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Sustainability, as applied in archaeological research 
and heritage management, provides a useful perspec-
tive for understanding the past as well as the modern 
conditions of archaeological sites themselves. As often 
happens in archaeological thought, the idea of sus-
tainability was borrowed from other areas of concern, 
particularly from the modern construct of develop-
ment and its bearing on the environment and resource 
exploitation. The term sustainability entered common 
usage as a result of the unstoppable surge in resource 
exploitation, economic development, demographic 
growth and the human impacts on the environment 
that has gripped the World since 1500. Irrespective of 
scale and technology, most human activity of an eco-
nomic nature has not spared resources from impacts, 
transformations or loss irrespective of historical and 
geographic contexts. Theories of sustainability may 
provide new narratives on the archaeology of Malta 
and Gozo, but they are equally important and of 
central relevance to contemporary issues of cultural 
heritage conservation and care. Though the archae-
ological resources of the Maltese islands can throw 
light on the past, one has to recognize that such 
resources are limited, finite and non-renewable. The 
sense of urgency with which these resources have to 
be identified, listed, studied, archived and valued is 
akin to that same urgency with which objects of value 
and all fragile forms of natural and cultural resources 
require constant stewardship and protection. The idea 
of sustainability therefore, follows a common thread 
across millennia.

It is all the more reason why cultural resource 
management requires particular attention through 
research, valorization and protection. The FRAGSUS 
Project (Fragility and sustainability in small island 
environments: adaptation, cultural change and col-
lapse in prehistory) was intended to further explore 
and enhance existing knowledge on the prehistory 
of Malta and Gozo. The objective of the project as 

designed by the participating institutional partners 
and scholars, was to explore untapped field resources 
and archived archaeological material from a number 
of sites and their landscape to answer questions that 
could be approached with new techniques and meth-
ods. The results of the FRAGSUS Project will serve to 
advance our knowledge of certain areas of Maltese 
prehistory and to better contextualize the archipela-
go’s importance as a model for understanding island 
archaeology in the central Mediterranean. The work 
that has been invested in FRAGSUS lays the founda-
tion for future research.

Malta and Gozo are among the Mediterranean 
islands whose prehistoric archaeology has been 
intensely studied over a number of decades. This 
factor is important, yet more needs to be done in the 
field of Maltese archaeology and its valorization. 
Research is not the preserve of academic specialists. 
It serves to enhance not only what we know about 
the Maltese islands, but more importantly, why the 
archipelago’s cultural landscape and its contents 
deserve care and protection especially at a time of 
extensive construction development. Strict rules and 
guidelines established by the Superintendence of 
Cultural Heritage have meant that during the last two 
decades more archaeological sites and deposits have 
been protected in situ or rescue-excavated through a 
statutory watching regime. This supervision has been 
applied successfully in a wide range of sites located in 
urban areas, rural locations and the landscape, as well 
as at the World Heritage Sites of Valletta, Ġgantija, 
Ħaġar Qim and Mnajdra and Tarxien. This activity 
has been instrumental in understanding ancient and 
historical land use, and the making of the Maltese 
historic centres and landscape.

Though the cumulative effect of archaeological 
research is being felt more strongly, new areas of 
interest still need to be addressed. Most pressing are 
those areas of landscape studies which often become 

Foreword

Anthony Pace
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Foreword

FRAGSUS Project, will bear valuable results that will 
only advance Malta’s interests especially in today’s 
world of instant e-knowledge that was not available 
on such a global scale a mere two decades ago.

FRAGSUS also underlines the relevance of 
studying the achievements and predicaments of past 
societies to understand certain, though not all, aspects 
of present environmental challenges. The twentieth 
century saw unprecedented environmental changes 
as a result of modern political-economic constructs. 
Admittedly, twentieth century developments cannot 
be equated with those of antiquity in terms of demog-
raphy, technology, food production and consumption 
or the use of natural resources including the uptake 
of land. However, there are certain aspects, such as 
climate change, changing sea levels, significant envi-
ronmental degradation, soil erosion, the exploitation 
and abandonment of land resources, the building and 
maintenance of field terraces, the rate and scale of 
human demographic growth, movement of peoples, 
access to scarce resources, which to a certain extent 
reflect impacts that seem to recur in time, irrespec-
tively of scale and historic context. 

