Genetic invalidation of Lp-PLA as a therapeutic target: large-scale study of five functional Lp-PLA lowering alleles

John M. Gregson* PhD; Daniel F. Freitag* PhD; Praveen Surendran PhD; Nathan O. Stitziel MD PhD; Rajiv Chowdhury MD; Stephen Burgess PhD; Stephen Kaptoge PhD; Pei Gao PhD; James R. Staley MSc; Peter Willeit MD, PhD; Sune F. Nielsen PhD; Muriel Caslake PhD; Stella Trompet PhD; Linda M. Poffus PhD; Kari Kuulasmaa PhD; Jukka Kontto MSSc; Markus Perola MD, PhD; Stefan Blankenberg MD; Giovani Veronesi PhD; Francesco Gianfagna MD, PhD; Satu Männistö; Akinori Kimura MD, PhD; Honghuang Lin PhD; Dermot F. Reilly PhD; Mathias Gorski; Vladan Mijatovic on behalf of the CKDGen consortium; Patricia B. Munroe PhD; Georg B. Ehret MD on behalf of the International Consortium for Blood Pressure; Alex Thompson PhD; Maria Uria-Nickelsen PhD; Anders Malarstig PhD; Abbas Dehghan MD PhD on behalf of the CHARGE inflammation working group; Thomas F. Vogt PhD; Taishi Sasaoka MD, PhD; Fumihioko Takeuchi PhD; Norihiro Kato MD, DPhil; Yoshiji Yamada MD, PhD; Frank Kee MD; Martina Müller-Nurasyid PhD; Jean Ferrières MD; Dominique Arveiler MD; Philippe Amouyel MD; Veikko Salomaa MD, PhD; Eric Boerwinkle PhD; Simon G. Thompson FMedSci; Ian Ford PhD; J. Wouter Jukema MD; Naveed Sattar MD; Chris J. Packard PhD; Abdulla al Shafi Majumder MD; Dewan S Alam MD, PhD; Panos Deloukas PhD; Heribert Schunkert MD; Nilesh J. Samani FMedSci; Sekar Kathiresan MD on behalf of the MICAD Exome consortium; Børge G. Nordestgaard MD; Danish Saleheen* MD; Joanna M.M. Howson* PhD; Emanuele Di Angelantonio* MD; Adam S. Butterworth* PhD; John Danesh* FMedSci on behalf of the EPIC-CVD consortium and the CHD Exome* consortium

*denotes equal contribution; work was conducted at the University of Cambridge; Author’s affiliations are provided in the appendix

Correspondence: Dr Freitag or Professor Danesh

Department of Public Health and Primary Care
University of Cambridge
Strangeways Research Laboratory
Cambridge CB1 8RN
UK
john.danesh@phpc.cam.ac.uk
Tel: +44 1223 748 655
Aims: Darapladib, a potent inhibitor of lipoprotein-associated phospholipase A₂ (Lp-PLA₂), has not reduced risk of cardiovascular disease outcomes in recent randomized trials. We aimed to test whether Lp-PLA₂ enzyme activity is causally relevant to coronary heart disease (CHD).

Methods: In 72,657 patients with CHD and 110,218 controls in 23 epidemiological studies, we genotyped five functional variants, four rare loss-of-function mutations (c.109+2T>C[rs142974898], Arg82His[rs144983904], Val279Phe[rs76863441], Gln287Ter[rs140020965]) and one common modest-impact variant (Val379Ala[rs1051931]) in PLA2G7, the gene encoding Lp-PLA₂. We supplemented de-novo genotyping with information on a further 45,823 CHD patients and 88,680 controls in publicly available databases and other previous studies. We conducted a systematic review of randomized trials to compare effects of darapladib treatment on soluble Lp-PLA₂ activity, conventional cardiovascular risk factors, and CHD risk with corresponding effects of Lp-PLA₂-lowering alleles.

Results: Lp-PLA₂ activity was decreased by 64% (p=2.4×10⁻²⁵) with carriage of any of the four loss-of-function variants, by 45% (p<10⁻³⁰⁰) for every allele inherited at Val279Phe, and by 2.7% (p=1.9×10⁻¹²) for every allele inherited at Val379Ala. Darapladib 160mg once-daily reduced Lp-PLA₂ activity by 65% (p<10⁻³⁰⁰). Causal risk ratios for CHD per 65% lower Lp-PLA₂ activity were: 0.95 (0.88-1.03) with Val279Phe; 0.92 (0.74-1.16) with carriage of any loss-of-function variant; 1.01 (0.68-1.51) with Val379Ala; and 0.95 (0.89-1.02) with darapladib treatment.

Conclusions: In a powerful large-scale human genetic study, none of a series of Lp-PLA₂–lowering alleles was related to CHD risk, suggesting that Lp-PLA₂ is unlikely to be a causal risk factor.

