Clinical Diagnostic Criteria for Progressive Supranuclear Palsy of the Movement Disorder Society

Günter U Höglinger, MD,1,2* Gesine Respondek, MD,1,2* Maria Stamelou, MD,3* Carolin Kurz, MD,4 Keith A Josephs, MD, MST, MSc,5 Anthony E Lang, MD,6 Brit Mollenhauer, MD,7 Ulrich Müller, MD,8 Christer Nilsson, MD,9 Jennifer L Whitwell, PhD,10 Thomas Arzberger, MD,2,4,11, Elisabet Englund, MD,1 Ellen Gelpi, MD,1 Armin Giese, MD,11 David J Irwin, MD,14 Wassilios G Meissner, MD, PhD,15,16,17 Alexander Panteliat, MD,18 Alex Rajput, MD,19 John C van Swieten, MD,20 Claire Troakes, PhD, MSc,21 Angelo Antonini, MD,22 Kailash P Bhatia, MD,23 Yvette Bordelon, MD, PhD,24 Yaroslau Compta, MD, PhD,25 Jean-Christophe Corvol, MD, PhD,26 Carlo Colosimo, MD, FEAN,27 Dennis W. Dickson, MD,28 Richard Dodel, MD,29 Leslie Ferguson, MD,19 Murray Grossman, MD,14 Jan Kassubek, MD,30 Florian Krismer, MD, PhD,31 Johannes Levin, MD,2,32 Stefan Lorenzl, MD,33,34,35 Huw R Morris, MD,36 Peter Nestor, MD,37 Wolfgang H Oertel, MD,38 Werner Poewe, MD,31 Gil Rabinovici, MD,39 James B Rowe, MD,40 Gerard D Schellenberg, PhD,41 Klaus Seppi, MD,31 Thilo van Eimeren, MD,42 Gregor K Wenning, MD, PhD,31 Adam Boxer, MD, PhD,39, Lawrence I Golbe, MD,43 Irene Litvan, MD,44 for the Movement Disorder Society-endorsed PSP Study Group.

*equal contribution

1Department of Neurology, Technische Universität München, Munich, Germany
2German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
3Second Department of Neurology, Attikon University Hospital, University of Athens, Greece
4Department of Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany
5Department of Neurology, Mayo Clinic, Rochester, MN, USA
6Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J Safra Program in Parkinson’s Disease, Toronto Western Hospital, Toronto, Canada
7Paracelsus-Elena Klinik, Kassel and University Medical Center Göttingen, Institute of Neuropathology, Germany
8Institute of Human Genetics, Giessen, Germany
9Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Sweden
10Department of Radiology, Mayo Clinic, Rochester, MN, USA
11Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Munich, Germany
12Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
13Neurological Tissue Bank and Neurology Department, Hospital Clínico de Barcelona, Universitat de Barcelona, IDIBAPS, CERCA, Barcelona, Catalonia, Spain
14Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, PA, USA
15Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
16CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
17Service de Neurologie, Hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
18Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
19 Division of Neurology, Royal University Hospital, University of Saskatchewan, Canada
20 Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
21 London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
22 Parkinson and Movement Disorders Unit, IRCCS Hospital San Camillo, Venice, Italy
23 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
24 Department of Neurology, University of California, Los Angeles, CA, USA
25 Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clinic / IDIBAPS / University of Barcelona, CERCA Programme / Generalitat de Catalunya, Barcelona, Catalonia, Spain
26 Sorbonne Universités, UPMC Univ Paris 06; and INSERM UMR_S_1127, CIC_1422; and CNRS UMR_7225; and AP-HP; and ICM, Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, F-75013, Paris, France
27 Department of Neurology, Santa Maria University Hospital of Terni, Italy
28 Mayo Clinic, Jacksonville, FL, USA
29 Department of Geriatric Medicine, University Hospital Essen, Essen, Germany
30 Department of Neurology, University of Ulm, Ulm, Germany
31 Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
32 Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
33 Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
34 Department of Neurology, Hospital Agatharied, Agatharied, Germany
35 Department of Palliative Medicine, Munich University Hospital, LMU Munich, Munich, Germany
36 Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
37 German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
38 Department of Neurology, Philipps Universität, Marburg, Germany
39 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
40 Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
41 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
42 Departments of Nuclear Medicine and Neurology, University of Cologne, Cologne, Germany
43 Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
44 Department of Neurology, University of California, San Diego, CA, USA

Correspondence to: Prof. Dr. Günter U. Höglinger, Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, D-81677 Munich, Germany. Phone: +49-89-4400-46464, Fax: +49-89-4400-46565, guenter.hoeglinger@dzne.de.
Running title: MDS clinical diagnostic criteria for PSP

Keywords: Progressive supranuclear palsy, evidence-based, consensus-based, clinical diagnostic criteria

Financial Disclosure/Conflict of Interest concerning the manuscript: none

Funding source for study: The project was supported by the Bischof Dr. Karl Golser Stiftung, CurePSP, Deutsche Forschungsgemeinschaft (DFG, HO 2402/11-1), German Center for Neurodegenerative Diseases e.V. (DZNE), German PSP Gesellschaft, Tau Consortium, UK PSP Association, and the International Parkinson & Movement Disorder Society.
Abstract

Background: Progressive supranuclear palsy (PSP) is a neuropathologically defined disease entity. Clinical diagnostic criteria, published in 1996 by the National Institute of Neurological Disorders and Stroke / Society for PSP, have excellent specificity, but their sensitivity is limited for variant PSP syndromes with presentations other than Richardson's syndrome.

Objective: We aimed to provide an evidence- and consensus-based revision of the clinical diagnostic criteria for PSP.

Methods: We searched the PubMed, Cochrane, Medline, and PSYCInfo databases for articles published in English since 1996, using postmortem diagnosis or highly specific clinical criteria as the diagnostic standard. Secondly, we generated retrospective standardized clinical data from patients with autopsy-confirmed PSP and control diseases. On this basis, diagnostic criteria were drafted, optimized in two modified Delphi evaluations, submitted to structured discussions with consensus procedures during a two-day meeting, and refined in three further Delphi rounds.

Results: Defined clinical, imaging, laboratory, and genetic findings serve as mandatory basic features, mandatory exclusion criteria or context-dependent exclusion criteria. We identified four functional domains (ocular motor dysfunction, postural instability, akinesia, cognitive dysfunction) as clinical predictors of PSP. Within each of these domains, we propose three clinical features that contribute different levels of diagnostic certainty. Specific combinations of these features define the diagnostic criteria, stratified by three degrees of diagnostic certainty (probable PSP, possible PSP, suggestive of PSP). Clinical clues and imaging findings represent supportive features.

Conclusions: Here, we present new criteria aimed to optimize early, sensitive and specific clinical diagnosis of PSP on the basis of currently available evidence.
Introduction

Progressive supranuclear palsy (PSP) was first described in 1964 on the basis of a small case series as an adult-onset, rapidly progressive neurodegenerative disease with the leading feature of vertical supranuclear gaze palsy and nerve cell degeneration mainly in the brain stem. 1

Since then, major advances have led PSP to be defined by intracerebral aggregation of the microtubule-associated protein tau, predominantly involving isoforms with four microtubule-binding repeats (4R-tau), in neurofibrillary tangles, oligodendrocytic coils and specifically astrocytic tufts.2-4 Thus, a definite diagnosis of PSP currently requires neuropathological examination.2,5

The clinical criteria proposed by the National Institute of Neurological Disorders and Stroke and Society for PSP (NINDS-SPSP) are currently the most widely used criteria for the ante mortem diagnosis of PSP.5 They rely on the demonstration of a vertical supranuclear gaze palsy plus postural instability and falls within the first year of symptom onset to diagnose “probable” PSP. “Possible” PSP is diagnosed in the presence of either supranuclear gaze palsy or a combination of slow vertical saccades and postural instability with falls within the first year.

