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Abstract 

Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on 

fullerene acceptors for over two decades. This situation has changed very recently, with 

non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of 

NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-

based OSCs. NF acceptors show great tunability in absorption spectra and electron energy 

levels, providing a wide range of new opportunities. The co-existence of low voltage losses 

and high current generation indicates that new regimes of device physics and 

photophysics are reached in these systems. This Review highlights these opportunities 

made possible by NF acceptors, and also discuss the challenges facing the development of 

NF OSCs for practical applications.    
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Light absorption in organic semiconductors generates strongly bound excitons. Donor (D): 

acceptor (A) bulk-heterojunction (BHJ) structures, suitable for low-cost solution processing, 

provide an efficient approach to split the excitons into free carriers.1,2 Among different acceptor 

materials, fullerene derivatives attracted the most attention and gave the highest power 

conversion efficiencies (PCEs) for almost two decades. Unique to fullerene derivatives is their 

ball-like fully conjugated structure, which provides strong electron-accepting and isotropic 

electron-transport capabilities and facilitates electron delocalization at the D:A interfaces.3 As 

such, fullerene derivatives were believed to be a critical component for efficient operation of 

organic solar cells (OSCs). Indeed, acceptor materials based on molecules other than fullerene 

derivatives, generally categorized as non-fullerene (NF) acceptors, usually resulted in low 

PCEs,1,4 which were mainly attributed to the difficulties in the morphological control.5 

However, this situation has changed recently, with quick development of NF OSCs. The 

PCEs of NF OSCs have increased dramatically since 2015, now reaching a high value of 

13.1%.6 Such a high value is better than 11.7% in the best fullerene-based OSCs.7,8 The quick 

development of NF OSCs during the past two years has benefited a lot from the synthetic 

methods, materials design strategies and device engineering protocols developed during the 

past two decades for fullerene-based OSCs. The wide range of donor molecules developed for 

fullerene-based OSCs provides a rich library for immediate use in NF OSCs. In addition, 

various design strategies originally developed for donor molecules are readily available to tune 

the absorption spectra and energy levels of NF acceptors, allowing better flexibility in realizing 

donor-acceptor systems with complementary absorption and optimized energy band diagram. 

The development of a few high-performing molecules, discussed in the next section, has also 

contributed to attracting the interest of the research community on NF OSCs.    

From the device point of view, a feature that contributes to high PCEs in NF OSCs is that 

excitons can separate efficiently upon negligible driving energies.9–14 As a result, NF OSCs 

often show high photocurrent and low voltage losses at the same time. In contrast, charge 

separation in fullerene-based OSCs usually becomes problematic under low driving energies, 

presenting a trade-off between high photocurrent and high photovoltage.15,16 Currently, the 

device physics and photo-physics investigations are lagging behind the rapid developments of 
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materials and device engineering. A fundamental question open to the community is how the 

excitons split into free carriers in these NF OSCs with low driving energies.  

Along with opportunities, one of the key challenges for NF acceptors might lie in their 

anisotropic structures. It is well acknowledged that D:A π-π interactions, which depend on the 

molecular orientation between the donor and acceptor materials, are very important for the 

charge transfer and transport in the devices.17 Compared with the isotropic ball-like conjugated 

backbones in fullerene derivatives, the anisotropic conjugated structures of NF acceptors make 

it more challenging to ensure efficient π-π interactions.18–21 Therefore, it becomes critically 

important to pair the donors with right acceptors in NF OSCs. From this aspect, the great 

diversity in chemical structures of NF acceptors also brings challenges for morphological 

control in devices, not only due to the well-known requirement for fine-tuning the phase 

separation but also because of the demand for molecular orientation control. 

The development of NF acceptors presents opportunities which are otherwise not possible 

in fullerene-based OSCs, and also opens up challenges which are waiting to be tackled for future 

applications of this promising technology. In addition, the operation of NF OSCs also implies 

new working mechanisms, which could be fundamentally different from those in fullerene-

based OSCs. This Review aims to discuss these opportunities, challenges, and working 

mechanisms, hoping to foster further advances in this field. The PCEs of NF OSCs are 

promising for future improvement, through both materials chemistry and device engineering. 

As such, NF OSCs provide a promising technology for practical applications in the near future, 

especially considering that they have also shown excellent thermal stability.22,23  

State-of-the-art non-fullerene acceptors 

Based on chemical structures, state-of-the-art NF acceptors can be categorized into two 

types: acceptors based on fused aromatic diimides, and acceptors based on strong 

intramolecular electron push-pulling effects. These high-performance NF acceptors share two 

features in common (Figure 1a). First, their conjugated backbones are modified with π-

conjugated functional groups involving highly electronegative elements, e.g. oxygen (in the 

form of a carbonyl group) and/ or nitrogen (in the forms of a cyano group or nitrogen-containing 



4 
 

hetero-aromatic segments). Second, π-electrons in these functional groups can be well 

delocalized into the backbones. The first feature provides strong electron accepting abilities, 

and the second feature ensures a relatively low reorganization energy so that the accepted 

electrons can be transported easily without being trapped. In addition, for solution-processed 

OSCs, appropriate functional groups also need to be carefully designed to satisfy the solubility 

requirement ─ this is different from vacuum-deposited OSCs. We note that in vacuum-

deposited solar cells, NF acceptors also demonstrate great potential in enhancing light 

absorption and hence attract considerable attention,24,25 consistent with recent development in 

solution-processed OSCs. 

