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We derive an integral expression for the �ux of a single phase �uid through a porous
medium with prescribed boundary conditions. Taking variations with respect to the pa-
rameters of a given permeability model yields an integral expression for the sensitivity
of the �ux. We then extend the method to consider linear changes in permeability. This
yields a linearised �ux expression which is independent of changes in the pressure �eld
that result from the changes in the permeability. For demonstration purposes, we �rst
consider an idealised layered porous medium with a point source and point sink. We
show how the e�ects of changes in permeability are a�ected by the position of the source
and sink relative to the layered structure as well as the layer height and orientation of
the layered structure. The results demonstrate that, even in a simple porous system,
�ux estimates are sensitive to the way in which the permeability is represented. We de-
rive relationships between the statistical moments of the �ux and of the permeability
parameters which are modelled as random variables. This allows us to estimate the num-
ber of permeability parameters that should be varied in a fully nonlinear calculation to
determine the variance of the �ux. We demonstrate application of the methods to perme-
ability �elds generated through fast fourier transform and kriging methods. We show that
the linear estimates for the variability in �ux show good agreement with fully nonlinear
calculations for su�ciently small standard deviations in the underlying permeability.

1. Introduction

Understanding the behaviour of �uids in subsurface rocks is important in a wide range
of applications including hydrocarbon extraction, CO2 sequestration and contaminant
dispersal. As well as the need for accurate �ow models, numerical solutions to these
models need to be calculated on a reasonable timescale in order to be of use (Gerritsen
& Durlofsky 2005). Flow in porous media is governed by rock pore geometry scales of
the order of 0.01− 1mm whilst data collected through extracted rock cores and seismic
imaging typically provide, at best, a 10m resolution (Yilmaz 2001). Also, despite ad-
vances in computing resources, solving models with the large amounts of data needed to
describe the �ow geometry can become prohibitively di�cult.
In order to progress, one can introduce e�ective media models which represent proper-

ties of the �ow by specifying average property values on subdomains of the �ow domain,
an example of upscaling. Examples and critical reviews of upscaling within the �elds of oil
extraction and groundwater �ow have been given by, among others, Desbarats (1992);
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King et al (1995); Wen & Gómez-Hernández (1996); Christie (1996); Renard & de
Marsily (1997); Chilés & Del�ner (1999); Farmer (2002); Wu, Efendiev & Hou (2002);
Cushman, Bennethum & Hu (2002) and Fiori, Dagan & Jankovic (2013). Information is
inevitably lost and uncertainty introduced when modelling the �ow of �uid through the
detailed rock structure in this way. Uncertainty is equivalent to a potential economic cost
when attempting to extract or inject valuable �uid out of or into the rock (Jahn, Cook &
Graham 2008). Furthermore, there is a considerable cost in acquiring further core and
seismic data. As such, quanti�cation of the level of uncertainty in a �ow estimate can be
of material �nancial importance.
A key physical property is the rock permeability which represents the ability of �uid

to pass through the network of pores that make up the micro-structure of the rock. In
the Darcy description of porous media �ow,

u∗ = −k
µ
∇p∗, (1.1)

permeability is parameterised as the spatially varying coe�cient k = k (x), de�ned as the
ratio of the product of the Darcy velocity, u∗, and the �uid viscosity, µ, to the pressure
gradient ∇p∗ applied across the porous medium. The scalar permeability k can be gen-
eralised to a symmetric matrix K which represents anisotropic permeability where the
eigenvalues of K represent the scalar permeabilities (principal permeabilities) in the di-
rections of anisotropy which are given by the eigenvectors of K (Bear 1972). Uncertainty
over the value of k (or the coe�cients of K in the anisotropic case) leads to uncertainty
in the �ow solution which is di�cult to quantify without repeated calculations for many
sampled values of permeability across the domain. Our aim is to gain a better under-
standing of the sensitivity of �uid �ux to uncertainty in estimates of permeability whilst
avoiding the need for computationally intensive models (e.g. Monte Carlo methods). We
do this by �nding the variations of an integral representation of the �ux with respect to
perturbations in the permeability.
Given poorly resolved data for the permeability, interpolation techniques are often used

to construct an estimation for the permeability across the �ow domain. A widely used
example of linear interpolation in mining, hydrology and fossil fuel extraction is kriging.
Kriging was �rst proposed by D. G. Krige (Krige 1951) and subsequently promoted
and developed by G. Matheron (Matheron 1971). There are several forms of kriging
including `simple', `ordinary' and `universal' which each make di�erent assumptions for
the properties of the quantity of interest. For example, `ordinary' kriging assumes that
the function de�ning the correlation between two points is uniformly de�ned across the
domain, and that the mean value is spatially constant, although freely determined.
In �2 we derive an integral expression for the �ux of a single phase �uid through a

porous medium with prescribed boundary conditions and permeability �eld. In �3 we
present a method to calculate the dependence of the �ux on variations in parameters of
the permeability model. As an example we consider an idealised porous medium with a
layered structure and isotropic permeability and discretise the permeability �eld by spec-
ifying spatially constant values for the permeability on discrete subdomains. We show
that the model predictions are strongly in�uenced by the position of the source and sink
relative to the layered structure as well as the height and orientation of the layered struc-
ture. We show that even in this simple scenario, the range of values calculated can be
signi�cant. In �4 we interpret the permeability as the sum of a spatially variable mean
K0 and a perturbation εK1 which represents uncertainty within the data used to estimate
K0. From this interpretation we obtain a leading order integral expression for the �ux
which depends upon the permeability and the leading order pressure �eld associated with
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(a) (b)

Figure 1: (a) Two dimensional schematic of a �ow domain D. Source/sink positions are
shown by crosses and contours of ∂S (CI (r), CO (r) and ∂D the boundary of D) are
shown in red. (b) Schematic of source and sink positions, position parameters h and θ,
and subdomains (boundaries marked in black) with assigned permeabilities Xi and layer
height H.

the mean permeability K0. We de�ne the discrete permeability parameters as random
variables where the mean of each random variable corresponds to the value of K0 on the
corresponding subdomain of the �ow domain. The variance of each random variable then
corresponds to the local uncertainty in the estimate for the permeability. The discreti-
sation of our permeability yields a direct expression for the variance of the total �ux as
a function of the variances of the random variables that represent the permeability. We
compare these linear estimates to calculations of the nonlinear mean and variance of the
�ux calculated through sampling from probability distributions for the permeability. In
�5 we allow for di�erent mean permeability values across di�erent layered subdomains to
show how this change a�ects the results of our methods. In �6 we describe the generation
of stochastic realisations of permeability �elds and we develop the approach of �4 for
application to these realisations of the permeability. In �7 and �8 we use ordinary krig-
ing and a constrained optimisation approach respectively to interpolate the permeability
from a surrogate truth model given by a realisation of a permeability �eld determined
by fast fourier transform methods as described in �6. For each of the two interpolation
methods we vary the correlation length scale of the interpolation scheme and estimate
the values of the �ux which result. Nonlinear and linear results are compared within
��6�8 to assess the validity of our linear methods to heterogeneous permeability �elds.
Finally, in �9 we draw our conclusions.