Anthony Pace
Superintendent of Cultural Heritage (2003–18).

peripheral to the attention that is garnered by prom-
inent megalithic monuments. FRAGSUS has once 
again confirmed that there is a great deal of value 
in studying field systems, terraces and geological 
settings which, after all, were the material media in 
which modern Malta and Gozo ultimately developed. 
There is, therefore, an interplay in the use of the term 
sustainability, an interplay between what we can learn 
from the way ancient communities tested and used the 
very same island landscape which we occupy today, 
and the manner in which this landscape is treated in 
contested economic realities. If we are to seek factors 
of sustainability in the past, we must first protect its 
relics and study them using the best available meth-
ods in our times. On the other hand, the study of the 
past using the materiality of ancient peoples requires 
strong research agendas and thoughtful stewardship. 
The FRAGSUS Project has shown us how even small 
fragile deposits, nursed through protective legislation 
and guardianship, can yield significant information 
which the methods of pioneering scholars of Maltese 
archaeology would not have enabled access to. As 
already outlined by the Superintendence of Cultural 
Heritage, a national research agenda for cultural herit-
age and the humanities is a desideratum. Such a frame-
work, reflected in the institutional partnership of the 
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Table A8.1. Xemxija 1 core micromorphology sample descriptions.

Sample no. Depth (m) Description

1 1.99–2.01 fine gravelly, calcitic sandy clay loam; 
Structure: massive to incipient, sub-angular small blocky, <1 cm, porphyric; Porosity: <5% vughs, 
<200 μm; <2% channels/planes, <100 μm wide, <1 cm long, weakly serrated, accommodated; Mineral 
components: 15% limestone gravel, <5 mm, sub-rounded to sub-angular; c/f ratio = 25/75; coarse fraction: 
10% coarse sand & limestone fragments, sub-rounded; 5% medium & 10% fine quartz sand; fine fraction: 
10–15% very fine quartz sand; 10–15% micro-sparite; few (<2%) coarse silt-sized glauconite grains, 
25–50 μm; few (<2%) haematite crystals, 25–50 μm; 35% dusty clay, weak to non-birefringent, stipple-
speckled; golden brown (CPL) to brown (PPL); Organic components: 10% organic/charcoal punctuations, 
<50 μm; Amorphous: common thin calcitic coatings of voids; weak to moderate amorphous sesquioxide 
staining of dusty clay and few zones of more strongly sesquioxide staining; few (5%) amorphous 
sesquioxide nodules, <100 μm, sub-rounded

2 2.20–2.23 sub-angular blocky, fine gravelly, calcitic sandy clay loam; as for sample 1, but well developed sub-
angular blocky ped structure, <2 cm

3 2.50–2.53 mix of fine gravel, sand-size limestone and crumb structured minor micritic silty clay; 
Structure: massive to large crumb, <4 mm, sub-rounded; Porosity: 10% vughs, <200 um; 10% channels, 
<1 cm long, <200 μm wide, weakly serrated, accommodated; Mineral components: <40% limestone gravel, 
<6 mm, sub-rounded to sub-angular; c/f ratio = 60/40; coarse fraction: 30% coarse, 15% medium and 
15% fine sand-sized limestone fragments, sub-rounded; fine fraction: 5% very fine quartz sand; 15% 
micro-sparite; few (2–5%) coarse silt/very fine sand-sized glauconite grains, 50–60 μm; 20% dusty clay, 
weak to moderate birefringence, stipple-speckled to striated; golden brown (CPL) to brown (PPL); 
Organic components: 20% organic/charcoal punctuations, <50 μm; few (<2%) charcoal fragments, <300 μm; 
Amorphous: weakly calcitic groundmass; weak to moderate amorphous sesquioxide staining of dusty 
clay; few (5%) amorphous sesquioxide nodules, <100 μm, sub-rounded 

4 2.73–2.75 very fine sandy silty clay loam with 10% very fine limestone gravel; 
Structure: small aggregated to weakly pellety, <5 mm; Porosity: <1% channels, <2 cm long, <200 μm wide, 
weakly serrated, accommodated; <20% vughs, <400 μm; Mineral components: 10% limestone gravel, 
<6 mm, sub-rounded to sub-angular; c/f ratio = 5/95; coarse fraction: 5% fine sand and limestone, sub-
rounded; fine fraction: 20% very fine quartz sand; few (2–5%) coarse silt/very fine sand-sized glauconite 
grains, 50–100 μm; <5% micro-sparite; up to 65% dusty clay, weak to moderate birefringence, stipple-
speckled to striated; gold (CPL); reddish to brown (CPL/PPL); Organic components: general humic staining 
of groundmass; rare fine charcoal, 50–400 μm; Amorphous: 50% of groundmass with moderate to strong 
amorphous sesquioxide staining

