
Isospectral algorithms, Toeplitz
matrices and orthogonal polynomials

Marcus David Webb

Jesus College
University of Cambridge

A thesis submitted for the degree of
Doctor of Philosophy

March 2017





Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except as declared in the Preface and specified
in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently
submitted for a degree or diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and
specified in the text. I further state that no substantial part of my dissertation has
already been submitted, or, is being concurrently submitted for any such degree,
diploma or other qualification at the University of Cambridge or any other University
of similar institution except as declared in the Preface and specified in the text.

Chapters 1, 2 and 3 are entirely my own work. The research for chapters 4 and 5
was done in collaboration with Dr Sheehan Olver (University of Sydney). Dr Olver and
I wrote all the Julia code implementing the ideas of Chapters 4 and 5, which appears
in Appendix A, in collaboration using the github system.

For Chapter 4, Dr Olver sugggested to me that certain similarity transformations
can be used compute spectral measures of Toeplitz-plus-finite-rank Jacobi operators.
Dr Olver and I found empirical evidence that the roots of the Toeplitz symbol of the
connection coefficients matrix correspond to eigenvalues of the Jacobi operator together
in a meeting in May 2015, but I proved it alone in September 2015.

For Chapter 5, Dr Olver suggested to me that although shifts cannot be effectively
applied in the infinite dimensional QR algorithm, they should in principle be possible
for an infinite dimensional QL algorithm. Together in May 2015 we worked out a basic
implementation of the QL algorithm for Toeplitz-plus-finite-rank Jacobi operators.

Marcus David Webb
March 2017





Acknowledgements

I should first thank my supervisor, Arieh, for taking me on as a student. His hands-
off-but-always-available-for-advice approach to my supervision is one I am grateful to
have had. Amongst many things, I enjoyed the stories, the coffee breaks and the trips
to China.

I am thankful to Sheehan Olver for his hospitality and mentoring during the months I
visited the University of Sydney. I look forward to fruitful future collaborations. Thank
you also to others who enriched my time at Sydney: Alex Townsend, Mikael Slevinsky,
Geoff Vasil and Sasha Fish. I am grateful for the Cecil King Travel Scholarship from
the London Mathematical Society to fund the trip.

I’d like to thank my examiners Anders Hansen and Peter Clarkson for their comments
and suggestions, which helped improve the thesis considerably.

Thank you to Reinout Quispel and others at La Trobe University for their hospitality
during my visits in 2015 and 2016. I thank Wu Xinyuan, Tang Yifa, Gao Jing, Wang
Bin, Liu Kai, Shi Wei and others for their hospitality during my visits to various
universities in China in 2015 and 2016.

I am also grateful to many at the Cambridge Centre for Analysis. Thank you to
the 2012 cohort for their friendship, and to Filip Rindler and Carola Schönlieb for
the mentor roles they played in the first year of my PhD. Thank you to my scientific
brother Gil Ramos for his friendship during our adventures abroad at conferences. My
studies at the Cambridge Centre for Analysis were supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) grant EP/H023348/1.

I am most thankful to my wife Yee Chien. What would I be without her?





Chinese idioms

During my time at Cambridge, besides mathematics I also studied Chinese in my spare
time. And so I thought it appropriate to include some Chinese idioms at the start of
each chapter, each chosen to reflect an aspect of being a researcher in mathematics.
They hence chronicle some of the epiphanies to hit me over these past few years as a
simultaneous researcher of mathematics and learner of Chinese.

Idioms exist in all languages, but in Chinese they are known as成语 (chéng yǔ)
and maintain a special place in the culture. They usually consist of four characters;
for example,塞翁失马（sài wēng sh̄ı mǎ), which literally means “the old man at the
frontier loses his horse”, but figuratively means “a blessing in disguise”. This particular
idiom comes from a story about an old man whose horse runs away over the northern
frontier of China. Days later the horse returns with a fine stallion from across the
border. Later on, the old man’s son breaks his leg falling off said stallion. The moral
of the story is that a seemingly bad situation can turn out to be good, and also vice
versa. Such four character sayings are used frequently without explanation causing
confusion for the uninitiated.

Chinese idioms often come from ancient stories and literature, but sometimes they
don’t. Many four character idioms also have eight character extended versions to
clarify their meaning. The one for the above example is 塞翁失马，焉知非福,
which literally means “the old man at the frontier loses his horse, who knows if it is
not fortunate?”. I included these long versions where possible, along with Mandarin
pronunciation, a literal translation and a figurative translation.

Credit must go to my wife Yee Chien for helping me prepare the idioms and checking
them for errors.





Abstract

An isospectral algorithm is one which manipulates a matrix without changing its
spectrum. In this thesis we study three interrelated examples of isospectral algorithms,
all pertaining to Toeplitz matrices in some fashion, and one directly involving orthogonal
polynomials.

The first set of algorithms we study come from discretising a continuous isospectral
flow designed to converge to a symmetric Toeplitz matrix with prescribed eigenvalues.
We analyse constrained, isospectral gradient flow approaches and an isospectral flow
studied by Chu in 1993.

The second set of algorithms compute the spectral measure of a Jacobi operator,
which is the weight function for the associated orthogonal polynomials and can include
a singular part. The connection coefficients matrix, which converts between different
bases of orthogonal polynomials, is shown to be a useful new tool in the spectral
theory of Jacobi operators. When the Jacobi operator is a finite rank perturbation
of Toeplitz, here called pert-Toeplitz, the connection coefficients matrix produces an
explicit, computable formula for the spectral measure. Generalisation to trace class
perturbations is also considered.

The third algorithm is the infinite dimensional QL algorithm. In contrast to the
finite dimensional case in which the QL and QR algorithms are equivalent, we find that
the QL factorisations do not always exist, but that it is possible, at least in the case
of pert-Toeplitz Jacobi operators, to implement shifts to generate rapid convergence
of the top left entry to an eigenvalue. A fascinating novelty here is that the infinite
dimensional matrices are computed in their entirety and stored in tailor made data
structures.

Lastly, the connection coefficients matrix and the orthogonal transformations
computed in the QL iterations can be combined to transform these pert-Toeplitz Jacobi
operators isospectrally to a canonical form. This allows us to implement a functional
calculus for pert-Toeplitz Jacobi operators.





Contents

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Eigenvalues and spectra . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Toeplitz matrices and their relatives . . . . . . . . . . . . . . . . 6
1.1.3 Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . 14
1.1.4 Isospectral flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.5 Inverse eigenvalue problems . . . . . . . . . . . . . . . . . . . . 19
1.1.6 Infinite dimensional numerical linear algebra . . . . . . . . . . . 21

1.2 Outline and contributions of the thesis . . . . . . . . . . . . . . . . . . 26
1.2.1 Isospectral flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.2 The symmetric Toeplitz inverse eigenvalue problem . . . . . . . 27
1.2.3 Computing spectra of Jacobi operators . . . . . . . . . . . . . . 29
1.2.4 Infinite dimensional QL algorithm . . . . . . . . . . . . . . . . . 32
1.2.5 Computing functions of operators . . . . . . . . . . . . . . . . . 34

2 Isospectral flows 37
2.1 Elementary properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.1 Symmetric isospectral flows . . . . . . . . . . . . . . . . . . . . 43
2.1.2 Normal isospectral flows . . . . . . . . . . . . . . . . . . . . . . 44

2.2 The QR algorithm and isospectral flows . . . . . . . . . . . . . . . . . . 45
2.2.1 The QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2 Toda flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 Double bracket flow . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.4 QR flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Bloch–Iserles flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Bloch–Iserles flow . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 KdV is a modified Bloch-Iserles system . . . . . . . . . . . . . . 53



xii Contents

2.4 Isospectral gradient flows . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.1 The isospectral manifold, or adjoint orbit . . . . . . . . . . . . . 56
2.4.2 Metrics and gradient flows . . . . . . . . . . . . . . . . . . . . . 58

2.5 QR flows as gradient flows . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.1 Scaled Toda-like flows . . . . . . . . . . . . . . . . . . . . . . . 69

3 The symmetric Toeplitz inverse eigenvalue problem 71
3.0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.0.2 Numerical algorithms for the inverse eigenvalue problem . . . . 72
3.0.3 Landau’s Theorem and eigenvalue parity . . . . . . . . . . . . . 75
3.0.4 Bisymmetric isospectral flows . . . . . . . . . . . . . . . . . . . 76

3.1 Isospectral flows for Toeplitz inverse eigenvalue problems . . . . . . . . 77
3.1.1 Isospectral gradient flows . . . . . . . . . . . . . . . . . . . . . . 77
3.1.2 Chu’s flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 The bisymmetric isospectral manifold . . . . . . . . . . . . . . . . . . . 84
3.2.1 Centrosymmetric matrices . . . . . . . . . . . . . . . . . . . . . 84
3.2.2 Structure of bisymmetric isospectral manifolds . . . . . . . . . . 88
3.2.3 3× 3 bisymmetric isospectral manifold . . . . . . . . . . . . . . 92
3.2.4 4× 4 bisymmetric isospectral manifold . . . . . . . . . . . . . . 94
3.2.5 Parity in general . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3 Bisymmetric isospectral flows for Toeplitz inverse eigenvalue problems . 95
3.3.1 Bisymmetric isospectral gradient flows . . . . . . . . . . . . . . 97
3.3.2 Bisymmetric Chu’s flow . . . . . . . . . . . . . . . . . . . . . . 100

3.4 Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Spectra of Jacobi operators via connection coefficients 107
4.1 Spectral theory of Jacobi operators . . . . . . . . . . . . . . . . . . . . 113

4.1.1 Resolvents, measures and polynomials . . . . . . . . . . . . . . 113
4.1.2 First associated polynomials . . . . . . . . . . . . . . . . . . . . 115

4.2 Connection coefficient matrices . . . . . . . . . . . . . . . . . . . . . . 116
4.2.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.2 Connection coefficients and spectral theory . . . . . . . . . . . . 119

4.3 Toeplitz-plus-finite-rank Jacobi operators . . . . . . . . . . . . . . . . . 123
4.3.1 Jacobi operators for Chebyshev polynomials . . . . . . . . . . . 123
4.3.2 Rank-one perturbations . . . . . . . . . . . . . . . . . . . . . . 124
4.3.3 Fine properties of the connection coefficients . . . . . . . . . . . 126



Contents xiii

4.3.4 Properties of the resolvent . . . . . . . . . . . . . . . . . . . . . 130
4.3.5 The Joukowski transformation . . . . . . . . . . . . . . . . . . . 135

4.4 Toeplitz-plus-trace-class Jacobi operators . . . . . . . . . . . . . . . . . 142
4.4.1 Jacobi operators for Jacobi polynomials . . . . . . . . . . . . . . 142
4.4.2 Toeplitz-plus-finite-rank truncations . . . . . . . . . . . . . . . . 143
4.4.3 Asymptotics of the connection coefficients . . . . . . . . . . . . 144

4.5 Computability aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.6 Numerical results and the SpectralMeasures package . . . . . . . . . . . 157

5 The infinite dimensional QL algorithm 169
5.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.1.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.1.2 Nonexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.1.3 Framework for computation of QL factorisations . . . . . . . . . 179

5.2 QL factorisation of Jacobi operators . . . . . . . . . . . . . . . . . . . . 180
5.2.1 Existence for Jacobi operators . . . . . . . . . . . . . . . . . . . 180
5.2.2 Practical computation and storage for Jacobi operators . . . . . 181
5.2.3 Example QL factorisations of Jacobi operators . . . . . . . . . . 186

5.3 The shifted QL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3.1 Example QL iterations for Jacobi operators . . . . . . . . . . . 191

5.4 Computing functions of operators . . . . . . . . . . . . . . . . . . . . . 194
5.4.1 Discrete Schrödinger equation . . . . . . . . . . . . . . . . . . . 195
5.4.2 Discrete diffusion equation . . . . . . . . . . . . . . . . . . . . . 198
5.4.3 Discrete fractional diffusion equations . . . . . . . . . . . . . . . 200

6 Conclusion 203
6.1 Isospectral flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.2 The symmetric Toeplitz inverse eigenvalue problem . . . . . . . . . . . 204
6.3 Spectra of Jacobi operators via connection coefficients . . . . . . . . . . 205
6.4 Infinite dimensional QL algorithm . . . . . . . . . . . . . . . . . . . . . 207

A SpectralMeasures Julia package 211
A.1 Connection coefficient matrices . . . . . . . . . . . . . . . . . . . . . . 211
A.2 Types for Toeplitz-plus-finite-rank operators . . . . . . . . . . . . . . . 214
A.3 Spectral Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.4 A type for rational functions with Dirac weights . . . . . . . . . . . . . 220



xiv Contents

A.5 Principal resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.6 Eigenvalues and spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 222
A.7 QL factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.8 Types for banded-above unitary operators . . . . . . . . . . . . . . . . 226
A.9 QL iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.10 Functions of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B Riemannian geometry and Lie theory 239
B.1 Manifolds, Lie groups and Lie algebras . . . . . . . . . . . . . . . . . . 239
B.2 Lie groups and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 241
B.3 Differential equations, Lie groups and manifolds . . . . . . . . . . . . . 243

B.3.1 Quadratic Lie groups and the Cayley transform . . . . . . . . . 248

C Useful matrix identities 251
C.1 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
C.2 Frobenius Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . 251

D Some results in analysis 253
D.1 The Radon–Nikodym derivative . . . . . . . . . . . . . . . . . . . . . . 253
D.2 Fredholm operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Bibliography 255



千里之行，始于足下
(qiān ľı zh̄ı xíng, sȟı yú zú xià)

Lit. A journey of a thousand miles begins with a single step
Fig. Big goals are attained by many small achievements

Chapter 1

Introduction

The title of this dissertation is Isospectral algorithms, Toeplitz matrices and orthogonal
polynomials. These three distinct themes come into play in the following fashion: we
study interrelated examples of isospectral algorithms, all of which pertain to Toeplitz
matrices in some fashion, and one of which directly involves orthogonal polynomials.
The research context of the thesis is the field of Numerical Analysis, in particular
Numerical Linear Algebra.

An isospectral algorithm is one which manipulates a matrix without changing its
spectrum. The most famous example is the QR algorithm, which given a matrix
X0 ∈ Cn×n produces a sequence of matrices X0, X1, X2, . . . such that

Xk+1 = QH
k XkQk, for k = 0, 1, 2, . . . ,

where Qk is a unitary matrix designed to ensure that (in many cases) X0, X1, X2, . . .

converges to an upper triangular matrix to reveal the eigenvalues of X0 [GVL12],
[TBI97], [Fra61], [Wil65], [EH75].

A Toeplitz matrix is one in which the entries along each of the diagonals are
constant, which means that for an n × n matrix T = Tij there exists a vector
(t1−n, . . . , t0, . . . , tn−1)

T such that Tij = tj−i. For example,

T =


t0 t1 t2 t3 t4

t−1 t0 t1 t2 t3

t−2 t−1 t0 t1 t2

t−3 t−2 t−1 t0 t1

t−4 t−3 t−2 t−1 t0

 . (1.1)

1



2 Introduction

Toeplitz matrices are an example of highly structured matrices. the information which
describes a single Toeplitz matrix is linear in the dimension, as opposed to the usual
quadratic dependence. Furthermore, their specific structure leads to some elegant and
useful properties we will describe in Section 1.1.2.

Let µ be a probability measure on the real line, and P0, P1, P2 . . . be a sequence of
polynomials such that the exact degree of Pk is k for each integer k. We say that these
polynomials are orthogonal polynomials for µ if

∫
R
Pk(s)Pj(s) dµ(s)

{
= 0 if j ̸= k,

̸= 0 if j = k.
(1.2)

Orthogonal polynomials are most often thought of in connection with approximation
theory and numerical integration, chiefly because they are useful for computing orthog-
onal projections in the Hilbert space L2

µ(R) [Gau04], [SM03], but as will be explained
in Section 1.1.3 there are also connections to linear algebra. We use these connections
for the solution of some numerical linear algebra problems in Chapter 4.

1.1 Background and motivation

In this Section we will discuss some of topics which provide a good foundation,
background and motivation for what we cover in the thesis proper.

1.1.1 Eigenvalues and spectra

For a matrix A ∈ Cn×n, its eigenvalues are the solutions λ ∈ C to the problem

Av = λv, ∥v∥2 = 1. (1.3)

More generally, for a closed linear operator A : X → X where X is a Banach space, its
spectrum is the set of all λ ∈ C such that A − λI does not have a bounded inverse
defined everywhere on X.

Let us describe some of the basic aspects of eigenvalues which make them so
applicable and interesting. When A has a complete linearly independent set of eigen-
vectors v1, v2, . . . , vn whose eigenvalues are λ1, . . . , λn respectively, then there exists a
diagonalisation of A,

A = V ΛV −1, (1.4)



1.1 Background and motivation 3

where the kth column of V is vk, and Λ = diag(λ1, . . . , λn). This diagonalisation
elucidates the action of any entire function f : C→ C when applied to the matrix A

[Hig08]:

f(A) = V


f(λ1)

f(λ2)
. . .

f(λn)

V −1. (1.5)

Equation (1.5) shows how the eigenvectors and eigenvalues offer a separation of the
variables which are important and the variables which are unimportant, for applying a
scalar function f to a matrix. If the function f changes, only the effect of this change
on the values f(λ1), . . . , f(λn) determines the behaviour of f(A). If for example the
function f changed but its values at λ1, . . . , λn remained the same, the value of f(A)
would be unaffected.

When A does not have a complete linearly independent set of eigenvectors, the cor-
responding results are not quite as clean. It is still the case that the eigendecomposition
determines a simple way in which functions f applied to the matrix behave [Hig08],
but it does not provide the full story and it can be more informative to consider results
from the beautiful theory of pseudospectra [TE05].

We will describe five aspects and applications of eigenvalues and spectra, but note
that we could never hope to do justice to the breadth and depth of this fundamental
mathematical topic.

Vibrations at fundamental frequencies

To see a concrete example of matrix functions in action, consider the harmonic oscillator,

ẍ(t) + Ax(t) = 0, x(t) ∈ Rn. (1.6)

As long as A is positive definite, this models vibrations and oscillation in classical
mechanics [Mar13]. There exist solutions of the form

x(t) = cos(A1/2t)x(0)

= V


cos(
√
λ1t)

. . .

cos(
√
λnt)

V −1x(0),



4 Introduction

The solution (in this specific case and for the general solution) are oscillatory with funda-
mental frequencies given by the square roots of the eigenvalues of A:

√
λ1,
√
λ2, . . . ,

√
λn.

In the infinite dimensional setting in which x(t) ∈ L2(Ω) for a suitably regular
domain Ω in R, R2 or R3, and setting A to be the negative Laplacian operator on
L2(Ω), equation (1.6) becomes the wave equation on Ω. The domain Ω may represent
a vibrating drum or wind instrument (depending on the boundary conditions), and
the eigenvalues of the Laplacian on Ω correspond to the fundamental frequencies of
said instrument.

In his book The Symmetric Eigenvalue Problem, Parlett said “Vibrations are
everywhere, and so too are the eigenvalues associated with them” [Par80]. Equations of
the form (1.6) are fundamental and eigenvalues are fundamental too as a consequence.

Dynamics about equilibria

Now consider the first order linear system of ordinary differential equations,

ẋ(t) = Ax(t), x(0) = x(0) ∈ Cn×n, (1.7)

which can describe (or at least approximate) the behaviour of a continuous dynamical
system in equilibrium and then perturbed [Str14]. The solution vector is

x(t) = exp(tA)x(0) = V


exp(tλ1)

exp(tλ2)
. . .

exp(tλn)

V −1x(0). (1.8)

The asymptotic stability of the system in equation (1.7) is determined by the signs of
Re(λk) for each k. If Re(λk) < 0 for all k then x(t)→ 0 for all initial data x(0) — the
effect of the perturbation tends to zero and so the system is said to be (linearly) stable.

If as in Subsection 1.1.1 for equation (1.7) we have initial data x(0) ∈ L2(Ω) for a
suitably regular domain Ω in R, R2 or R3, and A is the Laplacian operator on L2(Ω),
then we obtain the heat equation, or the diffusion equation, on Ω. Fourier’s famous
solution to the heat equation on a bounded domain via a Fourier series expansion
was one of the early examples of eigenvalue analysis, long before the invention of the
matrix.



1.1 Background and motivation 5

Dynamics of matrix iterations

Suppose the functions f are the monomials fk(z) = zk, so that fk(A) corresponds to k

iterations of A. Then for any x ∈ Cn×n,

fk(A)x = V


λk
1

λk
2

. . .

λk
n

V −1x. (1.9)

If |λj| > 1 for some j then the input x = vj gives fk(A)x = λk
jx, which diverges as

k →∞ — resonance — and if |λj| < 1 for all j then all inputs will converge to 0 as
k →∞ — stability.

The eigendecomposition of A in such situations is applicable for example when A

represents the adjacency matrix of a network or graph [BH11], which may represent
for example the internet [BP98], or the transition matrix of a Markov chain [Nor98].
Alternatively, consider iterative methods for solving a linear system Ax = b. The
basic methods such as the Jacobi, Gauss-Seidel and successive over-relaxation methods
converge if and only if all the eigenvalues of a certain matrix related to A have absolute
value less than 1 [Saa03]. More advanced methods such as Krylov subspace methods,
in particular Conjugate Gradients and GMRES, have convergence behaviour which
depends intimately on functions of the eigenvalues of A. Preconditioning of linear
systems utilises the existence a direct relationship between the eigenvalues of A and
the rates of convergence of iterative methods [Saa03].

Quantum theory

In quantum theory, physically observable quantities such as energy, momentum and
position may be interpreted as spectra of a Hermitian operator on a Hilbert space
call the Schrödinger operator, and the quantum states (of matter) which give these
observable quantities are given by the associated eigenfunctions [FLSL66].

Besides being pretty fundamental to our understanding of the universe, the spectra
of Schrödinger operators have some real world applications. The atomic absorption
lines observed in the light emitted from excited atoms and molecules is the basis of
the field of spectroscopy. Using absorption spectra, the composition of gases in a
laboratory or on distant objects such as stars, planets, or stellar dust clouds can be
determined simply by precisely observing the wavelengths of light they emit, because



6 Introduction

these wavelengths correspond to (differences in) energy levels of electrons in their
constituent atoms. Precise measurements of redshift of distant galaxies are also enabled
by finding their absorption spectra (this led to the discovery that the universe is
expanding, the first hint of the Big Bang Theory). In computational chemistry, the
approximation of the eigenvalues of Schrödinger operators assists in understanding the
experimental spectroscopy data [Fra99].

Data analysis

In the modern, data-driven world, vast amounts of information can be collected as
vectors, in turn forming the columns of a large matrix X. One of the most basic forms
of data analysis is Principal Component Analysis (PCA), which involves computing
the eigenvalues and eigenvectors of the covariance matrix XTX. The eigenvectors with
the largest eigenvalues represent salient and mutually, linearly independent aspects of
the data set. To use an explicit example, for facial recognition, one forms vectors from
digital photographs of faces, and using PCA finds the eigenvectors which in this setting
are known as eigenfaces [TP91]. The eigenfaces with large eigenvalues represent salient
features of a typical face from the data set. A face can then be approximated using a
linear combination of a few eigenfaces. Completely ignoring eigenfaces with very small
eigenvalues is a form of dimensionality reduction called low rank approximation.

1.1.2 Toeplitz matrices and their relatives

The most fascinating aspect of Toeplitz matrices is their connection to functions defined
on the complex unit circle. Using the notation Tij = tj−i as in equation (1.1), we can
define the function

f(z) =
n−1∑

k=1−n

tkz
k, (1.10)

which is called the symbol of the Toeplitz matrix. For a given function f of the form in
equation (1.10), can use the notation Tn(f) to denote the n× n Toeplitz matrix with
symbol f . The symbol can also be defined in infinite dimensional cases where we have



1.1 Background and motivation 7

semi-infinite Toeplitz matrices (Toeplitz operators),

T (f) =



t0 t1 t2 t3 t4 · · ·
t−1 t0 t1 t2 t3 . . .

t−2 t−1 t0 t1 t2 . . .

t−3 t−2 t−1 t0 t1 . . .

t−4 t−3 t−2 t−1 t0 . . .
...

. . .
. . .

. . .
. . .

. . .


, (1.11)

and doubly-infinite Toeplitz matrices (Laurent operators),

L(f) =



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . t0 t1 t2 t3 t4 . . .
. . . t−1 t0 t1 t2 t3 . . .
. . . t−2 t−1 t0 t1 t2 . . .
. . . t−3 t−2 t−1 t0 t1 . . .
. . . t−4 t−3 t−2 t−1 t0 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


, (1.12)

but we must be careful regarding the regularity of the sequence (tk)k∈Z and the symbol
f(z), and which spaces the operators act upon. Assume for the sake of argument
that (tk)k∈Z ∈ ℓ2(Z). Such coefficients are precisely those such that T (f) is a bounded
operator on ℓ2(N0) and the symbol f extends almost everywhere to an L2(T) function,
where T is the complex unit circle (T = ∂D) [BS13]. The Hilbert space L2(T) is
endowed with the inner product ⟨f, g⟩ = 1

2π

∫
T f(z)g(z) dS, where dS is the Lebesgue

measure on T.
The notion of a Toeplitz symbol is surprisingly fruitful from a mathematical and

computational perspective, as we hope to convey in Subsections 1.1.2 to 1.1.2. What
is more, the elegant analysis turns out to not only be beautiful, but useful because
Toeplitz matrices occur in a multitude of applications [Gra06].

A prime application of Toeplitz matrices is in signal processing, which is a broad
field encompassing areas spanning from audio and speech processing, to economic
and financial modelling, to control theory [Smi07], [Hay08], [Pro96]. A (real) digital
signal is a sequence of real numbers X = (Xk)k∈Z (which may come from regular
measurements of a continuous analogue signal). Denote the space of all signals by
S. A (real) digital filter takes one digital signal and converts it to another, which we



8 Introduction

write TX = (Tk(X))k∈Z = Y. If possible for the purpose, the following assumptions
are made about a filter T .

• T acts linearly.

• T is shift-invariant, or time independent. This means that Tj((Xk)k∈Z) =

Tj−s((Xk−s)k∈Z) for all shifts s ∈ Z.

Such filters are called Linear Time Invariant (LTI) filters. It is also often assumed that
there exists an integer m such that Tk(X) depends only on Xk, Xk−1, . . . , Xk−m — we
say the filter is causal and is of finite impulse response. A filter with these assumptions
can be defined by a single vector (b0, b1, . . . , bm)T and acts upon a signal in a simple
manner,

Yk = b0Xk + b1Xk−1 + b2Xk−2 + · · ·+ bmXk−m, (1.13)

for every k ∈ Z. This is expressed diagrammatically in Figure 1.1. The signal flow
graph shows (with different notation) how with very simple apparatus involving m+ 1

signal amplifiers, such a filter can physically constructed in hardware.

Fig. 1.1 Signal flow graph of a Linear Time Independent filter taken from [Smi07]. The input
signal x(n) is sent through the filter and passed through various parts to become signal y(n)
at the end. The square labelled z−1 delays the signal by 1 discrete time interval, the triangle
with the number bk beside it amplifies the signal by a factor of bk, and the circle labelled +
sums the signals from the arrows leading into it to produce the arrow coming out of it. The
end effect is that of equation (1.13) (with different notation)

The sequence b0, . . . , bm is called the impulse response. This is because if X were
an impulse (i.e. X0 = 1 and Xk = 0 for all k ̸= 0) then the output would be the signal
Yk = bk.



1.1 Background and motivation 9

When considering finitely many entries of the output signal simultaneously, equation
(1.13) becomes


Y0

Y−1

...

Y−n

 =


b0 b1 · · · bm−1 bm 0 · · · 0

0 b0 · · ·
. . . bm−1 bm · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 · · · 0 b0 b1 · · · bm




X0

X−1

...

X−(n+m)

 . (1.14)

From this we see that the action of an LTI filter is equivalent to multiplying by a
Toeplitz matrix.

Sometimes it is beneficial to model a digital signal as a discrete time random
process, in particular when the signal is subject to random noise. In this situation
symmetric (and Hermitian) Toeplitz matrices occur naturally when constructing a
Wiener optimal filter for a stationary random process. The difference between a
signal and a random process is the assignment of a joint probability density for each
finite subset of X. For any such finite subset {Xk1 , Xk2 , . . . , Xkr}, we can define the
covariances E((Xi − µi)(Xj − µj)) where E is expectation with respect to the given
probability density on {Xk1 , Xk2 , . . . , Xkr}. The covariance matrix, C, whose entries
are ci,j = E((Xki − µki)(Xkj − µkj)) is always Hermitian positive semidefinite, but we
also have the following. The process is said to be time invariant or stationary if the
joint probability density of Xk1 , Xk2 , . . . Xkr is equal to the joint probability density of
the shifted sequence Xk1+s, Xk2+s, . . . , Xkr+s for all integer shifts s. For such processes
the covariance matrix C is a Toeplitz matrix [LSL99].

Laurent operators

Probably the most theoretically pleasing type of Toeplitz matrix is the Laurent operator
in equation (1.12), whose domain we assume here is ℓ2(Z). The action of L(f) for a
symbol f is merely multiplication by f on L2(T) in disguise. Indeed, letting {ek : k ∈ Z}
be the standard orthonormal basis for ℓ2(Z), we can define the unitary operator which
satisfies

F : L2(T)→ ℓ2, F [zk] = ek for all k ∈ Z. (1.15)

Then it is straightforward to check that for any functions f, g ∈ L2(T),

F∗L(f)F [g](z) = f(z)g(z). (1.16)



10 Introduction

Therefore all properties of Laurent operators can be derived from the properties of the
multiplication operator by its symbol. For example, the spectrum of L(f) is equal to
the image f(T), and ∥L(f)∥2 = supz∈T |f(z)|.

The unitary transform F is none other than the Fourier transform (in engineering
circles this form of the Fourier transform is sometimes called the z-transform [Pro96]).
The reduction to a multiplication operator is an operator-theoretic restatement of the
convolution theorem, that F [f ] ∗ F [g] = F(fg), where ∗ denotes convolution of ℓ2(Z)
sequences.

The relationship between a Laurent operator and its symbol is in fact homomorphic:
for functions f, g ∈ L2(T), L(f)L(g) = L(g)L(f) = L(fg).

Circulant matrices

A circulant matrix is a Toeplitz matrix such that tk = tk mod n. For example,

C5(f) =


t0 t1 t2 t3 t4

t4 t0 t1 t2 t3

t3 t4 t0 t1 t2

t2 t3 t4 t0 t1

t1 t2 t3 t4 t0

 . (1.17)

These matrices are to the discrete Fourier transform as Laurent operators are to the
semi-discrete Fourier transform discussed above. Considering indices modulo n, the
symbol of the above Toeplitz matrix is the polynomial

f(z) = t0 + t1z + t2z
2 + t3z

3 + t4z
4, (1.18)

but also functions such as f(z) = t3z
−2 + t4z

−1 + t0 + t1z + t2z
2 where the indices have

changed while preserving their residue modulo n. We can take the same approach as
with Laurent operators, but we must instead work on the discrete function space L2(Tn),
where Tn is the set of nth roots of unity, and Cn with the standard orthonormal basis
{e0, e1, . . . , en−1}. Note that the ambiguity of the symbol due to modulo arithmetic
disappears which we evaluate them only on Tn. Define the unitary operator which
satisfies

Fn : L2(Tn)→ Cn, Fn[z
k] = ek for k = 0, 1, 2, . . . , n− 1. (1.19)



1.1 Background and motivation 11

Then for any g ∈ L2(Tn), F∗
nCn(f)F [g](z) = f(z)g(z). Further, just as for Laurent

operators, we have Cn(f)Cn(g) = Cn(g)Cn(f) = Cn(fg) for all f, g ∈ L2(Tn), but we
must be careful to take the product of the symbols in L2(Tn) where the indices of
the coefficients can be considered modulo n. Hence n× n circulant matrices form a
commutative algebra of matrices isomorphic to the algebra of polynomials in L2(Tn).

The diagonalisation can be written more concretely. Let Fn ∈ Cn×n be the Discrete
Fourier Transform (DFT) matrix,

Fn =
1√
n



1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


, ω = exp

(
2πi

n

)
. (1.20)

Then Fn is unitary and simultaneously diagonalises all circulant matrices:

Cn(f) = FH
n


f(1)

f(ω)
. . .

f(ωn−1)

Fn. (1.21)

Similarly to Laurent operators, the spectrum of Cn(f) is the image f(Tn).
One of the most important algorithms in numerical analysis is the Fast Fourier

Transform (FFT), which allows the computation of Fn applied to a vector in O(n log n)

operations as opposed to the usual O(n2). The theoretical foundations are due to Gauss
as early as 1805 (which notably predates Fourier’s own work the Fourier transform)
[HJB85], but the algorithm was made widespread by Cooley and Tukey [CT65]. The
basic idea comes from the multiplicative structure of the roots of unity in Fn allowing
a divide-and-conquer approach.

Using the FFT, one can apply a circulant matrix to a vector in O(n log n) operators,
using the formula Cn(f)v = FH

n diag(Fn(t0, t1, . . . , tn−1))Fnv. We can in fact use the
FFT to apply any n × n Toeplitz matrix to a vector in O(n log n) operations, by
embedding the n× n Toeplitz matrix into a 2n− 1× 2n− 1 circulant matrix, applying
the fast algorithm and then dropping the added n− 1 entries.



12 Introduction

Toeplitz and Hankel operators

We view the Toeplitz operator given in equation (1.11) as a submatrix of a Laurent
operator. The properties of Toeplitz operators can then be derived from those of
Laurent operators.

Related to Toeplitz operators are Hankel operators, which given a symbol f(z) =∑∞
k=−∞ hkz

k is defined as1

H(f) =



h−1 h−2 h−3 h−4 · · ·
h−2 h−3 h−4 h−5

. . .

h−3 h−4 h−5 h−6
. . .

h−4 h−5 h−6 h−7
. . .

...
. . .

. . .
. . .

. . .


. (1.22)

Defining the exchange operator E : ℓ2(Z)→ ℓ2(Z), E(ak)k∈Z = (a−k)k∈Z, which can
also with a mild abuse of notation act upon ℓ2(N0), ℓ2(Z−) and L2(T) in the obvious
ways, we can write Laurent operators in the form [BS13, Sec. 2.13],

L(f) =

(
ET (Ef)E EH(Ef)

H(f)E T (f)

)
. (1.23)

The relation L(f)L(g) = L(fg) for f, g ∈ L2(T) induces the multiplication relations

T (fg) = T (f)T (g) +H(f)H(Eg) (1.24)

H(fg) = T (f)H(g) +H(f)T (Eg). (1.25)

The multiplication relations for Toeplitz and Hankel operators are not as simple as
those for Laurent operators, and so results about these operators are not as simple
either. For example, the spectrum of a Toeplitz operator T (f) is not f(T) as in the
Laurent case, but the union,

σ(T (f)) = f(T) ∪ {λ ∈ f(D) : wind(f(T), λ) ̸= 0} , (1.26)

where wind(f(T), λ) denotes the winding number of the curve f(T) about the point λ
[RT92].

1Conventions on how the symbol defines a Hankel operator can vary from source to source.



1.1 Background and motivation 13

Finite Toeplitz matrices

The symbol analysis is also applicable to finite dimensional Toeplitz matrices, but we
must be careful. For an n× n Toeplitz matrix, we should consider our symbols to lie
in the space L2(T2n−1) (yes T2n−1 and not Tn). In other words, the symbol f(z) =∑n−1

k=1−n tkz
k is to be interpreted as equivalent to f(z) =

∑n−1
k=0 tkz

k +
∑2n−2

k=n tk−2n+1z
k.

All of these equivalent symbols will give the same n× n Toeplitz matrix.
The Hankel matrix defined by the symbol f(z) =

∑n−1
k=1−n hkz

k in L2(T2n−1) is

Hn(f) =



h−1 h−2 · · · h1−n hn−1

h−2 h−3 · · · hn−1 hn−2

...
... . .

. ...
...

h1−n hn−1 · · · h2 h1

hn−1 hn−2 · · · h1 h0


. (1.27)

Note that the indices decrease by 1 modulo 2n−1 with each diagonal, so this definition
is exactly the same as that used for Hankel operators, except that the indices are taken
modulo 2n− 1.

The reason for this apparently gratuitous use of modulo arithmetic is that, just as
a Toeplitz operator can be viewed as a submatrix of a Laurent operator, so too can
an n× n Toeplitz matrix be thought of as a submatrix of a 2n− 1× 2n− 1 circulant
matrix, whose symbol is an element of L2(T2n−1).

We must also define the exchange matrix E ∈ Cn×n,

E = En×n =



1

1

. .
.

1

1


.

The rectangular version Em×n is defined by extending by zero in the direction of greater
length.

Now, if we have a symbol of the form f(z) =
∑n−1

k=1−n tkz
k, then we may write the

2n− 1× 2n− 1 circulant with symbol f as

C2n−1(f) =

(
En−1×nTn(Ef)En×n−1 En−1×nHn(Ef)

Hn(f)En×n−1 Tn(f)

)
. (1.28)



14 Introduction

Compare this to equations (1.24) and (1.25). From the fact that C2n−1(f)C2n−1(g) =

C2n−1(fg) for symbols f, g ∈ L2(T2n−1), we find the following multiplication relations
for Toeplitz and Hankel matrices,

Tn(fg) = Tn(f)Tn(g) +Hn(f)Pn−1Hn(Eg) (1.29)

Hn(fg) = Tn(f)Hn(g) +Hn(f)Pn−1Tn(Eg), (1.30)

where Pn−1 ∈ Cn×n is the projection Pn−1(a1, a2, . . . , an)
T = (a1, a2, . . . , an−1, 0)

T .
Despite these properties and the many more that follow on from these, there is no

known simple characterisation for the eigenvalues of an arbitrary finite dimensional
Toeplitz matrix [RT92], [BS13]. There are some well known results about the asymp-
totics of the eigenvalues as n→∞ [BS13], but research about the eigenvalues of n× n

Toeplitz matrices continues [MMP99],[Hei01].

1.1.3 Orthogonal polynomials

Arguably the most important application of orthogonal polynomials is numerical
integration a.k.a. quadrature [Gau04]. Given a probability measure µ on R, how should
one approximate the integral

I[f ] =

∫
R
f(s) dµ(s)? (1.31)

Suppose we are restricted to approximations of the form

Qn[f ] =
n∑

k=1

wkf(λk), (1.32)

where n is fixed and w1, . . . , wn, λ1, . . . , λn ∈ R. Then the Gauss quadrature rule takes
λ1, . . . , λn to be the roots of Pn, the nth orthogonal polynomial for µ, and the weights
w1, . . . , wn equal to

wk =

∫
R

Pn(s)

(s− λk)P ′
n(λk)

dµ(s). (1.33)

This choice of quadrature rule is optimal in the sense that it gives the exact result
when f is a polynomial of degree 2n− 1. Whether this type of optimality is best is up
for debate [Tre08], [HO09], but nonetheless Gauss quadrature is known as a “jewel of
numerical analysis” [Tre08].



1.1 Background and motivation 15

By definition, the orthogonal polynomials for a measure µ on the real line provide
a suitable basis for best approximation in the Hilbert space L2

µ(R), but some families
of orthogonal polynomials have extremely good properties for uniform approximation
of functions. For example, the Chebyshev polynomials Tn(s) = cos(n cos−1(s)), which
are orthogonal with respect to the measure dµ(s) = (1− s2)−1/2|s∈(−1,1) ds can be used
to produce near-best uniform polynomial approximation for functions f ∈ C([−1, 1])
either by projection or interpolation [Tre13]. This is the basis of the Matlab package
Chebfun, which uses state-of-the-art algorithms for approximating and manipulating
functions using Chebyshev expansions [DHT14]. The excellent approximation proper-
ties of Chebyshev polynomials translates into competitive methods for the solution
of differential equations (which are used in Chebfun), Chebyshev spectral methods
[Tre00].

The link between orthogonal polynomials and numerical linear algebra becomes
clearer here with spectral methods. The solution of an ODE using an orthogonal
polynomial basis requires the construction of matrices which represent the action of
linear operators such as derivatives, integrals and pointwise multiplication by functions
on the coefficients of an expansion in the polynomial basis. This is even true for
nonlinear differential equations. Recently, spectral methods utilising other orthogonal
bases such as ultraspherical polynomials [OT13] and Jacobi polynomials [VBL+16]
have been derived and shown to have some superior properties, such as producing
highly structured matrices.

Orthogonal polynomials (on the real line) satisfy a three term recurrence. That is,
for any given probability measure µ there exists a real sequence α0, α1, α2, . . . and a
sequence of positive real numbers β0, β1, β2, . . . such that the orthonormal polynomials
P0, P1, . . . for µ satisfy

sPk(s) = βk−1Pk−1(s) + αkPk(s) + βkPk+1(s), (1.34)

P−1(s) = 0, P0(s) = 1. (1.35)

One reason this is so interesting is that it leads to a practical recursive algorithm for
evaluating finite expansions in orthogonal polynomials called Clenshaw’s algorithm
[Cle55], [Gau04]. To evaluate a function f =

∑n
k=0 akPk at the point s, compute the

iteration

yn = an, yn+1 = 0 (1.36)



16 Introduction

yk = ak + β−1
k (s− αk)yk+1 − β−1

k+1βkyk+2 for k = n− 1, n− 2, . . . , 1, 0 (1.37)

f(s) = y0. (1.38)

Note that there is no requirement to know anything about the orthogonal polynomials
Pk besides their recurrence coefficients.

The three term recurrence for the orthonormal polynomials is also used to define
the Jacobi operator. A Jacobi operator is given by the infinite-dimensional matrix
[Dei00], [Tes00]

J =


α0 β0

β0 α1 β1

β1 α2

. . .

. . .
. . .

 .

In the case that the measure of orthonormality µ has compact support, J defines a
bounded self-adjoint operator J : ℓ2 → ℓ2 with respect to the standard orthonormal
basis {e0, e1, e2, . . .}. In fact, there is a one-to-one correspondence between probability
measures on R with compact support, their orthonormal polynomials, and bounded
Jacobi operators [AK65]. This measure is actually the spectral measure from the
Spectral Theorem for self-adjoint operators on Hilbert space [Dei00]. That is, there is
a unitary operator U : ℓ2 → L2

µ(R) (such that Uek = Pk) such that

UJU∗[f ](s) = sf(s), (1.39)

for all f ∈ L2(µ).
The support of the measure µ is actually the spectrum of J . Also, if one takes a

finite section of J ,

Jn =



α0 β0

β0 α1 β1

β1 α2

. . .

. . .
. . . βn−2

βn−2 αn−1


, (1.40)

then the eigenvalues of J are the roots of Pn, which are also the nodes for the Gauss
quadrature rules discussed above. The weight wk in the Gauss quadrature rule is equal
to the square of the first entry of the λk-eigenvector.



1.1 Background and motivation 17

1.1.4 Isospectral flows

Consider the following differential equation on the space of n× n matrices Cn×n:

Ẋ = [A(X), X] , X(0) = X0 ∈ Cn×n, (1.41)

where A : R×Cn×n → sl(n)2 is a matrix-valued function that is locally Lipschitz in X

and continuous in t, and [·, ·] is the matrix commutator (also known as the Lie bracket).
Then the eigenvalues of X(t) are the same for all t, a surprising result considering the
simplicity and generality of the expression. Indeed, denoting the eigenvalues of X by
λ1, . . . , λn, we have for any positive integer j,

d

dt

n∑
i=1

λj
i =

d

dt
tr(Xj)

= tr

(
j∑

i=1

X i−1 [A(X), X]Xj−i

)
= tr

([
A(X), Xj

])
(telescoping argument)

= 0 (all commutators are trace-free).

Flows of the form in equation (1.41) are called isospectral flows. They are of
particular interest to numerical analysts because of their connection to algorithms
where the eigenvalues of a certain matrix remain fixed throughout the computation,
such as the QR algorithm. In fact, there exists a choice of A such that the resulting
isospectral flow evaluated at integer values of t gives the iterates of the QR algorithm
(see Subsection 2.2.1).

In the theory of nonlinear ordinary and partial differential equations, isospectral
flows are a particular breed of integrable system, which means that certain functionals
of the solution called integrals are conserved. We just showed that for isospectral flows,
the values of tr(Xj) for j = 1, . . . , n− 1 remain fixed for all t (the cases j ≥ n follow
from the Cayley-Hamilton Theorem).

Conversely, certain integrable systems which on the surface do not look like isospec-
tral flows can be recast into an equivalent form which is an isospectral flow, called a
Lax formulation3. We illustrate with two examples.

2we may subtract multiples of the identity to make A lie in sl(n)
3In fact, any completely integrable Hamiltonian system can be written in Lax form [BV90]



18 Introduction

The Toda lattice is a one-dimensional model for a crystal in solid state physics
due to Morikazu Toda [Tod67]. The model has a chain of n particles whose positions
evolve according to Hamilton’s equations of motion with Hamiltonian

H(q, p) =
1

2

n∑
j=1

p2j +
n−1∑
k=1

exp(qk − qk+1), (1.42)

where qk is displacement of the kth particle from equilibrium and pk is its corresponding
momentum. In 1974 Flaschka showed that under the change of variables,

aj =
1

2
pj, for j = 1, 2, . . . , n, (1.43)

bk =
1

2
exp((qk − qk+1)/2), for k = 1, 2, . . . , n− 1, (1.44)

the Toda lattice equations are equivalent to the isospectral flow Ẏ = [B, Y ] with

Y (t) =



a1(t) b1(t) 0 · · · 0

b1(t) a2(t) b2(t) · · · 0

0 b2(t) a3(t)
. . .

...
...

...
. . .

. . . bn−1(t)

0 0 · · · bn−1(t) an(t)


, (1.45)

and B(Y ) = YU − YL (the difference between the upper and lower triangular parts of
Y ) [Fla74]. Conservation of the eigenvalues of Y is equivalent to the conservation laws
of the original ODE [Tes01]. For example, conservation of momentum is equivalent
to conservation of tr(Y ) and conservation of energy is equivalent to conservation of
tr(Y 2).

The Korteweg–de Vries equation (KdV equation) is a model for waves on shallow
water surfaces [KV95]. It is a nonlinear dispersive Partial Differential Equation for
u : [0,∞)× R→ R described by

∂u

∂t
− 6u

∂u

∂x
+

∂3u

∂x3
= 0, u(0, x) = u0(x), (1.46)

where u0 is often taken to lie in the Schwartz space S(R) of smooth functions whose
derivatives of all orders tend to zero faster than any rational function as |x| → ∞. In



1.1 Background and motivation 19

1968, Peter Lax showed that for the linear operators

Lu(t) = −
∂2

∂x2
+Mu(t,·), (1.47)

and
Au(t) = −4

∂3

∂x3
+ 3

(
Mu(t,·)

∂

∂x
+

∂

∂x
Mu(t,·)

)
, (1.48)

on S(R) where Mv : f 7→ vf is the multiplication operator, the KdV equation is
equivalent to the isospectral flow

∂Lu

∂t
= [Au, Lu] . (1.49)

Specifically, the reader can verify directly that the Lax pair (Lu, Au) satisfies

∂Lu

∂t
+ [Lu, Au] = Mut−6uux+uxxx . (1.50)

As with the Toda lattice, the eigenvalues of Lu are integrals of the KdV equation
[Lax68].

1.1.5 Inverse eigenvalue problems

The problem of finding a matrix with constrained structure and spectrum is an inverse
eigenvalue problem [Chu98], [CG02],[CG05], [FNO87]. Inverse eigenvalue problems in
general is an important and well developed area of numerical analysis, with a prominent
book on the topic by Chu and Golub [CG05]. In physical applications the problem
usually corresponds to reconstructing the parameters of a system from knowledge of its
dynamical behaviour, in particular its natural frequencies or normal modes [Chu98].

To most mathematicians, the concept of an inverse eigenvalue problem is unfamiliar.
However, many problems which are commonly used in applications, but not at first seen
as inverse eigenvalue problems are, with the right perspective. For example, low rank
matrix approximation problems are partially prescribed inverse eigenvalue problems.
Additionally, preconditioning, another commonplace technique in numerical analysis,
is a kind of inverse eigenvalue problem, in which the eigenvalues of a system are to
be made more clustered in order to accelerate the convergence of iterative solvers (see
Subsection 1.1.1).

Inverse eigenvalue problems are not just for the finite dimensional. One of the most
famous inverse eigenvalue problems was posed by Kac in 1966 [Kac66]: Can one hear



20 Introduction

the shape of a drum? More specifically, given a sequence of real numbers λ1, λ2, . . ., can
one find a unique Lipschitz domain Ω ⊆ R2 such that the eigenvalues of the Laplacian
on Ω (with Dirichlet boundary conditions) are λ1, λ2, . . .. Spoiler alert — this was
answered in the negative 26 years later with a demonstration of two domains whose
Laplacians have equal spectra [GWW92].

In this thesis we will only concern ourselves with the fully prescribed inverse
eigenvalue problem for finite dimensional matrices. Such problems are posed with a
vector λ ∈ Cn and a set S ⊂ Cn×n, with the computational task,

Find X ∈ S such that σ(X) = λ. (1.51)

The following is a list of example structured inverse eigenvalue problems (see [CG02]
and [CG05]):

• Jacobi matrices — tridiagonal with positive off-diagonal entries.

• Nonnegative matrices — all entries are positive real numbers [BP94].

• Stochastic matrices — nonnegative matrices whose rows sum to 1. These represent,
for example, the transition probabilities of a Markov chain.

• Toeplitz matrices — matrices which are constant along each diagonal. See Section
1.2.

• Matrices with some prescribed entries.

These inverse eigenvalue problems can be viewed as any one of three different types
of (constrained) optimisation problem:

(1) Find a matrix X from the set Cn×n which minimises some notion of distance to
the set S ∩ {X ∈ Cn×n : σ(X) = λ}.

(2) Find a matrix X from the set S which minimises the error in the eigenvalues.

(3) Find a matrix X in the set {X ∈ Cn×n : σ(X) = λ} such that some notion of
distance to the set X ∈ S is minimised.

Which of these three points of view one takes affects how one might approach the
computational problem. In the first regime one might consider an alternating direction
method such as the Newton–projection algorithm in [CG02, §5.3]. In the second regime



1.1 Background and motivation 21

one can parametrise the set S and optimise the parameters minimise the eigenvalue
error, as in for example, [FNO87]. However, the eigenvalue error (in the Hausdorff
distance for example) as a function of the entries of X, while continuous, is highly
nonlinear, and is certainly not convex.

The third regime interests us most in this thesis. With this point of view we
parametrise the set {X ∈ Cn×n : σ(X) = λ} and optimise those parameters to
minimise the distance to the set S. The author believes this to have some advantages.
First, in many cases the set S is a linear, or at least convex space, and a projection
onto S is simple to compute. Second, the complexity in set {X ∈ Cn×n : σ(X) = λ}
discussed in the previous paragraph can be dealt with by noting that this set is in fact
a manifold, and is acted upon by a Lie group (it is therefore a so-called homogeneous
manifold; see Appendix B). The geometry of a manifold as opposed to unstructured
set has several advantages. One can define distances and derivatives on the manifold,
allowing a continuation approach, such as the isospectral flows developed in Chapter 2.

The idea for isospectral flows for the solution of inverse eigenvalues is quite simple.
Given eigenvalues λ, begin by computing a matrix X0 with those desired eigenvalues
(such as a diagonal matrix), and follow an isospectral flow Ẋ = [A(X), X], X(0) = X0,
as t→∞. The ideal situation is that the function A has been designed so that the
flow converges to matrices in the set S.

Something that should be explicitly addressed is that these isospectral flows must
at some point be solved numerically on a computer. It is not quite so simple though,
because standard methods of solving ODE initial value problems such as linear mul-
tistep or Runge–Kutta methods fail to preserve the spectrum, defeating the point of
the computation altogether [CIZ97]. Fortunately, methods of Geometric Numerical
Integration allow the flow to be discretised while preserving the eigenvalues, the details
of which we will not pursue in this thesis [IQ16], [IMKNZ00].

1.1.6 Infinite dimensional numerical linear algebra

The bread and butter of Numerical Linear Algebra is the following two problems
[TBI97]. Let A ∈ Cn×n.

(i) Linear system problem: Given b ∈ Cn, compute x ∈ Cn such that Ax = b

(ii) Eigenvalue problem: Compute the eigenvalues λ1, . . . , λn of A, along with eigen-
vectors.



22 Introduction

Many other concepts in the field such as factorisations and iterations come from the
desire to solve one or both of these two problems more effectively.

While these two problems are rich, fascinating and useful when taken at face value,
it is worth noting that they often come from discretising and truncating an infinite
dimensional linear operator. For a closed linear operator L on the Hilbert space H,
the associated linear algebra problems are

(iii) Linear operator problem: Given f ∈ H, compute u ∈ H such that Lu = f

(iv) Spectral problem: Compute the spectrum σ(L), along with spectral measure and
eigenvectors if appropriate.

For problem (i) the operator A is often a block operator involving a differential operator
and boundary conditions [OT13].

These problems can be tackled with standard numerical linear algebra techniques
by what is known as the finite section method (sometimes called the Galerkin method).
Take the operators P1, P2, . . ., in which Pn : H → Cn, and define for an integer n,

A = PnLP
+
n , b = Pnf, (1.52)

where P+
n : Cn → H is the Moore-Penrose pseudoinverse of Pn. The idea is then

that if n is taken sufficiently large, the solutions to these finite dimensional problems
approximates the solution to the original problem to a desired accuracy. Indeed the
finite section solutions converge to the proper solution as long as L is invertible (with
bounded inverse) and the projections In = P+

n Pn satisfy In → I strongly in H as
n→∞, by the following simple argument. Let X = A−1b and u = L−1f . Then

∥P+
n x− u∥ ≤ ∥P+

n x− Inu∥+ ∥Inu− u∥

= ∥P+
n A−1b− InL

−1f∥+ ∥Inu− u∥

= ∥InL−1(Inf − f)∥+ ∥Inu− u∥

≤ ∥L−1∥∥Inf − f∥+ ∥Inu− u∥

The strong convergence of In to I implies that this quantity converges to zero as
n→∞.

In stark contrast, the finite section method for computing spectra can fail dra-
matically in some very simple cases [Arv94a], [Arv94b], [Han10], [LS04], [DP04]. For



1.1 Background and motivation 23

example, in [Han10] Hansen considers the shift operator, which has entries

S =


0 1

0 1

0 1
. . .

. . .

 . (1.53)

The spectrum of all finite sections of this operator is {0}, but the spectrum of the
operator is the closed unit disc [BS13] (see also Section 1.1.2). So the finite section
method fails dramatically. It fails even more dramatically for the Laurent operator
version, where the spectrum of the finite sections are again, {0}, but the spectrum of
the full operator is the unit circle — the computed eigenvalues and the actual spectrum
have empty intersection. This phenomenon is called spectral pollution, where the
eigenvalues of a finite section can appear anywhere in the convex hull of the essential
spectrum and persist there for all n→∞ [LS04], [DP04].

While the failure of the finite section method is most spectacular for non-selfadjoint
operators such as S above, it also fails for self-adjoint operators, such as Toeplitz
operators with discontinuous symbols [LS04]. For example, consider the selfadjoint
Laurent operator with matrix entries

ai,j =

{
2 sin i−j

2

i−j
for i, j ∈ Z, i ̸= j

1 for i, j ∈ Z, i = j.
(1.54)

The symbol of this operator is discontinuous. It is the function that is 1 if Re (z) ≥ 0

and 0 otherwise. This operator has applications in the theory of Prolate Spheroidal
Wave functions [Sle78] and Fourier extensions [MH16]. The spectrum of the operator
is the image of the symbol on the unit circle (see Section 1.1.2 and [BS13]), which is
the set {0, 1}. However, the eigenvalues of the finite sections fill the interval [0, 1] as
n→∞ [MH16].

There are theorems guaranteeing convergence of the finite section method for
computing the spectrum in special cases or weakened notions of convergence. Good
resources for these results are [Arv94a], [Arv94b], [Han08], [Han10], [Han11].



24 Introduction

One example pertinent to this thesis is, let Jn be the n× n principal submatrix of
a Jacobi operator J whose spectral measure is µ (see Subsection 1.1.3), and define

µn =
n∑

k=1

wkδλk
,

where λ1, . . . , λn are the n eigenvalues of Jn, wk > 0 is the square of the first entry of
the λk-eigenvector, and δλ is the Dirac delta measure centered at λ. Then µn(f)→ µ(f)

for every compactly supported continuous function f on the real line. The spectral
measures µn of Jn converge weakly to the spectral measure µ of J .

Even in the cases where the finite section method approximates the spectrum well,
it is in some ways unsatisfactory. For example, take the free Jacobi operator,

∆ =


0 1

2
1
2

0 1
2

1
2

0
. . .

. . .
. . .

 . (1.55)

The spectral measure is the semi-circle, µ∆(s) =
2
π

√
1− s2 supported on [−1, 1] (see

Subsection 1.1.3). This measure is absolutely continuous with respect to Lebesgue
measure, but the approximations discussed above will all be discrete. If the spectral
measure has a mixture of absolutely continuous parts and discrete parts, then it is not
possible to distinguish them by looking at the approximations to the measure alone.

Another issue with a finite section approach is simply that the size of the truncation
required is not known a priori, and so in practice many different sizes of truncation are
used until the approximation appears correct. Even then there is no guarantee that
the method has converged (if it does converge).

Using finite section methods along with proofs that the computed sequence of
solutions will converge is known by some authors as Infinite Dimensional Numerical
Linear Algebra [Arv94a], [Arv94b], [Han10]. However, there has been recent interest
in going further than this by designing algorithms which operate on the infinite-
dimensional objects directly. The distinction is subtle.

For the linear operator problem, one approach is to view a banded infinite dimen-
sional linear system as an infinite linear recurrence. One of the earliest examples of this
approach is Olver’s algorithm [Olv67], which adaptively applies Gaussian elimination
to the infinite dimensional system until the testable condition that a back substitution



1.1 Background and motivation 25

can be performed is met. A recent descendent of Olver’s algorithm is the adaptive QR
method introduced by Olver (a recent descendent of the aforementioned Olver) and
Townsend, which performs infinite dimensional numerical linear algebra for a spectral
method in the solution of differential equations [OT13], [OT14].

One aspect of such an approach is that the infinite dimensional objects must be
encodable in a form that can be stored on a computer. This encoding is related to
the computer science principle of lazy evaluation, where the data itself is not stored,
but a way to compute the data should the computer require that data. For example,
the Laurent operator in equation (1.54) can be stored in a tailor-made data structure.
When the compute requests the (2, 3) element, it can compute that entry using the
given formula and return it as if it were actually storing the data.

The ability to use such data structures to perform infinite dimensional numerical
linear algebra requires more than just the ability to store the operators and vectors.
They must be highly structured enough so that useful operations can applied to them
(such as a QR factorisation) and the output of those operations is also a predictably,
highly structured object which can then be stored too. Recent research on spectral
methods produced operators with banded-plus-finite-rank matrix structure, with simple
asymptotics of the entries, and led to the development of a practical framework for
solving infinite dimensional linear systems on a computer [OT13], , [SO17] [Olvb]. The
key to producing these highly structured matrices is an appropriate choice of basis, so
it perhaps it is not unreasonable to suggest that many operators in applications can
be represented by highly structured matrices with the right choice of bases.

The ApproxFun project in Julia [Olvb], pioneered in the main by Sheehan Olver
and influenced by the Chebfun project in Matlab [DHT14], has implemented many
of these ideas for the manipulation of operators and functions. The software is open
source and available at https://github.com/JuliaApproximation/ApproxFun.jl.

Numerical methods for the spectral problem which do not resort to the finite section
method are surprisingly thin on the ground. Deift, Li and Tomei studied the Toda
flow with infinitely many variables [DLT85] (see Subsection 1.1.4). Hansen recently
investigated the infinite dimensional QR algorithm [Han09], and found that for banded
operators, any single entry of a single iterate of the QR algorithm for the full infinite
dimensional matrix is exactly equal to that entry of that iterate computed by the QR
algorithm applied on a sufficiently large finite section of the operator. Hence technically
this approach does resort to finite sections, but so that the computation is equivalent
to computing on the infinite dimensional object.

https://github.com/JuliaApproximation/ApproxFun.jl


26 Introduction

Infinite dimensional linear algebra techniques for the spectral problem on some
highly structured operators are given in Chapters 4 and 5. Some of the ideas in
these chapters have been implemented by the author and Sheehan Olver (University of
Sydney) in the open source Julia package SpectralMeasures. Some of the code is included
in Appendix A. It is freely available online at https://github.com/JuliaApproximation/
SpectralMeasures.jl and uses the ApproxFun features extensively.

1.2 Outline and contributions of the thesis

This section does not attempt to provide a full historical and bibliographical context.
That is done at the beginning of each chapter, and with fuller explanation of the
contributions themselves.

Throughout the thesis, wherever a Theorem, Lemma, Proposition etc. is stated
and it is due to another author, a citation will be included in brackets. If there is no
citation in brackets then the result is original and due to this author.

1.2.1 Isospectral flows

Chapter 2 is about isospectral flows. Most of the material covered in the chapter is
already in the literature such as [HM94] and known before the year 2000, but there
are some minor novel results.

In Section 2.1 we give the basic elementary properties of isospectral flows. In Section
2.2 we discuss the basics of relationships between the QR algorithm, the Toda flow
and the double bracket flow. These types of isospectral flow have gradient structure
and, for appropriate initial data, converge as t→∞.

In Section 2.3 we discuss the Bloch-Iserles flow, which in contrast to the flows
related to the QR algorithm are completely integrable Hamiltonian systems, so are
oscillatory with dynamics that are diffeomorphic to inertial motion on a torus. We
briefly discuss the new observation that the Lax pair for the KdV equation is a modified
infinite dimensional Bloch-Iserles system. This new result is only briefly explored and
so its consequences for the KdV equation and the Bloch-Iserles equation is not clear at
present.

In Section 2.4 we derive gradient flows on isospectral manifolds with an arbitrary
metric and discuss convergence of these flows to stationary points. Isospectral gradient
flows for arbitrary potential functions Ψ : Cn×n → R with respect to the so-called

https://github.com/JuliaApproximation/SpectralMeasures.jl
https://github.com/JuliaApproximation/SpectralMeasures.jl


1.2 Outline and contributions of the thesis 27

normal metric were given by Brockett [Bro93] and gradients flows for which Ψ is
quadratic (such as the Toda flow) were derived in [CD90], [Bro93, Rem. 2], and [BG98,
Prop. 2.3]. A small contribution of this chapter is to take these results and put them
together into one uniform language to specify the isospectral gradient flows for an
arbitrary metric and arbitrary potential function (Theorem 2.4.6). We also describe
the stationary points of these flows, showing that they are independent of the choice of
metric (Theorem 2.4.7), and also that the stability of the stationary point also does
not depend on the metric chosen.

The results of Section 2.4 on isospectral gradient flows is applied to the QR algorithm
in Section 2.5. This is used to put double bracket flows, Toda flows, and QR flows
into a single framework of gradient flows with different metrics on the isospectral
manifold, which has never been done before. The main contribution of this chapter
is the following. We define a new isospectral flow called the gradient QR flow (see
Theorem 2.5.8), which can be written

Ẋ = [π2(f(X)), X]︸ ︷︷ ︸
QR flow

+
1

2

[
X, f(X)H

]︸ ︷︷ ︸
= 0 if X is normal

. (1.56)

This isospectral flow is the gradient flow for the function Ψ(X) = 1
2
∥f(X) − D∥2F

where D = diag(n, n − 1, . . . , 2, 1) with a certain metric (given in Definition 2.5.6).
If the initial matrix X(0) is normal, then this gradient flow coincides with the QR
flow, but in general the term 1

2

[
X, f(X)H

]
is nonzero. This gives some insight into

the nonconvergence of the QR algorithm for nonnormal matrices. Note that there are
explicit examples of nonconvergence for the nonshifted QR algorithm [Bat90],[Day96].