2. Flux expression

We consider a closed domain D consisting of a porous medium with an input source
located at xI and an output sink at xO each with prescribed pressure

p∗ (xI) = p∗I , p∗ (xO) = p∗O, (2.1a,b)

with p∗I > p∗O. We assume that Darcy's Law holds for an incompressible �uid with velocity
u, and so

u = −K∇p, ∇ · u = 0, (2.2a,b)

where we have now non-dimensionalised with respect to the assumed constant �uid vis-
cosity and where K is a symmetric matrix parameterisation of the in general anisotropic
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permeability. We impose a no �ow condition at the boundary of our domain, i.e.

u · n = 0, (2.3)

where n is the outward facing normal vector to the domain boundary. The total �ux Q
can be written as a limiting integral around the source or the sink,

Q = − lim
r→0

˛
CI(r)

u · n dS = lim
r→0

˛
CO(r)

u · n dS, (2.4)

where CI (r) and CO (r) are circles of radius r around the source and sink respectively
(see �gure 1a). Note that the normal vector n here is pointing towards the source or sink
to be consistent in orientation with the domain boundary normal. Using (2.1),

Q∆p = Q (pI − pO) = − lim
r→0

(˛
CI(r)

p (u · n) dS +

˛
CO(r)

p (u · n) dS

)
, (2.5)

where pI and pO are the non-dimensionalised pressures at the source and sink. By noting
(2.3) and then applying the divergence theorem followed by (2.2b),

Q∆p = − lim
r→0

˛
∂S
p (u · n) dS = −

ˆ
D
∇· (pu) dV = −

ˆ
D

(∇p)T u dV, (2.6)

where ∂S is the union of the boundary of D with CI and CO and (∇p)T is the matrix
transpose of ∇p. Finally, Darcy's Law yields

Q∆p =

ˆ
D

(∇p)T K∇p dV. (2.7)

Note that (2.7) also holds for an in�nite �ow domain provided the �uid velocity decays

su�ciently rapidly in the far �eld |x|d−1
u → 0 as |x| → ∞ where |x| is the Euclidean

distance from the origin and d is the spatial dimension of the �ow domain. We note that
in the case of a time dependent pressure change between the source and sink ∆p (t),
the �ux Q (t) is given by Q (t) = ∆p (t)Q (t0) /∆p (t0) for any reference time t0. This
is because the pressure gradients in (2.7) will scale with ∆p (t) for single phase �ow.
For multiple sources and/or multiple sinks the derivation above can be easily adapted to
show that for source and sink out�ow �uxes Qi and pressures pi, (2.7) becomes∑

i

Qipi =

ˆ
D

(∇p)T K∇p dV. (2.8)

Note that Qi < 0 for �ow into a sink.

3. Parameter sensitivity

The permeability K = K (x,α) is, in general, a function of space x and parameters
α = (α1, α2, ... , αn). The partial derivative of the �ux with respect to parameter αi gives
the dependence of the �ux to variations in the parameter αi i.e.

∂Q

∂αi
=

1

∆p

ˆ
D

(∇p)T ∂K

∂αi
∇p dV +

2

∆p

ˆ
D

(∇p)T K
∂ (∇p)
∂αi

dV, (3.1)

using (2.7) with the second term resulting from the symmetry of the integrand. Darcy's
law (2.2a), the divergence theorem and (2.2b) yieldˆ
D

(∇p)T K
∂ (∇p)
∂αi

dV =

ˆ
D
uT∇

(
∂p

∂αi

)
dV = lim

r→0

ˆ
∂S

(u · n)

(
∂p

∂αi

)
dS = 0, (3.2)
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as u·n = 0 on the boundary ofD and the pressure is prescribed and constant (∂p/∂αi = 0)
at the source and the sink. Therefore (3.1) becomes

∂Q

∂αi
=

1

∆p

ˆ
D

(∇p)T ∂K

∂αi
∇p dV. (3.3)

Equation (3.3) can be used to quantify the sensitivity of the �ux to changes in parameters
within a given model for the permeability provided ∂K/∂αi can be computed. Examples
of such parameters include values of permeabilities at points in space or correlation length
scales used within interpolation methods. We will discuss correlation length scales within
interpolation methods in more detail in �7 and �8. Use of (3.3) does not require repeated
calculation of solutions to the �ow equations (2.1), (2.2) and (2.3) for many realisations
of a varying permeability �eld.
A model for the permeability which is widely used (see, for example, Wen & Gómez-

Hernández (1996)) involves de�ning the permeability to be spatially constant within
�nite size subdomains of the �ow domain. The parameters for this spatially discrete per-
meability �eld are the values for the permeability on each subdomain, as shown schemat-
ically in �gure 1b. The �ux is then given by a linear combination of the parameters Xi

which represent the permeability. We denote by Xi the spatially constant value of the
permeability in subdomain Di ⊆ D as shown in �gure 1b. Equation (2.7) yields

Q =
1

∆p

ˆ
D

(∇p)T K∇p dV =

(
1

∆p

ˆ
Di

|∇p|2 dS
)
Xi ≡ aiXi, (3.4)

using the Einstein summation convention. With the permeability described by the pa-
rameters Xi in this way, equation (3.3) becomes

∂Q

∂Xi
= ai. (3.5)

Thus we see that the integrals ai de�ned in (3.4) give the magnitude of the sensitivity of
the �ux to variations in the corresponding permeability parameters.
In order to demonstrate an application of the above results we consider an idealised

porous medium. Speci�cally, we consider a layered system with each of the layer perme-
ability parameters Xi set to be equal. That is, the permeability K is modelled as spatially
constant and isotropic across the entire domain. This is representative of a layered sys-
tem where the rock properties in individual layers are similar though their deposition is
associated with di�erent geological events. We show that the resulting �ux derivatives
are sensitive to the position of the source and the sink relative to the layer boundaries.
We scale our domain by the distance between the source and sink locations d which

we set to be 1. Our �ow domain is a 2 by 2 square. We set each of the layer heights
as a constant H. We de�ne the positions of the source and sink by describing the line
joining their locations with two parameters: h the displacement of the midpoint of the
straight line connecting the source to the sink from the centre of the layer containing this
midpoint; and θ the angle between the straight line connecting the source to the sink and
the layer boundaries, as shown in �gure 1b. Due to the symmetry of the permeability
�eld, h/H ∈ [−0.5, 0.5] and θ ∈ [0, π/2] describe the range of unique source and sink
positions relative to the layered structure. We plot �ow streamlines with overlaid layer
boundaries shown in black for: h/H = 0, θ = 0, H/d = 0.4 (�gure 2a) and h/H = 0.5, θ =
0, H/d = 0.4 (�gure 2b).
For a layer angle of θ = 0 and for H/d = 0.4, �gure 2c shows the variation with h/H

of ai for the layer in which the source and sink are located (layer 0) and the two adjacent
layers (layers -1 and 1). We see that the ai are sensitive to the position of the source
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Figure 2: Flow streamlines with overlaid layer boundaries shown in black with: (a)
h = 0, θ = 0, H/d = 0.4, (b) h/H = 0.5, θ = 0, H/d = 0.4. (c) Variation with sink
position h/H of ai (de�ned in (3.4)) for the central three layers with H/d = 0.4 and
layer orientation θ = 0.