5 3.02–3.04 mix of very fine sandy clay loam and 25–50% very fine limestone gravel; few (2–5%) coarse silt/very fine 
sand-sized glauconite, 50–100 μm; as for sample 6 below

6 3.35–3.39 finely aggregated very fine sandy clay loam with up to 50% amorphous sesquioxide staining; 
Structure: small aggregated to weakly pellety, <5 mm; porphyric; Porosity: <5% planar channels, <2 cm 
long, <200 μm wide, weakly serrated, accommodated; <5% vughs, <300 μm; Mineral components: <5% 
limestone gravel, <6 mm, sub-rounded to sub-angular; c/f ratio = 10/90; coarse fraction: 5% fine sand, 
sub-rounded; few (2–5%) very fine sand-sized glauconite grains, 50–60 μm; fine fraction: 25% very fine 
quartz sand; <5% micr-sparite; up to 65% dusty clay, weak to moderate birefringence, stipple-speckled 
to striated; gold (CPL); reddish to brown (CPL/PPL); Amorphous: 50% of groundmass with strong 
amorphous sesquioxide staining

Appendix 8

The micromorphological descriptions for the Malta deep 
cores of Xemxija 1, Wied Żembaq 1, Marsaxlokk and the 

base of the Salina Deep Core (21B)

Charles French & Sean Taylor
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Sample no. Depth (m) Description

7 4.03–4.05 micro-laminar very fine quartz and silt, strongly reddened with amorphous sesquioxides; 
Structure: single grain to finely laminar in places, <100 μm and <1 mm; Mineral components: <5% fine 
sand-sized limestone, 100–250 μm; 45% very fine quartz sand, 50–100 μm, sub-rounded; 50% silt; 1 zone, 
c. 10% of groundmass, with micro-laminar silt crusts; golden to reddish brown (CPL/PPL); Amorphous: 
<75% of groundmass strongly reddened with amorphous sesquioxides

4.60–5.43 black organic silt mud to highly humified peat

8 4.95–4.97 heterogeneous mix of very fine quartz sand and silt with greater/lesser zones of amorphous sesquioxides 
and humic staining; 
Main fabric: >90% as for sample 7 (above), but stone-free and without laminae; few (2–5%) very fine/
fine sand-sized glauconite grains, 50–250 μm; dark brown to dark reddish brown (CPL), golden to dark 
reddish brown (PPL); Minor fabric: <10% of soil fabric similar to sample 1;

9 5.15–5.17 very fine sand silt with strong amorphous sesquioxide staining; 
Structure: single grain to sub-angular blocky, <2 cm; porphyric; Porosity: 5% planar voids, <4 cm long, 
<200 μm wide, smooth, accommodated; Mineral components: 50% very fine quartz sand, 50–100 μm, sub-
rounded; 5% micro-sparite; 40% silt; 5% dusty clay aggregates with rare to few dusty clay coatings with 
strong birefringence, 50–750 μm; golden to reddish brown (CPL/PPL); Amorphous: <60% of groundmass 
strongly reddened with amorphous sesquioxides

10 5.45–5.47 as for samples 9 and 11; very fine sand silt with strong sesquioxide staining throughout; few (2–5%) 
coarse silt/very fine sand-sized glauconite grains, 50–100 μm

5.43–6.75 dark grey to black highly organic silt mud with common organic matter fragments; 10YR4/1; 10YR2/1

11 5.78–5.80 as for samples 9 and 10; very fine sand silt with moderate sesquioxide staining; few (2–5%) coarse silt/
very fine sand-sized glauconite grains, 50–100 μm

12 6.10–6.12 heterogeneous mix of shell-rich, calcitic, very fine sand silt (as in samples 9–11) and 10% charred plant 
matter