1.2.2 The symmetric Toeplitz inverse eigenvalue problem

Chapter 3 is about computing an n×n real symmetric Toeplitz matrix with prescribed
spectrum λ ∈ Rn using isospectral flows. The results of the chapter give incremental
contributions and new insight to the current state of the art which was pioneered
mainly by Moody Chu [CD89], [CD90], [Chu93], [Chu98], [CG02], [CG05].

The basic idea of taking a initial matrix Y0 ∈ Rn×n
sym with the prescribed spectrum

(such as a diagonal matrix) and numerically simulating an isospectral flow that has
been designed to converge to matrices with a certain structure in order to solve an
inverse eigenvalue problem appears to have been first put forward by Chu and Driessel



28 Introduction

[CD89], [CD90]. In [CD90] Chu and Driessel give the gradient descent flow,

Ẏ = [[PT (Y ), Y ], Y ], (1.57)

where PT (Y ) is the orthogonal projection of Rn×n
sym onto the subspace of Toeplitz matrices.

Chu and Driessel also introduced the following flow in [CD89], which we call Chu’s
flow.

Ẏ = [B(Y ), Y ], (1.58)

where B is the Toeplitz annihilator,

B(Y )i,j =


yi,j−1 − yi+1,j if i < j,

0 if i = j,

yi,j+1 − yi−1,j if i > j.

(1.59)

To understand the motivation behind this flow, consider the case n = 4:

B(Y ) =


0 y1,1 − y2,2 y1,2 − y2,3 y1,3 − y2,4

y2,2 − y1,1 0 y2,2 − y3,3 y2,3 − y3,4

y3,2 − y2,1 y3,3 − y2,2 0 y3,3 − y4,4

y4,2 − y3,1 y4,3 − y3,2 y4,4 − y3,3 0

 . (1.60)

Clearly, B(Y ) = 0 if and only if Y is Toeplitz. Chu also showed that if Y has distinct
eigenvalues then [B(Y ), Y ] = 0 if and only if Y is Toeplitz (see [Chu93] and Proposition
3.1.2).

In Section 3.1 we conduct a basic study these two isospectral flows (before returning
to them both later in the chapter). This contributes to the previous numerical studies
in [Chu93],[DS99],[Zan98]. In [CG05], Chu and Golub report numerical evidence of
some stable stationary points of the gradient descent flow which are not Toeplitz
matrices. This can be slightly problematic for the algorithm, which must be restarted
from a different initial datum if such a stationary point is encountered.

Symmetric Toeplitz matrices are bisymmetric, which means they are symmetric
along both the top-left-to-bottom-right and top-right-to-bottom-left diagonals. Let
X ∈ Bisym(n), the space of bisymmetric n× n matrices, and suppose X has n distinct
eigenvalues. Then the bisymmetric isospectral manifold is

BI = {Y ∈ Bisym(n) : eigs(Y ) = eigs(X)} . (1.61)



1.2 Outline and contributions of the thesis 29

One the main contributions of this chapter is a full formal description of how the
restriction to bisymmetric matrices affects the isospectral manifold. In Section 3.2,
we prove that this manifold has

(
n
p

)
connected components, where p =

⌈
n
2

⌉
. Each

component has dimension 1
2
p(p−1)+ 1

2
q(q−1) where q = n−p, and may be parametrised

by a connected Lie group of centrosymmetric orthogonal matrices. Aspects of this
fact appear to be known in the literature, as Chu discusses the different connected
components of the manifold for the 3× 3 case but does not go into detail [Chu93].

The fact that each connected component of the bisymmetric isospectral manifold is
acted upon by a Lie group with dimension 1

2
p(p− 1) + 1

2
q(q − 1) is important. This

allows us to parametrise the manifold by the associated Lie algebra, which has the
small dimension. Using this, we can reduce the 3× 3 bisymmetric isospectral flow to
a one dimensional flow, the 4× 4 bisymmetric isospectral flow to a two dimensional
flow, and the 5 × 5 bisymmetric isospectral flow to a four dimensional flow and so
on. In Subsection 3.2.3 we derive an analytical solution for the trajectories of 3× 3

bisymmetric isospectral flows. Then in Section 3.3, conduct a numerical study of the
4× 4 gradient flow and Chu flow for the inverse Toeplitz eigenvalue problem and gain
some new insights that were not feasible if you only consider the 5 dimensional phase
space rather than this reduced 2 dimensional one.

At the end of the chapter we briefly discuss an extremely impractical, brute force
approach to the computation which produces isospectral iterates Y0, Y1, . . . which
converge to a symmetric Toeplitz matrix. The reason is purely theoretical, to show that
the Solvability Complexity Index of the problem is 1 (see [BAHNS15a] and Section
4.5).

1.2.3 Computing spectra of Jacobi operators

In Chapter 4 we show that the computation and theoretical study of the spectra
and spectral measure of a Jacobi operator J which is a structured perturbation of
another Jacobi operator D whose spectral theory is known, can be conducted using
the connection coefficient matrix between J and D. Almost all of this chapter consists
of original results.

Suppose that D is the second Jacobi operator, and let Qk(s) denote its orthonormal
polynomials. The connection coefficient matrix between J and D, denoted C =

CJ→D = (cij)
∞
i,j=0 is defined to be the upper triangular matrix representing the change



30 Introduction

of basis between (Pk)
∞
k=0 and (Qk)

∞
k=0 in the following manner:

Pk(s) = c0kQ0(s) + c1kQ1(s) + · · ·+ ckkQk(s). (1.62)

Alternatively this can be written,
P0(s)

P1(s)

P2(s)
...

 = CT


Q0(s)

Q1(s)

Q2(s)
...

 for all s ∈ C. (1.63)

Connection coefficient matrices have been well-studied [Ask75, GM09], but it does
not appear to have been noted that the connection coefficients are relevant and useful
in the spectral theory of Jacobi operators. When viewed as acting on finite vectors, J ,
D and C are related by

J = C−1DC. (1.64)

Consequently, when C is a bounded and invertible operator on ℓ2, we have σ(J) = σ(D).
More significantly, we further show that when C is neither bounded nor invertible, the
matrix entries are still informative about the spectra of J and D. For example, if we
let ν denote the spectral measure for D, the connection coefficients matrix C = CJ→D

determines the existence and certain properties of the Radon–Nikodym derivative dν
dµ

(see Appendix D.1). In Section 4.2 we derive new results regarding these relationships,
including the formula

dν

dµ
=

∞∑
k=0

c0,kPk, (1.65)

whenever the series converges at least in the probabilists’ weak sense.
In Sections 4.3, 4.4 and 4.5, we attention to the case where D = ∆, the free

Jacobi operator (see equation (1.55)). We assume that J is a Jacobi operator of the
form J = ∆ + K, where K is compact. Jacobi operators of this form have been
studied extensively because of their links to Schrödinger operators and to classical
orthogonal polynomials [DS06a, DS06b, DN86, DE15, GNR16, GC80, KS03, NVA92,
VAG89, VA90, VA94, VA91].

We prove the following more specific theorems about the spectra of this class of
Jacobi operators J , and by an appropriate scaling and shifting by the identity, that of
all Jacobi operators which are Toeplitz-plus-compact.



1.2 Outline and contributions of the thesis 31

If J is a finite rank perturbation of ∆, i.e. there exists n such that

αk = 0, βk−1 =
1

2
for all k ≥ n, (1.66)

• Theorem 4.3.8: The connection coefficient matrix CJ→∆ can be decomposed into
CToe + Cfin where CToe is Toeplitz, upper triangular and has bandwidth 2n− 1,
and the entries of Cfin are zero outside the n− 1× 2n− 1 principal submatrix.

• Theorem 4.3.21: let c be the Toeplitz symbol of CToe. It is a degree 2n − 1

polynomial with r ≤ n roots inside the complex unit disc, all of which are simple.
The spectrum of J is

σ(J) = [−1, 1] ∪
{
λk :=

1

2
(zk + z−1

k ) : c(zk) = 0, |zk| < 1

}
, (1.67)

and the spectral measure is given by the formula

µ(s) =
1

pC(s)
µ∆(s) +

r∑
k=1

(zk − z−1
k )2

zkc′(zk)c(z
−1
k )

δλk
(s), (1.68)

where pC(s) =
∑2n−1

k=0 c0,kPk(s) =
∑2n−1

k=0 ⟨ek, CCT e0⟩Uk(s).

We extend these results to the case where J = ∆ +K where K is a trace class
operator. In that case, C = CToe + CK where CToe is upper triangular Toeplitz and
CK is compact as an operator in an appropriate topology we make clear in Section 4.4.
Furthermore, let c be the Toeplitz symbol of CToe. It is analytic in the unit disc with
real inside the complex unit disc. The discrete eigenvalues, as in the Toeplitz-plus-
finite-rank case are of the form 1

2
(zk + z−1

k ) where zk are the roots of c in the open unit
disc.

Following the pioneering work of Ben-Artzi–Hansen–Nevanlinna–Seidel on the
Solvability Complexity Index [BAHNS15a, BAHNS15b, Han11], we prove the following
theorems about computability. We assume real number arithmetic, and the results do
not necessarily apply to algorithms using floating point arithmetic.

• Theorem 4.5.7 : If J is a Toeplitz-plus-finite-rank Jacobi operator, then in a finite
number of operations, the absolutely continuous part of the spectral measure
is computable exactly, and the locations and weights of the discrete part of the
spectral measure are computable to any desired accuracy. If the rank is known a



32 Introduction

priori then the algorithm can be designed to terminate with guaranteed error
control.

• Theorem 4.5.9 : If J = ∆ + K is a Toeplitz-plus-compact Jacobi operator,
then in a finite number of operations, the spectrum of J is computable to
any desired accuracy in the Hausdorff metric on subsets of R. If the quantity
supk≥m |αk|+ supk≥m |βk − 1

2
| can be estimated for all m, then the algorithm can

be designed to terminate with guaranteed error control.

The significance of these computability theorems is that they extend the known class
of operators whose spectra can be computed with error control.

1.2.4 Infinite dimensional QL algorithm

In Chapter 5 we discuss the infinite dimensional QL algorithm. Almost all of this
chapter consists of original results.

The QL algorithm is the same as the QR algorithm, except that instead of computing
QR factorisations we compute QL factorisations where L is lower triangular. In finite
dimensions the QR and QL algorithms are equivalent in the following sense. Applying
some iterations of the QR algorithm to a matrix has the same effect as rotating the
entries π radians, applying the same number of iterations of the QL algorithm and
then rotating back. Hence in finite dimensions there is no real difference between the
QR and QL algorithms in terms of convergence [Par80].

For the QR algorithm on tridiagonal matrices, Wilkinson shifts can be applied to
the algorithm give global convergence of the bottom–right entry to an eigenvalue of
the input matrix [Wat07], [Par80]. The QR algorithm has been generalised to the
infinite dimensional case of bounded operators on ℓ2 [Han08], [Han09], and so too has
the related Toda flow [DLT85]. However, there is an issue with the use of shifts to
accelerate convergence: there is no bottom–right entry! In finite dimensions, since the
QL algorithm is equivalent to the QR algorithm after rotating the entries π radians,
we can force the top–left entry to converge rapidly to an eigenvalue using Wilkinson
shifts, but this logic does not follow for the infinite dimensional case as there is no
infinite dimensional analogue of such a rotation of entries.

Olver and Townsend proposed the following idea a footnote of [OT14]. In principle,
if one could perform the QL algorithm to an infinite dimensional matrix, it could be
possible to utilise shifts to yield rapid convergence of the top–left entry to an eigenvalue



1.2 Outline and contributions of the thesis 33

(if the matrix has any point spectrum). However, there were no known methods to
compute the QL factorisation of a (non-compact) infinite dimensional matrix.

One of the main contributions of this chapter is Theorem 5.1.17, which goes partway
to solving the problem posed by Olver and Townsend. Here is the gist. For some
bounded operators A on ℓ2 we can find an analytical solution to A = QL. For example,
if A = ∆− 5

4
I where ∆ is the free Jacobi operator, then the QL factorisation of A is

∆− 5

4
I =



−
√
3
2

1
2

−
√
3
4
−3

4
1
2

−
√
3
8
−3

8
−3

4
1
2

−
√
3

16
− 3

16
−3

8
−3

4
1
2

...
. . .

. . .
. . .

. . .
. . .





√
3
2

−1 1
1
4
−1 1

−1
4
−1 1
. . .

. . .
. . .


. (1.69)

A proof of this new result (for a general Toeplitz-plus-finite-rank Jacobi operator)
is given in Theorem 5.2.6. Such QL factorisations can be used to compute the
QL factorisation of banded matrices which contain said matrix as the bottom-right
submatrix. Specifically, suppose that A is a banded, bounded operator on ℓ2 with
bandwidth b and block form

A =

(
An B

C A∞

)
, (1.70)

where An ∈ Rn×n and A∞ has an a priori known QL factorisation A∞ = Q∞L∞. Then
the way to compute the QL factorisation of A is seen by noting that(

In

QT
∞

)(
An B

C A∞

)
=

(
An B

QT
∞ L∞

)
. (1.71)

The right hand side has finitely many nonzero entries above the diagonal (bandedness
implies B has finitely many nonzero entries). Therefore the standard approach of
introducing zeros from the rightmost column applies, so this can be used to complete
the QL factorisation in finitely many operations. Full details are given in Theorem
5.1.17.

One of the most surprising results to come out of this work is that the existence of
a QL factorisation is not always guaranteed, unlike the case for the QR factorisation
[Han08], [Han09]. We prove that a Jacobi operator has a QL factorisation if and only
if the essential spectrum does not contain zero (see Theorem 5.2.2). Notably, the free



34 Introduction

Jacobi operator ∆ does not have a QL factorisation. In Theorem 5.1.3, Theorem 5.1.14
and Corollary 5.1.15 we prove generalisations of this for banded, selfadjoint operators,
but their exact statements have some technical points we will explain there and not
here.

In Section 5.1 we prove existence and nonexistence results for QL factorisations
of bounded selfadjoint case and briefly indicate if there is an easy generalisation of a
result to the non-selfadjoint case. In Section 5.2 we restrict these results to Jacobi
operators and find that the statement of the results is simpler. Then in Section 5.2.2
we make practical considerations for running the QL algorithm for Jacobi operators on
a computer, and derive a method to compute the QL factorisation of a Toeplitz-plus-
finite-rank Jacobi operators, using only a finite amount of memory.

In Section 5.3 we consider the infinite dimensional QL algorithm which utilises these
infinite dimensional QL factorisations. We prove that for a bounded Jacobi operator J
such that there is an eigenvalue λ0 satisfying

0 < |λ0| < η := min
λ∈σ(J)\λ0

|λ|, (1.72)

the unshifted QL algorithm converges in the sense that the (0, 1) entry is O
(∣∣∣λ0

η

∣∣∣k).

This implies (as is done in the finite dimensional case [Par80]) that if a shift is chosen
sufficiently close to an isolated eigenvalue, then there will be rapid convergence of the
top-left entry to that eigenvalue.

1.2.5 Computing functions of operators

To conclude the thesis we combine ideas from Chapters 4 and 5 to compute an invertible
operator U such that for a Jacobi operator J that is a finite rank perturbation of ∆,
we have

UJU−1 =


λ1

. . .

λr

∆

 , (1.73)

where λ1, . . . , λr are the discrete eigenvalues of J (if there are any). Appropriate scaling
and shifting by the identity gives a new canonical form for Toeplitz-plus-finite-rank



1.2 Outline and contributions of the thesis 35

Jacobi operators. For functions g : σ(J)→ R, we have

g(J) =


g(λ1)

. . .

g(λr)

g(∆)

 . (1.74)

In Proposition 5.4.1 we prove the apparently new result that if g(s) =
∑m

k=0 akTk(s),
then

g(∆) =
1

2



2a0 a1 a2 a3 · · ·
a1 2a0 a1 a2 . . .

a2 a1 2a0 a1 . . .

a3 a2 a1 2a0 . . .
...

. . .
. . .

. . .
. . .


− 1

2



a2 a3 a4 a5 · · ·
a3 a4 a5 a6 · · ·
a4 a5 a6 a7 · · ·
a5 a6 a7 a8 · · ·
...

...
...

...
. . .


(1.75)

If a given function g is Lipschitz in [−1, 1], g(s) can be approximated by a Chebyshev
series (for example using Chebfun or ApproxFun) [Tre13]. Hence functions of ∆ can
be computed with relative ease, and applied to finite support vectors quickly using the
FFT (because g(∆) is the sum of a Toeplitz and a Hankel matrix).

The final part of the thesis utilises this for the solution of a discrete Schrödinger
equation with double potential wells (demonstrating discrete quantum tunnelling), and
some diffusion equations, including fractional order ones. A brief comparison to the
traditional finite section method approach is made (see Subsection 1.1.6).





瞎子摸象，不识大体
(xiā zi mō xiàng, bù shí dà ťı)

Lit. Blind men groping an elephant don’t know the whole body
Fig. Not seeing the whole story, mistaking a part for the whole

Chapter 2

Isospectral flows

To analyse isospectral algorithms, we advocate an understanding of isospectral flows.
These are the continuous versions of isospectral algorithms, functions X : R→ Cn×n

which satisfy
X(t) = P (t)X(0)P (t)−1, for t ∈ R,

where P : R → Cn×n is a C1 function such that P (t) is invertible for all t. All such
flows satisfy the differential equation Ẋ(t) = [A(t), X(t)] for a continuous function
A : R → Cn×n, and methods of calculus and differential geometry can be used to
elucidate their convergence properties [Wat84], [HM94], [Bro93], [Chu08]. In the theory
of integrable systems, these flows are known as Lax Pairs [Lax68], [BV90], [Tes01],
[Dei00].

This chapter in the main covers known results about isospectral flows, but has
several new results. We begin in Section 2.1 with the elementary properties, most of
which can be found in textbooks such as [HM94] and [CG05]. In Section 2.2 we discuss
the (already known) connections between the Toda flow, double bracket flow, the QR
algorithm and the QR flow:

• Toda flow: Ẏ = [YU − YL, Y ], where Y ∈ Rn×n
sym

• Double bracket flow: Ẏ = [[S, Y ] , Y ], where Y, S ∈ Rn×n
sym

• QR flow: Ẋ = [X, π1(f(X))], where f is a function which is analytic on the
eigenvalues of X ∈ Cn×n,

where π1 is the projection

π1(Y ) = YL − Y H
L + iIm(YD). (2.1)

37



38 Isospectral flows

It was shown by Symes that the QR algorithm which produces a sequence of isospec-
tral iterates Y (0),Y (1), Y (2) is interpolated by a function of the QR flow, in that
exp(f(Y (k))) = Y (k) [Sym82] (see Theorem 2.2.11). Setting f = log gives the direct
correspondence.

It is clear that the case f(z) = z and X ∈ Rn×n
sym the QR flow is equal to the Toda

flow. Bloch observed that for tridiagonal matrices the Toda flow and the double bracket
flow with S = diag(n, n− 1, . . . , 1) are equal [Blo90] (see Lemma 2.2.9). Later, Chu
showed that both the Toda flow and the double bracket flow in which S is a diagonal
matrix can both be written in the form

Ẏ = [A ◦ Y, Y ] , (2.2)

where A is a skew-symmetric matrix and ◦ denotes the Hadamard product (element-
wise product), extending the relationship between the Toda flow and double bracket
flow to all symmetric matrices [Chu95] (see Section 2.5.1).

In Section 2.3 we briefly discuss Bloch–Iserles flows, which are flows on symmetric
matrices of the form

Ẏ =
[
N, Y 2

]
= [NY + Y N, Y ] , Y (0) = Y0 ∈ Rn×n

sym , (2.3)

for a fixed skew-symmetric matrix N . There are two reasons for including this short
section in the thesis. First, is simply to give an example of an isospectral flow with
different behaviour to other flows considered in the thesis. The second reason is to state
a new result about infinite-dimensional Bloch–Iserles systems, which is that the Lax
pair for the KdV equation can be parametrised in terms of the Bloch-Iserles system
with N = ∂x, the differential operator on L2(R). A full exploration of this fact is
beyond the scope of this thesis, but it is worth the brief discussion.

In Section 2.4 we discuss gradient flows which evolve on an isospectral manifold.
Gradient flows for quadratic potential functions on isospectral manifolds with respect
to the normal metric are given in [CG05]. They state that a function of the form
Ψ : Rn×n

sym → R, where
Ψ(Y ) = ∥Y − P (Y )∥2F , (2.4)



39

where P projects onto an affine subspace of Rn×n
sym , the isospectral gradient flow with

respect to the normal metric is

Ẏ = [[P (Y ), Y ] , Y ] , (2.5)

which generalises the double bracket flow in which P (Y ) = S.
There exists research in the literature on generalising the double bracket flow to be

an isospectral gradient flow in a modified metric [BG98, Prop. 2.3], [Bro93, Rem. 2].
A general form of isospectral gradient flow for an arbitrary potential function was
given in [Bro93], but this is only with respect to the normal metric. The three papers
mentioned just now focus on an abstract framework involving compact semi-simple Lie
algebras. There doesn’t appear to exist in the literature, firstly, a translation of these
results into more “applied” language, nor secondly, the straightforward generalisation
of these results to an arbitrary potential and an arbitrary metric. In Theorem 2.4.6
we provide this: For a C1 function Ψ : Cn×n → R be a C1 function. The isospectral
gradient flow for Ψ with respect to the metric ⟨[A,X], [B,X]⟩g = ⟨A,LXB⟩F as defined
in (2.58) is of the form,

Ẋ(t) = −
[
L−1
X(t)πg

[
∇Ψ(X(t)), X(t)H

]
, X(t)

]
, (2.6)

where πg denotes the orthogonal projection onto a Lie algebra which defined which
isospectral deformations are allowed (g is usually so(n)).

In Section 2.5 we define of a new isospectral flow we call a gradient QR flow. For
an function f analytic on the eigenvalues of a matrix X0 ∈ Cn×n, the gradient f–QR
flow is

Ẋ = [X, π1(Herm(f(X)))] , (2.7)

where Herm(Y ) = 1
2
(Y + Y H). This flow has the property that the function Ψ(X) =

1
2
∥f(X)−D∥2F where D = diag(n, n− 1, . . . , 2, 1), is monotonically decreasing along

the trajectories, and

dist(Herm(f(X(t))),Diag(n))→ 0 as →∞. (2.8)

See Theorem 2.5.11 and Theorem 2.5.15. What is the relationship between the
QR flow and the gradient QR flow? The gradient QR flow can be rewritten as
[X, π1(Herm(f(X)))] = [X,Herm(f(X))] − [X, π2(Herm(f(X)))] = 1

2

[
X, f(X)H

]
−



40 Isospectral flows

[X, π2(f(X))]. Hence the gradient QR flow is also equal to

Ẋ = [π2(f(X)), X]︸ ︷︷ ︸
QR flow

+
1

2

[
X, f(X)H

]︸ ︷︷ ︸
= 0 if X is normal

. (2.9)

Therefore when X0 is a normal matrix the QR flow and the gradient QR flow coincide.
The significance of this fact is that it adds some insight into why theoretical guarantees
for the convergence of the QR algorithm with normal initial matrices such as those
in [EH75] and [Bat94] have been easily found by researchers, but convergence results
for nonnormal matrices have been shown to be impossible in general [Bat90],[Day96].
One difference it is that for normal matrices, the QR algorithm interpolates a certain
gradient flow, but for nonnormal matrices this specific gradient structure (if any) does
not exist.

2.1 Elementary properties

An isospectral flow actually has a slightly stronger property than preservation of the
eigenvalues.

Proposition 2.1.1 (See [HM94]). Let X : R → Cn×n be a C1 function. Then the
following are equivalent.

(i) There exists a C1 function P : R→ SL(n) such that

X(t) = P (t)X0P (t)−1. (2.10)

(ii) There exists a continuous function A : R→ sl(n) such that

Ẋ(t) = [A(t), X(t)] . (2.11)

The two auxiliary functions are related by

Ṗ (t) = A(t)P (t) (2.12)

Proof. (i) =⇒ (ii): Define A(t) = Ṗ (t)P (t)−1. Then by Jacobi’s formula (Lemma
C.1.2), tr(A(t)) = (det(P (t)))−1 d

dt
det(P (t)) = 0. We also see using the formula for the



2.1 Elementary properties 41

derivative of the inverse (Lemma C.1.1), that A gives the right time derivative for X,

Ẋ = ṖX(0)P−1 − PX(0)P−1ṖP−1 = [A,X] .

(ii) =⇒ (i): Define P (t) as the solution to the initial value problem

Ṗ (t) = A(t)P (t), P (0) = I.

Then P (0)X0P (0)−1 = IX0I = X(0), and for all t ∈ R, using the formula for the
derivative of the inverse (Lemma C.1.1),

d

dt
P (t)X0P (t)−1 =

dP (t)

dt
X0P (t)−1 + P (t)X0

d

dt

(
P (t)−1

)
= A(t)P (t)X0P (t)−1 − P (t)X0P (t)−1A(t)P (t)P (t)−1

=
[
A(t), P (t)X0P (t)−1

]
.

By uniqueness of the solution to the initial value problem (2.11), X(t) = P (t)X0P (t)−1.

Definition 2.1.2 (Isospectrality). A C1 flow X : R → Cn×n is isospectral if there
exists a C1 function P : R→ SL(n) which parametrises a similarity transformation for
X,

X(t) = P (t)X(0)P (t)−1 for all t ∈ R.

Remark 2.1.3. Note that the existence of this similarity transformation is not implied
just by the eigenvalues remaining fixed. Consider the C1 function

X(t) =

(
1 t

0 1

)
.

The eigenvalues are 1 and 1 for all t, but there is no similarity transformation describing
X from X(0) (because X(0) is the identity). The extra property of isospectral flows
we have imposed is that the algebraic and geometric multiplicities of the eigenvalues
must be preserved. Equivalently, the (unique) Jordan decomposition of the matrix is
preserved by the flow.

Remark 2.1.4. Isospectral flows are sometimes written in the form

Ż(t) = [Z(t), C(t)] . (2.13)



42 Isospectral flows

These are equivalent to the above mentioned form, but the similarity structure of these
flows is slightly different:

Z(t) = R(t)−1Z(0)R(t), C(t) = R(t)−1Ṙ(t). (2.14)

We use the following definition for functions of matrices, which is consistent with
that in [Hig08].

Definition 2.1.5. We say that a function f : G ⊆ C→ C is a matrix function for the
matrix A ∈ Cn×n if the values

f (j)(λi), i = 1, 2, . . . , s, j = 0, 1, . . . , ni − 1, (2.15)

exist. Here λ1, . . . , λs are the eigenvalues of A, each with index ni in their Jordan
normal form (see [Hig08, pp. 2–3]).

Remark 2.1.6. Note that polynomials are matrix functions for all matrices. Conversely
a matrix function applied to a specific matrix is equal to some polynomial applied to
the matrix [Hig08].

Proposition 2.1.7 (See [HM94]). Let f be a matrix function for X0 ∈ Cn×n (see
Definition 2.1.5). Suppose that X : R → Cn×n satisfies the isospectral flow Ẋ(t) =

[A(t), X(t)], X(0) = X0. Then f(X) satisfies the isospectral flow

d

dt
f(X(t)) = [A(t), f(X(t))] , f(X(0)) = f(X0). (2.16)

Proof. Let P (t) be the auxiliary flow as defined in Proposition 2.1.1, so that X(t) =

P (t)X0P (t)−1 and Ṗ (t) = A(t)P (t). Then by one of the main properties of matrix
functions, we have that f(X(t)) = P (t)f(X0)P (t)−1 [Hig08], so using the formula for
the derivative of the inverse (Lemma C.1.1), we get

d

dt
f(X(t)) = Ṗ (t)f(X0)P (t)−1 + P (t)f(X0)

d

dt
P (t)−1

= A(t)P (t)f(X0)P (t)−1 − P (t)f(X0)P (t)−1A(t)P (t)P (t)−1

= [A(t), f(X(t))] .

Noting f(X(0)) = f(X0) completes the proof.



2.1 Elementary properties 43

2.1.1 Symmetric isospectral flows

Here we discuss real, symmetric isospectral flows since they are an oft-considered
special case [HM94], [DNT83], [Bro91], [BI06].

Proposition 2.1.8 (See [HM94]). Let B : R → so(n) be continuous and Y0 ∈ Rn×n
sym .

Then the unique solution to

Ẏ (t) = [B(t), Y (t)] , Y (0) = Y0, (2.17)

lies in Rn×n
sym for all t. Furthermore, the auxiliary flow in Proposition 2.1.1,

Q̇(t) = B(t)Q(t), Q(0) = I, (2.18)

evolves in SO(n).

Proof. By Proposition 2.1.1, we may write Y (t) = Q(t)Y (0)Q(t)−1, where Q̇(t) =

B(t)Q(t), Q(0) = I. Note that Q(0) = I is orthogonal, and for all t,

d

dt
(QQT ) = Q̇QT +QQ̇T

= BQQT +QQTBT

= B +BT

= 0.

Hence Q(t) is orthogonal and Y (t) = Q(t)Y (0)Q(t)T ∈ Rn×n
sym for all t. The determinant

of an orthogonal matrix is ±1, so since det(Q(0)) = 1 and the flow is continuous, Q
must lie in SO(n) for all t.

One reason to study symmetric isospectral flows is that their fixed points are easy
to characterise, at least under the assumption that Y has distinct eigenvalues. This
facilitates the design of the flow to meet our computational desires.

Lemma 2.1.9. Let D ∈ Diag(n) with distinct diagonal entries. Then for any N ∈
Cn×n,

[N,D] = 0 ⇐⇒ N ∈ Diag(n).

Proof. This follows from the explicit calculation: [N,D]ij = nij(djj − dii).



44 Isospectral flows

Proposition 2.1.10. Let Y ∈ Rn×n
sym have distinct eigenvalues and B ∈ so(n). Then

[B, Y ] = 0 ⇐⇒ B = 0

Proof. Since Y is symmetric, we have the factorisation Y = QDQT , where D ∈ Diag(n)

Q ∈ SO(n). Since B is skew-symmetric, we can factor it into B = QAQT , where
A = QTBQ is a skew-symmetric matrix. Then we have the following:

[B, Y ] = 0 ⇐⇒ [A,D] = 0 ⇐⇒ A ∈ Diag(n) ⇐⇒ A = 0 ⇐⇒ B = 0,

by Lemma 2.1.9.

By the above proposition, we see that if Y0 has distinct eigenvalues, the fixed points
of an autonomous isospectral flow are precisely the matrices similar to Y0 such that
B(Y ) = 0. This is a useful fact for the design of algorithms involving isospectral flows,
since we know that the flow converges if and only if the condition B(Y ) = 0 is satisfied
in the limit. Despite this, we have no reason in general to expect an isospectral flow to
converge to a fixed point Y ∗ simply because B(Y ∗) = 0, even if it is the unique matrix
similar to Y0 with this property. It is some special property of B which guarantees
convergence over an alternative scenario such as a periodic orbit.

2.1.2 Normal isospectral flows

A matrix A ∈ Cn×n is said to be normal if AAH = AHA. Here we discuss isospectral
flows of normal matrices because we will show later that normal matrices have special
behaviour in the QR algorithm.

Proposition 2.1.11. Let A : R → su(n) be continuous and X0 ∈ Cn×n be normal.
Then the solution to

Ẋ = [A,X] , X(0) = X0 (2.19)

is normal for all t. Further, the auxiliary flow Q̇ = AQ evolves in the Lie group SU(n).

Proof. The argument that Q is unitary is identical to that used in Proposition 2.1.8.
The determinant can take any value on the unit circle here though, so we must show
that the determinant is constant. Using the Jacobi formula (Lemma C.1.2),

d

dt
det(Q) = (det(Q))tr(Q̇QH) = (det(Q))tr(A) = 0.



2.2 The QR algorithm and isospectral flows 45

Hence det(Q(t)) = det(Q(0)) = 1 for all t, so Q evolves in SU(n). It is now simple to
show that X is normal for all t:

[
X,XH

]
=
[
QX0Q

H , QXH
0 QH

]
= Q

[
X0, X

H
0

]
QH

= 0.

This completes the proof.

Remark 2.1.12. Note that the proof of Proposition 2.1.11 also shows that for nonnormal
matrices X0, and continuous flows A evolving in su(n), the nonnormality of X as
measured by a unitary-invariant norm ∥ · ∥ such as the 2-norm or Frobenius norm is
preserved: ∥∥[X,XH

]∥∥
F
=
∥∥Q [X0, X

H
0

]
QH
∥∥
F
=
∥∥[X0, X

H
0

]∥∥
F
.

2.2 The QR algorithm and isospectral flows

Isospectral flows came to the attention of numerical analysts in the 1980’s after Symes
showed that the famous QR algorithm was interpolated by an isospectral flow at integer
values of t [Sym82], [DNT83], [Wat84]. In this section we discuss the QR algorithm
and isospectral flows that are associated to it: Toda flows, double bracket flows, and
their generalisations.

2.2.1 The QR algorithm

Let X ∈ Cn×n. Then there exists Q ∈ SU(n) and an upper triangular matrix R such
that

X = QR. (2.20)

This factorisation is known as a QR factorisation. The factorisation is usually made
unique by requiring the diagonal entries of R to be positive, or else the entire row is
zero. This is what we will assume throughout.

The QR factorisation is a fundamental concept in numerical linear algebra [TBI97],
[Par80], one reason for which is its use in the QR algorithm. The QR algorithm
is the go-to algorithm for computing the eigenvalues of a general matrix [Cip00],
[Wat08], despite being invented over half a century ago by Francis and Kublanovskaya
(independently) [Fra61], [Kub62]. The basic form of the algorithm is as follows.



46 Isospectral flows

Definition 2.2.1 (Basic QR algorithm). The basic QR algorithm starting from X0 ∈
Cn×n generates the following sequences of matrices:
1. X(0) ← X0

2. for k = 1, 2, . . . do
3. Compute the QR factorisation: Q(k)R(k) = X(k−1)

4. X(k) ← R(k)Q(k)

We simply compute the QR factorisation, multiply R by Q, and repeat. The first
thing to note is that the iterates are all similar:

X(k) = R(k)Q(k) = Q(k)HQ(k)R(k)Q(k) = Q(k)HX(k−1)Q(k), (2.21)

so the QR algorithm is a discrete isospectral flow.
How does such a simple algorithm compute eigenvalues? It is easy to see by the

uniqueness of the QR factorisation that upper triangular matrices are fixed points of
the iteration. If, for example, the eigenvalues of a Hermitian matrix X(0) ∈ Cn×n have
distinct absolute values and we write

|λ1| > |λ2| > · · · > |λn|,

then the elements of X(k) generated by the QR algorithm satisfy x
(k)
ij = O(|λj/λi|k)

[Wil65], [Wat07]. Hence not only are upper triangular matrices fixed points of the
iteration, but X(k) converges to an upper triangular matrix as k →∞. More generally,
when X(0) is normal, R(k) converges to a diagonal matrix as k → ∞ [EH75]. There
is no “magic” global convergence result for all matrices, particularly when X(0) is
nonnormal. We will discuss this later in the chapter.

The QR algorithm is rarely applied to a full matrix. In practice it is first reduced to
upper Hessenberg form by Householder’s algorithm in O(n2) operations. This approach
takes advantage of the fact that the QR algorithm preserves the lower bandwidth,
which follows from the fact that the similarity transformations can be viewed as coming
from triangular matrices as well as unitary matrices,

X(k) = R(k)Q(k) = R(k)Q(k)R(k)(R(k))−1 = R(k)X(k)(R(k))−1. (2.22)

Reduction to Hessenberg form also reduces the number of operations and storage
required to compute the QR factorisations. We will not dwell upon the efficient,
optimised implementation of algorithms in this thesis.



2.2 The QR algorithm and isospectral flows 47

Table 2.1 Commonly used shifting strategies for the QR algorithm.

σ(z) Name Notes

z Non shift The basic QR algorithm
z − η Linear shift Most common type of shift
(z − η)(z − η) Francis double shift Two linear shifts done in succession
exp(z) Toda shift Iterates interpolate the Toda flow

In practice the QR algorithm is also modified by including shifts. We take shifts to
be matrix functions for X0 as in Definition 2.1.5. This departs from what is usually
defined in the literature, as will be explained below in Remark 2.2.3.

Definition 2.2.2 (Shifted QR algorithm). The shifted QR algorithm starting from
X0 ∈ Cn×n with shifts σ1, σ2, . . . generates the following sequences of matrices.
1. X(0) ← X0

2. for k = 1, 2, . . . do
3. Compute the QR factorisation: Q(k)R(k) = σk(X

(k−1))

4. X(k) ← (Q(k))HX(k−1)Q(k)

Remark 2.2.3. Shifts are usually taken to be a complex number. The approach taken
here in which a shift is a matrix function generalises the notion of a shift and allows us
to include things like double shifts and Toda shifts given in Table 2.1.

The shifted QR algorithm is clearly isospectral, and just as in the basic case, the
lower bandwidth is preserved because the similarity transformation is also performed
by an upper triangular matrix:

X(k) = (Q(k))HX(k−1)Q(k)

= R(k)σk(X
(k−1))−1X(k−1)σk(X

(k−1))(R(k))−1

= R(k)X(k−1)
(
R(k)

)−1
.

(2.23)

The similarity transformation by upper triangular matrices shown in equations
(2.22) and (2.23) will only work if σk(X

k−1) is nonsingular because we took an inverse.
Hence we make the following definition.

Definition 2.2.4 (Regular shifts). For a matrix X0 ∈ Cn×n, a shift σ is regular if
σ(X) is nonsingular.

What happens if we use an irregular shift?



48 Isospectral flows

Proposition 2.2.5 (Perfect shifting). Let X0 ∈ Cn×n, and let σ be a shift for X0 such
that σ(X0) is nonsingular with kernel of dimension k. Then one iteration of the shifted
QR algorithm with shift σ makes the last k rows of σ(X(1)) zero.

Proof. Since the dimension of the kernel is invariant under the Hermitian transpose,
σ(X0)

H also has a k-dimensional kernel. Let Q1 ∈ Cn×n be a unitary matrix whose
first k columns form an orthonormal basis for the kernel of σ(X0)

H , and such that the
last n− k columns form an orthonormal basis for the orthogonal complement. Then
QH

1 σ(X0) has its final k rows zero. Hence we can partition QH
1 σ(X0) into

QH
1 σ(X0) =

(
A11 A12

0k×n−k 0k×k

)

If A11 = Q2R2 is the unique QR factorisation then the orthogonal matrix

Q = Q1

(
Q2 0n−k×k

0k×n−k Ik×k

)

is such that the last k rows of QHσ(X0) are all zero. Hence the last k rows of
σ(X(1)) = QHσ(X0)Q are also all zero.

Corollary 2.2.6. Let X0 ∈ Cn×n have an eigenvalue λ ∈ C of geometric multiplicity
k. Then one iteration of the shifted QR algorithm with shift σ(z) = z − λ makes the
last k rows of X(1) zero, except the diagonal entries, all of which are λ.

Proof. Since λ is an eigenvalue of X0 of geometric multiplicity k, σ(X) is nonsingular
with a k dimensional kernel. Hence by Proposition 2.2.5 the last k rows of σ(X(1)) are
zero. Adding λI to this gives the required result.

Remark 2.2.7. Corollary 2.2.6 shows that if we use a shift σ(z) = z − λ where λ is
an eigenvalue, then the eigenvalue and its multiplicity become explicit in the matrix
after one step of the shifted QR algorithm. This may seem useless at first, because we
would need to know the eigenvalue with which to shift before using the shift to make
the eigenvalue explicit. However, in practice the result also holds in an approximate
sense. By this we mean that if we use a shift which is sufficiently close to an eigenvalue
of X0, then the entries which in Corollary 2.2.6 are zero after one step, in this case
converge to zero rapidly.



2.2 The QR algorithm and isospectral flows 49

2.2.2 Toda flow

The Toda lattice was discussed in Subsection 1.1.4. It was in 1974 that Flaschka
demonstrated the Toda flow [Fla74] and in the 1980s it was later found that the Toda
flow is connected to the QR algorithm [Mos75], [Sym82], [DNT83],[Wat84], [Kos79].
Symes proved the following theorem.

Theorem 2.2.8 (Symes [Sym82]). Let Y (t) be the solution to the Toda lattice isospec-
tral flow with initial condition Y (0) = Y0, and let Y (0), Y (1), Y (2), . . . be the iterates
of the basic QR algorithm with initial condition exp(Y0). Then Y (k) = Y (k) for
k = 0, 1, 2, . . ..

Proof. We will prove this in more generality in subsection 2.2.4.

We will explore Toda flows further in Section 2.4.

2.2.3 Double bracket flow

The following isospectral flow is Brockett’s double bracket flow [Bro91].

Ẏ = [[S, Y ] , Y ] , Y0 ∈ Rn×n
sym , S ∈ Rn×n

sym . (2.24)

Note that since ∥Y ∥2F =
∑

i λ
2
i = ∥Y0∥2F for all t, we have:

d

dt

1

2
∥Y − S∥2F =

d

dt

(
1

2
∥Y ∥2F +

1

2
∥S∥2 − ⟨Y, S⟩F

)
= −

〈
Ẏ , S

〉
F

= −⟨[[S, Y ] , Y ] , S⟩F
= −⟨[S, Y ] , [S, Y ]⟩F (Lemma C.2.1)

= −∥ [S, Y ] ∥2F
≤ 0.

The Frobenius norm of the difference between Y and S is non-increasing, and since
1
2
∥Y − S∥2F ≥ 0 for all t, we conclude by the Monotone Convergence Theorem that

1
2
∥Y − S∥2F converges as t → ∞. Therefore d

dt
1
2
∥Y − S∥2F → 0 as t → ∞, and so we

have the following condition at infinity:

lim
t→∞

[S, Y (t)] = 0. (2.25)



50 Isospectral flows

Now, if S is a diagonal matrix with distinct eigenvalues, then by Lemma 2.1.9, Y (t)

converges to a diagonal matrix as t→∞. In fact, if the diagonal entries of S are in
increasing order then the only stable stationary point also has its diagonal entries in
increasing order [Bro91]. This implies that the double-bracket flow is a continuous
sorting process. It also possible to choose S and Y0 so that the system solves a linear
programming problem on a convex polytope, but this is more subtle [Bro91].

If S is not a diagonal matrix, then since it is symmetric we can diagonalise it
orthogonally into S = QT S̃Q. Then the matrix Ỹ = QTY Q satisfies:

˙̃Y = [[S̃, Ỹ ], Ỹ ], Ỹ (0) = QTY0Q, (2.26)

so the above analysis applies. As long as S or Y0 has distinct eigenvalues, the double-
bracket flow will converge to the best isospectral approximation to S in Frobenius
norm.

In the tridiagonal case, the Toda flow and the double bracket flow are identical
[Blo90], [BG98].

Lemma 2.2.9 (Bloch [Blo90]). Let S = diag(n, n − 1, . . . , 1) and let Y0 ∈ Rn×n
sym be

symmetric tridiagonal. Then the double bracket flow (2.24) is equal to the Toda flow.

Proof. Since S is diagonal, we have

[S, Y ]ij = (si − sj)yij = (j − i)yij.

Hence if Y is tridiagonal, [S, Y ] = YU − YL. Since the double bracket flow preserves
the tridiagonal structure the proof is complete [ADH97].

The connection between the Toda flow and the double bracket flow shows that the
double bracket flow is also related to the QR algorithm. We will see more on this later.

2.2.4 QR flow

Here we follow [Wat84]. The QR factorisation for matrices in the general linear Lie
group GL(n,C) is linked to the following decomposition of the general linear Lie
algebra.

gl(n,C) = su(n)⊕ supp(n,C). (2.27)

Here supp(n,C) is the Lie algebra of upper triangular matrices with real diagonal
entries. For a matrix Y ∈ Cn×n, let YL, YU , YD denote the strictly lower triangular,



2.2 The QR algorithm and isospectral flows 51

strictly upper triangular, and diagonal parts of Y respectively. Define the linear
projections

π1(Y ) = YL − Y H
L + iIm(YD) (2.28)

π2(Y ) = YU + Y H
L +Re(YD), (2.29)

which project onto su(n) and supp(n,C) respectively.

Definition 2.2.10 (f -QR flow). Let X0 ∈ Cn×n and f be a matrix function for X0

(see Definition 2.1.5). The f -QR flow is

Ẋ = [X, π1(f(X))] = [π2(f(X)), X], X(0) = X0, (2.30)

where π1 and π2 are as defined above.

We may write X(t) = Q(t)HX0Q(t) = R(t)X0R(t)−1 where

Q̇ = Qπ1(f(X)), Q(0) = I (2.31)

Ṙ = π2(f(X))R, R(0) = I. (2.32)

Since π1(X) always lies in the Lie algebra of skew-Hermitian matrices su(n) and π2(X)

always lie in the Lie algebra of upper-triangular matrices with real diagonal entries
supp(n,C), Q and R lie in the Lie groups SU(n) and SUpp(n) of unitary and upper
triangular matrices with positive diagonal respectively.

Theorem 2.2.11 (Symes [Sym82]. See also [Wat84]). The f-QR flow satisfies the
following

exp(tf(X0)) = Q(t)R(t) (2.33)

exp(tf(X(t))) = R(t)Q(t). (2.34)

Hence exp(f(X(k))) = Xk where Xk is generated by the QR algorithm starting from
X0 with shifts σk(z) = exp(f(z)).

Proof. Let us deal with the first assertion:

d

dt
QR = Qπ1(f(X))R +Qπ2(f(X))R

= Qf(X)R



52 Isospectral flows

= f(X0)QR.

By uniqueness of solutions to analytic initial value problems, we have that exp(tf(X0)) =

Q(t)R(t). The second assertion follows because for t > 0, the map z 7→ zt is analytic
on the eigenvalues of X0. Thus,

X(t)t = Q(t)TX t
0Q(t) = R(t)Q(t).

Now, consider the first iteration, k = 0. We have X(0) = Q(1)R(1) and X(1) =

R(1)Q(1). Since the flow is autonomous, the flow starting from X(1) is exactly the
same as the original flow for t ≥ 1. Therefore the QR flow gives the iterates of the QR
algorithm, when sampled at unit intervals.

We will explore this isospectral flow in much more detail in Section 2.4.

2.3 Bloch–Iserles flow

2.3.1 Bloch–Iserles flow

Bloch and Iserles introduced an isospectral flow that has a Hamiltonian structure and
a Lie–Poisson structure [BI06]. Let Y0 ∈ Rn×n

sym and N ∈ so(n). The Bloch–Iserles flow
is as follows.

Ẏ =
[
N, Y 2

]
= [NY + Y N, Y ] , Y (0) = Y0. (2.35)

If we write H3(Y ) = tr(Y 3) and J3 = adN , then J3 induces a Poisson bracket for
functions f, g : Rn×n

sym → R given by

{f, g}J3
= ⟨∇f,J3∇g⟩F , (2.36)

where ⟨·, ·⟩F is the Frobenius inner product. Using this, the Bloch–Iserles equation can
be viewed as a Hamiltonian system Ẏ = J3∇H3(Y ).

Also, writing H2(Y ) = tr(Y 2) and J2 = adY N+NY , another Poisson bracket is
induced in the same way and we can write the system as Ẏ = J2∇H2(Y ). Since the
operator J2 depends homogeneously on Y , writing the system in this forms shows that
it has Lie–Poisson structure [BI06].



2.3 Bloch–Iserles flow 53

As such, this system has very different behaviour to the double bracket system,
despite the vector fields appearing very similar. The Bloch-Iserles system is a completely
integrable Hamiltonian system ([BBI+09]) with bounded trajectory (since ∥Y ∥2F is
an integral of motion), hence by the Arnold–Liouville Theorem its dynamics are
diffeomorphic to inertial motion on a torus. On the other hand the double bracket flow
is a gradient flow, which converges to a fixed point as t→∞. This is demonstrated in
Figure 2.1. We compute numerical solutions to the Bloch-Iserles flow and the double
bracket flow with

N =


0 1 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 0

 , S =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 , (2.37)

and initial datum

Y0 =


−5 4 1 −1
4 −1 0 −2
1 0 2 3

−1 −2 3 0

 . (2.38)

The numerical method used was a Runge–Kutta–Munthe-Kaas forward Euler method
on the isospectral manifold using the Cayley map (see Appendix B for the Cayley map)
[Zan98], [CIZ97], [IMKNZ00]. The specific scheme is

Yk+1 = (I +
1

2
B(Yk))

−1(I − 1

2
B(Yk))Yk(I −

1

2
B(Yk))

−1(I +
1

2
B(Yk)), (2.39)

where B(Y ) = NY + Y N and B(Y ) = SY − Y S for the Bloch-Iserles and double
bracket flows respectively. Despite the two vector fields being both of the form
Ẏ = [V Y − Y V T , Y ] for a matrix V , their flows have very different behaviours: the
Bloch-Iserles flow is oscillatory whereas the double bracket flow is convergent.

2.3.2 KdV is a modified Bloch-Iserles system

Consider the Bloch-Iserles system [BI06] with an added linear term:

Ẋ = [XN +NX +M,X], X(0) = X0. (2.40)



54 Isospectral flows

0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

t

Bloch−Iserles flow

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

t

Double bracket flow

Fig. 2.1 The left image is a trajectory of the Bloch-Iserles flow Ẏ = [NY +Y N, Y ], Y (0) = Y0
and the right image is a trajectory of a double bracket flow Ẏ = [SY − Y S, Y ], Y (0) = Y0,
where N and S are given in equation (2.37) and Y0 is given in equation (2.38). Each coloured
line represents the trajectory of a single entry of of the matrix. Despite the two vector fields
being both of the form Ẏ = [V Y − Y V T , Y ] for a matrix V , their flows have very different
behaviours: the Bloch-Iserles flow is oscillatory whereas the double bracket flow is convergent.

Here N and M are skew-selfadjoint linear operators and X0 is selfadjoint. Let us call
this a modified Bloch-Iserles system. If we perform the transformation Y = e−tMXetM ,
then

Ẏ = −[M,Y ] + e−tM [XN +NX +M,X]etM

= −[M,Y ] + [Y e−tMNetM + e−tMNetMY +M,Y ]

= [Y e−tMNetM + e−tMNetMY, Y ].

So Y solves a kind of time-dependent Bloch-Iserles system. Note that if [M,N ] = 0

then the solution to (2.40) is X = etMY e−tM where Y solves the actual Bloch-Iserles
system Ẏ = [Y N +NY, Y ].

The KdV equation described in Subsection 1.1.4 can be written using the operators

L(t) = −∂2
x +Mu(t,·),

A(t) = −4∂3
x + 3

(
Mu(t,·)∂x + ∂xMu(t,·)

)
,

in the form of an isospectral flow [Lax68],

Lt − [A,L] = Mut−6uux+uxxx = 0.



2.3 Bloch–Iserles flow 55

Lemma 2.3.1. The operator A can be written as a function of L and ∂x,

A = 3 (∂xL+ L∂x) + 2∂3
x. (2.41)

Proof. We simply expand the right hand side using L = −∂2
x +Mu(·,t) like so.

3 (∂xL+ L∂x) + 2∂3
x = −3∂3

x + 3∂xMu − 3∂3
x + 3Mu∂x

+ 2∂3
x

= −4∂3
x + 3

(
Mu(t,·)∂x + ∂xMu(t,·)

)
,

as required.

The above Lemma shows that the isospectral flow for the KdV is an infinite
dimensional modified Bloch-Iserles system with N = 3∂x and M = 2∂3

x.

Lt =
[
3(∂xL+ L∂x) + 2∂3

x, L
]
. (2.42)

Since ∂x and ∂3
x commute, the solution can be written in terms of the solution to a

Bloch-Iserles system:
L(t) = e2t∂

3
xK(3t)e−2t∂3

x , (2.43)

K̇ = [∂xK +K∂x, K], K(0) = L(0). (2.44)

This observation appears to be new. What are the implications? A full answer is
beyond the scope of this thesis and requires further work, but here are some ideas. It
may be possible to derive new results about KdV from those of the Bloch-Iserles system
or vice versa. It is also worth exploring how the KdV hierarchy might correspond to a
Bloch-Iserles hierarchy. This could also lead to a new numerical method for solvign
the KdV equation as follows.

It was shown in [Kau16] that the solution to a Bloch-Iserles system Ẏ = [NY +

Y N, Y ], Y (0) = Y0 ∈ Rn×n
sym can be expressed using a Magnus series expression of the

form

Y (t) = exp(Ω(t)) (2.45)

Ω(t) = t{Y0}+
1

2
t2{[{Y0}, Y0]}+ t3

(
1

6
{[{[{Y0}, Y0]}, Y0]} (2.46)

+
1

6
{[{Y0}, [{Y0}, Y0]]}+

1

12
[{[{Y0}, Y0]}, {Y0}]

)
+ · · · , (2.47)



56 Isospectral flows

where for any Y ∈ Rn×n
sym , {Y } = NY + Y N . An interesting point about such an

expansion is that the solution is generated purely using the initial datum Y0, N , linear
combinations, the Lie bracket [·, ·] and the bracket {·}. It is said that the expansion is
written using only two “letters”, Y0 and N . A similar expression was found by Iserles
for the double bracket equation and some other Lie-algebraic equations that can be
appropriately expressed in terms of a finite “alphabet” [Ise02].

From this it follows that the solution to the KdV equation Lt = [A,L] can be
written using an expression which uses only L(0) and ∂x, namely

L(t) = exp(2t∂3
x) exp(Ω(3t)) exp(−2t∂3

x) (2.48)

Ω(t) = t{L(0)}+ 1

2
t2{[{L(0)}, L(0)]}+ t3

(
1

6
{[{[{L(0)}, L(0)]}, L(0)]} (2.49)

+
1

6
{[{L(0)}, [{L(0)}, L(0)]]}+ 1

12
[{[{L(0)}, L(0)]}, {L(0)}]

)
+ · · · ,

(2.50)

where for a self-adjoint operator L on L2(R), {L} = ∂xL+L∂x. Note that convergence
issues have not been discussed, so the series can only be said to be formal at present.

2.4 Isospectral gradient flows

In this section we show how to design an isospectral flow which computes local minima
of an objective function as t → ∞. From here on we will use terminology from
Riemannian geometry and Lie theory; a basic introduction and setting of notation is
given in Appendix B.

2.4.1 The isospectral manifold, or adjoint orbit

Let G be a Lie subgroup of GL(n,C) with associated Lie algebra g. Then for any
element X0 ∈ Cn×n, the associated isospectral manifold is the set

IG(X0) =
{
PX0P

−1 : P ∈ G
}
. (2.51)

This manifold is sometimes called the adjoint orbit for X0 by G, because it is precisely
the orbit of X0 under the Adjoint group action Ad : G × Cn×n → Cn×n.



2.4 Isospectral gradient flows 57

Proposition 2.4.1 (See [HM94]). The tangent space TXIG(X0) at any X ∈ IG(X0)

is the space
TXIG(X0) =

{
[A,X] : A ∈ Cg(X)⊥

}
, (2.52)

where Cg(X) = {B ∈ g : [B,X] = 0} is the centraliser of X in g and ⊥ denotes the
orthogonal complement in g with respect to the Frobenius inner product.

Furthermore, there is a linear bijection,

adX : Cg(X)⊥ → TXIG(X0). (2.53)

Proof. Let A ∈ Cg(X)⊥, and define the path µ(s) = exp(sA)X exp(−sA), which lies in
IG(X0) since the exponential takes g to G. Then µ(0) = X and µ̇(0) = [A,X]. Hence
by definition of tangent spaces [A,X] ∈ TXIG(X0).

Now suppose that µ is a smooth path in IG(X0) such that µ(0) = X. Then

µ(s) = P (s)XP (s)−1, P (0) = I,

for some path P in G. Then we have

µ̇(s)

∣∣∣∣
s=0

= Ṗ (s)XP (s)−1 − P (s)XP (s)−1Ṗ (s)P (s)−1

∣∣∣∣
s=0

=
[
Ṗ (s)P (s)−1, P (s)XP (s)−1

] ∣∣∣∣
s=0

=
[
Ṗ (0), X

]
.

By Definition B.2.3, Ṗ (0) ∈ g, so µ̇(0) = [A,X] for some A ∈ g. We may take
A ∈ Cg(X)⊥ since [A,X] is unaffected by addition of elements of Cg(X) to A.

To complete the proof and show that adX is a bijection, note that it is onto and its
kernel in Cg(X)⊥ is zero by definition.

There are a couple of points to take from Proposition 2.4.1. First is that the results
of Propositions 2.1.1, 2.1.8 and 2.1.11 are special cases in which (G, g) = (SL(n), sl(n)),
(G, g) = SO(n), so(n)) and (G, g) = SU(n), su(n)) respectively. Any isospectral flow of
the form

Ẋ = [A,X] , A ∈ g,

can be written as
X = PX(0)P−1, P ∈ G,



58 Isospectral flows

where g is the Lie algebra associated to G as in Definition B.2.3, and vice versa. The
second point is that the map adX is invertible on the tangent space TXIG(X0), so we
may unambiguously use the operator

ad−1
X : TXIG(X0)→ Cg(X)⊥. (2.54)

2.4.2 Metrics and gradient flows

Suppose we are given a continuously differentiable function Ψ from a manifoldM into
R, and we want to find a local minimum of it. One approach is to set up a flow onM
which always points in the direction of steepest descent of Ψ. This motivates what is
known as the gradient descent flow.

Definition 2.4.2 (Gradient flows). Let Ψ be a C1 function from the Riemannian
manifold (M, g) into R. The gradient (descent) flow of Ψ in (M, g) is the flow whose
trajectories satisfy

Ẋ(t) = −∇gΨ(X(t)). (2.55)

Remark 2.4.3. Note that the gradient flow is dependent on the metric chosen for the
tangent spaces ofM.

The justification for the gradient flow is in the following calculation:

d

dt
Ψ(X(t)) =

〈
∇gΨ(X(t)), Ẋ(t)

〉
g

= −∥∇gΨ(X(t))∥2g = −∥Ẋ(t)∥2g.

We see that Ψ decreases along the trajectory X and that it does so in an optimal
way, because the Cauchy-Schwarz inequality implies that given the values of X(t) and
∥Ẋ(t)∥g, the value of

〈
∇gΨ(X(t)), Ẋ(t)

〉
g

is minimised if Ẋ solves (2.55).

Theorem 2.4.4 (See [HM94]). Let Ψ : (M, g) → R be a C1 function such that the
sublevel sets Sα = {X ∈M : Ψ(X) ≤ α} are compact. Then distance of the trajectories
of the gradient flow for Ψ in (M, g) to the set of critical points of Ψ converges to 0 as
t→∞.

Proof. Let X(t) be the trajectory of the gradient flow for some initial datum. Then
d
dt
Ψ(X(t)) ≤ 0 for all t. Suppose for a contradiction that there exists an ε < 0 such

that d
dt
Ψ(X(t)) < ε for all t. Then Ψ(X(t))→ −∞ as t→∞, which contradicts the



2.4 Isospectral gradient flows 59

fact that Ψ is bounded below (which is an immediate consequence of the compactness
of the sublevel sets and continuity of Ψ). Hence d

dt
Ψ(X(t)) → 0 as t → ∞. Since

d
dt
Ψ(X(t)) = −∥∇gΨ(X(t))∥2g, we have that ∇gΨ(X(t))→ 0.
Now, for a contradiction let t1, t2, t3, . . . be a strictly increasing divergent sequence

such that X(tn) is always at least distance ε > 0 from the set of critical points1. Then
since Ψ has compact sublevel sets and the flow must remain on a sublevel set for all
time, there exists a subsequence tn1 , tn2 , . . . such that X(tnk

)→ X̃ as k →∞. Since
Ψ is C1 and ∇gΨ(X(t)) → 0 as t → ∞, we must have that ∇gΨ(X̃) = 0. Hence
(X(tnk

))∞k=1 converges to the set of critical points of Ψ. This is a contradiction. Hence
X(t) converges to the set of critical points of Ψ as t→∞.

Remark 2.4.5. Note that Theorem 2.4.4 does not imply that every solution converges
to an equilibrium point, merely that its distance to a possibly continuous set of critical
points of Ψ converges to zero. However, if the critical points of Ψ are all isolated points
then the flow converges to an equilibrium point [HM94, App. C].

What do gradient flows look like on an isospectral manifold? We must first discuss
metrics.

The Frobenius metric on the isospectral manifold is the metric induced from the
embedding IG(X0) ⊆ Cn2 ,

⟨[A,X], [B,X]⟩F =
∑
i,j

[A,X]i,j[B,X]i,j. (2.56)

The normal metric for the Frobenius metric on the isospectral manifold is the
metric inherited from G as follows. For A,B ∈ Cg(X)⊥,

⟨[A,X], [B,X]⟩N = ⟨A,B⟩F . (2.57)

The normal metric is a standard construction for homogeneous manifolds as in Definition
B.3.4 [Bro93].

Alternatively, noting as we did in the previous section that the adjoint map adX is
invertible on the tangent space TXIG(X0), we can write ⟨R, S⟩N =

〈
ad−1

X R, ad−1
X S

〉
F
.

Now let us consider a general metric on the isospectral manifold. For A,B ∈ Cg(X)⊥,
we can write a general metric ⟨·, ·⟩g in terms of the Frobenius metric by

⟨[A,X], [B,X]⟩g = ⟨A,LXB⟩F , (2.58)

1The distance referred to here is that of the geodesic distance induced by the metric g.



60 Isospectral flows

for some selfadjoint positive definite linear operator LX ∈ GL(Cg(X)⊥) depending
smoothly on X (otherwise g is not a metric). The normal metric mentioned above has
LXA = A and the Frobenius metric has LXA = [[A,X], XH ].

We can characterise all the gradient flows in the metric g in terms of the (easier to
find) gradient on Cn×n endowed with the Frobenius metric, denoted ∇Ψ.

Theorem 2.4.6. Let Ψ : Cn×n → R be a C1 function. The gradient of Ψ on the
isospectral manifold IG(X0) with respect to the metric ⟨[A,X], [B,X]⟩g = ⟨A,LXB⟩F
as defined in (2.58), is the vector field

∇gΨ(X) =
[
L−1
X πg

[
∇Ψ(X), XH

]
, X
]
, (2.59)

where ∇Ψ is the gradient of Ψ in Cn×n endowed with the Frobenius metric and πg is
the orthogonal projection onto g.

Hence the trajectories of the isospectral gradient flow for Ψ are described by

Ẋ(t) = −
[
L−1
X(t)πg

[
∇Ψ(X(t)), X(t)H

]
, X(t)

]
. (2.60)

Proof. Let X : R→ IG(X0) be a C1 path. By the isomorphism (2.53),∇gΨ(X(t)), Ẋ(t) ∈
TX(t)IG(X0) implies that ∇gΨ(X(t)) = [A(t), X(t)] and Ẋ(t) = [B(t), X(t)] for some
continuous paths A(t), B(t) in Cg(X(t))⊥.

Now, for any t, first using the definition of the metric g and then the bracketed
comments, we have

⟨A,B⟩F =
〈
∇gΨ(X),

[
L−1
X B,X

]〉
g

=
〈
∇Ψ(X),

[
L−1
X B,X

]〉
F

(Definition B.1.6)

=
〈[
∇Ψ(X), XH

]
, L−1

X B
〉
F

(Lemma C.2.1)

=
〈
πg

[
∇Ψ(X), XH

]
, L−1

X B
〉
F

(L−1
X B ∈ g)

=
〈
L−1
X πg

[
∇Ψ(X), XH

]
, B
〉
F

(LX is self-adjoint).