KEY WORDS: Human genetics, target validation, coronary heart disease, Lipoprotein-associated phospholipase A₂, darapladib
ABBREVIATIONS

CHD = Coronary Heart Disease

CI = Confidence Interval

HDL = High-density lipoprotein

LDL = Low-density lipoprotein

Lp-PLA\textsubscript{2} = Lipoprotein-associated phospholipase A\textsubscript{2}

MI = Myocardial infarction

SD = Standard deviation

Main text word count: 29453037

3 main figures, 2 tables, 1 Appendix

Supplement (comprising a supplementary note and 6 tables, 4 figures)
INTRODUCTION

Lipoprotein-associated phospholipase A$_2$ (Lp-PLA$_2$), an enzyme expressed by inflammatory cells in atherosclerotic plaques, is carried in the circulation bound predominantly to low-density-lipoprotein (LDL)$_1$-2. Lp-PLA$_2$ (also called platelet-activating factor acetyl hydrolase) hydrolyzes oxidized phospholipids to yield pro-inflammatory products implicated in endothelial dysfunction, plaque inflammation, and formation of necrotic core in plaque1. Observational3 and experimental studies in humans and animals have suggested that Lp-PLA$_2$ could be a valid therapeutic target, postulating this enzyme to link oxidative modification of LDL and development of inflammatory responses to arterial intima1. Previous studies have investigated genetic variants altering Lp-PLA$_2$ function in relation to coronary heart disease (CHD) risk4-5. However, these studies have generally yielded inconclusive, or conflicting results4-5, perhaps due to limited statistical power and due to limited knowledge about variants altering Lp-PLA$_2$ function (e.g., previous studies have been able to consider only one loss-of-function variant in PLA2G7, the gene encoding Lp-PLA$_2$).

However, two phase 3 randomized trials of darapladib, a potent inhibitor of Lp-PLA$_2$ activity, have not shown reductions in cardiovascular risk6-7. These results could, at least in part, have been due to features of the trials. One of the phase 3 trials was restricted to patients recently hospitalized with acute coronary syndromes6, yet many cardiovascular events occurring early after acute coronary syndromes may relate to thrombotic mechanisms and not be modifiable through Lp-PLA$_2$ inhibition. Trials used statins as background therapy, so any Lp-PLA$_2$ inhibition achieved with statins could have reduced any incremental benefits of darapladib. Trials could not assess the effects of prolonged Lp-PLA$_2$ inhibition because they recorded only about 3-4 years of median follow-up6-7.

An alternative explanation is that darapladib did not reduce cardiovascular risk because Lp-PLA$_2$ is not a causal risk factor in cardiovascular disease. We tested this possibility by investigating natural loss of Lp-PLA$_2$ activity.

Studies of Lp-PLA$_2$–lowering alleles should complement randomized trials of darapladib because genotypes are fixed at conception, avoiding potential distorting effects of pre-existing disease and medication usage. Furthermore, Lp-PLA$_2$–lowering alleles should produce lifelong, rather than shorter-term, Lp-PLA$_2$ inhibition.

In over 260,000 participants of European, South Asian, or East Asian ancestries, we studied five functional variants in PLA2G7. We compared effects of Lp-PLA$_2$–lowering alleles on soluble Lp-PLA$_2$ activity, conventional cardiovascular risk factors, and CHD risk with corresponding effects of darapladib, using results from randomized trials.
METHODS

Study design

Figure 1 summarises the study approach. Table 1 provides definitions and sources of data used. First, we identified four loss-of-function mutations and one missense variant in PLA2G7 suggested by previous experimental and bioinformatics studies, thereby developing an allelic series for Lp-PLA2 activity. Second, we assessed associations of these variants — both singly and in combination — with soluble Lp-PLA2 activity, conventional cardiovascular risk factors, and CHD risk in people of European, South Asian, or East Asian continental ancestries. Third, we compared associations of Lp-PLA2–lowering alleles with the aforementioned traits and CHD risk with the effects of darapladib treatment through a systematic review of randomized trials.

Genetic variants

We defined loss-of-function variants as non-synonymous variants with in vitro or in vivo evidence demonstrating complete lack of Lp-PLA2 activity or sequence changes expected to abolish Lp-PLA2 function (e.g., nonsense variants or mutations in essential splice sites). We selected variants through a systematic search for loss-of-function variants using the UniProt database\(^8\), the Exome Aggregation Consortium database (Cambridge, MA, USA; URL: http://exac.broadinstitute.org; [accessed November 2014])\(^9\), studies of site-directed mutagenesis\(^10-12\) and results from targeted gene sequencing\(^13\). Among the full set of variants identified (eTable 1), we selected the following variants that could be detected in the 1000 Genomes\(^14\) or the Exome sequencing\(^15\) projects (and, hence, potentially studied at the population level): the splice site mutation 109+2T>C (rs142974898); two non-synonymous variants — Arg82His (rs144983904) and Val279Phe (rs76863441); and the nonsense variant Gln287Ter (rs140020965). These loss-of-function variants are rare in European and South Asian ancestry populations, whereas carriage of 279Phe is common in East Asian ancestry populations and abolition of Lp-PLA2 activity is well documented\(^16\). Additionally, we studied Val379Ala (rs1051931), a functional variant common in European ancestry populations, which lowers Lp-PLA2 activity only modestly\(^10,17\), in contrast with the much stronger Lp-PLA2–lowering achieved by the loss-of-function variants described above.