The NINDS-SPSP criteria, as validated by autopsy, have excellent specificity, about 95%-100% for probable PSP and about 80%-93% for possible PSP.6-8 The combination of early onset postural instability and falls with vertical ocular motor dysfunction is now usually referred to as Richardson’s syndrome (PSP-RS)9 and is well captured by the NINDS-SPSP criteria.10 However, the criteria’s sensitivity for PSP overall is limited (median 24%, range 14% to 83%) at the first clinical visit.5,7,8,11-13 Diagnosis is typically made 3-4 years after onset of first symptoms, when the cardinal features, i.e. falls and supranuclear gaze palsy, have become unequivocally apparent.13 While inadequate ocular motor examinations may partly explain the low sensitivity early in the disease course, the NINDS-SPSP criteria also have low sensitivity for PSP patients presenting with variant PSP syndromes other than PSP-RS.10

Patients with autopsy-confirmed PSP have been reported with variant PSP clinical presentations, including initial predominance of ocular motor dysfunction (PSP-OM),10,14 postural instability (PSP-PI),10,15 Parkinsonism resembling idiopathic Parkinson’s disease (PSP-P),9,11,16 frontal lobe cognitive or behavioral presentations (PSP-F) including behavioral variant frontotemporal dementia (bvFTD),14,17-19 progressive gait freezing (PSP-PGF),20-22 corticobasal syndrome (PSP-CBS),23-26 primary lateral sclerosis (PSP-PLS),27-26 cerebellar ataxia (PSP-C),28-32 and speech/language disorders (PSP-SL) including non-fluent/agrammatic primary progressive aphasia (nfaPPA) and progressive apraxia of speech (AOS).33-36 Patients with presentations other than PSP-RS occurred in 76% of autopsy-confirmed PSP cases in a recent series, and met the NINDS-SPSP criteria at significantly lower frequencies and longer latencies from symptom onset.10

Thus, early and reliable diagnosis of PSP remains a major clinical challenge, but is justifiably demanded by patients and their carers, and is highly important for estimation of prognosis, appropriate allocation to therapeutic trials, and development of new diagnostic tools. Therefore, the International Parkinson and Movement Disorder Society (MDS)-endorsed PSP Study Group set out to provide an evidence- and consensus-based revision of the NINDS-SPSP criteria. We aimed at improving the
clinical detection of underlying PSP pathology by maintaining high diagnostic sensitivity for PSP-RS, improving sensitivity for early and variant PSP presentations, and achieving high specificity versus alternative diagnoses such as Parkinson’s disease (PD), multiple system atrophy with predominant Parkinsonism (MSA-P), corticobasal syndrome (CBS) due to corticobasal degeneration (CBD) or alternative proteinopathies, and frontotemporal lobar degeneration (from any underlying non-PSP/CBD proteinopathy) presenting as bvFTD (FTLD-bvFTD).

Here, we propose official MDS clinical diagnostic criteria for PSP (MDS-PSP criteria) for use in research and clinical practice.

Methodology of Criteria Generation

The MDS-PSP criteria were generated by the MDS-PSP study group in a three-step approach. Firstly, we performed a systematic literature review covering the time since publication of the NINDS-SPSP criteria. In brief, the steering committee (GUH, MS, ALB, LIG, IL) assembled expert working groups for specific questions relevant to the diagnosis of PSP. We searched the PubMed, Cochrane, Medline, and PSYCInfo databases for articles, systematic reviews and meta-analyses published in English from 1996 to 2015, applying either postmortem diagnosis or the NINDS-SPSP criteria. Study group members were encouraged to add relevant articles to be considered throughout the project period (end of 2016), particularly those published after 2015. The literature was analyzed following the Scottish Intercollegiate Guidelines Network recommendations. From N=5903 identified articles, N=462 met the inclusion standards. The literature-based evidence was then summarized by the working groups for imaging and clinical aspects and is published in detail in accompanying papers in this issue of Movement Disorders.38,39

Secondly, we collected the largest autopsy-confirmed case series reported so far for PSP and disease controls (CBD, MSA-P, PD, and FTLD-bvFTD) from nine brain banks with a proven track-record of a close collaboration with tertiary clinical referral centers, both with excellent experience in neurodegenerative diseases (Amsterdam, Netherlands; Baltimore, MD, USA; Barcelona, Spain; Bordeaux, France; London, UK; Lund, Sweden; Munich, Germany; Philadelphia, PA, USA; Saskatchewan, Canada). High-quality original natural history data were available from patients with autopsy confirmed PSP (N=206), CBD (N=54), MSA-P (N=51), PD (N=53), and FTLD-bvFTD (N=73). We extracted demographic data and predefined clinical features (absence / presence / onset) in a standardized manner locally from the clinical records and collected them centrally. These data were used to estimate and stratify the diagnostic value of the clinical items selected from a comprehensive literature review, and are reported in detail in an accompanying paper.38

Thirdly, on the basis of the evidence obtained in the first two steps, the steering committee drafted an initial proposal of the criteria, which was distributed to the MDS-PSP study group members. They provided written feedback to the process coordinator (GUH), who incorporated the comments into optimized criteria in two modified Delphi rounds. In March 2016, the group convened for a two-day consensus meeting in Munich to present and discuss all aspects of the criteria (structure, basic features, exclusion criteria, core functional domains, operationalized clinical features, supportive
findings, imaging, biomarkers, and genetics). For each of these items, the data obtained in the first two steps were presented by the sub-group coordinators. Thereafter, the written draft of the criteria was discussed stepwise. Modifications were integrated until the entire group unanimously agreed to the items under discussion. After the meeting, the written document was circulated again and optimized in three further Delphi rounds, in particular dealing with precise wording, operationalized definition of clinical examination guidelines, and newly evolving aspects such as tau PET imaging. After final approval, the current manuscript was written (GUH) and circulated to incorporate final modifications. Here, we present the MDS clinical diagnostic criteria for PSP.

Basic features

Basic features need to be present in a patient in order to be considered for the diagnosis of PSP of any phenotype and at any stage (Tab. 1). Mandatory inclusion criteria (Tab. 1, B1) indicate the presence of a sporadic, adult-onset, gradually progressive neurodegenerative disease. Mandatory exclusion criteria (Tab. 1, B2) rule out PSP and need to be applied in any patient. Context-dependent exclusion criteria (Tab. 1, B3) also rule out PSP, but should be applied only in patients presenting with suggestive, unusual clinical features justifying further investigation.

Core features

We propose four core functional domains as characteristic clinical manifestations of PSP [ocular motor dysfunction (O), postural instability (P), akinesia (A), and cognitive dysfunction (C); Tab. 2]. In each domain, we propose three characteristic core clinical features, stratified by presumed levels of certainty [1 (highest), 2 (mid), 3 (lowest)] that they contribute to the diagnosis of PSP (Tab. 2).

Supportive features

Supportive features (Tab. 3) are those having positive predictive values insufficient to qualify them as diagnostic features, but sufficient to provide helpful ancillary evidence to increase informal diagnostic confidence. These are classified as clinical clues (CC1 – CC4) and imaging findings (IF1, IF2).

Operationalized definitions

The core clinical features, supportive clinical clues and supportive imaging findings were operationalized in an attempt to standardize the application of the MDS-PSP criteria (Tab. 4).