This last line only makes sense if
[
∇Ψ(X), XH

]
is orthogonal to Cg(X) because of

the domain of definition of L−1
X . This is indeed the case, since if Z ∈ Cg(X) then by

Lemma C.2.1, 〈[
∇Ψ(X), XH

]
, Z
〉
F
= ⟨∇Ψ(X), [Z,X]⟩F = 0.

Finally, since B ∈ Cg(X)⊥ can be made arbitrary whilst keeping A fixed, we must have
A = L−1

X πg

[
∇Ψ(X), XH

]
, which gives the desired result.



2.4 Isospectral gradient flows 61

In the literature, the most common metric used to define an isospectral gradient
flow is the normal metric [HM94], [CG05]. Also, it is often real symmetric matrix flows
that are used. In this case an isospectral gradient flow for the function Ψ : Rn×n

sym → R
is given by

Ẏ (t) = − [[∇Ψ(Y ), Y ] , Y ] . (2.61)

It is so simple because in the normal metric LX is the identity operator, and∇Ψ(Y ), Y ∈
Rn×n

sym , so that [∇Ψ(Y ), Y ] ∈ so(n), which means that the projection πso is not necessary.
What types of matrices do isospectral gradient flows compute? By Theorem 2.4.4

they converge to the set of stationary points for Ψ. The following theorem characterises
the stationary points of functions on an isospectral manifold.

Theorem 2.4.7. Let Ψ be defined on the isospectral manifold IG(X0). Then no matter
what the metric, the stationary points of the gradient flow in Theorem 2.4.6 satisfy

πg

[
∇Ψ(X), XH

]
= 0. (2.62)

Proof. The stationary points of the flow are those points X such that the quantity[
L−1
X πg

[
∇Ψ(X), XH

]
, X
]

is zero. If X satisfies this, then by definition of the metric
g in equation (2.58),

∥∥πg

[
∇Ψ(X), XH

]∥∥2
F
=
〈[
πg

[
∇Ψ(X), XH

]
, X
]
,
[
L−1
X πg

[
∇Ψ(X), XH

]
, X
]〉

g

= 0.

This completes the proof.

It is also important to characterise stable equilibria. This is done via the Hessian
on the manifold.

Theorem 2.4.8. Let Ψ : Cn×n → R be a C2 function. The Hessian of Ψ on the
isospectral manifold IG(X0) at the point X is the bilinear form on Cg(X)⊥

A 7→
〈
∇2Ψ(X) ([A,X]) +

[
AH ,∇Ψ(X)

]
, [A,X]

〉
F
, (2.63)

where ∇Ψ and ∇2Ψ are the gradient and Hessian of Ψ on Cn×n in the Frobenius metric.

Proof. By Hadamard’s Lemma B.2.9, for any ε sufficiently small and A ∈ Cg(X)⊥, we
have

eεAXe−εA = X + ε [A,X] +
ε2

2
[A, [A,X]] +O(ε3).



62 Isospectral flows

Hence by Taylor’s Theorem,

Ψ
(
eεAXe−εA

)
= Ψ(X) +

〈
∇Ψ(X), ε [A,X] +

ε2

2
[A, [A,X]]

〉
F

+
1

2

〈
∇2Ψ(X) (ε [A,X]) , ε [A,X]

〉
F
+O(ε3).

Apply Lemma C.2.1 to the double commutator and take the quadratic terms in ε to
obtain the result.

Corollary 2.4.9. A stationary point X of an isospectral gradient flow is stable if and
only if

〈
∇2Ψ(X) ([A,X]) +

[
AH ,∇Ψ(X)

]
, [A,X]

〉
F
≥ 0 for all A ∈ Cg(X)⊥. (2.64)

Remark 2.4.10. Note that Theorem 2.4.7 on stationary points and Corollary 2.4.9 on
stable stationary points are completely independent of the metric chosen. This means
that we cannot use the metric to change where the stationary points are or whether
they are stable or not. The introduction of metrics here, which does not really appear
in the literature unless we are in the setting of arbitrary semi-simple Lie algebras
[Blo90],[Bro93],[BG98], is not as powerful as it may seem at first.

As an example to demonstrate Theorem 2.4.6, Theorem 2.4.7 and Corollary 2.4.9,
consider the following.

Jacobi eigenvalue flow The following flow was introduced by Chu and Driessel in
1990 [CD90]. Consider the function Ψ(X) = 1

2
∥X − diag(X)∥2F for symmetric matrices.

By Theorem 2.4.6, the gradient flow on ISL(n) is

Ẋ = [[diag(X), X] , X] . (2.65)

By Theorem 2.4.7, the stationary points of this flow are X such that [diag(X), X] = 0.
By Corollary 2.4.9, the stable stationary points are X such that

〈
[A,X]− diag ([A,X]) +

[
AH , X − diag(X)

]
, [A,X]

〉
F
≥ 0 for all A ∈ Cso(n)(X)⊥,

which is equivalent to the condition

⟨[A, diag(X)]− diag ([A,X]) , [A,X]⟩F ≥ 0 for all A ∈ Cso(n)(X)⊥. (2.66)



2.5 QR flows as gradient flows 63

It is clear that if X is a diagonal matrix then it is a stationary point because
[diag(X), X] = 0. Also, these stationary points are stable, because the stability
condition becomes ⟨[A,X], [A,X]⟩F ≥ 0. Since this is zero if and only if A = 0, we
have that the stationary point is isolated. Driessel showed that non-diagonal stationary
points are unstable [Dri87], [CG05, Ch. 7]. Hence the flow is (almost everywhere)
globally convergent to a diagonal matrix. Chu and Golub note the similarities between
this flow and the Jacobi eigenvalue algorithm [CG05].

2.5 QR flows as gradient flows

In this section we will first show that for symmetric tridiagonal matrices, Toda, double
bracket and f-QR flows (with f(z) = z) are all isospectral gradient flows for the function
Ψ(X) = 1

2
∥X − S∥2F for certain choices of S. Then we show how their generalisations

are also related to these gradient flows, but with a specific choice of metric on the
manifold.

Proposition 2.5.1 (Double bracket flows). Let S ∈ Cn×n. The isospectral gradient
flow for the function Ψ(X) = 1

2
∥X − S∥2F on IGL(n,C)(X0) with the normal metric is

Ẋ =
[[
S −X,XH

]
, X
]
. (2.67)

When X(0) and S are Hermitian, the flow is the double bracket flow

Ẋ = [[S,X] , X] . (2.68)

When X(0) and S are skew-Hermitian, the flow is the double bracket flow

Ẋ = [[−S,X] , X] . (2.69)

Proof. The gradient of Ψ in Euclidean space is ∇Ψ(X) = X − S. The results follow
from Theorem 2.4.6.

Corollary 2.5.2. For symmetric tridiagonal matrices, the Toda flow, double bracket
flow with S = diag(n, n− 1, . . . , 1) and the f -QR flow with f(z) = z are equal to the
gradient flow for the function Ψ(X) = 1

2
∥X − S∥2F in the normal metric.

Proof. Combine Lemma 2.2.9 with Proposition 2.5.1.



64 Isospectral flows

To better understand the relationships between Toda, double bracket and QR flows
for more general matrices, we must make a few definitions and lemmata.

Definition 2.5.3. We denote the operator which performs the Hadamard product by
a matrix S ∈ Cn×n as HS. Explicitly, the operator HS is defined for X ∈ Cn×n as

(HSX)ij = sijxij. (2.70)

Lemma 2.5.4 (See [Blo90]). Let D ∈ Cn×n be a diagonal matrix and X ∈ Cn×n. Then

[D,X] = HD̂(X), (2.71)

where d̂ij = di − dj.

Lemma 2.5.5 ([Blo90]). Let D = diag(n, n− 1, . . . , 2, 1) and define S ∈ Rn×n
sym to be

the matrix with entries
sij = |i− j|. (2.72)

Then for a Hermitian matrix Y , we have

[D, Y ] = −HSπ1(Y ), (2.73)

where HS is the Hadamard product operator in Definition 2.5.3, and π1 is the linear
operator in the QR flow (see Definition 2.2.10).

Proof. Since Y is Hermitian, we have

π1(Y )ij =


yij if i > j

0 if i = j

−yji if i < j

(2.74)

By Lemma 2.5.4, [D, Y ] = HD̂Y , where d̂ij = n − i − n + j = j − i. This gives the
desired result.

Let us make the following new definition.

Definition 2.5.6 (QR metric). Let S ∈ Rn×n
sym be the matrix with entries sij = |i− j|.

The QR metric on an isospectral manifold ISU(n)(X0) for any X0 ∈ Cn×n at the point
X ∈ ISU(n)(X0), for any A,B ∈ Csu(n)(X)⊥, is

⟨[A,X], [B,X]⟩QR = ⟨A,HSB⟩F , (2.75)



2.5 QR flows as gradient flows 65

where HS is the Hadamard operator in Definition 2.5.3 and S has elements sij = |i− j|
for i ̸= j and the diagonal entries may be arbitrary positive real numbers.

Remark 2.5.7. We will see in the proof of Theorem 2.5.8 why we allowed the diagonal
entries of S to be arbitrary positive real numbers. This makes sure that the QR metric
is indeed a Riemannian (positive definite) metric, but for the purposes of the gradient
QR flows we define momentarily, the diagonal entries of S have no effect.

Theorem 2.5.8 (Gradient f -QR flow). Define the function Ψ(X) = 1
2
∥f(X)−D∥2F ,

where f is a matrix function as in Definition 2.1.5 and D = diag(n, n − 1, . . . , 2, 1).
The isospectral gradient flow for Ψ in the QR metric is

Ẋ = [X, π1(Herm(f(X)))] , (2.76)

where Herm(Y ) = 1
2
(Y + Y H).

Proof. The isospectral gradient flow must be of the form Ẋ(t) = [X(t), B(t)] for some
B(t) ∈ Csu(n)(X(t))⊥, the orthogonal complement of the centraliser of X(t) in su(n).
We will show that we may take B(t) = π1(Herm(f(X))). We compute

d

dt
Ψ(X(t)) = Re

〈
d

dt
f(X), f(X)−D

〉
F

= Re ⟨[f(X), B] , f(X)−D⟩F (Proposition 2.1.7)

= Re
〈
B,
[
f(X)H , f(X)−D

]〉
F

(Lemma C.2.1)

= Re
〈
B, πsu(n)

[
f(X)H , f(X)−D

]〉
F

(B ∈ su(n))

= −Re ⟨B, [Herm(f(X)), D]⟩F (D ∈ Herm(X)),

where Herm(Y ) = 1
2
(Y+Y H). By Lemma 2.5.5, [Herm(f(X)), D] = HSπ1(Herm(f(X)))

where S has entries sij = |i− j|. Here is where the arbitrariness of the diagonal en-
tries of S from Definition 2.5.6 come into play. Because Herm(f(X)) is Hermitian,
π1(Herm(f(X))) is zero on the diagonal.

Inserting this into the equation, we get

d

dt
Ψ(X(t)) = Re ⟨B,HSπ1(Herm(f(X)))⟩F

= Re ⟨[X,B], [X, π1(Herm(f(X)))]⟩QR .



66 Isospectral flows

If d
dt
Ψ(X(t)) = −∥Ẋ(t)∥2QR for all trajectories then the flow is a gradient flow in the

QR metric. This happens if B(X) = −π1(Herm(f(X)))), in which case

Ẋ = [X, π1(Herm(f(X)))] .

This completes the proof.

Corollary 2.5.9. The f-QR flow for a normal matrix X0 ∈ Cn×n is equal to the
gradient f -QR flow in Theorem 2.5.8.

Proof. The gradient flow in Theorem 2.5.8 can be rewritten as [X, π1(Herm(f(X)))] =

[X,Herm(f(X))]− [X, π2(Herm(f(X)))] = 1
2

[
X, f(X)H

]
− [X, π2(f(X))]. Hence the

gradient QR flow is

Ẋ = [π2(f(X)), X]︸ ︷︷ ︸
QR flow

+
1

2

[
X, f(X)H

]︸ ︷︷ ︸
= 0 if X is normal

. (2.77)

If X is normal at one value of t it must be normal for all t by Proposition 2.1.11. Now,
by [Hig08], since X is normal we have

[
X, f(X)H

]
= 0. Therefore the gradient f -QR

flow and the f -QR flow are equal.

The significance of Theorem 2.5.8 is that it adds some insight into why theoretical
guarantees for the convergence of the QR algorithm with normal initial matrices such
as those in [EH75] and [Bat94] have been easily found by researchers, but conver-
gence results for nonnormal matrices have been shown to be impossible in general
[Bat90],[Day96]. One difference it is that for normal matrices, the QR algorithm
interpolates a certain gradient flow, but for nonnormal matrices this specific gradient
structure (if any) does not exist.

We are now able to reprove already established convergence results (see for example
[EH75] and [Bat94]) for the QR algorithm on normal matrices, but here instead using
Theorem 2.5.8.

Lemma 2.5.10. Let Y be Hermitian. Then [Y, π1(Y )] = 0 implies that Y is diagonal.

Proof. Since the diagonal of Y is real, we have π1(Y ) = YL − Y H
L . Define the matrix

L = YL + 1
2
YD. Then we have π1(Y ) = L− LH and Y = L+ LH . Hence,

[Y, π1(Y )] =
[
L+ LH , L− LH

]
= 2

[
LH , L

]
.



2.5 QR flows as gradient flows 67

This implies that L is a diagonal matrix, because diagonal entries of LHL are
|l11|2, |l22|2, . . . , |lnn|2 and diagonal entries of LLH are |l11|2, |l22|2+|l21|2, . . . ,

∑n
k=1 |lnk|2.

Hence LHL = LLH implies that the off-diagonal elements of L are zero. This gives
that Y is diagonal.

Theorem 2.5.11. The stationary points of the gradient f -QR flow in Theorem 2.5.8
satisfy

Herm(f(X)) ∈ Diag(n). (2.78)

Proof. It is clear that points X satisfying Herm(f(X)) ∈ Diag(n) have π(Herm(f(X)) =

0 and hence are stationary.
Now suppose that the flow is stationary. Then [X, π1(Herm(f(X)))] = 0. By

Remark 2.1.6, f(X) is equal to a polynomial in X. Hence [f(X), π1(Herm(f(X)))] = 0.
We also have

[
f(X)H , π1(Herm(f(X)))

]
= [−π1(Herm(f(X))), f(X)]H = 0. Hence

[Herm(f(X)), π1(Herm(f(X)))] = 0. (2.79)

By Lemma 2.5.10, Herm(f(X)) ∈ Diag(n).

Remark 2.5.12. This theorem shows that stationary points of the gradient f -QR flow
have f(X) = Ω + Λ where Ω ∈ su(n) and Λ ∈ Diag(n).

Lemma 2.5.13. A stationary point X ∈ Cn×n of the gradient f -QR flow is stable if
and only if

Re ⟨[A,D] , [A,Herm(f(X))]⟩F ≤ 0 for all A ∈ Csu(n)(X)⊥, (2.80)

where D = diag(n, n− 1, . . . , 1).

Remark 2.5.14. This stability criterion is not easy to check at all. The point we wish
to make here is that the stability of the stationary points only depends on the ordered
eigenvalues of Herm(f(X)), and not on the skew-Hermitian part of f(X).

Proof. Let Z be a C1 path on the isospectral manifold Isu(n)(X) such that Z(0) = X.
Then there exists a path A in Csu(n)(Z) such that Ż(t) = [A(t), Z(t)]. In the proof of
Theorem 2.5.8 we showed that for the function Ψ(X) = 1

2
∥f(X)−D∥2F , and a flow Z

satisfying Ż = [A,Z] we have

d

dt
Ψ(Z(t)) = Re ⟨A(t), [D,Herm(f(Z(t)))]⟩F .



68 Isospectral flows

Let us take a further derivative with respect to t. By Lemma 2.1.7,

d2

dt2
Ψ(Z(t)) = Re ⟨A(t), [D,Herm([A(t), f(Z(t))])]⟩F

+Re
〈
Ȧ(t), [D,Herm(f(Z(t)))]

〉
F

= Re ⟨A(t), [D, [A(t),Herm(f(Z(t)))]]⟩F
+Re

〈
Ȧ(t), [D,Herm(f(Z(t)))]

〉
F

By Theorem 2.5.11, Herm(f(X)) ∈ Diag(n), so [D,Herm(f(X))] = 0. Hence, taking
t = 0 in this second derivative gives

d2

dt2
Ψ(Z(t))

∣∣∣∣
t=0

= Re ⟨A(0), [D, [A(0),Herm(f(X))]]⟩F .

Since A(0) can be arbitrary in Csu(n)(X), we have the desired result.

Theorem 2.5.15 (Convergence of normal Toda flow and QR algorithm [EH75]). Let
X0 ∈ Cn×n be a normal matrix. Then the Toda flow Ẋ = [X, π1(X)] converges to a
set of matrices of the form

X = P


Z1

Z2

. . .

Zr

P T , (2.81)

for some permutation matrix P . Here each block Zi is of the form Zi = γiI +Ωi where
γi ∈ R and each Ωi is skew-Hermitian.

If X0 is also nonsingular, the (normal) unshifted QR algorithm converges to a set
of matrices of the form

X = P


γ1Q1

γ2Q2

. . .

γrQr

P T , (2.82)

for some permutation matrix P and unitary matrices Q1, . . . , Qr.

Remark 2.5.16. The singular case is treated by Proposition 2.2.5.



2.5 QR flows as gradient flows 69

Proof. The Toda flow is the f -QR flow where f(z) = z. Corollary 2.5.9 implies that
since X0 is normal, this Toda flow is a gradient QR flow as in Theorem 2.5.8. Combining
Theorem 2.5.11 on the stationary points and Theorem 2.4.4 on convergence to the set
of stationary points shows that Herm(X(t))→ Diag(n) as t→∞. Hence X = Ω+ Λ

where Ω ∈ su(n) and Λ ∈ Diag(n). By normality we have

[Ω,Λ] = [Skew(X),Herm(X)] = 0.

Hence Ωij = 0 unless i = j or Λi = Λj. This gives the form of the limit required.
The unshifted QR algorithm is the f -QR flow for the function f(z) = log(z). Note

that the matrix logarithm of X0 exists (though not necessarily unique) because it is
nonsingular [Hig08, Thm 1.27], and the matrix logarithm of X can be defined uniquely
by similarity transform from X0. We can use the above reasoning to deduce that log(X)

is of the form in equation (2.81). Taking an exponential gives the desired form.

Remark 2.5.17. This result not new, but we have found it in a completely new way via
isospectral gradient flows. See for example [EH75].

2.5.1 Scaled Toda-like flows

Let us briefly mention how scaled Toda-like flows discussed in a paper of Chu fit into
this section [Chu95]. Chu noted that the full Toda flow on symmetric matrices is an
example of a system of the form

Ẏ = [HN(Y ), Y ] ,

where N is a skew-symmetric matrix. N has elements nij = sign(j − i) in the Toda
case. He also noted Bloch’s observation that nij = j − i produces the double bracket
flow (Lemma 2.5.4). The form of equation (2.5.1) is similar to the gradient flow for
Ψ(Y ) = 1

2
∥Y − D∥2F where D = diag(n, n − 1, . . . , 1) on the symmetric isospectral

manifold with metric
⟨[A, Y ], [B, Y ]⟩g = ⟨A,HSB⟩F , (2.83)

for all A,B ∈ Cso(n)(Y ) and symmetric matrix S with positive entries off the diagonal.
In that case the flow is

Ẏ = [HS [D, Y ] , Y ] (2.84)



70 Isospectral flows

which by Lemma 2.5.4 is equal to the flow

Ẏ = [HN(Y ), Y ] , (2.85)

where N has entries
nij = sij(j − i). (2.86)

In order for S to have positive entries off the diagonal, N must have positive entries
on the strictly upper triangular part. When N does not satisfy this, then the flow
corresponds to a gradient flow in a non-Riemannian metric.



闭门造车，出则合辙
(bì mén zào chē, chū zé hé zhé)

Lit. If you build a cart behind closed doors, then only when it
comes out do you know if it fits the track

Fig. A critical reference to a person who works in solitude and
disregards the outside world

Chapter 3

The symmetric Toeplitz inverse
eigenvalue problem

In this chapter we discuss the symmetric Toeplitz inverse eigenvalue problem, that of
finding an n× n real symmetric Toeplitz matrix with prescribed spectrum λ ∈ Rn.

3.0.1 Motivation

Motivation for studying this problem can be considered from the point of view of
applications, pure mathematics, and also numerical algorithms.

From a pure mathematical perspective, the inverse eigenvalue problem for real
symmetric Toeplitz matrices is interesting because of its surprising difficulty. As
discussed in Subsection 1.1.2, different subclasses of Toeplitz matrix such as circulant
matrices, Toeplitz operators and Laurent operators have very elegant properties which
lead to simple specification of their spectra in terms of their symbol. Furthermore, there
are also elegant results about the asymptotics of the eigenvalues of Toeplitz matrices
as the dimension n goes to infinity. Nonetheless, there is no simple characterisation
of the eigenvalues of a general Toeplitz matrix, or even a real symmetric one [TE05].
The existence of an n × n real symmetric Toeplitz matrix with arbitrary spectrum
was a wide open problem until 1994 when Henri Landau provided a nonconstructive
topological proof [Lan94].

The nonconstructive nature of Landau’s proof leads to the intrigue from the
numerical algorithms perspective. There is still no known effective numerical algorithm
proven converge to a real symmetric Toeplitz given an arbitrary vector of real eigenvalues.
There are numerical algorithms proposed by authors Friedland et al. [FNO87], Chu–

71



72 The symmetric Toeplitz inverse eigenvalue problem

Driessel [CD89], [CD90], Chu–Golub [CG02], Laurie [Lau01], and Trench [Tre97], which
have been empirically observed to be effective algorithms with global convergence, but
the convergence proofs are still lacking. In this chapter we make only partial headway
in the analysis of some of these given algorithms, but we also give an impractical but
convergent numerical algorithm (see Theorem 3.4.1), to at least settle some theoretical
questions regarding computability.

From the applications point of view, a real symmetric Toeplitz matrix arises most
naturally as the covariance matrix of a stationary discrete random process [Gra06],
[Hay08], [Pro96]. A stationary process X = (Xk)k∈Z (as described in Subsection 1.1.2)
has joint probability density functions satisfying

f(Xk1 , Xk2 , . . . , Xkn) = f(Xk1+s , Xk2+s , . . . , Xkn+s), (3.1)

for all shifts s ∈ Z i.e. the density depends solely on the relative time differences
between the samples. The covariance matrix, C, whose entries are defined to be
ci,j = E((Xki − µki)(Xkj − µkj)) where E is the expectation with respect to the joint
probability and µk = E(Xk), under this assumption is a real symmetric Toeplitz matrix.
A consequence of the theory of Principal Component Analysis (see Subsection 1.1.1)
is that the eigenvectors of a covariance matrix can be interpretted as an orthogonal
splitting of the signal vector. Eigenvectors corresponding to large eigenvalues correspond
the salient features of the signal and eigenvectors corresponding to small eigenvalues
correspond to random noise. The inverse eigenvalue problem for real symmetric Toeplitz
matrices is therefore relevant to areas such as signal processing theory, control theory
and system identification [Gra06], [Hay08], [Pro96]. Applications also extend to the
trigonometric moment problem and orthogonal polynomials on the unit circle [AK65].

3.0.2 Numerical algorithms for the inverse eigenvalue problem

Approaches to solving the symmetric Toeplitz inverse eigenvalue problem can be divided
into two camps: Newton iterations [FNO87], [Lau88], [Lau91], [Tre97], [Lau01], [CG05],
and isospectral flows [CG05, Chu93, DS99, Chu98, CG02]. In this thesis we are more
interested in the latter, but the results of this chapter may have consequences for either
approach.

The idea for an isospectral flow approach is inspired by the QR algorithm. The intent
is to design a matrix function B : Rn×n

sym → so(n) such that the flow Ẏ = [B(Y ), Y ]

converges to a Toeplitz matrix from initial data Y (0) = Y0. Here Y0 is intended to be



73

a matrix we can easily prescribe the spectrum of (for example an diagonal matrix).
Then we can use a geometric integrator to numerically solve the flow whilst preserving
the eigenvalues [IMKNZ00], [Zan98].

In this chapter we numerically solve all of our isospectral flows using the most basic
geometric integrator,

Yk+1 = (I − h

2
B(Yk))

−1(I +
h

2
B(Yk))Yk(I +

h

2
B(Yk))

−1(I − h

2
B(Yk)), (3.2)

which is a Runge–Kutta–Munthe-Kaas forward Euler method on the isospectral mani-
fold using the Cayley map:

Cay : so(n)→ SO(n), Cay(Ω) =

(
I − 1

2
Ω

)−1(
I +

1

2
Ω

)
. (3.3)

See Appendix B for more information on the Cayley map. There are of course much
better methods which could be used, but this is very simple to implement and suffices
for our purposes [Zan98], [CIZ97], [IMKNZ00, App.].

In terms of whether in rigorous terms this defines an effective algorithm, we say
the following. If the flow converges to a Toeplitz matrix, then there exists a final time
t such that that Y (t) is "close" to a symmetric Toeplitz matrix in Frobenius distance
(for example), and if the numerical method is a convergent one, then the step size h

in the discretisation can be taken small enough so that the final iterate YN is "close"
to the analytical solution Y (t), and then by the triangle inequality YN is "close" to
a symmetric Toeplitz matrix. This shows that we have two requirements for this to
constitute a bona fide algorithm: the flow converges to a Toeplitz matrix, and the
numerical method used is a convergent one. Note that except for the small effect of
rounding errors, the eigenvalues of YN are exactly as required, because of the use of a
geometric integrator. Therefore, the major challenge which must first be tackled is to
understand the convergence (or lack of) of the continuous flows to Toeplitz matrices.
This is the focus of the chapter. Error estimates for Lie group integrators are discussed
in [IMKNZ00].

There are two principal candidates for the choice of matrix function B : Rn×n
sym →

so(n) which are intended to solve the symmetric Toeplitz inverse eigenvalue problem.
The first is a gradient flow for the function Ψ(Y ) = 1

2
∥Y − PT (Y )∥2F , where PT is the

orthogonal projection from Rn×n
sym onto the subspace of Toeplitz matrices, first published



74 The symmetric Toeplitz inverse eigenvalue problem

in [CD90],
Ẏ = [[PT (Y ), Y ], Y ]. (3.4)

For solutions of this flow, Ψ(Y ) is nonincreasing and flows converge to points such that
[PT (Y ), Y ] = 0 (first shown in [CD90] and follows from Theorem 2.4.4 and Theorem
2.4.7). Stable stationary points that are not Toeplitz matrices (which can be a problem
for a numerical algorithm) were reported (numerically) in [CG05], and it is suggested
there to investigate the stationary points as a possible avenue of research. In Section
3.1.1 we prove using a symbolic calculation that for the 3 × 3 case there are stable
stationary points which are not Toeplitz and in Subsection 3.3 we give numerical
examples of stable non-Toeplitz stationary points in the 4× 4 case.

The second flow is Chu’s flow, first studied in the unpublished manuscript [Chu93],
but later studied in [Chu94], [Chu98], [DS99], [DS02], [CG02], [CG05]. Chu’s flow is
of the form

Ẏ = [B(Y ), Y ], (3.5)

where B is the Toeplitz annihilator,

B(Y )i,j =


yi,j−1 − yi+1,j if i < j,

0 if i = j,

yi,j+1 − yi−1,j if i > j.

(3.6)

To understand the motivation behind this flow, consider the case n = 4:

B(Y ) =


0 y1,1 − y2,2 y1,2 − y2,3 y1,3 − y2,4

y2,2 − y1,1 0 y2,2 − y3,3 y2,3 − y3,4

y3,2 − y2,1 y3,3 − y2,2 0 y3,3 − y4,4

y4,2 − y3,1 y4,3 − y3,2 y4,4 − y3,3 0

 . (3.7)

Clearly, B(Y ) = 0 if and only if Y is Toeplitz. Chu also showed that if Y has distinct
eigenvalues then [B(Y ), Y ] = 0 if and only if Y is Toeplitz (see Proposition 3.1.2).
Therefore, since eigenvalues remain fixed throughout the flow, for initial data with
distinct eigenvalues, if Chu’s flow converges then it can only converge to a Toeplitz
matrix.



75

3.0.3 Landau’s Theorem and eigenvalue parity

Let us discuss some details of Landau’s Theorem as it will allow the explanation of the
contributions of this chapter to the analysis of the inverse eigenvalue problem.

Theorem 3.0.1 (Landau [Lan94]). Any vector λ ∈ Rn is the spectrum of an n × n

real symmetric Toeplitz matrix.

An n× n symmetric Toeplitz matrix is defined by its first row t0, t1, . . . , tn−1. First
note that it is sufficient to consider matrices which are trace free, because we can add
a multiple of the identity to any Toeplitz matrix and it will remain Toeplitz. Landau
assumes that t0 = 0 and t1 = 1 and considers the following map Λ : Rn−2 → Rn−2.
Λ takes (t2, t3, . . . , tn−1)

T ∈ Rn−2, and finds the eigenvalues λ1 ≤ . . . ≤ λn of the
symmetric Toeplitz matrix with first row (0, 1, t2, . . . , tn−1), since the trace of this
matrix is zero and it is not the zero matrix, λ1 < 0, so the following vector in Rn−2 is
well-defined:

Λ(t2, . . . , tn−1) = (y2, y3, . . . , yn−1), where yk = λk/|λ1|. (3.8)

The image of Λ is clearly not the whole of Rn−2, because the eigenvalues were
sorted in the process. The image is a simplex defined as the intersection of n− 1 linear
inequalities:

Ln =

{
(y2, . . . , yn−1)

T ∈ Rn−2 :
−1 ≤ y2 ≤ y3 ≤ · · · ≤ yn−1

y2 + · · ·+ yn−2 + 2yn−1 ≤ 1

}
. (3.9)

The last inequality comes from
∑n

k=1 λk = 0. This thus far is quite elementary;
Landau’s key insight is his identification of a candidate preimage Λ−1(Ln) — a set he
terms regular Toeplitz matrices — and a proof that Λ does indeed map this restricted
set of Toeplitz matrices onto Ln, using the topological degree of Λ.

What is a regular Toeplitz matrix? Symmetric Toeplitz matrices are part of a
larger space of matrices called centrosymmetric matrices, those matrices X such that



76 The symmetric Toeplitz inverse eigenvalue problem

EXE = X, where E is the exchange matrix,

E = En×n =



1

1

. .
.

1

1


.

A vector v is said to be even if Ev = v and odd if Ev = −v. Let X ∈ Rn×n
sym be

a symmetric and centrosymmetric matrix, which is also called a bisymmetric matrix.
Then there exists an orthonormal basis of eigenvectors v1, v2, . . . , vp, w1, w2, . . . , wq such
that the vi’s are even and the wi’s are odd [CB76]. Here p = ⌈n/2⌉ and q = ⌊n/2⌋.

A bisymmetric matrix has alternating parity if the greatest eigenvalue is even, and
if the kth greatest eigenvalue is odd then the k+1st is even. A real symmetric Toeplitz
matrix is regular if it has distinct eigenvalues, alternating parity and so do all of it’s
principal k × k minors for k = 2, . . . , n.

The alternating parity assumption isn’t necessary for existence of a real symmetric
Toeplitz matrix. In Theorem 3.3.4 we prove the new result that there exists a 3× 3

real symmetric Toeplitz matrix with even eigenvalues λ1, λ2 and odd eigenvalue µ1 if
and only if

(λ1 − µ1)(µ1 − λ2) + 2(λ1 − λ2)
2 ≥ 0.

3.0.4 Bisymmetric isospectral flows

Symmetric Toeplitz matrices are bisymmetric, which means they are symmetric along
both the top-left-to-bottom-right and top-right-to-bottom-left diagonals. Let X ∈
Bisym(n), the space of bisymmetric n × n matrices, and suppose X has n distinct
eigenvalues. Then the bisymmetric isospectral manifold is

BI = {Y ∈ Bisym(n) : eigs(Y ) = eigs(X)} . (3.10)

In Section 3.2, we prove that this manifold has
(
n
p

)
connected components, where

p =
⌈
n
2

⌉
. Each component has dimension 1

2
p(p − 1) + 1

2
q(q − 1) where q = n − p,

and may be parametrised by a representative matrix in the connected Lie group of
centrosymmetric orthogonal matrices. This is not a completely new result, but is
certainly a contribution as a fully formalised proof of the result, as Chu discusses the



3.1 Isospectral flows for Toeplitz inverse eigenvalue problems 77

different connected components of the manifold for the 3× 3 case but does not go into
detail [Chu93]. Each component corresponds to a choice of parity for these n distinct
eigenvalues. Hence, Landau’s Theorem informs us of a connected component that
is guaranteed to contain a symmetric Toeplitz matrix — the connected component
containing matrices with alternating parity.

The fact that each connected component of the bisymmetric isospectral manifold is
acted upon by a Lie group with dimension 1

2
p(p− 1) + 1

2
q(q − 1) is important. This

allows us to parametrise the manifold by the associated Lie algebra, which has the
same small dimension. Using this, we can reduce the 3× 3 bisymmetric isospectral flow
to a one dimensional flow, the 4× 4 bisymmetric isospectral flow to a two dimensional
flow, and the 5 × 5 bisymmetric isospectral flow to a four dimensional flow and so
on. In Subsection 3.2.3 we derive an analytical solution for the trajectories of 3× 3

bisymmetric isospectral flows. Then in Section 3.3, conduct a numerical study of the
4× 4 gradient flow and Chu flow for the inverse Toeplitz eigenvalue problem and gain
some insights that have until now been occurring in a 5 or 6 dimensional space rather
than this 2 dimensional one.

At the end of the chapter we briefly discuss an extremely impractical, brute force
approach to the computation which produces isospectral iterates Y0, Y1, . . . which
converge to a symmetric Toeplitz matrix. The reason is purely theoretical, to show that
the Solvability Complexity Index of the problem is 1 (see [BAHNS15a] and Section
4.5).

3.1 Isospectral flows for Toeplitz inverse eigenvalue

problems

In this section we give two types of isospectral flows that can be used to compute a
symmetric Toeplitz matrix with prescribed spectrum.

3.1.1 Isospectral gradient flows

Isospectral gradient flows in an arbitrary metric were derived in Chapter 2. In this
section we apply the results to the symmetric Toeplitz inverse eigenvalue problem.

Proposition 3.1.1. The space of real symmetric matrices can be decomposed into
orthogonal subspaces

Rn×n
sym = Tn ⊕Zn, (3.11)



78 The symmetric Toeplitz inverse eigenvalue problem

where Tn is the space of real symmetric Toeplitz matrices and Zn is the space of real
symmetric matrices whose diagonals sum to zero:

Zn =

{
Z ∈ Sn :

n−j∑
i=1

Zi,i+j = 0, ∀j ∈ {0, 1, . . . , n− 1}

}
. (3.12)

Proof. For any T ∈ Tn and Z ∈ Zn, ⟨T, Z⟩F = 0. Furthermore, the dimension of Tn is
n and the dimension of Zn is 1

2
n(n− 1), which add up to the dimension of Rn×n

sym .

We denote the projection operators onto Tn and Zn by PT and PZ respectively. In
coordinates, PT simply averages each diagonal:

PT (Y )i,j =
1

n− |j − i|
∑

l−k=j−i

yk,l (3.13)

and PZ(Y ) = Y − PT (Y ).
Recall the setup of an isospectral gradient flow: We have a function f : Rn×n

sym → R,
an isospectral manifold ISO(n)(Y0) for a starting matrix Y0, and Riemannian metric

⟨[A, Y ], [B, Y ]⟩g = ⟨A,LYB⟩F , (3.14)

for A,B ∈ Cso(n)(Y ). By Theorem 2.4.6, the isospectral gradient flow in this setup is

Ẏ = −
[
L−1
Y [∇Ψ(Y ), Y ] , Y

]
.

The most obvious function to optimise in order to obtain a symmetric Toeplitz
matrix is

f(Y ) = ∥PZ(Y )∥2F . (3.15)

The isospectral gradient flow for this function with the normal metric is

Ẏ = [[PT (Y ), Y ], Y ]. (3.16)

Chu and Golub study this flow in [CG02], [CG05]. By Theorem 2.4.4 a gradient flow
with isolated stationary points always converges to a stationary point. Therefore,
the study of the stationary points is a sufficient analysis for the convergence or
nonconvergence question for Toeplitz matrices.



3.1 Isospectral flows for Toeplitz inverse eigenvalue problems 79

By Theorem 2.4.7, the stationary points of this flow are points such that [PT (Y ), Y ] =

0, which is equivalent to
[PT (Y ), PZ(Y )] = 0. (3.17)

Since points Y ∈ T are global minimisers, these stationary points are all stable. By
Corollary 2.4.9, the points Y /∈ T are stable if and only if

⟨PZ ([A, Y ])− [A,PZ(Y )] , [A, Y ]⟩F ≥ 0 for all A ∈ so(3),

because ∇f(Y ) = PZ(Y ) and ∇2f(Y ) = PZ for Y /∈ T . Now, since [A,PZ(Y )] =

PZ ([A,PZ(Y )]) + PT ([A,PZ(Y )]), and using Lemma C.2.1, we have stability if and
only if the operator

A 7→ [Y, PZ([A,PT (Y )]− PT ([A,PZ(Y )]] (3.18)

is positive definite on so(n). Note the this formula allows one to numerically check
the stability of a stationary point by computing the eigenvalues of this operator
when considered as a matrix mapping R 1

2
n(n−1) → R 1

2
n(n−1). Indeed we do this below

symbolically for 3× 3 case.
In the space of symmetric matrices with Frobenius norm equal to 1, f(Y ) =

∥PZ(Y )∥2F has a straightforward set of stationary points. The Toeplitz matrices T
are the global minimisers with f(Y ) = 0 and the complement Z are global maximis-
ers. The stationary points on the isospectral manifold, which are characterised by
[PT (Y ), PZ(Y )] = 0, however, include other kind of matrices. Let us look at specific
cases for n.

To simplify matters we will consider only trace free matrices. The convergence
behaviour of the flow (3.16) is not affected by this restriction, since [[PT (Y + αI), Y +

αI], Y + αI] = [[PT (Y ), Y ], Y ].
In the 2× 2 case we have

R2×2
sym ∩ sl(2) = Span

{(
0 1

1 0

)
,

(
1 0

0 −1

)}
= {T1, Z1} .

Since [T1, Z1] = 0, the only stationary points of the flow are multiples of T1 and
multiples of Z1. Since T1 is a minimiser and Z1 is a maximiser, T1 is stable and Z1 is
unstable.



80 The symmetric Toeplitz inverse eigenvalue problem

In the 3×3 case the stationary points are more involved. We have the decomposition.

R3×3
sym ∩ sl(3) = Span


 0 0 1

0 0 0

1 0 0

 ,

 0 1 1

1 0 1

1 1 0

 ,

 0 1 −1
1 0 1

−1 1 0


 1 0 0

0 −2 0

0 0 1

 ,

 1 −1 0

−1 0 1

0 1 −1

 ,

 1 1 0

1 0 −1
0 −1 −1




= {T1, T2, T3, Z1, Z2, Z3} .

This particular choice of basis is not orthogonal in the Frobenius inner product, but
satisfies [Ti, Zi] = 0 for i = 1, 2, 3, and commutation of any other pair of elements is
nonzero. Hence by the stationarity condition [PZ(X), PT (X)] = 0, we have stationary
points of the form,

Y =

 b 0 a

0 −2b 0

a 0 b

 ,

 b a− b a

a− b 0 a+ b

a a+ b −b

 ,

 b a+ b −a
a− b 0 a− b

−a a− b −b


= Y1, Y2, Y3.

What about the stability of these points? Recall that a stationary point for this flow
is stable if and only if the operator given in equation (3.18) is positive definite. The
following snippet of Matlab code will compute a 3 × 3 matrix representation (with
respect to a basis for so(3)) of that operator for arbitrary a and b in Y1, and then
compute the eigenvalues of that matrix.

1 syms a b 'real'
2 Z = [b 0 0; 0 -2*b 0; 0 0 b];
3 T = [0 0 a; 0 0 0; a 0 0];
4 Y = T+Z; % Stat. pt.
5 L = sym(zeros (3)); % Manifold Hessian around stat. pt.
6 for i = 1:2
7 for j = i+1:3
8 for k = 1:2
9 for l = k+1:3

10 Eij = zeros (3);Eij(i,j) = 1;Eij(j,i) = -1; % so(3) basis element
11 Ekl = zeros (3);Ekl(k,l) = 1;Ekl(l,k) = -1; % so(3) basis element
12 C = Y*Eij -Eij*Y; % [Y,Eij]



3.1 Isospectral flows for Toeplitz inverse eigenvalue problems 81

13 PTC = toeplitz ([mean(diag(C)), mean([C(1,2),C(2,3)]), C(1,3)]);
14 PZC = C - PTC; % P_Z([Y,Eij])
15 L((i-1)+(j-1) ,(k-1)+(l-1)) = trace ((Y*Ekl -Ekl*Y)*(PZC -(Z*Eij -Eij*

Z)));
16 end
17 end
18 end
19 end
20 eigs = eig(L)

The matrix for stability of Y1 (with respect to a certain basis for so(3)) computed
by this Matlab code (denoted L in the code) is

L =

 a2 − 6ab− 9b2 0 a2 + 9b2

0 8a2 0

a2 + 9b2 0 a2 − 6ab− 9b2

 . (3.19)

The eigenvalues of this matrix are 16a2, 2a2 − 6ba,−18b2 − 6ab. Therefore if we take
for example a = −4 and b = 1, then the stationary point Y1 is stable but not Toeplitz.
In Section 3.3, we show how the parity of eigenvalues (discussed above) inform us how
to avoid these stable stationary points.

We could consider the 4×4 case, but the dimension of the flow is then dim(so(4)) = 6,
which is quite difficult to deal with for many reasons. In Section 3.3 we restrict the
flow to bisymmetric matrices, because then the flow can be reduced to 2 dimensional
flow. This has never been done before in the literature, and it makes observing the
behaviour of the flow tractable.

3.1.2 Chu’s flow

The following flow was introduced by Chu [Chu93] as a method for solving the inverse
eigenvalue problem for symmetric Toeplitz matrices.

Ẏ = [B(Y ), Y ], Y0 ∈ Rn×n, σ(Y0) = (λ1, . . . , λn)
T , (3.20)

where B is the Toeplitz annihilator,

B(Y )i,j =


yi,j−1 − yi+1,j if i < j,

0 if i = j,

yi,j+1 − yi−1,j if i > j.

(3.21)



82 The symmetric Toeplitz inverse eigenvalue problem

To understand how this works, consider the case n = 4:

B(Y ) =


0 y1,1 − y2,2 y1,2 − y2,3 y1,3 − y2,4

y2,2 − y1,1 0 y2,2 − y3,3 y2,3 − y3,4

y3,2 − y2,1 y3,3 − y2,2 0 y3,3 − y4,4

y4,2 − y3,1 y4,3 − y3,2 y4,4 − y3,3 0

 . (3.22)

It is clear that if Y is symmetric, then B(Y ) is skew-symmetric. Also, B(Y ) = 0 if
and only if Y is a Toeplitz matrix. Less clear is that the flow in equation (3.20) is
stationary if and only if Y is Toeplitz.

Proposition 3.1.2 ([Chu93]). If Y0 has distinct eigenvalues, then all fixed points of
the Chu flow are Toeplitz matrices.

Proof. This follows immediately from Proposition 2.1.10.

This proves that for distinct eigenvalues Chu’s flow cannot converge to a non-
Toeplitz matrix. Note however, that if Y0 does not have distinct eigenvalues there can
be non-Toeplitz fixed points. It was found by Chu [Chu93] that a 0 −3a

0 −2a 0

−3a 0 a


is a stationary point of the flow. In Section 3.3.2 we show that this matrix can be
avoided by using the parity of the eigenvalues.

In contrast to the gradient flow in Subsection 3.1.1, there is no reason to expect
that Chu’s flow will converge to a fixed point. Indeed there are periodic orbits. In
Section 3.3.2 we prove that Chu’s flow with initial data of the form

Y0 =

 x 0 z

0 −2x 0

z 0 x

 (3.23)

gives a periodic orbit if and only if zx+ x2 < 0.
If there are non-Toeplitz fixed points, and periodic orbits in Chu’s flow, then why

is it worth studying for this problem?
Chu’s flow has been studied in several papers [Chu93], [DS99], [DS02], [DS03]. All

claim that Chu’s flow always converges in practice, despite these theoretical results



3.1 Isospectral flows for Toeplitz inverse eigenvalue problems 83

showed the contrary. Figure 3.1 shows why this might not be a contradiction. In
Figure 3.1, Chu’s flow is solved numerically using a basic geometric integrator,

Yk+1 = (I − h

2
B(Yk))

−1(I +
h

2
B(Yk))Yk(I +

h

2
B(Yk))

−1(I − h

2
B(Yk)), (3.24)

which is a Runge–Kutta–Munthe-Kaas forward Euler method on the isospectral mani-
fold using the Cayley map:

Cay : so(n)→ SO(n), Cay(Ω) =

(
I − 1

2
Ω

)−1(
I +

1

2
Ω

)
. (3.25)

See Appendix B for more information on the Cayley map [Zan98], [CIZ97], [IMKNZ00].
The initial condition used is

Y0 =

 1 1 −3
1 −2 1

−3 1 1

 . (3.26)

What we see is that the flow begins periodic with period approximately 1.047, but
around time t = 4.2 the dynamics change and the flow converges to a Toeplitz matrix.

0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3

t

 

 

y
11

y
12

y
22

y
13

y
23

y
33

Fig. 3.1 This is a numerical solution to Chu’s flow (equation (3.20)) solved using a Cayley
Forward Euler method (equation (3.24)), a stepsize h = 0.002, and initial condition given in
equation (3.26). Each line is an entry of the symmetric matrix as described in the legend. In
exact arithmetic, the trajectory is periodic with period approximately 1.047 (the periodicity
is proven in Subsection 3.2.3). However, the numerical solution quickly leaves the orbit due
to discretisation and rounding errors. If the step size h is changed then the time t = hn at
which the flow leaves the orbit changes.



84 The symmetric Toeplitz inverse eigenvalue problem

In Subsection 3.3.2 we discuss Chu’s flow restricted to bisymmetric matrices, but
first we must derive some results about the manifold such a flow evolves on.

3.2 The bisymmetric isospectral manifold

In this section we describe fine properties of centrosymmetric matrices, (a superset of
bisymmetric matrices), leading to discussion of the structure of isospectral manifolds
of bisymmetric matrices.

3.2.1 Centrosymmetric matrices

Define the exchange matrix,

E = En×n =



0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...

0 1 · · · 0 0

1 0 · · · 0 0


. (3.27)

Definition 3.2.1. A matrix X ∈ Rn×n is centrosymmetric if EXE = X (equivalently,
if xn+j−1,n+i−1 = xij for all i, j). A matrix is bisymmetric if it is both symmetric and
centrosymmetric (equivalently, if xn+i−1,n+j−1 = xij = xji = xn+j−1,n+i−1 for all i, j).
These two spaces we denote Centro(n) and Bisym(n) respectively.

Informally, a matrix is centrosymmetric if, when the entries are rotated π radians,
the matrix remains the unchanged. In the literature, matrices that are invariant under
reflecting the entries across the antidiagonal are known as persymmetric [MMD03]; we
are not interested in this particular property in this particular chapter.

Centrosymmetric matrices have a nice block structure, and can be block diagonalised
by the involutory orthogonal matrix K, as seen in Table 3.1.

Lemma 3.2.2 ([CB76]). Centro(n) is an algebra isomorphic to Rr×r × Rs×s.

Proof. Centro(n) is clearly a linear space. To see it is an algebra, for X, Y ∈ Centro(n),
EXY E = EXEEY E = XY so XY ∈ Centro(n). The isomorphism is given by
(X1, X2) 7→ Kdiag(X1, X2)K.



3.2 The bisymmetric isospectral manifold 85

Table 3.1 Structure of centrosymmetric matrices. This is a modified version of that in
[CG05, p. 87], [CG02], [CB76], modified so that the matrix K here is symmetric. This
makes working with these block structures easier as we do not need to worry about
the difference between K and KT .

Even n Odd n

X

(
A CE
EC EAE

)  A b CE
dT e dTE
EC Eb EAE


√
2K

(
I E
E −I

)  I 0 E

0
√
2 0

E 0 −I



KXK

(
A+ C 0

0 E(A− C)E

)  A+ C
√
2b 0√

2dT e 0
0 0 E(A− C)E


Lemma 3.2.3 ([CB76]). For X ∈ Centro(n), any simple eigenvector is either even or
odd.

Proof. If Xv = λv then XEv = EXv = λEv. By simplicity of λ, Ev = ±v, so v is
either odd or even.

Lemma 3.2.4 ([CB76]). Let X ∈ Bisym(n). Then there exists an orthonormal basis
of eigenvectors {v1, v2, . . . , vp, w1, w2, . . . , wq} for X such that the vi’s are even and the
wi’s are odd. Here p = ⌈n/2⌉ and q = ⌊n/2⌋.

Proof. Using Table 3.1, KXK = diag(X1, X2) where X1 ∈ Sym(p) and X2 ∈ Sym(q).
Let Q1 ∈ SO(p), Q2 ∈ SO(q) such that QT

1X1Q1 and QT
2X2Q2 are diagonal. Then

the eigenvectors of X are the orthonormal columns of Kdiag(Q1, Q2)K, the first p of
which are even and the last q odd.

Definition 3.2.5 (Eigenvalue parity). Let X ∈ Bisym(n). By Lemma 3.2.4, we can
say that X has p = ⌈n/2⌉ even eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λp and q = ⌊n/2⌋ odd
eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µq.

Definition 3.2.6. Define the Lie groups CO(n) and SCO(n) by

CO(n) = Kdiag(O(p),O(q))K, (3.28)



86 The symmetric Toeplitz inverse eigenvalue problem

SCO(n) = Kdiag(SO(p), SO(q))K, (3.29)

where K, p and q are as in Table 3.1 and Lemma 3.2.4.

Lemma 3.2.7. The Lie algebra derived from both CO(n) and SCO(n) is

sco(n) = Kdiag(so(p), so(q))K. (3.30)

Proof. Consider a smooth path ρ : (−ϵ, ϵ) → SCO(n) such that ρ(0) = I. Write
ρ = Kdiag(ρ1, ρ2)K. Then

ρ′(0) = Kdiag(ρ′1(0), ρ
′
2(0))K ∈ Kdiag(so(p), so(q))K. (3.31)

This completes the proof that sco(n) is the derived Lie algebra for SCO(n). The proof
for CO(n) is analogous.

Lemma 3.2.8. We have the following technical facts regarding CO(n), SCO(n) and
sco(n).

1. CO(n) = O(n) ∩ Centro(n)

2. sco(n) = so(n) ∩ Centro(n)

3. SCO(n) = exp(sco(n))

4. SCO(n) is a connected normal Lie subgroup of CO(n) with quotient group iso-
morphic to the Klein 4 group V4 (i.e. CO(n) has 4 connected components)

5. CO(n) and SCO(n) are quadratic Lie groups as in Subsection B.3.1 and SCO =

Cay(sco(n)), where Cay is the Cayley map Ω→ (I + 1
2
Ω)−1(I − 1

2
Ω)

Proof. 1. Let Q = Kdiag(Q1, Q2)K ∈ CO(n). Then Q is orthogonal as it is the
product of three orthogonal matrices, and it is centrosymmetric by Table 3.1.
Hence CO(n) ⊆ O(n) ∩ Centro(n). Now for the reverse inclusion. If a matrix Q

is centrosymmetric then it is of the form Q = Kdiag(Q1, Q2)K by Table 3.1. If
Q is also orthogonal, then diag(Q1, Q2) = KQK is orthogonal, so that Q1 and
Q2 are orthogonal, meaning Q is in fact a member of CO(n).

2. Essentially the same proof as for part 1.



3.2 The bisymmetric isospectral manifold 87

3. Since exp is analytic, we can simply show exp(sco(n)) = exp (Kdiag(so(p), so(q))K) =

K exp(diag(so(p), so(q)))K = Kdiag(SO(p), SO(q))K = SCO(n).

4. SCO(n) is a connected normal Lie subgroup of CO(n) because SO(p)×SO(q) is a
connected normal Lie subgroup of O(p)×O(q). The quotient group is isomorphic
to O(p)/SO(p)×O(q)/SO(q) ∼= V4.

5. We have that CO(n) =
{
Q ∈ GL(n) : QTQ = I, QTEQ = E

}
, so it is quadratic

as in Subsection B.3.1 and the Cayley map sends sco(n)→ SCO(n).

An alternative formulation of CO(n) is as the indefinite orthogonal group OE(p, q) of
orthogonal matrices invariant under the nondegenerate bilinear form ⟨v, w⟩E = vTEw.
In this interpretation SCO(n) = SO+

E(p, q) the connected component of OE(p, q)

containing the identity. The most famous split orthogonal group is the Lorentz group
SO+(1, 3), important in electromagnetism and special relativity, whose nondegenerate
bilinear form is ⟨v, w⟩1,3 = −v1w1 + v2w2 + v3w3 + v4w4.

A nice way to think about SPO(n) is that it is the Lie group of centrosymmetric
orthogonal matrices connected to the identity. We can go further than this and describe
a basis of bisymmetry preserving Givens rotations.

Lemma 3.2.9 (Bisymmetry preserving Givens rotations (see for example [MMD03])).
Any element U ∈ SCO(n) can be written as a product of elements of the lexicographically
ordered set

B :=
{
Uij(θ) : 1 ≤ i < j ≤ n

2

}
∪
{
Vi,j(θ) : 1 ≤ i <

n+ 1

2
= j

}
∪
{
Wij(θ) : 1 ≤ i <

n

2
< j ≤ n− i

}
.

Each element is the n×n identity matrix, with the exception that the ith, jth, n+1−ith
and n+ 1− jth rows and columns of Uij(θ), Vij(θ) and Wij(θ) are (respectively)

c s 0 0

−s c 0 0

0 0 c −s
0 0 s c

 ,


c+1
2

s√
2

c−1
2

− s√
2

c − s√
2

c−1
2

s√
2

c+1
2

 ,


c 0 s 0

0 c 0 −s
−s 0 c 0

0 s 0 c

 , (3.32)

where c = cos(θ), s = sin(θ).



88 The symmetric Toeplitz inverse eigenvalue problem

Let us look at these centrosymmetric Lie algebras and Lie groups for specific cases
of n.

sco(3) =


 0 ω 0

−ω 0 −ω
0 ω 0

 : ω ∈ R

 , (3.33)

SCO(3) = K

(
SO(2) 0

0 1

)
K =




c+1
2

s√
2

c−1
2

− s√
2

c − s√
2

c−1
2

s√
2

c+1
2

 : c2 + s2 = 1



sco(4) = K

(
so(2) 0

0 so(2)

)
K =




0 ω1 ω2 0

−ω1 0 0 −ω2

−ω2 0 0 −ω1

0 ω2 ω1 0

 : ωi ∈ R



SCO(4) = K

(
SO(2) 0

0 SO(2)

)
K

=




c1 s1 0 0

−s1 c1 0 0

0 0 c1 −s1
0 0 s1 c1




c2 0 s2 0

0 c2 0 −s2
−s2 0 c2 0

0 s2 0 c2

 : c2i + s2i = 1 ∈ R


3.2.2 Structure of bisymmetric isospectral manifolds

What does the isospectral manifold look like when it is restricted to contain only the
bisymmetric matrices that have the same eigenvalues as a given bisymmetric matrix?
We denote

BIG(X0) = IG(X0) ∩ Bisym(n), (3.34)

for any X0 ∈ Bisym(n) and any Lie subgroup G ⊂ SL(n).



3.2 The bisymmetric isospectral manifold 89

Proposition 3.2.10. Let Y0 ∈ Bisym(n). The tangent space TY BISO(n)(Y0) at any
point Y is the space

TY BISO(n)(Y0) =
{
[A, Y ] : A ∈ Csco(n)(Y )⊥

}
, (3.35)

where Csco(n)(Y ) = {B ∈ sco(n) : [B, Y ] = 0} is the centraliser of Y in sco(n) and
⊥ denotes the orthogonal complement in sco(n) with respect to the Frobenius inner
product.

Furthermore, there is a linear bijection,

adY : Csco(n)(Y )⊥ → TY BISO(n)(Y0). (3.36)

Proof. Since BIG(Y0) = IG(Y0) ∩ Bisym(n), Proposition 2.4.1 shows that

TXBISO(n)(Y0) =
{
[A, Y ] : A ∈ Cso(n)(Y )⊥

}
∩ Bisym(n).

Suppose that A ∈ Cso(n)(Y )⊥ and [A, Y ] ∈ Bisym(n). Then [A, Y ] = E[A, Y ]E =

[EAE,EXE] = [EAE, Y ]. Therefore A = EAE + B for some B ∈ Cso(n)(Y ). Note
that B−EBE ∈ Cso(n)(Y ) because E also commutes with Y because it is bisymmetric.
Hence

⟨B,B⟩F = ⟨A− EAE,B⟩F
= ⟨A,EBE −B⟩F
= 0

Therefore, B = 0, so A = EAE. By Lemma 3.2.8 part (ii), A ∈ sco(n). Therefore
A ∈ Csco(n)(Y )⊥.

Conversely, if A ∈ Csco(n)(Y )⊥ then A ∈ so(n) and if B ∈ Cso(n)(Y ) then

⟨A,B⟩F =
1

2
⟨A,B + EBE⟩F = 0

since B+EBE ∈ Csco(n)(Y ). Therefore A ∈ Cso(n)(Y )⊥ and E[A, Y ]E = [EAE,EXE] =

[A, Y ] because by Lemma 3.2.8 A ∈ Centro(n).
To complete the proof and show that adY is a bijection, note that its kernel in

Cg(Y )⊥ is zero by definition.



90 The symmetric Toeplitz inverse eigenvalue problem

Theorem 3.2.11. Let X, Y ∈ Bisym(n). Then there exists Q ∈ SCO(n) such that
Y = QXQT if and only if X and Y have the same eigenvalues with the same parities
(taking multiplicity into account).

Proof. Using Table 3.1, we can write KXK = diag(X1, X2) and KYK = diag(Y1, Y2).
Then, writing Q = Kdiag(Q1, Q2)K were Q1 ∈ SO(p), Q2 ∈ SO(q),

∃Q ∈ SCO(n) s.t. Y = QTXQ ⇐⇒ ∃Q1 ∈ SO(p), Q2 ∈ SO(q) s.t.

Yi = QT
i XiQi, i = 1, 2

⇐⇒ Xi and Yi have the same

eigenvalues for i = 1, 2

⇐⇒ X and Y have the same

eigenvalues with the same parities

This last line follows from the fact the even eigenvalues of X and Y are the eigenvalues
of X1 and Y1 respectively, and the odd eigenvalues those of X2 and Y2 respectively, as
can be seen in the proof of Lemma 3.2.4.

Theorem 3.2.12. Let Y0 ∈ Bisym(n) have n distinct eigenvalues. Then the bisym-
metric isospectral manifold

BISO(n)(X0) = {Y ∈ Bisym(n) : eigs(Y ) = eigs(Y0)} (3.37)

has
(
n
p

)
connected components, where p =

⌈
n
2

⌉
. The components are each acted upon

transitively by SCO(n), and have dimension 1
2
p(p− 1) + 1

2
q(q − 1).

Proof. Let X : R → BISO(n)(X0) be a C1 path. Then by Proposition 3.2.10, Ẋ =

[A(t), X] for a C1 function A : R → sco(n). By 2.1.1, X = QX0Q
T , where Q̇ = AQ,

Q(0) = I. By Lemma 3.2.8, Q ∈ SCO(n). Hence by Theorem 3.2.11 the parity of the
eigenvalues of X(t) remains the same for all t. Since this path was arbitrary, all the
matrices in a connected component have the same parity of eigenvalues.

Conversely, if X, Y ∈ BISO(n)(Y0) have the same eigenvalues with the same parity,
then by Theorem 3.2.11 there exists Q ∈ SCO(n) such that Y = QXQT . Since
SCO(n) = exp(sco(n)) by Lemma 3.2.8, there exists A such that exp(A) = Q. The
path Z(t) = exp(tA)X exp(−tA) is a continuous path connecting X and Y , so they
must be in the same connected component.



3.2 The bisymmetric isospectral manifold 91

Therefore, each connected component is in one-to-one correspondence to the set of
parity assignments for the eigenvalues.

The dimension of the manifold is that of SCO(n), which is dim(SO(p))+dim(SO(q)) =
1
2
p(p− 1) + 1

2
q(q − 1).

Theorem 3.2.12 can be restated as follows. For Y ∈ Bisym(n), the bisymmetric
isospectral manifold can be expressed as

BISO(n)(Y ) =

(np)⋃
i=1

ISCO(n)(Yi), (3.38)

where Y1, . . . , Y(np)
are representatives of each connected component of BISO(n)(Y ).

What is a sensible set of representatives?

Definition 3.2.13 (Cross matrices). We define the space of cross matrices to be the
image of diag(p)× diag(q) under conjugation by K:

Cross(n) = K

(
diag(p) 0

0 diag(q)

)
K. (3.39)

The non-zero structure of a cross matrix is like a cross. For example, for n = 6 and
using diag(λ1, λ2, λ3) and diag(µ1, µ2, µ3) in Definition 3.2.13,

1

2



λ1 + µ1 0 0 0 0 λ1 − µ1

0 λ2 + µ2 0 0 λ2 − µ2 0

0 0 λ3 + µ3 λ3 − µ3 0 0

0 0 λ3 − µ3 λ3 + µ3 0 0

0 λ2 − µ2 0 0 λ2 + µ2 0

λ1 − µ1 0 0 0 0 λ1 + µ1


. (3.40)

The eigenvalues of this matrix are λ1, λ2, . . . , λp, µq, µq−1, . . . , µ1. It is clear from the
definition how to produce a cross matrix with prescribed eigenvalues.

The results of this section thus far allow us to solve more than a bisymmetric
inverse eigenvalue problem. They allow us to solve a parity assigned bisymmetric
inverse eigenvalue problem, in which we not only assign the eigenvalues, but what the
parity of each eigenvalue should be. How this applies to the symmetric Toeplitz inverse
eigenvalue problem and how Landau’s Theorem relates to parity of eigenvalues will be
discussed in Section 3.3.



92 The symmetric Toeplitz inverse eigenvalue problem

3.2.3 3× 3 bisymmetric isospectral manifold

By Theorem 3.2.12, the 3 × 3 bisymmetric isospectral manifold consists of three
connected components each acted upon transitively by SCO(3). In Figure 3.2 we see
that this is indeed the case. Each colour of line represents a distinct set of 3 eigenvalues,
each producing three disjoint 1-dimensional manifolds representing a different parity
assignment. It is easy to see that there is a cylinder in the 3-dimensional space (which
project onto two green circles, one of which is on the back of the sphere) such that
all isospectral flows which begin inside this cylinder can never encounter a Toeplitz
matrix. We compute an exact formula for this cylinder below.

