Abstract

The literature on informational cascades and herding theory has
for a decade focused on the externality and suboptimal outcomes
generated from decision-making when action spaces are coarser than
private information spaces. Much of the output has therefore been
positive, not normative. This paper redresses this imbalance by detailing
several direct applications for marketing and business arising from
herding theory. We see that business practices such as encouraging early
sales, or seling to groups rather than individual customers, can be
justified theoretically by adirect application of herding theory.
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1. INTRODUCTION

The literature on informational cascades and herding theory since Banerjee (1992)
has focused on the externality and suboptimal outcomes generated from decision-making
when action spaces are coarser than private information spaces. Much of the output has
therefore been descriptive: stressing the herd externality and the difficulty of those within
a herd to avoid the informational pressure to repeat the actions of their predecessors.
Very little work has focused on normative suggestions of how to break herds, or better yet,
manipulate them to ensure higher sales for firms. In many cases the existence of a herd
will be suggestive of a particular business response. This paper redresses the imbalance
in the literature by listing several direct applications for marketing and business arising
from herding theory. This paper builds on the work in Sgroi (2000), which focuses on
the manipulation of ordering in a sequential herd, designed to maximize sales for a firm,
or welfare from a social planner’s perspective. However this forms just one of the four
business practices which include encouraging early sales, manipulating biased consumers
and selling to groups rather than individual customers.

1.1. Overview. The first section deals with lessons drawn from herding models which
focus on sequential decision-making. In particular we examine the role of forced early
decision-making and biased consumers when a firm wants to maximize the chance of a
herd acting in favor of it’s product. The second section switches attention to herding
when agents can wait, so the timing of decisions becomes endogenous. Here we look at
the choice between individual sales methods and group sales when the firm is aiming
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2 APPLICATIONS OF HERDING THEORY

to maximize sales, and the worth of gathering more information when the firm is the
consumer. In each section on applications remarks are made which might be construed as
possible informal policies intended to help firms which face the prospect of informational
cascades on or against their products. We finish with some conclusions.

2. SEQUENTIAL HERDING

In sequential herd models the main features are the coarseness of actions spaces rel-
ative to signal spaces, the exogenously determined sequential ordering of decisions by
consumers, and the externality generated by this information structure. Once a herd
begins public information will swamp private information and all later decision-makers
will copy the actions of their predecessors, but no new information will be available to
later decision-makers so their will be no scope for later agents to “break” the herd. This
section sets up a version of the model first used in the seminal herd paper by Bikchandani,
Hirshleifer, and Welch (1992), and then goes on to analyze direct business applications
of this model, initially by summarizing Sgroi (2000).

2.1. A Simple Model. Consider a sequence of N € N, agents, the ordering of which
is exogenous and common knowledge, each deciding whether to purchase (Y) or not

purchase (V) some product. Each agent observes the actions (Y or IV) of his predecessors.
3
% of returning 0 or 1. The agents each receive a conditionally independent signal about

The cost of purchase is C' = 3, and results in the gain of V' which has prior probability

V defined as X; € {H, L} for agent i. The signals are informative in the following sense.

Definition 1. Signals are informative, but not fully-revealing, in the sense that:

PriX;,=H|V=1=Pr[X;=L|V=0=pe(05,1)
PriX;=H|V=0=Pr[X;=L|V=1=1-pe(0,05)

Define the history up to agent n as the set of actions of agents 1 ton —1s0o H, 1 =
{Ay, Ay, ..., A, 1} where A; € {Y,N}. Now define the information set of agent i as
I; = {H; 1,X;}. It will be the case that in certain circumstances X; will be inferable
from A; but this will not always be true. Now define N°% as the set of agents from
N indexed by only odd numbers from N, |, and equivalently define N¢*". Define also
N°% a5 the set of odd numbers in N, and equivalently define N, Define F [r;] to
be agent i’s ex ante expected payoff (i.e. his expected payoff before his signal draw).
Finally define #X; as the number of signals or actions of type X; drawn or taken up
to and including agent i. Now X; = H & A; =Y and X; = L & A; = N. Agent
2 can infer agent 1’s signal, X;, from his action, A;, and so has an information set

I, = {X1,Xo}. f Xy = Hand A; =Y = X, = H then agent 2 adopts so Ay =Y. If
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Xo=Hand Ay=N=X;=Lorif Xo =Land Ay =Y = X; = H agent 2 will have
two conflicting signals so we require a tie-breaking rule. We use a simple coin-flipping
rule which i1s known to all agents:

Condition 1. (Tie-breaking rule) If 1; includes an equal weighting of H and L signals

then Pr[A; =Y] = Pr[A; = N] = 5. This rule is common knowledge.

Consider a possible chain of events. The first agent will purchase if X; = H and reject
if X1 = L. The second agent can infer the signal of the first agent from his action. He
will then purchase if Xy = H having observed purchase by the first agent. If he observed
rejection but received the signal Xo = H then he will flip a coin following the tie-breaking
rule. If he receives Xy = L and A; = N then he too will choose As = N. If the first
agent purchased then he would be indifferent and so flip a coin. The third agent is the
first to face the possibility of a herd. If he observed two purchases, so Hy = {Y, Y} then
Az =Y for all X3 since he knows that X; = H and the second agent’s signal is also
more likely to be H than L, so the weight of evidence is in favor of purchase regardless
of Xs3. This initiates a Y cascade: the forth agent will also adopt as will the fifth, etc.
Similarly if the third agent observes that both previous choices were rejections then he
too will reject, initiating a N cascade. An informational cascade occurs if an individual’s
action does not depend upon his private information signal. The individual, having
observed the actions of those ahead of him in a sequence, who follows the behavior of the
preceding individual, without regard to his own information, is said to be in a cascade.
A model-specific definition would be:

Definition 2. Informational Cascades. AY cascade is said to occur if A,_y =Y =
A, =Y forall X;. A N cascade is said to occur if A;_y = N = A; = N for all X;.

For the sake of clarity define the initiator of a herd or cascade as the agent whose
decision to go Y or N makes the following agent’s signal irrelevant. The cascade traps
the agent who first faces a deterministic optimal choice regardless of his signal value,
and all subsequent agents. So in the case of Hy = {Y Y} a Y cascade is initiated by
agent 2 and agent 3 finds himself trapped in the Y cascade. Note that if Hy = {Y, N} or
Hy = {N,Y} then agent 3 will be in the same position, pre-signal draw, as agent 1. Note
also that if agent 3 finds himself trapped in a cascade so too will agents 4,5,6,..., N. We
should note that a cascade once started will last forever, even if it is based on an action
which would not be chosen if all the agents’ signals were common knowledge. Finally,
the possibility of convergence to the incorrect outcome through the loss of information
contained in later agents’ private signals might be phrased in terms of a discernible
negative herd externality as suggested by Banerjee (1992). A social planner will wish to
minimize the impact of this negative externality on consumer welfare. In some cases it
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will also be in the interests of a firm to work against this externality. As we see later
though in some cases a firm will actually use this externality to its own advantage, when
it wishes to sell a low quality product.

From the model specifications we can derive the unconditional ex ante probabilities of
a Y cascade, N cascade, or no cascade after n agents. Define Y (n) to be a Y cascade
initiated by agent n and similarly define N (n) for a N cascade and No (n) for no cascade
by agent n. For example, Pr[Y (2)] is simply the probability that the first two agents
both choose Y. The following functions conditional on V' = 1 are fully calculated in part
1 of the appendix. After an even number of n agents we have:

n

1 ppi) 1= (pp?)2

(2.1) Pr[Y (n) |V =1] = 2etl )
oV (p—1) 1— 72%

(2.2) PelN (n) |V = 1] = 2010

These expressions allow us to make a number of clarifying remarks. Note that from
equation 2.1 Pr[Y (n) | V = 1] is increasing in p and n but from equation 2.2 we have
that Pr[N (n) | V = 1] is high even for p much higher than % Therefore, even when a
great majority of the signals are of type H, a product still faces the prospect of a possible
herd against its purchase. This is worrying for both consumers and for a firm with a high
quality product. The symmetric case where V' = 0 would apply when the product is of
low quality, and the results provide some hope for the manufacturer of such a product,
since there is always the chance of a Y cascade. Of course there is no reason for a firm

to stay passive in the face of such potential herds.