Samples and data for genetic studies

We aimed to maximise study power and comprehensiveness by using the following complementary approaches to generate new data on, as well as to collate systematically existing relevant information about, the PLA2G7...
variants mentioned above: (1) we conducted de-novo genotyping for 72,657 CHD patients and 110,218 controls (the majority of whom also had information available on some cardiovascular risk factors); (2) we accessed non-overlapping summary-level data from the only known global genetics consortium of CHD18, yielding information on a further 35,735 CHD patients and 73,481 controls; (3) we conducted a systematic review (supplemented by provision of tabular data from each study investigator) of published East Asian CHD studies of Val279Phe because these studies were not represented in the global CHD consortium, yielding information on a further 10,088 CHD cases and 15,199 controls; (4) we accessed summary-level data from the largest available global genetics consortium on each of several relevant cardiovascular risk factors (eg, Lp-PLA\textsubscript{2} activity, conventional lipids, blood pressure), yielding information on 489,045 participants. Each of these sources of information is summarised below and in Table 1, with a key in Table 1’s legend denoting the level of data detail available for each source (e.g., individual-participant data vs. tabular study-level results).

Coronary heart disease outcomes For CHD outcomes, we had access to data for a total of 92,995 patients and 162,228 controls. For 182,875 of these participants (72,657 CHD patients, 110,218 controls), we did de-novo genotyping of the four loss-of-function variants (c.109+2T>C, Arg82His, Val279Phe, Gln287Ter) and Val379Ala using customized Exome arrays (Illumina, California, USA) by technicians masked to the phenotypic status of the participants’ samples. For 35,829 CHD cases, 44,948 controls in eight studies, we had access to individual-participant data. The eight studies were: the Bangladesh Risk of Acute Vascular Events Study (BRAVE)19, Copenhagen City Heart Study (CCHS)20, Copenhagen Ischemic Heart Disease/Copenhagen General Population Study (CIHDS/CGPS)20, European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study (EPIC-CVD)21, MONICA Risk, Genetics, Archiving, and Monograph (MORGAM) study22,23, Pakistan Risk of Myocardial Infarction Study (PROMIS)24, Pravastatin in elderly individuals at risk of vascular disease (PROSPER) trial25 and the West of Scotland Coronary Prevention Study (WOSCOPS)26 (these eight studies are collectively called the “CHD Exome+ consortium”). For 15 additional studies (collectively called the “MICAD consortium”), we used similar genotyping methods to those described above but did not genotype c.109+2T>C and had access only to study-level data. We supplemented de-novo data on Val379Ala with non-overlapping consortium-level results from a further 35,735 CHD patients and 73,481 controls in the transatlantic Coronary Artery Disease Genome-wide Replication and Meta-analysis (CARDIoGRAM)27 and Coronary Artery Disease Genetics (C4D)28 consortia (Table 1). We obtained tabular data on Val279Phe from seven East Asian studies involving a total of 10,088 CHD cases and 15,199 controls, identified through systematic review (eTable 5 and Supplement). About 90% of CHD patients in our genetic
analysis had myocardial infarction or other major acute coronary events; the remainder had angiographic
evidence alone (eg, >50% coronary stenosis; eTables 2 & 5).

Lp-PLA₂ activity For 13,835 participants, we had information on functional variants in PLA2G7 and Lp-PLA₂
activity, using data from de-novo genotyping in MORGAM22,23 and PROSPER25, supplemented by published
data from the CHARGE Consortium (ie, from the Atherosclerosis Risk in Communities [ARIC] Study29,
Cardiovascular Health Study17, Framingham Heart Study17, and Rotterdam study17), and from 12 East Asian
studies identified through the systematic review described above (Table 1, Supplement & eFigure1, eTables
2-3).

Conventional cardiovascular risk factors For 177,343 participants, we had information on functional variants in
PLA2G7 and conventional cardiovascular risk factors and several other traits, including circulating
concentrations of LDL-cholesterol, HDL-cholesterol, triglycerides, glucose, insulin, and C-reactive protein, and
values of systolic and diastolic blood pressure, body-mass index, and estimated glomerular filtration rate. Again,
we supplemented data from our de-novo genotyping, with information from existing global genetics consortia
(Table 1, eTables 2-4).

Randomized trials of darapladib

To compare genetic associations with effects of pharmacological Lp-PLA₂ inhibition, we conducted a
systematic review to identify randomized placebo-controlled trials of darapladib that had reported on Lp-PLA₂
activity, conventional risk factors, and/or CHD events (Supplement). CHD events in the trials were defined as
fatal CHD, MI or urgent revascularisation, as recorded in STABILITY (Stabilization of Atherosclerotic Plaque
by Initiation of Darapladib Therapy) and in SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-
Thrombolysis in Myocardial Infarction 52)6,7. We pooled results across trials by fixed-effect inverse-variance
weighted meta-analysis (eFigures 2&3; see Supplement for details of the methods used).

