing. e) ROC curves using R2 of the log first incomplete moment of the clone 
size distribution as the classifying statistic. Red, simulated biopsy and sequencing; blue, full data randomly subsampled to 
match biopsy plus sequencing sample sizes. Solid, 1% non-neutral; dash, 25% non-neutral. Area Under the Curve (AUC) is a 
measure of how successful the classifier is at distinguishing the two groups. A perfect classifier will have an AUC of 1. A 
random guess will have an AUC of 0.5. AUCs: Full data, 1% non-neutral, 0.94; biopsy plus sequencing, 1% non-neutral, 0.68; 
full data, 25% non-neutral, 0.62; biopsy plus sequencing, 25% non-neutral, 0.52. 

 

2.2.3 Ability of LFIM to resolve neutral competition versus selection 

I next tested how well the LFIM could discriminate between the neutral and non-neutral 

simulations using the coefficient of determination, R2, to measure the straightness of a line 

(Chapter 2 methods). Although R2 has documented weaknesses (116, 117) and has been found 

to perform poorly in a similar context (118), I used it here in order to be consistent with 

previous studies and to evaluate the LFIM test of neutrality as it was originally proposed (13, 

98). For the LFIM to be a successful indicator of neutrality, the neutral simulations need to 

have a higher R2 than the non-neutral simulations. Receiver operating characteristic (ROC) 

curves showed the accuracy of the LFIM as a test of neutrality depended on both the underlying 

shape of a non-neutral clone size distribution and on the experimental sampling method (Figure 

2.3e). For example, using the LFIM was little better than a random guess (area under the curve, 

AUC = 0.52) when attempting to distinguish the neutral simulations from Figure 2.3b from the 

non-neutral simulations in Figure 2.3d, where the underlying shape of the non-neutral LFIM 

was largely straight (Figure 2.2c) and the clones sizes were inferred from simulated DNA 

sequencing of spatially separated biopsies.    
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2.2.4 Sensitivity of the model to the distribution of fitness effects 

The distribution of fitness effects (DFE) of the mutations can affect the shape of the LFIM of 

mutant clone sizes, and therefore the ability of the LFIM to detect non-neutral competition. 

This is shown by the difference between including 1% or 25% non-neutral mutations in 

simulations (Figure 2.2b,c and Figure 2.3e). Here I briefly explore how sensitive the shape of 

the LFIM is to the DFE of the non-neutral mutations, and therefore whether the conclusions 

above were greatly influenced by the particular assumptions I have made. In particular I look 

at changing the shape of the non-neutral DFE, including additional deleterious mutations and 

changing the interaction of mutations (epistasis). 

 

Several DFEs have been proposed based on theoretical predictions or experimental 

observations of mutations in evolving organisms (119). I ran simulations using three of the 

proposed distributions: normal (120, 121) (Figure 2.2b,c and Figure 2.3b,c), exponential (122) 

(Figure 2.4a,b) and uniform (123) (Figure 2.4c,d). In all of these cases the simulations produce 

similar shaped LFIMs. 

 

In population genetics, it is generally assumed that a large majority of non-neutral mutations 

will be deleterious because an organism is already close to peak fitness (119). It is not clear to 

what extent this assumption applies for somatic mutations, since in healthy tissues individual 

cell fitness is secondary to the fitness of the organism as a whole (124). However, it may still 

be the case that many non-synonymous mutations are deleterious to cell fitness. I therefore ran 

simulations in which two thirds of non-neutral mutations reduce the fitness of a cell, but this 

has little impact on the shape of the LFIM (Figure 2.4e,f). 

 
I have assumed in all cases so far that the effects of multiple mutations can be combined by 

simple addition of their fitness values. Here I look at diminishing returns (125) as an alternative 

form of epistasis. As a simple implementation of diminishing returns, I used the rule  

!"#	%"&&	'()!"** = maximum	(2&3	%"&&	'()!"**, !"#	56)7)(2!	'()!"**) 

i.e. the fitness of a mutation will replace (rather than add to) the cell fitness if it is higher than 

the cell fitness, otherwise it has no effect. This rule means that a very fit clone will only rarely 

increase in fitness through a new mutation and the change is likely to be small. The results of 

these simulations are shown in Figure 2.4g,h and are similar to those using simple addition of 

mutation fitness. 



 

 

 35 

 
Figure 2.4 LFIM for alternate distributions of fitness effects. For all cases, the LFIMs using full clone sizes are shown in 
red and the LFIMs using clone sizes inferred from simulated biopsies and sequencing are shown in blue. 20 individual 
simulations are shown for each case and the mean of 100 simulations is shown in bold. Except where stated otherwise, the 
simulations in the top row are 1% non-neutral, and the simulations in the bottom row are 25% non-neutral. All simulations are 
run on 500 × 500 grids, have a division rate of 0.033 per week, a mutation rate of 0.015 per cell division and are run for 3000 
weeks (~58 years). Unless stated otherwise, the cell fitness is the sum of the fitness of all mutations in the cell. a,b) The fitness 
of non-neutral mutations is drawn from an exponential distribution with parameter 0.1. a) 1% of mutations are non-neutral. b) 
25% of mutations are non-neutral. c,d) The fitness of new mutations is drawn from a uniform distribution, U(0, 0.2). c) 1% of 
mutations are non-neutral. d) 25% of mutations are non-neutral. e,f) Addition deleterious mutations. e) The fitness of 1% of 
new mutations is drawn from N(mean = 0.1, std = 0.1) (mostly beneficial mutations) and the fitness of another 2% of new 
mutations is drawn from N(mean = -0.3, std = 0.1) (mostly deleterious mutations). The remaining 97% of mutations have no 
effect on cell fitness. f) The fitness of 25% of new mutations is drawn from N(mean = 0.1, std = 0.1) (mostly beneficial 
mutations) and the fitness of another 50% of new mutations is drawn from N(mean = -0.3, std = 0.1) (mostly deleterious 
mutations). The remaining 25% of mutations have no effect on cell fitness. g,h) Diminishing returns. The fitness of new 
mutations is drawn from N(mean=1.1, std=0.1). New cell fitness=max(old cell fitness, new mutation fitness), i.e. the fitness 
of a mutation will replace (rather than add to) the cell fitness if it is higher than the cell fitness, otherwise it has no effect. g) 
1% of mutations are non-neutral. h) 25% of mutations are non-neutral. 

 
The true effects of somatic mutations are likely to be far more complex than the examples I 

have explored here (126). However, in all cases I have simulated we see that the two key 

observations are not altered: Firstly, the use of biopsies reduces the curve in the LFIM and 

therefore reduces the ability of the LFIM to detect non-neutral competition. And secondly, a 

straight-line LFIM does not necessarily imply neutral competition, as shown in the highly non-

neutral simulations. 

 

 

2.2.5 Human oesophageal mutant clone sizes demonstrate non-neutral 
growth 
 

To validate this analysis I drew on a second experiment that measured mutant clones in normal 

human oesophageal epithelium (10). dN/dS analysis revealed mutations in 14 of 74 genes 
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sequenced were under significant positive selection (10). This study used an ungapped 

sampling strategy in which the epithelium was cut into gridded arrays of samples which were 

then deep DNA sequenced, allowing the areas of clones that extend over multiple samples to 

be determined (10) (Figure 2.3a). This key difference in design from the eyelid experiment 

allowed me to investigate the effect of sampling on the incomplete moment analysis of the 

eyelid data. I did this by comparing the gridded data with what would have happened if the 

oesophagus was sampled in the same manner as the eyelid skin (Figure 2.3a). The LFIMs for 

clone sizes estimated from both sampling approaches are shown in Figure 2.5. Taking Figure 

2.5d as an example, the gapped sampling approach results in an LFIM that fits well with a 

straight line (R2 = 0.96) and therefore appears consistent with neutral competition. However, if 

using the clone sizes based on a gridded approach, the LFIM deviates from the straight line (R2 

= 0.78), suggesting non-neutral competition may have occurred in the tissue. For each of the 9 

individuals in the study, the LFIM exhibits a greater deviation from the straight line when using 

gridded samples than when using spaced samples. 

 

 
Figure 2.5 Normal human oesophagus. a-i) First incomplete moments of the human oesophagus mutation data for the nine 
individuals in the study (10). The clone sizes are either inferred from each 2mm2 sample without merging (blue) or by using 
the gridded system to infer the size of mutations which span multiple samples using the methods of the original study (10) 
(red, solid). The extent of deviation from the straight line can be seen by comparing the data (solid) to the dashed red line, 
which shows a straight-line fit to the smallest 75% of clones in the merged case. Loss-of-heterozygosity copy number changes 
were frequently found to co-occur with protein-altering NOTCH1 mutations (10) and to obtain conservative estimates of clone 
sizes I assumed this is the case for all protein-altering NOTCH1 mutations. All other mutations on chromosomes 1-22 were 
assumed to be heterozygous. R2 values can be negative because the line fitting is constrained to pass through the point (m, 1), 
where m was the smallest observed clone size. Ages given as a range for anonymisation purposes. 
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Figure 2.6 First incomplete moment over time. a-d) Curves in the LFIM may only be visible after sufficient time has passed, 
allowing both fast and slow growing clones to reach large enough sizes to be detectable through sequencing. Examples of the 
first incomplete moment for a simulation of non-neutral competition are shown for four timepoints. 1% of mutations are non-
neutral with a fitness drawn from a normal distribution, N(mean = 0.1, std = 0.1). The vertical dashed line shows the detection 
limit, arbitrarily set at 100 cells. The section of the first incomplete moment that would not be visible due to the detection limit 
is shown in grey to the left of the line; the visible section is shown in black. The red dashed line is a straight line fit to the 
smallest 75% of visible mutant clones. 

 

An intriguing pattern can be seen within the oesophageal data. With the exception of a few 

large clones, younger patients have less curved LFIMs, as shown by the deviation from a 

straight line fit to the smallest 75% of clones (Figure 2.5). Older individuals in contrast show 

a more distinct deviation from the line. This is consistent with simulations of non-neutral 

competition (Figure 2.6). At early timepoints, only the faster-growing non-neutral clones in the 

tail of the distribution are large enough to be observed in the simulated DNA sequencing 

(Figure 2.6a), leading to a straight-line LFIM. A curve is observed at later timepoints once the 

slower-growing clones reach a size large enough to be detected (Figure 2.6b,c,d).  

 

 

2.2.6 Clone size as a marker of competitive selection of mutations 

I have shown that clone size and LFIM alone cannot reliably classify clonal dynamics as 

neutral. This is due to a mixture of experimental limitations on the maximum and minimum 

sizes of clones and the fundamental effects of competition for space. In addition, where a 

curved LFIM is found, the position of the curve cannot simply discriminate the neutral and 

non-neutral mutant clones, although a trend of increasing proportions of non-neutral mutations 

at larger clone sizes is observed in both simulations (Figure 2.7a,b) and in-vivo experiments 

(10). Neutral mutations hitchhiking on non-neutral clones may grow to large sizes, meaning 

that analysis restricted to synonymous mutations and mutations in non-expressed genes 

(Chapter 2 methods), which are not identified as under selection by dN/dS analysis (10), may 

not reflect purely neutral dynamics (Figure 2.7c). This raises a question of how to meaningfully 

interpret clone sizes observed in a tissue. This is an important question as there remain a small 

number of metrics for assessing the neutrality of mutations. While the results here have 
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demonstrated the risks of one specific interpretation of the LFIM, they also highlight the 

dangers of relying on a single measure of neutrality, especially if the underpinning 

mathematical assumptions are under-explored.   

 

 
Figure 2.7 Clone size and selection. a-b) Proportion of non-neutral clones in different size ranges. a) The first incomplete 
moment of the clone size distribution from a simulation with 1% non-neutral mutations. Coloured regions correspond to ranges 
of clone sizes described in b. b) Proportion of non-neutral clones in each clone size interval. Colours correspond to the regions 
shaded in a. c) First incomplete moments of the human oesophagus mutation data for one individual, aged 72-75 (10), including 
only synonymous mutations and mutations in genes that are non-expressed (Chapter 2 methods). The synonymous mutation 
T125T in TP53 was excluded as it has been found to affect splicing (62). Clone sizes which extend across multiple samples 
are merged using the methods of the original study (10). All mutations on chromosomes 1-22 were assumed to be heterozygous. 
The extent of deviation from the straight line can be seen by comparing the data (solid) to the dashed red line, which shows a 
straight-line fit to the smallest 75% of clones. d) Median variant allele fraction (VAF) for nonsense mutations in the five most 
significantly selected genes from the dN/dS analysis of the human oesophagus mutation data (10), plotted against the dN/dS 
ratio for nonsense mutations. Combined results for all individuals in the study. The dashed line shows the median VAF of all 
synonymous mutations. Many of these synonymous mutations are likely to be passengers on non-neutral clonal expansions, 
and therefore the line does not represent the median VAF of mutations that have grown solely under neutral drift. One-sided 
Mann–Whitney tests show that, aside from NOTCH2 (p = 0.06), nonsense mutant clones in the genes shown are significantly 
larger than synonymous mutant clones (p-values < 0.0001). 

 

In the specific case of the eyelid data, the original conclusion of non-neutral competition was 

supported by dN/dS analysis. While this is a widely used tool, this type of analysis is sensitive 

to the mutation model used for the neutral hypothesis (62), and detection of positive selection 

may be unreliable for some types of mutations in some genes. For example, almost all protein-

truncating mutations inactivate the protein in which they occur. By contrast, missense 

mutations in some locations may reduce protein function, while in others they may generate a 
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constitutively active mutant (127). In aggregate these effects may result in a dN/dS ratio close 

to 1.   

 

Given the limitations of individual methods to assess neutrality, I speculated that combining 

discrete approaches may be more informative. To explore this I directly compared observed 

clone sizes and the associated dN/dS ratios of mutations in specific genes. I selected nonsense 

mutations from a panel of five mutated genes that were identified as under the strongest positive 

selection in normal oesophagus and which have well-characterised roles in cancer (TP53, 

NOTCH1, NOTCH2, NOTCH3, and FAT1) (Figure 2.7d). For 4 genes there is the expected 

relationship between clone size and selection; that is, mutations in genes under greater selection 

pressure grow into larger clones. However, NOTCH2 clones are under selection according to 

dN/dS criteria but have a similar size to synonymous clones.  

 

There are multiple possible explanations for this unexpected result for NOTCH2. The dN/dS 

ratio indicates mutations that promote clonal expansion to a sufficient size to be detected. 

However, the impact of a mutation on clonal behaviour may alter over time. This may occur if 

an initial expansion of a mutant clone increases the local cell density. If mutant cell 

proliferation is sensitive to this change of environment, the rate of clonal expansion may slow. 

Another potential mechanism is that the mutant clones grow initially due to an advantage over 

wild type cells, but are later constrained by the growth of neighbouring clones as the tissue is 

mutated over time. Both of these behaviours could lead to a high dN/dS ratio with only a 

modest increase in clone size, and are similar to observations of a Trp53 missense mutation in 

mouse epidermis, where mutant clones have a strong competitive advantage over wild type 

cells but their expansion is constrained (19).  

 

The reverse observation, large clone sizes accompanied by only a modest dN/dS ratio, may 

indicate that mutations in a small region or hotspot in the gene can lead to extensive clonal 

expansion but mutations in the rest of the gene are under weaker selective pressure. An example 

from the oesophagus data is PIK3CA, which has the largest median clone size of the 14 genes 

found to be under positive selection in human oesophagus, largely due to the multiple large 

clones of the hotspot mutation H1047R. This highlights the importance of not just considering 

the gene in which a mutation occurs, but also the location of the mutation in the structure of 

the protein. Where large-scale experiments have been performed, more than half of all non-
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synonymous point mutations in T4 lysozyme fail to substantially effect protein function (128), 

and mutations in the TP53 DNA-binding domain were found to have a broad range of 

phenotypes (129). It follows that using the structure–function relationship to interpret and 

confirm the mechanism of frequently observed point mutations would support analysis and 

understanding of such datasets – this idea is explored further in chapters 3 and 4. Other factors 

such as epistatic interactions with other mutations (130) or age-related changes to the tissue 

microenvironment (131) could also lead to plastic and context-dependent mutant clone 

behaviour and a complex relationship between dN/dS ratios and clone sizes. 

 

2.3 Discussion 
I have presented two complementary explanations to resolve the apparent paradox regarding 

the dynamics of mutant clones in normal human eyelid skin. Both show how non-neutral 

competition can be consistent with a straight-line logarithm of the first incomplete moment of 

the inferred mutant clone size distribution – previously claimed to be an indication of neutral 

competition. Therefore, the mutant clone sizes observed in the normal human eyelid no longer 

appear to contradict the range of studies that suggest a number of mutations can drive non-

neutral expansion of mutant clones in epithelia. I have also shown the benefits of using multiple 

orthogonal approaches to infer clone behaviour. Finding a consensus can provide a high degree 

of confidence in the analytical conclusions, and inconsistencies may reveal an issue with one 

of the methods or help to identify interesting outliers in the data. 

 

The simulations used in this chapter only model a single basal layer of cells. This model setup 

clearly differs from the 3D nature of the real tissues, especially the human oesophageal 

epithelium in which there are multiple layers of proliferating cells (22). However, in order to 

spread in the normal tissue without altering the tissue structure, a mutant clone will still need 

to expand laterally within the proliferating cell layers and must compete for space with other 

clones. The 2D simulations will therefore still capture the general effects of spatial competition 

between clones in the 3D tissue, and the impact this has on the clone size distribution. 

Furthermore, the argument made in this chapter does not rely on the simulations accurately 

recreating the precise details of clonal competition in the real tissues. The simulations are only 

required to illustrate the overall impacts of spatial competition and experimental tissue 

sampling, and to demonstrate that the conclusions based on the previous non-spatial non-

competitive cell dynamics model are not robust.   
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I have found that by considering spatial constraints of the tissue, non-neutral simulations can 

produce a straight-line LFIM, providing a counter example to the proposition that a straight-

line LFIM implies neutral competition. I have also shown how the experimental method used 

to measure the sizes of mutant clones in the eyelid could hide signs of non-neutrality in the 

clone size distribution. Using isolated single samples which are too small in relation to the 

clone sizes will lead to underestimation of the size of a significant proportion of clones, as 

occurred in the eyelid experiment, and could lead to an apparently neutral clone size 

distribution. However, using over-large samples will reduce the ability to detect smaller clones, 

which can also lead to a straight-line LFIM because only the largest mutant clones are observed 

(98) (Figure 2.6a). By using a grid of adjacent samples, the larger clones can be more accurately 

measured without compromising the detection of smaller clones, and can reveal the signs of 

non-neutrality that would otherwise have been hidden.  

 

I have discussed the effects of sampling in detail. However, there are other potential 

confounding factors that could appear during DNA sequencing experiments. For example, 

comparisons of clone sizes between genes may be confounded by variations in read coverage 

and the frequency of sequencing errors across genes, which could lead to different detection 

limits for small clones in different genes, and therefore different average clone sizes. 

Furthermore, multiple independent but identical mutations within the same sample would be 

observed as a single clone (although this is likely to be rare (13)) and some large clones may 

be caused by somatic mosaicism rather than positive selection (12). 

 

At the same time as I was working on this project, other researchers were having a similar 

debate about selection of mutant subclones in tumours. It was proposed that neutral clonal 

competition in an exponentially expanding tumour would lead to a cumulative distribution of 

subclone sizes that follows a power law of the inverse of the allelic frequency (1/f) (132). 

Therefore plotting the cumulative number of mutations against the inverse of the allelic 

frequency would produce a straight line if the process was entirely neutral. The study then 

interpreted a straight line on this 1/f plot as an indication of neutral growth (132). Subsequent 

work (including by the authors of the original study) highlighted various flaws in this argument. 

For example, it was argued that the test could only reject neutrality under certain conditions on 

the timing of the emergence of a positively selected subclone and the strength of the selection 
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advantage (133, 134). It was also found that the shape of the 1/f plot depended on the structure 

of the tumour (135, 136), including some circumstances in which non-neutral competition lead 

to a straighter line than neutral competition (136). In addition, dN/dS analysis detected 

significant positive selection in tumours that were classified as neutral using the 1/f test (133). 

More recently the authors of the original paper have used a computational model that includes 

the simulation of tumour structure and sampling methods to infer selection and growth 

parameters, while acknowledging the challenges that remain when trying to characterise a 

complex process using data that may be noisy and biased by the collection methods (135).  

 

2.4 Chapter 2 methods 
2.4.1 Moran simulations 

The simulations were carried out on a 500 ´ 500 hexagonal lattice whose edges were wrapped 

to form a torus. Each cell was assigned a fitness value of 1 at the start of a simulation. Similar 

to a Moran process (90), one cell was randomly selected at each simulation step to differentiate 

(was removed from the simulation) and a neighbouring cell was selected to divide to fill the 

space, with fitter cells having a higher chance of dividing (Figure 2.1e). During each division, 

there was a chance that a mutation would occur in the new cell. If the cell did not mutate during 

division or if the mutation was neutral, the new cell produced would inherit the fitness of its 

parent cell. For the simulations in Figures 2.2,2.3,2.6 and 2.7, if the mutation was non-neutral, 

a random value drawn from a normal distribution, N(mean = 0.1, std = 0.1), was added to the 

fitness of a cell. In Figure 2.4, I show that the particular choice of distribution does not affect 

the conclusions of the analysis. 

 

Estimates of cell cycle time in human tissues are hard to verify. However, I did not fit 

simulations to data, only demonstrated general properties of the models, hence the exact 

division rates used do not affect the conclusions of the analysis. For the neutral simulations, I 

used a division rate of 0.5 per week as estimated from the LFIM of clones in the human eyelid 

under the assumption of neutral competition (13). In the non-neutral simulations, the fittest 

clones can expand much faster than neutral, and therefore I reduced the division rate to 0.033 

per week so that maximum mutant clone sizes were similar to the neutral simulations. The 

simulations ran for 3000 weeks (∼58 years). 
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The somatic mutation rate for human tissue has been estimated at approximately 10-9 mutations 

per base pair per cell division (137) although it should be noted that exposure to UV light or 

mutagenic agents (such as stomach acid and alcohol) may substantially alter the mutation rate. 

With roughly 106 base pairs included in the targeted sequencing experiment (9), this leads to a 

mutation rate of 10-3 mutations per cell division which I use for the neutral simulations. I use a 

higher mutation rate of 1.5 ´ 10-2 mutations per cell division for the non-neutral simulations so 

that the total clone numbers were similar in the neutral and non-neutral simulations.  