2.2. Early Sales and “Guinea Pigs”. Consider a single firm with a product it wishes
to sell facing a sequence of consumers as described in section 2.1. Abstracting from
profit-maximization, in the context of the current model we will consider the firm’s aim
to be simply to sell as many units as possible. We will first consider the optimal strategy
of a firm which has a “good” product, i.e. for which V' = 1 and then consider a firm
which has a “bad” product, i.e. for which V = 0. We allow the firm to force a fixed
number of consumers to decide early. This fixed group we will call M C N. This alters
the information structure of decision-making producing a large initial set of decisions
(M + 1) followed by the remaining N — M — 1 deciding as before in sequence. The key
feature is that the initial group will not be able to learn from observing others so must
decide on the basis of their own private information; however, later decision-makers will
have a larger pool of inferable signals to act upon. We might imagine the firm approaching
a sub-set of all consumers and offering some incentive to make a quick decision. This
can come in a variety of forms. The firm might send time-limited money-off coupons to
certain potential consumers, or offer free products to high profile consumers or members
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of the press who agree to advertise their experience through writing a review. Perhaps
the best example is that of a movie premiere full of high profile celebrities and members
of the press whose opinion will be sought. The rest of this section formally examines
these ideas. The reader is advised to refer to Sgroi (2000) for a more formal step by step
examination of the firm’s problem.?

2.2.1. Good Products to Sell. Assume first that V' =1 so the decision to purchase is the
right one. Define the number of units sold as Qn (M + 1) = #Yn (M + 1) which is a
function of M + 1 for a population of agents of size N and simply reads the number of Y
decisions made by a population of N agents when there are an additional M guinea pigs
chosen to decide with the first agent. In terms of the model the firm’s objective is clearly
to maximize the number of units sold. In order to do this the firm faces an important
trade-off.

1. It wishes to maximize the probability of a Y cascade by choice of M, since this
will raise the number of purchases by those outside the initial decision group. For any
given choice of M there will only be a remainder population outside the group of guinea
pigs of size N — M — 1, so the population which learns is of size N — M — 1. Therefore
the firm is interested in ensuring that this remainder population opts for a Y cascade,
so intuitively it is interested in maximizing (N — M — 1)Pr[Y (M +1) |V =1]. AY
cascade will be initiated by the group of M + 1 guinea pigs if Qi1 > % +1,a N
cascade will be initiated if Qa1 < % — 1 or alternatively there will be no net public
information and no cascade will occur if Q1 = % Having noted this it is easy to see
that the probability of a Y cascade being initiated by a given number of M + 1 guinea
pigs will be Pr [QMH > % +1|V= 1].

2. It also wishes to sell its product to as many of the guinea pigs as possible. The
sales to the first M +1 is very simply defined as p (M + 1) since there will be no learning
within this group.

Furthermore, the firm also knows that even if a Y cascade is not initiated by the initial
group of guinea pigs later agents may still initiate a Y cascade. Part 2 of the appendix
reduces the firm’s problem to:

M—-1
2
M+1—= 1— x
(2:3) max { p (M + 1)+ (N = M —1) (M + 1)1 ) Frmrteht
=0

2Many of the calculations from Sgroi (2000) are reproduced in the parts 2 and 3 of the appendix.
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M-—1 n 2 ni]\;il
5 i ) N-mM-1 (N-M-F) [ 1-(p-p?)
1 (MADPM 2 (1-p)®+p* A-p) 1] | p(pt+1) Z
! (M+1—x)! 2 1-(p—p%)
=0 n=2

Differentiating this requires the use of the digamma and hypergeometric distributions
and produces a fairly complex result. Some comparative statics should provide some
intuition. Table I gives the optimal choice of M for various values of p and N.

Table I: Optimal M Values for the Firm when V' = 1 for Given Values of p and N
P 0.6 2/3 3/4 4/5
N 50 23 19 13 11
100 37 27 17 15

Table II gives the expected number of units sold for various different choices of M by
the firm for a market of size N = 100 for different values of p.

Table II: Expected Units Sold for Different Values of M, N = 100
M 9 29 49 69 89
0.51 41 48 51 51 51
p 2/3 77 87 83 77 70
4/5 95 94 90 86 82

Table ITI holds p constant at 2/3 and varies the size of the market, again looking at the
impact on the expected number of units sold (with percentage of market size in brackets)
of a change in M.

Table III: Expected Units Sold for Different Values of M, p = %
M 9 29 49 69 89
100 77 (77) 87 (87) 83 (83) 77 (77) 70 (70)
N 150 117 (78) 135 (90) 132 (88) 126 (84) 120 (80)
250 195 (78) 230 (92) 231 (92) 226 (90) 220 (88)

Finally, table IV considers the percentage of the market which purchases the product
when p = % and we vary N and the ration of M/N.
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Table IV: Success Rate for Different Percentages of the Market Forced to Decide Early,

p=2

M/N 9% 25% 49% 5% 91%
100 7% 87% 83% T5% 69%
N 150 83% 89% 83% T75% 69%
250 91% 91% 83% 5% T0%

Analyzing tables I to IV reveals a number of interesting comparative statics. Firstly
the impact of raising M on total number of units purchased is non-monotonic. So we do
not expect corner-solutions. Secondly, the impact of M is very dependent on the value
of N and p. Thirdly, optimal M is rising in N but falling in p. Finally, switching to
percentages reduces the importance of NV but does not eliminate it, so the solution cannot
be expressed as a fixed percentage of the market for a given p Some casual observations
would add that a figure of around 25% of the market for p = £ Whllst not optimal seems
reasonable for an N between 100 and 250, though it is a httle high for N approaching
250. So the trade-off gives us a value of M which is nicely in the interior, and not too
high a level for a reasonable value of p. As for the impact of N and p we can reason as
follows. As p rises the chance of a Y cascade without resort to guinea pigs rises and this
seems sufficient to outweigh the similarly beneficial fall in the number of guinea pigs who
do not purchase from the firm. Therefore, a rising p value indicates that the number of
guinea pigs should be reduced, holding NV constant. A rising /N value indicates that the
number of guinea pigs should rise, though not as a percentage of N. So the firm should
raise the absolute number but reduce the percentage of the market acting as guinea pigs.
This seems sensible given that market size is decreasingly important for learning in a
herding model, since once a herd has started it will not stop, regardless of the number of

agents remaining in the sequence.

2.2.2. Bad Products to Sell. Now we consider the case when V = 0, so the firm now has
a “bad” product. Part 3 of the appendix shows that the firm’s problem has now changed

to become:
M

(2.4) max l—-p(M+1)+(N-M-1)(M+1)!

ApMtiTTp
al(M+1— :z:)'
=0

v n—M-1

5 N-M-1 (N-M-5)[1-(p-p*) 2 )
_ Z (MANPM (1 p)? 4 p® (1 p) M) | (p-2)(p-1) Z
0

2 (M+1-zx)! 2 1—(p—p?)
n=2
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Now we carry out some of the comparative statics from the previous subsection with the
only difference being the move from the V = 1 state to the V = 0 state. Table V repeats
the findings of table I for the new state. Note the collapse in the value of M that would
be selected by the firm as we move from state V =1 to V = 0. The firm has to carefully
balance the desire to initiate a Y cascade by manipulating the number of guinea pigs, by
the need to avoid too much information being revealed and a N cascade being initiated.

Table V: Optimal M Values for the Firm when V = 0 for Given Values of p and N
P 0.6 2/3 3/4 4/5
N 50 17 13 9 7
100 27 19 11 9

Table VI, much like table II, gives the expected number of units sold for various
different choices of M by the firm for a market of size N = 100 for different values of p.
The figures for optimal M when p = 0.51 are not surprisingly very similar, but moving to
a higher figure for p yields very different results with far fewer units being sold especially
for higher values of M supporting the findings in table V1.

