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Abstract

As machine learning (ML) algorithms are increasingly used to inform decisions across

domains, there has been a proliferation of literature seeking to define “fairness” narrowly

as an error to be “fixed” and to quantify it as an algorithm’s deviation from a formalised

metric of equality. Dozens of notions of fairness have been proposed, many of which are

both mathematically incompatible and morally irreconcilable with one another. There is

little consensus on how to define, test for, and mitigate unfair algorithmic bias.

One key obstacle is the disparity between academic theory and practical and contextual

applicability. The unambiguous formalisation of fairness in a technical solution is at

odds with the contextualised needs in practice. The notion of algorithmic fairness lies at

the intersection of multiple domains, including non-discrimination law, statistics, welfare

economics, philosophical ethics, and computer science. Literature on algorithmic fairness

has predominantly been published in computer science, and while it has been shifting to

consider contextual implications, many approaches crystallised into open source toolkits

are tackling a narrowly defined technical challenge.

The objective of my PhD thesis is to address this gap between theory and practice

in computer science by presenting context-conscious methodologies throughout ML de-

velopment lifecycles. The core chapters are organised by each phase: design, build, test,

and monitor. In the design phase, we propose a systematic way of defining fairness by

understanding the key ethical and practical trade-offs. In the test phase, we introduce

methods to identify and measure risks of unintended biases. In the deploy phase, we

identify appropriate mitigation strategies depending on the source of unfairness. Finally,

in the monitor phase, we formalise methods for monitoring fairness and adjusting the ML

model appropriately to any changes in assumptions and input data.

The primary contribution of my thesis is methodological, including improving our

understanding of limitations of current approaches and proposal of new tools and in-

terventions. It shifts the conversation in academia away from axiomatic, unambiguous

formalisations of fairness towards a more context-conscious, holistic approach that covers

the end-to-end ML development lifecycle. This thesis aims to provide end-to-end coverage

in guidance for industry practitioners, regulators, and academics on how fairness can be

considered and enforced in practice.
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Glossary

algorithm computational method, formula, or procedure [Lee et al., 2022].

artificial intelligence (AI) “the designing and building of intelligent agents that receive

percepts from the environment and take actions that affect that environment” [Russell

and Norvig, 2002].

automated decision-making (ADM) decision-making process that involves a sub-

stantial automated component by technological means. Solely ADM has no human

involvement ( [European Commission, c], p. 6; [European Union] Article 22 and

Recital 71) to be distinguished from non-solely (or partial) ADM.

bias a colloquial reference to prejudice against one person or group, especially in a way

which could be considered to be unfair [Lee et al., 2021]. This is often a confusing

term in computer science, as “bias” in machine learning, statistics, and econometrics

refers to a type of error in a learning algorithm that results in under-fitting the

data (compared to variance), which results from using too simple of a model to

represent a complex relationship [Hastie et al., 2009; Mayson, 2018]. It is used

in cognitive sciences as a systematic error in thinking when people are processing

information, which are evolutionary functions that form “shortcuts” for the human

mind [Haselton et al., 2015]. In clinical research, “statistical bias” refers to the

systematic difference between results and facts that is introduced in the design or

conduction of research [Tripepi et al., 2008]. For the purpose of this thesis, we define

bias as unintended and potentially harmful skewing of algorithmic predictions.

data processing any operation or set of operations which is performed on personal

data [European Union].

direct discrimination “direct” discrimination concerns differential or disparate treat-

ment based on a protected characteristic [Wachter et al., 2020].

discrimination From a legal standpoint, discrimination refers to the notion that protected

characteristics should not result in a relative disadvantage of deprivation.



equality a state in which no one is worse off than one another, a quality desired among

egalitarians [Fleurbaey, 2015].

equity Reduction of avoidable inequalities, such as the absence of systematic dispari-

ties in health between social groups who have different levels of underlying social

advantage/disadvantage [Braveman and Gruskin, 2003].

ethics Systematic conceptualisation of ‘right’ and ‘wrong’ behaviour, which are often

reflected in an accepted set of rules and principles. Over 160 guidelines related to

data and AI ethics have been proposed globally, while various organisations have

selected combinations of principles into the multitude of “AI ethics” frameworks

[AlgorithmWatch, 2019]. Five common themes have been identified across these

sets of principles: beneficence, non-maleficence, autonomy, justice, and explicability

[Floridi and Cowls, 2022].

fairness toolkits Fairness toolkits are pre-packaged code, often with a user interface,

that takes a data set and/or a pre-trained model as the input. The users specify

which outcome and predictions they want to test for bias and against which sensitive

feature. The outputs are the fairness test results and accompanying visualisations.

Some toolkits offer the ability to “de-bias”, including pre-processing, in-processing,

and post-processing methods. The intent is to inform the developers in assessing

whether a model is fair so that this can in turn inform real-world decisions [Lee

and Singh, 2021a]. Examples include: [Bellamy et al., 2019; Saleiro et al., 2018b;

Microsoft and contributors, 2019].

General Data Protection Regulation (GDPR) The General Data Protection Reg-

ulation is a regulation in EU law on data protection and privacy in the European

Union and the European Economic Area [European Union].

in-processing “de-biasing” techniques proposed for building an algorithm with bias-

related constraints, including adversarial de-biasing that maximises accuracy and si-

multaneously reduces an adversary’s ability to determine the protected attribute from

the predictions [Zhang et al., 2018] and prejudice remover that adds a discrimination-

aware regularisation term to the learning objective [Kamishima et al., 2012] .

indirect discrimination “indirect” discrimination represents an inadvertent negative

impact on a protected group [Wachter et al., 2020].

justice Justice is defined here in accordance with legal and organisational science literature,

with justice denoting adherence to the standards agreed upon in society (for example,
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based on laws) and fairness as a related principle of an evaluative judgement of

whether a decision is morally right [Goldman and Cropanzano, 2015].

machine learning (ML) A set of techniques used in AI to detect and extrapolate

patterns from data, including supervised learning, semi-supervised learning, unsuper-

vised learning, and reinforcement learning. ML is used to adapt to new circumstances

and to detect and extrapolate patterns.

model a formal, usually quantitative, representation of a real-life phenomenon by which

a prediction, decision, or recommended action is derived, given known factors and

assumptions. A model can be based on data and/or expert knowledge, by humans

and/or by automated tools like machine learning algorithms [Lee et al., 2022].

post-processing “de-biasing” techniques proposed for adjusting the output predictions

of an algorithm, including equalised odds post-processing that changes output labels

to optimise equalised odds [Hardt et al., 2016] and reject option classification gives

favourable outcomes to unprivileged groups and vice versa around the decision

boundary [Kamiran et al., 2012] .

pre-processing “de-biasing” techniques proposed for removing bias from the data before

the algorithm build, including generating weights for training samples [Kamiran et al.,

2012], learning a probabilistic transformation that edits the features and labels in the

data [Calmon et al., 2017], finds a latent representation that encodes the data well but

obfuscates information about protected attributes [Zemel et al., 2013], and editing

feature values to increase group fairness while preserving rank-ordering [Feldman

et al., 2015].

process a series of logical / ordered operations involved in decision-making, encompassing

both the technical and business actions taken [Lee et al., 2022].

profiling automated personal data processing with the objective of evaluating personal

aspects about a natural person, including to analyse or predict aspects of their perfor-

mance at work, economic situation, health, personal preferences, interests, reliability,

behaviour, location or movements.( [European Union], Article 4(4); [European

Union], Recital 71; [European Commission, c], p. 6.).

protected or sensitive characteristics Protected or sensitive characteristics are those

commonly referenced and reflected in non-discrimination laws, such as race and

ethnicity, gender, religion, age, disability, and sexual orientation, given these personal

demographic features are central to discussions on algorithmic fairness.

proxies features that encode information about protected or sensitive characteristics.
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reinforcement learning the agent learns from a series of reinforcements—rewards or

punishments. [Russell and Norvig, 2002].

robustness “The degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental conditions” [rob, 1990].

semi-supervised learning Semi-supervised learning is when an algorithm is given a few

labelled examples and must make what we can of a large collection of unlabelled

examples [Russell and Norvig, 2002].

supervised learning In supervised learning the agent observes some example input–output

pairs and learns a function that maps from input to output [Russell and Norvig,

2002].

system a set of interacting data, algorithm(s), and/or model(s) to form a technical

workflow or product, e.g. a facial recognition algorithm that triggers an identity

verification model [Lee et al., 2022].

technique method used in the technical design, build, and testing of the algorithm [Lee

et al., 2022].

unintended biases For the purpose of this thesis, we define bias as unintended and

potentially harmful skewing of algorithmic predictions, with six categories: historical

bias, representation bias, measurement bias, aggregation bias, evaluation bias, and

deployment bias [Suresh and Guttag, 2021] (See §3.2).

unsupervised learning the agent learns patterns in the input even though no explicit

feedback is supplied [Russell and Norvig, 2002].
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Chapter 1

Introduction

Machine learning (ML) algorithms are increasingly used to inform high-impact decision-

making, from credit risk evaluation to hiring to criminal justice. Due to their usage of

large, non-traditional data sources, frequent re-training cycles, and complex methods, it

has become difficult to detect when ML design may be misaligned to the designer’s intent,

an organisation’s legal obligations, and societal expectations. One particular concern has

been the presence of unintended biases and unfair discrimination, such as against certain

racial and gender groups [Hutchinson and Mitchell, 2019; Mehrabi et al., 2021].

There has been growing consumer awareness of ethical considerations of ML, as the

perceived “unfairness” of algorithm-assisted decisions are becoming headline news. A

model used to assign a recidivism score in the criminal justice system sparked controversy

when it was accused of overestimating the risk of black defendants [Feller et al., 2016].

Applecard by Goldman Sachs was investigated by a regulator after customer complaints of

women receiving lower credit limits than men with the same credit standing [Vigdor, 2019].

Recruiting tools at a technology company were reportedly biased against women [Dastin,

2018].

In managing the reputational risk of using algorithms, organisations should also be

wary of appearing superficial or tokenistic in their approaches. The increasing public

focus on the risks and harms of unfair bias in algorithmic decision-making has led to

fairness becoming a lightning rod for scrutiny and criticism of usage of these technologies

more broadly, and criticism has been levelled at various organisations for “Fair-washing”:

selecting fairness metrics to promote the false perception that a model respects some

ethical values [Aı̈vodji et al., 2019].

Fairness issues in ML can also result in regulatory and legal risks for organisations. With

increasing public scrutiny, regulators have started actively issuing guidance documents

outlining their expectations, as well as developing and implementing new regulation [In-

formation Commissioner’s Office, 2017; Government of the Netherlands]. The European

Union Artificial Intelligence Act proposed in April 2021 is still in drafting stage; however,
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in its current format, it seeks to set out coordinated rules in Europe for development

and usage of AI systems in the market [Veale and Borgesius, 2021]. The international

human rights legal framework, codified in the Universal Declaration of Human Rights and

supported by other treaties and documents, establishes the principles of non-discrimination

on the basis of certain features such as sex, race, language, or religion [Assembly et al.,

1948]. From a legal standpoint, the approach in automating “fairness testing” appears

incompatible with the requirements of EU non-discrimination law, which relies heavily on

the context-sensitive, intuitive, and ambiguous evidence [Wachter et al., 2021]. Although

Wachter et al. propose a new metric to counteract this, the metric assumes that what

type of equality should be achieved is known and agreed, with limited guidance on what is

fair in each context.

Given these risks, organisations have an incentive to ensure their ML systems are

aligned to their values and ethical principles; however, there is limited consensus in

academic literature on how well-intentioned organisations can avoid unintended and unfair

biases throughout their ML pipelines. Holistic governance of fairness challenges in ML

systems requires an understanding of the legal, organisational, and technical context of

their deployment. In this thesis, we provide approaches, tools, and methods to tackle

fairness considerations in an end-to-end ML development lifecycle – not as a one-size-fits-all

solution, but rather, as starting points that can be tailored to each context and use case.

1.1 Definitions of AI, ML, and related concepts

For the purpose of this thesis, we first define machine learning (ML), artificial

intelligence (AI), and automated decision-making (ADM), also found in the

Glossary. Stuart Russell and Peter Norvig, in their highly-prominent textbook Artificial

Intelligence: A Modern Approach, define AI as “the designing and building of intelligent

agents that receive percepts from the environment and take actions that affect that

environment” [Russell and Norvig, 2002]. Percepts and actions are ultimately data flows,

and the algorithm learns patterns from data, in contrast to systems in which a human

designer explicitly hard-codes the ‘rules’. Machine learning (ML) refers to a set of

techniques used in AI to detect and extrapolate patterns from data and includes supervised

learning, unsupervised learning, semi-supervised learning, and reinforcement

learning [Russell and Norvig, 2002]. Because these algorithms often process data for

the purpose of deriving insights for decision-making, AI is linked to Automated Decision-

Making (ADM) as one of the techniques that may be used. ADM is the automation of

business processes, while AI is the technique used in the system. ADM, such as credit

scoring systems, often has requirements to involve a human reviewer, a common safeguard

found in various regulatory instruments and provisions [Binns, 2019]. ADM is directly
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referenced in the EU General Data Protection Regulation (GDPR) [European Union]. The

relationship between these definitions is further explored in §3.1.
The scope of what constitutes AI is unclear in the above definitions, particularly when

such definitions are being considered in the context of organisational risk management.

Some argue that AI methods encompass relatively simple algorithms, such as logistic

regression or rules-based models, but others limit the definition of AI to more complex

models, such as deep neural networks [Kaplan and Haenlein, 2019]. This debate can be

summarised in a frequently misquoted “AI is whatever has not been done yet,” which the

original author corrected to be “intelligence is whatever machines haven’t done yet” [Haigh,

2011]. As such, the definition of AI varies without a clear consensus.

For the purpose of this thesis, we indicatively define the key terms as follows:

• model: a formal, usually quantitative, representation of a real-world phenomenon

by which a prediction, decision, or recommended action is derived, given known

factors and assumptions. A model can be based on data and/or expert knowledge,

by humans and/or by automated tools like machine learning algorithms;

• algorithm: computational method, formula, or procedure;

• technique: method used in the technical design, build, and testing of the algorithm;

• process: a series of logical / ordered operations involved in decision-making, encom-

passing both the technical and business actions taken;

• data processing: any operation or set of operations which is performed on personal

data;

• system: a set of interacting data, algorithm(s), and/or model(s) to form a technical

workflow or product, e.g. a facial recognition algorithm that triggers an identity

verification model; and

• profiling: automated personal data processing with the objective of evaluating

personal aspects about a natural person, including to analyse or predict aspects of

their performance at work, economic situation, health, personal preferences, interests,

reliability, behaviour, location or movements (GDPR [European Union], Article

4(4) [European Union], Recital 71 [European Commission, c]). A system may

perform profiling of people as a part of ADM and /or using AI. We discuss the

interplay between AI and ADM in Chapter 3.

It is difficult to achieve consensus on some of these terminologies, especially AI –

there are different opinions on each term’s scope and delineation. We disentangle these

definitions further in Chapter 3, highlighting the limitations of using specific terminology
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where considerations are broadly relevant. All definitions for the purpose of this thesis are

listed in the Glossary.

1.2 Key gaps in academic literature and practical

challenges

In response to both public and regulatory scrutiny against AI systems, especially those

involved in ADM, there has been a proliferation of computer science literature on algorith-

mic fairness aiming to quantify the deviation of their predictions from a formalised metric

of equality between groups (such as male and female). Dozens of metrics of fairness have

been proposed, prompting efforts to disentangle their differences and rationale [Verma

and Rubin, 2018]. However, there is little consensus on how these challenges should be

addressed.

The three gaps that motivate this thesis are:

1. the gap between the narrow algorithmic definitions and the inherent complexity,

context-specificity, and subjectivity of “fairness”;

2. the gap between the existing tools and the practitioners’ requirements for end-to-end,

context-specific solutions; and

3. the gap between the unambiguous fairness tests and real-world uncertainties.

The first gap is how fairness is defined narrowly in fair ML literature, whereas it is a

complex concept debated for millennia across disciplines. The second gap exists because

the toolkits built to implement these definitions for practical usage are not aligned to

the practitioners’ requirements. Their demand for an end-to-end solution that can be

adapted to their own use cases is yet unmet. Finally, the fairness tests give seemingly

unambiguous answers to whether or not the system is fair without consideration of the

real-world uncertainties that plague each stage of the ML development lifecycle.

1.2.1 Gap between the narrow algorithmic definitions and the

inherent complexity, context-specificity, and subjectivity

of “fairness”

The scope of “fairness” defined in academic literature is often extremely narrow in order to

“fix” it using other algorithmic approaches. Such a reductionist approach is at odds with

the inherent complexity of what it means to be fair, a topic of debate across disciplines

such as ethical philosophy and welfare economics. Many fairness definitions that are

formalised in academic literature are mathematically incompatible, which is reflective of
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the fact that the philosophical perspectives from which they are derived are often morally

irreconcilable (shown in §2.3.2). Therefore, one fairness definition cannot fit all contexts.

While “fairness” may be a concept we feel we understand intuitively in a humanistic

sense, it is a challenging one on which to gain consensus and even more complex to

operationalise in practice. Fairness cannot be reduced to a box-ticking exercise in a

checklist, because whether or not an algorithm is fair depends heavily on the context

and perceived benefit or detriment of outcomes. What is fair based on one metric, or

in one jurisdiction, from one cultural and social perspective, or in the opinion of one

stakeholder, may be considered unfair in another context. Difficult choices must sometimes

be made, and decision-makers must decide whether they are satisfied with achieving legal

compliance (for example, with anti-discrimination obligations), or whether they feel a

greater responsibility around fairness related to concepts such as equity and social justice.

This disconnect between real-world complexity of what it means to be fair and the

proposed axiomatic fairness definitions is not new. Hutchinson and Mitchell (2019) warn of

the gap between the unambiguous formalisation of fairness metrics and the contextual and

practical needs of society, politics, and law. They compared the recent surge in ML fairness

research to literature from the 60s and 70s, which fizzled with the following conclusion:

“no statistic that could unambiguously indicate whether or not an item is

fair was identified. There were no broad technical solutions to the issues

involved in fairness” [Cole, 1973].

The human yearning to measure and quantify the world around them is enshrined

across history, beyond computer science [Vincent, 2022; Abebe et al., 2020]. While the

methodology of measurement has its limitations, being able to quantify them means that

they can be tracked and discussed. Unlike unfairness in human decision-making that may

be mired in cognitive biases, algorithmic decision-making can be assessed for unfairness

and debated on its design. We acknowledge the importance of quantification, but it is

sensitive to various contextual dimensions.. We discuss how to understand the holistic

ethical considerations beyond fairness in Chatper 2.

Fairness issues should be addressed – not only at an algorithmic level – but also at

the system-level including the process and the people. This is enshrined in General

Data Protection Regulation (GDPR): personal data should be processed securely by

means of “appropriate technical and organisational measures,” including risk analysis and

policy changes [European Union]. Fairness and potential discrimination are potential legal

risk factors. Tackling the contextual considerations of a risk is aligned to the regulatory

expectations of GDPR compared to only addressing the technical procedure. Existing

tools to address fairness issues, however, have been critiqued for falling short of practical

requirements. We address this gap in this thesis by deriving lessons from other disciplines,
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such as from ethical philosophy and welfare economics, to approach fairness – not as a

solely algorithmic testing exercise – but as a holistic ethical review of how a model is

successfully or unsuccessfully accomplishing the use case’s competing objectives.

1.2.2 Gap between the existing tools and the practitioners’ re-

quirements for end-to-end, context-specific solutions

The “toy” case studies, data sets, and tools developed used for fairness testing have

limited similarity to real-life complexities. In recent years, a number of fairness toolkits

have been introduced, providing the means for testing the algorithm’s predictions against

various fairness definitions. The open source fairness toolkit landscape so far reflects the

reductionist understanding of fairness as mathematical conditions, as the implementations

rely on narrowly defined fairness metrics to provide “pass/fail” reports. These toolkits can

sometimes give practitioners conflicting information about an algorithm’s fairness, which

is unsurprising given that it is mathematically impossible to meet some of the fairness

conditions simultaneously [Kleinberg et al., 2016]. This is reflective of the conflicting

visions of fairness espoused by each mathematical definition and the underlying ethical

assumptions [Binns, 2020].

Our recent paper surveying the fairness toolkit landscape [Lee and Singh, 2021a]

found there were significant gaps between ML practitioner needs and the toolkits’ features.

Other studies involving ML practitioners have similarly identified the unmet demand for

domain-specific and contextual factors to be closely considered to improve algorithmic

fairness [Veale et al., 2018]. In many domains, practitioners claim that fairness cannot be

understood in terms of well-defined quantitative metrics [Holstein et al., 2019].

The tools have limited coverage of the end-to-end lifecycle. In our study of practitioners’

views of fairness toolkits [Lee and Singh, 2021a], the interviewees emphasised the apparent

focus of the toolkits on the model building and evaluation process as compared with the

remaining model lifecycle. One ML engineer stated, “Each section of the model building

pipeline is important – testing your training data, representation, model output, proxy

variables, etc... no tool has an end-to-end ‘this is what is going on in your system.’ ” This

echoes previous findings [Holstein et al., 2019] that the scope of current tools are limited

in their coverage of the ML pipeline.

Fairness toolkits aim to be widely accessible, drawing attention to common fairness

considerations, and encouraging and supporting practitioners to consider, assess (and

therefore mitigate) their algorithms in leading to unfair outcomes. However, without

a consideration of the relevant context in the socio-technical system surrounding the

algorithm, these tools risk engendering false confidence in flawed algorithms. Different

considerations come into play for each use case. That is, organisations should not rely solely
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on one-dimensional algorithmic fairness metrics to account for its ethical concerns. These

narrow applications of fairness could mislead organisational strategy, risk management,

and policies. We address this gap in this thesis through an end-to-end consideration of

the full lifecycle (design, build, test, and monitor) with tools and approaches that reveal

context-specific fairness issues.

1.2.3 Gap between the unambiguous fairness tests and real-world

uncertainties

The scarcity of practical solutions proposed for fair ML is exacerbated by the limited

consideration for the system-level considerations, especially the layers of uncertainties. In

our study of fairness toolkits, one industry practitioner commented that the fairness test

results “make everything look clear-cut, which it really isn’t ‘in the wild’ ” [Lee and Singh,

2021a]. There are layers of uncertainty in each stage of an ML development lifecycle that

have implications for the system’s fairness, which are overlooked in the fairness tests.

In addition, most fairness metrics are defined in a supervised learning setting [Verma

and Rubin, 2018]. These are incompatible with how decisions are made in many real-life

high-stakes settings that require dynamic decisions, rather than static predictions. In

domains such as insurance pricing, fraud detection, hiring, and lending, predictions are

not evaluated in a one-off batch processing of data; rather, a decision is made for each

individual or a batch of individuals, and the outcome of that decision informs future

policies. Each decision in such a setting is made under uncertainty, which is overlooked in

supervised ML. For example, a bank cannot know whether a denied loan would have been

repaid, and it may have less data about previously marginalised and financially excluded

populations. We address this gap in this thesis through a consideration of uncertainties

in ML systems. Uncertainty in sequential decision-making through ML should be taken

seriously and actively considered in understanding system-level fairness.

1.3 Our contribution

The objective of this thesis is to address these key gaps that hinder fair ML development in

practice: the gap between the narrow problem-solving in past literature to “fix” unfairness

and the need for a more holistic approach, the gap between proposed tools and their

contextual, end-to-end applicability, and the gap between the unambiguous formalisation

of fairness in academia and the inherent uncertainties in real-world decision-making. To

this end, we present an end-to-end methodological guidance throughout the lifecycle of

fair ML, which takes into account the contextual nuances, practical considerations, and a

holistic understanding of ML ethics.
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Figure 1.1: Phases of ML development lifecycle

The thesis structure will be aligned to the phases of an ML development lifecycle, shown

in Figure 1.1. Much of this thesis is aimed at the ML developer, who would be the target

user of the approaches and tools we propose, such as the bias identification questionnaire.

However, we stress throughout our thesis the importance of an understanding of the

complexity of defining fairness and the shared responsibility across each organisation on

ensuring every ML system built is aligned to its ethical values. In this thesis, we focus

on a subset of stakeholders that make decisions throughout an ML development lifecycle.

This includes not only the technical stakeholders, such as the ML developers, but also

the business leaders, business risk functions, policy-makers, and regulators who may set

expectations and limitations on how ML should be designed and developed. Thus, we aim

to keep our technical language accessible such that an audience beyond the developers and

the fair ML community would find this thesis a useful reference point. We now outline the

phases of ML development lifecycle, which form the structure of this thesis.

1. Design In the design phase, the developer identifies a data set that represents a

sample of the global population and decides on a model to build. For example,

a bank may have data on its past borrowers and aim to build an algorithm to

predict loan outcomes for future borrowers. It is important to understand from

the onset whether there are ethical risks, including potential for unfair outcomes,

and determine whether to proceed with the model build based on the assessment of

those risks against the potential benefits. This chapter will show the limitations in

computer science literature in assisting this assessment and propose a new approach:

“Key Ethics Indicators” (KEIs).
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2. Build In the build phase, the developer compiles a training data set for the model.

This includes feature selection, feature engineering, and model selection, all of which

involves decisions that may introduce unintended and potentially unfair biases into

the ML model. This chapter will propose a “bias identification questionnaire” as a

resource for developers in order to design targeted mitigation strategies. We present

the results validating the questionnaire’s effectiveness through surveys of industry

practitioners.

3. Test Scholars have built toolkits to facilitate testing for fairness. This chapter covers

the landscape of open source fairness toolkits and identifies the major gaps that hinder

their adoption in practice through a mixed-methods study of industry practitioners.

We end with a case study of how KEIs can provide a more fit-for-purpose evaluation

of an ML model.

4. Monitor In the monitoring phase, the developer has deployed the ML model, which

is being re-trained in a live environment. There is limited prior work on ensuring

fairness under the uncertainty introduced into the ML model in sequential decision-

making process. For example, the lender does not know whether denied loans would

have defaulted or would have been repaid. In a domain area with a history of

discrimination, there would be greater uncertainty around previously marginalised

and excluded groups. This chapter proposes a taxonomy of six types of uncertainty

in an ML pipeline and a new approach that takes uncertainty into account when

ensuring fairness in sequential decision-making.

The following chapters will cover the entire ML lifecycle, presenting the key gaps in

academic literature and proposing practical methods and tools that are validated through

our studies. By bringing together literature from ethical philosophy, welfare economics,

and computer science, Chapter 2 identifies the disparity in how fairness is defined in

each domain area (the first gap in §1.2.1) and proposes an approach called Key Ethics

Indicators (“KEIs”) that combines lessons from each discipline to holistically assess the

ethics of a proposed ML system. Chapter 3 and Chapter 4 addresses the second gap in

§1.2.2 by supplementing our KEI approach with a questionnaire designed to identify biases

in the end-to-end ML development lifecycle. Finally, Chapter 5 proposes a taxonomy

of uncertainty across the lifecycle and ways in which uncertainty can be accounted for

in sequential decision-making using ML predictions (third gap in §1.2.3). Our hope is

that this thesis will contribute to a foundation for end-to-end guidance, analysis, and new

proposals for industry practitioners, regulators, and academics on how fairness can be

considered and operationalised in practice.
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Chapter 2

ML Design: contextually defining

algorithmic fairness

Introduction

In the design phase, it is important to ask 1) whether there are any fairness issues at hand

and 2) whether to proceed with the model build or not based on a risk-benefit analysis.

Some ML systems may not have apparent or directly consequential fairness considerations,

such as financial forecasting models that have no human component or interface. However,

many ML systems that inform decision-making, from credit risk evaluation to insurance

pricing to hiring to criminal justice, do raise significant fairness issues. Even seemingly

non-personal data can encode information about individuals that – when used to build

models – may result in unfair outcomes: for example, one’s handwriting data can divulge

one’s nationality [Nag et al., 2018]. The developer and relevant organisational stakeholders

need to determine whether the potential benefits of a proposed ML system outweigh

the potential risks. A landmark example of when the risks outweighed the benefits on a

societal level was the moratorium on facial recognition in San Francisco by police and

other government agencies, where it was determined that the risks to privacy outweigh the

potential safety benefits [Conger et al., 2019]. Despite the clear need to discuss whether a

system is worth building at all before commencing development, there is limited guidance

in academic work in assisting this go/no-go decision in design phase, as it primarily

concerns itself with testing models that have already been built.

This chapter sets the scene on how algorithmic fairness is defined in existing literature,

contesting the key gaps in how quantification of fairness can simplify the notion of fairness.

Defining fairness in a manner that befits its contextual nuances is the key to understanding

why suggestions from the algorithmic fairness literature have not been widely adopted

in practice. In order to understand the system – not only as a technical algorithm –

but also as a conscious design on how to model a real-world social phenomenon, it is
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important to look beyond computer science literature. Drawing from welfare economics

and ethical philosophy, we will show the axiomatic fairness definitions are inconsistent

with the necessarily subjective and holistic notion of fairness in other disciplines. We end

the chapter by proposing a new approach of using “Key Ethics Indicators” (KEI) in the

design phase to determine whether the potential benefits outweigh the risks of building

the ML system. In future chapters, we will return to the Key Ethics Indicator approach

to demonstrate how defining KEIs in the design phase helps inform decisions throughout

the build, test, and monitoring phases. Designing a fair system implies not only defining

what type of model we want to build but also what type of world we want to see reflected

in our model.

2.1 Defining key terms

Before we discuss the limitations of fairness metrics in computer science literature, it is

important to first define key terms for the purpose of this thesis. This section will examine

notions that are relevant to our discussions. While these terms do not comprehensively

cover all relevant aspects of algorithmic ethics, they clearly demonstrate the limitations

of mathematical fairness formalisations in capturing necessary information about the

algorithmic system. These definitions are also included in the Glossary.

2.1.1 Ethics in AI

Ethics as it is used in AI and algorithmic settings may be described as the systematic

conceptualisation of ‘right’ and ‘wrong’ behaviour, which are often reflected in an accepted

set of rules and principles. Over 160 guidelines related to data and AI ethics have been

proposed globally, while various organisations have selected combinations of principles

into the multitude of “AI ethics” frameworks [AlgorithmWatch, 2019]. Five common

themes have been identified across these sets of principles: beneficence, non-maleficence,

autonomy, justice, and explicability, defined below in Table 2.1 [Floridi et al., 2018; Floridi

and Cowls, 2022].

While the focus of this thesis is justice and the relevant notion of fairness, we will show

that justice and fairness must be contextualised alongside other ethical principles, as there

may be trade-offs among them. In addition, while there have been a multitude of principles

proposed, scholars have argued that they are unhelpful without operationalisation into

practice [Canca, 2020; Lee et al., 2020].

In this chapter, we demonstrate how this obstacle can be overcome by operationalising

the principles into Key Ethics Indicators. In other words, the principles of fairness and

beneficence need to be translated into real-world implications to help inform the decision

on which model is best aligned to the organisation’s values. On their own, these sets of

26



Common AI ethics principle Definition in Floridi et al. (2018)

Beneficence Promoting well-being, preserving dignity, and sus-
taining the planet

Non-Maleficence Privacy, security and “caution” around the “upper
limits on future AI capabilities”

Autonomy The power to decide (whether to decide)
Justice Promoting prosperity and preserving solidarity
Explicability Enabling the other principles through intelligibility

and accountability

Table 2.1: Five common themes in AI ethics framework cited in Floridi et al. (2018)

principles, in whatever permutation they are presented, do little to guide the trade-offs

between competing principles in a use case.

2.1.2 Justice, equality, and equity

A study of proposed ethical principles finds that the different countries’ and organisations’

understanding of justice varies for each document, from the elimination of discrimination

to promoting diversity to shared prosperity [Floridi and Cowls, 2022]. Justice is defined

in this thesis in accordance with legal and organisational science literature, with justice

denoting adherence to the standards agreed upon in society (for example, based on laws)

and fairness as a related principle of an evaluative judgement of whether a decision is

morally right [Goldman and Cropanzano, 2015].

In line with this definition, fairness is inherently subjective. The concept is based on

the notion of equality: the egalitarian foundation that humans are fundamentally equal

and should be treated equally. Fairness in a sociological sense defines the criteria under

which some people “deserve” a limited resource more than others. However, how equality

should be measured and to what extent it is desirable have been a source of debate in both

philosophical ethics from a moral standpoint (§2.3.2), and welfare economics from a market

efficiency standpoint (§2.3). In fact, a study of human behaviour showed people prefer

fairness over equality when they are at odds with one another [Starmans et al., 2017]. The

criteria for distribution of limited resources are inherently subjective and depend heavily

on the ethical values of the decision-maker, the surrounding circumstance, and context.

For example, Aristotle wrote that if there are fewer flutes available than people who want

to play them, it is fair that they should be given to the best performers [Aristotle and

Sinclair, 1962]. Various possibilities for these criteria from ethical philosophy literature

will be discussed further in §2.2.2.
The core aim of equity on the other hand, is to reduce avoidable inequalities, such as

the absence of systematic disparities in health between social groups who have different

levels of underlying social advantage/disadvantage [Braveman and Gruskin, 2003]. In other
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words, the poor should be just as healthy as the rich and privileged. Driving equitable

outcomes involves targeting support at the marginalised, disadvantaged, and vulnerable

communities, even if this results in these groups receiving more or better support than

what someone else gets in a system. Some philosophical perspectives on fairness focus on

equity (discussed in§2.3.2). There is general consensus among economists that reducing

extreme inequalities is beneficial for all [Johansson, 1991].

2.1.3 Discrimination and protected characteristics

Fairness should be distinguished from discrimination. From a legal standpoint, discrimi-

nation refers to the notion that protected characteristics should not result in a relative

disadvantage of deprivation. Protected characteristics are those commonly referenced

and reflected in non-discrimination laws, such as race and ethnicity, gender, religion, age,

disability, and sexual orientation, given these personal demographic features are central

to discussions on algorithmic fairness. Non-discrimination laws aim to not only prevent

ongoing discrimination but also to change societal policies and practices to achieve more

substantive equality – an aim which is described as incompatible with some fairness met-

rics [Wachter et al., 2020]. While legal analysis is outside the scope of this thesis, we refer to

protected characteristics as those commonly referenced and reflected in non-discrimination

laws, such as race and ethnicity, gender, religion, age, disability, and sexual orientation,

given these personal demographic features are central to discussions in the algorithmic

fairness literature. We also refer to direct discrimination, which concerns differential

treatment based on a protected characteristic and indirect discrimination, where a rule

of policy applying to all produces a negative impact on a protected group [Wachter et al.,

2020].