and the sink relative to the layered structure. The central layer (layer 0) has the largest
value across the full range of values for h which is to be expected as layer 0 contains
the source and the sink for this value of θ (see �gures 2a and 2b) and thus contains the
largest pressure gradients due to the uniformity of the mean permeability K0. The value
of a0 is maximised when h/H = 0 as here the source and the sink are in the centre of
layer 0 (see �gure 2a).

We plot �ow streamlines with overlaid layer boundaries in black for: h = 0, θ =
π/6, H/d = 0.4 (�gure 3a) and h = 0, θ = π/6, H/d = 0.1 (�gure 3b). In �gure 3c
we plot ai against layer number for layer heights given by H/d = 0.1 (green), H/d = 0.4
(black) and H/d = 1.6 (red). The values are averaged across 101 incremental values
of h/H ∈ [−0.5, 0.5] and across 101 values of θ ∈ [0, π/2]. As the ratio of layer height
to source/sink spacing H/d decreases, the number of layers spanning the �ow domain
increases. The total number of layers for H/d = 0.1 is �fty-seven with the central twenty-
one plotted; the values of the ai outside this range continue decreasing to zero in either
direction.

For H/d = 1.6 the distribution of the ai is unimodal since the source and the sink both
lie within layer 0 for a large range of values in (h/H, θ) ∈ [−0.5, 0.5]× [0, π/2] due to the
large layer height, H, relative to the source/sink spacing, d. However, for H/d = 0.4 and
0.1, the distribution of the ai becomes bimodal when averaged across θ ∈ [0, π/2]. Due
to the small layer height relative to the source/sink spacing, the source and the sink are
located in many di�erent layers as θ is varied (see �gure 3b). This qualitative change in
distribution appears to occur close to H/d = 0.4.

Our method can be used to calculate the number of parameters which should be varied
within a more computationally intensive nonlinear model. We consider the �proportional
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Figure 3: (a),(b) Flow streamlines with overlaid layer boundaries shown in black with:
(a) h = 0, θ = π/6, H/d = 0.4, (b) h = 0, θ = π/6, H/d = 0.1. (c) Variation between
layers of ai averaged across 101 values of position parameter h/H ∈ [−0.5, 0.5] and 101
values of layer angle θ ∈ [0, π/2] for three di�erent layer heights H/d = 0.1 (green with
circles), H/d = 0.4 (black with upright crosses) and H/d = 1.6 (red with slanted crosses).
(d) The dependence of the proportional �ux variation, |An| / |A| de�ned in (3.6), on the
number of parameters varied when averaged across 101 values of h/H ∈ [−0.5, 0.5] and
101 values of θ ∈ [0, π/2] for H/d = 0.1 (green with circles), H/d = 0.4 (black with
upright crosses) and H/d = 1.6 (red with slanted crosses).

�ux variation� |An| / |A| de�ned as

|An|
|A|

=

(∑n
i=1A

2
i

) 1
2(∑N

i=1A
2
i

) 1
2

A1 ≥ A2 ≥ A3... (3.6)

where A = (A1, A2, ...) is the ordered vector of coe�cients ai and N is the total number
of layers. |An| / |A| is the ratio of the variation in the �ux that results from varying
the n most signi�cant of the parameters Xi to the �ux variation resulting from varying
the full set of Xi. Figure 3d plots |An| / |A| as a function of n for H/d = 0.1, 0.4, 1.6
when averaged across h and θ. Figure 3d shows that for H/d = 1.6, variation in the
permeability value of the most dominant layer accounts for a very large proportion of
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the total variation in �ux that results from varying all of the parameters, while decreasing
H/d requires more and more layers to account for the same proportion of the total �ux
variation.

4. Linearised �ux sensitivity

We can extend our approach to gain a quantitative estimate of the variance of the
�ux in the case of small perturbations of the permeability. We write the permeability
as the sum of a �xed K0 and a small perturbation εK1 where ε � 1. εK1 represents the
uncertainty in the mean permeability K0 estimated from available data. We similarly
expand the �uid pressure, velocity and �ux

K = K0 + εK1, p = p0 + δpp1 + δ2
pp2 . . . , (4.1a,b)

u = u0 + δuu1 + δ2
uu2 . . . , Q = Q0 + δqQ1 + δ2

qQ2 . . . , (4.1c,d)

where ε, δu, δq, δp � 1. We include second order terms to �nd the sign of the second
order �ux correction. The no-�ow condition (2.3) applies to both u0 and u1 on ∂D. The
leading order pressure p0 has boundary conditions at the source and sink given by (2.1),
so pi = 0 at both the source and the sink for all i ≥ 1.
Darcy's Law (2.2a) becomes to �rst order

u0 + δuu1 = −K0∇p0 − εK1∇p0 − δpK0∇p1, (4.2)

while (2.7) yields to second order

(
Q0 + δqQ1 + δ2

qQ2

)
∆p =

ˆ
D

(∇p0)
T K0∇p0 dV

+

ˆ
D
ε (∇p0)

T K1∇p0 + 2δp (∇p0)
T K0∇p1 dV

+

ˆ
D
δ2
p (∇p1)

T K0∇p1 + 2εδp (∇p0)
T K1∇p1 + 2δ2

p (∇p0)
T K0∇p2 dV. (4.3)

By de�nition

Q0∆p =

ˆ
D

(∇p0)
T K0∇p0 dV, (4.4)

and by making the natural scaling assumption, δq = δp = ε, and using (4.2), we obtain

Q1∆p =

ˆ
D

(∇p0)
T K1∇p0 dV − 2

ˆ
D
uT

0∇p1 dV, (4.5)

Q2∆p = −
ˆ
D

(∇p1)
T K0∇p1 dV − 2

ˆ
D
uT

1∇p1 + uT
0∇p2 dV. (4.6)

We note that the natural scaling assumption δq = δp = ε can be shown to be the only
non-trivial balance between the terms of (4.2) and (4.3). Finally, with r and ∂S de�ned
as in �2, the divergence theorem yieldsˆ

D
uT

0∇p1 dV = lim
r→0

˛
∂S

(u0 · n) p1 dS = 0, (4.7)