Table VI: Expected Units Sold for Different Values of M, N = 100
M 9 29 49 69 89

0.51 41 48 50 50 49
p 2/3 T4 77 66 53 40
4/5 89 76 60 44 28

Table VII carries out the same process as table III but for V' = 0, holding p constant
at 2/3 and varying the size of the market, looking at the impact on the expected number
of units sold (with percentage of market size in brackets) of a change in M. Finally, table
VIII mirrors table IV by evaluating the percentage of the market which purchases the
product when p = % for various values of N and M/N.

Table VII: Expected Units Sold for Different Values of M, p = %
M 9 29 49 69 89
100 74 (74) 77 (77) 66 (66) 53 (53) 40 (40)
N 150 113 (75) 125 (83) 116 (77) 103 (69) 90 (60)
250 192 (77) 220 (88) 215 (86) 203 (86) 190 (76)
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Table VIII: Success Rate for Different Percentages of the Market Forced to Decide
Early, p = %
M/N 9%  25% 49% 5% 91%
100 74% 7% 66% 53% 40%
N 150 80% 81% 67% 49% 39%
250 88% 83% 67% 50% 39%

2.2.3. Summary. What can we conclude?

Remark 1. Our first lesson is that regardless of the quality of a firm’s product it would
do well to consider the dangers of a herd, and to mazimize the probabilities of a positive
herd on its product through the judicious use of “guinea-pigs” and schemes designed
to encourage early purchase by a carefully selected proportion of the population. It is
doubly important to notice that this proportion must be carefully calculated as an incorrect
number might prove very damaging for sales, for example trying to encourage too high a
number of early sales if the product is not a good one.

2.3. Consumers with Biases. Having considered the case when consumers have iden-
tical information and preferences, let us now consider the case where some consumers
have biases. How should a firm respond to potential customers who have such known
differences in preference? Consider a sequential model exactly as in section 2.1, except
that we include two special agents with very different signals, a pessimist with a negative
bias against the firm’s product and an optimist with a positive bias in favor. We might
imagine a customer with a lower or higher cost of adoption, perhaps because he is about
to replace an old product, or a customer with a very high cost of adoption because he
has just invested in a new product which is especially costly to replace.

We first examine the benchmark case when as is intuitive a firm would like to exploit
the existence of consumers with a bias in favor of their product. We then examine the
case when a consumer wishes to have access to finer information. This will naturally be
costly for the consumer, and will therefore reduce the funds available for purchase, and so
will raise de facto costs of adoption. This provides a direct justification for the existence
of pessimists with higher purchase costs, but also provides motivation for such pessimists
to have finer information than other consumers. The result is the counter-intuitive result
that such pessimists with higher costs might actually be unambiguously useful to the
firm as obvious candidates to be asked to decide first.

2.3.1. Consumers with Varying Costs of Adoption.

Definition 3. Define a pessimist to have a cost of C' = x, where x > % and an optimist
to have a cost of C' =1 — x. We denote the payoff of the optimist at location i in the
sequence as w5 and the payoff of the pessimist al location i in the sequence as w.
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A second useful definition establishes some notion of how informative a signal is.

Definition 4. Following definition 1, a signal is mildly informative if p € [%, a:), where
x 18 defined as in definition 3. A signal is very informative if it more informative than a
maldly informative signal.

We will assume in this section that while firms know what the cost of adoption is
for each customer, customers only know their own cost of adoption. There is one very
important benchmark result we can immediately state about the actions of the biased
consumers for a given fixed value of p for all agents in the sequence.

Proposition 1. Ifp € [%, a:) and x > % then we can immediately say thal a generalized
optimist will adopt if asked to decide first regardless of his signal value, while a generalized
pessimist will never adopt.

Proof. First note that for informativeness we have restricted signal accuracy such that
p > %, but signals are mild in the sense of definition 4. The expected payoff of the
first decision maker if he is an optimist with a good signal who chooses to adopt is:
Elry | Xi=H,A =Y]=p—(1—2z) > 0for p > 1—xz which is trivially true. If the opti-
mist instead receives a bad signal, but still chooses to adopt then: F [7] | X1 = L, A = Y]
=(1—p)—(1 —2z) > 0for p < x. Therefore for p € [%,a:) the optimist will always adopt.
Now consider the pessimist with a good signal choosing to adopt: E [7] | X1 = H, A; = Y]
= p—x > 0 for p > z which cannot be true. If his signal is bad: E [7] | X1 = L, 4; =Y]
= (1—p)—x>0for p<1—x which also cannot be true. I

So if signals are informative, but not too informative then a pessimist will never pur-
chase while an optimist will always purchase. So we have a sensible marketing ploy:

Remark 2. If a firm knows how optimistic/pessimistic it’s customers are, bul customers
do not know how optimistic/pessimistic their fellow customers are, then the firm should
always begin by selling to optimistic customers if information is mildly informative.

Two caveats are necessary. Firstly, what if information is very informative, so p €
[£,1)7 Now an optimist may not purchase and a pessimist may purchase. Nevertheless
if other consumers do not know who the optimists/pessimists are then it still seems
sensible to approach optimists first as they are still more likely to adopt the new product.
Secondly, what if every C' is common knowledge? Now consumers can weight the actions
of their predecessors by their value of C'. We therefore lose the benefit gained from a
more likely purchase by an optimist. Combined with common knowledge of a general
p there is nothing to gain by changing the order of purchase. We can expand this last
point by arguing that even if other consumers do not know who the biased consumers
are they may well assume that a firm that is able might approach optimistic consumers
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first for mildly informative values of p and hence act as if the optimist was approached
first.

This result is very intuitive and provides a benchmark for our next result, when we will
establish conditions under which it is pessimists rather than optimists which are valuable
to the firm.

2.3.2. Varying the Fineness of Information. In this section we make two major changes.
Firstly we allow customers to know whether their fellow customers are pessimistic or not
(though not of course to know the value of any other customer’s signals). This is modeled
by allowing customers to know the distributions from which their fellow customers draw
their signals. This is relevant here because of the second major change: we allow for
varying fineness of information, so we allow draws to come from different distributions.

Given the dangers of herding, of which all rational consumers are aware, some might
wish to acquire additional information, or more specifically, better information. “Better”
in this sense is best described in terms of the fineness of information. A firm which
has finer information will be better able to make a good decision, but will have to pay
for this increase in information quality, and therefore might be reasonably modeled as
having fewer funds to purchase. A simple way of capturing this idea would be to raise the
quality of a pessimist’s information, while at the same time justifying the higher costs of
adoption faced by the pessimist.

Alternatively, imagine that our pessimistic customer, who might have a strong reason
not to switch to a new product, is in the position of being asked to consider a new
product. Given the pessimism of this customer it might be reasonable to expect him to
acquire better quality information on which to base a decision, so we might wonder if
a pessimist is more likely to have access to better quality information than an unbiased
customer.

Following either motivation, we can ask what would change if the quality of information
is not in fact fixed for all agents, but can vary for our pessimistic customers. In particular
consider signal draws to now be of the form p; ~ U (0, %) UUgy (%, 1). This distribution
is a natural extension of U (0, 1) where we retain informativeness so force P [p = 0.5] = 0.
Now consider the coarseness of information for our two types of consumer, a pessimist
and an unbiased consumer.

The unbiased consumer as before gets basic information about the type of signal, either
X; = L or X; = H which can now be better described as picks from either Uy, (0, %) or
Uy (%, 1) 2 So our unbiased consumer i’s information is too coarse to specify a value for
p;, but can specify which half of the distribution this signal is taken from. In expectation
then he can best approximate signal values as X; = L = p; = i and X; = H = p; = %.

3Hence the use of the distribution p; ~ Uy, (07 %) UUg (%, 1).
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The pessimist however has full access to the signal value so knows exactly the value of p;,
and will judge values close to 0 to indicate a strong negative signal about the product,
and values close to 1 to indicate a strong positive piece of information. We retain all
other elements of the model in 2.1. To summarize:

Definition 5. Define a pessimist to have a cost of C = x, where x > % We denote
the payoffs, actions and signals of the pessimist at location i with the superscript p. Let
Pl ~ Ug (0, %) U Uy (%, 1). Leave C' = % as before for all unbiased consumers and let

them retain coarse information of the form X; = L = p; = i and X; = H = p; = %.