2.1.4 Bias

Bias is a colloquial reference to prejudice against one person or group, especially in a

way which could be considered to be unfair [Lee et al., 2021]. This is often a confusing

term in computer science, as “bias” in machine learning, statistics, and econometrics

refers to a type of error in a learning algorithm that results in under-fitting the data

(compared to variance), which results from using too simple of a model to represent a

complex relationship [Hastie et al., 2009; Mayson, 2018]. It is used in cognitive sciences

as a systematic error in thinking when people are processing information, which are

evolutionary functions that form “shortcuts” for the human mind [Haselton et al., 2015].

In clinical research, “statistical bias” refers to the systematic difference between results

and facts that is introduced in the design or conduction of research [Tripepi et al., 2008].

For the purpose of this thesis, we define bias as unintended and potentially harmful
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skewing of algorithmic predictions. Suresh and Guttag (2019) created an algorithmic

bias taxonomy focusing on those that cause “unintended consequences,” categorising all

biases into six distinct categories spanning the AI development pipeline: historical bias,

representation bias, measurement bias, aggregation bias, evaluation bias, and deployment

bias [Suresh and Guttag, 2021]. This will be further discussed in Chapter 3 (ML Build).

The above concepts of ethics, justice, discrimination, and bias are relevant to the

definition of fairness but are often used inter-changeably, such as bias to denote unfair-

ness [Lee and Singh, 2021b]. It is important for the academic community to be precise in

our language because these terms are over-loaded due to usage across disciplines.

2.2 Fairness: definitions in computer science

Fairness is one such over-loaded term with a long history of discussion across legal, ethical,

philosophical, and economic literature. In computer science, Scholars have often formulated

fairness in a quantitative way and attempted to maximise it. In the context of this thesis,

we refer to algorithmic fairness specifically, as the term is also used in other settings in

computer science, such as for resource allocation in schedulers for operating systems or

networks [Kumar and Kleinberg, 2000]. For example, maximin fairness in the distribution

of computer network’s bandwidth denotes the prioritisation of smaller flows [Denda

et al., 2000], which is interestingly derived from Rawlsian equality of opportunity and

the maximin rule (See definition of equality of opportunity in both ethical philosophy

and algorithmic fairness literature in §2.3.2). Another fairness definition unique to this

domain is proportional fairness, which balances between maximising total throughput of

the network and at the same time allowing all users at least a minimal level of service [Kelly,

1997]. These are not in scope for our thesis. In addition, while we refer to some legal

scholarship, a discussion of the evolution of non-discrimination laws and their philosophies

is out of scope for this thesis. Future work may consider the case law related to fairness

and discrimination to reveal further insights into how they are defined in various domain

areas.

A quantitative approach to algorithmic fairness has its benefits: to enable it to

be measured and improved upon using computational techniques. However, existing

mathematical definitions of fairness in computer science literature should be calculated

while keeping in mind the nuances and context-specificity present in philosophical discourse.

While they are loosely derived from a notion of egalitarianism, the definitions have little

resemblance to the complex philosophical notions they aim to represent. We link our

contribution to other work connecting philosophical discourse to computer science literature

on fairness [Binns, 2020; Heidari et al., 2019] and expand on them. In drawing links

between political philosophy and the fair ML literature, Fazelpour and Lipton 2020 argue
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that these metrics that aim for an “ideal world” in which parity exists fail to “account

for the mechanisms by which our non-ideal world arose,” which can lead to “misguided

policies.” Our work provides a broad overview of different ethical paradigms of what is

ideal, demonstrating not only how they conflict with one another in theory but also what

each view of fairness prioritises in practice.

In this section, we first iterate through the key definitions of fairness in computer

science literature and connect them to real-life intuitions and implications. We then show

their morally irreconcilable assumptions on the desirability of equality by connecting the

definitions to relevant philosophical doctrines and demonstrating the gaps. While there

may be other metrics that represent tweaks to those presented here, these represent the

foundational metrics that equalise the outcome and prediction and include all those men-

tioned in literature attempting to give a landscape of the metrics (e.g. [Verma and Rubin,

2018]). The different names given to the same metric is also discussed previously [Verma

and Rubin, 2018] to be potentially confusing, exacerbating the challenge of selecting a

fairness metric.

2.2.1 Use case: Defining fairness in mortgage lending

To bring the fairness definitions to life, we will walk through a use case: a lender building

a model to predict a prospective borrower’s risk of default on a loan, while attempting

to assess whether the model is fair across black and white applicants. This is one of the

domain areas with a known history of racial discrimination; in the U.S., mortgage lenders

have long been accused of illegally and unfairly denying loans to black applicants [Fuster

et al., 2022].

In this case, the False Positives (FP) represent lost opportunity (predicted default,

but would have repaid), and the False Negatives (FN) represent lost revenue (predicted

repayment, but defaulted). The calculations of error rates used in the metrics are defined

below, with some of the most commonly cited fairness definitions in Table 2.2 and Table 2.3:

• True Positive Rate (TPR) = TP/(TP + FN)

• True Negative Rate (TNR) = TN/(FP + TN)

• False Positive Rate (FPR) = FP/(FP + TN) = 1 – TNR

• False Negative Rate (FNR) = FN/(FN + TP) = 1 – TPR

• Positive Predictive Value (PPV) = TP/(TP+FP)

Note that among the numerous definitions in Table 2.2 and Table 2.3, there are

difficulties in deciding which metric is most appropriate for each use case [Lee and Floridi,

2020]. Is a 3% increase in positive predictive parity preferable over a 5% increase in equal
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Fairness metric Equalising Intuition (Example) Practical Objective

Maximise total ac-
curacy

N/A The most accurate model
gives people the loan and
interest rate they ‘deserve’
by minimising errors

Minimise unaffordable loans: Defaults are
harmful to both the business and the borrower;
Allocative efficiency: limited capital goes
to those most likely to repay; Portfolio risk
/ financial inclusion: For a lender with lim-
ited capital, reducing portfolio risk of defaults
enables the lender to give more loans to more
people for those who were at the borderline be-
tween approval and denial; Reduced missed
revenue opportunities (reduce overall
False Negatives): Denying loans that would
have been repaid represents missed revenues;
Minimize financial loss due to default
(reduce overall False Positives): approved
loans that default is expensive

Demographic parity,
group fairness, dis-
parate impact [Feld-
man et al., 2015]

Outcome Black and white applicants
have the same loan ap-
proval rates

Improve racial equity: if we assume a level
playing field, i.e., black and white applicants
have the same default risk distribution, this
metric is sensible. Note that if there are le-
gitimate differences in default risk: for exam-
ple, in income, then engineering group fairness
will reduce the accuracy of the model. These
legitimate differences may be linked back to
underlying social and racial inequalities and
injustices.

Equal opportunity /
false negative error
rate balance [Hardt
et al., 2016]

FNR Among applicants who
would default, both black
and white applicants
should have similar rate of
their loans being denied

Reduce unfair loan denials for black ap-
plicants: If creditworthy black applicants have
higher rates of loan denials due to model’s er-
rors, this may be seen as unfair. Note that
False Negatives may be impossible to mea-
sure in this example because the lender would
not have information on whether a denied
loan would have been repaid or would have
defaulted. This requires assumptions or esti-
mations.

False positive error
rate balance /
predictive equal-
ity [Chouldechova,
2017]

FPR Among applicants who are
credit-worthy and would
have repaid their loans,
both black and white ap-
plicants should have simi-
lar rate of their loans being
approved

Minimise harm to black borrowers: if
black applicants are more often incorrectly pre-
dicted to repay but eventually default, then the
inaccuracies are disproportionately harming
black applicants who are left with unaffordable
loans.

Table 2.2: Fairness metrics and their intuitions (Part 1/2) - what each metric equalises
with a lending example, translated into practical objectives for the lender
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Fairness metric Equalising Intuition (Example) Practical Objective

Equal odds [Hardt
et al., 2016]

TPR, TNR Meets both of above condi-
tions

Minimise racial differences in errors: This
metric aims to minimize all differences in er-
rors, aggregating the metrics from false posi-
tive and false negative error rate balances. It
is important to note that equal opportunity,
predictive equality, and equal odds are known
as “bias-preserving,” assuming that any under-
lying inequalities between groups are benign.
Where there are structural discriminatory bi-
ases embedded in the data, these metrics would
not address them. See [Wachter et al., 2020]
for a discussion on how this relates to US and
EU discrimination law.

Positive predictive
parity [Choulde-
chova, 2017]

PPV Among credit-worthy ap-
plicants, the probability
of predicting repayment is
the same regardless of race

Ensure equal probability of correct pre-
dictions between black and white ap-
plicants: This is similar to FNR but looks
at probability rather than a binary outcome.
Evaluating based on probability, rather than
binary outcome, differentiates between those
who were a borderline case from those who
were a clear approval or rejection.

Positive class bal-
ance [Kleinberg
et al., 2016]

Average
probability
of positive
class

Both credit-worthy white
and black applicants who
repay their loans have an
equal average probability
score

Avoid over-estimating the creditworthi-
ness of white applicants: if the probability
of white applicants’ approval is higher than
probability of black applicants’ approval among
those who repaid their loans, it could indicate
white applicants’ creditworthiness is inflated

Negative class
balance [Kleinberg
et al., 2016]

Average
probability
of negative
class

Both white and black de-
faulters have an equal av-
erage probability score

Avoid over-estimating default risk of
black applicants: By contrast, this metric
would indicate that black applicants’ default
risks are comparatively inflated, and the true
risk may be lower

Counterfactual fair-
ness [Kusner et al.,
2017]

Prediction in
a counterfac-
tual scenario
in which the
person had
a different
protected
feature

For each individual, if
he/she were a different
race, the prediction would
be the same

Demonstrate “race-blindness”: This met-
ric could show an individual that if he/she
were a different race, the outcome would have
been the same. However, this is difficult to
show in practice. For example, if an applicant
were white, his/her income, neighbourhood,
occupation, and financial history may also be
different. This issue of proxies is further dis-
cussed in Chapter 3. Note: proxies are fea-
tures that encode information about sensitive
features (See §3.6).

Individual fair-
ness [Dwork et al.,
2012]

Outcome for
‘similar’ indi-
viduals

For each individual,
he/she has the same out-
come as another ‘similar’
individual of a different
race

Explain why a loan was approved or de-
nied: An organisation may argue that the
decision was fair because other “similar” appli-
cants of another race had the same outcome.
However, it is difficult to define “similarity”
that is independent of race.

Table 2.3: Fairness metrics and their intuitions (Part 2/2) - what each metric equalises
with a lending example, translated into practical objectives for the lender
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odds? Moreover that many of these metrics cannot be satisfied at the same time [Kleinberg

et al., 2016], it is not intuitive on which metric best represents the lender’s interests. From

a legal standpoint, while these metrics may provide a reason to suspect unfairness exists,

a lack of quantitative parity does not in itself constitute discrimination [Hellman, 2020].

The tensions between these approaches both from a mathematical standpoint and

from a moral and value standpoint can only be resolved if the metric is explicitly linked

to the contextual objectives. What trade-off between our competing objectives is the

decision-maker comfortable with and capable of justifying to all associated stakeholders

(e.g. regulators)? Our KEI approach in §2.5 provides a process of contestation, in which

these tensions are revealed and debated. Rather than selecting a generic metric that is

a poor abstraction of philosophical ethics, KEIs can present the decision-makers with a

concrete “menu” of options. There may not be one optimal solution, but this process

makes the value judgements explicit.

These issues will be further discussed in §2.3, where we will link each fairness metric

to its philosophical origin and address the gaps. The gaps, in particular, demonstrate the

important nuances that cannot be captured in fairness metrics that must be considered in

the model development process. In §2.2.2, we challenge the types of inequalities that the

fairness metrics assume are acceptable vs. unacceptable.

2.2.2 Flawed assumption: simplicity of separating acceptable

inequalities from the unacceptable

Fairness metrics assume it is possible to separate acceptable inequalities from the unac-

ceptable. We challenge this assumption by discussing the complexity of the debates on

equality in ethical philosophy. Note that these metrics are aimed at a class of machine

learning algorithms that are supervised, i.e. with a known outcome, and for classification

purposes, i.e. for a discrete outcome (e.g. default vs. repayment) rather than a continuous

outcome (e.g. amount repaid). These algorithms aim to identify the features that are

associated with the outcome of interest. For example, a loan applicant with higher income

is more likely to be approved due to income’s association with higher ability to repay.

In this case, differences in socioeconomic status are accepted as an inequality that is

important to consider in the loan decision. Previously, scholars have made the distinction

between “acceptable” vs. “unacceptable” inequalities based on legal precedents between

“explainable” and “non-explainable” discrimination [Kamiran and Žliobaitė, 2013] based

on Rawlsian philosophy between “relevant” and “irrelevant” features [Rawls, 1999]. For

example, income may be considered a “relevant” feature, and gender or race may be

considered an “irrelevant” feature. The former should influence the algorithmic decisions,

but the latter should not.
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Separating what is “relevant” and “irrelevant” is not a simple exercise. In reality, the

layers of inequality between two individuals are intertwined, dynamic, and difficult to

disentangle from one another. If we consider the layers of inequality in Table 2.4, two

individuals may be unequal on several levels – in their level and type of talent, parents’

socioeconomic status, behaviour, etc. – that may affect the target outcome of interest,

whether it is credit-worthiness, predicted performance at a job, or insurance risk. It is

possible that the differences in the observed outcome are attributable to one or more

of the above inequalities. Building an algorithm to predict the outcome could result in

a faithful – but unwanted and unethical – representation of these inequalities and the

resulting replication and perpetuation of the same inequality through decisions informed

by its predictions.

Types of inequality Examples Variable

Natural inequality Disability at birth Inequality 0

Socioeconomic inequality Parents’/guardians’ assets Inequality 1

Talent inequality Intelligence, skills, employ-
ment prospects

Inequality 2

Preference inequality Saving behaviour, cultural pri-
oritisation of values associated
with economic opportunities

Inequality 3

Treatment inequality / societal
discrimination (external)

Discrimination in job market
and education system affecting
income stability

Inequality 4

Table 2.4: Layers of inequality affecting the ground truth (partial and indicative) (Adopted
from [Lee et al., 2021])

The choice of mathematical fairness formalisation determines which inequalities are

“unacceptable.” Some assume that all disparity in a given outcome metric is unacceptable,

while others assume a level playing field [Gajane and Pechenizkiy, 2017], an assumption

rarely met in societal challenges. More recent work has taken a more nuanced stance,

suggesting that the only features that should contribute to the outcome disparity are those

that can be controlled by the individual, emphasising a distinction between the features

driven by “effort” vs. “circumstances” [Heidari et al., 2019]. This is derived conceptually

from Dworkin’s theory of Resource Egalitarianism: no one should end up worse off due

to bad luck, but rather, people should be given differentiated economic benefits as a

result of their own choices [Dworkin, 1981]. Another paper distinguishes between “benign”

disparities and “structural bias” that should be corrected [Binns, 2020].

In §2.2.2.1- 2.2.2.4, we present the limitations of these proposals on how to determine

which types of inequalities should be allowed to influence the model’s prediction. Then,

in §2.3, we mirror the complexity of this decision with the diversity of perspectives in
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ethical philosophy that reflect millennia of debate around this topic. Finally, we present a

proposal that places fairness considerations in the context of holistic ethical objectives.

2.2.2.1 Why fairness cannot always be assessed through legally protected

characteristics

The open source fairness toolkits (discussed further in Chapter 3) designed for ML

developers to automatically test algorithms for fairness often refer specifically to protected

or sensitive characteristics in their assessment of fairness. This is because these

characteristics are explicitly defined in non-discrimination laws, and ensuring decision-

making is fair along these dimensions is important for legal compliance. For example, the

Fairness 360 toolkit defines a protected attribute as one that “partitions a population into

groups whose outcomes should have parity. Examples include race, gender, caste, and

religion” [Bellamy et al., 2019]. There is limited guidance on under what circumstances

two groups should have parity in outcomes, which is important for toolkits intended for

usage across domain areas. In addition, how much disparity is acceptable in each use

case and for each sub-group of interest? Often, fairness toolkits propose the usage of

these demographic features without challenging whether they are relevant to the decision

at-hand.

Whether a disparity in fairness metrics between legally protected groups is fair depends

on the context. Race and gender may be causally relevant in differential medical diagnosis

(e.g. sickle cell anaemia, ovarian cancer) due to the different biological mechanisms in

question. If the differences in outcome are causally related to the protected feature, the

difference in decisions may be arguably fair. If a man has a higher income than a woman,

he may receive a higher credit limit given his higher ability to repay. This is reflected in

non-discrimination laws, as there is an exception if the decision-maker can show the policy

is a proportionate means of achieving a legitimate aim [Aggarwal, 2018; Wachter et al.,

2021; Gillis, 2022].

2.2.2.2 Why fairness cannot always be assessed through relevance vs. irrele-

vance

Heidari et al. also propose a distinction between relevant vs. irrelevant features [Hei-

dari et al., 2019]. However, Gillis demonstrates through experiments that identifying

which features are relevant vs. irrelevant fails to address discrimination concerns because

combinations of seemingly relevant inputs may drive disparate outcomes between racial

groups [Gillis, 2022]. Lee and Floridi also show that it is possible to use legitimate and

relevant features about the loan and predict the applicant’s race [Lee and Floridi, 2020].

In addition, the notion of “relevance” raises the question of whether a feature that

is statistically associated with an outcome should be considered relevant. For example,
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in car insurance, even though accident risk varies statistically by gender, pricing and

underwriting discrimination based on gender is seen as unfair and faced prohibition in

Europe, and there are movements to also ban the usage of racial origin, disability, and

sexual orientation [Meyers and Van Hoyweghen, 2018]. However, age is still used in car

insurance pricing [Abdou, 2019].

Insurers justify their usage of various features, including age and previously gender,

on the basis that they are relevant in assessing people’s risk. Based on the technical

concept of “actuarial fairness” coined by the neoclassical micro-economist Kenneth Arrow

(1921–2017), the price of an insurance policy is considered fair if it is equal for customers

with the same risk level [Arrow, 1978]. Otherwise, low-risk groups would be subsidising

high-risk groups that have artificially deflated prices.

Importantly, Meyers and Von Hoyweghen argue that there has been a fundamental shift

in insurance from actuarial fairness to “behavioural fairness,” in which the development

in wearable technologies has led to a greater focus on collecting behavioural data for

more personalised pricing [Meyers and Van Hoyweghen, 2018]. In other words, there is a

shift in conversation not only on what is representative of risk but also whether it can be

controlled. However, separating what is a fair feature based on whether it is due to effort

or circumstances is also problematic.

2.2.2.3 Why fairness cannot always be assessed through effort vs. circum-

stances

The suggestion to distinguish between the features driven by “effort” vs. “circumstances” in

algorithmic fairness [Heidari et al., 2019] follows the logic of Dworkin’s theory of Resource

Egalitarianism: no one should end up worse off due to bad luck, but rather, people should

be given differentiated economic benefits as a result of their own choices [Dworkin, 1981].

In reality, it is difficult to separate out what is within an individual’s genuine control.

For example, a credit market does not exist in a vacuum; while potential borrowers can

improve their creditworthiness to a certain extent, e.g. by building employable skills

and establishing a responsible payment history, it is difficult to isolate the features from

discrimination in other markets, layers of inequality, and the impact of their personal

history.

In addition, some circumstances are valuable features in an algorithm. For example,

one may not be in full control of one’s income (socioeconomic inequality) or education

level (talent inequality), but they are important indicators of credit risk and associated

with greater job security. It is challenging to separate the aspects of one’s income that are

due to life choices within one’s control and the aspects that are outside of their control,

e.g. due to workplace discrimination or socioeconomic status. As previously discussed,

age is still used in car insurance pricing, even though it is not under our control [Meyers
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and Van Hoyweghen, 2018].

2.2.2.4 Why fairness cannot always be assessed through the source of inequal-

ity

Scholars have also proposed that the source of inequality should determine which fairness

metric is appropriate for each use case, i.e. whether the outcome disparity is explainable,

justifiable, or benign or due to structural discrimination [Kamiran and Žliobaitė, 2013;

Binns, 2020]. Binns (2020) suggests group fairness metrics assumes disparities are benign,

e.g. the loan approval difference between white and black applicants is solely due to their

differences in ability to repay; statistical parity assumes structural bias that requires correc-

tion, e.g. historically, black applicants’ risk have been inflated due to past discriminatory

practices. In reality, there is rarely such a separation [Binns, 2020]. For example, Lee and

Floridi (2020) review the literature on U.S. mortgage lending and suggest that there are

many structural and statistical factors that lead the lenders to both over-estimate and

under-estimate the risk of black borrowers [Lee and Floridi, 2020]

Any attempt to isolate the impact of discrimination from the impact of “benign”

inequality needs to also consider the intersectional discrimination faced by those already

marginalised in society [Crenshaw, 1989], e.g. the inter-connectivity of gender and racial

discrimination [Collins, 2002]. The boundary between what is an acceptable representation

of existing inequalities and what is due to systematic discrimination and marginalisation

of a group is challenging to ascertain.

Fleurbaey (2008) also cautions that “responsibility-sensitive egalitarianism” in welfare

economics could be used to hastily justify inequalities and unfairly chastise the “undeserving

poor” [Fleurbaey, 2008]. The idea that people should bear the consequences of their

choices is not as simple as it seems; it only makes sense when individuals are put in equal

conditions of choice. Such an equality is not true in most systems. When one has fewer

opportunities than another, one cannot be held fully responsible insofar as one’s choice is

more constrained. This is further discussed in §2.4 on the lessons from welfare economics.

2.2.2.5 The challenge of defining fairness

The assumed clear and intuitive separation between acceptable and unacceptable inequal-

ities, whether based on their source or the role of luck, rarely exists in real-life models.

Therefore, making the distinction on whether a feature is driven by acceptable or unaccept-

able inequalities is often impractical. In addition, the boundary between what is acceptable

vs. unacceptable is more controversial than is often portrayed in the algorithmic fairness

literature (especially in computer science). The criteria for desirable equality depend on

the philosophical perspective, which is ultimately a subjective judgement. We discuss the

37



variety of philosophical perspectives in the next section to show the disagreement among

ethical philosophers on what is an acceptable inequality.

The decision on the target state—the way it ought to be—is an ethical decision with

mathematically inevitable trade-offs between objectives of interest. Heidari et al. dismiss

the distinction between relevant vs. irrelevant features in practice as out of scope for their

paper: “Determining accountability features and effort-based utility is arguably outside

the expertise of computer scientists” [Heidari et al., 2019]. On the contrary, we argue that

model developers must be actively engaged in the discussion on what layers of inequality

should and should not be influencing the model’s prediction. The engagement of model

developers should be supported by an organisational governance and risk management

framework and process. This is aligned to the notion of anticipatory governance, which

embeds social values, ethics, and public preferences into the scientific research process to

shape technologies from an early stage [Guston, 2010]. At minimum, the model developers

should be required to transparently disclose the various decisions made that affect the

model’s fairness to relevant business leader, and they should also help communicate any

tensions between the practical and ethical objectives.

The policymakers, regulators, and business leaders all have a role to play in ensuring ML

systems we deploy are fair and ethical, including setting government-level and organisation-

level policies, laws, and guidelines. However, these policies, laws, and guidelines are

implemented in practice by the developers of these systems and necessitates a conversation

around the objectives of the ML system in question. This is because such a discussion

directly influences not only the model design and feature selection but also the selection

of performance metrics. We demonstrate the extent to which the assumptions impact the

design decisions in the build process in Chapter 3.

2.3 Lessons from ethical philosophy on (in)equalities

While the consideration of fairness in computer science and machine learning literature

is fairly recent [Hutchinson and Mitchell, 2019], ethical philosophers have long debated

whether equality is desirable and – if so – what type of equality people should pursue in

society. Table 2.5 gives an example of philosophical perspectives and their perceptions

of what types of inequality are acceptable. Formal equality of opportunity (EOP), or

procedural fairness, posits that all opportunities should be equally open to all applicants

(e.g. jobs, loans, etc.) based on a relevant definition of merit. However, in theory, this

can be fully satisfied even if it is only a minority segment of a population (e.g. those with

family wealth and connections) that have realistic prospects for accessing the opportunity.

In other words, as long as the opportunity is theoretically available, it is irrelevant whether

it is practically accessible. It is important to consider the structural inequalities that
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Philosophical per-
spective

Acceptable inequalities Unacceptable inequalities

Formal equality of
opportunity / proce-
dural fairness [Green-
berg, 1987]

Any inequality as long as the
opportunity was open to all

Treatment inequality

“Fair equality of
opportunity” [Rawls,
1999, 2001]

Natural, talent, and preference
inequalities

Socioeconomic, treatment in-
equalities

Rawlsian EOP +
Difference princi-
ple [Rawls, 1999]

Natural, talent, and preference
inequalities, plus any inequal-
ity benefiting the most disad-
vantaged society members in
long-term impact

Socioeconomic, treatment in-
equalities, except any ineequal-
ity benefiting the most disad-
vantaged society members in
long-term impact

Equality of outcome
/ condition / wel-
fare [Greenberg,
1987]

None - all members should get
the exact same outcome

All

Luck egalitarian-
ism [Dworkin, 1981]

Effort-based inequalities (e.g.
preference)

Circumstances (e.g. natural
inequality)

Equality of freedom /
autonomy [Sen, 1992]

Inequality resulting in ”gen-
uinely free” choices

Any inequality hindering free-
dom

Sufficiency / Equal-
ity of capabil-
ity [Walzer, 1983]

Any inequality as long as ev-
eryone is above the level of suf-
ficiency

Any resulting in people falling
below sufficiency levels

Prioritarianism [Schef-
fler, 1994; Parfit,
1991]

Any inequality reduction
should prioritise resource
allocation to those who are
worst off

None as long as the worst off
are prioritised

Desert [Kagan, 1999,
2014]

Any inequality based on what
he/she “deserves”

Any inequality that does not
equate to the person’s deserv-
ingness

Table 2.5: Key philosophical perspectives on inequality (Adapted from [Lee et al., 2021])
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are deeply embedded into society. For example, racial identity in the U.S. is not simply

a personal subjective quality, but rather, an ascribed political category with systemic

patterns of social and spatial segregation; ignoring this deep-seated inequality turns a

blind eye to the history of disadvantage [Benthall and Haynes, 2019].

The Rawlsian fair EOP goes further to propose that any individuals with the same

native talent and ambition should have the same prospects for success, requiring that

all competitive advantage (e.g. parental efforts) be offset [Rawls, 1999]. This is at odds

with libertarian ideals that assert the value of each person’s freedom insofar as there

is no harm to another [Mill, 1998], which naturally extends to the right to ownership

and capital. Rawls also proposes the Difference Principle as an exception: economic and

social inequalities can only be justified if they benefit the most disadvantaged members

of society [Rawls, 1999]. These EOP principles are in contrast to the strict equality of

outcome, condition, or welfare, which requires an equal distribution regardless of any

relevant criteria.

Interestingly, the Maximin rule derived from the Difference Principle is also used in

defining “maximin” fairness (a version of EOP) in the distribution of computer network’s

bandwidth: prioritisation of smaller flows [Denda et al., 2000]. Another fairness definition

unique to this domain is proportional fairness, which balances between maximising total

throughput of the network and at the same time allowing all users at least a minimal level

of service [Kelly, 1997].

Luck egalitarians hold that unchosen inequalities must be eliminated [Dworkin, 1981].

Sen and Fleurbaey object on the grounds that luck egalitarians have no principled objection

to a society in which, on a background of equal opportunities, some end up in poverty or

as the slaves of others [Fleurbaey, 2008]. They argue for a more substantive equality of

“autonomy” that includes the full range of individual freedom.

Some have argued that what is important is not relative condition compared to other

people, but rather, whether people have enough to have satisfactory life prospects [Walzer,

1983]. Others have shifted the focus on the incremental gain of well-being of those who

are worst-off [Parfit, 1991]. Yet others have debated the foundations of desert, or what

one deserves corresponding to his or her virtue [Kagan, 2014].

2.3.1 Ethical subjectivity of algorithmic fairness

As such, what types of inequality of outcomes are fair is a philosophical and subjective

debate with nuances and complexities insufficiently addressed in existing algorithmic

fairness literature. What happens when faithfully representing the world as it is perpetuates

an unfair state of affairs? This complicates the objective of ML, which is only ‘reliable’

insofar as it is trained on data sets that reflects reality. For example, online searches

for “CEO” yield mostly images of white men [Van Dam, 2019]. This is reflective of the
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existing gender pay gap: in 2019, only 6.6% of Fortune 500 top executives were female, the

highest proportion in history [Zillman, 2019], but continuing to under-represent women in

search results may perpetuate the bias that CEOs are typically men. Online job postings

may show high-income positions to men more frequently than women, reflecting this

status quo [Van Dam, 2019], and Amazon reportedly scrapped a recruiting algorithm that

preferred men because most of past applicants were men [Dastin, 2018]. Gender bias in

online job postings and recruiting algorithms may result in a biased outcome, with men

disproportionately having access to jobs. In this instance, some call for the “correction” of

the bias to reflect judgements about the way the world should be, which is by nature an

ethically influenced choice. Indeed, an analysis of EU non-discrimination laws, scholars

have argued that in legal cases, a context-specific “legitimate comparator” group that is

receiving an unfair advantage should be defined: for example, are married couples equal to

same-sex civil partnerships, and are full-time workers equal to part-time workers? [Wachter

et al., 2021]. It is not always clear what are “acceptable” inequalities and “unacceptable”

inequalities in outcomes. This is mirrored by lab studies of individuals who challenged

algorithmic decision-making as unfair because its assumptions do not account for their

multiple concepts of fairness [Lee and Baykal, 2017].

As previously stated, and in contrast to past scholars’ arguments [Heidari et al., 2019],

our position is that computer scientists and model developers cannot completely delegate

this consideration to a third party, whether it is the regulator, business leader, or the

risk function. Model developers must be engaged in the discussion on what layers of

inequality should and should not be influencing the model’s prediction in order to inform

their decisions on model design, feature selection, and performance metric selection.

Overall, in formalising fairness, the decision-maker should be explicit on (i) which

inequalities and biases exist that affect the outcome of interest, and (ii) on which of them

should be retained and which of them should be actively corrected. This will be further

addressed in §2.5.3, with our proposal for Key Ethics Indicators (KEIs). We next link

some of the fairness metrics to the ethical philosophy that inspired them, pointing out the

contextual considerations in the ethical philosophy that should be kept in mind alongside

the fairness formalisations.

2.3.2 Linking ethical philosophy to algorithmic fairness

Mathematical definitions of fairness, while loosely derived from a notion of egalitarianism,

should be calculated while keeping in mind the nuances and context-specificity present in

philosophical discourse. Revisiting the fairness metrics from Table 2.2 and Table 2.3, this

section will link each metric to the ethical philosophy that inspired it, as well as addressing

the gaps between the philosophical work and what is represented in the mathematical

formula.
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Fairness metric Equalising Philosophy

Maximise total accuracy N/A Desert [Kagan, 1999, 2014]

Demographic parity, group
fairness, disparate im-
pact [Feldman et al., 2015]

Outcome Strict egalitarianism (Equality
of outcome / condition / wel-
fare) [Greenberg, 1987]

Equal opportunity / false neg-
ative error rate balance [Hardt
et al., 2016]

FNR

False positive error rate
balance / predictive equal-
ity [Chouldechova, 2017]

FPR

Equal odds [Hardt et al., 2016] TPR, TNR
Positive predictive par-
ity [Chouldechova, 2017]

PPV “Fair equality of opportu-
nity” [Rawls, 1999, 2001]

Positive class balance [Klein-
berg et al., 2016]

Average probability of
positive class

Negative class balance [Klein-
berg et al., 2016]

Average probability of
negative class

Counterfactual fairness [Kus-
ner et al., 2017]

Prediction in a counter-
factual scenario in which
the person had a differ-
ent attribute

David Lewis, cause and ef-
fect [Lewis, 1973]

Individual fairness [Dwork
et al., 2012]

Outcome for “similar”
individuals

Responsibility-sensitive egali-
tarianism [Fleurbaey, 2008]

Table 2.6: Fairness metrics and their philosophical origins, demonstrating 1) the moral
irreconcilability of the metrics and 2) the gap between the original ethical philosophy and
how it has been formalised in the metrics (Adopted from [Lee et al., 2021])
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We now iterate through the definitions in Table 2.6. Accuracy maximisation is prone to

biases introduced in the model development lifecycle that may skew the predictions. This

is especially problematic if the biases reflect patterns of societal discrimination, leading to

“undeserved” outcomes in conflict with the philosophy of desert. Demographic parity is

undesirable if there are legitimate rationale behind the unequal outcome (e.g. unequal

income). John Rawls has been called “AI’s favorite philosopher” [Procaccia, 2021] due

to how frequently he is referenced in algorithmic fairness literature (e.g. [Heidari et al.,

2019; Dwork et al., 2012; Joseph et al., 2016]). The equal opportunity metric, while it

sounds attractively similar to Rawlsian EOP, fails to address discrimination that may

already be embedded in the data [Gajane and Pechenizkiy, 2017]. Discrimination may be

crystallised in the data set due to biased data collection, biased data labelling, or biased

human decisions feeding the system. These biases are introduced throughout the ML

development lifecycle and are described in detail in Chapter 3. Rawlsian EOP also assumes

that inequalities in native talent and ambition may result in unequal outcomes, which

is not addressed in the equalisation of false negative rates. In addition, we previously

mentioned the Difference Principle, which posits that the Max-Min social welfare function

should also maximise the welfare of those who are worst-off [Rawls, 1999]. Rawls himself

explicitly states that “the maximin rule is not, in general, a suitable guide for choices

under uncertainty” [Rawls, 1999]. As we discuss in detail in Chapter 5, in building an ML

system, there are several layers of uncertainties, many of which are irreducible. Therefore,

there are significant gaps between what Rawls envisioned as “equal opportunity” and how

it is formalised. A detailed philosophical analysis of the original Rawlsian context and

its incompatibility with all but an extremely limited set of AI applications can be found

in [Franke, 2021].