Acceptors based on fused aromatic diimides  

Fused aromatic diimide derivative was the first acceptor material used in heterojunction 

OSCs ─ it was used as the electron acceptor in the pioneering bilayer devices in 1986 (Figure 

1a).26 Since then, this type of materials have been considered as promising candidates for NF 

OSCs, and have attracted continuous attention. Among various derivatives of fused aromatic 

diimides, perylene diimides (PDIs) and naphthalene diimides (NDIs) (Figure 1b), widely used 

in the traditional dye industry, are two of the most intensively studied acceptor molecules 

because of their advantages in strong light absorption, low synthesis cost, and excellent stability.   

PDIs have been frequently used in small molecular acceptors.27 The key considerations for 

the molecular design of PDI-based acceptors are to restrain their aggregation effects and 

improve their miscibility with polymer donors. PDIs have rigid and planar conjugated 

backbones. As a result, the PDI derivatives in solid states tend to form large-sized crystals, 

which are undesirable for the nanoscale morphology in the BHJ structures.4 In addition to the 

universal approaches (for instance, side chain engineering and solvent engineering) for 

controlling the aggregation effects, an effective method to solving this problem is to link PDI 

units, forming dimeric or multilinked PDIs (Figure 1b).28–30 These linked PDI derivatives are 

twisted, helping to break the aggregations of PDIs. For example, an efficient OSC based on a 

PDI derivative was obtained by using a dimer named as SF-PDI2, where two N-alkyl-substituted 

PDIs were linked by an unsubstituted spirofluorene (Figure 1c).9  
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In addition to small molecules, the polymers based on fused aromatic diimides (for instance, 

N-alkyl-substituted PDIs and NDIs) have also been employed as effective acceptors in all 

polymer OSCs.31–34 The linkers also play a critical role in the design of these polymer acceptors. 

In this case, they not only help to modulate the aggregations but also provide additional 

opportunities to decrease the bandgap due to their extended conjugation. As a result, the 

polymer acceptors based on fused aromatic diimide derivatives often demonstrate low bandgaps. 

For example, N2200 (Figure 1d), which is a popular polymer acceptor based on NDI and 

bithiophene, has a low band gap of 1.46 eV. Its absorption spectrum and energy levels match 

very well with a range of wide and mid bandgap polymer donors originally developed for 

fullerene-based OSCs. Up to now, high PCEs around 9% have been obtained for all polymer 

OSCs based on N2200.34,35  

In spite of these progresses, the applications of fused aromatic diimide-based polymer 

acceptors in OSCs have critical challenges to be tackled. For example, there is a delicate balance 

between good solubility and effective interchain π-π interactions for PDI-based polymer 

acceptors. Highly twisting linkers help to provide good solubility, but prevent effective 

interchain π-π interactions, unfavorable for intermolecular charge transfer and transport. As a 

result, the linkers with decreased twisting effects are often used in these polymeric acceptors. 

In this case, long and branched alkyls, which offer sufficient solvation, have to be employed as 

the functional groups in order to ensure good solubility. However, these long branched alkyls 

are optoelectronically inert. This delicate requirement limits the development of suitable 

polymer acceptors. N2200 makes a good balance between high solubility and strong π-π 

interactions, and hence becomes the most widely used polymeric acceptor in NF OSCs. In 

addition, when two polymers are mixed to form the BHJ structure, it is a great challenge to 

simultaneously realize small phase separation and avoid interchain entanglement between two 

different polymers from the aspect of polymer physics. This provides an additional obstacle 

that hampers the development of all polymer NF OSCs. As subtle changes in chemical 

structures could significantly affect the delicate balance and hence the device performance, 

systematic investigations on the molecular structures have to be carried out to further improve 

the performance of all polymer OSCs.   
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Acceptors based on strong intramolecular electron push-pulling effects  

The first acceptor in this category, CN-PPV (Figure 1a), was reported by the Cambridge 

group in their pioneering work on bulk heterojunction OSCs.1 As the cyano group has high 

electron negativity and is linked with the ethylene segment, accepted electrons can delocalize 

effectively along the conjugated backbone of CN-PPV. Although the efficiency of OSCs based 

on CN-PPV acceptor is low (efficiencies up to 2%, see Ref. 36), the development of this 

material triggered efforts in synthesizing polymeric or small-molecular acceptors based on 

functional groups with strong electron negativity. 

