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INVESTIGATING PROTRUDIN’S ROLE IN NEUROPROTECTION AND
AXON REGENERATION IN THE CENTRAL NERVOUS SYSTEM

FIONA M. LOVE

Abstract

Protrudin — a transmembrane scaffold protein found in tubular regions of the
endoplasmic reticulum (ER) — has previously been shown to strongly promote
neuronal survival and axon regeneration after central nervous system (CNS)
injury. This is in part due to increased levels of integrins in the distal axon,
but this mechanism does not fully account for its beneficial effects. We have
investigated protrudin’s effects on intracellular transport, morphology, and
protein localisation in neurons, and found varied but specific effects on differ-
ent cellular systems. In particular, protrudin does not have any effect on the
transport of late endosomes in CNS neurons — despite evidence for this mech-
anism in other cell types — due to the absence of key adaptor protein FYCO1
in mature neurons. It also does not have any substantial effect on dendritic
spine morphology, so it does not indiscriminately promote cellular outgrowth.
On the other hand, protrudin does interact with ER export and associated se-
cretory machinery. Overexpression of an active mutant of protrudin increases
the amount of an ER-Golgi intermediate compartment in axon terminals, and
affects the transport of Golgi satellite organelles, which we observed even in
the distal axon. Our data demonstrates that protrudin provides axons with
the machinery for local membrane protein synthesis, which may play a role in
neuron survival and regeneration. This work opens up new avenues for future
research into adult CNS repair.
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INTRODUCTION

Introduction

0.1 The challenge of CNS regeneration

One of the greatest challenges of modern medicine is how to promote regenera-

tion of the central nervous system (CNS). Compared to most other tissues and

organs in the human body, the CNS has exceptionally low regenerative ability,

largely due to the neurons’ inability to reliably regrow injured axons. As a

result, damage to the CNS — whether through trauma, infection, or disease —

often results in lifelong disability. In contrast, the peripheral nervous system

(PNS) is capable of substantial regeneration after injury, with severed nerves

able to regrow several centimetres, reach their targets, and form functional con-

nections, suggesting that regeneration of the CNS might be medically possible,

if we can identify the relevant factors at play. While there has been active

research in this area for decades (if not centuries), we are still a long way from

what most people would consider ‘successful’ regeneration of damaged CNS tis-

sues — the regrowth of damaged neuronal processes, appropriate remodelling

of the extracellular environment, and restoration of functional synaptic con-

nections. In this section, I will summarise our current understanding of some

of the factors limiting CNS regeneration, as well as the particular challenges I

have decided to address with this project.
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0.1.1 Glaucoma

Glaucoma is the leading cause of irreversible sight loss worldwide. It is esti-

mated that over 3.5% of the world population aged 40-80 is affected by glau-

coma, which has an enormous impact on quality of life for millions of people

[2]. While there are treatments that can slow or even halt the progression of

this disease, they cannot reverse damage that has already occurred, and the

typical progression of glaucoma — with sight loss beginning at the periphery

— means that it is often diagnosed at a late stage. Furthermore, a significant

percentage of patients do not respond to the first line treatment drugs, so there

is a continued need for improved therapies [3,4].

The deterioration of vision in glaucoma is associated with both the loss of axons

in the optic nerve — which conveys visual information from the eye to the brain

— and with the loss of retinal ganglion cell (RGC) bodies in the retina. While

many approaches so far have targeted the damaging increase in intraocular

pressure typically considered a hallmark of glaucoma, there are cases where

RGC degeneration occurs despite normal pressure in the eye (normal tension

glaucoma), and it is not entirely clear what drives the disease progression

in these cases [5]. Therefore, it is important to develop therapies that can

target the neurodegeneration directly, in addition to those aimed at lowering

intraocular pressure to prevent RGC damage.

This combination of axon damage and neurodegeneration makes glaucoma an

ideal target for CNS regeneration research, as any successful treatments have

immediate medical relevance, as well as the potential to apply more broadly to

a range of other CNS conditions. To this end, we have been working to identify

new gene therapy targets that can prevent the loss of RGCs and promote

regeneration of RGC axons that have already been damaged. By delving into

the biology of why CNS axons fail to regenerate and how we can change this,
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we hope to introduce a new class of therapeutics that can be used to treat not

only glaucoma, but also the numerous other CNS diseases and injuries that

cause axonal damage or loss.

Figure 0.1: Schematic showing normal human eye anatomy (left), as well as
the changes caused by glaucoma (right). In the normal eye, visual signals are
transduced by the axons of retinal ganglion cells, which follow the arrows in
the figure from the retina to the brain through the optic nerve. In glaucoma,
these signals are disrupted as axons in the optic nerve are damaged.

0.2 Factors limiting CNS regeneration

The question of why CNS axons fail to regenerate after injury is a complex

one, and our current understanding points to a wide range of both extrinsic

and intrinsic factors, which interact to limit regrowth.2

2Note that this regeneration is distinct from — but closely related to — functional
recovery, which can result from reorganisation of surviving neuronal circuits after injury in
the absence of any axonal regeneration. The central nervous system is exceptionally flexible,
and significant functional recovery can be achieved after, for example, spinal cord injury, in
the case of an incomplete injury and intensive rehabilitation. However, this plasticity can
be significantly enhanced by even limited axonal regeneration, if regrowing axons can bridge
the site of an injury and create new connections between cells, even if the axon fails to
regrow as far as its original targets. In this thesis I will be focusing on survival and regrowth
of damaged axons, as opposed to functional recovery after a CNS injury or disease.
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0.2.1 Extrinsic factors

In 1980, Peter Richardson and colleagues at McGill showed that axons in a

severed rat spinal cord could regenerate into an implanted sciatic nerve graft,

thus demonstrating that CNS neurons were at least somewhat capable of regen-

eration, but were inhibited by their environment [6]. Since then, researchers

have identified a variety of environmental factors that limit CNS axon growth,

ranging from differences in the cellular composition of PNS and CNS tissues, to

changes in the extracellular environment and cell surface receptors that occur

during development as the tissue matures.

0.2.1.1 Extraellular matrix

The extracellular environment of the mature central nervous system is unique

from other tissues, and contains a number of chemicals that are known to

be inhibitory to axonal growth, either mechanically or biochemically. The

composition of this environment changes during development, and becomes

increasingly hostile to neurite growth as the CNS matures [7]. Many of these

changes — in particular the secretion of perineuronal nets, matrix structures

which surround certain types of neuron in the CNS — play an important role

in stabilising and supporting synapses, and signal a change in CNS state from

supporting growth to supporting electrical signalling [8,9]. These developmen-

tal events also result in changes in the mechanical properties of CNS tissue,

which can inhibit normal axon growth even in the absence of biochemical cues

[10].

Given this substantial impact on neurite growth, numerous therapies tageting

the extracellular matrix have been tested to promote regeneration after spinal

cord and other CNS injuries, with mixed results. It is now widely accepted

that targeting inhibitory molecules in the extracellular matrix — either by
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enzymatic breakdown, as in the case of chondroitinase ABC, or by inhibiting

synthesis, for example with 4-methylumbelliferone — can permit short-range

regeneration and enhance neuronal plasticity [11,12]. These treatments have

led to moderate restoration of function in some models of spinal cord injury,

often through the reorganisation of local neuronal networks following an in-

complete injury. However, robust long-range axonal regeneration — past the

site of injury and back to their original downstream targets — remains elusive

[reviewed in 8,13].

0.2.1.2 Cellular environment

Axonal regeneration, or its failure, is significantly influenced by surrounding

non-neuronal cells. In most cases, glia make up the vast majority of these cells,

but in the case of traumatic injury to the CNS circulating immune cells can

also play an important role.

0.2.1.2.1 Glia One of the most obvious tissue-level differences between

the CNS and the PNS is the type of glial cells present. PNS axons are myeli-

nated by Schwann cells, while in the CNS oligodendrocytes carry out the same

role. These cells have significantly different structures, and respond differently

to injury. Following an axonal injury, Schwann cells transform to exhibit

a regeneration-promoting phenotype. In this state, they actively participate

in clearing myelin debris, form a scaffold for axonal regrowth, and release

exosomes containing growth-promoting factors [reviewed in 14]. In contrast,

oligodendroytes that survive an axonal injury in the CNS are largely quies-

cent, and do not appear to support axon repair in the same way [15]. On

the contrary, the myelin debris from damaged oligodendrocytes, both lipids

and proteins, and in particular myelin-associated glycoprotein (MAG), are
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inhibitory to axon growth, and can contribute to inflammation following an

injury to the CNS [16–18].

0.2.1.2.2 Inflammation In normal circumstances, microglia act as the pri-

mary immune cells of the central nervous system, while other immune cells are

excluded by the blood-brain or blood-spinal cord barrier. However, in the

case of injury — or certain degenerative conditions, such as multiple sclerosis

— circulating immune cells can infiltrate the CNS, causing significant inflam-

mation [reviewed in 19,20,21]. While some transient inflammation appears

to be important for clearing tissue debris and subsequent repair, this process

commonly becomes dysregulated, and unresolved inflammation is a significant

contributor to the secondary injury cascade seen after traumatic brain or spinal

cord injury. While the inflammatory changes that occur following CNS injury

are highly complex and dynamic, this is an active area of research, and some

studies have suggested that anti-inflammatory treatments could promote axon

regeneration [22,23].

0.2.1.3 Synapses — a bridge between extrinsic and intrinsic factors

Recent work has increasingly pointed to the formation of synapses as a key

point at which developing CNS neurons lose their intrinsic capacity to regen-

erate. During this process, interactions with the external cellular environment

trigger internal changes that encourage signalling function at the expense of

inhibiting growth. For example, Tedeschi et al. showed that a voltage-gated

calcium channel subunit prevents axon growth, and that inhibiting the chan-

nel can promote regeneration in vivo [24]. Hilton et al. found a similar effect

with presynaptic vesicle-tethering proteins, and also found that cells that were

capable of regeneration down-regulated these proteins during axon growth
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[25]. These results suggest that the cellular requirements to support synap-

tic signalling might be at odds with the mechanisms needed to support axonal

growth, and that changing a neuron’s interactions with external partners might

be a necessary step in promoting regeneration through internal mechanisms.

0.2.2 Intrinsic factors

In addition to extrinsic factors, developmental changes within neurons also

present a barrier to CNS regeneration. As the cells mature from a growth-

permissive state into synaptically active neurons, they undergo structural and

functional changes that correlate with the loss of regenerative ability [26]. Addi-

tionally, many neurodegenerative diseases are associated with genetic or molec-

ular dysfunction within neurons, as opposed to the extracellular environment,

highlighting the importance of internal factors in maintaining healthy, func-

tional axons. Understanding and addressing these intrinsic sources of dysfunc-

tion and barriers to regeneration is essential to developing successful therapies

to protect and repair CNS axons.

0.2.2.1 Cytoskeletal regulation of axon growth

Neurons undergo dramatic morphological changes during development, even-

tually forming extremely long, thin, and complex structures that, in many

cases, must be carefully maintained for the entire lifetime of the organism. To

make this possible, mature neurons have a dynamic but highly regulated cy-

toskeleton, particularly in the axon. However, the structural requirements of

the mature, signal-carrying axon are very different from a growing axon, and

in the case of axon injury this can prevent successful regeneration.

A key feature of the mature neuronal cytoskeleton is the bundle of polarised

microtubules that forms the backbone of the axon. This structure is main-
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tained by proteins such as EFA6, which truncates growing microtubules that

leave the bundle to reach the axon periphery. However, this can also inhibit

axon outgrowth, which might limit regeneration [27].

This microtubule structure, and by extension the structure of the axon, is

also maintained by a repeated pattern of actin rings arranged at intervals

around the circumference of the axon [28,29]. In addition to stabilising the

microtubule bundle, recent evidence shows that these rings can expand and

contract, playing a role in the regulation and speed of axonal transport [30].

At the axon tip, a delicate balance of microtubule polymerisation and stabilisa-

tion promotes forward extension of the growth cone and axon elongation during

development. This can be partially restored in mature axons with the addition

of microtubule-stabilising drugs, but the effect is highly dose-dependent, with

higher doses instead inhibiting axon growth [reviewed in 31]. There is also

a complex interaction between these growing microtubules and the actin fila-

ments that define the structure of the growth cone periphery. Actin filaments

in the growth cone are constantly polymerising, being pulled towards the cen-

ter of the growth cone, and depolymerising, in a process that is dynamically

regulated to limit growth speed and allow the growth cone to change direc-

tion in response to environmental cues [reviewed in 32]. Inhibiting proteins

involved in this retrograde flow of actin filaments has been shown to increase

axon growth even in the presence of otherwise inhibitory cues [33,34].

0.2.2.2 Growth-related signalling

The internal changes that occur during neuronal maturation are regulated by

distinct signalling pathways. Several of these have been associated with the loss

of regenerative ability, and have been targeted to increase axon regeneration.
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0.2.2.2.1 PTEN and mTOR One of the most-studied signalling path-

ways in the context of CNS repair is the PI3K/AKT/mTOR pathway. The

levels of PIP3, an important signalling lipid, are developmentally regulated

in neurons [35]. PIP3 is produced from PIP2 by PI3K, while the reverse

reaction is catalysed by PTEN. During growth, a balance of both enzymes

maintains sufficient PIP3 levels to promote growth via AKT kinase and down-

stream targets such as mTOR. As neurons mature, however, expression levels

of PI3K decline. The result is a decline in PIP3, and subsequent decrease

in AKT signalling. Restoring PIP3 levels in mature neurons, either through

PTEN deletion or PI3K expression, can strongly promote axon regeneration

[35,36, reviewed in 37].

0.2.2.2.2 Other signalling pathways Numerous other pathways have

also been implicated in the failure of regeneration in the CNS. Smith et

al. found that SOCS3 — a negative regulator of cytokine signalling —

inhibited axon regeneration in mouse RGCs by blocking responses to external

growth factors, and that deleting SOCS3 promoted regeneration [38]. Qiu

et al. showed that DRG regeneration into the CNS following a conditioning

lesion was dependent on cAMP and PKA to overcome inhibitory signals from

the extracellular environment [39]. These pathways all overlap or interact to

some degree, but it is still unclear how they may be differentially regulated in

the case of axonal injury, or if this varies across cell types.

0.2.2.3 Epigenetic and transcriptional regulation of regeneration

Dorsal root ganglia (DRG) neurons are unique in that they extend axons into

both the peripheral and central nervous systems from their location just outside

the spinal cord. As peripheral neurons they have the intrinsic capacity for
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axonal regeneration, although this is usually only successful in the peripheral

branch, due to the inhibitory extracellular environment of the spinal cord.

However, their regenerative capacity into the CNS is vastly enhanced by a

prior injury to the peripheral axon, known as a conditioning lesion. Changes

in gene expression and regulation that occur in the weeks following a peripheral

lesion can allow these cells to regenerate through the inhibitory environment

of a spinal cord injury, raising the possibility that similar changes could convey

similar capacity in neurons of the CNS [40].

This conditioning lesion phenomenon has provided an invaluable model for

identifying epigenetic and transcriptomic changes that permit PNS regenera-

tion but are normally lacking in the CNS. For example, Puttagunta et al. found

that histone modification was essential for the conditioning lesion effect, and

activated signalling cascades to promote axonal growth [41]. Weng et al. found

that DRG neurons upregulate TET3 after axon injury, which in turn demethy-

lates DNA and allows the activation of regeneration-associated genes. They

also found that the regeneration induced by PTEN deletion in RGCs was

dependent on TET1, a similar protein [42]. These studies highlight that chro-

matin accessibility and DNA modification are limiting factors associated with

regenerative ability.

Other work has identified transcription factors that may play a role in axon

regeneration [reviewed in 43]. Moore et al. suggest that different members of

the KLF family of transcription factors differentially regulate the regenerative

capacity of RGCs, while Ewan et al. pointed to ATF3 and CJUN as key regu-

lators [44,45]. This is by no means an exhaustive list, and a significant amount

of work is ongoing in this area to identify transcription factors that can be

targeted to promote regeneration, particularly in combination with therapies

that address chromatin accessibility [reviewed in 46].
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0.2.2.4 Changes in axonal transport with development

After synapse formation, axons undergo dramatic changes in transport, as

growth machinery is excluded from the axon in favour of synapse components

and synaptic vesicle precursors. This results in decreased transport of some

essential organelles, which can inhibit survival and regrowth in the case of

injury.

0.2.2.4.1 Recycling endosomes Among the organelles excluded from

mature axons are recycling endosomes, which are marked with a small

GTPase called RAB11. RAB11 endosomes play a key role in recycling

internalised receptors back to the plasma membrane, but they also play a role

in transporting cargo into axons [26]. One such cargo is integrins, which are

essential for focal adhesion formation and involved with both developmental

and regenerative axonal growth. In DRG neurons in the PNS, integrin α9

can promote axon regeneration even into the inhibitory environment of the

spinal cord [47]. However, integrins are excluded from mature CNS axons

by another recycling endosome small GTPase called ARF6, in combination

with its activator EFA6. Inhibiting EFA6 allows integrins into the axon

and promotes regeneration after axotomy in vitro, but it remains to be seen

whether this approach is effective in vivo [48].

0.2.2.4.2 Mitochondria Similar changes in mitochondrial motility have

been identified. Lewis et al. found that mitochondrial motility decreased with

axon maturation in mouse cortical neurons, and mature mitochondria were

often stationary near presynapses [49]. Sainath et al. found that chondroitin

sulphate proteoglycans — potent inhibitors of axon regeneration — prevented

mitochondria from reaching the growth cones of regenerating DRG neurons
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[50]. Other studies linked this change even more directly to axon regenera-

tion, showing that artificially enhancing mitochondrial motility by either re-

ducing the anchor protein syntaphilin or overexpressing transport-regulating

ARMCX1 could boost regeneration after axon injury [51,52].

0.2.2.5 The virtuous cycle of axon growth

Many of these intrinsic factors interact in what has been described as the

‘virtuous cycle of axon growth’ [53]. Axonal growth is sustained by a cycle

in which activated axonal growth factor receptors trigger transcriptional and

signalling cascades through retrograde transport to the cell body. These in

turn can result in the translation and subsequent delivery of more receptors

and growth machinery, which allow the cell to respond more effectively to

growth cues in the extracellular environment. As the cell matures, changes in

axon transport lead to lower levels of growth factor receptors in the distal axon,

and the cycle stops. By targeting any stage of this cycle — axon transport,

signalling, transcription, or translation — it should be possible to effectively

restart the cycle and promote regeneration.

In summary, cytoskeletal organisation, signalling pathways, epigenetic and

transcriptional regulation, and organelle transport have all been identified as

key intrinsic barriers to axonal regeneration. The virtuous cycle theory high-

lights links between these systems, and suggests that growth-promoting inter-

ventions have the potential to feed forward to dramatically enhance axonal

regeneration.
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0.3 Protrudin

Protrudin is an interesting protein in the context of axon regeneration be-

cause it sits at the nexus of several of these intrinsic systems that can prevent

or promote regeneration. As a result, targeting protrudin has the potential

to substantially influence a neuron’s regenerative capacity by synergistically

acting on multiple different pathways.

0.3.1 Structure and localisation

Figure 0.2: Schematic of protrudin embedded in the ER membrane, show-
ing RBD (RAB binding domain), transmembrane domains, FFAT motif (two
phenylalanines in an acidic tract), CC motif (coiled-coil), and FYVE domain
(FAB1 YOTB VAC1 EEA1 zinc finger domain). The ER lumen is to the
bottom of the image.

Protrudin is a transmembrane ER protein. It contains an intramembrane hair-

pin loop, which restricts its localisation to tubular domains of the ER, where

it contributes to shaping and maintaining membrane curvature [54]. This loop
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is also required for protrudin oligomerisation — functional protrudin forms

homodimers or tetramers, although how this contributes to its function is not

well understood [55]. Protrudin also contains an array of binding domains

exposed to the cytoplasm, which include a RAB-binding domain (RBD), an

FFAT domain, which interacts with VAPA/B at ER contact sites, a coiled-coil

(CC) domain, which binds kinesin, and a FYVE domain, which interacts with

phospholipids. There is also a predicted low-complexity region between the

hairpin and CC domains, which has been shown to mediate interaction with

RAB7 [56].

0.3.2 Cellular outgrowth, migration, and invasion

Protrudin, otherwise known as ZFYVE27, is so named because its overexpres-

sion induces the growth of long cellular protrusions in HeLa cells, which are

non-neuronal cells derived from an epithelial tumour [57]. Subsequent work

has shown similar effects on a number of cell types [58], and indicated a role

for protrudin in outgrowth-dependent processes, such as migration and cancer

cell invasion [59,60]. However, the underlying mechanisms of these effects are

not fully understood, and there are a number of potential pathways that could

contribute.

0.3.3 Transport

Protrudin contains a kinesin binding site, indicating a role in mediating mo-

tor protein-mediated transport. In particular, this would promote plus-end

directed transport, which is essential for delivering cargo into the long axons

of CNS neurons. Matsuzaki et al. studied this in some depth, and found that

protrudin’s outgrowth-promoting effect in HeLa cells is attenuated if KIF5 is

inhibited, and increased if KIF5 is also overexpressed [61]. They found ev-
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idence for direct protrudin-KIF5 interaction in mouse brains, and identified

protrudin as the KIF5 adaptor for SURF4, RAB11, VAPA/B, and RTN3. As

these proteins are essential for ER function, contact site formation, protein

transport, and a number of other processes, this suggests that, even at the low

levels found endogenously in CNS neurons [26,62], protrudin might play an

important role in normal axonal function.

The study by Petrova et al. [62], which I contributed to during the first

year of my PhD, looked at protrudin specifically in the context of integrin

transport. In particular, integrins α9 and β1, which are capable of promoting

axon growth in the mature spinal cord [47], are cargo of RAB11 endosomes [63].

We found that protrudin overexpression had a small effect on developmental

neurite outgrowth, but strongly promoted axon regrowth after axotomy in

vitro. In addition, protrudin prevented retinal ganglion cell death after an

axon crush injury in vivo, and allowed axons to regrow past the injury site. I

discuss this result further in Chapter 1, section 1.3.1.

In contrast to our work on RAB11 and recycling endosomes, Raiborg et

al. looked at protrudin’s effect on the transport of late endosomes, marked

by the small GTPase RAB7. Using PC12 cells, which are derived from a

neuroendocrine tumour, they found that protrudin indirectly promoted late

endosome transport, forming transient ER-late endosome contacts at which a

separate adaptor, FYCO1 (ZFYVE7), was able to bind RAB7 and KIF5 to

move late endosomes down the axon [56].