Each group fairness metric, including equal odds, positive predictive parity, and positive

/ negative class balance, requires different assumptions about the gap between the observed

space (features) vs. the construct space (unobservable variables): “if there is structural bias

in the decision pipeline, no [group fairness] mechanism can guarantee fairness” [Friedler

et al., 2016]. This is supported in a critique of existing classification parity metrics, in

which the authors conclude that “to the extent that error metrics differ across groups,

that tells us more about the shapes of the risk distributions than about the quality of

decisions” [Corbett-Davies and Goel, 2018]. In many domain areas in which there are

concerns over ML fairness, including credit risk and employment, there has often been

a documented history of structural and societal discrimination, embedding unfair bias

into the training data. Accepting the training data as given embeds an inherent value

judgement that replicating any embedded biases is fair [Friedler et al., 2016].

The challenge of individual fairness is how to define “similarity” [Kim et al., 2018].

When the predictive features are also influenced by protected features, measurement of

43



“similarity” cannot be independent of those protected features. How does a developer

separate people’s features that affect their creditworthiness from the features of who they

are, such as race and gender? As previously discussed, structural inequalities that are

deeply embedded into societal institutions should not be ignored [Benthall and Haynes,

2019]. Some scholars have attempted to incorporate active corrections for racial inequality

into metrics of similarity [Dwork et al., 2012], but this depends heavily on the assumption

that the inequality due to racial discrimination can be isolated from other sources of

inequality, which may not be realistic.

While counterfactual fairness metrics provide an elegant abstraction of the algorithm,

the causal mechanisms is not well understood in many cases where ML is typically used

to model complex relationships in large data sets. Indeed, when the “causal graph” of the

mechanisms is unknown, counterfactual fairness is also sensitive to unmeasured confounding

variables, which may add additional discriminatory bias [Kilbertus et al., 2020a]. It is

also difficult to isolate the impact of one’s protected feature, e.g. race, on the outcome,

e.g. risk of default, from the remaining features. Confounders are especially difficult

to determine for complex models. Critiques of the counterfactual approach have stated,

“Even though counterfactuals play an essential part in some causal inferences, their use for

questions of algorithmic fairness and social explanations can create more problems than

they resolve” [Kasirzadeh and Smart, 2021]. This is because social categories of race and

gender should not be subject to quantitative counterfactual manipulation [Kasirzadeh and

Smart, 2021]. It is not so simple to posit what the outcome would have been if a person

were not of a certain race or gender.

The types of inequalities that are acceptable depends on the context of the model.

In all, these metrics do not give information on which layers of inequalities they are

attempting to correct, which risks over- or under-correction. Deeper engagement with the

ethical assumptions being made in each model is necessary to understand the drivers of

the unequal outcomes. Our KEI approach in §2.5 will account for such context-specificity

of what inequalities are acceptable.

2.4 Lessons from welfare economics: Consideration

of welfare and liberty

In this section, we draw from literature in welfare economics to demonstrate the importance

of contextualising fairness in the holistic view of ethics, which includes welfare and

autonomy. By focusing narrowly on the fairness metrics, which quantify the redistribution

of the target outcome, a decision-maker may overlook the key considerations of the impact

on the stakeholders’ welfare and autonomy. Because of the challenge in quantifying the

relevant biases and disentangling them from the outcome of interest, correcting for a bias
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for the sake of fairness carries the risk of increasing the inaccuracies of the predictions.

Referring back to our definition of algorithmic ethics, justice is only one of five dimensions

(beneficence, non-maleficence, autonomy, justice, and explicability), with fairness as a

key principle related to justice. We derive lessons from literature on welfare economics

to demonstrate the inter-connectedness of fairness and welfare (beneficence and non-

maleficence) and liberty (autonomy and explicability). The egalitarian perspective on

the relative distribution of resources between individuals and groups must be considered

alongside the aggregate impact of an algorithm on the society, as there may be unavoidable

trade-offs among them. We later introduce Key Ethics Indicators as a way to explicitly

define these trade-offs to enable an informed decision on model design and development.

2.4.1 Welfare in algorithmic ethics: beneficence and non-maleficence

We will continue with the example of credit risk evaluation to argue that fairness should be

considered alongside welfare. In attempting to improve a fairness score, a decision-maker

may inadvertently forego an algorithm that leaves everyone better-off (beneficence) or may

inadvertently harm the sub-group they are attempting to help. Fairness metrics should

not be taken at face value without an understanding of how relying on these metrics

may affect other ethical objectives. Fairness toolkits that assess fairness in isolation risks

misleading the decision-makers by giving the them incomplete information about whether

their algorithm meets their ethical objectives.

From a welfare economic standpoint, a notion of fairness necessarily includes a con-

sideration of well-being: from both utilitarian and libertarian perspectives, a fair reward

principle maximises the sum total of individual well-being levels while legitimising redis-

tribution that enhances the total outcome of individuals [Fleurbaey, 2008]. This is not

necessarily contradictory to the egalitarian perspectives discussed in ethical philosophy. In

accordance with the Difference Principle, Rawlsian EOP Max-Min social welfare function

should also maximise the welfare of those who are worst-off [Rawls, 1999]. A model that

results in financial harm of already-disadvantaged populations fails to meet the Rawlsian

EOP criteria, even if the False Negative Rates are equalised as per the mathematical

definition. Without consideration of the long-term impact on welfare, the fairness metrics

fail to capture the full extent of ethical dilemma embedded in a model selection process.

Accuracy is often considered in trade-off with fairness [Kleinberg et al., 2016], but that

accuracy may represent a key ethical principle in beneficence or non-maleficence. For an

example of beneficence, a “good” credit risk algorithm would lower the aggregate portfolio

risk for the lender, enabling more loans to more people and giving them access to credit

that is crucial to upward socioeconomic mobility. As an example of non-maleficence, the

false positive rates (i.e. loans that were approved but defaulted) also contains information

about whether unaffordable loans are approved. A lender should aim to minimise the
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borrower’s financial difficulty, given the adverse effects of unaffordable debt on both the

market level (causing instability and a “bubble”) and for the borrower [Aggarwal, 2018].

There is precedent for prioritising welfare over fairness. In the UK, a joint reinsurance

scheme called “Flood Re” was introduced to cap flood insurance premium by Council Tax

Band, which some scholars say is inherently unfair [Penning-Rowsell, 2015]. Even though

this policy means those with low flood risk are subsidising those with high flood risk, it

is prioritising the welfare of those who cannot afford to pay the premium set by their

true flood risk. The controversy around Flood Re was around whether this prioritisation

is valid and whether the policy reduces the incentive for those living in high flood risk

zones to move to a safer area [Penning-Rowsell, 2015]. This also demonstrates the role

government may play in controlling the market when actuarial fairness is at odds with the

population’s welfare.

The ethical principle of non-maleficence may sometimes be in direct conflict with

fairness. Adding fairness constraints may end up harming the groups they intended to

protect in the long-term [Liu et al., 2018]. In the presence of a feedback loop, we need to

consider – not only providing a resource (a loan) to an applicant in a disadvantaged group –

but also what happens as a result of that resource being allocated. If the borrower defaults,

his/her credit score will decline, potentially precluding the borrower from receiving future

loans. It is important to view fairness, not in isolation at a moment in time, but rather, in

the context of long-term objectives in promoting the customer’s financial well-being. The

importance of long-term monitoring will be discussed in Chapter 5.

2.4.2 Liberty in algorithmic ethics: autonomy and explicability

Fairness should also be assessed within the context of how the algorithm affects human

liberty, a subject in welfare economics that is relevant to the AI ethics principles of

autonomy and explicability. Fleurbaey argues responsibility-sensitive egalitarianism in

welfare economics should move away from “responsibility,” which may overlook certain

people’s lack of freedom to choose alternatives, and towards “autonomy” [Fleurbaey, 2008].

For there to be “true” equality, three conditions must be met: 1) a minimum level of

autonomy is attained, 2) with a minimum level of variety and quality of options offered,

3) with a minimum decision-making competence [Fleurbaey, 2008]. A comprehensive

egalitarian theory of justice is not just about equalising available opportunities but also

about providing adequate opportunities and making them accessible. In reality, defining a

minimum level of autonomy can be challenging, but autonomy can be actively considered in

the context of an algorithm’s potential harms. As per our definition of AI ethics [Floridi and

Cowls, 2022], we define autonomy as the power to decide, striking a balance between the

decision-making power humans retain and that which we delegate to artificial agents. We

also define explicability as the combination of intelligibility (how it works) and accountability
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(who is responsible for the way it works). It complements the other four principles by

helping us understand the good or harm an algorithmic system is actually doing to society,

in which ways, and why [Floridi and Cowls, 2022].

2.4.2.1 Autonomy: Liberty

In enforcing some of the stricter fairness conditions, decision-makers should be cognisant of

the potential impact this has on human autonomy. For instance, luck egalitarians have no

objection in principle to a society in which, on a background of equal opportunities, some

end up in poverty or as the slaves of others [Fleurbaey, 2008] – this could violate fundamental

human rights to freedom and result in undesirable levels of extreme societal inequality.

Intervention is necessary when basic autonomy is at stake, and this should be a constraint

on definition of fairness. Fleurbaey argues this is consistent with egalitarian welfare

economics, as egalitarians should be concerned not only with equality of opportunities,

but also with the content of the opportunities themselves, with freedom as the leading

principle in defining responsibility in social justice [Fleurbaey, 2008].

By focusing on equality of opportunities, one may dismiss the differences in preferences

as driven by choice and thus irrelevant. However, Fleurbaey argues that the ex post

inequalities due to differences in preferences are also a target for intervention on the

grounds of improving the range of choices to suit everyone’s preferences. If more women

prefer lower-paid positions than men, what is problematic is not only the societal and

environmental conditioning that questions whether this is a genuine preference, but also the

unfair advantage that attaches to these jobs – a differential value of the “menu” of options

for women than for men because of their preferences [Fleurbaey, 2008]. Considerations of

fairness and the associated policy response must operate at the level of the menu, rather

than distribution of jobs themselves. This “menu” is a dimension of autonomy that is not

captured by the quantitative fairness metrics.

2.4.2.2 Autonomy: Forgiveness

One concept that is not often addressed in algorithmic fairness literature is forgiveness.

Fleurbaey argues that the ideal of freedom and autonomy contains the idea of “fresh starts”:

in absence of cost to others, it is desirable to give people more freedom and a greater

array of choices in the future [Fleurbaey, 2008]. This is in conflict with the “unforgiving

conception of equality of opportunities” that ties individuals to the consequences of one’s

choices [Fleurbaey, 2008]. In many countries, lenders are restricted in their access to

information about borrowers’ past defaults; for example, many delinquencies are removed

from U.S. credit reports after seven years [Elul and Gottardi, 2015]. Forcing a lender to

ignore information about past behaviour may reduce the accuracy of its default prediction

model, and it may be “unfair” by some definitions by putting those who have made more
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responsible financial decisions on equal level as those who have not; however, it is widely

accepted practice to ensure that one decision does not have a disproportionate impact of

limiting one’s access to credit for good. A more complete coverage of fairness and justice,

therefore, should go beyond redistribution of outcome features and consider the impact on

individual welfare, autonomy, and freedom.

2.4.2.3 Autonomy: Vulnerability

Autonomy also cannot be met as an ethical objective when there is a significant asymmetry

of power and information between two parties. Contractarian perspectives on fairness

assumes two equal entities exchanging one resource for another in rational decision-

making [Gauthier, 1986].

Those with limited autonomy include vulnerable people. When an algorithm targets

and manipulates those with limited options and recourse, those people do not have the

autonomy to enter into the contract, whether or not the contract is fair. Payday loans

and check cashing industry in the US targets those who cannot access traditional financial

services, often due to their immigration status or long working hours that do not provide

a break while a bank is open for business, entrapping the most vulnerable groups into

an unbreakable cycle of debt with unaffordable interest rates [Prager et al., 2009]. While

the interest rate may not necessarily be unfair (it may be proportional to the likelihood

of an individual’s repayment), it is ethically undesirable. The same principle applies to

marketing insurance products to those with recent bereavement or the sale of complex

financial instruments to someone without the capability of understanding their risks.

Another group is those with “thin” files, with a lack of or sparse credit history. This is

a fairness issue, as people may be excluded from the data set, either through discrimination

or limited accessibility. The resulting skew in the data set is described as “representation

bias” in §3.2. However, it is also an issue of autonomy because those who are not well-

represented in the data set may be forced to give up more of their privacy to gain the

same level of access to products and services [Eubanks, 2018].

There has been a movement to use “alternative data” or non-traditional data sources

that do not directly relate to the borrower’s ability to repay. One of the most extreme

cases is the use of Internet browsing history, location, and payment data to calculate credit

risk [Koren, 2016]. The justification is often that this increases financial inclusion for those

without alternate means to access credit. However, this requires the lender access to more

data from the currently unbanked populations, disproportionately forcing them to give up

their privacy, more so than those with existing credit histories. It also exacerbates the risk

of discrimination, as the non-traditional data sources are likely intertwined with personal

characteristics. Location and social media data are more likely to reveal an individual’s

race and gender than credit history. While Kenya’s poor were among the first to benefit
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from digital lending applications, they have led to a predatory cycle of debt the borrowers

describe as a new form of slavery, between the endless nudges to borrow, the lenders’

control over a vast archive of user data, and ballooning interest payments [Donovan and

Park, 2019]. This double-standard of privacy between the unbanked and banked violates

the equal rights of individuals to privacy and self-determination. While there may be an

exchange of access to credit and personal data (e.g. if an individual gives consent to a

personality test or access to his/her social media profile), there should be a protection

of their right to privacy. This trade-off between not being visible (representative bias)

and being seen too much (violation of privacy) has been discussed in past literature on

data localisation [Mishra, 2015; Hon et al., 2016] and on data nationalisation [Bellet and

Frijters, 2020; Millard, 2013].

Fairness overall must be considered in the context of the impact on individual human

rights – going beyond the equality of available opportunities, empowering human freedom

and autonomy to ensure accessibility of these opportunities. Computer scientists should

learn from the welfare economists’ consideration of autonomy as a crucial component of

egalitarian perspectives on fairness.

2.4.2.4 Explicability

Welfare economics is built on the assumption of rational, free agents, which is shared in

Kantian ethical philosophy [Kant and Gregor, 1996]. This has been applied to medical

ethics to mandate that a patient be able to make a fully informed decision on whether

or not to receive treatment [Eaton, 2004]. Similarly, in algorithmic decision-making,

individuals consenting to the usage of their data should fully understand how the data

will be used. When humans employ autonomous systems, they cede, at least provisionally,

some of their own autonomy (decision-making power) to machines [Floridi and Cowls,

2022]. Respecting human autonomy thus becomes a matter of ensuring that both the

decision-making authority and the subject of the decision retain enough autonomy to

safeguard their well-being.

In order to incorporate the algorithm into rational decision-making, it is important

to understand how the algorithm reached its prediction or recommendation. Due to the

relatively limited interpretability of ML, “explainable AI” (xAI) is an ongoing area of

research [Xu et al., 2019]. There is often a trade-off between accuracy of an algorithm and

its explainability, as complex phenomena are better represented by complex, “black-box”

models than simple and interpretable models. This may, in turn, represent a trade-off

between explainability (and thus a decision-maker’s capability for reasoning) and any

beneficence afforded by the increase in accuracy and model performance. In some use cases,

e.g. film recommendations, accuracy may outweigh the need for explanations. However, in

academic literature on recommender systems, explainability has been emphasised because
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it facilitates system design to improve the transparency, persuasiveness, effectiveness,

trustworthiness, and system debugging [Zhang et al., 2020]. The explanations may vary

based on the target of the explanation, such as the customer, regulator, domain experts,

or system developers, depending on the purpose of the explanation [Arya et al., 2019].

One such purpose is to improve the audience’s trust of the algorithm. It is important to

understand the interplay between an algorithm’s explanation and its perceived fairness.

There may be a number of possible explanations for any given decision, and the techniques

for xAI alone do not detect or correct unfair outcomes. The explanations may help

identify potential variables that are driving the unfair outcomes, e.g. if pricing varies for

female-dominated professions compared to male-dominated professions, the model may be

relying on occupation for its prediction, which acts as a proxy for gender.

Overall, we have shown that while fairness formalisations may provide a simple method-

ology for model developers to incorporate metrics relevant to equalisation of outcomes

between groups and individuals, they do not provide a holistic view of the important

debates on what fairness means. In ethical philosophy, the debate hinges on what types of

inequalities each scholar believes is acceptable or unacceptable. Fairness in ML should

similarly be considered as a fundamentally subjective topic. We then pointed out that the

narrow definition of fairness may not consider the long-term and big-picture ethical goals.

Drawing from welfare economics, we emphasise the importance of considering welfare and

autonomy alongside fairness to understand any competing objectives or trade-offs that

may exist in designing an ML system.

2.5 Proposed method: Key Ethics Indicators

In the final section of this chapter, we propose an approach (adapted from our paper [Lee

et al., 2021]) that moves away from attempts to define fairness mathematically, and

instead, gain a more holistic view of the ethical considerations of a model. This is a process

of making explicit all the ethical considerations in a use case, rather than an empirical

method. This approach is aligned to the more recent works in computer science that call on

researchers and practitioners to explicitly document data collection processes, worldviews,

and value assumptions [Friedler et al., 2016]. We introduce this to be a part of the business

process for an organisation developing ML systems. Due to the subjectivity of fairness

metrics, it may be challenging for the decision-makers to select one over another for a

system. Rather than these general metrics, decision-makers should create a customised

measurement of what “fair” looks like in each model. In practice, the decision-makers

would be include both technical developers and non-technical stakeholders, and there

may be an approval process, e.g. for the board to review the developer’s definition of

success. Wider communities, such as affected customers or marginalised groups, may be
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surveyed throughout this process to gain their views on what they view as fair. This is

especially important in global organisations, in which different cultures, jurisidictions,

and communities may have different views on prioritisation of their values. In addition,

fairness should not be considered in isolation from the related ethical goals. The interaction

between fairness and other values - e.g. welfare, autonomy, and explicability - should be

accounted for in this analysis.

Despite claims to the contrary [Heidari et al., 2019], the roles and responsibilities of an

engineer are necessarily intertwined with the role of the expert or business stakeholder,

as the ethical and practical valuations of what “success” looks like in the model directly

influences the algorithm design, build, and testing (to be discussed in Chapter 3). It is

important to have active engagement from the beginning between the developer and the

subject matter expert to try to understand which inequalities should or should not influence

the outcome. This process requires engagement from all relevant parties, including the

business owner and the technical owner, with potential input from regulators, customers,

communities affected by the ML systems, and legal experts.

Relying solely on the out-of-the-box fairness definitions as implemented in fairness

toolkits would fail to capture nuanced ethical trade-offs. There are opportunities for open

source communities, technology companies, and other practitioners to contribute to the

toolkits to improve them; we will discuss this in Chapter 4.

For a decision-maker, it is important to devise customised success metrics specific to the

context of each model, which, as we described, involves considering welfare (beneficence,

non-maleficence), autonomy, fairness, and explicability. This can be done through the

following process (also visualised in Figure 2.1):

1. Define “success” from an ethical perspective. What is the benefit of a more accurate

algorithm to the consumer, to society, and to the system? What are the potential

harms of false positives and false negatives? Are there any fundamental rights at

stake?

2. Identify the layers of inequality that are affecting the differences in outcome.

3. Identify the layers of bias.

4. Devise an appropriate mitigation strategy. Note this may require changes to data

collection mechanism or to existing processes, rather than a technical solution.

5. Operationalise these objectives into quantifiable metrics, build multiple models and

calculate the trade-offs between the objectives covering all ethical and practical

dimensions.

6. Select the model that best reflects the decision-maker’s values and relative prioritisa-

tion of objectives. [Lee et al., 2021]
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We now elaborate each of these steps, in turn.

Figure 2.1: Proposed KEI process

2.5.1 Define success

For each use case, there are unique considerations on what is considered a “successful”

model, which are unlikely to be captured in a single mathematical formula. In credit

risk evaluation, for example, three key objectives from ethical, regulatory, and practical

standpoints are: 1) allocative efficiency: a more accurate assessment of loan affordabil-

ity protects both the lender and the customer from expensive and harmful default; 2)

distributional fairness: increasing access to credit to disadvantaged borrowers, including

“thin-file” borrowers and minority groups; 3) autonomy: both increased scope of harm due

to identity theft and security risk and due to the effects of ubiquitous data collection on

privacy [Aggarwal, 2018]. There are multiple motivations to consider 2 and 3, especially

legal and regulatory compliance with non-discrimination and privacy laws and reputational

risk of unfairness. Perception of (un)fairness can impact companies’ profitability; for

instance, an experiment found that on average, people move twice as much money away

from banks that use algorithms in loan application decisions when told that they draw on

proxy data for race and gender or social media data [Chonaire and Meer, 2020].

A successful credit risk model would achieve all three objectives, though in reality,

there may be trade-offs among them. In algorithmic hiring, success metrics may include

employee performance, increased overall diversity among employees and in leadership,

and employee satisfaction with the role. It is important to identify all the objectives of

interest, such that any trade-offs between them may be easily identified, allowing for a

more holistic view of algorithmic ethics.

2.5.1.1 Special focus: impact on fundamental human rights and vulnerable

populations

The system’s potential impact must be assessed at this stage, especially in relation

to fundamental human rights and especially algorithmic decisions affecting vulnerable

populations. The use of AI systems can have negative impacts on fundamental rights

(including those relating to discrimination, privacy, or expression). It is therefore important

that those using AI consider impact on such rights. The Data Protection Impact Assessment

(DPIA), as enshrined in the General Data Protection Regulation (GDPR) [European

Union], already tasks organisations with considering the fundamental rights risks of their
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undertakings as they relate to rights and freedoms. However, assessing fundamental rights

impacts can be challenging for private organisations, as fundamental rights – originally

intended to protect the rights and freedoms of citizens against a powerful state – are broad

and abstract in nature. Nevertheless, an organisation’s assessment (be it public or private)

requires a context-specific impact assessment to these rights. Table 2.7 presents a non-

exhaustive list of rights within the clusters that organisations must consider in an impact

assessment. See our paper [Jenssen et al., 2022] proposing a practical framework to assist

organisations in undertaking fundamental rights impact assessments for details on how

FRIA can be performed as a part of DPIA in real-life settings. We give examples of risk

factors and potential scale of impact on fundamental human rights.

Cluster of rights Rights included

Privacy rights personal autonomy, private life, sanctity of the home, physical and
psychological privacy, communication secrecy, development of one’s
identity, relational privacy, data protection, right to (not)hold a
conviction or a belief

Expressional rights freedom of expression, artistic expression, commercial expression,
freedom to receive and impart information, press freedom, com-
mercial expression, right to assemble, right to vote

Procedural rights right to motivation, right of access to a court, right to a fair
trial, equal access to documentation in court proceedings, right to
adversarial proceedings, right to an effective legal remedy

Equality rights right to equal application of the law to everyone to whom the law
applies, prohibition of arbitrariness, prohibition of direct (inten-
tional) or indirect (unintended) discrimination

Socio-economic rights equal access to health care, equal access to affordable housing,
equal access to education, equal access to social benefits

Table 2.7: Overview of fundamental rights relevant in AI context; all of these require
assessment as part of a DPIA

2.5.2 Identify sources of inequality

As previously discussed, due to the complex and entangled sources of inequalities and

bias affecting an algorithm, there is no simple mathematical solution to unfairness. It is

important to understand what types of inequality are acceptable vs. unacceptable in each

use case. Table 2.4 presented different layers of inequality. Forcing the decision-maker

to look beyond the legally protected characteristics to identify the inequalities that are

acceptable and relevant and those that are not helps better identify the sub-groups that

are at risk of discrimination.

We previously claimed that computer scientists and model developers should actively

engage in the discussion on what layers of inequality should and should not be influencing

the model’s prediction in order to inform their decisions in the development process.
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An accountability mechanism, such as the assignment of roles and responsibilities, is

important; we have addressed how to embed risk management in the AI development

lifecycle in our paper [Lee et al., 2020], and we have mapped tools and techniques for

unfair bias mitigation to a standard organisational risk management lifecycle [Lee and

Singh, 2021b], which will be discussed in Chapter 3. We have also proposed a framework

for “reviewability” to ensure the logs, reporting, and audit trail are fit for purpose for

understanding the AI models [Cobbe et al., 2021], to be further discussed in Chapter 5.

In these papers, we emphasise the need for ethical principles to be operationalised into

practice and embedded into organisational processes, ensuring that the right stakeholders

are involved at the appropriate stage and that the accountability and responsibility of

each ethical risk is clear.

2.5.3 Identify sources of bias

In addition to the inequalities discussed above, there may be biases in the model develop-

ment lifecycle that exacerbate the existing inequalities between two groups. The challenge

is that in many cases, the patterns associated with the target outcome are also associated

with one’s identity, including race and gender. In Chapter 3, we will propose a practical

tool in identifying unintended biases in these six categories; here, we give a brief overview

in the context of KEIs.

Suresh and Guttag (2020) have recently grouped these types of biases into 6 categories:

historical, representation, measurement, aggregation, evaluation, and deployment. His-

torical bias refers to past discrimination and inequalities, and the remaining five biases,

displayed in Table 2.8, align to the phases of the model development lifecycle (data

collection, feature selection, model build, model evaluation, and productionisation) that

may inaccurately skew the predictions. By understanding the type of bias that exists, the

developer can identify the phase in which the bias was introduced, allowing him or her to

design a targeted mitigation strategy for each bias type.

Table 2.8 gives examples of racial discrimination in lending processes to demonstrate

each type of bias. Crucially, they point out that effective bias mitigation addresses the

bias at each stage of the lifecycle, including non-technical interventions. For example, bias

introduced through the data collection process may require a change in marketing strategy.

This stage of KEI approach enables bias to be addressed in each stage of the development

pipeline in which it was introduced.

2.5.4 Design mitigation strategies

The mitigation strategy depends on whether we believe the inequalities in Table 2.4 and

the biases in Table 2.8 need to be actively corrected to adjust for inequalities and bias.
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Types of bias Examples Variable

Representation bias Limited marketing and outreach in high-
minority neighborhoods

Bias 0

Measurement bias Unequal treatment in the lending process as-
sociated with race leads to mis-measurement
of risk factors

Bias 1

Aggregation bias There may be a difference in default frequency
distribution between racial groups, which is
poorly represented by a single model

Bias 2

Evaluation bias The accuracy and precision metrics in default
prediction vary across racial groups (e.g. lower
confidence in predictions for minority borrow-
ers)

Bias 3

Deployment bias True outcome only known for accepted loans
and unknown for denied loans

Bias 4

Table 2.8: Layers of bias resulting in inaccurate predictions (partial and indicative)

It is important to understand the type of bias and in which stage of the lifecycle it was

introduced in order to address it. In Chapter 4, we will discuss testing and mitigation;

however, we will provide a brief overview below in the context of KEIs.

There have been existing methods proposed for pre-processing, removing bias from

the data before the algorithm build, in-processing, building an algorithm with bias-related

constraints, and post-processing, adjusting the output predictions of an algorithm (See:

§4.2). However, these methods presume that inequalities in Table 2.4 and the biases

in Table 2.8 are known and can be quantified and surgically removed. How do we

isolate the impact of talent and preference inequalities on income from the impact of

discrimination? The attempt to “repair” the proxies to remove the racial bias has been

shown to be impractical and ineffective when the predictors are correlated to the protected

characteristic; even strong co-variates are often legitimate factors for decisions [Corbett-

Davies and Goel, 2018].

Often, the solution to these biases is not technical because their sources are not inherent

in the technique. Instead of looking for a mathematical solution, there may be productive

ways of counteracting these biases with changes to the process and strategy. Examples are

shown in Table 2.9.

While the mitigation strategies are important, they are unlikely to provide a complete

solution to the problem of algorithmic bias and fairness. That is because—unlike the

assumptions underlying fairness formalisations—it is often not feasible to mathematically

measure and surgically remove unfair bias from a model, which is affected by inequalities

and biases that are deeply entrenched in society and in the data. Selbst et al. 2019

have argued that “technical interventions [are] ineffective, inaccurate, and sometimes

dangerously misguided when they enter the societal context that surrounds decision-
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Types of bias Variable Example action

Treatment inequality / so-
cietal discrimination (exter-
nal)

Inequality 4 Identify a new feature to estimate income
volatility associated with race

Representation bias Bias 0 Change in marketing and outreach strategy to
include more high-minority neighbourhoods

Measurement bias Bias 1 Employee training on subconscious bias, stan-
dardised practice on which loan types are rec-
ommended based on pre-specified relevant cri-
teria

Deployment bias Bias 2 Continuous monitoring and analysis of whether
the decision boundary between rejection and
acceptance is appropriate

Table 2.9: Possible actions to counteract biases (*partial and indicative)

making systems” and highlight the need to focus on the process as well as the technical in

a system.

Legal scholars have argued that traditional approach of scrutinising the inputs to

a model is no longer effective due to the rising model complexity. Using Fair Lending

law as an example, Gillis demonstrates that identifying which features are relevant vs.

irrelevant fails to address discrimination concerns because combinations of seemingly

relevant inputs may drive disparate outcomes between racial group [Gillis, 2022]. Rather

than focusing on identifying and justifying inputs and policies that drive disparities, Gillis

argues, it is important to shift to an outcome-focused analysis of whether a model leads

to impermissible outcomes [Gillis, 2022]. Similarly, Lee and Floridi have proposed an

approach to assess whether the outcome of a model is desirable [Lee and Floridi, 2020].

For a more comprehensive analysis of whether a model meets the stakeholders’ ethical

criteria, it is important to look beyond the inputs and the designer’s intent and assess

the long-term and holistic outcome. Overall, designing the mitigation strategies would

then enable the calculation of any residual risk after they have been implemented. These

residual risks should be considered alongside the potential benefits in the next stage, in

which we operationalise the risks and benefits into KEIs.

2.5.5 Operationalise KEIs and calculate trade-offs between KEIs

Once “success” for a model has been defined at a high-level, the next step is to operationalise

the ethical principles such that they are measurable. Similarly to how a company may

define a set of quantifiable values to gauge its achievements using Key Performance

Indicators (KPIs), there should be outcome-based, quantifiable statements from an ethical

standpoint: Key Ethics Indicators (KEI), enabling developers to manage and track to what

extent each model is meeting the stated objectives. This may include positive benefits of
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the model as well as potential harm (residual risks).

For example, Lee and Floridi estimate the impact of each default risk prediction

algorithm on financial inclusion and on loan access for black borrowers [Lee and Floridi,

2020]. They operationalise financial inclusion as the total expected value of loans under

each model and minority loan access as the loan denial rate of black applicants under each

model. In Figure 2.2 replicated from our past work, they calculate the trade-offs between

the two objectives for five algorithms, providing actionable insights for all stakeholders on

the relative success of each model.

Figure 2.2: Replicated from Lee and Floridi (2020): Trade-off analysis

Context-specific KEIs can be developed for each use case. For example, in algorithmic

hiring, employee satisfaction with a role may be estimated by attrition rates and employee

tenure, employee performance may be measured through their annual review process, and

diversity may be calculated across gender, university, region, age group, and race, depending

on each organisation’s objectives and values. It is possible that not all considerations are

identified in the beginning, and stakeholders may disagree with one another on how to select

and prioritise KEIs. However, the important step is making explicit the ethical objectives in

each use case. This would help decision-makers justify the use of any algorithm, rendering

the trade-offs more transparent and reviewable. The decision-makers may add, remove,

or change the KEIs as their understanding of the objectives evolve through the model

development process. In the long-term, explicit discussion of KEIs in each use case can

lead to the establishment of industry standards, informing best practices, policy design,

and regulatory activity.

Once the KEIs, risks, and mitigation strategies have been identified, the stakeholders

can assess whether the potential benefits of the model outweigh the residual risks after the

mitigation has been taken into account. This should inform the initial go/no-go decision

at the design phase.
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2.5.6 Select a model and provide justifications

While the model selection and justification will be discussed in Chapter 3 and Chapter 4,

this will be briefly show how the trade-off analysis between these pre-established KEIs

makes the ethical considerations clear and actionable to the decision-maker. For example,

in Figure 2.2, Lee and Floridi conclude that Random forest is better in absolute terms

(in both financial inclusion and impact on minorities) than Näıve Bayes, but the decision

is more ambiguous between CART and LR: while CART is more accurate and results in

greater financial inclusion (equivalent of $15.6 million of loans, or 103 median-value loans),

CART results in a 3.8 percentage points increase in denial rates for black loan applicants

compared to LR. This quantifies the concrete stakes to the decision-maker who may decide

on the model that is most suited to his or her priorities, customised to each use case.

One of the key benefits of the outcome-driven KEI trade-off analysis is that it provides

interpretable and actionable insights into the decision-maker’s values, which is especially

important for complex machine learning algorithms in which the exact mechanism may

not be transparent or interpretable. This could also provide valuable justification to the

regulator on why a certain model was seen as preferable to all other reasonable alternatives.

This may also help reduce the hesitation among decision-makers around the use of machine

learning models due to their non-transparent risks, if the analysis shows they are superior

to traditional rules-based models in meeting each of the KEIs. Suitable records of the

decisions must be kept, ensuring the model and its design are reviewable [Cobbe et al.,

2021]. This is further discussed in 5 on how to review and monitor KEIs in online learning

settings.

2.6 Key chapter takeaways

Mathematical fairness definitions have been implemented into technical toolkits without

locating their implications in overall algorithmic ethics. One of our contributions is

to derive lessons from ethical philosophy and from welfare economics on what are the

contextual considerations that are important in assessing an algorithm’s ethics beyond

what can be captured in a mathematical formula. For example, we refer to the debate in

ethical philosophy on what constitutes acceptable vs. unacceptable inequalities. We also

relate to the explicit consideration in welfare economics of welfare and liberty, which are

associated with algorithmic ethics principles of beneficence, non-maleficence, autonomy,

and explicability. Over-reliance on fairness metrics would capture only one dimension of

an algorithm’s ethical impact.