We will in fact focus on pessimistic customers, since as suggested they might have more
reason than most to want to consider more information. Consider what might happen if
a pessimist decides first in the chain, and decides to adopt. Not only is this a certain sign
that X; = H, but also that p; > %, so Elp | Al =N] = %. Therefore the decision by
the pessimist to adopt is in expectation sufficient to start a Y cascade so long as ps < %,
which will of course be the case if the second consumer is unbiased. If we similarly define
optimists with higher quality information but allow them to retain lower costs we will of
course obtain the symmetric result that an optimist starting the sequence with a decision
not to adopt is sufficient to trap an unbiased consumer in a NN cascade. Furthermore
if a pessimist decides not to purchase this restricts the signal value to be below %, and
so provides a less damaging expected signal than were an unbiased consumer to decide

against purchasing in the same position. We can formalize this.

Proposition 2. In a model in which pessimists have finer information pf ~ Uy (0, %) U
Uy (%, 1), and customers know the distributions from which their fellow customer’s sig-
nals are drawn, a pessimist deciding to adopt first, followed by a sequence of unbiased

consumers, will initiate a 'Y cascade but will be irrelevant if he decides not to adopt.

Proof. First consider the second agent’s expectation of the first agent’s signal if the first
agent is a known pessimist and decides to adopt. A =Y = p{ > % = Fp | A =N]| =
%. Now the second agent may have a positive signal and will hence adopt as will all future
agents. If the second agent does not have a positive signal his signal strength will be i
and so the net signal strength will exceed % and the agent will still decide to adopt. The
pessimist’s action is therefore a sufficient statistic for the determination of the actions
of future agents. If the pessimist decides not to adopt by a symmetric argument the
net signal after the action of the second agent will overcompensate if the second agent
decides to adopt, or initiate a herd if the second agent decides not to adopt. The second
agent is therefore the initiator of the herd regardless of the pessimist’s decision not to
adopt. 11



APPLICATIONS OF HERDING THEORY 13

How does this information help the firm hoping to find their product caught up in a
Y herd?

Remark 3. It is in a firm’s best interest to convince a known pessimistic customer to
decide first. If the pessimist decides against his decision will be effectively ignored by later
movers, but if he decides to purchase he s likely to single-handedly initiate a cascade in
favor of the firm’s product.

2.3.3. Summary. The two remarks in this section are very different, so a great deal
depends upon how variable information quality may be and whether biases are common
knowledge. The best way to draw these together is with a final remark.

Remark 4. If pessimistic customers naturally try to improve their quality of information
before making a decision AND are well known as pessimists to other customers then it is
a good idea to start with them first. If all customers are likely to have the same quality of
information AND do not know how optimistic or pessimistic their fellow customers are
then it is a good idea to start with optimistic customers.

Finally, we can tie this result to remark 1 by noting that a pessimist plays a very
similar role here to the guinea pigs in the earlier model. In both cases we have an agent
with the ability to signal in a finer way to later decision-makers. In the guinea-pig model
we might consider the group of M + 1 agents to form one super-agent able to act in a
less coarse way and therefore provide a less noisy signal for later decision-makers. The
super-agent can in effect go beyond binary signalling by choosing a fraction of adoption
#Yar1/M+1 which is a finer signal than a simple decision to adopt or not. The pessimist
in a similar way reveals finer information to later decision-makers if he decides to adopt
by offering an insight into the exact nature of this signal. In a strong sense this recalls
the use of biased contests to provide useful information in Meyer (1991).

3. ENDOGENOUS TIMING

This section switches the emphasis to herding models where agents can decide to wait
to benefit from observing the actions of others. The herd externality applies just as much
here as once again action spaces are coarser than signal spaces so actions do not perfectly
reveal signals. The result is once again that once a herd begins all agents will follow the
actions of their predecessors, and new information will cease to become available. Since
consumers can decide at any time in these models a herd will start and end rapidly with
all remaining agents deciding simultaneously after a herd has been initiated. The basic
model used in this section follows Gale (1996).
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3.1. A Simple Model. In general we will consider N agents, but initially we will restrict
ourselves to N = 2.* These agents have a decision problem which operates in two
dimensions: whether to invest in a project and if so when to invest. The return to this
project is the state of the world, w, which is initially assumed fixed at the beginning of
time. Time is indexed by ¢t € T, | and is therefore discrete and strictly positive. Agents
do not directly observe w, instead receiving a signal, p, at £ = 1. We use superscript to
index agents and subscript to index time, so u¢ is the signal of agent i € {1,2} at time
t. We will use 7 and j to denote our two agents; usually 7 is the agent whose decision
problem we are considering and j will be the other agent. The signals p’ and p’ are
independent and identically drawn from the uniform distribution with support [—1, 1],
so pt ~ U[—1,1] for 7 € {1,2}. These signals do not change over time, are drawn before
the first period, and the state of the world w is set equal to the sum of all signals,
w = p' + p?. Actions are defined as: 7° = 1 < “invest”; and 2° = 0 < “do not invest”.
An agent can observe his own signal, but not the signal of the other agent. In each period
actions are made simultaneously, so the two agents cannot observe each others’ actions.
However, in period 2, the agent will know the action which the other agent performed in
period 1, and through the observed choice of action some information about the nature
of the other agent’s signal may be revealed. Finally we have payoffs, 7%, where t € T, ,
and 7 € {1,2}, discounted strictly by é € (0,1):
Sl if 2t =1
{ 0 if 22=0

ri =

Consider the problem faced by agent i: whether and if so when to invest. Myopically we
could consider the following simple rule: (i) invest (i.e. i = 1) if and only if F [7f] > 0;
(iia) if an investment is to be made, then make it at ¢ = 1 if and only if F [r}] > E [7}],
if not then wait. In these rules the profit function explicitly includes discounting. This
might seem a sensible rule to adopt, but while we are capturing a notion of the cost of
delay since we have an implicit 6 < 1 in the second period payoff, we are not capturing
the benefit of delay, namely the option value of waiting. This option value comes about
because of the possibility that for some reason agent 7 may have invested at time 1 when
doing so was foolish given the information available to him at time 2. We will consider
the cost and benefit of delay in turn, but first we will define a symmetric signal value
such that p* > 71 > 0 < 2° = 1. We have not yet said anything about what to do at
t = 2, but we have defined an alternative decision rule for ¢ = 1: (iib) invest at t = 1
(i.e. set 2} = 1) if and only if p* > 7 > 0.

“The endogenous-timing model is very different from the sequential model of section 2.1 so alternative
notation will be used to avoid confusion.
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Proposition 3. There is some symmetric i such that it is optimal for agent i to invest
at time t = 1 if and only if u* > 7 > 0.

Proof. See Appendix, part 4. I

Proposition 4. (i). The game will end by t = 2, i.e. if agent i did not invest at time
t =1 he will either invest when t = 2 or never invest. (ii). Agent i will only invest at
t =2 if agent j invested at t = 1.

Proof. See Appendix, part 5. I

There are numerous features of this model which are very much in keeping with the
herding literature: information is not fully revealed, there is no direct mapping from signal
to action which can be inverted to reveal agent’s signals; errors are made and private
information may be ignored, in particular even if u° > 0 for i = 1,2 neither will invest
unless p° > 7 (8) for at least some 7; and the errors which lead to incorrect decisions in
turn lead to welfare losses, even though there is minimal delay in this model. It has also
been shown that the game will effectively end at ¢ = 2, beyond this point agents have
either invested or will never do so. The addition of further agents would allow the game
to continue beyond two periods of interest, but we need at least one agent to invest in
a period or investment will stop, as in the two agent case. This is formally shown to
be true in the statement and proof of proposition 5 which extends proposition 4 to the
multi-agent case.

Proposition 5. A single period of no investment will end the prospect of any further
investment in a model with N € N, agents.

Proof. See Appendix, part 6. I

Gale (1996) provides an intuition for this result, pointing out that in a model of
this type there must be a possibility of investment collapse as a necessary condition
of equilibrium. This comes about because in order to have any delay there must be a
positive option value, and this in turn implies a positive probability that agents will never
invest.