13 6.45–6.47 calcitic, very fine sandy/silty clay loam; 
Structure: dense, massive to very weakly sub-angular blocky, <1 cm; Porosity: 20% vughs, <100 μm; 10% 
channels, <1.5 cm long, <1 mm wide, partly accommodated, weakly serrated; Mineral components: 15% 
very fine quartz sand, 50–100 μm; few (<2%) gypsum crystals, in clusters, <50 μm; 40% micro-sparite; 
30% silt; 10% clay, weak birefringence, pale golden brown (CPL); yellowish brown to grey (CPL), reddish 
brown (PPL); Organic components: 10–15% charred organic punctuations, <50 μm; Excremental: few (<5%) 
calcitic aggregates as discontinuous infills in voids, <50 μm; Amorphous: >50% of groundmass strongly 
reddened with sesquioxide staining

14 6.85–6.87 as for sample 13; calcitic very fine sandy/silty clay loam with >50% strong amorphous sesquioxide 
staining; except for: 40% porosity; few (5%) humified plant tissue fragments, <50 μm; few (5%) shell 
fragments, <50 μm; and few (5%) amorphous sesquioxide nodules, <250 μm

15 7.25–7.27 as for samples 13 and 14; calcitic very fine to fine sandy/silty clay loam with c. 50% strong amorphous 
sesquioxide staining; few (<2%) gypsum crystals, in clusters, <50 μm; common shell fragments, <50 μm

16 7.72–7.74 as for samples 17, 18 and 20; reddish brown humic, calcitic silt with very strong amorphous sesquioxide 
staining and 5% shell fragments, <50 μm

17 7.85–7.87 as for sample 20; dark reddish brown, calcitic, very fine sandy silt with strong amorphous sesquioxide 
staining throughout; few (2–5%) very fine/fine sand-sized glauconite grains, 50–250 μm; few (<2%) 
gypsum crystals, in clusters, <50 μm

18 8.23–8.26 as for sample 20; yellowish brown, calcitic, very fine sandy silt with strong amorphous sesquioxide 
replaced organic matter fragments, 10–15% organic punctuations and 5% shell fragments

19 8.33–8.35 as for sample 23; pale yellowish brown, calcitic, very fine sandy silt

20 8.68–8.70 yellowish brown/grey, calcitic, very fine sandy silt with small, very weakly developed sub-angular 
blocky peds; 
Structure: dense, massive to very weakly sub-angular blocky, <1 cm; Porosity: <1% vughs, <100 μm; <1% 
channels, <1.5 cm long, <200 μm wide, accommodated; Mineral components: 15% very fine quartz sand, 
50–100 μm; few (<5%) gypsum crystals; few (2–5%) very fine sand-sized glauconite grains, 50–100 μm; 
40% micro-sparite; 30% silt; 10% clay, weak birefringence, pale golden brown (CPL); yellowish brown 
to grey (CPL), reddish brown (PPL); Organic components: 5% shell fragments; 10% organic punctuations, 
<50 μm; Amorphous: weak to moderate sesquioxide staining of whole groundmass

21 9.13–9.15 as for sample 20

Table A8.1 (cont.).
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Sample no. Depth (m) Description

22 9.25–9.27 weak sub-angular blocky, pale brown, calcitic silty clay; 
Structure: dense, massive to very weakly sub-angular blocky, <5 mm; Porosity: <2% vughs, <100 μm; 5–8% 
channels, discontinuous, <1.5 cm long, <500 μm wide, accommodated; Mineral components: 10% very 
fine quartz sand, 50–100 μm; 40% micro-sparite; 40% dusty clay, weak birefringence, pale golden brown 
(CPL); pale golden brown (CPL/PPL); Organic components: 10% organic punctuations, <50 um; Amorphous: 
<20% of groundmass with weak sesquioxide staining

23 9.45–9.47 as above with minor charcoal and amorphous sesquioxide replaced organic matter; 
Structure: dense, massive to very weakly sub-angular blocky, <5 mm; porphyric; Porosity: 2% vughs, 
irregular, <2 mm; 5% channels, discontinuous, <1.5 cm long, <500 μm wide, accommodated; Mineral 
components: 5% very fine quartz sand, 50–10 μm; rare (<1%) gypsum crystals, <50 μm; 44% micro-
sparite; 40% dusty clay, weak birefringence, pale golden brown (CPL); pale brown to pale yellowish 
brown (PPL); Organic components: rare (<1%) wood charcoal, <1 mm; 5% sesquioxide replaced plant 
tissue fragments; 10% organic punctuations, <50 μm; <5% shell fragments; common root holes infilled 
with same fabric; Amorphous: few channels with amorphous sesquioxide hypo-coatings; very weak 
sesquioxide staining of whole groundmass