As a step forward, our second contribution is the proposal of a generalised “Key

Ethics Indicator” (KEI) approach that explicitly forces a consideration of the ethical

objectives, aligning to the contextual features that we have drawn out as important
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in ethical philosophy and welfare economics literature. This is in contrast to previous

ethical frameworks that have been permutations of similar principles of beneficence, non-

maleficence, justice, autonomy, and explicability. The KEI approach requires translation

of the technical fairness metrics into real-world implications, such as the potential impact

on the customers or users of the ML system. It also enables reviewable record-keeping of

any trade-offs and alternative models that were considered and why one model was chosen

over another. By actively accounting for the inequalities and biases, the KEI approach

more closely aligns to the lessons from ethical philosophy than the technical fairness

metrics. By considering fairness alongside welfare and autonomy, the KEI approach aligns

to lessons from welfare economics. In certain cases, especially in high-impact public

sector models, the KEIs may be used as a transparency mechanism on how decisions are

made and released to the public for any contestation or debate. This is aligned to the

ethos of responsible innovation that is founded on a substantive “inclusive reflection and

deliberative democracy.”

Often, the discomfort with the use of ML to make decisions derives from the tension

between the opportunity provided by algorithms that can more accurately predict an

outcome and the risk of systematically reinforcing existing biases in the data and the risk

of undermining human autonomy [Lee et al., 2020]. On the other hand, unlike human

subconscious biases, the ethical impact of machine predictions can be systematically

audited, debated, and improved [Kleinberg et al., 2018]. By understanding the holistic

ethical considerations of each algorithmic decision-making process using KEIs, decision-

makers can be better informed about the value judgements, assumptions, and consequences

of their algorithmic design, opening up the conversations with regulators and with society

on what is an ethical decision.

In addition to identifying these risks in KEI, it is also important to test and interrogate

the KEI considerations. This will be discussed in Chapter 4. Once the algorithm has

passed the go/no-go decision through the assessment of the risks and benefits, the developer

moves to the build phase. Once the model has been deemed to have greater benefits than

risks in the design phase, in a business process, often the developer would gain permission

to proceed with the build. However, by the iterative nature of an ML development process,

the model design often evolves throughout its build, with potential trade-offs changing

among the KEIs. The KEI approach proposes the building of multiple models, calculating

the trade-offs, and selecting the model that best reflects the decision-maker’s values. These

KEIs are then monitored. We will discuss the build phase in the next chapter.
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Chapter 3

ML Build: identifying and measuring

unintended unfair biases

Introduction

In building an ML model, the developer makes many decisions that may affect the model’s

fairness. In the KEI approach in Chapter 2, Step 3 was to identify the layers of bias in the

system. While some may be apparent from the design phase, such as the representation

bias that exists in the data set that has already been collected, the developer building

the ML model has to be mindful of other potential unintended biases that are being

introduced through his/her modelling decisions that may result in a disproportionately

negative impact on minority, under-represented, vulnerable, or excluded communities.

These decisions include data collection mechanism (if the developer decides to collect data

instead of or in addition to using a pre-existing data set), feature selection / engineering,

decision on how to measure the outcome, model selection, and selection of performance

metrics.

In the Introduction, we discussed the incentives for organisations to combat fairness-

related risks. In this chapter, we again focus on unintended biases under the assumption

that it is within the ML developer’s interest to reduce undesired discriminatory outcomes.

It is plausible that there are malicious developers intending to unfairly discriminate and

mask their intention throughout their ML development process by making the ML model

look fair. However, these adversarial actors are out of scope for this thesis because

they have an entirely different incentive structure. We aim to provide guidance to the

well-intentioned ML developers on how to identify unintended unfair biases.

While frameworks for identifying the risks of harm due to unintended biases have

been proposed [Suresh and Guttag, 2021], these biases had not been operationalised into

practical tools to assist industry practitioners until our paper [Lee and Singh, 2021b].

In this chapter, we introduce a bias identification methodology and questionnaire first
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proposed in [Lee and Singh, 2021b], illustrating its application through a real-world

practitioner-led use case. We validate the need and usefulness of the questionnaire through

a survey of industry practitioners, which provides insights into their practical requirements

and preferences. Our results indicate that such a questionnaire is helpful for proactively

uncovering unexpected bias concerns, particularly where it is easy to integrate into existing

processes, and facilitates communication with non-technical stakeholders. A questionnaire

that helps the developer contextualise the bias risk on the potential impact is crucial to

its applicability.

Ultimately, the effective end-to-end management of ML risks requires a more targeted

identification of potential harm and its sources throughout the model build lifecycle, so

that appropriate mitigation strategies can be formulated. Towards this, our questionnaire

provides a practical means to assist practitioners in identifying bias-related risks.

3.1 How a system’s definition as AI and ADM pro-

vides only partial information about its risk

Before we discuss the bias risk identification in ML build process, it is important to

understand these risks are not inherent in the technique of AI and ML. That is, a system

without ML components may also have fairness-related risks. There is a growing range

of guidance that relates to governance of technical systems that specifically reference

and target AI and ML in areas including privacy and data protection, fundamental

rights, and ethical considerations. These AI and ML guidance documents are issued by

regulators [Information Commissioner’s Office, 2017], governments [Government of the

Netherlands; OECD.AI Policy Observatory], legislative bodies [European Parliament], and

international organisations [European Commission Independent High Level Expert Group

on Artificial Intelligence; European Commission, a; Council of Europe Commissioner for

Human Rights]. While these documents understandably advise on the risks of ML-driven

systems that are newly and increasingly adopted across industries, the framing around AI

and ML could give organisations the mistaken impression that AI systems are exceptional

and higher-risk, requiring separate attention to non-AI systems. This is problematic for

two reasons. First, the term ‘AI’ is inherently ambiguous and open to interpretation, as

discussed in §1.1. Second, it is difficult to tease out the nuances in the overlaps and ‘grey

areas’ between ML techniques and/or automated decision-making (ADM) processes in

any system. Therefore, it is important to be clear on these terminologies and distinguish

between guidance unique to ML and that which is applicable across all systems.

Adapted from our Chapter in the 2022 European Data Protection Handbook [Lee et al.,

2022], in this section, we argue that – given the nuances masked by such terminologies –

organisations should adopt risk-oriented approaches to identify system risks that extend
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beyond technology classification as AI or non-AI. The publication is intended for an

audience beyond the technical developers; therefore, this section is framed to be accessible

to legal scholars and policymakers. Guidance and recommendations that target typical

concerns regarding technology specifics, such as the technique (AI) or the degree of

automation of an organisation’s processes (ADM), will often only partially capture a

system’s risk profile [Cobbe et al., 2021]. The proliferation of guidance specific to AI

may, for instance, give rise to the mistaken assumption that all AI systems are higher

risk than non-AI and require exceptional and separate risk management. A more holistic

assessment of system risk is needed, rather than based on some ‘top-down’ categorisation

of the technologies employed. Thus, while we frame our thesis around AI and ML, we

refer wherever appropriate to contextual risks, emphasising that the mitigation should be

proportionate to these risks. This is a part of our critique of existing approaches that are

not tailored to the context-specific risk levels.

A system’s categorisation as an ‘ADM system using AI’ or ‘ADM system without AI’

gives only partial information about each system’s risk profile. Given the overlaps among

the three terminologies, these are best visualised in a Venn diagram among three sets: AI,

profiling, and ADM. Considering Figure 3.1, AI is associated with what a system uses,

profiling is associated with what a system does, and ADM is associated with what a system

is used to do.

Figure 3.1: Legal definition of AI, ADM, and profiling

A system may involve any combination of AI techniques, ADM processes, and profiling

activities. Whether AI is being used for ADM, i.e. a system using AI to make automated

decisions, depends on 1) its purpose and 2) the extent to which human intervention is

applied. A retail chatbot, for example, may interact with a customer without human input

but provide only informational support, e.g. whether a particular product is in stock (label

(b)). The chatbot’s intent prediction algorithm arguably would not be considered ADM.
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An ML algorithm that analyses the text in job applications to automatically reject

under-qualified candidates would use AI in an ADM process for the purpose of profiling

people (label (e)) due to its use of ML techniques and its processing of personal data to

make automated decisions with respect to individuals. However, an ML algorithm trained

on the same data to tag text in the CV relevant to an advertised role could be considered as

using AI for profiling but not necessarily used for ADM (label (g)) [European Commission,

b]. This is because of the role that the algorithm is playing in the decision-making process;

in the former example, the algorithm is the decisive agent, while in the latter, the algorithm

merely facilitates and accelerates the human decision-making on who is hired.

Conversely, not all ADM would involve AI. Consider a scorecard to apply pre-defined

criteria to screen out unqualified candidates; for example, having obtained a postgraduate

degree adds 5 points to the total score, and each year of job experience adds 2 points to the

score. This is an ADM system that involves profiling but is rules-based in its nature and

therefore does not use AI (label (f)). As a real-life example, the UK’s EU citizens settlement

scheme [Tomlinson] involved solely ADM with legally significant effects that did not use

either profiling or AI (label (d)). The algorithm automatically accepted an application if

the information on matched records held by other organisations and if the applicant met a

5-year residency criteria. Because it is not evaluating personal characteristics but rather,

classifying people by known information, it is not profiling [European Commission, b].

An algorithmic system may neither use AI nor be used for ADM, such as a rules-based

program that highlights keywords in an application prior to human review (label (a)).

Examples of systems that use AI for ADM but not profiling (label (c)) include those in

algorithmic trading that do not involve personal information.

Profiling—automated personal data processing to evaluate personal aspects—may also

be a part of ADM process or involve AI as a technique. GDPR characterises profiling

as sometimes being part of solely automated decision-making (see, e.g., Article 22(1),

Recital 71) on which other decisions may in turn be based (e.g. Article 35(3)(a), Recital

73), but profiling is itself not necessarily automated decision-making (e.g. Recital 24 or

70) [European Commission, c]. Even when it is a part of solely automated decision-making,

it isn’t necessarily solely automated decision-making with legal or similarly significant

effects (Article 22). For example, general profiling may be performed without links to

any decisions, e.g. high-level insights into the customer base distribution (label (h)).

This could include ML techniques, e.g. clustering customers using unsupervised machine

learning techniques into categories (label (g)). If decisions are made off the basis of these

insights, such as being used for individualised pricing, the system would then be a part of

ADM (label (e)).

The differences in terminological categories (a-h) represented in this figure are compli-

cated and open to interpretation. Due to the inherent ambiguity and nuance around these

63



terminologies, the framing of guidance around these terms may inadvertently mislead or

confuse as to the document’s intended or applicable scope. While the guidance documents

target their recommendations around ‘AI’ and/or ‘ADM’, the organisations must ensure

they appropriately interpret to what extent the guidance is applicable to non-AI and/or

non-ADM systems with similar risk profiles. Organisational governance should be framed

around specific risks associated with a system, rather than depending solely on a system’s

classification. This would facilitate a more targeted documentation and logging for greater

auditability, testing, and reviewability.

Whether a system uses AI is only partially relevant in assessing its risk; therefore, ap-

plying the guidance solely to what an organisation considers AI would be misaligned to the

true risk profile of each system. For example, regulators responsible for GDPR enforcement

have released guidance framed on AI. In the UK, the ICO released a report [Information

Commissioner’s Office, 2017] specifically on the implications of AI, big data, and machine

learning on the enforcement of GDPR. While the guidance describes itself as generally

applicable, its framing around AI, ML, and big data makes it ambiguous to what extent

the recommendations apply to systems that do not employ AI. The guidance justifies its

focus on AI by claiming that it presents distinct challenges: the use of ML algorithms,

the opacity of the processing, the tendency to collect ‘all the data,’ the re-purposing of

the data, and the use of new types of data. However, these considerations are not unique

to AI; similar risk factors that may be present in non-AI algorithms. A hiring scorecard

may have hundreds of criteria with a complex logic flow, using third-party data sets and

applicants’ social media profiles. The fact that it is rules-based and not using machine

learning techniques does not detract from the potential regulatory risks, including GDPR

and EU non-discrimination laws.

There are challenges in any algorithmic system, but not all of them can be attributed

to the technique (AI vs. non-AI) selected. Accordingly, the ICO rightly emphasises in the

aforementioned report that it is not relevant how an organisation defines AI: “If you are

processing this data in the context of statistical models and using those models to make

predictions about people, this guidance will be relevant to you regardless of whether you

classify those activities as ML (or AI)” [Information Commissioner’s Office, 2017]. Some

characteristics of AI may require different considerations of risk mitigation, such as for

uncertainty in the feedback loop (discussed in Chapter 5), but the the overall risk level is

not solely determined by the technique.

All algorithmic systems, AI or non-AI, may be under scrutiny for potential regulatory

violations, and organisations are expected to ensure that the governance processes are

fit for purpose for each algorithm, in accordance with GDPR [European Union] Articles

24, 25, 32, 35 and other applicable law. However, the term “AI” is overloaded, and

the challenge lies in interpreting to what extent the guidance is applicable to non-AI
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systems, especially in cases where it has some of the characteristics (e.g. use of alternative,

non-traditional data sets) that are typical of an AI. A more holistic risk assessment is

needed, and organisations should take into consideration a broader set of risk factors than

the selected technology. Further examples and case studies demonstrating this can be

found in our European Data Protection Handbook chapter [Lee et al., 2022].

It is important for organisational governance processes to entail a more holistic as-

sessment of system risk, rather than relying solely on ‘top-down’ categorisations of the

technologies employed. A ‘bottom-up’ risk identification process enables a more effective

identification of appropriate controls and mitigation strategies. Therefore, this thesis

concerns itself with less with generalisations on the risks of AI associated with fairness

but rather more with approaches that can be tailored to each context, tackling the source

of each risk. This is the foundation for our proposed questionnaire in the next section.

3.2 Unintended bias risks in ML build lifecycle

As shown in §3.1, it is advisable to identify potential risks in the end-to-end system,

regardless of whether it uses AI. In this section, we address a typical supervised ML

development lifecycle, but this can be applicable to non-ML algorithms, such as rules-

based scorecards. Instead of focusing on ML techniques alone, we assess the socio-technical

system of a developmental lifecycle, including the humans and processes embedded in the

pipeline. Thus, we identify the types of bias risks that exist in each stage of a model build

process. We use a case study of ML in insurance fraud prediction to validate our proposed

questionnaire.

Scholars have proposed mathematical methods (e.g. [Dwork et al., 2012; Hardt et al.,

2016; Kusner et al., 2017]) to formalise and test for a particular definition of “fairness” in ML.

As discussed in Chapter 2, these definitions can be incompatible with one another [Kleinberg

et al., 2016; Pleiss et al., 2017], prompting work distinguishing between them [Verma

and Rubin, 2018; Narayanan, 2018]. These techniques assume that fairness can be

mathematically operationalised, a view often criticised as overlooking the societal and

historical contexts [Green and Hu, 2018; Selbst et al., 2019]. While these mathematical

fairness tests may identify whether and how a model is “unfair,” they do not answer why.

This makes it difficult to identify mitigation strategies or translate the bias into real-world

potential impact. Different metrics provide different answers related to a system’s “fairness.”

In Chapter 1 we observed that these definitions give little information or guarantee on

model fairness and argued that there should be a more systematic method for identifying

the risk of unfairness – a difficult task where there are competing definitions. In particular,

in past user studies, practitioners have claimed they struggle with “explicitly considering

biases and ‘blind spots’ that may be present in the humans embedded throughout the ML
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development pipeline, such as crowd-workers or user study participants” [Holstein et al.,

2019]. These would not be identified in the mathematical tests and require a qualitative

identification.

Referring back to our definition of bias in Chapter 1, instead of attempting to define a

contextually complex concept such as fairness, recent work has also suggested it may be

more helpful to identify potential biases that skew the outcome in unintended, undesirable

ways. Suresh and Guttag (2021) in particular have noted that while downstream harms

are often blamed on “biased data,” they arise from distinct categories of biases that

each aligns to an ML development process [Suresh and Guttag, 2021]. In each stage of

model development, there are decisions made that could result in skewing of the outcome

in a way that is discriminatory against certain sub-groups, e.g. in data collection and

labelling methods, feature engineering, etc. Specifically, Suresh and Guttag (2021) define

six categories of biases that may cause unintended harm [Suresh and Guttag, 2021]:

1. Historical bias: misalignment between the world as-is and the values or objectives

required from the ML model;

2. Representation bias: under-representation or failure for a population to generalise

for groups in population;

3. Measurement bias: choosing and utilising features/labels that are noisy proxies

for real-world quantities;

4. Aggregation bias: inappropriate combination of heterogeneous, distinct groups

into a single model;

5. Evaluation bias: use of inappropriate performance metrics or the testing / external

benchmark that does not represent the entire population; and

6. Deployment bias: inappropriate use or interpretation of model in a live environ-

ment.

This echoes similar work on categorising undesired biases [Mehrabi et al., 2021; Olteanu

et al., 2019]. The ML development lifecycle involves a series of decisions from evaluation

methodology to model selection that can lead to unwanted effects (illustrated in Figure 3.2).

As such, instead of “fairness,” we refer to unintended biases in this chapter with an

eye to any aspects of the data, model, and processes in the model build decisions that

may result in negative impact, especially on previously marginalised groups. In other

words, while the ethical considerations have been identified in the design phase, in the

build phase, the developer should be mindful of any decisions that may skew the outcomes

in unintended ways during the development.
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Figure 3.2: Bias in ML development lifecycle

Scholars have found industry practitioners still struggle with challenges of unintended

biases. Past studies of practitioner needs have found a significant gap between the methods

introduced in research for managing biases and the institutional realities [Veale et al., 2018].

Practitioner approaches to managing the risks of potentially unfair biases is often reactive—

focused on addressing customer complaints—rather than proactive, and practitioners are

uncertain on how to identify the potential bias risks in their particular context and domain

area [Holstein et al., 2019]. Such difficulties for practitioners remain despite the emergence

of fairness toolkits (to be discussed in Chapter 4), in part due to the tools’ limited coverage

of ML lifecycle and the confusion on how such methods integrate with organisational

processes [Lee and Singh, 2021a]. While Suresh and Guttag (2021) discuss two case studies

of unintended biases, they do not provide any generalised method to identify them [Suresh

and Guttag, 2021]. Only once bias risk is identified can it be evaluated, quantified, and

mitigated, and it represents a significant gap in implemented methods.

3.3 Proposed tool: Risk identification questionnaire

Practitioners believe existing tools and approaches are insufficient in providing clear,

targeted processes for identifying the risks of unintended biases and the appropriate

mitigation strategies [Veale et al., 2018; Holstein et al., 2019; Lee and Singh, 2021a].

While frameworks have been proposed for risk identification of unintended biases, in the

context of this thesis, each bias is defined in an operational sense: how it may manifest

itself in practical settings [Lee and Singh, 2021b] by introducing a risk identification

questionnaire that helps to detect the potential risks for each type of bias in each phase of

the ML development lifecycle. In other words, the bias framework was broken down into
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Questionnaire section Bias type
A. Background information N/A - context
B. Design Historical / external bias
C. Data collection Representation bias
D. Feature engineering Measurement bias
E. Model build and training Aggregation bias
F. Model evaluation Evaluation bias
G. Model productionisation & monitoring Deployment bias

Table 3.1: Questionnaire structure

its component parts and translated into practical ways in which the biases may manifest

in the lifecycle. In the context of this thesis, it supplements the KEI approach step 3,

which is to “identify sources of bias.” While some biases may be apparent in the design

phase, others may be introduced or discovered during the build.

This marks a departure from the checklist approach by Madaio (2020), which is not

aligned to any bias type frameworks and describes activities rather than questions helping

to elucidate bias risks [Madaio et al., 2020]. For example, the checklist items include “solicit

inputs and concerns on system vision” and “undertake user testing” with some example

considerations [Madaio et al., 2020]. By contrast, our questionnaire is not intended as an

activity checklist, but rather, aims to engage the developer by walking them through each

way in which unintended bias may manifest itself in ML development, which would help

identify a more targeted mitigation activity than a generalised activity list. A checklist is

a set of steps to tick off, which are general activities, while a questionnaire prompts to

developer to a potential issue related to bias.

The questionnaire aims to provide a starting point for extension and customisation

to a particular domain or scenario. After reading the framework by Suresh and Guttag

(2021), I have operationalised the concepts into question formats. Future work could

further adapt the questionnaire and develop additional guidance on how it may be applied

in different contexts. We use a case study on fraud detection in §3.4 to illustrate its

usefulness as a general tool. The risk identification process may be carried out internally

(through different organisational teams) by the model development team with input from

others, such as by legal risk teams, by the internal audit/model validation team, and/or

externally for an independent third-party assessment of the ethical risks of the model. The

subsequent risk analysis stages, which should be addressed in future work, may be used to

assess the trade-offs in the model and justify its usage to key stakeholders, both internal

(e.g. board) and external (e.g. customers, regulators).

As Table 3.1 shows, the structure of the questionnaire (outlined below) aligns to the

bias framework of Suresh and Guttag (2021) [Suresh and Guttag, 2021] in Fig. 3.2.

Section (A) establishes the context. This mirrors the KEI approach closely, highlighting

the various legal, practical, and ethical considerations and the potential positive and
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negative impact of the model. The subsequent sections ask probing questions for

each stage of the model development lifecycle.

Section (B) considers historical and external biases in the design phase, asking the users

to consider the acceptability of existing inequalities in the world they aim to model,

such as the presence of any history of discrimination in their domain area.

Section (C) considers the potential for representation bias in the data collection process,

challenging the users on any subjectivity of recorded features and the possibility the

sample in the data set is not representative of the target population.

Section (D) helps identify potential measurement bias introduced in the feature engi-

neering and selection process, such as any differences in data quality, measurement

methods, or the presence of proxies of sensitive features.

Section (E) challenges whether aggregation bias may be introduced in the model build

and training, where heterogeneous groups and mechanisms are being improperly

accounted for in one model.

Section (F) looks for evaluation bias in the model evaluation process, including the

trade-off identification we discussed in the KEI approach and the any disparity in

model performance across groups. Finally,

Section (G) looks at the deployment biases that may be introduced in the post-production

monitoring process of a model, such as any skewed feedback mechanisms and external

changes that may introduce biases into the model re-training.

Answering “yes” to the prompting questions indicates a risk of bias in that phase,

prompting its analysis, impact assessment, and mitigation, to be covered in subsequent

Chapters 4, 5, and 6. The full questionnaire can be found in the Appendix A. A small

sample of the questionnaire is displayed in Fig. 3.3.

3.4 Real-world case study: Questionnaire applied to

insurance fraud

We will now walk through a real-world case study to demonstrate the types of bias risks that

are identified. The purpose of the case study is to demonstrate how unforeseen biases can

be surfaced through this questionnaire. Since this case study, there have been important

developments to support practitioners in risk management of AI. A notable example is the

National Institute of Standards and Technology (NIST) AI Risk Management Framework,

designed as a part of the U.S strategy for AI [Tabassi, 2023].
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C. Data collection: Representation bias

C.1 Selection bias: Is the marketing / targeting / data collection strategy returning a non-
representative sample of the population? Ex) is the mortgage company advertised in majority-
white neighborhoods, or is the recruiting firm only active at top universities?

C.2 Subjective recorded features: Are any of the recorded features affected by human
judgment? Ex) the data set may include the interviewer s̓ scores on the candidatesʼ
performance

C.3 Third party: Are any of the recorded features produced by a third party data set or model?
Ex) the credit scores may be provided by a specialist agency, or an open source data set on
university rankings may be used in a hiring model

C.4 Known unknown: Is any ground truth of actual outcomes unknown? Ex) whether denied
loans would have defaulted is unknown

C.5 Sample size: Is there insufficient sample in any subgroup of interest (especially those in B.1)
for this analysis? Ex) only 1% of applicants are Native Americans

D. Feature engineering: measurement bias

D.1 Different measurements: Are there differences in the measurement process between
groups for either input features or the target outcome? Ex) high-minority neighborhoods are
more frequently patrolled, leading to higher arrest rates

Figure 3.3: Sample snapshot of the questionnaire

The case study was based on a 1:1 walk-through of the questionnaire with the devel-

oper of a fraud prediction model for an insurance company (hereinafter referred to as

“developer”). All potentially identifying information on the individual, model, and company

is withheld to preserve confidentiality. The answers are summarised and paraphrased for

conciseness, but all content is contributed by the model developer without our assistance

or consultation. Therefore, what is discussed in this section reflects the views of the

developer and are not our own.

3.4.1 (A) Background information

The questionnaire begins by probing on the potential positive and negative impacts of the

model. It calls for operationalisation of ethical objectives, which we covered in §2.5.1. The
first step in defining “Key Ethics Indicators” (KEIs) (§2.5.1) is defining “success” that

span ethical, regulatory, and practical perspectives. This is important to contextualise

the potential impact of unintended biases and prioritise the types of biases that are the

highest risk. In the example of insurance fraud detection, the developer was able to identify

the potential benefits and harms in the system. Higher true positive rates in identifying

fraud would reduce claim costs, enabling cheaper insurance premiums and reducing money

available to criminals. Higher true negative rates would ensure genuinely honest claims are

paid more quickly with fewer intrusive processes. Conversely, high false positive rates can

make honest claimants feel persecuted, who may withdraw their claims, while potentially

70



appearing to the regulators and customers as a deliberate bar to making claims. There is

also potential representational harm: fraud classification may be taken as an indication of

criminality and re-enforce historical and societal discrimination. High false positive rates

among marginalised groups may exacerbate this perception and disproportionately affect

their financial well-being. Once the metrics (false positive and false negative rates) are

translated into real-life implications, they are imbued with practical significance to inform

decisions made throughout the build process.

3.4.2 (B) Design: historical/external bias

This section of the questionnaire addresses historical bias, which is relevant to ML models

when the world as faithfully represented in the training data does not align with the ideal

“target” world. If there is documented historical discrimination in the domain area, e.g.

history of racial discrimination in employment, then training a model on the data would

replicate this bias. This is associated with the step in Key Ethics Indicators in which we

identify the sources of both “acceptable” and “unacceptable” inequalities in the real world

that may be represented in the given data set (§2.5.2).
The developer suggested that the identification of potential criminal acts is regularly

accused of racial or faith-based biases. Regarding which types of inequalities are a justifiable

source of differences in model outcome, the developer answered the only demographic

information that may be considered is the preferences of an individual, i.e. choice to

deceive by action or inaction, or pattern of behaviour that show they are likely to commit

fraud. There is no evidence socioeconomic background is a potential indicator of fraud

risk on its own, but the developer stated that it may be justifiable in combination, e.g. a

low-income claimant for an expensive watch. Race, gender, disability, age, national origin,

talent/education level, personality traits, culture, and discrimination in related markets

(e.g. employment) should not play a role on their own in affecting the prediction of fraud

risk.

3.4.3 (C) Data collection: representation bias

Collection methodologies can skew how the data set represents the ground truth. The

developer identified four representation biases by using the questionnaire.

First, the majority of data used in the insurance claim fraud risk assessment is entered

into the system by a claim handler, which may result in subconscious judgement being

embedded into the input data. For example, the developer suggested a possibility that

claimants who do not speak English well could, e.g. due to miscommunication with the

claim handler, result in a different quality of data.

Second, some features in the data are collected by suppliers or specialists as a part of
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the claims process. Third party data sets may have their own sets of selection biases that

may not be representative of the company’s client base.

Third, any claim that has not been investigated is labelled as honest, and there is

a general assumption that a significant percentage of fraud is missed because it is not

flagged in human or machine screening. These “unknown unknowns” suggest that some

actual outcomes are mislabelled, and any models built on previously investigated claims

would find similar cases of fraud and be unable to detect the non-obvious cases that are

incorrectly recorded as honest.

Fourth, it was noted that the proven fraud rate in insurance claims “rarely exceeds 2%

and significantly lower in some business lines.” It is especially challenging for a model

to identify patterns when there is an insufficient sample of any subgroups of interest

represented in the full data set.

3.4.4 (D) Feature engineering: measurement bias

Measurement bias may be introduced in the feature engineering process if there are

differences in the measurement process between groups for either input features or the target

outcome. The developer identified several measurement biases through the questionnaire.

Fraud models can rely on features engineered by the model developer based on fraud

intelligence or histories, which could themselves be biased and affected by developer

judgement. There is also a risk of proxies in measurement: any attempts to locate

geographical patterns of fraud could create unintended correlations with certain national

or racial groups. (Note the issue of proxies is discussed in further detail in §3.6.) The

target outcome measure is also imperfect: a model can only identify claims for further

investigation, which is not the same as confirmed fraud. As mentioned, it is assumed that

there are cases of fraud that are missed by both the model and the investigator.

3.4.5 (E) Model build and training: aggregation bias

In searching for potential biases in model build processes, the questionnaire attempts to

uncover aggregation biases, which occur when populations are heterogeneous in a way such

that a single model cannot account for all subgroups. The developer noted that, because

there is no single type of fraud, a good detection model must identify which of the many

possible fraud scenarios may have occurred and flag it appropriately to the investigation

team. The model may be improperly aggregating different types of fraud with different

causal mechanisms.
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3.4.6 (F) Model evaluation: evaluation bias

The questionnaire then considers whether the model is over-fitting to a particular metric,

such as accuracy. The developer emphasised that the relative importance of false positive

and negative results can vary according to the business appetites and claim types. A false

positive can lead to a sub-optimal customer experience due to delays in the company’s

payment of a legitimate claim. A false negative involves a financial loss to the company

due to an unidentified fraudulent claim. While both metrics are considered, the developer

noted the core metric for a fraud model is whether a claim is appropriate for further

investigation (true positive rates), which can emphasise the flagging of outliers rather than

genuinely fraudulent claims.

3.4.7 (G) Model productionisation and monitoring: deployment

bias

The questionnaire also probes on potential biases in the model once deployed, as an ML

model is often a part of a complex socio-technical system with inter-connected models or

embedded in human processes. The developer answered that fraud models feed human

investigators, who flag any claims which were not correctly marked for investigation.

Investigators’ biases may continue to reinforce any biases in the model as the key feedback

mechanism. If there are any external changes that may affect the model, the team manually

reviews and implements any model changes.

Overall, the developer stated that while some of these biases were known limitations,

such as fraud being a rare event and the difference between potential and confirmed fraud,

answering the questionnaire helped systematically list them and consider their cumulative

impact. The developer noted that it makes the mitigation strategies clear for each type of

potential bias. These views were echoed in the following survey.

3.5 Survey results on questionnaire’s effectiveness

We conducted an online survey of industry practitioners to (i) better understand practical

requirements for risk identification materials in real-life use cases, and (ii) validate the

effectiveness and usability of the questionnaire on a larger variety of scenarios and domains.

The study passed our departmental ethical review process and used Qualtrics survey

software. It was anonymous and did not ask for any identifying information, including

name, company, or contact details. We emailed the survey link to direct contacts, as

well as advertising it on online communities related to data science and analytics, e.g.

those on meet-up, Facebook, reddit, and LinkedIn groups. We also encouraged sharing

of the survey link to anyone working in data science and analytics. Of the 105 people
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Roles N %

Academic 10 13%

Business lead 8 10%

Data scientist 29 37%

ML engineer 8 10%

Software developer 1 1%

Technical lead 11 14%

Other 11 14%

Table 3.2: Survey demographics: roles

who started the survey, 78 (74%) of the respondents completed at least one section and

29 (28%) completed the entire survey. Summary statistics on their roles can be found

in Table 3.2. Due to our contacts being primarily in the UK, most (69%, n=53) were

from the UK, with the remainder in the US (18%, n=14), Belgium (3%, n=2), India (3%,

n=2), and 1 respondent each from Canada, France, Hong Kong, Ireland, Netherlands, and

Singapore. The limitations of our sample and our research design are discussed in §3.7.
All practitioners were given a link to the full questionnaire to read through it with their

own use cases in mind and answer whether the questionnaire was helpful. We structured

the survey into the following four sections: (1) Demographics, (2) Importance of different

characteristics of bias assessment, (3) To what extent the questionnaire meets these criteria,

and (4) the questionnaire’s usability. In (2), we asked for ratings on various criteria of a

risk assessment questionnaire from “Extremely important” to “Not at all important”, with

probing questions to explain their answers. In (3), we asked how the questionnaire meets

the criteria from “Strongly agree” to “Strongly disagree.” In (4) we used the standard

System Usability Scale (SUS) [Brooke, 1996b] to measure usability.

We also asked the practitioners, if they are comfortable doing so, to share the bias-

related challenge they have faced in their work, in order to contextualise their answers

to the survey. 16 respondents chose to share the details of their model, which included a

diverse set, e.g. recruiting, sales forecasting, genetic disease prediction, facial recognition,

appointment no-shows, and content moderation.

The survey aimed to not only validate the questionnaire but contextualise how the

practitioners may use these types of tools in their work. We now report on our findings,

highlighting takeaways on practitioners’ needs and preferences.

3.5.1 Uncovering unexpected biases

Our results show that bias is clearly of concern to the respondents. Our survey confirmed

that 90% of practitioners believe the “ability to proactively diagnose unexpected issue(s)”

related to biases is extremely/very important. 86% of them agree that our proposed

questionnaire meets this need. Practitioners commented in the free-text answers that
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Statement % who believe it
is extremely or
very important

% who agree
that the ques-
tionnaire meets
this need

Ability to proactively diagnose unexpected bias
issue(s)

90% 86%

Ease of integration into existing processes 83% 62%

Facilitating communication with non-technical
stakeholders

81% 79%

Identifying potential mitigative actions 78% 59%

Table 3.3: Survey findings: practitioner needs that are met by the bias risk questionnaire.
See §3.7.1 for some of the explanations

Statement % yes

My organisation would use this questionnaire 65%

I think I would like to use this questionnaire
frequently

59%

Table 3.4: Survey findings on future usage by practitioners

the “breakdown of different types of biases,” “clear structure,” “standardising model

assessment,” and “concrete concepts” are the most helpful aspects of the questionnaire,

helping practitioners “think about bias in a systematic way.” One practitioner responded

it was “bringing up points that wouldn’t have occurred to me,” and another said it

“allowed me to consider a broader range of impact points that may affect my model’s bias

than I would have otherwise been aware of.” More broadly than the risk diagnosis, the

questionnaire was found to enable greater familiarity with the model. 77% believe “better

understanding of model risk” is extremely/very important important, with 83% agreeing

the questionnaire helps them achieve this goal.