3.2. Selling to Groups. We first investigate the nature of the problem caused by the
structure of sales in this model and see that this can be overcome by a simple sales
mechanism. Consider the danger of investment breakdown:

Definition 6. Full investment breakdown is said to occur when a project has positive
value but it is not carried outl by any agent because of problems of asymmelric information
and uncertainty about the true value of the project.
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Close examination of this definition reveals that full investment breakdown is a form
of informational cascade. Consider a situation in which both agents have signal values
below the threshold 7i and where w = p* + 7 > 0. Neither agent would invest at ¢ = 1,
then having observed a period of no investment, they would never invest. The agents are
effectively trapped in an informational cascade on the action “do not invest”, producing
an investment breakdown. Complete revelation effectively bounds profits.

Note also that a problem might also emerge when one agent has a positive signal
and one a negative signal but where again, the project is worthwhile in the sense that
w=p +p >0.

Definition 7. A partial investment breakdown is said to occur when a project has
positive value and one agent invests, but the other agent fails to invest because of problems
of asymmetric information and uncertainty about the true value of the project.

In both cases a worthwhile project is not sufficiently obviously profitable and so delay
occurs as both agents wait in an attempt to learn more about the others’ signal. Let us
go through the decision-process in detail. Both agents begin with positive signals that
lie just under . This results in a unilateral decision to delay in order to gain more
information. In the second period both observe a failure to invest by the other agent
which results in an updated set of beliefs which suggest to each agent that the others’
signal in expectation (z—1)/2 < 0. If an agent had reason to delay when the other agent’s
signal was in expectation neutral a negative expected signal will reinforce to decision not
to invest. Of course there will be no new information forthcoming as neither agent will
now ever decide to invest and so we have a reverse cascade.

What is the solution to this problem? An obvious direct suggestion would be to
change the nature of sales. Rather than allowing each agent the luxury of delay in order
to observe the action of the other an alternative might be tried, for example:

1. All consumers are gathered and asked to anonymously complete a simple question-
naire designed to reveal the strength of signal values.

2. The results are revealed to all consumers simultaneously.

3. They are then asked to publicly and simultaneously vote on whether they would
purchase the product.

4. Once again the results are revealed publicly.

This form of sales is easy to implement when the number of potential consumers is
low. In practice it is used by some firms to avoid the perennial sales director’s nightmare
when marketing a new technology of a potential customer replying to a sales pitch “I am
of course interested, tell me who else has purchased?”?

SAEA Technology who sponsor the author of this paper have provided a good example. A perception
of some difficulty in sales led the company’s rail division to try a similar scheme to sell a patented
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To summarize:

Remark 5. When a new product is released and consumers can delay their decision
about adoption in order to observe the actions of their fellow consumers then a form of
reverse cascade known as investment breakdown can occur. This can be overcome through
a sales mechanism designed to allow consumers to pool their signals and therefore avoid
a profit and welfare-damaging herd.

3.3. Joint Ventures and Information Gathering. Finally we consider joint ventures
by consumers specifically designed to improve information, perhaps because of a fear of
a reverse cascade and the welfare-damaging implications this entails. We might imag-
ine that the consumers here are large enough to be interested in such an arrangement,
perhaps they are firms themselves considering taking on a new potentially profitable,
but expensive technology. A reasonable reaction would be to pool information especially
when there is little strategic interaction between the firms. Alternatively the firm selling
the new technology might wish to provide unbiased credible information to consumers
which rule out a reverse cascade. In both cases the issue is whether such information
revelation which will undoubtedly be expensive and time-consuming is worthwhile.

3.3.1. Complete Revelation of the True State. We now examine the role of information
revelation in the decision process. In particular, consider the possibility of complete
revelation of the true state.

Definition 8. Complete revelation of the true state of the world {w,, t € T} at
some pre-determined point in the future t = 7, where 7 € T, s common knowledge
to all agents, is said to occur when the true value of the state of the world w;+ at time
t = 7 s revealed to all agents.

Assume that there exists a benevolent “third party” who can observe the true state of
the world at certain points in time.® Consider a three period model: the first two periods
are as in the previous sections. However, in the third period we allow the agents to know
the true state of the world. Therefore for § € (0,1) and i € {1,2} the agents are left
with:

i { SPws if xh =1

BTV0 if 2i=0

smart-sanding technology. The results were very positive with voting revealing a preference to purchase
which resulted in good sales.

8The third party here is perhaps best considered to be a joint committee set up by both firms to aggregate
their information and therefore produce a totally accurate picture of the value of the project. This will
of course take time to implement.
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Proposition 6. If 7" > 2 then the game will end at time t = 7" with a decision to invest
or never tnvest, where T* is the time of complete revelation. In particular, if T = 3, then
the game will end in period 3 with a decision to invest or never invest.

Proof. See Appendix, part 7. I

Put simply this proposition establishes that the quick decisions of proposition 4 will
be slowed by the potential for further information. To examine this formally define the
information set in time ¢ of agent i as J!. This will naturally include his own signal as
well as the past history of agent j’s actions up to and including agent j’s action in time
t — 1. Agent i has three potential periods in which it might be optimal to invest, and we
will henceforth consider 7* = 3. The natural way to examine the decision problem is via
a backward induction or dynamic programing approach. We will consider what the agent
would do in period 3, assuming he is at period 3, then examine decisions in period 2 in the
light of actions in period 3. Finally, we will look at period 1 having considered the optimal
decision in period 2. This is made feasible by the simple observation that having reached
period 3 the agent’s best decision is to invest if and only if 7} = 8wy > 0 = wy > 0.
Therefore we can disregard period 4 and onwards. We will define the threshold signal
value used here as i to differentiate it from the previous signal value. The precise
calculations are made in part 8 of the appendix, but collapse to agent i knowing that his
worst possible payoff by period three is max {%62 (i+1) ,0}.7 In period 2 the agent will
therefore invest if and only if:

o . 1
B[ | 1] = max {36 (" +1) ,0} > =76 (1+7) (37— 1)

And therefore the first-period decision defines ;i when solved with equality:

~ ~ ~ 1 A\ o
ji—max {671, 56" (A +1),0} = =78 (1+71) (37— 1)

Part 8 of the appendix completes the agent’s decision-making problem resulting in the
calculation of a new threshold value:

1
ﬁzﬁ—g{252—25—4+ [(4—252+25)2+125(252+5)}2}

"Here and throughout payoffs will always be discounted back to time ¢ = 1, so the ¢ = 3 payoff is
expressed as the discounted value at ¢ = 1. When comparing time ¢ = 2 and ¢ = 3 the payofl at time
t = 3 should only be discounted once by § to return a payoff discounted back to ¢ = 2 but by discounting
all payofls to ¢ = 1 there is greater consistency throughout.
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Comparing this with our previous value for 7i, we have t < i for § € (0,1] and m =7
for 6 = 0. The addition of the possibility of complete revelation therefore results in a
new threshold value which lies above the old threshold value for 6 > 0. The addition
of the prospect of new information has increased the chance that agents will delay their
decision and wait for this new information.

3.3.2. The Usefulness of New Information. Sonew information will slow decision-making,
but presumably it will assist the firms in making the best possible decision. This section
will examine precisely this trade-off.

Consider the following example. A project may be worth a strictly positive amount,
with ! = 0.7 and p? = —0.65. Agent 1 will invest at time ¢ = 1 and agent 2 will delay.
Even after observing agent 1’s decision to invest, agent 2 will not invest at time ¢ = 2
for a wide range of values of § € (0,1). This example can be generalized, so for i # j
whenever —u® < 1/ < —% (4 1) there will be a situation of partial breakdown with
agent j failing to invest in a worthwhile project.® In this case complete revelation will
be useful for agent 7 though not for agent 1.