Certainty levels

Four levels of diagnostic certainty are proposed (Tab. 5). Definite PSP is the neuropathological gold standard defining the disease entity, regardless of its clinical presentation. Probable PSP is diagnosed in the presence of a combination of clinical features with high specificity. Possible PSP is
diagnosed in the presence of clinical features considered to substantially increase the sensitivity for PSP. Clinical syndromes suggestive of PSP have features that alone or in combination may constitute early, subtle evidence for PSP with modest but still useful positive predictive value. Additional presence of imaging findings (IF1 or IF2) qualifies for the label imaging supported diagnosis.

Predominance types

Clinical predominance types are determined based on the combination of clinical features (Tab. 5). These include PSP-RS, PSP-OM, PSP-PI, PSP-P, PSP-F, PSP-PGF, PSP-CBS, and PSP-SL, per our literature analysis reported in an accompanying paper. 38 Patients with possible PSP-SL or PSP-CBS also qualify for the diagnosis of a probable 4R-tauopathy.

Discussion

Here, we propose new MDS-PSP criteria, which are aimed to optimize early, sensitive and specific clinical diagnosis of PSP on the basis of currently available evidence. They are intended for use in both clinical practice and research, including the diagnosis of early and variant PSP for clinical trials.

The new diagnostic criteria accept the neuropathological examination as the gold standard to define PSP as a disease entity. 2,4,40 The appropriateness of this definition is demonstrated by the unique morphological (e.g. tufted astrocytes, globose tangles), 3,4 biochemical (e.g. straight filaments, 4R-tauopathy) 3,4 and genetic features (e.g. the statistically robust findings obtained in a genome-wide association study) 41 obtained in patients on the basis of this disease definition.

The development of the MDS-PSP clinical criteria was based on the NINDS-SPSP criteria, which are known to be very specific for the clinical prediction of pathologically defined PSP. 7,8,13 For this reason, NINDS-SPSP “possible” and “probable” cases are now jointly classified as probable PSP-RS, as proposed previously, 42 thus allowing comparability with the past published literature.

The mandatory inclusion criteria of the NINDS-SPSP criteria were largely maintained. We still consider PSP as a sporadic, not as a monogenic disease, since clinical or pathological phenocopies resulting from rare genetic variants (mutations) in MAPT do not share an identical etiology to sporadic PSP. Since sporadic occurrence does not ultimately rule out underlying monogenic inheritance, particularly in small families, MAPT sequencing may be considered, where higher certainty is warranted. We continue to set the minimum age at onset as 40, since no autopsy confirmed case has been demonstrated to manifest earlier, while some PSP look-alikes (e.g. Niemann Pick disease, type C) may do so. We also specified the onset of PSP-related symptoms as including neurological, cognitive or behavioural deficits to reflect current knowledge of the broad clinical spectrum over which PSP may range. Inclusion and exclusion criteria have been carefully adapted to the current state of knowledge, as presented in accompanying papers. 38,39

While the NINDS-SPSP criteria focused on two core functional domains (ocular motor dysfunction, postural instability), the MDS-PSP criteria added two further domains (akinesia, cognitive dysfunction).
This accounts for the results obtained by hypothesis-free cluster analyses in two independent large clinico-pathological series of definite PSP patients, identifying these four domains as most representative of characteristic disease manifestations. Within each domain, we specified three characteristic clinical features, stratified by levels of certainty for the diagnosis of PSP. These were identified through the systematic literature review, validated quantitatively in the clinico-pathological cohort, and specified where required by expert consensus. Of note, these levels may coincide with a typical temporal evolution of symptoms in some (e.g. ocular motor dysfunction, postural instability), but not in other domains (e.g. akinesia, cognitive dysfunction). Using this twelve-unit grid, we were able to allocate most symptoms considered as characteristic for the spectrum displayed by autopsy confirmed PSP patients.

These twelve clinical features help to diagnose PSP with differing sensitivity and specificity:

- high sensitivity and high specificity, e.g. vertical supranuclear palsy, frequently observed in PSP with high diagnostic relevance;
- high sensitivity, but reduced specificity, e.g. Parkinsonism, with tremor and/or asymmetry and/or levodopa-responsiveness, representing conditions which help to identify PSP patients, but depend on presence of other PSP-specific features to qualify for the diagnosis;
- low sensitivity, but high specificity, e.g. progressive gait freezing within 3 years of symptom onset, representing a very rare condition, however with a very high positive predictive value for the diagnosis of PSP;
- low sensitivity and low specificity, e.g. CBS, which is seen regularly in specialized centers and needs to be considered as a possible manifestation of PSP as one of several possible underlying pathologies.

We also propose a list of supportive clinical clues to increase diagnostic confidence. We are aware of several other clinical signs having been proposed as signs pointing to the diagnosis of PSP, e.g. retropulsion with backward falls, “rocket sign” with backward falls when rising from a chair, clumsily and unsteadily walk of a “drunken sailor”. nuchal dystonia, “astonished face” due to frontalis muscle overactivity, “Procerus sign” due to procerus muscle overactivity, “Mona Lisa gaze” with low frequency of blinking, “messy-tie sign” because of an inability to look down when eating. While these may indeed be helpful to consider PSP, we found no clear evidence suggesting that they would contribute reliable information to substantiate the diagnosis of PSP.

Until now, there have been no uniformly accepted clinical diagnostic criteria available for the variant PSP manifestations of neuropathologically defined PSP other than PSP-RS. Therefore most of these cases were not identified early (or at all) for the purposes of routine clinical care, standardized acquisition of natural history data, or inclusion in therapeutic trials. Our proposed criteria overcome these limitations by providing evidence- and consensus-based guidelines to diagnose PSP-OM, PSP-P, PSP-F, PSP-CBS, PSP-PGF, and PSP-SL. We did not attempt to provide criteria for PSP-PLS and PSP-C, although we do acknowledge the existence of these manifestations. This decision reflects the very rare occurrence of PSP-PLS and PSP-C and the sparse published clinico-pathological evidence, which was not perceived to delineate features specific enough to allow ante mortem diagnosis. The study group declined to risk including
patients with predominant PLS or cerebellar ataxia, as this would have weakened the distinction of PSP from motor neuron disease and MSA-C and other adult-onset sporadic cerebellar ataxias, respectively.

The MDS-PSP clinical diagnostic criteria are stratified by diagnostic certainty and may therefore be used for different purposes. The concept underlying this stratification has been described in detail elsewhere. The following diagnostic categories are proposed:

- “Definite PSP” can only be diagnosed by neuropathological examination at present. Currently, no other biomarker, imaging or genetic finding with close to 100% sensitivity and specificity is available.

- “Probable PSP” is diagnosed in the presence of a combination of clinical features that may not be very sensitive for PSP, but are considered to be highly specific, thus being ideally suited for therapeutic and biologic studies, where it is important to exclude non-PSP from the subject group.

- “Possible PSP” is diagnosed in the presence of clinical features that substantially increase sensitivity, but at the possible cost of decreased specificity. This category is therefore suitable for descriptive epidemiologic studies and clinical care, where it is important not to exclude any cases of true PSP. With the addition of biomarkers to increase diagnostic specificity, these individuals might also be reasonably included in a therapeutic study.

- Conditions “suggestive of PSP” represent subtle early signs of PSP, but do not meet the threshold for possible or probable PSP, and are suitable for early identification of individuals in whom the diagnosis may be confirmed as the disease evolves, thereby justifying close clinical follow-up examinations, especially in longitudinal observational studies to further characterize the natural history of PSP with the overall goal of improving diagnosis of patients in early stage disease. This diagnostic category has been newly introduced in the MDS-PSP criteria in analogy to other progressive neurological diseases, in which defined conditions have been identified with predictable risk of converting to the established disease of interest (e.g. REM-sleep-behaviour disorder for Parkinson’s disease, mild cognitive impairment for Alzheimer’s disease (AD), or clinically isolated syndrome for multiple sclerosis). From a scientific perspective, this new category appears highly relevant for the prospective development of new clinical diagnostic tools and biomarkers permitting a diagnosis of PSP at an earlier stage. This diagnostic category would also be highly relevant for the development of disease-modifying therapies that would ideally be initiated in the very early course, before extensive neurodegeneration has occurred.