In 2015, a high-performing material, with the abbreviated name of ITIC (structure shown 

in Figure 1e), was developed following these guidelines.37 Since then, the best photovoltaic 

performance for NF OSCs have been obtained with ITIC derivatives (Figure 1f).6,22,38 The 

molecular energy levels and absorption spectra of ITIC derivatives can be effectively tuned by 

manipulating the intramolecular electron push-pulling effects while keeping their key features 

as efficient acceptor materials (Figure 1g h). Easy tunability makes great contributions to the 

rapid progress in PCEs for NF OSCs. For example, as shown in Figure 1h, the lowest 

unoccupied molecular orbital (LUMO) level can be increased by incorporating electron-rich 

groups like methyl or methoxy into the end-capping units of ITIC, resulting a molecule called 

IT-M. When mixed with the same polymer, the IT-M-based device have a higher open-circuit 

voltage (VOC) value than the ITIC-based device, resulting in an enhanced PCE of 12.1%.38 At 

the same time, the LUMO level of ITIC could also be reduced by incorporating electron-

deficient elements like F-atoms into the end capping groups, resulting in a molecule called IT-

4F. Since the electron pulling effect of the end groups and hence the intra-molecular charge 

transfer (ICT) effects are enhanced in IT-4F, this molecule shows a low LUMO level, red-

shifted absorption and strong extinction coefficient. In order to make good use of the broad and 

strong light absorption capability of IT-4F without sacrificing the VOC, a polymer named PBDB-

T-SF (shown in Figure 1f) with a low LUMO level was employed as the donor material. As a 

result, the device based on PBDB-T-SF:IT-4F gave a high efficiency of 13.1% with a short-

circuit current (JSC) of 20.5 mA/cm2.6  

A critical question to the OSC materials community is what makes ITIC derivatives so 
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unique, in addition to their low bandgap and strong electron accepting capability? We believe 

that the key might lie in the favorable π-π interactions enabled by the molecular geometry 

(Figure 2). In ITIC derivatives, it is the electron-deficient end-capping units that form π-π 

interactions with the polymer donors and/or the adjacent acceptor molecules in blend film, 

facilitating efficient electron transfer and transport. Instead, the electron-rich central unit is not 

involved in π-π interactions due to the steric hindrance of the non-conjugated side groups.39 We 

notice that this feature is also applicable to other high-efficiency acceptors based on strong 

intramolecular electron push-pulling effects. For example, a small molecular acceptor, namely 

EH-IDTBR,40 though different from ITIC derivatives in chemical structures, also has electron-

deficient end-capping units for π-π interactions and an electron-rich core whose π orbitals are 

shielded by non-conjugated side groups. 

Efficient charge separation upon small driving energies 

Compared with fullerene-based OSCs, the most striking feature of NF-based OSCs is that 

a wide range of devices show efficient charge generation upon small (even negligible) driving 

energies.9–14 Driving energy, traditionally believed to be necessary to split the strongly bound 

excitons at the D:A interfaces, constitutes an additional voltage loss for OSCs.41–43 Previous 

investigations on fullerene-based OSCs revealed that charge generation could be efficient when 

the driving energy is decreased to a certain point, below which charge generation usually 

decreases dramatically,15,16 although one exception was also reported.44 Therefore, there is 

usually a trade-off between high photocurrent and small voltage loss for fullerene-based OSCs, 

limiting the power conversion efficiency. Instead, for NF OSCs, it has been demonstrated that 

the internal quantum efficiency can approach 90% even when the driving energy approaches 

zero, for instance, in the P3TEA:SF-PDI2 blend.9 This is the reason why a range of NF OSCs 

show high JSC and large VOC at the same time.10–14,45 At this stage, it is not clear whether the 

tolerance with small driving energies comes from some special properties of the NF acceptors 

or merely from the fact that NF acceptors provide more opportunities to obtain aligned energetic 

levels between the donor and acceptor materials. 

In the context of this Review, the driving energy is defined as the difference between the 
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bandgap (Egap) of the D/A materials (whichever has a smaller bandgap) and the energy of the 

charge-transfer (CT) state when the electron-hole pair is still confined to the heterojunction, 

prior to long range separation.3,15 Although it is an important parameter, the Egap in literature 

was usually arbitrarily determined from the absorption onset. An appropriate approach might 

be to use the crossing point between the normalized absorption and luminescence spectra to 

determine the Egap.9,46 This crossing point corresponds to the energy of the transition from the 

zeroth vibrational ground state to the zeroth vibrational first excited state. An alternative 

approach suggests the use of the inflection point of the external quantum efficiency (EQE) 

spectrum at long wavelengths to determine the Egap.47 This method, based only on EQE 

measurements, might be particularly advantageous for analyzing materials whose absorption 

onset shifts upon mixing and also enables the determination of the Egap from materials in 

literature reports. The CT energies can be determined by measuring the absorption and/or 

emission from the CT states by using highly sensitive photothermal deflection spectroscopy, 

Fourier-transform photocurrent spectroscopy ─ EQE (FTPS─EQE) or electroluminescence (EL) 

measurements.48–50 For systems with large driving energies, a red-shift in the absorption and 

emission spectra of CT states will be observed compared with those of the singlet excitons from 

the pristine donor or acceptor materials.15 In contrast, for the systems with negligible driving 

energies, the absorption and emission of the devices will be dominated by those from the 

pristine donor or acceptor materials (Figure 3a).9,46  

Note that a small driving energy approaching zero does not necessarily guarantee a small 

voltage loss, as the voltage losses in OSCs includes the contributions from both the loss due to 

charge transfer (i.e. the driving energy) and the loss due to non-radiative recombination. More 

specifically, the voltage losses can be categorized into three contributions (Figure 3b):9  

𝑞∆𝑉 = 𝐸𝑔𝑎𝑝 − 𝑞𝑉𝑂𝐶  

= (𝐸𝑔𝑎𝑝 − 𝑞𝑉𝑂𝐶
𝑆𝑄) + (𝑞𝑉𝑂𝐶

𝑆𝑄 − 𝑞𝑉𝑂𝐶
𝑟𝑎𝑑) + (𝑞𝑉𝑂𝐶

𝑟𝑎𝑑 − 𝑞𝑉𝑂𝐶)      