 

Clone sizes were defined by the number of cells containing each mutation at the end of the 

simulation. 

 

2.4.2 Biopsy and sequencing simulations 

Biopsies were simulated by taking 25 non-overlapping 70 ´ 70 cell squares from each grid. 

Assuming a density of basal cells of 10,000 per mm2 (138) and that half of basal cells are 

progenitors, this would make the biopsies approximately 1 mm2, similar in size to those used 

in the human eyelid (9). 

 

Small clones may only appear in a very small proportion of sequenced DNA reads (if any) and 

are therefore hard to distinguish from sequencing errors (59), meaning they are not successfully 

detected as somatic mutations. To replicate this, I assumed a constant 1000x read depth and a 

requirement of 10 reads as a minimum to observe the mutant. Each mutant had a true frequency 

f, the proportion of cells which contained the mutant. I assumed all mutations were 

heterozygous, so the true VAF was given by 0.5f. Each read then had a 0.5f chance of 

containing the mutation, so the total number of mutant reads observed, readsobs, was given by 

a draw from a binomial distribution with n = 1000, p = 0.5f. If readsobs was greater than 10, I 

recorded the mutant as having a VAF of readsobs/1000, otherwise the mutant was unobserved 

and not included in the results. 
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2.4.3 First incomplete moment test 

I used the first incomplete moment as defined in (13).  

:;(!, )) =
1

∑ 5>?())
¥
?@;

A 5>?())

¥

?@B

 

where >?()) is the proportion of surviving clones that have m cells at time t. The normalisation 

using the average clone size, ∑ 5>?())
¥
?@; , means that :;(!, )) = 1 for all values of n smaller 

or equal to the smallest observed clone size. As in previous studies (13, 98), I used R2, the 

coefficient of determination, to assess whether the log of the first incomplete moment was a 

straight line. The line fitting was constrained to pass through the point (m, 1), where m was the 

smallest observed clone size. 

 

2.4.4 dN/dS 

Neutral and non-neutral mutations were introduced into the simulations with a known ratio, a. 

dN/dS was calculated as follows: 

3C 3D⁄ 	=
C
7D

 

where N was the number of observed non-neutral clones and S was the number of observed 

neutral clones. 

 

2.4.5 RNA expression 

RNA levels for genes in the human oesophagus were obtained from RNA-seq data from the 

Human Protein Atlas (139) (available from www.proteinatlas.org, accessed 01/10/2018). I 

used this data to select a set of genes which are not expressed and are therefore highly unlikely 

to be selected for. It is not clear at which transcripts per million (TPM) value a gene would 

have sufficient expression to make selection possible. I therefore used a conservative threshold 

of 0.0 TPM. The genes with 0.0 TPM in the gene panel sequenced in the oesophagus (10) were 

ADAM29, GRM3, KCNH5, MUC17, PTPRT, SCN11A, SCN1A and SPHKAP. All genes under 

positive selection in the human oesophagus mutation data (10) have a non-zero TPM (Table 

2.1). 
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Table 2.1 RNA levels for genes under positive selection in oesophagus. RNA-seq data from the Human Protein Atlas (139) 
for the genes under positive selection in human oesophagus (10). 

Gene TPM 

NOTCH1 4.1 

NOTCH2 22 

NOTCH3 45.3 

TP53 32.4 

CUL3 60.1 

FAT1 14.9 

ARID1A 19.7 

KMT2D 12.6 

AJUBA 12 

PIK3CA 7.3 

ARID2 7 

NFE2L2 267.1 

TP63 60.9 

CCND1 78.9 
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Chapter 3   
 

Investigating protein structure–function 
relationships using somatic mutations: 
method and validation 
 

 

3.1 Introduction 
Mutational scanning experiments exhaustively mutate a protein or protein domain and measure 

the phenotypic consequences of each mutation (140). This approach can provide information 

both about the effects of individual mutations and about protein function and structure (140). 

However, these experiments are carried out in vitro (140), an environment which can 

substantially alter cell phenotype (141, 142). In-silico mutational scanning has become 

increasingly common as computational power increases and in-silico methods improve (143-

146). This technique predicts the effects of mutations on protein function, but may not directly 

relate those results to effects on cell phenotype. Over the last decade, DNA sequencing has 

enabled the detection of vast numbers of mutations in normal tissue samples (9-12, 41, 43). 

These DNA-sequencing studies may be thought of as large-scale in-vivo mutational phenotype 

assays, examining the clonal growth advantage conveyed by mutations. By combining this 

sequencing information with in-silico mutational effect predictions, we can attempt to infer the 

changes to protein function that have in-vivo phenotypic consequences.   

 

Mutations are acquired by cells as a result of exposure to mutagens (e.g. tobacco, alcohol or 

ultraviolet light) or cell-intrinsic processes (147). The pattern of mutations acquired, known as 

the mutational spectrum, will depend on the mutational processes involved (147). The chance 
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of acquiring a particular single nucleotide substitution appears to depend (at least partially) on 

the adjacent nucleotides (147). Many of the mutations do not alter cell behaviour and are lost 

through neutral drift, the process of random cell births and loss in which, by chance, some cell 

lineages expand and others are lost (81). Positively selected (driver) mutations confer a 

proliferative advantage to the mutant cell, thus increasing the number of descendant cells that 

inherit the mutation (17). These driver mutations are therefore more likely to generate a clone 

large enough to be detected by DNA sequencing (62).  

 

Methods to detect genes under selection make the assumption that mutations are generated 

according to the mutational spectrum (Figure 3.1). In non-selected (neutral) genes, where no 

mutations of any kind convey a growth advantage/disadvantage, the mutations detected by 

DNA sequencing will simply be an unbiased sample of the mutations produced by the 

spectrum. In genes under selection, it is assumed that certain types of mutations 

(missense/nonsense mutations (62), or mutations estimated by machine-learning approaches to 

have high functional impact (63, 71)) are more likely to alter cell phenotype than others (silent 

mutations, mutations with low estimated functional impact). Therefore, more high-impact 

mutations will be detected in a positively selected gene than would be expected under the 

neutral null hypothesis (62, 63, 71) (Figure 3.1). Conversely, negative selection in a gene will 

lead to the detection of fewer high-impact mutations than would be expected under the null 

hypothesis. 

 

Based on this principle, in this chapter I develop a statistical methodology to look in detail at 

patterns of mutant selection within individual genes (Figure 3.1). By identifying common 

features of selected mutations we can gain information about how the wild type and mutant 

proteins are functioning. I demonstrate the method and explore its benefits and limitations 

using datasets of mutant clones found through DNA sequencing of normal human oesophageal 

epithelium (10) and skin (11). NOTCH1 is one of the most frequently mutated genes in these 

studies and is a strong driver of clonal expansion in these tissues (9-12) (Chapter 5). Due to the 

large available sample size from these studies and the known functional impact of its frequently 

occurring mutations, NOTCH1 is used in this chapter to introduce and validate the method. In 

Chapter 4, I apply the method to several other genes sequenced in the normal oesophagus and 

skin. 
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Figure 3.1 Schematic of the statistical test for a selected feature. The null hypothesis assumes that the mutations appear 
based on the mutational spectrum, and no selection or other bias is occurring. To generate the metric distribution under the 
null hypothesis, all possible single nucleotide mutations are generated for the gene or region to be tested, weighted by the 
mutational spectrum and scored using the metric. The alternative hypothesis is that some selection occurs and that it correlates 
with the tested metric, leading to a shift in the distribution of metric scores. The null and alternative distributions are compared 
using a statistical test (Chapter 3 Methods). The comparison determines if the mutations with a high/low metric score are more 
strongly selected than the rest of the mutations in the tested region, and therefore the results of the test must be interpreted 
while considering other causes of selection in the region. 

 

NOTCH1 is a strong driver of clonal expansion in healthy skin and oesophageal epithelium 

(10, 11). NOTCH proteins are membrane-bound cell surface receptors (Figure 3.2) in a 

pathway that regulates cell fate (148). These genes are critical regulators of normal cellular 

function in development and adult tissues and are mutated to activate or block function in 

cancers (149, 150). The extracellular domains of NOTCH proteins contain up to 36 epidermal 

growth factor (EGF) repeats (Figure 3.2). Many of the EGF repeats bind to calcium ions, which 

add rigidity to the structure, help fix the relative orientation of adjacent EGF repeats (151), and 

are required for ligand binding (152). NOTCH ligands, from the Delta-like and Jagged families 

(153), are expressed by adjacent cells and bind to a subset of the EGF repeats (148) (Figure 

3.2), with EGF11 and 12 of NOTCH1 particularly crucial for ligand binding (148, 154). This 

binding triggers a cascade of cleavage events, resulting in the cleavage of the NOTCH 



 

 

 50 

transmembrane helix and the release of the NOTCH intracellular domain (NICD), which 

travels to the nucleus and forms part of a transcription factor complex that increases the 

expression of NOTCH target genes (148) (Figure 3.2).  

 

 

 
Figure 3.2 Mechanism of NOTCH activation. 1) NOTCH is activated when a ligand from an adjacent cell binds with a 
subset of the NOTCH EGF repeats. EGF repeats shown in blue, key ligand-binding region EGF11–12 shown in dark blue; 
LNR repeats, orange; transmembrane region, red; ankyrin repeats, green. 2) Ligand binding triggers a series of cleavage events, 
resulting in cleavage of the NOTCH transmembrane region (red) by γ-secretase. 3) This releases the intracellular domain of 
NOTCH (NICD) which travels to the nucleus to form part of a transcription factor. 

 

The NICD is released by cleavage of the transmembrane helix of NOTCH at the S3 site by the 

multiprotein γ-secretase complex (155). The exact site of cleavage can vary, but the S3-V 

cleavage (between G1753 and V1754 in NOTCH1) produces the most stable form of NICD 

due to N-end rule degradation (156) and is therefore likely responsible for the majority of 

NOTCH signalling (148). Mutations in the vicinity of the S3 cleavage site may affect NOTCH 

signalling by reducing S3 cleavage efficiency (157) or by leading to the production of less 

stable NICD species (156). 

 

The impact on ligand binding of recurrent mutations in NOTCH1 EGF11–12 has previously 

been described (10), and there are large numbers of missense mutations in this region (Figure 

3.3a, 905 and 308 missense mutations detected in normal skin and normal oesophagus 

respectively (10, 11)). I therefore use the ligand-binding region of NOTCH1 to introduce the 

method and confirm that it can detect (and assign statistical significance to) the previously 

observed patterns of selection. I also demonstrate how excluding known forms of selection can 
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help to detect weaker selection or less frequently selected features. In addition, I explore how 

the choice of mutational spectrum used in the null model affects the results for NOTCH1 

EGF11–12. Furthermore, I use the NOTCH1 transmembrane region to illustrate how the 

combination of mutational spectrum and selection of functional impact leads to the pattern of 

mutations observed. Finally, I discuss a range of hypotheses that could account for the high 

concentration of missense mutations in the ligand-binding region of NOTCH1.  

 

3.2 Results 
3.2.1 NOTCH1 EGF 11–12 missense mutations cause misfolding and disrupt 
ligand- and calcium-binding sites 
 

The critical ligand-binding EGF repeats 11–12 of NOTCH1 contain the highest concentration 

of missense mutations in the gene (Figure 3.3a) (10, 11). Recurrently mutated residues in this 

region include cysteines in disulphide bonds, buried glycines and hydrophobic packing 

residues (10). These would all be expected to affect the stability of the protein (158, 159) and 

could prevent the structure from folding into the correct shape to bind with the ligand (160, 

161). I therefore started by testing whether there is selection for destabilising mutations. 

  

The stability of a protein is determined by the protein folding free energy, ∆G, which is the 

difference in Gibbs free energy between the folded and unfolded form of a protein (162). A 

mutation may alter ∆G (this change is called ∆∆G) and therefore stabilise or destabilise the 

protein (162). I used FoldX (162) to calculate the ∆∆G for each possible single nucleotide 

missense mutation in NOTCH1 EGF11–12 (Figure 3.3b,c, Chapter 3 Methods). I constructed 

a null model of “neutral” selection, which assumes that the distribution of mutations in the 

region will depend solely on the mutational spectrum (Figure 3.1, Chapter 3 Methods). By 

comparing the distribution of ∆∆G values from the observed mutations with the distribution 

expected under the null hypothesis (Figure 3.1), I found a significant enrichment of 

destabilising mutations with high ∆∆G values (skin: p<2e-5, n=905; oesophagus: p<2e-5, 

n=308; two-tailed Monte Carlo test, Chapter 3 Methods, Figure 3.3d,e). However, we can see 

that many observed mutations, including recurrent hotspots, do not appear to be destabilising 

(Figure 3.3b,c). This suggests that some mutations are selected for reasons other than 

destabilising the protein structure.  
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Figure 3.3 Destabilising missense mutations in NOTCH1 EGF11–12. a) Missense mutation frequency across the domains 
of NOTCH1 in normal skin (top) and normal oesophagus (bottom). Domain definitions from UniProt (163). Where the gap 
between domains is only a single residue, mutations from this residue are included in the subsequent domain. EGF repeats, 
blue; EGF11–12, dark blue; LNR repeats, orange; transmembrane region, red; ankyrin repeats, green; other regions, grey. b-
c) ∆∆G of mutations in NOTCH1 EGF11–12. Single nucleotide missense mutations that occur in the normal skin (b) or normal 
oesophagus (c), red, with marker size proportional to the number of times that mutation occurs. Single nucleotide missense 
mutations that do not occur in the dataset shown in grey. d-e) Distributions of calculated ∆∆G values of missense mutations. 
Distribution expected under the neutral null hypothesis, light red, and the distribution observed, dark red, in skin (d) and 
oesophagus (e). P-values calculated using a two-tailed Monte Carlo test for d,e (Chapter 3 Methods). ****P£ 0.0001. 

 

Another mechanism expected to inactivate NOTCH1 ligand binding is disruption of the ligand-

binding interface. Using structures of rat NOTCH1 bound to the ligands JAG1 and DLL4 to 

define the residues on the ligand-binding interface (160, 161) (Chapter 3 Methods, Figure 3.4a, 

Figure 3.12, Table 3.3), I found that the observed proportion of missense mutations on the 

interface was similar to the null model and therefore the interface mutations were not 

significantly selected compared with the rest of EGF11–12 (Figure 3.4b,c; skin: 

expected=37%, observed=39%, p=0.12, n=905; oesophagus: expected=35%, observed=33%, 

p=0.72, n=308; two-tailed binomial test, Chapter 3 Methods). However, this does not indicate 

that mutations on the interface are under neutral selection, just that they are not under stronger 

selection than the bulk of missense mutations in EGF11–12. Orthogonal mechanisms may 

dominate the selection landscape and make it more difficult to identify enrichment of interface 

mutations. As I have already shown that highly destabilising mutations are positively selected, 

all mutations with high ∆∆G values (with ∆∆G>2kcal/mol, Chapter 3 Methods, results using a 

range of thresholds shown in Figure 3.6c-f) can be excluded from both the null model and the 

observed data and it can be tested whether, within the non-destabilising mutations in EGF11–

12, there is an enrichment of interface mutations. Under this null model, there was a highly 

significant increase in the proportion of missense mutations on the ligand-binding interface 
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(Figure 3.4d,e, skin: expected=44%, observed=58%, p=4e-9, n=462; oesophagus: 

expected=43%, observed=64%, p=3e-5, n=107; two-tailed binomial test, Chapter 3 Methods).  

 
Figure 3.4 Ligand-binding interface mutations in NOTCH1 EGF11–12. a) Ligand interface residues (Chapter 3 Methods), 
blue spheres, shown on rat NOTCH1 bound to JAG1 (structure 5UK5) (161). b-e) Counts of NOTCH1 EGF11–12 mutations 
occurring on the ligand-binding interface under the neutral null hypothesis, light blue, and observed, dark blue. b,c) Null and 
observed counts including all missense mutations for skin (b) and oesophagus (c). d,e) Null and observed counts excluding 
destabilising mutations (∆∆G>2kcal/mol) from both null model and observed data for skin (d) and oesophagus (e). f) 
Calculated ∆∆G plotted against distance from the NOTCH1 EGF11–12 ligand-binding interface residues. Single nucleotide 
missense mutations that occur in the skin data set with marker size proportional to the number of times that mutation occurs 
shown in green if the residue is calcium binding, blue if the residue is on the ligand-binding interface, red if the mutation has 
∆∆G>2kcal/mol, orange otherwise. Single nucleotide missense mutations that do not occur in the skin data set shown in grey. 
Regions containing highly destabilising mutations (∆∆G>2kcal/mol) and mutations on the ligand-binding interface shown 
with dashed red and blue boxes respectively. P-values for b-e calculated using a two-tailed binomial test (Chapter 3 Methods) 
and error bars in b-e show 95% confidence intervals (Chapter 3 Methods). ****P£ 0.0001, ns P>0.05. 

 

After excluding misfolding mutations and those on ligand-binding sites, there are still some 

missense mutations remaining (Figure 3.4f). Among these, the most frequent mutation in both 

skin and oesophagus is E455K, which forms part of a calcium-binding site that is known to be 

crucial for ligand binding (152, 164). Calcium binding is critical for the structural integrity of 

the EGF repeats (151, 152), however, FoldX predicts that many mutations affecting the 

calcium-binding sites would not be destabilising (Figure 3.4f). This may indicate that ∆∆G, as 

calculated by FoldX, is not fully capturing the disruption that mutations on calcium-binding 

residues are having on the protein structure. I therefore used MetalPDB (164) to define the 

calcium-binding residues in the structure of NOTCH1 EGF11–12 (Figure 3.5a, Chapter 3 

Methods) and tested for enrichment of mutations on these sites. Similar to the results for the 

interface mutations, testing with all mutations in EGF11–12 did not detect a significant 

enrichment of mutations on the calcium-binding residues (skin: expected=19%, 

observed=18%, p=0.37, n=905; oesophagus: expected=16%, observed=14%, p=0.48, n=308; 

two-tailed binomial test, Chapter 3 Methods, Figure 3.5b,c). However, by excluding the FoldX-
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destabilising (∆∆G>2kcal/mol) and ligand-binding interface mutations, I found that the 

calcium-binding mutations are highly selected compared to the remaining mutations in the 

region (skin: expected=18%, observed=49%, p=2e-22, n=195; oesophagus: expected=20%, 

observed=59%, p=8e-8, n=39; two-tailed binomial test, Chapter 3 Methods, Figure 3.5d,e).  

 

 
Figure 3.5 Calcium-binding residue mutations in NOTCH1 EGF11–12. a) Calcium-binding residues in NOTCH1 EGF11–
12 (Chapter 3 Methods) shown on structure 2VJ3 (165). Calcium-binding residues shown in green, Ca2+ ions shown in yellow. 
b-e) Counts of NOTCH1 EGF11–12 mutations that are on calcium-binding residues under the neutral null hypothesis, light 
green, and observed, dark green. b,c) Null and observed counts including all missense mutations for skin (b) and oesophagus 
(c). d,e) Null and observed counts excluding destabilising mutations (∆∆G>2kcal/mol) and ligand-binding interface mutations 
from both null model and observed data for skin (d) and oesophagus (e). f) Residues containing more than 10 missense 
mutations in skin shown on structure 2VJ3 (165). Note the none of the recurrent mutations occur on EGF13 at the right-hand 
end of the structure. Residues coloured based on the category of the mutations on that residue: ligand-binding interface 
residues, blue; calcium-binding residues, green; destabilizing residues (mutations with ∆∆G>2kcal/mol), red; D464N, orange, 
does not fit into the previous categories. Calcium ions are shown in yellow. P-values for b-e calculated using a two-tailed 
Monte Carlo test (Chapter 3 Methods) and error bars show 95% confidence intervals (Chapter 3 Methods). ****P£ 0.0001, ns 
P>0.05. 

 

This example of missense mutations in NOTCH1 EGF11–12 has confirmed that the statistical 

method can detect selection of known functional consequences of mutations. Approximately 

70% of potential single nucleotide mutations in EGF11–12 belong to the three categories of 

mutational impact examined here, and are therefore likely to inactivate NOTCH1. 89% and 

95% of observed missense mutations are within the three categories in the skin (Figure 3.4f, 

Figure 3.5f) and oesophagus data respectively. The small proportion of mutations remaining 

may be weakly selected or neutral passenger mutations, may be marginally outside of the 

category definitions selected here, or may be selected due to a functional impact not tested 

here. For example, the most frequent mutation in NOTCH1 EGF11–12 in skin that is not in the 

above categories is P460L (34 mutant clones), which has a ∆∆G value marginally below the 

chosen threshold of 2 kcal/mol (Figure 3.4f). The next most frequent uncategorised mutation, 

D464N (17 mutant clones) does not clearly belong to any of the three categories (Figure 3.4f, 
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Figure 3.5f). The repeating method of testing for selection, excluding selected categories and 

testing again for new selected features may be useful for quickly classifying the majority of 

mutations and identifying outliers for further investigation. 

 

Testing for selection of each mutation category while excluding the other categories leads to 

more significant results in the majority of cases, even though the exclusion can substantially 

reduce the sample size (Figure 3.6, Table 3.1). This demonstrates the importance of considering 

the exact set of mutations included when using a test which detects relative selection.  

 
Figure 3.6 Selection of mutation categories in NOTCH1 EGF11–12 while excluding mutations in the other categories. 
a-b) Expected and observed distributions of ∆∆G in skin (a) and oesophagus (b) excluding all mutations on the ligand-binding 
interface and calcium-binding residues. Distribution expected under the neutral null hypothesis, light red, and the distribution 
observed, dark red. c-d) Expected (light blue) and observed (dark blue) number of mutations on the ligand-binding interface 
excluding calcium-binding residues and excluding mutations with ∆∆G above the thresholds shown. e-f) Expected (light green) 
and observed (dark green) number of mutations on calcium-binding residues excluding the ligand-binding interface and 
excluding mutations with ∆∆G above the thresholds shown. P-values calculated using a two-tailed Monte Carlo test for a,b 
and using a two-tailed binomial test for c-f (Chapter 3 Methods). Error bars in c-f show 95% confidence intervals (Chapter 3 
Methods). ****P£ 0.0001, ***P£0.001. 
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Table 3.1 Statistical tests of selection in NOTCH1 EGF11–12. Tests either include all missense mutations in the region or 
exclude mutations in other selected categories from both the null model and observed data. FoldX ∆∆G p-values are calculated 
using a two-tailed Monte Carlo test; ligand-binding and calcium-binding p-values are calculated using a two-tailed binomial 
test (Chapter 3 Methods).  