ˆ
D
uT

1∇p1 + uT
0∇p2 dV = lim

r→0

˛
∂S

(u1 · n) p1 + (u0 · n) p2 dS = 0, (4.8)

as p1 = p2 = 0 at the source and the sink and u0 · n = u1 · n = 0 on the boundary of
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D. Dropping higher order terms we obtain expressions for the leading order change and
second order correction in �ux due to the perturbation in permeability

Q1 = 1
∆p

´
D (∇p0)

T K1∇p0 dV, Q2 = − 1
∆p

´
D (∇p1)

T K0∇p1 dV. (4.9a,b)

We note that (4.9a) is independent of the pressure perturbation εp1, a property we shall
exploit in a similar manner to �3. Combining (4.4) and (4.9a) we see that the total �ux
Q to �rst order in ε is given by

Q =
1

∆p

ˆ
D

(∇p0)
T K∇p0 dV +O

(
ε2
)
. (4.10)

The key di�erence between (4.10) and the exact expression for the �ux (2.7) is that
(4.10) does not require the recalculation of the full pressure �eld p for a change in the
permeability, but rather depends only on the leading order pressure p0. We also note
that (4.9b) is negative de�nite and so the �rst order in ε approximation of the �ux is at
least a local upper bound for the full nonlinear �ux.
We now consider modelling the permeability K as a random �eld. We can use (4.10)

to calculate statistical moments of the �ux resulting from a probability distribution for
the permeability. We consider the parameters Xi from �3 to be independent random
variables with constant means µi and variances σ2

i where parameter Xi represents the
value of the permeability on subdomain Di. As in �3 it follows from (4.10) that

Q ' 1

∆p

ˆ
D

(∇p0)
T K∇p0 dV =

(
1

∆p

ˆ
Di

|∇p0|2 dS
)
Xi ≡ a0iXi, (4.11)

where we have once again used the Einstein summation convention. Hence, the expected
value and variance σ2

Q of Q are given by, to �rst order in ε,

E (Q) = a0iµi, σ2
Q = a2

0iσ
2
i . (4.12a,b)

It is important to emphasise that the coe�cients a2
0i are independent of the distribution

of the permeability.
We shall now compare these linear estimates to the nonlinear mean and variance of

the �ux. We consider each of the permeabilities Xi to be log-normally distributed with
constant and uniform mean K0 and standard deviation σK ∈ [0, 1]. We compute the
pressure �eld p and hence the �ux Q for each sample set of values for the Xi drawn at
incremental percentiles of the assigned log-normal distributions. From these sample �ux
values we then calculate the nonlinear estimates of the mean and standard deviation for
the �ux. The sampling is performed using this systematic method in order to resolve the
tails of the permeability distributions with the limited number of samples taken. The
number of samples is limited by the computational expense of the associated pressure
calculations. We also calculate the linear estimates for the mean and standard deviation
of the �ux as described by (4.11) and (4.12), which only uses the �ux value corresponding
to Xi = K0 for all i. For this example, we consider the same layered system as described
in �3 with the layer height �xed at H/d = 0.4 and the source and sink positions relative
to the layered structure determined by h/H = θ = 0. For illustration, we consider two
simple examples. In example C1 we vary the permeability of the central layer alone, and
in example C3 we vary the permeability of the central three layers. All other parameters
Xi are held constant and equal to K0. Without loss of generality, we set K0 = 1.
Figures 4a and 4b show the comparison between linear estimates, shown by black lines,

and nonlinear calculations, shown by red lines, for the mean �ux E (Q) and the standard
deviation of the �ux σQ normalised by E (Q) and as a fraction of the standard deviation
of the permeability σK . In each �gure results derived from example C1 are shown by
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Figure 4: Comparison between linear estimates (black horizontal lines) and nonlinear
calculations (red lines) for (a) the mean �ux E (Q) and (b) the standard deviation of the
�ux σQ normalised by the mean �ux E (Q) as a fraction of the standard deviation of
the permeability σK . Results derived from example C1 (allowing one layer to vary) and
example C3 (allowing three layers to vary) are shown by dashed lines and solid lines using
1000 and 64000 �ux calculations respectively. Insets show behavious for σK ∈ [0, 0.1].

dashed lines and example C3 by solid lines. For example C1 we calculated the �ux for
1000 permeability values in this layer, while for example C3 we calculated the �ux for
403 = 64000 permeability �elds, i.e. 40 independent permeability values per layer varied.
These sample sizes balance the need for adequate statistical convergence of the nonlinear
estimates with the limitations imposed by the computation time required for a large
number of pressure calculations. The linear estimates for the mean �ux in examples C1
and C3 are equal (�gure 4a) as the mean value of the permeability perturbations are zero
in each of the varied layers. As expected, the linear and nonlinear results converge as the
standard deviation of the permeability values σK tends to zero and the linear expected
value for the �ux is larger than the corresponding nonlinear values for all values of σK .
As σK approaches the size of the base permeability, K0 = 1, the linear estimate becomes
invalid. However in the three layer example C3 the maximum di�erence between the
linear and nonlinear estimates for the mean and normalised standard deviation of the
�ux is around 9% and 6% of the nonlinear mean and standard deviation respectively. It
should be noted that the di�erence between the linear and nonlinear estimates increases
between example C1 and example C3. The value of |An| / |A| in the central layer (i.e.
layer 0) is 0.757 and the value in the central three layers (layers -1,0,1) is 0.996 (see �gure
3d) suggesting example C3 captures almost all of the nonlinear variation in �ux. It is
worth emphasising that the linear estimate required only one calculation of the pressure
�eld compared with the 1000 and 64000 pressure calculations required for adequately
converged nonlinear results.

5. Non-uniform mean permeabilities

In �3 and �4 we demonstrated the respective results for a uniform mean permeability
K0 = 1. We now consider the case where the mean value varies from layer to layer.
We set the layer height to be H = 0.4. As a canonical example we change the value
of K0 for two neighbouring layers so as to see the e�ects this has on the sensitivity of
the �ux to these layers and to the surrounding layers. We set one layer to have mean
permeability K0,0 = 0.1 (layer 0) and a neighbouring layer to have mean permeability
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Figure 5: (a) Plot of �ux sensitivities K0,0ai normalised by �ux Q for a constant change
in permeability across layers. Inset shows values for range K0,0ai/Q ∈ [0, 0.1]. (b) Plot
of �ux sensitivities K0,iai normalised by �ux Q for a change in permeability which is
proportional to the mean permeability in each layer. Values plotted for four layers with
varying mean permeabilities K0,i as shown in the legend. (c) Value of �ux Q (shown by
blue full line) and linear �ux changes δQa, δQr for constant permeability changes and
permeability changes proportional to the mean layer permeabilities respectively (shown as
black dashed and red dotted lines respectively). Values plotted as functions of source/sink
position h/H as shown in �gure 1b.