We have shown above that SCO(3) is a 1-dimensional Lie group with Lie algebra
generator

Ω1 =

 0 1 0

−1 0 −1
0 1 0


Hence any bisymmetric isospectral flow is of the form

Y (t) = exp(ω(t)Ω1)Y0 exp(−ω(t)Ω1), (3.41)

for some function ω : R→ R. Computing Y (t) explicitly for the trace free cross matrix

Y0 =

 x 0 y

0 −2x 0

y 0 x

 , (3.42)

we have that all 3× 3 bisymmetric isospectral flows are of the form

Y (t) =
x− y

4

 1 0 −3
0 −2 0

−3 0 1

+
3x+ y

4

 c −
√
2s c

−
√
2s −2c −

√
2s

c −
√
2s c

 , (3.43)

where c(t) = cos(ω(t)) and s(t) = sin(ω(t)). If Y (t) satisfies an autonomous first order
system then so does ω(t) by Theorem B.3.9. Solutions to scalar autonomous first order
system can only be nonincreasing or nondecreasing. Hence Y (t) is either periodic if



3.2 The bisymmetric isospectral manifold 93

Fig. 3.2 This figure describes the structure of the bisymmetric isospectral manifolds for
3× 3 matrices. The three axes represent the three degrees of freedom for a bisymmetric and
trace-free 3 × 3 matrix. The surface of the blue sphere corresponds to the matrices with
Frobenius norm 1; note that the surface is translucent so we can see lines drawn on its far side.
Each line colour (red, blue, green) corresponds to a single bisymmetric isospectral manifold
for a choice of 3 eigenvalues. Note that as predicted by Theorem 3.2.12, there are three
connected components for each bisymmetric isospectral manifold, each corresponding to a
choice of parity for the eigenvalues. Not every parity assignment gives a circle that passes
through the (x, y)-plane (which represents Toeplitz matrices). Note for example the red circle
on the right: any algorithm constrained to lie in that red circle can never encounter a Toeplitz
matrix (labeled by a large dot).

ω(t) is nonconvergent, or Y (t) is convergent in the case that ω(t) is convergent. The
dynamics are very simple.



94 The symmetric Toeplitz inverse eigenvalue problem

Note that all 3× 3 bisymmetric isospectral flows have any multiple of the following
as a fixed point,  1 0 −3

0 −2 0

−3 0 1

 . (3.44)

3.2.4 4× 4 bisymmetric isospectral manifold

By Theorem 3.2.12, the 4×4 bisymmetric isospectral manifold consists of six connected
components each acted upon transitively by SCO(4).

We have shown above that SCO(4) is a 2-dimensional Lie group with Lie algebra
generators

Ω1 =


0 1 1 0

−1 0 0 −1
−1 0 0 −1
0 1 1 0

 , Ω2 =


0 1 −1 0

−1 0 0 1

1 0 0 −1
0 −1 1 0

 .

Hence any bisymmetric isospectral flow is of the form

Y (t) = exp(ω2(t)Ω2) exp(ω1(t)Ω1)Y0 exp(−ω1(t)Ω1) exp(ω2(t)Ω2), (3.45)

for some functions ωi : R→ R. It is readily observed that [Ω1,Ω2] = 0, by the isomor-
phism SO(2)× SO(2) ∼= SCO(4). Hence the ordering of the similarity transformations
does not matter.

3.2.5 Parity in general

How do these results and principles generalise beyond bisymmetric matrices? Theorem
3.2.11 and Theorem 3.2.12 can be generalised to the following without changing the
mechanics of the proofs.

Definition 3.2.14. Let Σ ∈ GL(n) be an involution, i.e. Σ2 = I. Equivalently all of
its eigenvalues are ±1. The signature of σ is the unique pair of integers (p, q) such that
σ has a p-dimensional 1-eigenspace and q-dimensional −1-eigenspace.

Remark 3.2.15. The exchange matrix E ∈ GL(n) is an involution with signature
(
⌈
n
2

⌉
,
⌊
n
2

⌋
).



3.3 Bisymmetric isospectral flows for Toeplitz inverse eigenvalue problems 95

Theorem 3.2.16. Let Σ ∈ GL(n) be an involution with signature (p, q) and let
X ∈ gl(n) be such that ΣXΣ = X. Define K ∈ SL(n) to have the first p columns some
p normalised linearly independent 1-eigenvectors of Σ and the last q columns some
normalised linearly independent −1-eigenvectors of Σ. Then

K−1XK =

(
X1 0

0 X2

)
, (3.46)

where X1 ∈ gl(p), X2 ∈ gl(q).

Theorem 3.2.17. Let G be a connected Lie subgroup of SL(n) and GΣ be the identity
component of {Q ∈ G : ΣQΣ = Q}. Now let X ∈ gl(n) have distinct eigenvalues and
satisfy ΣXΣ = X. Then the constrained G-Adjoint orbit of X,

IG(X) ∩ {Y ∈ gl(n) : ΣY Σ = Y } , (3.47)

has
(
n
p

)
connected components, where (p, q) is the signature of Σ, and each component

is acted upon by GΣ. Hence the dimension of each component is dim(GΣ).

3.3 Bisymmetric isospectral flows for Toeplitz inverse

eigenvalue problems

Let us inspect Landau’s Theorem more closely [Lan94].

Definition 3.3.1 (Alternating parity). Let a bisymmetric matrix have even eigenvalues
denoted λi and odd eigenvalues denoted µi. The matrix has eigenvalues with alternating
parity if the eigenvalues can be arranged in ascending order with parity alternating
and the largest even, like

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µq ≤ λp,

or
µ1 ≤ λ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µq ≤ λp

where p =
⌈
n
2

⌉
and q = n− p.

Definition 3.3.2 (Regular Toeplitz matrix). A symmetric Toeplitz matrix is regular
if it has distinct eigenvalues with alternating parity as above, and every principal
submatrix also has these two properties.



96 The symmetric Toeplitz inverse eigenvalue problem

Landau showed that the map taking regular Toeplitz matrices to their eigenvalues
has topological degree 1 modulo 2.

Theorem 3.3.3 (Landau [Lan94]). Any vector λ ∈ Rn is the spectrum of an n×n real
symmetric Toeplitz matrix. If the eigenvalues are distinct then there exists a regular
Toeplitz matrix with those eigenvalues.

We derive an apparently new characterisation of existence for the 3× 3 problem.

Theorem 3.3.4. There exists a 3× 3 real symmetric Toeplitz matrix with even eigen-
values λ1, λ2 and odd eigenvalue µ1 if and only if

(λ1 − µ1)(µ1 − λ2) + 2(λ1 − λ2)
2 ≥ 0.

Proof. Consider the exact orbit the 3 × 3 trace-free bisymmetric isospectral flow
shown in Subsection 3.2.3. This orbit will pass through a Toeplit matrix if and
only if (3x + y)c = x − y for some cosine c, which is equivalent to x(x + y) ≥ 0.
Using the formula for a cross matrix in terms of its eigenvalues, x = −1

2
λ2 and

x + y = 1
2
(λ1 + µ1) +

1
2
(λ1 − µ1) = λ1. Hence the trace-free orbit passes through a

Toeplitz matrix if and only if λ1λ2 ≤ 0.
In order to make this apply to non-trace-free orbits, we must make the formula

λ1λ2 translation invariant. Subtract 1
3
(λ1 + λ2 + µ1) = 0 to obtain the condition(

λ1 −
1

3
(λ1 + λ2 + µ1)

)(
λ2 −

1

3
(λ1 + λ2 + µ1)

)
≤ 0.

This is now translation invariant and reduces to the condition stated in the theorem.

In the 3× 3 case, Landau’s Theorem states that there exists a symmetric Toeplitz
matrix with even eigenvalues λ1, λ2 and odd eigenvalues µ1 if (λ1 − µ1)(µ1 − λ2) ≥ 0.
Therefore, what we have proved here is stronger.

By Theorem 3.2.10, any isospectral flow which preserves bisymmetry is of the form

Ẏ = [A(t, Y ), Y ] , (3.48)

where A(t, Y ) takes values in the Lie algebra sco(n). By Theorem 3.2.12, the parity of
the eigenvalues remains constant under such a flow. This leads us to an algorithm for
solving the symmetric Toeplitz inverse eigenvalue problem. If we are given eigenvalues



3.3 Bisymmetric isospectral flows for Toeplitz inverse eigenvalue problems 97

λ1 < λ2 < . . . < λn, then assign them alternating parity as Definition 3.3.1. Construct
a cross matrix with those eigenvalues and the desired parity by constructing

K



λ1

. . .

λp

µq

. . .

µ1


K (3.49)

as in Table 3.1. Then numerically solve equation (3.48) with a geometric integrator.

3.3.1 Bisymmetric isospectral gradient flows

We must ensure that the gradient flow we discussed in Subsection 3.1.1 preserves
bisymmetry. Showing it is of the form in equation (3.48) will suffice. For any X ∈ Rn×n

sym ,
for E the exchange matrix as in Definition 3.27,

E [PT (X), X]E = [EPT (X)E,EXE] = [PT (EXE), EXE] ,

by inspection of how PT acts on the entries of X. Hence

d

dt
EXE = E [[PT (X), X] , X]E

= [[PT (EXE), EXE] , EXE] .

Therefore, if EX(0)E = X(0), by uniqueness of solutions to smooth initial value
problems, X(t) is bisymmetric for all t.

For the 3× 3 case, we have reduced the problem from a 6-dimensional flow in Rn×n
sym

to a 1-dimensional flow in sco(3). Figure 3.2 shows that the main challenge is ensuring
we begin the flow on a connected component of the manifold that contains a Toeplitz
matrix, which can be guaranteed by ensuring alternating parity of the eigenvalues or
using Theorem 3.3.4.

For the 4× 4 case, we reduced the problem considerably, from a 10-dimensional
flow in Rn×n

sym to a 2-dimensional flow in sco(4). Using Lemma B.3.9, we have that

X(t) = exp(Ω(t))X0 exp(−Ω(t)),



98 The symmetric Toeplitz inverse eigenvalue problem

where Ω(t) ∈ sco(4) satisfies

Ω̇(t) = d exp−1
Ω(t)([PT (X), X]), Ω(0) = O.

However, since sco(4) is commutative, d exp−1
Ω(t) is the identity operator, so we have

the equation
Ω̇(t) = [PT (X), X] .

Translating this flow into a flow on the torus T2 is a simple matter of complicated
algebra best left to computer algebra software.

Using a parametrisation of sco(4) by T2 are Figure 3.3, Figure 3.4 and Figure 3.5,
all demonstrating the values of Ψ(Y ) = 1

2
∥Y −PT (Y )∥2F on the bisymmetric isospectral

manifold. What is actually displayed is f(ω1, ω2), where

f(ω1, ω2) = Ψ (exp(ω2Ω2) exp(ω1Ω1)X0 exp(−ω1Ω1) exp(−ω2Ω2)) , (3.50)

where Y0 is a cross matrix with given parity-assigned eigenvalues, and

sco(4) = Span




0 1 1 0

−1 0 0 −1
−1 0 0 −1
0 1 1 0

 ,


0 1 −1 0

−1 0 0 1

1 0 0 −1
0 −1 1 0


 = Span {Ω1,Ω2}

Note that for all figures, Figure 3.3, Figure 3.4 and Figure 3.5, the matrices represented
by a 2D point are on the connected component of the bisymmetric isospectral manifold
containing matrices with alternating parity. This is done simply by choosing Y0 with
alternating parity.

In Figure 3.3, Figure 3.4 and Figure 3.5 the height of f(ω1, ω2) at each point is
represented by a colour. Red means high and blue means low (close to zero). The
stationary points are denoted using coloured dots. Yellow dots are the stationary
points that are Toeplitz and the red dots are the non-Toeplitz stationary points. The
point with a yellow asterisk is a regular Toeplitz matrix as in Definition 3.3.2. The
gradient flow will follow the normals of the contour lines.

Remark 3.3.5. Interestingly, in Figure 3.3, Figure 3.4 and Figure 3.5, the position
of the regular Toeplitz matrix in the Lie algebra appears quite stable to changes
in the eigenvalues. This suggests that it may be possible to further constrain the
set of potential solutions in order to home in on a regular Toeplitz matrix. For the



3.3 Bisymmetric isospectral flows for Toeplitz inverse eigenvalue problems 99

Even eigs: 1 −0.5, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 0.33, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3.3 Each contour plot shows the projective Toeplitz error (see equation (3.50)) for an
assignment of 2 even eigenvalues and 2 odd eigenvalues to a 4×4 bisymmetric matrix (written
in the title of the plot). In the left plot we see 4 yellow dots representing Toeplitz matrices,
of which one is asterisked to represent a regular Toeplitz matrix. Furthermore, all stable
stationary points are Toeplitz. In the right plot we see 2 yellow dots representing Toeplitz
matrices, one of which is regular. There is now one stable non-Toeplitz stationary point
represented by a red dot in a convex blue region, which is problematic for a gradient flow
approach. The difference between the two situations appears to be related to how evenly
distributed the eigenvalues are.

Even eigs: 1 −0.1, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 −0.12, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3.4 Each contour plot shows the projective Toeplitz error (see equation (3.50)) for an
assignment of 2 even eigenvalues and 2 odd eigenvalues to a 4×4 bisymmetric matrix (written
in the title of the plot). One eigenvalue is slightly different between the two plots, and
this slight change merges of two Toeplitz (yellow) solutions into a single non-Toeplitz stable
stationary point (red).



100 The symmetric Toeplitz inverse eigenvalue problem

Even eigs: 1 −0.5, Odd eigs: −0.33 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 0.8, Odd eigs: 0.9 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3.5 Each contour plot shows the projective Toeplitz error for an assignment of 2 even
eigenvalues and 2 odd eigenvalues to a 4× 4 bisymmetric matrix. Here we demonstrate what
happens to the error function as eigenvalues get closer together. In the right image, when 3
of the 4 eigenvalues begin to coalesce, the function becomes degenerate.

4 × 4 case we have treated here, clearly starting an isopectral gradient flow in the
bottom-right quadrant is the go-to strategy, but any information of where to begin for
higher dimensional problems has not been studied.

3.3.2 Bisymmetric Chu’s flow

One advantage of Chu’s flow given in Section 3.1.2 is that it preserves bisymmetry. It
has the following symmetry property [Chu93], [DS99],

EB(Y )E = B(EY E) for all Y ∈ Sn, (3.51)

where E is the exchange matrix (see Definition 3.27). It follows that

d

dt
(EY E) = [B(EY E), EY E]. (3.52)

Therefore, if EY (0)E = Y (0) then Y (t) is bisymmetric throughout the flow by
uniqueness of solution to smooth initial value problems.

In Section 3.1.2, we mentioned that Chu’s flow has periodic solutions, but that
these appear to be unstable, as demonstrated by Figure 3.1. However, this appears to
contradict Figure 3.2, including the exact solution found in that section, which bring
us to the conclusion that a periodic orbit of 3× 3 bisymmetric matrices is perfectly



3.3 Bisymmetric isospectral flows for Toeplitz inverse eigenvalue problems 101

stable because the parameter space is 1-dimensional. The reason for the instability
behaviour in Figure 3.1 is that in that numerical simulation, bisymmetry is not being
preserved. In Figure 3.6 we show an example of a bisymmetric 4× 4 numerical solution
to Chu’s flow which, when restricted to bisymmetric matrices by design, is periodic,
but when errors in bisymmetry are allowed to creep in, the periodic orbit is left and
the solution quickly converges to a Toeplitz matrix. The initial datum is

Y0 =


0.1336 0 0 0.5669

0 −0.1336 0.3780 0

0 0.3780 −0.1336 0

0.5669 0 0 0.1336

 . (3.53)

The reasoning behind choosing this initial datum is that we simple want to have a
bisymmetric matrix whose eigenvalues do not alternate in parity as in Definition 3.3.1.
We have also scaled and shifted the matrix so that it is trace free and has Frobenius
norm 1. This appears to be a very simple method to find periodic solutions to Chu’s
flow even for higher dimensions. However, as was just discussed and is demonstrated in
Figure 3.6, if the numerical solution is not constrained to stay bisymmetric by design,
then this periodic orbit is left and a convergent trajectory is found.

Figure 3.6 is interesting from the point of view of geometric integration. The
bottom solution is a worse solution to the isospectral flow than the top solution because
it fails to preserve the bisymmetry of the analytical solution and diverges from the
periodic orbit rapidly. However, because the eigenvalues are preserved by the geometric
integrator used in both cases (except for rounding errors), the bottom solution is a
better solution, because it computes a more accurate approximation to a symmetric
Toeplitz matrix with the prescribed eigenvalues, unlike the periodic orbit of the top
solution. There is a distinction between solving the flow accurately and solving the
original problem accurately.

Does this mean we should not restrict Chu’s flow to bisymmetric matrices because it
would have stable periodic solutions? Figure 3.7 suggests that Chu’s flow does not have
periodic orbits if we constrain the flow to the connected component of the bisymmetric
isospectral manifold such that the parity of the eigenvalues alternates as in Definition
3.3.1. This is done by choosing a cross matrix with alternating parity for the initial
datum. In this case Chu’s flow appears to converge to a regular Toeplitz matrix.

The numerical solutions in Figure 3.7 were computing by solving the Lie algebra
equation (see B.3.9) using Matlab’s ode45 command.



102 The symmetric Toeplitz inverse eigenvalue problem

0 10 20 30 40 50 60 70 80

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Constrained bisymmetric Chu flow (4x4)

0 10 20 30 40 50 60 70 80

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Unconstrained bisymmetric Chu flow (4x4)

Fig. 3.6 These two figures are numerical solutions to Chu’s flow (equation (3.20)) solved
using a Cayley Forward Euler method (equation (3.24)), both with a stepsize of h = 0.001,
and initial condition given in equation (3.53). Each line is an entry of the matrix. In exact
arithmetic, the trajectory is periodic with period approximately 1.047 (the periodicity is
proven in Subsection 3.2.3). In the top plot, the bisymmetry of the solution is preserved by the
numerical method (by design at each step), and the periodic dynamics are respected. However,
in the bottom plot bisymmetry is not preserved, merely symmetry, and the numerical solution
quickly leaves the orbit due to discretisation and rounding errors. If the step size h is changed
then the time t = hn at which the flow leaves the orbit changes. We emphasise that the
eigenvalues do are not alternating for this example.

In Figure 3.7 we see that when Chu’s flow is not only restricted to bisymmetric
matrices, but further restricted to bisymmetric matrices whose eigenvalues have al-
ternating parity, there are no periodic orbits. The flow is clearly not a gradient flow,
however, because we can see a curl component in the vector field around the attractive
fixed points.

The following is the main open problem in the area.



3.4 Computability 103

Conjecture 3.3.6. Given n distinct real eigenvalues, Chu’s flow is convergent to
a Toeplitz matrix for all initial data which are bisymmetric and whose eigenvalues
alternate in parity.

3.4 Computability

For practical purposes, the author recommends using a bisymmetric Chu flow starting
from a cross matrix with alternating parity in order to solve the symmetric Toeplitz
inverse eigenvalue problem numerically. In practice this has been empirically observed
to converge without fail, by this author and the authors of [Chu93], [DS99], [DS02],
and [DS03].

However, Chu’s flow from these initial data has not yet been proved to converge.
The following simple but impractical approach shows that at least in principal there
exists a convergent algorithm.

We define for a given matrix Y0 ∈ Bisym(n) whose eigenvalues alternate in parity
as in Definition 3.3.1, we parametrise the set of all bisymmetric matrices with the same
eigenvalues as Y0 with the same parities by

Y : [−π, π)m → Bisym(n), m =
1

2
p(p− 1) +

1

2
q(q − 1), p =

⌈n
2

⌉
, q = n− p,

(3.54)

Y (ω) = exp(ω1Ω1) · · · exp(ωmΩm)X0 exp(−ωmΩm) · · · exp(−ω1Ω1), (3.55)

where Ω1, . . . ,Ωm is a basis of sco(n) (See Lemma 3.2.7) such that each basis element
is a rank 2 matrix with nonzero eigenvalues ±i. This implies that {exp(tΩj) : t ∈
[−π, π)} = sco(n). This parametrisation covers all matrices with the same eigenvalues
with the same parities by Theorem 3.2.11.

Theorem 3.4.1 (An impractical but convergent algorithm). The following algorithm,
which takes as input λ ∈ Rn, produces bisymmetric matrices Y0, Y1, . . . such that
σ(Yk) = λ for all k and dist(Yk, Tλ) → 0 as k → ∞ where Tλ is the set of real
symmetric Toeplitz matrices with spectrum λ.
1. Assign p even eigenvalues λ1, . . . , λp and q odd eigenvalues µ1, . . . , µq so that they

alternate in parity: λp ≥ µq ≥ λp−1 ≥ µq−1 ≥ . . ., as in Definition 3.3.1.
2. Construct a cross matrix using these parity-assigned eigenvalues as in Definition

3.2.13 and equation (3.40), and set X0 to be this matrix.



104 The symmetric Toeplitz inverse eigenvalue problem

3. for k = 1, 2, . . . do
4. Gk ←

{
π2−k(j1, . . . , jm)

T : ji = −2k + 1, . . . , 2k
}

5. ωk ← argminω∈Gk

1
2
∥Y (ω)− PT (Y (ω))∥2F ,

6. Yk ← Y (ωk)

where in the case that there are multiple minimal values for the argmin, the standard
lexicographic ordering of the set Gk determines a unique minimiser by taking the first
in the ordering.

Proof. Let us write Ψ(Y ) = 1
2
∥Y − PT (Y )∥2F . By Landau’s Theorem that there

exists real symmetric Toeplitz matrix with λ as its spectrum, and with alternating
parity. By the parametrisation in equation (3.54), there exists ω ∈ [−π, π)m such that
Ψ(X(ω)) = 0.

Since Gk+1 ⊂ Gk, we have Ψ(Yk+1) ≤ Ψ(Yk). Also, by continuity of Ψ,

inf
k∈N

Ψ(Yk) = inf
k∈N

inf
ω∈Gk

Ψ(Y (ω))

= inf
ω∈[−π,π)m

Ψ(Y (ω))

= 0.

Therefore Ψ(Yk)→ 0 as k →∞. Suppose for a contradiction that there exists ε > 0

and a subsequence Yk1 , Yk2 , . . . such that dist(Ykj , Tλ) ≥ ε for all j. Since [−π, π)m is
compact there exists a further subsequence which converges to Ỹ . By continuity of Ψ,
we have Ψ(Ỹ ) = 0, so Ỹ is a Toeplitz matrix. By continuity of eigenvalues, Ỹ ∈ Tλ,
which is a contradiction.

Corollary 3.4.2. The Solvability Complexity Index of the inverse eigenvalue problem
for real symmetric Toeplitz matrices is equal to 1 (see [BAHNS15a] and Section 4.5).

Note that what we have not shown here is that there exists an algorithm with error
control (see [BAHNS15a] and Section 4.5), which gives a guarantee for any ε > 0 to
find an k such that there exists a Toeplitz matrix T such that σ(T ) = σ(Yk) = σ(Y0)

and ∥Yk − T∥F < ε.
However, if the purpose of the computation is to find a matrix X with prescribed

spectrum such that ∥Y − PT (Y )∥2F < ε (which does not necessarily imply that an
isospectral real symmetric Toeplitz is near to Y ) then of course the algorithm can be
terminated only when this condition is satisfied and there is error control.



3.4 Computability 105

Even eigs: 1 −0.5, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 0.33, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 −0.1, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 −0.12, Odd eigs: 0.5 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 −0.5, Odd eigs: −0.33 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Even eigs: 1 0.8, Odd eigs: 0.9 −1

ω
1

ω
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3.7 These contour plots are the same as those in Figure 3.3, Figure 3.4, Figure 3.5, except
here we have added numerical solutions to Chu’s flow starting at points on an equispaced
grid of 16 points on the torus. In all situations, the flow converges to the regular Toeplitz
matrix in the bottom right of the plot.





画蛇添足，弄巧成拙
(huà shé tiān zú, nòng qiǎo chéng zhuō)

Lit. Drawing legs on a snake turns one from clever to foolish
Fig. To ruin something by adding superfluous parts

Chapter 4

Spectra of Jacobi operators via
connection coefficients

A (bounded) Jacobi operator is a selfadjoint operator on ℓ2 = ℓ2({0, 1, 2, . . .}), which
with respect to the standard orthonormal basis {e0, e1, e2, . . .} has a tridiagonal matrix
representation

J =


α0 β0

β0 α1 β1

β1 α2
. . .

. . .
. . .

 , (4.1)

where αk and βk are real numbers with βk > 0. The spectral theorem for Jacobi
operators guarantees the existence of a probability measure µ supported on the spectrum
σ(J) ⊂ R, called the spectral measure, and a unitary operator U : ℓ2 → L2

µ(R) such
that

UJU∗[f ](s) = sf(s), (4.2)

for all f ∈ L2
µ(R) [Dei00]. The coefficients αk and βk are the three-term-recurrence

coefficients of the orthonormal polynomials Pk(s) with respect to µ.
In this chapter we show that the computation and theoretical study of the spectra

and spectral measure of a Jacobi operator J which is a structured perturbation of
another Jacobi operator D whose spectral theory is known, can be conducted using
the connection coefficient matrix between J and D.

Definition 4.0.1. Denote the space of complex-valued sequences with finitely many
nonzero elements by ℓF , and its algebraic dual, the space of all complex-valued sequences,
by ℓ⋆F .

107



108 Spectra of Jacobi operators via connection coefficients

Suppose that D is a second, bounded Jacobi operator, and let Qk(s) denote its
orthonormal polynomials. The connection coefficient matrix between J and D is
defined as follows.

Definition 4.0.2. Define the connection coefficient matrix C = CJ→D = (cij)
∞
i,j=0 to

be the upper triangular matrix representing the change of basis between (Pk)
∞
k=0 and

(Qk)
∞
k=0 in the following manner:

Pk(s) = c0kQ0(s) + c1kQ1(s) + · · ·+ ckkQk(s). (4.3)

Note that C : ℓF → ℓF as it is upper triangular and CT : ℓ⋆F → ℓ⋆F as it is lower
triangular, and thus we may write

P0(s)

P1(s)

P2(s)
...

 = CT


Q0(s)

Q1(s)

Q2(s)
...

 for all s ∈ C. (4.4)

Connection coefficient matrices have been well-studied [Ask75, GM09]. Nevertheless,
it does not appear to have been noted that the connection coefficients are relevant
and useful in the spectral theory of Jacobi operators. Because C is upper triangular
with non-zero diagonal it is in fact an invertible operator from ℓF to ℓF (the inverse of
CJ→D is CD→J). We show that as operators on ℓF , the connection coefficients matrix
satisfies

J = C−1DC. (4.5)

Consequently, when C is a bounded and invertible operator on ℓ2, we have σ(J) = σ(D).
More significantly, we further show that when C is neither bounded nor invertible, the
matrix entries are still informative about the spectra of J and D. For example, if we
let ν denote the spectral measure for D, the connection coefficients matrix C = CJ→D

determines the existence and certain properties of the Radon–Nikodym derivative dν
dµ

(see Appendix D.1). We prove the following:

• Proposition 4.2.5: dν
dµ
∈ L2

µ(R) if and only if the first row of C is an ℓ2 sequence,
in which case

dν

dµ
=

∞∑
k=0

c0,kPk. (4.6)



109

More generally, if
∑∞

k=0 c0,kPk defines an L1
µ(R) function (with the series con-

verging at least in the probabilists’ weak sense) then that function is precisely
dν
dµ

.

• Proposition 4.2.8: dν
dµ
∈ L∞

µ (R) if and only if C is a bounded operator on ℓ2, in
which case

∥C∥22 = ess sup
s∈σ(J)

∣∣∣∣dνdµ(s)
∣∣∣∣ . (4.7)

• Corollary 4.2.9: both dν
dµ
∈ L∞

µ (R) and dµ
dν
∈ L∞

ν (R) if and only if C is bounded
and invertible on ℓ2.

In this chapter we pay particular attention to the case where D is the so-called free
Jacobi operator,

∆ =


0 1

2
1
2

0 1
2

1
2

0 . . .
. . .

. . .

 , (4.8)

and J is a Jacobi operator of the form J = ∆ + K, where K is compact. This
follows many other studies of this class of operators such as those in [DS06a, DS06b,
DN86, DE15, GNR16, GC80, KS03, NVA92, VAG89, VA90, VA94, VA91]. One major
application of this class of operators is their link to Schrödinger operators in quantum
theory. A Jacobi operator of this form is a discrete Schrödinger equation on the natural
numbers with a potential which decays to zero at positive infinity [Sim79]. Another
reason to study this class of operators is that the Jacobi operators for the classical
Jacobi polynomials, useful across numerical analysis, are of this form [olva].

The spectral theory of Toeplitz operators such as ∆ is well understood [BS13]. The
spectral measure of ∆ is the semi-circle µ∆(s) =

2
π
(1− s2)

1
2 (restricted to [−1, 1]), and

its orthonormal polynomials are the Chebyshev polynomials of the second kind, Uk(s).
We prove the following more specific theorems about the spectra of this class of Jacobi
operators J , and by an appropriate scaling and shifting by the identity, that of all
Jacobi operators which are Toeplitz-plus-compact.

If J is a finite rank perturbation of ∆, i.e. there exists n such that

αk = 0, βk−1 =
1

2
for all k ≥ n, (4.9)



110 Spectra of Jacobi operators via connection coefficients

• Theorem 4.3.8: The connection coefficient matrix CJ→∆ can be decomposed into
CToe + Cfin where CToe is Toeplitz, upper triangular and has bandwidth 2n− 1,
and the entries of Cfin are zero outside the n− 1× 2n− 1 principal submatrix.

• Theorem 4.3.21: let c be the Toeplitz symbol of CToe. It is a degree 2n − 1

polynomial with r ≤ n roots inside the complex unit disc, all of which are simple.
The spectrum of J is

σ(J) = [−1, 1] ∪
{
λk :=

1

2
(zk + z−1

k ) : c(zk) = 0, |zk| < 1

}
, (4.10)

and the spectral measure is given by the formula

µ(s) =
1

pC(s)
µ∆(s) +

r∑
k=1

(zk − z−1
k )2

zkc′(zk)c(z
−1
k )

δλk
(s), (4.11)

where pC(s) =
∑2n−1

k=0 c0,kPk(s) =
∑2n−1

k=0 ⟨ek, CCT e0⟩Uk(s).

Remark 4.0.3. The author, along with Sheehan Olver (University of Sydney) have
implemented the algorithms for computing the spectral measure and related functions
of Toeplitz-plus-finite-rank Jacobi operators in an open source Julia package called
SpectralMeasures. It makes use of the extensive open source Julia package called
ApproxFun [Olvb, OT14], in particular the features for defining and manipulating
functions and infinite dimensional operators. More information on the workings of the
package is given in Section 4.6.

To extend the results to other Jacobi operators we must make a brief definition.
For R > 0, define the geometrically weighted Banach space

ℓ1R =
{
v ∈ ℓ⋆F : ∥v∥ℓ1R <∞

}
, where ∥v∥ℓ1R =

∞∑
k=0

|vk|Rk. (4.12)

If J is a trace class perturbation of ∆, i.e.

∞∑
k=0

|αk|+
∣∣∣∣βk −

1

2

∣∣∣∣ <∞, (4.13)

• Theorem 4.4.11: C = CJ→∆ is bounded as an operator from ℓ1R−1 into itself, for
all R ∈ (0, 1). Further, we have the decomposition C = CToe +CK where CToe is
upper triangular Toeplitz and CK is compact as an operator from ℓ1R−1 into itself.



111

-1.0 -0.5 0.0 0.5 1.0 1.5
0

1

2

3

4

α=[1,0,...]

-1.0 -0.5 0.0 0.5 1.0 1.5
0

1

2

3

4

α=[0,1,0,...]

-1.0 -0.5 0.0 0.5 1.0 1.5
0

1

2

3

4

α=[0,0,0,0,1,0,...]

Fig. 4.1 These are the spectral measures of three different Jacobi operators; each differs from
∆ in only one entry. The left plot is of the spectral measure of the Jacobi operator which is ∆
except the (0, 0) entry is 1, the middle plot is that except the (1, 1) entry is 1, and the right
plot is that except the (4, 4) entry is 1. This can be interpreted as a discrete Schrödinger
operator with a single Dirac potential at different points along the real line. The continuous
parts of the measures are given exactly by the computable formula in equation (4.11), and
each has a single Dirac delta corresponding to discrete spectrum (the weight of the delta gets
progressively smaller in each plot), the location of which can be computed with guaranteed
error using interval arithmetic (see Section 4.6)

The transpose operators CT and CT
K are bounded and compact (respectively) as

operators from ℓ1R into itself.

• Theorem 4.4.14 and Theorem 4.4.16 : Let c be the Toeplitz symbol of CToe. It
is analytic in the unit disc with real inside the complex unit disc. The discrete
eigenvalues, as in the Toeplitz-plus-finite-rank case are of the form 1

2
(zk + z−1

k )

where zk are the roots of c in the open unit disc.

For computation of the spectrum and spectral measure of a Toeplitz-plus-trace-class
Jacobi operator J , we suggest producing a Toeplitz-plus-finite-rank approximation
J [m] and computing the spectrum and spectral measure of that. The question of
choosing J [m] so as to guarantee this is a good approximation leads us to computability
results. Following the pioneering work of Ben-Artzi–Hansen–Nevanlinna–Seidel on the
Solvability Complexity Index [BAHNS15a, BAHNS15b, Han11], we prove the following
theorems about computability. We assume real number arithmetic, and the results do
not necessarily apply to algorithms using floating point arithmetic.

• Theorem 4.5.7 : If J is a Toeplitz-plus-finite-rank Jacobi operator, then in a finite
number of operations, the absolutely continuous part of the spectral measure
is computable exactly, and the locations and weights of the discrete part of the
spectral measure are computable to any desired accuracy. If the rank is known a
priori then the algorithm can be designed to terminate with guaranteed error
control.



112 Spectra of Jacobi operators via connection coefficients

• Theorem 4.5.9 : If J = ∆ + K is a Toeplitz-plus-compact Jacobi operator,
then in a finite number of operations, the spectrum of J is computable to
any desired accuracy in the Hausdorff metric on subsets of R. If the quantity
supk≥m |αk|+ supk≥m |βk − 1

2
| can be estimated for all m, then the algorithm can

be designed to terminate with guaranteed error control.

The Toeplitz symbol c(z) defined in this chapter actually appears in the literature
under other guises. Killip and Simon describe three different forms [KS03]: the Jost
function u0, the perturbation determinant L and the Szegő function D (see also
[GC80, DS06a, DS06b]). The related function pC(s) in equation (4.11) can also be
found in disguise as the ϕ function in [VAG89, VA90, NVA92, VA94], and as the Sn

function in [DN86]. The novel aspect we present here is that results can be reinterpreted
at the operator level, via (formal) similarity transformations of J by C, a property
that may facilitate extension beyond the Jacobi operators considered in this thesis. In
particular, we see the following avenues of research that we intend to pursue in the
future. There is also further discussion in the conclusions section.

The connection coefficient matrix can be defined for any two Jacobi operators J and
D. It is natural to explore what structure CJ→D has when D is a different reference
operator to ∆, and J is a finite rank, trace class, or compact perturbation of D. For
example, the Jacobi operator with periodic entries, as is discussed in [DKS10, GVA86].
Beyond periodic Jacobi operators, it would be interesting from the viewpoint of ergodic
theory if we could facilitate the study and computation of almost-periodic Jacobi
operators, such as the discrete almost-Mathieu operator [Dei08]. Perturbations of the
Jacobi operators for Laguerre polynomials and the Hermite polynomials could also be
of interest, but challenges associated with the unboundedness of these operators could
hamper progress [olva]. Discrete Schrödinger operators with non-decaying potentials
will also be of interest in this direction.

The chapter is structured as follows. In Section 4.1 we cover established results
about spectral theory of Jacobi operators. In Section 4.2 we discuss the basic properties
of the connection coefficients matrix CJ→D for general Jacobi operators J and D,
and how they relate to spectra. In Section 4.3 we show how connection coefficient
matrices apply to Toeplitz-plus-finite-rank Jacobi operators, and in Section 4.4 we
extend these results to the Toeplitz-plus-trace-class case. Section 4.5 is devoted to
issues of computability.



4.1 Spectral theory of Jacobi operators 113

4.1 Spectral theory of Jacobi operators

In this section we present well known results about the spectra of Jacobi operators.
This gives a self contained account of what is required to prove the results later in the
chapter, and sets the notation.

4.1.1 Resolvents, measures and polynomials

To understand the spectral theory of Jacobi operators, and in particular to understand
the spectral measure, we must relay the basic results on the interplay between the
resolvent of the operator J , the measure whose Stieltjes transform is the resolvent, and
certain sequences of polynomials that may be assigned to J .

Definition 4.1.1. Define the principal resolvent function for λ ∈ C \ σ(J),

G(λ) = ⟨e0, (J − λ)−1e0⟩. (4.14)

Theorem 4.1.2 ([Dei00, Tes00, Sim79]). Let J be a bounded Jacobi operator.

(i) There exists a unique compactly supported probability measure µ on R, called the
spectral measure of J , such that

G(λ) =

∫
(s− λ)−1 dµ(s). (4.15)

(ii) For any s1 < s2 in R,

1

2
µ({s1}) + µ((s1, s2)) +

1

2
µ({s2}) = lim

ε↘0

1

π

∫ s2

s1

ImG(s+ iε) ds. (4.16)

(iii) The spectrum of J is

σ(J) = supp(µ) = {s ∈ R : lim inf
ε↘0

ImG(s+ iε) > 0}. (4.17)

The point spectrum σp(J) of J is the set of points s ∈ R such that the limit

µ({s}) = lim
ε↘0

ε

i
G(s+ iε) (4.18)

exists and is positive.



114 Spectra of Jacobi operators via connection coefficients

The continuous spectrum of J is the set of points s ∈ R such that µ({s}) = 0 but

lim inf
ε↘0

ImG(s+ iε) > 0. (4.19)

Remark 4.1.3. Point (i) says that G is the Stieltjes transform of µ and point (ii) gives
the Perron-Stieltjes inversion formula [Sti94].

Let us demonstrate a concrete consequence of Theorem 4.1.2. If the principal
resolvent is of the form

G(λ) = Gbranch(λ) +
r∑

k=0

wk

λk − λ
, (4.20)

where Gbranch is analytic everywhere except a set B ⊂ R, upon which it has no poles1.
Then the spectral measure is

dµ(s) = g(s)ds+
r∑

k=0

wkδλk
(s), (4.21)

where g is the integrable function

g(s) =
1

π
lim
ε↘0

ImGbranch(s+ iε), (4.22)

which is zero for s /∈ B.
The measure µ is the spectral measure that appears in the spectral theorem for

self-adjoint operators on Hilbert space [DSBB71], as demonstrated by the following
theorem [Dei00, Tes00, Sim79].

Definition 4.1.4. The orthonormal polynomials for J are P0, P1, P2, . . . defined by
the three term recurrence

sPk(s) = βk−1Pk−1(s) + αkPk(s) + βkPk+1(s), (4.23)

P−1(s) = 0, P0(s) = 1. (4.24)

Theorem 4.1.5 ([Dei00]). Let J be a bounded Jacobi operator and let P0, P1, P2, . . .

be as defined in Definition 4.1.4. Then we have the following.
1By no poles, we mean that for all λ0 ∈ B, lim supλ→λ0,λ/∈B |(λ− λ0)G(λ)| = 0. This allows

logarithmic singularities and algebraic singularities with order less than 1.



4.1 Spectral theory of Jacobi operators 115

(i) The polynomials are such that Pk(J)e0 = ek.

(ii) The polynomials are orthonormal with respect to the spectral measure of J ,∫
Pj(s)Pk(s) dµ(s) = δjk. (4.25)

(iii) Define the unitary operator U : ℓ2 → L2
µ(R) such that Uek = Pk. Then for all

f ∈ L2
µ(R),

UJU∗f(s) = sf(s). (4.26)

(iv) For all f ∈ L1
µ(R), the operator f(J) : ℓF → ℓ⋆F has entries given by,

⟨ei, f(J)ej⟩ =
∫

f(s)Pi(s)Pj(s) dµ(s). (4.27)

4.1.2 First associated polynomials

The following definition is standard in orthogonal polynomial theory (see for example,
[Gau04, p. 18], [VA91]). We prove two lemmata about first associated polynomials
that we will use later.

Definition 4.1.6. The first associated polynomials for J are P µ
0 , P

µ
1 , P

µ
2 , . . . defined

by the three term recurrence

λP µ
k (λ) = βk−1P

µ
k−1(λ) + αkP

µ
k (λ) + βkP

µ
k+1(λ), (4.28)

P µ
0 (λ) = 0, P µ

1 (λ) = β−1
0 . (4.29)

Remark 4.1.7. The orthogonal polynomials P0, P1, . . . for J satisfy the following rela-
tionship componentwise for any polynomial f and any s.

f(J)


P0(s)

P1(s)
...

 = f(s)


P0(s)

P1(s)
...

 . (4.30)

The following lemma describes how the first associated polynomials satisfy the
same relationship but with a remainder. The authors are not aware of the following
elementary result appearing in the literature.



116 Spectra of Jacobi operators via connection coefficients

Lemma 4.1.8. Let f be a polynomial. For all λ ∈ C \ σ(J),

f(J)


P µ
0 (λ)

P µ
1 (λ)
...

 = f(λ)


P µ
0 (λ)

P µ
1 (λ)
...

+
f(J)− f(λ)

J − λ
e0. (4.31)

Proof. The proof is a straightforward induction on k = 0, 1, . . . for the functions
f(λ) = λk, followed by an appeal to linearity.

The relevance of the first associated polynomials for this work is the following
integral formula.

Lemma 4.1.9. ([Gau04, pp. 17,18]) The first associated polynomials are given by the
integral formula

P µ
k (λ) =

∫
Pk(s)− Pk(λ)

s− λ
dµ(s), λ ∈ C \ σ(J). (4.32)

For notational convenience we also define the µ-derivative of a general polynomial.

Definition 4.1.10. Let µ be a probability measure compactly supported on the real
line and let f be a polynomial. The µ-derivative of f is the polynomial defined by

fµ(λ) =

∫
f(s)− f(λ)

s− λ
dµ(s). (4.33)

4.2 Connection coefficient matrices

In this section we define the connection coefficient matrix and give preliminary results
to indicate their relevance to spectral theory.

4.2.1 Basic properties

As at the start of the chapter, consider a second bounded Jacobi operator,

D =


γ0 δ0

δ0 γ1 δ1

δ1 γ2 . . .
. . .

. . .

 , (4.34)



4.2 Connection coefficient matrices 117

with principal residual function H(z), spectral measure ν and orthogonal polynomials
denoted Q0, Q1, Q2, . . .. In Definition 4.0.2 we defined the connection coefficient matrix
between J and D, C = CJ→D to have entries satisfying

Pk(s) = c0kQ0(s) + c1kQ1(s) + · · ·+ ckkQk(s). (4.35)

By orthonormality of the polynomial sequences the entries can also be interpreted as

CJ→D =


⟨P0, Q0⟩ν ⟨P1, Q0⟩ν ⟨P2, Q0⟩ν · · ·

0 ⟨P1, Q1⟩ν ⟨P2, Q1⟩ν · · ·
0 0 ⟨P2, Q2⟩ν · · ·
...

...
... . . .

 , (4.36)

where ⟨·, ·⟩ν is the standard inner product on L2
ν(R).

Lemma 4.2.1. The entries of the connection coefficients matrix CJ→D satisfy the
following 5-point discrete system:

−δi−1ci−1,j

+

βj−1ci,j−1 + (αj − γi)cij + βjci,j+1

+

−δici+1,j

 = 0, for all 0 ≤ i < j,

with boundary conditions

cij =


1 if i = j = 0,

0 if j = 0 and i ̸= 0,

0 if j = −1 or i = −1.

(4.37)

Proof. Assume by convention that cij = 0 if i = −1 or j = −1. Now using this
boundary condition and the three term recurrences for the polynomial sequences, we
see that

⟨Qi(s), sPj(s)⟩ν = βj−1⟨Qi, Pj−1⟩ν + αj⟨Qi, Pj⟩ν + βj⟨Qi, Pj+1⟩ν (4.38)

= βj−1ci,j−1 + αjcij + βjci,j+1, (4.39)



118 Spectra of Jacobi operators via connection coefficients

and

⟨sQi(s), Pj(s)⟩ν = δi−1⟨Qi−1, Pj⟩ν + γi⟨Qi, Pj⟩ν + δi⟨Qi+1, Pj⟩ν (4.40)

= δi−1ci−1,j + γicij + δici+1,j. (4.41)

Since ⟨sQi(s), Pj(s)⟩ν = ⟨Qi(s), sPj(s)⟩ν , we have the result for the interior points
0 ≤ i < j.

The remaining boundary conditions come from ci0 = ⟨Qi, P0⟩ν which equals 1 if
i = 0 and 0 otherwise.

The 5-point discrete system described in Lemma 4.2.1 can be used to find an explicit
linear recurrence to compute the entries of C,

c0,0 = 1 (4.42)

c0,1 = (γ0 − α0)/β0 (4.43)

c1,1 = δ0/β0 (4.44)

c0,j = ((γ0 − αj−1)c0,j−1 + δ0c1,j−1 − βj−2c0,j−2) /βj−1 (4.45)

ci,j = (δi−1ci−1,j−1 + (γi − αj−1)ci,j−1 + δici+1,j−1 − βj−2ci,j−2) /βj−1. (4.46)

The rows and columns of C also satisfy infinite-vector-valued three-term recurrence
relations. It is simply the 5-point discrete system rewritten in vector form, but this is
the form which we make use of in the proofs later.

Corollary 4.2.2. The columns of C satisfy

c∗,0 = e0 (4.47)

Dc∗,0 = α0c∗,0 + β0c∗,1 (4.48)

Dc∗,j = βj−1c∗,j−1 + αjc∗,j + βjc∗,j+1. (4.49)

Consequently the jth column can be written c∗,j = Pj(D)e0.
The rows of C satisfy

c0,∗J = γ0c0,∗ + δ0c1,∗, (4.50)

ci,∗J = δi−1ci−1,∗ + γici,∗ + δici+1,∗. (4.51)

Consequently, the ith row can be written ci,∗ = c0,∗Qi(J).



4.2 Connection coefficient matrices 119

Proof. The recurrence relations for the rows and columns are merely a renotation
of equations (4.42)–(4.46). The consequences follow from the uniqueness of solution
to second order difference equations with two initial data (adding c−1,∗ = 0 and
c∗,−1 = 0).

4.2.2 Connection coefficients and spectral theory

The following theorems give precise results about how the connection coefficients matrix
C can be useful for studying and computing the spectra of Jacobi operators.

Theorem 4.2.3. Let J and D be bounded Jacobi operators and C = CJ→D the
connection coefficients matrix. For all polynomials p, we have the following as operators
from ℓF to ℓF ,

Cp(J) = p(D)C.

Remark 4.2.4. In particular, as operators from ℓF to ℓF ,

J = C−1DC.

Proof. First we begin with the case p(z) = z. By definition,

CJe0 = C(α0e0 + β0e1)

= α0Ce0 + β0Ce1

= α0c∗,0 + β0c∗,1.

Then by Corollary 4.2.2, this is equal to Dc∗,0, which is equal to DCe0. Now, for any
j > 0,

CJej = C(βj−1ej−1 + αjej + βjej+1)

= βj−1c∗,j−1 + αkc∗,j + βjc∗,j+1.

Then by Corollary 4.2.2, this is equal to Dc∗,j, which is equal to DCej. Hence
CJ = DC.

Now, when f(z) = zk for any k > 0, DkC = Dk−1CJ = · · · = CJk. By linearity
Cf(J) = f(D)C for all polynomials f .



120 Spectra of Jacobi operators via connection coefficients

Proposition 4.2.5. Let J and D be bounded Jacobi operators with spectral measures
µ and ν respectively, and connection coefficient matrix C = CJ→D. Then

dν

dµ
∈ L2

µ(R) if and only if c0,∗ ∈ ℓ2,

in which case
dν

dµ
=

∞∑
k=0

c0,kPk. (4.52)

Proof. Suppose first that dν
dµ
∈ L2

µ(R). Then dν
dµ

=
∑∞

k=0 akPk, for some a ∈ ℓ2. Since
the polynomials Pk are orthonormal in L2

µ(R),

ak =

∫
Pk(s)

dν

dµ
(s) dµ(s)

=

∫
Pk(s) dν(s) (definition of R–N derivative)

= c0,k (equation (4.36)).

Hence c0,∗ ∈ ℓ2 and gives the Pk coefficients of dν
dµ

.
Conversely, suppose that c0,∗ ∈ ℓ2. Then the function

∑∞
k=0 c0,kPk is in L2

µ(R), and
by the same manipulations as above its projections onto polynomial subspaces are
equal to that of dν

dµ
.

Remark 4.2.6. Theorem 4.2.5 can be made more general. If the first row of C is such
that the series defined by

∑∞
k=0 c0,kPk converges weakly (in the probabilists’ sense) to

an L1
µ(R) function, then dν

dµ
exists and is equal to that limit. However, such a condition

on the entries of C is more difficult to check.

If we have a situation in which c0,∗ ∈ ℓ2, we can by Proposition 4.2.5 and basic
properties of the Radon–Nikodym derivative deduce that σ(D) ⊂ σ(J) and the function
defined by

∑∞
k=0 c0,kPk is zero on σ(J) \ σ(D). This observation translates into a

rootfinding problem in Section 4.3.

Lemma 4.2.7. Let J and D be bounded Jacobi operators with spectral measures µ

and ν respectively, and connection coefficient matrix C = CJ→D. If ν is absolutely
continuous with respect to µ, then as operators mapping ℓF → ℓ⋆F ,

CTC =
dν

dµ
(J). (4.53)



4.2 Connection coefficient matrices 121

Proof. Note first that since C : ℓF → ℓF and CT : ℓ⋆F → ℓ⋆F , CTC is well-defined
ℓF → ℓ⋆F . Then we have,

⟨ei, CTCej⟩ = ⟨e0, Pi(D)Pj(D)e0⟩ (Corollary 4.2.2)

=

∫
Pi(s)Pj(s) dν(s) (Theorem 4.1.5)

=

∫
Pi(s)Pj(s)

dν

dµ
(s) dµ(s)

=

〈
ei,

dν

dµ
(J)ej

〉
(Theorem 4.1.5).

This completes the proof.

Proposition 4.2.8. Let J and D be bounded Jacobi operators with spectral measures
µ and ν respectively, and connection coefficient matrix C = CJ→D. Then dν

dµ
∈ L∞

µ (R)
if and only if C is a bounded operator on ℓ2, in which case

∥C∥22 = ess sup
s∈σ(J)

∣∣∣∣dνdµ(s)
∣∣∣∣ . (4.54)

Proof. Suppose first that dν
dµ
∈ L∞

µ (R). Then by Lemma 4.2.7,

∥CTC∥2 =
∥∥∥∥dνdµ(J)

∥∥∥∥
2

= ess sup
s∈σ(J)

∣∣∣∣dνdµ(s)
∣∣∣∣ . (4.55)

Hence CTC is bounded. The relationship ∥C∥22 = ∥CTC∥2 completes this direction.
Now suppose that C is bounded. Then by Proposition 4.2.5 dν

dµ
∈ L2

µ(R). By Lemma
4.2.7, dν

dµ
(J) is a bounded operator on ℓ2 (because it is equal to the bounded operator

CTC). Since
∥∥∥dν
dµ
(J)
∥∥∥
2
= ess sups∈σ(J)

∣∣∣dνdµ(s)∣∣∣, we have that in fact, dν
dµ
∈ L∞

µ (R).

Corollary 4.2.9. Let J and D be bounded Jacobi operators with spectral measures µ

and ν respectively, and connection coefficient matrix C = CJ→D. Then dν
dµ
∈ L∞

µ (R)
and dµ

dν
∈ L∞

ν (R) if and only if C is bounded and invertible on ℓ2.

Proof. By Proposition 4.2.8, CJ→D is bounded if and only if dν
dµ
∈ L∞

µ (R), and CD→J

is bounded if and only if dµ
dν
∈ L∞

ν (R). Combining this the fact that C−1
J→D = CD→J , as

operators from ℓF to itself, we complete the proof.



122 Spectra of Jacobi operators via connection coefficients

Lemma 4.2.10. Let J and D be Jacobi operators with principal resolvents G and H

respectively. If CJ→D is banded with bandwidth b, then for all λ ∈ C \ σ(J),

H(λ) = pC(λ)G(λ) + pµC(λ), (4.56)

where pC(s) =
∑b

k=0 c0kPk(s) and pµC is the µ-derivative of pC as in Definition 4.1.10.

Remark 4.2.11. Lemma 4.2.10 may be generalised to some cases in which the connection
coefficient matrix is not banded, but one must be careful about which values of λ ∈ C
for which pµC(λ) and pC(λ) converge.

Proof. Using Theorem 4.1.2 and Proposition 4.2.5,

H(λ) =

∫
(s− λ)−1dν(s)

=

∫
(s− λ)−1pC(s)dµ(s).

Now, provided both of the following integrals exist, we can split this into

H(λ) =

∫
(s− λ)−1pC(λ)dµ(s) +

∫
(s− λ)−1(pC(s)− pC(λ))dµ(s).

These integrals clearly do exist because pC is a polynomial, and give the desired
result.

The following definition and lemma are useful later.

Definition 4.2.12. Given polynomial sequences P0, P1, P2, . . . and Q0, Q1, Q2, . . . for
Jacobi operators J and D respectively, we define the matrix Cµ to be the connection
coefficients matrix between P µ

0 , P
µ
1 , P

µ
2 , . . . and Q0, Q1, Q2, . . . as in Definition 4.0.2,

where P µ
0 , P

µ
1 , P

µ
2 , . . . are the first associated polynomials for J as in Definition 4.1.6.

Noting that the lower triangular matrix (Cµ)T is a well defined operator fro ℓ⋆F into
itself, we have 

P µ
0 (s)

P µ
1 (s)

P µ
2 (s)
...

 = (Cµ)⊤


Q0(s)

Q1(s)

Q2(s)
...

 for all s. (4.57)

Remark 4.2.13. Note that Cµ is strictly upper triangular, because the first associated
polynomials have their degrees one less than their indices.



4.3 Toeplitz-plus-finite-rank Jacobi operators 123

Lemma 4.2.14. The operator Cµ as defined above for CJ→D is in fact β−1
0 (0, CJµ→D),

where

Jµ =


α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . .

 . (4.58)

Proof. The (unique) orthonormal polynomials for Jµ are β0P
µ
1 , β0P

µ
2 , β0P

µ
3 , . . ., and

P µ
0 = 0.

4.3 Toeplitz-plus-finite-rank Jacobi operators

In this section we present several novel results which show how the connection coefficient
matrices can be used for computing the spectral measure of a Toeplitz-plus-finite-rank
Jacobi operator.

4.3.1 Jacobi operators for Chebyshev polynomials

There are two particular Jacobi operators with Toeplitz-plus-finite-rank structure that
are of great interest,

∆ =


0 1

2
1
2

0 1
2

1
2

0 . . .
. . .

. . .

 , and Γ =


0 1√

2
1√
2

0 1
2

1
2

0 1
2

1
2

0 . . .
. . .

. . .

 . (4.59)

The spectral measures of ∆ and Γ are

dµ∆(s) =
2

π

√
1− s2ds, dµΓ(s) =

1

π

1√
1− s2

ds, (4.60)

supported on [−1, 1].
Using results of Stieltjes in his seminal paper [Sti94], [AK65, App.], the principal

resolvent can be written elegantly as a continued fraction,

G(λ) =
−1

λ− α0 − β2
0

λ−α1−
β21

λ−α2−...

. (4.61)



124 Spectra of Jacobi operators via connection coefficients

Using this gives explicit expressions for the principal resolvents,

G∆(λ) = 2
√
λ+ 1

√
λ− 1− 2λ, GΓ(λ) =

−1√
λ+ 1

√
λ− 1

. (4.62)

Remark 4.3.1. We must be careful about which branch we refer to when we write the
resolvents in this explicit form. Wherever √ is written above we mean the standard
branch that is positive on (0,∞) with branch cut (−∞, 0]. This gives a branch cut along
[−1, 1] in both cases, the discontinuity of G across which makes the Perron–Stieltjes
inversion formula in Theorem 4.1.2 work. It also ensures the O(λ−1) decay resolvents
enjoy as λ→∞.

The orthonormal polynomials for ∆ are the Chebyshev polynomials of the second
kind, which we denote Uk(s),

Uk(s) =
sin((k + 1) cos−1(s))

sin(cos−1(s))
. (4.63)

The orthonormal polynomials for Γ are the normalised Chebyshev polynomials of
the first kind, which we denote T̃k(s). Note that these are not the usual Chebyshev
polynomials of the first kind (denoted Tk(s)) [Gau04, TO16, Dei00]. We in fact have,

T̃0(s) = 1, T̃k(s) =
√
2 cos(k cos−1(s)). (4.64)

The first associated polynomials have simple relationships with the orthonormal
polynomials,

Uµ∆

k = 2Uk−1, T̃ µΓ

k =
√
2Uk−1. (4.65)

4.3.2 Rank-one perturbations

In this section we demonstrate for two simple, rank-one perturbations of ∆ how the
connection coefficient matrix relates properties of the spectrum of the operators. This
will give some intuition as to what to expect in more general cases.



4.3 Toeplitz-plus-finite-rank Jacobi operators 125

Example 4.3.2 (Basic perturbation 1). Let α ∈ R, and define

Jα =



α
2

1
2

1
2

0 1
2

1
2

0 1
2

1
2

0 . . .
. . .

. . .

 . (4.66)

Then the connection coefficient matrix CJα→∆ is the bidiagonal Toeplitz matrix

CJα→∆ =


1 −α

1 −α
1 −α

. . .
. . .

 . (4.67)

This can be computed using the explicit recurrences (4.42)–(4.46). The connection
coefficient matrix C∆→Jα (which is the inverse of CJα→∆ on ℓF) is the full Toeplitz
matrix

C∆→Jα =


1 α α2 α3 · · ·

1 α α2 · · ·
1 α · · ·

. . .
. . .

 . (4.68)

From this we see that C = CJα→∆ has a bounded inverse in ℓ2 if and only if |α| < 1.
Hence by Theorem 4.2.3, if |α| < 1 then CJαC

−1 = ∆ with each operator bounded on
ℓ2, so that σ(Jα) = σ(∆) = [−1, 1]. We will discuss what happens when |α| ≥ 1 later
in the section.

Example 4.3.3 (Basic perturbation 2). Let β > 0, and define

Jβ =


0 β

2
β
2

0 1
2

1
2

0 1
2

1
2

0 . . .
. . .

. . .

 . (4.69)



126 Spectra of Jacobi operators via connection coefficients

Then the connection coefficient matrix CJβ→∆ is the banded Toeplitz-plus-rank-1 matrix

CJβ→∆ =


1 0 β−1 − β

β−1 0 β−1 − β

β−1 0 β−1 − β

β−1 0 . . .
. . .

. . .

 . (4.70)

Just as in Example 4.3.2, this can be computed using the explicit recurrences (4.42)–
(4.46). The connection coefficient matrix C∆→Jβ (which is the inverse of CJβ→∆ on ℓF)
is the Toeplitz-plus-rank-1 matrix

C∆→Jβ =


1 0 β2 − 1 0 (β2 − 1)2 0 (β2 − 1)3 · · ·

β 0 β(β2 − 1) 0 β(β2 − 1)2 0 · · ·
β 0 β(β2 − 1) 0 β(β2 − 1)2 · · ·

β 0 β(β2 − 1) 0 · · ·
. . .

. . .
. . .

. . .

 .

(4.71)
From this we see that C = CJβ→∆ has a bounded inverse on ℓ2 if and only if β <

√
2.

Hence by Theorem 4.2.3, if β <
√
2 then CJβC

−1 = ∆ with each operator bounded on
ℓ2, so that σ(Jβ) = σ(∆) = [−1, 1]. We will discuss what happens when β ≥

√
2 later

in the section. Note that the case β =
√
2 gives the Jacobi operator Γ in equation

(4.59).

4.3.3 Fine properties of the connection coefficients

The two basic perturbations of ∆ discussed above give connection coefficient matrices
that are highly structured. The following lemmata and theorems prove that this is no
coincidence; in fact, if Jacobi operator J is a finite-rank perturbation of ∆ then CJ→∆

is also a finite-rank perturbation of Toeplitz.

Remark 4.3.4. Note for the following results that all vectors and matrices are indexed
starting from 0.

Lemma 4.3.5. If δj = βj for j ≥ n then cjj = cnn for all j ≥ n.

Proof. By the recurrence in Lemma 4.2.1, cjj = (δj−1/βj−1)cj−1,j−1. The result follows
by induction.



4.3 Toeplitz-plus-finite-rank Jacobi operators 127

Lemma 4.3.6. Let J and D be Jacobi operators with coefficients {αk, βk} and {γk, δk}
respectively, such that there exists an n such that 2

αk = γk = αn, βk−1 = δk−1 = βn−1 for all k ≥ n. (4.72)

Then the entries of the connection coefficient matrix C = CJ→D satisfy

ci,j = ci−1,j−1 for all i, j > 0 such that i ≥ n. (4.73)

Remark 4.3.7. This means that C is of the form C = CToe+Cfin where CToe is Toeplitz
and Cfin is zero except in the first n− 1 rows. For example, when n = 4, we have the
following structure

C =


t0 t1 t2 t3 t4 t5 · · ·

t0 t1 t2 t3 t4 . . .

t0 t1 t2 t3 . . .

t0 t1 t2 . . .
. . .

. . .
. . .

+


f00 f01 f02 f03 f04 · · ·

f11 f12 f13 f14 · · ·
f22 f23 f24 · · ·

 .

Proof. We prove by induction on k = 0, 1, 2, . . . that

ci,i+k = ci−1,i+k−1 for all i ≥ n. (4.74)

We use the recurrences in Lemma 4.2.1 and equations (4.42)–(4.46). The base case
k = 0 is proved in Lemma 4.3.5. Now we deal with the second base case, k = 1. For
any i ≥ n, we have βi = δi = βi−1 = δi−1, and αi = γi, so

ci,i+1 = (δi−1ci−1,i + (γi − αi)ci,i + δici+1,i − βi−1ci,i−1) /βi

= 1 · ci−1,i + 0 · ci,i + 1 · 0− 1 · 0

= ci−1,i.

Now we deal with the case k > 1. For any i ≥ n, we have δi = δi−1 = βi+k−2 = βi+k−1,
and αi+k−1 = γi, so

ci,i+k = (δi−1ci−1,i+k−1 + (γi − αi+k−1)ci,i+k−1 + δici+1,i+k−1 − βi+k−2ci,i+k−2) /βi+k−1

2More intuitively, the entries of J and D are both equal and Toeplitz, except in the principal n×n
submatrix, where neither statement necessarily holds.



128 Spectra of Jacobi operators via connection coefficients

= 1 · ci−1,i+k−1 + 0 · ci,i+k−1 + 1 · ci+1,i+k−1 − 1 · ci,i+k−2

= ci−1,i+k−1 + ci+1,i+k−1 − ci,i+k−2

= ci−1,i+k−1.

The last line follows from the induction hypothesis for the case k − 2 (hence why we
needed two base cases).

The special case in which D is Toeplitz gives even more structure to C, as demon-
strated by the following theorem. We state the results for a finite-rank perturbation of
the free Jacobi operator ∆, but they apply to general Toeplitz-plus-finite rank Jacobi
operators because the connection coefficients matrix C is unaffected by a scaling and
shift by the identity applied to both J and D.