Tested 
feature 

Tissue Excluded 
mutations 

n Expected 
proportion 

Observed 
proportion 

P-value  

FoldX 
∆∆G 

Skin None 905 - - 2e-5 
Ligand-binding 
and calcium-
binding 

452 - - 2e-5 

Oesophagus None 308 - - 2e-5 
Ligand-binding 
and calcium-
binding 

181 - - 2e-5 

Ligand-
binding 
interface 

Skin None 905 37% 39% 0.12 
∆∆G>2kcal/mol 
and calcium-
binding 

315 39% 69% 2.4e-25 

Oesophagus None 308 35% 33% 0.72 
∆∆G>2kcal/mol 
and calcium-
binding 

69 41% 77% 1.7e-9 

Calcium-
binding 

Skin None 905 19% 18% 0.37 
∆∆G>2kcal/mol 
and ligand-
binding 

195 18% 49% 2.2e-22 

Oesophagus None 308 16% 14% 0.48 
∆∆G>2kcal/mol 
and ligand-
binding 

39 20% 59% 8.4e-8 

 

 

3.2.2 Choice of mutational spectrum assumptions 

The analysis above has demonstrated how the choice of mutations included in the test can 

dramatically alter the results. Another choice the researcher needs to make is how to define the 

mutational spectrum used to construct the null model (Figure 3.1). In this section I explore a 

range of spectrum assumptions and their impact on the statistical tests of selection in NOTCH1 

EGF11–12. I then use the transmembrane region of NOTCH1 as an illustration of how the 

combination of the mutational spectrum and selection leads to the pattern of mutant clones 

observed.  
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Cells acquire somatic mutations through exposure to mutagens or during (sometimes defective) 

cellular processes (147). Different mutational processes have their own characteristic 

‘signatures’ of nucleotide substitution frequencies that depend on the nucleotide change itself 

and the surrounding nucleotide context (147). The pattern of mutations observed in a sample, 

known as the mutational spectrum, is a mix of the signatures of the contributing mutational 

processes (147). 

  

The probability of a particular somatic mutation appearing in a sequenced sample depends on 

both the rate at which the mutation occurs in cells and the strength of selection on the mutation 

once it has occurred. The method in this chapter attempts to separate these two factors, and 

therefore requires a model of how often each mutation would appear in the absence of selection 

(the null hypothesis model). A common method to do this is to assume that, within a gene, each 

mutation in the same spectrum category has the same mutation rate (62, 63, 71). For example, 

using a trinucleotide spectrum, two AAA trinucleotide sequences at different locations within 

the same gene are assumed to have the same probability of mutating into ACA.   

 

A variety of spectrum assumptions have been used in driver detection models. Using a 

trinucleotide mutational spectrum to generate a null model has been found to improve driver 

detection compared to more simplistic substitution models (62). However, it has also been 

suggested that a pentanucleotide context may be more appropriate for the signature of 

ultraviolet light (62). Transcription coupled repair may produce a strand bias in the mutational 

spectrum (62) which can be taken into account by separating the transcribed and non-

transcribed strand of a gene. Previous studies have assumed either that all coding regions in 

the genome share the same mutational spectrum (62, 63), or that each gene has its own 

spectrum (71). Null models may improve in the future as work continues to determine the 

factors that influence mutation rate (61). 

 

Each of these assumptions alters the number of mutation rate parameters that need to be 

estimated. The more mutation rate parameters there are, the more thinly spread the observed 

mutations, and the noisier the estimation of each rate will become. The choice of spectrum 

assumptions is therefore a compromise between a potentially more accurate representation of 

the context that determines mutation rate (larger spectrum) and more stable estimates of each 

rate parameter (smaller spectrum).   
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Selected mutations within the data may distort the mutational spectrum. This could be a larger 

problem when using gene specific spectra or for datasets containing only a small number of 

genes because the selected mutations may make up a larger proportion of the total data. To 

some extent this selection bias can be reduced by removing duplicate mutations before 

calculating the spectrum (166). For high mutation loads, where duplicate mutations are likely 

even under neutral selection, this deduplication may have its own distorting effect.  

 

 
Figure 3.7 Effect of mutational spectrum assumptions on statistical tests of selection in NOTCH1 EGF11–12. a,b) 
Cumulative distributions of the observed ∆∆G values, red, and the null distributions, grey and black, for missense mutations 
in NOTCH1 EGF11–12. Mutations on the ligand-binding interface and calcium-binding residues excluded from both the null 
and observed distributions. The observed distributions are significantly different from all shown null distributions: a) skin, 
p<0.0001, n=452; b) oesophagus, p<0.004, n=181; two-tailed Monte Carlo test, Chapter 3 Methods. Null distribution using a 
spectrum with all mutations with equal probability shown in black, null distributions with spectra calculated from mutations 
in all genes in the dataset shown in light grey, and null distributions with spectra calculated only from mutations in NOTCH1 
shown in dark grey. c,d) Counts of NOTCH1 EGF11–12 missense mutations on the ligand-binding interface under the null 
hypotheses, grey or black, and observed, blue. Mutations with ∆∆G>2kcal/mol and mutations on calcium-binding residues are 
excluded. Colours of null hypotheses as in a. Error bars show 95% confidence intervals (Chapter 3 Methods). The observed 
counts are significantly different from all shown null models: c) skin, p<5e-7, n=315; d) oesophagus, p<0.005, n=69; two-
tailed binomial test, Chapter 3 Methods. e,f). Counts of NOTCH1 EGF11–12 missense mutations on calcium-binding residues 
under the null hypotheses, grey or black, and observed, green. Mutations with ∆∆G>2kcal/mol and mutations on the ligand-
binding interface are excluded. Colours of null hypotheses as in a. The observed counts are significantly different from all 
shown null models: e) skin, p<2e-16, n=195; f) oesophagus, p<3e-7, n=39; two-tailed binomial test, Chapter 3 Methods. Error 
bars show 95% confidence intervals (Chapter 3 Methods). Full list of p-values shown in Table 3.2. 

 

I ran the tests for selection of destabilising, ligand interface, and calcium-binding mutations in 

NOTCH1 EGF11–12 (section 3.2.1 above) using a range of different spectrum assumptions to 

see how robust the signs of selection are to a variety of null hypotheses. In all cases, the results 

remained significant (Figure 3.7, Table 3.2). The least significant results tended to be from 

spectra with large numbers of mutational categories calculated from only the mutations in 
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NOTCH1 (Figure 3.7, Table 3.2). These are likely to be examples of overly detailed spectra for 

the data (71), with up to 3072 separate rate parameters, calculated in the case of the oesophagus 

from less than 1300 single nucleotide substitutions in NOTCH1. As the number of mutations 

per rate parameter reduces, recurrent hotspots will have a larger influence over their own 

expected mutation rate in the null model. In the extreme case, where each possible mutation 

has a unique rate parameter, the expected frequencies in the null model would simply match 

the observed data. 

 
Table 3.2 P-values of statistical tests of selection in NOTCH1 EGF11–12 under null models that use different 
assumptions for the mutational spectrum. For each test, mutations in the other two categories (∆∆G>2kcal/mol, ligand-
binding, or calcium-binding) were excluded from both the null model and the observed data. The “Even” spectrum assigns an 
equal probability to every mutation. The “global” spectra calculate the mutation rates using all exonic single nucleotide 
mutations in the dataset. The “transcript” spectra calculate the mutation rates using only the exonic single nucleotide mutations 
in NOTCH1. The number in the spectrum name is the number of mutation rates in the spectrum. “6” and “12” do not use a 
wider nucleotide context, “96” and “192” use a trinucleotide context, and “1536” and “3072” use pentanucleotide contexts. 
“12”, “192” and “3072” distinguish between the transcribed and non-transcribed strands, while “6”, “96” and “1536” do not. 
“dedup” indicates that duplicate mutations (defined as having the same chromosomal position, reference base and mutant base) 
are removed before calculating the spectrum. The two-tailed Monte Carlo test was used for the ∆∆G tests, the two-tailed 
binomial test was used for the ligand-binding and calcium-binding tests (Chapter 3 Methods). The lowest possible p-value 
from the Monte Carlo tests used was 2e-5. The global_192 spectrum (shaded) has been used throughout chapters 3 and 4 unless 
otherwise specified. 

 Skin Oesophagus 

Spectrum 

∆∆G Ligand-

binding 

Calcium-

binding 

∆∆G Ligand-

binding 

Calcium-

binding 

Even 2e-5 2e-19 2e-24 2e-5 3e-8 6e-9 

global_6 2e-5 1e-17 2e-22 2e-5 3e-8 9e-9 

global_6_dedup 2e-5 7e-18 1e-22 2e-5 3e-8 9e-9 

global_12 2e-5 6e-17 4e-23 2e-5 1e-8 8e-9 

global_12_dedup 2e-5 2e-17 3e-23 2e-5 1e-8 7e-9 

global_96 2e-5 6e-26 9e-21 2e-5 2e-9 2e-7 

global_96_dedup 2e-5 5e-23 3e-19 2e-5 1e-9 2e-7 

global_192 2e-5 2e-25 2e-22 2e-5 2e-9 8e-8 

global_192_dedup 2e-5 1e-21 2e-20 2e-5 1e-9 1e-7 

global_1536 2e-5 3e-16 4e-27 2e-5 7e-7 5e-11 

global_1536_dedup 2e-5 2e-17 1e-24 2e-5 2e-7 2e-10 

global_3072 2e-5 2e-17 7e-21 2e-5 2e-7 2e-9 

global_3072_dedup 2e-5 1e-17 3e-19 2e-5 4e-8 4e-9 

transcript_6 2e-5 2e-18 3e-23 2e-5 3e-8 9e-9 
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transcript_6_dedup 2e-5 1e-18 9e-24 2e-5 3e-8 8e-9 

transcript_12 2e-5 7e-19 3e-24 2e-5 2e-9 7e-9 

transcript_12_dedup 2e-5 2e-19 9e-25 2e-5 4e-9 4e-9 

transcript_96 2e-5 4e-18 2e-22 2e-5 3e-6 3e-9 

transcript_96_dedup 2e-5 4e-17 3e-19 2e-5 1e-6 2e-9 

transcript_192 2e-5 3e-13 1e-20 2e-5 3e-6 9e-9 

transcript_192_dedup 2e-5 3e-17 2e-19 2e-5 7e-7 5e-9 

transcript_1536 2e-5 1e-10 7e-28 2e-5 8e-5 8e-13 

transcript_1536_dedup 2e-5 9e-9 1e-19 2e-5 2e-5 6e-13 

transcript_3072 8e-5 5e-7 7e-21 0.004 0.004 5e-11 

transcript_3072_dedup 4e-5 9e-8 1e-16 4e-5 0.0009 1e-12 

 

The overall statistical results of NOTCH1 EGF11–12 were not substantially altered by the 

mutational spectrum assumptions – even assuming all mutations had equal mutation rates 

produced similar results to far more complex spectra (Figure 3.7, Table 3.2). However, this 

does not mean the mutation spectrum is irrelevant, and the transmembrane region of NOTCH1 

provides an illustration of the importance of considering the mutational spectrum when 

analysing the observed patterns of mutation.  

 

There are far fewer mutations in the transmembrane region than the EGF repeats of NOTCH1 

(Figure 3.3a), and the majority of missense mutations occur on a single residue (Figure 3.8a,b). 

In this case, I could not look for common selected features since it lacked the required diversity 

of different mutations (see section 3.2.3 below). The hotspot residue, G1753, is on a highly 

conserved residue adjacent to the S3 cleavage site at which γ-secretase cleaves the NICD from 

the extracellular domain of NOTCH1 (167) (Figure 3.8a,b). Preventing cleavage or shifting the 

cleavage site to produce an NICD with a shorter half-life would inactivate, or at least reduce, 

the NOTCH1 signal (148, 156, 157).  
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Figure 3.8 Missense mutations in the transmembrane helix of NOTCH1. a,b) Conservation scores from Phylop2 shown 
on y-axis (Chapter 3 Methods). Single nucleotide missense mutations that occur in the normal human skin (a) and oesophagus 
(b), orange, with marker size proportional to the number of times that mutation occurs. Single nucleotide missense mutations 
that do not occur in the dataset shown in grey. Location of the key S3-V cleavage site indicated by a red arrow. c,d) Phylop2 
conservation score plotted against relative expected mutation rate (AU=arbitrary units) for missense mutations in the 
transmembrane helix of NOTCH1 for skin (c) and oesophagus (d). Single nucleotide missense mutations that occur in the 
dataset, orange, with marker size proportional to the number of times that mutation occurs. Single nucleotide missense 
mutations that do not occur shown in grey. The hotspot mutations (G1753R/E) are both highly conserved and have a high 
expected mutation rate. 

 

Conservation of protein sequence across species is likely to be correlated with function, with 

residues that are more important for normal protein function more likely to be conserved (160, 

168-170). G1753 is highly conserved, but so are other residues in the transmembrane region 

that were not mutated in the skin or oesophagus datasets (Figure 3.8a,b). This possibly suggests 

that mutations on these non-mutated residues were not selected as strongly as G1753R/E, 

despite the high conservation scores. However, looking at both the conservation score and the 

mutational spectrum, we see that G1753R and G1753E are the only mutations that are both on 

highly conserved nucleotides and that have high expected mutation rates (Figure 3.8c,d), 

plausibly explaining why it was these mutations in particular that appeared recurrently in the 

data sets.  

 

This shows the importance of considering the mutational spectrum when investigating which 

mutations are selected for. Within NOTCH1 EGF11–12, unsurprisingly, mutations with a 

higher expected mutation rate were generally more mutated (Figure 3.9). However, low sample 



 

 

 62 

size, imprecise mutation rate estimation, and potential within-category differences in 

functional impact mean that it is hard to precisely predict which individual mutations will be 

highly mutated (Figure 3.9). This illustrates one advantage of testing for mutation function 

selection using the bulk set of mutations instead of focusing on individual hotspot mutations. 

The following section discusses another advantage of using the bulk set of mutations: that 

hotspots can lead to false inference of functional selection.  

 

 
Figure 3.9 Expected and observed mutation rates. Expected mutation rate (Chapter 3 Methods, AU=arbitrary units) vs 
number of observations for each potential mutation in NOTCH1 EGF11–12 in normal human skin (a) and oesophagus (b). 
Destabilising mutations (∆∆G>2kcal/mol), ligand-binding mutations and calcium-binding mutations shown together on the 
left-hand scatter plots, all other mutations shown on the right. There is a trend of increasing number of occurrences with higher 
expected mutation rate (skin, destabilising, ligand-binding and calcium-binding: R2=0.36, p-value=3e-36; skin, other: R2=0.13, 
p-value=5e-6; oesophagus, destabilising, ligand-binding and calcium-binding: R2=0.24, p-value=4e-23; oesophagus, other: 
R2=0.05, p-value=0.007; two-tailed Wald Test for zero slope using SciPy stats.linregress (171)). However, the observed 
frequency of individual mutations is not very predictable based on only the expected mutation rate and the functional impact 
category.  
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3.2.3 Correlation, causation and hotspots 

The statistical method tests for a shift in the distribution of a metric between the null model 

and the observed mutations (Figure 3.1). Ideally, any shift detected will be due to selection of 

the particular feature that is being tested. However, hotspots can distort the distribution, 

regardless of the metric used, and can even provide evidence of selection when using random 

numbers to score the mutations (71). This is not necessarily a problem when just looking for 

evidence of selection acting on a gene. However, the aim of this work is to infer whether the 

particular feature is selected, and distortions due to hotspots may give a false impression of the 

importance of a feature (Figure 3.10a,b) 

 

A simple approach is to check that the trend of selection is still apparent after deduplicating 

the recurrent mutations (Figure 3.10c,d). P-values from this approach may not be reliable 

because hotspots may be expected to occur if the feature is strongly selected, and deduplicating 

mutations both reduces the sample size and could distort the mutational spectrum used for the 

null model (see section 3.2.2 above). However, it can still be a useful method to explore the 

influence of hotspots. 

 

I used two null models: one with a spectrum calculated from the full data, as used elsewhere in 

this chapter; the other with a spectrum calculated using deduplicated data (section 3.2.2 above). 

The trends of selection in NOTCH1 EGF11–12 for destabilising mutations, ligand-binding 

interface mutations and calcium-binding mutations are still apparent and statistically 

significant after the removal of duplicate mutations (Figure 3.10d-l). This provides more 

confidence that the significant results obtained for NOTCH1 EGF11–12 (Figure 3.3, Figure 

3.4, Figure 3.5, Figure 3.6) are due to the selection of the features identified.  
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Figure 3.10 The effect of hotspot mutations. a-d) Demonstration of how a hotspot mutation can lead to rejection of the null 
hypothesis even when the metric has no biological meaning. A synthetic set of mutations was generated, where 74 mutations 
appear once, and one hotspot mutation appears 25 times. In place of a metric based on a biological feature, random scores 
between zero and one are generated for each mutation. a) Scatter plot of the example mutations. “Observed” mutations shown 
in orange, “unobserved” mutations in the region shown in grey. The hotspot mutation is the large orange marker. b) Cumulative 
distributions of the metric for the null model, grey, and the “observed” mutations. The large vertical jump in the “observed” 
CDF is caused by the hotspot mutation. The “observed” distribution is significantly different from the null (p=0.005, two-
tailed Monte Carlo test, Chapter 3 Methods). c) Scatter plot of the example mutations after removing duplicate mutations. 
“Observed” mutations shown in orange, “unobserved” mutations in the region shown in grey. The hotspot mutation is now 
only counted once. d) Cumulative distributions of the metric for the null model, grey, and the “observed” mutations after 
removing duplicate mutations (p=0.3, two-tailed Monte Carlo test, Chapter 3 Methods). e-l) Reanalysis of the selection of 
features in NOTCH1 EGF11–12 after removing duplicate mutations. g-l, two null models are tested, either using the full set 
of mutations to calculate the mutation spectrum (lightest shade, leftmost bar/boxplot) or deduplicating the mutations prior to 
calculating the spectrum (middle shade, middle bar/boxplot). Observed mutations shown in the darkest shade, rightmost 
bar/boxplot. e-h) ∆∆G of mutations in NOTCH1 EGF11–12. All mutations on the ligand-binding interface or calcium-binding 
residues excluded from both the null model and observed data. Single nucleotide missense mutations that occur in the skin (e) 
and oesophagus (f) datasets, red. Single nucleotide missense mutations that do not occur in the data shown in grey. g,h) 
Distribution of calculated ∆∆G values of missense mutations in skin (g) and oesophagus (h). Distribution expected under the 
neutral null hypothesis using all mutations for the spectrum, left, distribution expected under the neutral null hypothesis using 
deduplicated mutations for the spectrum, middle, and the distribution observed after removing duplicate mutations, right. Skin: 
p<2e-5 for both null models, n=113; oesophagus: p<2e-5 for both null models, n=76; two-tailed Monte Carlo test (Chapter 3 
Methods). i,j) Expected and observed counts of mutations on or off the ligand-binding interface of NOTCH1 EGF11–12, 
where mutations with a calculated ∆∆G>2 kcal/mol and mutations on calcium-binding residues have been excluded. Skin: 
p<0.0007 for both null models, n=65; oesophagus: p<0.0004 for both null models, n=37; two-tailed binomial test (Chapter 3 
Methods). Error bars show 95% confidence intervals (Chapter 3 Methods). k,l) Expected and observed counts of mutations on 
calcium-binding residues in NOTCH1 EGF11–12 where mutations with a calculated ∆∆G>2 kcal/mol or on the ligand-binding 
interface have been excluded. Skin: p<0.005 for both null models, n=40; oesophagus: p<0.01 for both null models, n=20; two-
tailed binomial test (Chapter 3 Methods). Error bars show 95% confidence intervals (Chapter 3 Methods). 
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3.2.4 Multiple hypotheses could explain the distribution of mutations across 
NOTCH1 
 

The examples covered so far in this chapter have only looked at small regions of the gene. 

More information is potentially available from the distribution of mutations across the whole 

gene. For example, the ligand-binding EGF repeats were much more mutated than the rest of 

NOTCH1 (Figure 3.3a). There are a number of possible explanations for this, which are not 

mutually exclusive.  

 

Firstly, it could be a result of a variable background mutation rate across the gene; that is to 

say, some regions of the gene are inherently more prone to mutation. Synonymous mutations 

have been used to estimate background mutation rates (172) as they are assumed to be neutrally 

selected. There is a significantly higher number of synonymous mutations in the EGF11–12 

region than the rest of the gene (Figure 3.11a,b, skin: expected=3%, observed=9%, p=5.6e-9, 

n=404; oesophagus: expected=3%, observed=19%, p=0.0005, n=31; two-tailed binomial test, 

Chapter 3 Methods), suggesting that a variable mutation rate could be contributing to the 

uneven distribution of missense mutations. However, some synonymous mutations may have 

been created in the same mutation event as a nearby missense mutation and not successfully 

merged into a single multi-nucleotide variant (11), meaning the synonymous mutation is 

carried along as a passenger. It is also possible that some of the synonymous mutations are not 

functionally neutral (173) and therefore may be increased or decreased in number due to 

positive or negative selection, meaning they may not give a true indication of mutation rate. 

Secondly, it may be that the DNA sequence of the highly mutated regions has a higher 

probability of acquiring mutations due to the mutational spectrum. However, this does not 

appear to be the case for missense mutations (Figure 3.11c,d). Thirdly, it could be that a higher 

proportion of potential mutations are functionally impactful in the ligand-binding region than 

other sections of the gene. For example, we have seen that approximately two-thirds of 

potential single nucleotide substitutions in the EGF11–12 repeats are likely to be selected. If 

this proportion is lower in the rest of the gene, this would result in a smaller number of observed 

mutations there. Fourthly, the effects of a disruptive mutation may be milder in the non-ligand-

binding regions. It might be that disruption of ligand binding completely stops the NOTCH1 

signal, but, for example, a mutation in the transmembrane helix reduces rather than entirely 

stops the signal (156). Lastly, it has been suggested that NOTCH receptors may form 

homodimers or clusters when they bind to a ligand (174, 175). Potentially, this could mean that 
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a mutant in the ligand-binding region could disrupt the activity of the wild type allele as well 

as the mutant allele, reducing the NOTCH1 signal more than having completely lost one 

NOTCH1 allele (Figure 3.11e). This dominant negative effect has been observed for some 

missense mutations in the TP53 DNA-binding domain (176). The last two hypotheses suggest 

that the fitness of NOTCH1 mutant clones depends on the dose of NOTCH1 signalling. This is 

consistent with the frequent observation of loss-of-heterozygosity copy number variants 

associated with NOTCH1 mutations (10), which strongly suggests that losing both wild type 

alleles of NOTCH1 provides a stronger growth advantage than losing a single allele. This 

Notch1 dose-dependent fitness was also confirmed to be the case in lineage tracing studies of 

mice (Chapter 5).  