K0,1 = 10 (layer 1). All other layers continue to have K0,i = 1. With nonuniform mean
permeabilities we may consider changes in permeability which are equal in absolute size
across layers or which scale with the mean permeability of each layer. For equal changes,
(3.4) and (3.5) give the corresponding sensitivities of the �ux to changes in permeability.
For changes in permeability which scale with the mean we scale (3.4) and (3.5) by the
mean permeabilities K0,i of each layer, i.e.

K0,i
∂Q

∂Xi
=

K0,i

∆p

ˆ
Di

|∇p|2 dS = K0,iai, (5.1)

where K0,i is the mean permeability of layer i. Equation (5.1) is equivalent to (3.4) and
(3.5) for K0 = 1. Figures 5a and 5b plot the values of K0,0ai/Q and K0,iai/Q respectively
for the two altered layers (layers 0 and 1) and the two neighbouring layers (layers -1 and
2). These values are plotted as functions of source and sink position h/H ∈ [−1.5, 2.5] as
de�ned in �3 and shown in �gure 1b. This range of values corresponds to the source and
sink within each of the four layers in turn.
The largest value of K0,0ai/Q for all i occurs for layer 0 when the source and sink

are within this layer. By contrast the values of K0,0a1/Q are considerably smaller. This
di�erence in values is because for changes in permeability which do not scale with the
mean value, the relative size of the �uctuation is larger for the low permeability layer
(layer 0) and hence the �ux is more sensitive to this layer. Indeed, as highlighted in the
inset plot within �gure 5a, K0,0a0/Q remains larger than K0,0a1/Q even when the source
and sink are within layer 1 (h/H ∈ [0.5, 1.5]). From �gure 5b we note that the largest
value of K0,iai for each value of h/H corresponds to the layer containing the source and
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the sink and that the maximum value attained by each of the K0,iai is approximately
equal for each layer. That is, when the permeability �uctuations scale with the mean
value, the �ux is most sensitive to the layer containing the source and sink and we are
in a similar regime to the uniform mean value case K0 = 1 from �3 and �4.
Figure 5c shows plots of the �ux Q and the value of the absolute and relative changes

in �ux de�ned as

δQa = 0.1
∑
i

ai, δQr = 0.1
∑
i

K0,iai, (5.2a,b)

which correspond to the linear change in �ux which results from changes in permeability
which are constant across di�erent layers or that scale with the mean permeability of
each layer. We see that δQa is approximately constant as a function of source and sink
position h/H. δQa is approximately equal to Q for h/H ∈ [−0.5, 0.5] where the source
and sink are within layer 0. This is because the change in permeability is here chosen as
equal to 0.1 which is equal to K0,0, the mean permeability of layer 0. By contrast δQr is
by de�nition equal to 0.1Q and so the percentage or relative change in �ux is constant
across the range of source and sink positions as alluded to in �gure 5b. We would expect
our linear estimates to be least accurate for h/H ∈ [−0.5, 0.5] in the case where the
changes in permeability are taken to be constant across layers (where δQa is the linear
change in �ux). This is because the change in permeability is comparable in size to the
mean permeability in the layer containing the highest pressure gradients.

6. Stochastic simulation

Stochastic simulations can be obtained in a large range of ways including matrix de-
composition techniques (Davis 1987), moving average (Black & Freyberg 1990), nearest
neighbour (King & Smith 1988), spectral methods (Borgman, Taheri & Hagan 1984)
and turning bands (Mantoglou & Wilson 1982). An elegant method is proposed by Diet-
rich & Newsam (1993) which uses a fast fourier transform method to generate a gaussian
simulation with a controllable correlation length scale. We have used this last method to
generate the permeability �eld shown in �gure 6a. We have chosen a correlation length
scale of 0.4 for this simulation with the domain a 4 by 4 square. This simulation provides
a more realistic example of a heterogeneous permeability �eld than those described in
��3�5 and allows us to explore the extent to which the techniques developed in this paper
can be applied to such �elds. Due to the stochastic nature of this technique, there is no
analytic expression for the derivative of the �ux with respect to parameters of the model,
for example the correlation length scale prescribed. Hence we cannot use (3.3) directly.
However, given multiple realisations of the permeability �eld, we can apply the linear
method from �4, in particular (4.10), to estimate the associated values of the �ux. That
is, we calculate the pressure �eld p0 for a chosen reference permeability K0 and then use
(4.10) to calculate the �ux Q for a new permeability �eld K . This linear method can
be applied to any sample set of permeability �elds independent of the technique used
to generate them if the change in permeability away from the reference permeability is
small by comparison to the reference permeability.
We will now apply the linear method from �4 for sample sets of realisations of the

permeability �eld produced by the methods of Dietrich & Newsam (1993). The direct
output from this method is a �eld of values normally distributed about zero. In order
to produce a positive permeability �eld one must scale and translate these values. For
this example we apply an exponential transformation to the generated �elds to produce
permeability �elds with values given by a log-normal distribution. We choose the scale
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Figure 6: (a) Permeability �eld generated using a fast fourier transform method as pro-
posed by Dietrich & Newsam (1993), with correlation length L = 0.4. (b) Plot of
nonlinear �ux calculations (shown by black line) and linear �ux estimates (shown by
blue crosses) for each of 1000 stochastically generated realisations of permeability with
L = 0.4, σK = 0.25. Data ordered by the value of the nonlinear �ux.

parameters so that the resulting �elds each have mean value equal to 1 and have standard
deviations which we will prescribe. Using this algorithm we have generated 16 sample sets
each with 1000 permeability �elds. Across these 16 sample sets we vary the correlation
length scale L and the standard deviation σK of the permeability �elds. We use four
values for each with L = 0.2, 0.4, 0.8, 1.6 and σK = 0.25, 0.5, 0.75, 1.0. Each sample set of
1000 permeabilities has a unique pair of values for L and σK . We can then assess how
the mismatch between linear and nonlinear estimates changes as the standard deviation
of the permeability varies for each value of correlation length scale. According to (4.10)
we expect di�erences between the linear and nonlinear estimates for the mean �ux to be
of order σ2