Statistical methods

We defined effect alleles as those associated with lower Lp-PLA₂ activity and assumed an additive model. For
participant-level data, we assessed associations of Lp-PLA₂-lowering alleles with CHD using the genome-wide
efficient mixed model analysis, an approach that models each genetic variant as a fixed-effect, but includes both
fixed-effect and random-effects of genetic inheritance30 to account for population stratification and relatedness
among participants (Supplement). The four rare loss-of-function variants were tested jointly within each study.
by counting the number of loss-of-function alleles carried by each participant. Log odds ratios and standard errors were meta-analysed across studies using fixed-effect meta-analysis. For studies contributing only study-level data, we performed a similar test by conducting a combined burden test across studies using the R package seqMeta v1.2 (http://cran.r-project.org/web/packages/seqMeta/).

We calculated associations of Lp-PLA₂-lowering alleles with soluble Lp-PLA₂ activity and conventional risk factors using linear regression within each study, and then combined the regression coefficients using fixed-effect meta-analysis. When data were missing, we used information on rs1805018 as a proxy for Val279Phe and information on rs7756935 or rs3799277 as proxies for Val379Ala (Supplement). To account for population stratification, we adjusted for the first principal component of ancestry (Supplement). We calculated risk ratios for CHD with decrements in Lp-PLA₂ activity, dividing the log transformed risk ratio and confidence interval (CI) by the effect on Lp-PLA₂ activity of the instrument (ie, the genetic variant)\(^\text{31}\). We investigated heterogeneity using the \(I^2\) statistic. We used Stata 13.1.
RESULTS

Of the 261,950 total participants in this analysis, we studied 195,715 individuals of European ancestry, 34,221 individuals of South Asian ancestry, and 32,014 individuals of East Asian ancestry. In people of European or South Asian ancestry without CHD, the frequency of alleles in PLA2G7 that lower Lp-PLA2 activity was 0.005% at c.109+2T>C, 0.04% at Arg82His, 0.04% at Val279Phe, and 0.025% at Gln287Ter (i.e., in aggregate, 0.2% of the European or South Asian participants in the current study carried one of these loss-of-function alleles, although no one carried more than one of these variants), and about 80% at Val379Ala. In people of East Asian ancestry without CHD, the frequency of Val279Phe was about 15% and about 2% of the individuals were homozygous carriers of the 279Phe allele.

Soluble Lp-PLA2 activity

Compared with non-carriers, homozygote carriers of the 279Phe allele had 94% lower Lp-PLA2 activity ($p<10^{-300}$). For each 279Phe allele inherited, Lp-PLA2 activity decreased by 45% (1.59 SD, 95% CI: 1.61-1.57; $p<10^{-300}$). In Europeans who inherited any one of the four rare Lp-PLA2 loss-of-function alleles, Lp-PLA2 activity decreased by 64% (2.25 SD, 2.68-1.83; $p=1.6\times10^{-25}$). For each 379Ala allele inherited, Lp-PLA2 activity decreased by 2.7% (0.096 SD, 0.122-0.069; $p=1.9\times10^{-12}$). By comparison, 160mg once-daily darapladib reduced Lp-PLA2 activity by 65% (2.26 SD, 2.31-2.21; $p<10^{-300}$). Study-level estimates are provided in eFigure 2.

Cardiovascular risk factors

None of the Lp-PLA2–related variants we studied was significantly associated with values of LDL-cholesterol, HDL-cholesterol, triglycerides, systolic or diastolic blood pressure, body-mass index, estimated glomerular filtration rate, glucose, insulin, and C-reactive protein (Figure 2). By comparison, in previous randomized placebo-controlled trials, darapladib did not significantly affect concentrations of LDL-cholesterol or log triglycerides, but could have slightly increased systolic blood pressure and HDL-cholesterol values and slightly decreased C-reactive protein concentration (Figure 2).
Compared to non-carriers, the odds ratio for CHD was 0.99 (0.95–1.03) in 279Phe heterozygotes, and 0.93 (0.82–1.05) in 279Phe homozygotes (i.e. nearly complete loss of Lp-PLA2 function: Figure 3). For each loss-of-function (279Phe) allele inherited, the odds ratio for CHD was 0.97 (0.91-1.02; $I^2=30\%$; $P_{\text{Heterogeneity}}=0.2$). In Europeans and South Asians who inherited one of the four rare Lp-PLA2-loss-of-function alleles, the odds ratio for CHD was 0.92 (0.74-1.16; $I^2=0\%$; $P_{\text{Heterogeneity}}=0.8$; Figure 3). For each 379Ala allele inherited, the odds ratio for CHD was 1.00 (0.98-1.02; $I^2=0.0\%$; $P_{\text{Heterogeneity}}=0.5$; Figure 3). Study-level results are provided in eFigure 3. In sensitivity analyses, odds ratios with each loss-of-function variant were similar to the odds ratio that combined information across the four loss-of-function variants we studied. There was no evidence of heterogeneity in odds ratios between European and South Asian ancestry populations (eFigure 4).