 

 
Figure 3.11 Potential causes of uneven missense mutation distribution across NOTCH1. a,b) The counts of synonymous 
mutations expected under the neutral null model, grey, and observed, orange, in EGF11–12 in skin (a) and oesophagus (b) 
(skin: p=5.6e-9, n=404; oesophagus: p=0.0005, n=31; two-tailed binomial test, Chapter 3 Methods). Error bars show 95% 
confidence intervals (Chapter 3 Methods). c,d) Sliding windows showing the distribution of missense mutations across 
NOTCH1 expected under the neutral null model, grey, and observed, orange, in skin (c) and oesophagus (d). e) Potential 
impact of mutations if NOTCH1 (shown with domains as in Figure 3.3a) binds to the ligand (grey) as a monomer or a 
homodimer. If NOTCH1 binds to the ligand as a monomer (left), then a mutation in the ligand-binding EGF repeats may 
entirely stop signalling from the mutant allele (red cross) but the wild type (WT) allele still functions normally (green arrow). 
If NOTCH1 binds the ligand as a homodimer (right), then a mutant away from the ligand-binding region may stop signalling 
from the mutant allele but not affect the WT allele. However, a mutant in the ligand-binding region may prevent the ligand 
from binding, and therefore stop signalling from the WT allele as well. If NOTCH1 binds to the ligand in pairs, a heterozygous 
NOTCH1 mutant would mean only one quarter of NOTCH1 pairs would be WT-WT, so a mutant that prevents ligand binding 
could reduce NOTCH1 signalling by three-quarters. 

 

3.3 Discussion 
In this chapter I adapted a statistical method for cancer driver gene discovery to look for 

selected features of mutations in a gene. By using this method, structural and functional 

information can be drawn from the increasingly large amount of DNA sequencing data 

available. The results can be used to support driver gene detection methods such as dN/dS by 
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showing that the functional impact of the enriched mutations is biologically meaningful. This 

can be especially useful if the reliability of the driver gene detection method is in doubt (see 

Chapter 2). Manual investigation of hotspot mutations can provide similar information (10) but 

has disadvantages: it can be time-consuming, does not leverage the information provided by 

rarer mutations and does not statistically test the selection of mutation features.  

 

Some caution must be applied when interpreting the results of the method. Although protein 

misfolding and ligand binding are well-known processes that control protein activity (162, 

177), correlation does not mean causation, and significant selection may be found for a feature 

that correlates (coincidentally or otherwise) with the true selected feature. This is also a test for 

selection relative to the rest of the tested region, and does not necessarily directly translate to 

positive or negative selection. I have shown that if there are multiple selected features in a 

region, testing for one individual feature at a time may lead to misleading results, but that this 

can be corrected by conditioning against the other, confounding selected features. This 

potential for misleading results also highlights an advantage of using general functional impact 

scores when looking for driver genes, rather than focusing on single impact types (63, 71). A 

future improvement would be to incorporate an estimate for background mutation rate in a 

region (62, 72) and hence test for absolute rather than relative selection. 

 

To separate initial mutation incidence from mutational selection, the method assumes that 

nucleotide substitutions occur based on the mutational spectrum of the dataset. This follows 

the assumptions used in many driver discovery tools to improve the null model of mutations 

expected under neutral selection. Altering the form of the mutational spectrum does not alter 

the conclusions of the analysis of NOTCH1 EGF11–12, suggesting that the inference of 

selection is robust and not an artefact of inappropriate spectrum assumptions. However, the 

mutational spectrum should not be ignored, as a correlation is seen between the expected 

mutation rate and the observed mutation frequency, and the mutations observed in the 

transmembrane region illustrate the principle that mutations with a high expected mutation rate 

and a strongly selected functional impact are more likely to be observed in the sequencing data. 

Together, the results highlight the importance of examining mutagenic processes alongside the 

biophysical mechanism of mutant action. 
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The statistical method introduced here is used in the next chapter to analyse patterns of 

selection in five more genes sequenced in the normal skin and oesophagus. This serves to 

further investigate the evidence for non-neutral clonal selection in DNA sequencing datasets 

of normal epithelia, and to explore the strengths and weaknesses of the statistical method in 

more depth.  

 

3.4 Chapter 3 Methods 
3.4.1 Data 

I used mutations detected in normal human oesophagus (10) and normal human skin (11). Both 

studies used a grid of adjacent tissue samples. Large clones could spread over multiple samples. 

To avoid double counting of such clones, I used the mutations list where mutations that were 

seen repeatedly in nearby samples were assumed to be from a single clone and were merged 

(10, 11) (Chapter 2, Figure 2.3). The data are available from the original publications (10, 11). 

 

3.4.2 Protein structures 

The 2VJ3 structure of NOTCH1 EGF11-12 (165) was used for the ∆∆G analysis, to define 

calcium-binding residues and for structural distance calculations. 

 

Residue numbers in the PDB files were aligned to residue numbers in the UniProt protein 

sequences using SIFTS (178). Distances between residues in structures were calculated using 

the Python package MDAnalysis (179). 

 

3.4.3 FoldX 

For each PDB file, the FoldX command RepairPDB was run to minimise steric clashes and 

optimize residue orientation. Then the FoldX command PositionScan was run for every residue 

of the protein chains of interest in the structure. This command mutates each residue to all other 

amino acids and calculates the ∆∆G value for each mutation. Default FoldX settings were used 

for both the RepairPDB and PositionScan commands. 

 

Some analyses required a threshold to discriminate destabilising mutations from non-

destabilising mutations. Unless otherwise noted, I used a threshold ∆∆G value of 2 kcal/mol 
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because this has been used in previous studies to define mutations which are highly 

destabilising (180-183).   

 

3.4.4 Ligand-binding interface residues  

The ligand-binding interface residues in EGF11 and EGF12 have been identified for the rat 

NOTCH1 bound to the ligands JAG1 and DLL4 (160, 161). NOTCH genes and ligands are 

highly conserved between species meaning that the results from the rat protein can be applied 

to human NOTCH1 (169) (Figure 3.12). The ligand-binding surface is very similar for both 

ligands (161) and I therefore chose to use the union of both sets of ligand-binding residues 

(Figure 3.4a, Table 3.3).  

 
Human  DVDECSLGANPCEHAGKCINTLGSFECQCLQGYTGPRCEIDVNECVSNPCQNDATCLDQIGEFQCICMPGYEGVHCE 

Rat DVDECALGANPCEHAGKCLNTLGSFECQCLQGYTGPRCEIDVNECISNPCQNDATCLDQIGEFQCICMPGYEGVYCE 

Figure 3.12 Alignment of EGF11–12 of human and rat NOTCH1 protein sequences. Residues 412 to 488 of each sequence 
shown, residues which differ highlighted in yellow.  

Table 3.3 Ligand-binding interface residues of NOTCH1 EGF11-12. Based on Figure S3 of (161).  

 Interface residues 

NOTCH1 EGF11-12 413, 415, 418, 420, 421, 422, 423, 424, 425, 435, 436, 444, 

447, 448, 450, 451, 452, 454, 466, 467, 468, 469, 470, 471, 

475, 477, 478, 479, 480 

 

3.4.5 Calcium-binding mutations 

The calcium-binding residues in EGF11-12 of NOTCH1 were defined using MetalPDB (164) 

and the 2VJ3 (165) structure (Table 3.4). 

 
Table 3.4 Calcium-binding residues of NOTCH1 EGF11-12. Based on MetalPDB (164) and the structure 2VJ3 (165). 

 Calcium-binding residues 

NOTCH1 EGF11-12 412, 413, 415, 431, 432, 435, 452, 453, 455, 469, 470 

 

3.4.6 Conservation scores 

Phylop conservation scores (184) for each position were downloaded via the UCSC genome 

browser, http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP100way/ (185). 
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3.4.7 Images of protein structures  

VMD (186) was used to visualise protein structures and images were rendered using Tachyon 

(187).  

 

3.4.8 Mutational spectrum calculation 

Firstly, all genes containing an exonic mutation in the data sets were found using exon locations 

in GRCh37.p13 downloaded from Ensembl Biomart (188). For each of these genes, the longest 

transcript was selected and alternative transcripts discarded. A trinucleotide context was 

calculated in the direction of the protein transcription for every nucleotide in the coding 

sequence of each transcript and applied to each observed mutation. For each data set, a mutation 

rate was calculated for each single nucleotide substitution type in each trinucleotide context by 

dividing the total number of observed mutations of that trinucleotide change by the number of 

times the trinucleotide context occurs in the included transcripts. 

 

The mutational spectrum can be assumed to be gene specific (71), to depend on a larger 

nucleotide context (62), to be distorted by selected hotspot mutations (166), or to be 

symmetrical in terms of the transcribed strand direction (e.g. AAA>ACA is assumed to have 

the same mutation rate as to TTT>TGT, so there are 96 possible trinucleotide changes instead 

of 192) (63). The above method can therefore be adapted by changing the number of context 

bases, whether to test using a global spectrum for the dataset or one calculated from just the 

transcript to test, deduplicating recurrent (and therefore possibly selected) mutations before 

calculating the spectrum, or by assuming there is no difference between mutation rate for +/- 

strands. I show the results of changing these assumptions in section 3.2.2. 

 

Except where otherwise stated, all calculations were made using a trinucleotide, transcribed 

strand non-symmetric (192) spectrum calculated from all genes in the dataset.   

 

3.4.9 Monte Carlo test 

Each possible single nucleotide change was enumerated for the region to be tested. For each of 

these potential mutations, a relative mutation rate (see section 3.4.8 above) and a metric score, 

e.g. ∆∆G, was calculated. The null hypothesis of neutral selection assumed that the probability 
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of observing each mutation, and therefore the distribution of metric scores, is determined solely 

by the mutational spectrum. A cumulative distribution of scores under the null hypothesis was 

calculated, the score for each possible mutation converted to a cumulative distribution function 

(CDF) score, and the sum of these CDF scores taken as the test statistic. Using the summed 

CDF score instead of the mean of the raw scores for the test statistic means that the test is less 

sensitive to outlier values. Using the median would also be less sensitive to outliers than the 

mean, but would be inappropriate for testing discrete metrics. The best choice of statistic to use 

in the test may depend on the particular data and the question being asked (for example, if the 

outlier mutations are crucial and reliably scored, then mean may be more appropriate). 

However, the CDF score sum is a robust option that works for the metric scores tested in this 

project. 

 

Let n be the number of observed mutations in the region to test. A large number N (here 

N=100000) of random draws of n values from the null distribution of CDF scores was made, 

and for each draw, i, the sum of the CDF scores, *F, was calculated. The sum of the CDF scores 

for the observed mutations, *GHI, was also calculated. Then, b, the number of the *F values that 

were more extreme than *GHI, was counted. This was converted into a two-tailed p-value by 

multiplying the exact Monte Carlo p-value (189) by two, i.e. 

 

J = 2 ×
(M + 1)
C + 1

 

where 

M = minPAQ
1, *F ≤ *GHI
0,									*F > *GHI

U

F@V

		 , AQ
0, *F < *GHI
1,									*F ≥ *GHI

U

F@V

Y 

 

The minimum p-value possible with N=100000 is just under 2e-5 (2/100001).  

 

The central limit theorem means that, under certain conditions, the null distribution from this 

Monte Carlo test can be approximated by a normal distribution. The normal approximation is 

faster to calculate and allows for more extreme p-values to be calculated (which would 

otherwise require a much larger number of random draws to calculate using the Monte Carlo 

test). However, as this normal approximation is not appropriate for small sample sizes and 

skewed score distributions (190), it has not been used in this thesis.  
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3.4.10 Binomial test 

In the special case that there are only two possible values for the metric score (e.g. on/not on 

an interface), the binomial test can be used. This means very small p-values can be accurately 

calculated and it is faster to run than the Monte Carlo test. Similar to the Monte Carlo test, the 

null model is calculated from the mutational spectrum, the nucleotide sequence of the gene or 

gene region, and the number of observed mutations. I used the Python package SciPy (171) to 

calculate the p-values. The method to calculate the two-tailed p-value differs slightly from the 

method described above for the Monte Carlo test, but otherwise the results for Monte Carlo 

test with infinitely large N would be equivalent to the results of the binomial test.  

 

3.4.11 Confidence intervals 

95% confidence intervals were calculated by taking 10000 random samples from the null 

distribution or by bootstrapping 10000 random samples with replacement from the observed 

data.  
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Chapter 4  
 

Inferring structure–function relationships in 
multiple proteins using somatic mutations 
 

 

4.1 Introduction 
In the previous chapter I introduced a method for testing selection of functional categories of 

mutations within a gene. The method was validated and its assumptions explored using the 

example of NOTCH1 mutations in normal skin and oesophagus. Having established the overall 

validity of the method and identified its potential pitfalls, in this chapter I apply it to several 

further genes sequenced in normal human oesophagus and skin. To show the flexibility of the 

approach, the genes chosen exhibit a mix of positive and negative selection, and selection of 

loss-of-function and gain-of-function mutations. I also demonstrate how the method can be 

adapted to statistically compare mutational patterns in the same gene across different datasets.  

 

I start by looking at the patterns of missense mutations in three genes – NOTCH2, NOTCH3, 

and TP53 – that have positive selection of loss-of-function truncating (nonsense and splice) 

mutations. NOTCH2 and NOTCH3 are both members of the Notch family of genes, and are 

highly similar to NOTCH1, analysed in the previous chapter. TP53 is another strong driver of 

clonal expansion in both the normal skin and oesophagus. I finish by analysing the missense 

mutations in two genes in which truncating mutations are under negative selection, PIK3CA 

and FBXW7.  

 



 

 

 74 

4.2 Results 
4.2.1 Similar patterns of selection in EGF11–12 of NOTCH1 and NOTCH2 

NOTCH1 and NOTCH2 are highly similar genes, with the same mechanism of activation 

(Chapter 3, Figure 3.2). Both are drivers of clonal expansion in skin and oesophagus and both 

have a peak of missense mutations at the ligand-binding EGF repeats 11 and 12 (Figure 4.1a) 

(10, 11, 169). Therefore, based on the results for NOTCH1, I considered destabilising, ligand-

binding interface and calcium-binding mutations as potentially selected groups in NOTCH2 

EGF11–12 (Figure 4.1b,c; total missense mutations in region: skin 178, oesophagus 38). To 

remove confounding sources of selection, I tested each category while excluding mutations in 

the other two categories from both the null and observed distributions. Destabilising mutations 

(excluding ligand-binding and calcium-binding mutations; skin: p<2e-5, n=98; oesophagus: 

p<2e-5, n=25; two-tailed Monte Carlo test, Chapter 3 Methods, Figure 4.1d,e), ligand-interface 

mutations (excluding ∆∆G>2kcal/mol and calcium-binding mutations; skin: expected=27%, 

observed=56%, p=2e-5, n=48; oesophagus: expected=23%, observed=67%, p=0.03, n=6; two-

tailed binomial test, Chapter 3 Methods, Figure 4.1f,g), and calcium-binding mutations 

(excluding ∆∆G>2kcal/mol and ligand-binding mutations; skin: expected=14%, 

observed=34%, p=0.003, n=32; oesophagus: expected=15%, observed=60%, p=0.03, n=5; 

two-tailed binomial test, Chapter 3 Methods, Figure 4.1h,i) were significantly enriched 

compared to the null models. The results show that selection of missense mutations in the 

NOTCH2 ligand-binding EGF repeats follows similar patterns to selection in NOTCH1 in both 

skin and oesophagus.  
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Figure 4.1 Selected features of missense mutations in NOTCH2 EGF11–12. a) Missense mutation frequency across the 
domains of NOTCH2 in normal skin (top) and normal oesophagus (bottom). Domain definitions from UniProt (163). Where 
the gap between domains is only a single residue, mutations from this residue are included in the subsequent domain. EGF 
repeats, blue; EGF11–12, dark blue; LNR repeats, orange; transmembrane region, red; ankyrin repeats, green; other regions, 
grey. b,c) Calculated ∆∆G plotted against distance from the NOTCH2 EGF11–12 ligand-binding interface for skin (b) and 
oesophagus (c). Single nucleotide missense mutations that occur in the dataset, with marker size proportional to the number 
of times that mutation occurs, shown in green if the residue is calcium binding, blue if the residue is on the ligand-binding 
interface, red if the mutation has ∆∆G>2kcal/mol, orange otherwise. Single nucleotide missense mutations that do not occur 
in the dataset shown in grey. d,e) Distribution of calculated ∆∆G values of missense mutations after excluding mutations on 
the ligand-binding interface and calcium-binding residues. Distribution expected under the neutral null hypothesis, light red, 
and the distribution observed, dark red. f,g) Counts of NOTCH2 EGF11–12 mutations occurring on the ligand-binding 
interface, having excluded destabilising mutations (with calculated ∆∆G > 2 kcal/mol) and calcium-binding mutations, in skin 
(f) and oesophagus (g). Expected counts under the neutral null hypothesis, light blue; counts observed, dark blue. h,i) Counts 
of NOTCH2 EGF11–12 mutations occurring on the calcium-binding residues, having excluded destabilising mutations (with 
calculated ∆∆G > 2 kcal/mol) and ligand-binding mutations, in skin (h) and oesophagus (i). Expected counts under the neutral 
null hypothesis, light green; counts observed, dark green. P-values calculated using a two-tailed Monte Carlo test for d,e and 
using a two-tailed binomial test for f-i (Chapter 3 Methods). Error bars in f-i show 95% confidence intervals (Chapter 3 
Methods). ****P£0.0001, **P£0.01, *P£0.05. 

 

4.2.2 Selection in NOTCH3 differs in skin and oesophagus 

For NOTCH1 and NOTCH2, the patterns of selection in skin and oesophagus were highly 

consistent. NOTCH3 is highly similar to NOTCH1 and NOTCH2, and has the same mechanism 

of activation (Chapter 3, Figure 3.2). For NOTCH3, however, differences can be seen between 

the two tissues. The gene is positively selected in both data sets, but while in the oesophagus 

the selection acts on both missense and truncating mutations (10), in skin the selection seems 

to act mostly on truncating mutations, with missense mutations appearing to be under neutral 

selection (11). In the oesophagus data (145 missense mutations), there is a peak of missense 

mutations in EGF 10–11 of NOTCH3, which is the ligand-binding region equivalent to EGF11–

12 of NOTCH1 and NOTCH2 (191) (Figure 4.2a). However, there is not a clear peak in the 
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skin data (527 missense mutations) where the missense mutations are spread more evenly 

across the entire gene (Figure 4.2a).  

 

 
Figure 4.2 Distributions of missense mutations across NOTCH3 in skin and oesophagus. a) Missense mutation frequency 
across the domains of NOTCH3 in normal skin (top) and normal oesophagus (bottom). Domain definitions from UniProt (163). 
Where the gap between domains is only a single residue, mutations from this residue are included in the subsequent domain. 
EGF repeats, blue; EGF11–12, dark blue; LNR repeats, orange; transmembrane region, red; ankyrin repeats, green; other 
regions, grey. b) Cumulative distribution of missense mutations across NOTCH3 in skin and oesophagus, adjusted for the 
mutational spectrum. The mutation distributions significantly differ in the two tissues, p=0.003, weighted Anderson–Darling 
Test, Chapter 4 Methods. 

 

The distribution of mutations can be compared in the two datasets by compensating for the 

difference in mutational spectrum (Chapter 4 Methods, Chapter 1 Figure 1.4). There is a 

significant difference between the distributions (Figure 4.2b, p=0.003, weighted Anderson–

Darling test, Chapter 4 Methods). Of the six genes analysed in this chapter and Chapter 3, only 

NOTCH3 and PIK3CA (see section 4.2.5 below) have significant differences between the 

distribution of missense mutations in skin and oesophagus after multiple-test correction 

(NOTCH3 q=0.019, PIK3CA q=0.035, weighted Anderson–Darling test with Benjamini–

Hochberg correction (192), Chapter 4 Methods). This result for NOTCH3 is consistent with the 

dN/dS analysis that finds strong selection of missense mutations in the oesophagus but not in 

skin. As seen in the oesophagus data, strong selection of missense mutations is likely to appear 

as a large enrichment of mutations in key functional regions such as the ligand-binding EGF 

repeats. In the absence of such selection, missense mutations are likely to be more scattered 

across the gene, as seen in the skin data.  

 

Unfortunately, the number of missense mutations in NOTCH3 EGF 10–11 is low in both data 

sets (skin n=26; oesophagus n=22), and no significant trends were found when testing for 

selection of the mutation categories selected in NOTCH1 and NOTCH2 (p>0.13 for all tests in 
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both skin and oesophagus, equivalent tests to those run on NOTCH2 EGF11–12 above, 

analysed using two homology models of NOTCH3 EGF 10–11, Chapter 4 Methods).  

 

NOTCH1 and NOTCH2 are more structurally similar to each other than they are to NOTCH3 

(193), so it is interesting to note that the mutation selection patterns in NOTCH1 and NOTCH2 

are more similar to each other than they are to the selection patterns in NOTCH3. The functions 

and tissue distribution of the Notch family of genes are complex, and some aspects remain 

poorly understood (194). There is some overlap in the function of the Notch family genes, but 

each gene also has distinct functions (193). Furthermore, Notch activity depends both on which 

particular pairs of ligands and receptors are engaged and on the metalloproteinase availability 

in the tissue (194). Altogether, it is therefore unsurprising that we see both similarities and 

differences in mutational selection between the Notch genes and between tissues. The function 

of the Notch genes in the epithelial tissues, and how this relates to selection operating on the 

genes, is an interesting area for further investigation.  