K as a fraction of the nonlinear estimate for the mean �ux.
Figure 6b shows the values of the nonlinear �ux and linear estimates of the �ux for

each of the 1000 permeability realisations with L = 0.4, σK = 0.25. The values are or-
dered so that the nonlinear values are monotonically increasing. The nonlinear values are
calculated by explicitly solving for the pressure �eld for each realisation of the perme-
ability. For the linear estimates we calculate the average value of the permeability across
the 1000 samples at each point in the �ow domain. We then calculate the pressure p0 for
this average permeability �eld and use (4.10) to estimate the �ux with the permeability
K given by each of the 1000 realisations in turn. We see that there is some scatter in
the linear estimates and that they are all greater than the nonlinear values. The latter
characteristic is consistent with the fact that the second order error term (4.9b) for the
�ux is negative. Physically this is because the linear estimate implicitly �nds the arith-
metic mean of the permeability �uctuations along a given �ow streamline. However, the
nonlinear �ux value results from a combination of geometric and arithmetic averaging of
permeabilities. As the geometric average is always smaller than or equal to the arithmetic
mean, the linear estimate is always an upper bound. In �gure 7a we show the percentage
di�erence between the linear estimates and the exact nonlinear �ux as a function of the
nonlinear �ux. The mean nonlinear �ux is 0.436. We see that most of the �ux values lie
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Figure 7: (a) Plot of percentage error for the 1000 linear estimates for the �ux compared
to the corresponding nonlinear �ux calculation as a function of nonlinear �ux with L =
0.4, σK = 0.25. (b) Histogram of percentage error for the 1000 linear estimates for the
�ux with L = 0.4, σK = 0.25 and with bin size equal to 0.5%.

between 0.35 and 0.51 with many of the percentage errors signi�cantly below 5%. The
maximum error is about 21%. Figure 7b shows a histogram of the percentage errors with
bin size equal to 0.5%. We see that the majority of the error values do indeed lie below
5% with a peak between 0.5% and 1.5%.
For each of the 16 sets of 1000 permeability realisations we have nonlinearly calculated

the mean and standard deviation of the �ux. We have then linearly estimated the mean
and standard deviation of the �ux through use of (4.10). In �gures 8a, 8b and 8c we plot
the values of the mean �ux E (Q); the standard deviation of the �ux σQ and the ratio
σQ/E (Q) of the mean and standard deviation of the �ux as functions of normalised per-
meability standard deviation σK/E (K ). Figure 8a shows that the nonlinearly calculated
mean �ux decreases as the variability in the permeability �elds increases. This is consis-
tent with the interpretation of the nonlinear �ux being a combination of the geometric
and arithmetic mean of the permeability �uctuations. In contrast the linear estimates
for the mean �ux do not change by a signi�cant amount as the standard deviation of
the permeability σK is increased. In �gure 8b we see that the nonlinear values and linear
estimates for the standard deviation of the �ux again diverge for large σK with the linear
estimates maintaining a linear trend with respect to σK . Figure 8c illustrates remarkably
good agreement between nonlinear and linear estimates for the ratio σK/E (K ). Across
�gures 8a, 8b and 8c we see that the nonlinear values of the mean �ux E (Q); the stan-
dard deviation of the �ux σQ and the ratio σQ/E (Q) all increase as the correlation length
scale increases. This trend is not consistently captured by the linear estimates.
In �gures 9a and 9b we plot the percentage di�erences between exact nonlinear values

and linear estimates for the mean �ux E (Q) and standard deviation of the �ux σQ
respectively. Values are plotted as functions of permeability standard deviation σK and
the four lines in each �gure correspond to di�erent values of correlation length scale L. As
expected, we see that the di�erence between the nonlinear and linear estimates increases
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Figure 8: Plots of nonlinear and linear estimates for (a) the mean �ux E (Q); (b) the stan-
dard deviation of the �ux σQ and (c) the ratio σQ/E (Q) of the mean and standard de-
viation of the �ux as functions of normalised permeability standard deviation σK/E (K ).
Values plotted for correlation length scales L = 0.2 (black with circles), L = 0.4 (blue
with squares), L = 0.8 (red with triangles) and L = 1.6 (green with diamonds). Nonlinear
estimates shown by full lines and linear estimates shown by dashed lines.
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Figure 9: Plots of percentage di�erences between nonlinear and linear estimates for (a)
the mean �ux E (Q); (b) the standard deviation of the �ux σQ and (c) the ratio σQ/E (Q)
of the mean and standard deviation of the �ux as functions of normalised permeability
standard deviation σK/E (K ). Values plotted for correlation length scales L = 0.2 (black
with circles), L = 0.4 (blue with squares), L = 0.8 (red with triangles) and L = 1.6
(green with diamonds).
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as the standard deviation of the permeability �elds increases. The di�erences between
the estimates also increase as the correlation length L decreases for both the mean and
the standard deviation of the �ux. We interpret this e�ect as being a consequence of
the fact that for small correlation length scales there are more permeability �uctuations
in series along a �ow streamline. The nonlinear calculation for the �ux accounts for the
geometric averaging of the permeability along the streamline while the linear estimate
only takes the arithmetic mean.
Figures 9a and 9b show that as the standard deviation of the permeability increases

beyond 0.5 we see signi�cant di�erences between the linear estimates and the nonlinear
values for the statistics of the �ux. However the linear estimates and nonlinear calulca-
tions for the fractional uncertainty of the �ux σQ/E (Q) are in good agreement as shown
in �gure 9c. We again observe an increase in the di�erence as σK increases. However,
even for L = 0.2 and σK/E (K ) = 1 the error is less than 15%. This is due to cancel-
lation of the errors shown in �gures 9a and 9b. The linear estimates for the mean and
the standard deviation are both higher than the nonlinear estimates and hence we see
the reduced error in �gure 9c. However we encourage caution when applying the linear
estimates for standard deviations of permeability above 0.5 as the di�erences between
nonlinear and linear values for the mean and standard deviation of the �ux are large.

7. Kriging

Kriging was �rst proposed as an interpolation method by D. G. Krige (Krige 1951)
and subsequently promoted and developed by G. Matheron (Matheron 1971). It is de-
scribed as the �Best Linear Unbiased Estimator� (`B.L.U.E.') where `Best' means that
this technique gives the linear estimator with the minimal error variance whilst remain-
ing unbiased. The extent to which kriging is the best interpolation method to use in any
given situation is beyond the scope of this paper. We use kriging merely as an exam-
ple of a widely used linear interpolation method. The strategies employed below can be
similarly applied to any linear regression model used to estimate the permeability.
Kriging is a linear interpolation method used to estimate the permeability K at point

x0 given the values of the permeability at sample points xi. The estimate K (x0) is taken
as a linear combination of the sampled values K (xi) with weights wi,

K (x0) =
∑
i

wiK (xi) . (7.1)

The weightings in (7.1) are given by the ordinary kriging equations

Mw =


C11 . . . C1n 1
...

. . .
...