Theorem 4.3.8. Let J be a Jacobi operator such that there exists an n such that

αk = 0, βk−1 =
1

2
for all k ≥ n, (4.75)

i.e. it is equal to the free Jacobi operator ∆ outside the n × n principal submatrix.
Then the entries of the connection coefficient matrix C = CJ→∆ satisfy

ci,j = ci−1,j−1 for all i, j > 0 such that i+ j ≥ 2n (4.76)

c0,j = 0 for all j ≥ 2n. (4.77)

Remark 4.3.9. This means that C is of the form C = CToe+Cfin where CToe is Toeplitz
with bandwidth 2n−1 and Cfin zero except for entries in the (n−1)× (2n−2) principal
submatrix. For example when n = 4, we have the following structure,

C =


t0 t1 t2 t3 t4 t5 t6 t7

t0 t1 t2 t3 t4 t5 t6 t7

t0 t1 t2 t3 t4 t5 t6 . . .

t0 t1 t2 t3 t4 t5 . . .
. . .

. . .
. . .

. . .
. . .

. . .

+


f0,0 f0,1 f0,2 f0,3 f0,4 f0,5

f1,1 f1,2 f1,3 f1,4

f2,2 f2,3

 .

Proof. First we prove (4.76). Fix i, j such that i+ j ≥ 2n. Note that the case i ≥ n is
proven in Lemma 4.3.6. Hence we assume i < n. Hence j > n. Using Lemma 4.2.1 and
equations (4.42)–(4.46) we find the following recurrence. Substituting δi =

1
2
, γi = 0



4.3 Toeplitz-plus-finite-rank Jacobi operators 129

for all i, and αk = 0, βk−1 =
1
2

for k ≥ n into the recurrence, we have

ci,j = (δi−1ci−1,j−1 + (γi − αj−1)ci,j−1 + δici+1,j−1 − βj−2ci,j−2) /βj−1.

=

(
1

2
ci−1,j−1 − αj−1ci,j−1 +

1

2
ci+1,j−1 − βj−2ci,j−2

)
/βj−1

= ci−1,j−1 + ci+1,j−1 − ci,j−2.

Repeating this process on ci+1,j−1 in the above expression gives

ci,j = ci−1,j−1 + ci+2,j−2 − ci+1,j−3.

Repeating the process on ci+2,j−2 and so on eventually gives

ci,j = ci−1,j−1 + cn,i+j−n − cn−1,i+j−n−1.

By Lemma 4.3.6, cn,i+j−n = cn−1,i+j−n−1, so we are left with ci,j = ci−1,j−1. This
completes the proof of (4.76).

Now we prove (4.77). Let j ≥ 2n. Then

c0,j = ((γ0 − αj−1)c0,j−1 + δ0c1,j−1 − βj−2c0,j−2) /βj−1

=

(
−αj−1c0,j−1 +

1

2
c1,j−1 − βj−2c0,j−2

)
/βj−1

= c1,j−1 − c0,j−2.

This is equal to zero by (4.76), because 1 + (j − 1) ≥ 2n.

Corollary 4.3.10. Let Cµ be as defined in Definition 4.2.12 for C as in Theorem
4.3.8. Then Cµ = Cµ

Toe + Cµ
F , where Cµ

Toe is Toeplitz with bandwidth 2n− 2 and Cµ
F is

zero outside the (n− 2)× (2n− 1) principal submatrix.

Proof. This follows from Theorem 4.3.8 applied to Jµ as defined in Lemma 4.2.14.

Remark 4.3.11. A technical point worth noting for use in proofs later is that for
Toeplitz-plus-finite-rank Jacobi operators like J and D occurring in Theorem 4.3.8 and
Corollary 4.3.10, the operators C, CT , Cµ and (Cµ)T all map ℓF to ℓF . Consequently,
combinations such as CCT , CµCT are all well defined operators from ℓF to ℓF .



130 Spectra of Jacobi operators via connection coefficients

4.3.4 Properties of the resolvent

When the Jacobi operator J is Toeplitz-plus-finite rank, as a consequence of the
structure of the connection coefficients matrix proved in subsection 4.3.3, the principal
resolvent G (see Definition 4.1.1) and spectral measure (see Theorem 4.1.2) are also
highly structured. As usual these proofs are stated for a finite-rank perturbation of the
free Jacobi operator ∆, but apply to general Toeplitz-plus-finite rank Jacobi operators
by applying appropriate scaling and shifting.

Theorem 4.3.12. Let J be a Jacobi operator such that there exists an n such that

αk = 0, βk−1 =
1

2
for all k ≥ n, (4.78)

i.e. it is equal to the free Jacobi operator ∆ outside the n × n principal submatrix.
Then the principal resolvent for J is

G(λ) =
G∆(λ)− pµC(λ)

pC(λ)
, (4.79)

where

pC(λ) =
2n−1∑
k=0

c0,kPk(λ) =
2n−1∑
k=0

⟨ek, CCT e0⟩Uk(λ), (4.80)

pµC(λ) =
2n−1∑
k=1

c0,kP
µ
k (λ) =

2n−1∑
k=0

⟨ek, CµCT e0⟩Uk(λ), (4.81)

Pk are the orthonormal polynomials for J , P µ
k are the first associated polynomials for

J as in Definition 4.1.6, and Uk are the Chebyshev polynomials of the second kind.

Remark 4.3.13. pµC is the µ-derivative of pC as in Definition 4.1.10.

Proof. By Lemma 4.2.10 with bandwidth b = 2n− 1,

G∆(λ) = pC(λ)G(λ) + pµC(λ). (4.82)

The equation can be immediately rearranged to obtain (4.79). To see the equality in
equations (4.80), note that by the definition of the connection coefficient matrix C,

2n−1∑
k=0

c0,kPk(λ) =
2n−1∑
k=0

c0,k

2n−1∑
j=0

cj,kUj(λ) (4.83)



4.3 Toeplitz-plus-finite-rank Jacobi operators 131

=
2n−1∑
j=0

(
2n−1∑
k=0

c0,kcj,k

)
Uj(λ) (4.84)

=
2n−1∑
j=0

⟨ej, CCT e0⟩Uj(λ). (4.85)

Equation (4.81) follows by the same algebra.

Theorem 4.3.14. Let J be a Jacobi operator such that there exists an n such that

αk = 0, βk−1 =
1

2
for all k ≥ n, (4.86)

i.e. it is equal to the free Jacobi operator ∆ outside the n × n principal submatrix.
Then the spectral measure for J is

µ(s) =
1

pC(s)
µ∆(s) +

r∑
k=1

wkδλk
(s), (4.87)

where λ1, . . . , λr are the roots of pC in R \ {1,−1} such that

wk = lim
ε↘0

ε

i
G(λk + iε) ̸= 0. (4.88)

Furthermore, there are no roots of pC inside (−1, 1), and the number of roots of pC for
which wk ̸= 0 is at most n (i.e. r ≤ n).

Proof. Let G and µ be the principal resolvent and spectral measure of J respectively.
By Theorem 4.3.12,

G(λ) =
G∆(λ)− pµC(λ)

pC(λ)
.

Letting λ1, . . . , λ2n−1 be the roots of pC in the complex plane, define the set

S = [−1, 1] ∪ ({λ1, . . . , λ2n−1} ∩ R). (4.89)

By inspection of the above formula for G, and because resolvents of selfadjoint operators
are analytic off the real line, we have that G is continuous outside of S. Therefore, for
any s ∈ R such that dist(s, S) > 0, we have

lim
ε↘0

ImG(s+ iε) = ImG(s) = 0. (4.90)



132 Spectra of Jacobi operators via connection coefficients

Hence by Theorem 4.1.2 part (ii), for any interval (s1, s2) such that dist(S, (s1, s2)) > 0,
we have µ((s1, s2)) +

1
2
µ({s1}) + 1

2
µ({s2}) = 0. Therefore the essential support of µ is

contained within S.
We are interested in the real roots of pC . Can any roots of pC lie in the interval

[−1, 1]? By Proposition 4.2.5, dµ∆(s) = pC(s)dµ(s) for all s ∈ R. For any s ∈ [−1, 1]
such that pC(s) ̸= 0, it follows that dµ(s) = 2

π

√
1−s2

pC(s)
ds. From this we have

1 ≥ µ((−1, 1)) =
∫ 1

−1

2

π

√
1− s2

pC(s)
ds. (4.91)

This integral is only finite if pC has no roots in (−1, 1) and only simple roots at ±1.
Since S is a disjoint union of [−1, 1] and a finite set S ′ we can write

µ(s)
1

pC(s)
µ∆(s) +

∑
λk∈S′

µ({λk})δλk
(s). (4.92)

By Theorem 4.1.2 part (iii),

µ({s}) = lim
ε↘0

ε

i
G(s+ iε) for all s ∈ R. (4.93)

This gives the desired formula for wk.
Finally, let us prove that the number of eigenvalues (denoted r in the statement

of the theorem) must be at most n. We proceed by induction on n = 0, 1, 2, . . .

that the Jacobi operator J = ∆ +
∑n

k=1 vk ⊗ vk has at most n eigenvalues, where
(v ⊗ w)u = ⟨w, u⟩v for u, v, w ∈ ℓ2.

For n = 0 this is already known because ∆ only has continuous spectrum. Now
consider n > 0. If λ is an eigenvalue of J with eigenvector w ∈ ℓ2, then

(∆− λ+
n∑

k=1

vk ⊗ vk)w = 0. (4.94)

If ⟨vk, w⟩ = 0 for all k then w is an eigenvector of ∆, which is impossible because ∆

has only continuous spectrum. Hence, without loss of generality ⟨vn, w⟩ ≠ 0. Write
J̃ = ∆+

∑n−1
k=1 vk ⊗ vk. Then we have

(J̃ − λ)w + ⟨vn, w⟩vn = 0. (4.95)



4.3 Toeplitz-plus-finite-rank Jacobi operators 133

This implies that λ is not an eigenvalue of J̃ . Hence we may write

w + (J̃ − λ)−1⟨vn, w⟩vn = 0, (4.96)

which after multiplying by vTn /⟨vn, w⟩ gives

1 + ⟨vn, (J̃ − λ)−1vn⟩ = 0. (4.97)

If we write the left hand side as f(λ), then for λ ∈ R\σ(J̃), f ′(λ) = ⟨vn, (J̃−λ)−2vn⟩ > 0

since (J̃ − λ) is invertible and vn ̸= 0. Hence on intervals of continuity f is strictly
increasing and therefore injective. Therefore there can be at most one root of f in each
interval of continuity. See Figure 4.2 for a demonstration of the intervals of continuity
for an example f(λ).

By inductive hypothesis ⟨vn, (J̃ − λ)−1vn⟩ has at most n − 1 poles and a branch
cut along [−1, 1]. f thus has at most n+ 1 intervals of continuity. However, for the
left-most interval, (−∞, a), where a is either the left-most pole of f or −1, f(λ) ≥ 1,
since limλ→−∞ f(λ) = 1 and f is increasing. Hence there are at most n roots of the
equation f(λ) = 0. Hence there are at most n eigenvalues of J .

Remark 4.3.15. Theorem 4.3.14 gives an explicit formula for the spectral measure of J ,
when J is Toeplitz-plus-finite-rank Jacobi operator. The entries of C can be computed
in O(n2) operations (for an n × n perturbation of Toeplitz). Hence, the absolutely
continuous part of the measure can be computed exactly in finite time. It would appear
at first that we may compute the locations of the point spectrum by computing the
roots of pC , but in fact we find that not all real roots of pC have wk ̸= 0. Hence we
rely on cancellation between the numerator and denominator in the formula for G(λ),
which numerically is a dangerous game. Subsection 4.3.5 remedies this situation.

Example 4.3.16 (Basic perturbation 1 revisited). The polynomial pC in Theorem
4.3.12 is

pC(λ) = c0,0P0(λ) + c0,1P1(λ) = 1− α(2λ− α) = 2α

(
1

2
(α + α−1)− λ

)
, (4.98)

and the µ-derivative is pµC(λ) = −2α. Theorem 4.3.12 gives

G(λ) =
G∆(λ) + 2α

2α
(
1
2
(α + α−1)− λ

) . (4.99)



134 Spectra of Jacobi operators via connection coefficients

-5 0 5

-2

-1

0

1

2

λ

f(
λ)

Fig. 4.2 In order to demonstrate the second part of the proof of Theorem 4.3.14, this figure
shows the Herglotz function f(λ) = 1 + 2

√
λ− 1

√
λ+ 1− 2λ+ λ(9− λ2)−1. There are four

intervals of continuity for f ; they are (−∞,−3), (−3,−1), (1, 3) and (3,∞), within each of
which f is strictly increasing. As in the proof, the left-most interval cannot possibly contain
a root because there f(λ) > 1. Hence f has at most three real roots.

Consider the case |α| ≤ 1. Then a brief calculation reveals G∆(
1
2
(α+ α−1)) = −2α.

Hence the root λ = 1
2
(α+ α−1) of the denominator is always cancelled out. Hence G

has no poles, and so J has no eigenvalues.
In the case where |α| > 1, we have a different situation. Here G∆(

1
2
(α+ α−1)) =

−2α−1. Therefore the root λ = 1
2
(α + α−1) of the denominator is never cancelled out.

Hence there is always a pole of G at λ = 1
2
(α + α−1), and therefore also an eigenvalue

of J there.
Notice a heavy reliance on cancellations in the numerator and denominator for the

existence of eigenvalues. The approach in subsection 4.3.5 avoids this.

Example 4.3.17 (Basic perturbation 2 revisited). The polynomial pC in Theorem
4.3.12 is

pC(λ) = c0,0P0(λ) + c0,2P2(λ) = 1 + (β−1 − β)(4β−1λ2 − β). (4.100)

This simplifies to pC(λ) = 4(1 − β−2)
(

β4

4(β2−1)
− λ2

)
. Using Definition 4.1.6, the

µ-derivative is pµC(λ) = c0,2P
µ
2 (λ) = 4β−1λ. Theorem 4.3.12 gives

G(λ) =
G∆(λ) + 4β−1λ

4(1− β−2)
(

β4

4(β2−1)
− λ2

) . (4.101)



4.3 Toeplitz-plus-finite-rank Jacobi operators 135

Clearly the only points G may have a pole is at λ = ± β2

2
√

β2−1
. However, it is difficult to

see whether there would be cancellation on the numerator. In the previous discussion
on this example we noted that there would not be any poles when |β| <

√
2, which

means that the numerator must be zero at these points, but it is far from clear here.
The techniques we develop in the sequel illuminate this issue, especially for examples
which are much more complicated than the two trivial ones given so far.

4.3.5 The Joukowski transformation

The following two lemmata and two theorems prove that Theorem 4.3.12 and Theorem
4.3.14 can be simplified drastically by making the change of variables

λ(z) =
1

2
(z + z−1) (4.102)

This map is known as the Joukowski map. It is an analytic bijection from D = {z ∈
C : |z| < 1} to C \ [−1, 1], sending the unit circle to two copies of the interval [−1, 1].

The Joukowski map has special relevance for the principal resolvent of ∆. A brief
calculation reveals that for z ∈ D,

G∆(λ(z)) = −2z. (4.103)

Further, we will see that the polynomials pC(λ) and pµC(λ) occurring in our formula for
G can be expressed neatly as polynomials in z and z−1. This is a consequence of a
special property of the Chebyshev polynomials of the second kind, that for any k ∈ Z
and z ∈ D

Um−k(λ(z))

Um(λ(z))
→ zk as m→∞. (4.104)

These convenient facts allow us to remove any square roots involved in the formulae in
Theorem 4.3.12.

Lemma 4.3.18. Let pC(λ) =
∑2n−1

k=0 ⟨e0, CCT ek⟩Uk(λ) as in Theorem 4.3.12 and let c
be the symbol of CToe, the Toeplitz part of C as guaranteed by Theorem 4.3.8. Then

pC(λ(z)) = c(z)c(z−1), (4.105)

where λ(z) = 1
2
(z + z−1).



136 Spectra of Jacobi operators via connection coefficients

Proof. The key quantity to observe for this proof is

1

Um(λ)

〈
U0(λ)

U1(λ)
...

 , CCT em

〉
(4.106)

as m → ∞. We will show it is equal to both sides of equation (4.105). Recall from
Remark 4.3.11 that CCT maps from ℓF to ℓF .

By Corollary 4.2.2 on the mth row of C, we have CT em = Um(J)C
T e0. By Theorem

4.2.3, CUm(J) = Um(∆)C. Hence,

CCT em = CUm(J)C
T e0 = Um(∆)CCT e0. (4.107)

Using this and the relationship (4.30) for f = Um and J = ∆, we have

〈
U0(λ)

U1(λ)
...

 , CCT em

〉
=

〈
U0(λ)

U1(λ)
...

 , Um(∆)CCT e0

〉
=

〈
Um(∆)


U0(λ)

U1(λ)
...

 , CCT e0

〉

= Um(λ)

〈
U0(λ)

U1(λ)
...

 , CCT e0

〉
= Um(λ)pC(λ).

Now, by Theorem 4.3.8, C = CToe + Cfin, where Cfin is zero outside the (n− 1)×
(2n− 2) principal submatrix. Hence for m sufficiently large we have cm,m+k = tk for a
sequence (tk)k∈Z such that tk = 0 for k /∈ {0, 1, . . . , 2n− 1}. The Toeplitz symbol of
CToe is c(z) =

∑2n−1
k=0 tkz

k. Hence we have for m sufficiently large,

1

Um(λ)

〈
U0(λ)

U1(λ)
...

 , CCT em

〉
=

2n−1∑
k=1−2n

⟨CT em+k, C
T em⟩Um+k(λ)/Um(λ)

=
2n−1∑

k=1−2n

2n−1∑
j=0

cm+k,m+jcm,m+jUm+k(λ)/Um(λ)

=
2n−1∑

k=1−2n

2n−1∑
j=0

tj−ktjUm+k(λ)/Um(λ)



4.3 Toeplitz-plus-finite-rank Jacobi operators 137

=
2n−1∑
k=0

2n−1∑
j=0

tktjUm+k−j(λ)/Um(λ).

By equation (4.104), this tends to
∑2n−1

k=0

∑2n−1
j=0 tktjz

j−k as m→∞. This is equal to
c(z)c(z−1).

Lemma 4.3.19. Let pµC(λ) =
∑2n−1

k=0 ⟨ek, CµCT e0⟩Uk(λ) as in Theorem 4.3.12 and let
cµ be the symbol of Cµ

Toe, the Toeplitz part of Cµ as guaranteed by Corollary 4.3.10.
Then

pµC(λ(z)) = c(z−1)cµ(z)− 2z, (4.108)

where λ(z) = 1
2
(z + z−1) and z ∈ D.

Proof. The key quantity to observe for this proof is

1

Um(λ)

〈
U0(λ)

U1(λ)
...

 , CµCT em

〉
(4.109)

as m → ∞. We will compute two equivalent expressions for this quantity to derive
equation (4.108).

By Corollary 4.2.2 on the mth row of C, we have CT em = Um(J)C
T e0. Hence,

using the definition of Cµ for the second line,

〈
U0(λ)

U1(λ)
...

 , CµCT em

〉
=

〈
U0(λ)

U1(λ)
...

 , CµUm(J)C
T e0

〉
(4.110)

=

〈
P µ
0 (λ)

P µ
1 (λ)
...

 , Um(J)C
T e0

〉
. (4.111)

By Lemma 4.1.8 with f = Um,

Um(J)


P µ
0 (λ)

P µ
1 (λ)
...

 = Um(λ)


P µ
0 (λ)

P µ
1 (λ)
...

+
Um(J)− Um(λ)

J − λ
e0. (4.112)



138 Spectra of Jacobi operators via connection coefficients

Combining equation (4.111) and equation (4.112) gives

〈
U0(λ)

U1(λ)
...

 , CµCT em

〉
= Um(λ)

〈
P µ
0 (λ)

P µ
1 (λ)
...

 , CT e0

〉
︸ ︷︷ ︸

(1)

+

〈
e0,

Um(J)− Um(λ)

J − λ
CT e0

〉
︸ ︷︷ ︸

(2)

.

(4.113)
Part (1) yields,

(1) = Um(λ)
2n−1∑
k=1

c0,kP
µ
k (λ) = Um(λ)p

µ(λ). (4.114)

By Theorem 4.2.3 with f(ζ) = (Um(ζ)− Um(λ))/(ζ − λ), part (2) yields

(2) =
〈
Ce0, (Um(∆)− Um(λ))(∆− λ)−1e0

〉
(4.115)

Since Ce0 = e0 and using Theorem 4.1.5, we further have

(2) =

∫
Um(s)− Um(λ)

s− λ
dµ∆(s). (4.116)

This is the µ∆-derivative of Um as in Definition 4.1.10. We noted in equation (4.65)
that Uµ∆

m (λ) = 2Um−1(λ).
Combining (1) and (2) we have as m→∞,

1

Um(λ)

〈
U0(λ)

U1(λ)
...

 , CµCT em

〉
= pµC(λ) + 2Um−1(λ)/Um(λ)→ pµC(λ) + 2z.

Now we compute the quantity in equation (4.109) in a different direction. By
Corollary 4.3.10, Cµ = Cµ

Toe + Cµ
fin, where Cµ

fin is zero outside the principal (n− 2)×
(2n − 1) submatrix. Hence for m sufficiently large we have (cµ)m,m+k = tµk for a
sequence (tµk)k∈Z such that tk = 0 for k /∈ {1, . . . , 2n− 2}. The Toeplitz symbol of Cµ

Toe

is cµ(z) =
∑2n−2

k=1 tµkz
k. Hence we have for m sufficiently large,

1

Um(λ)

〈
U0(λ)

U1(λ)
...

 , CµCT em

〉
=

2n−1∑
k=1−2n

⟨(Cµ)T em+k, C
T em⟩Um+k(λ)/Um(λ)



4.3 Toeplitz-plus-finite-rank Jacobi operators 139

=
2n−1∑

k=1−2n

2n−1∑
j=0

(cµ)m+k,m+jcm,m+jUm+k(λ)/Um(λ)

=
2n−1∑

k=1−2n

2n−1∑
j=0

tµj−ktjUm+k(λ)/Um(λ)

=
2n−2∑
i=1

2n−1∑
j=0

tµi tjUm+j−i(λ)/Um(λ).

By equation (4.104), this tends to
∑2n−2

i=1

∑2n−1
j=0 tµi tjz

i−j as m→∞. This is equal to
c(z−1)cµ(z).

Equating these two quantities gives pµ(λ(z)) = c(z−1)cµ(z)− 2z as required.

The following theorem describes Theorem 4.3.12 under the change of variables
induced by the Joukowski map.

Theorem 4.3.20. Let J be a Jacobi operator such that there exists an n such that

αk = 0, βk−1 =
1

2
for all k ≥ n, (4.117)

i.e. it is equal to the free Jacobi operator ∆ outside the n× n principal submatrix. By
Theorem 4.3.8 the connection coefficient matrix can be decomposed into C = CToe+Cfin.
By Corollary 4.3.10, we similarly have Cµ = Cµ

Toe + Cµ
fin. If c and cµ are the Toeplitz

symbols of CToe and Cµ
Toe respectively, then for λ(z) = 1

2
(z + z−1) with z ∈ D, the

principal resolvent G is given by the rational function

G(λ(z)) = −cµ(z)

c(z)
. (4.118)

Proof. Combining Theorem 4.3.12, equation (4.103) and Lemmata 4.3.18 and 4.3.19,
we have

G(λ(z)) =
G∆(λ(z))− pµ(λ(z))

p(λ(z))
(4.119)

=
−2z − (c(z−1)cµ(z)− 2z)

c(z)c(z−1)
(4.120)

= −cµ(z)

c(z)
. (4.121)

This completes the proof.



140 Spectra of Jacobi operators via connection coefficients

The following theorem gives a better description of the weights wk in Theorem
4.3.14, utilising the Joukowski map and the Toeplitz symbol c.

Theorem 4.3.21. Let J be a Jacobi operator such that there exists an n such that

αk = 0, βk−1 =
1

2
for all k ≥ n, (4.122)

i.e. it is equal to the free Jacobi operator ∆ outside the n× n principal submatrix. By
Theorem 4.3.8 the connection coefficient matrix can be written C = CToe + Cfin. If c is
the Toeplitz symbol of CToe, then the spectral measure of J is

µ(s) =
1

pC(s)
µ∆(s) +

r∑
k=1

(zk − z−1
k )2

zkc′(zk)c(z
−1
k )

δλ(zk)(s). (4.123)

Here zi are the roots of c that lie in the open unit disk, which are all real and simple.
The only roots of c on the unit circle are ±1, which can also only be simple. Further,
r ≤ n.

Proof. By Theorem 4.3.14,

µ(s) =
1

pC(s)
µ∆(s) +

r∑
k=1

wkδλk
(s), (4.124)

where r ≤ n. Hence we just need to prove something more specific about the roots of
c, λ1, . . . , λr, and w1, . . . , wr.

By Theorem 4.3.20, G(λ(z)) = −cµ(z)/c(z) for z ∈ D. By Lemma 4.3.19,
c(z−1)cµ(z)− 2z = pµ(λ(z)) = pµ(λ(z−1)) = c(z)cµ(z

−1)− 2z−1, so

c(z−1)cµ(z)− c(z)cµ(z
−1) = 2(z − z−1). (4.125)

Therefore c and cµ cannot simultaneously be zero unless z = z−1, which only happens
at z = ±1. By the same reasoning, c(z) and c(z−1) also cannot be simultaneously zero
unless z = ±1. Since the Joukowski map λ is a bijection from D to C \ [−1, 1], this
shows that the (simple and real) poles of G in C \ [−1, 1] are precisely λ(z1), . . . , λ(zr),
where z1, . . . , zr are the (necessarily simple and real) roots of c in D.



4.3 Toeplitz-plus-finite-rank Jacobi operators 141

What are the values of the weights of the Dirac deltas, w1, . . . , wr? By Theorem
4.3.14,

wk = lim
ε↘0

ε

i
G(λ(zk) + iε)

= lim
λ→λ(zk)

(λ(zk)− λ)G(λ)

= lim
z→zk

1

2
(zk + z−1

k − z − z−1)(−1)cµ(z)
c(z)

= lim
z→zk

1

2
z−1(z − zk)(z − z−1

k )
cµ(z)

c(z)

=
1

2
z−1
k (zk − z−1

k )cµ(zk) lim
z→zk

(z − zk)

c(z)

=
1

2
z−1
k (zk − z−1

k )
cµ(zk)

c′(zk)
.

By equation (4.125), since c(zk) = 0, we have cµ(zk) = 2(zk − z−1
k )/c(z−1

k ). This
gives

wk =
(zk − z−1

k )2

zkc(z
−1
k )c′(zk)

.

Note that if c(z) = 0 then c(z) = 0 because c has real coefficients. If c has a root
z0 on the unit circle, then c(z0) = c(z−1

0 ) = 0 because z0 = z−1
0 , which earlier in the

proof we showed only occurs if z0 = ±1. Hence c does not have roots on the unit circle
except possibly ±1.

Example 4.3.22 (Basic perturbation 1 re-revisited). Considering the connection
coefficient matrix in equation (4.67), we see that the Toeplitz symbol c is c(z) = 1−αz.
By Theorem 4.3.21 the roots of c in the unit disc correspond to eigenvalues of Jα. As
is consistent with our previous considerations, c has a root in the unit disc if and only
if |α| > 1, and those eigenvalues are λ(α−1) = 1

2
(α+ α−1). See Section 4.6 for figures

depicting the spectral measure and the resolvent.

Example 4.3.23 (Basic perturbation 2 re-revisited). Considering the connection
coefficient matrix in equation (4.70), we see that the Toeplitz symbol c is c(z) =

β−1 + (β−1 − β)z2. By Theorem 4.3.21 the roots of c in the unit disc correspond to

eigenvalues of Jβ. The roots of c are ± 1√
β2−1

. If β ∈
(
0,
√
2
]
\ {1} then

∣∣∣∣± 1√
β2−1

∣∣∣∣ ≥ 1

so there are no roots of c in the unit disc, as is consistent with the previous observations.

What was difficult to see before is, if β >
√
2 then

∣∣∣∣± 1√
β2−1

∣∣∣∣ < 1, so there is a root of



142 Spectra of Jacobi operators via connection coefficients

c inside D, and it corresponds to an eigenvalue,

λ

(
± 1√

β2 − 1

)
= ±1

2

(
1√

β2 − 1
+
√

β2 − 1

)
= ± β2

2
√

β2 − 1
. (4.126)

See Section 4.6 for figures depicting the spectral measure and the resolvent.

4.4 Toeplitz-plus-trace-class Jacobi operators

In this section we extend the results of the previous section to the case where the Jacobi
operator is Toeplitz-plus-trace-class. This cannot be done as a direct extension of the
work in the previous section as the formulae obtained depended on the fact that some
of the functions involved were merely polynomials in order to have a function defined
for all λ in an a priori known region of the complex plane. We admit that it may be
possible to perform the analysis directly, but state that it is not straightforward. We
are interested in feasible (finite) computation so are content to deal directly with the
Toeplitz-plus-finite-rank case and perform a limiting process. The crucial question for
computation is, can we approximate the spectral measure of a Toeplitz-plus-trace-class
Jacobi operator whilst reading only finitely many entries of the matrix?

Here we make clear the definition of a Toeplitz-plus-trace-class Jacobi operator.

Definition 4.4.1. An operator K : ℓ2 → ℓ2 is said to be trace class if
∑∞

k=0 e
T
k (K

TK)1/2ek <

∞. Hence we say that a Jacobi operator J such that αk → 0, βk → 1
2

as k → ∞ is
Toeplitz-plus-trace-class if

∞∑
k=0

∣∣∣∣βk −
1

2

∣∣∣∣+ |αk| <∞. (4.127)

4.4.1 Jacobi operators for Jacobi polynomials

The most well known class of orthogonal polynomials is the Jacobi polynomials, whose
measure of orthogonality is

dµ(s) =
(
2α+β+1B(α + 1, β + 1)

)−1
(1− s)α(1 + s)β

∣∣∣∣
s∈[−1,1]

ds, (4.128)

where α,β > −1 and B is Euler’s Beta function. The Jacobi operator for the normalised
Jacobi polynomials with respect to this probability measure, and hence the three term



4.4 Toeplitz-plus-trace-class Jacobi operators 143

recurrence coefficients, are given by [olva],

αk =
β2 − α2

(2k + α + β)(2k + α + β + 2)
(4.129)

βk−1 = 2

√
k(k + α)(k + β)(k + α + β)

(2k + α + β − 1)(2k + α + β)2(2k + α + β + 1)
(4.130)

Note that |αk| = O(k−2) and

βk−1 =
1

2

√
1 +

(4− 8α2 − 8β2)k2 +O(k)
(2k + α + β − 1)(2k + α + β)2(2k + α + β + 1)

=
1

2
+O(k−2).

(4.131)
Hence the Jacobi operators for the Jacobi polynomials are Toeplitz-plus-trace-class for
all α, β > −1.

The Chebyshev polynomials Tk and Uk discussed in the previous section are specific
cases of Jacobi polynomials, with α, β = −1

2
,−1

2
for Tk and α, β = 1

2
, 1
2

for Uk.
In Section 4.6 numerical computations of the spectral measures and resolvents of

these Jacobi operators are presented.

4.4.2 Toeplitz-plus-finite-rank truncations

We propose to use the techniques from Section 4.3. Therefore for a Jacobi operator J ,
we can define the Toeplitz-plus-finite-rank truncations J [m], where

J
[m]
i,j =

Ji,j if 0 ≤ i, j < m

∆i,j otherwise.
(4.132)

Each Jacobi operator J [m] has a spectral measure µ[m] which can be computed using
Theorem 4.3.21. The main question for this section is: how do the computable measures
µ[m] approximate the spectral measure µ of J?

Proposition 4.4.2. Let J a Jacobi operator (bounded, but with no assumed structure
imposed) and let µ be its spectral measure. Then the measures µ[1], µ[2], . . . which are
the spectral measures of J [1], J [2], . . . converge to µ in a weak sense. Precisely,

lim
m→∞

∫
f(s) dµ[m](s) =

∫
f(s) dµ(s), (4.133)

for all f ∈ Cb(R).



144 Spectra of Jacobi operators via connection coefficients

Proof. Each spectral measure µ[m] and µ are supported on the spectra of J [m] and
J , each of which are contained within [−∥J [m]∥2, ∥J [m]∥2] and [−∥J∥2, ∥J∥2]. Since
∥J [m]∥2 and ∥J∥2 are less than

M = 3

(
sup
k≥0
|αk|+ sup

k≥0
|βk|
)
, (4.134)

we have that all the spectral measures involved are supported within the interval
[−M,M ]. Hence we can consider integrating functions f ∈ C([−M,M ]) without
ambiguity.

By Weierstrass’ Theorem, polynomials are dense in C([−M,M ]), so we only need
to consider polynomials as test functions, and by linearity we only need to consider
the orthogonal polynomials for J . The first polynomial P0 has immediate convergence,
since the measures are all probability measures. Now consider Pk for some k > 0,
which satisfies

∫
Pk(s) dµ(s) = 0. For m > k, Pk is also the kth orthogonal polynomial

for J [m], hence
∫
Pk(s) dµ

[m](s) = 0. This completes the proof.

4.4.3 Asymptotics of the connection coefficients

Here we formulate a block operator equation Lc = e00 satisfied by the entries of the
connection coefficient matrices encoded into a vector c. For Toeplitz-plus-trace-class
Jacobi operators we give appropriate Banach spaces upon which the operator L is
bounded and invertible, enabling precise results about the asymptotics of the connection
coefficients to be derived.

Lemma 4.4.3. Let J and D be Jacobi operators with entries {αk, βk}∞k=0 and {γk, δk}∞k=0

respectively. If we decompose the upper triangular part of CJ→D into a sequence of
sequences, stacking each diagonal on top of each other, we get the following block linear
system, 

B−1

A0 B0

BT
0 A1 B1

BT
1 A2 B2

. . .
. . .

. . .





c∗,∗

c∗,∗+1

c∗,∗+2

c∗,∗+3

...


=



e0

0

0

0
...


, (4.135)



4.4 Toeplitz-plus-trace-class Jacobi operators 145

where for each i,

Bi = 2


βi

−δ0 βi+1

−δ1 βi+2

. . .
. . .

 , Ai = 2


αi − γ0

αi+1 − γ1

αi+2 − γ2
. . .

 .

For B−1 to make sense we define β−1 = 1/2.

Proof. This is simply the 5-point discrete system in Lemma 4.2.1 rewritten.

We write the infinite dimensional block infinite dimensional system (4.135) in the
form,

Lc = e00. (4.136)

For general Jacobi operators J and D, the operators Ai and Bi are well defined linear
operators from ℓ⋆F to ℓ⋆F . The block operator L is whence considered as a linear operator
from the space of sequences of real sequences, ℓ⋆F(ℓ⋆F) to itself. We will use this kind of
notation for other spaces as follows.

Definition 4.4.4 (Vector-valued sequences). If ℓX is a vector space of scalar-valued
sequences, and Y is another vector space then we let ℓX(Y ) denote the vector space of
sequences of elements of Y . In many cases in which ℓX and Y are both normed spaces,
then ℓX(Y ) naturally defines a normed space in which the norm is derived from that
of ℓX by replacing all instances of absolute value with the norm on Y . For example,
ℓp(ℓ∞) is a normed space with norm ∥(ak)∞k=0∥ℓp(ℓ∞) = (

∑∞
k=0 ∥ak∥p∞)

1
p .

The following two spaces are relevant for the Toeplitz-plus-trace-class Jacobi opera-
tors.

Definition 4.4.5 (Sequences of bounded variation). Following [DSBB71, Ch. IV.2.3],
denote by bv the Banach space of all sequences with bounded variation, that is sequences
such that the norm

∥a∥bv = |a0|+
∞∑
k=0

|ak+1 − ak|, (4.137)

is finite.

The following result is immediate from the definition of the norm on bv.



146 Spectra of Jacobi operators via connection coefficients

Lemma 4.4.6. There is a continuous embedding bv ⊂ c the Banach space of convergent
sequences i.e. for all (ak)∞k=0 ∈ bv, limk→∞ ak exists, and supk |ak| ≤ ∥(ak)∞k=0∥bv.
Furthermore, limk→∞ |ak| ≤ ∥a∥bv.

Definition 4.4.7 (Geometrically weighted ℓ1). We define the Banach space ℓ1R to be
the space of sequences such that the norm

∥v∥ℓ1R =
∞∑
k=0

Rk|vk|, (4.138)

is finite.

Proposition 4.4.8. The operator norm on ℓ1R is equal to

∥A∥ℓ1R→ℓ1R
= sup

j

∑
i

Ri−j|aij|. (4.139)

The following Lemma and its Corollary show that it is natural to think of c as lying
in the space ℓ1R(bv).

Lemma 4.4.9. Let J = ∆ +K be a Jacobi operator where K is trace class and let
D = ∆. Then for any R ∈ (0, 1) the operator L in equation (4.136) is bounded and
invertible as an operator from ℓ1R(bv) to ℓ1R(ℓ

1). Furthermore, if L[m] is the operator in
equation (4.136) generated by the Toeplitz-plus-finite-rank truncation J [m], then

∥L − L[m]∥ℓ1R(bv)→ℓ1R(ℓ1) → 0 as m→∞. (4.140)

Proof. We can write L in equation (4.136) in the form L = T +K where

T =


T

0 T

T T 0 T

T T 0 T
. . .

. . .
. . .

 , T =


1

−1 1

−1 1
. . .

. . .

 , (4.141)



4.4 Toeplitz-plus-trace-class Jacobi operators 147

and

K =


K−1

A0 K0

K0 A1 K1

K1 A2 K2

. . .
. . .

. . .

 ,
Ai = 2diag(αi, αi+1, . . .),

Ki = diag(2βi − 1, 2βi+1 − 1, . . .).
(4.142)

This decomposition will allow us to prove that L is bounded and invertible as
follows. We will show that as operators from ℓ1R(bv) to ℓ1R(ℓ

1), T is bounded and
invertible, and K is compact. This implies that L is a Fredholm operator with index 0.
Therefore, L is invertible if and only if it is injective. It is indeed injective, because it
is block lower triangular with invertible diagonal blocks, so forward substitution on
the system Lv = 0 implies that each entry of v must be zero.

First let us prove that T is bounded and invertible. It is elementary that T is an
isometric isomorphism from bv to ℓ1 and T T is bounded with norm at most 1. Hence
using Proposition 4.4.8 we have

∥T ∥ℓ1R(bv)→ℓ1R(ℓ1) = R0∥T∥bv→ℓ1 +R2∥T T∥bv→ℓ1 ≤ 1 +R2. (4.143)

Because each operator is lower triangular, the left and right inverse of T : ℓF(ℓF)→
ℓF(ℓF) is

T −1 =



T−1

0 T−1

−T−1T TT−1 0 T−1

0 −T−1T TT−1 0 T−1

T−1(T TT−1)2 0 −T−1T TT−1 . . .
. . .

... . . .
. . .

. . .
. . .

. . .


. (4.144)

This matrix is block lower triangular and block Toeplitz with first column having 2ith
block of the form T−1(−T TT−1)i and (2i+ 1)th block zero. We must check that this
matrix is bounded in the norms on ℓ1R(ℓ

1) to ℓ1R(bv) so that it may be extended to
those spaces from ℓF . Again using Proposition 4.4.8 we have

∥T −1∥ℓ1R(ℓ1)→ℓ1R(bv) = sup
j

∞∑
i=j

R2(i−j)∥T−1(−T TT−1)i−j∥ℓ1→bv



148 Spectra of Jacobi operators via connection coefficients

=
∞∑
k=0

R2k∥T−1(−T TT−1)k∥ℓ1→bv

≤
∞∑
k=0

R2k∥T−1∥ℓ1→bv

(
∥T T∥bv→ℓ1∥T−1∥ℓ1→bv

)k
≤

∞∑
k=0

R2k = (1−R2)−1 <∞.

Now let us prove that K : ℓ1R(bv) → ℓ1R(ℓ
1) is compact. Consider the finite rank

operator K[m], where all elements are the same as in K, except that all occurrences of
αi and 2βi − 1 are replaced by 0 for i ≥ m. Using Proposition 4.4.8 we have

∥K−K[m]∥ℓ1R(bv)→ℓ1R(ℓ1) = sup
j

R0∥Kj−1−K [m]
j−1∥bv→ℓ1+R1∥Aj−A[m]

j ∥bv→ℓ1+R2∥Kj−K [m]
j ∥bv→ℓ1 .

(4.145)
By the continuous embedding in Lemma 4.4.6, ∥ · ∥bv→ℓ1 ≤ ∥ · ∥ℓ∞→ℓ1 . Hence

∥K − K[m]∥ℓ1R(bv)→ℓ1R(ℓ1) ≤
∞∑

k=m

R0|2βk−1 − 1|+R1|αk|+R2|2βk − 1|

→ 0 as m→∞.

Since K is a norm limit of finite rank operators it is compact. This completes the proof
that L is bounded and invertible.

Now consider the operator L[m], which is equal to T +K[m] (where K[m] is precisely
that which was considered whilst proving K is compact). Hence,

∥L − L[m]∥ℓ1R(bv)→ℓ1R(ℓ1) = ∥K − K[m]∥ℓ1R(bv)→ℓ1R(ℓ1) → 0 as m→∞. (4.146)

This completes the proof.

Corollary 4.4.10. Let J = ∆ + K be a Jacobi operator where K is trace class
and let c ∈ ℓ⋆F(ℓ

⋆
F) be the vector of diagonals of CJ→∆ as in equation (4.136). Then

c ∈ ℓ1R(bv). If J has Toeplitz-plus-finite-rank truncations J [m] and c[m] denotes the
vector of diagonals of C [m], then

∥c− c[m]∥ℓ1R(bv) → 0 as m→∞. (4.147)



4.4 Toeplitz-plus-trace-class Jacobi operators 149

Proof. By equation (4.136)

c− c[m] = (L−1 − (L[m])−1)e00. (4.148)

Since ∥e00∥ℓ1R(ℓ1) = 1, the proof is completed if we show ∥L−1−(L[m])−1∥ℓ1R(ℓ1)→ℓ1R(bv) → 0

as m→∞.
Suppose that m is sufficiently large so that ∥L − L[m]∥ < ∥L−1∥−1. Note that L−1

is bounded by the Inverse Mapping Theorem and Lemma 4.4.9. Then by a well-known
result (see for example, [TO16], [AH05]),

∥L−1 − (L[m])−1∥ ≤ ∥L−1∥2∥L − L[m]∥
1− ∥L−1∥∥L − L[m]∥

. (4.149)

This tends to zero as m→∞, by Lemma 4.4.9.

Theorem 4.4.11. Let J = ∆+K be a Jacobi operator where K is trace class. Then
C = CJ→∆ can be decomposed into

C = CToe + Ccom, (4.150)

where CToe is upper triangular, Toeplitz and bounded as an operator from ℓ1R−1 to ℓ1R−1,
and Ccom is compact as an operator from ℓ1R−1 to ℓ1R−1, for all R ∈ (0, 1). Also, if
J has Toeplitz-plus-finite-rank truncations J [m] with connection coefficient matrices
C [m] = C

[m]
Toe + C

[m]
com, then

C [m] → C, C
[m]
Toe → CToe, C [m]

com → Ccom as m→∞, (4.151)

in the operator norm topology over ℓ1R−1.

Proof. By Lemma 4.4.9, for each k the sequence (c0,0+k, c1,1+k, c2,2+k, . . .) is an element
of bv. By Lemma 4.4.6 each is therefore a convergent sequence, whose limits we call tk.
Hence we can define an upper triangular Toeplitz matrix CToe whose (i, j)th element
is tj−i, and define Ccom = C − CToe.

The Toeplitz matrix CToe is bounded from ℓ1R−1 to ℓ1R−1 by the following calculation.

∥CToe∥ℓ1
R−1→ℓ1

R−1
= sup

j

j∑
i=0

Rj−i|tj−i| (4.152)



150 Spectra of Jacobi operators via connection coefficients

=
∞∑
k=0

Rk|tk| (4.153)

≤
∞∑
k=0

Rk∥c∗,∗+k∥bv (4.154)

= ∥c∥ℓ1R(bv). (4.155)

By Lemma 4.4.9 this quantity is finite.
Now we show convergence results. The compactness of Ccom will follow at the end.

∥C − C [m]∥ℓ1
R−1→ℓ1

R−1
= sup

j

j∑
i=0

Rj−i|ci,j − c
[m]
i,j | (4.156)

= sup
j

j∑
k=0

Rk|cj−k,j − c
[m]
j−k,j| (4.157)

≤ sup
j

j∑
k=0

Rk∥c∗,∗+k − c
[m]
∗,∗+k∥bv (4.158)

=
∞∑
k=0

Rk∥c∗,∗+k − c
[m]
∗,∗+k∥bv (4.159)

= ∥c− c[m]∥ℓ1R(bv). (4.160)

For the third line, note that for fixed k, c0,k − c
[m]
0,k , c1,1+k − c

[m]
1,1+k, c2,2+k − c

[m]
2,2+k, . . . is

a bv sequence, and refer to Lemma 4.4.6.

∥CToe − C
[m]
Toe∥ℓ1

R−1→ℓ1
R−1

= sup
j

j∑
i=0

Rj−i|tj−i − t
[m]
j−i| (4.161)

=

j∑
k=0

Rk|tk − t
[m]
k | (4.162)

=
∞∑
k=0

Rk∥c∗,∗+k − c
[m]
∗,∗+k∥bv (4.163)

= ∥c− c[m]∥ℓ1R(bv). (4.164)

For the third line, note that tk − t
[m]
k is the limit of the bv sequence c∗,∗+k − c

[m]
∗,∗+k, and

refer Lemma 4.4.6.

∥Ccom − C [m]
com∥ℓ1

R−1→ℓ1
R−1
≤ ∥C − C [m]∥+ ∥CToe − C

[m]
Toe∥ ≤ 2∥c− c[m]∥ℓ1R(bv). (4.165)



4.4 Toeplitz-plus-trace-class Jacobi operators 151

Using Corollary 4.4.10, that ∥c− c[m]∥ℓ1R(bv) → 0 as m→∞, we have the convergence
results.

By Theorem 4.3.8, C [m]
com has finite rank. Therefore, since Ccom = limm→∞ C

[m]
com in the

operator norm topology over ℓ1R−1 , we have that Ccom is compact in that topology.

Remark 4.4.12. The transposed matrices CT
Toe and CT

com are bounded and compact
(respectively) as operators from ℓ1R to ℓ1R.

Corollary 4.4.13. Let Cµ be as defined in Definition 4.2.12 for C as in Theorem
4.4.11. Then Cµ can be decomposed into Cµ = Cµ

Toe + Cµ
com where Cµ

Toe is upper
triangular, Toeplitz and bounded as an operator from ℓ1R−1 to ℓ1R−1, and Cµ

com is compact
as an operator from ℓ1R−1 to ℓ1R−1, for all R ∈ (0, 1). Furthermore, if J has Toeplitz-plus-
finite-rank truncations J [m] with connection coefficient matrices (Cµ)[m] = (Cµ

Toe)
[m] +

(Cµ
com)

[m], then

(Cµ)[m] → Cµ, (Cµ
Toe)

[m] → Cµ
Toe, (Cµ

com)
[m] → Cµ

com as m→∞, (4.166)

in the operator norm topology over ℓ1R−1.

Proof. This follows from Theorem 4.4.11 applied to Jµ as defined in Lemma 4.2.14.

Theorem 4.4.14. Let J be a Jacobi operator such that J = ∆+K where K is trace
class. The Toeplitz symbols c and cµ of the Toeplitz parts of CJ→∆ and Cµ

J→∆ are both
analytic in the unit disc. Furthermore, if J has Toeplitz-plus-finite-rank truncations
J [m] with Toeplitz symbols c[m] and c

[m]
µ , then c[m] → c and c

[m]
µ → cµ as m → ∞

uniformly on compact subsets of D.

Proof. Let R ∈ (0, 1)，and let 0 ≤ |z| ≤ R < 1. Then by Lemma 4.4.6 we have∣∣∣∣∣
∞∑
k=0

tkz
k

∣∣∣∣∣ ≤
∞∑
k=0

|tk|Rk ≤
∞∑
k=0

∥c∗,∗+k∥bvRk = ∥c∥ℓ1R(bv),

where c is as defined in equation (4.136). By Lemma 4.4.9 this quantity is finite. Since
R is arbitrary, the radius of convergence of the series is 1. The same is true for cµ by
Lemma 4.2.14.

Now we prove that the Toeplitz symbols corresponding to the Toeplitz-plus-finite-
rank truncations converge.

sup
|z|≤R

|c(z)− c[m](z)| = sup
|z|≤R

∣∣∣∣∣
∞∑
k=0

(tk − t
[m]
k )zk

∣∣∣∣∣ ≤
∞∑
k=0

|tk − t
[m]
k |R

k



152 Spectra of Jacobi operators via connection coefficients

≤
∞∑
k=0

∥c∗,∗+k − c
[m]
∗,∗+k∥bvR

k = ∥c− c[m]∥ℓ1R(bv),

To go between the first and second lines, note that for each k, c∗,∗+k − c
[m]
∗,∗+k is a bv

sequence whose limit is tk− t
[m]
k and refer to Lemma 4.4.6. Now, ∥c− c[m]∥ℓ1R(bv) → 0 as

m→∞ by Corollary 4.4.10. The same is true for sup|z|≤R |cµ(z)− c
[m]
µ (z)| by Lemma

4.2.14.

Theorem 4.4.15 (See [Kat95]). Let A and B be bounded self-adjoint operators on ℓ2.
Then

dist(σ(A), σ(B)) ≤ ∥A−B∥2. (4.167)

Theorem 4.4.16. Let J = ∆+K be a Toeplitz-plus-trace-class Jacobi operator, and
let c and cµ be the analytic functions as defined in Theorem 4.4.11 and Corollary 4.4.13.
Then for λ(z) = 1

2
(z + z−1) with z ∈ D such that λ(z) /∈ σ(J), the principal resolvent

G is given by the meromorphic function

G(λ(z)) = −cµ(z)

c(z)
. (4.168)

Therefore, all eigenvalues of J are of the form λ(zk), where zk is a root of c in D.

Proof. Let z ∈ D such that λ(z) /∈ σ(J), and let J [m] denote the Toeplitz-plus-finite-
rank truncations of J with principal resolvents G[m]. Then J [m] → J as m→∞, so by
Theorem 4.4.15 there exists M such that for all m ≥M , λ(z) /∈ σ(J [m]). For such m,
both G(λ(z)) and G[m](λ(z)) are well defined, and using a well-known result on the
difference of inverses (see for example, [TO16], [AH05]), we have

G[m](λ)−G(λ) =
〈
e0,
(
(J [m] − λ)−1 − (J − λ)−1

)
e0
〉

≤ ∥(J [m] − λ)−1 − (J − λ)−1∥2

≤ ∥(J − λ)−1∥22∥J − J [m]∥2
1− ∥(J − λ)−1∥2∥J − J [m]∥2

→ 0 as m→∞.

Theorem 4.4.14 shows that limm→∞ c
[m]
µ (z)/c[m](z) = cµ(z)/c(z). Therefore by

Theorem 4.3.20 these limits are the same and we have equation (4.168).



4.5 Computability aspects 153

4.5 Computability aspects

In this section we discuss computability questions à la Ben-Artzi–Hansen–Nevanlinna–
Seidel [BAHNS15a, BAHNS15b, Han11]. This involves an informal definition of the
Solvability Complexity Index (SCI), a recent development that rigorously describes the
extent to which various scientific computing problems can be solved. It is in contrast
to classical computability theory à la Turing, in which problems are solvable exactly
in finite time. In scientific computing we are often interested in problems which we
can only approximate the solution in finite time, such that in an ideal situation this
approximation can be made as accurate as desired. For example, the solution to a
differential equation, the roots of a polynomial, or the spectrum of a linear operator.

Throughout this section we will consider only real number arithmetic, and the
results do not necessarily apply to algorithms using floating point arithmetic.

The following is a modified definition of the Solvability Complexity Index (SCI). It
is slightly stronger than the Ben-Artzi–Hansen–Nevanlinna–Seidel definition, which
can be found in [BAHNS15a]; we do this to avoid a lengthy self-contained account of
the theory where this simpler but stronger definition suffices for our purposes.

Definition 4.5.1. [(Strong) Solvability Complexity Index] A function Γ which takes
inputs to elements in a metric spaceM has Solvability Complexity Index at most k

if for each n1, . . . , nk ∈ N there exists a Turing computable function Γn1,...,nk
taking

inputs to elements of M, such that the function output for input A is equal to the
M-limit

Γ(A) = lim
nk→∞

lim
nk−1→∞

. . . lim
n1→∞

Γn1,...,nk
(A). (4.169)

In other words, the output of Γ can be computed using a sequence of k limits.

Remark 4.5.2. The requirement we use here that the functions Γn1,...,nk
are Turing

computable is much stronger than what is used in the formal setting of [BAHNS15a],
where the authors merely assume that these functions Γn1,...,nk

depend only on, and are
determined by, finitely many evaluable elements of the input datum. Informally, this
suffices for our needs because we want to prove positive results about computability
in this chapter; we prove our problem is computable in this stronger regime and that
implies computability in the weaker regime of [BAHNS15a].

We require a metric space for the SCI. This



154 Spectra of Jacobi operators via connection coefficients

Definition 4.5.3. The Hausdorff metric for two compact subsets of the complex plane
A and B is defined to be

dH(A,B) = max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
. (4.170)

If a sequence of sets A1, A2, A3, . . . converges to A in the Hausdorff metric, we write
An

H−→ A as n→∞.

Theorem 4.5.4 ([BAHNS15a]). The Solvability Complexity Index of the problem of
computing the spectrum of a self-adjoint operator A ∈ B(ℓ2) is equal to 2 with respect
to the Hausdorff metric on R. For compact operators and banded self-adjoint operators
the SCI reduces to 1.

Theorem 4.5.4 implies that the SCI of computing the spectrum of bounded Jacobi
operators in the Hausdorff metric is 1. In loose terms, the problem is solvable using only
one limit of computable outputs. What more can we prove about the computability?

The results of Section 4.3 reduce the computation of the spectrum of a Toeplitz-plus-
finite-rank Jacobi operator to finding the roots of a polynomial. From an uninformed
position, one is lead to believe that polynomial rootfinding is a solved problem, with
many standard approaches used every day. One common method is to use the QR
algorithm to find the eigenvalues of the companion matrix for the polynomial. This can
be done stably and efficiently in practice [AMVW15]. However, the QR algorithm is
not necessarily convergent for non-normal matrices. Fortunately, the SCI of polynomial
rootfinding with respect to the Hausdorff metric in for subsets of C is 1, but if you
require the multiplicities of these roots then the SCI is not yet known [BAHNS15a].

A globally convergent polynomial rootfinding algorithm is given in [HSS01]. For
any degree d polynomial the authors describe a procedure guaranteed to compute
fewer than 1.11d(log d)2 points in the complex plane, such that for each root of the
polynomial, a Newton iteration starting from at least one of these points will converge
to this root.

Let ε > 0. If a polynomial p of degree d has r roots, how do we know when to stop
so that we have r points in the complex plane each within ε of a distinct root of p?
This leads us to the concept of error control.

Definition 4.5.5. [Error control] A function Γ which takes inputs to elements in a
metric spaceM is computable with error control if it has solvability complexity index



4.5 Computability aspects 155

1, and for each ε we can compute n to guarantee that

dM(Γn(A),Γ(A)) < ε. (4.171)

In other words, the output of Γ can be computed using a single limit, and an upper
bound for the error committed by each Γn is known.

Besides providing O(d(log d)2) initial data for the Newton iteration (to find the
complex roots of a degree d polynomial), the authors of [HSS01] discuss stopping
criteria. In Section 9 of [HSS01], it is noted therein that for Newton iterates z1, z2, . . .,
if |zk − zk−1| < ε/d, then there exists a root ξ of the polynomial in question such that
|zk − ξ| < ε. It is then noted, however, that if there are multiple roots then it is in
general impossible to compute their multiplicities with complete certainty. This is
because the Newton iterates can pass arbitrarily close to a root to which this iterate
does not, in the end, converge. Another consequence of this possibility is that roots
could be missed out altogether because all of the iterates can be found to be close to a
strict subset of the roots.

To salvage the situation, we give the following lemma, which adds some assumptions
to the polynomial in question.

Lemma 4.5.6. Let p be a polynomial and Ω ⊂ C an open set such that, a priori, the
degree d is known and it is known that there are r distinct roots of p in Ω and no roots
on the boundary of Ω. Then the roots of p in Ω is computable with error control in the
Hausdorff metric (see Definition 4.5.3 and Definition 4.5.5).

Proof. Use Newton’s method with the O(d(log d)2) complex initial data given in
[HSS01]. Using the stopping criteria in the discussion preceding this Lemma, the
algorithm at each iteration produces O(d(log d)2) discs in the complex plane, within
which all roots of p must lie. Let Rk ⊂ Ω denote the union of the discs which lie
entirely inside Ω, with radius less than ϵ (the desired error).

Because the Newton iterations are guaranteed to converge from these initial data,
we must have (for some sufficiently large k) that Rk has r connected components
each with diameter less than ϵ. Terminate when this verifiable condition has been
fulfilled.

Theorem 4.5.7. Let J = ∆+ F be a Toeplitz-plus-finite-rank Jacobi operator such
that the rank of F is known a priori. Then its point spectrum σp(J) is computable with
error control in the Hausdorff metric (see Definition 4.5.3 and Definition 4.5.5).



156 Spectra of Jacobi operators via connection coefficients

Remark 4.5.8. Note that the full spectrum is simply [−1, 1] ∪ σp(J).

Proof. Suppose F is zero outside the n× n principal submatrix. The value of n can be
computed given that we know the rank of F . Compute the principal 2n×2n submatrix
of the connection coefficients matrix CJ→∆ using formulae (4.42)–(4.46). The entries
in the final column of this 2n× 2n matrix give the coefficients of the Toeplitz symbol
c, which is a degree 2n− 1 polynomial.

Decide if ±1 are roots by evaluating p(±1). Divide by the linear factors if necessary
to obtain a polynomial p̃ such that p̃(±1) ̸= 0. Noting that all roots inside (−1, 1)
are simple (although the roots outside are not necessarily), use Sturm’s Theorem to
determine the number of roots of p̃ in (−1, 1), which we denote r [RS02]. Since all
roots in D are real, there are r roots of p̃ in the open unit disc D and none on the
boundary.

By Lemma 4.5.6, the roots z1, . . . , zr of this polynomial c which lie in (−1, 1) can
be computed with error control. By Theorem 4.3.21, for the point spectrum of J we
actually require λk =

1
2
(zk + z−1

k ) to be computed with error control. Note that since
|λk| ≤ ∥J∥2 for each k, we have that |zk| ≥ (1 + 2∥J∥2)−1. We should ensure that this
holds for the computed roots ẑk ∈ D too. By the mean value theorem,

|λ(zk)− λ(ẑk)| ≤ sup
|z|≥(1+2∥J∥2)−1

|λ′(z)||zk − ẑk|

=
1

2

(
(1 + 2∥J∥2)2 − 1

)
|zk − ẑk|

= 2∥J∥2(1 + ∥J∥2)|zk − ẑk|

≤ 2(1 + ∥F∥2)(2 + ∥F∥2)|zk − ẑk|.

Therefore it suffices to compute ẑk such that |zk − ẑk| ≤ ε
2
(1 + ∥F∥2)−1(2 + ∥F∥2)−1,

where ε is the desired error in the eigenvalues.

Theorem 4.5.9. Let J = ∆+K be a Toeplitz-plus-compact Jacobi operator. If for all
ϵ > 0 an integer m can be computed such that

sup
k≥m
|αk|+ sup

k≥m

∣∣∣∣βk −
1

2

∣∣∣∣ < ϵ, (4.172)

then the spectrum can be computed with error control in the Hausdorff metric.



4.6 Numerical results and the SpectralMeasures package 157

Proof. Let ϵ > 0. By the oracle assumed in the statement of the Theorem, compute m

such that
sup
k≥m
|αk|+ sup

k≥m

∣∣∣∣βk −
1

2

∣∣∣∣ < ϵ

6
. (4.173)

Now compute the point spectrum of Toeplitz-plus-finite-rank truncation J [m] such
that dH(Σ, σ(J

[m])) < ε/2, where Σ denotes the computed set. Then, using Theorem
4.4.15, we have

dH(Σ, σ(J)) ≤ dH(Σ, σ(J
[m])) + dH(σ(J

[m]), σ(J)) (4.174)

≤ ε

2
+ ∥J [m] − J∥2 (4.175)

≤ ε

2
+ 3

ε

6
(4.176)

= ε. (4.177)

Here we used the fact that for a self-adjoint tridiagonal operator A, ∥A∥2 ≤ 3(supk≥0 |ak,k|+
supk≥0 |ak,k+1|). This completes the proof.

4.6 Numerical results and the SpectralMeasures pack-

age

In this section we demonstrate some of the features of the Julia package that present
authors have written to implement the ideas in the paper. The package is called
SpectralMeasures and is part of the JuliaApproximation project, whose main package
is ApproxFun. ApproxFun is an extensive piece of software influenced by the Chebfun
package in Matlab, which can represent functions and operators [OT14],[Olvb], [DHT14].
All of the packages are open source and available to download at http://www.github.
com/JuliaApproximation. The code is subject to frequent changes and updates.

Given a Jacobi operator J which is a finite-rank perturbation of the free Jacobi
operator ∆, there are four things from this paper which we would like to compute. Let
n be an integer such that αk = 0, βk−1 =

1
2

for all k ≥ n.

(i) The connection coefficients matrix CJ→∆: This is computed using the recurrences
in equation (4.42)–(4.42). By Theorem 4.3.8, we only need to compute n(n+ 1)

entries of C to have complete knowledge of all entries. In SpectralMeasures, there
is a class of operator called PertToeplitz, which allows such an operator to be
stored and manipulated as if it were the full infinite-dimensional operator.

http://www.github.com/JuliaApproximation
http://www.github.com/JuliaApproximation


158 Spectra of Jacobi operators via connection coefficients

(ii) The spectral measure µ(s): By Theorem 4.3.14, this measure has the form

dµ(s) =
1

pC(s)

2

π

√
1− s2ds+

r∑
k=1

wkδλk
(s),

where pC is the polynomial given by the computable formula pC(s) =
∑2n−1

k=0 ⟨ek, CCT e0⟩Uk(s)

and r ≤ n. By Theorem 4.3.21, the numbers λk are found by finding the distinct
real roots zk of c (the Toeplitz symbol of the Toeplitz part of C, which here is a
polynomial of degree 2n− 1) in the interval (−1, 1). Also by Theorem 4.3.21, the
weights wk can be computed using the formula

wk =
1

2
z−1
k (zk − z−1

k )
cµ(zk)

c′(zk)
.

(iii) The principal resolvent G(λ): For any λ ∈ C \ σ(J), by Theorem 4.3.12, this
function can be defined by the formula

G(λ) =
G∆(λ)− pµC(λ)

pC(λ)
,

where pC is as above and pµC(λ) =
∑2n−1

k=0 ⟨ek, CµCT e0⟩Uk(λ).

(iv) The mapped principal resolvent G(λ(z)): which is the principal resolvent mapped
to z in the unit disc by the Joukowski map λ : z → 1

2
(z + z−1). This is computed

using the simple formula from Theorem 4.3.20,

G(λ(z)) = −cµ(z)

c(z)
,

where c and cµ are the Toeplitz symbols of the Toeplitz parts of C and Cµ

respectively (these are polynomials of degree 2n− 1 and 2n− 2 respectively).

Consider a concrete example of a Toeplitz-plus-finite-rank Jacobi operator,

J =



3
4

1

1 −1
4

3
4

3
4

1
2

1
2

1
2

0 1
2

. . .
. . .

. . .