Genetic risk ratios for CHD per 65% lower Lp-PLA2 activity (i.e. the reduction achievable with darapladib treatment) were: 0.95 (0.88-1.03) with Val279Phe in East Asians; and 0.92 (0.74-1.16) with carriage of any one of the four rare variants studied in Europeans and South Asians; and 1.01 (0.68-1.51) with Val379Ala (Table 2).

By comparison, the risk ratio for CHD with darapladib treatment (i.e. also per 65% lower Lp-PLA2 activity) was 0.95 (0.89-1.02; Table 2).
DISCUSSION

In a large-scale analysis of human genetic data, we tested whether Lp-PLA2 enzyme activity is causally relevant to CHD by studying five functional alleles that produce widely differing (i.e., small, moderate, or large) degrees of reduction in Lp-PLA2 activity. We found that none was related to CHD risk, suggesting that Lp-PLA2 enzyme activity is unlikely to be causally relevant to CHD, a conclusion concordant with results from two phase 3 trials of a pharmacological Lp-PLA2 enzyme inhibitor.

Three features of our study merit comment. First, we studied almost 20 times more CHD patients than the previous largest study of loss-of-function PLA2G7 alleles, thereby providing the first robust genetic evaluation of effect sizes of Lp-PLA2 inhibition relevant to phase 3 trials such as relative risk reductions for CHD of 20%. For example, for the Val279Phe variant we had >99% power to detect a 20% risk reduction in CHD for a 65% genetic reduction in Lp-PLA2 activity (i.e., an effect on Lp-PLA2 activity similar to that achieved by darapladib).

Second, our study has provided the first investigation in CHD of a series of functional alleles that each reduce Lp-PLA2 function via different molecular mechanisms. Specifically, we studied five different Lp-PLA2-lowering alleles: three of the alleles were coding variants that produced different amino acid substitutions; two of the alleles produced protein truncations (one due to a nonsense mutation; the other due to a splice-site mutation). Because we observed null and broadly concordant findings for CHD risk across these alleles that each changed the enzyme in a different way (and to a different extent), we can more confidently conclude there is no material cause-and-effect relationship. By contrast, when the initial phase 3 trial of darapladib was launched in 2008, only two of the five alleles we studied had yet been identified: data on Val379Ala, a weak effect missense variant, were inconclusive because CHD studies were under-powered; data on Val279Phe, a loss-of-function variant, and CHD risk were sparse and restricted to East Asian populations.

A third feature was our study’s analysis of large-scale substantial data from three different major ethnic groups: Europeans, South Asians, and East Asians. This ethnic diversity enhanced the generalisability of our results.

Our study had potential limitations. To maximise comparability of CHD endpoints used in clinical trials with those used in human genetic studies, we restricted analysis of phase 3 darapladib trials to “major coronary events” and principally focused in human genetic studies on the cognate endpoints of myocardial infarction or other major acute coronary events (which constituted ~90% of the outcomes). Nevertheless, although the CHD definitions used in trials and genetic studies were similar, they were not identical.
It could be that cardioprotective benefits of Lp-PLA₂ inhibition were obscured by pleiotropic effects of PLA2G7 variants; for example, 279Phe is known to produce a misfolded version of Lp-PLA₂ not secreted by cells, prompting suggestions that its carriage could produce “off-target” effects such as increased cell death. However, because we found null associations between four other functional alleles in PLA2G7 and CHD, each of which operates via a different molecular mechanism, it argues against this explanation. On the other hand, it is possible that darapladib may have additional effects beyond Lp-PLA₂ inhibition. For example, darapladib may have had slight effects on CRP levels and systolic blood pressure, which we did not observe with the genetic variants.

Lifelong genetic reductions in Lp-PLA₂ could result in compensatory responses that increase CHD risk. However, this explanation seems unlikely because it would require any such compensation to apply similarly across alleles that produce widely differing degrees of reduction in Lp-PLA₂ activity. Furthermore, any such compensation could not operate through known cardiovascular mechanisms because we observed no associations between Lp-PLA₂-lowering alleles and several established and emerging cardiovascular risk factors.

Soluble enzyme activity could be an imperfect indicator of the relevance of Lp-PLA₂ to atherosclerotic plaques. However, for homozygote carriers of 279Phe, Lp-PLA₂ activity should be almost abolished across all tissues. Finally, we studied life-long genetic reductions in Lp-PLA₂ activity in relation to first-onset CHD outcomes rather than recurrent CHD, whereas darapladib trials studied recurrent coronary events in patients with stable or acute coronary disease.

The current data underscore the growing importance of human genetic approaches to enhance the efficiency of development of medicines by validating (or invalidating) novel drug targets. Specifically, despite beneficial effects of darapladib on surrogate markers (e.g., intravascular imaging) of coronary atherosclerosis in pre-clinical and clinical studies, these effects did not translate into reduced outcomes in the large phase III studies. Hence, human genetic studies may be useful in influencing prioritization of clinical outcome trials in the future.