For the first time, we also introduce a new category for “probable 4R-tauopathies”, comprising patients with possible PSP-SL or PSP-CBS. By introducing this category, we acknowledge that these clinically defined conditions have a high likelihood of underlying PSP or CBD pathology, provided that the corresponding context-dependent exclusion criteria to rule out AD and genetic forms of FTLD-TDP are applied. PSP and CBD are two primary tauopathies with predominant aggregation of 4-repeat tau isoforms which are very difficult to differentially diagnose without neuropathological examination. Their joint ante mortem recognition as probable 4R-tauopathies, however, may offer opportunities for
neurobiological investigations of shared pathological mechanisms (e.g. 41,44) or rational disease-modifying interventions. Obviously, all “probable” PSP categories are also probable 4R-tauopathies, however, with high probability of underlying PSP, but not CBD pathology.

We carefully evaluated the added diagnostic value obtained by supportive investigations, the results of which are presented in accompanying papers. 36,39 In short, we adapted the following conclusions for the MDS-PSP criteria:

- Genetic analyses do not help to support the clinical diagnosis of PSP, but known rare genetic variants (mutations) in some genes are exclusion criteria, since they may mimic aspects of PSP clinically, but differ neuropathologically. Furthermore, MAPT H2 haplotype homozygosity renders the diagnosis unlikely, but is not an exclusion criterion.

- Established fluid biomarkers do not help to support the clinical diagnosis of PSP, but can rule out alternative non-neurodegenerative diagnoses in patients with similar clinical presentations (Table 1 B3). CSF biomarkers for AD may be useful in research investigations and help exclude patients with underlying AD neuropathology in CBS, which has a high frequency of patients with primary AD neuropathology (~20%) that can mimic PSP-CBS; 25,45 however, caution should be used in interpretation of these results in other forms of clinical PSP-syndromes, as secondary age-associated AD neuropathology can influence levels of CSF tau and β-amyloid in patients with PSP pathology. 46

- Brain imaging is relevant to rule out alternative diagnoses. Demonstration of predominant midbrain atrophy or hypometabolism and/or post-synaptic striatal dopaminergic degeneration increases the diagnostic confidence in patients diagnosed on the basis of clinical features, and qualifies for the label of “imaging supported diagnosis”. However, only limited data is currently available, which would suggest that current imaging techniques may eventually help to anticipate or strongly consolidate the diagnosis as compared to diagnoses based on clinical features alone, since most imaging studies have not been performed at a time point preceding the clinical diagnosis, and have not been evaluated against the neuropathological gold standard. Tau-PET may evolve as an in vivo modality supportive of the pathological PSP diagnosis at the individual patient level. 47,48 However, the currently available evidence with regard to its sensitivity and specificity as assessed against the neuropathological gold standard is too limited to draw firm diagnostic conclusions.

In summary, we propose the MDS clinical diagnostic criteria for PSP, incorporating the advances in knowledge about PSP and its differential diagnoses from the past 20 years. The MDS-PSP study group aims to develop a web-based tool to facilitate the broad implementation of the new criteria in clinical practice, and a video-based tutorial to facilitate standardized application. The study group is engaged in international activities to validate these criteria prospectively in clinico-pathological studies. We acknowledge that the MDS-PSP criteria will require continuous, adaptive modification as our understanding of PSP advances.
Acknowledgements:

We thank all brain donors and their families for their generous donation allowing to advance our knowledge about PSP, clinicians for providing reliable clinical data, Ina B. Kopp for guidance in the methods of evidence-based medicine, Judith Dams for conducting the database inquiry. GUH was supported by the Deutsche Forschungsgemeinschaft (DFG, HO2402/6-2). WHO is senior research Professor of the charitable Hertie Foundation, Frankfurt/Main, Germany. J LW and KAJ were supported by NIH grants R01-NS89757 and R01-DC12519. Autopsy patient data from University of Pennsylvania was obtained through NIH funded program projects P01-AG017586, P50-NS053488 and P30-AG010124. The London Neurodegenerative Diseases Brain Bank, King's College London was supported by the MRC and Brains for Dementia Research - jointly funded by the Alzheimer's Society and Alzheimer's Research UK. HRM is supported by the PSP Association and CBD-Solutions. The project was supported by the Bischof Dr. Karl Golser Stiftung, CurePSP, Deutsche Forschungsgemeinschaft (DFG, HO 2402/11-1), German Center for Neurodegenerative Diseases e.V. (DZNE), German PSP Gesellschaft, Tau Consortium, UK PSP Association, and the International Parkinson & Movement Disorder Society.

Appendix: The MDS endorsed PSP study group:

Author Roles:

1. Research Project: A. Conception, B. Organization, C. Execution;

Günter U. Höglinger: 1A, 1B, 1C, 2A, 2B, 3A;
Gesine Respondek: 1A, 1B, 1C, 2A, 2B, 3B;
Maria Stamelou 1A, 1B, 1C, 2A, 2B, 3B;
Carolin Kurz 1B, 1C, 2A, 2B, 3B;
Keith A. Josephs 1A, 1C, 2C, 3B;
Anthony E Lang 1A, 1C, 2C, 3B;
Brit Mollenhauer 1C, 2C, 3B;
Ulrich Müller 1C, 2C, 3B;
Christer Nilsson 1C, 2C, 3B;
Jennifer L. Whitwell 1A, 1C, 2C, 3B;
Thomas Arzberger 1C, 2C, 3B;
Elisabet Englund 1C, 2C, 3B;
Ellen Gelpi 1C, 2C, 3B;
Armin Giese 1C, 2C, 3B;
David J. Irwin 1C, 2C, 3B;
Wassilios G. Meissner 1C, 2C, 3B;
Alexander Pantelyat 1C, 2C, 3B;
Alex Rajput 1C, 2C, 3B;
John van Swieten 1C, 2C, 3B;
Claire Troakes 1C, 2C, 3B;
Angelo Antonini 1C, 2C, 3B;
Kailash P Bhatia 1C, 2C, 3B;
Yvette Bordelon 1C, 2C, 3B;
Yaroslau Compta 1C, 2C, 3B;
Jean-Christophe Corvol 1C, 2C, 3B;
Carlo Colosimo 1C, 2C, 3B;
Dennis W. Dickson 1A, 1C, 2C, 3B;
Richard Dodel 1A, 1C, 2C, 3B;
Les Ferguson 1A, 1C, 2C, 3B;
Murray Grossman 1C, 2C, 3B;
Jan Kassubek 1C, 2C, 3B;
Florian Krismer 1C, 2C, 3B;
Johannes Levin 1C, 2C, 3B;
Stefan Lorenzl 1C, 2C, 3B;
Huw R Morris 1C, 2C, 3B;
Peter Nestor 1C, 2C, 3B;
Wolfgang H Oertel 1C, 2C, 3B;
Werner Poewe 1C, 2C, 3B;
Gil Rabinovici 1C, 2C, 3B;
James B Rowe 1C, 2C, 3B;
Gerard D Schellenberg 1C, 2C, 3B;
Klaus Seppi 1C, 2C, 3B;
Thilo van Eimeren 1C, 2C, 3B;
Gregor K. Wenning 1C, 2C, 3B;
Adam L. Boxer 1A, 1B, 1C, 2A, 2B, 3B;
Lawrence I. Golbe 1A, 1B, 1C, 2A, 2B, 3B;
Irene Litvan 1A, 1B, 1C, 2A, 2B, 3B;

Financial Disclosures of all authors for the preceding 12 months:

Günter U. Höglinger has served on the advisory boards for AbbVie, Alzprotect, Asceneuron, Bristol-Myers Squibb, Novartis, Roche, Sellas Life Sciences Group, UCB; has received honoraria for scientific presentations from Abbvie, Roche, Teva, UCB, has received research support from CurePSP, the German Academic Exchange Service (DAAD), German Parkinson’s Disease Foundation (DPG), German PSP Association (PSP Gesellschaft), German Research Foundation (DFG) and the German Ministry of Education and Research (BMBF), International Parkinson’s Fonds (IPF), the Sellas Life Sciences Group; has received institutional support from the German Center for Neurodegenerative Diseases (DZNE).