3.5.2 Ease of integration into existing processes

The practitioners reported the importance of a bias tool’s “ease of integration into existing

processes” (83% extremely/very important). Regarding the questionnaire, 62% agreed

that our proposal fulfilled this aim, with 24% neutral and 14% disagreeing. In answering

whether the practitioner’s organisation would use the questionnaire, 65% said “yes”, while

35% said “no.” A few who disagreed explained it was not directly relevant to their work,

one stating it would require domain-specific modifications and adaptations. Others who

agreed answered in free-text that it “can be integrated straight away” and “would fit in

well with our existing risk management, documentation, and approval processes.” This

shows how the questionnaire can be broadly applied across domain areas as it is in its

general state, as well as representing a starting point for others to adapt to their use cases

where further customisation is required.
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3.5.3 Facilitating communication with non-technical stakehold-

ers

One feature that the practitioners ranked of high importance is “facilitating communica-

tion with non-technical stakeholders” (81% extremely/very important). 79% agreed the

questionnaire is helpful in this regard. One practitioner commented that the questionnaire

provides “a good set of examples, which can help educate on the need for such a process.”

Another noted it is “an accessible step-by-step document that can outline bias points that

could be understood by my target audience.”

3.5.4 Usability and the challenge of designing a simple tool for

a challenging problem

We aimed to measure the usability of the questionnaire to understand its accessibility

and user-friendliness, in addition to its function in bias identification. To this end, we

used System Usability Scale (SUS) [Bangor et al., 2009]. SUS provides a standardised

measurement to compare the toolkits to supplement the topic-specific questions, as the

toolkits aim at both developers and higher-level practitioners (see above) and can inform

non-technical stakeholders. While SUS is most often used for interface design, it has been

used in other contexts as well [Bangor et al., 2009], and the questions were asked here to

provide a standard basis of measurement for its usability.

The average SUS score of our questionnaire out of 100 was 65.3, with standard deviation

(sd) of 17.9. A study of 1,000 SUS surveys showed that “poor” average SUS score is

35.7 (sd 12.6), “OK” is 50.9 (sd 13.8), and “good” is 71.4 (sd 11.6) [Bangor et al.,

2009]. While SUS scores may vary by tool type, this provides an intuitive reference point

for our questionnaire, which would fall between “good” and “OK” based on the score

alone. However, this should be viewed in the context of the tool being a questionnaire

without a user interface or user interaction, for which the practitioners had brief, one-off

exposure, in which its primary concern was its content rather than its design. The most

important point is the content’s usefulness for practitioners. In the SUS survey, 59% of the

interviewees agreed with: “I think I would like to use this questionnaire frequently.” Since

the writing of this questionnaire, it has been adopted by several large, global organisations.

Importantly, however, it was clear that some respondents wanted the questionnaire to

do more – address the analysis, mitigation, and impact assessment, which were beyond

the scope of a questionnaire’s purpose. However, this shows the importance of this thesis’

purpose: to present an end-to-end solution that covers the entire lifecycle.

One point of disagreement regarding the questionnaire’s usability was its scope as a

qualitative process, despite a quantitative approach being incompatible with bias risk

identification. While some welcomed the qualitative design (e.g. “ethical qualitative
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assessment... should be the precursor to any machine learning project”), three of the

respondents objected to its lack of quantifiable metrics in the free-text comments. Three

respondents suggested there should be a “scoring system,” with one observing, “I just

feel engineers like a quantitative approach.” Another practitioner claimed to be in favour

of the questionnaire but was unsure whether it could be adopted in their organisation

because “model development seems to be quite quick atm [at the moment] with a focus on

quantitative processes. I think it would be hard to get engineers to agree on a qualitative

outcome.” The complex social nuances and implications of model bias depend heavily on

each context and would be difficult to quantify [Selbst et al., 2019; Green and Hu, 2018].

Weighting each risk in a scoring system would also only be feasible once biases and their

impact are understood in the further analysis stages.

While around half (50%) agreed the questionnaire was “short and focused on high-risk

points,” others challenged the length, impatient with the more in-depth and contextual

bias consideration. One would prefer “a 10 bullet point questionnaire.” Another said

“I prefer 2-steps (post-processing) in order to make it simpler,” referring to “de-biasing”

mitigation techniques (e.g. Kamiran (2012)) that correct model outputs to equalise a

given metric. This does not align with the questionnaire’s intent, which aims to identify

the sources of biases, including those human-/process-oriented, that may not be addressed

through technical means. It demonstrates what Selbst et al. (2019) call a “solutionism

trap” in “fair-ML” communities: the failure to recognise that the best solution may not

always involve technology. While these other approaches (e.g. de-biasing) may fit in as

part of a broader mitigation strategy, they should not be treated as a panacea for all bias

risks. This shows the difficulty in designing a simple tool for a complex problem. Due to

the contextual nature of fairness and bias, it is difficult to prescribe generic mitigation

methods. Nevertheless, the questionnaire was well-received among practitioners from

various backgrounds and disciplines as being useful in fulfilling their needs.

3.5.5 Helping identify potential mitigation

Practitioners expressed concerns around mitigation, with 78% answering that “identifying

potential mitigative actions” were extremely/very important 59% agreed the questionnaire

meets this need. Again, note that determining mitigation strategies is not in scope for the

questionnaire, yet practitioners found the questionnaire to be helpful in pointing them in

the right direction for mitigation. One commented, “the point of each question and what

needs to be done to mitigate the bias are clear.” Another noted “I particularly like the

way the questionnaire links specific questions that are easy to reason about and answer to

underlying real-world issues. This gives the user both an understanding of problems that

can arise and a sense of the concrete ways they manifest.” Of those that disagreed, one

said it should be then tied to providing advice on “how to identify bias at a technical level,”
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which is not a part of the identification process and should be addressed in subsequent

phases of the development lifecycle.

3.6 Illustrating the challenges of identifying a mitiga-

tion strategy: Measurement bias due to proxies

One type of bias that has become a focus in policy discourse on algorithmic fairness is

measurement bias due to proxies. “Proxy variables” are mentioned in the U.S. White

House report on big data [of the President and Podesta, 2014]. The U.S. Department of

Housing & Urban Development proposed a change to its interpretation of the disparate

impact doctrine: “any material part on factors that are substitutes or close proxies for

protected classes under the Fair Housing Act” [Willis et al., 2019]. The controversies

in current events have often focused on potential proxy discrimination. For example, a

U.K. investigation found insurers reportedly quoted higher premiums if a driver’s name

is “Mohammed” compared to the quote for “John” with all other data entry being

identical [Leo, 2018]. With big data analytics, algorithms are incorporating non-traditional

types of data, such as Internet browsing history to predict credit risk [Koren, 2016]. In this

section, we will provide an overview of proxy-specific measurement biases with example

case studies and the potential mitigative actions.

3.6.1 Legality of proxies

The exact definitions of a “proxy” and “proxy discrimination” have been contested [Tschantz,

2022; Slaughter et al., 2020]. From a legal standpoint, proxy discrimination involves a seem-

ingly neutral practice that disproportionately harms members of a protected class [Prince

and Schwarcz, 2019]. Proxies are a feature or a combination of features that encode

information about protected or sensitive characteristics. This may be intentional

or unintentional. A prime historical example of this practice is “redlining,” or using zip

code as a proxy for race. This not only limited the financial future of black mortgage

applicants but also led to significant health inequalities, effects of which still persists

today with higher prevalence of cancer, asthma, and poor mental health in previously

“red-lined” neighbourhoods [Nardone et al., 2020]. However, for algorithms that rely on

correlations between variables, discrimination may not be intentional but go undetected.

The nuances of whether such unintended algorithmic discrimination is legally considered

disparate impact and/or indirect discrimination depends on the jurisdiction and the con-

text [Adams-Prassl et al., 2022]. While such legal analysis is out of scope for this thesis,

regardless of its classification, it is still mis-aligned to non-discrimination law.

Even without malicious intent, with the prevalence of AI and ML, Prince and Schwarcz
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(2019) argued that “AI can and will use training data to derive less intuitive proxies for

directly predictive characteristics when they are deprived of direct data,” posing a “sub-

stantial threat to the normative underpinnings of these anti-discrimination regimes” [Prince

and Schwarcz, 2019]. This is because ML relies on correlations in large data sets, many

of which may be associated with the outcome of interest, such as loan risk, but also may

be associated with who the customers are, including race and gender. In credit risk, for

example, given the abundance of non-traditional, “alternative” data being used as a proxy

for creditworthiness, there is rising concern over the risk of discrimination against potential

borrowers based on legally protected characteristics, such as race and gender. In our paper,

we demonstrated using peer-to-peer lending data that the presence of spelling errors is

associated with a higher likelihood of loan default [Lee and Singh, 2021c]. In this case,

spelling errors are intended as proxies of borrower’s personality traits previously found to

be associated with repayment success (e.g. conscientiousness or carelessness). However,

spelling errors may also act as a proxy for dyslexia and for national origin if the borrower’s

first language is not English.

There are legal exceptions on when a proxy may be used. Given Supreme Court

decisions in the UK [Lowenthal, 2017] and the US [Baum et al., 2015], even if a variable

is correlated to a protected feature, there may be reasonable grounds to use it if the

differences are crucial to a legitimate business requirement. This decision boundary may

shift depending on the context. The drivers of decision-making in providing essential

products, such as current account, car insurance, or mortgage, may be subject to higher

scrutiny than the rationale for offering premium credit cards. This ensures that the decision

to include features correlated to protected characteristic is carefully considered within the

context of the regulated domain and the potential impact on the customers. For example,

Fuster et al. (2022) have shown that there is a difference in income distributions between

racial groups [Fuster et al., 2022]. As income has a reasonably inferential relationship to

credit risk, it cannot be considered as a simple proxy attribute of protected characteristics.

3.6.2 Proxies: to include or remove?

The obvious mitigation for a proxy is to exclude it, such as removing zip code from

a loan application. Care must be taken to ensure the removal of the proxy does not

disproportionately reduce predictive performance of the model, as this may have practical

and ethical implications described in §2.5. The proxy may be replaced with more precise

indicators of outcome. For example, for the peer-to-peer lending data, we propose further

isolating the types of spelling errors that are more likely to be associated with carelessness

compared to the types that are associated with dyslexia or a lack of familiarity with the

English language [Lee and Singh, 2021c]. In practice, isolating more precise outcome

indicators from the proxies may not be possible [Andrus et al., 2021] but should be
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considered as a potential mitigation strategy.

Some scholars have proposed methods for “de-biasing” the data set (pre-processing)

to remove bias from the proxies [Feldman et al., 2015]. These automated mitigation

techniques are discussed and critiqued in §4.2. Intuitively, these methods are impractical

when there is not a neat separation between the “legitimate” variations between groups

that is necessary to consider in a model, e.g. difference in income for credit risk, from the

variations due to undesirable inequalities, e.g. discrimination in the job market. When the

proxies are tightly tied to the model development process due to their high association with

the outcome, they are challenging to remove or “de-bias” without affecting the integrity of

the model. Sometimes, the outcome variable themselves that the model is trying to predict

may be a proxy, such as arrest rates in the US which are associated with race [Dressel and

Farid, 2018]. Removing these variations may result in reductions in accuracy, which may

harm the groups it is trying to help [Liu et al., 2018].

Given the contextuality of whether proxies are problematic, we have previously proposed

an approach to determine whether or not an input variable should be used in a model.

Figure 3.4, replicated from [Lee et al., 2020], visualises a possible decision boundary for

whether or not an input variable should be used in a model, based on its role as a potential

proxy for a protected characteristic. This decision boundary may shift depending on the

context. The drivers of decision-making in providing essential products and services, such

as current account, car insurance, or mortgage, may be subject to higher scrutiny than

the rationale for offering premium or niche products and services. This ensures that the

decision to include features correlated to protected characteristic is carefully considered

within the context of the regulated domain and the potential impact on the customers.

Figure 3.4: Decision boundary for acceptable use of feature

Policymakers should consider this trade-off between accuracy and interpretability to

limit what data can be used and what models can be built. For provision of products

and services that are considered essential to daily lives, such as current accounts, criminal

justice decisions, and car insurance, policymakers may need to ensure that all features

included in the variable have a strong inferential relationship with the outcome rather
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than simply for predictive correlation. This topic is discussed in important governmental

documents, such as the AI Bill of Rights in the U.S. [Hine and Floridi, 2023]. The data

minimisation principle in GDPR is aligned to this approach of reducing personal data held

by an organisation [Galdon Clavell et al., 2020].

While there is still much work to be done on proxies, they are an important point of

discussion because of how they affect the feature selection and feature engineering process

in the Build phase. Whether a feature (or a combination of features) is an undesired proxy

has such high dependency on the context, domain area, and relevant regulations that it is

difficult to generalise its detection mechanism. However, our hope is that our examples

and proposal of the decision boundary are steps in the right direction in elucidating the

challenge of proxies for developers.

This example section demonstrates that even when the bias is identified, the mitigation

strategy is not always apparent, as there is limited consensus in literature. The issue of

proxies has been a topic of rising interest in the fair ML community. With this in mind,

we return to the proposed questionnaire to discuss its implications, the limitations of the

study, and potential for future work.

3.7 Discussion

Our goal was to introduce a risk identification questionnaire to help practitioners identify

potential bias risks. The survey shows practitioners find the questionnaire helpful and

applicable to their daily practice, particularly in its breakdown of bias types introduced

in past frameworks, in order to identify where unexpected biases may manifest in ML

lifecycle. It provides a targeted and systematic way of understanding the sources of bias.

Unlike fairness toolkits, it covers the full model development lifecycle. Unlike checklists, it

does not attempt to prescribe tasks or activities, but rather directs attention to areas that

might warrant consideration based on the context.

3.7.1 Limitations of this study

Sample size and expertise of participants

The questions we asked in the survey would be difficult to contextualise for a respondent

with no background nor reference point regarding fairness-related challenges. A lack of

background in fairness might have contributed to the drop-out rate and limited the potential

sample size, suggesting that while fairness is an area of interest to many practitioners, few

have relevant expertise. Indeed, in the demographic question: “Have you ever worked on

a product in which fairness and bias assessment would have been useful,” 31% answered

“no,” with several adding in the additional comments that fairness-related concerns are
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not applicable to their ML models, e.g. because they do not use any personal data (note

later we challenge this view). The survey distribution methodology targeted those with

previous interest and experience in ML bias. This, and the high drop-out rate, suggests

the respondents that completed the survey are likely more informed and more passionate

about these issues than standard industry practitioners.

While this selection bias may affect the generalisability of the findings to wider

populations, only practitioners who are building models with concerns about potential

discriminatory biases would reasonably use the questionnaire. Therefore, their feedback

on the questionnaire is relevant.

(In)correctly perceived relevance: applicability of bias in models without

explicit personal information

Despite the 86% who found the questionnaire helpful, several practitioners reported that

they did not find the questionnaire helpful because bias detection is allegedly not applicable

to their work, as they do not use personal data. Two of the survey respondents also said

in their free-text responses that there are no resources allocated on this issue because

of limited business incentive and a lack of awareness. Note that such objections were

in a relative minority of those who filled out the questionnaire. Only 11.5% of the 105

respondents disagreed that the questionnaire can proactively diagnose unexpected bias

issues, and the overall feedback on the questionnaire was positive.

However, it is worth scrutinising the claims that bias is not relevant to some practitioners’

work. In fact, models that do not directly use personal data may still raise bias and

fairness-related concerns. For example, one of those who claimed it is irrelevant said they

use “data sets that do not involve humans (e.g. MNIST).” While handwriting data set

may not have personally identifiable data, e.g. associated name, it is plausible that a

model built on handwriting data sets such as MNIST could be biased. In fact, researchers

could correctly predict the writer’s nationality through his/her handwriting [Nag et al.,

2018], implying personal information could be deduced from such data. This shows some

practitioners may have a narrow understanding of the types of models that could be

affected by unintended bias concerns. Our discussion of proxies aimed to illustrate the

challenges of data sets that appear unproblematic on the surface but contain correlations

that encode sensitive personal information. Understanding the (lack of) awareness around

proxies among practitioners is one of the areas we propose for future work.

3.7.2 Future work

Our findings in the risk identification questionnaire paper reveal several opportunities for

future research. The first area is a deeper dive into the effectiveness of the questionnaire
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through an exploration of how it is used in practice. While our paper validated the

questionnaire through a brief survey, in-depth interviews could further uncover findings

about the strengths and limitations of the questionnaire.

Another area for future work is in the contextualisation of the questionnaire. The

risk identification questionnaire aimed to address the current gap: a lack of a practical

tool that operationalises the recent frameworks in bias types. The questionnaire is not

intended to prescribe a comprehensive coverage of all potential biases. It should be

adapted and extended to be customised to the use case and domain area. This was echoed

by a few practitioners, who asked for “more examples” and “more concrete language,”

stating that “It would be easier to use if it were built with domain-specific examples

and language, but that can be adapted.” These results show we need more guidance

on targeted risk identification methodologies for each domain area. Future work should

identify the potential bias sources across use cases and tensions between ethical objectives.

We also reported on trends in practitioner responses regarding barriers to adopting

methods for ML bias risk. This included a lack of incentives for business leaders in

allocating resources to bias-related initiatives. The survey garnered 105 answers in a

month (over the new year period); despite the high drop-out rate of those who abandoned

the survey after starting, the high uptake signals practitioner interest in ML bias issues.

However, the practitioners’ narrow understanding of model biases (especially those related

to proxies) and their pushback against a qualitative exercise are especially concerning to the

researchers advocating for fairness testing to be more than a routine, box-ticking exercise.

Future work could address how to raise awareness of bias risks among practitioners,

drive organisations to be proactive in their mitigation, and facilitate integration of risk

management methods into their processes. Another opportunity for future work is to

expand on our findings with a larger sample size and to address the practitioners’ expressed

needs and preferences.

In particular, there is a strong desire for guidance on technical and non-technical

strategies to mitigate the risks of unintended biases. The questionnaire’s scope of breaking

down bias types was found helpful in identifying next steps, but it prompted some free-

text comments to demand more guidance on what technical analysis and fix are needed.

Whereas analysis and mitigation are out of scope for risk identification, this presents an

important challenge for future work, in particular because not all mitigation strategies are

obvious. Suresh and Guttag (2021) suggest that their bias framework should help future

work to “state upfront which particular bias they are addressing, making it immediately

clear what problem they are addressing” [Suresh and Guttag, 2021]. Our questionnaire

extends their work on bias types into a practical tool, facilitating the process of their

identification. It is our hope that the questionnaire similarly helps the discovery of existing

gaps in literature – i.e. which questions still cannot be answered – on how to mitigate the
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risks of unintended biases in this evolving space.

3.8 Key chapter takeaways

In this chapter, we proposed a risk identification methodology for potential unintended

biases in ML development lifecycle, aligned to a standard enterprise risk management

framework. We built a questionnaire and walked through a real-life use case on potential

biases in an ML algorithm to predict fraudulent insurance claims. We also validated the

questionnaire with industry practitioners, which had a strong positive reception overall.

In particular, 86% of the practitioners agreed that the questionnaire would be helpful in

their “ability to proactively diagnose unexpected issues.”

To ensure the end-to-end risk management of ML models and their potential to

perpetuate unintended harmful biases, a targeted and systematic bias risk identification

methodology is necessary. To promote adoption, risk identification methods should be easy

to integrate into an organisation’s existing processes and risk frameworks, and allow for

the appropriate mitigation strategies to be formulated. The questionnaire’s primary role

is to identify the potential source of the bias and diagnose the problematic phase in the

ML development lifecycle. Our proposed questionnaire introduced an indicative example

of such a risk identification method, operationalising the latest framework on unintended

biases. The practitioners surveyed were generally in agreement that the questionnaire met

their requirements.

This represents but one step – effective risk identification lays the foundation for a

more targeted risk analysis and mitigation, and we hope this questionnaire will help

practitioners and researchers in this endeavour. Our work reveals important opportunities

to explore adaptations of such a questionnaire for different use cases and address any gaps

in literature where there is no consensus on strategies to manage bias risk in ML models.

Our next two chapters discuss the other phases of the end-to-end lifecycle, including impact

assessments and mitigation, to ensure the proposed methods are well-aligned to industry

standards and easy to integrate into existing practices.
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Chapter 4

ML Test: fairness toolkits and

trade-off analyses to select the model

for deployment

Introduction

For fairness considerations, ML building and testing are an iterative process, as with

each build, the model should be tested against pre-defined performance, risk, and other

metrics, including Key Ethics Indicators (See §2.5.5). The end goal of the testing phase is

to determine whether a set of performance metrics are within acceptable bounds, which

model best aligns to these metrics, and decide whether or not to deploy the model. This

chapter addresses the analysis techniques and mitigation strategies for unintended biases

that would have been identified in the questionnaire we proposed in Chapter 3.

The first section in this chapter is the assessment of the analysis tools available for

fairness. Fairness toolkits have been recently introduced to improve the adoption of

fairness testing methods introduced in academic literature. They work by accepting the

training data set and/or model as inputs – sometimes through a user interface – and

returning the fairness test results and associated visualisations. They are important efforts

in ensuring the fairness testing methods are accessible to practitioners, who are often

constrained in time and resources. However, these fairness toolkits reflect the diverse and

fragmented landscape of academic literature on fairness. There are significant gaps that

limit their applicability to real-world use cases, which we discover through a mixed-methods

study of industry practitioners.

The second section relates to potential mitigation strategies for fairness issues. In

§2.5.4, we alluded to a critique of technical “debiasing” methods, which incorrectly assumes

that all unwanted biases can be quantified and removed. We expand on this with related

work and argue that biases introduced in the ML development lifecycle should sometimes
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be mitigated through non-technical measures. We map the biases in §3.2 to recommended

mitigation strategies using the same example case study of insurance fraud prediction.

Overall, this section aims to show the shortcomings of technical toolkits in both

identifying fairness issues in ML systems and mitigating them. Due to the inherent

challenges of using a technical, generalised method to test for a complex, contextual notion

of fairness, it is important in the testing phase to revisit the key ethical and practical

objectives of the algorithm defined as KEIs (§2.5) to ensure the model sufficiently meets

them. We return to our bias identification questionnaire in Chapter 3 to demonstrate

through a case study how it helps design mitigation strategies targeting the bias at its

source in the lifecycle. In all, we reiterate the importance of resolving a complex socio-

technical problem of fairness – not only through an algorithm – but through people-based

and process-based solutions.

4.1 Landscape and gaps in open source fairness toolk-

its

Due to the growing demand for technical methods that can test for potential unfairness,

there has been a recent proliferation of toolkits and packages for assessing fairness in

algorithms, particularly where less-interpretable ML methods are used. Substantial

academic literature on algorithmic fairness has concerned the development of mathematical

and computational definitions of fairness (e.g. [Dwork et al., 2012; Hardt et al., 2016;

Kusner et al., 2017]), prompting work to explain the distinctions between them [Verma

and Rubin, 2018; Narayanan, 2018] and the trade-offs [Kleinberg et al., 2016] given some

of these definitions are impossible to simultaneously meet. In turn, this has led to the

introduction of automated bias mitigation techniques, including pre-processing methods

to remove estimated bias from the data set [Feldman et al., 2015; Kamiran et al., 2012;

Calmon et al., 2017], in-processing methods to train a model to both maximise accuracy

and increase fairness [Zhang et al., 2018; Kamishima et al., 2012], and post-processing

methods to adapt the predictions after the model build to equalise a metric of fairness

between groups [Kamiran et al., 2012; Pleiss et al., 2017; Hardt et al., 2016].

4.1.1 Motivation: lack of guidance on toolkit selection

Recently, various open source ‘fairness toolkits’ have been developed – both by private

companies and through community open source development – to make these fairness

methods more widely accessible to model developers. Fairness toolkits enable the developers

to upload their own training data set and/or model as inputs, some of the tools through a

user interface, to obtain fairness test results and associated visualisations. An overview
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of the landscape and key features is in §4.1.5. As these toolkits are to be integrated into

developers’ model build process, they have the potential to help improve fairness testing

and mitigation at-scale across domains (if and where appropriate). On the other hand,

there is a risk of these toolkits being applied to an inappropriate use case, misinterpreted

without considering the assumptions or limitations of the implemented methods, and/or

misused (deliberately or otherwise) as a flawed certification of an algorithm’s fairness. In

particular, an open source toolkit built by a private company for a specific use case may

not be widely applicable to other companies with different priorities or to other industries.

Our work addressed the gap in highlighting how certain toolkits are relevant for particular

purposes and audience, through a comparative analysis of toolkits’ features [Lee and Singh,

2021a]. A lack of guidance comparing the available toolkits limits the accessibility and

usability of the toolkits and results in a risk that a practitioner would select a sub-optimal

or inappropriate tool for their use case, or simply use the first one found without being

conscious of the approach they are selecting over others. If so, models with unfair outcomes

may be deployed at-scale with the false confidence provided by a tool that was not fit for

the use case.

4.1.2 Related work: past studies on fairness challenges in prac-

tice

There are two key prior studies to our own on high-level fairness challenges faced by

practitioners. A past interview and survey of ML practitioners identified challenges they

face in algorithmic fairness that they felt unresolved [Holstein et al., 2019]. Another

study assessed the needs in high-stakes public sector decision–making specifically with

exploratory interviews [Veale et al., 2018]. Their studies, conducted between mid-2016

to mid-2018, largely pre-date the release of open source fairness toolkits, and therefore

such work only investigates the challenges practitioners face, not whether and to what

extent existing tools are or could be useful. Our focus group, interviews, and surveys have

reaffirmed some of the top-level themes in Holstein et al. [Holstein et al., 2019].

As can be seen in Table 4.1, past studies have studied practitioner impressions generally

in tackling fairness-related issues in their role, not specific to any tools or resources.

Therefore, there are toolkit-specific findings that are novel, including limitations of the

user interfaces and challenges of integration of the toolkit into existing model pipelines. In

addition, our bottom-up approach across the open source toolkit landscape allowed us to

generalise their shared characteristics and their implications in practice, beyond what has

been revealed in past interview studies. For our findings that echo those of past work, we

reveal novel insights into how the new open source toolkits still fail to address these key

practitioner requirements.
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Finding in Holstein et al.
(2019)

Finding in Veale et al. (2018) Similar finding in our pa-
per [Lee and Singh, 2021a]

Need for tools and processes to
guide fairness-aware data col-
lection, biases in the humans
in the loop through labelling
and feedback

Challenges in detecting data
changes

Limited coverage of the model
pipeline

Challenges due to blind spots
and unintended biases in use
cases

Challenges of scaling up
context-specific assumptions

Limited adaptability of exist-
ing toolkits to a customised
use case

Lack of auditing guidelines N/A Steep learning curve required
to use the toolkits and limited
guidance on metric selection

Needs for more holistic evalua-
tion and communication of the
real-world implications

Challenge in getting individual
and organisational buy-in

Need for ”translation” for a
non-technical audience

Addressing detected issues:
need for a mitigation strategy

Developer as a “single point of
failure”

Limited information on possi-
ble mitigation strategy

N/A N/A Lack of a tailored user experi-
ence that avoids both informa-
tion overload and oversimplifi-
cation

N/A N/A Accessibility of toolkit search
process

N/A N/A Challenges in integrating the
toolkit into an existing model
pipeline

Table 4.1: Holstein et al. (2019) and Veale et al. (2018) key themes, linked to our own
findings in our paper

Given the fast-moving nature of ML fairness research, while our study provides a

snapshot of the open source toolkit landscape, many of our gaps are generalisable to

any toolkit aiming to automate testing of fairness considerations. In our Discussion

(§4.1.10), we argue that these challenges are inherent in the attempts to create generalised,

simple toolkits for contextual, complex fairness issues. Therefore, while these gaps may

be partially addressed, they may never be completely closed by the introduction of new

toolkits.

However, our study’s focus is on open source and widely-available tools (thereby

providing new takeaways), while ML practitioners may also use commercial tools or those

built in-house. Generally, open source toolkits can have broad impact, enabling wider

adoption and access due to lower costs, accelerated experimentation and delivery, and

reduced dependency on third parties [Walli et al., 2005]. Indeed, many enterprises almost

entirely rely on open source technologies, as the proportion of proprietary technologies in

firms’ software portfolios has steadily declined over time [Wurster et al., 2011]. Commercial
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tools are also challenging to assess and compare due to their proprietary nature and limited

accessibility, making a gap analysis infeasible. We also explore open-source-specific

considerations in procurement, requirements, and criteria, e.g. license review, frequency

of updates, robustness, etc., which were not explored in previous work but we find to

be important to the practitioners. Given the studies by Holstein et al. and Veale et al.

predate the introduction of many of these open source toolkits, without an understanding

of the open source toolkit landscape, one cannot conclude whether the challenges they

reported continue to be truly unaddressed gaps. We conduct a bottom-up review of open

source toolkits by examining the code, documentation, and visualisation, in order to

understand their key features and inform the following practitioner studies to capture

their perspectives on whether the toolkits are fit for their purpose. In contrast to previous

work, this chapter aims to provide a feature summary of existing toolkits and discusses

the gaps between their offering and the practitioners’ requirements, specifically in open

source toolkits that are best placed to have a widespread impact due to their accessibility.

4.1.3 Our contribution on fairness toolkits

Derived from our paper [Lee and Singh, 2021a], one of the core contributions of this

chapter is the identification of gaps between the capabilities of existing open source fairness

toolkits and the requirements of practitioners, highlighting the implications of these gaps

to inform the development of fairness-related tooling. This is to move forward the effort

to make fairness assessment accessible beyond academia and across industry by engaging

practitioners to uncover their needs. Specifically, we assess the relative importance for

practitioners of functionality and usability features in the context of an ‘ideal’ fairness

toolkit. We compare and evaluate an indicative sample of existing toolkits to summarise

relevant criteria impacting toolkit selection. Finally, we identify gaps requiring urgent

attention in order for toolkits to be useful for practitioners in addressing fairness issues in

their real-world scenarios. Toolkits suitably designed for users (practitioners) helps better

support proper use of the toolkits and accelerates their adoption. Poorly implemented or

poorly explained toolkits risk engendering false confidence in flawed methodologies.

In this fast-moving area of fairness toolkits, our analysis provided a snapshot of the

landscape and gaps at a point in time. However, while new toolkits and new features

may be introduced, many of our findings are generally applicable because they represent

the challenges inherent in automating the testing of fairness considerations, such as the

difficulty in designing a simple, generalised, technical solution to a complex, contextual,

socio-technical problem. While some of these gaps may be addressed in future toolkit

development, they would not be completely closed. We present our gaps and the prac-

titioners’ requirements as guidance for future fairness toolkit developers, beyond the six

toolkits studied in our paper.
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4.1.4 Methodology

In order to identify these gaps, we use a mixed method study: an exploratory focus group,

a semi-structured interview, and a survey. Our methodology was designed to identify

high-level issues with practitioners with prior knowledge of algorithmic fairness challenges

in their products, drilling down into the industry needs and their perceived gaps in the

fairness toolkits. We validate the findings from prior stages in each subsequent method.

Our overall methodology entailed four steps:

1. Exploratory focus group to identify prominent fairness toolkits and derive initial

insights;

2. Comparative review of the selected toolkits that we conducted to compare

the features available in each toolkit to inform the subsequent interviews and survey

questions to examine if these toolkits are fit-for-purpose for real-world use cases;

3. Semi-structured interviews of practitioners with prior experience in fairness

challenges to understand the features in an ideal toolkit and rate how well each of

the six toolkits meet their needs; and

4. Survey to validate the findings with a broader group and probe into a few insights

from previous stages.

5. Follow-up interview study conducted a year after the publication of this paper

with researchers in human-computer interaction at Carnegie Mellon University [Deng

et al., 2022]. Although this was not a part of our original paper, we will incorporate

learnings from this paper, as it echoed similar findings.

Our approach is structured to first derive the context and scope through the exploratory

focus group and then undertake a deep-dive into the initial findings with the interviews and

surveys. To get an overview of the fairness toolkits available and assess their capabilities, we

started with an exploratory focus group of practitioners with an interest in the intersection

between data science / ML and ethics. Then, we organised semi-structured interviews

with industry practitioners with first-hand experience in fairness challenges. We had 15

interviewees, each from a different company. First, known practitioners in ML fairness

were contacted for an interview, and others were recruited through snowball sampling (i.e.

through referrals from the interviewees) [Parker et al., 2019]. As per the consent form,

the respondents and their companies will not be identified or linked to any demographic

information to preserve their confidentiality, but we will refer to each of them by their ID

(i.e. I1-I15), listed in Table 4.2. The interviewees worked in technology (4), professional

services (2), retail banking (2 - I4, I15), insurance (2), financial technology (1), marketing

(1), media (1), public sector (1), and academia (1). All interviewees were based in the U.K.
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except one from Canada and one from the U.S. All interviewees completed the structured

questionnaire except one (I8), in which we were out of time after covering 4 of the 6

toolkits (all but two toolkits: Fairlearn and audit-ai).

Permission was obtained to record the interviews for transcription (with identifications

removed), with the recording subsequently deleted. Interviews lasted between 60 and 90

minutes and conducted over a video conference call application. We asked whether they

have faced fairness-related challenges in their past products or models and proceeded when

they confirmed this as a confirmation of their eligibility for the interview. We transcribed

and tagged key themes in the interviews through affinity diagramming, generating codes

for topics and grouping them into themes.

Given the time constraints of the interview (60-90min), it was impractical to get each

interviewee to comprehensively assess each toolkit by reading all relevant documentation

and trying it out on a different data set. Therefore, their views may be limited by what was

presented as snapshots of the tools. A few interviewees (I1, I3, I4, I10, and I14) had prior

experience with a subset of the toolkits, which allowed them to comment more extensively

on their features. Despite this, we saw that the interviewees were able to provide valuable

and consistent insights into the importance of each feature in their ideal toolkit and how

well each tool appears to meet their needs.