= (𝐸𝑔𝑎𝑝 − 𝑞𝑉𝑂𝐶
𝑆𝑄) + 𝑞∆𝑉𝑂𝐶

𝑟𝑎𝑑,𝑏𝑒𝑙𝑜𝑤 𝑔𝑎𝑝
+ 𝑞∆𝑉𝑂𝐶

𝑛𝑜𝑛−𝑟𝑎𝑑     

= ∆𝐸1 + ∆𝐸2 + ∆𝐸3    (1) 
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𝑉𝑂𝐶
𝑆𝑄

 in the equation is the maximum voltage based on the Shockley-Queisser limit, where the 

EQE is assumed to be step-wise, i.e. 1 above the gap and 0 below the gap.51 Those who are 

interested in the details of different terms in Eq. 1 are referred to the SI of Ref. 9. The first term 

of energy loss in equation 1 (𝐸𝑔𝑎𝑝 − 𝑞𝑉𝑂𝐶
𝑆𝑄) is due to the mismatch between radiation received 

in a narrow solid angle from the sun and omni-directional radiative recombination originating 

from the absorption above the bandgap. This loss is unavoidable for any type of solar cells and 

is typically 0.25 eV or above.52 The second term in the equation (𝑞∆𝑉𝑂𝐶
𝑟𝑎𝑑,𝑏𝑒𝑙𝑜𝑤 𝑔𝑎𝑝

= 𝑞𝑉𝑂𝐶
𝑆𝑄 −

𝑞𝑉𝑂𝐶
𝑟𝑎𝑑) is due to additional radiative recombination from the absorption below the bandgap. 

For fullerene-based OSCs, the absorption from the CT states (i.e. due to the existence of driving 

energy) is the main contribution of this term, which can be as large as 0.67 eV in the bench 

mark poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester blend.52 In the 

systems with negligible driving energies, CT state absorption becomes invisible, as the CT state 

energy is close to the singlet exciton energy. In this case, this term is only from the non-ideal 

absorption edge and can be decreased to 0.07 eV in the P3TEA:SF-PDI2 blend.9 The third loss 

term (𝑞∆𝑉𝑂𝐶
𝑛𝑜𝑛−𝑟𝑎𝑑 = −𝑘𝑇𝑙𝑛(𝐸𝑄𝐸𝐸𝐿)) is due to non-radiative recombination, where EQEEL is 

electroluminescence quantum efficiency of the solar cell when charge carriers are injected into 

the device in dark.53 Low non-radiative VOC losses are made possible when the EQEEL is 

enhanced. In other words, a great solar cell also needs to be a great light-emitting diode.54 

Generally OSCs have much stronger non-radiative VOC losses (in the range of 0.30 ─ 0.48 V) 

compared with highly efficient inorganic or perovskite solar cells.49,52 From this analysis it 

becomes obvious that systems with small driving energies can still exhibit large voltage losses 

due to strong non-radiative recombination.  

The origin of strong non-radiative recombination in OSCs has puzzled the community for 

almost one decade. A recent study shows that non-radiative recombination increased with 

decreasing CT energy of the blends.55 The results were interpreted based on the ‘energy-gap 

law’ of non-radiative voltage losses, which were assigned to intramolecular vibrations of the 

organic semiconductor material itself. This model implied that non-radiative recombination is 

intrinsic to organic semiconductors which have high vibrational carbon-carbon frequency 
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modes. However, while Ref. 55 studied a large number of systems, the majority of these systems 

employed fullerene derivatives as the acceptor, with significant driving energy for charge 

transfer. The nature of the donor-fullerene π-π intermolecular interactions may limit the 

radiative emission rates for these materials systems, and it is not a priori clear whether the 

conclusions of Ref. 55 generalize to non-fullerene OSCs, especially those with negligible 

driving energies.  

A recent paper investigated non-radiative recombination in non-fullerene OSCs with 

negligible driving energies.9 The FTPS-EQE and EL spectrum of the blend device overlapped 

with those of the device based on the pristine donor material, indicating that the emission might 

be from singlet excitons, rather than CT states (Figure 3a). In addition, the non-radiative 

recombination voltage loss of the optimised device approaches that of device based on the 

pristine donor material. These results imply that the non-radiative recombination is possibly 

determined by the emission properties of pristine material (whichever has lower bandgap) in 

the combinations with negligible driving energies. In other words, it means that it is important 

to enhance the photoluminescence quantum efficiency of the low bandgap materials to decrease 

the non-radiative recombination loss in the devices with negligible driving energies. In an ideal 

case, no photoluminescence quenching of the low bandgap material should be observed upon 

mixing the donor and acceptor at the VOC so that the photovoltage can be maximised, while the 

photoluminescence should be completely quenched upon small internal field and at the JSC so 

that the fill factor (FF) and photocurrent can be maximised. However, since only one 

combination was investigated in Ref. 9, it is difficult to draw any solid conclusion, especially 

considering that the observation is purely experimental, without any mechanistic 

understanding. Further studies combining experimental and theoretical investigations, 

especially on the systems with negligible driving energies, might shed more light on the origins 

of non-radiative recombination loss in OSCs. Since the voltage loss due to charge transfer is 

minimised in the systems with negligible driving energies, a thorough understanding of non-

radiative recombination is key to further enhancing the VOC and hence the PCE of OSCs. 