Gesine Respondek has nothing to disclose.

Maria Stamelou has served on the editorial board of Movement Disorders Journal and Frontiers in Movement Disorders; has received speaker and travel honoraria from Actelion and Abbvie Pharmaceuticals.

Carolin Kurz has nothing to disclose.

Anthony E Lang has served as an advisor for Abbvie, Acorda, Avanir Pharmaceuticals, Bristol-Myers Squibb, Ceregene, Lilly, Merck, and UCB; received honoraria from Medtronic, Teva, UCB, AbbVie; received grants from Brain Canada, Canadian Institutes of Health Research, Edmond J Safra Philanthropic Foundation, Michael J. Fox Foundation, the Ontario Brain Institute, National Parkinson Foundation, Parkinson Society Canada, Physicians Services Incorporated (PSI), W. Garfield Weston Foundation; received publishing royalties from Saunders, Wiley-Blackwell, Johns Hopkins Press, and
Cambridge University Press; and has served as an expert witness in cases related to the welding industry.

Brit Mollenhauer received honoraria for consultancy from Roche, Biogen and GE Healthcare; is member of the executive steering committee of the Parkinson Progression Marker Initiative and the Systemic Synuclein Sampling Study of the Michael J. Fox Foundation for Parkinson’s Research; received grants from the BMBF, EU, Deutsche Parkinson Vereinigung, Parkinson Fonds Deutschland, Michael J. Fox Foundation for Parkinson’s Research, Stifterverband für die deutsche Wissenschaft; and has scientific collaborations with Roche, Bristol Myers Squibb, Ely Lilly, Covance and Biogen.

Ulrich Müller has nothing to disclose.

Christer Nilsson has received research support from the Swedish Alzheimer Fund, Skåne University Hospital grants and the Swedish Research Council ALF grants.

Jennifer L Whitwell was supported by National Institutes of Health grants R01-NS89757, R01-DC12519, R01-AG50603, R01-AG37491 and R21-NS94684.

Thomas Arzberger has nothing to disclose.

Elisabet Englund has nothing to disclose.

Ellen Gelpi has received research support from the Fundació Marató de TV3 (grant nº 20141610), and Fundación Tatiana Pérez de Guzmán del Bueno.

Armin Giese holds stocks and shares in and has personal links with MODAG. He also holds shares in the patent “EP2307381” and diverse national secondary patents.

David J Irwin is supported by National Institutes of Health grant K23 NS088341.

Wassilios G Meissner has received fees for editorial activities with Springer, has served as advisor for Zambon France and Sanofi, has received teaching honoraria from TEVA, UCB and Aguettant, as well as research support from the Michael J Fox Foundation, the University Hospital Bordeaux, the French Health Ministry, the European Community, ANR, PSP-France, MSA Coalition, LABEX Excellence Initiative.

Alexander Pantelyat was supported by NIH grants P50NS03837701 and U01NS082133-04.

Alex Rajput has received research support from the Regina Curling Classic, Greystone Classic for Parkinson’s, Inc. and the Dr. Ali Rajput Endowment for Parkinson’s Disease and Movement Disorders; has been co-investigator on grant funded by International Essential Tremor Foundation (IETF) (study period 2012-2013); has received research funding as principal investigator for the clinical study by Teva, protocol no.: TVP-1012/501 (Aug/09 – June/13); has received speaker and travel honoraria from Teva, Allergan and the Parkinson Society Canada.

John van Swieten has nothing to disclose.

Claire Troakes has nothing to disclose.
Angelo Antonini received funding from Horizon2020 Project No 643706. He has also received consultancy fees and honoraria for speaker-related activities from AbbVie, UCB, Zambon, General Electric, Boston Scientific, Mundipharma, Acadia, Medtronic, Angelini Pharmaceuticals, Neuroderm.

Kailash P Bhatia has received grant support from Welcome/MRC, NIHR, Parkinson’s UK and EU Horizon 2020. He has received honoraria/consulting fees for speaker related activities from Ipsen, Allergan, Merz, Sun Pharma, Teva, UCB pharma companies and from the American Academy of Neurology and Movement Disorders Society. He is an editor of MDCP journal and receives an honorary stipend from MDS for this activity and has received royalties for publications of the Oxford Specialist Handbook Parkinson's Disease (Oxford University Press, 2008, 2016) and of Marsden's Book of Movement Disorders from Oxford University Press.

Yvette Bordelon research support from AbbVie, C2N diagnostics and Bristol-Myers Squibb and speakers' honoraria from Teva Pharmaceuticals.

Yaroslau Compta has received funding, research support and/or honoraria from UCB, Teva, Medtronic, Abbvie, Merz, Piramal Imaging and Alter.

Jean-Christophe Corvol received grants or research support from AP-HP (DRC-PHRC), the French drug regulation agency (ANSM), Sanofi-Aventis, the Michael J Fox Foundation; served on scientific advisory board for Zambon, Abbvie, BMS, and Amarentus; has stock option in B&A Therapeutics; received travel funding from the Movement Disorder Society, Teva, Lundbeck, and UCB.

Carlo Colosimo received consulting fees as an advisory board member and honoraria as a speaker from Ipsen, Merz, Zambon, and royalties from Cambridge University Press and Oxford University Press.

Dennis W. Dickson has nothing to disclose.

Richard Dodel has received research support from the following institutions: AOK Plus, Baxter, BMBF, DFG, DGN, DPG, EU Horizon 2020, Faber-Stiftung, Hector-Stiftung, IPF, Novartis, Rhön-klinikum. He served as an advisory board member and received honoraria for scientific presentations from DZNE, Lundbeck, Med Update, Novartis, Paul-Martini-Stiftung, Studienstiftung des deutschen Volkes, Astra Zeneca, Avios Consulting, Baxter, Lilly, Med Panel, Merz, Novartis, Octapharma, Pfizer, Piramal.

Les Ferguson has nothing to disclose.

Murray Grossman has nothing to disclose.

Jan Kassubek received consulting fees as an advisory board member and honoraria for scientific presentations as a speaker from UCB Pharma, Teva Pharmaceuticals, Zambon, Medtronic, Desitin, AbbVie, Boehringer Ingelheim, GlaxoSmithKline, Merz Pharmaceuticals and Hoffmann-La Roche.

Florian Krismer has received a research grant from the MSA Coalition, travel grants from the Austrian Parkinson’s disease society as well as the International Parkinson’s disease and movement disorders Society and non-financial support from Fight MSA and Astra-Zeneca, outside the submitted work.
Johannes Levin has received study support (third party funds) from Parkinson Fonds Deutschland gGmbH (a private organization that provides grants for research into Parkinson's disease), the Verum Foundation, the German Neurological Foundation (Deutsche Stiftung Neurologie), the German Parkinson Society and the Bischof Dr. Karl Golser Foundation and lecture fees from Bayer Healthcare as well as consulting fees from Hexal.