Finally, we designed a survey to reach a wider audience with more diverse levels of

familiarity with algorithmic fairness to validate the earlier findings. Of the 71 people who

started the survey, 41 (57.7%) of the respondents completed at least one section and 26

(36.6%) completed the entire survey. The study went through our Departmental ethical

review process. There were 6 academics, 3 business or product leads, 11 data scientists, 2

ML engineers, and 1 technical lead. Most (14) were from the UK, with 2 each from the

US, Germany, and Canada, and 1 each from Belgium, France, and Singapore.

Immediately following the publication of this paper, we were contacted with an

opportunity to collaborate on a follow-up piece of work [Deng et al., 2022] to deep-dive

into the practitioners’ usage of fairness toolkits. In this study, we engaged practitioners

directly in using a fairness toolkit on a hands-on ML model testing, conducting “think

aloud” interview studies, in which participants are asked to continuously articulate their

thinking while exploring and using a software toolkit. Some of these findings are included

in this chapter.

Further information on the study and detailed findings are in [Lee and Singh, 2021a].

In this chapter, we highlight some of the key observations from the study. §4.1.5 includes

findings from 2) comparative reviews of the selected toolkits. §4.1.6 aggregates the themes

from our findings across the 1) focus group, 3) semi-structured interviews, 4) survey, and

5) follow-up “think aloud” interview study. Although the focus group preceded the toolkit

review in sequence, it informed not only the selection of toolkits but also the initial insights
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ID Role Domain area Country

I1 ML Engineer Professional services UK

I2 Data scientist FinTech UK

I3 Data scientist Technology UK

I4 Data scientist Financial services: retail banking UK

I5 Researcher Technology UK

I6 Researcher Technology UK

I7 AI Ethics Lead Media UK

I8 Data scientist Technology UK

I9 Academic Academia UK

I10 Data scientist Financial services: insurance UK

I11 Data scientist Public sector UK

I12 Consultant Professional services UK

I13 Data scientist Financial services: insurance Canada

I14 Business or product lead Marketing UK

I15 Data scientist Financial services: retail banking US

Table 4.2: Interviewees and their demographics

on toolkit landscape and gaps that were validated through interviews and the survey.

Therefore, we first discuss the toolkit features from the review and group together the key

findings from the focus group, survey, and interviews.

4.1.5 Open source fairness toolkit feature comparison

We conducted comparative reviews of the current capabilities of six prominent open

source fairness toolkits, identified as a part of the initial exploratory focus group: scikit-

fairness / scikit-lego [Vincent and ManyOthers, 2019], IBM Fairness 360 [Bellamy et al.,

2019], Aequitas Tool [Saleiro et al., 2018a], Google What-if tool [Wexler et al., 2019],

and Fairlearn [Microsoft and contributors, 2019]. Their key features are compiled into

a comparison table, displayed in Figure 4.1. This exercise is to provide a systematic

comparison across a range of toolkits, both to help give detail of the different considerations

relevant to fairness tools and conduct a critical analysis of toolkits to understand whether

they are fit for purpose for real-world challenges of practitioners. By highlighting and

assessing particular characteristics of toolkits, we present generalisable findings about

the current landscape. For future iterations of fairness tooling, the key themes on the

aspects and features that are important to the practitioner will guide their evolution. The

differences in the toolkits’ approaches will be discussed to point out the potential issues

and considerations from a practitioner’s point of view, which is later validated in the

interview and survey. This section will report on the key feature differences among the six

toolkits, informed by the focus group discussions on what criteria a practitioner seeks in a

fairness toolkit. This exercise forms the basis for the interviews and surveys, which will

validate the importance of these features.
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We first studied each toolkit to gather relevant information about its functionality.

Figure 4.1 contains the list of toolkits and the types of models covered: regression

problems, classification problems (binary only or multi-class), and/or problems with

multi-class protected features. A subset of the toolkits handle regression (predicting a

continuous variable, e.g. income) as well as classification (predicting a discrete variable,

e.g. loan approved or denied). Some toolkits can only handle binary protected/sensitive

features (e.g. male vs. female), while others support multi-class features (e.g. age or racial

groups). As will be discussed in the next section, practitioners search for tools that are

compatible with their model, and if working on a regression problem, two of these toolkits

can be ruled out immediately. Figure 4.1 also contains the fairness metrics and mitigation

techniques supported by the tool. The most comprehensive of them is IBM Fairness 360

with more than 70 metrics, although its focus is on binary classification problems with

some multi-class classification support and no support for regression.

Most of these tools are also focused on group-level fairness metrics, while only Google

What-if tool has a focus on individual-level fairness. IBM Fairness 360 supports some

individual fairness metrics, such as sample distortion (distance computations between the

same individual point in the original and transformed data sets for different distances).

The variety of fairness metrics renders it especially challenging for the user to know

what metric is appropriate for each use case. We observed that one potential point of

confusion is the differences in terminologies and definitions for the same metric. For

example, equal opportunity difference is synonymous with false negative rate difference,

and equal odds tests for both false positive and false negative rate disparities [Verma and

Rubin, 2018]. Given the tools call the same metric by different names, it may give the

impression that they offer different testing mechanisms. In addition, the toolkits have

different approaches to guiding users on which metrics is appropriate for any use case.

This theme will be further explored in the analysis of interview and survey results.

Most of these packages are built for integration with python, with one tool (IBM

Fairness 360) with R support. All of them except Google What-if tool is built to allow for

analysis on-premise, i.e. without uploading data into an external environment. What-if

tool requires data upload, and its website specifies:

“WIT [What-if tool] uses pre-trained models and runs entirely in the browser.

We don’t store, collect or share datasets loaded into the What-if tool. If using the

tool inside TensorBoard, then access to that TensorBoard instance can be controlled

through the authorized groups command-line flag to TensorBoard. Anyone with

access to the TensorBoard instance will be able to see data from the datasets that

the instance has permissions to load from disk. If using WIT inside of colab, access

to the data is controlled by the colab kernel, outside the scope of WIT [Wexler

et al., 2019].”
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Similarly, Aequitas tool, while it has a desktop version available, also has a web-based

application through which a user can upload a data set, with the caption:

“Data you upload is used to generate the audit report. While the data is deleted,

we host the audit report in perpetuity. If your data is private and sensitive, we

encourage you to use the desktop version of the audit tool [Saleiro et al., 2018a]”

The open source licenses in each of the toolkits’ Github repository are either MIT or

Apache 2.0 with the exception of Aequitas Tool, which has customised its own license.

Aequitas Tool license appears broadly permissive, and the key restriction being that the

copyright notice must be included in any future adaptations of the code, and UChicago

accepts no liability and provides the code without warranty. All of these tool contributors

are based primarily in the United States, with one academic organisation and four private

entities. Only scikit-fairness is built completely through the open source platform without

any corporate sponsorship or involvement. The release date of the toolkits are in 2018

except scikit-fairness (2019).

These feature comparisons that we conducted and compiled were made available to the

interviewees along with a select number of screenshots, standardised to include: metric

calculation, guidance of metric selection, and visualisation. When showed the table and

asked whether it was useful, all of the interviewees said “yes,” as it gives a summary of

relevant information they would otherwise be searching for about each tool.

In the context of this mixed-methods study, the feature comparison table was a reference

point for interviews and surveys and informed their design. In the context of this thesis,

this feature comparison table corroborates the diversity of approaches in how fairness is

defined and measured in academic literature. It also demonstrates how the implemented

methods are primarily aimed at supervised ML, particularly binary classification (See

Chapter 5 on the limited literature on fairness in reinforcement learning).

4.1.6 Key findings from focus group, interviews, and surveys

Starting with the high-level insights from the focus group, we uncovered more detailed

observations in the interviews. The key themes tagged in the interview transcripts through

affinity diagramming were then validated through survey questions. In this mixed-method

study, several crucial gaps emerged from the focus group, interviews, and surveys performed

in [Lee and Singh, 2021a].

1. User-friendliness

• Steep learning curve required to use the toolkits and limited guidance on metric

selection;
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Finding type Our finding

User-friendliness Steep learning curve required to use the toolkits and limited guidance
on metric selection
Lack of a tailored user experience that avoids both information overload
and oversimplification
Need for ”translation” for a non-technical audience
Accessibility of toolkit search process

Toolkit features Limited coverage of the model pipeline
Limited information on possible mitigation strategy

Contextualisation Limited adaptability of existing toolkits to a customised use case
Challenge in integrating the toolkit into an existing model pipeline

Table 4.3: Key findings in our paper “Landscape and gaps in open source fairness toolkits”
(2021)

• Lack of a tailored user experience that avoids both information overload and

oversimplification,;

• Need for “translation” for a non-technical audience;

• Accessibility of toolkit search process;

2. Toolkit features

• Limited coverage of the model pipeline;

• Limited information on possible mitigation strategies;

3. Contextualisation

• Limited adaptability of existing toolkits to a customised use case; and

• Challenges in integrating the toolkit into an existing model pipeline.

We will now elaborate on each of these gaps in turn.

4.1.7 User-friendliness

The toolkits aim to facilitate fairness testing for developers, yet they have significant

limitations in user-friendliness. The steep learning curve for the tools, coupled with

limited guidance on the fairness metric selection, renders the toolkit difficult to access for

practitioners. Our studies showed the presentation of information was divisive among the

practitioners, with some preferring more and others wanting less. The practitioners noted

the toolkits’ lack of support for their need for “translation” of the results into real-world

considerations and implications for non-technical stakeholders.
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Steep learning curve required to use the toolkits and limited guidance on

metric selection

One of the recurring themes in the focus group and interviews was the difficulty in

understanding the fairness considerations for practitioners without prior background on

the topic. 40% of interviewees rated the “Guidance for users unfamiliar with fairness

academic literature” as “Extremely important” with another 13% rating it as “Very

important.”

Many interviewees commented on the complexity of the fairness-related challenges. I1

claimed to have taken “two months if not more” to learn about fairness testing, noting

that one would have to do “at least weeks of reading.” I11 said that “the choice of fairness

measures as well as their corresponding trade-offs will depend on the context. In certain

areas, these will be less clear and even less obvious to practitioners.”

In contrast with the perceived importance for guidance, the guidance for users unfamiliar

with fairness literature rated an average of 2.87-3.67 out of 5 (from a Likert scale). I3

reviewed the toolkits as not having sufficiently “easy explanations about the concepts

and metrics [that are] not in academic language and style.” I1, I5, and I6 alluded to the

possibility of “fairness gerrymandering” [Kearns et al., 2018; Bietti, 2020] with practitioners

selecting the metric based on which metric the model is able to meet among the metrics

available. I3 also noted that there is no way to understand if a functionality or metric is

“widely accepted.” This echoes the finding from a previous study [Holstein et al., 2019]

that practitioners struggle with the learning curve, in part due to the lack of guidelines or

standard best practices.

Table 4.4 contains the average System Usability Scale (SUS) score out of 100 and its

standard deviation. SUS provides a standardised measurement to compare the toolkits

to supplement the topic-specific questions, as the toolkits aim at both developers and

higher-level practitioners and can inform non-technical stakeholders [Brooke, 1996a]. As

mentioned in Chapter 3, a study of 1,000 SUS surveys showed that “poor” average SUS

score is 35.7 (sd 12.6), “OK” is 50.9 (sd 13.8), and “good” is 71.4 (sd 11.6) [Bangor et al.,

2009]. All the fairness toolkits fall between “OK” and “good.” Fairlearn has the highest

score, and the IBM Fairness 360 has the lowest score.

In the SUS survey, almost half of the interviewees agreed or strongly agreed with: “I

needed to learn a lot of things before I could get going with this [fairness toolkit] system.”

Given the interviewees were specifically sampled such that they were very familiar with

algorithmic fairness issues, this may be underestimating the learning curve required for

the wider practitioner population.

Of the survey respondents, 16% classified themselves as “extremely familiar” with

the current academic debates in algorithmic fairness, with 32% “very familiar” and 52%

“somewhat familiar.” No one responded that they were “not at all familiar” with the
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Toolkits Average SUS StdDev SUS
Aequitas Tool 61.33 15.78
Fairlearn 65.71 12.99
Google What-if tool 60.33 17.14
IBM Fairness 360 54.50 13.89
PyMetrics Audit AI 58.04 10.29
Scikit-fairness 62.83 17.32
All 60.43 14.84

Table 4.4: Toolkit System Usability Survey Scores

fairness literature. For those who responded to the free-text field on whether a randomly

selected toolkit guidance layout was helpful, they described it as “quite dense,” “too much

text,” and “might be better broken down in a Q&A format.”

One guidance material that had an overall strong positive feedback was the Aequitas

Tool (Figure 4.2), which contains a decision tree to assist a user in selecting a metric.

However, several commented that while the structure was strong, the wording was difficult

to understand with no associated definitions or guidance. Some also expressed concern it

oversimplified the criteria for selecting a metric. Google What-if tool’s associated blog

post that features six experts arguing and disagreeing over fairness definitions was also

commended for its colloquialism and its easy-to-understand representation of the conflicts

between the fairness definitions. Fairlearn’s dashboard was also seen as easy to follow due

to its step-by-step walk-through of the fairness testing process.

Lack of a tailored user experience that avoids both information overload and

oversimplification

In reviewing the visualisation and guidance, interviewees and survey respondents had

marked differences in their preference on the level of detail provided, with some preferring

more information and others preferring less. A survey respondent notes that “good

information design carries people well through the anxiety of overwhelming data.” Some

respondents found the amount of information provided prohibitively complex, calling it

“quite dense” and “a bit of overload.” Several commented that the guidance was too long:

“for hands-on technical people who are picking this up on a whim and wanting to use it

quickly, they want half the text.” For What-if tool in particular, the number of options

on the screen was overwhelming for some interviewees. One survey respondent said an

ideal toolkit should have “an easy and intuitive user interface with transparent and clear

back-end code.” Another said, “reducing complexity would lead to higher transparency,

and that’s crucial.”

By contrast, others had a strong preference in favour of the detailed interface. One

survey respondent said of Fairlearn dashboard that:
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Figure 4.2: Aequitas guidance

“this makes everything look clear-cut, which it really isn’t ‘in the wild.’ ”

. Another interviewee wanted more detail in the guidance for Fairness 360, saying:

“I feel confident technically using the system, but am I confident in a sense

of trusting what it tells me? I don’t think so” (I3).

There was resistance to the idea of over-simplifying fairness, which many saw as a complex

concept.

Given there may be differences in the level of detail each user requires for his or her

purpose, an ideal toolkit should have both (i) a number of options on the user interface

that allows the user to deep-dive and slice and dice the analyses, and (ii) an easy-to-use

interface that guides the user step-by-step. The former was rated at 3.81/5 on average

and at least “Very important” by 69.2% of the survey respondents; the latter had a lower

average importance score (3.15/5) but still at least “Very important” by 42.3% of the

survey respondents. The interviewees rated a “well-structured user interface” as an average

importance of 3.33 on a scale of 5.

Need for “translation” for a non-technical audience

As well as being challenging for data science practitioners with no fairness background,

the toolkits were overwhelmingly rated as challenging for a non-technical user, especially
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Category How important are the following in your ideal
fairness toolkits?

Mean Std. devia-
tion

Customisability 1. Ability to adapt to your context-specific
use case and data

4.59 0.57

2. Ability to test for a specific hypothesised
or discovered issue

4.21 0.73

3. Ability to proactively identify unexpected
issues

3.96 0.74

4. Relevant examples and case studies 3.46 1.04
Functionality 1. Comprehensiveness in variety of metrics,

i.e. different ways of measuring fairness
4.04 0.88

2. Documentation 4.15 0.99
3. Ease of integration into your ML workflow 4.30 0.72
4. Coverage of different model build pipeline
(e.g. identifying bias due to data representa-
tion vs. disparity in model prediction errors,
etc.)

4.15 0.82

5. Data security and privacy: whether the
data is stored and processed in cloud vs. on
premise

3.85 1.22

6. Reputation of the toolkit provider 3.27 0.83
7. Identification of action points and next
steps

3.31 1.01

8. Guidance for users unfamiliar with fairness
academic literature

3.62 1.20

9. Comprehensiveness in ”de-biasing” (pre-,
in-, post-processing) implementations (Note:
these are techniques developed to remove the
disparity, e.g. between men and women, in
the data or the model predictions)

3.85 1.08

User-friendliness 1. Ease of use for technical team 3.92 0.89
2. Interpretability of results and visualisa-
tions to non-technical audience

4.19 0.85

3. Minimalist user interface that guides the
user step by step

3.15 1.16

4. Number of options on the user interface
that allows the user to deep-dive and slice
and dice the analyses

3.81 0.94

Table 4.5: Summary statistics: survey results for “How important are the following in
your ideal fairness toolkits?” (Likert scale of 0-1)
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in producing visualisations, guidance, and user interface that can be navigated by those

without a background in math, statistics, and computer science.

It was reported that “for all toolkits, apart from Aequitas, you need somebody technical

to run the analysis” and then “translate the findings” to the non-technical stakeholders

(I5). Speaking of the various visualisations, an interviewee (I1) said,

“there’s no way a non-technical person could understand this.”

This results in a gap between the analysis done by the practitioners and what can be

understood by the business function. While a toolkit’s main target audience may be the

technical developer, over half of the survey respondents 80.8% rated the interpretability

of results and visualisations to a non-technical audience as either “Very” or “Extremely

important.” In rating the visualisations, the survey respondents said they are “likely to

be problematic,” “more difficult,” and “impossible” to understand for a non-technical

audience. One survey respondent said the guidance text emphasising the mathematical

definitions was “only useful because I have a background in statistics.”

In the separate follow-up study, we also found that practitioners desire further support

from fairness toolkits to better contextualise ML fairness issues and help communicate

often complex fairness analysis to non-technical colleagues in their work places [Deng et al.,

2022].

Accessibility of toolkit search process

As suggested in the focus group, we find that almost all interviewees (14 out of 15) claim

that they would “use a search engine and iterate through the results until one toolkit that

meets their criteria is found, and no further search is conducted.” Only one interviewee

reported to “comprehensively search for all available toolkits to compare the strengths

and weaknesses before selecting the optimal tool.” Two interviewees would additionally

ask colleagues for advice and search for other work that encountered similar issues. This

finding serves to highlight an additional contribution of our work in comparing the features

of the six toolkits. The feature comparison chart aims to provide the practitioners with

sufficient information about some of the prominent fairness toolkits, as selected through a

similar search and discovery process, in order to help them identify the one they need for

their use case.

All survey respondents were asked whether they had used any of the six toolkits

(multiple selection allowed) and whether there were any other toolkits they were familiar

with that were not listed. Only one respondent said they knew of another toolkit: FAT

Forensics [Sokol et al., 2019], released in late 2019 resulting from a collaboration between

the University of Bristol and Thales Group. However, in attempting to access the user

guide in September 2022, the documentation is still empty with the placeholder text
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“Coming soon.” It appears to still be in active development and not as complete as the

other toolkits we studied. Overall, that there were no other toolkits the practitioners

were familiar with suggests that our landscape coverage was sufficiently representative for

exploring the issues.

4.1.8 Gaps in toolkit features compared to practitioner needs

The toolkits did not address a lot of the practitioners’ real-world challenges, due to its

narrow focus. Here we discuss the features required by our study participants that are not

offered in the toolkits.

Limited coverage of the model pipeline

Echoing the findings in [Holstein et al., 2019], the interviewees emphasised the apparent

focus of the toolkits on the model building and evaluation process as compared with the

remaining model lifecycle. According to I1,

“Each section of the model building pipeline is important – testing your

training data, representation, model output, proxy variables, etc... no tool

has an end-to-end ‘this is what is going on in your system.’ ”

In the survey, 75% respondents answered the “coverage of different model build pipeline”

to be at least “Very important.” A survey respondent specifically pointed this out as a

limitation of toolkits they previously used, saying,

“most of the toolkits tend to straddle both [auditing / mitigation and data

exploration] which presents challenges... so it is not as useful as a part of

ML pipeline.”

Some gaps specifically mentioned were checking whether the data set is representative

of the broader population and whether there were features acting as proxies of protected

features, e.g. postcode for race or occupation for gender. I2 claimed a major gap was in

the lack of benchmarking data sets or a reference point for whether there is a selection

bias in the data collection process. I10 suggested there should be a way to understand

which input features are potentially acting as proxies for protected features, “especially

when the feature engineering has been done by a human” (I10). A survey respondent also

noted,

“the analysis needs to explore the idea of proxies, something we do manually

today.”

(See §3.6 for a discussion on proxies).
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Limited information on possible mitigation strategies

There was mixed amount of enthusiasm for tools that offered “debiasing” pre-processing,

in-processing, and post-processing implementations. Several interviewees (I1, I3, I5, I6,

I10, I11, I13) were skeptical of these techniques. I3 claimed that these methods are:

“dangerous because it looks simple but doesn’t solve any problem. It’s like

a gimmick, like training a constrained classifier, but it doesn’t solve the

underlying issues of bias you may have.”

I1 said it “doesn’t solve the bias at the root.” One interviewee (I10) claimed some of

the bias mitigation tools could be inconsistent with anti-discrimination laws, especially

any that explicitly use a protected feature (e.g. race) to give preferential treatment, and

suggested that the mitigation strategy should depend on the context, which “may not

always be a technical solution.” On the other hand, several other interviewees (I2, I4,

I8, I9, I12) viewed these implementations favourably. I12 noted that some tools’ “lack of

mitigating action leaves a huge knowledge gap for data scientists to fill.”

4.1.9 Contextualisation

While the toolkits present themselves as generally applicable, they were often seen as

difficult to adapt to particular use cases. In addition, some of them were seen as difficult to

integrate into existing workflows and pipelines, which many practitioners see as a crucial

pre-requisite to adopting the toolkits.

Limited adaptability of existing toolkits to a customised use case

The strongest consensus regarding the ideal fairness toolkit was the importance of the

“ability to adapt to a context-specific use case and data,” with all responses either 5/5 or

4/5 and an average of 4.7. Similarly, in the survey, all except one respondent rated this as

“Extremely” or “Very important.” The existing toolkits were rated on the same criteria as

an average of 3.24 out of 5, with PyMetrics audit-ai scoring the lowest at 2.71 and IBM

Fairness 360 the highest at 3.73, with several interviewees noting that additional work

would be needed for the toolkits to be applicable to their use cases.

Because audit-ai was built tailored to the U.S. employment guidelines for internal

use as an algorithmic hiring company, many found it to be inapplicable to their own use

cases. For example, the “4/5ths rule,” i.e. the guidance that the lowest-passing group

has to be within 4/5ths of the pass rate of the highest-passing group, may not be an

appropriate threshold in other domains. However, their unique approach of statistical

testing to calculate the likelihood that the disparity is due to random chance was lauded by

a few interviewees (I5, I6) and survey respondents as important, compared with other tools
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reporting the outcome disparity (e.g. re false positive rate) without confidence intervals or

statistical significance.

IBM Fairness 360 was rated highly for having “a lot of useful code”; however, one

interviewee (I9) who had extensively used the tool noted that a lot of their tool is “hard-

coded to their data and their use case, so it was a matter of how much extra work is

needed.” I13 critiqued the tools for having relatively little focus on regression problems

compared to simple binary regression problems. For his work in insurance pricing, 95%

of his work involves regression problems with multi-class protected features, thus several

of these toolkits are not applicable; referring back to Figure 4.1, only What-if tool and

Fairlearn has coverage of these model types. This issue was also highlighted in the focus

group as a major concern on the toolkit’s adaptability.

Challenges in integrating the toolkit into an existing model pipeline

Another point of consensus was the importance of the ease of integration of a toolkit into

the model building workflow and pipeline. This was rated as “Extremely important” for

60% of interviewees and “Very important” for the remaining 40%. Among the survey

respondents, 85% rated it as at least “Very important.”

However, the toolkits were rated an average of 3.24 in their ease of integration, with the

lowest score at 2.47 for Google What-if tool and the highest score at 3.93 for Scikit-fairness.

This is due to the differences in how they are designed to integrate with existing workflows.

Google What-if tool visualises the data such that the model developer could explore

potential biases, rather than being supplementary to model development; scikit-fairness

was built to embed fairness testing and mitigation directly into the model build. The other

tools have a mixture of the two, with some stand-alone visualisations and some efforts to

provide testing code base that can be integrated into the model.

As discussed briefly in §4.1, several interviewees criticised Google’s What-if tool and the

Aequitas web application for the requirement to upload the data, noting this would face

challenges from their organisations on whether this is GDPR-compliant and in adherence

to relevant privacy policies. This partially contributed to the low score of Google’s What-if

tool, especially given the visualisation required a setup in Tensorboard or Jupyter notebook.

One survey respondent said any toolkit with any processing off-premise, even if the data

set is not stored,

“would need a very large amount of governance and security validation to

be allowed to be used with corporate data.”

This sentiment was repeated for several survey respondents, with many listing any solution

that is not completely on the local computer as a ‘deal-breaker.’

104



Several interviewees (I1, I3, I4, I10, I11, I13, I15) claimed that having to upload their

data sets, even if it is not stored, could immediate disqualify the tool for usage due to

organisation’s policies. Only one interviewee (I14) said that this was not an issue because

the company has a pre-arranged partnership agreement with Google.

Scikit-fairness received a high score because most of the interviewees were python users;

however, two interviewees (I1 and I11) commented that it is only easy to integrate into

scikit-learn and gives no flexibility if working with any other package. I11 said for her

organisation that often does not use python or R, many of these packages would require

an integration layer to work with their existing ML models. However, this seems to be a

limited issue among those surveyed. When asked “do you use tools that easily integrate

with packages built in python and R,” all responded yes.

4.1.10 Discussion: implications and limitations of our study

Different users with different needs

It was clear that a user interface with a one-size-fits-all tailoring toward practitioners with

prior understanding of fairness limits the accessibility of these toolkits. Different users

have varying preferences and needs from their interface. A key example of this is the high

standard deviation in the survey ranking of the importance of mathematical definitions

in a toolkit guidance (mean: 4.04/8, standard deviation: 2.79) and the ranking of the

importance of visualisations that are helpful for a non-technical audience (mean: 4.48/8,

standard deviation: 2.57). As flagged in the interview, some practitioners with a back-

ground in statistics may want a detailed mathematical definition, while those looking for a

quick proof-of-concept may want a simple user interface for business stakeholders’ review.

To validate this, there was no strong consensus in the ranking of usefulness in guidance

features (average ranking from 4.04 to 5.12) except in two cases: the importance of the

explanation of the intuition behind a definition (X̄: 2.77, Sx: 1.82) and the non-importance

of the relevant legal context (X̄: 6.62, Sx: 1.81). One survey respondent explained that

the legal context is “better dealt with by a more appropriate (not data) person.” Future

work could explore how the roles and responsibilities of relevant stakeholders in business

(e.g. risk practitioners, lawyers, and business product owner) may be able to interpret

and provide relevant context for the toolkit’s application. Future work could deep-dive on

specific human-computer interaction considerations, e.g. API usability studies [Myers and

Stylos, 2016; Zibran, 2008; Acar et al., 2017] considering developers’ perspective may be

relevant in assessing the specific technical strengths and limitations of some of the toolkits.
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Real-world implications: the potential pitfalls of fairness toolkits

The guidance and design of the tool, along with its functionality, could affect the user’s

interpretation of toolkit outputs, potentially raising the risk that the user could be misled

with over-simplified explanations to be overconfident in a model’s fairness or confounded

by its complexity and pushed to abandon the toolkit. In fact, the follow-up interview

observed that most (seven out of nine) of the participants committed to the “fairness

through unawareness” [Dwork et al., 2012] pitfall: attempting to mitigate biases in the

ML pipeline by simply removing or ignoring the sensitive features like sex or address. P9

in the interview, for example, argued that “I feel that sex is one of the sensitive [features].

To make the model fair, I’d rather just remove it before training (the model).” In reality,

omitting sensitive features may lead to more disparate outcomes in practice. Furthermore,

none of these seven participants considered whether seemingly neutral features might be

a proxies for other sensitive attributes. This shows limited awareness on how proxies

(discussed in §3.6) can add discriminatory bias to the system.

It is also important to consider whether the toolkits with necessarily reductionist

definitions of fairness are appropriate and beneficial from a societal standpoint. Several

academics have objected to the “automation” of fairness assessments because these tools

fail to consider the socio-technical system, the nuanced philosophical and ethical debates,

and the legal context of what it means to be fair [Lee et al., 2021; Wachter et al., 2021].

For IBM Fairness 360, in answering whether the tool should be used at all, the guidance

warns that the tool applies to limited settings and is intended as a starting point for

wider discussion [Bellamy et al., 2019]. The practitioners in the interview and survey were

generally positive in their reaction to the notion of a fairness toolkit to help navigate

an extremely complex issue, but several expressed concern for “fairness gerrymandering,”

(or “ethics washing”) [Kearns et al., 2018; Bietti, 2020] or selecting the metric based on

which ones were satisfied, and for the false confidence the toolkits may give to the model

developer based on an incomplete or partial assessment of fairness. Future work could

examine in-depth the disclaimers and limitations described for each of the toolkits and

whether they align to the academic understanding of suitability of each implemented

method.

Limitations of our study

We studied the comparative features of six existing fairness toolkits and identified several

key gaps in their capabilities in meeting practitioners’ needs. While algorithmic fairness

represents a high-profile discussion, and is increasingly an area of concern across industry,

among the survey respondents, only 48% considered themselves at least “very familiar”

with existing fairness literature. To test one’s familiarity with issues of fairness, we asked

which two fairness definitions are generally incompatible, and 44% selected the correct
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answer: equal odds and positive predictive parity, whose incompatibility was a well-cited

example in the U.S. criminal recidivism scoring model and academically proven [Kleinberg

et al., 2016]. 36% gave the incorrect answer of equal opportunity and equal odds; equal

opportunity is a subset of equal odds, meaning that if equal odds is satisfied, it implies

equal opportunity is satisfied [Hardt et al., 2016]. The remaining 20% responded they are

not sure. Future work could explore an average practitioners’ familiarity with fairness

issues in a more representative sample.

The high drop-out rate in the survey (42.3%), i.e. those who start the survey but

abandon it after reading the questions on fairness toolkits, also suggests that the prospective

respondents may be interested in fairness considerations but do not have the relevant

understanding of the topic. While the resulting low sample size limits the external validity

of the findings and the ability to conduct more in-depth statistical tests, the key findings

persist through the focus group, interviews, and surveys. The methodology, such as

reporting of percentages, scales, with references to specific interviewees, is consistent with

past human subject research on fairness [Holstein et al., 2019; Veale et al., 2018].

For the focus group and interview, practitioners with expertise in fairness were pur-

posefully recruited and sampled; therefore, the results are only representative of those with

pre-existing understanding of the typical fairness challenges. However, the fact that both

these stages found gaps and limitations, especially in user-friendliness and interpretability

of the toolkits and their guidance, suggests that the learning curve may actually be much

steeper for an average practitioner with more limited exposure to fairness metrics. While

the nature of these toolkits may evolve over time, our findings on practitioner needs and

the high-level perceived gaps would provide important signposts for future development.

Our survey showed no one except for one respondent had used a toolkit not on our

list, suggesting that there were no glaring gaps in our landscape assessment. We were not

aiming for an exhaustive comparison of all toolkits in existence; rather, the six toolkits

indicative of the landscape were reviewed in order to elaborate on general issues and

concerns. Given the method of uncovering toolkits was through search engines, an approach

confirmed in our study as consistent with what occurs in practice, these six are those that

practitioners are likely to come across in their search processes. Therefore, even if there is

a toolkit that closes some of these gaps, its limited awareness and accessibility is still an

obstacle to its adoption.

Given the evolving nature of open source toolkit landscapes, our analysis is necessarily

a snapshot: a view of the landscape and gaps at a point in time. New versions of toolkits

may be released with additional features or changes to their user interface, and practitioner

needs may change over time. However, many of the issues are broadly applicable to all

toolkits aiming to automate testing of fairness considerations. While the steep learning

curve required to use the toolkits can be somewhat mitigated through improving guidance
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provided, understanding whether a model is fair is an inherently complex and contextual

exercise that is challenging to address in a generalised toolkit. Because “translation”

for a non-technical audience, adaptation to a customised use case, and the mitigation

strategy often require an understanding the context-specific implications (such as KEIs), a

generalised toolkit has its limitations on its ability to meet these needs. As such, many of

these gaps may be addressed but not completely closed and will remain relevant for future

toolkit iterations.

Future of fairness toolkits

Fairness toolkits are a fairly recent phenomenon, with the first release in 2018, and several

interviewees were surprised to learn about their availability and diversity. Only 54% survey

respondents had used any open source fairness toolkit before, despite our sampling of

groups with likely exposure to fairness-related concerns. With the growing attention on

issues of fairness, it is important that any fairness toolkits are accessible, usable and fit for

purpose. This paper [Lee and Singh, 2021a] contributes a gap analysis and the associated

findings regarding practitioner needs and the features of available open source fairness

toolkits. With a focus group, semi-structured interviews, and surveys, we identified key

themes of practitioner requirements that require more attention. In addition, the feature

comparison helps address the gap in accessibility of the toolkit search process, as it helps

users select which toolkit is suitable to their needs.

This analysis can help inform future tool development in order to bridge the gap

between the introduction of methodologies in academia and their applicability in real-life

industry contexts. As discussed, some of these gaps may be mitigated but may not

completely disappear due to the inherent challenges in providing a generalised, simple

toolkit for a contextual, complex exercise. Other gaps may be considered for updates in

future releases. For example, in designing how information is presented to the users, the

toolkit developers will need to tread a fine line between over-simplification and information

overload. Toolkits could address this gap by providing general results in simple, easy-

to-understand format with the option to drill down into details for a more tailored user

experience. Toolkits’ integration layer could also be improved, with guidance provided

on how it fits into the overall model pipeline. Further guidance and context-specific case

studies could bridge some of the gaps in the toolkits’ steep learning curve, their need

for non-technical “translation,” their limited mitigation strategies, and their contextual

adaptability.