 

 

4.2.3 Missense mutations in TP53 destabilise the protein and disrupt DNA 
binding  
 

Along with NOTCH1, TP53 is one of the two most significantly selected genes in both the 

oesophagus and skin (10, 11). Truncating mutations in TP53 are strongly selected (10, 11) and 

most missense mutations in TP53 occur in the DNA-binding domain (total missense mutations 

in DNA-binding domain: skin 898, oesophagus 380; Figure 4.3a). I therefore hypothesised that, 

similar to NOTCH1 and NOTCH2, the missense mutations in the DNA-binding domain are 

inactivating TP53 by either causing protein misfolding or by affecting the interaction surface 

of p53 (in this case the binding interface with DNA). I found strong enrichment of destabilising 

mutations (excluding mutations within 5Å of the DNA molecule; skin: p<2e-5, n=760; 

oesophagus: p<2e-5, n=338; two-tailed Monte Carlo test, Chapter 3 Methods, Figure 4.3b,c,f) 

and of mutations close to the DNA molecule (excluding mutations with ∆∆G>2 kcal/mol; skin: 

p<2e-5, n=395; oesophagus: p<2e-5, n=154; two-tailed Monte Carlo test, Chapter 3 Methods, 

Figure 4.3d,e,f). Approximately 42% of potential mutations in the TP53 DNA-binding domain 

are either destabilising (∆∆G>2 kcal/mol) or within 5Å of the bound DNA molecule, and 
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together these two categories contain 71% and 69% of observed mutations in skin and 

oesophagus respectively.  

 

 

 

 

 

 
Figure 4.3 Selection of missense mutations in TP53. a) Sliding window of missense mutation frequency across TP53 in skin 
(top) and oesophagus (bottom). Observed distribution shown with a bold black line, the expected distribution based on the 
mutational spectrum shown with a thin grey line. DNA-binding domain shown as a blue bar. Domain definition from UniProt 
(163). b,c) Distribution of calculated ∆∆G values of missense mutations in skin (b) and oesophagus (c) after excluding 
mutations within 5Å of the DNA molecule. Distribution expected under the neutral null hypothesis, light red, and the 
distribution observed, dark red. d,e) Distribution of distances of missense mutations from DNA in skin (d) and oesophagus (e) 
after excluding mutations with ∆∆G > 2 kcal/mol. Distribution expected under the neutral null hypothesis, light blue, and the 
distribution observed, dark blue. f) Structure of two copies of the p53 DNA-binding domain (DBD) bound to DNA (orange). 
Residues containing missense mutations that occur at least 10 times in the skin data set are highlighted. Highly destabilizing 
mutations (ΔΔG > 2 kcal/mol) shown in red. Non-destabilizing mutations are shown in blue. ****P£0.0001, two-tailed Monte 
Carlo test, Chapter 3 Methods. 

 

4.2.4 Selection of destabilising mutations correlates with selection of 
nonsense mutations 
 

In NOTCH1, NOTCH2 and TP53, I found positive selection of missense mutations that are 

likely to reduce normal protein function. In each case this includes mutations that strongly 

destabilise the protein. Among the genes sequenced in the normal skin, there is a strong 

correlation between selection of destabilising mutations and selection of truncating mutations 

(Figure 4.4, Pearson’s correlation coefficient=0.89, two-tailed p=8e-6), as might be expected 

for two types of mutation which produce a similar outcome (loss of function). In the next two 

sections I will investigate selection of missense mutations in genes (PIK3CA and FBXW7) with 

negative selection of truncating mutations.  
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Figure 4.4 Correlation between the dN/dS ratio of truncating mutations and selection of destabilising missense 
mutations in normal skin. The selection of destabilising missense mutations is shown as the shift in the distribution of ∆∆G 
values between the neutral null model and the observed data. The CDF values were used instead of the raw ∆∆G values to 
reduce the influence of extreme outliers (Chapter 3 Methods). The ∆∆G CDF shift is the difference between the mean of the 
null and observed distributions of ∆∆G CDF values. It is a value between -0.5 (all observed mutations have the minimum ∆∆G 
possible in the structure) and 0.5 (all observed mutations have the maximum ∆∆G possible in the structure). A ∆∆G CDF shift 
of 0 means that the mean values of the null and the observed ∆∆G CDF distributions are equal. Structures of wild type proteins 
that contain at least 50 missense mutations in the skin dataset were used for the ∆∆G calculations (Chapter 3 Methods), and 
the average ∆∆G CDF shift of all structures for each gene was calculated. Pearson’s correlation coefficient=0.89, two-tailed 
p=8e-6, mean ∆∆G CDF shift vs logarithm of truncating dN/dS ratio. Blue line and shaded region show the linear regression 
and 95% confidence interval of the regression estimate calculated and plotted using the Python package Seaborn (195). 

 

4.2.5 Positive and negative selection in PIK3CA 

The lipid-kinase PI3K is made up of the subunits p110a, encoded by PIK3CA, and p85a, which 

binds to p110a to inhibit PI3K activity (196) (Figure 4.5a). In the normal skin, dN/dS analysis 

found missense mutations were under approximately neutral selection, while nonsense and 

splice mutations are negatively selected (11) (Figure 4.4). In contrast, missense mutations in 

the normal oesophagus are positively selected, with recurrent mutations of the H1047R hotspot 

(10) (Figure 4.5b). 

 

I compared the observed missense mutations to those catalogued in Clinvar (197), a curated 

database of disease associated genetic mutations. In both skin and oesophagus, I found a 

significant enrichment of mutations matching those labelled in Clinvar as pathogenic/likely 

pathogenic (skin: expected=2%, observed=12%, p=4e-9, n=167; oesophagus: expected=2%, 

observed=45%, p=3e-25, n=49; two-tailed binomial test, Chapter 3 Methods, Figure 4.5c,d). In 

particular, the matching mutations were associated with various cancers and overgrowth 

diseases known to be driven by PIK3CA activating mutations.   
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To further investigate the missense mutations, I looked for enrichment of mutations in key 

regions of the protein that undergo conformational changes when PI3K is activated by a 

phosphopeptide or binds to a membrane (198) (Table 4.1). These regions include the locations 

of many cancer-linked PIK3CA mutations such as G106V, G118D, N345K, E542K, E545K 

and H1047R. In skin there is enrichment in residues 100–119, 444–473, and 962–980 (Figure 

4.5e-g,j, Table 4.1). Although there are many recurrent mutations in the gene (Figure 4.5b), 

these trends are still apparent when removing duplicate mutations (Table 4.2, section 3.2.3 in 

Chapter 3), with only the 444–473 region not quite reaching statistical significance. Residues 

100–119 are part of the link between the adapter-binding domain (ABD) and the Ras-binding 

domain (RBD). Mutations in this region have been found to cause conformational changes 

normally associated with membrane binding and to increase kinase activity (198). Residues 

444–473 are on the interface between p110a and p85a (Figure 4.5j), the disruption of which 

can lead to activation of PI3K (198). Residues 962–980 are in the kinase domain and are 

involved with membrane binding (198, 199). Together with the enrichment of mutations in 

Clinvar, these analyses provide strong evidence that, despite the apparently neutral results of 

dN/dS analysis, selection is acting on PIK3CA missense mutations in normal skin. The analyses 

suggest that there is negative selection of inactivating mutations (shown by the dN/dS ratio of 

truncating mutations of less than one, Figure 4.4) and positive selection of activating mutations. 

The combination of these opposing directions of selection may contribute to the inference of 

neutral selection when missense mutations in PIK3CA are analysed as a whole (62).  

 

In oesophagus there is enrichment of missense mutations in residues 100–119 (also enriched 

in skin) and 1039–1055 (Figure 4.5h-j, Table 4.1). Residues 1039–1055 are at the C-terminal 

end of the kinase domain and contain the strongly activating H1047R mutation (198). Despite 

the high frequency of hotspots – the H1047R hotspot in particular – both regions remain 

significantly selected after removing duplicate mutations (Table 4.2). There is a significant 

difference in the distribution of missense mutations between oesophagus and skin after 

correcting for differences in the mutation spectra (p=0.01, weighted Anderson–Darling test, 

Chapter 4 Methods). As the type of activating mutation can alter the mutant phenotype (198), 

the differences in missense selection may indicate that the selected phenotypes of PIK3CA 

mutations differ in the two tissues.  
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Figure 4.5 Selection of missense mutations in PIK3CA. a) The structure of PI3K showing the domains of p110a. Domain 
definitions from UniProt (163). b) Missense mutations in normal skin (top) and oesophagus (bottom). The most commonly 
mutated residues are labelled. Domain definitions from UniProt (163). ABD-domain, dark blue; RBD-domain, orange; C2 
domain, green; helical domain, red; kinase domain, light blue. Shaded areas show the regions with significant enrichment of 
missense mutations as shown in e-j. Residues 100–119, yellow; residues 444–473, blue; residues 962–980, purple; residues 
1039–1055, green. c,d) Missense mutations annotated as Likely Pathogenic/Pathogenic in Clinvar (197) in skin (c) and 
oesophagus (d). e-i) Missense mutations in regions of PIK3CA in skin (e-g) and oesophagus (h-i). Expected counts under the 
neutral null hypothesis, left bar; counts observed, right bar. j) Recurrent mutations shown on the structure of PI3K. p110a, 
white; p85a, grey. p110a residues 100–119 shown in yellow, 444–473 shown in cyan, 962–980 shown in purple and 1039–
1055 shown in green. Residues mutated at least three times in the skin dataset shown as blue spheres. Residues mutated at 
least twice in the oesophagus dataset shown as green spheres. Error bars in c-i show 95% confidence intervals (Chapter 3 
Methods). ****P£0.0001, two-tailed binomial test, Chapter 3 Methods. 
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Table 4.1 Tests for enrichment of missense mutations in PIK3CA regions in normal skin and oesophagus. Regions based 
on (198). N=total missense mutations in test, Expected=percentage of missense mutations expected on the given residues 
under the neutral null hypothesis, Observed=percentage of missense mutations observed on the given residues, P=two-tailed 
binomial p-value, Chapter 3 Methods, Q=Benjamini–Hochberg multiple-test corrected p-value (192). Shaded rows show 
statistically significant results. 

 

  

Skin 

Residues N Expected  Observed P Q 

100–119 167 2% 9% 2e-6 9e-6 

120–127 167 1% 1% 0.3 0.5 

335–342 167 1% 0% 0.6 0.7 

343–350 167 1% 2% 0.1 0.3 

444–473 167 4% 11% 6e-5 0.0002 

532–551 167 2% 0% 0.06 0.2 

720–744 167 2% 1% 0.2 0.4 

848–859 167 1% 1% 0.7 0.7 

930–956 167 2% 1% 0.5 0.6 

962–980 167 1% 8% 3e-7 3e-6 

1039–1055 167 1% 1% 0.7 0.7 

Oesophagus 

Residues N Expected  Observed P Q 

100–119 49 2% 16% 4e-6 2e-5 

120–127 49 1% 0% 1 1 

335–342 49 1% 0% 1 1 

343–350 49 1% 2% 0.4 1 

444–473 49 3% 2% 1 1 

532–551 49 2% 0% 1 1 

720–744 49 2% 0% 1 1 

848–859 49 2% 0% 1 1 

930–956 49 3% 0% 0.6 1 

962–980 49 1% 0% 1 1 

1039–1055 49 2% 35% 7e-18 8e-17 
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Table 4.2 Tests for enrichment of missense mutations in PIK3CA regions in normal skin and oesophagus, after 
deduplicating recurrent mutations and while excluding other selected regions in the tissue. Only significant regions from 
Table 4.1 tested. N=total missense mutations in test, Expected=percentage of missense mutations expected on the given 
residues under the neutral null hypothesis, Observed=percentage of missense mutations observed on the given residues, P=two-
tailed binomial p-value, Chapter 3 Methods. Shaded rows show statistically significant results. 

Skin 

Residues N Expected  Observed P 

100–119 114 2% 9% 0.0002 

444–473 112 4% 7% 0.08 

962–980 109 2% 5% 0.03 

Oesophagus 

Residues N Expected  Observed P 

100–119 30 2% 23% 1e-6 

1039–1055 31 2% 26% 6e-8 

 

 

4.2.6 Signs of selection in FBXW7, but functional impact remains unclear 

FBXW7 is one component of the Skp, Cullin, F-box containing (SCF) E3 ubiquitin ligase 

complex (200). FBXW7 recognises the substrate to be targeted for ubiquitination and 

subsequent degradation (200). It has around 90 target substrates, including TP53 and NOTCH1 

(201).   

 

There appears to be selection against loss-of-function mutations in normal skin, where 

nonsense and splice mutations are negatively selected (dN/dS=0.31, p=0.025, (11)) and there 

is a significant deficit of destabilising missense mutations (p=0.0001, n=62, two-tailed Monte 

Carlo test, Chapter 3 Methods, Figure 4.6a). However, the observed missense mutations are 

located significantly closer to the substrate binding site (202, 203) than expected under the 

neutral null hypothesis (p<2e-5, n=62, two-tailed Monte Carlo test, Chapter 3 Methods, Figure 

4.6b,c), suggesting that there is positive selection of a change to wild type FBXW7 function. 

Re-testing the skin data while excluding mutations near the substrate binding site finds that 

there is no significant selection for destabilising mutations (excluding mutations within 8Å of 

the FBXW7 substrate; p=0.55, n=30, two-tailed Monte Carlo test, Chapter 3 Methods, Figure 

4.6d). This suggests that the apparently strong negative selection of destabilising mutations 
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seen when testing with the full set of missense mutations was, in fact, a result of positive 

selection of non-destabilising mutations around the binding site.  

 

The peak of missense mutations in the oesophagus appears to mirror that of the skin data 

(Figure 4.6e), but unfortunately there are only a small number of FBXW7 mutations in the 

oesophagus data set and the statistical tests are non-significant (FoldX ∆∆G: p=0.59, n=19, 

Figure 4.6f; distance to substrate binding site: p=0.096, n=19, Figure 4.6g; two-tailed Monte 

Carlo test, Chapter 3 Methods).  

 

The most common FBXW7 mutation hotspots in cancer – R465, R479 and R505 (200) – are 

also located at the substrate binding site (202) (Figure 4.6c). Mutations to these residues 

abrogate the ability of FBXW7 to bind to its substrates (200, 203). Inactivating FBXW7 

mutations are common in cancers driven by NOTCH1 activating mutations, such as T-cell acute 

lymphoblastic leukaemia (T-ALL) and chronic lymphocytic leukaemia (CLL) (203). The 

mutant FBXW7 cannot bind to NOTCH1 NICD, leading to an accumulation of NICD similar 

to that caused by NOTCH1 activating mutations (203). However, in the normal epithelia, there 

is strong selection for NOTCH1 loss-of-function mutations (Chapter 3), so selection of 

mutations which increase NOTCH1 activity would be surprising. In fact, despite their similar 

location in the protein structure, there is no overlap between the missense mutations that appear 

in the normal tissues and those that appear in T-ALL and CLL (COSMIC v91 (204), T-ALL 

n=89, CLL n=8, normal skin n=102, normal oesophagus n=20). This does not appear to be due 

to the mutational spectrum, as the most common cancer hotspot mutations (R465C, R465H, 

R479Q, R505C, combined total of zero occurrences in the normal skin) together would be 

expected to be mutated at least as often as the L559F mutation (11 occurrences) (Figure 4.6h). 

Therefore, in the normal skin, there does not appear to be selection for loss of FBXW7 binding 

to NOTCH1 NICD.  
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Figure 4.6 Missense mutations in FBXW7. a) Distribution of calculated ∆∆G values of missense mutations in FBXW7 in 
normal skin. Distribution expected under the neutral null hypothesis, light red, and the distribution observed, dark red. b) 
Distribution of distances of missense mutations in skin from the FBXW7 substrate (in this instance a 12-residue section of 
Cyclin E in PDB 2OVQ (202)). Distribution expected under the neutral null hypothesis, light blue, and the distribution 
observed, dark blue. c) Structure of the FBXW7 WD40 domain (PDB 2OVQ (202)) bound to Cyclin E (red). Commonly 
mutated residues are highlighted. Blue and green residues contain at least four missense mutations in the skin. Green residues 
also contain at least two missense mutations in oesophagus. The three main hotspot residues in cancer (R465, R479 and R505)  
shown in orange. d) Distribution of calculated ∆∆G values of missense mutations in skin, where all mutations within 8Å of 
the FBXW7 substrate have been excluded from both the null model and the observed data. Distribution expected under the 
neutral null hypothesis, light red, and the distribution observed, dark red. e) Sliding window of missense mutation frequency 
across FBXW7 in skin (top) and oesophagus (bottom). Observed distribution shown with a bold black line, the expected 
distribution based on the mutational spectrum shown with a thin grey line. Dimerization domain, blue bar; F-box domain, 
green bar; WD40 domain, orange bar. f) Distribution of calculated ∆∆G values of missense mutations in oesophagus. 
Distribution expected under the neutral null hypothesis, light red, and the distribution observed, dark red. g) Distribution of 
distances of missense mutations in oesophagus from the FBXW7 substrate. Distribution expected under the neutral null 
hypothesis, light blue, and the distribution observed, dark blue. h) Expected relative mutation rates (arbitrary units) in skin of 
single nucleotide missense mutations on the residues R465, R479, R505 and L559. The four most common mutations in T-
ALL and CLL are shown in orange, and the most common mutation in normal skin shown in blue. i) Disorder (calculated  by 
IUPred2A (205)) of NOTCH1. FBXW7 targets a highly disordered section of NOTCH1, highlighted in blue. P-values in 
a,b,d,f,g calculated using the Monte Carlo test (Chapter 3 Methods). ****P£0.0001, ns P>0.05. 
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It is tempting to speculate that, since FBXW7 loss of function is a driver alongside NOTCH1 

gain-of-function mutations in T-ALL and CLL, selection of NOTCH1 loss-of-function 

mutations in the normal epithelia would be accompanied by selection of gain-of-function 

FBXW7 mutations. If FBXW7 mutations lead to an increase in ubiquitination and degradation 

of NOTCH1 NICD, then those mutant clones might have a growth advantage due to a reduction 

in NOTCH1 signalling. However, due to the large number of FBXW7 target substrates, several 

of which are driver genes in the normal epithelia, it is hard to narrow down to a single 

hypothesis. For example, an accumulation of c-Myc due to Fbxw7 loss has been found to 

increase proliferation in keratinocytes (206). However, those cells also differentiate earlier due 

to accumulation of NOTCH1 NICD (206). If the mutations in normal skin and oesophagus 

selectively abrogate FBXW7–c-Myc binding without disrupting FBXW7–NOTCH1 binding it 

may lead to clonal expansion.  

 

One approach to investigate these hypotheses further would be to model in silico (or measure 

experimentally) the interactions of FBXW7 mutants with its various substrate proteins. It would 

then be possible to test for enrichment of mutations in the skin and oesophagus that increase or 

decrease interactions with particular substrates. However, the substrates can be disordered 

(Figure 4.6i), and predicting interactions of flexible or disordered proteins is a particularly hard 

problem (207). Methods may be inaccurate (207) and/or computationally expensive (208). This 

highlights a couple of limitations of the statistical method described in this chapter. It is limited 

by the quality of the in-silico methods, and the requirement to model every possible mutation 

in a region of a protein can require prohibitively large amounts of computation.   

 

4.3 Discussion 
In this chapter I have found biologically plausible and statistically significant patterns of 

selection in several proteins, which strengthens the evidence for non-neutral competition in 

normal epithelia. The statistical method can associate changes to protein structure or function 

with cell fitness, even in the absence of hotspot mutations and in the presence of passenger 

mutations. For example, in NOTCH2 EGF11-12, no mutations occurred more than twice in 

the normal oesophagus dataset. However, by considering those mutations in bulk, I have 

identified three statistically significant features of selected missense mutations (the same 

features that are selected for in NOTCH1 EGF11-12). 
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A strength and a limitation of the method is its use of external sources to provide scores for 

each mutation. Although the wide choice of potential metrics allows the analysis to be tailored 

to the gene and question at hand, it also makes the method less straightforward to use than 

driver discovery tools that have a single standard analysis. Since scores are required for all 

mutations in the region of interest, whether observed in the data or not, the metric calculations 

must be computationally cheap (or pre-computed scores must be available). The robustness of 

results will be limited by the accuracy of the metric calculations, but analysing mutations in 

bulk can help minimise the impact of incorrect scores for individual mutations. Furthermore, a 

quick-to-run but imperfect metric can be useful to detect broad trends of selection and to 

identify subsets of mutations that merit further investigation using more rigorous methods.  

 

For proteins that are sufficiently ordered that their structures can be determined, selection of 

loss-of-function nonsense and splice mutations is frequently accompanied by selection of 

destabilising missense mutations. A standard workflow for analysing missense mutations in 

these genes might start by identifying if destabilising mutations are selected for before 

searching for other selected mutation features. Many different mutations in a gene may break 

protein function, but generally only a small proportion of potential mutations in genes are likely 

to be gain-of-function (67). This means that selection for gain-of-function mutations in a gene 

can lead to hotspots or small clusters of mutations (67), such as those seen in PIK3CA and 

FBXW7. However, as demonstrated by the pattern of mutations in NOTCH1 (Chapter 3), 

clusters of mutations and hotspot mutations are also seen in genes where loss-of-function 

mutations are selected. Selection for gain-of-function mutations may be accompanied by 

selection against loss-of-function mutations, such as nonsense mutations or missense mutations 

that cause misfolding. This may dilute the signs of selection when analysing missense 

mutations across the gene as a whole, meaning the selection may be harder to detect using some 

driver detection methods.  

 

The method presented in this and the previous chapter may not be appropriate for use as a high-

throughput analysis tool. Significant departures from the null model may indicate the presence 

of non-neutral selection in a gene, but running the analysis without properly considering 

confounding sources of selection can lead to misleading inference of the mutation features 

under selection. Instead, the method is better suited to exploring individual genes in detail. If 
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the genes of interest are not known prior to analysis of a sequencing dataset, one of the many 

driver detection tools available (or a combination of tools that use orthogonal methods (67, 

209)) could be used to select a subset of genes for further investigation. Existing driver 

detection methods can provide some information regarding the selected changes to protein 

function (67), but it is an ongoing challenge to understand the precise biological function of 

driver mutations in genes (67). The method presented here could represent a small step in 

addressing that challenge.  