. (4.178)



4.6 Numerical results and the SpectralMeasures package 159

The connection coefficients operator C = CJ→∆ is

C =



1 −3
4
−5

4
49
24
− 1

12
−1

3
1
2
−1

3
−4

3
41
24

− 1
12
−1

3

1
3
−2

3
−4

3
41
24

− 1
12

. . .

1
3
−2

3
−4

3
41
24

. . .

1
3

−2
3
−4

3

. . .

. . .
. . .

. . .


. (4.179)

As was noted above, we only need to explicitly compute 3 · 4 = 12 entries and the rest
are defined to be equal to the entry above and left one space.

In Figure 4.3 we present plots of the spectral measure, the principal resolvent and
the mapped principal resolvent. This format of figure is repeated for other Jacobi
operators below.

The plot on left in Figure 4.3 is the spectral measure. There is a continuous part
supported in the interval [−1, 1] and Dirac deltas a represented by vertical lines whose
heights are precisely their weights. As noted in Theorem 4.5.7, it is possible to compute
the eigenvalues of J with guaranteed error control. Computations with guaranteed
error control are made quite straightforward and flexible using the ValidatedNumerics
package [BS], in which computations are conducted using interval arithmetic, and
the desired solution is rigorously guaranteed to lie within the interval the algorithm
gives the user [Tuc11]. Using this open source Julia package, we can compute the two
eigenvalues for this operator to be −1.1734766767874558 and 1.5795946563898884 with
a guaranteed maximum error of 8.9× 10−16. This can be replicated using the command
validated_spectrum([.75;-.25;.5],[1;.75]) in SpectralMeasures.

The coloured plots in the middle and the right of Figure 4.3 are Wegert plots
(sometimes called phase portraits) [Weg12],[Kro]. For a function f : C→ C, a Wegert
plot assigns a colour to every point z ∈ C by the argument of f(z). Specifically, if
f(z) = reiθ, then θ = 0 corresponds to the colour red, then cycles upwards through
yellow, green, blue, purple as θ increases until at θ = 2π it returns to red. This makes
zeros and poles very easy to see, because around them the argument cycles through
all the colours the same number of times as the degree of the root or pole. In these
particular Wegert plots, we also plot lines of constant modulus as shadowed steps.



160 Spectra of Jacobi operators via connection coefficients

The middle plot in Figure 4.3 is the principal resolvent G(λ), which always has a
branch cut along the interval [−1, 1] and roots and poles along the real line. The poles
correspond to Dirac delta measures in the spectral measure.

The third plot is the principal resolvent of J mapped to the unit disc by the
Joukowski map. Poles and roots of this resolvent in the unit disc correspond to those
of the middle plot outside [−1, 1].

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

Fig. 4.3 The left plot is the spectral measure µ(s) of the Jacobi operator in equation
(4.178). The middle plot is a Wegert plot (explained in the text above) depicting the
principal resolvent of the same Jacobi operator, and the right plot is the principal
resolvent under the Joukowski mapping. The two Dirac deltas in the spectral measure
correspond to two poles along the real line for the middle plot and two poles inside the
unit disc for the right plot.

In Figure 4.4 we have plotted the spectral measure and principal resolvent of the
Basic Perturbation 1 (see Examples 4.3.2, 4.3.16, 4.3.22) in which the top-left entry
of the operator has been set to α/2 for values α = 0, 0.15, 0.35, 0.5, 0.75, 1. For the
first four cases, the perturbation from the free Jacobi operator is small, and so the
spectrum is purely continuous, which corresponds to no poles in the principal resolvent,
and in the mapped resolvent there are only poles outside the unit disc. For the cases
α = 0.75, 1, the Jacobi operator has a single isolated point of discrete spectrum. This
is manifested as a Dirac delta in the spectral measure and a single pole in the principal
resolvent.

In Figure 4.5 we have plotted the spectral measure and principal resolvent of
the Basic Perturbation 2 (see Examples 4.3.3, 4.3.17, 4.3.23) in which the (0, 1) and
(1, 0) entries have been set to β/2 for values β = 0.5, 0.707, 0.85, 1.0, 1.2, 1.5. The
effect is similar to that observed in Figure 4.4. For small perturbations the spectrum
remains purely continuous, but for larger perturbations here two discrete eigenvalues
emerge corresponding to Dirac deltas in the spectral measure and poles in the principal
resolvent.



4.6 Numerical results and the SpectralMeasures package 161

In Figure 4.6 we have plotted a sequence of approximations to the Jacobi operator
for the Legendre polynomials, which has entries αk = 0 for k = 0, 1, 2, . . . and

βk−1 =
1√

4k2 − 1
, for k = 1, 2, 3, . . . .

This is a Toeplitz-plus-trace-class Jacobi operator because βk =
1
2
+O(k−2), and by

taking Toeplitz-plus-finite-rank approximations J [n] as in equation (4.132), we can
compute approximations to the spectral measure and principal resolvent. Figure 4.6
depicts the spectral measure and the principal resolvent for the Toeplitz-plus-finite-rank
Jacobi operators J [n] for the values n = 1, 2, 3, 10, 30, 100. For the spectral measures,
we see that there is no discrete part for any n, and as n increases, the spectral measure
converges to the scaled Lebesgue measure 1

2
ds restricted to [−1, 1]. The convergence

is at least weak by Proposition 4.4.2, but it would be interesting (as mentioned in
the conclusions) to determine if there is a stronger form of convergence at play due
to the perturbation of ∆ lying in the space of trace class operators. There is a Gibbs
effect occurring at the boundaries, which suggests that this convergence, if it occurs
pointwise, can only do so everywhere up to the boundary of [−1, 1]. For the principal
resolvents, the middle plots do not show much interesting, as the difference between the
functions in the complex plane is not major. However, in right plots, there are hidden
pole-root pairs in the resolvent lying outside the unit disc which coalesce around the
unit disc and form a barrier. The meaning of this barrier is unknown to the authors.

Figures 4.7 and 4.8 demonstrate similar features to Figure 4.6, except that the
polynomials sequences they correspond to are the ultraspherical polynomials with
parameter γ = 0.6 (so that the spectral measure is proportional to (1− s2)1.1) and the
Jacobi polynomials with parameters (α, β) = (0.4, 1.9) (so that the spectral measure is
proportional to (1− s)0.4(1 + s)1.9). Similar barriers of pole-root pairs outside the unit
disc occur for these examples as well.

Figure 4.9 presents a Toeplitz-plus-trace-class Jacobi operator with pseudo-randomly
generated entries. With a random vector r containing entries uniformly distributed in
the interval [0, 1), the following entries were used

αk = 3
2rk − 1

(k + 1)2
, βk =

1

2
.

Then Toeplitz-plus-finite-rank truncations J [n] (see equation (4.132)) of this operator
were taken for values n = 1, 2, 3, 10, 50, 100. Since the off-diagonal elements are constant,



162 Spectra of Jacobi operators via connection coefficients

this is a scaled and shifted version of a discrete Schrödinger operator with a random,
decaying potential.



4.6 Numerical results and the SpectralMeasures package 163

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
α=0.0

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
α=0.15

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
α=0.35

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
α=0.5

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
α=0.75

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
α=1.0

Fig. 4.4 The left hand, centre and right hand figures show the spectral measures
µ(s), principal resolvents G(λ) and disc resolvents G(λ(z)) (analyticially continued
outside the disc) respectively for Jα, the Basic perturbation 1 example, with α =
0, 0.15, 0.35, 0.5, 0.75, 1. We see that a Dirac mass in the measure corresponds to a pole
of the disc resolvent inside the unit disc, which corresponds to a pole in the principal
resolvent outside the interval [−1, 1].



164 Spectra of Jacobi operators via connection coefficients

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
β=0.5

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
β=0.707

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
β=0.85

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
β=1.0

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
β=1.2

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0
β=1.5

Fig. 4.5 The left hand, centre and right hand figures show the spectral measures
µ(s), principal resolvents G(λ) and disc resolvents G(λ(z)) (analyticially continued
outside the disc) respectively for Jβ, the Basic perturbation 2 example, with β =
0.5, 0.707, 0.85, 1, 1.2, 1.5. Again, we see that a Dirac mass in the measure corresponds
to a pole of the disc resolvent inside the unit disc, which corresponds to a pole in the
principal resolvent outside the interval [−1, 1].



4.6 Numerical results and the SpectralMeasures package 165

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Legendre approximation, n = 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Legendre approximation, n = 2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Legendre approximation, n = 3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Legendre approximation, n = 10

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Legendre approximation, n = 30

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Legendre approximation, n = 100

Fig. 4.6 These plots are of approximations to the spectral measure and principal
resolvents of the Legendre polynomials, which has a Toeplitz-plus-trace-class Jacobi
operator. The Jacobi operator can be found in Subsection 4.4.1. As the parameter n
of the approximation increases, a barrier around the unit circle forms. Also notice that
a Gibbs phenomenon forms at the end points, showing that there are limitations to
how good these approximations can be to the final measure.



166 Spectra of Jacobi operators via connection coefficients

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Ultraspherical(0.6), n = 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Ultraspherical(0.6), n = 2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Ultraspherical(0.6), n = 3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Ultraspherical(0.6), n = 10

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Ultraspherical(0.6), n = 30

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Ultraspherical(0.6), n = 100

Fig. 4.7 These plots are of approximations to the spectral measure and principal
resolvents of the Ultraspherical polynomials with parameter γ = 0.6, which has
a Toeplitz-plus-trace-class Jacobi operator. The Jacobi operator can be found in
Subsection 4.4.1. As the parameter n of the approximation increases, a barrier around
the unit circle forms.



4.6 Numerical results and the SpectralMeasures package 167

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Jacobi(0.4,1.9), n = 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Jacobi(0.4,1.9), n = 2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Jacobi(0.4,1.9), n = 3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Jacobi(0.4,1.9), n = 10

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Jacobi(0.4,1.9), n = 30

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Jacobi(0.4,1.9), n = 100

Fig. 4.8 These plots are of approximations to the spectral measure and principal
resolvents of the Jacobi polynomials with parameter α, β = 0.4, 1.9, which has a Toeplitz-
plus-trace-class Jacobi operator. The Jacobi operator can be found in Subsection 4.4.1.
As the parameter n of the approximation increases, a barrier around the unit circle
forms.



168 Spectra of Jacobi operators via connection coefficients

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Random, n = 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Random, n = 2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Random, n = 3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Random, n = 10

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Random, n = 50

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00
Random, n = 100

Fig. 4.9 These plots are of approximations to the spectral measure and principal
resolvents of a trace-class pseudo-random diagonal perturbation of the free Jacobi
operator.



开门见山
(kāi mén jiànshān)

Lit. Open the door and see the mountain
Fig. To get straight to the point

Chapter 5

The infinite dimensional QL algorithm

In this Chapter we discuss the infinite dimensional QL algorithm. The QL algorithm
is the same as the QR algorithm (See Section 2.2), except that instead of computing
QR factorisations we compute QL factorisations where L is lower triangular.

In finite dimensions the QR and QL algorithms are equivalent in the following sense.
Take E to be the exchange matrix

E =



1

1

. .
.

1

1


.

If the sequence of matrices X0, X1, X2, . . . is produced by the QR algorithm, then it
may also be produced by setting Y0 = EX0E, performing the QL algorithm on Y0

to produce Y0, Y1, Y2, . . . and setting Xk = EYkE. Since the operation X 7→ EXE

simply rotates the entries of X by π radians, the QL algorithm is equivalent to the
QR algorithm operating on a rotated matrix. Hence in finite dimensions there is no
real difference between the QR and QL algorithms in terms of convergence.

When considering the QR algorithm applied to Hermitian matrices, one usually
restricts to tridiagonal matrices, for two reasons. First, tridiagonalisation can be
performed in O(n2) operations and generally speeds up the whole process of computing
eigenvalues [TBI97]. Second, for the QR algorithm on tridiagonal matrices, Wilkinson
shifts can be applied to the algorithm give global convergence of the bottom–right
entry to an eigenvalue of the input matrix [Wat07], [Par80]. The QR algorithm can

169



170 The infinite dimensional QL algorithm

be generalised to the infinite dimensional case of bounded operators on ℓ2 [Han08],
[Han09], and so too can the related Toda flow [DLT85]. However, there is an issue with
the use of shifts to accelerate convergence: there is no bottom-right entry! In finite
dimensions, since the QL algorithm is equivalent to the QR algorithm after rotating the
entries π radians, we can force the top-left entry to converge rapidly to an eigenvalue
using Wilkinson shifts. However, this logic does not follow for the infinite dimensional
case as there is no infinite dimensional analogue of the matrix E.

Olver and Townsend proposed the following idea a footnote of [OT14]. In principal,
if one could perform the QL algorithm to an infinite dimensional matrix, it could
be possible to utilise shifts to yield rapid convergence of the top–left entry to an
eigenvalue (if the matrix has any point spectrum). However, there were no known
methods to compute the QL factorisation of a (non-compact) infinite dimensional
matrix. What is the issue? To compute a QR factorisation we apply elementary
orthogonal transformations to A to create zeros in the first column, then the second
column etc. until we have an upper triangular matrix. In contrast, to compute a QL
factorisation we apply elementary orthogonal transformations to A to create zeros in
the final column, then the penultimate column etc. There is no obvious way to do this
for an infinite dimensional matrix as there is no final column.

One of the main contributions of this chapter is Theorem 5.1.17, which goes partway
to solving the problem posed by Olver and Townsend. Here is the gist. For some
bounded operators A on ℓ2 we can find an analytical solution to A = QL. For example,
if A = ∆ − 5

4
I where ∆ is the free Jacobi operator from Chapter 4, then the QL

factorisation of A is

∆− 5

4
I =



−
√
3
2

1
2

−
√
3
4
−3

4
1
2

−
√
3
8
−3

8
−3

4
1
2

−
√
3

16
− 3

16
−3

8
−3

4
1
2

...
. . .

. . .
. . .

. . .
. . .





√
3
2

−1 1
1
4
−1 1

−1
4
−1 1
. . .

. . .
. . .


. (5.1)

A proof of this new result (for a general Toeplitz-plus-finite-rank Jacobi operator)
is given in Theorem 5.2.6. Such QL factorisations can be used to compute the
QL factorisation of banded matrices which contain said matrix as the bottom-right
submatrix. Specifically, suppose that A is a banded, bounded operator on ℓ2 with



171

bandwidth b and block form

A =

(
An B

C A∞

)
, (5.2)

where An ∈ Rn×n and A∞ has an a priori known QL factorisation A∞ = Q∞L∞. Then
the way to compute the QL factorisation of A is seen by noting that(

In

QT
∞

)(
An B

C A∞

)
=

(
An B

QT
∞ L∞

)
. (5.3)

The right hand side has finitely many nonzero entries above the diagonal (bandedness
implies B has finitely many nonzero entries). Therefore the standard approach of
introducing zeros from the rightmost column applies and can be used to complete the
QL factorisation in finitely many operations. Full details are given in Theorem 5.1.17.

There are three immediate questions to address.
First, on a finite computer how is the storage of these infinite-dimensional objects

managed? If the matrices are sufficiently structured, and QL iterations respect that
structure, then the operators can be stored with finitely many scalar values. Consider
the example above in equation (5.1). The Q and the L in the QL factorisation
are Toeplitz-plus-finite-rank, and in fact the product LQ is also Toeplitz-plus-finite-
rank. The orthogonal operator is not banded, so it would appear that we can only
approximately store it in memory, but actually, an orthogonal lower Hessenberg operator
is uniquely determined by the first upper-diagonal and a ±1 scaling factor for the first
column, hence the Q in equation (5.1) can be represented by simply the numbers 1

2

and +1 to represent the recurring number on the upper diagonal and the scaling of
the first column. This is the so-called Schur parametrisation of Hessenberg matrices
[Gra86] (see Lemma 5.2.4).

It is future research to ascertain which structured operators will also have QL
factorisations and QL iterates that have structure which can be stored in finite memory.
In Chapter 6 we suggest plausible examples of operators which could come under this
framework.

Second, is it reasonable to expect that an analytical QL factorisation for a given
operator from a scientific application to be sufficiently structured to be computable?
It does seem unreasonable at first, but recent research on spectral methods produced
operators with banded-plus-finite-rank matrix structure, with simple asymptotics of



172 The infinite dimensional QL algorithm

the entries, and led to the development of a practical framework for solving infinite
dimensional linear systems on a computer [OT13], [OT14], [SO17] [Olvb]. The key
to producing these highly structured matrices is an appropriate choice of basis, so it
perhaps it is not unreasonable to suggest that many operators in applications can be
represented by highly structured matrices with the right choice of bases.

Third, is this not going to a lot of trouble when there are already established
methods such as the finite section method (see Subsection 1.1.6) [Bof10], [Tre00],
[TE05]?

One of the most surprising results to come out of this work is that the existence of
a QL factorisation is not always guaranteed, unlike the case for the QR factorisation
[Han08], [Han09]. We prove that a Jacobi operator has a QL factorisation if and only
if the essential spectrum does not contain zero (see Theorem 5.2.2). Notably, the free
Jacobi operator ∆ does not have a QL factorisation. In Theorem 5.1.3, Theorem 5.1.14
and Corollary 5.1.15 we prove generalisations of this for banded, selfadjoint operators,
but their exact statements have some technical points we will explain there and not
here.

In Section 5.1 we prove existence and nonexistence results for QL factorisations
of bounded selfadjoint case and briefly indicate if there is an easy generalisation of a
result to the non-selfadjoint case. In Section 5.2 we restrict these results to Jacobi
operators and find that the statement of the results is simpler. Then in Section 5.2.2
we make practical considerations for running the QL algorithm for Jacobi operators on
a computer, and derive a method to compute the QL factorisation of a Toeplitz-plus-
finite-rank Jacobi operators, using only a finite amount of memory.

In Section 5.3 we consider the infinite dimensional QL algorithm which utilises these
infinite dimensional QL factorisations. We prove that for a bounded Jacobi operator J
such that there is an eigenvalue λ0 satisfying

0 < |λ0| < η := min
λ∈σ(J)\λ0

|λ|, (5.4)

the unshifted QL algorithm converges in the sense that the (0, 1) entry is O
(∣∣∣λ0

η

∣∣∣k).

This implies (as is done in the finite dimensional case [Par80]) that if a shift is chosen
sufficiently close to an isolated eigenvalue, then there will be rapid convergence of the
top-left entry to that eigenvalue.

At the end of the chapter we demonstrate the fruits of Chapter 4 and the present
chapter to compute functions of Jacobi operators. We use this to compute the solution



5.1 Basic properties 173

to a discrete Schrödinger equation with double potential wells (demonstrating discrete
quantum tunnelling), and some diffusion equations, including fractional order ones.
A brief comparison to the traditional finite section method approach is made (see
Subsection 1.1.6).

5.1 Basic properties

First we make perfectly clear what we mean by a QL factorisation. We consider the
real separable Hilbert space ℓ2.

Definition 5.1.1. A QL factorisation of an operator A ∈ B(ℓ2) is a factorisation

A = QL (5.5)

where Q is an orthogonal operator (QTQ = QQT = I) and L is lower triangular.

5.1.1 Existence

The existence of a QR factorisation for a bounded invertible operator A ∈ B(ℓ2)
was proven by Deift, Li and Tomei [DLT85]. Hansen later removed the invertibility
restriction [Han08]. When a bounded operator is invertible, the existence of a QL
factorisation follows directly from the existence of a QR factorisation proven by Hansen.

Lemma 5.1.2. If a linear operator A ∈ B(ℓ2) is invertible, then it has a unique QL
factorisation such that L has positive diagonal elements.

Proof. By the Open Mapping Theorem, if A is bounded then its inverse is also bounded.
Since transposes of bounded operators are also bounded, we have A−T ∈ B(ℓ2). By
[Han08, Thm 31] (see also [Han09, Thm 4.2]), there exists a unique QR factorisation
A−T = QR such that the diagonal elements of R are positive. Then we have

A = (A−T )−T = (QR)−T = QR−T . (5.6)

Since R−T is lower triangular with positive diagonal elements, this constitutes the
desired QL factorisation of A. Working backwards from a QL factorisation to the
unique QR factorisation shows uniqueness.



174 The infinite dimensional QL algorithm

What happens when A ∈ B(ℓ2) is singular? In finite dimensions a QL factorisation
always exists. We have the following positive result. See Appendix D.2 for an overview
of the basic definitions and theorems regarding Fredholm operators.

Theorem 5.1.3. Let A ∈ B(ℓ2) be selfadjoint. Then the following are equivalent.

(i) A is Fredholm with dim(Ker(A)) = d, and Ker(A) ∩ Span{ed, ed+1, . . .} = {0}

(ii) A has a QL factorisation such that the first d rows of L are zero and Ld:∞×d:∞ is
an invertible operator on ℓ2. It is unique up to the space spanned by the first d
columns of Q and the signs of the columns of L.

Proof. For (i) =⇒ (ii): First suppose that d = 0. Then by Lemma 5.1.2, A has a
unique QL factorisation.

Now let d > 0 and choose an orthonormal basis q0, q1, . . . qd−1 for Ker(A), and an
orthonormal basis qd, qd+1, . . . for the orthogonal complement Ker(A)⊥. Define the
matrix

Q1 =
(

q0 q1 · · · qd−1 qd · · ·
)
. (5.7)

Since this is merely a change of orthonormal basis for ℓ2, Q1 is an orthogonal matrix.
Write A1 = QT

1A. Note that for i = 0, 1, . . . , d− 1, we have eTi A1 = qTi A = (Aqi)
T = 0.

Hence the first d rows of A1 are zero. Hence we may write

A1 =

(
0d×d 0d×∞

B∞×d C∞×∞

)
(5.8)

We claim that C = C∞×∞ is invertible, so that by Lemma 5.1.2 we would have a
unique QL factorisation C = Q2L2 such that L2 has positive diagonal elements. Then
we would have

A =

(
Q1

(
Id×d 0

0 Q2

))(
0d×d 0

QT
2B L2

)
, (5.9)

as desired.
Let Sleft and Sright be the left and right shift operators respectively. Then C =

Sd
leftQ

TASd
right. Since Sleft and Sright are Fredholm with indices 1 and −1 respectively,

by Theorem D.2.5 C is Fredholm with index d+ 0 + 0− d = 0. By Theorem D.2.4,
C is invertible if and only if it is injective. Suppose x ∈ Ker(C). Then ASd

rightx = 0.
Hence Sd

rightx ∈ Ker(A) ∩ Span{ed, ed+1, . . .} = {0}. Since Sd
rightx = 0 =⇒ x = 0, we

have that C is invertible, which completes the proof.



5.1 Basic properties 175

For (ii) =⇒ (i): Let A = QL where the first d rows of L are zero and L1 = Ld:∞×d:∞

is invertible. Then L = Sd
rightL1S

d
left+L0:∞×0:d−1. Since the shift operators are Fredholm

with index -1 and 1, L1 is invertible, and L0:∞:d−1 is finite rank and hence compact,
by Theorem D.2.3 we have that L is a Fredholm operator with index −d+ 0 + d = 0.
Hence by Theorem D.2.5 A = QL is a Fredholm operator with index 0.

For the kernel condition, note that Ker(A) = Ker(L) and Ker(L1) = {0}. Therefore
Ker(A)∩Span{ed, ed−1, . . .} = Ker(L)∩Span{ed, ed−1, . . .} = Sd

rightKer(L1) = {0}.

Remark 5.1.4. To generalise this to non-selfadjoint operators we simply add the
condition that the index of the operator is zero to (i). In Section 5.2 we will see that
the technical requirement on the kernel is irrelevant for Jacobi operators.

Definition 5.1.5 (Upper and lower bandwidth). An operator A has upper bandwidth
u if Aij = 0 for j > i+ u, lower bandwidth l if Aij = 0 for i > j + l, and bandwidth b if
b is at least the maximum of upper and lower bandwidths of A.

Proposition 5.1.6. Let A ∈ B(ℓ2) have bandwidth b. Suppose that A is Fredholm
with dim(Ker(A)) = d ≤ b and such that Ker(A) ∩ Span{ed, ed+1, . . .} = {0}. Suppose
further that A has bandwidth b. If A = QL is a QL factorisation, then Q has upper
bandwidth b and L has lower bandwidth 2b.

Proof. When d = 0, for any i, j ≥ 0 we have

eTi Qej = eTi AL
−1ej =

∞∑
k=0

ai,k
[
L−1

]
k,j

=
i+b∑

k=i−b

ai,k
[
L−1

]
k,j

eTi Lej = eTi Q
TAej =

∞∑
k=0

qk,iak,j =

j+b∑
k=j−b

qk,iak,j

Since L−1 is lower triangular, eTi Qej = 0 for j > i+ b. Hence Q has upper bandwidth
b. From this it follows that eTi Lej = 0 for i > j + 2b. Hence L has lower bandwidth 2b.

When d > 0, by Theorem 5.1.3, we can write L in block form

L =

(
0d×d 0

b L1

)
,

in which L1 is invertible because it has positive diagonal elements. If we define the
matrix

L+ =

(
Id×d 0

−L−1
1 b L−1

1

)
,



176 The infinite dimensional QL algorithm

the LL+ej = ej for all j ≥ d. Hence we can show just as above that eTi Qej =

eTi AL
+ej = 0 for j > i+ b (which is within the valid range since d ≤ b) and then that

the lower bandwidth of L is 2b in the same way.

These results appear quite specialised at first. What about non-Fredholm operators?
For example, what about the free Jacobi operator ∆ from Chapter 4? Since 0 is in the
essential spectrum of ∆, by definition it does not have closed range and hence is not
Fredholm. In the sequel we show that ∆ and many other non-Fredholm operators do
not have a QL factorisation.

5.1.2 Nonexistence

Somewhat surprisingly, a QL factorisation does not exist for all bounded operators
A ∈ B(ℓ2). The approach we use to prove and understand this involves using what we
will call tempered distributional sequences, which are sequences that grow polynomially.

Definition 5.1.7 (Schwartz sequences). Define the following subspace of ℓ2, the space
of Schwartz sequences.

ℓS =

{
v ∈ ℓ2 :

∞∑
k=0

(k + 1)m|vk|2 <∞ for m = 0, 1, 2, . . .

}
. (5.10)

Remark 5.1.8. With the countable family of inner products ⟨v, w⟩m =
∑∞

k=0(1 +

k)2mvkwk for m = 0, 1, 2, . . ., it is a countably Hilbert space [GV64, Ch. 1, Sec. 3]. The
inner products induce norms ∥v∥2,m = ⟨v, v⟩m. The notion of convergence on ℓS is that
of convergence in a single one of these norms.

Lemma 5.1.9 (Tempered distributional sequences). The dual of ℓS with respect to the
bilinear form ⟨v, w⟩ =

∑∞
k=1 vkwk is the space of tempered distributional sequences,

ℓ∗S =

{
w ∈ R∞ : there exists m′ ≥ 0 such that

∞∑
k=0

∣∣∣(1 + k)−m′
wk

∣∣∣2 <∞} . (5.11)

Proof. We must show that the linear functional v → ⟨v, w⟩ is continuous on ℓS if and
only if w is in the space defined in equation (5.11). By Remark 5.1.8 this is equivalent
to the existence of m′, C ≥ 0 such ⟨v, w⟩ ≤ C∥v∥2,m′ for all v ∈ ℓS .

Suppose that w is a vector in the set described in equation (5.11). Then we may
take C =

(∑∞
k=0 |(1 + k)−m′

wk|2
) 1

2 in the above condition. Conversely if there exists



5.1 Basic properties 177

m′, C ≥ 0 satisfying the above condition then

(
∞∑
k=0

∣∣∣(1 + k)−m′
wk

∣∣∣2) 1
2

= sup
v∈ℓ0

∑∞
k=0 vk(1 + k)−m′

wk

∥v∥2

= sup
v∈ℓ0

⟨v, w⟩
∥v∥2,m′

≤ C,

where ℓ0 is the space of finite sequences. Hence w ∈ ℓ∗S .

The triple of spaces ℓS ⊂ ℓ2 ⊂ ℓ∗S is the discrete analogue of the triple S(R) ⊂
L2(R) ⊂ S(R)∗ of Schwartz functions and tempered distributions on the real line, well
known in distribution theory. They are both examples of the more general concept of
a Gelfand triple, or a rigged Hilbert space [GV64, Ch. 1,Sec. 4].

Theorem 5.1.10. A banded operator A ∈ B(ℓ2) is a continuous operator mapping ℓS

into itself. Hence it can be extended to a continuous linear operator on ℓ∗S .

Proof. Let A have bandwidth b. Then for any m and any v ∈ ℓS ,

∥Av∥22,m =
∞∑
k=0

(1 + k)2m

∣∣∣∣∣
k+b∑

j=k−b

akjvj

∣∣∣∣∣
2

≤
∞∑
k=0

(1 + k)2m

(
k+b∑

j=k−b

|akj|2
)(

k+b∑
j=k−b

|vj|2
)

=
∞∑
j=0

∥Aej∥22|vj|2
j+b∑

k=j−b

(1 + k)2m

≤ ∥A∥22(2b+ 1)
∞∑
j=0

(1 + j + b)2m|vj|2

≤ ∥A∥22(2b+ 1)(1 + b)2m∥v∥22,m.

Hence A is continuous on ℓS .
By the same proof, this is also true of AT . For any w ∈ ℓ∗S , Aw is the vector in ℓ∗S

such that
⟨v,Aw⟩ = ⟨ATv, w⟩ for all v ∈ ℓS ,



178 The infinite dimensional QL algorithm

which exists and is unique by the definition of ℓ∗S by duality. The operator A is
continuous on ℓ∗S because the map (v, w) 7→ ⟨v,Aw⟩ is a composition of the continuous
maps (v, w) 7→ (ATv, w) and (v, w)→ ⟨v, w⟩.

Remark 5.1.11. This theorem is analogous to the fact that a pseudodifferential operator
is a continuous map from the space of Schwartz functions S(R) into itself, so can be
extended to a continuous map on tempered distributions S(R)∗ by duality using the
L2(R) inner product.

Definition 5.1.12. Let A ∈ B(ℓ2) be banded. The distributional kernel of A is the
subspace of ℓ∗S whose elements are mapped to 0 by A.

Lemma 5.1.13. Let A ∈ B(ℓ2) be banded and selfadjoint with a finite dimensional
distributional kernel consisting only of ℓ2 vectors. Then A is a compact perturbation of
an invertible operator.

Proof. Suppose the distributional kernel consists of only ℓ2 vectors, v0, v1, . . . , vd−1.
Consider the compact perturbation Ã = A+

∑d−1
k=0 vkv

T
k . Then Ã has zero distributional

kernel. If we can show that Ã is invertible, then this will show that A is a compact
perturbation of an invertible operator.

To prove this we actually appeal to a very powerful theorem, the spectral theorem
for rigged Hilbert spaces, following [GV64, Ch. 1, Sec. 3,4]. Theorem 5’ in Chapter 1
Section 4.5 of [GV64] states that a selfadjoint operator on a rigged Hilbert space has a
complete set of eigenvectors in ℓ∗S . This implies that if the distributional kernel is {0}
then 0 /∈ σ(A), so the operator is invertible.

Theorem 5.1.14. Let A ∈ B(ℓ2) be banded and selfadjoint with finite dimensional
distributional kernel. If A has a QL factorisation then A is a compact perturbation of
an invertible operator.

Proof. Let w0, w1, w2, . . . , wd−1 be a basis for the distributional kernel of A. If
A = QL is the QL factorisation, then w0, w1, . . . , wd−1 is also a basis for the dis-
tributional kernel of L. Considering simultaneous forward substitution on the system
L (w0, w1, . . . , wd−1) = (0, 0, . . . , 0), we see that L must have at least d zeros on its
diagonal.

By back substitution on the upper triangular system LTv = 0, which has at least d
zeros on its diagonal, we see that LT has d linearly independent vectors v0, v1, . . . , vd−1

in ℓ0 ⊂ ℓ2 such that LTvi = 0. Hence the vectors Qv0, Qv1, . . . , Qvd−1 (which are all in



5.1 Basic properties 179

ℓ2) are all in the kernel of AT , which is A since A is selfadjoint. Since the distributional
kernel of A has dimension d, we must have that Qv0, Qv1, . . . , Qvd−1 is a basis for the
distributional kernel. Hence the distributional kernel is contained in ℓ2.

By Lemma 5.1.13, A is a compact perturbation of an invertible operator.

Corollary 5.1.15 (Nonexistence of QL factorisation). Let A ∈ B(ℓ2) be banded and
selfadjoint with finite dimensional distributional kernel. If 0 ∈ σess(A) then A does not
possess a QL factorisation.

Proof. Since 0 ∈ σess(A), A cannot be a compact perturbation of an invertible operator.
By Theorem 5.1.14, A cannot have a QL factorisation.

Remark 5.1.16. The condition that A have a finite dimensional distributional kernel
is satisfied by Jacobi operators. We therefore have some simpler statements of these
theorems applied to Jacobi operators in Section 5.2.

5.1.3 Framework for computation of QL factorisations

How do we compute the QL factorisation of a banded and highly structured matrix?
The following theorem shows that if an analytical QL decomposition can be computed
for the “tail” of a banded matrix, then the rest can be finished by the finite dimensional
QL algorithm.

Theorem 5.1.17. Let A be a banded, bounded operator on ℓ2 with bandwidth b and
block form

A =

(
An B

C A∞

)
, (5.12)

where An ∈ Rn×n and A∞ has an a priori known QL factorisation A∞ = Q∞L∞. Then
the QL factorisation of A can be computed in the following sense. The information can
be stored that allows the computation of Qv and Lv for any v ∈ ℓ0 in a finite number
of operations.

Proof. Using the QL factorisation of A∞, we have(
In 0

0 QT
∞

)(
An B

C A∞

)
=

(
An B

D L∞

)
=: Ã, (5.13)

where D = QT
∞C. By Proposition 5.1.6, Q has upper bandwidth b, and since A has

bandwidth b, D is only nonzero in its first b rows. Therefore, D is only nonzero in its



180 The infinite dimensional QL algorithm

first 2b rows. Also, because A has bandwidth b, the matrix B is only nonzero in its
first b columns. Hence we can rewrite Ã in the form

Ã =

(
An+b,n+b 0

D̃ M∞

)
, (5.14)

where An+b ∈ R(n+b)×(n+b) and the matrices D̃ and M∞ are D and L∞ with their first
b rows removed, respectively.

Now, let the QL factorisation of An+b be Qn+bLn+b. Define

Q =

(
In 0

0 Q∞

)(
Qn+b 0

0 I∞

)
. (5.15)

Then QTA is lower triangular. We can also define

L =

(
Ln+b 0

0 I∞

)(
In 0

D̃ M∞

)
. (5.16)

This completes the proof.

Remark 5.1.18. We have not proven that knowledge of the “tail” of the matrix is
required in order to compute a QL factorisation, merely that it is sufficient. However,
the author conjectures that it must be necessary because in order to create zeros on
the upper triangular part of A using Householder reflections or Givens rotations acting
on the left, it appears that we must begin at the right and work leftwards or else the
zeros created will be undone. It would be interesting to see a proof formalising this
reasoning.

5.2 QL factorisation of Jacobi operators

In this section we take the above research on QL factorisations and specialise to Jacobi
operators, usually obtaining more precise and succinct results.

5.2.1 Existence for Jacobi operators

Lemma 5.2.1. Let J be a Jacobi operator. Then the distributional kernel has dimension
at most 1. Furthermore, the first element of the vector must be nonzero.



5.2 QL factorisation of Jacobi operators 181

Proof. Suppose that v is in the distributional kernel of J and v0 ̸= 0. Then since
βk ̸= 0 for all k, each row determines a successive element of the vector v. Hence there
can only be one such vector. Now suppose that v0 = 0. Then Jv = 0 is equivalent to a
lower triangular system J̃ ṽ = 0, where J̃ is J with the first column removed and ṽ is v
with the first element removed. Since βk ̸= 0, by forward substitution we obtain ṽ = 0,
and hence v = 0.

Theorem 5.2.2. Let J be a Jacobi operator. Then J has a QL factorisation if and
only if 0 /∈ σess(J). Furthermore, the diagonal elements of L can be made positive,
unless J is singular, in which case the top-left entry of L is zero.

Proof. By Lemma 5.2.1, the distributional kernel of J is finite dimensional. If J has a
QL factorisation then by Theorem 5.1.14 it is a compact perturbation of an invertible
operator. Hence 0 /∈ σess(J).

Now suppose that 0 /∈ σess(J). Then J is a compact perturbation of an invertible
operator, so by Theorem D.2.3 it is Fredholm. By Lemma 5.2.1, Ker(J)∩{e1, e2, . . .} =
{0}. Hence by Theorem 5.1.3 there exists a QL factorisation such that L has positive
diagonal elements except if J is singular, in which case the top row of L is zero.

5.2.2 Practical computation and storage for Jacobi operators

Lemma 5.2.3. Let J be a Jacobi operator. If J = QL is a QL factorisation, then Q

is lower Hessenberg and L has lower bandwidth 2.

Proof. This follows from Proposition 5.1.6 and Lemma 5.2.1 with b = 1 and d ≤ 1.

By the above lemma we only need to consider Q to be a lower Hessenberg matrix.
The next lemma shows that such operators can be parametrised quite simply.

Lemma 5.2.4 (Schur parametrisation [Gra86]). Let Q be a lower Hessenberg orthogonal
operator. There exists a sequence of angles θ1, θ2, . . . ∈ (−π, π] such that

Q = Q(θ0, θ1, . . .) :=



c−1c0 −s0 0 0

c−1s0c1 c0c1 −s1 0
. . .

c−1s0s1c2 c0s1c2 c1c2 −s2
. . .

c−1s0s1s2c3 c0s1s2c3 c1s2c3 c2c3
. . .

...
. . .

. . .
. . .

. . .


, (5.17)



182 The infinite dimensional QL algorithm

where si = sin(θi), ci = cos(θi) and c−1 = ±1. Written explicitly, for i, j = 0, 1, . . .,

qij =


−si if j = i+ 1

cj−1sjsj+1 · · · si−1ci if j ≤ i

0 otherwise
(5.18)

Note that when θi = 0 for i ̸= k for a given k, then we get a Givens rotation,

Q(θkek) = diag

(
Ik,

(
ck −sk
sk ck

)
, I∞

)
, (5.19)

and the full matrix is an infinite product of these givens rotations,

Q(θ0, θ1, . . .) = lim
N→∞

Q(θNeN) · · ·Q(θ0e0)diag(c−1, 1, 1, . . .). (5.20)

Consider Theorem 5.1.17. During the proof for the computation of a QL fac-
torisation, we first use an analytical form for the tail A∞ = Q∞L∞. We first apply
diag(In, Q

T
∞) and then apply finitely many Givens rotations to finish the computation.

Let us be more specific in the case of a Jacobi operator and use the parametrisation
of orthogonal lower Hessenberg matrices. What remains after performing the first
diag(In, Q

T
∞) must be of the following form.

Q(0, 0, . . . , 0, θk, θk+1, . . .)
TJ =



α0 β0

β0 α1 β1

. . .
. . .

. . .

βk−2 αk−1 βk−1

γ1
k γ0

k

ℓ2k+1 ℓ1k+1 ℓ0k+1

ℓ2k+2 ℓ1k+2 ℓ0k+2

. . .
. . .

. . .


(5.21)

Considering what the next step in the algorithm should be in order to compute a QL
decomposition allows us to derive a backward recurrence relating the entries of J , Q, L
and the sequences γ0 and γ1 generated by this hypothetical procedure. The purpose of
this is that in some specific cases of highly structured Jacobi operators, the tail of the



5.2 QL factorisation of Jacobi operators 183

backward recurrence can be solved analytically, thus allowing us to “work backwards
from infinity”.

Lemma 5.2.5. Suppose c0, c1, . . ., s0, s1, . . ., γ1
0 , γ

1
1 , . . ., γ1

1 , γ
1
2 , . . . are sequences satis-

fying the following backward recurrence relationship,

ck =
sign(αk+1)γ

0
k+1√(

γ0
k+1

)2
+ (βk)

2
, sk = −

sign(αk+1)βk√(
γ0
k+1

)2
+ (βk)

2
, (5.22)

γ1
k = ckβk−1, γ0

k = ckαk + skγ
1
k+1, (5.23)

and c−1 = sign(γ0
0α0). Then if we define the operator Q to be the orthogonal lower

Hessenberg matrix in Lemma 5.2.4 with these ck’s and sk’s, and we define the operator
L to be

L =


ℓ00

ℓ11 ℓ01

ℓ22 ℓ12 ℓ02
. . .

. . .
. . .

 , (5.24)

where
ℓ0k = −

βk−1

sk−1

, ℓ1k = ck−1γ
1
k − sk−1αk−1, ℓ2k = −sk−1βk−2,

then J = QL where J is the Jacobi operator with diagonal entries α0, α1, . . . and
off-diagonal entries β0, β1, . . ..

Proof. Simply by virtue of Q being lower Hessenberg and L having lower bandwidth 2,
we have

eTkQLej =



0 j > k + 1

qk,k+1ℓ
0
k+1 j = k + 1

qk,kℓ
0
k + qk,k+1ℓ

1
k+1 j = k

qk,k−1ℓ
0
k−1 + qk,kℓ

1
k + qk,k+1ℓ

2
k+1 j = k − 1

qk,jℓ
0
j + qk,j+1ℓ

1
j+1 + qk,j+2ℓ

2
j+2 j < k − 1

.

We show that each case gives the appropriate entry of J . The first case has 0 as it
should. The second case is the following.

qk,k+1ℓ
0
k+1 = −sk

(
−βk

sk

)
= βk.



184 The infinite dimensional QL algorithm

For the remaining cases first note that

ck−1ℓ
0
k = ck−1

(
−βk−1

sk−1

)
= γ0

k = ckαk + skγ
1
k+1.

The third case is

qk,kℓ
0
k + qk,k+1ℓ

1
k+1 = ck−1ckℓ

0
k − skℓ

1
k+1

= ck
(
ckαk + skγ

1
k+1

)
− sk

(
ckγ

1
k+1 − skαk

)
= αk.

The fourth case is

qk,k−1ℓ
0
k−1 + qk,kℓ

1
k + qk,k+1ℓ

2
k+1 = ck−2sk−1ckℓ

0
k−1 + ck−1ckℓ

1
k − skℓ

2
k+1

= sk−1ck
(
ck−1αk−1 + sk−1γ

1
k

)
+ ck−1ck

(
ck−1γ

1
k − sk−1αk−1

)
+ skskβk−1

= ckγ
1
k + s2kβk−1

= βk−1.

This fifth and final case is

qk,jℓ
0
j + qk,j+1ℓ

1
j+1 + qk,j+2ℓ

2
j+2 = sj+2sj+3 · · · sk−1ck

(
cj−1sjsj+1ℓ

0
j + cjsj+1ℓ

1
j+1 + cj+1ℓ

2
j+2

)
.

The bracketed term is equal to

cj−1sjsj+1ℓ
0
j + cjsj+1ℓ

1
j+1 + cj+1ℓ

2
j+2

= sjsj+1(cjαj + sjγ
1
j+1) + cjsj+1(cjγ

1
j+1 − sjαj)− sj+1cj+1βj

= sj+1γ
1
j+1 − sj+1cj+1βj

= 0.

This completes the proof.

The above lemma can be used to provide an analytical solution for the tail of the
sequences in question for Q and L. The following is exactly that for Toeplitz-plus-
finite-rank Jacobi operators.

Theorem 5.2.6. Let J be a Toeplitz-plus-finite-rank Jacobi operator in with diagonal
entries α0, α1, . . . , αn, t0, t0, . . . and offdiagonal entries β0, β1, . . . , βn−1, t1, t1, . . .. A QL



5.2 QL factorisation of Jacobi operators 185

decomposition exists if and only if |t0| > 2t1, in which case, Q is an orthogonal lower
Hessenberg matrix as in Lemma 5.2.4 with

sk = s :=
−t0 + sign(t0)

√
t20 − 4t21

2t1
, ck = c :=

√
1− s2, for all k > n, (5.25)

and sk, ck for k ≤ n computed by the backward recurrence in Lemma 5.2.5. The lower
triangular matrix L is as stated in Lemma 5.2.5.

Proof. The essential spectrum of J is the interval [t0 − 2t1, t0 + 2t1] by Theorem 4.3.21.
Hence by Theorem 5.2.2 there exists a QL decomposition if and only if |t0| > 2t1.

All we need to check is that the sequences s0, s1, . . . and c−1, c0, c1 . . . defined in
the statement of this theorem generate an orthogonal matrix Q and a lower triangular
matrix L such that J = QL.

When |t0| > 2t1, this makes |s| < 1 and |c| < 1, so that the Q that is defined here
is orthogonal. L is constructed so that it is lower triangular and J = QL as long as
the recurrence for s0, s1, . . ., c−1, c0, c1 . . ., γ0

0 , γ
0
1 , . . ., γ1

1 , γ
1
2 , . . . satisfy the equations

ck =
sign(αk+1)γ

0
k+1√(

γ0
k+1

)2
+ (βk)

2
, sk = −

sign(αk+1)βk√(
γ0
k+1

)2
+ (βk)

2
, (5.26)

γ1
k = ckβk−1, γ0

k = ckαk + skγ
1
k+1, (5.27)

Therefore, we just need to check that these equations are satisfied if we have the sk’s
and ck’s as defined in the statement of the theorem.

For k ≤ n define the γ0
k ’s and γ1

k ’s to follow from the definitions of sk’s and ck’s in
the statement of the theorem: γ1

k = ckβk−1 = ct1 and γ0
k = ckαk + skγ

1
k+1 = ct0 + sγ1 =

ct0 + cst1. Then the definition of ck from γ0
k is consistent:

sign(t0)γ
0
k+1√(

γ0
k+1

)2
+ (βk)

2
= sign(t0)

ct0 + cst1√
(ct0 + cst1)

2 + (t1)
2

= csign(t0)
t0 + st1√

(t0 + st1)
2 − s2 (t0 + st1)

2 + (t1)
2

= csign(t0)
t0 + st1√

(t0 + st1)
2 − s2 (t0 + st1)

2 + (t1)
2

= csign(t0)
t0 + st1√

(t0 + st1)
2 + (t1 + t0s+ t1s2)(t1 − t0s− t1s2)



186 The infinite dimensional QL algorithm

= csign(t0)sign(t0 + st1),

because s satisfies t1s2+t0s+t1 = 0. Also, since |t0| > 2t1, we have that sign(t0+st1) =

sign(t0+). Hence we have consistency for c. It is also tedious but possible to check the
same is true for s to complete the proof.

5.2.3 Example QL factorisations of Jacobi operators

Now let us consider some examples of infinite dimensional QL factorisations. The
first example is computed by hand using the Theorem 5.2.6. The second example is
computed numerically using an open source software package SpectralMeasures. This
package is written in Julia by the author and collaborator Sheehan Olver (University
of Sydney), using the open source package ApproxFun. All of the code is available to
download at http://www.github.com/JuliaApproximation/SpectralMeasures.jl. See
Appendix A for more information and parts of the code.

By Theorem 5.2.2, the free Jacobi operator ∆ does not have a QL factorisation.
However, if we shift it by a sufficiently large multiple of the identity then it will.
Consider J = ∆− 5

4
I. Then the QL decomposition is

∆− 5

4
I =



−
√
3
2

1
2

−
√
3
4
−3

4
1
2

−
√
3
8
−3

8
−3

4
1
2

−
√
3

16
− 3

16
−3

8
−3

4
1
2

...
. . .

. . .
. . .

. . .
. . .





√
3
2

−1 1
1
4
−1 1

−1
4
−1 1
. . .

. . .
. . .


When the shift λ in ∆− λI gets closer to ±1, which are the edges of the essential

spectrum of ∆, the value of the elements on the upper diagonal tends to ±1, so that
in the limit Q becomes the backward shift operator. In the limit the QL facorisation
becomes

∆− I =



0 1

0 1

0 1

0 1
...

. . .
. . .

. . .
. . .

. . .





1
2

−1 1
2

1
2
−1 1

2
1
2
−1 1

2

. . .
. . .

. . .


,

http://www.github.com/JuliaApproximation/SpectralMeasures.jl


5.3 The shifted QL algorithm 187

which is not a QL factorisation because this Q is not orthogonal. Note that any
tridiagonal matrix has such a factorisation as a backward shift of a lower triangular
matrix.

Now for a nontrivial example. Let us use an example from Chapter 4, a 3 × 3

perturbation of ∆,

J =



3
4

1

1 −1
4

3
4

3
4

1
2

1
2

1
2

0 1
2

. . .
. . .

. . .


Note that since 0 ∈ σess(J), by Theorem 5.2.2, J does not have a QL factorisation. It
will if we use a shift. Using the techniques of Chapter 4 we can compute eigenvalues at
approxiately −1.173 and 1.580. If we use −1.173 as a shift, the QL factorisation is (to
3 decimal places),

0.400 0.917

−0.769 0.335 0.544

0.414 −0.180 0.695 0.559

−0.231 0.101 −0.389 0.687 0.559

0.129 −0.057 0.218 −0.384 0.687
. . .

...
. . .

. . .
. . .

. . .





0.000

2.098 1.091

0.544 1.024 1.377

0.420 1.280 0.894

0.280 1 0.894

. . .
. . .

. . .


.

For this choice of shift, which is not exactly an eigenvalue of J , the top-left entry of L
is not exactly zero. For this example it is 2.429× 10−15. Here for both Q and L the
fifth, sixth, etc. columns are each a shift of the previous column.

5.3 The shifted QL algorithm

An issue discussed at the start of the chapter is that for the infinite dimensional QR
algorithm, shifts cannot be employed to generate rapid convergence of the bottom-right
entry to an eigenvalue (if one exists), as is done in the finite dimensional case, because
there is no bottom-right entry. In this section we show that shifts can be employed for
the QL algorithm to generate rapid convergence of the top-left entry to an eigenvalue
of the operator (if one exists).



188 The infinite dimensional QL algorithm

Lemma 5.3.1 (Perfect shift). Suppose λ is an eigenvalue of J and there exists a QL
factorisation

QL = J − λI.

Then

QTJQ = LQ+ λI =

(
λ

J̃

)
,

where J̃ is a Jacobi operator in which J̃ − λI is nonsingular.

Proof. By Theorem 5.2.2, since J − λI is singular, L has a zero in the top-left entry.
Therefore the first row of LQ is zero. By symmetry the first column of LQ is zero.
Adding λI will give the block form above.

Suppose for a contradiction that J̃ − λI is singular. Then λ must be an eigenvalue
of J̃ , or else the QL factorisation would not have existed by Theorem 5.2.2. By undoing
the similarity transformation QTJQ, we see that this would imply that λ is a multiple
eigenvalue of J , which is not possible as Jacobi operators have simple spectrum.

What happens if we use a shift which is close to an eigenvalue of J? We follow the
proof of [Par80, Thm 8.6.1] very closely, which deals with finite dimensional Jacobi
matries. We merely demonstrate that each step is still valid for any Jacobi operator
satisfying the condition in equation (5.28), with no further assumptions on the structure
of the Jacobi operator necessary.

Lemma 5.3.2 (Inverse iteration lemma). Let J be a Jacobi operator with an eigenpair
(λ0, v0) satisfying

0 < |λ0| < η := min
λ∈σ(J)\λ0

|λ|, (5.28)

Define for k = 1, 2, . . ., the inverse iteration,

u0 = e0, uk =
J−1uk−1

∥J−1uk−1∥2
. (5.29)

Then

uk = v0 +O

(∣∣∣∣λ0

η

∣∣∣∣k
)
. (5.30)

Remark 5.3.3. Note that no structure beyond that in equation (5.28) is assumed for J .
It could even be unbounded.



5.3 The shifted QL algorithm 189

Proof. Without loss of generality, assume ∥v0∥2 = 1. Then we may write

uk = cos(θk)v0 + sin(θk)wk, (5.31)

where θk ∈ (−π/2, π/2), ∥wk∥2 = 1 and ⟨v0, wk⟩ = 0. Multiplying J−1 on this equality
for uk−1, and using uk = J−1uk−1/∥J−1uk−1∥2 gives

uk =
cos(θk−1)

λ0∥J−1uk−1∥2
v0 +

sin(θk−1)

∥J−1uk−1∥2
J−1wk−1. (5.32)

Now, since J and hence J−1 is selfadjoint, we have

⟨v0, J−1wk−1⟩ = ⟨J−1v0, wk−1⟩ = λ−1
0 ⟨v0, wk−1⟩ = 0. (5.33)

Therefore, equation (5.31) and equation (5.32) both give the same orthogonal decom-
position onto Span{v0} and Span{v0}⊥. Equating the two parts gives

cos(θk) =
cos(θk−1)

λ0∥J−1uk−1∥2
, sin(θk)wk =

sin(θk−1)

∥J−1uk−1∥2
J−1wk−1. (5.34)

These combine to give
tan(θk)

tan(θk−1)
= λ0∥J−1wk−1∥2. (5.35)

Since wk−1 is perpendicular to v0, we can estimate the norm using equation (5.28) and
the spectral theorem for Jacobi operators [Dei00],

∥J−1wk−1∥2 ≤ sup
w⊥v0,∥w∥2=1

∥J−1w∥2 = η−1. (5.36)

Therefore | tan(θk)| ≤
∣∣∣λ0

η

∣∣∣k tan(θ0). Since for θ ∈ (−π/2, π/2) we have |θ| ≤ | tan(θ)|,

this implies θk = O
(∣∣∣λ0

η

∣∣∣k).

To complete the proof, we calculate,

∥uk − v0∥22 = ∥uk∥22 + ∥v0∥22 − 2⟨v0, uk⟩

= 2(1− cos(θk))

= O(θ2k).

Taking the square root completes the proof.



190 The infinite dimensional QL algorithm

Theorem 5.3.4 (Convergence of QL algorithm). Let J be a bounded Jacobi operator
with an eigenpair (λ0, v0) satisfying the conditions of Lemma 5.3.2. Let J (0), J (1), J (2), . . .

be the Jacobi operators generated by the (unshifted) QL algorithm starting at J . Then
the (1, 0) entry of the iterates satisfies

β
(k)
0 = O

(∣∣∣∣λ1

η

∣∣∣∣k
)
. (5.37)

Remark 5.3.5. Note that there is no requirement on the structure of J , only on the
eigenstructure.

Proof. Define the orthogonal operators P0, P1, P2, . . . by

Pk = Q(0)Q(1) · · ·Q(k), (5.38)

where J (k) = Q(k)L(k) is the QL factorisation. Then J (k) = P T
k−1JPk−1 and uk = Pk−1e0

where u0, u1, u2, . . . is the inverse iteration in Lemma 5.3.2 (by convention P−1 = I).
Then, combining this with the result of Lemma 5.3.2, we have

J (k)e0 = P T
k−1Juk

= P T
k−1J

(
v0 +O

(∣∣∣∣λ1

η

∣∣∣∣k
))

= λ0P
T
k−1v0 +O

(∣∣∣∣λ1

η

∣∣∣∣k
)
.

For this final line we have used the fact that J is bounded. Now writing v0 =

uk +O
(∣∣∣λ1

η

∣∣∣k), we have

J (k)e0 = λ0P
T
k−1uk +O

(∣∣∣∣λ1

η

∣∣∣∣k
)

= λ0e0 +O

(∣∣∣∣λ1

η

∣∣∣∣k
)
.

To complete the proof, note that β
(k)
0 ≤

√
α
(k)
0 + (β

(k)
0 )2 = ∥J (k)e0∥2.

Corollary 5.3.6. Let J be a bounded Jacobi operator with an eigenvalue λ such that
dist(±λ, σ(J) \ {λ}) = δ > 0 and let σ ∈ R be such that |λ − σ| = ε < δ. Then the



5.3 The shifted QL algorithm 191

iterates of the shifted QL algorithm starting from J with shift σ satisfy

α
(k)
0 = λ+O

(∣∣∣∣ ε

δ − ε

∣∣∣∣k
)
, β

(k)
0 = O

(∣∣∣∣ ε

δ − ε

∣∣∣∣k
)
. (5.39)

Proof. Apply Theorem 5.3.4 to J − σI. Then |λ0| = |λ− σ| and η > δ − ε.

Remark 5.3.7. If Lemma 5.3.2 could be modified to conclude that

(J − λ0)uk = O

(∣∣∣∣λ1

η

∣∣∣∣k
)
, (5.40)

then Theorem 5.3.4 could be modified to hold for unbounded Jacobi operators.

For the tridiagonal finite dimensional QL algorithm, Wilkinson shifts lead to global
convergence of β(0)

0 to zero, so that α(k)
0 converges to an eigenvalue [Par80]. Further, the

convergence is cubically exponential in the limit, and globally quadratically exponential,
which is much better than the convergence in Theorem 5.3.4. Hence it would be
advantageous to use Wilkinson shifts.

The Wilkinson shift is the eigenvalue of the 2× 2 principal submatrix closest to
α0. Can we use Wilkinson shifts in an infinite dimensional QL algorithm for Jacobi
operators? The answer, surprisingly, is: not always. Consider the operator

J =


0 1

1 0 1
2

1
2

0 1
2

1
2

0 . . .
. . .

. . .

 . (5.41)

It is a Basic Perturbation 2 example from Chapter 4. We showed that it has discrete
eigenvalues at ±2/

√
3, which we would like to see approximated in the top-left corner

after some Wilkinson-shifted QL iterations. However, a Wilkinson shift for this matrix
is σ = 1. This is problematic, because J − I does not have a QL factorisation by
Theorem 5.2.2.

5.3.1 Example QL iterations for Jacobi operators

Since it appears there will be difficulties for implementing Wilkinson shifts and further
research is required, for now, we can use the techniques of Chapter 4 to compute



192 The infinite dimensional QL algorithm

approximations to the eigenvalues, which are then used as shifts in the QL algorithm.
See the following example, which we computed using the SpectralMeasures package
(see Appendix A for code).

Let us continue the example from the end of the previous section involving a
3× 3 perturbation of Toeplitz Jacobi operator. The eigenvalues computed using the
techniques of Chapter 4 are −1.173 and 1.580. Using −1.173 as a shift and performing
one step of the QL algorithm gives (to 3 decimal places),

J (1) =



−1.173 0.000

0.000 1.116 0.594

0.594 0.342 0.770

0.770 0.156 0.500

0.500 0 . . .
. . .

. . .


.

The off-diagonal entry on the first row is not exactly zero; it is 9.159× 1016. We have
converged to a satisfactory precision after one step. Notice that one step of the QL
algorithm increases the size of the perturbation of Toeplitz by one. If we remove the
first row and column and perform a shifted QL algorithm step with shift 1.580, then
we find (to 3 decimal places),

J (2) =



1.580 0.000

0.000 0.587 0.480

0.480 −0.216 0.498

0.498 0.020 0.500

0.500 0 . . .
. . .

. . .


.

Now, we used two orthogonal lower Hessenberg matrices to perform this change, each
requiring finite storage because we simply store s0, s1, s2, s3, s and c−1, c0, c1, c2, c3, c

for each Hessenberg matrix. Hence we have found an orthogonal matrix with upper



5.3 The shifted QL algorithm 193

bandwidth 2 such that (to 3 decimal places),

QTJQ =



−1.173 0.000

0.000 1.580 0.000

0.000 0.587 0.488

0.488 −0.216 0.498

0.498 0 . . .
. . .

. . .


.

If we denote the operator we are left with, after removing the first two rows and
columns, by J̃ , then since J had two eigenvalues, J̃ must have purely continuous
spectrum. By the results of Chapter 4, we can compute the connection coefficients
operator C, which is upper triangular, Toeplitz-plus-finite-rank, and invertible, such
that

C−1J̃C = ∆.

Combining these into the operator

U =

(
I2×2 0

0 C

)
QT , (5.42)

we have

UJU−1 =

 λ1

λ2

∆

 , (5.43)

where ∆ is the free Jacobi operator. This constitutes a canonical form for Toeplitz-plus-
finite-rank Jacobi operators. In the next section we use this to describe a functional
calculus, made possible by the fact that functions of diagonal matrices and Toeplitz
operators are easily computed.



194 The infinite dimensional QL algorithm

5.4 Computing functions of operators

Using the normal form derived in the previous section, a function g : σ(J)→ R of a
Toeplitz-plus-finite-rank Jacobi operator J = ∆+ F can be written in the form,

g(J) = U−1


g(λ1)

. . .

g(λd)

g(∆)

U, (5.44)

where λ1, . . . , λd are the eigenvalues of J .
Hence computation of g(J) is reduced to that of computing g for the discrete

spectra, and g(∆). The following proposition shows that if we can find a Chebyshev
polynomial approximation for g then g(∆) has a very simple form.

Proposition 5.4.1. Let g(s) =
∑m

k=0 akTk(s). Then

g(∆) =
1

2



2a0 a1 a2 a3 · · ·
a1 2a0 a1 a2 . . .

a2 a1 2a0 a1 . . .

a3 a2 a1 2a0 . . .
...

. . .
. . .

. . .
. . .


− 1

2



a2 a3 a4 a5 · · ·
a3 a4 a5 a6 · · ·
a4 a5 a6 a7 · · ·
a5 a6 a7 a8 · · ·
...

...
...

...
. . .


(5.45)

Remark 5.4.2. Compare this formula to the multiplication formula in Section 2.2 of
[OT13].

Proof. We prove this for all polynomials of the form g(s) = Tk(s) by induction on k.
The full result follows by linearity. Note that the Chebyshev polynomials Tk satisfy

T0(s) = 1, T1(s) = s

Tk+1(s) = 2sTk(s)− Tk−1(s) for k = 1, 2, . . . .

The result is clearly true for T0 and T1. Now assume k ≥ 1 and the inductive
hypothesis that the result holds for Tk and Tk−1.

Recall the notation from Subsection 1.1.2 the notation for a Toeplitz and Hankel
operators in terms of the symbol f(z) =

∑∞
k=−∞ tkz

k. Then our inductive hypothesis
is Tk(∆) = T (1

2
(zk + z−k))−H(1

2
z1−k). Then we have, using the multiplicative formula



5.4 Computing functions of operators 195

for Toeplitz and Hankel operators (see equation (1.24)),

Tk+1(∆) = 2∆Tk(∆)− Tk−1(∆)

=
1

2
T (z + z−1)T (zk + z−k)− 1

2
T (z + z−1)H(z1−k)

− 1

2
T (zk−1 + z1−k) +

1

2
H(z2−k)

=
1

2
T (zk+1 + zk−1 + z1−k + z−k−1)− 1

2
H(z + z−1)H(zk + z−k)

− 1

2
H(z2−k + z−k) +

1

2
H(z + z−1)T (zk−1)

− 1

2
T (zk−1 + z1−k) +

1

2
H(z2−k)

=
1

2
T (zk+1 + z−k−1)− 1

2
H(z−k) +

1

2
H(z−1)(T (zk−1)−H(z−k))

=
1

2
T (zk+1 + z−k−1)− 1

2
H(z−k),

where the last line follows because top row of T (zk−1)−H(z−k) is equal to zero. This
completes the proof.

An explanation of how the functional calculus is implemented in SpectralMeasures
is contained at the end of Appendix A.

5.4.1 Discrete Schrödinger equation

As an example application, consider a discrete Schrödinger equation on the half line,

du(t)

dt
+ iJu(t) = 0, u(0) ∈ ℓ2, (5.46)

where J = −∆ + I + diag(V ) for V ∈ ℓ∗S, represents the potential in the quantum
system. The solution is

u(t) = exp(−iJt)u(0). (5.47)

Therefore the problem amounts to computing the function g(z) = exp(izt) of the
operator J applied to the vector u(0). We consider two example Schrödinger equations
designed to demonstrate the quantum tunnelling effect. Let us explain them by showing
the SpectralMeasures code that will generate them (see Appendix A).