The feature summary with relevant characteristics of each of the six selected toolkits

can help facilitate a practitioners’ toolkit search and evaluation. We have found that the

toolkits are diverse in their approaches and do not simply reflect different implementations

of the same fairness methodologies. Given that (as our results indicate) many practitioners
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look for a tool until they find one that meets their needs, a comparative review of the

toolkits would help practitioners understand the toolkits’ offerings and aid their selection

process. We have shared this table of features on GitHub, along with the other workstream

outcomes of the focus group (Ethics DataDive) hosted by DataKind UK, in order to allow

for others to comment on and update what is available in the open source landscape. It is

our hope that this will become a reference point and a repository of information on the

practitioners’ guide to various ethics toolkits.

4.1.11 Key takeaways on the landscape and gaps in open source

fairness toolkits

Our results suggest that industry practitioners are still struggling with finding a way to

identify and mitigate potential unfairness in their models and systems. Only by keeping

close to the practitioners’ requirements and preferences can the open source developers

ensure widespread adoption of their toolkits. The toolkits were developed to encourage

model developers to be more cognisant of the potential ethical implications of their

algorithms in relation to their impact on societal inequalities. An effective fairness toolkit

could foster the culture among practitioners to consider and assess unfair outcomes in

their models, while a poorly framed or designed toolkit could engender false confidence in

flawed algorithms. In particular, claims of fairness toolkits that they can “solve” unfairness

may fuel the drive of practitioners into the “trap” of solutionism, failing to recognise the

possibility that the best solution to a problem may not involve technology [Selbst et al.,

2019]. Future development of toolkits should remain vigilant to ensure their adoption is

aligned to the over-arching goal: to ensure our algorithms reflect our ethical values of

non-discrimination and fairness. Our study flagged aspects of fairness toolkits that are

important to consider – both for developers and product designers of fairness toolkits and

for users (ML model developers) in determining which toolkit best suits their purpose for

fairness testing.

4.2 Mitigation strategies: critique of “de-biasing” meth-

ods

In our study on open source fairness toolkits, a key gap was the limited information on

possible mitigation strategies. This was despite some tools, such as IBM Fairness 360,

advertising itself as a “de-biasing” solution. We have alluded to critiques of “de-biasing”

methods in §2.5.4 and in §4.1.8. In this section, we offer a fuller view of why a technical

approach may not fully resolve complex fairness issues.

There are three classes of technical “de-biasing” methods: pre-processing, removing
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bias from the data before the algorithm build [Kamiran et al., 2012; Calmon et al., 2017;

Zemel et al., 2013; Feldman et al., 2015], in-processing, building an algorithm with

bias-related constraints [Zhang et al., 2018; Kamishima et al., 2012], and post-processing,

adjusting the output predictions of an algorithm [Hardt et al., 2016; Kamiran et al., 2012].

In §2.5.4, we observed that these methods presume that all undesirable inequalities and

biases in the system are known, can be quantified, and surgically removed from the

desirable inequalities, which is often impractical. Past studies have shown that the attempt

to “repair” and remove undesired bias is ineffective when the legitimate factors for decisions

are correlated with the protected characteristic, e.g. income to race or gender in a lending

algorithm [Corbett-Davies and Goel, 2018].

In addition, these methods may end up harming the groups they are intended to

protect in the long-term; one study considered the long-term impact of a “fair” learning

algorithm and found that giving loans to minority applicants resulted in higher default

rates and – over time – lower credit scores among the minority applicants [Liu et al., 2018].

In the presence of a feedback loop, we need to consider the trade-offs being made: in this

case, between the potential of harmful defaults due to granting unaffordable loans and

equalising loan approval rates between racial groups.

It is worth remembering that in the toolkit study, 7 out of the 15 interviewees vocally

expressed skepticism about “de-biasing techniques,” (§4.1.8), calling it “dangerous” and

“like a gimmick.” One interviewee noted that “de-biasing” methods that use the sensitive

feature to transform the data, model, or outcome to give preferential treatment to a

minority group could be in violation of anti-discrimination laws [Lee and Singh, 2021a].

The automation of fairness testing in toolkits may be objectionable based on its limited

consideration of the legal context of non-discrimination laws [Wachter et al., 2021]. Toolkits

themselves often are accompanied by guidance, including warnings such as: the tool applies

to extremely limited settings, fairness is a complex issue, and the toolkit is intended as a

starting point for wider discussion [Bellamy et al., 2019; Wexler et al., 2019].

While fairness toolkits are useful in improving accessibility of fairness testing methods

and visualisations, in their current form, they must be used with caution. They should

not be accepted as the panacea to fairness considerations or a one-stop-shop for fairness

testing and mitigation. Rather, as per their own disclaimers, they represent the quick-start

foundation for better understanding what fairness issues may exist in the data sets and

models. In particular, the “de-biasing” methods may be applicable in extremely limited

number of use cases, but it is important to understand their limitations, potential for

long-term harm, and alignment with non-discrimination laws.

Often, the solution to these biases is not technical and cannot be solved algorithmically

because their sources are in the people and processes in the socio-technical system. Instead

of looking for an algorithmic solution, it may be more productive to counteract these
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biases at their source. The following case study demonstrates some of these non-technical

mitigation strategies.

4.2.1 Case study: Mitigation strategies for biases in insurance

fraud model

This section will use a real-world case study to bring to life how the questionnaire assists the

practitioner in identifying targeted mitigation strategies. In the questionnaire, Section (A)

identifies the context, and each subsequent section addresses one type of bias, facilitating

the design of mitigation strategies appropriate for that bias type. We will discuss examples

of analyses and mitigation strategies that could follow from the practitioner’s self-identified

risks through use of the questionnaire. Note while the assessment in §3.4 was done by

the practitioner and represent his/her views, this section represents our own response to

the issues raised. After the developer identified the bias risks in fraud detection, in the

paper [Lee and Singh, 2021b], we suggested potential mitigation that would be targeted

to each bias.

(B) Design: historical/external bias

Given predictions related to criminal acts are often accused of racial or faith-based

biases, practitioners could check model performance against racial and faith groups, if

these features are available from the data. If not, it could be possible to check model

performance by region, which may be acting as a proxy for race or religion, to assess whether

high-minority-group areas are more prone to model errors. Regarding socioeconomic biases,

the developer could check model performance by income level while controlling for the

ratio of claim amount to income.

(C) Data collection: Representation bias

Data recorded by claim handlers should be assessed for any subconscious bias, e.g. flagging

one gender as more suspicious. In particular, if there are any differences in fraud detection

correlated to the claimants’ language skills, the team may consider staff retraining on

subconscious biases or hiring staff who speak other languages. Third party data providers

could be asked to provide documentation on their data collection methods and any

potential biases. The unknown “true” false negatives could be retroactively identified as

the team continually assesses what types of “non-obvious” fraud types may be missed.

Given the rarity of fraud (relative to legitimate claims) and its under-representation in the

dataset, the developer could consider whether over-sampling or pre-processing methods

are appropriate, e.g. SMOTE [Chawla et al., 2002].
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(D) Feature engineering: measurement bias

Features developed based on fraud intelligence or histories should be assessed for validity

and appropriateness, especially if they are highly correlated to legally protected features

(e.g. gender, disability status) or features historically associated with criminality (e.g.

race, religion). This is to ensure the subjectively engineered features do not embed any

unintended biases as proxies of demographic characteristics. Geographical patterns of

fraud should also be checked for unintended correlations with racial or religious groups.

The model could be trained on confirmed instances of fraud and on investigation results

in addition to those correctly flagged.

(E) Model build and training: aggregation bias

The model may be improperly aggregating together different types of fraud with different

causal mechanisms. One may consider whether separate models should be built for fraud

types that are sufficiently different, rather than representing them in a single model.

(F) Model evaluation: evaluation bias

The relative importance of False Positive/Negative results should be weighted differently

by business function. In evaluating model performance, it is important the model is not

over-fitting to a particular metric, and to find diverse metrics that closely reflect and

measure the organisation’s practical and ethical objectives and their relative prioritisation.

This may include the risk of unintended discrimination, e.g. against a racial group.

(G) Model productionisation and monitoring: deployment bias

The human feedback mechanism for any errors should be reviewed, especially whether the

feedback loop may be reinforcing any existing biases, e.g. whether certain types of fraud

are being confirmed or overlooked. The fraud investigators may be prone to confirmation

bias if inclined to trust the model’s classification of a claim. The system should be robust

to any external changes, e.g. change in policy or input data distribution. While this is

currently tracked manually, the developer may consider automated monitoring systems,

testing procedures, and controls to assess changes in key metrics in live environments.

Overall, the investigators and the model should all be frequently retrained for any new or

previously overlooked types of fraud.

This section aimed to demonstrate that the bias identification questionnaire introduced

in Chapter 3 can be used in the Testing phase to design mitigation strategies. We show

that some of the gaps identified in our study of fairness toolkits can be met through the

usage of our questionnaire, a non-technical tool.
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4.3 Revisiting the Key Ethics Indicators (KEIs) de-

fined in the design phase

In assessing the limitations of the open source fairness toolkits, we found a major gap

to be need for “translation” for a non-technical audience, given the fairness results do

not easily guide the user to the potential implications in a real-life setting. As shown

in §4.2, identifying the potential types of biases facilitates an understanding of what

types of analyses (e.g. bias quantification) and mitigation strategies are required. In this

way, targeted risk identification enables a more effective management of model bias risks.

However, beyond unintended biases, it is important to understand whether a model is

ready for deployment into live environment, through an assessment of whether it best

meets the requirements out of all available options.

The KEI approach introduced in Chapter 2 was designed as an end-to-end process,

from the definition of “success” metrics to model selection. Figure 4.3 is provided below

as a reminder of the six proposed stages. In this section, we address the two final stages

in the KEI process: the calculation of trade-offs and the selection of a model. We now

present an indicative set of action points following the risk identification that demonstrates

the potential for this approach.

Figure 4.3: Proposed KEI process

Section A of the questionnaire contextualises the use case-specific objectives in relation

to the potential impact of accuracy and of bias, which facilitates the impact assessment.

Positive impacts include reduced claim costs, reduced funds available to criminal groups,

and the quicker processing of genuine claims. These could be formulated as: estimated

claim cost per model, amount of truly fraudulent claims withheld from suspected criminals,

and average claim processing time. The negative impacts include false persecution of honest

claimants and reinforcing criminality biases of certain income, religious, or racial groups,

which could be formulated as the percentage of false positives of previously marginalised

sub-groups. It is important to explicitly state and quantify such objectives. In work on U.S.

mortgage data, Lee and Floridi (2019) visualised the trade-off between aggregate financial

inclusion (available credit) and exclusion of historically marginalised minorities (denial

rates of black applicants), demonstrating that such analysis can help the decision-maker

select a model depending on objective prioritisation.

In the case of fraud detection, Fig. 4.4 shows hypothetical models A-G and their

trade-off between false positive rates for minority religious groups (%) and truly fraudulent

claims flagged by the model (GBP). While based on hypothetical (non-existent) models, it
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Figure 4.4: Illustrative example: trade-offs in fraud detection model

shows the potential for an informative impact assessment related to unintended biases.

We used this as an illustrative example to discuss with the developer from our interview.

This is to show that the KEIs are applicable to other domain areas outside of retail

lenders, which was discussed in Chapter 2. For example, Model D is the most accurate

at identifying true fraud, but it also has one of the highest false positive rates (FPR) for

minority racial group – having a model with 35% FPR may be considered unacceptable.

Model A performs similarly for identified true fraud but with only 30% FPR and may be

chosen over Model D. Model B is worse in absolute terms than F or G so can be removed

from consideration. The developer found this type of a model selection process to be

insightful, as it translates a vague concept of a fairness-accuracy trade-off into real-world

implications. Indeed, this is the main purpose of the KEI approach.

The questionnaire was designed to detect bias sources so as to design an appropriate

mitigation strategy. While mitigation processes do not fall within the questionnaire’s

scope, by proposing a methodology for targeted risk identification, we aimed to provide

practitioners with actionable insights for their decision-making on whether the model they

built is compatible with their value priorities and risk appetite.

In our study of open source fairness toolkits, many practitioners rightly challenged

the notion of a technical “de-biasing” algorithm that can solve their fairness issues. In

this section, we demonstrated through a case study that a holistic mitigation strategy for

fairness in ML should address the people and processes, as well as the model and data.

Effective bias identification in the model build phase (§3) is an important foundation to

enable targeted mitigation strategy in the testing phase.
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4.4 Key chapter takeaways

In this chapter, we showed through a mixed-method study that the current open source

fairness toolkit landscape has major gaps. Instead of relying on these toolkits to get a

superficial pass/fail result, developers need to build their own metrics specific to their use

case and context. In Chapter 2, we proposed building multiple models and calculating

KPIs/KEIs to ensure all metrics are within acceptable bounds, with measures of success

that are more specific to the context than accuracy and fairness. In Chapter 3, we

introduced the bias identification questionnaire. We recommend these methods are used

in an integrated, holistic governance of fairness-related risks that covers the end-to-end

pipeline.

When KPI/KEIs are signed off, and the model is selected that best represents the

decision-maker’s values and risk appetite, then the model can go into production. In the

next chapter, we address how we deal with dynamic systems in re-training cycles of “fair”

ML.
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Chapter 5

ML Monitor: risk factors,

reviewability, and fairness under

uncertainty

Introduction

Once the model has been built and deployed, the objective of the monitoring phase is to

ensure it is working as expected in live environments, operating within the acceptable

boundaries of various metrics (e.g. KEIs in §2.5.5). Due to the retraining cycles, a deployed

ML model requires monitoring and record-keeping that is proportional to the model risk

and at a level of detail that is appropriate to the context that enables any errors to be

traced back to their sources. In an online, live learning setting, as a model is re-trained on

new data, these cycles lead to dynamic risks, compared to more static risks in pre-built,

offline systems, such as robotic process automation that follows a set of rules. Re-training

on incoming data could introduce new representation bias that was not present in previous

training data. In this phase, if the re-training cycles do not require technical interventions,

the system may be primarily used by the business process owner, rather than being in the

hands of the main technical developer [Lee et al., 2020]. For example, a fraud detection

model would be used by fraud investigators, who may not have a technical background.

Therefore, it is important to have monitoring mechanisms in place that can prompt relevant

personnel that an intervention is necessary, ideally triggering a business process that may

involve a model review by the technical developer if adjustments to the model are needed.

Sudden changes to the input data distribution or a drop in KEIs may prompt the fraud

investigator to contact the model developer. In addition, in an enterprise risk process,

there may be internal and/or external reviewers of the model. Internal reviewers may

include the model validation team and the internal audit team, and external reviewers

may include consultants, regulators, and external auditors.
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In this chapter, we focus on reviewability, a concept introduced in our paper [Cobbe

et al., 2021]. Reviewability is a record-keeping framework for both technical logging

and organisational processes. Reviewability should be targeted to ensuring the decisions

can be traced back to their sources (the people, process, and any models), especially in

case of any errors. This is associated with robustness, which is “the degree to which a

system or component can function correctly in the presence of invalid inputs or stressful

environmental conditions” [rob, 1990]. Generally, robustness is discussed in the context of

accuracy metrics when there are drifts in the environment or incoming data sets. However,

in this thesis we view robustness beyond its functional performance and in relation to the

system’s Key Ethics Indicators, especially fairness. In other words, reviewability looks

beyond whether an ML system retains its accuracy metrics in the presence of external

changes; it aims for a holistic view of whether the ML system has the expected real-world

impact in meeting its practical and ethical objectives.

In this chapter, we first identify the risk factors in AI systems that may require different

intensity and layers of monitoring. High-risk systems may require closer monitoring

than low-risk systems. Then, we outline the logging and reporting requirements for AI

systems in the context of “reviewability.” Finally, we discuss how to consider fairness

in a system with high levels of uncertainty. As the main contribution of this chapter,

§5.3 Fairness under uncertainty proposes a taxonomy of six layers of uncertainty in an

ML system and how they may affect its fairness considerations. We formalise a theory

of uncertainty and provide a pseudocode of its implementation. Overall, this chapter

is concerned with how to ensure a deployed ML model continues to be fair, through

monitoring mechanisms proportional to its risk factors, through reviewability, and through

accounting for uncertainty in sequential decision-making.

5.1 Risk factors in AI and automated decision-making

Monitoring requirements for AI vary depending on the level of risk in the AI system. In

§3.1, we argued that guidance documents’ focus on AI may mislead the readers that the risk

lies in the ML techniques. We then proposed that the risk management process should be

tailored to the risk level and potential impact of each use case. It is the general consensus

among risk management frameworks that monitoring and control mechanisms required

for each system should be proportional to its risk [Lee et al., 2020]. In a post-go-live,

online setting, the level of oversight needed varies depending on the context, process, and

technology of each system.

In our paper [Lee et al., 2022], we present an illustrative set of relevant risk con-

siderations, across a range of dimensions. Undertaking a nuanced, holistic risk-based

analysis helps practitioners understand the types of mitigation strategies as appropriate
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for their system. This is more useful than one driven by a solely by a broad classification

as to whether their employs ‘AI,’ as discussed in §3.1. Figure 5.1 outlines six general

risk dimensions that, regardless of the process or technique employed, are important to

consider in any risk governance: Context (Domain, Potential Impact), Process (Technical,

Business), and Technology (Technique, Data). These are aligned to those previously

proposed in technology risk management literature, which provide similar permutations of

these six risk categories. Taylor (2012) reviews the relevant literature on technology risks

and summarises the key dimensions as: project, relationships, solution, and environment

risks [Taylor et al., 2012]. We have used more generic terms (technical process vs. project,

business process vs. relationships, technology vs. solution, context vs. environment) to

apply to implementations beyond a typical information technology project, to reflect the

reality that algorithmic systems are increasingly embedded in a wider array of business

functions.

Figure 5.1: Dimensions of risk factors for algorithmic systems

The process encompasses both technical and business actions taken in decision-making,

e.g. any automated validation checks or stakeholder approvals, while the technology is

focused on the design, build, and testing of the algorithm (technique) and the data sets

used. The context includes the domain area, including the relevant regulations beyond

data protection, and the potential impact on people, market, and society. Figure 5.1

connects each dimension to the potential risk factors. We do not prescribe these dimensions

and factors as ‘a’ or ‘the’ comprehensive and complete framework; instead, their role is

to demonstrate the nuances and details of potential risks of a system. The risk factors

in Figure 5.1 are applicable to all types of algorithms and should be factored in any

assessment of system risk. One such factor is the presence of any risks to fundamental

human rights. This was discussed in §2.5.1.1.
Based on the risk factors present, there may be different monitoring requirements. For

example, a model in a regulated domain area, such as hiring or credit risk, may be subject
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to greater scrutiny and oversight. A system that is retrained frequently on large data sets

or learns real-time from customer interactions may require automated monitoring and

controls to be in place, as manual review is not fit for purpose in keeping up to speed with

latest changes. A systematic and standardised approach to monitoring and continuous

governance – supplemented by human review and oversight mechanisms – intends to

facilitate the detection of potential unknown risks.

5.2 Reviewability: Logging and reporting throughout

the lifecycle

Logging and reporting requirements may differ based on the risks and potential impact,

as logs should be fit-for-purpose to the risk and proportionate to the level of potential

impact. Based on our paper [Cobbe et al., 2021], we discuss the concept of reviewability:

technical and organisational record-keeping and logging mechanisms that expose the

contextually appropriate information needed to assess algorithmic systems, their context,

and their outputs for legal compliance, whether they are functioning within expected or

desired parameters, or for any other form of assessment relevant to various accountability

relationships. While accountability is not a simple challenge with a simple solution,

reviewability plays an important role in supporting accountability.

It is important to note that to assess compliance, certain types of reviewers do not

need to understand the full inner workings of all technical components of the system.

Rather, they would consider the decisions and justifications made by the developer in each

of the stages of the development lifecycle, which may include the selection of Key Ethics

Indicators, data collection, feature engineering, and testing procedures. For example,

an internal audit team should have sufficient understanding of the techniques used to

understand their risk factors for the purpose of their review, but it may not be within

the scope of the internal audit to independently test and verify the success metrics of the

model.

There are several tools in the academic literature that have been introduced to assist in

logging and reporting that would provide information necessary for reviewability. First is

“datasheets,” which details the provenance of data, including its lineage and decisions made

throughout its lifecycle—creation, collection, collation,processing, and sharing [Gebru

et al., 2021; Singh et al., 2018]. Gebru et al. (2021) propose standardised documentation

processes for datasets for the data collector regarding: 1) motivation, 2) composition,

3) collection process, 4) pre-processing/cleaning/labelling, 5) uses, 6) distribution, and

7) maintenance. It is important to consider these aspects of the data sets and their

relationship to the system’s potential risks. For example, any changes in the incoming

data distribution would be logged in the data sheets.
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Building on datasheets, ‘model cards for model reporting’ offer standardised docu-

mentation procedures to communicate the performance characteristics of trained ML

models [Mitchell et al., 2019]. The model card includes illustrative examples of questions in

9 categories: 1) Model Details, 2) Intended Use, 3) Factors, e.g. demographic or phenotypic

groups, environmental conditions, technical attributes, 4) Metrics, 5) Evaluation Data,

6) Training Data, 7) Quantitative Analyses, e.g. of fairness, 8) Ethical Considerations,

and 9) Caveats and Recommendations. Model cards include some details on evaluation

data and metrics, including performance measures, but models’ metrics should explicitly

include ethical considerations, such as fairness. We propose explicitly recording Key Ethics

Indicators as a part of the model card.

While interventions such as datasheets and model cards are useful, they only provide

information about certain stages of an ML system, with a focus on phases of data collection,

model selection, and model testing. The non-model processes in the system must be

covered as well, including tracking any approvals and sign-offs or documenting advice from

experts, such as legal or technology risk teams. Reviewability as a framework encompasses

a holistic review of the end-to-end lifecycle of an ML system, including human elements

and business processes.

As proposed in our paper [Cobbe et al., 2021], supporting accountability and trans-

parency requires information from systems that is contextually appropriate, including what

is:

1. relevant to the accountability relationships involved, such as to whom is the account

owed and in what format;

2. accurate: correct, complete, and representative;

3. proportionate to the level of transparency required, at the appropriate level of

granularity of information and degree of knowledge; and

4. comprehensible by those to whom an account is likely to be owed.

Ensuring reviewability requires fit-for-purpose documentation of relevant information for

those with whom the developer has an accountability relationship. As the developer

makes decisions that may affect the ethical implications of the model, including any biases

duplicated or introduced, these should be clearly documented. This facilitates future

review and any required correction or changes to the system design, which is crucial for

the monitoring phase. In an online learning environment, the retraining cycles should be

tracked for any consequential shifts in KEIs. This is even more important for systems

with high levels of uncertainty.
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5.3 Fairness under uncertainty

Fairness in machine learning has been studied primarily from the perspective of supervised

learning, which can be seen in Chapter 4, Figure 4.1, where we have shown that fairness

toolkits only handle regression and classification problems. The metrics defined in §2.1 and

fairness toolkits introduced in §4.1 are for supervised learning settings. However, many

real-life ML applications are online and sequential. Many high-stakes settings require

dynamic decisions, rather than static predictions. In domains such as insurance pricing,

fraud detection, hiring, and lending, predictions are not evaluated in a one-off mass data

set; rather, a decision is made for each individual or a batch of individuals, and the

outcome of that decision informs future policies. For example, in insurance, pricing may

depend on our updated beliefs about risk. If an area previously deemed to be low flood risk

is flooded, the insurance price for that region may increase. In fraud, new patterns may

emerge, changing our model. In hiring, organisations may seek to hire similar or different

profiles to past hires depending on their performance and depending on availability of

a particular profile in the market. Lenders may discontinue mortgage types with high

default rates or withdraw mortgage offers based on market conditions, such as pending an

increase in interest rates. Therefore, modelling decisions made at a point in time reflects

the beliefs and conditions at the time, which may be updated in the future.

In addition, each decision in such a setting is made under uncertainty. The presence of

uncertainty, particularly in the feedback loop, is largely overlooked in supervised ML. For

example, a bank cannot know whether a denied loan would have been repaid, and it may

have less data about previously marginalised and financially excluded populations. An

organisation would not know whether an applicant who was rejected would have performed

well in the job. An insurer does not know whether a customer would have purchased

insurance at a different price point. Such sequential decision-making procedures are more

naturally modelled by reinforcement learning (RL) algorithms, which seek to maximise

expected rewards over trials by exploring the unobserved space.

In this section, we introduce a taxonomy of uncertainty in sequential decision-making,

including “model uncertainty,” “feedback uncertainty,” and “prediction uncertainty.” These

uncertainties represent unrealised gains and losses, and we illustrate the potential harms

for both the decision-maker and those affected by the decisions of näıve policies that

ignore the unobserved space. Outside of this thesis, we are currently working on an

algorithm that actively incorporates prediction uncertainty by simultaneously minimising

the outcome variance for historically disadvantaged groups and maximising the decision-

maker’s expected utility.
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5.3.1 Legal risks of RL: non-discrimination and equality

Importantly, RL algorithms and subsequent decisions informed by them can pose challenges

with regards to non-discrimination laws. The international human rights legal framework,

codified in the Universal Declaration of Human Rights and supported by other treaties

and documents, establishes the principles of non-discrimination on the basis of certain

features such as sex, race, language, or religion [Assembly et al., 1948]. While supervised

ML metrics and mitigation techniques have been analysed for their incompatibility with

European non-discrimination law [Wachter et al., 2021], limited attention has been given

to the legal implications of RL techniques.

RL, however, has the potential, in many ways, to be more problematic than supervised

ML from a legal standpoint. There are three contexts in particular in which RL can raise

concerns with regards to certain non-discrimination laws: 1) in high-impact decisions, 2)

when individual fairness is crucial, and 3) when there are few sequential decisions made in

a limited time frame.

RL works through exploration in a stochastic environment, necessarily introducing

randomness in decisions. This may involve a nonzero probability of denying a loan to

someone who is expected to repay under the model. As [Kilbertus et al., 2020b] note in

their article on fair RL, “not all exploring policies may be (equally) acceptable to society”.

The cost of exploration may be too high, unjustified, unjustifiable, or indeed, illegal in

certain domain contexts, such as in criminal justice, employment, and essential financial

services. This is the motivation for a proposal for a “semi-logistic” algorithm [Kilbertus

et al., 2020b] that combines supervised and reinforcement learning. It represents a guardrail

for stochasticity, such that exploration is limited to a specific search space.

Moreover, RL may not achieve individual-level fairness [Dwork et al., 2012], which

mandates that “similar” individuals are treated “similarly.” Traditionally, US non-

discrimination laws and fair lending laws have scrutinised the inputs of models, which

may be be effective for rules-based systems but less relevant for ML models that rely on

complex correlations [Gillis, 2022]. While, again, Gillis (2022) focused on supervised ML,

model inputs are even less informative for RL, in which stochastic learning may render

individual decisions inconsistent even with the exact same inputs. Indeed, even if RL would

lead to a more optimal policy on a group level, there may be sub-optimal and potentially

discriminatory decisions made in the exploration process on an individual level which can

have direct legal consequences and liability implications. Further, in smaller data sets

with fewer decision points, due to the time taken for exploration and exploitation in RL,

optimal policy may not even be achieved using RL within a time frame that is acceptable

to the decision-maker. For example, in Kilbertus (2020) [Kilbertus et al., 2020b], it is not

until time step t = 50 that stochastic strategies dominate the deterministic policy.

Given the potential legal implications for RL, it may be tempting to assume that RL
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is unsuitable for practical applications despite its closer resemblance to practical case

studies. However, this is arguably short-sighted given the potential for RL to better handle

the uncertainties present in real-life decisions. In fact, our proposal for “fairness under

uncertainty” targets exploration specifically to reduce unfairness due to uncertainty and

provides guardrails on RL for targeted exploration. Our work was motivated by the need

for a solution that both accounts for the unobserved decision space and is more aligned to

existing legal frameworks and customer expectations then existing work in RL.

5.3.2 Towards fairness under uncertainty for RL

Uncertainty can be more harmful to some groups than others. Previously marginalised

groups will often have less data, e.g. due to lack of financial inclusion in lending, and

therefore, decision-makers may be less confident about predictions about them. This is a

known bias, often termed “representation bias” in §3.2, which can inflate the risk profile

of marginalised groups, negatively affecting both profitability and a fair and equitable

distribution of financial opportunities.

We propose correcting for this difference in group-level uncertainty through targeted

exploration. Intuitively, someone in a minority group should not be penalised for the

model’s uncertainty. We give the minority a “boost” proportionate to the chance that he or

she would outperform someone from a majority group. This is meaningfully different from

affirmative action, which controversially favours minority groups over majority groups to

correct for historical inequalities [Garrison-Wade and Lewis, 2004]. The “boost” in this

case is to correct for the false risk inflation for minority due to uncertainties surrounding

their prediction.

The exploration-exploitation trade-off we propose in this paper differs from past

literature in that it is an active acknowledgement of uncertainty in the ML system,

challenging the decision-maker to consider the known unknowns. We discuss this in

relation to related work in §5.3.3. The amount of exploration should be proportional to

the amount of uncertainty and the decision-maker’s risk appetite. Some lenders with a risk

appetite close to null may decide to approve only the loans with close to 100% certainty

of repayment, thus making defaults extremely rare. This would indicate no appetite for

exploration, so the lender may use supervised ML. However, these would be the exception,

as risks are inherent in financial decision-making, and most lenders would seek a balance

between risk and reward.

For lenders learning from outcomes of past loans to inform future decisions, it should

not be näıvely assumed that all denied loans would have defaulted, as this assumption

would especially harm marginalised groups. Instead, the assumptions around the current

decision boundary should be constantly challenged, taking seriously the differences in

uncertainty the decision-maker has about each individual and each sub-group.
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Our main contributions are threefold. (1) We propose a taxonomy of uncertainty in fair

RL. (2) We formalise the problem of “fairness under uncertainty” for RL, and demonstrate

why risk aversion leads to discriminatory policies when decisions produce selective labels.

(3) We implement an RL algorithm that outperforms baselines on a range of simulated

and real-world datasets.

5.3.3 Related work in uncertainty and RL

There have been few recent works in fair RL. While it represents a step in the right

direction in its consideration of stochasticity to counteract feedback uncertainty (the

“known unknowns”), we argue that this literature has so far failed to properly acknowledge

the nature or consequences of the different layers of uncertainty in fair decision-making,

described in §5.3.4.
The proliferation of literature on fairness in supervised learning has heavily focused

on defining metrics for post hoc model testing or proposing constrained optimisation

techniques. These have been discussed with metrics in Chapter 2 and toolkits in Chapter 4.

These metrics pointedly only consider the point prediction, rather than the interval around

the prediction, and the actual outcome, many of which may be unobserved. When the

uncertainty of a predicted outcome is high, when presented with two options with the

same average payoff, risk-averse agents (e.g., lenders) may rationally choose to prioritise

decisions about which they feel more confident.

Fairness has not received as much attention in RL, although that is beginning to change

with the growing awareness that many socially significant applications of machine learning

are sequential decision tasks. Early work in this area examined the theoretical properties

of algorithms that adhere to strict definitions of individual fairness [Joseph et al., 2016;

Jabbari et al., 2017]. More recently, authors have focused on the feedback effects that

inevitably emerge in dynamic systems with selective labelling [Lakkaraju et al., 2017; Liu

et al., 2018; D’Amour et al., 2020; Kilbertus et al., 2020b], which leads to suboptimal

outcomes for all agents. We build especially on the work of Wen et al. (2021) [Wen

et al., 2021], who propose methods for fair learning in Markov decision processes (MDPs);

however, we expand on their formalisation that fails to account for counterfactual rewards.

Recent contributions have emphasised causal approaches, acknowledging that structural

dependencies between variables have important implications for fairness in RL [Zhang and

Bareinboim, 2018; Nabi et al., 2019; Creager et al., 2020; Huang et al., 2021]. We argue

that this is especially important in the selective label setting, where optimal policies are

defined with respect not just to observed data but to all potential outcomes.

Overall, our departure from past literature are in three areas. First, we consider the

full range of different types of uncertainties, rather than only tackling feedback uncertainty

through RL. Second, we actively account for counterfactual utility: the unobserved gains
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and losses. Third, in understanding fairness, we consider the uncertainty interval around

each prediction rather than the point prediction alone.

5.3.4 Taxonomy of uncertainty

While scholars have studied subsets of various uncertainties in ML lifecycle, to our

knowledge, there is no work to date that holistically examines all types of uncertainties.

In this section, we aim to present an uncertainty taxonomy.

Figure 5.2: Uncertainty taxonomy throughout ML lifecycle

Figure 5.2 shows the five types of uncertainty. Uncertainties 1-4 are “global” uncertain-

ties that affect the model on a systemic level. These should be considered to inform design

choices throughout the ML lifecycle. 5 and 6 are “local” uncertainties on an individual

or sub-group level, which should be considered alongside the point predictions in the ML

algorithm.

While this thesis focuses on fairness in online learning systems best modelled by RL,

the uncertainty taxonomy applies broadly to all supervised learning models. This is a

contribution on its own, and we have excluded the theory and methods, which are currently

in development.

Historically, probabilistic ML literature has not tended to distinguish between inherently

different sources of uncertainty, except for more recent references to aleatoric and epistemic

uncertainties [Hüllermeier and Waegeman, 2021; Bhatt et al., 2021]. In the context of ML,
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aleatoric uncertainty refers to stochastic variability, such as of a coin toss, and epistemic

uncertainty is caused by limitation of the modeller’s state of knowledge [Hüllermeier and

Waegeman, 2021]. The former gives information on noise or class overlap of the data, and

the latter shows where the uncertainty can be reduced by collecting more data in input

regions where the training dataset was sparse [Bhatt et al., 2021]. While this framing of

reducible (epistemic) and irreducible (aleatoric) uncertainties is useful, there are various

sources of both types throughout the ML development process. This section aims to break

down each uncertainty into its component sources.

1. World: Desired state uncertainty The fundamental uncertainty on the level of

worldview is: how much of the existing inequality is undesirable and should be actively

corrected? For example, in lending, discrimination in the job market may increase the

actual credit risk of women compared to men. In our past paper [Lee et al., 2021] and in

Chapter 2, we argue that it is up to the decision-maker to define which types of inequalities

are acceptable or unacceptable in any use case, including inequalities in genetics, talent,

and socioeconomic ability. To an extent, this is a subjective judgement without a single

answer. However, the uncertainty can be reduced through a better understanding of types

of inequalities and their impact on the decision-maker’s key objectives. Therefore, it can

be classified as a type of epistemic uncertainty.