Spin statistics might be also important for understanding the nature of the non-radiative 

non-geminate recombination mechanisms. Following the very well understood issues of the 
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spin statistics for electron-hole capture in organic light-emitting diodes (75% of these events 

form triplet excitons that are not emissive and often too low in energy to return to the emissive 

singlet state), the same spin statistics are expected for non-geminate recombination of electron 

hole pairs in OSCs. Where there is a molecular triplet on either donor or acceptor that lies lower 

in energy than the CT energy gap, population of this state via the initially-created triplet CT 

state causes very efficient non-radiative decay. This has been seen for a number of fullerene 

systems,56 though this is avoided under optimum circumstances, where the CT states formed 

are only weakly bound (as found for systems with well-formed pure fullerene nanostructures 

that probably confine the electron away from the fullerene cluster surface).57 At present, little 

is known about this triplet recombination channel for NF acceptor systems. 

In addition to non-radiative recombination, another key point is the charge generation 

process in NF OSCs. Compared with the rapid development in materials and devices, 

photophysical investigations of the charge generation process are currently lagging behind, with 

few publications available in literature.9,58,59 For fullerene-based OSCs, charge generation is a 

most intensively investigated issue.3,60–64 Various publications found that the initial charge 

transfer process to form the CT excitation is ultrafast, on a timescale of tens of fs, suggesting 

that the charge separation process might involve delocalization of acceptor and donor states 

across the heterojunction.65–67 The delocalisation could be due to strong electronic coupling or 

vibronic (vibrational/electronic) coupling or entropy. Subsequent separation of the electron-

hole pair to beyond the geminate recombination range, considered to be > 5 nm (Langevin 

radius), has been measured to be very fast (as short as 40 fs),3 and the presence of fullerene 

clusters that provide delocalized π* electron wavefunctions over many fullerene units was often 

believed to play a key role for delocalisation or strong coupling.68 This provides a rationale for 

the avoidance of geminate recombination expected to occur. After the early time rapid 

separation, localization of the charge carrier wavefunction does set in, as the phonon cloud 

catches up with electrons.3,64,65 It would be very interesting to investigate whether similar or 

fundamentally different mechanisms are contributing to the charge separation process in NF 

OSCs, using advanced spectroscopic methods like broadband pump–probe spectroscopy, two-

dimensional electronic spectroscopy,69,70 or pump–push–probe spectroscopy.71 Based on the 
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understanding developed for fullerene acceptors, the key requirement is the availability of 

charge carrier states (electron and/or holes) that are delocalized over many acceptor/donor 

molecules, so that long range charge separation can occur before phonon-driven localization 

sets in. 

Opportunities and challenges 

The emergence of these NF acceptors provides a range of opportunities, which are 

otherwise not possible in fullerene-based OSCs. We now discuss these opportunities along with 

challenges from the viewpoints of materials and devices.  

Material chemistry of photoactive materials 

It might be the most straightforward strategy to enhance both the photocurrent and 

photovoltage of NF OSCs by tuning the absorption spectra and energetic levels, which are two 

main advantages of NF OSCs (Figure 1g h). In fact, recent rapid progresses in high-performance 

NF OSCs are mainly dependent on careful tuning of these two parameters. We use the device 

based on the PBDT-T-SF:IT-4F donor-acceptor system (Figure 1f), with PCE = 13.1%, as an 

example to demonstrate possible approaches to further enhancing the efficiency. Although this 

blend shows a broad EQE spectrum with a maximum value of 83%, the EQE values at short 

wavelength ranging from 400 to 550 nm is still low due to limited absorption of the polymer 

donor in this region. In addition, the blend has a bandgap of 1.58 eV with a VOC of 0.88 V, 

corresponding to a voltage loss of 0.70 eV, which is higher than other high-efficiency NF OSCs 

with low voltage losses.9 Therefore, further improvement of the photocurrent of this system 

may be obtained with optimizing the absorption of the polymer donor in the short wavelength 

regime, for instance, by either shifting the polymer absorption spectrum to higher energies or 

by adding conjugated side chains to enhance the absorption of short wavelength regime; further 

improvement of the photovoltage may be obtained with optimizing the energetic offsets 

between the donor and acceptor materials, for instance, by downshifting the energetic levels of 

the donor and/ or upshifting those of the acceptor.  

In addition to absorption spectra and energetic levels, morphology is also of critical 

importance to the device performance. State-of-the-art small molecules are all amorphous and 
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also readily miscible with a range of high-performance polymer donors, raising new 

requirements for polymer donors to form optimized morphology. In this case, an effective 

approach to control the phase separation morphologies would be to control the aggregation 

effects of the donor materials. Indeed, all the polymer donors in high-efficiency NF OSCs share 

a unique aggregation feature in common, i.e. the co-existence of strong aggregation effects and 

excellent dispersibility in a solvent.72–74 The aggregation effects can be examined by 

temperature-dependent absorption measurements, as shown in Figure 4a with PBDB-T as an 

example.75 When mixed with small molecular acceptors, the aggregation of these donor 

polymers confines the nucleation and growth of the acceptors, forming phases with high purity 

and optimized morphology (Figure 4b). The aggregation effects of the polymer donors can be 

tuned by changing the solvation of the molecules in solvent, for instance, by changing the 

solvent or by changing flexible side groups of the molecules. We believe that detailed 

investigations from the polymer physics point of view will help to further understand the 

process and provide practical guidance for rational design of materials.   