0.3.4 ER contact sites

Other studies have indicated a direct role for protrudin at ER-organelle mem-

brane contact sites (MCS). Protrudin interacts with VAPA/B, key tethers at

many MCS [54,61,64,65]. It may also act at ER-mitochondrial contact sites,
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which are important for axonal function and growth [65,66], and may be dis-

rupted in neurodegenerative disease [reviewed in 67]. In addition, protrudin

itself has been shown to act as a tether at ER-endosome contact sites, as it con-

tains a phosphoinositide-binding FYVE domain, as well as several motifs that

can bind RAB proteins [56]. It may also play a role in ER-plasma membrane

contacts, as protrudin contains a non-canonical FYVE domain that interacts

more strongly with PM lipids than those more abundant on endosomes [68].

0.3.5 Axonal ER

The axonal ER is typically comprised of only a few very narrow tubules, but is

essential for normal axonal function [69]. As protrudin localises to tubular ER,

it can be found in the axon, although in mature neurons it is more abundant in

the cell body and dendrites. That being said, it does not appear to be actively

excluded from the axon, and it readily moves into the axon when overexpressed

[62]. Protrudin is known to interact with a number of important axonal ER

components, although it remains unclear what endogenous function protrudin

has in this compartment.

Protrudin contains a membrane hairpin domain, which is shared with other

proteins that play a role in ER membrane shaping [70]. Several of these are

implicated in hereditary spastic paraplegias (HSP), a group of axon degen-

erative diseases, which may stem from fragmentation of the axonal ER [71].

Protrudin itself has been considered an HSP gene [72], although there is some

controversy in this area, and the ‘mutation’ involved may actually be a benign

polymorphism [73]. However, protrudin does interact with spastin, atlastin,

and other HSP proteins, so it may still play a role in these conditions [70].

While dysfunction of these ER-shaping proteins can lead to axonal degenera-

tion, their function is also required for axon regeneration, where they appear
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to concentrate ER tubules near the growing tip [74]. Protrudin may act in the

same way, as Petrova et al. found that protrudin increases the amount of ER in

growth cones [62]. However, while these studies demonstrate that the axonal

ER is involved in axon regeneration, it is not currently clear what functions it

provides in this context.

The axonal ER also acts as a local calcium store, and its capacity is regulated

by membrane shaping proteins via tubule diameter. Protrudin may act in

the same way, although it is unclear how this may or may not contribute to

protrudin’s regenerative function, as different ER-shaping proteins have been

shown to have opposing effects on axon regeneration [75,76].

0.3.6 Previous work on protrudin

With these diverse roles across numerous cellular functions, protrudin could

be influencing neuronal survival and regeneration through several different

mechanisms. Our lab has been working with protrudin for some time now,

having initially become interested in the protein in the context of integrin

transport. This led to the publication of a paper which I contributed to [62],

some of which is presented in section 1.3.1.

That paper presented a number of key findings, which I have built upon over

the course of this project. The foremost of these is that protrudin overex-

pression has a striking effect on neuronal survival and regeneration after axon

injury.

0.4 Aims of this project

My initial aim in starting this project was to further examine the effect of

protrudin on in vivo CNS injury, with the intent of developing it towards
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a translational gene therapy. Unfortunately, the 2020 coronavirus pandemic

and associated disruption necessitated a dramatic change in direction. Since

then, I have focused on understanding which cellular pathways contribute to

protrudin’s beneficial effects on CNS regeneration. By understanding how

protrudin functions in neurons, we might be able to enhance its performance

or identify new therapeutic candidates in the same cellular pathways. This is

primarily intended to inform the translation of protrudin as a gene therapy

for neurodegenerative conditions and CNS injury, although it also lays the

groundwork for future research into the cell biology of axon regeneration in

the CNS.
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Materials and Methods

0.5 Plasmids and antibodies

Table 0.2: Plasmids used in this thesis.

Promoter Gene Reporter

CMV ARL8B (constitutively active) GFP

CMV ARL8B (WT) GFP

CAG EGFP -

hSYN EGFP -

SFFV/UbC EGFP/Emerald -

EF-1𝛼 ESCargo (FTV) Crimson

CMV FYCO1 EGFP

CMV LAMP1 mNeonGreen

CMV LAMP1 mRFP1

hSYN LAMP1 mRFP1

CMV LC3B mRFP1

hSYN mCherry -

hSYN Myrlysin EGFP

CMV Myrlysin Myc
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Promoter Gene Reporter

CAG Protrudin (active) EGFP

hSYN Protrudin (active) EGFP

hSYN Protrudin (active) mCherry

hSYN Protrudin (domain deletion mutants) mCherry

CAG Protrudin (WT) EGFP

hSYN Protrudin (WT) EGFP

hSYN Protrudin (WT) mCherry

UbC RAB7A mEmerald

U6 shRNA for calcyon (A-D) TurboGFP

U6 shRNA scrambled control TurboGFP

CMV SKIP EGFP

CBh SKIP mNeonGreen

hSYN ST3GAL5 EGFP

The hSYN-LAMP1-mRFP1 plasmid was cloned for this project (section

1.2.1). The original LAMP1-mRFP1 plasmid (#1817), along with LAMP1-

mNeonGreen (#98882), ESCargo(FTV) (#140162) LC3B (#21075), and

RAB7A (#115238) were acquired from Addgene, with thanks to Walther

Mothes [77], Dorus Gadella [78], Benjamin Glick [79], Tamotsu Yoshimori

[80], and Pantelis Tsoulfas [81], respectively. The FYCO1 plasmid was a gift

from Terje Johansen [82]. The ST3GAL5 plasmid was a gift from Marina

Mikhaylova [83]. SKIP-EGFP, myrlysin-myc, and ARL8B plasmids were

a gift from Juan Bonifacino. All shRNA constructs were purchased from

Origene (TG712969, TR30013). Plasmid maps are included in the Appendix,

section 5.2.
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Table 0.3: Primary antibodies used in this thesis.

Target Source Dilution

BCAP31 Novus Biologicals, NBP2-75416 1:100

SURF4 Proteintech, 11599-1-AP 1:250–1:500

MIA3 (TANGO1) Sigma-Aldrich, HPA055922-25UL 1:100

SEC31A BD Biosciences, 612351 1:100

ERGIC53 (p58) Sigma-Aldrich, E1031-200UL 1:100

GS28 Proteintech, 16106-1-AP 1:100

GLG1 Novis Biologicals, NBP1-90636 1:150

USO1 (p115) Proteintech, 13509-1-AP 1:1000

LAMP1 Abcam, ab24170 1:100

mTOR Thermo Fisher, A300-503A-M 1:50

ACSL3 Proteintech, 20710-1-AP 1:50

SLC38A1 Abcam, ab134268 1:100

LC3 Proteintech, 14600-1-AP 1:250

Table 0.4: Secondary antibodies and dye conjugates used in this thesis.

Name Source Dilution

Goat anti-Rabbit IgG Alexa

Fluor 568

Thermo Fisher, A-11011 1:500

Goat anti-Mouse IgG Alexa

Fluor 568

Thermo Fisher, A-11004 1:500

Biotinylated Donkey anti-Rabbit Amersham Biosciences,

RPN1004V1

1:500

Streptavidin Alexa Fluor 568 Thermo Fisher, S11226 1:1000
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0.6 Software

Wherever possible, I tried to use free and open-source software throughout this

project. All image analysis tasks were carried out in Fiji [84]. Quantitative

analysis and statistics were carried out in R [85]. FinchTV and Serial Cloner

were used for reading DNA sequences and designing plasmids, respectively.

Plasmid maps were generated using AngularPlasmid [86].

0.6.1 Code availability

Custom R scripts and ImageJ macros were written for individual data

collection and analysis tasks; these are included in the appendix (section

5.3) and freely available to use. In addition, the code used to generate this

thesis, including data analysis, statistics, and figures, is available online at

https://github.com/fmlove/Thesis.

0.7 Protocols

0.7.1 Plasmid preparation

All plasmid preparation was carried out using either DH5α (New England Bi-

oLabs, C2987I/H) or XL10-Gold (Agilent Technologies, 200314) competent

cells. Cells were transformed using a heat shock protocol, and grown on

LB/agar plates with an appropriate antibiotic for plasmid selection. Single

colonies were then scaled up in LB culture. Plasmids were purified from E. coli

cultures using Qiagen Spin Miniprep (27104) or EndoFree Plasmid Maxi kits

(12362) according to the manufacturer’s protocols. All plasmids were dissolved

in ultrapure DNAse-free water (Thermo Fisher, 10977035) for transfection.
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0.7.2 Cortical neuron cultures

Primary cortical neurons were obtained from embryonic day 18 Sprague Daw-

ley rats. Cortices were dissected in HEPES-HBSS and dissociated with papain

for approximately 5 minutes at 37°C, followed by DNAse treatment and tritu-

ration through a flame-polished glass pipette. Cells were filtered through a 40

µm cell strainer (Falcon, 352340) and plated at a density of 200,000-400,000

cells per imaging plate (Greiner Bio-One, 627860) or 50,000-100,000 cells per

acid-washed glass coverslip (13 mm diameter). (Plates and coverslips were

coated with 50 µg/mL poly-D-lysine (Sigma-Aldrich, P1149) in borate buffer.)

Cells were grown in MACS Neuro Medium (Miltenyi Biotec, 130-093-570),

supplemented with NeuroBrew-21 (Miltenyi Biotec, 130-093-566), GlutaMAX

(Thermo Fisher, 35050061), and ITS (R&D Systems, AR013) at 37°C with

7% CO2.

The day of dissection was considered to be day zero, and further develop-

ment measured by days in vitro (DIV). The cells would typically begin to

grow neurites within a day, exhibit clearly differentiated axons by DIV3, and

demonstrate electrical maturity and significantly reduced regenerative ability

by DIV16 [26].

0.7.3 Transfection

Cortical neurons were transfected at DIV10 by either magnetofection or cal-

cium phosphate. We experienced a significant drop in efficiency with the mag-

netofection reagent early in 2020, and subsequently switched to the calcium

phosphate method.

Magnetofection was carried out using NeuroMag Transfection Reagent (OZ

Biosciences, NM51000). Briefly, plasmid DNA was incubated at room tem-

perature with the NeuroMag Transfection Reagent in MACS Neuro Medium
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(Miltenyi Biotec, 130-093-570) for 30 minutes. Growth media was removed

from the cells and replaced with warmed MACS Neuro Medium and the DNA-

complexed NeuroMag Transfection Reagent. The cells were placed on a mag-

netic plate (OZ Biosciences, MF10000) in an incubator (37°C 7% CO2) for

30 minutes. The transfection mix was then removed from the cells and the

growth media reapplied.

Calcium phosphate transfection was carried out using a protocol adapted from

Jiang and Chen [87]. A solution of DNA and calcium chloride was prepared,

and added dropwise to HEPES-buffered saline (Sigma-Aldrich, 51558) while

vortexing to precipitate the DNA-calcium phosphate complex. This was then

added to the cells in supplement-free media, and incubated at 37°C 7% CO2

for one hour. Cells were then washed with media pre-equilibrated in 10% CO2

to remove residual precipitate, and the original growth media reapplied.

0.7.4 Immunocytochemistry

Cortical neurons were fixed using formaldehyde and sucrose, dissolved in PBS

and mixed into the growth media to final concentrations of 3% formaldehyde

and 10% sucrose. HeLa cells were fixed in 3% formaldehyde in PBS. In both

cases, cells were fixed for 15 minutes at room temperature, followed by PBS

washes and stored at 4°C.

Cells were permeabilised with 0.2% saponin, used throughout the staining

process, to preserve the localisation of membrane-associated proteins. Dishes

or coverslips were incubated at room temperature for 45 minutes in blocking

buffer containing 3% BSA and 0.2% saponin. Primary and secondary antibod-

ies were diluted to the desired concentration in the same buffer and incubated

for 1.5 hours each at room temperature, before being rinsed in PBS and stained

with DAPI. All samples were mounted with FluorSave reagent (Calbiochem,
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345789) and left to dry for at least 24 hours before imaging.

Secondary-only controls were carried out for each combination of cell type and

secondary antibody used throughout this project. No significant non-specific

staining was observed (data not shown).

0.7.5 Microscopy

0.7.5.1 Live cells

Live imaging of axonal transport was carried out with spinning disc confocal

microscopy, using an Olympus IX70 microscope and a PerkinElmer UltraVIEW

scanner controlled with MetaMorph software. For the data presented in figures

1.6 and 1.7, a 100x objective with a numerical aperture of 1.35 (Olympus,

1-UC836R) was used. For the data in figure 3.10, a 100x objective with a

numerical aperture of 1.40 (Olympus, 1-U2B836) was used. Each image was

512 x 512 pixels, with a pixel size of 0.16 x 0.16 µm. Confocal lateral resolution

was 225 nm for LAMP1 experiments and 118 nm for RAB7 and ST3GAL5,

according to the Gurdon Institute calculator [88]. The microscope was enclosed

and maintained at 37°C with supplemental CO2 during imaging3.

For kymographs, the axons of DIV14-16 rat cortical neurons were imaged for

approximately three minutes at least ~500 µm from the cell body. In most

cases, cells were imaged at 2 frames per second, except where this was not

possible due to the required exposure time. Towards the end of this project,

we identified a slight discrepancy between the frame rate set in MetaMorph

and the actual rate of image acquisition, which appeared to be related to

the microscope shutter speed. To correct for this, a ‘true’ frame rate for

3The gas controller for this microscope did not provide a measurement of CO2, so we
used the colour of phenol red in the growth media as an indicator when adjusting flow rate.
We estimate the final CO2 concentration during imaging to be between 5 and 10%.
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each experiment was calculated based on individual image timestamps, and

this value was then used for further calculations during data analysis (section

5.3.2.2).

Stacks and axon ROIs were exported as STK and RGN files, respectively. Due

to time constraints during imaging, sometimes very rough ROIs were saved

just to preserve the anterograde-retrograde direction of the axon in each image.

These were then re-traced from the axon images in ImageJ and saved as ROI

files to provide an accurate trace of the axon for generating kymographs.

0.7.5.2 Fixed cells

Confocal imaging of fixed cells was carried out with a Leica DMI4000B confocal

microscope, on a computer running LAS-AF software. A 63x objective with

a numerical aperture of 1.3 was used (Leica, 11507900). Confocal pinhole

was 137.1 µm. Images were obtained as Z-stacks of 512 x 512 pixel images,

with a pixel size of approximately 0.23 x 0.23 µm and a step size of 0.29 µm.

Scans were performed with bidirectional X and a zoom factor of 1.5. For

all experiments involving fluorescence quantification, secondary antibodies or

streptavidin conjugated to Alexa Fluor 568 (Thermo Fisher) were used, giving

a lateral resolution of 232 nm according to the Gurdon Institute calculator [88].

3-frame averaging was used on the channels to be quantified.

Occasionally, the spinning disc microscope described above was used for imag-

ing fixed cells, with the 100x/1.35 objective and identical settings. Step size

was 0.29 µm (for HeLa cell imaging) or 0.5 µm (for dendritic spine imaging).

Epifluorescent imaging of individual cells was carried out with a Leica

DMI6000B epifluorescent microscope, running on LAS-AF software. A 63x

objective with a numerical aperture of 1.25 was used (Leica, 11506185), giving

a resolution limit of approximately 277 nm for Alexa Fluor 568. Images were
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1000 x 1000 pixels with a pixel size of 0.127 x 0.127 µm.

Whole-plate epifluorescent tile scans, used for quantifying transfection effi-

ciency in figure 1.4, were carried out on a Leica DMi8 microscope running on

LAS X software. A 5x objective with a numerical aperture of 0.12 was used.

All images collected in Leica software were exported as TIFs before further

analysis.

0.7.5.3 Images used in this thesis

Microscope images shown in this thesis have had their brightness and contrast

adjusted to ensure that key details are apparent to the reader. This was

performed after any relevant analysis; care was taken during image collection

to avoid any overexposure in regions to be analysed, and any intensity analysis

was performed on unmodified pixel values.

0.7.6 Image analysis

All image analysis was conducted in Fiji. In most cases, custom macros were

used for batch processing and streamlining manual tasks; these are available in

section 5.3. Confocal stacks were compressed to maximum intensity projections

before analysis.

All manual image analysis tasks were conducted blind, with the exception of

figure 2.8, panel E, where cells were classified while they were being examined

on the microscope. To facilitate this, I wrote an R package called blinds,

which replaces file names with unique identifiers that can be reversed after

manual analysis. While I created the package specifically for this project, it is

generally applicable and publicly available on GitHub [89]. Wherever it was not

possible to obscure the file names (e.g. where saved ROIs were being matched
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to images by name), steps were taken in the analysis macros to randomise

image order and hide the experimental condition.

0.7.6.1 Kymograph analysis

Kymographs were generated from Metamorph stack files using the Fiji Multi

Kymograph plugin. In cases where moving puncta were especially faint (most

notably RAB7), stacks were pre-processed with the Bleach Correction plugin,

using the histogram matching method. Snapshots of the axon marker channel

(typically either EGFP or mCherry-tagged protrudin) were traced to generate

axon ROIs, which were then used to generate the kymographs. Line width

for the Multi Kymograph plugin was set to 5 pixels. Generated kymographs

were further refined as needed through rolling ball background subtraction and

contrast adjustment.

We tested KymoButler [90] for automated kymograph analysis, but found that

it did not consistently pick up the small, fast-moving particles common in our

lysosome and late endosome data. As a result, kymographs were manually

traced in Fiji using the segmented line tool, with a custom macro to export

the data in CSV format for analysis in R (section 5.3.1.10). For the purposes

of classification, anterograde and retrograde were defined as continuous move-

ments of at least 5 µm away from or towards the cell body, respectively.

0.7.7 Statistical analysis

The Shapiro-Wilk test was used to examine data normality. As the vast ma-

jority of data was not normally distributed, the decision was made to use

non-parametric tests throughout. This is likely due to a combination of small

sample sizes and a high degree of cell-cell variability for many of the experi-

ments.
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After consultation with a statistician, we selected the Kruskall-Wallis test

for comparisons of three or more groups, and the Wilcoxon rank-sum/Mann-

Whitney test for comparisons of two groups. As these are non-parametric tests,

a significant p value (defined to be < 0.05) indicates a difference in median

or distribution between groups. In comparisons using the Kruskall-Wallis test,

significant p values were followed up with Dunn’s post-hoc test with Bonferroni

correction for multiple comparisons to identify which pairs of groups showed

significant differences. In each case, all possible pairwise comparisons were

performed, but only p values deemed as significant (< 0.05) are shown. All

statistical analysis was carried out in R [85].

As a general rule, outliers were not excluded, either from graphs or statistical

analysis, unless there was some evidence of a fault with data collection or

manual analysis. In practice, this amounted to a single kymograph particle

trace from the data presented in figure 3.10, which was deemed to be moving

unreasonably fast (> 90 µm/s) and most likely represented a simple human

error during manual tracing.

Quantitative data is presented in dot plots wherever feasible, so individual data

points are visible. In cases with a very large number of data points, violin plots

are used instead to indicate the distribution of the underlying data. These are

overlaid with box plots, which indicate the quartile ranges of the data.
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Chapter 1

Is protrudin’s effect on
neuroprotection mediated
by lysosome and/or late
endosome transport?

1.1 Introduction

1.1.1 The many roles of neuronal lysosomes

Lysosomes have traditionally been regarded as the degradative compartment of

the cell, responsible for the final breakdown and recycling of excess or damaged

proteins and organelles [91]. While this is certainly true, more recent work

has shown that they are in fact a diverse pool of complex, multi-functional

organelles. While lysosomal function is essential to cellular survival broadly, it

is particularly critical in neurons, which have additional metabolic, signalling,
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and transport constraints imposed by their extreme morphology. As a result,

normal activity and transport of lysosomes is a key factor in neuronal survival,

and disruption of either of these processes can lead to neurodegeneration [92].

Lysosomal dysfunction is implicated in a wide range of neurodegenerative dis-

eases, including Alzheimer’s disease, Parkinson’s disease, and ALS. In many

cases, defects in lysosomal degradation of autophagosome contents (a process

which occurs in tandem with retrograde transport in axons [reviewed in 92])

are thought to cause the accumulation of damaged organelles, which eventually

leads to axonal swellings and subsequent degeneration [93–95]. Other condi-

tions have been linked to impaired transport leading to decreased availability

of lysosomes in the axon [96]. Understanding how lysosomes function in neu-

rons and the processes controlling their transport is therefore an important

step in developing new protective or regenerative therapies for the CNS.

1.1.1.1 RNA transport

In recent years, a substantial body of evidence has emerged to demonstrate

how lysosomes and closely related late endosomes facilitate RNA transport in

neurons. mRNA transport, and subsequent local protein synthesis, is essential

for axon growth, pathfinding, maintenance, and synapse formation [reviewed

in 97].

Cioni et al. demonstrated that ribonucleoproteins in the axon often associate

with RAB7-marked late endosomes, and that these endosomes act as sites for

local translation [98]. Furthermore, these late endosomes can form contact

sites with mitochondria, where they are involved in the local translation of

proteins for mitochondrial maintenance. Work by Liao et al. identified the

protein ANXA11 as the tether between lysosomes and RNA granules in the

axon, and also showed that ALS-associated mutations in ANXA11 interfere
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with lysosome binding [99].

1.1.1.2 Signalling platform

As an endpoint of several protein degradation pathways, lysosomes are par-

ticularly responsive to amino acid levels in the cell, and in turn regulate the

cell’s response to feeding or starvation through signalling complex mTORC1.

mTORC1 is a serine/threonine kinase that localises to lysosomes, where it can

be activated by regulatory proteins that colocalise in the presence of amino

acids, in turn leading to increased protein translation and cell growth [re-

viewed in 100]. This process is modulated by lysosome positioning — during

starvation, lysosomes cluster near the nucleus, and mTORC1 activity is in-

hibited. Feeding allows the lysosomes to transport towards the cell periphery,

where mTORC1 activation can promote growth. Hong et al. found that pro-

trudin was involved in this process, interacting with lysosomes to facilitate

anterograde transport [101]. This signalling is especially important in neu-

rons — Poulopoulos et al. found that the majority of mRNA transcripts that

they identified as enriched in growth cones contain a TOP motif for mTORC1-

dependent translation. In addition, they showed that endogenous mTOR and

mTORC1 proteins were also enriched in growth cones, providing the neces-

sary machinery for local translation to occur [102]. Therefore, the location of

lysosomes and the regulation of mTORC1 on those lysosomes likely acts as a

key gatekeeper of local translation, and the associated axonal functions that

depend on it.

Beyond mTORC1, lysosomes also participate in calcium signalling and home-

ostasis, which are particularly important for neuronal function. Lysosomes

are known to act as calcium stores for the cell, but also participate in a pro-

cess known as store-operated calcium entry in response to calcium influx [103].