 

I have also presented a statistical method for detecting differences in mutational patterns 

between datasets, accounting for the difference in mutational spectrum. Future refinements of 

the method might involve more clearly identifying the particular regions that differ (210) and 

generalising to metrics other than mutation location – for example comparing ∆∆G 

distributions between data sets. Comparison between data sets is not a trivial task, however, 

since many factors can influence the apparent selection. For example, the tissue sample size 

and sequencing depth used in an experiment will effect which clone sizes can be detected 

(Chapter 2), and the inferred strength of selection can depend on the size of the clones analysed 

(10). 

 

Altogether, the analysis presented here and in the previous chapter demonstrates the rich vein 

of information available in large DNA sequencing data sets. By combining these data with 

functional interpretation of mutations we can infer the selection of functional changes in 

proteins, and hence learn about both the protein structure-function relationship and the role of 

the protein in the tissue sequenced. The method can be used as an in-vivo validation of results 

of in-vitro studies, and could be a useful method to explore selection of mutation features in 

existing data sets prior to conducting further experiments. This is an approach that will be 

widely applicable for genes or domains that are positively or negatively selected in somatic 

contexts, whether in cancer or normal tissue. 
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4.4 Chapter 4 Methods 
The methods are largely as described in Chapter 3. Only methods specific to this chapter are 

described below.   

 

4.4.1 Protein structures 

The following structures were used for the individual protein analysis of FoldX ∆∆G and 

structural distance calculations: 

NOTCH2 EGF11–12 5MWB (169) 

TP53 DNA-binding domain 2AC0 chain A (211) 

PIK3CA 4L1B (212)   

FBXW7 2OVQ (202) 

 

For the comparison of nonsense dN/dS values and FoldX ∆∆G, UniProt (163) was used to find 

all protein structures for genes sequenced in skin that had resolution £ 2.6Å, no mutations in 

the protein sequence, and containing at least 50 missense mutations in the skin data set. To 

reduce computational expense, only a single chain (the first alphabetically for the protein of 

interest) was run per protein structure. The structures run were: 

 

TP53 1TSR (213), 1TUP (213), 1YCS (214), 2AC0 (211), 2ADY (211), 2AHI (211), 

2ATA (211), 2OCJ (215), 2XWR (216), 2YBG (217), 3IGL (218), 3KMD (219), 

3KZ8 (218), 4HJE (220), 4QO1 (221), 4XR8 (222), 5BUA (223), 5MCT (224), 

5MCU (224), 5MCV (224), 5MCW (224), 5MF7 (224), 5MG7 (224), 6FJ5 

(224) 

NOTCH1 1YYH (225), 2F8Y (226), 2VJ3 (165), 3ETO (227), 3L95 (228), 4CUD (229), 

4D0E (229), 5FMA (151), 5L0R (230) 

GRIN2A 5H8F (231), 5H8H (231), 5H8N (231), 5H8Q (231), 5I2N (232), 5KCJ (231), 

5KDT (232), 5TP9 (233), 5TPA (233) 

PIK3CA 4L1B (212), 4L23 (212), 5DXT (234), 5UBR (235), 5XGI (236), 6GVF (237), 

6PYS (238), 7K6M (239) 

ERBB4 2R4B (240), 3BCE (241), 3U2P (242) 

FBXW7 2OVQ (202), 2OVR (202), 5V4B (243) 

ERBB2 1N8Z (244), 2A91 (245), 5MY6 (246) 
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EGFR 1MOX (247), 1YY9 (248), 4UV7 (249) 

GRM3 3SM9 (250), 4XAR (251) 

TP63 3QYN (252), 3US0 (253) 

NOTCH3 4ZLP (254), 5CZX (255) 

EPHA2 3FL7 (256), 7KJA (257) 

BAI3 4DLO (258) 

PTPRT 2OOQ (259) 

NOTCH2 5MWB (169) 

 

4.4.2 Homology models 

Swiss Model (260) was used to create two models of NOTCH3 EGF10-11 based on the 

template structures 2VJ3 of NOTCH1 EGF11-12 (165) and 5MWB of NOTCH2 EGF11-12 

(169).  

 

4.4.3 Ligand-binding interface residues  

The ligand-binding residues for NOTCH2 are based on conservation with the rat NOTCH1 

ligand interface (169) (Table 4.3). Ligand-binding residues in NOTCH3 EGF10-11 were 

defined as the equivalent residues of those in NOTCH1 (shifted by 21 residues, Table 4.3).  

 
Table 4.3 Ligand-binding interface residues of NOTCH2 EGF11-12 and NOTCH3 EGF10-11. Ligand-binding interface 
residues of NOTCH2 EGF11-12 from (169). NOTCH3 EGF10-11 residues are based on conservation with NOTCH1 
EGF11-12.  

 Interface residues 

NOTCH2 EGF11-12 418, 421, 424, 425, 426, 428, 429, 439, 440, 452, 454, 456, 

470, 472, 473, 481 

NOTCH3 EGF10-11 392, 394, 397, 399, 400, 401, 402, 403, 404, 414, 415, 423, 

426, 427, 429, 430, 431, 433, 445, 446, 447, 448, 449, 450, 

454, 456, 457, 458, 459 
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4.4.4 Calcium-binding mutations 

The calcium-binding residues in EGF11-12 of NOTCH2 were defined using MetalPDB (164) 

and the 5MWB (169) structure (Table 4.4). Based on conservation, the calcium-binding 

residues in NOTCH3 EGF10–11 were defined as the equivalent residues of those in NOTCH1 

(shifted by 21 residues) (Table 4.4).  

 
Table 4.4 Calcium-binding residues of NOTCH2 EGF11-12 and NOTCH3 EGF10-11. Based on MetalPDB (164) and 
the structure 5MWB (169) for NOTCH2. NOTCH3 EGF10-11 residues are based on conservation with NOTCH1 EGF11-12. 

 Calcium-binding residues 

NOTCH2 EGF11-12 415, 416, 418, 435, 436, 439, 456, 457, 459, 473, 474 

NOTCH3 EGF10-11 391, 392, 394, 410, 411, 414, 431, 432, 434, 448, 449 

 

4.4.5 Protein disorder 

The IUPred2A server (https://iupred2a.elte.hu) (205) was used to calculate the “long disorder” 

of each residue in NOTCH1.  

 

4.4.6 Weighted Anderson–Darling test 

The distribution of mutations across a gene is dependent on the gene sequence and the 

mutational spectrum (Figure 4.7a,b). Therefore, there could be differences in the mutation 

distribution between data sets, even if selection is identical (Figure 4.7a,b). This difference can 

be corrected for by weighting the number of mutations on each residue by the inverse of the 

expected mutation rate (Figure 4.7c,d). There are several statistical tests available for 

comparing weighted distributions, with the Anderson–Darling test reported to be the most 

powerful (261). I have used the implementation of the weighted Anderson–Darling test in 

ROOT (261, 262) through the pyROOT interface (263).  
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Figure 4.7 Example of comparing the mutation distributions in a neutral gene in two data sets with different mutational 
spectra. The artificial “gene” has a sequence of randomly drawn nucleotides with proportions that differ in different regions 
(first 100 bases: A 1%, C 1%, G 49%, T 49%; next 200 bases: equal proportions of all nucleotides; last 150 bases: A 49%, C 
49%, G 1%, T 1%). 500 single base mutations were randomly drawn using the normal skin and oesophagus trinucleotide 
mutational spectra applied to the gene sequence. a) Sliding window of mutation density across the gene. b) Cumulative 
distribution of mutations across the gene. The distributions are significantly different, p=6.5e-6, Anderson–Darling test. c) 
Sliding window of mutation density relative to the expected density calculated using the mutational spectra. d) Cumulative 
distribution of mutations across the gene after weighting the mutations by the inverse of the expected mutation rate for each 
residue. The weighted distributions are not significantly different, p=0.77, weighted Anderson–Darling test.  
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Chapter 5  
 

Spread of super-competitive mutant clones 
can eliminate micro-tumours 
 

 

5.1 Introduction 
As discussed in previous chapters, normal oesophageal epithelium contains a large number of 

somatic mutations, with a mutational burden that increases with age (10, 12). The mutational 

landscape of the tissue is shaped by competition between expanding mutant clones, which can 

result in the removal of “loser” clones by highly fit “winner” clones (51). In rare cases, mutant 

cells in the oesophageal epithelium can develop into oesophageal squamous cell carcinoma 

(OSCC) (264). During the initial stages of growth, microscopic OSCC tumours will be 

bordered by mutant clones in the surrounding normal tissue. It is therefore of interest to 

investigate how mutations grow in the normal tissue, whether they interact with emerging 

tumours, and how that may impact the development of cancer.  

 

The most widespread mutations in aged human oesophagus are NOTCH1 mutants (10, 12), 

which cover 30 to 80% of the tissue by middle age (10). Mutations in NOTCH1 are strongly 

enriched for loss-of-function mutations, including nonsense mutations, splice-site mutations, 

and missense mutations in key ligand-binding domains (10). The majority of large NOTCH1 

mutant clones have lost both wild type copies of the gene (10), which suggests strong selection 

for biallelic loss of NOTCH1. Mutations in the Notch pathway are also highly competitive in 

mouse oesophagus (50, 51). To investigate the competitive advantage conveyed by monoallelic 

and biallelic loss of Notch1 in the oesophageal epithelium, lineage tracing experiments of 

heterozygous and homozygous Notch1 null mutants were carried out in mice. I fit simple 
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spatial simulations of clonal dynamics to the lineage tracing data to infer the “fitness” of these 

two Notch1 genotypes. I then use the results to demonstrate how Notch1 dose-dependent fitness 

effects the spread of Notch1 mutants in the tissue.  

 

Notch1 mutant clones’ domination of clonal competition in normal tissue raises the question 

of whether these highly fit clones have an effect on the early stages of cancer. Microscopic pre-

malignant tumours are formed in the oesophagus when mice are given high doses of the 

mutagen diethylnitrosamine (DEN) in their drinking water (265). Some of these tumours grow 

to large sizes and acquire features of transformation such as dysplasia, inflammation and 

angiogenesis, and, 18 months after DEN treatment, can develop into squamous cell carcinoma 

(265). However, the majority of the micro-tumours are lost from the tissue (265). It was 

speculated that aggressive clones in the surrounding normal tissue may be responsible for the 

removal of many of the tumours, and a series of experiments were carried out to investigate 

this hypothesis: the density of tumours in the tissue was measured from 10 days to 18 months 

post-DEN treatment; additional highly fit clones were induced in the tissue; a Notch1 inhibitor 

was administered; and DNA sequencing of the tumours was carried out at early and late 

timepoints. I constructed an abstracted mathematical model of tumour–clone interaction to 

analyse the results of these experiments and investigate whether micro-tumours are eliminated 

by competition with highly fit clones in the surrounding tissue. 

 

5.2 Results 
5.2.1 Cell fitness is strongly dependent on Notch1 dosage 

To investigate the growth of Notch1 mutant clones, a series of lineage tracing experiments was 

carried out in mouse oesophagus by researchers in Prof Phil Jones’ laboratory team (Chapter 1 

section 1.3.1) (266). The transgenic mice used contained an allele of Notch1 which could be 

deleted by administering inducing drugs. The mice also contained a separate conditional allele 

of yellow fluorescent protein (YFP), which is used to track cell lineages and does not alter cell 

dynamics. Upon administration of a low dose of induction drugs, a small fraction of cells was 

genetically altered to express YFP, or the mutant Notch1 allele, or, through random chance, to 

express both YFP and mutant Notch1 (Figure 5.1). The genetic changes are inherited by any 

offspring cells (Figure 5.1). Three different strains of mice were used: a wild type control which 

did not contain the transgenic Notch1 allele; a heterozygous mouse with one wild type and one 
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conditional mutant allele of Notch1; and a homozygous mouse with two conditional mutant 

alleles of Notch1 (both Notch1 alleles are deleted together in induced cells).  

 

 
Figure 5.1 Lineage tracing system for Notch1 mutant clones. Three strains of mice were used: wild type (top); heterozygous 
mice containing a single conditional Notch1 mutant allele (middle); and homozygous mice where both copies of Notch1 are 
the conditional mutant allele (bottom). All mice contained a conditional allele of yellow fluorescent protein (YFP, green). On 
administration of a low dose of induction drugs, most cells remained wild type (white), a small proportion of cells were 
genetically altered to express YFP, the mutant Notch1 gene (red outlines) or both. The genetic changes are inherited by 
offspring cells. The YFP staining was used to identify clones (right). Staining for the NOTCH1 protein was able to distinguish 
Notch1 mutant clones (iHet or iHom clones) from wild type clones (Ctl iHet or Ctl iHom) in the same mice. Mice images 
adapted from smart.servier.com, licensed under CC BY 3.0. 

 

The number of basal cells in YFP-labelled wild type (WT) clones, heterozygous Notch1 mutant 

(iHet) clones and homozygous Notch1 mutant (iHom) clones were counted at several time 

points following induction (Figure 5.1). The observed iHet clones were significantly larger 

than WT clones, and iHom clones were larger again than the iHet clones (Figure 5.2). The 

iHom clones grew so quickly that for time points later than 30 days post-induction many of the 

clones had merged, meaning that the sizes of individual clones could not be reliably counted.  
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Figure 5.2 Lineage tracing data of Notch1 mutant clones. Basal clone sizes of wild type (blue), heterozygous Notch1 null 
(orange) and homozygous Notch1 null (green) clones. **** p < 0.0001, two-tailed Mann–Whitney U test. Data from (266). 

 

Previous studies have shown that clonal competition in normal oesophageal epithelium is 

consistent with a two-dimensional spatial model in which cell fate is determined by relative 

cell fitness in local cell neighbourhoods (51). If a cell is fitter than its neighbours, it is more 

likely to divide, and if it is less fit it is more likely to differentiate. This leads to clonal 

expansion driven by competition at the clone edges (51). In the middle of large clones, or at 

the boundaries of clones with similar fitness, the cell competition is approximately neutral (51). 

Here I have used two-dimensional Wright–Fisher style simulations to model clonal dynamics 

(Chapter 5 Methods). This model produces highly similar outputs to the Moran-style models 

in previous studies (Chapter 1 section 1.4.3.2), but is more computationally efficient. This 

efficiency enables the use of parameter-fitting methods that require the running of thousands 

of individual simulations.   

 

I used approximate Bayesian computation (ABC) to fit the simulations to the clonal data 

(Chapter 5 Methods). There were three parameters to define in the model: the fitness of mutant 

cells, the induction level of the mutant cells, and the time between cell generations. Since 

Notch1 mutant cells and wild type cells divide at a similar rate (266), I fixed the generation 

time to equal the average division time of wild type cells in the mouse oesophagus. Fitting of 

the wild type clone size data found that this division rate was appropriate for the growth rate 

of the neutral clones (Figure 5.3a,b, Table 5.1).  
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This leaves two parameters that are not fixed: the fitness of mutations and the induced 

proportion of cells at the start of the simulation. The induction proportion must be considered 

because as the clones expand they can collide and restrict each other’s growth (51, 267). In a 

highly induced tissue, fit mutant clones will have less room to expand and will be smaller at 

later time points than in a sparsely induced tissue (Chapter 2). The other parameter, mutant 

fitness, is the key parameter I wish to compare between the genotypes. It represents how much 

of a growth advantage the mutant has compared to the surrounding non-mutant cells. 

 

Firstly, the wild type clones (including the wild type YFP-labelled clones in the heterozygous 

and homozygous conditional Notch1 mutant mice, Figure 5.1) have inferred fitness values 

closely centred on neutrality (fitness=1) (Figure 5.3a,b, Table 5.1). Both iHet and iHom clones 

are fitter than wild type clones, with iHom clones substantially fitter than iHet clones (Figure 

5.3a,b, Table 5.1). Should this genotype–fitness relationship also apply in humans, this large 

increase in fitness conveyed by the second Notch1 mutation may explain the strong selection 

and high prevalence of “double hit” NOTCH1 mutant clones in aged human oesophagus (10, 

266).  

 

In the case of neutral clones, the induction proportion was not constrained by the fitting (Figure 

5.3a, Table 5.2) because these clones have the same fitness as the surrounding wild type cells 

and therefore do not affect the growth of any other clones in the tissue. The inferred induction 

proportion for the iHet clones was larger than for the iHom clones (Figure 5.3a, Table 5.2). In 

simulations of the best fitting iHet parameters, the mutant clones were colliding at the later 

time points, reducing the clone sizes (Figure 5.3d). This high density of clones and extensive 

clonal collision was not occurring to such an extent in the experimental data (266), suggesting 

that the simple model is not fully capturing all details of the iHet clonal dynamics and may be 

overestimating the fitness of large iHet clones. However, the conclusions of the inferred fitness 

comparison are still valid: that the iHet clones have a clear growth advantage over wild type 

cells, and that the iHom clones have a much larger growth advantage than the iHet clones. 
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Figure 5.3 Notch1 mutant clone model-fitting results. a) The inferred induction proportion and inferred fitness values from 
ABC fitting to lineage tracing data (Chapter 5 Methods) for iHom (red), iHet (purple) and WT (black) animals. Each dot shows 
an individual “accepted” parameter set. b) Distributions of acceptable values of the fitness parameter. Dashed lines and box 
show median inferred fitness and 95% credible intervals. A fitness of 1 is neutral. c) Mean clone sizes from simulations of the 
parameters at the peak of the acceptable distributions (Chapter 5 Methods). Median and 95% confidence intervals of 100 
simulations shown for the simulation curves. Mean ± SEM are shown for the experimental data. d) Snapshots of simulations 
run with best fitting parameters for WT (left), iHet (middle) and iHom (right) clones. The later timepoints for the iHet show a 
denser crowding of mutant clones than was present in the experimental data. 
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Table 5.1 Inferred fitness parameter values from ABC fitting to lineage tracing data. 

 Median inferred fitness 95% credible interval 

Lower Upper 

WT 0.99 0.96 1.03 

WT in Het mice  0.96 0.93 0.99 

WT in Hom mice 1.03 0.96 1.12 

iHet 2.3 2.0 2.6 

iHom 7.0 6.2 8.6 

 

 
Table 5.2 Inferred induction proportion parameter values from ABC fitting to lineage tracing data. 

 Median inferred induction 95% credible interval 

Lower Upper 

WT 0.054 0.002 0.099 

WT in Het mice  0.051 0.004 0.098 

WT in Hom mice 0.052 0.003 0.097 

iHet 0.023 0.017 0.029 

iHom 0.0045 0.0001 0.0085 

 

 

5.2.2 Haploinsufficiency of Notch1 greatly accelerates the spread of Notch1-
null mutant cells 
 

It is clear from the lineage tracing experiments and the model-fitting results that Notch1 is 

haploinsufficient, i.e. the heterozygous mutation gives a growth advantage to the clone. This 

growth advantage of the heterozygous mutant increases the chance of a double Notch1 mutant 

occurring because a higher proportion of the tissue becomes primed with the first mutation.  

 

To illustrate the large difference haploinsufficiency makes to Notch1 mutant tissue takeover, I 

ran simulations of haploinsufficient and haplosufficient versions of Notch1. In the 

haplosufficient simulations, a cell with a single mutant Notch1 allele has the same fitness as 

wild type cells, and a cell with both alleles of Notch1 mutated increases the fitness to the best 

fitting iHom clone fitness (section 5.2.1). In the haploinsufficient simulations, the first Notch1 
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mutation provides a fitness advantage equal to the best fitting iHet fitness, then a mutation to 

the other Notch1 allele of the same cell increases the fitness to the best fitting iHom fitness. 

 

When wild type mice were aged, a small number of spontaneous Notch1 mutant clones 

appeared and spread in the tissue (266). Mutant clones in which both copies of Notch1 were 

lost (Notch1-/- clones) could be identified by staining for NOTCH1 protein. To parallel this 

experiment, I ran simulations with a very low mutation rate. In the simulations, each cell has a 

0.0005% chance of gaining a Notch1 mutation in each generation, with the mutation rate picked 

so that the haplosufficient simulations approximate the experimental data (Figure 5.4a). Each 

mutation in the simulations can either appear on allele 1 or allele 2 of Notch1 with 50% chance 

of each. A cell with a single mutant allele (Notch1+/-) has the heterozygous fitness of that 

simulation type (see above), a cell with both alleles mutated has the homozygous fitness. A 

second mutation to the same allele does not change the cell fitness. I ran the simulations for 

5000 days or until all cells in the tissue had both Notch1 alleles mutated.  

 

The simulations showed that it would take substantially longer for the tissue to be swept by the 

homozygous mutant clones if Notch1 was haplosufficient (Figure 5.4). This shows how the 

haploinsufficiency of Notch1 is a key property that allows mutations in this gene to dominate 

clonal competition in normal oesophageal epithelium. 

 

 
Figure 5.4 Simulations of haplosufficient and haploinsufficient mutant clone growth. a) Proportion of tissue covered by 
homozygous Notch1 mutant (Notch1-/-) clones over time in simulations using the best fit fitness parameter for iHom fitness 
for the Notch1-/- clones . Heterozygous Notch1 mutants (Notch1+/-) are either assumed to be neutral (haplosufficient, green) or 
to have the best fitting fitness parameter to the experimental analysis of iHet clones (haploinsufficient, orange). Curves show 
median of 100 simulations and shaded areas show 95% confidence intervals. b) Snapshot images at 100 days, 300 days and 
3000 days of a representative simulation from a. On the left, Notch1 is assumed to be haploinsufficient (Notch1+/- cell fitness 
inferred from fitting to lineage tracing data), on the right Notch1 is assumed to be haplosufficient (Notch1+/- cells have the 
same fitness as wild type cells). 
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5.2.3 Super-competitive clones can remove pre-neoplastic micro-tumours 

As shown above, Notch1 mutant clones spread aggressively through the normal oesophageal 

epithelium. This raises the question of whether these clones in the normal tissue affect the early 

development of cancer. When mice are administered high doses of the mutagen DEN in their 

drinking water, small micro-tumours form in the oesophageal epithelium (265) (Figure 5.5a,b). 

Hundreds of these tiny tumours, which can be as small as ~20 cells, are present in each 

oesophagus 10 days after the end of DEN treatment (265). However, once mutagen treatment 

ends, the number of tumours falls dramatically (265) (Figure 5.5c). It was found that tumours 

were not lost due to apoptosis, abnormal proliferation of tumour cells or elimination by the 

immune system (265). 

 

 
Figure 5.5 Diethylnitrosamine (DEN) treatment causes tumours to form in the oesophageal epithelium. a) Mice are 
treated with DEN and tissues collected at the indicated time points. b) Confocal images of tumours collected from oesophagus 
at the indicated time points after DEN treatment (scale-bars: 50µm). Tissues stained for Dapi (blue) and Keratin 6 (KRT6, 
red). c) Tumour density post-DEN treatment. Each dot is one mouse. P-values are from a two-sided Mann–Whitney test vs 10 
days. * P<0.05, ** P<0.01. All figures taken from (265).  