 Another critical morphology issue for NF OSCs is the molecular orientation at the D:A 

interfaces.18–21 The charge transfer and transport in organic semiconductors occur through the 

sp2 hybrid π-orbitals with a preferred direction from the vertical direction relative to their 

conjugated surfaces.76,77 Therefore, the molecular orientations at these interfaces greatly affect 

the photovoltaic performance of OSCs. For instance, morphological studies of all polymer 

OSCs implied that the face-to-face packing mode at the D:A interfaces was more favorable for 

charge generation than the edge-to-face packing mode.18 Although molecular orientation is not 

critical for OSCs based on fullerene derivatives, which have isotropic conjugated structures, 

the anisotropic conjugated backbones of NF acceptors bring serious challenges to this issue in 

NF OSCs. While it is fairly straightforward to understand the correlations between the 

molecular orientation and photovoltaic performance, how to precisely characterize and control 

the molecular orientations are two challenging topics in the field. 

Charge carrier mobility can also significantly affect the device performance by affecting 

bimolecular recombination. For organic semiconductors, planar conjugated backbones and high 

crystallinity are beneficial for intra and inter molecular carrier transport, respectively. However, 
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to obtain planar conjugated backbones and/ or high crystallinity is very challenging in BHJ 

OSCs, since a nanoscale interpenetrating network between D:A molecules is required for 

efficient charge generation. In order to meet this morphological requirement, high mobilities 

are sacrificed in state-of-the-art acceptor molecules. For example, as discussed previously, 

twisted backbones are employed in the small molecules based on PDI derivatives, and alkyls 

with high steric hindrance are employed in the ITIC-like molecules, limiting their electron 

transport capabilities. As a result, the electron mobilities of the active layers in high-efficiency 

NF OSCs could only reach the level of 1×10-4 cm2/s, which is one or two orders of magnitude 

lower than that in fullerene-based OSCs. An important consequence is that the FF in NF OSCs 

always drops significantly when the active layer thicknesses increase from 100 nm to over 200 

nm, mainly due to enhanced bimolecular recombination in thick films.6 In contrast, fullerene-

based OSCs can keep high FF with thicknesses up to a few hundreds of nanometers.7,78,79 It is 

critically important to develop new molecular design strategies that can enhance the 

intermolecular π-π interactions without causing strong phase separation in blends. This will be 

very useful to enhance the EQE values by enhancing light absorption in thick films, and also 

important for making large area solar panels with better reproducibility, which requires 

thickness tolerance during the solution-processed fabrication.  

We have highlighted the opportunities and challenges based on the parameters important 

for NF OSCs, including absorption spectra, energy levels, morphology (in terms on both 

aggregation and molecular orientation), and mobilities. We emphasize that the molecular design 

strategies to optimize one parameter might negatively affect another one, making it challenging 

to optimize all the parameters at the same time.   

Devices 

Tandem solar cells, where two or more sub-cells with complementary absorption bands are 

internally integrated, provide an effective approach to enhance the light absorption and reduce 

the thermal losses in single-junction solar cells.80–83 The advantages of tandem structures have 

not been fully explored in fullerene-based OSCs, as they usually demonstrate large voltage 

losses. In contrast, NF OSCs provide a great opportunity to significantly enhance PCEs of 

tandem OSCs, made possible by highly tunable absorption as well as the co-existence of low 
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voltage losses and efficient charge separation. By carefully tuning the absorption of both front 

and rear sub-cells, NF-based tandem cells have demonstrated high PCEs of 13.8%84 and more 

recently over 14%.85 A main reason for such a high efficiency is reduced voltage losses, which 

have the prospect for further improvement. A critical challenge for current tandem NF OSCs is 

the photocurrent mismatch between the front and rear sub-cells. This challenge can in principle 

be solved by increasing the thickness of both front and rear sub-cells with optimized bandgaps, 

so that different portions of the light can be absorbed by respective sub-cells. However, as 

discussed previously, the efficiencies of thick NF OSCs are currently limited by poor charge 

transport.  

In addition to tandem cells, ternary devices, where the active layer consists of three 

components, offer another feasible approach to extend the light absorption of the conventional 

binary OSCs.86,87 The emergence of NF OSCs provides a wide range of possibilities for ternary 

devices: the third component can be a polymer or small molecule donor,88 a fullerene-based 

acceptor,89,90 or an NF acceptor (either polymer or small molecule).91 In addition to absorption 

and energy level considerations, critical to ternary devices is to obtain optimized morphology 

when a third component is added. In cases where the third component is fullerene derivatives, 

the ratio of fullerene derivatives is usually kept low for good morphology. In order to 

significantly extend the light absorption, one of the effective approaches might be to use a third 

component which is similar to an existing component in chemical structures but different in 

absorption region. For example, a very recent work employed two ITIC-like acceptors (IT-M 

and IEICO) and demonstrated that these two acceptors are well miscible with each other.91 With 

the weight ratios changing from 1:0 to 0:1, the light absorption contributed by these two 

acceptors can always effectively contribute to the photocurrent generation. In addition, ternary 

devices have shown improved stability compared with binary devices.23 Rich device physics 

might also be involved in these new ternary devices. For example, it was previously believed 

that the two donors or two acceptors in ternary devices form alloy, so that the VOC lies between 

the VOC values of two binary devices.89,92 However, recently a ternary device demonstrated a 

VOC value higher than the VOC values of both binary devices.93 This finding not only provides a 

unique approach to enhance the photovoltage of ternary devices, but also implies new device 
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physics for ternary devices. 