In this process, lysosomes are exocytosed, inserting N-type calcium channels
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Figure 1.1: A highly simplified schematic showing mTORC1 activation
through multiple pathways in the presence of amino acids. When amino acids
are present (A), GATOR2 inhibits GATOR1, which in turn allows the RAG
GTPase heterodimers to recruit the mTORC1 complex, which is further acti-
avted by amino acids and RHEB GTPase. When amino acids are scarce (B),
inhibition from GATOR1 prevents the mTORC1 recruitment by the RAGs.
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from their membranes into the plasma membrane and allowing increased cal-

cium entry and subsequent activation of signalling cascades. This process is

required for a number of neuron-specific cellular functions, including electrical

signalling, learning, and dendritic spine maintenance [reviewed in 104]. Addi-

tionally, the exocytosis of lysosomes releases cathepsin B into the extracellular

space, which activates matrix metalloproteinase 9 (MMP-9) through cleaving

its inhibitor TIMP-1. Active MMP-9 breaks down components of the extra-

cellular matrix, facilitating cellular growth. In neurons, this allows dendritic

spines to grow in response to activity [105]. In cancer cells, this underpins

the growth of invasive protrusions called invadopodia, a process that has been

shown to depend on protrudin, RAB7, and FYCO1 [60].

1.1.1.3 ER morphology

Recent advances in microscopy have allowed the interactions between lyso-

somes and the ER to be imaged in unprecedented detail, and in turn revealed

how lysosomes are involved in shaping the tubular ER network in cells. Lu et

al. demonstrated that, as lysosomes moved in response to the cell’s nutritional

state, they pulled ER tubules with them [106]. When a lysosome ‘detached’

from a contact site with the ER, the lysosome speed increased while the associ-

ated ER tubule retracted, indicating that the lysosomes do indeed pull on ER

tubules rather than vice versa, or another mechanism of co-transport. Inter-

fering with the anterograde movement of lysosomes or ER-lysosomal contact

sites resulted in fewer peripheral tubules and large ER sheets near the nucleus.

In neurons, this led to decreased axonal ER tubules and stunted axon growth.

Spits et al. showed a similar interaction with late endosomes, where RAB7 and

its transport adaptors mediated ER tubule reorganisation, and resulted in a

more sparse ER network in response to starvation [107].

As much as lysosomes help shape the ER, these interactions are reciprocal,
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and also play an essential role in lysosome morphology. Disruption of the

ER tubule network has been shown to result in the accumulation of large,

static lysosomes near the nucleus, and prevent lysosome transport into axons

[108]. Other work has shown that association with ER tubules is necessary

for lysosomal tubulation and cargo sorting, and that a key protein involved,

LRRK2, is implicated in Parkinson’s disease [109].

1.1.2 Lysosome transport mechanisms

As lysosomal function is closely tied to the positioning of these organelles

in the cell, significant work has gone into understanding how lysosomes are

transported. This has identified a number of distinct, sometimes overlapping

pathways that are regulated in different ways. Work is still ongoing to under-

stand the importance of these different pathways, and how they may interact

in different cell types to control late endosome and lysosomal transport.

1.1.2.1 BORC/ARL8B/SKIP

The BORC/ARL8B/SKIP interaction is one of the best-characterised mecha-

nisms involved in lysosome transport. In summary, BORC, a complex of eight

proteins, is tethered to the lysosomal membrane by a myristoyl tail on subunit

protein myrlysin [110]. BORC recruits and activates ARL8B, a small GTPase,

which is otherwise diffusely distributed around the cell. GTP-bound ARL8B

can in turn bind to SKIP, which binds to kinesin-1. This chain of interactions

tethers lysosomes to the kinesin motor for transport along microtubules [111].

BORC activity is regulated by interaction with the Ragulator complex, which

conveys amino acid sensitivity and allows for control of lysosomal positioning

in response to nutrient levels in the cell [110]. This process has been shown

to mediate anterograde transport of lysosomes in axons [112], and defects in
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BORC component diaskedin are linked to progressive axonal dystrophy [113].

In cancer cells, increased expression of several BORC subunits in cells that

survived radiation therapy was shown to enhance cell invasiveness, supporting

a role for BORC-mediated lysosome transport in cell outgrowth [114].

Figure 1.2: A schamatic of the interactions between BORC, ARL8B, SKIP,
and kinesin, which allow lysosomes to be anterogradely transported along mi-
crotubules.

1.1.2.2 Calcyon and other adaptor proteins

While the BORC complex is involved in kinesin-mediated transport, several

other adaptor proteins facilitate minus-end directed transport through bind-

ing to dyneins. These include calcyon (which binds to late endosomes and

lysosomes) [115,116], RILP (which is a specific adaptor for RAB7)[117], ALG2

(which binds lysosomes in a calcium-dependent manner) [118], and JIP3 and

JIP4, which are involved in amino-acid induced lysosomal transport through

TMEM55B [119,120]. The diversity of effector proteins involved in this pro-

cess likely reflects the importance of lysosome positioning on the function of
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diverse tissues and cell types.

1.1.2.3 Protrudin

As previously discussed (section 0.3.3), Raiborg et al. proposed a mechanism

through which protrudin promotes anterograde late endosome transport [56],

which in turn drives neurite outgrowth. Subsequent work expanded this mech-

anism to lysosomes, and particularly implicated protrudin-mediated lysosomal

transport in mTORC1 activation, albeit in non-neuronal RPE-1 and HEK293

cells [101]. Additionally, since Petrova et al. showed that overexpression of

protrudin increased the amount of ER in growth cones, it seemed likely that

lysosomal transport might play a role in this process, in keeping with the role

of lysosomes in ER transport discussed in section 0.3.5 [62].

1.1.3 Hypothesis and experimental aims

Given the importance of lysosome transport to cell growth and neuronal func-

tion, we decided to test whether the neuroprotective and pro-regenerative ef-

fects of protrudin overexpression could be mediated through an increase in

axonal lysosome transport. Previous work in the lab showed that RAB11 endo-

somes — with their cargo of integrins, growth factors, and other growth-related

molecules — are excluded from CNS axons as they mature [26]. Overexpres-

sion of protrudin can increase the amount of RAB11 reaching the distal axon,

supporting regeneration [62]. We reasoned that protrudin might act in a sim-

ilar way on lysosomal transport, and that an increased number of lysosomes

in the mature axon might promote axon survival and regrowth after injury.

To that end, we examined the effect of protrudin overexpression on axonal

lysosome and late endosome numbers, speed, and other transport parameters.

At the same time, we set out to test whether other approaches to increase
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lysosomal transport might also promote regeneration or survival in damaged

axons.

1.2 Methods

General cell culture and microscopy methods can be found in section 0.4. Meth-

ods for the experiment presented in section 1.3.1 are published in [62].

1.2.1 Cloning of LAMP1 construct for lysosome1

labelling

The LAMP1-RFP plasmid (Addgene, 1817) was modified to replace the exist-

ing CMV promoter with a human2 synapsin promoter to improve expression

level in neurons. Primers (table 1.1) were designed using the NEBuilder tool

(https://nebuilder.neb.com) from New England Biolabs.

Fragments for cloning were produced by PCR, separated on a 1% agarose TBE

gel, and purified using the Wizard SV Gel and PCR Clean-Up System kit

(Promega, A9282). 20 µL assembly reactions were set up with Gibson master

mix (New England Biolabs, E2611S) and an appropriate ratio of insert and

vector DNA (2:1 or higher) and incubated at 50°C for 1.5 hours. Assembled

constructs were scaled up, and successful cloning confirmed with restriction

digest and DNA sequencing.

1While LAMP1 labels a variety of lysosome-related organelles [121], ranging from late
endosomes to degradative autophagosomes, I will refer to LAMP1-labelled organelles as
lysosomes throughout this thesis for the sake of brevity.

2We use the human synapsin promoter in our lab instead of the rat synapsin promoter
because it reliably drives expression in both human and rodent neurons, and is more suitable
for clinical translation into human gene therapies.
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Table 1.1: Gibson cloning primers.

sequence
plasmid forward GGTTTAGTGAACCGTCAG
plasmid reverse CGGAACTCCATATATGGG
insert forward AGCCCATATATGGAGTTCCGCTAGACTCTAGCTGCAGAGGG
insert reverse ATCTGACGGTTCACTAAACCTCGACTGCGCTCTCAGGC

Table 1.2: Calcyon shRNA sequences.

sequence
TG712969A ATCCGCAGAAGGCGGAGGATGTGCCGTCC
TG712969B TGCGGACCAGCCAAAGAAGTTCGCAGATT
TG712969C CCAGATGGCTTCCTACTTCGGCACAAGAT
TG712969D TCAGCCATCATTCCCTGACCAGGTGGTCA

1.2.2 Calcyon shRNA silencing

Ready-cloned shRNA expression vectors against calcyon were obtained from

OriGene (TG712969) (table 1.2). The constructs readily expressed in rat cor-

tical neurons (as seen from TurboGFP signal), but proved highly toxic to

the cells. Many cells transfected with either a mixture of calcyon shRNA

constructs or the scrambled control shRNA (Origene, TR30013) showed com-

plete fragmentation, and the remaining intact cells had abnormally low levels

of organelle movement, suggesting low viability. This experiment was not

continued further.

1.2.3 Lysotracker labelling

We initially tried labelling cells with LysoTracker Red (Thermo Fisher, L7528),

using the manufacturer’s labelling protocol. However, the dye was toxic to our

neuronal cultures, even at low concentrations. In addition, the density of our

cultures made it difficult to distinguish lysosomes in the neuron of interest

from those in overlapping neuronal projections. As a result, we decided to
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proceed with transfected fluorescently-tagged markers instead of LysoTracker

or other cell-permeable dyes.

1.2.4 BORC-related constructs for lysosome/late endo-
some manipulation

Expression constructs for SKIP, myrlysin (BORCS5), WT ARL8B, and con-

stitutively active ARL8B were kindly provided by Juan Bonifacino. These

constructs were scaled up as described in section 0.7.1 and tested for trans-

fection in cortical neurons. Additional constructs of SYN-myrlysin-EGFP and

CBh-SKIP-mNeonGreen were obtained from VectorBuilder and prepared in

the same way.

Figure 1.3: Representative kymograph showing SKIP in green and LAMP1 in
magenta. Scale bar is 20 µm.

Our original intention was to test if artificially increasing lysosomal transport

in the axon could promote regeneration; however, this work was interrupted
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by the pandemic. Following our return to the laboratory, we conducted some

pilot experiments with SKIP and LAMP1. This showed some colocalisation

between the two, particularly in anterogradely-moving lysosomes, but no im-

mediately obvious differences in number of lysosomes, speed, or run length

compared to an EGFP control (figure 1.3). (This is not unexpected, as previ-

ous experiments required both SKIP and ARL8B overexpression to stimulate

transport [112,122].) After the completion of the experiments described in

section 1.3.2, it was decided not to continue this work further.

1.2.5 Transfection optimisation

As mentioned in section 0.4, we experienced a sharp decline in efficiency with

our initial magnetofection protocol, and needed to reoptimise our process. This

occurred between the experiments discussed in section 1.3.2. During this time,

we tested a variety of protocols and modifications to identify the factors most

important for transfection efficiency, using the same EGFP/Emerald expres-

sion construct. Results were measured by scanning the entire plate of cells

on a Leica DMi8 tilescan microscope and counting the number of transfected

neurons that were either intact or visibly dead (figure 1.4).

Of all the factors tested, cell density best correlated with the transfection

efficiency, although the improvements on the original magnetofection protocol

were dwarfed by the vast improvement with calcium phosphate transfection.

Going forward, transfections were carried out using the calcium phosphate

method, with cell density of 200,000-400,000 per imaging dish depending on

the needs of the experiment.
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Figure 1.4: A) Example image of a full-plate scan used for quantifying trans-
fection. The indicated area (1x1 mm) is enlarged to the right, and examples of
intact cells (blue asterisk) and dead cells (magenta x) are annotated. B) Cell
counts for plates of varying density transfected with magnetofection protocol.
C) Cell counts for three identical plates (300,000 cells per plate) transfected
with calcium phosphate protocol. Note the difference in scale between the two
plots.
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1.3 Results3

1.3.1 Protrudin overexpression is neuroprotective fol-
lowing axon injury in vivo

The data in this section has been published in [62]. My contribution to the

experiment included DNA preparation, tissue collection, and data curation and

analysis.

The optic nerve crush model is a powerful tool for examining CNS survival

and regeneration in vivo. Because the eye and the optic nerve can be accessed

much more readily than, for example, the brain and spinal cord, it allows

the gene delivery and axon injury to be performed with minimal invasiveness.

In addition, because the bodies of the RGCs are all located together in the

retina, it is possible to quantify both cell survival and axon regrowth in the

same experiment.

For this experiment, mice received intravitreal injections of AAV2 viruses con-

taining either EGFP only, WT protrudin, or active protrudin under a CAG

promoter, followed two weeks later by a unilateral optic nerve crush. Two

weeks post-crush, the mice were perfused, and eyes and optic nerves were col-

lected. RBPMS staining of retinal flat mounts showed a significant increase in

RGC survival with expression of the active protrudin construct, as measured

by comparing the number of RBPMS positive cells between the crush and

uninjured eyes (figure 1.5)[62].

3The results presented in this section largely reflect my first year of study, a time when
I was also training to perform in vivo experiments to assess neuroprotection and regener-
ation in the eye and optic nerve. My initial plan was to determine protrudin’s effect on
lysosome/late endosome transport, and then test a variety of different tools (e.g. calcyon
shRNA, BORC overexpression, etc.) to manipulate lysosome and late endosome transport
and assess their regenerative potential. Unfortunately, the cessation of lab work during the
pandemic and associated disruptions eventually led us to abandon most of these plans.
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Figure 1.5: Reproduced with permission from Petrova et al. 2020. A) Timeline
of the optic nerve crush experiments. (CTB injection was included for the
purpose of tracing regenerating axons, but is not shown in this figure.) B)
Representative images of RBPMS-stained retinal whole mounts. Scale bar is
100 µm. C) Quantification of surviving RGCs. Fisher’s exact test with analysis
of stack of p values and Bonferroni–Dunn multiple comparison test. Error bars
represent mean ± SEM.
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This effect was further substantiated by mouse retinal explant experiments,

which showed that transfection with either WT or active protrudin completely

preserved RGC survival over three days ex vivo, compared to an EGFP control

which lost approximately 55% of RGCs over the same time [62].

1.3.2 Protrudin overexpression does not increase lyso-
some or late endosome transport in the distal axon

To test the hypothesis that protrudin might function in part by increasing

the anterograde transport of late endosomes or lysosomes into the distal axon,

we set out to measure the effects of protrudin overexpression on the axonal

transport of these organelles. As described above, there are a number of ways

in which this increased transport could have neuroprotective or regenerative

effects, and such a function would be in keeping with protrudin’s described

behaviour in the literature.

Rat cortical neurons were transfected to co-express LAMP1-mRFP1 as a

marker of lysosomes, with either EGFP or EGFP-tagged protrudin. LAMP1

transport in the distal axon was imaged in three-minute segments using

spinning disc microscopy. These videos were then used to generate kymo-

graphs as described in 0.7.6.1 (figure 1.6, panel A), which were manually

traced to give measures of lysosome number, run length, and transport speed.

Overexpression of either wild type or active protrudin had no significant effect

on the number, distance, or direction of travel of lysosomes in the distal axon

(figure 1.6, B-C). A very slight decrease in anterograde speed was observed in

cells expressing active protrudin (figure 1.6, panel D).

The experiment was then repeated using RAB7 instead of LAMP1 as a more

specific marker of late endosomes. As the mechanism set out in Raiborg et

al. suggests that RAB7 is directly involved in protrudin-mediated transport
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Figure 1.6: A) Representative axon image and kymographs showing LAMP1
transport in the distal axon of cortical neurons expressing either EGFP (con-
trol) or EGFP-tagged protrudin constructs. All scale bars are 20 µm. B)
Total number of LAMP1-labelled organelles in each cell imaged. C) Aver-
age run length (per cell) of moving lysosomes. D) Average lysosome velocity
(per cell). n = 28 to 30 cells per condition across four independent batches.
Kruskal-Wallis p values are shown at the top of each plot; significant p values
from Dunn’s post-hoc test with Bonferroni correction for multiple comparisons
are shown over brackets.
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of late endosomes, this should label only the population of organelles that

are involved in this process [56]. While overexpression of RAB7 could po-

tentially amplify any effect of protrudin overexpression on this system, this

effect should be consistent between control and protrudin conditions. Cortical

neurons were co-transfected with mCherry or mCherry-tagged protrudin and

RAB7A-mEmerald, and RAB7 transport imaged and analysed as described

previously. However, this showed no significant effect of protrudin on any mea-

sured parameter of transport (figure 1.7). Importantly, there was no change

in the total number of lysosomes or late endosomes with either WT or active

protrudin expression, compared to a control (figure 1.7, panel B).

Figure 1.7: A) Representative axon image and kymographs showing RAB7
transport in the distal axon of cortical neurons expressing either mCherry
(control) or mCherry-tagged protrudin constructs. All scale bars are 20 µm.
B) Total number of RAB7-labelled organelles in each cell imaged. C) Average
run length (per cell) of moving late endosomes. D) Average late endosome
velocity (per cell). n = 17 or 18 cells per condition across three independent
batches. Kruskal-Wallis p values are shown at the top of each plot.

Taken together, these results demonstrate that neither wild type nor active

protrudin has any clear effect on lysosome or late endosome transport in the

axon, and do not support our initial hypothesis that protrudin’s beneficial
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effects are associated with an increase in transport of these organelles.

1.4 Discussion

Somewhat surprisingly, we found that protrudin overexpression had little if any

effect on lysosomal and late endosomal transport in cortical neurons. However,

further examination of the literature provides a likely explanation. The mech-

anism described in Raiborg et al. — which used PC12 cells as a model system

— relies on the protein FYCO1 as an adaptor to link late endosomes to kinesin

for anterograde transport [56]. This protein, also known as ZFYVE7, contains

similar RAB7-, PIP-, and kinesin-binding domains to protrudin. Raiborg et

al. reported that protrudin brings late endosomes and kinesin together through

RAB7 and PI(3)P binding, but then transfers the kinesin onto RAB7-bound

FYCO1 to facilitate transport. However, transcriptomic data from Koseki et

al. suggests that FYCO1 mRNA is almost undetectable in cortical neurons,

which could explain why we see no effect on late endosome transport with

protrudin overexpression (figure 1.8, panel A) [26]. This is consistent with

transcriptomic data from other studies that show extremely low FYCO1 in

human cortical neurons, expression biased towards non-neuronal cell types in

the brain, and low levels in mouse DRG neurons, as illustrated in figure 1.8,

B-G [24,123,124].

The slight decrease in anterograde lysosome speed seen in figure 1.6, panel D,

with the expression of active protrudin is unlikely to represent a direct effect

on late endosome/lysosome transport, given the absence of any similar effect

on RAB7 transport (figure 1.7). This might instead indicate an interaction

between LAMP1-labelled lysosomes and other organelles in the axon, directly

or indirectly mediated by protrudin. It could also potentially represent an

increase in lysosomal size, perhaps due to an upstream effect on autophagy,
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which could result in slower axonal transport [30]. (The video and kymograph

data of LAMP1 transport did not show an obvious change in lysosomal size,

but this was not examined quantitatively, and any changes could be quite

small given the magnitude of the effect on transport speed.) I discuss these

possibilities further in subsequent chapters.

Of note, Özkan et al. also do not find a link between protrudin and CNS

axonal lysosome transport. They knocked down protrudin in hippocampal

neurons, but found no effect on the distribution of LAMP1-labelled lysosomes

into the axon [108]. This supports the idea that protrudin is not involved with

late endosome/lysosome transport in CNS neurons, but that other transport

mechanisms (e.g. BORC) are predominant in axon transport.

It is worth noting that these results do not contradict our earlier findings

published Petrova et al. [62]. The mechanism of late endosome transport

set out in Raiborg et al. — in which protrudin interacts only transiently with

RAB7 before passing the late endosome to FYCO1 — is substantially different

from how it functions in recycling endosome transport. In the case of recycling

endosomes, protrudin is believed to act as the primary adaptor between RAB11

and kinesin, and therefore does not require FYCO1.

While these findings can effectively rule out late endosome/lysosome transport

as a mechanism through which protrudin drives neuroprotection and axon

regeneration, they are worth bearing in mind when it comes to clinical transla-

tion. The differential expression of FYCO1 across cell types suggests potential

variations in the regulation of lysosome transport between them. While pro-

trudin overexpression has no substantial effect on this transport in cortical

neurons, it could have an impact on other populations, leading to possible

undesired effects in non-neuronal cell types. Any gene therapies incorporating

protrudin should therefore be carefully targeted to limit expression in the PNS
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Figure 1.8: RNA sequencing data from A) Koseki et al. 2017 [26], B) Zhang
et al. 2016 [123], C) Kelley et al. 2018 [124], D) Tian et al. 2019 (via
https://ineuronrnaseq.shinyapps.io/rnaseq_app) [125], E-G) Tedeschi
et al. 2016 [24].
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and glial populations.

It remains an open question whether or not enhancing axonal lysosome trans-

port could promote axon regeneration, for many of the reasons discussed at the

start of this chapter. Further research in this area is required, either targeting

transport mechanisms such as BORC or calcyon (which have been demon-

strated to act in CNS neurons), or through exogenous expression of FYCO1.

In fact, Saridaki et al. have already shown that FYCO1 overexpression in a

Drosophila model of Parkinson’s disease preserves motor function at baseline

levels and prevents age-related decline [126]. (That being said, Drosophila

does not contain an ortholog for protrudin, so FYCO1 may not have the same

effect as it would in a vertebrate model [127].) While FYCO1 is an appealing

candidate for further study, due to the possibility of it acting synergistically

with protrudin, it might be unfeasible as a gene therapy due to the size of the

FYCO1 transcript. At over 4400 base pairs, it is very close to the packaging

capacity of most AAV capsids, even without a promoter or other vector ele-

ments. However, a better understanding of FYCO1 function might allow for

the development of a shorter functional form with better translational poten-

tial.
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Chapter 2

Identifying protrudin’s
cellular functions in CNS
neurons

2.1 Introduction

As discussed previously in section 0.3, protrudin’s array of binding domains

allow it to participate in numerous cellular systems, with diverse effects. To

identify other mechanisms of action, we decided to take a broad approach,

examining a number of different systems to identify how protrudin might in-

fluence neuronal structure and function, either endogenously or with overex-

pression.

Shirane et al. recently developed a knockout mouse model of protrudin defi-

ciency, with surprising results [128]. The animals showed no sign of HSP-like

motor symptoms, but instead had a broad behavioural phenotype that more
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closely resembled attention deficit hyperactivity disorder in humans. They did

not show any signs of neurodegeneration, as might be expected from previous

in vitro work, that would indicate that protrudin is required to maintain ax-

onal ER structure or endosomal transport [129]. This suggests that protrudin’s

role in the nervous system is significantly more complex than previously un-

derstood.