 

The tumours grow amongst a dense patchwork of highly fit clones competing for their place in 

the tissue (51). In the normal tissue, competition between mutant clones results in the loss of 

“loser” clones while the “winner” clones expand (19, 51). It was hypothesised that the tumours 

themselves could be involved in this competitive process, and that the substantial drop in 

tumour numbers could be due to “loser” tumours being outcompeted by the mutant clones 

surrounding them. Researchers in Prof Phil Jones’ laboratory team ran a series of experiments 

to determine whether competition with clones in the surrounding normal tissue could be the 

cause of the high rate of tumour loss. I use a mathematical model as a framework to explore 

the results of these experiments and determine whether tumour survival is affected by mutant 

clones in the surrounding normal epithelium. 

 



 

 

 102 

Here I describe a general model of tumour loss that allows the generation of testable predictions 

without requiring details of cell dynamics in tumours or mutant clones in the epithelium. I am 

interested in particular in whether the tumours are lost due to tumour-intrinsic mechanisms, or 

if the tumours are removed by mutant clones in the adjacent normal epithelium. As I discuss 

the factors affecting tumour loss, the principles of the model are described in mathematical 

terms so that I can later construct a numerical version of the model. This numerical version of 

the model is intended as a demonstration of the model principles, rather than a parameter- or 

model-fitting exercise.  

 

In section 5.2.3.1, I describe a previously proposed stochastic model of tumour dynamics and 

apply it to the tumour density following DEN treatment. This model shows how tumour loss 

might occur due to the stochastic nature of the cell dynamics in oesophageal epithelium. 

However, it does not consider any interaction between tumour cells and the surrounding normal 

tissue. In section 5.2.3.2, I show that tumour loss is increased by the induction of highly fit 

mutant clones in the normal epithelium. This justifies incorporating into the model the effects 

that mutant clones surrounding the tumours could have in tumour loss. To further challenge 

this hypothesis, in section 5.2.3.3, I show how reducing the competitive imbalance between 

tumours and highly fit mutant clones in the normal tissue increases the number of surviving 

tumours. If competition with surrounding clones can remove early neoplasms, we might expect 

this competition to act as a selective pressure on tumours. This is the topic of section 5.2.3.4, 

where I discuss how if certain tumour genotypes reduce the competitive imbalance between 

the tumour and mutant clones in the surrounding tissue, those tumour genotypes will have a 

higher chance of survival and will become enriched in the tumour population. In section 

5.2.3.5, I substitute simple mathematical equations into the model to numerically illustrate the 

principles described in the previous sections. I show how the various experimental results in 

this study are all consistent with this model in which mutant clones in the normal tissue 

contribute to the loss of tumours. Section 5.2.3.6 is a brief summary of conclusions from the 

mathematical analysis. 
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5.2.3.1. Stochastic model of tumour dynamics 

I started by considering an existing model of cell dynamics in mouse oesophageal epithelial 

tumours to examine whether it is capable of explaining the pattern of tumour loss over time. 

This model was based on the shallow proliferative cell-differentiated cell hierarchy that 

operates in the normal oesophagus (21, 84).  

 

In a previous study, oesophageal tumour growth in DEN- and Sorafenib-treated mice was 

found to be consistent with a stochastic model of cell dynamics (268). In this model, 

proliferating cells divide to form a pair of proliferating daughter cells, a pair of non-dividing 

daughter cells, or one cell of each type (Chapter 1 section 1.4.1). In the normal tissue, the 

probabilities of each symmetric division type are balanced, so that the total number of 

proliferating cells remains approximately constant. In the tumours, there was a bias towards 

producing more dividing than differentiated cells, causing the average size of tumours to 

increase over time (265, 268). Due to the stochastic nature of the process, some tumours expand 

in size, while in others all basal cells differentiate and the tumour is shed and lost from the 

tissue (27, 268). This variation in outcome due to random chance is known as drift.  

 

The stochastic system here parallels the continuous time Markov process used to model the 

dynamics of mutant clones with imbalanced cell fates in normal epithelium (19, 88) (Chapter 

1 section 1.4.1.2). I can therefore modify the equations used in these studies to calculate the 

probability that a tumour will lose all of its proliferating cells due to stochastic drift. The clones 

in normal epithelium are assumed to originate from single cells (19, 88), so the equations must 

be altered for this study to allow for the likely possibility that the tumours contain multiple 

proliferating cells at the end of the DEN treatment.   
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Asymmetric divisions do not alter the number of proliferating cells, which means we only need 

to consider the symmetric divisions. Letting P and D represent a proliferating and a 

differentiated cell respectively, the simplified model considering only symmetric divisions  

becomes (88)  

>
Z[\
]̂ _

> + > >`2M.		
1
2
+ Δ

c + c >`2M.		
1
2
− Δ

 

where e is the division rate, 2` is the fraction of symmetric divisions, and Δ	is the probability 

imbalance between symmetric division and symmetric differentiation. If ∆=0, equal 

proportions of proliferating and differentiating cells are produced, as occurs in neutral growth 

of wild type clones (21). The value of ∆ can range from -0.5 (all symmetric divisions produce 

two differentiated cells) to 0.5 (all symmetric divisions produce two proliferating cells). 

 

The probability that a cell lineage starting from a single cell will go extinct by time t, f()), is 

given by (269)  

f()) =
g
1
2 − ∆i "

Zjk∆ −	g
1
2 − ∆i
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2 + ∆i"

Zjk∆ − g
1
2 − ∆i

 

 

where 3 is the symmetric division rate of tumour cells (`e).  

 

In this model, each cell is assumed to behave independently of all others, and therefore the 

extinction probability of a population starting with n proliferating cells equals the probability 

that n independent cell lineages starting from single cells all become extinct, i.e. f())B. If we 

assume that fully differentiated tumours are lost from the tissue, then the survival probability 

of a tumour is given by 1 minus the extinction probability: 

 

JIl[m()) = 1 − f())B	 (1) 

 

where n is the initial number of proliferating cells in each tumour (assumed here to be the same 

for all tumours). With n=1, Eq.1 matches the equation used in previous studies for the survival 

probability of clones that originate from single proliferating cells (19, 88). For a full derivation 

of the equations used here and in the cited studies of imbalanced clone dynamics, see ref (269). 
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Figure 5.6 Tumour drift model (with no interaction with mutant clones in surrounding normal tissue). Model fit to 
tumour density (number of tumours per mm2 of oesophageal epithelium) following DEN treatment (Chapter 5 Methods). The 
mean value and range between the minimum and maximum values of the model run with the accepted parameters from ABC 
fitting are shown. 

 

Fitting Equation 1 to the tumour density following DEN treatment results in a steep initial drop 

in tumour numbers followed by a slower downward trend, consistent with the experimental 

data (Figure 5.6). The median accepted parameters found from fitting the model to the data 

(Chapter 5 Methods) were (95% credible interval lower bound, upper bound) d=0.33/day (0.27, 

0.36), Δ=0.003 (0.001, 0.005), n=1.2 (1.0, 1.5), and initial tumour density (immediately 

following DEN treatment)=4.8/mm2 (4.1, 5.6), though these parameters should not be 

interpreted as estimates of the true biological values (see sections below). 

 

However, I will show in the sections below that this model is not capable of explaining the 

results seen in the full range of experiments, and therefore must be rejected (or at least adjusted) 

to account for the clones in the surrounding tissue.   

 

5.2.3.2. Elimination of tumours by highly competitive mutant clones in the surrounding 

normal epithelium 

Although the stochastic model of tumour drift defined above is sufficient to describe the pattern 

of tumour loss following DEN treatment, it does not rule out alternative causes of tumour loss. 

The normal epithelium surrounding the tumours contains a patchwork of competing mutant 

clones (51, 265). Therefore, we speculated that, like clones in the surrounding normal tissue, 

tumours may be displaced by highly fit mutant clones.  
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I considered a general model in which a highly competitive mutation, M, is induced in the 

tissue following DEN treatment. I assume that clones of the mutant M are able to remove 

tumours that they encounter. Let Jn()) be the survival probability of a tumour assuming that 

the mutant M is the only cause of tumour loss. Let JGkop[  be the survival probability of a tumour 

based on all other sources of tumour loss (such as drift [section 5.2.3.1], and it may also include 

tumours removed by DEN-created clones [section 5.2.3.3 below]). For simplicity, I assume 

that tumour loss due to the mutant M is independent of all other causes of tumour loss. The 

combined survival probability of a tumour is then given by  

 

JIl[m()) = JGkop[())Jn())	 (2) 

 

Let M(t) be the proportion of tissue covered by the mutant at time t. The following additional 

assumptions are made for the sake of simplicity:  

1. The proportion of tissue covered by M increases monotonically.  

2. Tumours are spread randomly across the tissue. 

3. Tumours are removed instantly with probability 1 when the mutant M colonizes the 

location of the tumour (see the end of this section for a discussion of this assumption).  

 

This means  

Jn()) = 1 − q())	 (3) 

 

and the combined probability of tumour survival is then given by  

 

JIl[m()) = JGkop[())s1 −q())t	 (4) 

 

To make it easier to compare mice in which the initial density of tumours may vary, we looked 

at the proportion of tumours eliminated (PTE) by M, using the tumour density in the non-M-

mutant regions of the tissue to estimate the tumour density in the full tissue in the absence of 

M. 

>vw = 1 −
)2)7&
q!"x

	 (5) 
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where total is the density of tumours over the full tissue, and Mneg is the density of tumours 

in the M-negative region. 

 

The expected PTE for two models - where the M mutant removes tumours it encounters (>vwn) 

and where tumour loss is independent of the mutant in the surrounding tissue (>vw¬n), are 

 

>vwn = 1 −
JIl[m())

JGkop[())
= q())	 (6) 

 

>vw¬n = 1 −
JGkop[())

JGkop[())
= 0	 (7) 

 

In other words, if M clones are able to remove tumours in a similar manner to which highly fit 

clones are able to displace weaker clones in the normal tissue, then we will see a reduction in 

tumour numbers proportional to the spread of the M mutant. By definition, models in which 

tumour survival is independent of the surrounding tissue (>vw¬n), such as the stochastic 

tumour drift model described in section 5.2.3.1, predict that tumour numbers will be unaffected 

by the spread of the M clones (Figure 5.7a). 

 

To test these predictions, a colleague ran an experiment using an inducible DN-Maml1 

mutation that prevents Notch signalling and forms rapidly expanding clones when induced in 

murine oesophageal epithelium (50, 51). When DN-Maml1 mutant clones are induced in the 

normal epithelium, the density of tumours is significantly reduced compared to uninduced 

control tissues (Figure 5.7b,c) (265). The density of tumours is not altered in regions of the 

induced oesophagus which are not occupied by DN-Maml1 mutant clones (265) (Figure 5.7c), 

and therefore the tumour density reduction is occurring only in the DN-Maml1 mutant areas. 

Furthermore, as predicted under the assumption that DN-Maml1 clones can remove tumours 

they encounter from the tissue, the data shows a strong correlation between DN-Maml1 clone 

spread and tumour loss (Figure 5.7a). The results of the experiment therefore indicate that DN-

Maml1 clones are contributing to the loss of tumours from the tissue (Figure 5.7d).  
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Figure 5.7 Tumour loss when highly fit mutant clones (such as DN-Maml1 clones) are induced in oesophageal 
epithelium following DEN treatment. a) Predictions of a model in which the induced mutant clones immediately remove 
tumours they encounter (blue) and a model in which tumour loss is independent of clones in the surrounding tissue (red). 
Experimental data from protocol in b shown as crosses. b) 10 days after the end of DEN treatment, highly fit DN-Maml1 
clones were induced and tissues collected 20 days later. c) Number of tumours per mm2 of oesophagus in control non-induced 
mice and induced DN-Maml1 mice. In the induced mice, the tumour density is not reduced in the area not taken over by DN-
Maml1 clones (DN-Maml1- area). Error bars are mean ± s.e.m, p-values from two-tailed Mann–Whitney test. d) Cartoon 
illustrating the elimination of tumours by DN-Maml1 clones. The two months of DEN treatment generates tumours, then DN-
Maml1 clones are induced by administering the drugs ß-napthoflavone (BNF) and tamoxifen (TAM). Expanding DN-Maml1 
clones remove less fit tumours. b,c,d taken from (265). 

 

 

In the experiment, there remained a small number of tumours in close contact with DN-Maml1 

mutant regions (265). This may indicate that there is a lag time between contact with DN-

Maml1 clones and tumour removal and that the surviving tumours seen in the DN-Maml1 areas 

are in the process of being removed. The clear significance of the experimental results and the 

small number of tumours surviving in the DN-Maml1 mutant regions suggest that lag time is 

small compared to the timescale of the experiment. It may also be the case that a small 

proportion of tumours are able to survive despite the competition with DN-Maml1 clones (see 

section 5.2.3.4 below).  
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5.2.3.3. Reducing competitive imbalance 

Having shown that the induction of highly fit mutant clones following DEN treatment can 

eliminate tumours, the next question to address is whether mutant clones already present in the 

DEN-treated tissue are able to remove tumours too. Fit clones present in the normal epithelium 

might be able to outcompete the tumours, eliminating them from the tissue. By removing the 

competitive advantage of those clones, we can examine the impact they are having on tumour 

survival. 

 

We assume there is a type of highly fit mutant clone, N, in the DEN-treated tissue that is able 

to remove tumours. As in the section above (Equation 2), we assume that the removal of clones 

by mutant clones N is independent of other causes of tumour loss. Tumour survival probability 

is given by 

JIl[m}k~ ()) = JGkop[())JU
}k~())	 (8) 

 

where, similar to above, JGkop[())	is the survival probability of a tumour based on all sources 

of tumour loss other than elimination by N clones, and JU}k~()) is the survival probability of a 

tumour assuming that the mutant N is the only cause of tumour loss. I assume that, without 

intervention, N clones spread progressively throughout the tissue and outcompete tumours they 

encounter, so JU}k~()Z) < JU
}k~();) for )Z > );.  

 

If the fitness of the surrounding tissue and tumours can be raised to a similar level as N clones, 

this would both prevent the spread of the N clones across the tissue (reducing the number of 

tumours directly competing with N clones) and reduce the elimination of tumours that are 

already adjacent to N clones, as they will now be competing neutrally (Figure 5.8a). Assuming 

that the intervention completely levels the fitness of N clones with the rest of the tissue and 

tumours, the loss of tumours due to N clones will cease during that period, i.e. if the intervention 

starts at time ); and lasts until )Z, JUFBk()Z) = JU
FBk();) = JU

}k~();) > JU
}k~()Z) and  

 

JIl[mFBk ()Z) = JGkop[()Z)JU
FBk()Z) 	> 	JGkop[()Z)JU

}k~()Z) = JIl[m}k~ ()Z) 

 

where, for the experiment in which the intervention is applied, JIl[mFBk ()) is the overall tumour 

survival probability and JUFBk()) is the tumour survival probability related to the mutant N. 
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Therefore, if we can remove or reduce the competitive imbalance between a mutant that can 

remove tumours and the rest of the tissue (including the tumours), then we should see an 

increase in surviving tumours compared to control experiments (Figure 5.8a).  

 

Notch1 mutant clones dominate competition in the normal oesophageal epithelium (51), even 

at early time points (265), and therefore is a good candidate mutation to test this prediction. 

The Notch inhibitor dibenzazepine (DBZ) prevents Notch signalling and would affect all cells 

in the tissue, effectively raising the fitness of all Notch wild type clones and tumours to the 

level of the Notch mutant clones (50) (Figure 5.8a). The competitive advantage of Notch 

mutants is thus removed during the DBZ intervention. Furthermore, by raising all cells to a 

high background level of fitness, this may also reduce the relative fitness advantage conveyed 

by mutations which work independently of the Notch pathway (270). 

 

 
Figure 5.8 Reducing competitive imbalance reduces tumour loss. a) If the adjacent mutant clones have a higher fitness 
than the tumour, the tumour has a high probability of being outcompeted and removed from the tissue (left). Administration 
of the Notch inhibitor dibenzazepine (DBZ) increases the fitness of all cells to that of a Notch1 null cell, levelling the 
competition between tumour and surrounding cells, and reducing the probability that a tumour will be removed (right). b) 
Protocol: wild type mice were treated with DEN for two months. Ten days after DEN withdrawal, DBZ or a vehicle control 
was administered for 14 days, after which the tissues were collected. c) Numerical example of the model (section 5.2.3.5) 
showing increased tumour survival when DBZ is administered compared to a vehicle control. Model fit to tumour density data 
using approximate Bayesian computation (section 5.2.3.5 and Chapter 5 Methods). The mean value and range between the 
minimum and maximum values of the model run with the accepted parameters are shown. Experimental data shown as black 
dots. a,b taken from (265). 

 

The predicted increase in surviving tumours was seen when DBZ was administered between 

10 days ();) and 24 days ()Z) after DEN treatment (Figure 5.8b,c). This suggests that 

competition from clones in the surrounding tissue is removing a substantial proportion of the 

tumours lost in the first few weeks following DEN treatment.  
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5.2.3.4. Selection pressure on tumours from competition with surrounding clones in the 

normal epithelium 

There are genetic differences between the tumours sequenced 10 days and 1 year after DEN 

treatment. In particular, mutations in Notch1 and Atp2a2 are more prevalent in the 1 year 

tumours than the 10 day tumours (Figure 5.9a,b) (265). This genetic change over time could 

be consistent with ongoing selection of mutant subclones within tumours (64). However, the 

elimination of early neoplasms by mutant clones in the surrounding tissue could also act as a 

selective pressure on tumours.  

 

As described in section 5.2.3.3 above, the competitive fitness of a tumour compared to the 

surrounding clones in the normal tissue will affect the survival prospects of the tumour. If 

certain tumour genotypes have a competitive fitness comparable to or higher than the fittest 

mutant clones in the surrounding tissue, they would be more likely to survive. For example, 

Notch1 is the dominant mutant gene in normal tissue, occupying almost the entire tissue 12 

months after DEN treatment (51). We might expect that, similar to the Notch1 mutant clones 

in the normal tissue, tumours which are also Notch1 mutant would be able to resist 

displacement by the mutant clones in the surrounding tissue. Consistent with this, there was an 

increase in the proportion of Notch1 mutant tumours from the 10-day to the 1-year time point 

(265) (Figure 5.9b). There was also a large increase in the proportion of Atp2a2 mutant tumours 

(265) (Figure 5.9b), suggesting that these too may be able to resist displacement by clones in 

the surrounding tissue.  

 
To explore this hypothesis, I expanded the model to include two tumour phenotypes: sensitive 

and resistant. Sensitive tumours can be removed by clones in the surrounding tissue, while 

resistant tumours cannot. The mutation rate is expected to be low following the cessation of 

DEN treatment (few mutations spontaneously occur in untreated aged mice (51)), and therefore 

I assume that, post-DEN treatment, sensitive tumours do not evolve resistance through 

mutation. The probability of tumour survival is then given by  

 

JIl[m()) = D(0)JGkop[())JU()) + Ä(0)JGkop[())		 (9) 

 

where D(0) and Ä(0) are the proportions of tumours at day 0 following DEN treatment which 

are sensitive and resistant respectively.  
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Figure 5.9 Selection of tumour genotype. a) dN/dS analysis of mutations found in tumours collected 10 days after DEN 
treatment and 1 year after DEN treatment. b) Proportion of tumours containing non-synonymous mutations in each indicated 
gene. c) Numerical example of the model from section 5.2.3.5 fit to experimental tumour density data using approximate 
Bayesian computation (Chapter 5 Methods). The inferred proportion of tumours resistant to displacement by mutant clones in 
the model increases from 10 days to 1 year after DEN treatment. The mean value and range between the minimum and 
maximum outputs of the model run with the accepted parameters are shown. a,b taken from (265). 

 

The proportion of surviving tumours which are resistant to displacement by mutant clones, 

Ä()), is given by 

Ä()) =
Ä(0)

Ä(0) + D(0)JU())
	 (10) 

 

Assuming that the initial numbers of sensitive and resistant tumours are non-zero, and that, as 

I assumed earlier, JU()) is a decreasing function of time, then the proportion of surviving 

tumours which are resistant will increase over time (Figure 5.9c). 

 

The increasing proportion of the surviving tumours which are Notch1 and/or Atp2a2 mutant is 

consistent with the hypothesis that these mutations may increase the tumour’s ability to resist 

displacement by clones in the surrounding tissue. The presence of a subset of tumours which 

are able to resist displacement by clones also could explain why a small fraction of tumours 

are able to survive over 1 year after DEN treatment (Figure 5.10) when the surrounding normal 

tissue is almost entirely populated by highly fit mutant clones (51).  

 

5.2.3.5. Numerical model example 

So far, I have mostly defined general properties of the tumour survival probabilities rather than 

given specific equations for their values. This has allowed me to make testable predictions 

without requiring the details of the clonal or tumour dynamics to be defined.  
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Here I substitute feasible functions into Equation 9 to construct a numerical expression of the 

model. The functions are intended to be simple and introduce only a small number of model 

parameters, and the purpose here is to illustrate the concepts described in the previous sections 

rather than accurately and verifiably model the data.  