Stefan Lorenzl has served on the advisory boards for TEVA, Boehringer and UCB; has received honoraria for scientific presentations from Teva, UCB, Boehringer and has received research support from the German Parkinson's Disease Foundation (DPG), German PSP Association (PSP Gesellschaft), German Research Foundation (DFG) and the German Ministry of Education and Research (BMBF).

Huw Morris has received grants from Medical Research Council UK, Wellcome Trust, Parkinson's UK, Ipsen Fund, Motor Neurone Disease Association, Welsh Assembly Government, PSP Association, CBD Solutions and Drake Foundation, and payment for advisory work/consulting and lectures from Bristol-Myers-Squibb, GE-HealthCare, Alzprotect, E-Scape Bio, Teva, AbbVie, Boehringer Ingelheim, and GSK.

Peter Nestor has nothing to disclose.

Wolfgang H Oertel has served as a consultant for Novartis, Schwarz Pharma and Neuroscience /UCB; has served on the advisory boards for Merck, Sharp & Dohme, Medtronic, Mundipharma, Novartis, Schwabe Pharma, Schwarz Pharma, Neuroscience /UCB and Teva; has owned stocks of Roche 100 and Medigene 2400; has received speaker and travel honoraria from AbbVie, Desitin, GlaxoSmithKline, Mundipharma, Novartis, Schwarz Pharma Neuroscience/UCB and Teva; has received research support from the German Ministry of Education and Health, IPF and MJFF.

Werner Poewe has nothing to disclose.

Gil Rabinovici is supported by National Institutes of Health grants R01-AG045611, P50-AG23501, U54-NS092089, 2R01-AG038791, R01-AG048234, the American College of Radiology, the Association for Frontotemporal Degeneration, Michael J. Fox Foundation, Alzheimer's Association; received research support from Avid Radiopharmaceuticals, GE Healthcare and Piramal; has received speaking honoraria or consulting fees from Eisai, Genentech, Lundbeck, Merck, Puntam, Roche.

James B Rowe is supported by the Wellcome Trust (103838) and has received additional research grant support from AZ-Medimmune and Janssen, PSP Association, Medical Research Council, Wellcome Trust, National Institute for Health Research, McDonnell Foundation, Alzheimer Research UK, and Evelyn Trust; advised Asceneuron; and serves as Associate Editor at Brain.

Gerard D Schellenberg is supported by the grants PO1-AG-017586 (NIA/NIH) and U54NS100693 (NINDS/NIH).

Klaus Seppi reports grants from Medical University Innsbruck, from Oesterreichische Nationalbank, from FWF Austrian Science Fund, from Michael J. Fox Foundation and from International Parkinson and Movement Disorder Society as well as personal fees from International Parkinson and Movement
Disorder Society, from Teva, from UCB, fees from Lundbeck, from AOP Orphan Pharmaceuticals AG and from Roche outside the submitted work.

Thilo van Eimeren is supported by grants of the Deutsche Forschungsgemeinschaft (DFG, EI 892/3-1), the EU Joint Programme – Neurodegenerative Disease Research (JPND, InnoFond 6177-00001B) and the Leibniz Association (SAW-2013-IfW-2) and received speaking honoraria and consulting fees from Eli Lily, Shire and the CHDI Foundation.

Gregor K Wenning reports receiving consulting and/or lecture fees from Affiris, Astra Zeneca, Boehringer Ingelheim, Ever Pharma, Lundbeck, Neuspor, Orion and UCB as well as grant support from Medical University Innsbruck, Oesterreichische Nationalbank, FWF Austrian Science Fund, US MSA Coalition, Affiris, Astra Zeneca and Boehringer Ingelheim.

Adam Boxer is supported by National Institutes of Health grants U54NS092089, R01AG038791, U01AG045390, U01AG052943-041, U19AG010483, the University of California, the Bluefield Project to Cure FTD and the Tau Research Consortium; received research support from Avid, Biogen, Bristol Myers Squibb, C2N Diagnostics, Cortice Biosciences, Eli Lilly, Forum Pharmaceuticals, Genentech, Roche and TauRx; has served as a consultant for Abbvie, Asceneuron, Ipiarian, Isis Pharmaceuticals, Janssen, Merck and Novartis; serves on a Data and Safety Monitoring Board for Neurogenetics Pharmaceuticals; has stock and/or options in Alector and Delos.

Lawrence I Golbe is supported by research funding from Bristol-Myers Squibb, AbbVie and the American Parkinson's Disease Association and consults for Bristol-Myers Squibb, AbbVie, SJO Research and the University of California.

Irene Litvan has served as an advisor for Biotie/Parkinson Study Group, Cynapsus, Lundbeck, Biogen and Bristol-Myers Squibb; received grants from NIH (5P50 AG005131-31, 5T35HL007491, 1U01NS086659, 1U54NS092089-01), Parkinson Study Group, Michael J Fox Foundation, CBD Solutions-CurePSP, AVID Pharmaceuticals, C2N Diagnostics and Bristol-Myers Squibb; receives her salary from the University of California San Diego.
References

<table>
<thead>
<tr>
<th>Table 1: Basic features</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1: Mandatory inclusion criteria</td>
</tr>
<tr>
<td>1. Sporadic occurrence*</td>
</tr>
<tr>
<td>2. Age 40 or older at onset** of first PSP-related symptom***</td>
</tr>
<tr>
<td>3. Gradual progression of PSP-related symptoms***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B2: Mandatory exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical findings</td>
</tr>
<tr>
<td>1. Predominant, otherwise unexplained impairment of episodic memory, suggestive of Alzheimer’s disease</td>
</tr>
<tr>
<td>2. Predominant, otherwise unexplained autonomic failure, e.g. orthostatic hypotension (orthostatic reduction in blood pressure after 3 minutes standing ≥ 30 mmHg systolic or ≥ 15 mmHg diastolic), suggestive of multiple system atrophy or Lewy body disease</td>
</tr>
<tr>
<td>3. Predominant, otherwise unexplained visual hallucinations or fluctuations in alertness, suggestive of dementia with Lewy bodies</td>
</tr>
<tr>
<td>4. Predominant, otherwise unexplained multisegmental upper and lower motor neuron signs, suggestive of motor neuron disease (pure upper motor neuron signs are not an exclusion criterion)</td>
</tr>
<tr>
<td>5. Sudden onset or stepwise or rapid progression of symptoms, in conjunction with corresponding imaging or laboratory findings, suggestive of vascular etiology, autoimmune encephalitis, metabolic encephalopathies or prion disease</td>
</tr>
<tr>
<td>6. History of encephalitis</td>
</tr>
<tr>
<td>7. Prominent appendicular ataxia</td>
</tr>
<tr>
<td>8. Identifiable cause of postural instability, e.g. primary sensory deficit, vestibular dysfunction, severe spasticity or lower motor neuron syndrome</td>
</tr>
</tbody>
</table>

| **Imaging findings** |
| 1. Severe leukoencephalopathy, evidenced by cerebral imaging |
| 2. Relevant structural abnormality, e.g. normal pressure or obstructive hydrocephalus; basal ganglia, diencephalic, mesencephalic, pontine or medullary infarctions, hemorrhages, hypoxic-ischemic lesions, tumors or malformations |

<table>
<thead>
<tr>
<th>B3: Context dependent exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging findings</td>
</tr>
<tr>
<td>1. In syndromes with sudden onset or stepwise progression, exclude stroke, Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) or severe cerebral amyloid angiopathy, evidenced by DWI, FLAIR or T2*-MRI</td>
</tr>
<tr>
<td>2. In cases with very rapid progression, exclude cortical and subcortical hyperintensities on DWI-MRI suggestive of prion disease</td>
</tr>
</tbody>
</table>