Previous work in the lab found it extremely difficult to reduce protrudin levels

in cultured rat cortical neurons — either by shRNA or CRISPR — without

killing the cells. We were able to study loss of protrudin function through

overexpression of mutants with dominant negative effects, rather than pro-

trudin deletion or silencing. Since our plasmids drive protrudin overexpression

at levels substantially higher than endogenous protrudin expression [62], over-

expression of a mutant form of protrudin should outcompete the endogenous

protein for binding partners, even if it does not directly decrease the amount

of endogenous protein in the cell. In this way, we are able to examine the

effects of different loss-of-function mutations on protrudin’s cellular effects.

2.1.1 Protrudin’s role in neuronal morphology

While protrudin’s role in cell outgrowth is interesting from the perspective of

axon regeneration, it could potentially play a number of other roles in neuron

morphology. Petrova et al. showed that endogenous protrudin is present in

both axons and dendrites, but is most abundant in the dendrites and cell

bodies of mature neurons [62]. Consequently, protrudin’s endogenous functions

might be more apparent in the somatodendritic domain, simply due to the

natural distribution of the protein. In fact, there are a number of published

findings that suggest that protrudin may function in dendrites, either to control

dendritic spine morphology or support synaptic function.
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For example, the mechanism through which protrudin promotes invadopodia

formation in cancer cells is functionally similar to how lysosomal exocytosis

induces dendritic spine expansion, raising the possibility that protrudin is in-

volved in spine growth [60,105]. However, Pedersen et al. found that this

process is dependent on FYCO1 as well as protrudin, which (as discussed in

section 1.4), is largely absent in CNS neurons [60]. On the other hand, pro-

trudin has already been shown to play a functional role at dendritic spines,

mediating long term depression by allowing internalised AMPA receptors to

be removed from the spine through association with KIF5 [130]. In addition,

ER tubules (or the more complicated spine apparatus) have been observed ei-

ther transiently or permanently in most spines on hippocampal neurons [131],

which also suggests that protrudin is likely to be present in or near spines and

could act on their morphology. Given protrudin’s effect in cellular outgrowth,

therefore, it is reasonable to expect that protrudin overexpression might have

an effect on dendritic spine morphology.

2.1.2 Functional effects of endogenous protrudin

To further examine protrudin’s endogenous roles beyond cellular outgrowth,

we turned to the literature to identify published proteomics data sets. We

identified three studies that published lists of protrudin-interacting proteins

[54,61,65]. Each study used a different model system and focused their analy-

sis on different pathways, providing a variety of perspectives.

Elbaz-Alon et al. looked at protrudin in a human epithelial cell line, where

they investigated how protrudin interacts with PDZD8 and contributes to ER

contact sites [65]. Hashimoto et al. used mouse brain neurons to look at inter-

actions between protrudin and HSP-related proteins [54], while Matsuzaki et

al. used a mouse neuroblast cell line to study the interaction between protrudin

and KIF5 [61]. Individually, these reveal a number of interesting interactions,
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indicating diverse roles for protrudin that include but are not limited to axonal

function. Taken together, a substantial level of overlap between the interac-

tion sets reveals a conserved set of cellular functions that may help explain

protrudin’s role in neurons.

2.1.3 Hypothesis and experimental aims

Following the results discussed in the previous chapter, we decided to tem-

porarily shift focus away from axonal transport and investigate how protrudin

might affect other cellular properties. First, we examined dendritic spines

to see if protrudin overexpression increased the number or size of spines, and

whether protrudin loss-of-function mutants showed an opposite effect. We then

analysed published protrudin proteomics data to identify previously unstudied

organelles and pathways that might be affected by protrudin overexpression,

and followed this up with a screen in HeLa cells to select markers for neuronal

experiments.

2.2 Methods

General cell culture and microscopy methods can be found in section 0.4.

2.2.1 Dendritic spine imaging and analysis

Rat cortical neurons were co-transfected with mCherry or an mCherry-tagged

protrudin construct and EGFP/Emerald. Cells were imaged as Z-stacks at

DIV15, either on the spinning disc at 100x (first experiment), or confocal at 63x

(replicate) (see 0.4 for microscope details). Image stacks from the green channel

were converted to maximum intensity projections, and a custom ImageJ macro

was used to select and crop 20 µm sections from a dendrite (section 5.3.1.2).
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These images were then blinded, and the Cell Counter Fiji plugin was used to

count and classify spines. For spine length, the Fiji segmented line tool was

used to measure along each spine.

2.2.2 Gene ontology analysis

Lists of protrudin-interacting proteins were obtained from supplementary

data published with Elbaz-Alon et al., Hashimoto et al., and Matsuzaki

et al. [54,61,65]. Gene names were standardised across experiments (and

between human and mouse data sets) using Bioconductor genome annotations

(org.Hs.eg.db version 3.15.0 and org.Mm.eg.db version 3.15.0). Gene

ontology analysis for biological process enrichment was carried out using the

limma Bioconductor package in R.

2.2.3 HeLa cell culture

HeLa cells were expanded before use and cryopreserved in individual vials to

prevent genetic drift between batches.

HeLa cells were grown in DMEM (Thermo Fisher, 41966-029), supplemented

with 10% FBS (Thermo Fisher, 10500064) and antibiotic-antimycotic

(Thermo Fisher, 15240062), at 37°C, 5% CO2. For each batch of cells, a

single vial was thawed, passaged, and grown to 60-80% confluence before

transfection. Cells were transfected with EGFP or EGFP-tagged protrudin

under a CAG promoter, using TransIT-LT1 reagent (Mirus Bio, MIR2300),

according to the manufacturer’s protocol. These were then passaged 24 hours

after transfection to reduce overlap between cells and encourage protrusion

growth.

Cells were fixed with 3% formaldehyde in PBS for 15 minutes at room temper-
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ature. Immunochemistry was carried out according to the protocol in section

0.7.4. Staining with BODIPY TR C5 ceramide (Thermo Fisher, B34400)

was carried out according to the manufacturer’s protocol. Briefly, cells were

incubated with 5 µM dye in DMEM for 30 minutes at 4°C. They were then

recovered in supplemented media at 37°C, 5% CO2 for 30 minutes before fixing

as usual.

Several different microscopes were used for imaging HeLa cells, as noted in the

relevant figure legends. This was due to reduced equipment availability and

long repair times during the pandemic. All microscopes provided sufficient

resolution to examine the distribution of markers between the cell body and

protrusions, and as such the outcomes of this experiment were not affected.

2.3 Results

2.3.1 Protrudin does not influence dendritic spine num-
ber, length, or morphology

Given protrudin’s dendritic localisation and known effects on protrusion forma-

tion, we first decided to examine whether protrudin plays a role in regulating

dendritic spine morphology. Dendritic spines show diverse morphology within

and between cells, which is generally considered to be reflective of the matu-

rity, functionality, and plasticity of each spine [reviewed in 132,133]. While

these ultimately fall on a continuous spectrum of shapes, they are convention-

ally grouped into four morphological classes — mushroom, thin, stubby, and

filopodia [134]. We decided to use these classes to obtain an overview of spine

morphology on cells expressing protrudin.

We co-transfected rat cortical neurons with EGFP/Emerald (as a cytoplasmic
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label) and an mCherry-labelled protrudin construct. These included WT and

active protrudin, as well as a set of domain-deletion mutants to act as dominant

negatives. ΔFFAT, ΔRBD, and ΔFYVE each have a single binding motif

deleted or disrupted, ΔKIF5 has both the CC and FFAT domains deleted,

to completely block binding to kinesin, and ΔER mutant (ΔTM1-3) has all

transmembrane domains deleted [62]. (Figure 2.1)

Figure 2.1: Domain maps of the protrudin constructs used in this experiment.
Changes relative to the wild type protrudin sequence are shown in purple, with
bars indicating amino acid substitutions and dotted lines indicating deletions.
Not to scale.
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For each of these conditions, we counted and manually classified dendritic

spines on 20 µm sections of dendrite from cells at DIV15 or DIV21. The DIV15

data suggests that WT protrudin might be associated with fewer, stubbier

spines (figure 2.2, panel D), although the significant comparisons varied for

each spine classification, and is inconsistent with the DIV21 data (figure 2.2,

panel E).

As manual spine classification is an inherently subjective measure, and did not

show any clear associations, we decided to look instead at spine length, which

can be measured more objectively. We re-analysed the initial DIV15 data,

measuring the length of each spine from the edge of the dendrite. This did

yield some significant comparisons, both in spine number and length (figure

2.3, panels A and C), so we followed this up with a full replication, which we

analysed in the same way (figure 2.3, panels B and D). While the replication

also produced statistically significant results, they were wholly inconsistent

between the two experiments.

Taken together, these results show that protrudin overexpression does not sub-

stantially impact dendritic spine number, length, or morphology. These mea-

surements were highly variable between cells and between replicates, and did

not show any consistent patterns that would suggest that protrudin plays any

role in controlling spine outgrowth. This obviously cannot rule out changes in

spine function, but in any case such changes do not seem to be mediated by

morphological changes at the micron scale.

2.3.2 Gene ontology analysis of protrudin-interacting
proteins

As our results did not indicate a clear role for protrudin in regulating dendritic

spine morphology, we turned to proteomic analysis to identify other potential
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Figure 2.2: A) Schematic showing selection of dendrite sections for analysis
and basic spine morphology groups. One dendrite section was analysed per
cell. Scale bar is 10 µm. B-C) Total spine counts in 20 µm section for DIV15
and DIV21 groups. D-E) Quantification of each spine type, normalised to the
total number of spines in the section measured. (Continued on following page)
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Figure 2.2: (Continued) DIV15: n = 30 cells per condition across three inde-
pendent batches; DIV21: n = 10 cells per condition in one batch. Kruskal-
Wallis p values are shown at the top of each plot; significant p values from
Dunn’s post-hoc test with Bonferroni correction for multiple comparisons are
shown over brackets.

Figure 2.3: A-B) Number of dendritic spines counted per 20 µm section in cells
co-expressing EGFP/Emerald with an mCherry-tagged protrudin construct.
Replicate 1: n = 30 cells per condition across three independent batches, except
ΔRBD n = 29, ΔKIF5 n = 20, ΔFYVE n = 19 across two batches. Replicate
2: n = 40 cells per condition, except WT and ΔER n = 39, across three
independent batches. C-D) Length of each spine measured, in µm. Kruskal-
Wallis p values are shown at the top of each plot; significant p values from
Dunn’s post-hoc test with Bonferroni correction for multiple comparisons are
shown over brackets.
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cellular functions, either in the somatodendritic domain or in axons.

We identified three published lists of protrudin-interacting proteins from Elbaz-

Alon et al., Hashimoto et al., and Matsuzaki et al. [54,61,65]. As these studies

used distinct methods and model systems, we were most interested in the

interactions that were conserved across sets. After standardising the data

across sources, we found 46 protrudin-interacting proteins that were identified

in at least two studies (figure 2.4, panel A; table 2.1).

Table 2.1: Genes identified as interacting with protrudin in two or more pub-
lished data sets.

Gene symbol Elbaz-Alon et al. Matsuzaki et al. Hashimoto et al.

CANX + + +

COPB2 + + +

DNAJA2 + + +

KIF5B + + +

VAPA + + +

VAPB + + +

ACSL3 + + -

ACSL5 + + -

ASPH + - +

ATL2 + + -

ATP1A3 - + +

ATP5F1B + - +

ATP5PO + + -

BDH1 - + +

C1QBP + - +

CCDC47 + + -

COPA + + -
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Gene symbol Elbaz-Alon et al. Matsuzaki et al. Hashimoto et al.

COPB1 + + -

COPG2 + - +

DNAJA1 + + -

ERP44 + - +

ESYT2 + + -

FKBP8 + + -

GCN1 + + -

GNA13 - + +

GNAI2 - + +

HACD3 - + +

HMOX2 - + +

KIF5A - + +

KIF5C - + +

LONP1 + + -

NSF + - +

PDZD8 + + -

PGRMC1 - + +

PSMC6 + + -

RAB2B - + +

RAB3GAP2 + - +

RAB6A + - +

RAP1B + + -

RCN2 + - +

RTN3 - + +

RTN4 + - +

SLC25A22 - + +

SURF4 - + +
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Gene symbol Elbaz-Alon et al. Matsuzaki et al. Hashimoto et al.

SYNGR3 - + +

VCP + + -

Of these, six proteins (excluding protrudin itself) were identified in all three

data sets, and for the most part their interactions with protrudin are well-

understood. VAPA and VAPB are transmembrane ER proteins that interact

with the FFAT domain of protrudin to concentrate it at organelle contact sites

[64]. KIF5A is an isoform of kinesin-1 that binds to protrudin in its coiled-coil

domain to drive anterograde transport [130]. COPB2 is a subunit of the COPI

complex, which is involved in retrieval of ER proteins from the Golgi [135].

As protrudin contains a KKRR motif for ER retention, it would be expected

to interact with the COPI complex during this process, although this does

not appear to have been studied directly. DNAJA2 and CANX (calnexin)

are both common chaperone proteins [136,137]. While their exact interactions

with protrudin are unclear, they might occur while newly-translated protrudin

is being folded.

Gene ontology analysis (biological process enrichment) of the wider overlap

data set showed a high representation of proteins involved in vesicular trans-

port, and in particular Golgi-related transport (‘intra-Golgi vesicle mediated

transport’, ‘Golgi vesicle transport’, ‘ER to Golgi vesicle-mediated transport’,

etc.) (figure 2.4, panel B). In contrast to endosomal transport, protrudin’s role

in Golgi-related transport has not been extensively studied, and we decided to

follow this up with further experiments.
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Figure 2.4: A) Venn diagram showing overlap between published lists of
protrudin-interacting proteins. B) Top 20 hits of GO biological process en-
richment, of all proteins appearing in at least two protrudin interaction sets,
sorted by p value.

2.3.3 HeLa screen for changes in organelle and protein
distribution

When protrudin is overexpressed in HeLa cells, it drives the growth of long

cellular protrusions that superficially resemble developing neurites [57]. While

HeLa cells are genetically and functionally very distinct from neurons, this

nevertheless provides a useful model system for examining protrudin’s interac-

tions with other cellular components. Compared to most neuronal cell models,

and certainly the rat primary cortical neurons we use for most experiments,

HeLa cells are exceptionally quick and easy to grow, transform, and image, al-

lowing for much higher throughput. We used this system to quickly screen for

proteins that colocalise with protrudin in these cellular outgrowths, to identify

organelles or complexes that might be transported into axons when protrudin

is overexpressed in neurons.

Based on the results of our gene ontology analysis, we selected a panel of

antibodies to screen for colocalisation with protrudin in HeLa cells. These

were primarily focused on components of the ER exit site to Golgi secretory
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pathway, but also included proteins involved in lipid metabolism, signalling,

and amino acid transport.

Table 2.2: Markers for HeLa screen.

Marker Description

BCAP31 ER chaperone

SURF4 ERES cargo loading

MIA3 (TANGO1) ERES cargo loading

SEC31A COPII coat component

ERGIC53 (p58) ERGIC marker

GS28 Golgi SNARE

GLG1 Golgi glycoprotein

USO1 (p115) ER to Golgi vesicle targeting

LAMP1 lysosome marker

mTOR signalling kinase

ACSL3 fatty acid metabolism

SLC38A1 glutamine uptake transporter

LC3 autophagosome marker

BODIPY TR C5 ceramide ceramide lipid dye

2.3.3.1 Protrudin’s effect on ER- and Golgi-related organelles

Of the ERES-related proteins, different markers showed different levels of colo-

calisation with protrudin. BCAP31 and SURF4 were consistently enriched in

cellular protrusions, more so than at other areas of the cell periphery (figure

2.5, panels A and B). MIA3 and SEC31A colocalised well with protrudin in the

perinuclear area, but were found at lower levels in protrusions, and were less

consistent between cells (figure 2.5, panels C and D). At this stage, it was not
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possible to conclusively say whether these variations represented differences

in how ERES proteins were transported or in how effectively the individual

antibodies stained these components, so we decided to proceed with BCAP31

and SURF4, which produced clearer results.

Of the Golgi-related proteins, GS28, GLG1, and USO1 clearly labelled the

perinuclear Golgi compartment, but were either entirely absent or found only

at very low levels in protrusions (figure 2.6, panels B-D). ERGIC531, on the

other hand, was highly enriched in protrusions, in most cases well above the

levels seen in the cell body (figure 2.6, panel A). More detailed analysis of the

ERGIC53 signal showed exceptionally strong colocalisation with protrudin, as

shown in figure 2.6, panels E-F. ERGIC53 showed the strongest concentration

in protrusions of any of the markers used in this screen, and point to the ERGIC

compartment not only colocalising with protrudin, but specifically playing a

role in the growth of cellular protrusions. This marker was added to the set

(along with BCAP31 and SURF4) to examine in neurons.

2.3.3.2 Protrudin’s effect on lysosome positioning, enzymes, and
transporters

LAMP1 and mTOR, which we expected to move to the cell periphery in re-

sponse to protrudin overexpression, were present in protrusions at relatively

low levels (figure 2.7, panels A-B). While protrudin overexpression did result

in more puncta away from the perinuclear cluster, this effect was not espe-

cially dramatic, and the highest concentrations were still found near the cell

nucleus (figure 2.7, panel B). This is in contrast with Hong et al., which found

a stronger movement away from the nucleus when overexpressing myc-tagged

protrudin [101]. However, their culture protocol differed from ours in adding 2

1ERGIC53, or LMAN1, is the human homolog of a protein sometimes known as p58 in
rat and several other species [138]. For the sake of simplicity I will refer to it as ERGIC53
throughout this thesis.
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Figure 2.5: Representative images of HeLa cells expressing EGFP-tagged pro-
trudin constructs and stained for ER/ERES-related markers A) BCAP31, B)
SURF4, C) MIA3(TANGO1), and D) SEC31A. B and D are maximum inten-
sity projections of confocal stacks, while A and C are epifluorescent images.
All scale bars are 20 µm.
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Figure 2.6: Representative images of HeLa cells expressing EGFP-tagged pro-
trudin constructs and stained for ERGIC and Golgi-related markers A) ER-
GIC53, B) GS28, C) GLG1, and D) USO1(p115). E) Close up of ERGIC53
staining in the protrusion of a cell expressing WT protrudin, as shown in panel
A. F) Fluorescence profile along the protrusion shown in panel E. (Continued
on following page) 94
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Figure 2.6: (Continued) A and B are maximum intensity projections of confo-
cal stacks, C is an epifluorescent image, and D is a maximum intensity projec-
tion if a spinning disc confocal stack. All scale bars are 20 µm.

mM supplemental glutamine to the culture media, so the apparent differences

could reflect the amino acid dependence of the protrudin-FYCO1 transport

mechanism.

ACSL3 was found in cellular protrusions, but — similar to MIA3 and SEC31A

— was generally at low levels, and varied considerably between cells (figure

2.7, panel C). This may reflect on the antibody used, or may represent more

complicated cell-state dependent interaction with other metabolic pathways.

This was not taken forwards.

Finally, SLC38A1 was found to concentrate in protrusions, and similarly to

ERGIC53 was found at higher levels here than near the nucleus (figure 2.7,

panel D). This result is particularly interesting, as SLC38A1 is a likely cargo

of the local secretory pathway. SLC38A1 is a plasma membrane glutamine

transporter highly expressed in brain and spinal cord tissue [reviewed in 139].

It plays a role in importing glial-derived glutamine into neurons, which is im-

portant for synthesising neurotransmitters GABA and glutamate [140]. Mat-

suzaki et al. identified SLC38A1 in their set of protrudin-interacting proteins,

and Shigeoka et al. showed that it was locally translated in RGC axons [61,141].

SLC38A1 was added to the list with BCAP31, SURF4, and ERGIC53 to ex-

amine in neurons.
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Figure 2.7: Representative images of HeLa cells expressing EGFP-tagged pro-
trudin constructs and stained for A) LAMP1, B) mTOR, C) ACSL3, and D)
SLC38A1. A is an epifluorescent image, B is a maximum intensity projec-
tion of a spinning disc confocal stack, and C and D are maximum intensity
projections of confocal stacks. All scale bars are 20 µm.
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Figure 2.8: A) Representative image of HeLa cells expressing WT protrudin
and stained for LC3. Inset is 20x20 µm. B) Fluorescence profile along the dot-
ted line shown in panel A inset. Note strong correspondence between protrudin
(green) and LC3 (magenta) signal. (Continued on following page)
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Figure 2.8: (Continued) C) Protrusion of a HeLa cell expressing WT protrudin
and stained for LC3. Note the lack of LC3 enrichment with protrudin in the tip,
compared to the cell body. D) Representative image of a HeLa cell expressing
GFP and stained for LC3. Note the lack of large, ring-shaped structures as
seen in the protrudin expressing cell in panel A. E) Representative images of
neurons expressing mRFP1-tagged LC3 showing range of distribution patterns.
F) Quantification of LC3 distributions in cells co-expressing EGFP-protrudin
and mRFP1-LC3. A, C, and D are maximum intensity projections of confocal
stacks. F shows single plane spinning disc confocal images. n = 40 cells per
condition across two independent batches. All scale bars are 20 µm.

2.3.3.3 Other morphological effects of protrudin overexpression

In addition to protrusions, we noted that protrudin overexpression also induces

the formation of large, ring-shaped structures in the perinuclear region of HeLa

cells. These are observed occasionally in neurons expressing protrudin, but not

to the same extent as in HeLa cells (supplementary figure 5.1). While these

structures were not the primary focus of this experiment, they did reveal inter-

esting results with two of the markers screened, and may indicate protrudin

involvement in additional cellular pathways.

LC3 strongly colocalised with protrudin in these structures, suggesting that

they may represent phagophores or autophagosomes (figure 2.8). Notably, LC3

is not enriched in cellular protrusions (figure 2.8, panel C), in contrast to the

markers discussed above. This may represent a different pathway activated by

protrudin overexpression. These LC3-labelled structures are also smaller and

less abundant in cells expressing only EGFP (figure 2.8, panel D), suggesting

that their formation is influenced by protrudin overexpression.

We followed up this result with a pilot experiment in neurons, co-expressing

EGFP-protrudin and mRFP1-tagged LC3. LC3 showed differences in locali-

sation between cells, ranging from fully cytoplasmic to fully punctate, which

likely reflects the conversion between soluble LC3-I and membrane-associated
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LC3-II [142]. All cells expressing either WT or active protrudin contained

at least some LC3 puncta, in contrast to control cells, of which 12.5% had

fully cytoplasmic LC3. This suggests that protrudin might be encouraging au-

tophagosome biogenesis, although further experiments are needed to confirm

this result.