24 9.65–9.67 as for sample 23, with 5–10% shell fragments

25 9.75–9.77 dense, homogeneous, pale golden brown, calcitic silty clay; 
Structure: dense, massive, apedal; Porosity: <1% vughs, <250 μm; <2% planar voids, <1 cm long, <500 μm 
wide, weakly serrated; Mineral components: 5–10% very fine quartz sand, 50–100 μm; 70% micro-sparite; 
10% sparite, as dense infills in some voids; 10% dusty clay, weak birefringence, pale golden brown (CPL); 
pale brown to pale golden brown (CPL/PPL); Organic components: <2% organic punctuations, <50 μm; 
Amorphous: 20% of groundmass with weak, irregular staining with amorphous sesquioxides; <2% 
amorphous sesquioxide nodules, <10 μm

Table A8.2. Wied Żembaq 1 core micromorphology sample descriptions.

Sample no. Depth (m) Description

26 0.07–0.09 reddish brown coarse-very fine sandy/silty clay with minor very fine charcoal; 
Structure: dense, massive; Porosity: <2% vughs, <250 μm; <2% channels, <500 μm long, <100 μm wide, 
vertical, accommodated, weakly serrated; Mineral components: c/f ratio: 22/78; coarse fraction: 2% 
coarse sand-size limestone; 10% fine quartz sand, 100–250 μm, sub-rounded; fine fraction: 20% very 
fine quartz sand, 50–100 μm, sub-rounded; 10% micro-sparite; 48% dusty clay, in groundmass, non-
birefringent, with moderate to strong amorphous sesquioxide staining; reddish brown (CPL), brown 
(PPL); Organic components: 5% shell fragments, <1 mm; 5% very fine charcoal, <100 μm; 5% charred 
organic punctuations, <50 μm; Amorphous: few zones (<10% of groundmass) of very strong staining with 
amorphous sesquioxides

27 0.45–0.70 as for sample 26

28 0.80–0.82 golden brown, calcitic, coarse-very fine sandy/silty clay with illuvial silty clay infills;
Structure: dense, massive; Porosity: <2% vughs, <250 μm; <2% channels, <500 μm long, <100 μm wide, 
vertical, accommodated, weakly serrated; Mineral components: c/f ratio: 25/75; coarse fraction: 5% coarse 
sand-size limestone; 10% medium and 10% fine quartz sand, 100–500 μm, sub-rounded; fine fraction: 
10% very fine quartz sand, 50–100 μm, sub-rounded; 20% micro-sparite; 45% dusty clay, in groundmass 
and as void coatings/infills, weak birefringence; golden brown (CPL/PPL); Organic components: 5% very 
fine charcoal, <100 μm; 5% charred organic punctuations, <50 μm

29 2.15–2.17 as for sample 26, with 20% fine limestone gravel content 

30 2.53–2.55 as for sample 28, with 10–15% fine limestone gravel content and up to 50% of groundmass strongly 
stained with amorphous sesquioxides

31 3.00–3.02 small blocky, golden/reddish brown, calcitic, very fine sandy/silty clay, with weakly laminar 
micro-structure;
Structure: moderately well developed small sub-angular blocky, <2 cm; Porosity: <2% vughs, <250 μm; 
<5% channels, <2 cm long, <500 μm wide, vertical/horizontal, partly accommodated, weakly serrated; 
Mineral components: 30% very fine quartz sand, 50–100 μm, sub-rounded; 5–10% micro-sparite; 10% 
irregular zones of amorphous calcium carbonate; 50–55% dusty clay, in groundmass, non-birefringent, 
with strong amorphous sesquioxide staining; golden/reddish brown (CPL/PPL); Organic components: 
2% very fine charcoal, <100 μm; 5% organic punctuations, <50 μm; part charred/part replaced with 
amorphous sesquioxides wood fragment; Amorphous: much of groundmass very strongly stained with 
amorphous sesquioxides

Table A8.1 (cont.).
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Sample no. Depth (m) Description

32 3.65–3.67 four thin fabric units:
Upper fabric unit 1: as for sample 31;
Fabric unit 2: mix of very fine quartz sand and micro-sparite;
Fabric unit 3: as for sample 31;
Lower fabric unit 4: very fine quartz sand

33 3.96–3.98 as for sample 28, except a few glauconite grains, 50–100 μm

34 4.10–4.12 humified and amorphous sesquioxide replaced organic matter with <5% shell fragments