 

Firstly, I need to define	JGkop[ , the non-clone related probability of tumour survival. Because 

apoptosis, abnormal proliferation of tumour cells and the immune system do not contribute to 

tumour loss (265), I assume that JGkop[	is simply the survival probability based on drift 

(Equation 1). Secondly, I need to define	JU()), the probability of tumour survival based on 

highly fit mutant clones in the surrounding tissue. Following the assumptions in sections 

5.2.3.3 and 5.2.3.4, I assume that there is a single mutant population N capable of removing 

tumours and that N mutant clones remove tumours as soon as they occupy the location of the 

tumour in the tissue. The model start time occurs after the end of DEN treatment, and so much 

of the tissue may already be occupied by the N clones. Therefore, I modify Equation 3 to 

account for the sensitive tumours existing in the remaining non-N proportion of the tissue:  

 

JU()) =
1 − C())

1 − C(0)
	 (11) 

 

This still leaves the definition of C()), the growth pattern of the mutant clones. Growth of 

mutant clones in oesophageal epithelium have previously been modelled using branching 

processes (19), but these don’t consider competition between clones and limitations of the 

tissue size (51, 267). Cellular automata simulations have also been used to model clones in this 

tissue (51) (sections 5.2.1, 5.2.2), but this does not allow for easy integration with the 

mathematical formulation. Instead, I used the logistic equation, which captures the key features 

of clonal spread: fast growth at early time points when mutant cells are mostly competing with 

surrounding wild type cells, slower growth at late time points when the tissue is already largely 

mutant, and an upper bound on total mutant spread (clones cannot grow beyond the capacity 

of the tissue) (51). Therefore,  

C()) =
1

1 + g
1 − ÇV
ÇV

i "ÉÑk
	 (12) 
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where ÇV is the initial proportion of tissue covered by N mutant clones and Ö is the clone growth 

rate. To represent the experiment in which the DBZ Notch inhibitor is applied between 10 and 

24 days after DEN, I can define  

CÜáà()) = 	 Q
C()) ) < 10
C(10) 10 ≤ ) ≤ 24

	 (13) 

The full model can then be constructed by substituting these expressions into equation 9.  

 

There are 7 independent parameters in this model: 3, Δ, !, ÇV, Ö, D(0), and the initial tumour 

density (Table 5.3). I used ABC to find the parameter combinations for which the model most 

closely matched the mean tumour density from 10 days to 18 months after DEN treatment and 

the mean tumour density in CTL and DBZ experiments at 24 days after DEN treatment 

(Chapter 5 Methods). The parameters were constrained as listed in Table 5.3. The results are 

shown in Figure 5.8c, Figure 5.9c and Figure 5.10. The median acceptable parameters found 

were (95% credible interval lower bound, upper bound) d=0.29/day (0.17, 0.35), Δ=0.020 

(0.007, 0.047), n=1.4 (1.0, 2.5), ÇV=0.80 (0.42, 0.99), k=0.032 (0.019, 0.040), S(0)=0.64 (0.44, 

0.82) and initial tumour density=4.2/mm2 (3.4, 5.4), although, given the simplifications and 

approximations used in this numerical example of the model, they should not be interpreted as 

estimates of their biological counterparts.  

 

 
Figure 5.10 Numerical example of the mathematical model fit to experimental data. Tumour density (number of tumours 
per mm2 of oesophageal epithelium) decreases following DEN treatment. Model fit to tumour density data using approximate 
Bayesian computation (Chapter 5 Methods). The mean value and range between the minimum and maximum outputs of the 
model run with the accepted parameters are shown. Experimental data shown in black, shown as mean and s.e.m. 

 

The numerical example of the modelling principles demonstrates how the elimination of (a 

subset of) tumours by mutant clones in the surrounding normal tissue leads to the experimental 
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observations of decreasing tumour numbers following DEN treatment, higher tumour survival 

when competitive imbalance is reduced (DBZ experiment), and a selection pressure on tumour 

genotype 

 

5.2.3.6. Summary of micro-tumour removal by mutant clones 

When DN-Maml1 clones are induced following tumour initiation, they can remove micro-

tumours from the normal tissue. Following this result, I have shown that the results of a series 

of further experiments are all consistent with the hypothesis that mutant clones in the normal 

tissue remove tumours. Because the data are insufficient to fully characterize the mutant clone 

dynamics, tumour growth or the tumour–mutant interaction, the interpretation of the 

experiments is made using a highly abstract model. The numerical version of the model is 

provided to demonstrate how all the experimental data are consistent with each other and with 

the model, and to illustrate how the abstract model can be fleshed out with further details, even 

if those details are based on currently unverified assumptions.  

 

Together, the experimental data and modelling indicates that tumours in the DEN-treated 

oesophageal epithelium are eliminated by mutant clones in the surrounding normal tissue 

Figure 5.11. The data also suggests that the tumour genotype influences the chance of a tumour 

surviving, possibly by allowing the tumours to better compete with mutant clones in the 

surrounding tissue Figure 5.11. 

 

 

 
Figure 5.11 Summary of the tumour-loss model. At early time points following DEN treatment (left), many small tumours 
(pink and purple) exist in the tissue, alongside mutant clones in the surrounding normal tissue (green). Tumours can be removed 
from the tissue through competition with the mutant clones (red arrows), or through tumour-intrinsic mechanisms (blue 
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arrows). Certain tumour genotypes may be better able to resist competition with mutant clones (resistant tumours, purple; 
sensitive tumours, pink). At late time points (right), the tissue is almost entirely occupied by highly fit mutant clones. A small 
number of larger, resistant-genotype tumours remain in the tissue. 
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Table 5.3 Parameters for the numerical example of the model and initial bounds for the approximate Bayesian 
computation parameter fitting. 

Parameter Definition Lower 
bound 

Upper 
bound Notes 

3 
Symmetric division 
rate of proliferating 
tumour cells. 

0 2.5/week 

Histone dilution revealed the 
tumours had a similar division 
rate to the normal tissue  
(approximately 2.5 times a week 
(51)). This was used as an upper 
bound on the rate of symmetric 
divisions. 

Δ 
Cell fate imbalance of 
tumour cells. 

-0.5 0.5  

! 

Number of 
proliferating cells per 
tumour at the end of 
the DEN treatment. 

1 100  

ÇV 

Proportion of tissue 
covered by tumour-
removing clones at the 
end of the DEN 
treatment (i.e. the start 
of the modelling 
period). 

0 1  

Ö 
Growth rate of 
tumour-removing 
clones. 

0 0.04 

Upper bound is the fit to DN-
Maml1 mutant clone expansion in 
wild type background (data from 
(50)).  

D(0) 

Initial proportion of 
tumours that can be 
removed by clones in 
the surrounding tissue. 

0 1  

Initial 
tumour 
density 

Tumours per mm2 at 
the end of DEN 
treatment. 

0 20 

At 10 days, there are 
approximately 2 tumours per mm2 
(Figure 5.5c). Allowed upper 
bound to be order of magnitude 
higher immediately following 
DEN treatment. 
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5.3 Discussion 
Notch1 loss-of-function mutant clones in the oesophageal epithelium are highly competitive 

and can colonise vast areas without markedly altering the histology of the tissue (10, 12, 51, 

266). In this chapter, the fitting of cell competition models to lineage tracing has shown that 

the loss of the second Notch1 allele provides a large increase in fitness. If similar behaviour 

were to occur in humans, it could explain the high frequency of NOTCH1 loss-of-

heterozygosity events observed in human oesophagus (10). Furthermore, I have demonstrated 

that the haploinsufficiency of Notch1 greatly accelerates the spread of Notch1 mutant clones. 

Heterozygous missense mutations in Trp53 and Pik3ca – mouse orthologues of positively 

selected genes in normal human oesophagus – also convey a growth advantage in mouse 

epithelium (19, 271). An avenue for further research would be to investigate whether dominant 

mutations or haploinsufficiency is required for a gene to be detected as a driver of clonal 

expansion in normal epithelium. The results in this chapter also imply that Notch1 mutations 

may have a protective role against cancer. The results suggest that highly competitive clones, 

such as Notch1 mutants, are capable of removing micro-tumours and hence may be 

contributing to the maintenance of histologically normal and healthy tissue. More generally, 

the results suggest that interventions affecting competition in the normal tissue may be able to 

influence the early stages of cancer.  

 

The mathematical and computational models in this chapter are deliberately highly abstract 

and the conclusions are based on very broad patterns of behaviour. Additional complexity can 

be added to models to improve fitting of the finer details of the data. However, it can be hard 

to distinguish between different models of cell dynamics based only on clone size distributions 

from lineage tracing experiments (84). Therefore, more complex models may require further 

experimental data to validate their mechanisms. Future work might involve more precise 

determination of the rules of cell competition that provide Notch1 mutations with a growth 

advantage (99). It would be particularly useful to characterise the competition between Notch1 

mutant clones in normal tissue and cells in micro-tumours that may no longer obey the rules 

governing the normal tissue. Illuminating the mechanisms by which “normal” cells in the tissue 

remove multicellular neoplasms might suggest interventions that encourage the maintenance 

of normal histology in highly mutated aging tissue.  
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5.4 Chapter 5 Methods 
5.4.1 Two-dimensional Wright–Fisher simulations 

I used simulations based on a Wright–Fisher model (91) constrained to a hexagonal 2D grid 

(11) (Chapter 1, Figure 1.11b). Each cell,	âä,H, in the grid represents a cell in the basal layer of 

the oesophageal epithelium. The subscripts denote the cell in location 7 in the grid and 

generation M of the simulation. I used a fixed size (500×500 cells) hexagonal grid with periodic 

boundary conditions.  

 

Each cell has a fitness, ãä,H. In each step of the simulation, each cell âä,H in the new generation 

picks a parent cell from its immediate neighbourhood åä  (the six adjacent cells plus the cell in 

the same grid position) in the previous generation (Chapter 1, Figure 1.11b). The chance of a 

cell being picked as the parent depends on its fitness relative to the other potential parent cells 

in the neighbourhood,  

>sâä,H	J7`"!)	(*	âäç,HÉ;t = é

ãäç,HÉ;
∑ ãè,HÉ;è∈åë

7í ∈ åä

0 7í ∉ åä

 

 

A cell can produce multiple offspring in the next generation and the offspring cells inherit the 

fitness of their parent cells. In this way, a clone with high fitness can expand over multiple 

generations (Chapter 1, Figure 1.11b). At the start of a simulation, a small proportion of cells 

in the grid were randomly selected to be the induced mutant cells. In each simulation, a single 

fitness value was assigned to all the mutant cells. The rest of the cells in the simulation were 

given a fitness of 1. I tracked the sizes of the clones that grew from the mutant cells. 
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5.4.2 Approximate Bayesian computation 

To fit the model parameters to the data I used approximate Bayesian computation (ABC) (272, 

273). In this fitting method, prior distributions for the parameters are defined. These define the 

range of values that each parameter may take, and can include any “prior information” that 

may be known about the parameter values before fitting to the dataset. As I did not have any 

prior information to include, I used uniform distributions as the prior for all parameters.   

 

ABC generates estimates of the parameter values as follows. A parameter set is randomly 

drawn from the prior distributions, and a simulation run with those parameters. The simulation 

results are measured against the observed data using summary statistics. If the “distance” 

between the simulation and the experimental data is less than a set threshold, those simulation 

parameters are accepted, otherwise they are rejected. Repeating this process many times with 

parameter sets randomly drawn from the prior distributions builds up a set of accepted 

parameters, which approximates the posterior parameter distribution (273).   

 

I used a version of ABC based on sequential Monte Carlo sampling (ABC-SMC) (274), 

implemented in the Python package PyABC (275). In this method, multiple generations are run 

with increasingly stringent thresholds for acceptance, with each new generation of parameters 

based on the accepted parameter combinations from the previous generation. In this manner, 

the method efficiently identifies the regions of parameter space that produce model outputs 

most similar to the observed data.  

5.4.2.1. Fitting of Notch1 mutant clone dynamics 

For the prior distributions for the two model parameters, I used uniform distributions across 

wide intervals: mutant fitness between 0 and 50, induction between 0% and 10% of cells. I 

used the Kolmogorov-Smirnov statistic (276) to compare the simulated and experimentally 

observed basal clone size distributions. I used 100 simulated clones at each time point, and 

summed the Kolmogorov-Smirnov statistics calculated for each time point to get the total 

distance between the simulation and the data. I ran 15 generations using a population of 1000 

particles (the required number of accepted parameter sets per generation). 
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5.4.2.2. Fitting of micro-tumour loss 

I ran the ABC-SMC fitting for 25 generations with a population of 10000 (a larger population 

size is required for this model than for the fitting of Notch1 clonal dynamics, in order to 

adequately sample the higher dimensional parameter space here). For the summary statistic, I 

used the total squared distance of the mean model prediction from the mean observed tumour 

density. For the tumour drift model with no interaction with mutant clones in surrounding 

normal tissue, the fit was to the tumour density following DEN treatment. For the model 

including clone interaction, the fit was to the tumour density following DEN treatment and the 

tumour density in the DBZ experiment. Uniform distributions using the bounds in Table 5.3 

were used as the initial prior distributions of the parameters. 

 

 



 

 

 122 

  



 

 

 123 

 
 

 

 

 

Chapter 6  
 

Discussion 
 

 

6.1 Strong and consistent evidence for non-neutral 

selection in normal skin and oesophageal epithelium 
 

One of the aims of this thesis was to resolve a debate on the nature of mutant clonal dynamics 

in normal human epidermis (9, 13-15, 111). A dN/dS analysis of the mutations detected 

through DNA sequencing of eyelid skin found six genes under significant positive selection 

(9). However, an analysis of clone sizes inferred from the same dataset found that the clone 

sizes were consistent with a model of neutral cell dynamics, suggesting that mutations do not 

alter the growth or survival of the cells that carry them (13).   

 

By using a computational model of cell dynamics that takes account of the sheet-like structure 

of the epithelial tissue and the experimental tissue-sampling method, I have shown that the 

clone sizes inferred from the eyelid skin were consistent with non-neutral clonal competition. 

This work therefore resolves the apparent paradox presented by the discrepancy between the 

dN/dS analysis and the mutant clone sizes (15). The predictions of the computational model 

were validated using a DNA-sequencing dataset from normal human oesophageal epithelium 

(10). Like the eyelid skin, the oesophageal dataset exhibited strong signs of positive selection 

when analysed using dN/dS. In addition, the oesophageal dataset illustrated how the choice of 

experimental tissue-sampling method can reduce signs of non-neutrality in the mutant clone 

size distribution.  



 

 

 124 

I found further evidence of non-neutral selection in normal skin and oesophageal epithelium 

by examining the patterns of missense mutations in protein structures of driver genes. The 

mutations in oesophageal epithelium and a larger DNA-sequencing dataset of normal human 

skin (11) exhibited highly significant enrichment of mutations with biologically meaningful 

impacts on protein function. The results were consistent with the dN/dS analysis of these 

datasets. Together with previous studies that found evidence of non-neutral expansion of 

mutant clones in human and mouse epidermis and oesophagus (9, 10, 12, 19, 50, 88, 271), the 

work in this thesis shows that the many strands of available evidence paint a consistent picture 

of widespread non-neutral mutant clonal competition and selection in the normal epidermis 

and oesophageal epithelium.  

 

6.2 Spatial clonal competition has implications for cancer 

development 
 

In chapters 2 and 5 of this thesis, I used computational models of epithelial cell dynamics based 

on spatial competition between mutant clones, i.e. for a clone to expand it must displace other 

cells from the tissue. The use of these spatial competition models is justified by experimental 

results in mouse skin and oesophagus. In normal mouse skin, the expansion of Trp53 mutant 

clones is reversed when they encounter more aggressive mutant clones (19). And, more 

recently, a study in normal mouse oesophageal epithelium provided clear evidence of spatial 

competition between mutant clones (51).  

 

As shown in Chapter 5, one remarkable and exciting consequence of clonal competition is the 

elimination of microscopic tumours by mutant clones in the surrounding normal tissue. 

Previous studies had shown that wild type cells can eliminate neighbouring mutant cells to 

preserve the health of the tissue and defend against cancer formation (277-279). However, in 

this study we have shown that mutant cells can also play a role in protecting tissue homeostasis. 

This study also demonstrated that the elimination of tumours can be altered by manipulating 

clonal competition (in this case, administering the Notch inhibitor dibenzazepine increased 

tumour survival). This shows the feasibility of intervening in precancerous clonal competition 

to reduce cancer incidence (10). These interventions would be designed to alter the 

environment in which clonal competition occurs, so that the growth of benign, or even 
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beneficial tumour-eliminating clones, would be encouraged at the expense of more tumorigenic 

mutations.  

 

Notch pathway mutations are highly competitive in the normal tissue because the cells that 

carry them proliferate at the expense of their neighbours (50, 266). Although these mutations 

tip the balance of cell fate in their favour, they do not altogether break the rules that maintain 

tissue homeostasis. In tumours, however, the rules that govern the normal tissue environment, 

and that Notch1 mutants thrive under, are broken. Indeed, the mutations that drive tumour 

growth, or are highly competitive in the tumour environment, may not be the same mutations 

that are highly competitive in the normal tissue environment (280). For example, several genes 

are mutated more frequently in normal oesophageal epithelium than in OSCC tumours (10, 

12). Some mutations may not contribute to tumourigenesis, but appear in tumours simply 

because they were present in the normal tissue prior to tumour formation. Signs of positive 

selection in the normal tissue, such as a high dN/dS ratio, may also be inherited by tumours 

and could erroneously lead to the classification of a non-tumourigenic gene as a cancer driver. 

This may be the case for NOTCH1, which has been described as a driver of OSCC (10, 281), 

but is mutated at a higher frequency in the normal tissue than in cancer (10, 12) and complete 

loss of Notch1 even appears to reduce the growth of oesophageal tumours (266). We must 

therefore be careful how we interpret “driver mutations” in cancer. To learn which mutations 

are true cancer drivers, the genetic landscape of the normal tissue should be examined too. 

 

6.3 Using computational methods to investigate clonal 

competition and selection in normal epithelia 
 

Theoretical models can be used to turn a qualitative description of a biological system into 

quantitative predictions that can be experimentally tested. Theoretical models construct a 

simplified and abstracted version of the biological system they represent; selecting the 

appropriate degree of simplification is a crucial step in the modelling process (105, 106). More 

complex models can be harder to solve mathematically or can be more computationally 

expensive, and they can also be harder to understand and interpret. Parameter sweeps can be 

used to explore the full range of model outputs, but these sweeps also become less practical to 

run and visualise as the complexity of the model increases. The usefulness of adding 
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complexity to models is also limited by the data available to verify the model assumptions and 

test the model predictions.  

 

The modelling of clonal dynamics is further complicated by the effects of mutations. Different 

advantageous mutations may increase cell fitness through different mechanisms, leading to 

different patterns of clonal expansion (99). Even mutations within the same gene can have a 

wide range of phenotypes (129, 198). Complex interactions may occur between mutations in 

the same cell (98, 282, 283) or in neighbouring cells (51, 284), and the mutant clone phenotype 

may even depend on the order in which the mutations appear (285, 286). The behaviour of the 

mutant clone can also change over time, reacting to a changing local environment that may be 

altered by the mutant itself (19, 287). Exploring the consequences of adaptive mutant 

behaviour, while still using models which are simple enough to fit to data and interpret, will be 

an ongoing challenge in this field of research. 

 

New experimental innovations, such as live imaging of cells in vivo (54, 288) or improved in-

vitro culture systems, may make the use of more complex models of epithelial cell dynamics 

more feasible. Improved experimental methods would allow the measurement of more aspects 

of the biological system and could enable more of the cell dynamics to be directly observed 

rather than inferred through model-fitting. The use of new technology could therefore ensure 

that more model assumptions and parameters are founded on experimental observations, and 

would allow more model predictions to be tested.  

 

To reduce model complexity, the models of clonal competition used in this thesis are highly 

abstracted. For example, the model of tumour–mutant clone competition in Chapter 5 makes 

very few assumptions about the mechanics of tumour growth, mutant clone dynamics, or 

tumour–mutant clone interaction. The abstract nature of the model means it could be used to 

interpret experimental data from a highly complex biological system even though most of the 

detailed complexity of the system was unknown and unmeasured. One drawback of highly 

simplified models is that they may only produce a rough approximation of the experimental 

data, as illustrated in this thesis by the imperfect fit of the 2D Wright–Fisher model to the 

expansion of heterozygous Notch1 mutant clones. Because the model has only two adjustable 

parameters, there is a limit to how much it can be tweaked to precisely match the data. As long 

as model results are not over-interpreted, slight model inaccuracy is not necessarily a problem. 
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However, if model abstraction and simplification discards crucial features of the biological 

system, the key outputs of the model may no longer match the biology it is intended to 

represent. This is exemplified by the analysis of mutant clone sizes in normal human eyelid 

skin presented in Chapter 2: previous analysis using a very simple model of cell dynamics 

concluded that mutations did not alter cell behaviour, but by increasing the complexity of the 

model to include details of the tissue structure and experimental method, the interpretation of 

the data is fundamentally changed. 

 

Some model outputs can also be easily misinterpreted. For example, in the statistical method 

presented in chapters 3 and 4, enrichment of the same mutational feature can be non-significant 

or highly significant depending on how the data are sliced. Interpreting the result requires an 

awareness of other selected features that may exist in the tested region. Nonetheless, the 

method could prove useful if paired with other methods to validate the results.  

 

Each experimental approach, and each method of analysis, will have certain flaws and 

limitations. However, each new method that provides an alternative view of the biological 

system can be a useful addition to the scientist’s arsenal. Considering a broad range of 

theoretical and experimental approaches can be highly beneficial. Agreement between multiple 

methods can provide more confidence than a single method, while differing conclusions 

between methods can raise important questions for further investigation.  

 

6.4 Future Directions 
 

Several directions for future work could follow from this thesis. As mentioned in section 6.3 

above, developments in experimental methods should enable testing and verification of more 

complex theoretical models of cell dynamics. The combination of experiments and modelling 

will enable detailed exploration of the spread of and competition between the many different 

mutations that frequently appear in normal tissues, and build up a clearer picture of the dynamic 

clonal landscape in pre-cancerous tissue. Illuminating the mechanisms that govern clonal 

competition in normal tissues could lead to interventions that can steer somatic evolution in a 

benign direction. There also remains much to discover about the earliest stages of tumour 

growth: how tumours emerge from normal tissue, how they grow and how they do or do not 



 

 

 128 

survive in a highly mutated tissue environment. Here, as shown in Chapter 6, theoretical 

models can be used to help design and interpret experiments.  

 

There is plenty of scope for the statistical method presented in Chapters 3 and 4 to be improved.  

Some metric scores may be accompanied by an uncertainty or a reliability score. These could 

be incorporated in the model distributions by weighting the scores by their reliability. Mutation 

rates can vary based on epigenetic factors and location in the gene (61, 289); therefore, as better 

predictions of per base mutation rate become available, further improvements could be made 

to the null models. As shown in Chapter 4, the statistical method can be adapted to compare 

the selection on a gene between tissues, or between normal tissue and cancer. However, this is 

a particularly difficult challenge, because technical differences between the data are hard to 

distinguish from selection differences. Consequently, further work is required to test the 

robustness of this method. There are vast and increasing amounts of data that the technique in 

Chapters 3 and 4 could be applied to, both in normal tissues and cancer, and it could easily be 

adapted to interpret mutational scanning data.  
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