Figure 2.9: A) Representative image of HeLa cells expressing WT protrudin
and stained with BODIPY C5 ceramide dye. Maximum intensity projection of
a confocal stack. Inset is 20x20 µm. B) Fluorescence profile along the dotted
line shown in panel A inset. Note BODIPY signal (magenta) between spikes
of protrudin (green). C) Representative image of a HeLa cell expressing GFP
and stained with BODIPY C5 ceramide dye. Note the lack of large, bright
puncta as seen in the protrudin-expressing cell in panel A. Maximum intensity
projection of a confocal stack. All scale bars are 20 µm.

BODIPY C5 ceramide, a lipid dye often used to label the Golgi apparatus,

strongly labelled the lumen of these organelles. It is not clear in this context
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whether the dye is labelling Golgi-related structures or lipid droplets, how-

ever it is worth noting that other Golgi markers did not colocalise with these

structures (e.g. figure 2.6, particularly visible in panel C). Given the relation-

ship with LC3 as discussed above, this may indicate an increase in lipophagy,

although further experiments would be needed to confirm this hypothesis.

2.4 Discussion

2.4.1 Protrudin’s effect on dendritic spine morphology

Protrudin overexpression — or inhibition through the expression of domi-

nant negative mutants — did not substantially influence dendritic spine mor-

phology. Considering the mechanism described in Pedersen et al. (in which

protrudin-mediated cellular outgrowth is dependent on interaction with RAB7

and FYCO1), it seems likely that this is another result of the absence of FYCO1

in CNS neurons [60]. We cannot, however, rule out an effect of protrudin on

dendritic spine function, given that protrudin has already been shown to affect

long term depression in hippocampal neurons [130]. More work is required to

understand the effect of protrudin overexpression on neuronal signalling, and

whether this in turn influences survival or regeneration in injured cells.

2.4.2 The ERES to Golgi pathway

The most significant result presented in this chapter is the link between pro-

trudin and ER-to-Golgi trafficking, first identified from proteomic analysis as

presented in figure 2.4, and then validated in HeLa cells (figure 2.5, panels A-B,

figure 2.6, panel A, and figure 2.7, panel D). This cellular function appears to

have been largely overlooked in previous work on protrudin, and could explain
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some of how protrudin overexpression can promote regeneration of damaged

axons.

In non-polarised cells, membrane proteins are typically translated in the ER,

released from ERES, trafficked to the Golgi via the ERGIC compartment, and

secreted in post-Golgi carriers. In neurons, several alternate pathways exist to

account for the local translation needs of compartments distant from the cell

body. In dendrites, for example, Golgi outposts and satellites fulfill many of

the same protein and lipid modification functions as the main Golgi appara-

tus. The ERGIC compartment is also involved in a Golgi-bypassing secretory

pathway, which has been observed in dendrites [143]. This is discussed further

in the next chapter.

There is evidence for the local translation of integral membrane proteins in CNS

axons [141], although it is not currently understood how they are trafficked

from the ER to the cell surface. Recent work in DRG neurons has identified

a non-conventional secretory pathway involving Golgi satellites and LAMP1-

labelled organelles, which plays a role in the delivery of TRPM8 ion channels

[144]. It is possible that a similar pathway functions in CNS axons, providing

a mechanism through which protrudin expression could promote secretion and

growth in the absence of any changes to the cell body Golgi apparatus.

It is worth noting that three of the four proteins identified in our HeLa screen

— ERGIC53, SURF4, and BCAP31 — have been identified in the ERGIC com-

partment, although BCAP31 localisation may vary by cell type and conditions.

Breuza et al. treated HepG2 liver cancer cells with brefeldin A, which fuses the

ER and Golgi but leaves the ERGIC largely intact, to isolate ERGIC proteins,

but found that BCAP31 was retained in the ER [145]. Other studies found

BCAP31 in the ERGIC, using HeLa cells, MCF7 breast cancer cells, or other

lines [148]. Nevertheless, this result suggests a novel role for the ERGIC in
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protrudin-driven protrusion formation, and potentially in axon regeneration,

which is explored further in the next chapter.

2.4.3 Autophagy and lipids

Our HeLa screen also revealed intriguing effects of protrudin overexpression on

autophagy and lipid metabolism, which unfortunately could not be examined

further within the scope of this thesis. Most strikingly, protrudin expression

induces the formation of large, ring-like strictures that label strongly for LC3,

suggesting an active role in regulating autophagy (figure 2.8). This is further

supported by preliminary data in rat cortical neurons, which show an increase

in punctate as opposed to cytoplasmic LC3, indicating autophagosome forma-

tion [142]. This is particularly interesting given the importance of autophagy

to neuronal survival and function, and the fact that defects in autophagy of-

ten lead to neurodegeneration [reviewed in 149]. The data presented in figure

2.8 indicate that protrudin expression could encourage autophagy initiation

and the formation of autophagosomes, which could plausibly contribute to

protrudin’s neuroprotective effects. This should be followed up in a future

project, as it seems likely to yield significant results.

It is also worth nothing that this could potentially relate to the the decrease

in lysosomal speed seen in figure 1.6, panel D, as discussed in the previous

chapter. An increase in autophagy could result in more autophagosomes fusing

with lysosomes, resulting in larger and slower-moving autolysosomes containing

LAMP1. However, it is unclear why this would primarily affect anterograde

transport, and why the effect is only seen with active protrudin.

The interpretation of protrudin’s effect on BODIPY C5 ceramide localisation,

as presented in figure 2.9, is significantly less clear, but also worthy of further

investigation. BODIPY C5 ceramide typically labels the Golgi apparatus, but
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these structures do not label for other Golgi markers (figure 2.6, panels B-D)

and appear more similar to lipid droplets, although they could be a Golgi-

related organelle or otherwise derived from Golgi membranes. The relationship

with LC3-labelled structures seems to suggest some sort of autophagic activity

occurring, but whether this is lipophagy of lipid droplets or some other process

remains to be seen. I discuss some current work regarding protrudin and lipid

metabolism in section 4.2.2.
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Chapter 3

ER, ERGIC, and Golgi in
axons

3.1 Introduction

The discovery of local secretory pathways in neurons is fairly recent, but has al-

ready contributed significantly to our understanding of how these cells develop

and function [150]. In non-polarised cells, protein translation and modification

typically take place near the nucleus, and proteins are then transported to their

final destination in, on, or outside of the cell. While this does also occur in

neurons, neurons are also capable of locally translating proteins, which can

then be delivered to organelles or inserted into the cell membrane as needed

[151]. It has become increasingly apparent that protein delivery from the cell

body is not sufficient to maintain protein turnover at distal parts of the cell,

nor is it fast enough to support the dynamic behaviour observed in these re-

gions, for example during axon pathfinding [152]. Instead, these regions rely on
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several overlapping local pathways for protein production, modification, and

secretion [reviewed in 153]. Recent work has even linked levels of local protein

translation to axon regenerative capacity [154], indicating that this process is

critically important to promoting CNS regeneration. However, while there is

evidence for the activity of a local secretory pathway in dendrites and PNS

axons, the same has not yet been demonstrated in CNS axons [83,144,151].

Figure 3.1: Schematic showing key components of the local secretory pathway.

3.1.1 ER exit sites and COP vesicles

Key to all of these pathways is the presence of interconnected ER tubules

throughout the neuron. Continuous with the ER network in the soma, these

tubules reach into dendrites, into individual spines in an activity-dependent

manner [131], and down the entirety of the axon. Among other roles, this

ER network provides a platform for local protein translation, and targeting to

Golgi-related organelles for further modification.

Membrane proteins translated in the ER are exported via ER exit sites (ERES),

typically in structures known as COPII-coated vesicles. Recent work has

demonstrated that these exit sites are complex tubular structures, formed by
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the interactions of numerous COPII-associated proteins [155]. A number of

different chaperones and cargo receptors are involved in this process, sorting

proteins for export and facilitating the budding of these transport intermedi-

ates from the ER network. Aridor and Fish showed that SAR1, a GTPase

related to COPII budding, was targeted to mammalian axons during neuronal

development, and that this was essential for axonal growth [156].

3.1.2 The ER-Golgi intermediate compartment

After budding from the ER, COPII-coated vesicles fuse into a dynamic struc-

ture known as the ER-Golgi intermediate compartment (ERGIC). While there

is ongoing debate about how the ERGIC is formed and its role in protein secre-

tion and other cellular functions, it is generally accepted to be a site of early

protein sorting, with ER-resident proteins transported back to the ER, and

other cargo directed to anterograde transport pathways [reviewed in 157,158].

In many cases, these proteins are then passed to the Golgi apparatus or related

organelles, although there is some evidence that alternate processing pathways

also exist, as discussed in section 3.1.5. The definitive marker protein of the

ERGIC, ERGIC53 (also known as LMAN1) is a cargo receptor, which is re-

quired for the secretion of a number of different glycoproteins [159, reviewed

in 160]. Mutation of ERGIC53 in humans leads to a rare bleeding disorder,

due to decreased secretion of coagulation factors [161].

Besides cargo sorting, other studies have indicated that the ERGIC plays a

role in protein quality control, passing misfolded or unfolded proteins back

to the ER for degradation [162,163, reviewed in 157,158]. There is also some

evidence that the ERGIC might be a source of membrane for the early stages

of autophagosome biogenesis [164].
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3.1.3 Golgi outposts and satellites

The most common destination after leaving the ERGIC is the Golgi, although

this can take different forms depending on the region of the cell involved. In

the cell body, this is typically the perinuclear Golgi stack. In dendrites, pro-

teins may be targeted to Golgi outposts or Golgi satellites. While these are

structurally distinct, they both carry out essential Golgi functions, including

protein glycosylation and lipid modifications [83, reviewed in 165]. Mikhaylova

et al. identified glycosylating enzymes, polysaccharides, and sialylated proteins

in dendritic Golgi satellites, indicating a range of molecular modifications oc-

curring in these structures [83].

Recently, Golgi satellites have also been identified in axons, both in static and

dynamically transported populations. Here, they can act as local glycosylation

platforms, similar to in dendrites, but also take part in delivering functional

proteins to lysosomes [166] and nerve terminals [144]. Golgi satellite localisa-

tion, and by extension their functionality, is dynamically regulated by neuronal

activity [167].

3.1.4 Further processing and protein secretion

After leaving a Golgi-related organelle, membrane proteins can be sorted in

endosomes through the retromer complex, which returns cargo receptors to

the Golgi. This complex has been identified in dendrites closely associated

with Golgi satellites, suggesting that this sorting also occurs as part of local

secretory pathways [83]. Recent work has linked retromer dysfunction to a

number of neurodegenerative conditions, potentially through changes to the

lysosomal proteome [168].

After sorting by the retromer complex, proteins can then be delivered to other

organelles or the plasma membrane. Several studies have found local transla-
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tion, processing, and secretion of cell surface proteins, including voltage-gated

sodium channels at nodes of Ranvier [169]. The exocyst complex facilitates

fusion of post-Golgi carriers with the plasma membrane, and interference with

this complex has been shown to inhibit neurite growth [170,171].

3.1.5 The Golgi-bypass pathway

An alternate, Golgi-bypassing pathway has also been suggested, with cargo

moving from the ERGIC to the cell surface via RAB11-marked recycling endo-

somes. This has been studied in dendrites, where it was found to play a role

in delivering GluA1 glutamate receptors to dendritic spines [143]. This study

does not fully rule out the involvement of Golgi satellites, but does show that

this pathway is robust to the disruption of somatic Golgi and Golgi outposts

with brefeldin A, indicating a distinction from conventional Golgi processing.

3.1.6 Hypothesis and experimental aims

The results of our HeLa cell screen suggest that protrudin has the capacity to

relocate ERES components and ERGIC to distal parts of the cell. We followed

up a selection of promising markers in rat cortical neurons to examine whether

protrudin overexpression has the same effect in axons. This could indicate

whether protrudin overexpression supports axonal survival and regrowth by

relocating protein secretory machinery to the distal axon.

3.2 Methods

General cell culture and microscopy methods can be found in section 0.4.
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3.2.1 i3 neuron culture

Human iPSC-derived i3 neurons were cultured as described in [172]. After

three days of differentiation with doxycycline, neurons were plated on poly-L-

ornithine (Sigma-Aldrich, P3655-50MG) coated coverslips and grown at 37°C

with 7% CO2 in BrainPhys media (STEMCELL Technologies, 05790) supple-

mented with B27 (Thermo Fisher, 17504044), BDNF (PeproTech, 450-02),

NT-3 (PeproTech, 450-03), and laminin (Thermo Fisher, 23017015).

3.2.2 Immunochemistry

Immunochemistry was carried out as described in section 0.7.4. In the case

of BCAP31, a biotinylated secondary antibody was added to improve signal,

and cells were additionally stained for 1.5 hours at room temperature with

dye-conjugated streptavidin (Thermo Fisher, S11226). All other steps were

unchanged.

3.2.3 Fluorescence quantification

Confocal images were analysed as maximum-intensity stack projections in Fiji.

Tracing of regions of interest was assisted by a custom macro (section 5.3.1.6.1).

The area of the nucleus was excluded from cell body quantification. Back-

ground correction was carried out for axon terminals, axons, and dendrites

by subtracting the intensity of an identical ROI, manually shifted to avoid

overlap with the area of interest. Cell bodies were not background-corrected,

due to brighter overall intensity and the density of neurites and other cellular

structures nearby.
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3.2.4 Inhibition of ER to Golgi transport

We tested several inhibitors of either ER to Golgi transport or Golgi function in

DIV3 cortical neurons — H-89 (100 µM) (Calbiochem, 371962), clofibrate (500

µM) (Sigma-Aldrich, C6643), brefeldin A (10 µg/mL) (Calbiochem, 500583),

and golgicide A (Calbiochem, 345862) (10 µM). These concentrations were

based on previously published use [155,169,173–175]. Concentration-matched

DMSO-only controls were used for each inhibitor. The inhibitors were added

to cells for 30 minutes at 37°C, 7% CO2, in supplement-free media, after which

cells were fixed. Given protrudin’s effect on ERGIC localisation reported below

(figure 3.9), we used ERGIC53 staining as a measure of inhibitor function.

We found that H-89 caused growth cone collapse, while the others preserved

cellular morphology, and clofibrate led to a slight decrease in ERGIC53 signal

in both the cell body and growth cone (data not shown).

Based on these preliminary results, we decided to test if clofibrate could

block protrudin’s pro-regenerative effect on injured axons. Unfortunately, this

dosage of clofibrate proved highly toxic over the 16-hour timescale required for

this experiment. We were unable to optimise this experiment further, as our

regular supply of rats for cortical neuron cultures was disrupted by an animal

carriage embargo at Frankfurt airport during the summer of 2022. We plan to

return to this in a future project.

3.2.5 Scratch assay

Primary rat cortical neurons were cultured on acid-washed glass coverslips

coated with PDL as described in section 0.7.2. At DIV14, each coverslip was

scratched across once with a sterile needle, then the cells were cultured for a

further 18-20 hours before fixing as described previously (section 0.7.4).
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3.3 Results

3.3.1 ER-Golgi pathway localisation during develop-
ment

We first set about to determine the baseline localisation of our selected markers

in rat cortical neurons, and to assess whether this changed during neuronal de-

velopment, as regenerative ability declines. We chose DIV3 (the earliest point

at which axons can be clearly identified) and DIV15 (synaptic maturation and

low regenerative ability) as developmental timepoints to analyse, based on pre-

vious work in the lab [26,62]. We stained cortical neurons for BCAP31, SURF4,

ERGIC53, and SLC38A1 at each timepoint, and compared fluorescence inten-

sity between the cell body and axon terminal. This showed that, with the

exception of SURF4, all markers show a relative decline at the axon terminal

with maturation (figure 3.2). Separate analysis of each region reveals that all

markers show increased intensity in the cell body at the later timepoint, but

that most show no significant change in the axon terminal, with the exception

of SLC38A1, which increases (figure 3.3). (This is in keeping with SLC38A1’s

role as an amino acid transporter, which is a particularly important function

for synaptically active neurons [176].) It is worth noting that, while the aver-

age intensity might remain the same, the axon terminal generally reduces in

size as the cell matures, so this represents a decrease in the total amount of

these proteins present at the axon tip (supplementary figure 5.2).

The staining was repeated in DIV1 (post-differentiation) i3 neurons, at a

stage when they are just beginning to grow axons, to confirm that the axon

terminal:cell body ratio was conserved between rodent and human neurons.

This showed remarkable consistency between cell types, with the exception of

BCAP31, which had a very slightly higher ratio in rat cortical neurons (figure

3.4).

112



ER, ERGIC, AND GOLGI

Figure 3.2: A) Ratio of fluorescence intensity between Cell body and axon
terminal in DIV3 vs DIV15 neurons. All n = 26 or 27 cells per condition
across three batches, except SLC38A1 (n = 18 cells, three batches). B-M)
Representative images of DIV3 neurons (B-E), DIV15 cell bodies (F-I), and
DIV15 axon terminals (J-M) All scale bars are 20 µm, and J-M are 20x20
µm. Wilcoxon rank-sum p values are shown at the top of each plot. Markers
correspond to the graph at the top of each column.
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Figure 3.3: Fluorescence intensity of various markers in DIV3 vs DIV15 rat
cortical neurons, divided into cell body or axon terminal. All n = 26 or 27
cells per condition across three batches, except SLC38A1 (n = 18 cells, three
batches). Wilcoxon rank-sum p values are shown at the top of each plot.
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Figure 3.4: A) Ratio of fluorescence intensity between Cell body and axon
terminal in DIV1 i3 vs DIV3 rat cortical neurons. n = 17 or 18 i3 neurons per
condition across three batches. n = 26 or 27 rat cortical neurons per condition
across three batches, except SLC38A1 (n = 18 cells, three batches). B-E)
Representative images of DIV1 i3 neurons stained for each marker. All scale
bars are 20 µm. Wilcoxon rank-sum p values are shown at the top of each plot.
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As these results clearly indicate that these secretory pathway markers (with

the exception of SURF4) show a relative decline in axon terminals during

neuronal maturation, we might expect that treatment with protrudin would

increase these concentrations back to early developmental levels to promote

axon growth.

3.3.2 ER exit site visualisation

We also tested a tool called ESCargo(FTV) to directly visualise ER exit sites

[79,167]. This encodes a SURF4-dependent synthetic secretory cargo that col-

lects at ER exit sites and can be inducibly released from the ER with the

addition of a synthetic ligand. While the aggregates were clearly visible in cell

bodies, we also observed them in axons, although they were distributed very

sparsely along their length (figure 3.5). In some cases, these were found at ax-

onal swellings or branch points, raising the possibility that these exit sites may

concentrate at particular structural features. Our imaging suggests that there

are functional ER exit sites in the axons of mature cortical neurons, although

further work is required to confirm this result, and to determine whether their

size or number is regulated developmentally or with the overexpression of pro-

trudin.

3.3.3 The role of protrudin in localisation and transport

Given the developmental decline in these markers at axon terminals, we were

interested to see if protrudin might act by increasing the axonal levels of ER-

Golgi pathway components. We repeated the experiment above in DIV15

rat cortical neurons expressing either EGFP or EGFP-tagged protrudin, and

measured the fluorescence intensity in the cell body and axon terminals.
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Figure 3.5: A) Cell body of a cell co-expressing EGFP/Emerald with
ESCargo(FTV)-Crimson. Note individual aggregates or small clusters in den-
drites, often at branch points. B) Axon of neuron depicted in A, with two
ESCargo(FTV) aggregates circled. All scale bars are 20 µm.
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3.3.3.1 BCAP31

BCAP31 showed high variability between cells, particularly in the soma (figure

3.6, panel H). This may have been a result of signal amplification with a biotiny-

lated secondary antibody, although the smaller range of intensities measured

at axon terminals suggests that this may represent natural variation (figure

3.6, panel I). In any case, while protrudin did appear to decrease cell body

BCAP31 levels, this did not translate to a change in the axon terminal:cell

body ratio (figure 3.6, panel G). Therefore, we do not believe that protrudin

substantially changes the distribution of BCAP31 in cortical neurons.

Peculiarly, in many cases BCAP31 signal appeared higher in cells expressing

either protrudin or control EGFP, compared to untransfected neighbouring

cells (data not shown). It is possible that the levels of this protein are dynami-

cally controlled in response to the cell’s overall level of protein synthesis, which

may be impacted by exogenous protein expression plasmids. This should be

taken into account in any future experiments examining BCAP31 levels or

localisation.

3.3.3.2 SURF4

Unexpectedly, SURF4 decreased both in the cell body and axon terminal of

cells expressing active protrudin (figure 3.7, panels H-I). However, these de-

creases were well-matched, resulting in no change to the axon terminal:cell

body ratio (figure 3.7, panel G). Notably, SURF4 was the one marker that

did not show any change in axon terminal:cell body ratio with neuronal mat-

uration (figure 3.2), and analysis of individual cell compartments showed a

developmental increase in the soma and a slight but non-significant increase

in the axon terminal (figure 3.3), so the decrease in overall expression level

observed with active protrudin may well indicate a change to a more growth-
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like state. That being said, it is unclear how a decrease in SURF4, as a key

ERES-associated protein, would relate to increased growth.

3.3.3.3 SLC38A1

SLC38A1 showed no significant changes with either WT or active protrudin

expression, although there was a slight trend towards higher axonal intensity

(figure 3.8). As SLC38A1 levels actually increase significantly in both the cell

body and axon terminal with neuronal maturation (figure 3.3), even as the

axon terminal:cell body ratio declines (figure 3.2), it would appear that the

availability (or lack thereof) of local secretory machinery in mature axons is

not a limiting factor for SLC38A1 abundance.

3.3.3.4 ERGIC53

In contrast with the other markers, ERGIC53 showed significantly altered lo-

calisation with the expression of active, but not wild type, protrudin. This in-

cluded a significant increase in axon terminal intensity and axon terminal:cell

body ratio, on top of a slight increase in soma intensity (figure 3.9, panels

G-I). This strongly suggests that protrudin is playing a role in either the for-

mation of ERGIC compartments, or their transport into the distal axon. As

the ERGIC53 axon terminal:cell body ratio typically declines sharply as these

cortical neurons mature (figure 3.2), this result is consistent with active pro-

trudin restoring axonal ERGIC53 to early developmental levels.
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Figure 3.6: A-F) Representative images of BCAP31 in control, WT, and active
protrudin-expressing cell bodies (A-C, respectively) and axon terminals (D-
F). All scale bars are 20 µm, and D-F are 20x20 µm. G-I) Quantification
of BCAP31 fluorescence intensity. n = 18 cells per condition across three
independent batches. Kruskal-Wallis p values are shown at the top of each
plot; significant p values from Dunn’s post-hoc test with Bonferroni correction
for multiple comparisons are shown over brackets.
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Figure 3.7: A-F) Representative images of SURF4 in control, WT, and active
protrudin-expressing cell bodies (A-C, respectively) and axon terminals (D-
F). All scale bars are 20 µm, and D-F are 20x20 µm. G-I) Quantification of
SURF4 fluorescence intensity. n = 17 or 18 cells per condition across three
independent batches. Kruskal-Wallis p values are shown at the top of each
plot; significant p values from Dunn’s post-hoc test with Bonferroni correction
for multiple comparisons are shown over brackets.
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Figure 3.8: A-F) Representative images of SLC38A1 in control, WT, and
active protrudin-expressing cell bodies (A-C, respectively) and axon terminals
(D-F). All scale bars are 20 µm, and D-F are 20x20 µm. G-I) Quantification of
SLC38A1 fluorescence intensity. n = 15 to 18 cells per condition across three
independent batches. Kruskal-Wallis p values are shown at the top of each
plot.
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Figure 3.9: A-F) Representative images of ERGIC53 in control, WT, and
active protrudin-expressing cell bodies (A-C, respectively) and axon terminals
(D-F). All scale bars are 20 µm, and D-F are 20x20 µm. G-I) Quantification of
ERGIC53 fluorescence intensity. n = 16 or 18 cells per condition across three
independent batches. Kruskal-Wallis p values are shown at the top of each
plot; significant p values from Dunn’s post-hoc test with Bonferroni correction
for multiple comparisons are shown over brackets.