35 4.33–4.35 small blocky, golden/reddish brown, coarse-very fine sandy/silty clay;
Structure: weakly developed small sub-angular blocky, <2 cm; Porosity: <2% vughs, <250 μm; <5% 
channels, <2 cm long, <500 μm wide, vertical/horizontal, partly accommodated, weakly serrated; Mineral 
components: c/f ratio: 40/60; 2% coarse, 8% medium and 30% very fine quartz sand and limestone, 
50–1000 μm, sub-rounded; few gypsum crystals, <50 μm, lenticular; 20% very fine quartz sand, 
50–100 μm, sub-rounded; 40% dusty clay, in groundmass, non-birefringent, with strong amorphous 
sesquioxide staining; golden/reddish brown (CPL/PPL); Organic components: 5% charred organic 
punctuations, <50 μm; part charred/part replaced with amorphous sesquioxides wood fragment; 
Amorphous: c. 50% of groundmass strongly stained with amorphous sesquioxides

36 4.60–4.61 porous (15% irregular vughs), humified and amorphous sesquioxide replaced organic matter with 20% 
coarse-fine limestone/quartz, few gypsum crystals, <50 μm, and 2% shell fragments

37 4.96–4.98 fine gravelly, brown, calcitic, coarse-very fine sandy/silty clay with minor very fine charcoal;
Structure: dense, massive; Porosity: <2% vughs, <250 μm; <2% channels, <500 μm long, <100 μm wide, 
vertical, accommodated, weakly serrated; Mineral components: c/f ratio: 40/60; coarse fraction: 5% coarse 
and 15%medium sand-size limestone, 500–1000 μm, sub-angular to sub-rounded; 10% fine quartz sand, 
100–250 μm, sub-rounded; fine fraction: 20% very fine quartz sand, 50–100 μm, sub-rounded; 15% 
micro-sparite; 45% dusty clay, in groundmass, weak birefringence, golden brown (CPL); golden brown 
(CPL), brown (PPL); Organic components: 2% shell fragments, <1 mm; 5% very fine charcoal, <100 μm; 5% 
charred organic punctuations, <50 μm; 5–10% part charred/part humified plant tissue; Amorphous: few 
(<2%) amorphous sesquioxide nodules, <100 μm

38 5.28–5.30 as for sample 37, except fabric moderately to strongly reddened with amorphous sesquioxides, and few 
very fine sand-sized glauconite grains, 50–100 μm

Table A8.3. Marsaxlokk core micromorphology sample descriptions.

Sample Depth (m) Description

39 0.05–0.06 finely aggregated, vughy, pale brown calcitic silt;
Structure: pellety to aggregated, <1 mm; Porosity: 10–20% interconnected vughy; Mineral components: 
5% fine limestone gravel, <4 mm, sub-rounded; 10% fine and 5% very fine limestone, 50–250 μm, sub-
rounded; 80% micro-sparite; pale brown (CPL), pale golden brown (PPL); Organic components: <2% 
amorphous sesquioxide replaced plant tissue 

40 0.62–0.66 dense, pale grey weathered limestone and calcium carbonate;
Structure: dense, aggregated, <5 mm; Porosity: <2% interconnected vughy; Mineral components: 15% 
fine limestone gravel, <4 mm, sub-rounded; 80% fine and 5% very fine limestone, 50–250 μm, sub-
rounded;<5% dusty clay; pale grey brown (CPL/PPL); Organic components: <2% shell fragments; <2% 
charred organic punctuations, <50 μm

41 1.10–1.12 dense, pale grey weathered limestone and calcium carbonate and silt/micro-sparite;
Structure: dense, homogeneous; Porosity: <1% interconnected vughy; Mineral components: < 5% very fine 
quart sand, 50–100 μm, sub-rounded; 95% micro-sparite; pale grey (CPL/PPL)

42 1.70–1.72 two units of micro-laminar humified and amorphous sesquioxide replaced plant remains;
Upper fabric unit: finely laminar amorphous sesquioxide replaced plant tissue over weathered limestone 
(as in sample 40); over Fabric unit 2: dense humified/sesquioxide replaced plant tissue interleaved with 
10–20% very fine quartz sand and 10% micro-sparite 