Laboratory findings
1. In patients with PSP-CBS, exclude primary Alzheimer’s disease pathology (typical CSF constellation [i.e. both elevated total tau / phospho-tau protein and reduced β-amyloid 42] or pathological β-amyloid PET imaging)
2. In patients < 45 years of age, exclude
 a. Wilson’s disease (e.g. reduced serum ceruloplasmin, reduced total serum copper, increased copper in 24 hour urine, Kayser-Fleischer corneal ring)
 b. Niemann-Pick disease, type C (e.g. plasma cholestan-38,5a,6ß-triol level, filipin test on skin fibroblasts)
 c. Hypoparathyroidism
 d. Neuroacanthocytosis (e.g. Bassen-Kornzweig, Levine Critchley, McLeod disease)
 e. Neurosyphilis
3. In rapidly progressive patients, exclude
 a. Prion disease (e.g. elevated 14-3-3, NSE, very high total tau protein [>1200 pg/ml], or pos. RT-QuIC in CSF)
 b. Paraneoplastic encephalitis (e.g. anti-Ma1, Ma2 antibodies)
4. In patients with suggestive features (i.e. gastrointestinal symptoms, arthralgias, fever, younger age, atypical neurological features such as myorhythmia), exclude Whipple’s disease (e.g. T. Whipplei DNA PCR in CSF)

Genetic findings

1. *MAPT* rare variants (mutations) are no exclusion criterion, but their presence defines inherited, as opposed to sporadic PSP.
2. *MAPT* H2 haplotype homozygosity is not an exclusion criterion, but renders the diagnosis unlikely
3. *LRRK2* and *Parkin* rare variants have been observed in patients with autopsy confirmed PSP, but their causal relationship is unclear so far
4. Known rare variants in other genes are exclusion criteria, since they may mimic aspects of PSP clinically, but differ neuropathologically; these include
 a. Non-*MAPT* associated frontotemporal dementia (e.g. *C9orf72, GRN, FUS, TARDBP, VCP, CHMP2B*)
 b. Parkinson’s disease (e.g. *SYNJ1, GBA*)
 c. Alzheimer’s disease (*APP, PSEN1, PSEN2*)
 d. Niemann Pick disease, type C (*NPC1, NPC2*)
 e. Kufor Rakeb syndrome (*ATP13A2*)
 f. Perry syndrome (*DCTN1*)
 g. Mitochondrial diseases (*POLG, mitochondrial rare variants*)
 h. Dentatorubral pallidoluysian atrophy (*ATN1*)
 i. Prion-related diseases (*PRNP*)
 j. Huntington’s disease (*HTT*)
 k. Spinocerebellar ataxia (*ATXN1, 2, 3, 7, 17*)
MAPT rare variants (mutations) may lead to inherited phenocopies of the sporadic disease with a Mendelian trait pattern

** MAPT rare variants carriers may have earlier disease onset

*** Consider any new onset neurological, cognitive or behavioral deficit that subsequently progresses during the clinical course in absence of other identifiable cause as PSP-related symptom

* Suggestive of other conditions, which may mimic aspects of PSP clinically

** Need to be verified only if suggestive clinical findings are present

§ Perform genetic counseling and testing, if at least one first or second degree relative has a PSP-like syndrome with a Mendelian inheritance trait or known rare variants; high-risk families may be identified as described elsewhere; the list of genes proposed reflects current knowledge and will evolve with time
Table 2: Core clinical features

<table>
<thead>
<tr>
<th>Levels of certainty</th>
<th>Functional domain</th>
<th>Postural instability</th>
<th>Akinesia</th>
<th>Cognitive dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ocular motor dysfunction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1</td>
<td>O1: Vertical supranuclear gaze palsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1: Repeated unprovoked falls within 3 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1: Progressive gait freezing within 3 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1: Speech/language disorder, i.e. non-fluent/agrammatic variant of primary progressive aphasia or progressive apraxia of speech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>O2: Slow velocity of vertical saccades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2: Tendency to fall on the pull-test within 3 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2: Parkinsonism, akinetic-rigid, predominantly axial & levodopa-resistant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2: Frontal cognitive/behavioral presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>O3: Frequent macro square wave jerks or “eyelid opening apraxia”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3: More than 2 steps backward on the pull-test within 3 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3: Parkinsonism, with tremor and/or asymmetric and/or levodopa-responsive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3: Corticobasal syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levels with lower numbers are considered to contribute higher certainty to a diagnosis of PSP than levels with higher numbers. Operationalized definitions of the core clinical features are provided in Tab. 4.
Table 3: Supportive features

<table>
<thead>
<tr>
<th>Clinical Clues</th>
<th>Imaging Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1: Levodopa-resistance</td>
<td>IF1: Predominant midbrain atrophy or hypometabolism</td>
</tr>
<tr>
<td>CC2: Hypokinetic, spastic dysarthria</td>
<td>IF2: Postsynaptic striatal dopaminergic degeneration</td>
</tr>
<tr>
<td>CC3: Dysphagia</td>
<td></td>
</tr>
<tr>
<td>CC4: Photophobia</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Operationalized definitions of core clinical features, supportive clinical clues and supportive imaging findings

<table>
<thead>
<tr>
<th>Domain</th>
<th>Feature</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular motor dysfunction</td>
<td>O1 Vertical supranuclear gaze palsy</td>
<td>A clear limitation of the range of voluntary gaze in the vertical more than in the horizontal plane, affecting both up- and downgaze, more than expected for age, which is overcome by activation with the vestibulo-ocular reflex; at later stages, the vestibulo-ocular reflex may be lost, or the maneuver prevented by nuchal rigidity.</td>
</tr>
<tr>
<td></td>
<td>O2 Slow velocity of vertical saccades</td>
<td>Decreased velocity (and amplitude) of vertical greater than horizontal saccadic eye movements; this may be established by quantitative measurements of saccades, such as infrared oculography, or by bedside testing; gaze should be assessed by command (“Look at the flicking finger”) rather than by pursuit (“Follow my finger”), with the target >20° from the position of primary gaze; to be diagnostic, saccadic movements are slow enough for the examiner to see their movement (eye rotation), rather than just initial and final eye positions in normal subjects; a delay in saccade initiation is not considered slowing; findings are supported by slowed or absent fast components of vertical optokinetic nystagmus (i.e., only the slow following component may be retained).</td>
</tr>
<tr>
<td></td>
<td>O3 Frequent macro square wave jerks or “eyelid opening apraxia”</td>
<td>Macro square wave jerks are rapid involuntary saccadic intrusions during fixation, displacing the eye horizontally from the primary position, and returning it to the target after 200-300 milliseconds; most square wave jerks are <1° in amplitude and rare in healthy controls, but up to 3-4° and more frequent (>10/min) in PSP. “Eyelid opening apraxia” is an inability to voluntarily initiate eyelid opening after a period of lid closure in the absence of involuntary forced eyelid closure (i.e., blepharospasm); the term is written in quotation marks since the inability to initiate eyelid opening is often due to activation of the pretarsal component of the orbicularis oculi (i.e., pretarsal blepharospasm) rather than failure to activate the levator palpebrae.</td>
</tr>
</tbody>
</table>
Postural instability

P1	Repeated unprovoked falls within 3 years	Spontaneous loss of balance while standing, or history of more than 1 unprovoked fall, within 3 years after onset of PSP-related features
P2	Tendency to fall on the pull-test within 3 years	Tendency to fall on the pull-test if not caught by examiner, within 3 years after onset of PSP-related features. The test examines the response to a quick, forceful pull on the shoulders with the examiner standing behind the patient and the patient standing erect with eyes open and feet comfortably apart and parallel, as described in the MDS-UPDRS item 3.12.
P3	More than 2 steps backward on the pull-test within 3 years	More than 2 steps backward, but unaided recovery, on the pull-test, within 3 years after onset of PSP-related features