2. Data collection: representation uncertainty To what extent is the data

set skewed compared to the target population? “Representation bias” is a known issue

among industry practitioners (See §3.2), which is the skewed sampling of the training data

set [Lee and Singh, 2021a; Holstein et al., 2019]. Representation uncertainty refers to

the unknown variability of the size and direction(s) of this bias and is a type of reducible

(epistemic) uncertainty. The known mitigation technique is to test for representation (e.g.

proportion of women in data set) against known population (e.g. proportion of women in

the country) and consider additional data collection [Lee and Singh, 2021b]. This may be

a dynamic uncertainty in the monitoring phase, as the representativeness of a data set

may constantly change with each incoming data set. For example, some users may update

their privacy preferences to request the deletion of some of their data. If these privacy

preferences are associated with the individual’s demographic characteristics (e.g. if women

are more likely to have greater privacy demands), then this creates new representation

bias due to their voluntary exclusion from their data set. However, the demographics of

these newly excluded population may not be known, e.g. if the organisation does not

collect gender information. Thus, representativeness in these data sets are uncertain as to

their reflection of the target population.

3. Feature engineering and selection: measurement uncertainty How well

do our variables / features measure what the decision-maker would like to measure?

It is well-understood that data sets may contain undesirable proxies of demographic
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features [Corbett-Davies and Goel, 2018]. This may include issues of data quality, practical

assessment and mitigation techniques for which has been widely studied [Loshin, 2010].

This is a type of reducible (epistemic) uncertainty, as it represents the gap between what

is known and what is true.

4. Model training and build – model uncertainty How close are the model

parameters to a “true” model? The model built may not be the optimal policy, and a

model may exist that better represents the feature relationships. This is a type of reducible

(epistemic) uncertainty but differs from measurement uncertainty in its focus on the model

type and parameters rather than its training features. Bhatt et al. (2021) [Bhatt et al.,

2021] breaks this down further into model uncertainty in reference to model parameters and

model specification uncertainty in reference to the model type. We group them together

here because they are a part of the same phase of the ML lifecycle in training and building

a model. Dimitrakakis et al. (2019) [Dimitrakakis et al., 2019] addresses this uncertainty

through RL. However, their formalisation does not address the remaining uncertainty,

and it is unclear how they are compatible with non-discrimination laws, as discussed in

§5.3.1. Our proposed approach addresses the model uncertainty through RL that explores

the unobserved space in a targeted way that takes into account the decision-maker’s risk

appetite.

5. Predictions and test data: prediction uncertainty The uncertainty around

each prediction (e.g. of probability of repayment) may vary by applicant. There has been

work around confidence intervals around each prediction based on the training data, but not

in the context of fairness. In particular, uncertainty around the predictions for previously

marginalised or excluded groups may be comparatively high, due to representation bias [Lee

and Singh, 2021b]. This is a key uncertainty we aim to address, by comparing decision

boundaries between individuals. At a point in time, this is a type of aleatoric (irreducible)

uncertainty because for each applicant, there is a probabilistic density distribution of his

or her outcome. However, on a systemic level in an online learning setting, it can also

be considered epistemic (reducible) because as the model gains more data about similar

applicants, its uncertainty around an applicant could decrease over time.

6. Deployment and retraining – feedback uncertainty Often, the decision-

maker’s actions determine what data are collected. For example, a rejected job applicant’s

performance is not measured, and whether a denied loan would have been repaid is

unknown. A targeted RL can explore whether the decisions were valid through an analysis

of the counterfactual: the expected utility had the decision been different. This uncertainty

only exists in online learning settings due to the “known unknowns” in the system. This is

slightly more difficult to classify, as it is an epistemic uncertainty in a sense that it is due

to the modeller’s limited knowledge on the state (or in this case, the counterfactual state)

of the world. However, while epistemic uncertainty is characterised by its reducibility by
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collecting more data, in this case, the counterfactual state is not knowable for certain.

Therefore, this is a type of epistemic uncertainty that is irreducible in practice.

Figure 5.3: Defining the uncertainty taxonomy throughout the ML lifecycle

Each of the global uncertainties should be mitigated at their source: desired state

uncertainty by discussion with key stakeholders, representation uncertainty by collecting

more data, and measurement uncertainty by fixing data quality issues.

5.3.5 Discussion and future work on fairness under uncertainty

In this section, we have proposed a taxonomy of uncertainty that addresses the end-

to-end lifecycle of a supervised ML system. Using visualisations on a simulated data

set, we explained the intuition behind the need to address these uncertainties and how

this relates to fairness, as under-privileged and marginalised groups tend to have greater

local uncertainties in their predictions. We explained why an online learning system

with high levels of uncertainty is better represented by a hybrid “semi-logistic” model of

reinforcement and supervised learning: to enable a more targeted exploration of “known

unknown” search spaces in each feedback loop. Our implementation to address these

uncertainties currently in progress in collaboration with experts in related fields.

It is important for academics and practitioners in the fair ML community to consider

seriously the presence of uncertainty throughout the ML lifecycle and the potential

implications. Ignoring the “known unknowns” or the individual-level uncertainties not

only potentially puts previously excluded populations at a disadvantage but also results

in a worse model performance. Whereas the performance metrics only considering the

visible space may improve, the true utility calculation should include unobserved gains

and losses as well. Through a holistic understanding of uncertainties in the ML lifecycle,

the developer can build a better understanding of the reliability of the model, enabling an

informed communication of model predictions to the non-technical stakeholders.
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So far, there has been limited work at the intersection of uncertainty in online ML

systems and fairness of those systems. Potential next steps in this research include further

work on strategies to reduce each of the six layers of uncertainty, which may include non-

technical measures such as collecting additional data. Another area is the formalisation

and implementation in other domain areas, such as in insurance pricing that should be

represented as a regression rather than a classification problem. We hope this work marks

the starting point in exploring how we can better incorporate uncertainty considerations in

assessing a system’s fairness, especially in ensuring previously excluded and marginalised

populations are not unfairly penalised for a model’s uncertainty about their predictions.

5.4 Key chapter takeaways

This chapter aimed to address the post-go-live monitoring of an ML system to ensure it

is still operating fairly and ethically within the pre-set boundaries of KEIs. ML systems

differ from static models, such as robotic process automation, in that it learns and adapts

from new incoming data. This learning cycle leads to dynamic risks that may change from

one time point to another.

To this end, we identified the key risk factors in AI and automated decision-making

that would determine the frequency and level of detail required in monitoring. For

example, systems in regulated domains, customer-facing systems, and systems with

frequent retraining cycles on large data sets would be subject to greater scrutiny, regardless

of the type of models being used.

We also outlined the record-keeping and reporting requirements that vary based on

the above risk factors. In a reviewability framework proposed in our paper [Cobbe et al.,

2021], we argue for a fit-for-purpose documentation that is proportionate to the potential

impact.

Finally, we proposed a novel uncertainty taxonomy specific to the ML lifecycle and

address how these uncertainties may disproportionately affect previously excluded and

marginalised groups. In this section, we posit that in some use cases with high levels of

uncertainty, it may be sensible to design an RL system that uses the dynamic nature of

its learning process to mitigate some of these uncertainties. Monitoring mechanisms and

reviewability requirements, however, still apply whether a system uses supervised ML or

RL and should still be proportionate to the system’s risks.

An end-to-end ML governance does not terminate with deployment. It requires

continuous effort with monitoring how the ML system learns over time. Decision-making

systems often have “known unknown” spaces, such as whether a denied loan would have

defaulted or whether a rejected job applicant would have performed well. Only by closely

examining the uncertainties in the system can we challenge our own assumptions in the
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model design. With appropriate attention to the risk factors, record-keeping requirements,

and uncertainties, the developer can move the ML system toward – not only better

predictive performance – but also greater confidence in its fairness and ethics.
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Chapter 6

Conclusion

The increasing pervasiveness of ML to inform high-impact decision-making has brought

to the forefront the debate around what constitutes a “fair” decision. It is important to

remember that many of these concerns over the practicality of “fairness” metrics are not

new: in the 1960s and 1970s, the attempts to formalise fairness into statistical metrics

fizzled for the same reason: it was not possible to create a broad technical solution to

fairness [Hutchinson and Mitchell, 2019]. Despite this, academics have proposed numerous

definitions and subsequent formalisations of fairness.

We do not dispute that the ability to quantify fairness, however narrowly, is useful. It

allows for benchmarking and comparison between models and can measure the scale of

potential impact for any groups. Fairness toolkits recently emerged to make these methods

widely accessible, facilitating the implementation of fairness testing methods introduced

in academic literature. However, what is crucial to our understanding of an ML system’s

fairness is the ability to translate these metrics into real-world impact. A solution to a

socio-technical problem of fairness cannot be solely technical; technical fixes should be

supplemented with changes to people and processes. In complex, real-world ML systems,

unfair bias is not a tumor in an otherwise perfect model that can be surgically removed

using a “de-biasing” algorithm. The metric must be considered holistically in context of

all competing objectives of the ML system, including broader ethical considerations.

These fairness metrics, often being both morally irreconcilable and mathematically

incompatible with one another, can give the decision-maker conflicting information about

whether or not an ML system is fair. In Chapter 2, we link the fairness metrics to the

doctrine of ethical philosophy by which they were inspired, pointing out the important

gaps between the fairness metric and the original understanding of fairness. What is fair

has been a topic of debate throughout human history, hinging on our belief on what types

of inequalities are unjust and should be actively remedied. Past work has attempted to

bypass the responsibility of this value judgement by arguing it is outside of the scope of a

computer scientist’s or a developer’s responsibilities. Au contraire, every decision made by
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the ML developer, including the selection of features and performance metrics, has the

potential to introduce unintended biases and affect the ethical outcome of the model.

It is true that the decision on what are the model objectives and what trade-offs are

acceptable often should lie with the key stakeholders, which may be the board of directors

or the business lead, rather than the developer alone. In particular, there may be crucial

trade-offs among the model’s potential impact and its fairness. In Chapter 2, we also

drew on literature in welfare economics to show that in this field, utility and potential

impact are a critical component of understanding fairness from an egalitarian point of

view. What matters is not only the distribution of resources but also the size of the

resources themselves that are affected by the model.

This is why communication between the developer and the non-technical stakeholders

is important, especially in decisions made by the developer that can affect the model. We

proposed an approach called “Key Ethics Indicators” to operationalise various ethical

and fairness-related objectives into metrics that can be quantified, tracked, and compared

between models. These KEIs would be used by the developer in evaluating models and

signed off by the relevant stakeholders. In Chapter 3, we also introduced a questionnaire

that guides the developer to document potential biases that are introduced throughout

the build lifecycle, from data collection methods to feedback mechanisms. In this thesis,

we focused on a subset of stakeholders that hold decision-making power around an ML

system: primarily on the ML developers, but also the business leaders, the business risk

functions, the policy-makers, and the regulators. However, this is not comprehensive of

all stakeholders. There is a growing set of important literature that engages with users

and communities affected by the ML systems. While this has been out of scope for this

thesis, it is important to be cognisant of the incentives, objectives, and preferences of all

stakeholders.

Fairness must be understood – not at the algorithmic level – but at the level of the

system, which includes the process and the people. The questionnaire in Chapter 3

represents our attempt at accounting for the end-to-end pipeline of an ML system in

understanding whether there are any unintended biases that result in unfair outcomes.

Chapter 4 demonstrated the gaps in existing fairness toolkits, especially in their coverage

of the ML lifecycle. We show that coupling the KEI approach and the questionnaire,

we are able to uncover the fairness issues and unintended biases in an insurance fraud

detection model. Identifying the source of each bias also facilitates the design of a targeted

mitigation strategy. Bias introduced through language barriers in insurance claim handlers

cannot be resolved technically; it is mitigated through hiring multi-lingual staff or using a

translator.

Finally, the unique challenge of many ML systems is that they are online, learning from

previous data points and evolving over time. In particular, online learning algorithms have
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“known unknowns” or blind spots. We will not know whether a denied loan would have

defaulted or been repaid. In addition, our predictions in ML have a level of uncertainty

around them. This uncertainty may be greater in populations that have been previously

excluded or marginalised, based on under-representation in the training data set. Intuitively,

people should not be penalised due to a model’s uncertainty that may derive from past

exclusion or past discrimination.

To this end, we proposed a taxonomy of “global” (system-level) uncertainties and “local”

(individual-level) uncertainties that apply to all supervised learning models in Chapter 5.

We argued that systems with high levels of uncertainty may be best modelled by a hybrid

of supervised and reinforcement learning, in which the system “takes a chance” within

the uncertainty boundaries through targeted stochasticity. After explaining the intuition

using visualised simulated case study, we provided a general formalisation of this method

and a pseudocode for implementation.

In the introduction, we started with the reasons why organisations may desire to

ensure fairness of their algorithmic decision-making systems. Indeed, this is the underlying

assumption in much of the thesis, hence the focus on unintended biases rather than

malicious agents’ purposeful introduction of biases. We also focus on organisation-level

decisions and their potential impact, rather than the market-level implications. However,

there is scope for further study on whether the existing incentive structure is sufficient

to entice organisations to devote valuable time and resources to fairness testing. One

2019 study found that industry practitioners often cite limited time and budget and

point out that any fairness investigation happens in their own time, often with limited

support for such initiatives from their team or company leadership [Holstein et al., 2019].

Without incentives, there would not be the organisational policies and processes in place

to dedicate resources to fairness and ethics more broadly. This is the role of policymakers

and regulators: to determine if the industries can self-regulate based on guidelines alone,

or whether further laws and regulations are needed to provide additional incentive for

action.

In this fast-moving, multi-disciplinary field of ML fairness, we may not have covered

all of its vast literature. Our work is not presented as the panacea to fairness issues in

ML. Regardless, this thesis purposefully moves away from the false simplicity of technical

solutionism and reductionism. By presenting an end-to-end, holistic, and contextualised

view of what fairness means throughout an ML lifecycle, we aim to provide a more

comprehensive set of methods, approaches, and guidance that integrate with each other

to help industry practitioners, researchers, and regulators understand fairness of an ML

system in practice.
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Fogliato, Gabrielle Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo,

et al. Uncertainty as a form of transparency: Measuring, communicating, and using

uncertainty. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and

Society, pages 401–413, 2021.

136



Elettra Bietti. From ethics washing to ethics bashing: a view on tech ethics from within

moral philosophy. In Proceedings of the 2020 Conference on Fairness, Accountability,

and Transparency, pages 210–219, 2020.

Reuben Binns. Human judgement in algorithmic loops; individual justice and automated

decision-making. Individual Justice and Automated Decision-Making (September 11,

2019), 2019.

Reuben Binns. On the apparent conflict between individual and group fairness. In

Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,

pages 514–524, 2020.

Paula Braveman and Sofia Gruskin. Defining equity in health. Journal of Epidemiology &

Community Health, 57(4):254–258, 2003.

J Brooke. Usability evaluation in industry, chap. SUS: a “quick and dirty” usability scale,

1996a.

John Brooke. SUS: A quick and dirty usability scale. In Usability evaluation in industry.

Taylor and Francis, 1996b.

Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy,

and Kush R Varshney. Optimized pre-processing for discrimination prevention. In

Advances in Neural Information Processing Systems, pages 3992–4001, 2017.

Cansu Canca. Operationalizing AI ethics principles. Communications of the ACM, 63(12):

18–21, 2020.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence research,

16:321–357, 2002.

Aisling Ni Chonaire and Jannna Ter Meer. The perception of fairness of algorithms and

proxy information in financial services: A report for the centre for data ethics and

innovation. The Behavioural Insights Team, 2020.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in

recidivism prediction instruments. Big Data, 5(2):153–163, 2017.

Jennifer Cobbe, Michelle Seng Ah Lee, and Jatinder Singh. Reviewable automated

decision-making: A framework for accountable algorithmic systems. In Proceedings

of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages

598–609, 2021.

137



Nancy S Cole. Bias in selection. Journal of educational measurement, 10(4):237–255, 1973.

Patricia Hill Collins. Black feminist thought: Knowledge, consciousness, and the politics

of empowerment. routledge, 2002.

Kate Conger, Richard Fausset, and Serge F Kovaleski. San Francisco bans facial recognition

technology. The New York Times, 14:1, 2019.

Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical

review of fair machine learning. arXiv preprint arXiv:1808.00023, 2018.

Council of Europe Commissioner for Human Rights. Unboxing artificial in-

telligence: 10 steps to protect human rights. URL https://rm.coe.int/

unboxing-artificial-intelligence-10-steps-to-protect-human-rights-reco/

1680946e64.

Elliot Creager, David Madras, Toniann Pitassi, and Richard Zemel. Causal modeling for

fairness in dynamical systems. In Proceedings of the 37th International Conference on

Machine Learning, pages 2185–2195, 2020.

Kimberle Crenshaw. Demarginalizing the intersection of race and sex: A black feminist

critique of antidiscrimination doctrine, feminist theory and antiracist politics. u. Chi.

Legal f., page 139, 1989.

Alexander D’Amour, Hansa Srinivasan, James Atwood, Pallavi Baljekar, D. Sculley, and

Yoni Halpern. Fairness is not static: Deeper understanding of long term fairness via

simulation studies. In Proceedings of the 2020 Conference on Fairness, Accountability,

and Transparency, pages 525–534, 2020.

Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against women.

reuters, october 2018, 2018.

Robert Denda, Albert Banchs, and Wolfgang Effelsberg. The fairness challenge in computer

networks. In International Workshop on Quality of Future Internet Services, pages

208–220. Springer, 2000.

Wesley Hanwen Deng, Manish Nagireddy, Lee, Michelle Seng Ah, Jatinder Singh,

Zhiwei Steven Wu, Kenneth Holstein, and Haiyi Zhu. Exploring how machine learning

practitioners (try to) use fairness toolkits. Proceedings of the 2022 ACM Conference on

Fairness, Accountability, and Transparency, 2022.

Christos Dimitrakakis, Yang Liu, David C. Parkes, and Goran Radanovic. Bayesian

fairness. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):509–516,

2019.

138

https://rm.coe.int/unboxing-artificial-intelligence-10-steps-to-protect-human-rights-reco/1680946e64
https://rm.coe.int/unboxing-artificial-intelligence-10-steps-to-protect-human-rights-reco/1680946e64
https://rm.coe.int/unboxing-artificial-intelligence-10-steps-to-protect-human-rights-reco/1680946e64


Kevin P Donovan and Emma Park. Perpetual debt in Silicon Savannah. Boston Review,

2019.

Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism.

Science advances, 4(1):eaao5580, 2018.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel.

Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer

science conference, pages 214–226. ACM, 2012.

Ronald Dworkin. What is equality? part 1: Equality of welfare. Philosophy and Public

Affairs, 10(3):185–246, 1981.

Margaret L Eaton. Ethics and the Business of Bioscience. Stanford University Press,

2004.

Ronel Elul and Piero Gottardi. Bankruptcy: Is it enough to forgive or must we also forget?

American Economic Journal: Microeconomics, 7(4):294–338, 2015.

Virginia Eubanks. Automating inequality: How high-tech tools profile, police, and punish

the poor. St. Martin’s Press, 2018.

European Commission. Communication on artificial intelligence. communication from

the commission to the european parliament, the european council, the council, the

european economic and social committee and the committee of the regions on artificial

intelligence for europe (com/2018/237 final), a. URL https://eur-lex.europa.eu/

legal-content/EN/TXT/?uri=COM%3A2018%3A237%3AFIN.

European Commission. Guidelines on data protection impact assessment (dpia) and

determining whether processing is “likely to result in a high risk” for the purposes of reg-

ulation 2016/679, b. URL http://ec.europa.eu/newsroom/article29/item-detail.

cfm?item_id=611236.

European Commission. Guidelines on automated individual decision-making and profiling

for the purposes of regulation 2016/679 (wp251rev.01), c. URL https://ec.europa.

eu/newsroom/article29/item-detail.cfm?item_id=612053.

European Commission Independent High Level Expert Group on Artificial Intelligence.

A definition of artificial intelligence: main capabilities and scientific disciplines. report

— study of 8 april 2019. URL https://ec.europa.eu/digital-single-market/en/

news/ethics-guidelines-trustworthy-ai.

139

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A237%3AFIN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A237%3AFIN
http://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=611236
http://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=611236
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=612053
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=612053
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai


European Parliament. European Parliament resolution on automated decision-making

processes: ensuring consumer protection and free movement of goods and ser-

vices (2019/2915(rsp)). URL https://www.europarl.europa.eu/doceo/document/

B-9-2020-0094_EN.html.

European Union. EU General Data Protection Regulation (GDPR): Regulation (EU)

2016/679 of the European Parliament and of the Council of 27 April 2016 on the

protection of natural persons with regard to the processing of personal data and on the

free movement of such data, and repealing Directive 95/46/EC (General Data Protection

Regulation), OJ 2016 L 119/1.

Sina Fazelpour and Zachary C Lipton. Algorithmic fairness from a non-ideal perspective.

In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages 57–63,

2020.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh

Venkatasubramanian. Certifying and removing disparate impact. In Proceedings of

the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 259–268. ACM, 2015.

Avi Feller, Emma Pierson, Sam Corbett-Davies, and Sharad Goel. A computer program

used for bail and sentencing decisions was labeled biased against blacks. it’s actually

not that clear. The Washington Post, 2016.

Marc Fleurbaey. Fairness, responsibility, and welfare. Oxford University Press, 2008.

Marc Fleurbaey. Equality versus priority: how relevant is the distinction? Economics &

Philosophy, 31(2):203–217, 2015.

Luciano Floridi and Josh Cowls. A unified framework of five principles for AI in society.

Machine Learning and the City: Applications in Architecture and Urban Design, pages

535–545, 2022.

Luciano Floridi, Josh Cowls, Monica Beltrametti, Raja Chatila, Patrice Chazerand,

Virginia Dignum, Christoph Luetge, Robert Madelin, Ugo Pagallo, Francesca Rossi,

et al. AI4People—an ethical framework for a good AI society: Opportunities, risks,

principles, and recommendations. Minds and machines, 28(4):689–707, 2018.

Ulrik Franke. Rawls’s original position and algorithmic fairness. Philosophy & Technology,

34(4):1803–1817, 2021.

Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. On the (im)

possibility of fairness. arXiv preprint arXiv:1609.07236, 2016.

140

https://www.europarl.europa.eu/doceo/document/B-9-2020-0094_EN.html
https://www.europarl.europa.eu/doceo/document/B-9-2020-0094_EN.html


Andreas Fuster, Paul Goldsmith-Pinkham, Tarun Ramadorai, and Ansgar Walther. Pre-

dictably unequal? the effects of machine learning on credit markets. The Journal of

Finance, 77(1):5–47, 2022.

Pratik Gajane and Mykola Pechenizkiy. On formalizing fairness in prediction with machine

learning. arXiv preprint arXiv:1710.03184, 2017.

Gemma Galdon Clavell, Mariano Mart́ın Zamorano, Carlos Castillo, Oliver Smith, and

Aleksandar Matic. Auditing algorithms: On lessons learned and the risks of data

minimization. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,

pages 265–271, 2020.

Dorothy F Garrison-Wade and Chance W Lewis. Affirmative action: History and analysis.

Journal of College Admission, 184:23–26, 2004.

David Gauthier. Morals by agreement. Oxford University Press on Demand, 1986.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
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Appendix A

Bias in Model Development Lifecycle

Questionnaire

This questionnaire will go through an assessment to identify the potential unfair and

unintended biases and discrimination in a model development lifecycle.

It is intended for initial risk identification to facilitate subsequent evaluation, quantifi-

cation (likelihood/impact), and mitigation. By identifying the potential source of the bias

risk, the questionnaire will allow for a more targeted design of a mitigation strategy.

The questionnaire is not intended to be a comprehensive, definitive standard for bias

risk assessment; rather, it provides a starting point to further adapt and extend it to

be customised to the use case and domain area. Further guidance documents would be

developed for practical implementation.

This risk evaluation stage may be used to assess the trade-offs in the model and justify

its usage to key stakeholders, both internal (e.g. board) and external (e.g. customers,

regulators). It may be used internally by the model development team with input from

others, e.g. legal risk teams, by the internal audit / model validation team, or externally

for an independent third-party assessment of the ethical risks of the model.

A. Background information

• A.1 Model description: Describe a model you would like to assess for potential

unfair and discriminatory bias. Ex) a supervised machine learning model to predict

whether a mortgage loan will default

• A.2 Positive impact: overall**: What positive impact can this model have on

the target population? This may include an explicit social impact as intended by

the model (e.g. building a computer vision model to read sign language to increase

service accessibility), or it could be associated with the efficiency of the business
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and market that trickles down into a positive result for the consumers, e.g. more

precisely predicting default risk can help prevent unaffordable loans being approved.

• A.3 Positive impact: performance What is the benefit of higher accuracy /

precision for the target population? Ex) better credit risk evaluation model leads to

greater financial inclusion, better hiring algorithm leads to overall higher employee

performance / reduction in attrition

• A.4 Positive impact: operationalisation Can these objectives be measured and

quantified? If yes, list how they can be formalised. Ex) unaffordable loan approval

can be measured based on false negative rate (i.e. loans predicted to be repaid but

defaulted), and greater financial inclusion can be measured as the total amount of

loans given out

• A.5 Negative impact: allocative harm What are any potential allocative harms

(withholding of opportunities / resources)? Ex) model may be more likely to give

loans to certain groups, e.g. race and gender, which would replicate and widen the

societal inequalities

• A.6 Negative impact: representational harm: Is there any representational

harm (diminished identity)? Ex) for an image search algorithm for “CEO”, returning

more men than women reinforces the bias in identity

• A.7 Negative impact: representational harm operationalisation Is there any

representational harm (diminished identity)? Ex) for an image search algorithm for

“CEO”, returning more men than women reinforces the bias in identity

• A.8 Negative impact: fundamental rights: Are there any fundamental rights

at stake? Ex) right to self-determination, liberty, due process of law, freedom of

movement, privacy, freedom of thought, freedom of religion, freedom of expression,

right of peaceful assembly, right to freedom of association

• A.9 Negative impact: operationalisation: Can these objectives be measured

and quantified? If yes, list how they can be formalised. Ex) unaffordable loan

approval can be measured based on false negative rate (i.e. loans predicted to be

repaid but defaulted), and greater financial inclusion can be measured as the total

amount of loans given out

• A.10 Relevant regulations and laws (e.g. discrimination): What are the

relevant regulations and laws that can help frame the risk assessment? For example,

there are various anti-discrimination legislations and court cases. The definition of

unlawful discrimination and the definition of a legally protected characteristic (e.g.
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race, gender) may vary across jurisdictions, e.g. as defined in the 2010 Equality Act

in the UK, and by domain area, e.g. Equal Credit Opportunity Act in the US. Seek

out relevant guidance from official documents and from internal legal / regulatory

risk teams.

Based on the answers above, think critically about the model’s practical and ethi-

cal objectives, and when they may be in conflict with one another, understanding the

prioritisation of and trade-offs between these objectives.

Below questions will align to each stage of the model development lifecycle. Answering

yes indicates a bias risk that must be addressed, mitigated, and/or justified.

B. Design: historical/external bias

• B.1 History of discrimination: Is there documented historical discrimination in

the domain area against a protected class, as defined in A.10? Ex) academic studies

demonstrate lower mortgage approval rates for racial minorities in the US, especially

black and Hispanic applicants. These are sub-groups to which special attention must

be paid in testing for impact of the model.

– age

– disability

– gender reassignment

– marriage or civil partnership (in employment only)

– pregnancy and maternity

– race

– religion or belief

– sex

– sexual orientation

– other

• B.2 Acceptable vs. unacceptable inequalities: For that group, select which

of the following layers of inequality is a justifiable source of differences in outcome.

For example, race and gender may be relevant to differential medical diagnoses, and

talent / education may be relevant to recruiting and hiring algorithms. Is there any

disagreement among relevant stakeholders?

– Disability
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– Race

– Age

– National origin

– Socioeconomic status

– Talent/ education

– Personality traits

– Preferences

– Culture

– Discrimination in related markets (e.g. for a credit risk model, any inequality

resulting from discrimination in the job market)

– Other

• B.3 Potential proxies: Identify the features in your data may be associated with

the unjustifiable sources of differences in outcome, e.g. postcode with race or income

with gender. Detailed tests would be undertaken in the feature engineering stage.

Is there sufficient rationale for including these features, e.g. well-founded causal

relationship to an outcome of interest (e.g. income to risk of default) or feature that

is within the individual’s control and transparently disclosed (e.g. history of paying

bills on time)?

• B.4 World as-is vs. ideal: Is there any misalignment between the ground

truth (world as-is) and the organisation’s values? For example, there may be more

male senior executives, but the organisation’s objective is to have stronger female

representation in leadership.

C. Data collection: Representation bias

• C.1 Selection bias: Is the marketing / targeting / data collection strategy returning

a non-representative sample of the population? Ex) is the mortgage company

advertised in majority-white neighbourhoods, or is the recruiting firm only active at

top universities?

• C.2 Subjective recorded features: Are any of the recorded features affected

by human judgment? Ex) the data set may include the interviewer’s scores on the

candidates’ performance

• C.3 Third party: Are any of the recorded features produced by a third party data

set or model? Ex) the credit scores may be provided by a specialist agency, or an

open source data set on university rankings may be used in a hiring model
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• C.4 Known unknown: Is any ground truth of actual outcomes unknown? Ex)

whether denied loans would have defaulted is unknown

• C.5 Sample size: Is there insufficient sample in any subgroup of interest (especially

those in B.1) for this analysis? Ex) only 1% of applicants are Native Americans

D. Feature engineering: measurement bias

• D.1 Different measurements: Are there differences in the measurement process

between groups for either input features or the target outcome? Ex) high-minority

neighborhoods are more frequently patrolled, leading to higher arrest rates

• D.2 Different data quality: Are there differences in the data quality between

groups? Ex) schools in poor districts have lower quality recorded data on student

performance

• D.3 Subjective engineered features: Are there any features added by the model

developer that could it be affected by his/her judgment? Ex) the data scientist

added flags of what he/she considers an important feature from a job application, e.g.

“participated in university extracurricular activities” or “held a leadership position”

• D.4 Test for proxies: Are there proxies of outcome that may be also proxies of

a protected group membership, especially those with a history of discrimination

in this domain area? Refer back to answers from B.3 on whether the inclusion

of these proxies is justifiable. If the protected features are available, correlation

tests are recommended. Ex) Job type and car value are associated with both auto

insurance risk and gender. Car value may be justifiably included due to its causal

relation to risk of accident-related claims, but job type may not be fully justifiable,

e.g. if a male-dominated job titles, e.g. barbers, are charged different prices to

female-dominated job title, e.g. hair stylists. The modeller may consider mitigating

the gender bias by using a newly engineered feature more closely associated to the

outcome of interest, e.g. typical amount of car usage in job, rather than directly

using the job title.

• D.5 Measurement accuracy: Is there any mis-match between the measurement

and what the model intends to track? Ex) arrest is not equivalent to crime rate,

final grades are not equivalent to student success
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E. Model build and training: aggregation bias

• E.1 Heterogeneous groups: Are the populations heterogeneous in a way that

a single model cannot account for all subgroups? (See: Simpson’s paradox) Ex)

Medical diagnosis algorithm should be different for men and women given their

different body compositions

• E.2 Heterogeneous mechanisms: Are there other heterogeneous mechanisms in

play that are being inaccurately aggregated that may be associated with protected

features? Ex) differences in behavior across products, different time periods, different

data sets, etc.

F. Model evaluation: evaluation bias

• F.1 Trade-offs: Identify all trade-offs on objectives identified for all available

models. All objectives should be quantified into metrics where possible to enable

model comparison. Is there any tension between key objectives? Ex) mapped the

trade-off between financial inclusion and minority race denial rates for mortgage

lending for 10 versions of predictive models, but there is no obvious winner

• F.2 Objective coverage: Are there any gaps in the metrics’ coverage of all mea-

surable objectives related to positive and negative impacts on the target population?

Ex) The assessment of mortgage default prediction algorithm covers unaffordable

loans (false positive), financial inclusion, minority race denial rate, but explainability

should be qualitatively assessed

• F.3 Metric alignment with values: Is there any mis-alignment of your model

performances with the relative importance of False Positives vs. False Negatives?

Ex) those predicted to repay but defaulted represent unaffordable loans / cost to

the company, and those predicted to default but would have repaid represent missed

opportunity / allocative harm

• F.4 Metric over-fitting: Is there a metric the model may be over-fitting to? Ex)

the main credit risk evaluation accuracy metric

• F.5 Sub-group performance disparity: Is there any difference in model per-

formance, measured on on all protected subgroups, especially those identified in

B.1? Be sure to test all subgroup combinations, e.g. intersectional discrimination in

race-gender. Ex) the model has similar error rates for men and women and for black

and white applicants, but it has high error rates for black women
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• F.6 Confidence: Is there any barrier to the confidence intervals being accepted and

understood by the relevant stakeholders? Ex) Especially if a sub-group population is

under-represented, they may have a larger confidence interval around their predictions

G. Model productionisation and monitoring: deploy-

ment bias

• G.1 System: Is the model a part of a complex sociotechnical system, e.g. inter-

connected models or embedded in human processes? Ex) A CV-scoring algorithm may

feed into a candidate’s evaluation system, which should also be assessed holistically

beyond the ML model

• G.2 Feedback: Are there any gaps in the human feedback mechanism for any

errors? Ex) A human reviewer reads a sample of machine transcriptions to identify

any errors and retrains the algorithm with the corrections, but high-cost errors may

be missed

• G.3 Robustness to external changes*: Test the model for robustness to any

external changes, e.g. shifts in policy, dramatic changes in input data, etc. Are

there any concerns on the organisation’s ability to monitor its performance in case

of any external change? Ex) There is a monitoring mechanism in place to alert the

team if there is a significant change in the distribution in the input data beyond a

pre-defined threshold

• G.4 Bias reinforcement: Can the feedback loop be reinforcing any existing biases?

Ex) if loans predicted to default are denied. Is there any user interaction with the

output? Ex) user clicking on links recommended by the algorithm

This questionnaire can also be found at https://github.com/michelleslee/bias_

in_lifecycle/.
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