Proposition 7. Complete revelation will only be of any benefit in the fraction of cases
given by:

fE©)=f(6)= 2-67+327% — 10 4t

50— 207+ 202

Proof. See Appendix, part 9. I

It should be noted that ﬂgé@ > 0 and %_ME) > 0, so maxg f (6) = f (1) which is roughly
0.07. With maximum patience complete revelation will be of use in 7% of cases. For
a more reasonable patience level, say 0.5, we get f(0.5) ~ 0.038, so gathering extra
information is here worthwhile in under 4% of cases. We see that extra information is
indeed useful but in only a surprisingly small fraction of cases, and this is when such
extra information is assumed to be costlessly obtained.

Proposition 8 gives a necessary condition for undertaking complete revelation when
information gathering has a cost.

Proposition 8. With a cost of gathering information C; > 0 an ex ante (even before
signal values are realized) necessary condition for welfare-improving complete revelation

8This figure can be derived in the following way. For a project to be worthwhile it must be the case that
(' 4+ 17 > 0 which implies that —u® < p/. However, after observing that agent i has invested, agent j
can calculate I/ [/Li | 2 = 1] = £ (F+1) since it is uniform with support [fZ,1]. In order for agent j to
fail to invest after observing investment by agent ¢, it must be the case that % (+1) + 1/ < 0 which
implies that ¢/ < —% (L +1).
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when revelation occurs att = 7*, 1s:

Cg < 67’* (ﬁ?; + !3+ﬁ!!17ﬁ!3)

2(5-11)°

Proof. See Appendix, part 10. &

It should be stressed that this is a necessary condition and a very weak one, based on
maximum possible signal values throughout, and it will rarely be sufficient. This implies
that the information will only be of any use in a small number of cases. Add to this the
fact that when the information is of any use this is exactly when the value of the project
is likely to be positive but small, and the total value of the complete revelation is seen
to be low. To give some idea of the magnitudes involved consider the following example.

Example 1. All approzimations are to three significant figures. For 6 = 0.5, 7* = 3 we
have 71 (8) = 0.155 and 7z (8) =~ 0.208. So the prospect of extra information raises the
threshold value by 34% of the original value. Furthermore f (6) = 0.038, so by proposition
7 complete revelation is only useful in 3.8% of cases. Now using proposition 8 we have
as a necessary condition that the cost of public information gathering C, must be below
0.0055. To put this into a reasonable metric, the mazimum possible ex ante project value
s 2, so a necessary condition for complete revelation in the case when 6 = 0.5 is that the
cost of information gathering not exceed 0.28% of the mazimum value of a given project,
so for a project with a mazimum possible value of $1million, the cost of information
gathering should not exceed $2800.

Note that a low value of § makes the necessary condition even stricter. A final propo-
sition stresses the importance of when the extra information is due to be released.

Proposition 9. As 7 — oo complete revelation will have a falling effect on the thresh-
old value, with the effect disappearing completely in the limit. Therefore, a necessary
condition for complete revelation to be weakly profit-improving as 7" — oo is that it has
zero cost. The necessary and sufficient condition with T — oo involves the need for
neqative costs.

Proof. See Appendix, part 11. i

So yet another qualifier for the usefulness of complete revelation is that it should not
occur too late.

3.3.3. Summary. What we have seen is that new information is useful as it will certainly
overcome the dangers of a reverse cascade (investment breakdown), but it will also shift
out the threshold value beyond which an immediate decision to adopt is taken. This
movement will reduce the amount of swift decisions and so add to discounting and in
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many cases will actually reduce profits as compared with the situation when informa-
tion gathering is not entertained. However most damaging at all is the fact that such
information gathering will not be costless and when a direct cost is combined with the
extra delay produced the net result is that only when the costs are very low will extra
information be useful.

Remark 6. When reverse cascades are a serious danger consumers should not be too
quick to attempt to overcome these dangers through further information gathering unless
such ezxtra information can be obtained at very low cost (often in the order of below 1%
of the total potential value of the project). if extra information is costless then it is
unambiguously useful, though even here the implied extra delay diminishes the benefits.

4. CONCLUSION

What we have seen is that in both sequential and endogenous-time example herd mod-
els it is possible, indeed sensible, to imagine firms and consumers seeking ways to avoid
welfare and profit damaging cascades. In sequential models these methods may come in
the form of encouraging early entry as in the first model, or using the extra information
provided by the actions of biased consumers as in the second. In endogenous-time models
similar concerns might lead to an attempt to once again increase the information avail-
able to consumers, though methods that work through sales might be more cost-effective
than attempting to provide direct extra information as there is always a danger that this
will lead to extra delay in decision-making. The simple models used in this paper show
how the dangers of herding can provide direct policy advice to firms and consumers and
not simply provide sound theoretical underpinnings for otherwise difficult to understand
decision-making patterns. In particular many of the methods suggested in this paper
are already widely used whether in terms of the group selling techniques of section 3
or methods designed to encourage early decision-making in section 2. In many cases
however firms may not realize the full extent of the dangers that arise from the herd
externality and so the models examined in this paper might translate as direct advice
to such firms. It is hoped that this paper will leave a general message that while simple
theoretical models are a useful tool, it is not only theorists that can alter the structure of
models; agents can and do make changes to informational structures or timing decisions
themselves when such alterations translate into increased profits or utility.

APPENDIX

1. Derivation of Conditional Herd Probabilities:
Starting with 2 agents we have Pr[Y (2) | V =1] = p* + @ &PrY(2)|V=0=

(1— P)2 + p‘(lgp—). Therefore Pr[Y (2)] = IL;»pQ‘ Similarly, we have Pr [N (2)] = 17102“)2‘
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No cascade by agent 2 will occur with probability 1 — Pr[Y (n)] — Pr [N (n)], therefore
Pr[No(2)] = p — p?. Note of course that this can be alternatively calculated as the oc-
currence of H L or LH and a coin flip by agent 2, so Pr[No(n)] = %p (1—p) —I—% (1—p)p.
Further note that Pr[Y (2)] and Pr [N (2)] are not conditional on V since they are fully
symmetric so Pr[N (n)] = 3 (1 —Pr[No(n)]). Now note that Pr[Y (4)] = Pr[Y (2)] +
Pr[No (2)]Pr[Y (2)] and similarly for Pr[N (4)]. Further Pr[No(4)] = (Pr[No(2)])”.
Using this we can easily deduce the general probalzilities after an even number of n
agents to be Pr[No(n)] = (Pr[No(2)])" = (p—p?)2 for no cascade, and Pr[Y (n)] =
Pr[N (n)] =1 {1 —Pr[No(n)]} =5 [1 —(p— pQ)%} for a Y or N cascade. Now consider

the probability of the correct or incorrect cascade occurring:

Pr(Y(2)|V=1=p"+35p(1-p)=35p(+1)
PriNo(2) |V=1=%p(1-p)+ip(l—p)=p(l—p)

PrIN@2) | V=1=01-p +3p(1-p=3(p-2(p—1)

After an even number of n agents we have:

=(p—p°)?

Pr[Y (n) | V=1 =Pr[Y (2)|V=1+Pr[Y (2)|V=1Pr[No(2) |V =1]

Pr[No(n) |V =1] = (Pr[No(2) | V = 1))

Py @ V=]t (o)t t (o)

Now using the sum of a geometric series we have:

n
2

Pr(y (n) | V = 1] = gD LU

2 1—(p—p?)

Similarly we can calculate for Pr [N (n) | V = 1]

NS

Pr(N (n) |V = 1] = &2 (7)

1—(p—p?)