1 # Initial condition is skinny Gaussian
2 u0 = pad!(exp ( -( -28:.75:28) .^2) ,100)



196 The infinite dimensional QL algorithm

3 # discrete Laplacian
4 D = free\_jacobi\_operator () - I
5

6 # small barrier potential
7 Vs = [zeros (40),ones (3)]
8 # discrete Schrodinger with potential Vs
9 Js = -D + SymTriToeplitz(Vs ,[0.])

10 xs ,Us = eig(Js)
11

12 # An example computation for t = 10:
13 t = 10
14 us = Us \ (exp(-im*xs*10)*(Us*u0))
15

16 # big barrier potential
17 Vb = [zeros (40) ,2*ones (5)]
18 # discrete Schr\" odinger with potential Vb
19 Jb = -D + SymTriToeplitz(Vb ,[0.])
20 xb ,Ub = eig(Jb)
21

22 # An example computation for t = 10:
23 t = 10
24 ub = Ub \ (exp(-im*xb*t)*(Ub*u0))

In Figure 5.1 we demonstrate the discrete Schrödinger equation with potential Vs
from the above Julia code. The physical interpretation is that at time t = 0 there is a
quantum particle to the left of a barrier. The wave function of the particle then spreads
out according to the Schrödinger equation, and although there is a large barrier which
a classical particle would not be able to pass, some of the wave function of the quantum
particle passes through, indicating that there is some probability of measuring the
particle to the right of the barrier at a later time, say t = 30.

In Figure 5.2 we demonstrate the discrete Schrödinger equation with potential
Vb from the above Julia code. This potential is taller and wider than Vs, and as
such demonstrates that although quantum tunnelling is a possibility, if the barrier
is sufficiently wide and tall, then the particle is blocked. The impedance on the
wave function entering the barrier is exponential, as seen in both figures, but more
pronounced in Figure 5.2, because of the thicker and taller barrier.



5.4 Computing functions of operators 197

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
Quantum tunneling on the half-line

k

u k

t=0 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
Quantum tunneling on the half-line

k

u k

t=5 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
Quantum tunneling on the half-line

k

u k

t=10 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
Quantum tunneling on the half-line

k

u k

t=20 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
Quantum tunneling on the half-line

k

u k

t=30 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
Quantum tunneling on the half-line

k

u k

t=40 (abs)
Potential

Fig. 5.1 Plotted here is a numerical solution to the discrete Schrödinger equation (5.46), with
a potential function (the black line) expressible in Julia code as Vs = [zeros(40),ones(3)].
The functional calculus in SpectralMeasures was used. Plotted as blue lines is the absolute
value of the solution at times t = 0, 5, 10, 20, 30, 40 in the range k = 1, 2, . . . , 100. Hence going
from left to right then top to bottom steps through a chronological sequence of times for the
solution. The physical effect on display here is quantum tunnelling, where a quantum particle
starts to the left of a barrier and after colliding with the barrier, some of its wave function
is reflected and some transmitted through, a phenomenon which cannot happen in classical
mechanics.



198 The infinite dimensional QL algorithm

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
No quantum tunneling on the half-line

k

u k

t=0 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
No quantum tunneling on the half-line

k

u k

t=5 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
No quantum tunneling on the half-line

k

u k

t=10 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
No quantum tunneling on the half-line

k

u k

t=20 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
No quantum tunneling on the half-line

k

u k

t=30 (abs)
Potential

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5
No quantum tunneling on the half-line

k

u k

t=40 (abs)
Potential

Fig. 5.2 Plotted here is a numerical solution to the discrete Schrödinger equation (5.46), with a
potential function (the black line) expressible in Julia code as Vb = [zeros(40),2*ones(5)].
The functional calculus in SpectralMeasures was used. Plotted as blue lines is the absolute
value of the solution at times t = 0, 5, 10, 20, 30, 40 in the range k = 1, 2, . . . , 100. Hence going
from left to right then top to bottom steps through a chronological sequence of times for the
solution. The physical effect on display here is quantum tunnelling. Comparing this situation
to that in Figure 5.1, the potential function is much taller and wider, so the quantum particle
is completely reflected upon collision.

5.4.2 Discrete diffusion equation

Now consider the discrete diffusion equation on the half line,

du(t)

dt
+ Ju(t) = 0, u(0) ∈ ℓ2, (5.48)



5.4 Computing functions of operators 199

where J = I −∆+ F , a Toeplitz-plus-finite-rank Jacobi operator. The perturbation F

represents a reaction term, in which the diffusing quantity is either used up or created
at a rate proportional to its value. The solution is

u(t) = exp(−Jt)u(0). (5.49)

Hence, just as with the discrete Schrödinger equation, we can compute the solution by
computing the exponential of an operator.

In this Subsection we will demonstrate two discrete diffusion equations. The first
is the case where F = 0, solutions for which appear in Figure 5.3 in the top two
plots. We begin with the initial datum u(0) ∈ ℓ2 which is zero for all indices except at
k = 21, 22, . . . , 25 where it is equal to 1 and at k = 46, 47, 48 where it is equal to 1.2.
This is the blue line in each of the figures.

In the top-left plot of Figure 5.3 we solve the discrete diffusion equation using the
functional calculus for Toeplitz-plus-finite-rank Jacobi operators in SpectralMeasures,
although for this first case the finite rank part is equal to zero. In the top-right plot
we solve the discrete diffusion equation using a finite section method with dimension
70. Notice that the for small t the actual solution (given in the top-left) is mainly
supported within k = 1, . . . 70, but for sufficiently large t, the finite section method
will lose some of the solution as it spreads out farther than this range. This is one
advantage of working directly with the Jacobi operator itself, and not with truncations.

In the bottom plot of Figure 5.3, we demonstrate the solution with the same initial
condition, but with a different discrete diffusion operator. This time the operator has
a reaction term which exponentially depletes parts of the solution. Explicitly,

J =


1 + f0 −1

2

−1
2

1 + f1 −1
2

−1
2

1 + f2 −1
2

. . .
. . .

. . .

 , (5.50)

where fk = 0 for all k except k = 36, 37, 38 where it is equal to 1. The solution loses
significant mass around the points k = 36, 37, 38 compared to the pure diffusion.



200 The infinite dimensional QL algorithm

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Pure diffusion on the half-line

k

u k

t=0
t=1
t=10
t=100
t=1000

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Pure diffusion on the half-line (n=70 finite section method)

k

u k

t=0
t=1
t=10
t=100
t=1000

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Diffusion plus reaction on the half-line

k

u k

t=0
t=1
t=10
t=100
t=1000

Fig. 5.3 Plotted here are numerical solutions to discrete diffusion equations of the form in
equation (5.48). We use the same initial data for each: u(0) ∈ ℓ2 which is zero for all indices
except at k = 21, 22, . . . , 25 where it is equal to 1 and at k = 46, 47, 48 where it is equal to
1.2. This is the blue line. Then for times t = 1, 10, 100, 1000 we plot the solution in red,
green, purple and yellow, as in the legends. For the top two plots, the Jacobi operator, J is
the discrete Laplacian, and in the bottom plot it is that in (5.50), which causes the solution
to be depleted around k = 37. The top-left and bottom plots are solved using functional
calculus in SpectralMeasures, and the top-right plot is solved using a finite section method
with dimension n = 70. We can see that for large times the truncation is eventually not big
enough to be accurate compared to the infinite dimensional approach.

5.4.3 Discrete fractional diffusion equations

We can also consider fractional diffusion equations. Fractional diffusion equations come
from diffusive processes in which the underlying stochastic process is a heavy-tailed
Lévy flight, as opposed to a Brownian motion, whose second moments are finite. Let
α ∈ (0, 1). Then the discrete (space-)fractional diffusion equation on the half line is

du(t)

dt
+ |J |αu(t) = 0, u(0) ∈ ℓ2, (5.51)



5.4 Computing functions of operators 201

where J = I −∆+ F , a Toeplitz-plus-finite-rank Jacobi operator. The solution is

u(t) = exp(−|J |αt)u(0). (5.52)

Hence the solution can be computed using functional calculus on J . In Figure 5.4, in
the top and left plots we demonstrate the purely diffusive fractional diffusion equation
(i.e. F = 0) for α = 0.25, 0.65, 0.85. As before, we use the initial datum u(0) ∈ ℓ2

which is zero for all indices except at k = 21, 22, . . . , 25 where it is equal to 1 and at
k = 46, 47, 48 where it is equal to 1.2. This is the blue line in each of the figures. We
see that despite having the same initial conditions, the shape of the resulting diffusion
is affected severely by the choice of α. In the bottom-right plot of Figure 5.4, α = 0.85

and there is a reaction term added, so that the operator is of the form

J =


1 + f0 −1

2

−1
2

1 + f1 −1
2

−1
2

1 + f2 −1
2

. . .
. . .

. . .

 , (5.53)

where fk is equal to zero everywhere, except at k = 21, 22, 23, where it is equal to 0.1.
The effect is quite small, but this positive perturbation slows down the diffusion at the
points k = 21, 22, 23, so you can see that in the fractional diffusion with this reaction
term, the value of the solution at these points is slightly higher than that of the pure
diffusion term. If we were to have taken a larger perturbation that this (which has
∥f∥∞ = 0.1), then they could have caused discrete spectrum. In this case, rather than
merely slow down the diffusion locally, it would cause blowup.



202 The infinite dimensional QL algorithm

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Pure fractional diffusion on the half line, α = 0.65-

k

u k

t=0
t=1
t=10
t=100
t=1000

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Pure fractional diffusion on the half line, α = 0.25-

k

u k

t=0
t=1
t=10
t=100
t=1000

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Pure fractional diffusion on the half line, α = 0.85-

k

u k

t=0
t=1
t=10
t=100
t=1000

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Fractional diffusion with reaction on the half line, α = 0.85-

k

u k

t=0
t=1
t=10
t=100
t=1000

Fig. 5.4 Plotted here are numerical solutions to discrete fractional diffusion equations of
the form in equation (5.51) for various values of α which are stated in the titles of each
plot. We use the same initial data for each: u(0) ∈ ℓ2 which is zero for all indices except
at k = 21, 22, . . . , 25 where it is equal to 1 and at k = 46, 47, 48 where it is equal to 1.2.
This is the blue line. Then for times t = 1, 10, 100, 1000 we plot the solution in red, green,
purple and yellow, as in the legends. For the top two plots, the Jacobi operator, J is the
discrete Laplacian, and in the bottom plot it is that in (5.53). The perturbation in the
bottom-right plot causes the diffusion around the points k = 21, 22, 23 to happen slower
than in the unperturbed bottom-left plot. All plots are solved using functional calculus in
SpectralMeasures.



画龙点睛，破壁飞去
(Huà lóng diǎn j̄ıng, pò bì fēi qù)

Lit. Paint a dragon, dot the eyes. Breaks free and flies away.
Fig. To add the finishing touch

Chapter 6

Conclusion

In this chapter we discuss the accomplishments of the thesis, looking towards what
can be done in the future.

6.1 Isospectral flows

In Chapter 2 we gave an exposition of isospectral flows, which included a discussion of
isospectral gradient flows in an arbitrary metric, which was a straightforward extension
of work already in the literature. We discussed the relationship between the Toda
flow, the double bracket flow, the QR flow and the QR algorithm under the common
framework of gradient flows with different metrics. We briefly discuss the Bloch-Iserles
system, and give the new result that the KdV equation can be parametrised by an
infinite dimensional Bloch-Iserles system. We introduced a new isospectral flow called
the gradient QR flow, and proved that for normal matrices it coincides with the QR
flow, allowing a new proof of some known convergence properties of the QR algorithm,
but that for nonnormal matrix there is a perturbation term between the gradient QR
flow and the QR flow, giving some insight into the lack of convergence results in the
nonnormal case.

There are two directions for future research that come to mind.
First, the implications of the relationship between the KdV equation should be

investigated further. Either, properties of the KdV equation that were not known
before could be derived from known properties of the Bloch-Iserles system, or vice
versa. It is also worth exploring how the KdV hierarchy might correspond to a Bloch-
Iserles hierarchy. Alternatively, new numerical methods for the KdV equation could
be derived based on numerical methods for the Bloch-Iserles equation, such as the

203



204 Conclusion

quadratic Magnus expansion given by Kaur [Kau16] following the work of Iserles on
the double bracket equation [Ise02].

The second direction is to further investigate the gradient QR flow. One can
start simply by conducting some numerical experiments comparing the gradient QR
flow with the QR flow. How does the gradient QR flow behave for the examples of
nonconvergence of the QR algorithm given in [Bat90], [Day96]? Is there a way to
implement the gradient QR flow in a practical way for nonnormal matrices?

6.2 The symmetric Toeplitz inverse eigenvalue prob-

lem

In Chapter 3 we studied two isospectral flow approaches to the numerical solution
of the symmetric Toeplitz inverse eigenvalue problem, a gradient flow and Chu’s
flow. To facilitate their study, we fully formalise how the restriction to bisymmetric
matrices affects the isospectral manifold, showing that the manifold splits into a certain
number of connected components, each acted upon by the Lie group of centrosymmetric
orthogonal matrices SCO(n). The dimension of SCO(n) is less than n/4, so the number
of free dimensions is reduced greatly. We utilise this to give an analytical solution for
3 × 3 bisymmetric isospectral flows, and conduct the first numerical study of 4 × 4

isospectral flows for the symmetric Toeplitz inverse eigenvalue problem. At the end
of the chapter we prove a theoretical result, proving that the Solvability Complexity
index of the symmetric Toeplitz inverse eigenvalue problem is equal to 1.

In Theorem 3.3.4 we showed that there exists a 3×3 real symmetric Toeplitz matrix
with even eigenvalues λ1, λ2 and odd eigenvalue µ1 if and only if

(λ1 − µ1)(µ1 − λ2) + 2(λ1 − λ2)
2 ≥ 0.

One could conjecture that for higher dimensions, nonnegativity of certain translation
invariant, homogeneous polynomials in odd and even eigenvalues (satisfying appropriate
symmetries) will be equivalent to the existence of a symmetric Toeplitz matrix with
those prescribed even and odd eigenvalues, but what these polynomials would be is a
mystery right now.

The following is the main conjecture in the field:



6.3 Spectra of Jacobi operators via connection coefficients 205

Conjecture 6.2.1. Given n distinct real eigenvalues, Chu’s flow is convergent to
a Toeplitz matrix for all initial data which are bisymmetric and whose eigenvalues
alternate in parity.

In Chapter 3 we proved this to be the case for n = 1, 2, 3, and gave compelling
numerical evidence for the case n = 4. Chu’s flow contains periodic orbits, so some
restrictions are necessary. The claim is that bisymmetric and alternating eigenvalue
parity (both of which are easily prescribed) is a sufficient restriction on the flow to
guarantee convergence. This is a difficult problem because it involves analysing the
behaviour of a very high-dimensional flow which evolves on a multiply-connected
domain (a torus, because Lie groups of orthogonal matrices are isomorphic to tori).

We showed that the Solvability Complexity Index of the problem is equal to 1.
There are two things that can be considered to take this further. First, the proof
appears to generalise to other inverse eigenvalues problems, by changing the function
Ψ and using a different Lie algebra (instead of sco(n). Second, it would be good to
show that the solution could be computed with error control.

6.3 Spectra of Jacobi operators via connection coef-

ficients

In Chapter 4 we proved new results about the relationship between the connection
coefficients matrix between two different families of orthonormal polynomials, and the
spectral theory of their associated Jacobi operators. We specialised the discussion to
finite-rank perturbations of the free Jacobi operator and demonstrated explicit formulas
for the principal resolvent and the spectral measure in terms of entries of the connection
coefficients matrix. We showed that the results extend to trace class perturbations.
Finally, we discussed computability aspects of the spectra of Toeplitz-plus-compact
Jacobi operators. We showed that the spectrum of a Toeplitz-plus-compact Jacobi
operator can be computed with error control, as long as the tail of the coefficients can
be suitably estimated.

Regarding regularity properties of the Radon-Nikodym derivative dν
dµ

between the
spectral measures ν and µ of Jacobi operators D and J respectively given in Propositions
4.2.5 and 4.2.8 and Corollary 4.2.9. Can much weaker regularity of dν

dµ
be shown to be

equivalent to certain weak properties of C = CJ→D? For example, we conjecture that



206 Conclusion

the Kullbeck-Leibler divergence,

K(µ|ν) =

{ ∫
dν
dµ
(s) log dν

dµ
(s) dν(s) if ν is absolutely continuous w.r.t. µ

∞ otherwise,
(6.1)

is finite if and only if the function of operators, CTC log(CTC) is well-defined as an
operator mapping ℓF → ℓ⋆F . The reasoning comes from Lemma 4.2.7. Making such
statements more precise for the case where D = Γ or D = ∆ (see equation (4.59))
could give greater insight into Sze̋go and quasi-Sze̋go asymptotics (respectively) for
orthogonal polynomials [GNR16], [DS06a], [KS03].

Regarding computability, is there a theorem covering ground between that covered
by Theorem 4.5.7 (for Toeplitz-plus-finite-rank Jacobi operators) and Theorem 4.5.9
(for Toeplitz-plus-compact Jacobi operators)? What can be said about the convergence
of the continuous part of the spectral measure of a Toeplitz-plus-finite-rank truncation
J [m] of a Toeplitz-plus-trace-class Jacobi operator J? Proposition 4.4.2 implies that
this convergence is at least weak in the probabilists’ sense.

The computability theorems in Section 4.5 all assume real arithmetic. What can
be said about floating point arithmetic? Under what situations can the computation
fail to give an unambiguously accurate solution?

Chapter 4 opens some broader avenues for future research.
Lower Hessenberg operators define polynomials orthogonal with respect to Sobolev

inner products [Gau04, pp. 40–43]. Therefore, we have two families of (Sobolev)
orthogonal polynomials with which we may define connection coefficient matrices, as
discussed in [GM09, p. 77]. Whether the connection coefficient matrices (which are still
upper triangular) have structure which can be exploited for studying and computing
the spectra of lower Hessenberg operators is yet to be studied.

Besides spectra of discrete operators defined on ℓ2, we conjecture that the results of
this paper will also be applicable to continuous Schrödinger operators on L2(R), which
are of the form LV [φ](x) = −φ′′(x) + V (x)φ(x) for a potential function V : R → R.
The reference operator is the negative Laplacian L0 (which is the "free" Schrödinger
operator). In this scenario, whereas the entries of a discrete connection coefficient
matrix satisfy a discrete second order recurrence relation on N2

0 (see Lemma 4.2.1),
the continuous analogue of the connection coefficient operator CLV →L0 is an integral
operator whose (distributional) kernel satisfies a second order PDE on R2. This
conjecture will be explored by the present authors in the future.



6.4 Infinite dimensional QL algorithm 207

Spectra of banded self-adjoint operators may be accessible with these types of
techniques too. Either using connection coefficient matrices between matrix orthog-
onal polynomials [DPS08], or developing tridiagonalisation techniques are possible
approaches (see [Han08]), but the authors also consider this nothing more than conjec-
ture at present. The multiplicity of the spectrum for operators with bandwidth greater
than 1 appears to be a major challenge here.

6.4 Infinite dimensional QL algorithm

In Chapter 5 we laid the foundations for the infinite dimensional QL algorithm. We
proved the basic existence and nonexistence theorems for infinite dimensional QL
factorisations of bounded self-adjoint operators. We showed that for Jacobi operators
the existence and uniqueness is completely determined by whether 0 was in the
essential spectrum. We implemented a shifted QL algorithm for Toeplitz-plus-finite-
rank Jacobi operators in Julia, proved a convergence result for shifts which approximate
an eigenvalue sufficiently well, and concluded by computing functions of these operators
to solve some infinite dimensional ODEs.

The nonexistence of QL factorisations of selfadjoint operators whose essential
spectrum contains 0 was a completely surprising outcome, because the QR factorisation
had been proven to exist for all bounded operators by Hansen [Han08], [Han09]. It
would be interesting to see what can be said in the non-selfadjoint case. Also, what
can be said for unbounded operators? All of this should then be done in the complex
domain, rather than the real as we have done here.

This nonexistence of QL factorisation also causes a small problem. It is possible that
when a shift is taken, that the resulting operator now has 0 in its essential spectrum.
We gave an example of this occurring in equation (5.41) for the Wilkinson shift. From
this follows the question: Can a new shift strategy be formulated which guarantees that
the resulting operator has a QL factorisation, whilst also accelerating the convergence
of the top-left entry to an eigenvalue?

We partially solve the problem posed by Olver and Townsend in [OT14] about
how to implement an infinite dimensional QL algorithm, and provide a framework for
computing the QL factorisation of bounded, banded operators of the form

A =

(
An B

C A∞

)
, (6.2)



208 Conclusion

where An ∈ Rn×n and A∞ has an a priori known QL factorisation A∞ = Q∞L∞. This
begs the question, which operators do we have a priori known QL factorisations?
This is a completely new question. At present we have only given an analytical QL
factorisation for Toeplitz Jacobi operator, 2t1∆+ t0I. Using this in the block form it
is straightforward to write algorithms to compute the QL factorisation for any banded
finite rank perturbation of this Toeplitz Jacobi operator.

For a Jacobi operator J , Lemma 5.2.5 gives a nonlinear recurrence that the or-
thogonal Hessenberg operator Q, such that QTJ is lower triangular, must satisfy. The
ck and sk parameters in the orthogonal Hessenberg operator (see Lemma 5.2.4) must
satisfy

ck = sign(αk+1)
ck+1αk+1 + sk+1ck+2βk+1√

(ck+1αk+1 + sk+1ck+2βk+1)
2 + (βk)

2

sk = −sign(αk+1)
βk√

(ck+1αk+1 + sk+1ck+2βk+1)
2 + (βk)

2
,

where α0, α1, . . . , and β0, β1, . . . are the three term recurrence parameters in J . Future
research will involve trying to solve this backward recurrence for differently structured
Jacobi operators. One example structure to consider is Jacobi operators with periodic
structure i.e. there exists an integer p such that αk+p = αk,

βk+p = βk for all k. When p = 0, we have a Toeplitz Jacobi operator, which we have
already considered. If p = 2 we have

Jp =



a x

x b y

y a x

x b
. . .

. . .
. . .


. (6.3)

See [DKS10] and [Tes00] discussions of periodic Jacobi operators. These operators
have essential spectrum consisting of at most p disjoint intervals. Spectral pollution
can be a real problem if one uses the finite section method to compute the spectrum of
such operators (with so-called spectral gaps) [LS04], [DP04], so infinite dimensional
techniques could be very useful here.



6.4 Infinite dimensional QL algorithm 209

Another type of structured Jacobi operator to consider is those whose entries
grow at a defined polynomial rate. For example, the Jacobi operator for the Hermite
polynomials on the real line (whose spectral measure is the Gaussian), and the Laguerre
polynomials on the half-line is (whose spectral measure is e−x dx) are

JH =



0 1

1 0
√
2√

2 0
√
3

√
3 0

. . .

. . .
. . .


, JL =


1 1

1 3 2

2 5 3

3 7 . . .
. . .

. . .

 (6.4)

It would be very interesting to be able to work with these operators as they are
unbounded.

Tridiagonalisation techniques might be possible to reduce a banded self-adjoint
operator to a tridiagonal one, hopefully with a structured tail like one of those in the
table above [Han08].

Computing an analytical QL factorisation of a general Toeplitz operator T (f) where
f ∈ L2(T) could be performed directly without tridiagonalisation in the following
fashion. Assume f is is nonzero inside the unit disc. Then we may take the logarithm
of the symbol to find a function g(z) =

∑b
k=−b gkz

k such that exp(g(z))) = f(z). Then
we can define g(z) = a(z) + b(z) where the coefficients of a and b are

ak =

{
gk if k > 0

−g−k if k ≤ 0
bk =

{
0 if k > 0

gk + g−k if k ≤ 0
(6.5)

Then define q(z) = exp(a(z))) and l(z) = exp(b(z)), so that f(z) = q(z)l(z). We have
constructed q so that q(z)q(z−1) = 1 and l so that T (l) is lower triangular. The tail
of T (q) is the tail of an orthogonal operator because of this relation, but it is not an
orthogonal operator itself, because

T (q)T (q)H = T (q)T (q(z−1)) (6.6)

= T (1)−H(q)H(Eq(z−1)) (6.7)

= I −H(q)H(Eq(z−1)), (6.8)



210 Conclusion

using the multiplication rules for Toeplitz matrices (see equation (1.24)). If we can
characterise a compact operator Kq such that Q = T (q)(I +Kq) is orthogonal, then
we can compute a lower triangular and compact operator Kl such that if we set
L = T (l) +Kl then T (f) = QL by taking Tl = QHT (f)−T (l). This approach appears
to be related to the Wiener-Hopf factorisation of f , which is the LU factorisation of
the symbol, instead of the QL factorisation we are describing here. Further research in
this direction is to work out how to compute Kq for general bandwidths b > 1. This
appears a little challenging, but a possible avenue for the computation.

The results in Section 5.3 on the convergence of the QL algorithm for Jacobi
operators are very encouraging. It deserves a little investigation into whether the result
can be extended to unbounded Jacobi operators, as indicated in Remark 5.3.7. The
main result only concerned a constant shift which was sufficiently close to an isolated
eigenvalue, which yielded linear convergence of the top-left entry to the eigenvalue.
However, in finite dimensions, Rayleigh shifts and Wilkinson shifts can yield quadratic
and locally cubic convergence rates, and a mixed strategy can yield globally cubic rates
[Wan01]. It would be good to be able to implement such strategies, but we gave an
example of a Jacobi operator in which a Wilkinson shift would give an operator which
doesn’t give a QL factorisation. Can a good shifting strategy be formulated?

A proper numerical comparison between established approaches to computing
functions of operators by finite sections, and new approach would be interesting to see.
In fact, deeper study into the numerical properties of the algorithms created, such as
numerical stability and efficient implementation, should be explored.



Appendix A
SpectralMeasures Julia package

Here we list the source code for the software package SpectralMeasures, written in Julia
in a collaboration between the author and Sheehan Olver at the University of Sydney.
The software implements many of the ideas from Chapters 4 and 5. Throughout the
package, features from the ApproxFun package are used extensively [Olvb].

Although the source code is freely available at https://github.com/JuliaApproximation/
SpectralMeasures.jl, the code is subject to constant updates and improvements. Not
only that, but the Julia language itself is not yet at version 1.0, so its syntax can
change between versions. Hence this appendix is merely a snapshot of some of the
code as it is right now.

A.1 Connection coefficient matrices

To compute the connection coefficients matrix CJ→D between Jacobi operators J and
D (see Definition 4.0.2), we use the recurrence relation defined by the 5-point formula
in Lemma 4.2.1.

connection_coeffs_matrix takes as input, vectors a and b, which are vectors
representing the initial parts of α0, α1, . . . and β0, β1, . . . in J , and vectors c and d,
which are vectors representing the initial parts of γ0, γ1, . . . and δ0, δ1, . . . in D, and an
integer N. The output is the principal N × N submatrix of CJ→D, assuming that the
vectors a and c extend by zeros, and b and d extend by halves if they are not of length
at least N .

1 function connection_coeffs_matrix(a,b,c,d,N)
2 if N>max(length(a),length(b)+1,length(c),length(d)+1)
3 a = [a;zeros(N-length(a))]; b = [b;.5+ zeros(N-length(b))]
4 c = [c;zeros(N-length(c))]; d = [d;.5+ zeros(N-length(d))]

https://github.com/JuliaApproximation/SpectralMeasures.jl
https://github.com/JuliaApproximation/SpectralMeasures.jl


212 A SpectralMeasures Julia package

5 end
6

7 C = zeros(eltype(a),N,N)
8 C[1,1] = 1
9 C[1,2] = (c[1]-a[1])/b[1]

10 C[2,2] = d[1]/b[1]
11 for j = 3:N
12 C[1,j] = ((c[1]-a[j-1])*C[1,j-1] + d[1]*C[2,j-1] - b[j-2]*C[1,j

-2])/b[j-1]
13 for i = 2:j-1
14 C[i,j] = (d[i-1]*C[i-1,j-1] + (c[i]-a[j-1])*C[i,j-1] + d[i]*C[i

+1,j-1] - b[j-2]*C[i,j-2])/b[j-1]
15 end
16 C[j,j] = d[j-1]*C[j-1,j-1]/b[j-1]
17 end
18 C
19 end

connection_coeffs_operator takes as input, vectors a and b, to be interpreted
as above. The output is the connection coefficients operator CJ→∆ where ∆ is the free
Jacobi operator. The output is an operator given by the type PertToeplitz, explained
in the next Section. The following functions are used from the ApproxFun package:

• bzeros is an ApproxFun function returning a BandedMatrix (an ApproxFun
type) containing only zeros

• ToeplitzOperator is an ApproxFun type representing a banded Toeplitz operator

• FiniteOperator is an ApproxFun type representing an operator with only finitely
many nonzero entries, stored as a BandedMatrix

1 function connection_coeffs_operator(a,b)
2 n = max(2,length(a),length(b)+1)
3 N = 2*n #This is sufficient only because we go from Delta
4 a = [a;zeros(N-length(a))]; b = [b;.5+ zeros(N-length(b))]
5

6 elType = eltype(a)
7 ToeplitzVec = zeros(elType ,N)
8 K = bzeros(elType ,n,N,0,N+1) # banded matrix of zeros
9 K[1,1] = 1

10 K[1,2] = -a[1]/b[1]



A.1 Connection coefficient matrices 213

11 K[2,2] = .5/b[1]
12

13 # The recurrence for the first n+1 cols depend on a and b
14 for j = 3:n+1
15 K[1,j] = (-a[j-1]*K[1,j-1] + .5*K[2,j-1] - b[j-2]*K[1,j-2])/b[j

-1]
16 for i = 2:j-2
17 K[i,j] = (.5*K[i-1,j-1] -a[j-1]*K[i,j-1] + .5*K[i+1,j-1] - b[j

-2]*K[i,j-2])/b[j-1]
18 end
19 K[j-1,j] = (.5*K[j-2,j-1] -a[j-1]*K[j-1,j-1] - b[j-2]*K[j-1,j-2])

/b[j-1]
20 if j<n+1
21 K[j,j] = .5*K[j-1,j-1]/b[j-1]
22 end
23 end
24 ToeplitzVec [1] = K[n,n]
25 ToeplitzVec [2] = K[n,n+1]
26

27 # The recurrence for rows n+2 to 2n do not depend on a and b
28 for j = n+2:N
29 K[1,j] = K[2,j-1] - K[1,j-2]
30 for i = 2:N-j
31 K[i,j] = K[i-1,j-1] + K[i+1,j-1] - K[i,j-2]
32 end
33 if j < N
34 K[N+1-j,j] = K[N-j,j-1] + K[N+2-j,j-1] - K[N+1-j,j-2]
35 end
36 ToeplitzVec [2*(j-n) -1] = K[N+1-j,j-1]
37 ToeplitzVec [2*(j-n)] = K[N+1-j,j]
38 end
39 T = ToeplitzOperator(elType[],chop!( ToeplitzVec))
40 for j = 1:N
41 for i = 1:min(j,N+1-j)
42 K[i,j]-=T[i,j]
43 end
44 end
45 T+FiniteOperator(K)
46 end



214 A SpectralMeasures Julia package

A.2 Types for Toeplitz-plus-finite-rank operators

The PertToeplitz type simply stores a ToeplitzOperator, T and a FiniteOperator,
K, and behaves as you would expect the operator T + K to behave. The following are
used from the ApproxFun package:

• ToeplitzOperator is an ApproxFun type representing a banded Toeplitz operator

• FiniteOperator is an ApproxFun type representing an operator with only finitely
many nonzero entries, stored as a BandedMatrix

• bandinds is a function in ApproxFun which returns the upper and lower band-
widths of a banded operator

• SequenceSpace is a Space of functions in ApproxFun in which functions are
simply sequences indexed by the natural numbers

1 ## represents T + K where T is Toeplitz and K is finite -dimensional
2 immutable PertToeplitz{S} <: Operator{S}
3 T:: ToeplitzOperator{S}
4 K:: FiniteOperator{BandedMatrix{S},S}
5 end
6

7 # Returns what the domain and range of the operator is
8 for OP in (: domainspace ,: rangespace)
9 @eval $OP(:: PertToeplitz) = SequenceSpace ()

10 end
11

12 # Returns lower and upper bandwidths of the operator
13 bandinds(P:: PertToeplitz) = min(bandinds(P.T,1),bandinds(P.K,1)),max(

bandinds(P.T,2),bandinds(P.K,2))
14

15 # Accessing entries of the operator
16 getindex(P:: PertToeplitz ,k::Integer ,j:: Integer) = P.T[k,j]+P.K[k,j]
17 getindex(P:: PertToeplitz ,k:: AbstractCount ,j:: AbstractCount) = P.T[k,j

]+P.K[k,j]

SymTriOperator is implemented as a subtype of the abstract type TridiagonalOperator
(in ApproxFun). It stores two finite vectors: dv is the diagonal entries and ev is the
offdiagonal entries.



A.2 Types for Toeplitz-plus-finite-rank operators 215

1 immutable SymTriOperator{T} <: TridiagonalOperator{T}
2 dv:: Vector{T}
3 ev:: Vector{T}
4 end
5

6 SymTriOperator(A::Vector ,B:: Vector) = SymTriOperator{promote_type(
eltype(A),eltype(B))}(A,B)

7

8 # Returns what the domain and range of the operator is
9 for OP in (: domainspace ,: rangespace)

10 @eval $OP(:: SymTriOperator) = SequenceSpace ()
11 end
12

13 # Accessing entries of the operator
14 function getindex(S:: SymTriOperator ,k::Integer ,j:: Integer)
15 if k <= length(S.dv) && k == j
16 S.dv[k]
17 elseif k <= length(S.ev) && j==k+1
18 S.ev[k]
19 elseif 2 <= k <= length(S.ev)+1 && j==k-1
20 S.ev[k-1]
21 else
22 zero(eltype(S))
23 end
24 end
25

26 # Multiplying by a constant
27 *(c::Number ,A:: SymTriOperator) = SymTriOperator(c*A.dv ,c*A.ev)
28 *(A:: SymTriOperator ,c:: Number) = SymTriOperator(c*A.dv ,c*A.ev)
29

30 # Creates a SymTridiagonal from UnitRange 's
31 function Base.SymTridiagonal(S:: SymTriOperator ,kr::UnitRange ,jr::

UnitRange)
32 n=last(kr)
33 @assert n==last(jr)
34 SymTridiagonal(pad(S.dv,n),pad(S.ev,n-1))
35 end

SymTriToeplitz is implemented as a subtype of TridiagonalOperator (in Ap-
proxFun). It stores a finite number of diagonal entries and offdiagonal entries in dv
and ev respectively, and it also stores a, which is the diagonal entry for indices larger
than the length of dv, and b, which is the offdiagonal entry for indices larger than the
length of ev.



216 A SpectralMeasures Julia package

1 # Represents a SymTriOperator + Symmetric ToeplitzOperator
2 immutable SymTriToeplitz{T} <: TridiagonalOperator{T}
3 dv:: Vector{T}
4 ev:: Vector{T}
5 a::T
6 b::T
7

8 SymTriToeplitz(dv:: Vector{T},ev:: Vector{T},a::T,b::T) = new(dv,ev,a
,b)

9 SymTriToeplitz(dv::Vector ,ev::Vector ,a,b) = new(Vector{T}(dv),
Vector{T}(ev),T(a),T(b))

10 end
11

12 # Deals with number type issues
13 SymTriToeplitz(dv::Vector ,ev::Vector ,a,b) = SymTriToeplitz{

promote_type(eltype(dv),eltype(dv),typeof(a),typeof(b))}(dv ,ev ,a,b
)

14

15 # Constructs as the sum T + K
16 function SymTriToeplitz(T:: ToeplitzOperator ,K:: SymTriOperator)
17 @assert bandinds(T)==(-1,1) && issym(T)
18 SymTriToeplitz(K.dv+T.nonnegative [1],K.ev+T.nonnegative [2],T.

nonnegative ...)
19 end
20

21 # Constructs with zero limiting values
22 function SymTriToeplitz{TT}(K:: SymTriOperator{TT})
23 SymTriToeplitz(K.dv ,K.ev,zero(TT),zero(TT))
24 end
25

26 # Converts a tridiagonal ToeplitzOperator into a SymTriToeplitz
27 function SymTriToeplitz(T:: ToeplitzOperator)
28 @assert issym(T)
29

30 if isdiag(T)
31 SymTriToeplitz(eltype(T)[],eltype(T)[],T.nonnegative [1],zero(

eltype(T)))
32 elseif bandinds(T)==(-1,1)
33 SymTriToeplitz(eltype(T)[],eltype(T)[],T.nonnegative ...)
34 else
35 error("Not a tridiagonal operator")
36 end



A.2 Types for Toeplitz-plus-finite-rank operators 217

37 end
38

39 # Returns what the domain and range of the operator is
40 for OP in (: domainspace ,: rangespace)
41 @eval $OP(:: SymTriToeplitz) = SequenceSpace ()
42 end
43

44 # Accessing entries of the operator
45 function Base.getindex(S:: SymTriToeplitz ,kr:: UnitCount{Int},jr::

UnitCount{Int})
46 k=first(kr)
47 @assert k==first(jr)
48

49 SymTriToeplitz(S.dv[k:end],S.ev[k:end],S.a,S.b)
50 end
51

52 function getindex(S:: SymTriToeplitz ,k::Integer ,j:: Integer)
53 if 2 <= k && j ==k-1
54 k<= length(S.ev)+1?S.ev[k-1]:S.b
55 elseif j==k+1
56 k<= length(S.ev)?S.ev[k]:S.b
57 elseif j==k
58 k<= length(S.dv)?S.dv[k]:S.a
59 else
60 zero(eltype(S))
61 end
62 end

The following implements connection_coeffs_operator for an arbitrary Toeplitz-
plus-finite-rank Jacobi operator by scaling and shifting the entries and using the main
definition of connection_coeffs_operator.

1 connection_coeffs_operator(J:: SymTriToeplitz) =
connection_coeffs_operator (.5*(J.dv -J.a)/J.b,.5*J.ev/J.b)



218 A SpectralMeasures Julia package

A.3 Spectral Measure

To compute the spectral measure of a Toeplitz-plus-finite-rank Jacobi operator we use
Theorem 4.3.14, which says that the measure has the form

dµ(s) =
1

pC(s)

2

π

√
1− s2ds+

r∑
k=1

wkδλk
(s), (A.9)

where pC is the polynomial given by the computable formula pC(s) =
∑2n−1

k=0 ⟨ek, CCT e0⟩Uk(s)

and r ≤ n. By Theorem 4.3.21, the numbers λk are found by finding the distinct real
roots zk of c (the Toeplitz symbol of the Toeplitz part of C, which here is a polynomial
of degree 2n− 1) in the interval (−1, 1). Also by Theorem 4.3.21, the weights wk can
be computed using the formula

wk =
1

2
z−1
k (zk − z−1

k )
cµ(zk)

c′(zk)
.

spectralmeasure takes two vectors a and b, which are vectors representing the initial
parts of α0, α1, . . . and β0, β1, . . . in J . The output is the spectral measure of J in the
form of a RatFun type object, which is explained in the next Section. We use the
following features from ApproxFun.

• Fun is a type used to represent a function. It stores a vector of coefficients and a
space for how to interpret those coefficients

• Taylor is the space spanned by monomials

• Ultraspherical(1) is the space spanned by Chebyshev polynomials of the
second kind Uk

• JacobiWeight(0.5,0.5,Ultraspherical(1)) is the space of Ultraspherical(1)
each multiplied by the Jacobi weight

√
1− x2.

• DiracSpace is the space spanned by Dirac delta measures based at a finite set
of points

• PointSpace is the dual space of DiracSpace consisting of functions only defined
at a finite number of real points



A.3 Spectral Measure 219

1 function spectralmeasure(a,b)
2 TT = promote_type(eltype(a),eltype(b))
3 # Chop the a and b down
4 a = chop!(a); b = 0.5+ chop!(b-0.5)
5 n = max(2,length(a),length(b)+1)
6 a = [a;zeros(TT,n-length(a))]; b = [b;0.5+ zeros(TT,n-length(b))]
7

8 # Finds C such that J*C = C*Toeplitz ([0 ,1/2])
9 C = connection_coeffs_operator(a,b)

10 c = Fun(Taylor ,C.T.nonnegative)
11 pC = Fun(C*(C '*[1]) ,Ultraspherical (1))
12

13 # Check for discrete eigenvalues
14 z = sort(real(filter !(z->abs(z) <1 && abs(imag(z)) <= 10eps(TT) &&

!isapprox(abs(z) ,1),complexroots(c))))
15 if length(z) > 0
16 Cmu = connection_coeffs_operator(a[2:end],b[2:end]) # Technically

not Cmu from the paper
17 cmu = Fun(Taylor ,[0; Cmu.T.nonnegative ]/b[1]) # this is cmu from

the paper
18 cprime = differentiate(c)
19 eigs=real(map(joukowsky ,z))
20 weights = 0.5*(1 -1./z.^2) .*( real(cmu(z))./real(cprime(z)))
21 p = Fun(DiracSpace(eigs),weights) + Fun(JacobiWeight (0.5,0.5 ,

Ultraspherical (1)) ,[2/TT(pi)])
22 q = Fun(PointSpace(eigs),ones(TT,length(eigs))) + pC
23 mu = RatFun(p,q)
24 else
25 mu = RatFun(Fun(JacobiWeight (0.5 ,0.5, Ultraspherical (1)) ,[2/TT(pi)

]),pC)
26 end
27 mu
28 end
29

30 joukowsky(z) = .5*(z+1./z)

The following implements spectralmeasure for an arbitrary Toeplitz-plus-finite-
rank Jacobi operator by scaling and shifting the entries and using the main definition
above.

1 function spectralmeasure(J:: SymTriToeplitz)
2 mu = spectralmeasure (.5*(J.dv-J.a)/J.b,.5*J.ev/J.b)



220 A SpectralMeasures Julia package

3 2*J.b*setdomain(mu ,domain(mu) + J.a)
4 end

A.4 A type for rational functions with Dirac weights

The formula for the spectral measure in equation (A.9) is represented using a type
called RatFun. This type stores a numerator p and a denominator q which are both
of type Fun (represents functions in ApproxFun). For the spectral measure, p is the
weight function

√
1− x2 plus a sum of Dirac delta functions, and q is the polynomial

pC plus a sum of PointSpace functions with the same points as those in the Dirac
deltas in the numerator and with weights all equal to 1. There are also commands for
plotting a RatFun using the Plots.jl interface (https://github.com/JuliaPlots/Plots.jl),
but it is not worth putting them here.

1 immutable RatFun{S1,T1 ,S2 ,T2}
2 p::Fun{S1 ,T1}
3 q::Fun{S2 ,T2}
4 end
5

6 domain(r:: RatFun) = domain(r.p)
7

8 function evaluate(r::RatFun ,x)
9 (r.p)(x)./(r.q)(x)

10 end
11

12 @compat (r:: RatFun)(x) = evaluate(r,x)
13

14 # Basic operations on RatFuns
15 for op = (:* ,:.*)
16 @eval $op(r1::RatFun ,r2:: RatFun)=RatFun ($op(r1.p,r2.p),$op(r1.q,r2.

q))
17 @eval $op(r::RatFun ,a:: Union{Number ,Fun}) = RatFun ($op(r.p,a),r.q)
18 @eval $op(a::Union{Number ,Fun},r:: RatFun) = RatFun ($op(a,r.p),r.q)
19 end
20 Base.inv(r:: RatFun) = RatFun(r.q,r.p)
21 Base.vec(r:: RatFun) = RatFun .(vec(r.p),vec(r.q))
22 (./)(r1::RatFun ,r2:: RatFun)=r1.*inv(r2)
23 (./)(a,r:: RatFun)=a.*inv(r)
24 (/)(r1::RatFun ,r2:: RatFun)=r1*inv(r2)

https://github.com/JuliaPlots/Plots.jl


A.5 Principal resolvent 221

25 (/)(a,r:: RatFun)=a*inv(r)
26 (./)(r::RatFun ,a)=inv(r)*a
27

28 for op = (:+,:.+,:-,:.-)
29 @eval $op(r1::RatFun ,r2:: RatFun) = RatFun ($op((r1.p.*r2.q) ,(r2.p.*

r1.q)),r1.q.*r2.q)
30 end
31

32 Base.convert (:: Type{Fun},r:: RatFun) = r.p/r.q

A.5 Principal resolvent

The principal resolvent G(λ), of a Toeplitz-plus-finite-rank Jacobi operator J , by
Theorem 4.3.12 can be evaluated for any λ ∈ C \ σ(J) by the formula

G(λ) =
G∆(λ)− pµC(λ)

pC(λ)
,

where pC is as above and pµC(λ) =
∑2n−1

k=0 ⟨ek, CµCT e0⟩Uk(λ). Both principal_resolvent
and disc_resolvent take two vectors a and b, which are vectors representing the
initial parts of α0, α1, . . . and β0, β1, . . . in J .

1 function principal_resolvent(a,b)
2 # Compute the necessary polynomials
3 C = connection_coeffs_operator(a,b)
4 Cmu = connection_coeffs_operator(a[2:end],b[2:end]) # Technically

not Cmu from the paper
5 f = Fun((C*(C '*[1])),Ultraspherical (1))
6 fmu = Fun(Ultraspherical (1),coefficients(Cmu *((C '*[1]).coefficients

[2:end])/b[1]))
7

8 # Return the resolvent
9 x->(2* sqrt(complex(x-1)).*sqrt(complex(x+1)) -2*x-extrapolate(fmu ,x)

)./ extrapolate(f,x)
10 end

The mapped principal resolvent G(λ(z)), of a Toeplitz-plus-finite-rank Jacobi
operator J , is the principal resolvent mapped to z in the unit disc by the Joukowski
map λ : z → 1

2
(z + z−1). This is computed using the simple formula from Theorem



222 A SpectralMeasures Julia package

4.3.20,

G(λ(z)) = −cµ(z)

c(z)
,

where c and cµ are the Toeplitz symbols of the Toeplitz parts of C and Cµ respectively
(these are polynomials of degree 2n− 1 and 2n− 2 respectively).

1 function disc_resolvent(a,b)
2 # Compute the necessary polynomials
3 C = SpectralMeasures.connection_coeffs_operator(a,b)
4 Cmu = SpectralMeasures.connection_coeffs_operator(a[2:end],b[2:end

]) # Technically not Cmu from the paper
5 c = Fun(Taylor ,C.T.nonnegative)
6 cmu = Fun(Taylor ,[0; Cmu.T.nonnegative ]/b[1]) # this is the cmu from

the paper
7

8 # Return the rational function
9 x->-cmu(x)./c(x)

10 end

A.6 Eigenvalues and spectrum

discreteeigs returns the discrete spectrum of a Toeplitz-plus-finite-rank Jacobi
operator. This uses the ApproxFun complexroots command to compute the roots of the
Toeplitz symbol of the connection coefficients operator. validated_spectrum uses the
ValidatedNumerics package (https://github.com/dpsanders/ValidatedNumerics.jl) to
compute the spectrum of J with a guaranteed error estimate (completely rigorous if we
assume that the connection coefficients have been computed exactly without rounding
error). Both functions take two vectors a and b, which are vectors representing the
initial parts of α0, α1, . . . and β0, β1, . . . in J .

1 function discreteeigs(a,b)
2 a = chop!(a); b = .5+ chop!(b-.5)
3 n = max(2,length(a),length(b)+1)
4 a = [a;zeros(n-length(a))]; b = [b;.5+ zeros(n-length(b))]
5 # Finds C such that C*J = Toeplitz ([0 ,1/2])*C
6 C = connection_coeffs_operator(a,b)
7 Tfun = Fun(Taylor ,C.T.nonnegative)
8 sort(real(map(joukowsky ,filter !(z->abs(z)<1 && isreal(z) && !

isapprox(abs(z) ,1),complexroots(Tfun)))))
9 end

https://github.com/dpsanders/ValidatedNumerics.jl


A.7 QL factorisation 223

10

11 discreteeigs(J:: SymTriToeplitz) = 2*J.b*discreteeigs (.5*(J.dv -J.a)/J.
b,.5*J.ev/J.b) + J.a

12

13 using ValidatedNumerics , ValidatedNumerics.RootFinding
14

15 function validated_spectrum(a,b)
16 # Finds C such that J*C = C*Toeplitz ([0 ,1/2])
17 C = SpectralMeasures.connection_coeffs_operator(a,b)
18 c = Fun(Taylor ,C.T.nonnegative)
19

20 rts = find_roots(x->c(x) ,-1,1)
21 if length(rts) > 0
22 eigs=real(map(x->joukowsky(x.interval),rts))
23 eigserrs = map(midpoint_radius ,eigs)
24 spectrum = ApproxFun.Interval (-1,1)
25 maxerr = 0
26 for (eig ,err) in eigserrs
27 maxerr = max(maxerr ,err)
28 spectrum = union(ApproxFun.Point(eig), spectrum)
29 end
30 else
31 spectrum = ApproxFun.Interval (-1,1)
32 maxerr = 0
33 end
34 spectrum , maxerr
35 end

A.7 QL factorisation

The function givenstail takes as input the tail entries of a Toeplitz-plus-finite-rank
Jacobi operator, t0 and t1. The output is the tail parameters of Q (in the Schur
parametrisation of a unitary Hessenberg operator in Lemma 5.2.4), the Toeplitz part
of L and two entries alph and beta for the partial QL factorisation of J used below.

1 # returns the parameters for the limiting Toeplitz
2 function givenstail(t0::Real ,t1::Real)
3 @assert t0^2-4t1^2>=0
4 sinf = (t0 - sqrt(t0^2-4t1^2))/(2t1)
5 l0 = (t0 + sqrt(t0^2-4t1^2))/2
6 if sinf^2 > 1



224 A SpectralMeasures Julia package

7 sinf = (t0 + sqrt(t0^2-4t1^2))/(2t1)
8 l0 = (t0 - sqrt(t0^2-4t1^2))/2
9 end

10 cinf = -sqrt(1-sinf ^2)
11 alph = t1*cinf
12 beta = cinf*t0 - sinf*alph
13 l1 = 2t1
14 l2 = t1*sinf
15 cinf ,sinf ,ToeplitzOperator ([l1,l2],[l0]),alph ,beta
16 end

The function ql takes as input two vectors a and b, which are vectors representing
the initial parts of α0, α1, . . . and β0, β1, . . . in J , and two tail entries t0 and t1 for J .
The function returns an orthogonal operator Q which is of type UnitaryHessenberg
(explained in the next Section) and a lower triangular operator L which is of type
PertToeplitz (explained in a previous section), such that Q and L for the QL factoris-
tion of J .

1 function ql(a,b,t0,t1)
2 if t0^2<4t1^2
3 error("A QL decomposition only exists outside the essential

spectrum")
4 end
5 # The Givens rotations coming from infinity (with parameters cinf

and sinf) leave us with the almost triangular
6 # a[n-1] b[n-1] 0 0 0
7 # b[n-1] a[n] t1 0 0
8 # 0 alph beta 0 0
9 # 0 l2 l1 l0 0

10 # 0 0 l2 l1 l0
11

12 cinf ,sinf ,TL,alph ,beta=givenstail(t0 ,t1)
13

14 if TL[1,1] < 0
15 # we want positive on L diagonals
16 Q,L=ql(-a,-b,-t0 ,-t1)
17 return -Q,L
18 end
19

20 # Here we construct this matrix as L
21 n = max(length(a),length(b)+1)
22 J = jacobimatrix(a,b,t0 ,t1 ,n+1)



A.7 QL factorisation 225

23 J[n,n+1] = t1
24 # L[n+1,n+2] = 0
25 J[n+1,n+1]= beta
26 J[n+1,n]=alph
27 c,s,L=tridql !(J)
28

29 Q=HessenbergUnitary('L',true ,c,s,cinf ,-sinf)
30

31 for j=1:n+1
32 L[j,j]-=TL.nonnegative [1]
33 if j <= n
34 L[j+1,j]-=TL.negative [1]
35 if j <= n-1
36 L[j+2,j]-=TL.negative [2]
37 end
38 end
39 end
40 Q,TL+FiniteOperator(L)
41 end
42

43 # finite dimensional Jacobi matrix helper function
44 function jacobimatrix(a,b,t0 ,t1 ,N)
45 J = BandedMatrix(Float64 ,N,N,1,1)
46 for i = 1:min(length(a),N)
47 J[i,i] = a[i]
48 end
49 for i=length(a)+1:N
50 J[i,i] = t0
51 end
52 for i = 1:min(length(b),N-1)
53 J[i,i+1] = J[i+1,i] = b[i]
54 end
55 for i=length(b)+1:N-1
56 J[i,i+1] = J[i+1,i] = t1
57 end
58 J
59 end
60

61 ql(A:: SymTriToeplitz) = ql(A.dv ,A.ev ,A.a,A.b)



226 A SpectralMeasures Julia package

A.8 Types for banded-above unitary operators

The orthogonal operator in a QL factorisation of a Toeplitz-plus-finite-rank Jacobi
operator can be stored in finite memory using the Schur parametrisation in Lemma
5.2.4. We first have an abstract type UnitaryOperator, and implement the basic
functions that encode that its inverse is simply the transpose.

1 abstract UnitaryOperator{T} <: Operator{T}
2

3 # Basic operations for the abstract type , UnitaryOperator
4 Base.inv(Q:: UnitaryOperator) = Q'
5 Base.transpose{T<:Real}(Q:: UnitaryOperator{T}) = Q'
6 \(Q:: UnitaryOperator ,v:: Number;opts ...) = Q'*v
7 \(Q:: UnitaryOperator ,v::Array;opts ...) = Q'*v
8 \{S,T,DD,Q}(A:: UnitaryOperator ,b::Fun{MatrixSpace{S,T,DD ,1},Q};kwds

...) = Q'*b
9 \(Q:: UnitaryOperator ,v::Fun;opts ...) = Fun(space(v),Q'*v.coefficients

)

The type HessenbergUnitary implements the UnitaryOperator type. It stores
the parameters for the Schur parametrisation in Lemma 5.2.4 in sign, c, s, cinf
and sinf. For a Hessenberg operator, one of the bandwidths is always 1, but the
other bandwidth is always infinity. However, the entries decay exponentially, so it has
an approximate lower bandwidth. Being able to return upper and lower bandwidths
is a requirement for operators in ApproxFun. Fast operator-vector multiplication
schemes are included, which use the fact that HessenbergUnitary is a product of
Givens rotations.

1 immutable HessenbergUnitary{uplo ,T} <: UnitaryOperator{T}
2 sign::Bool
3 c:: Vector{T}
4 s:: Vector{T}
5 cinf::T
6 sinf::T
7 band::Int
8

9 function HessenbergUnitary(sgn::Bool ,c:: Vector{T},s:: Vector{T},cinf
::T,sinf::T,bnd::Int)

10 @assert isapprox(sinf ^2+ cinf ^2,1)
11 @assert length(c)== length(s)+1
12 @assert isapprox(abs(first(c)) ,1)
13



A.8 Types for banded-above unitary operators 227

14 for (cc,ss) in zip(c[2:end],s)
15 @assert isapprox(cc^2+ss^2,1)
16 end
17

18 new(sgn ,c,s,cinf ,sinf ,bnd)
19 end
20 end
21

22 function HessenbergUnitary(uplo::Char ,sign ,c,s,cinf ,sinf ,band)
23 @assert uplo=='L' || uplo=='U'
24 HessenbergUnitary{uplo ,promote_type(eltype(c),eltype(s),
25 typeof(cinf),typeof(sinf))}(sign ,c,s,cinf ,sinf ,band)
26 end
27

28 function HessenbergUnitary(uplo::Char ,sign ,c,s,cinf ,sinf)
29 @assert isapprox(sinf ^2+ cinf ^2,1)
30 @assert length(c)== length(s)+1
31 @assert isapprox(abs(first(c)) ,1)
32

33 for (cc,ss) in zip(c[2:end],s)
34 @assert isapprox(cc^2+ss^2,1)
35 end
36

37 band=0
38 n=length(s)
39

40 cur=c[1]*c[2]
41 tol=eps()
42

43 # Compute the bandwidth of the matrix
44 k=1
45 for j=1:n+2
46 while abs(cur) > tol
47 cur*=k<=n?s[k]:sinf
48 k+=1
49 band +=1
50 end
51 # increase column and row by one
52 if band ==0
53 # we don 't need to divide or multiply by s
54 if j<=n-1
55 cur=c[j+1]*c[j+2]



228 A SpectralMeasures Julia package

56 elseif j==n
57 cur=c[j+1]* cinf
58 else
59 cur=cinf^2
60 end
61 else
62 if j<=n-1
63 cur *=(k<=n?s[k]:sinf)*c[j+2]/(c[j]*s[j])
64 elseif j==n
65 cur *=(k<=n?s[k]:sinf)*cinf/(c[j]*s[j])
66 elseif j==n+1
67 cur *=(k<=n?s[k]:sinf)*cinf/(c[j]*sinf)
68 else
69 cur*=sinf*cinf/(cinf*sinf)
70 end
71 end
72 k+=1
73 end
74

75 HessenbergUnitary(uplo ,sign ,c,s,cinf ,sinf ,band)
76 end
77

78 # Returns conjugate transpose of the operator
79 Base.ctranspose{T<:Real}(Q:: HessenbergUnitary{'L',T}) =

HessenbergUnitary('U',Q.sign ,Q.c,Q.s,Q.cinf ,Q.sinf ,Q.band)
80 Base.ctranspose{T<:Real}(Q:: HessenbergUnitary{'U',T}) =

HessenbergUnitary('L',Q.sign ,Q.c,Q.s,Q.cinf ,Q.sinf ,Q.band)
81

82 # Returns the upper and lower bandwidths
83 bandinds(Q:: HessenbergUnitary{'L'}) = -Q.band ,1
84 bandinds(Q:: HessenbergUnitary{'U'}) = -1,Q.band
85

86 # Returns what the domain and range of the operator is
87 domainspace (:: HessenbergUnitary) = SequenceSpace ()
88 rangespace (:: HessenbergUnitary) = SequenceSpace ()
89

90 # Helper functions for getindex
91 hc(c,cinf ,k) = k<= length(c)?c[k]:cinf
92 hs(s,sinf ,k) = k<= length(s)?s[k]:sinf
93 hc(Q:: HessenbergUnitary ,k) = hc(Q.c,Q.cinf ,k)
94 hs(Q:: HessenbergUnitary ,k) = hs(Q.s,Q.sinf ,k)
95



A.8 Types for banded-above unitary operators 229

96 # Accessing entries of the operator
97 getindex(Q:: HessenbergUnitary{'L'},k::Integer ,j:: Integer) =

hessuni_getindex(Q.sign ,Q.c,Q.s,Q.cinf ,Q.sinf ,j,k)
98 getindex(Q:: HessenbergUnitary{'U'},k::Integer ,j:: Integer) =

hessuni_getindex(Q.sign ,Q.c,Q.s,Q.cinf ,Q.sinf ,k,j)
99 function hessuni_getindex{T}(sgn::Bool ,c:: AbstractVector{T},s::

AbstractVector{T},
100 cinf::T,sinf::T,
101 k::Integer ,j:: Integer)
102 si=sgn?1:-1
103

104 if k>j+1
105 zero(T)
106 elseif k>=2 && j ==k-1
107 -si*hs(s,sinf ,k-1)
108 else
109 col0=hc(c,cinf ,k)*hc(c,cinf ,k+1)
110 for p=k+1:j
111 col0*=hs(s,sinf ,p-1)*hc(c,cinf ,p+1)/hc(c,cinf ,p)
112 end
113 si*col0
114 end
115 end
116

117 # Fast multiplication
118 function *(Q:: HessenbergUnitary{'U'},v:: Vector) si=Q.sign ?1:-1
119

120 ret = pad!(si*v,length(v)+1)
121 # Compute each Givens rotation starting from the right
122

123 for i = length(v):-1:1
124 ret[i],ret[i+1] = hc(Q,i+1)*ret[i] + hs(Q,i)*ret[i+1], -hs(Q,i)*

ret[i] + hc(Q,i+1)*ret[i+1]
125 end
126 ret [1]*= hc(Q,1)
127 ret
128 end
129

130 # Fast multiplication
131 function *(Q:: HessenbergUnitary{'L'},v:: Vector)
132 N = max(length(v),length(Q.s))+1
133 si=Q.sign ?1:-1



230 A SpectralMeasures Julia package

134 ret = pad!(si*v,N)
135

136 # This part does the computation we are certain we have to do
137 ret [1] *= hc(Q,1)
138 for i = 1:N-1
139 ret[i],ret[i+1] = hc(Q,i+1)*ret[i] -hs(Q,i)*ret[i+1],
140 hs(Q,i)*ret[i] + hc(Q,i+1)*ret[i+1]
141 end
142

143 # After this point , ret is monotonically decreasing to zero
144 i = N
145 while abs(ret[i]) > eps()
146 push!(ret ,(Q.sinf)*ret[i])
147 ret[i] *= Q.cinf
148 i += 1
149 end
150 ret
151 end
152

153 # Computes the negative of the operator
154 -{uplo}(Q:: HessenbergUnitary{uplo})= HessenbergUnitary{uplo ,eltype(Q)

}(!Q.sign ,Q.c,Q.s,Q.cinf ,Q.sinf ,Q.band)
155

156 # Removes the first row and column (deflation)
157 deflate{uplo}(Q:: HessenbergUnitary{uplo})=HessenbergUnitary(uplo ,Q.

sign ,[(Q.sign ?1:( -1))*sign(Q.c[1]);Q.c],[0;Q.s],Q.cinf ,Q.sinf ,Q.
band)

158 deflate(Q:: HessenbergUnitary ,k:: Integer)=k==0?Q:deflate(deflate(Q),k
-1)

The type BandedUnitary implements the UnitaryOperator type. It stores a vector
of HessenbergUnitary operators and it behaves as though it were the product of these
operators by lazy evaluation.

1 immutable BandedUnitary{uplo ,T} <: UnitaryOperator{T}
2 ops:: Vector{HessenbergUnitary{uplo ,T}}
3 end
4

5 Base.ctranspose(Q:: BandedUnitary)=BandedUnitary(reverse !(map(
ctranspose ,Q.ops)))

6 getindex(Q:: BandedUnitary ,k::Integer ,j:: Integer)=TimesOperator(Q.ops)
[k,j]



A.9 QL iterations 231

7 bandinds(Q:: BandedUnitary)=bandinds(TimesOperator(Q.ops))
8 domainspace (:: BandedUnitary) = SequenceSpace ()
9 rangespace (:: BandedUnitary) = SequenceSpace ()

10

11 function *(Q:: BandedUnitary ,v:: Vector)
12 ret=v
13 for k=length(Q.ops):-1:1
14 ret=Q.ops[k]*ret
15 end
16 Fun(rangespace(Q),ret)
17 end

A.9 QL iterations

All that is required to compute a QL iteration from a QL factorisation is to implement
the multiplication L*Q. The following implements this for the QL factorisation of a
Toeplitz-plus-finite-rank Jacobi operator.

Most of the code is checking that the inputs will actually produce a symmetric
tridiagonal operator. If these tests fail then we simply use a TimesOperator type,
which is a type in ApproxFun that stores two or more banded operators and behaves
as if it were the product of those two operators by lazy evaluation.