Other than aiming to absorb much light in tandem and ternary devices, aiming to absorb 

part of the light intentionally can also be useful for some applications. A typical example is 

semi-transparent OSCs,94–96 which provide unique opportunities for niche applications, for 

instance for smart windows. Ideal semi-transparent OSCs are supposed to have weak absorption 

in the visible region and strong absorption in the near infrared region.97 In addition, a low 

voltage loss is also required for high efficiency. Fullerene-based OSCs can meet neither the 

absorption nor the small voltages loss requirement. Instead, NF OSCs provide the possibilities 

to meet both requirements. For example, a low bandgap NF-acceptor, namely IEICO-4F, 

demonstrates great potential for this application.88 Absorption of IEICO-4F mainly locates in 

the deep-red and near infrared region, ranging from ~ 700 nm to ~ 1000 nm. At the same time, 

it delivers a high VOC larger than 0.7 V, demonstrating a small voltage loss. In addition to the 

explorations of more NF acceptors for this application, efforts should also be devoted to 

achieving an optimized trade-off between transparency and conductivity of transparent 

electrodes. 

Outlook 

Previous efficiency predictions of OSCs are based on the assumption that significant 

driving energies are needed for efficient charge separation. Since NF OSCs have successfully 

demonstrated high quantum efficiency upon negligible driving energies, we feel it necessary to 

re-estimate the efficiency (Figure 5a). All the parameters can be empirically estimated other 

than non-radiative recombination losses, which the community have yet to understand, as 

discussed previously. The EQE is assumed to be 85% above the bandgap; the VOC is determined 

by Equation 1, where ∆E1 is calculated based on the bandgap, ∆E2 is assumed to be 0.05 due 

to non-ideal band edge,9 and ∆E3 (non-radiative recombination losses) is used as the y axis; the 

FF is based on the well-established empirical relationship98 

𝐹𝐹 =
𝛾𝑂𝐶 − ln (𝛾𝑂𝐶 + 0.72)

𝛾𝑂𝐶 + 1
 

where 𝛾𝑂𝐶 = 𝑞𝑉𝑂𝐶 𝑛𝑘𝑇⁄ , q is the elementary charge, n is the diode ideality factor, k is the 

(2) 
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Bolztmann constant, and T is the temperature. Figure 5b shows the maximum FF (FFmax) as a 

function of the VOC, indicating that smaller voltage losses (hence larger VOC) also mean larger 

possible FF for a given material. In reality, the FF cannot reach the maximum value even for 

crystalline GaAs and Si solar cells.99 We summarize high-FF OSCs (based on both fullerene 

and NF acceptors) available in literature in the figure.6,38,100,101 We find that the values lie within 

a range of FFmax – (0.1 ± 0.04), and an FF of FFmax – 0.1 is used in the efficiency estimation. 

As expected, non-radiative recombination VOC losses play a key in determining the 

efficiency of the OSCs. A high efficiency of 19% is within reach at wavelengths around 860 ± 

60 nm, if the non-radiative recombination VOC loss could be decreased to ~ 0.21 V. Therefore, 

understanding and decreasing the non-radiative recombination is key to further enhancing the 

PCEs of NF OSCs. The non-radiative recombination losses can potentially originate from the 

materials and energetic levels.9,55 In addition to decreasing non-radiative recombination, 

optimizing the EQE is also important to reach high efficiency. Although a high EQE of 83% 

was reported in literature for NF OSCs, such a high value only covers a small wavelength 

range.6 Especially, most of the high-efficiency NF OSCs show low EQE values at short 

wavelengths due to limited absorption in this region. The light absorption at short wavelengths 

can be enhanced by tuning the absorption of D/A materials or by employing thick or ternary 

films. 

We realize that the characterization of non-radiative recombination losses is not readily 

accessible by most research groups, especially those focusing on materials and device 

development. In order to make it easy for the materials and device groups to identify the 

potentials of their practical devices, we also estimate the PCE vs. the energy losses, as shown 

Figure 5c. All the assumptions in this figure are the same as those in Figure 5a, except the VOC, 

which is now determined by difference between the bandgap and the energy losses.  