3.3.4 Protrudin’s effect on Golgi satellites

Given protrudin’s effect on the ERGIC compartment, we were particularly

interested in seeing if this also impacted axonal Golgi satellites. As these are
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highly dynamic organelles, we decided to look at Golgi satellite transport in the

presence of protrudin. Using rat cortical neurons, we co-expressed mCherry-

tagged protrudin constructs with ST3GAL5-EGFP, a marker of Golgi satellites

[83]. We then imaged the axons in three-minute segments on a spinning disc

confocal microscope, as described previously for LAMP1 and RAB7 in section

1.3.2.

This revealed no change in overall number of Golgi satellites in the distal axon,

but a significant slowing of anterograde transport in cells expressing active

protrudin (figure 3.10, panels B, D). This mirrors the effect of axonal protrudin

on LAMP1 transport, and is discussed further below in section 3.4.1.2.

Figure 3.10: A) Representative axon image and kymographs showing
ST3GAL5 transport in the distal axon of cortical neurons expressing either
mCherry (control) or mCherry-tagged protrudin constructs. All scale bars are
20 µm. B) Total number of ST3GAL5-labelled organelles in each cell imaged.
C) Average run length (per cell) of moving Golgi satellites D) Average Golgi
satellite velocity (per cell). n = 22 or 24 cells per condition across three inde-
pendent batches. Kruskal-Wallis p values are shown at the top of each plot;
significant p values from Dunn’s post-hoc test with Bonferroni correction for
multiple comparisons are shown over brackets.

Following live imaging, these cells were fixed, and imaged at higher exposure
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on a confocal microscope to more clearly visualise Golgi satellites in the axon.

We measured both the number of puncta as well as point intensity of each, as

a proxy for size. This confirmed that protrudin overexpression did not affect

the overall number of Golgi satellites in the distal axon, nor did it appear to

affect the size of these organelles (figure 3.11).

We then conducted a scratch assay to determine the localisation of Golgi satel-

lites in the growth cones of mature neurons and examine whether protrudin

might have an effect on axonal Golgi satellites in response to injury. Cortical

neurons cultured on glass coverslips were scratched with a sterile needle, then

incubated for 18-20 hours before fixing. Axons growing into the scratched re-

gion were imaged on a confocal microscope. While this method cuts axons,

dendrites, and cell bodies indiscriminately, and does not directly measure re-

generation, it is useful for isolating growth cones in mature (DIV15) cortical

neurons.

This revealed a strong concentration of ST3GAL5 at the base of each growth

cone, with slightly weaker signal extending further distally (figure 3.12, pan-

els A-C). Where ST3GAL5 was co-expressed with protrudin, it is apparent

that the Golgi satellite signal reaches further into the growth cone than the

ER (figure 3.12, panels E-F). This suggests that there are distinct ER and

Golgi compartments in the growth cone, with secretory machinery oriented

towards the direction of growth. The images also suggest that there might

be an accumulation of ST3GAL5 immediately proximal to the growth cone in

protrudin-expressing neurons (figure 3.12, panels E-F), although further work

is required to confirm and quantify this result.
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Figure 3.11: A) Representative axon image showing ST3GAL5 puncta. Scale
bar is 20 µm. B) Zoomed-in view of the 20 x 20 µm box in panel A. Counted
puncta are indicated by arrows. C) Number of puncta per µm of axon imaged.
D)Point fluorescence intensity of each ST3GAL5 puncta counted. n = 18 cells
per condition across three independent batches. Kruskal-Wallis p values are
shown at the top of each plot.
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Figure 3.12: Representative images of growth cones on DIV15 cortical neu-
rons after scratch. Neurons are co-expressing either mCherry (A) or mCherry-
protrudin (B-C) with ST3GAL5-EGFP. Scale bars are 20 µm. D-F) 20x20 µm
images highlighting the growth cone details shown in A-C. Arrows indicate
large Golgi satellites, as well as the distal edge of protrudin localisation. Note
how the ST3GAL5 signal extends beyond protrudin in these growth cones.
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3.4 Discussion

3.4.1 Protrudin’s effects on the local secretory pathway

3.4.1.1 Increased ERGIC53 in axon terminals

These results provide an insight into how protrudin might regulate local se-

cretory pathways in the axon. While protrudin does not appear to change

the distribution of primarily ERES-associated proteins, such as BCAP31 and

SURF4, active protrudin does significantly increase the relative level of ER-

GIC53 in axon terminals.

As the ERGIC is a distinct compartment from the ER, this suggests a secretory

role for protrudin beyond its effects on the axonal ER. It is not yet clear if

this represents an increased formation of ERGIC from ERES-derived vesicles

in the axon, or increased transport of these structures from elsewhere in the

cell. Further work will use a GFP-tagged ERGIC53 construct to examine

whether the ERGIC compartments are transported axonally, and whether this

transport is affected by protrudin. In any case, the increase in ERGIC observed

with protrudin expression should be beneficial to local protein production and

secretion, and providing the machinery for efficient cargo sorting might allow

for increased growth after axonal injury.

3.4.1.2 Slower Golgi satellite transport

This is further supported by our finding that active protrudin affects Golgi

satellite transport in the distal axon. Unexpectedly, we found slower transport

of Golgi satellites in the distal axon, particularly in the anterograde direction,

despite unchanged run length or overall number of organelles. Further experi-

ments are required to identify a mechanism for this change, although it could
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represent a sustained interaction with another organelle during transport, po-

tentially ERGIC or a related compartment.

If this interaction is between Golgi satellites and lysosomes, this could ex-

plain the slight slowing of lysosomes observed previously with active protrudin

(figure 1.6, panel D). Lie et al. identified ‘post-Golgi carriers’ as the source

of degradative enzymes for maturing axonal lysosomes, which could indicate

just such an interaction [166]. However, the marker they used for the carriers

(trans-Golgi marker TGN38) is not commonly found in Golgi satellites, so this

might represent a distinct organelle [83].

The marker we used for Golgi satellites — ST3GAL5 — gives us some hints

as to how Golgi satellite interactions in the axon might relate to growth and

regenerative function. ST3GAL5 is a lipid sialylation enzyme, and synthesises

a ganglioside (a type of modified glycolipid) known as GM3. ST3GAL5 muta-

tions in humans are linked to severe neurological syndromes, indicating a key

role in normal CNS function. Furthermore, other gangliosides produced down-

stream of GM3 have been shown to increase regeneration in several different

models of axon injury, indicating another mechanism through which protrudin

might promote regeneration [177,178]

That being said, it remains to be seen how protrudin’s effect on Golgi satellite

transport translates into an effect on Golgi satellite function in the axon. It

could reasonably be argued that slower transport would decrease the number of

inter-organelle contacts made by each satellite, thereby decreasing their effect

(e.g. in the case of lysosomal enzyme delivery, as suggested by Lie et al.) [166].

Conversely, it would not be unreasonable to suggest that slower transport

might indicate more prolonged interactions, for example with ERGIC, that

could increase their ability to receive secretory cargo and allow enzymes such

as ST3GAL5 to carry out their functions. Further work is required to better
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understand which organelles interact with Golgi satellites in the axon, and how

these interactions are influenced by protrudin.

3.4.1.3 Golgi satellites in the growth cone

Our scratch assay also revealed a concentration of Golgi satellites in the growth

cones of mature neurons. While these results are only preliminary, they sug-

gest a key role for Golgi satellites in axonal growth. The additional observa-

tion of an additional ST3GAL5 accumulation proximal to the growth cone in

protrudin-expressing neurons is also interesting — while it is not immediately

clear what this represents, it might indicate a further increase in secretory

machinery in the distal axon, which could promote regeneration.

These findings indicate that protrudin overexpression, particularly active pro-

trudin, has a significant impact on the local secretory machinery present in

the axon, which may play a role in mediating protrudin’s neuroprotective and

regenerative effects. Additionally, these results may account for the finding

that active protrudin has a stronger regenerative effect than WT protrudin,

but that the two constructs do not significantly differ in measures of RAB11

or integrin transport [62].
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Discussion

4.1 Results

4.1.1 Protrudin’s role in axonal transport

Perhaps the most surprising finding of this project has been that protrudin

overexpression has little if any effect on lysosome or late endosome transport

in cortical neurons. Initially, this seems to conflict with previous work in other

cell types, which suggest that protrudin has a strong effect on late endosome

transport and positioning, [56,101]. However, this is in fact consistent with the

mechanism proposed in those studies, which identifies FYCO1 as the actual

adaptor between late endosomes and kinesin. As numerous RNAseq data sets

show that there is extremely little FYCO1 in CNS neurons (figure 1.8), it seems

likely that this mechanism is not active in these neurons. Instead, anterograde

lysosome/late endosome transport in axons is probably mediated primarily by

the BORC/ARL8B/SKIP mechanism, as suggested by Farias et al. [112].

This apparent cell-type variability in protrudin function has important impli-

cations for its development as a regenerative gene therapy. Further work will

be required to characterise the effects of protrudin overexpression on different
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cell types and tissues, and to ensure that therapeutic vectors target protrudin

expression to the correct cellular population.

In addition, this finding raises interesting questions about the role of FYCO1

in regeneration. As FYCO1 appears to facilitate protrudin’s role in cellular

outgrowth, but is largely absent from mature CNS neurons, it is possible that

FYCO1 expression is correlated with the intrinsic regenerative capacity of

different cell types. Investigating this further might shed more light on why

most CNS neurons are such poor regenerators, and identify novel targets to

promote regeneration.

The effect of active protrudin on Golgi satellite transport (figure 3.10), in

contrast with late endosomes (in particular those marked by RAB7, as shown

in figure 1.7), shows that protrudin has specific and distinct effects on different

organelles in the axon. This is further confirmed by Petrova et al., which

showed that both wild type and active protrudin increased the number of

RAB11 recycling endosomes in the distal axon, an effect not seen with any

of the transport markers used in this thesis [62]. Based on these results, we

can confidently say that protrudin does not indiscriminately increase axonal

transport or localisation, but rather specifically mediates the organisation and

behaviour of particular organelles through distinct mechanisms.

4.1.2 Protrudin’s role in local translation

Given its effect on ERGIC localisation (figure 3.9) and the dynamics of Golgi

satellite transport (figure 3.10), it appears that protrudin overexpression —

particularly active protrudin — has a significant effect on the local secretory

machinery in axons. Considering the importance of local translation on axon

function and growth, as discussed previously, it is easy to see how this might

contribute to both protrudin’s neuroprotective and regenerative effects. Ad-
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ditionally, recent work has indicated a direct link between the level of local

translation in axons and their regenerative capacity, supporting the idea that

protrudin could act by coordinating machinery for local protein synthesis and

processing [154].

This is worth considering in the context of the previous finding that protrudin

increases the amount of RAB11 recycling endosomes in the distal axon [62].

Bowen et al. showed that recycling endosomes can play a role in the secretion

of locally translated proteins in dendrites, either through Golgi satellites or

entirely bypassing Golgi-related compartments [143]. Therefore, it is possible

that these endosomes also comprise part of the secretory machinery in axons,

in addition to ERGIC and Golgi satellites.

Further work will be required to identify the molecular mechanisms at play in

this process, and whether it is a result of direct protrudin interactions or is

downstream of other cellular effects. This may well vary for each component of

the secretory pathway — for example, protrudin can bind to RAB11 directly to

facilitate recycling endosome transport, but no such interactions have yet been

identified for ERGIC or Golgi satellites. However, the presence of numerous

Golgi-related proteins in protrudin interactomes (figure 2.4) strongly suggests

a direct involvement in ER-Golgi interactions.

4.2 Future directions

While this project has provided some answers to how protrudin can promote

survival and regeneration, it also raises new questions which should be ad-

dressed in future studies. In addition to the follow-up experiments mentioned

above, several other systems should be investigated in the context of protrudin

overexpression to understand their impact on its neuroprotective and regener-
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ative effects.

4.2.1 Autophagy

Protrudin’s effects on LC3 localisation, both in HeLa cells and cortical neurons

(figure 2.8), suggest an active role in regulating autophagy. The preliminary

results demonstrated in this project suggest that protrudin may increase au-

tophagy or autophagosome biogenesis. However, Hong et al. actually found

the opposite — protrudin depletion promoted autophagy initiation in cultured

epithelial cells [101].

It is very likely that this effect varies by cell type, similar to the effect on

lysosomal transport, and for the same reason — FYCO1 acts as an adaptor

for autophagosome transport, and is involved in autophagosome maturation

[82,179]. However, there are other potential mechanisms through which pro-

trudin could affect neuronal autophagy in the absence of FYCO1, as both ER

contact sites and RAB11 endosomes have been implicated in early autophago-

some formation [180,181]

With this in mind, it would be worthwhile to examine further what effect pro-

trudin overexpression has on autophagy, particularly in CNS neurons. Given

the abundance of literature linking autophagy to neuronal survival [reviewed

in 149], this may well represent another pathway through which protrudin acts,

particularly in a neuroprotective role.

4.2.2 Lipids

Numerous results throughout this thesis suggest a link between protrudin and

lipid metabolism. The gene ontology analysis in section 2.3.2 highlighted a

number of protrudin interactions with genes involved in lipid metabolism.
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The unusual localisation of BODIPY C5 ceramide in HeLa cells expressing

protrudin also supports the idea of an effect on lipid pathways in the cell (fig-

ure 2.9). Furthermore, the enzyme ST3GAL5, used in this thesis as a marker

for Golgi satellites, is an enzyme important for the production of gangliosides,

glycolipids that form a key component of neuronal cell membranes and are

important for axonal growth and maintenance [reviewed in 182]. Given pro-

trudin’s effect on the transport of these organelles, this could suggest a change

to how lipids are metabolised and processed in the axon. Ewan et al. iden-

tified changes in lipid metabolism as a key factor distinguishing PNS from

CNS axon regeneration, suggesting that protrudin could potentially promote

regeneration through these pathways [45].

In a collaborative project with the Williams lab at the Karolinska Institutet,

mice were injected intravitreally with AAV2 encoding the CAG protrudin con-

structs used in this thesis. Lipid mass spectroscopy of these mice’s optic nerves

showed that either WT or active protrudin expression decreased the level of

ceramides while increasing hexosylceramides, pointing to an effect on sphin-

golipid synthesis pathways (data not shown). Further work is ongoing in this

area to understand how protrudin overexpression influences lipid pathways in

the cell, and what effect this has on neuronal survival and regeneration.

4.2.3 Mitochondria

Previous work has suggested that protrudin may play a role at ER-

mitochondrial contact sites [65,183], although it is not yet clear what effects

this may have on the cell. Preliminary EM data from another collaboration

with the Williams lab show some unusually long mitochondria in the optic

nerves of mice expressing active protrudin, which were not observed with a

GFP control (data not shown). Work is ongoing to confirm this result and
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examine potential mechanisms.

4.3 Implications for glaucoma therapy

Given that the initial aim of this project was to develop protrudin into a gene

therapy for glaucoma, it is worth considering these findings in that context.

While we were unable to perform in vivo experiments during this project, the

results presented in this thesis still have important implications for future work

in this area.

As discussed above, the lack of any apparent effect of protrudin expression on

axonal lysosome and late endosome transport, due to the absence of FYCO1,

indicates that protrudin is likely to have very different effects on different

cell types. While initial in vivo experiments with protrudin have shown very

positive results, with significantly improved retinal ganglion cell survival and

regeneration after an optic nerve crush, care should be taken to look out for

any expression outside of this target cell population, and to characterise the

effect of protrudin overexpression in glial and epithelial cell lines [62].

Furthermore, the results presented in chapters 2 and 3 of this thesis identify

a new cellular system — the local secretory pathway — through which pro-

trudin might act to promote survival and regeneration in CNS neurons. Other

components of this pathway, particularly any that might regulate localisation

or inter-organelle interactions, should therefore be examined for potential neu-

roprotective and regenerative benefits. While it may be possible to identify

entirely new gene therapy candidates in this way, it might also be possible

to identify proteins that can act synergistically with protrudin for improved

therapeutic effects.
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4.4 Conclusion — A unifying site of action

The results of this project, taken in combination with previous work, sug-

gest that protrudin is coordinating an ‘axon trafficking centre’, increasing ER

tubules, ERGIC, and recycling endosomes — all key components of the local

secretory pathway — in the distal axon. Through the actions of the virtuous

cycle, this arrangement of organelles can promote integrin delivery, facilitate

local protein translation and processing, and encourage growth-promoting sig-

nalling cascades to increase survival and axonal regeneration.

Whether this coordination occurs through direct interactions or downstream of

other cellular effects is unclear, but it seems likely that this is a contributing

factor to protrudin’s effectiveness as a CNS therapy. Future work in this

area should be focused on the structure and nature of interactions between

pathway components (ER, ERGIC, Golgi satellites, and endosomes), how they

are recruited to sites of axonal injury or degeneration, and whether they are

directly associated with regenerative ability.
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Appendix

5.1 Supplementary Figures

Figure 5.1: Example image of a ring-like structure in a neuron co-expressing
active protrudin and LAMP1. Note that LAMP1 does not label the structure
directly, but appears to label an adjacent organelle. The larger rings towards
the top of the cell have a much dimmer protrudin ’ring’, and appear to be
vacuoles. Scale bar is 20 µm.
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Figure 5.2: Axon terminal area of DIV3 vs DIV15 rat cortical neurons, A)
for each marker and B) pooled together. All show a significant decrease in
axon terminal area during development, with the exception of SURF4. Given
the substantially smaller measurements in DIV3 neurons stained for SURF4
compared to other markers, this suggests that SURF4 is confined to the central
region of the developing growth cone. All n = 26 or 27 cells per condition
across three batches, except SLC38A1 (n = 18 cells, three batches). Wilcoxon
rank-sum p values are shown at the top of each plot.
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5.2 Plasmid Maps
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5.3 Code

In this section, I have included many of the ImageJ macros (written in the

ImageJ Macro language) and R scripts that I wrote to simplify collecting and

analysing data over the course of this project. All are freely available to use

and modify; if you use them extensively for your own work, please cite this

thesis. You might find the occasional ‘TODO’ in with the more descriptive

comments; I have left these in place as suggestions for future improvements.

5.3.1 ImageJ Macros

5.3.1.1 Axon puncta counter

Used to streamline the process of manually counting axonal puncta, as in 3.11.

Displays the first image from each timelapse stack in a directory, plots a low-

opacity trace of the axon to be analysed, and selects the multipoint tool for

the user. Results are saved to a CSV file at the end of the batch. Requires

a folder of STK or TIF image stacks and RGN or ROI files with matching

names.

setBatchMode(false);//interactive

function main(i){
//---duplicate fist frame of stack, close original, and

make all changes on duplicate---↪

rename("orig");
run("Duplicate...",
"title=["+getInfo("image.filename")+"_duplicate] duplicate
range=1-1");

↪

↪

close("orig");
rename("duplicate");//for closing later and to obscure file
name for blind analysis↪

//---load and measure ROI, draw transparent over image---
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//loaded in batch runner
//run("ROI Manager...");
roiManager("select", 0);
run("Measure");
ROI_length = getResult("Length", 0);
roiManager("Show All");

//---multipoint tool, dialog to confirm---
close("Results");
setTool("multipoint");

Dialog.createNonBlocking("Confirm points");
Dialog.addMessage("Click 'OK' to confirm points.");
//TODO - option to skip/exclude?
Dialog.show();

run("Measure");//will count 1 if no points added - defaults
to last active ROI↪

//check if any points have been added
if(selectionType() == -1){//no points added

count = 0;
}
else{

count = getValue("results.count");
}

//---write filename, point count, ROI length to Table---
selectWindow("Puncta counts");//TODO pass as parameter
Table.set("File", i, stacks[i]);
Table.set("ROI_length", i, ROI_length);
Table.set("Count", i, count);
Table.update();

//---close image and extra windows
close("duplicate");//not working
//tables handled in batch runner

}

//---batch runner---
dir = getDirectory("Choose a Directory");
File.makeDirectory(dir + "puncta_counts");
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Dialog.create("Options");
Dialog.addChoice("File extension", newArray("stk", "tif"),

"stk");↪

Dialog.show();
ext = Dialog.getChoice();

files = getFileList(dir);
//exclude directories
temp_stacks = newArray(0);
temp_ROIs = newArray(0);
for(i = 0; i < files.length; i++){

if(!endsWith(files[i],
"/")&&!endsWith(toLowerCase(files[i]), ".ini")){↪

if(endsWith(toLowerCase(files[i]),
".stk")||endsWith(toLowerCase(files[i]), ".tif")){↪

temp_stacks = Array.concat(temp_stacks,files[i]);
}
//if(endsWith(toLowerCase(files[i]), ".roi")){
// temp_ROIs = Array.concat(temp_ROIs,files[i]);
//}

}
}
stacks = temp_stacks;
//rois = temp_ROIs//unnecessary?
shuffle(stacks);//random order to reduce bias

//create custom results table
Table.create("Puncta counts");
Table.setColumn("File", newArray(0));
Table.setColumn("ROI_length", newArray(0));
Table.setColumn("Count", newArray(0));

for(i = 0; i < stacks.length; i++){
open(dir + stacks[i]);

//find and open matching ROI
if(ext == "stk") {roi_name = replace(replace(stacks[i], ext,

"roi"), "_W\\d+_T", "");}↪

else {roi_name = replace(replace(stacks[i], ext, "roi"),
"_ch\\d+.*(?=\\.roi$)", "");}↪

roiManager("open", dir + roi_name);
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roiManager("Select", 0);
roiManager("Rename", "axon");//obscure name for
impartiality while tracing↪

main(i);
//Close results, images, etc.//close("*");
saveAs("Results", dir + "puncta_counts/" + stacks[i] +
"_puncta.csv");↪

roiManager("reset");
run("Clear Results");

}

//save table
selectWindow("Puncta counts");
Table.save(dir + "puncta_counts/counts.csv");

//-------------------------------
//Fisher Yates shuffle, from ImageJ example macro

RandomizeArray.txt↪

function shuffle(array) {
n = array.length; // The number of items left to shuffle
(loop invariant).↪

while (n > 1) {
k = randomInt(n); // 0 <= k < n.
n--; // n is now the last pertinent

index;↪

temp = array[n]; // swap array[n] with array[k] (does
nothing if k==n).↪

array[n] = array[k];
array[k] = temp;

}
}

// returns a random number, 0 <= k < n
function randomInt(n) {

return n * random();
}
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5.3.1.2 Dendrite section crop

Used to crop dendrite sections of a defined length for spine tracing or counting.