1 function *(L:: PertToeplitz ,Q:: HessenbergUnitary{'L'})
2 n=max(size(L.K.matrix ,1),length(Q.s)+3)
3

4 if bandinds(L)==(-2,0)
5 # We check if L*Q is tridiagin al
6 tol=1E -14*( maximum(L.T)+maximum(L.K))
7 istri=true
8 for k=3:n
9 if abs(L[k,k-2]*hc(Q,k-1)+L[k,k-1]*hs(Q,k-2)*hc(Q,k)+L[k,k]*hs(

Q,k-2)*hs(Q,k-1)*hc(Q,k+1))>tol
10 istri=false
11 break
12 end
13 end
14 if istri
15 issym=true
16 if !isapprox(-L[1,1]*hs(Q,1),L[2,1]*hc(Q,1)*hc(Q,2)+L[2,2]*hc(Q

,1)*hc(Q,3)*hs(Q,1);atol=tol)



232 A SpectralMeasures Julia package

17 issym=false
18 end
19

20 if issym
21 for k=2:n+1 # kth row
22 if !isapprox(-L[k+1,k-1]*hs(Q,k-1)+L[k+1,k]*hc(Q,k)*hc(Q,k

+1)+L[k+1,k+1]*hc(Q,k)*hc(Q,k+2)*hs(Q,k),-L[k,k]*hs(Q,k)
;atol=tol)

23 issym=false
24 break
25 end
26 end
27 end
28

29 if issym
30 # result is SymTriToeplitxz
31 ev=Array(Float64 ,max(min(size(L.K.matrix ,1),size(L.K.matrix

,2)),
32 length(Q.s)))
33 for k=1: length(ev)
34 ev[k]=-L[k,k]*hs(Q,k)
35 end
36

37 dv=Array(Float64 ,max(length(Q.s)+1,size(L.K.matrix ,1)))
38 dv[1]=hc(Q,1)*hc(Q,2)*L[1,1]
39 for k=2: length(dv)
40 dv[k]=-hs(Q,k-1)*L[k,k-1]+hc(Q,k)*hc(Q,k+1)*L[k,k]
41 end
42

43 t1=-L.T[1 ,1]*Q.sinf
44 t0=-Q.sinf*L.T[2,1]+Q.cinf ^2*L.T[1,1]
45

46 si=Q.sign ?1:-1
47 return SymTriToeplitz(si*dv,si*ev ,si*t0 ,si*t1)
48 end
49 end
50 end
51

52 # default constructor
53 TimesOperator(L,Q)
54 end



A.10 Functions of operators 233

A.10 Functions of operators

The SpectralMeasures function eig is intended to act in as similar a way as possible to
the eig command in Matlab, but instead of taking a matrix, we now take a Toeplitz-
plus-finite-rank Jacobi operator. The syntax in Matlab is demonstrated the following
example.

1 >> A = rand (3); A = A+A'
2

3 A =
4 1.9298 1.1148 1.1125
5 1.1148 0.9708 1.2220
6 1.1125 1.2220 1.8315
7

8 >> [V,D] = eig(A)
9

10 V =
11 -0.2571 -0.7428 0.6182
12 0.8658 0.1072 0.4889
13 -0.4294 0.6608 0.6156
14

15 D =
16 0.0336 0 0
17 0 0.7792 0
18 0 0 3.9192

The following is the analogous example for a Toeplitz-plus-finite-rank Jacobi opera-
tor in SpectralMeasures, with A becoming J, D becoming x, and V becoming U.

1 julia > using ApproxFun , SpectralMeasures
2

3 julia > J = SymTriToeplitz (5* rand (3) ,3*rand (2) ,0.0 ,0.5)
4 SymTriToeplitz:ApproxFun.SequenceSpace ()->ApproxFun.SequenceSpace ()
5 0.9631 0.2743
6 0.2743 3.4060 0.5426
7 0.5426 1.6881 0.5
8 0.5 0.0 0.5
9 0.5 0.0 0.5

10 0.5 0.0 0.5
11 0.5 0.0 0.5 ...
12 ... ...
13



234 A SpectralMeasures Julia package

14 julia > x,U = eig(J);
15

16 julia > x
17 Fun(ApproxFun.PointSpace{Float64 }([1.69011])+ApproxFun.PointSpace{

Float64 }([3.59504])+Ultraspherical (1 ,[ -1.0 ,1.0])
,[1.69011 ,3.59504 ,0.0 ,0.5])

18

19 julia > U
20 SpaceOperator:ApproxFun.SequenceSpace ()->ApproxFun.PointSpace{Float64

}([1.69011])+ApproxFun.PointSpace{Float64 }([3.59504])+
Ultraspherical (1 ,[ -1.0 ,1.0])

21 0.1018 0.2698 -0.9046 ... -0.001118 -0.0003662 ...
22 0.0993 0.9534 0.2818 2.2988e-6 3.2616e-7 ...
23 3.0867 -13.1866 90.7631 4.8174e-12 -4.2064e-12 ...
24 -1.2894 10.3748 -79.174 -0.6916 8.3062e-12 ...
25 0.1219 -2.7782 27.1397 13.3176 -0.691612 ...
26 0.2223 -3.9551 ... -93.2645 13.3176 ...
27 0.2048 296.516 -93.2645 ...
28 -464.574 296.516 ...
29 387.279 -464.574 ...
30 -172.439 387.279 ...
31 ... ... ... ...

The variable J is of type SymTriToeplitz, here a 3× 3 perturbation of ∆.
The variable x is of type Fun, and is the identity function on the space

S = Span(U0, U1, U2, . . .)⊕ 11.69011 ⊕ 13.59504, (A.10)

which are functions supported on the spectrum of J . Below is a plot of the function x

on its domain σ(J) = [−1, 1] ∪ {1.69011, 3.5904}.

-1 0 1 2 3 4

-1

0

1

2

3

4

s

x(
s)



A.10 Functions of operators 235

The variable U is of type SpaceOperator and is an operator mapping sequences
to functions in the space S. The first and second rows of U are the eigenvectors of J
corresponding to the eigenvalues 1.69011 and 3.59504.

The reasoning behind these choices of data structure is the following equality for
any vector v: Jv = U\(x*(U*x)), just like in Matlab we have A = V\(D*(V*v)). This
means that for a given function f, we can apply the operator f(J) to a vector v using
the syntax, U\(f(x)*(U*v)).

The backslash here is the ApproxFun version of Matlab’s backslash; it uses infinite
dimensional adaptive QR approach to its solution (see [OT14],[OT13]).

For an example, consider the following Julia output. The operator U maps the
vector to a function in S, we can take a function (exp here) of the function x which
lies in S and multiply it. Then we can invert the operator U to obtain a final vector.
At the bottom we compare the result to that from a finite section method.

1 julia > U*[32 ,4 ,1 ,.5 ,.25 ,.125 ,.0675]
2 Fun(ApproxFun.PointSpace{Float64 }([1.69011])+ApproxFun.PointSpace{

Float64 }([3.59504])+Ultraspherical (1 ,[ -1.0 ,1.0])
,[3.25603 ,7.2975 ,11.265 ,22.8424 , -7.18042 , -8.89572 ,12.5823 ,...])

3

4 julia > exp(x)*(U*[32 ,4 ,1 ,.5 ,.25 ,.125 ,.0675])
5 Fun(ApproxFun.PointSpace{Float64 }([1.69011])+ApproxFun.PointSpace{

Float64 }([3.59504])+Chebyshev ([ -1.0 ,1.0])
,[17.6479 ,265.755 ,32.1056 ,43.1205 ,16.1741 , -16.8182 ,12.5179 ,...])

6

7 julia > U\(exp(x)*(U*[32 ,4 ,1 ,.5 ,.25 ,.125 ,.0675]))
8 Fun(ApproxFun.SequenceSpace ()

,[106.57 ,248.457 ,63.5795 ,8.62155 ,1.5722 ,0.497249 ,0.209471 ,...])
9

10 julia > expm(full(J[1:10 ,1:10]))*[32;4;1;.5;.25;.125;.0675; zeros (3)]
11 10-element Array{Float64 ,1}:
12 106.57
13 248.457
14 63.5795
15 8.62155
16 1.5722
17 0.497249
18 0.209471
19 0.0626988
20 0.0128002



236 A SpectralMeasures Julia package

21 0.00189908

The following types and functions from ApproxFun are used in the code below.

• Interval is an ApproxFun type which stores the endpoints of a real interval

• SpaceOperator creates an operator with prescribed domain and range

• BlockOperator is a type representing a matrix whose entries are operators.

• SequenceSpace is a Space of functions in ApproxFun in which functions are
simply sequences indexed by the natural numbers

• SumSpace is a Space which represents to sum of two spaces of functions. Below
it is used to combine some instances of DiracSpace and a continuous function
space into a combined space.

1 function Base.eig(Jin:: SymTriToeplitz)
2 Qret=Array(HessenbergUnitary{'U',Float64 },0)
3 eigapprox=sort(discreteeigs(Jin))
4

5 # The continuous spectrum of Jin
6 ctsspec = ApproxFun.Interval(Jin.a-2*abs(Jin.b),Jin.a+2*abs(Jin.b))
7

8 J=Jin
9

10 # If there are no discrete eigenvalues
11 if length(eigapprox) == 0
12 C=connection_coeffs_operator(J)
13 x=Fun(identity ,Ultraspherical (1,ctsspec)) # Domain Fun is scaled

and shifted to ctsspec
14 U=SpaceOperator(C,SequenceSpace (),space(x))
15 return x,U
16 end
17

18 # If there are discrete eigenvalues then perform a shifted QL
iteration

19 # with those eigenvalues as shifts
20 eig=Array(Float64 ,0)
21 tol=1E-14
22 for k=1: length(eigapprox)
23 mu=eigapprox[k]



A.10 Functions of operators 237

24 Q,L=ql(J-mu*I)
25 push!(Qret ,deflate(Q',k-1))
26 J=(L*Q+mu*I)
27

28 while abs(J[1 ,2]) > tol
29 # mu=J[1,1] DO NOT DO THIS. IF MU IS NOT ACCURATE , J[1,1] CAN

BE AN INVALID SHIFT (MW)
30 Q,L=ql(J-mu*I)
31 J=L*Q+mu*I
32 push!(Qret ,deflate(Q',k-1))
33 end
34

35 push!(eig ,J[1,1])
36 J=J[2:end,2:end]
37 end
38

39 if length(eig) == 1
40 Q=Qret [1]
41 C=BlockOperator(eye(length(eig)),connection_coeffs_operator(J))
42 x=Fun(identity ,SumSpace(PointSpace(eig [1]),Ultraspherical (1,

ctsspec)))
43 U=SpaceOperator(C*Q,SequenceSpace (),space(x))
44 return x,U
45 else
46 Q=BandedUnitary(reverse !(Qret))
47 C=SpaceOperator(BlockOperator(eye(length(eig)),

connection_coeffs_operator(J)),SequenceSpace (),SequenceSpace ()
)

48 x=Fun(identity ,SumSpace(mapreduce(PointSpace ,SumSpace ,eig),
Ultraspherical (1,ctsspec)))

49 U=SpaceOperator(C*Q,SequenceSpace (),space(x))
50 return x,U
51 end
52 end





Appendix B
Riemannian geometry and Lie theory

B.1 Manifolds, Lie groups and Lie algebras

Without being precise, a manifold is a smooth set which looks locally like RD. The
easiest examples that come to mind are smooth surfaces in RD, but a manifold needn’t
be defined in that way. There are coordinate-free, “intrinsic” definitions of manifolds
which do not rely on such an embedding, but we will not use them because all the
manifolds we are interested in are manifolds of matrices, which do reside naturally
in an ambiant euclidean space, Cn2 . The following definition will suffice, and we are
sure that the geometrically initiated can translate the exposition into the more general
abstract framework. We mainly follow [IMKNZ00].

Definition B.1.1 (Manifold). A d-dimensional manifoldM is a d-dimensional smooth
surfaceM⊆ RD for some integer D ≥ d.

Many manifolds of interest can be described as the zero set of a smooth function
g : RD → Rm. For example, the unit sphere is the zero set of g(x) = ∥x∥2 − 1; the
group of orthogonal matrices O(n) is the zero set of g(X) = ∥XXT − I∥2F ; and some
one-sheet hyperboloid is the zero set of g(x, y, z) = x2 + y2 − z2 − 1.

The notion of a plane that is tangent to a surface is fundamental to calculus. In
the same way, we want to define tangents at each point in the manifold.

Definition B.1.2 (Tangent and cotangent space). LetM be a d-dimensional manifold.
The tangent space at X ∈M, denoted TXM, is vector space of vectors V ∈ RD such
that

V =
dµ(s)

ds

∣∣∣∣
s=0

(B.11)



240 B Riemannian geometry and Lie theory

for some smooth path µ inM such that µ(0) = X. The cotangent space at X, denoted
T ∗
XM, is the dual vector space to TXM. The tangent bundle and the cotangent bundle

are TM =
⋃

X∈M TXM and T ∗M =
⋃

X∈M T ∗
XM respectively.

Definition B.1.3 (Vector and covector field). A vector field on a manifold M is a
smooth function F :M→ TM such that F (X) ∈ TXM for all X ∈M. The vector
space of all vector fields on M is denoted X(M). A covector field is defined in the
obvious way. The vector space of all covector fields is denoted X∗(M).

From these definitions, we see that differential equation

Ẋ(t) = F (X(t)) (B.12)

evolves on the manifoldM for any initial datum X0 if and only if F ∈ X(M).

Definition B.1.4 (Gradient covector field). Let Ψ :M→ R be a C1 function. Then
the gradient covector field of Ψ, denoted gradΨ ∈ X∗(M), is the covector field defined
by

gradΨ(X)(V ) =
d

ds
Ψ(µ(s))

∣∣∣∣
s=0

, (B.13)

where µ is a smooth path inM such that µ(0) = X ∈M and µ̇(0) = V ∈ TXM.

Note that a gradient vector field cannot be uniquely defined, because the isomor-
phism between a tangent space and cotangent space is dependent on the choice of inner
product. This inner product is called a metric, and it allows us to define lengths and
angles on a manifold. For our interests here though, it matters only because it changes
what vectors the gradient covectors are mapped to.

Definition B.1.5 (Metric). For a manifoldM, a metric g is a smooth assignment of
a bilinear map ⟨·, ·⟩g : TXM× TXM→ R for each X ∈M. The metric is said to be
Riemannian if the bilinear map is positive definite for every X ∈M.

Definition B.1.6 (Gradient vector field). Let Ψ : (M, g)→ R be a C1 function. Then
the gradient vector field of Ψ is the unique vector field ∇gΨ ∈ X(M) such that

⟨∇gΨ(X), V ⟩g = gradΨ(X)(V ) (B.14)

for all X ∈M and V ∈ TXM.



B.2 Lie groups and Lie algebras 241

B.2 Lie groups and Lie algebras

Some manifolds are special1. Some manifolds are also groups. If the group operation is
smooth, then we call the manifold a Lie group.

Definition B.2.1 (Lie group). A Lie group G is a group that is also a manifold.
Additionally, the group operation must be a smooth map from G × G to G. A matrix
Lie group is a Lie group whose elements are matrices, with matrix multiplication as
the group operation.

Definition B.2.2 (Lie algebra). A Lie algebra g is a vector space endowed with a Lie
bracket; that is a bilinear, skew-symmetric map [·, ·] : g× g→ g satisfying the Jacobi
identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (B.15)

Definition B.2.3 (Lie algebra associated to a Lie group). Let G be a Lie group, then
its associated Lie algebra is the tangent space at the identity, TIG. The induced Lie
bracket is

[A,B] =
∂2

∂s∂t
ρ(s)σ(t)ρ(−s)

∣∣∣∣
s=t=0

, (B.16)

where ρ and σ are smooth curves in G such that ρ(0) = σ(0) = I and ρ̇(0) = A,
σ̇(0) = B.

Remark B.2.4. If G is a matrix Lie group, then the induced Lie bracket is the standard
matrix commutator.

Proposition B.2.5. Let G be a matrix Lie group with associated Lie algebra g. Then
for each P ∈ G, the tangent space is

TPG = {AP : A ∈ g} = {PA : A ∈ g} (B.17)

Proof. Let P ∈ G and let ρ be a path in G such that ρ(0) = P . Then σ1 = ρP−1 and
σ2 = P−1ρ are paths in G such that σi(0) = I. By definition, σ̇i(0) =∈ g, which implies
that ρ̇(0) = σ̇1(0)P = Pσ̇2(0) ∈ TPG. For the opposite inclusion, if A ∈ g then there
exists a path σ in G such that σ(0) = I, σ̇(0) = A. Then ρ1 = σP and ρ2 = Pσ are
paths in G such that ρi(0) = P and ρ̇1(0) = AP , ρ̇2(0) = PA. Hence AP and PA are
members of TPG.

1Manifolds like SL(n) and SO(n) are doubly “special”.



242 B Riemannian geometry and Lie theory

This characterisation of the tangent spaces of a matrix Lie group generalises if we
define multiplication between an element of g and an element of G to be

AP =
d

ds
(ρ(s)P )

∣∣∣∣
s=0

, PA =
d

ds
(Pρ(s))

∣∣∣∣
s=0

(B.18)

where ρ is a path in G such that ρ(0) = I, ρ̇(0) = A.
Unless otherwise stated, if we have both a generic Lie group G and a generic Lie

algebra g “in play”, then the Lie algebra is that which is associated to the Lie group.

Definition B.2.6 (Exponential map). The exponential map exp : g→ G is defined to
be exp(A) = ρ(1), where ρ is the unique smooth path in G such that

ρ̇(t) = Aρ(t), ρ(0) = I. (B.19)

Proposition B.2.7. For a matrix Lie algebra, the exponential map is precisely the
matrix exponential

expm(A) =
∞∑
k=0

Ak

k!
.

Proof. Appeal to the uniqueness of solution to the IVP (B.19).

The adjoint maps are some other maps on Lie groups and their Lie algebras that
are of fundamental importance, especially for isospectral flows.

Definition B.2.8 (AD, Ad and ad). The ADjoint map, Adjoint map, and adjoint
map are defined as follows:

AD : G × G → G, ADPR = PRP−1, (B.20)

Ad : G × g→ g, AdPB = PBP−1, (B.21)

ad : g× g→ g, adAB = [A,B] . (B.22)

For Ad, we have used the definition of multiplication as in (B.18).

Lemma B.2.9 (Hadamard’s lemma). Let Ad and ad be as in Definition B.2.8. Then
for all A,B ∈ g,

Adexp(A)B = exp(A)B exp(−A) =
∞∑
k=0

1

k!
adk

AB = exp(adA)B. (B.23)



B.3 Differential equations, Lie groups and manifolds 243

Proof. The first and last equalities are by definition. For the main equality, consider
the analytic function

f(s) = exp(sA)B exp(−sA),

which has the appropriate Taylor series for the desired result.

B.3 Differential equations, Lie groups and manifolds

We can endow a manifold with some of the features of a Lie group by finding what is
known as a group action.

Definition B.3.1 (Lie group action). Let G be a Lie group and M be a manifold.
Then a (left) Lie group action Λ of G onM is a smooth map Λ : G ×M→M such
that the following two properties hold:

1. Λ(I,X) = X

2. Λ(P,Λ(Q,X)) = Λ(PQ,X)

Remark B.3.2. For general groups acting on sets, the definition is as above but without
the smoothness requirement.

An example of a Lie group action is that of SO(n) on the unit sphere in Rn by
multiplication on the left: Λ(Q, x) = Qx. Multiplication on the right not a left Lie
group action, because (xQ)P = x(QP ) ̸= x(PQ); it is a right group action.

A Lie group can act on itself by multiplication on the left. The ADjoint map is a
less obvious Lie group action on itself. The Adjoint map is a Lie group action on its
Lie algebra.

Definition B.3.3. An orbit of a group action onM is an equivalence class of equiva-
lence relation

X ∼ Y ⇐⇒ there exists P ∈ G such that Y = Λ(P,X). (B.24)

A group action is transitive ifM consists of only one orbit.

For isospectral flows, the action we care about it that of the Adjoint map of GL(n)

on gl(n). Or is it? This does not describe the geometry and structure of an isospectral
flow. We care more about the action on the orbits, because once a flow has begun



244 B Riemannian geometry and Lie theory

it cannot leave the orbit. This principle applies in general to flows that evolve on
manifolds. We can restrict the manifold to orbits of a Lie group action to ensure that
the action is transitive.

Definition B.3.4. A manifoldM is said to be homogeneous if there exists a a transitive
Lie group action Λ : G ×M→M for some Lie group G.

The manifoldM = {PX0P
−1 : P ∈ GL(n)} for some X0 ∈ gl(n) is homogeneous,

because the action of GL(n) by the Adjoint map is transitive. However, there are
some redundancies because PX0P

−1 = (αPX0(αP )−1 for any nonzero constant α. We
would prefer to eliminate these redundancies by restricting in the Lie group to SL(n).

Definition B.3.5. A group action is faithful if Λ(P,X) = Λ(Q,X) for all X ∈ M
implies P = Q.

If a Lie group acts on a manifold, then there is a natural map between the Lie algebra
and the vector fields on the manifold. This is the main motivation for introducing a
Lie group action to a manifold, because it allows us to associate flows on the manifold
with flows on the Lie group.

Definition B.3.6. Let Λ : G ×M → M be a Lie group action. Then the action
induces a Lie algebra homomorphism λ : g→ X(M) by

λ(A)(X) =
d

ds
Λ(ρ(s), X)

∣∣∣∣
s=0

, (B.25)

where ρ is a smooth path in G such that ρ(0) = I and ρ̇(0) = A.

LetM = Rn and G = SO(n) with group action Λ(Q, x) = Qx. Then for Θ ∈ so(n),
x ∈ Rn, λ(Θ)(x) = Θx. For a less trivial example, letM = gl(n) and G = SL(n) with
group action Λ(P,X) = PXP−1. Then λ(A)(X) = [A,X].

Lemma B.3.7 (Lie group equation induced by a group action). Let Λ : G ×M→M
be a Lie group action and let A : [0,∞)×M→ g be C1. Then the flow of λ(A) starting
from X0 ∈M,

Ẋ(t) = λ(A(t,X(t)))(X(t)), X(0) = X0 ∈M, (B.26)

can be written in the form
X(t) = Λ(P (t), X0), (B.27)



B.3 Differential equations, Lie groups and manifolds 245

where P : [0,∞)→ G satisfies the differential equation

Ṗ (t) = A(t,Λ(P (t), X0))P (t), P (0) = I, (B.28)

where multiplication is defined as in (B.18).

Proof. Let P be the unique solution to (B.28) and define X(t) = Λ(P (t), X0). For a
fixed t > 0 let ρ be a path in G such that ρ(0) = I and ρ̇(0) = A(t,X(t)). Then

λ(A(t,X(t)))(X(t))) =
d

ds
Λ(ρ(s), X(t))

∣∣∣∣
s=0

=
d

ds
Λ(ρ(s),Λ(P (t), X0))

∣∣∣∣
s=0

.

The second property of group actions gives

λ(A(t,X(t)))(X(t))) =
d

ds
Λ(ρ(s)P (t), X0)

∣∣∣∣
s=0

= gradΛ(ρ(s)P (t), X0)(ρ̇(s)P (t))

∣∣∣∣
s=0

= gradΛ(P (t), X0)(A(t,X(t))P (t))

= gradΛ(P (t), X0)(Ṗ (t))

=
d

dt
Λ(P (t), X0)

= Ẋ(t),

where the gradient is taken with respect to the Lie group variable. Since X(0) =

Λ(P (0), X0) = X0, the X we defined must be the desired flow by uniqueness.

As we have already mentioned, this lemma allows us to take a differential equation
which evolves on an homogeneous manifold and transform it into an equation on a
Lie group. For isospectral flows, such abstraction is not necesssary, as the Lie group
equation was elementary and intuitive to compute. However, here is where the abstract
approach becomes very useful indeed. Using it we will be able to transform the Lie
group equation into an equation on its Lie algebra, something which is not obviously
possible for isospectral flows.

Definition B.3.8. Let ϕ : g → G be a smooth function. Its differential is the right
trivialised tangent, dϕ : g× g→ g, defined such that for any path Ω in g,

d

ds
ϕ(Ω(s)) = dϕΩ(s)(Ω̇(s))ϕ(Ω(s)). (B.29)



246 B Riemannian geometry and Lie theory

Here multiplication is as defined in (B.18).

The primary example of such a smooth function is ϕ = exp. By differentiating
term by term, we have

d

ds
exp(Ω) =

∞∑
k=0

1

k!

k∑
i=1

Ωi−1Ω̇Ωk−i.

We can induce cancellation by applying adΩ:

adΩ

(
d

ds
exp(Ω)

)
=

∞∑
k=0

1

k!

(
ΩkΩ̇− Ω̇Ωk

)
= exp(Ω)Ω̇− Ω̇ exp(Ω)

=
(
Adexp(Ω)Ω̇− Ω̇

)
exp(Ω).

Now, multiplying both sides on the right by exp(−Ω) and using Hadamard’s Lemma
B.2.9, we get

adΩ

((
d

ds
exp(Ω)

)
exp(−Ω)

)
= exp(adΩ)(Ω̇)− Ω̇. (B.30)

Hence we have the formal expression

d expΩ =
exp(adΩ)− I

adΩ

=
∞∑
k=0

1

(k + 1)!
adk

Ω. (B.31)

Lemma B.3.9 (Lie algebra equation induced by ϕ). Let ϕ : g → G be a smooth
function such that ϕ(O) = I, and let P : [0,∞)→ G satisfy the differential equation

Ṗ (t) = C(t, P (t))P (t), P (0) = I, (B.32)

for a given C1 function C : [0,∞) × G → g (multiplication is as defined in (B.18)).
Then P can be written in the form

P (t) = ϕ(Ω(t)),

where Ω : [0,∞)→ g satisfies the differential equation

Ω̇(t) = dϕ−1
Ω(t)(C(t, ϕ(Ω(t)))), Ω(0) = 0. (B.33)



B.3 Differential equations, Lie groups and manifolds 247

Proof. Suppose that Ω : [0,∞)→ g is the unique solution to (B.33). Then

d

dt
ϕ(Ω(t)) = dϕΩ(t)(Ω̇(t))ϕ(Ω(t))

= C(t, ϕ(Ω(t)))ϕ(Ω(t)),

and ϕ(Ω(0)) = I. By uniqueness of solution to (B.32), P (t) = ϕ(Ω(t)).

Since d expΩ is an analytic function in adΩ, it is straightforward to invert:

d exp−1
Ω =

adΩ

exp(adΩ)− I
=

∞∑
k=0

Bk

k!
adk

Ω, (B.34)

where B0, B1, B2, . . . are the Bernoulli numbers, 1,−1
2
, 1
6
, 0,− 1

30
, 0, . . ..

We can combine Lemmas B.3.7 and B.3.9 results to obtain a Lie algebra equation
induced by a Lie group action on a manifold. For a Lie group action Λ : G ×M→M,
C1 function A : [0,∞) ×M → g, smooth map ϕ : g → G such that ϕ(0) = I, and
X0 ∈M, the solution X of

Ẋ(t) = λ(A(t,X(t)))(X(t)), X(0) = X0, (B.35)

which evolves inM, can be expressed as

X(t) = Λ(ϕ(Ω(t)), X0), (B.36)

where Ω : [0,∞)→ g satisfies

Ω̇(t) = dϕ−1
Ω A(t,Λ(ϕ(Ω(t)), X0)), Ω = O. (B.37)

The three layers involved are summarised in a table:

ManifoldM Lie group G Lie algebra g

Ẋ = λ(B(X))(X) Ṗ = B(X)P Ω̇ = dϕ−1
Ω(t)B(X)

X(0) = X0 P (0) = I Ω(0) = O

X = Λ(P,X0) P = ϕ(Ω)

Let’s see what this looks like for an isospectral flow Ẋ = [A(X), X] with ϕ = exp:

Ω̇(t) = d exp−1
Ω(t) A(Adexp(Ω(t))X0)

=
∞∑

k,j=0

Bk

k!j!

(
adk

Ω(t) ◦ A ◦ ad
j
Ω(t)

)
X0



248 B Riemannian geometry and Lie theory

In some cases, we can calculate this series exactly. For example, if g = so(3), then
ad3

ΩA = −∥Ω∥2FadΩA for all A ∈ so(3), so that

d exp−1
Ω A = A− 1

2
adΩA+

(
1

2
∥Ω∥F cot(

1

2
∥Ω∥F )− 1

)
ad2

ΩA. (B.38)

Otherwise, we must resort to a truncation to an acceptable error margin.

B.3.1 Quadratic Lie groups and the Cayley transform

A restricted class of matrix Lie groups is that of the quadratic Lie groups. Such Lie
groups have a particularly nice mapping ϕ : g→ G called the Cayley transform.

Definition B.3.10 (Quadratic Lie group). A Lie group G is quadratic if it is of the
form

G =
{
Q ∈ GL(n) : QRQT = R

}
, (B.39)

where R ∈ GL(n) is a prescribed matrix.

The most obvious example of a quadratic Lie group is the orthogonal group O(n).
Other examples include the symplectic group Sp(2n)(⊂ GL(2n)) for which

R =

(
On In

−In On

)
, (B.40)

and the Lorentz group SO(3, 1) ⊂ SL(4), for which

R =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (B.41)

The former is appears in the geometry of Hamiltonian systems and the latter appears
in Special Relativity.

Proposition B.3.11 (Quadratic Lie algebra). The Lie algebra associated to the
quadratic Lie group B.39 is

g =
{
B ∈ gl(n) : BR +RBT = O

}
(B.42)

Any Lie algebra of this form is a called a quadratic Lie algebra.



B.3 Differential equations, Lie groups and manifolds 249

Definition B.3.12 (Cayley transform). Let g be a quadratic Lie algebra. Then the
Cayley transform of Ω ∈ g is defined to be

Cay(B) = (I − 1

2
B)−1(I +

1

2
B) = (I +

1

2
B)(I − 1

2
B)−1. (B.43)

We stress that although the Cayley transform takes the form of the Padé ap-
proximant φ(z) =

1+ 1
2
z

1− 1
2
z

for the exponential function, it has nothing to do with the
exponential function. It would be just as valid to change 1

2
to any real nonzero constant.

Lemma B.3.13. If G is quadratic, then the Cayley transform maps g into G.

Proof. Let B ∈ g. Then

Cay(B)RCay(B)T = (I − 1

2
B)−1(R +

1

2
BR)Cay(BT )

= (I − 1

2
B)−1R(I − 1

2
BT )Cay(BT )

= (R−1 − 1

2
R−1B)−1(I − 1

2
BT )Cay(BT )

= (R−1 +
1

2
BTR−1)−1(I − 1

2
BT )Cay(BT )

= RCay(BT )−1Cay(BT )

= R.

Therefore Cay(B) ∈ G.

Proposition B.3.14 (Differential of Cay). The right trivalised differential of the
Cayley transform is the map

dCayΩA = (I − 1

2
Ω)−1A(I +

1

2
Ω)−1. (B.44)

Hence the inverse is the map

dCay−1
Ω A = A− 1

2
[Ω, A]− 1

4
ΩAΩ. (B.45)

Proof. A direct calculation of d
ds
Cay(Ω(s)) for a smooth path Ω in g confirms the

result.

The inverse differential dCay−1
Ω is quadratic in Ω, no matter what the dimension of

the Lie algebra is. Hence we can always evaluate it exactly, unlike with the exponential,
where we usually have to do some sort of approximation.





Appendix C
Useful matrix identities

C.1 Derivatives

Lemma C.1.1 (Derivative of an inverse). Let P ∈ GL(n). Then

d

dt
P (t)−1 = −P (t)−1P ′(t)P (t)−1. (C.46)

Lemma C.1.2 (Jacobi’s formula). Let P ∈ GL(n). Then

d

dt
det(P (t)) = (det(P (t)))tr(Ṗ (t)P (t)−1). (C.47)

C.2 Frobenius Inner Product

Lemma C.2.1 (Adjoint of the adjoint map). Let A,B,C ∈ Rn×n. Then

⟨A, adCB⟩F = ⟨adCTA,B⟩F . (C.48)





Appendix D
Some results in analysis

D.1 The Radon–Nikodym derivative

A reference for this section is [Tes16].

Definition D.1.1 (Absolute continuity of measures). Let µ and ν be measures on a
measurable space (X,Σ). We say that ν is absolutely continuous with respect to µ, if,

µ(A) = 0⇒ ν(A) = 0, (D.49)

for all sets A ∈ Σ. We write ν ≪ µ.

Theorem D.1.2 (Radon-Nikodym). Let µ, ν be two σ-finite measures on a measurable
space (X,Σ). Then ν is absolutely continuous with respect to µ if and only if there
exists f ∈ L1

µ(X,Σ) such that

ν(A) =

∫
A

f(s) dµ(s) (D.50)

for every A ∈ Σ. The function f is called the Radon-Nikodym derivative of ν with
respect to µ, and is denoted dν

dµ
.

D.2 Fredholm operators

A reference for this section is [Sim79], or many other good functional analysis books.

Definition D.2.1 (Fredholm operator). An operator A ∈ B(ℓ2) is Fredholm if the
range Ran(A) is closed and both Ker(A) and Ker(AT ) are finite dimensional. The



254 D Some results in analysis

index of a Fredholm operator is

ind(A) = dim(Ker(A))− dim(Ker(AT ))

Remark D.2.2. An equivalent definition in the textbooks is that the kernel and cokernel
of A are both finite dimensional.

Theorem D.2.3. An operator A ∈ B(ℓ2) is Fredholm with index 0 if and only if it is
a compact perturbation of an invertible operator.

Theorem D.2.4 (Fredholm alternative). Let A ∈ B(ℓ2) be Fredholm with index 0.
Then A is injective if and only if it is surjective.

Theorem D.2.5. Let A,B ∈ B(ℓ2) be Fredholm operators with indices ka and kb

respectively. Then both AB and BA are Fredholm with index ka + kb.



Bibliography

[ADH97] Ashlock, D.A., Driessel, K.R. and Hentzel, I.R. On matrix
structures invariant under Toda-like isospectral flows. Linear Algebra
Appl. (1997). 254, no. 1: 29–48.

[AH05] Atkinson, K. and Han, W. Theoretical numerical analysis, vol. 39.
Springer (2005).

[AK65] Akhiezer, N.I. and Kemmer, N. The classical moment problem: and
some related questions in analysis, vol. 5. Oliver & Boyd Edinb. (1965).

[AMVW15] Aurentz, J.L., Mach, T., Vandebril, R. and Watkins, D.S. Fast
and backward stable computation of roots of polynomials. SIAM J. Matrix
Anal. A. (2015). 36, no. 3: 942–973.

[Arv94a] Arveson, W. C*-algebras and numerical linear algebra. J. Funct. Anal.
(1994). 122, no. 2: 333–360.

[Arv94b] Arveson, W. The role of c∗-algebras in infinite dimensional numerical
linear algebra. In Contemp. Math (1994) .

[Ask75] Askey, R. Orthogonal polynomials and special functions. SIAM (1975).

[BAHNS15a] Ben-Artzi, J., Hansen, A.C., Nevanlinna, O. and Seidel, M.
Can everything be computed? on the solvability complexity index and
towers of algorithms. arXiv preprint arXiv:1508.03280 (2015).

[BAHNS15b] Ben-Artzi, J, Hansen, A.C., Nevanlinna, O. and Seidel, M.
New barriers in complexity theory: on the solvability complexity index
and the towers of algorithms. C. R. Acad. Sci. Paris, Ser. I (2015). 353,
no. 10: 931 – 936.

[Bat90] Batterson, S. Convergence of the shifted QR algorithm on 3× 3
normal matrices. Numer. Math. (1990). 58, no. 1: 341–352.

[Bat94] Batterson, S. Convergence of the Francis shifted QR algorithm on
normal matrices. Linear Algebra Appl. (1994). 207: 181–195.

[BBI+09] Bloch, A.M., Brînzănescu, V., Iserles, A., Marsden, J.E. and
Ratiu, T.S. A class of integrable flows on the space of symmetric
matrices. Comm. Math. Phys. (2009). 290, no. 2: 399–435.



256 Bibliography

[BG98] Bloch, A.M. and Gekhtman, M.I. Hamiltonian and gradient struc-
tures in the Toda flows. J. Geom. Phys. (1998). 27, no. 3: 230–248.

[BH11] Brouwer, A.E. and Haemers, W.H. Spectra of graphs. Springer
(2011).

[BI06] Bloch, A.M. and Iserles, A. On an isospectral Lie–Poisson system
and its Lie algebra. Found. Comput. Math. (2006). 6, no. 1: 121–144.

[Blo90] Bloch, A.M. Steepest descent, linear programming and Hamiltonian
flows. Contemp. Math. AMS (1990). 114: 77–88.

[Bof10] Boffi, D. Finite element approximation of eigenvalue problems. Acta
Numerica (2010). 19: 1–120.

[BP94] Berman, A. and Plemmons, R.J. Nonnegative matrices in the
mathematical sciences. SIAM (1994).

[BP98] Brin, S. and Page, L. The anatomy of a large-scale hypertextual web
search engine. Comput. Networks ISDN (1998). 30, no. 1: 107–117.

[Bro91] Brockett, R.W. Dynamical systems that sort lists, diagonalize matri-
ces, and solve linear programming problems. Linear Algebra Appl. (1991).
146: 79–91.

[Bro93] Brockett, R.W. Differential geometry and the design of gradient
algorithms. In Proc. Symp. Pure Math., vol. 54 (1993) 69–92.

[BS] Benet, L. and Sanders, D.P. ValidatedNumerics.jl Julia package.
github.com/dpsanders/ValidatedNumerics.jl.

[BS13] Böttcher, A. and Silbermann, B. Analysis of Toeplitz operators.
Springer (2013).

[BV90] Babelon, O. and Viallet, C.M. Hamiltonian structures and Lax
equations. Phys. Lett. B (1990). 237, no. 3: 411–416.

[CB76] Cantoni, A. and Butler, P. Eigenvalues and eigenvectors of sym-
metric centrosymmetric matrices. Linear Alg. Appl. (1976). 13, no. 3:
275–288.

[CD89] Chu, M.T. and Driessel, K.R. Can real symmetric Toeplitz matrices
have arbitrary real spectra? Tech. rep., Ida. State Univ. (1989).

[CD90] Chu, M.T. and Driessel, K.R. The projected gradient method for
least squares matrix approximations with spectral constraints. SIAM J.
Numer. Anal. (1990). 27, no. 4: 1050–1060.

[CG02] Chu, M.T. and Golub, G.H. Structured inverse eigenvalue problems.
Acta Numer. (2002). 11, no. 0: 1–71.

[CG05] Chu, M.T. and Golub, G.H. Inverse eigenvalue problems: theory,
algorithms, and applications. Oxf. Univ. Press (2005).

github.com/dpsanders/ValidatedNumerics.jl


Bibliography 257

[Chu93] Chu, M.T. On the differential equation dx/dt = [X, k(X)] where k
is a Toeplitz annihilator. Tech. rep., N.C. State Univ. (1993). URL
http://www4.ncsu.edu/~mtchu/Research/Papers/ode.pdf.

[Chu94] Chu, M.T. A list of matrix flows with applications. Fields Inst. Commun.
(1994). 3: 87–97.

[Chu95] Chu, M.T. Scaled Toda-like flows. Linear Algebra Appl. (1995). 215:
261–273.

[Chu98] Chu, M.T. Inverse eigenvalue problems. SIAM Rev. (1998). 40, no. 1:
1–39.

[Chu08] Chu, M.T. Linear algebra algorithms as dynamical systems. Acta Numer.
(2008). 17: 1–86.

[Cip00] Cipra, B.A. The best of the 20th century: editors name top 10 algo-
rithms. SIAM news (2000). 33, no. 4: 1–2.

[CIZ97] Calvo, M., Iserles, A. and Zanna, A. Numerical solution of
isospectral flows. Math. Comput. (1997). 66, no. 220: 1461–1486.

[Cle55] Clenshaw, C.W. A note on the summation of chebyshev series. Math.
Comput. (1955). 9, no. 51: 118–120.

[CT65] Cooley, J.W. and Tukey, J.W. An algorithm for the machine
calculation of complex Fourier series. Math. Comput. (1965). 19, no. 90:
297–301.

[Day96] Day, D. How the shifted QR algorithm fails to converge and how to
fix it. Tech. rep., Tech. Report 96–0913, Sandia National Laboratories,
Albuquerque, NM (1996).

[DE15] Dubbs, A. and Edelman, A. Infinite random matrix theory, tridiago-
nal bordered Toeplitz matrices, and the moment problem. Linear Algebra
Appl. (2015). 467: 188–201.

[Dei00] Deift, P. Orthogonal polynomials and random matrices: a Riemann-
Hilbert approach, vol. 3. Am. Math. Soc. (2000).

[Dei08] Deift, P. Some open problems in random matrix theory and the theory
of integrable systems. Contemp. Math. (2008). 458: 419.

[DHT14] Driscoll, T.A., Hale, N. and Trefethen, L.N. Chebfun Guide.
Pafnuty Publications (2014).

[DKS10] Damanik, D., Killip, R. and Simon, B. Perturbations of orthogonal
polynomials with periodic recursion coefficients. Ann. Math. (2010).
1931–2010.

[DLT85] Deift, P., Li, L.C. and Tomei, C. Toda flows with infinitely many
variables. J. Funct. Anal. (1985). 64, no. 3: 358–402.

http://www4.ncsu.edu/~mtchu/Research/Papers/ode.pdf


258 Bibliography

[DN86] Dombrowski, J. and Nevai, P. Orthogonal polynomials, measures
and recurrence relations. SIAM J. Math. Anal. (1986). 17, no. 3: 752–759.

[DNT83] Deift, Percy A., Nanda, Tara and Tomei, Carlos. Ordinary
differential equations and the symmetric eigenvalue problem. SIAM J.
Numer. Anal. (1983). 20, no. 1: 1–22.

[DP04] Davies, E.B. and Plum, M. Spectral pollution. IMA J. Numer. Anal.
(2004). 24, no. 3.

[DPS08] Damanik, D., Pushnitski, A. and Simon, B. The analytic theory of
matrix orthogonal polynomials. Surveys in Approximation Theory (2008).
4: 1–85.

[Dri87] Driessel, K.R. On finding the eigenvalues and eigenvectors of a matrix
by means of an isospectral gradient flow. In Tech. Rep. 541. Dept. of
Mathematical Sciences, Clemson Univ Clemson, SC (1987).

[DS99] Diele, F. and Sgura, I. Isospectral flows and the inverse eigenvalue
problem for Toeplitz matrices. J. Comput. Appl. Math. (1999). 110,
no. 1: 25–43.

[DS02] Diele, F. and Sgura, I. The Cayley method and the inverse eigenvalue
problem for Toeplitz matrices. BIT Numer. Math. (2002). 42, no. 2:
285–299.

[DS03] Diele, F. and Sgura, I. Centrosymmetric isospectral flows and some
inverse eigenvalue problems. Linear Algebra Appl. (2003). 366: 199–214.

[DS06a] Damanik, D. and Simon, B. Jost functions and Jost solutions for
Jacobi matrices, I. a necessary and sufficient condition for Szegő asymp-
totics. Invent. Math. (2006). 165, no. 1: 1–50.

[DS06b] Damanik, David and Simon, Barry. Jost functions and Jost solutions
for Jacobi matrices, II. decay and analyticity. Int. Math. Res. Notices
(2006). 2006.

[DSBB71] Dunford, N., Schwartz, J.T., Bade, W.G. and Bartle, R.G.
Linear operators. Wiley (1971).

[EH75] Eberlein, P.J. and Huang, C.P. Global convergence of the QR
algorithm for unitary matrices with some results for normal matrices.
SIAM J. Numer. Anal. (1975). 12, no. 1: 97–104.

[Fla74] Flaschka, H. The Toda lattice II. Existence of integrals. Phys. Rev. B
(1974). 9, no. 4: 1924.

[FLSL66] Feynman, R.P., Leighton, R.B., Sands, M. and Lindsay, R.B.
The Feynman lectures on physics, vol. 3: Quantum mechanics (1966).

[FNO87] Friedland, S., Nocedal, J. and Overton, M.L. The formulation
and analysis of numerical methods for inverse eigenvalue problems. SIAM
J. Numer. Analysis (1987). 24, no. 3: 634–667.



Bibliography 259

[Fra61] Francis, J.G.F. The QR transformation. A unitary analogue to the
LR transformation—part 1. Comput. J. (1961). 4, no. 3: 265–271.

[Fra99] Frank, J. Introduction to computational chemistry. Wiley (1999).

[Gau04] Gautschi, W. Orthogonal polynomials: computation and approximation.
Oxf. Univ. Press (2004).

[GC80] Geronimo, J.S. and Case, K.M. Scattering theory and polynomials
orthogonal on the real line. T. Am. Math. Soc. (1980). 258, no. 2:
467–494.

[GM09] Golub, G.H. and Meurant, G. Matrices, moments and quadrature
with applications. Princet. Univ. Press (2009).

[GNR16] Gamboa, F., Nagel, J. and Rouault, A. Sum rules via large
deviations. Journal of Functional Analysis (2016). 270, no. 2: 509–559.

[Gra86] Gragg, W.B. The QR algorithm for unitary hessenberg matrices. J.
Comput. Appl. Math. (1986). 16, no. 1: 1–8.

[Gra06] Gray, R.M. Toeplitz and circulant matrices: A review. Found. Trends
Comm. Info. Theory (2006). 2, no. 3: 155–239.

[GV64] Gelfand, I.M. and Vilenkin, N.Y. Generalized functions vol. 4:
applications of harmonic analysis (translated from the Russian by Amiel
Feinstein). Acad. Press (1964).

[GVA86] Geronimo, J.S. and Van Assche, W. Orthogonal polynomials with
asymptotically periodic recurrence coefficients. J. Approx. Theory (1986).
46, no. 3: 251–283.

[GVL12] Golub, G.H. and Van Loan, C.F. Matrix computations, vol. 3. JHU
Press (2012).

[GWW92] Gordon, C., Webb, D.L. and Wolpert, S. One cannot hear the
shape of a drum. Bull. Am. Math. Soc. (1992). 27, no. 1: 134–138.

[Han08] Hansen, A.C. On the approximation of spectra of linear operators on
Hilbert spaces. J. Funct. Anal. (2008). 254, no. 8: 2092–2126.

[Han09] Hansen, A.C. The infinite dimensional QR algorithm. Tech. rep.,
University of Cambridge (2009). URL http://www.damtp.cam.ac.uk/
research/afha/anders/Inf_QR1.pdf.

[Han10] Hansen, A.C. Infinite-dimensional numerical linear algebra: theory
and applications. P. Roy. Soc. Lond. A (2010).

[Han11] Hansen, A.C. On the solvability complexity index, the n-pseudospectrum
and approximations of spectra of operators. J. Am. Math. Soc. (2011).
24, no. 1: 81–124.

http://www.damtp.cam.ac.uk/research/afha/anders/Inf_QR1.pdf
http://www.damtp.cam.ac.uk/research/afha/anders/Inf_QR1.pdf


260 Bibliography

[Hay08] Haykin, S.S. Adaptive filter theory. Pearson (2008).

[Hei01] Heinig, G. Not every matrix is similar to a toeplitz matrix. Linear
Algebra Appl. (2001). 332: 519–531.

[Hig08] Higham, N.J. Functions of matrices: theory and computation. SIAM
(2008).

[HJB85] Heideman, M.T., Johnson, D.H. and Burrus, C.S. Gauss and the
history of the fast Fourier transform. Arch. Hist. Exact Sci. (1985). 34,
no. 3: 265–277.

[HM94] Helmke, U. and Moore, J.B. Optimization and dynamical systems.
Springer (1994).

[HO09] Huybrechs, D. and Olver, S. Highly oscillatory quadrature. Highly
oscillatory problems (2009). 366: 25–50.

[HSS01] Hubbard, J., Schleicher, D. and Sutherland, S. How to find all
roots of complex polynomials by Newton’s method. Invent. Math. (2001).
146, no. 1: 1–33.

[IMKNZ00] Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P. and Zanna, A.
Lie-group methods. Acta Numer. (2000). 9, no. 1: 215–365.

[IQ16] Iserles, A. and Quispel, G.R.W. Why geometric integration? In
Discrete Mechanics, Geometric Integration and Lie–Butcher Series (2016)
.

[Ise02] Iserles, A. On the discretization of double-bracket flows. Found.
Comput. Math. (2002). 2, no. 3: 305–329.

[Kac66] Kac, M. Can one hear the shape of a drum? Am. Math. Month. (1966).
73, no. 4: 1–23.

[Kat95] Kato, T. Perturbation theory for linear operators, vol. 132. Springer
(1995).

[Kau16] Kaur, A. On solving an isospectral flow. J. Comput. Appl. Math. (2016).
308: 263–275.

[Kos79] Kostant, B. The solution to a generalized Toda lattice and representa-
tion theory. Adv. Math. (1979). 34, no. 3: 195–338.

[Kro] Kropf, E. H. ComplexPhasePortrait.jl Julia package. github.com/
ehkropf/ComplexPhasePortrait.jl.

[KS03] Killip, R. and Simon, B. Sum rules for Jacobi matrices and their
applications to spectral theory. Ann. Math. (2003). 253–321.

[Kub62] Kublanovskaya, V.N. On some algorithms for the solution of the
complete eigenvalue problem. USSR Comput. Math. Math. Phys. (1962).
1, no. 3: 637–657.

github.com/ehkropf/ComplexPhasePortrait.jl
github.com/ehkropf/ComplexPhasePortrait.jl


Bibliography 261

[KV95] Korteweg, D.J. and de Vries, G. On the change of form of long
waves advancing in a rectangular canal, and on a new type of long
stationary waves. Lond., Edinb., Dublin Philos. Mag. J. Sci. (1895). 39,
no. 240: 422–443.

[Lan94] Landau, H.J. The inverse eigenvalue problem for real symmetric
Toeplitz matrices. J. Am. Math. Soc. (1994). 7, no. 3: 749–767.

[Lau88] Laurie, D.P. A numerical approach to the inverse Toeplitz eigenproblem.
SIAM J. Sci. Stat. Comput. (1988). 9, no. 2: 401–405.

[Lau91] Laurie, Dirk P. Solving the inverse eigenvalue problem via the eigen-
vector matrix. Journal of Computational and Applied Mathematics
(1991). 35, no. 1-3: 277–289.

[Lau01] Laurie, D.P. Initial values for the inverse Toeplitz eigenvalue problem.
SIAM J. Sci. Comput. (2001). 22, no. 6: 2239–2255.

[Lax68] Lax, P.D. Integrals of nonlinear equations of evolution and solitary
waves. Comm. Pure Appl. Math. (1968). 21, no. 5: 467–490.

[LS04] Levitin, M. and Shargorodsky, E. Spectral pollution and second-
order relative spectra for self-adjoint operators. IMA J. Numer. Anal.
(2004). 24, no. 3: 393–416.

[LSL99] Li, H., Stoica, P. and Li, J. Computationally efficient maximum
likelihood estimation of structured covariance matrices. IEEE T. Signal
Proces. (1999). 47, no. 5: 1314–1323.

[Mar13] Marion, J.B. Classical dynamics of particles and systems. Academic
Press (2013).

[MH16] Matthysen, R. and Huybrechs, D. Fast algorithms for the compu-
tation of fourier extensions of arbitrary length. SIAM J. Sci. Comput.
(2016). 38, no. 2: A899–A922.

[MMD03] Mackey, D.S., Mackey, N. and Dunlavy, D.M. Structure preserv-
ing algorithms for perplectic eigenproblems. Electron. J. Linear Algebra
(2003). 1: 1.

[MMP99] Mackey, D.S., Mackey, N. and Petrovic, S. Is every matrix
similar to a toeplitz matrix? Linear Algebra Appl. (1999). 297, no. 1-3:
87–105.

[Mos75] Moser, J. Finitely many mass points on the line under the influence
of an exponential potential – an integrable system. In Dyn. Sys. Theory
Appl., vol. 38 of Lecture Notes in Physics, Berlin Springer Verlag (1975)
467–497.

[Nor98] Norris, J.R. Markov chains. 2. Camb. Univ. press (1998).



262 Bibliography

[NVA92] Nevai, P. and Van Assche, W. Compact perturbations of orthogonal
polynomials. Pac. J. Math. (1992). 153, no. 1: 163–184.

[olva] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/,
Release 1.0.14 of 2016-12-21. URL http://dlmf.nist.gov/. Olver, F.W.J.,
Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark,
C.W., Miller, B. R. and Saunders, B.V., eds.

[Olvb] Olver, S. et al. ApproxFun Julia package. URL github.com/
ApproxFun.

[Olv67] Olver, F.W.J. Numerical solution of second-order linear difference
equations. J. Res. Nat. Bur. Standards Sect. B (1967). 71: 111–129.

[OT13] Olver, S. and Townsend, A. A fast and well-conditioned spectral
method. SIAM Rev. (2013). 55, no. 3: 462–489.

[OT14] Olver, S. and Townsend, A. A practical framework for infinite-
dimensional linear algebra. In Proceedings of the 1st First Workshop for
High Performance Technical Computing in Dynamic Languages. IEEE
Press (2014) 57–62.

[Par80] Parlett, B.N. The symmetric eigenvalue problem, vol. 7. SIAM (1980).

[Pro96] Proakis, J.G. Digital signal processing: principles, algorithms, and
applications (1996).

[RS02] Rahman, Q.I. and Schmeisser, G. Analytic theory of polynomials.
Oxf. Univ. Press (2002).

[RT92] Reichel, L. and Trefethen, L.N. Eigenvalues and pseudo-
eigenvalues of Toeplitz matrices. Linear Algebra Appl. (1992). 162:
153–185.

[Saa03] Saad, Y. Iterative methods for sparse linear systems. SIAM (2003).

[Sim79] Simon, B. Trace ideals and their applications, vol. 35. Camb. Univ.
Press (1979).

[Sle78] Slepian, D. Prolate spheroidal wave functions, fourier analysis, and
uncertainty—V: The discrete case. Bell Labs Tech. J. (1978). 57, no. 5:
1371–1430.

[SM03] Süli, Endre and Mayers, David F. An introduction to numerical
analysis. Cambridge university press (2003).

[Smi07] Smith, J.O. Introduction to Digital Filters with Audio Applications.
W3K Publishing (2007). URL http://www.w3k.org/books/.

[SO17] Slevinsky, R.M. and Olver, S. A fast and well-conditioned spectral
method for singular integral equations. J. Comput. Phys. (2017). 332:
290–315.

http://dlmf.nist.gov/
github.com/ApproxFun
github.com/ApproxFun
http://www.w3k.org/books/


Bibliography 263

[Sti94] Stieltjes, T.-J. Recherches sur les fractions continues. In Annales de
la Faculté des sciences de Toulouse: Mathématiques, vol. 8 (1894) 1–122.

[Str14] Strogatz, S.H. Nonlinear dynamics and chaos: with applications to
physics, biology, chemistry, and engineering. Westview press (2014).

[Sym82] Symes, W.W. The QR algorithm and scattering for the finite nonperiodic
Toda lattice. Phys. D: Nonlinear Phenom. (1982). 4, no. 2: 275–280.

[TBI97] Trefethen, L.N. and Bau III, D. Numerical linear algebra. 50.
SIAM (1997).

[TE05] Trefethen, L.N. and Embree, M. Spectra and pseudospectra: the
behavior of nonnormal matrices and operators. Princ. Univ. Press (2005).

[Tes00] Teschl, G. Jacobi operators and completely integrable nonlinear lattices.
72. Am. Math. Soc. (2000).

[Tes01] Teschl, G. Almost everything you always wanted to know about the
Toda equation. Jahresber. Deutsch. Math.-Verein. (2001). 103, no. 4:
149–162.

[Tes16] Teschl, G. Topics in Real and Functional Analysis (2016). URL
http://www.mat.univie.ac.at/~gerald/ftp/book-fa/.

[TO16] Trogdon, T. and Olver, S. Riemann–Hilbert Problems, Their Nu-
merical Solution and the Computation of Nonlinear Special Functions.
SIAM (2016).

[Tod67] Toda, M. Vibration of a chain with nonlinear interaction. J. Phys. Soc.
Jpn. (1967). 22, no. 2: 431–436.

[TP91] Turk, M. and Pentland, A. Eigenfaces for recognition. J. Cognitive
Neurosci. (1991). 3, no. 1: 71–86.

[Tre97] Trench, W.F. Numerical solution of the inverse eigenvalue problem
for real symmetric Toeplitz matrices. SIAM J. Sci. Comput. (1997). 18,
no. 6: 1722–1736.

[Tre00] Trefethen, L.N. Spectral methods in MATLAB. SIAM (2000).

[Tre08] Trefethen, L.N. Is Gauss quadrature better than Clenshaw–Curtis?
SIAM review (2008). 50, no. 1: 67–87.

[Tre13] Trefethen, L.N. Approximation theory and approximation practice.
SIAM (2013).

[Tuc11] Tucker, W. Validated numerics: a short introduction to rigorous
computations. Princeton University Press (2011).

[VA90] Van Assche, W. Asymptotics for Orthogonal Polynomials and Three-
Term Recurrences, 435–462. Springer Netherlands (1990).

http://www.mat.univie.ac.at/~gerald/ftp/book-fa/


264 Bibliography

[VA91] Van Assche, W. Orthogonal polynomials, associated polynomials and
functions of the second kind. J. Comput. Appl. Math. (1991). 37, no. 1:
237–249.

[VA94] Van Assche, W. Chebyshev polynomials as a comparison system
for orthogonal polynomials. In Proceedings of the Cornelius Lanczos
International Centenary Conference. SIAM (1994) 365–367.

[VAG89] Van Assche, W. and Geronimo, J.S. Asymptotics for orthogonal
polynomials with regularly varying recurrence coefficients. Rocky Mt. J.
Math. (1989). 19.

[VBL+16] Vasil, G.M., Burns, K.J., Lecoanet, D., Olver, S., Brown,
B.P. and Oishi, J.S. Tensor calculus in polar coordinates using jacobi
polynomials. J. Comput. Phys. (2016). 325: 53–73.

[Wan01] Wang, T.-L. Convergence of the tridiagonal QR algorithm. Linear
Algebra Appl. (2001). 322, no. 1-3: 1–17.

[Wat84] Watkins, D.S. Isospectral flows. SIAM Rev. (1984). 26, no. 3: 379–391.

[Wat07] Watkins, D.S. The matrix eigenvalue problem: GR and Krylov subspace
methods. SIAM (2007).

[Wat08] Watkins, D.S. The QR algorithm revisited. SIAM Rev. (2008). 50,
no. 1: 133–145.

[Weg12] Wegert, E. Visual complex functions: an introduction with phase
portraits. Springer (2012).

[Wil65] Wilkinson, J.H. Convergence of the LR, QR, and related algorithms.
Comput. J. (1965). 8, no. 1: 77–84.

[Zan98] Zanna, Antonella. On the numerical solution of isospectral flows.
Ph.D. thesis, University of Cambridge (1998).


	Contents
	1 Introduction
	1.1 Background and motivation
	1.1.1 Eigenvalues and spectra
	1.1.2 Toeplitz matrices and their relatives
	1.1.3 Orthogonal polynomials
	1.1.4 Isospectral flows
	1.1.5 Inverse eigenvalue problems
	1.1.6 Infinite dimensional numerical linear algebra

	1.2 Outline and contributions of the thesis
	1.2.1 Isospectral flows
	1.2.2 The symmetric Toeplitz inverse eigenvalue problem
	1.2.3 Computing spectra of Jacobi operators
	1.2.4 Infinite dimensional QL algorithm
	1.2.5 Computing functions of operators


	2 Isospectral flows
	2.1 Elementary properties
	2.1.1 Symmetric isospectral flows
	2.1.2 Normal isospectral flows

	2.2 The QR algorithm and isospectral flows
	2.2.1 The QR algorithm
	2.2.2 Toda flow
	2.2.3 Double bracket flow
	2.2.4 QR flow

	2.3 Bloch–Iserles flow
	2.3.1 Bloch–Iserles flow
	2.3.2 KdV is a modified Bloch-Iserles system

	2.4 Isospectral gradient flows
	2.4.1 The isospectral manifold, or adjoint orbit
	2.4.2 Metrics and gradient flows

	2.5 QR flows as gradient flows
	2.5.1 Scaled Toda-like flows


	3 The symmetric Toeplitz inverse eigenvalue problem
	3.0.1 Motivation
	3.0.2 Numerical algorithms for the inverse eigenvalue problem
	3.0.3 Landau's Theorem and eigenvalue parity
	3.0.4 Bisymmetric isospectral flows

	3.1 Isospectral flows for Toeplitz inverse eigenvalue problems
	3.1.1 Isospectral gradient flows
	3.1.2 Chu's flow

	3.2 The bisymmetric isospectral manifold
	3.2.1 Centrosymmetric matrices
	3.2.2 Structure of bisymmetric isospectral manifolds
	3.2.3 3 3 bisymmetric isospectral manifold
	3.2.4 4 4 bisymmetric isospectral manifold
	3.2.5 Parity in general

	3.3 Bisymmetric isospectral flows for Toeplitz inverse eigenvalue problems
	3.3.1 Bisymmetric isospectral gradient flows
	3.3.2 Bisymmetric Chu's flow

	3.4 Computability

	4 Spectra of Jacobi operators via connection coefficients
	4.1 Spectral theory of Jacobi operators
	4.1.1 Resolvents, measures and polynomials
	4.1.2 First associated polynomials

	4.2 Connection coefficient matrices
	4.2.1 Basic properties
	4.2.2 Connection coefficients and spectral theory

	4.3 Toeplitz-plus-finite-rank Jacobi operators
	4.3.1 Jacobi operators for Chebyshev polynomials
	4.3.2 Rank-one perturbations
	4.3.3 Fine properties of the connection coefficients
	4.3.4 Properties of the resolvent
	4.3.5 The Joukowski transformation

	4.4 Toeplitz-plus-trace-class Jacobi operators
	4.4.1 Jacobi operators for Jacobi polynomials
	4.4.2 Toeplitz-plus-finite-rank truncations
	4.4.3 Asymptotics of the connection coefficients

	4.5 Computability aspects
	4.6 Numerical results and the SpectralMeasures package

	5 The infinite dimensional QL algorithm
	5.1 Basic properties
	5.1.1 Existence
	5.1.2 Nonexistence
	5.1.3 Framework for computation of QL factorisations

	5.2 QL factorisation of Jacobi operators
	5.2.1 Existence for Jacobi operators
	5.2.2 Practical computation and storage for Jacobi operators
	5.2.3 Example QL factorisations of Jacobi operators

	5.3 The shifted QL algorithm
	5.3.1 Example QL iterations for Jacobi operators

	5.4 Computing functions of operators
	5.4.1 Discrete Schrödinger equation
	5.4.2 Discrete diffusion equation
	5.4.3 Discrete fractional diffusion equations


	6 Conclusion
	6.1 Isospectral flows
	6.2 The symmetric Toeplitz inverse eigenvalue problem
	6.3 Spectra of Jacobi operators via connection coefficients
	6.4 Infinite dimensional QL algorithm

	A SpectralMeasures Julia package
	A.1 Connection coefficient matrices
	A.2 Types for Toeplitz-plus-finite-rank operators
	A.3 Spectral Measure
	A.4 A type for rational functions with Dirac weights

	A.5 Principal resolvent
	A.6 Eigenvalues and spectrum
	A.7 QL factorisation
	A.8 Types for banded-above unitary operators
	A.9 QL iterations
	A.10 Functions of operators
	B Riemannian geometry and Lie theory
	B.1 Manifolds, Lie groups and Lie algebras
	B.2 Lie groups and Lie algebras
	B.3 Differential equations, Lie groups and manifolds
	B.3.1 Quadratic Lie groups and the Cayley transform




	C Useful matrix identities
	C.1 Derivatives
	C.2 Frobenius Inner Product

	D Some results in analysis
	D.1 The Radon–Nikodym derivative
	D.2 Fredholm operators

	Bibliography