43 2.15–2.17 reddish brown, coarse to very fine sandy/silty clay loam;
Structure: weakly developed small sub-angular blocky, <1 cm; Porosity: <2% vughs, <250 μm; <5% short 
channels, <5 mm long, <100 μm wide, partly accommodated, weakly serrated; Mineral components: 5% 
limestone gravel, <1 cm, sub-rounded; c/f ratio: 25/75; coarse fraction: 10% coarse, 10% medium and 5% 
fine quartz sand, 100–1000 μm, sub-rounded; fine fraction: 10% very fine quartz sand, 50–100 μm, sub-
rounded; 5–10% micro-sparite; 55–60% dusty clay, in groundmass, non-birefringent; dark reddish brown 
(CPL/PPL); Organic components: 5% charred organic punctuations, <50 μm

Table A8.2 (cont.).
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Sample Depth (m) Description

44 2.55–2.57 as for sample 43, except 20% micro-sparite content

45 2.96–2.99 as for sample 44, with well developed, small sub-angular blocky structure

46 3.20–3.22 as above

47 3.65–3.67 very dense, massive, amorphous calcium carbonate

Table A8.4. Salina Deep Core (21B; base of) micromorphology sample descriptions.

Sample Depth (m) Description

Spot 1 27.83–27.88 well developed, small, sub-angular blocky, calcitic fine sandy clay loam over basal lens of fine limestone 
gravel;
Structure: well developed small sub-angular blocky, <2.5 cm; Porosity: <2% vughs, <500 μm, sub-
rounded; 10% channels, <3 cm long, <500 μm wide, accommodated, smooth to weakly serrated; Mineral 
components: in base of slide, 20–25% limestone gravel, <1 cm, sub-rounded to sub-angular; c/f ratio: 
50/50; coarse fraction: 20% medium and 30% fine quartz sand, 100–500 μm, sub-rounded; fine fraction: 
10% very fine quartz sand, 50–100 μm, sub-rounded; 10–20% micro-sparite; 20–30% dusty clay, in 
groundmass, weak birefringence; golden brown (CPL), brown (PPL); Organic components: rare (<1%) 
humified plant tissue; rare (<1%) shell fragments; Amorphous: few vughs with up to 50% micro-sparitic/
amorphous calcium carbonate infillings; rare (<1%) amorphous sesquioxide nodule, <250 μm

Spot 2 27.91–27.96 as for spot sample 1, except no limestone gravel, fabric all weakly developed sub-angular blocky to 
massive, all voids filled with micro-sparite/amorphous calcium carbonate, and 30% amorphous humic/
sesquioxide staining of groundmass

Spot 3 28.08–28.12 as for spot sample 1, except well developed, small, sub-angular blocky, minor limestone gravel, a 
few very fine sand-sized glauconite grains, 50–100 μm, and with micro-sparitic/amorphous calcium 
carbonate linings of all channels

Table A8.3 (cont.).





Temple landscapes 
The ERC-funded FRAGSUS Project (Fragility and sustainability in small island environments: adaptation, 
cultural change and collapse in prehistory, 2013–18), led by Caroline Malone (Queens University Belfast) 
has explored issues of environmental fragility and Neolithic social resilience and sustainability  
during the Holocene period in the Maltese Islands. This, the first volume of three, presents the  
palaeo-environmental story of early Maltese landscapes.

The project employed a programme of high-resolution chronological and stratigraphic 
investigations of the valley systems on Malta and Gozo. Buried deposits extracted through coring and 
geoarchaeological study yielded rich and chronologically controlled data that allow an important new 
understanding of environmental change in the islands. The study combined AMS radiocarbon and 
OSL chronologies with detailed palynological, molluscan and geoarchaeological analyses. These enable 
environmental reconstruction of prehistoric landscapes and the changing resources exploited by the 
islanders between the seventh and second millennia bc. The interdisciplinary studies combined with 
excavated economic and environmental materials from archaeological sites allows Temple landscapes to 
examine the dramatic and damaging impacts made by the first farming communities on the islands’ soil 
and resources. The project reveals the remarkable resilience of the soil-vegetational system of the island 
landscapes, as well as the adaptations made by Neolithic communities to harness their productivity, in 
the face of climatic change and inexorable soil erosion. Neolithic people evidently understood how to 
maintain soil fertility and cope with the inherently unstable changing landscapes of Malta. In contrast, 
second millennium bc Bronze Age societies failed to adapt effectively to the long-term aridifying trend 
so clearly highlighted in the soil and vegetation record. This failure led to severe and irreversible erosion 
and very different and short-lived socio-economic systems across the Maltese islands.
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