Our results also illustrate how human genetic evidence can assist interpretation of observational epidemiological data. For example, we found that functional alleles in PLA2G7 do not alter levels of pro-atherogenic lipids (e.g., LDL-C), suggesting that such pro-atherogenic lipids do not mediate associations between Lp-PLA₂ activity and CHD and supporting the need to adjust epidemiological associations of Lp-PLA₂ activity with CHD risk for pro-atherogenic lipids (an approach which yields results consistent with non-causality).
In summary, we found that none of a series of Lp-PLA₂-lowering alleles was related to CHD risk, suggesting that Lp-PLA₂ is unlikely to be a causal risk factor in CHD.
AUTHOR CONTRIBUTIONS

ASB, DFF, JD, JMG contributed to the conception or design of the work. DFF, JMG, and JD drafted the manuscript. ASB, JD, JMM, JMMH, JS, PG, PS, PW, Sbu, SGT and Skap critically revised the manuscript. All the other authors contributed to the acquisition, analysis, or interpretation of data for the work. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

ACKNOWLEDGEMENTS

The work of the coordinating center was funded by the UK Medical Research Council (G0800270), British Heart Foundation (SP/09/002), British Heart Foundation Cambridge Cardiovascular Centre of Excellence, UK National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council (268834), European Commission Framework Programme 7 (HEALTH-F2-2012-279233). The Supplement includes a list provided by investigators of some of the funders of the component studies in this analysis.

DISCLOSURES

Anders Malarstig and Maria Uria-Nickelsen are full time employees of Pfizer. Alex Thompson is a full-time employee of UCB. Since October 2015, Daniel Freitag has been a full time employee of Bayer. The funders had no role in the design and conduct of the study, in the collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.
REFERENCES

FIGURE LEGENDS

Figure 1: Summary of study design

Figure 2: Mean per allele differences in Lp-PLA₂ activity and cardiovascular risk factor levels by Lp-PLA₂ lowering alleles or with darapladib 160mg daily

Figure 3: Association of Lp-PLA₂ lowering alleles with Lp-PLA₂ activity and CHD risk
APPENDIX

List of authors and affiliations

John M. Gregson* PhD, Daniel F. Freitag* PhD, Praveen Surendran PhD, Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Nathan O. Stitziel MD PhD, Departments of Medicine and Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA; Rajiv Chowdhury MD, Stephen Burgess PhD, Stephen Kaptoge PhD, Pei Gao PhD, James R. Staley MSc, Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Peter Willeit MD, PhD, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK and Department of Neurology, Innsbruck Medical University, Innsbruck, Austria; Sune F. Nielsen PhD, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark; Muriel Caslake PhD, University of Glasgow, Glasgow, UK; Stella Trompet PhD, Leiden University Medical Center, Leiden, Netherlands; Linda M. Polfus PhD, University of Texas Health Science Center Houston, TX, USA; Kari Kuulasmaa PhD, Jukka Kontto MSSc, THL - National Institute for Health and Welfare, Helsinki, Finland; Markus Perola MD, PhD, Institute of Molecular Medicine FIMM, University of Helsinki and Department of Health, National and Interventional Cardiology, University Heart Center Hamburg, Germany and University Medical Center Hamburg Eppendorf, Hamburg, Germany; Giovanni Veronesi PhD, EPIMED Research Center, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy; Francesco Gianfagna MD, PhD, EPIMED Research Center, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy and Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy; Satu Männistö, THL - National Institute for Health and Welfare, Helsinki, Finland; Akinori Kimura MD, PhD, Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Honghuang Lin PhD, Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA and The NHLBI's Framingham Heart
Study, Framingham, MA, USA; Dermot F. Reilly PhD, Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, Massachusetts, USA; Mathias Gorski, Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany and Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Vladan Mijatovic on behalf of the CKDGen consortium, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy; Patricia B. Munroe PhD, Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK and NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK; Georg B. Ehret MD on behalf of the International Consortium for Blood Pressure; Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA and Cardiology, Department of Medicine, Geneva University Hospital, Geneva, Switzerland and Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Alex Thompson PhD, Strategic Epidemiology NewMedicines, UCB, Brussels, Belgium; Maria Uria-Nickelsen PhD, Clinical Research, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA; Anders Malarstig PhD, Clinical Research, Pfizer Worldwide R&D, Sollentuna, Sweden; Abbas Dehghan MD PhD on behalf of the CHARGE inflammation working group, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Thomas F. Vogt PhD, Merck Research Laboratories, Cardiometabolic Disease, Kenilworth, New Jersey, USA and CHDI Management/CHDI Foundation, Princeton, New Jersey, USA; Taishi Sasaoka MD, PhD, Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Fumihiko Takeuchi PhD, Norihiro Kato MD, DPhil, Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Japan; Yoshiiji Yamada MD, PhD, Department of Human Functional Genomics, Life Science Research Center, Mie University, Japan; Frank Kee MD, Director, UKCRC Centre of Excellence for Public Health, Queens, University, Belfast, Ireland; Martina Müller-Nurasyid PhD, Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany and Institute of Medical
Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany and Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany; Jean Ferrières MD, Department of Epidemiology, UMR 1027-INSERM, Toulouse University-CHU Toulouse, Toulouse, France; Dominique Arveiler MD, Department of Epidemiology and Public Health, EA 3430, University of Strasbourg and Strasbourg University Hospital, Strasbourg, France; Philippe Amouyel MD, Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France; Veikko Salomaa MD, PhD, THL-National Institute for Health and Welfare, Helsinki, Finland; Eric Boerwinkle PhD, Human Genetics Center, University of Texas Health Science Center at Houston, TX, USA; Simon G. Thompson FMedSci, Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Ian Ford PhD, University of Glasgow, Glasgow, UK; J. Wouter Jukema MD, Leiden University Medical Center, Leiden, Netherlands; Naveed Sattar MD, Chris J. Packard PhD, University of Glasgow, Glasgow, UK; Abdulla al Shafi Majumder MD, National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Dhaka, Bangladesh; Dewan S Alam MD, PhD, Centre for Global Health Research, St. Michael Hospital, Toronto, ON, Canada; Panos Deloukas PhD, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Heribert Schunkert MD, Deutsches Herzzentrum München, Technische Universität München, and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, all Munich, Germany; Nilesh J. Samani FMedSci, Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Leicester, UK; Sekar Kathiresan MD on behalf of the MICAD Exome consortium, Broad Institute, Cambridge and Massachusetts General Hospital, Boston, MA, USA; Børge G. Nordestgaard MD, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark; Danish Saleheen* MD, University of Pennsylvania, Philadelphia, US and Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Joanna M.M. Howson* PhD, Emanuele Di Angelantonio* MD, Adam S. Butterworth* PhD, Cardiovascular Epidemiology Unit, Department of Public Health and Primary
Care, University of Cambridge, Cambridge, UK; John Danesh* FMedSci on behalf of the EPIC-CVD Consortium and the CHD Exome+ Consortium, Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK and Wellcome Trust Sanger Institute, Hinxton, UK
TABLE 1: Definitions and source of contributing data for the main study outcome