...
Cn1 . . . Cnn 1

1 . . . 1 0




w1

...
wn

λ

 =


C01

...
C0n

1

 = c, (7.2)

where λ is a lagrange multiplier and Cij = Cov (xi,xj) is the covariance of the perme-
ability at the pair of points xi,xj . The covariances Cij will depend upon the correlation
length scale L of the covariance model. To calculate the sensitivity of the �ux Q to chang-
ing the correlation length scale L we can calculate the derivative dQ

dL , which by (3.3) is
given by

∂Q

∂L
=

1

∆p

ˆ
D

(∇p)T ∂K
∂L
∇p dV. (7.3)
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Further, ∂K
∂L is given by

∂K

∂L
=
∑
i

dwi

dL
K (xi) , (7.4)

where dwi

dL can be estimated by perturbing L and recalculating wi or can be found directly
through use of

∂w

∂L
= M−1 ∂c

∂L
+

∂

∂L

(
M−1

)
c = M−1

(
∂c

∂L
− ∂M

∂L
M−1c

)
. (7.5)

To derive (7.5) we have used the identity

dM−1

dL
= −M−1 dM

dL
M−1, (7.6)

for the derivative of a matrix inverse. Use of (7.6) allows us to calculate the derivative
of M−1 without calculating M−1 symbolically. To demonstrate the use of these results
in practice we shall use the permeability �eld shown in �gure 6a as a surrogate truth
model. For the �eld shown in �gure 6a we have set the minimum permeability equal to
machine precision above zero and speci�ed a standard deviation equal to 1. This choice
of this value for the minimum permeability was selected so as to give a large range
of permeabilities compared with the minimum permeability value. This should yield a
demanding test for our linear methods.
In practice the true permeability �eld is not usually known and to estimate the perme-

ability one must interpolate from a limited amount of sampled points. We will suppose
we have measured the permeability at �xed locations from which we will estimate the
permeability through kriging. Given the permeability data at the sample locations, the
correlation length scale can be estimated using the maximum likelihood estimator

L∗ = min
L

(
ψ (L)≡|R| 1nσ2

)
, (7.7)

where n is the number of sample locations, |R| is the determinant of the matrix of
covariances (that is (R)ij = Cij) and σ

2 is the process variance given by

σ2 =
1

n
(Y − Fβ∗)T R−1 (Y − Fβ∗) , (7.8)

where Y is the vector of permeability values at the sample locations and F T = (1, . . . , 1)
with β∗ given by

β∗ = (F TR−1F )−1F TR−1Y . (7.9)

(See Lophaven, Nielsen & Søndergaard (2002) for a more thorough discussion of this
maximum likelihood estimation). For this example we have m = 16 sample locations
with one at each of the source (x = (−0.5, 0)) and sink (x = (0.5, 0)) and the remaining
fourteen randomly located throughout the 4 by 4 �ow domain. The sample locations are
shown by the black dots in �gures 10a and 10b. With these locations and associated per-
meability data the maximum likelihood estimate of the correlation length is L∗ = 0.3953,
which is very close to the correlation length scale of 0.4 used in the surrogate perme-
ability (�gure 6a). For this length scale and a gaussian correlation function the kriged
permeability �eld is shown in �gure 10a. This estimation conserves some of the features
of the surrogate permeability �eld, though due to the limitations of kriging and interpo-
lation in general, many of the features are lost. Notably, the range of permeabilities has
been reduced from approximately [0, 5] to approximately [1.5, 4]. Although it is notewor-
thy that this loss of information is likely to in�uence the estimated �ow quantities, the
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(a) (b)

Figure 10: (a) Kriged permeability estimated from (7.1) and (7.2) with correlation length
scale L∗ = 0.3953. (b) Standard deviation of permeability as a fraction of the base �eld
(shown in (a)) as a function of location as the correlation length scale is varied across
(L∗/4, 4L∗). Data sample locations shown by black dots.

failings of interpolation to characterise the surrogate permeability fully are not the focus
of this paper.

To analyse the sensitivity of the �ux to changes in correlation length we vary the
correlation length across 1001 values across [L∗/4, 4L∗]. For each value we calculate
the associated kriged permeability �eld. Figure 10b shows the standard deviation of the
permeability normalised by the permeability values given in �gure 10a. That is, �gure 10b
shows by how much the permeability varies as the correlation length scale is varied. To
apply the techniques detailed in �3 and �4 we hope for the standard deviation to be small
relative to the mean which in �gure 10b corresponds to values which are small compared
with 1. We can expect a signi�cant error when estimating the �ux if there are locations
in the domain where the permeability values have standard deviation approaching or
greater than 1, especially if this occurs in close proximity to the source or the sink where
the pressure gradients are highest. Figure 10b shows that the standard deviation of the
permeability is less than the value of the reference permeability across the domain. Most
of the domain shows a deviation of around or below 0.4 with a couple of locations with
higher variability. From this diagnostic �gure we can predict that the error in our linear
�ux estimates will be small given that the locations of high variability are towards the
edges of the �ow domain where we expect lower pressure gradients.

The nonlinear approach to calculating the �ux for each sample of the permeability
�eld requires calculation of the pressure �eld from (2.2) for each permeability realisation.
However, using (4.10) we can gain an estimate for the �ux resulting from each di�erent
permeability with only one pressure calculation, similarly to �4. The nonlinear results
are shown in �gure 11a by the black dashed line while the linear estimate is shown by
the blue full line. We have restricted the maximum value of the x-axis as for higher
correlation length scales some areas of the permeability �eld become negative. This is
both unphysical and changes the equation for the pressure �eld

∇· (K∇p) = 0, (7.10)



Linear estimation of �ux sensitivity to uncertainty in porous media 19

−2 −1.5 −1 −0.5 0 0.5 1 1.5
1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

log2 (L/L
∗)

Q

 

 

Nonlinear

Linear

Gradient

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

log2 (L/L
∗)

P
e

rc
e

n
ta

g
e

 E
rr

o
r

 

 

Linear

Gradient

(b)

Figure 11: (a) Predicted �ux against kriging correlation length scale (shown on log scale)
from fully nonlinear calculations (black dashed line), linear �ux calculation (blue full
line) and �ux gradient calculation (red dotted line). (b) Percentage di�erence between
nonlinear calculation and linear �ux (blue full line) and �ux gradient (red dotted line)
against kriging correlation length scale (shown on log scale).

from an elliptic equation to a locally hyperbolic equation resulting in an ill-posed problem.
We can also gain an estimate for the change in �ux with respect to correlation length

through the use of the gradient given by (7.3), (7.4) and (7.5). This is shown by the
red dotted line in �gure 11a. As expected, the linear and gradient estimates both agree
with the nonlinear result for L = L∗ and the blue full line lies entirely above the black
dashed line, consistent with the fact that the second order error term (4.9b) for the �ux
is negative. That is, the linear estimate for the �ux is an upper bound for the value of the
nonlinear �ux. Figure 11b shows the percentage di�erence between the two estimates used
and the nonlinear values for the �ux. Encouragingly, this di�erence is below 2.5% even
for a factor of four change in the correlation length scale. In this example the gradient
estimate agrees more closely with the nonlinear calculation though this is not observed
to be a general trend.