Can run on individual images or a folder of cell body images. Could also be

used for axon sections or other cell projections, but will only measure and crop

in straight lines.

setBatchMode(false);//interactive

function main(){
//---duplicate image, close original, and make all changes

on duplicate---↪

rename("orig");
run("Duplicate...",
"title=["+getInfo("image.filename")+"_duplicate]
duplicate");

↪

↪

close("orig");

//---resize to avoid cutting off edges during rotation
step---↪

getDimensions(width, height, channels, slices, frames);
diagonal = Math.ceil(sqrt(width*width + height*height));
//not sure what ^2 is doing but it's definitely not squared↪

run("Canvas Size...", "width=" + diagonal + " height=" +
diagonal + " position=Center zero");↪

//---establish scale and desired length to measure---
Dialog.createNonBlocking("Select dendrite segment");
Dialog.addNumber("Scale (pixels/micron)", 6.25);
Dialog.addNumber("Segment length (microns)", 20);
Dialog.addNumber("Width for cropping (pixels)", 120);
Dialog.addMessage("Please use the straight line tool to
select a segment of dendrite, then click 'OK'.");↪

Dialog.show();
scale = Dialog.getNumber();
segment = Dialog.getNumber();
cropwidth = Dialog.getNumber();

run("Set Scale...", "distance=" + scale + " known=1
unit=�m");↪
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//still operates in pixels - adjust to pixel length for
setting newX/newY↪

pixLength = scale*segment;

getSelectionCoordinates(X,Y);//missing ; here?
Angle = getValue("Angle");
Length = getValue("Length");
rAngle = Angle * PI/180;

//---create new line from same starting point to desired
length---↪

newX = Math.ceil(X[0] + pixLength*cos(rAngle));
newY = Math.ceil(Y[0] - pixLength*sin(rAngle));

makeLine(X[0], Y[0], newX, newY);

//---confirm new line before cropping---
Dialog.createNonBlocking("Confirm dendrite segment");
Dialog.addMessage("Click 'OK' to confirm segment.");
Dialog.show();

//---rotate and crop image---
//image
run("Rotate... ", "angle=" + Math.round(Angle) + " grid=1
interpolation=Bilinear");↪

//ROI
run("Rotate...", "rotate angle=" + Math.round(Angle));

getSelectionCoordinates(rX, rY);
makeRotatedRectangle(rX[0], rY[0], rX[1], rY[1], cropwidth);
run("Crop");

}

//---batch runner---
Dialog.create("Batch selection");
Dialog.addCheckbox("Run as batch?", true);
Dialog.show();
batch = Dialog.getCheckbox();

if(batch){
//TODO - directory selection and iteration
//main();//placeholder
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dir = getDirectory("Choose a Directory");
File.makeDirectory(dir + "dendrite_sections");

files = getFileList(dir);
//exclude directories
temp = newArray(0);
for(i = 0; i < files.length; i++){

if(!endsWith(files[i],
"/")&&!endsWith(toLowerCase(files[i]), ".ini")){↪

temp = Array.concat(temp,files[i]);
}

}
files = temp;
print(files.length);
print(files[0]);

for(i = 0; i < files.length; i++){
open(dir + files[i]);
print(getTitle());
main();
saveAs("Tiff", dir + "dendrite_sections/" + files[i] +

"_DENDRITE.tif");↪

close("*");
}

}
else{

main();
}

5.3.1.3 Dendritic spine measurement export

Exports a CSV of dendritic spine lengths, after each has been traced with a

segmented line and added to the ROI manager. Also saves the ROIs to a ZIP

file.

//For saving ROIs and measurements from traced (segmented line)
dendritic spines↪

dir = getDirectory("image");
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File.makeDirectory(dir + "spines");

roiManager("Measure");

img = getTitle();

num = roiManager("count");
for (i=0; i<num; i++){

setResult("file", i, img);
}

saveAs("Results", dir + "spines/" + img + "_spines.csv");

//Save ROIs
roiManager("Save", dir + "spines/" + img + "_spines.zip");

5.3.1.4 Maximum intensity projection batch runner

Runs over a folder of TIF or STK stack files to quickly generate maximum

intensity projections for each.

setBatchMode(true);

//create dialog and get options for processing
dir = getDirectory("Choose a Directory");
File.makeDirectory(dir + "max_projections");

Dialog.create("Options");
Dialog.addChoice("File extension", newArray("stk", "tif"),

"stk");↪

Dialog.show()

ext = "." + Dialog.getChoice();

files = getFileList(dir);
stacks = newArray(0);

print(ext);
print(files.length);
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//select stacks for processing
for(i = 0; i < files.length; i++){

if(endsWith(toLowerCase(files[i]), ext)){
stacks = Array.concat(stacks,files[i]);

}
}

print(stacks.length);

for(i = 0; i < stacks.length; i++){
showProgress(i, stacks.length);
open(dir + stacks[i]);

rename("orig");//original file
run("Z Project...", "projection=[Max Intensity]");
close("orig");

saveAs("Tiff", dir + "max_projections/" + stacks[i] +
"_MAX.tif");↪

}

5.3.1.5 Sort mixed TIF files into stacks

Works through a folder of individual slice TIF files (e.g. those generated by the

LAS-AF export tool) and attempts to create Z-stacks by matching file names.

This is somewhat configurable, but is designed to work on images named in the

format ‘condition_cell_slice_channel’, for example GFP_C1_z00_c01. Can

also be re-run over the generated folder of TIF stacks to create multi-channel

hyperstacks.

//create dialog and get options for processing
dir = getDirectory("Choose a Directory");
file_list = getFileList(dir);

output = newArray("stacks", "hyperstacks");
Dialog.create("Output type");
Dialog.addRadioButtonGroup("Output", output, 2, 1, "stacks");
Dialog.show();
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out = Dialog.getRadioButton();

//filter to TIFs only
files = newArray(0);
for(i=0; i<file_list.length; i++){

if(endsWith(file_list[i], ".tif")){
files = Array.concat(files, file_list[i]);

}
}

File.makeDirectory(dir + out + "/");

//configurable

Dialog.create("Setup");
Dialog.addMessage("Please enter the format of your file names

between '.lif' and '.tif'.\nThe keywords 'condition',
'cell', 'slice', and 'channel'\nstand in for the
corresponding values.");

↪

↪

↪

Dialog.addString("Format", "_condition_cell_slice_channel", 50);
Dialog.addCheckbox("No .lif prefix", false);
Dialog.show();

structure = Dialog.getString();
no_pref = Dialog.getCheckbox();

//structure = "_condition_cell_slice_channel"
regex_start = ".*\\.lif"
regex_condition = "[A-Za-z0-9\\-]+"
regex_cell = "[A-Za-z0-9\\-\\.\\_]+"
regex_slice = "[zt][0-9]+"
regex_channel = "ch[0-9]+"
regex_end = "\\.tif"

if(no_pref == true){
regex_start = "^";

}

regex_structure = structure_to_regex(structure, regex_condition,
regex_cell, regex_slice, regex_channel);↪

regex_structure = regex_start + regex_structure + regex_end;
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//pull conditions
if(indexOf(structure, "condition") != -1){

pre_regex = structure_to_regex(substring(structure, 0,
indexOf(structure, "condition")), regex_condition,
regex_cell, regex_slice, regex_channel);

↪

↪

pre_regex = regex_start + pre_regex;
post_regex = structure_to_regex(substring(structure,
indexOf(structure, "condition") + 9), regex_condition,
regex_cell, regex_slice, regex_channel);

↪

↪

post_regex = post_regex + regex_end;

List.clear();

for(i=0; i<files.length; i++){
cond = replace(files[i], pre_regex, "");
cond = replace(cond, post_regex, "");

if(List.get(cond) == ""){
List.set(cond, cond);

}
}

List.toArrays(cond_keys, cond_values);
}
else{

cond_values = newArray("");
}

//pull cells
if(indexOf(structure, "cell") != -1){

pre_regex = structure_to_regex(substring(structure, 0,
indexOf(structure, "cell")), regex_condition, regex_cell,
regex_slice, regex_channel);

↪

↪

pre_regex = regex_start + pre_regex;
post_regex = structure_to_regex(substring(structure,
indexOf(structure, "cell") + 4), regex_condition,
regex_cell, regex_slice, regex_channel);

↪

↪

post_regex = post_regex + regex_end;

List.clear();
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for(i=0; i<files.length; i++){
cells = replace(files[i], pre_regex, "");
cells = replace(cells, post_regex, "");

if(List.get(cells) == ""){
List.set(cells, cells);

}
}

List.toArrays(cells_keys, cells_values);
}
else{

cells_values = newArray("");
}

//pull channels
if(indexOf(structure, "channel") != -1){

pre_regex = structure_to_regex(substring(structure, 0,
indexOf(structure, "channel")), regex_condition, regex_cell,
regex_slice, regex_channel);

↪

↪

pre_regex = regex_start + pre_regex;
post_regex = structure_to_regex(substring(structure,
indexOf(structure, "channel") + 7), regex_condition,
regex_cell, regex_slice, regex_channel);

↪

↪

post_regex = post_regex + regex_end;

List.clear();

for(i=0; i<files.length; i++){
chan = replace(files[i], pre_regex, "");
chan = replace(chan, post_regex, "");

if(List.get(chan) == ""){
List.set(chan, chan);

}
}

List.toArrays(chan_keys, chan_values);
}
else{

chan_values = newArray("");
}
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Array.print(cond_values);
Array.print(cells_values);
Array.print(chan_values);

//possible combinations
for(i=0; i<cond_values.length; i++){

condition = cond_values[i];
for(j=0; j<cells_values.length; j++){

cell = cells_values[j];
for(k=0; k<chan_values.length; k++){

channel = chan_values[k];

regex = replace(structure, "condition", condition);
regex = replace(regex, "cell", cell);
regex = replace(regex, "slice", regex_slice);
if(out == "stacks"){

regex = replace(regex, "channel", channel);
}
if(out == "hyperstacks"){

regex = replace(regex, "channel", "");
regex = regex_start + regex;

}
print("regex - " + regex);
print(i + ", " + j + ", " + k);

//check for matching file
matching_files = Array.filter(files, "(" + regex +

")");↪

print("matches - " + matching_files.length);
if(matching_files.length > 0){

if(out == "stacks"){
setBatchMode(true);

//open stack and generate title
//run("Image Sequence...", "dir=" + dir + "

filter=(" + regex + ") sort");↪

File.openSequence(dir, " filter=(" + regex
+")");↪

title = condition + "_" + cell + "_" +
channel + ".tif";↪

saveAs("Tiff", dir + "stacks/" + title);
}
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if(out == "hyperstacks"){
setBatchMode(false);//concatenate function

not working in batch mode↪

param_string = "";
for (l = 0; l < matching_files.length; l++)

{↪

open(dir + matching_files[l]);
image_number = l + 1;
param_string = param_string + "image" +

image_number + " ";↪

}
//get number of slices from first open

stack↪

selectWindow(matching_files[0]);
getDimensions(width, height, channels,

slices, frames);↪

total_slices = slices;
if(matching_files.length > 1){//need at

least two for hyperstack, otherwise
leave as-is

↪

↪

run("Concatenate...", param_string);
run("Stack to Hyperstack...",

"order=xyzct channels="+ matching_files.length +" slices="+
total_slices +" frames=1 display=Color");

↪

↪

}
title = condition + "_" + cell + ".tif";
saveAs("Tiff", dir + "hyperstacks/" +

title);↪

}
}
run("Close All");

}
}

}

function structure_to_regex(str, cond_r, cell_r, slice_r,
chan_r){↪

str = replace(str, "condition", cond_r);
str = replace(str, "cell", cell_r);
str = replace(str, "slice", slice_r);
str = replace(str, "channel", chan_r);
return str;

158



APPENDIX

}

//TODO - fix looping if regex not matched

5.3.1.6 Neuron fluorescence quantification

5.3.1.6.1 Interactive macro Used to simplify fluorescence quantification

in growth cones, neuronal cell bodies or entire neurons. Walks the user through

tracing various features of the cell, and saves ROIs and measurements as ZIP

and CSV files, respectively. Designed to work with a folder of multi-channel

Z-stacks to begin, although should also work with single-channel stacks.

//open image manually for now

dir = getInfo("image.directory");//directory of image - for
saving results↪

File.makeDirectory(dir + "fluorescence_quantification");
initial_name = getInfo("image.title");

getDimensions(width, height, channels, slices, frames);
channel_options = Array.getSequence(channels + 1);
channel_options = Array.deleteIndex(channel_options, 0);//remove

0 index - readjust after selection↪

proj_options = newArray("Sum Slices", "Max Intensity");
image_options = newArray("whole cell", "cell body", "growth

cone");↪

Dialog.createNonBlocking("Settings");
Dialog.addChoice("Channel to measure", channel_options);//minor

bug - adding .0 to end of each↪

Dialog.addRadioButtonGroup("Projection type", proj_options, 1,
2, "Sum Slices");↪

Dialog.addRadioButtonGroup("Image type", image_options, 3, 1,
"whole cell");↪

Dialog.show();

ch = Dialog.getChoice();
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proj = Dialog.getRadioButton();
type = Dialog.getRadioButton();

ch = parseInt(ch);//ROI manager handles channels as 1-indexed

run("Z Project...", "projection=["+ proj +"]");

run("ROI Manager...");
roiManager("Show None");

if(type == "cell body" || type == "whole cell"){
setTool("polygon");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace cell body, then click 'okay'.");
Dialog.show();
roiManager("Add");
roiManager("Select", 0);
roiManager("Rename", "cell body");

roiManager("Deselect");
setTool("polygon");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace nucleus, then click 'okay'.");
Dialog.show();
roiManager("Add");
roiManager("Select", 1);
roiManager("Rename", "nucleus");

//create cytoplasm ROI
roiManager("Select", newArray(0,1));
roiManager("AND");
roiManager("Add");
roiManager("Select", 2);
roiManager("Rename", "t1");

roiManager("Select", newArray(0,2));
roiManager("XOR");
roiManager("Add");
roiManager("Select", 3);
roiManager("Rename", "cytoplasm");

roiManager("Select", 2);
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roiManager("Delete");
//---

//duplicate and shift each for background measurement
roiManager("Deselect");
setTool("polyline");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace a dendrite, then click 'okay'.");
Dialog.show();

roiManager("Add");
roiManager("Select", 3);
roiManager("Rename", "dendrite 1");
roiManager("Deselect");
run("Restore Selection");
roiManager("Add");
roiManager("Select", 4);
roiManager("Rename", "dendrite 1 background");
roiManager("translate", 10, 10);

roiManager("Deselect");
setTool("polyline");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace another dendrite, then click
'okay'.");↪

Dialog.show();

roiManager("Add");
roiManager("Select", 5);
roiManager("Rename", "dendrite 2");
roiManager("Deselect");
run("Restore Selection");
roiManager("Add");
roiManager("Select", 6);
roiManager("Rename", "dendrite 2 background");
roiManager("translate", 10, 10);

roiManager("Deselect");
setTool("polyline");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace another dendrite, then click
'okay'.");↪

161



APPENDIX

Dialog.show();

roiManager("Add");
roiManager("Select", 7);
roiManager("Rename", "dendrite 3");
roiManager("Deselect");
run("Restore Selection");
roiManager("Add");
roiManager("Select", 8);
roiManager("Rename", "dendrite 3 background");
roiManager("translate", 10, 10);

roiManager("Deselect");
setTool("polyline");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace the axon initial segment, then
click 'okay'.");↪

Dialog.show();

roiManager("Add");
roiManager("Select", 9);
roiManager("Rename", "AIS");
roiManager("Deselect");
run("Restore Selection");
roiManager("Add");
roiManager("Select", 10);
roiManager("Rename", "AIS background");
roiManager("translate", 10, 10);

}
if(type == "whole cell"){

roiManager("Deselect");
setTool("polyline");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace the full axon, then click
'okay'.");↪

Dialog.show();

roiManager("Add");
roiManager("Select", 11);
roiManager("Rename", "axon");
roiManager("Deselect");
run("Restore Selection");
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roiManager("Add");
roiManager("Select", 12);
roiManager("Rename", "axon background");
roiManager("translate", 10, 10);

}
if(type == "growth cone" || type == "whole cell"){

//check number of ROIs first
roi_count = roiManager("count");

roiManager("Deselect");
setTool("polygon");
Dialog.createNonBlocking("Select");
Dialog.addMessage("Trace growth cone, then click 'okay'.");
Dialog.show();

roiManager("Add");
roiManager("Select", roi_count);//zero indexed, but count
from 1↪

roiManager("Rename", "growth cone");
roiManager("Deselect");
run("Restore Selection");
roiManager("Add");
roiManager("Select", roi_count + 1);
roiManager("Rename", "growth cone background");
roiManager("translate", 10, 10);

}

//loop through and move all ROIs to measurement channel
for (i = 0; i < roiManager("count"); i++) {

roiManager("Select", i);
RoiManager.setPosition(ch);

}

roiManager("show all with labels");
Dialog.createNonBlocking("Adjustments");
Dialog.addMessage("Adjust background ROIs as necessary, then

click 'okay'");↪

Dialog.show();

//-----MEASUREMENT-----
run("Set Measurements...", "area mean standard modal min

integrated median display redirect=None decimal=3");↪
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roiManager("Deselect");//make sure everything is measured, not
just last one adjusted↪

roiManager("Measure");

//TODO - save ROIs and results table
Dialog.createNonBlocking("Save");
Dialog.addMessage("Click 'okay' to save ROIs and results and

close windows.");↪

Dialog.show();

//ROIs
roiManager("Save", dir + "fluorescence_quantification/" +

initial_name + "_ROIs.zip");↪

//results
saveAs("Results", dir + "fluorescence_quantification/" +

initial_name + "_Results.csv");↪

close("*");//image windows
close("Roi Manager");
close("Results");

5.3.1.6.2 Additional runs Allows you to reuse ROI files generated from

running the above macro to calculate fluorescence intensities for a different

channel or Z-projection type on the same images.

//select hyperstacks directory
stacks_dir = getDirectory("Choose the directory containing stack

files");↪

stacks_list = getFileList(stacks_dir);

//select ROIs directory
ROIs_dir = getDirectory("Choose the directory containing ROI ZIP

files");↪

ROIs_list = getFileList(ROIs_dir);

//select output directory
out_dir = getDirectory("Choose location to save results");
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//---match names, report number of matches-----
//technically unnecessary, remove this block if running slowly

//_ROIs.zip added to end of stack name, including .tif
matches_count = 0;
st_matches = newArray();
for (i = 0; i < stacks_list.length; i++) {

st = stacks_list[i];
st_roi = Array.filter(ROIs_list, st + "_ROIs.zip");
if (st_roi.length > 0){

matches_count++;
st_matches = Array.concat(st_matches, st);

}
}

Dialog.createNonBlocking("Press OK to continue");
Dialog.addMessage("There are " + matches_count + " stacks with

available ROI files. Do you want to continue?");↪

Dialog.show();
//-----

//pick projection type, channel to measure
proj_options = newArray("Sum Slices", "Max Intensity", "Average

Intensity");↪

Dialog.createNonBlocking("Settings");
Dialog.addNumber("Channel to measure", 1, 0, 3, "");
Dialog.addRadioButtonGroup("Projection type", proj_options, 1,

2, "Sum Slices");↪

Dialog.addString("Output file suffix", "_new");
Dialog.show();

ch = Dialog.getNumber();
proj = Dialog.getRadioButton();
suffix = Dialog.getString();

ch = parseInt(ch);

//***BATCH***
setBatchMode(false);//runs into issues with results table not

clearing if run in batch mode, for no apparent reason↪

for (i = 0; i < st_matches.length; i++) {
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st = st_matches[i];
//open hyperstack, create projection
open(stacks_dir + st);
run("Z Project...", "projection=[" + proj + "]");//should
stay selected↪

//open ROIs
roiManager("Open", ROIs_dir + st + "_ROIs.zip");
//loop through and move all ROIs to measurement channel
for (j = 0; j < roiManager("count"); j++) {

roiManager("Select", j);
RoiManager.setPosition(ch);

}
//measure, save results
run("Set Measurements...", "area mean standard modal min
integrated median display redirect=None decimal=3");↪

roiManager("Deselect");//make sure everything is measured
roiManager("Measure");
saveAs("Results", out_dir + st + suffix + "_Results.csv");

close("*");//image windows
close("Roi Manager");
close("Results");//BUG - occasionally ending up with wrong
ROI matches, multiple results copies in some↪

}
//***********

5.3.1.7 Intensity profile export

Generates and saves a CSV containing fluorescence intensity profile informa-

tion from an image with one or more channels and a line or segmented line

ROI.

setBatchMode(false);

//open images manually - should be multi channel max projection
dir = getInfo("image.directory");//directory of image - for

saving results↪

File.makeDirectory(dir + "intensity_profiles");
initial_name = getInfo("image.title");
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getDimensions(width, height, channels, slices, frames);
print("ch = " + channels + " s = " + slices + " f = " + frames);

//draw ROI line/polyline
roiManager("add");

for (i = 1; i < channels + 1; i++) {
Stack.setChannel(i);
print(i);
profile = getProfile();
for (j=0; j<profile.length; j++)
setResult("Value_ch" + i, j, profile[j]);

updateResults;
}

//export CSV and ROI
saveAs("Results", dir + "intensity_profiles/" + initial_name +

"_profile.csv");↪

roiManager("save selected", dir + "intensity_profiles/" +
initial_name + ".roi")↪

5.3.1.8 Quick montage generator

Generates labelled montages of single- and multi-channel images of the sort

used in this thesis (e.g. figure 2.5). Includes option to pause and edit or

annotate (adding arrows, changing image order, etc.) before generating final

montage. Requires single-channel images to start.

setBatchMode("false");

//get open images
img = getList("image.titles");
img_arr = Array.concat(img, "none");