2. Calculation of Expression 2.3:

Expression 2.3 is based on three parts. The first part is simply p (M + 1), the number
of units purchased within the group of guinea pigs, and is simply the probability of a
high signal given V = 1 multiplied by the size of the initial group. The second part is
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M-1
—a o MFl-xz1_\T
more complex (N—M—1) (M + 1)1y, % %

population of agents, N — M — 1, multiplied by the probability of a Y cascade being

. This is the size of the remaining

induced by the initial group, which is:

M-—1
2
MA1—z(1_ %
Pr(Quin 2 M2+ 1|V =1] = (M+1)! Y e
x=0

The derivation of the final part of expression 2.3 incorporates the possibility that the
initial group failed to initiate a Y cascade. Despite this there is still a good chance of
a Y cascade being initiated by later agents. Start with a signal which is on aggregate
neutral, being revealed by the guinea pigs, which occurs with probability:

M—-1
2
MA41—x(1_\T x(1_NM+1l—z
PriQup =42 |V=1]=1-(M+1)! Y E—LprCr
=0

Which is simply one minus the combined probability of a Y cascade and a N cascade.
Now consider the actions of the decisions made by the post-guinea pig agents. If n agents
make decisions and initiate a Y cascade this must involve % (n — 2) agents choosing Y
and % (n — 2) agents choosing N with a crucial 2 agents tipping the balance in favor of a
Y cascade. So of the n we have % (n — 2) 4 2 agents deciding to purchase. Now we have
only a population of size N — M — 1 — n remaining. So we have a total of N — M — %n
who purchase in the event of a Y cascade being initiated by agent n. For example, if
n = 2 then the Y cascade failed to be initiated by the initial group of guinea pigs, but
the M 4 2nd agent and the M 4 3rd agent both decide to purchase initiating a Y cascade
which still results in the entire N — M — 1 purchasing. If n = 4, then from the first 4
after the initial group of M + 1, 3 will decide to purchase and 1 will decide otherwise,
resulting in N — M — 2 units being purchased. This all has to be multiplied by the
probability of no cascade being initiated by the group of guinea pigs and the probability
of a Y cascade being initiated by the group of n immediately following the guinea pig,
which is therefore:

N-M-1 X ( 2)n—]\2471
n (p+1) L= (PP
0 (N — M — 5) pp2 1—(p—p?)
n=2
where
M1
2

M+1—=x 1—p)® z(1— M+1—=

(A1) 0=|1—(M+1) Yy —LplrCy)

=0
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Combining these three parts yields a function giving the total number of units sold by
the firm as a function of p, N and M. Of these we allow the firm to vary only M making
the final problem to maximize expression 2.3 by choice of M.

3. Calculation of Expression 2.4:
Expression 2.4 is also based on three parts. The first part is now (1 — p) (M + 1), since
the probability of a high signal given V' = 0 has changed to be 1 —p. The second part has

also slightly changed to now be: (N — M — 1) (M + 1)! Zm 0 % This is the
size of the remaining population of agents, N — M — 1, multiplied by the new probability

of a Y cascade being induced, now that V = 0, which is:

M-1
2

oM Al—x
Pr[Qu1 > M+ 1|V =0] = (M+1)! Y G-
=0
The derivation of the final part of the expression is much as in the case when V' =1
except we now use the probability that a Y cascade occurs given V = 0. Note that
the aggregate neutral signal being revealed by the guinea pigs occurs with the same
probability as before, so:

M—-1
2
MA41—x(q_\& x1_ NM+1-—2
PrQup =42 |V=0]=1-(M+1)! y  —LprCr
z=0

The population size is also the same, at N — M — 2. However, the new Y cascade

probability changes the final term to:

" (21 1 (pfpr")HzH
Z 8<N M — )p 2p 1—(p—p?)
n=2

Where 0 is defined as in equation A1l. Combining these three parts once again yields the
function which the firm will maximize by choice of M.

4. Proof of Proposition 3:

First the “if” part will be proven, then the “only if”.

(=) The cost of delay can be seen intuitively as (1 — §) #*. This is simply the expected
payoff at time 1 minus the expected payoff at time 2. The difference is in some sense, the
cost of delay. Since the unconditional expectation F [11/] = 0 which is true for any signal
distribution symmetric about zero, such as the uniform [—1,1]. Consider the benefit in
delay: the option value. Here we need to consider the possibility of regret, where an
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investment made at time 1 actually seems less sensible when information made available
at time 2 is revealed. Information of this sort comes about if it is observed that agent j
did not invest at time 1, therefore revealing that u’ < 77 which provides some evidence
that the state of the world is less likely to merit investment.® This can be avoided if
agent 7 waits and so provides the option value of waiting which occurs with probability
Pr[s? < 7). The option value can therefore be defined as the expected loss avoided by
agent 7 by not investing at £ = 1 in the event that agent j does not invest at £ = 1:

(A2 8P [l <] {4+ B[ | <]}

We have a condition which leaves the marginal decision-maker indifferent when deciding
to invest at time 1: indifference occurs when the option value exactly offsets the delay
cost; this is none other than the standard value matching condition for a dynamic pro-

gramming problem. This condition implicitly defines the value of Iz using the properties
of the uniform distribution:

1
(A3) (1 — 5)ﬂ = —6Pr [Mj < ﬂ} {ﬁ + B [Mj ’ Mj < ﬁ}} . ﬁ _ 7(4—25)i[(4(;525)2+1252]2

For 6 € (0,1) and 7z € [—1, 1] we can rule out one of these two results, eliminating:

(A Fegs {2 (-2 11207 ) ¢ L) for s e (0.1)

6
This leaves the value of 7 uniquely given as:
1 2 1
A5 A=s4z0 |[(—6+1)7 1]
(A5) p=g+56 (07 -6+1)

Equation A5 is well defined for § € (0,1) and gives a range of values for 7 of 7 € (0, %},
that can be roughly approximated by the linear function iz = %6 over the relevant range
of values of 6. It has been shown that there exists a unique value of Iz given in equation
A5 such that if u* > 7 the cost of delay is strictly offset by the option value of waiting.
We have the “>” relation since the cost of delay is rising in g (and falling in §) which
therefore defines the optimal decision rule for agent 7 at time 1. The assumption of a
positive option value to delay implies that 7 > 0.

(<) Consider what value p’ must take if agent ¢ has optimally decided to invest at
time 1. Optimally deciding to invest implies that the delay cost is strictly offset by the
option value:

(A6) (=8 p* < =6Pr[pf <p | {p' + B[ |1 <p]}

9There is an assumption of symmetry here - or alternatively the equilibrium decision rules found could
be referred to as the symmetric decision rules. The totally symmetric nature of the problem makes this
a natural assumption and a natural equilibrium to seek. Gul and Lundholm (1995) make a strong case
for the relevance of the symmetric equilibrium in a decision model of this type.
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where p* implicitly defines the value of p required for this inequality relation to hold.
But this is exactly the value iz we defined in the first part of the proof.

5. Proof of Proposition 4:

We are given that agent i did not invest at time ¢ = 1. If this was so we know from
proposition 3 that p < . Investment will benefit agent i if F [75] > 0. Two rationales
for delay at t = 1 are possible and are considered in turn.

(a). If p* € (—1,0] and therefore FE [r5] < 0, only if new information suggested a rise
in F 73] would it be rational to decide to invest. Agent i must have observed one of
two possible histories: a:{ =1or a:{ = 0. Only if he observed a:{ = 1 would he raise his
expectation of 7

(A7) Elrylai =1 =p +E[p |/ > 7] = p'+ HE > p' = B [n]]
(A8) Elmy |23 =0 =p' +E[p |/ <7] = 4"~ 5 <p' = B [r]]

Since this is a symmetric problem the same is true for agent j if p/ € (—1,0], therefore
if agent j did not invest at ¢ = 1 then he too would only raise his expectation if z¢ = 1.
If neither invest then no increase in expectation occurs at ¢ = 2 and so neither invest at
t = 2, and hence no rise in expectation occurs at ¢t = 3, and so on. Therefore we have
shown that if one agent does not observe investment from the other he will not invest
and the next period will look much like the second, so the decision not to invest becomes
permanent. If either agent invested the other would increase his expectation, but only
once (since the other player may not act again) and will therefore raise his expectation
so IJ [WZQ ] a:{ = 1] > 0 and invest at { = 2 or despite the increase it will be the case that
D) [WZQ ] a:{ = 1} < 0 because his signal was so low, and no investment will take place at
t =2 or ever.