8. Imposing positive permeability

An issue that arises when using kriging is that the kriging method does not include any
constraint on the resulting estimated values. When estimating a positive quantity such as
permeability this can lead to negative or otherwise unphysical values as observed in �7.
There are several techniques that have been proposed to impose positivity constraints on
the estimated values. Some involve removing negative weights after solving the ordinary
kriging equations (7.2) (see, for example, Deutsch (1996)). A technique developed by
Kostov & Dubrule (1986) incorporates the constraints on the values to be estimated
within the interpolation procedure. The permeability at the location of the estimate is
written as

K(x0) = K̄ +
∑
i

biC0i, (8.1)
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Figure 12: (a) Predicted �ux against correlation length scale (shown on log scale) from
fully nonlinear calculations (black dashed line), linear �ux calculation (blue full line) and
�ux gradient calculation (red dotted line). (b) Percentage di�erence between nonlinear
calculations and linear �ux (blue full line) and �ux gradient (red dotted line) against
correlation length scale (shown on log scale).

where the weights bi are to be determind and where K̄ is a trend model which we take
here to be the mean value of the sampled permeability data. We impose the following
constraints

K(xi) = ki for 1 ≤ i ≤ n, (8.2a)

K(xi) ≥ 0 for n+ 1 ≤ i ≤ n+m, (8.2b)

where ki is the sampled value of the permeability at the sample location xi, n is the
number of sample locations and m is the number of points at which we wish to estimate
the permeability. Kostov & Dubrule (1986) propose that the weights bi in (8.1) can be
taken as the solution to

min
b
f(b;L) = min

b

(
bTRb−BTb

)
, (8.3a)

bi ≥ 0 for n+ 1 ≤ i ≤ n+m, (8.3b)

where b = (b1, . . . , bn+m) and BT = (K1, . . . ,Kn, 0, . . . , 0). One justi�cation for the
form of (8.3a) is the equivalence with the kriging equations (7.2) when the positivity
constraints (8.2b) are removed. The gradient of the �ux dQ

dL given by (7.3) can again be
calculated for this interpolation technique through use of

∂K

∂L
=
∑
i

∂bi
∂L

Cov (x0,xi) + bi
∂

∂L
(Cov (x0,xi)) . (8.4)

By de�ning f = bTRb − BTb we can calculate ∂bi
∂L by noting that the change in the

minimum of f will be given by

∂b

∂L
= −∇

(
∂f

∂L

)
, (8.5)
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where the ∇ operator is with respect to b.
Similarly to �7 we vary the correlation length across 101 values within (L∗/4, 4L∗).

The reduction in the number of simulations in comparison to �7 is due to the increased
computation time for each realisation of the permeability. The results of the nonlinear
(black dashed line), linear (blue full line) and gradient (red dotted line) estimates for the
�ux are shown in �gure 12a and the percentage di�erences between the linear (blue full
line)/gradient (red dotted line) and the nonlinear values are shown in �gure 12b. Once
again the linear and gradient estimates agree well with the nonlinear �ux values. The
�attened behaviour in �gure 12a of the nonlinear and linear �ux values for large values of
correlation length scales L arises when the positivity constraints (8.2a) impose a di�erent
permeability estimate to that which would be attained by the kriging equations (7.2).

9. Conclusions

We have presented a derivation of an integral expression for the total �ux of a single
phase incompressible �uid through a porous medium. Taking variations of this expression
with respect to parameters which describe the permeability �eld results in an integral
relationship between the derivative of the �ux and the derivative of the permeability.
This can then be used to calculate directly the sensitivity of the �ux to the individual
parameters of the permeability model. Through a simpli�ed example we have shown
that this sensitivity is dependent upon the position of the source and sink relative to the
geological structure captured in the permeability model. We have restricted ourselves to
single phase �ow. For multiphase �ow we can use the same method provided the location
of the various di�erent �uids is known or, more precisely, the viscosity is known as a
function of space. In this case we replace K by K/µ. However, without knowledge of the
front location, this problem cannot currently be approached with the methods of this
paper.
The use of a perturbation expansion has allowed us to approximate the exact expression

for the �ux with another integral expression which is independent of pressure changes
induced by a change in the permeability �eld. By representing each discrete value by an
independent random variable we are able to derive a relationship between the statistical
moments of the permeability and those of the �ux. This relationship can then be used to
estimate the number of permeability parameters which should be varied in a nonlinear
calculation for the variance of the �ux. When compared to nonlinear calculations there
is good agreement for changes in permeability which are small compared to the base
permeability. Indeed, in the sample �ow geometry considered here the agreement remains
reasonable as the change in permeability becomes the same size as the base permeability.
In principle, it is possible to construct a power series expansion for the �ux as a function
of the permeability parameters, improving the accuracy of the estimates given here.
To assess the applicability of the linear methods to more complex permeability �elds we

have considered several further methods of permeability modelling. For spectral methods
and other ways of generating stochastic realisations we cannot directly compute deriva-
tives though we may use the linear estimation process to calculate the �ux for each
realisation of the permeability. For 1000 realisation sample sets of permeability �elds we
found that the linear estimates are in good agreement with nonlinear calculations for the
majority of permeability realisations when the standard deviation of the permeabiltiy
�elds is su�ciently small. Also the linearly estimated statistics of the �ux show good
agreement with the nonlinear values. We have further shown that, when linear interpola-
tion methods are used to generate permeability �elds, we can apply the linear methods to
assess the sensitivity of the �ux to changes in the model interpolation parameters used.
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For the examples given the linear estimates show remarkably good agreement to the non-
linear results derived through repeated direct calculation of the �ux for each realisation
of the permeability. It is interesting that the error of the linear estimates compared to
nonlinear calculations are small for the layered and interpolation examples. For the lay-
ered example this is because the permeability values have a long correlation length scale
in the macroscopic direction of the �ow. Hence the arithmetic average of the permeabil-
ities which the linear estimate implicitly calculates is appropriate. The errors between
nonlinear and linear estimates for interpolated permeability �elds are small because the
permeability is constrained in areas of the domain where pressure gradients are high. By
contrast the stochastic examples of �6 show that when there are unconstrained �uctua-
tions in permeability at small correlation length scales, the error of the linear estimate
is large.
The derived expressions for the derivatives of the �ux with respect to the permeabil-

ity parameters and for the linearised �ux changes are independent of changes in the
pressure �eld resulting from changes in the permeability. We have exploited this inde-
pendence throughout the paper to reduce signi�cantly the number of �ow calculations
required compared to a Monte Carlo approach. The linearised method presented in �4
becomes invalid as the magnitude of the variations in permeability away from the leading
order value become large. Nevertheless, for su�ciently small permeability variations our
method obviates the need for a �ow calculation for each realisation of the permeability
sampled from a probability distribution of possibilities. This enables a fast characterisa-
tion of the sensitivity of the �ux estimate to the parameters of the permeability model
and allows us to calculate average values with a minimal number of �ow calculations.
This insight can then be used, for example, to inform a more precise or detailed �ow
model.
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