//set channels for merge - clean this up?
Dialog.create("Options");
Dialog.addMessage("Select channels");
Dialog.addChoice("Red", img_arr, "none");
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Dialog.addToSameRow();
Dialog.addString("", "");
Dialog.addChoice("Green", img_arr, "none");
Dialog.addToSameRow();
Dialog.addString("", "");
Dialog.addChoice("Blue", img_arr, "none");
Dialog.addToSameRow();
Dialog.addString("", "");
Dialog.addChoice("Gray", img_arr, "none");
Dialog.addToSameRow();
Dialog.addString("", "");
Dialog.addChoice("Cyan", img_arr, "none");
Dialog.addToSameRow();
Dialog.addString("", "");
Dialog.addChoice("Magenta", img_arr, "none");
Dialog.addToSameRow();
Dialog.addString("", "");
Dialog.addChoice("Yellow", img_arr, "none");
Dialog.addToSameRow();
Dialog.addString("", "");
Dialog.addCheckbox("Adjust brightness/contrast?", false);
Dialog.addCheckbox("Label images?", true);
Dialog.addString("Font size", 55);
Dialog.addCheckbox("Scalebar?", true);
Dialog.addString("Size", 20);//TODO - units
Dialog.addString("Final scale", 0.5);//TODO - number field?
Dialog.addCheckbox("Pause to annotate?", false);
Dialog.show();

c1 = Dialog.getChoice();
c1_label = Dialog.getString();
c2 = Dialog.getChoice();
c2_label = Dialog.getString();
c3 = Dialog.getChoice();
c3_label = Dialog.getString();
c4 = Dialog.getChoice();
c4_label = Dialog.getString();
c5 = Dialog.getChoice();
c5_label = Dialog.getString();
c6 = Dialog.getChoice();
c6_label = Dialog.getString();
c7 = Dialog.getChoice();
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c7_label = Dialog.getString();
BC = Dialog.getCheckbox();
to_label = Dialog.getCheckbox();
label_size = Dialog.getString();
scalebar = Dialog.getCheckbox();
scalebar_size = Dialog.getString();
scale = Dialog.getString();
annotation_pause = Dialog.getCheckbox();

if (BC == true){
for (i = 0; i < img.length; i++) {

selectWindow(img[i]);
autoBC();

}
}

channelString = "";
if (c1 != "none"){ channelString = channelString + "c1=" + c1 +

" "; }↪

if (c2 != "none"){ channelString = channelString + "c2=" + c2 +
" "; }↪

if (c3 != "none"){ channelString = channelString + "c3=" + c3 +
" "; }↪

if (c4 != "none"){ channelString = channelString + "c4=" + c4 +
" "; }↪

if (c5 != "none"){ channelString = channelString + "c5=" + c5 +
" "; }↪

if (c6 != "none"){ channelString = channelString + "c6=" + c6 +
" "; }↪

if (c7 != "none"){ channelString = channelString + "c7=" + c7 +
" "; }↪

run("Merge Channels...", channelString + "create keep ignore");

//add scalebar if option checked - defaulting to white for now
if(scalebar == true){

selectWindow("Composite");
run("Scale Bar...", "width=20 height=18 thickness=" +
(5/scale) +" font=14 color=White background=None
location=[Lower Left] horizontal hide overlay");

↪

↪
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}

run("Flatten");

//label images if option is checked
if(to_label == true){

setFont("SansSerif", label_size, " antialiased bold");
buffer = Math.ceil(label_size/10);
if (c1 != "none" && c1_label != ""){selectWindow(c1);

run("RGB Color"); h = getHeight(); setColor("red");
drawString(c1_label, buffer, h-buffer);}

↪

↪

if (c2 != "none" && c2_label != ""){selectWindow(c2);
run("RGB Color"); h = getHeight(); setColor("green");
drawString(c2_label, buffer, h-buffer);}

↪

↪

if (c3 != "none" && c3_label != ""){selectWindow(c3);
run("RGB Color"); h = getHeight(); setColor("blue");
drawString(c3_label, buffer, h-buffer);}

↪

↪

if (c4 != "none" && c4_label != ""){selectWindow(c4);
run("RGB Color"); h = getHeight(); setColor("gray");
drawString(c4_label, buffer, h-buffer);}

↪

↪

if (c5 != "none" && c5_label != ""){selectWindow(c5);
run("RGB Color"); h = getHeight(); setColor("cyan");
drawString(c5_label, buffer, h-buffer);}

↪

↪

if (c6 != "none" && c6_label != ""){selectWindow(c6);
run("RGB Color"); h = getHeight(); setColor("magenta");
drawString(c6_label, buffer, h-buffer);}

↪

↪

if (c7 != "none" && c7_label != ""){selectWindow(c7);
run("RGB Color"); h = getHeight(); setColor("yellow");
drawString(c7_label, buffer, h-buffer);}

↪

↪

}

run("Images to Stack", "name=Stack title=[] use");
//TODO - make sure order stays consistent -

numerical/alphabetical? or by channel?↪

if(annotation_pause == true){
Dialog.createNonBlocking("Annotation");
Dialog.addMessage("Add desired annotations to images, then
click \"OK\"");↪

Dialog.show();
}
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panels = img.length + 1;
run("Make Montage...", "columns=" + panels + " rows=1 scale=" +

scale);↪

saveAs("PNG");//will prompt for name

run("Close All");

/*-------------------------------------------------*/

function autoBC(){
//from Kota Miura and Damien Guimond
//http://imagej.1557.x6.nabble.com/Auto-Brightness-Contrast-
//and-setMinAndMax-td4968628.html

AUTO_THRESHOLD = 5000;
getRawStatistics(pixcount);
limit = pixcount/10;
threshold = pixcount/AUTO_THRESHOLD;
nBins = 256;
getHistogram(values, histA, nBins);
i = -1;
found = false;
do {

counts = histA[++i];
if (counts > limit) counts = 0;
found = counts > threshold;

} while ((!found) && (i < histA.length-1))
hmin = values[i];
i = histA.length;
do {

counts = histA[--i];
if (counts > limit) counts = 0;
found = counts > threshold;

} while ((!found) && (i > 0))
hmax = values[i];
setMinAndMax(hmin, hmax);
run("Apply LUT");

}
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5.3.1.9 Kymograph generator

Generates kymographs from a folder of image stacks and ROIs. Includes op-

tions for contrast adjustment, background correction, and bleach correction,

which can be adjusted to improve visibility of faint particles. Can be very slow

depending on which options are selected.

setBatchMode(false);
//not all macros/plugins used work in batch mode

//create dialog and get options for processing
dir = getDirectory("Choose a Directory");
File.makeDirectory(dir + "kymographs");

Dialog.create("Options");
Dialog.addChoice("File extension", newArray("stk", "tif"),

"stk");↪

Dialog.addString("Experiment prefix", "");
Dialog.addChoice("ROI format", newArray("roi", "rgn"), "roi");
Dialog.addNumber("Line width", 5);
Dialog.addCheckbox("Brightness/contrast adjustment?", true);
Dialog.addCheckbox("Background subtraction?", false);
Dialog.addNumber("Rolling ball radius", 20.0);
Dialog.addMessage("\n");
Dialog.addCheckbox("Bleach correction?", true);
Dialog.addMessage("This will increase processing \ntime by

roughly 30 mintues per \nstack, but will produce much
\ncleaner kymographs");

↪

↪

Dialog.show()

ext = "." + Dialog.getChoice();
pref = Dialog.getString();
roi = "." + Dialog.getChoice();
lwd = Dialog.getNumber();
bc = Dialog.getCheckbox();
bgsubtract = Dialog.getCheckbox();
bgradius = Dialog.getNumber();
bleach = Dialog.getCheckbox();

files = getFileList(dir);
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stacks = newArray(0);

print(ext);
print(files.length);

//select stacks for processing
for(i = 0; i < files.length; i++){

if(endsWith(toLowerCase(files[i]), ext)){
stacks = Array.concat(stacks,files[i]);

}
}

print(stacks.length);

for(i = 0; i < stacks.length; i++){
showProgress(i, stacks.length);

//check for matching ROI before starting
roi_name = replace(replace(replace(stacks[i], pref, ""),
ext, roi), "_W\\d+( .{2})?_T", "");↪

print(stacks[i]);
print(roi_name);

if(File.exists(dir + roi_name)){

open(dir + stacks[i]);

//create duplicate for processing, no edits on original
stack file↪

rename("orig");
run("Duplicate...", "title=["+stacks[i]+"_duplicate]

duplicate");↪

close("orig");

//bleach correction
if(bleach == true){

run("Bleach Correction", "correction=[Histogram
Matching]");↪

rename(stacks[i]+"_duplicate");//renaming new
corrected file to match 'original' duplicate↪

close("duplicate");//closing 'original' duplicate
}
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//select and open ROI file for kymograph

if(roi == ".rgn"){
run("Metamorph ROI", "open=[" + dir + roi_name + "]"

);↪

}
else{

roiManager("open", dir + roi_name);
}

if(roiManager("count") == 1){//TODO - handle multiple
ROIs↪

createKymograph(lwd, 0);

//background subtraction
if(bgsubtract == true){

run("Subtract Background...", "rolling=" +
bgradius + " light");//TODO - adjust for optional inversion↪

}

//contrast adjustment
if(bc == true){

autoBC();
}
//file saving
selectWindow("Kymograph");
save(dir + "kymographs/" + stacks[i] +

"_kymograph.tif");↪

}
roiManager("reset");

}
run("Close All");

}

function createKymograph(lwd, roiNo){

//run("KymographBuilder", "input=" +
stacks[i]+"_duplicate");↪

//broken with new imageJ update
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roiManager("select", roiNo);
run("Multi Kymograph", "linewidth=" + lwd);
selectWindow("Kymograph");

rename("Kymograph");//ensure that window name is consistent
- might change with plugin updates↪

run("Invert");//TODO - make optional

/*KymographBuilder sometimes adds a line of saturated
pixels to the far right,↪

which throws off contrast adjustment. Cropping to avoid*/
/*getDimensions(w, h, c, s, f);
makeRectangle(0, 0, w-1, h);
run("Crop");
*/
setOption("ScaleConversions", true);
run("16-bit");//"Apply LUT" in autoBC doesn't work on 32
bit produced by MultipleKymograph↪

}

function autoBC(){
//from Kota Miura and Damien Guimond
//http://imagej.1557.x6.nabble.com/Auto-Brightness-Contrast-and-
//setMinAndMax-td4968628.html

AUTO_THRESHOLD = 5000;
getRawStatistics(pixcount);
limit = pixcount/10;
threshold = pixcount/AUTO_THRESHOLD;
nBins = 256;
getHistogram(values, histA, nBins);
i = -1;
found = false;
do {

counts = histA[++i];
if (counts > limit) counts = 0;
found = counts > threshold;

} while ((!found) && (i < histA.length-1))
hmin = values[i];
i = histA.length;
do {

counts = histA[--i];
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if (counts > limit) counts = 0;
found = counts > threshold;

} while ((!found) && (i > 0))
hmax = values[i];
setMinAndMax(hmin, hmax);
run("Apply LUT");

}

5.3.1.10 Export kymograph traces to CSV

Used to export manual kymograph traces (segmented line ROIs, added to the

ROI manager) into CSV format for analysis in R. Includes a numeric index for

each trace, and X and Y coordinates for each point along the line.

Table.create("ROI details");

num = roiManager("count");
for (i=0; i<num; i++){

roiManager("select", i);
Roi.getCoordinates(xpoints, ypoints);
base = Table.size;
for (p=0; p<xpoints.length; p++){

Table.set("ROI", base + p, i + 1);//1-index for R
analysis↪

Table.set("X", base + p, xpoints[p]);
Table.set("Y", base + p, ypoints[p]);

}
}

print(getTitle());
Table.save(getDirectory("image") + getTitle() + "_traces.csv");

//ADD ROI SAVE
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5.3.2 R Scripts

5.3.2.1 Convert XML files from Cell Counter ImageJ plugin to
CSVs

Generates CSVs from the XML files exported by the Fiji Cell Counter plugin’s

‘Save Markers’ feature. Requires some configuration before use — there are in-

cluded code blocks to use this for either counting transfected cells or classifying

dendritic spines.

library(xml2)

dir = choose.dir(caption = "Choose directory containing Cell
Counter XML files.")↪

files = list.files(dir, pattern = '.(xml|XML)$', recursive = F)

counts = do.call(rbind, lapply(files, function(f){
xml = read_xml(paste(dir, f, sep = '/'))
xml.marker_data = xml_child(xml, search = 'Marker_Data')

## cell transfection quantification ##
## 'intact' and 'dead' cell counter groups, in that order ##
intact = xml_child(xml.marker_data, search = 2)
dead = xml_child(xml.marker_data, search = 3)

intact.count = xml_length(intact) - 2 #subtracting to account
for type and name fields↪

dead.count = xml_length(dead) - 2 #subtracting to account for
type and name fields↪

df = data.frame(file = f,
intact = intact.count,
dead = dead.count)

##############################################################↪

## comment out the above block and uncomment this block for
dendritic spines classification ##↪

177



APPENDIX

## dendritic spine manual classification, with groups
'mushroom', 'thin', 'stubby', and 'filopodia', in that
order ##

↪

↪

#
# mushroom = xml_child(xml.marker_data, search = 2)
# thin = xml_child(xml.marker_data, search = 3)
# stubby = xml_child(xml.marker_data, search = 4)
# filopodia = xml_child(xml.marker_data, search = 5)
#
# mushroom.count = xml_length(mushroom) - 2 #subtracting to

account for type and name fields↪

# thin.count = xml_length(thin) - 2
# stubby.count = xml_length(stubby) - 2
# filopodia.count = xml_length(filopodia) - 2
#
# df = data.frame(file = f,
# mushroom = mushroom.count,
# thin = thin.count,
# stubby = stubby.count,
# filopodia = filopodia.count)

##############################################################↪

return(df)

}))

write.csv(counts, file = paste(dir, "cell_counter_counts.csv",
sep = '/'))↪

5.3.2.2 Calculate frame rate from individual timelapse images

Calculates a ‘true’ frame rate for a MetaMorph timelapse from the timestamps

on individual frames. See 0.7.5.1 for a description of the issue that prompted

this fix.
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#to correct for frame rate change in metamorph due to differing
exposure/number of channels↪

#effectively slower than specified rate if long exposure or
multiple channels↪

#this checks the difference between timestamps on individual
frame TIFs to establish actual frame rate and allow
comparison between kymographs with different settings

↪

↪

library(tiff)
library(stringr)
library(lubridate)
library(hms)
library(dplyr)

dir = choose.dir("Choose TIF directory")#WINDOWS-SPECIFIC
expt = readline(prompt = "Enter an identifier in the form

'experiment_condition' for saving:")↪

files = list.files(dir, pattern = '.(tif(f)?|TIF(F)?)$',
recursive = F)#TODO - handle recursion from experiment
file, but skip any TIF stacks if present (most should be
.stk)

↪

↪

↪

#get creation timestamps from TIF metadata
timestamps = sapply(files, function(f){

filepath = paste(dir, f, sep = "\\")
#escape spaces
filepath = gsub(" ", "\ ", filepath)
f.tiff = readTIFF(filepath, info = T)
metadata = attr(f.tiff, "description")
acquisition_time = str_match(metadata,

'\\r\\n\\t\\t<prop
id=\\"acquisition-time-local\\"\\
type=\\"time\\"
value=\\"(.+)\\">')[[2]]
#captured group

↪

↪

↪

↪

#timestamp = as_hms(as_datetime(acquisition_time))#handle
manually to account for MetaMorph bug - dropping
leading zeroes in miliseconds field

↪

↪

acquisition_time.split= str_match(acquisition_time, '\\d{8}
(\\d{2}):(\\d{2}):(\\d{2})\\.(\\d+)')↪

time.hour = acquisition_time.split[2]
time.min = acquisition_time.split[3]
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time.sec = paste(acquisition_time.split[4],
str_pad(acquisition_time.split[5], width = 3, side = 'left',
pad = '0'), sep = ".")

↪

↪

timestamp = as_hms(paste(time.hour, time.min, time.sec, sep
= ":"))#might bug out over lunchtime if not 24hr time↪

return(timestamp)
})

timestamps.df = data.frame(file = files, time = timestamps)

#split filenames for analysis
files.split = as.data.frame(str_match(files,

'(.+)_(C\\d+)_(.+)_w(\\d{1})(\\d{3}).*?_t(\\d+).(tif|TIF)'))↪

timestamps.df$condition = files.split[,2]
timestamps.df$cell = files.split[,3]
timestamps.df$video_ID = files.split[,4]
timestamps.df$channel = files.split[,5]
timestamps.df$wavelength = files.split[,6]
timestamps.df$frame = files.split[,7]

#adjust types - leaving factors as is for now
timestamps.df$channel =

as.numeric(as.character(timestamps.df$channel))↪

timestamps.df$wavelength =
as.numeric(as.character(timestamps.df$wavelength))↪

timestamps.df$frame =
as.numeric(as.character(timestamps.df$frame))↪

#unique ID for grouping
timestamps.df$groupID = sapply(1:nrow(timestamps.df),

function(i){ r = timestamps.df[i,]; paste(r$condition,
r$cell, r$video_ID, r$channel, sep = "_") })

↪

↪

#DROP FIRST FRAMES
#most variability here - either very long or very short gap

between first and second frames↪

#remove first for better frame rate estimation
timestamps.df = timestamps.df %>% group_by(groupID) %>%

filter(!frame == min(frame)) %>% ungroup()↪

#should also have the effect of removing groups with only one
frame, but leaving in handling code just in case↪

#find average times between frames
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framerates = data.frame(ID = unique(timestamps.df$groupID),
stringsAsFactors = F)↪

framerates$steps = lapply(framerates$ID, function(id){#list
avoids sporadic error e.g. Error in
`$<-.data.frame`(`*tmp*`, steps, value =
c(0.542999982833862, : replacement has 359 rows, data
has 8

↪

↪

↪

↪

df = filter(timestamps.df, groupID == id)
if(nrow(df) == 1){
return(NA)

}
else{
steps = sapply((min(df$frame)):(max(df$frame)-1),
function(f){#TODO - handle/error for missing frames↪

(df[df$frame == f + 1, "time"]) - (df[df$frame == f,
"time"])↪

})
return(unlist(steps))#sapply returning as a list for some

reason↪

}
})
framerates$avg_step = sapply(framerates$steps, mean)
framerates$sd_step = sapply(framerates$steps, sd)
framerates$min_step = sapply(framerates$steps, min)
framerates$max_step = sapply(framerates$steps, max)

framerates$steps_by_elapsed = unlist(sapply(framerates$ID,
function(id){#calculate 'average' step size by dividing
total time elapsed by number of frames

↪

↪

df = filter(timestamps.df, groupID == id)
if(nrow(df) == 1){
return(NA)

}
else{
elapsed = df[df$frame == max(df$frame), "time"] -
df[df$frame == min(df$frame), "time"]↪

frames = length(unique(df$frame))#unique probably
unnecessary?↪

s = elapsed/frames
return(s)

}
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}))#also coming back as a list, for some reason
#reasonably consistent with average - most variation still down

to first/second frame transition↪

#rounding to 2 decimal places - should be enough to account for
exposure variations↪

framerates$framerate = round((1/framerates$avg_step), digits =
2)↪

write.csv((framerates %>% select(!steps)), file = paste0(dir,
"\\", expt, "_frame_rates.csv"))↪

5.3.2.3 Analyse kymograph traces from CSV

Calculates a number of parameters based on the CSV kymograph data ex-

ported by ImageJ macro 5.3.1.10. Includes information such as the direction

and speed of each individual particle movement, as well as average distance,

average velocity, and the total number of particles traced in each kymograph.

library(ggplot2)
library(gridExtra)

analyse_traces <- function(csv_path = NULL, x_scale = 1, y_scale
= 1, mov_threshold = 5){#x scale um/pixel, y scale time per
frame, mov_threshold distance to be considered non-static -
default from Shi et. al. 2017

↪

↪

↪

if(missing(csv_path)){
csv_path = file.choose()

}

traces = read.csv(csv_path, col.names = c("ROI", "X", "Y"))
#account for any 'backwards' tracing
traces = do.call(rbind, lapply(unique(traces$ROI),

function(t){
df = traces[traces$ROI == t,];
ystart = df$Y[1];
yfin = df$Y[length(df$Y)];
if (ystart > yfin){#'backwards' trace
df = df[nrow(df):1,];#flip

182



APPENDIX

}
#TODO - y change == 0 case
return(df);

}
))

#-----per-segment analysis-------------
#iterate over segments; fix any going in wrong y-direction;

return velocity, distance, direction↪

per_seg.df = do.call(rbind, lapply(unique(traces$ROI),
function(roi){↪

roi.df = traces[traces$ROI == roi,];
seg.df = do.call(rbind, lapply(2:nrow(roi.df), function(i){

#cleaning - direction
ydiff = (roi.df$Y[i] - roi.df$Y[i-1])*y_scale;
if (ydiff <= 0){
ydiff = 1*y_scale #effectively 1 frame minimum time

for any movement↪

}
#other calculations
xdiff = (roi.df$X[i] - roi.df$X[i-1])*x_scale;#convert

to um↪

v = xdiff/ydiff;
d = xdiff;

if(d > mov_threshold){ dr = "anterograde" }
else if (d < -mov_threshold){ dr = "retrograde"}
else{ dr = "static" }

return(data.frame(velocity = v, distance = d, direction
= dr, stringsAsFactors = F))↪

}
))
return(data.frame(velocity = seg.df$velocity, distance =

seg.df$distance, direction = seg.df$direction, ROI =
roi, stringsAsFactors = F))

↪

↪

}
))
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if(is.null(per_seg.df)){ per_seg.df = data.frame(velocity =
numeric(0), distance = numeric(0), direction =
character(0), ROI = integer(0)) }

↪

↪

#-----per-trace analysis-------------
num_traces = length(unique(traces$ROI))

per_trace.net_distance = unlist(sapply(unique(traces$ROI),
function(roi){↪

roi.df = traces[traces$ROI
== roi,];↪

dist =
roi.df$X[length(roi.df$X)] - roi.df$X[1];↪

return(dist)
}
))

per_trace.net_velocity = unlist(sapply(unique(traces$ROI),
function(roi){↪

roi.df = traces[traces$ROI
== roi,];↪

dist =
roi.df$X[length(roi.df$X)] - roi.df$X[1];↪

time =
roi.df$Y[length(roi.df$Y)] - roi.df$Y[1];↪

return(dist/time)
}
))

#------------------------------------

results = list("per_seg" = per_seg.df,
"num_traces" = num_traces,
"per_trace.net_distance" =

per_trace.net_distance,↪

"per_trace.net_velocity" =
per_trace.net_velocity)#TODO - return
per_trace as df

↪

↪

return(results)
}
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graph_results <- function(res_list){
if(is.null(names(res_list))){ names(res_list) =

paste0('cond_', 1:length(res_list)) }↪

}
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