(b). If p* € (0,7) and E [r5] > 0 then he was delaying despite expecting positive
profit because of the positive option value to delay. This option value has however been
expended. If a:{ = 1 then he would have been better off investing at ¢ = 1 and would
have done so had he realized that agent j would definitely invest. He will invest at £ = 2
since there will be no further revelations as agent j has de facto left the game. Now if
a:{ = 0 agent 7 will lower his payoff expectation as will agent j therefore if it was optimal
for them to delay at t = 1 it is optimal to delay at ¢ = 2 a fortiori and so it will be
optimal not to invest at ¢ = 2,3,4, etc. We have shown that it all cases, agent 7 will
either invest at ¢ = 1, invest at ¢ = 2, or never invest and so proven part (i). Furthermore
in all the cases examined it is only optimal to invest at ¢ = 2 if agent j invested at £ =1
and therefore we have also proven part (ii).
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6. Proof of Proposition 5:

We need to show that if there is no investment at an arbitrary time, ¢ = 7, then there
will be no investment at time t = 74+ 1,7+ 2,.... We know from proposition 4 that if
there is investment at time ¢ = 7 then agent ¢ will not alter his optimal decision not to
invest, and by symmetry this will be the case for all 7. The only additional information
revealed at time £ = 7 + 1 lowers expected payoffs so as in proposition 4 agents will
either go from a position where ' € (—-1,0] = E [Wiﬂ] < 0 and will then certainly
not invest at time ¢t = 2, or p* € (0,1) = E [Wiﬂ] > ( and they will have decided
optimally to delay because of a positive option value, and it will remain optimal to delay
a fortiori just as in the two agent case. At time { = 7 4+ 3 agent 7 is in an identical
position to the position at time ¢ = 7 4 2, since no agents have invested once more, so
there is no additional information at all being revealed, and this will clearly be the case
fort =7+ 4,74+ 5,7+ 6.... Therefore there will be no reason for any agent to change
his optimal decision not to invest.

7. Proof of Proposition 6:
There is no option value at time ¢ = 7*. Since the state of the world is now known

*

, 80 there is no

with certainty, both w_, and é are known to agent i at time { = 7
longer any need to consider the actions or information of agent j. Therefore a very
simple decision rule is optimal: zt. = 1 & 7%, = 8%w,- > 0. Once we factor in further
discounting F [1}] < 7. Therefore if 74 > 0 there is no reason to delay beyond the
period in which information revelation takes place. If 4 < 0 then investment is not
profitable now and will be even more unprofitable beyond ¢ = 3. In general, we can say
that since F [nf. ] < @l. where ¢t = 7* is the time of full information revelation, then
7. > 0 & 2f. = 1. Alternatively if nt. < 0 then E [ 4] < 0 = E[nl.,,] <0
ete. therefore x} = 0 for all £ > 7*. Thus the solution to the decision problem is fully
determined by time ¢ = 7*.

8. Calculation of the New Signal Threshold, when Information Gathering is Under-
taken:

In period 3 the agent will observe the true value of the project wsz. So agent 7 will know
whether the project is worth a strictly positive amount or not, i.e. will know whether
pi4p? > 0. If p+p? < 0 then the agent can obtain 74 = 0 simply through not investing.
If 4 + p? > 0, then the agent will obtain E [} | p/ > —p] = 26” (1 + 1). Therefore in
period 3 agent ¢ will receive max {%62 (' +1) ,0}. Now we move back to period 2 where
the agent can wait until period 3 to obtain max {%62 (0" +1) ,0}, or invest to obtain an
expected 6u*. To roll back the decision to period 1 we now have the expected payoff

7

from delay of max {6/1, %62 (' +1) ,0} and the expected payoff to investing of u°. This
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7

defines the cost of delay as y° — max {6/1, %62 (n' +1) ,0}. Finally we compare this with
the benefit of delay, the real option value, of —;116 (14 1) (3 — 1). Setting these two
terms to equality defines the threshold value for the problem above which investment
will take place:

~ ~ ~ 1 A\ o
ji—max {61, 56" (A +1),0} = =56 (1 +7) (38 — 1)

Now we know 1 > 0, but we need to check whether 611 < %62 (p+1). If 6 > %62 (i+1)
then we return to the same threshold value as in the case without revelation, so i = 7.
However:

Sp<38(p+1)=7p<55
which is always true for § € (0,1]. So we can define a new threshold value T:

E—36" (Z+1) :—ié(l+ﬁ) (3z-1)

1
;»ﬁzﬁ—g{252—25—4+ [(4—252+25)2+125(25%5)}2}

and comparing this with our previous value for 77, we have 7 < i for 6 € (0,1] and z =7
for 6 = 0.

9. Proof of Proposition 7:

Complete revelation is only of any use if, in the world before the prospect of revelation,

the firms’ signal values were such that full or partial investment breakdown would have

occurred. This requires that p’ and g/ are both in the region [—1,7 (6)] and that w =

pt+p?7 > 0. The distribution of the value of the project at ¢, below the threshold value, is

the sum of two uniform distributions with support [—1,7] and is therefore triangular with

support [—2,2p]. Denote the probability of investment breakdown as g (& (6)) = ¢ (6).
Using the properties of the triangular distribution g (6) is given by:

gO)=Prw>0|p <p& i’ <p|Prp <p& i’ <7
7\ (Er\? _ 1o
(A9) =2 () (B’ =57

Denote the probability of partial investment breakdown as h (z (6)) = h (6).

h(§) =2Pr[—p' < p’ < —ER] =2Pr[p/ < —EX]Prp' + 4’ >0 <-E]
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The second probability is in fact just the probability that a drawing from a triangular
distribution with support [—2, % (1— ﬁ)} is strictly positive. Using the characteristics of
the uniform and triangular distributions this yields:

(A10) h(o,8) = () lQ (1_2)2] _ o’

2 5-r) | T 6-m°

Now since f (6) = g (6) + h (6), combining equations A9 and A10 yields:

Lo | m® 2 episom® 1043
f(6)= 5 + G- %072%ﬁ+2p% .

Which is the required fraction of time when complete revelation is useful.

10. Proof of Proposition 8:

The extra delay in investment causes a small but strictly positive loss in joint pay-
offs of kK > 0. From proposition 7 complete revelation will be useful in countering full
investment breakdown for the fraction of cases %ﬁQ. In these cases the maximum po-
tential gain in profit is the sum of the two highest signal values which still lie in the
investment breakdown signal region, i.e. the two highest signals for which u* € [0, (6)],
pw € 10,72 (8)] and p* + Y > 0. This produces the maximum possible combined signal
value of 2fi. Furthermore the return will only occur at the point of complete revelation,
therefore the payoffs must be discounted up to that point. Hence we have a maximum
possible gain from countering full investment breakdown of 26" Tz (%ﬁ2> Now complete
revelation is also useful in countering partial investment breakdown which occurs in

the fraction of cases (5—7) > (1 —7)°.

In these cases the maximum possible gain is
1+ % (Z 4+ 1), which must again be discounted up to the point of complete revelation,
and so we have a maximum possible gain from countering partial investment breakdown
of (57*% (34+7m) (1 -7 (5 — %) > Combining all of this we have a necessary condition

on the cost of information gathering:

(1 <1 _
G2 w5 ) + 8Om0 G-
So we have as a weaker necessary condition:

N —\ /13
< (R

11. Proof of Proposition 9:
As 7" — o0 so complete revelation is known to occur a great many periods in the
future. Consider the case where there is complete revelation and the threshold signal is
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7i. When t = 7* the general value matching indifference condition is:'°

— — T ~ 1 ~ ~
7 —max {671,567 (A +1),0} = =76 (1+7) (33— 1)

Now 7" — 00 = 7" —1 — c0. Therefore, since § € (0,1), we have that lim «_ 1, 5Tl =
0. Hence in the limit expression the indifference condition becomes:

7 — max {67,0,0} :—i (35ﬁ2+2ﬁ—1)

This is exactly the same expression as when there is no complete revelation. Therefore as
7* — 00 the threshold value with complete revelation 7i does indeed tend to the threshold
signal value without complete revelation 71 as would be expected and their is no effect on
the threshold value and therefore decision-making from complete revelation If complete
revelation was costly it would therefore reduce firm’s profits. Since from the proof of
proposition 8, we know that the extra delay in investment causes a small but strictly
positive loss in joint payoffs of k > 0 the necessary and sufficient condition with 7* — oo
would involve the need for negative costs to compensate for k.
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