<table>
<thead>
<tr>
<th>Lp-PLA₂ assessment tool</th>
<th>Val279Phe, Loss-of-function variant common in East Asians</th>
<th>Four loss-of-function variants*, rare in Europeans & South Asians</th>
<th>Val379Ala, modest impact variant</th>
<th>Darapladib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data sources</td>
<td>Systematic review: Up to 12 East Asian studies</td>
<td>De-novo genotyping and participant-level data: up to 8 European or South Asian ancestry studies from the CHD Exome+ Consortium[19-26]; De-novo genotyping and study-level data: up to 15 European ancestry studies from the MICAD Exome consortium[23] and 3 European ancestry studies from the CARDioGRAM+ consortium[25]; Plus publicly available consortium data</td>
<td>Systematic review: Up to 5 randomized clinical trials[6,20,41] from a systematic review</td>
<td></td>
</tr>
<tr>
<td>Endpoint</td>
<td>Number of studies and unique individuals contributing to analyses; n total or cases / controls</td>
<td>Coronary heart disease</td>
<td>Lp-PLA₂ activity</td>
<td></td>
</tr>
<tr>
<td>Cell type</td>
<td>7 East Asian studies †</td>
<td>8 European or South Asian ancestry studies from the CHD Exome+ Consortium[19-26] †</td>
<td>12 East Asian studies †</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 European ancestry studies from the MICAD Exome consortium[23] †</td>
<td>8 European or South Asian ancestry studies from the CHD Exome+ Consortium[19-26] †</td>
<td>1 European ancestry study from the CHD Exome+ Consortium[23] †</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 European ancestry studies from the CARDioGRAM+ consortium[25] †</td>
<td>8 European or South Asian ancestry studies from the CHD Exome+ Consortium[19-26] †</td>
<td>2 European ancestry studies from the CHD Exome+ Consortium[23,25] †</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 European or South Asian ancestry studies from the C4D consortium[27] ‡</td>
<td>14 European ancestry studies from the CARDioGRAM+ consortium[25] †</td>
<td>3 European ancestry studies from the CHARGE Consortium[26] †</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 phase III randomized clinical trials of darapladib[5-7] ‡</td>
<td>4 European or South Asian ancestry studies from the C4D consortium[27] ‡</td>
<td>3 phase II randomized clinical trials[28-31] ‡</td>
<td></td>
</tr>
<tr>
<td>10,088 cases</td>
<td>35,829 cases</td>
<td>32,196 cases</td>
<td>8468</td>
<td></td>
</tr>
<tr>
<td>15,199 controls</td>
<td>35,533 cases</td>
<td>14,976 cases</td>
<td>1240</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64,130 controls</td>
<td>32,084 cases</td>
<td>8564</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58,419 controls</td>
<td>2173</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,420 controls</td>
<td>11,662</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,062 controls</td>
<td>854</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,490 non-cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional risk factors</td>
<td>12 East Asian studies †</td>
<td>8 European or South Asian ancestry studies from the CHD Exome+ Consortium[19-26] †</td>
<td>1 European ancestry study from the CHD Exome+ Consortium[23] †</td>
<td>5 randomized clinical trials[6,20,41] †</td>
</tr>
<tr>
<td>BMI</td>
<td>18,798</td>
<td>51,201</td>
<td>2,917</td>
<td></td>
</tr>
<tr>
<td>Blood pressure</td>
<td>76,584</td>
<td>126,142 from 46 studies from the GIANT Consortium[22] NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipids</td>
<td>67,050</td>
<td>69,245 from 29 studies from the ICBP Consortium[23] 323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>17,643</td>
<td>94,311 from 46 studies from the GLGC Consortium[24] 803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycaemic traits</td>
<td>29,140</td>
<td>66,185 from 15 studies from the CHARGE Consortium[26] 848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR</td>
<td>29,140</td>
<td>46,186 from 21 studies from the MAGIC Consortium[26] NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9420</td>
<td>74,354 from 26 studies from the CKDGen Consortium[27] NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In genetic analysis, CHD was defined as myocardial infarction and other major coronary events (~90% of cases) or angiographic stenosis only (~10% of cases) see eTables 2 & 3 for details. In the darapladib analysis CHD was defined as fatal coronary disease, non-fatal MI or urgent revascularization for myocardial ischaemia.