Akinesia

A1	Progressive gait freezing within 3 years	Sudden and transient motor blocks or start hesitation are predominant within 3 years after onset of PSP-related symptoms, progressive and not responsive to levodopa; in the early disease course, akinesia may be present, but limb rigidity, tremor, and dementia are absent or mild
A2	Parkinsonism, akinetic-rigid, predominantly axial and levodopa-resistant	Bradykinesia and rigidity with axial predominance, and levodopa-resistance (see Clinical Clue CC1 for operationalized definition)
A3	Parkinsonism, with tremor and/or asymmetric and/or levodopa-responsive	Bradykinesia with rigidity and/or tremor, and/or asymmetric predominance of limbs, and/or levodopa-responsiveness (see Clinical Clue CC1 for operationalized definition)

Cognitive dysfunction

C1	Speech/language disorder	Defined as at least 1 of the following features, which has to be persistent (rather than transient):
	1. Non-fluent/agrammatic variant of primary progressive aphasia (nfaPPA) or	Loss of grammar and/or telegraphic speech or writing
	2. Progressive apraxia of speech (AOS) with spared single-word comprehension, object knowledge and word-retrieval during sentence repetition	Effortful, halting speech with inconsistent speech sound errors and distortions or slow syllabically segmented prosodic speech patterns

C2	Frontal cognitive/behavioral presentation	Defined as at least 3 of the following features, which have to be persistent (rather than transient):
	1. Apathy	Reduced level of interest, initiative and spontaneous activity; clearly apparent to informant or patient
	2. Bradyphrenia	Slowed thinking; clearly apparent to informant or patient
3. Dysexecutive syndrome
 E.g., reverse digit span, Trails B or Stroop test, Luria sequence (at least 1.5 standard deviations below mean of age- and education-adjusted norms)

4. Reduced phonemic verbal fluency
 E.g., “D, F, A or S” words per minute (at least 1.5 standard deviations below mean of age- and education-adjusted norms)

5. Impulsivity, disinhibition, or perseveration
 E.g., socially inappropriate behaviors, overstuffing the mouth when eating, motor recklessness, applause sign, palilalia, echolalia

C3 Corticobasal syndrome
 Defined as at least 1 sign each from the following 2 groups (may be asymmetric or symmetric):
 1. Cortical signs
 a. Ororubuccal or limb apraxia
 b. Cortical sensory deficit
 c. Alien limb phenomena (more than simple levitation)
 2. Movement disorder signs
 a. Limb rigidity
 b. Limb akinesia
 c. Limb myoclonus

Clinical clues

CC1 Levodopa-resistance
 Levodopa-resistance is defined as improvement of the MDS-UPDRS-motor scale by ≤ 30%; to fulfill this criterion patients should be assessed having been given at least 1000 mg (if tolerated) at least 1 month OR once patients have received this treatment they could be formally assessed following a challenge dose of at least 200 mg

CC2 Hypokinetic, spastic dysarthria
 Slow, low volume and pitch, harsh voice

CC3 Dysphagia
 Otherwise unexplained difficulty in swallowing, severe enough to request dietary adaptations

CC4 Photophobia
 Intolerance to visual perception of light due to adaptative dysfunction

Imaging findings

IF1 Predominant midbrain atrophy or hypometabolism
 Atrophy or hypometabolism predominant in midbrain relative to pons, as demonstrated e.g. by MRI or [18F]DG-PET

IF2 Postsynaptic striatal dopaminergic degeneration
 Postsynaptic striatal dopaminergic degeneration, as demonstrated e.g. by [123I]IBZM-SPECT or [18F]-DMFP-PET
Table 5: Degrees of diagnostic certainty, obtained by combinations of clinical features and clinical clues

<table>
<thead>
<tr>
<th>Diagnostic certainty</th>
<th>Definition</th>
<th>Combinations</th>
<th>Predominance type</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite PSP</td>
<td>Gold standard defining the disease entity</td>
<td>Neuropathological diagnosis</td>
<td>Any clinical presentation</td>
<td>def. PSP</td>
</tr>
<tr>
<td>Probable PSP</td>
<td>Highly specific, but not very sensitive for PSP</td>
<td>(O1 or O2) + (P1 or P2)</td>
<td>PSP-Richardson Syndrome</td>
<td>prob. PSP-RS</td>
</tr>
<tr>
<td></td>
<td>Suitable for therapeutic and biologic studies</td>
<td>(O1 or O2) + A1</td>
<td>PSP with Progressive Gait Freezing</td>
<td>prob. PSP-PGF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O1 or O2) + (A2 or A3)</td>
<td>PSP with Predominant Parkinsonism</td>
<td>prob. PSP-P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O1 or O2) + C2</td>
<td>PSP with Predominant Frontal Presentation</td>
<td>prob. PSP-F</td>
</tr>
<tr>
<td>Possible PSP</td>
<td>Substantially more sensitive, but less specific for PSP</td>
<td>O1</td>
<td>PSP with Predominant Ocular Motor Dysfunction</td>
<td>poss. PSP-OM</td>
</tr>
<tr>
<td></td>
<td>Suitable for descriptive epidemiologic studies and clinical care</td>
<td>O2 + P3</td>
<td>PSP with Richardson Syndrome</td>
<td>poss. PSP-RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>PSP with Progressive Gait Freezing</td>
<td>poss. PSP-PGF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O1 or O2) + C1</td>
<td>PSP with Predominant Speech/Language Disorder *</td>
<td>poss. PSP-SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O1 or O2) + C3</td>
<td>PSP with Predominant Corticobasal Syndrome *</td>
<td>poss. PSP-CBS</td>
</tr>
<tr>
<td>Suggestive of PSP</td>
<td>Suggestive of PSP, but not passing the threshold for possible or probable PSP</td>
<td>O2 or O3</td>
<td>PSP with Predominant Ocular Motor Dysfunction</td>
<td>s.o. PSP-OM</td>
</tr>
<tr>
<td></td>
<td>Suitable for early identification</td>
<td>P1 or P2</td>
<td>PSP with Predominant Postural Instability</td>
<td>s.o. PSP-PI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O3 + (P2 or P3)</td>
<td>PSP with Richardson Syndrome</td>
<td>s.o. PSP-RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A2 or A3) + (O3, P1, P2, C1, C2, CC1, C2, CC3, or CC4)</td>
<td>PSP with Predominant Parkinsonism</td>
<td>s.o. PSP-P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1</td>
<td>PSP with Predominant Speech/Language Disorder</td>
<td>s.o. PSP-SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 + (O3 or P3)</td>
<td>PSP with Predominant Frontal Presentation</td>
<td>s.o. PSP-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3</td>
<td>PSP with Predominant Corticobasal Syndrome</td>
<td>s.o. PSP-CBS</td>
</tr>
</tbody>
</table>

The basic features B1+B2+B3 (see Tab. 1) apply for all probable, possible and suggestive criteria. Core clinical features are defined by their functional domain [ocular motor dysfunction (O), postural instability (P), akinesia (A), and cognitive dysfunction (C)], and stratified by presumed levels of certainty [1 (highest), 2 (mid), 3 (lowest)] they contribute to the diagnosis of PSP (see Tab. 2). Supportive clinical clues (CC) are presented in Tab. 3. Operationalized definitions of clinical features and clinical clues are given in Tab. 4.

* probable 4R-tauopathy (i.e., either PSP or CBD).