High efficiency prediction, unique features of NF acceptors, and rapid recent advances in 

this field, make NF OSCs promising as a practically relevant technology. In order to transfer 

from the lab-scale devices to large-scale modules using low-cost printing techniques, there are 

several additional issues to be taken care of. Firstly, green solvents are required for processing. 
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Currently, the lab-scale high-efficiency NF OSCs are mainly processed from toxic chlorinated 

solvents (for instance, chloroform or chlorobenzene). Fortunately, compared to fullerene 

derivatives, NF acceptors show excellent solubility in a larger range of solvents, offering more 

opportunities to select green solvents. For example, a NF OSC with over 11% PCE was recently 

reported by using a mixture of tetrahydrofuran and isopropanol as processing solvents, which 

are low toxic and also biodegradable.58 Secondly, thickness tolerance is preferable for large 

scale applications. Currently, the efficiency of NF OSCs drops significantly with increasing 

thickness from 100 to 250 nm, mainly due to decreasing FF.6 As discussed previously, future 

efforts to increase the carrier mobilities might help to solve this problem. Thirdly, detailed 

investigations on stabilities are needed.23 It is well acknowledged that anisotropic NF acceptors 

with rigid backbones are less mobile than fullerenes in the blend, leading to better 

morphological stability than fullerene-based OSCs, which have been proved in a few highly 

efficient NF OSCs.22 However, stability of NF OSCs under different environmental factors (for 

instance, oxygen, moisture, and elevated temperatures) needs to be systematically studied. 

Fourthly, new donor and acceptor materials need to be developed. State-of-the-art NF OSC 

donor and acceptor materials are based on complicated synthesis routes, making the cost of NF 

OSCs high. It will be desirable for future applications to design new materials, which combine 

low cost and high performance. 
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Figure captions 

 

 

Figure 1 State-of-the-art NF acceptors. (a) Key features of successful NF acceptors (PV and 

CN-PPV are the first NF acceptor materials used in the heterojunction and bulk heterojunction 

OSCs, respectively): the functional groups, which are linked by high electron negative atoms 

(e.g. oxygen or nitrogen) and low electron negative atoms (usually carbon) through a 

conjugated linkage, offer strong electron accepting capabilities. These functional groups are 

then linked to conjugated backbones. (b) Two typical types of acceptor materials based on 

aromatic diimide derivatives: dimeric PDIs and polymeric NDIs, where Ar represents the 

linkers between the units. (c) Performance and molecular structures of NF OSCs using small-

molecule aromatic diimides (SF-PDI2) as the acceptor and P3TEA as the donor. (d) Performance 

and molecular structures of NF OSCs using polymeric aromatic diimides (N2200) as the 

acceptor and PTzBI as the donor. (e) Molecular structures of eight ITIC-like acceptors with 

different intra-molecular charge transfer (ICT) effects, with the structures and photovoltaic 

performance of the combination PBDBT-T-SF: IT-4F shown in (f). The absorption spectra (g) 

and molecular energy levels (h) of these ITIC-like molecules can be easily tuned by modulating 

ICT effects. The molecular energy levels were estimated from the electrochemical cyclic 

voltammetry measurements. 

 

   

  



21 
 

Figure 2 Unique features of ITIC and its derivatives. (a) The ITIC molecule includes electron-

pushing and electron-pulling units, where the electron-pushing units are shield by bulky non-

conjugated side chains. (b) Top and side views of the optimal geometry of the ITIC molecule. 

(c) Bimolecular packing mode indicates that the electron-deficient end-capping units form π-π 

interactions with the adjacent acceptor molecule for efficient inter-molecular charge transport 

and with the donor materials for efficient charge transfer. The electron-rich central unit is not 

involved in π-π interactions due to the steric hindrance of the non-conjugated side groups, and 

is only involved in intra-molecular charge transport. (b, c) adapted from Ref. 39, Wiley. 
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Figure 3 Energy losses in NF OSCs. (a) The FTPS-EQE and emission spectra of the blend 

overlap with those of the pristine devices when the driving energy between the donor and 

acceptor materials approaches zero; (b) The energy losses from the Egap to the qVOC. The value 

ranges reported in literature are indicated in the figure. ∆E1 is unavoidable for any solar cells 

and ∆E2 was reported to be as small as 70 meV in the P3TEA-SF-PDI2 blend, where the driving 

energies between the donor and acceptor materials approaches zero, leaving ∆E3 critically 

important for further enhancing the VOC of OSCs. (a) adapted from Ref. 9, NPG.  
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Figure 4 The aggregation effects of the donor materials (PBDB-T as an example) in high-

efficiency NF OSCs. (a) Temperature dependent absorption spectra of PBDB-T, which shows 

strong aggregation effects and good dispersity in dilute solution. The insert shows that the 

solution is clear and that the temperature-dependent color change is well reversible. (b) The 

topography (top) and phase (bottom) images of the neat PBDB-T, PBDB-T:ITIC and PBDB-

T:PC71BM films spin-coated from chlorobenzene solution under ambient temperature. The 

nano-size aggregations can be clearly observed in the neat film, and the two blend films show 

very similar phase separation morphologies, indicating that the morphology of the blend films 

are mainly determined by the aggregation of the polymer. 
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Figure 5 New efficiency prediction for OSCs based on NF acceptors. (a) The efficiency 

prediction for NF OSCs based on the fact that they can work efficiently upon negligible driving 

energies. This figure highlights the importance of reducing the non-radiative recombination 

losses to further enhance the PCEs. (b) The empirical relationship between the VOC and the FF, 

together with the reported high-FF devices, including both inorganic and perovskite solar cells 

(in red), fullerene OSCs (in black), and NF OSCs (in green). The data are collected from Ref. 

6,38,99–101. (c) An alternative way to predict the efficiency of NF OSCs, showing the 

efficiency vs. the energy losses. 
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