† See eTables 2 & 3 for details on risk factor measurements.

‡ Includes genetic studies, only.

§ Including publicly available consortium data.

¶ See eTables 1B for further variant details.

<table>
<thead>
<tr>
<th>Notes</th>
<th>In the darapladib analysis CHD was defined as fatal coronary disease, non-fatal MI or urgent revascularization for myocardial ischaemia.</th>
</tr>
</thead>
</table>
Table 2: Comparison on a common scale of human genetic and randomized trial evidence for Lp-PLA₂ lowering and CHD

<table>
<thead>
<tr>
<th></th>
<th>CHD patients</th>
<th>Controls</th>
<th>Risk ratio for CHD per 65% lower Lp-PLA₂ activity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetically lowered Lp-PLA₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val279Phe (East Asian LoF variant)</td>
<td>10,088</td>
<td>15,199</td>
<td>0.95 (0.88 - 1.03)</td>
</tr>
<tr>
<td>Four LoF variants*</td>
<td>71,362</td>
<td>109,078</td>
<td>0.92 (0.74 – 1.16)</td>
</tr>
<tr>
<td>Val379Ala</td>
<td>82,907</td>
<td>147,029</td>
<td>1.01 (0.68 – 1.51)</td>
</tr>
<tr>
<td>Pharmacologically lowered Lp-PLA₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darapladib</td>
<td>3364</td>
<td>25,490</td>
<td>0.95 (0.89 – 1.02)</td>
</tr>
</tbody>
</table>

* Carriage of any of the four loss-of-function variants c.109+2T>C; Arg82His; Val279Phe; Gln287Ter; LoF = Loss-of-function
Figure 1: Summary of study design

A) Flow chart of study design

Results from de-novo genotyping, global consortia and systematic literature reviews

Genetic inhibition of Lp-PLA₂

• Four loss-of-function variants
• One missense variant

Uniprot/Swissprot database
1000 Genomes project
Exome sequencing project
ExAc consortium

Soluble Lp-PLA₂ activity

Conventional cardiovascular risk factors (eg, lipids)

Coronary disease events

Pharmacological inhibition of Lp-PLA₂

• Darapladib (160mg)

Systematic review of RCTs

B) Exonic structure of the PLA2G7 gene and location of variants used in this study.

PLA2G7 gene coding exons

1 2 3 4 5 6 7 8 9 10 11

rs144983904
Arg82His

rs76863441
Val279Phe

rs140020965
Gln287Ter

rs1051931
Val379Ala

Loss-of-function variants

Modest impact variant

A) Flow chart of study design B) Exonic structure of the PLA2G7 gene and location of variants used in this study.: ExAc = Exome Aggregation consortium, Lp-PLA₂ = Lipoprotein-associated phospholipase A₂, RCT = Randomized controlled trial, Uniprot/Swissprot = Manually annotated and reviewed section of the Universal Protein resource database.
To enable comparison of the magnitude of associations across several different markers, analyses were undertaken with standardized units of measurement for each marker. Associations are presented as per allele change in the biomarker expressed as standard deviations. * Carriage of any of the four loss-of-function variants c.109+2T>C, Arg82His; Val279Phe; Gln287Ter; BMI = Body-mass index, DBP = Diastolic blood pressure, eGFR = estimated glomerular filtration rate, HDL-c = High-density lipoprotein cholesterol, LDL = low-density lipoprotein cholesterol, LoF = Loss-of-function, Lp-PLA2 = Lipoprotein associated phospholipase A2, SBP = systolic blood pressure. Numbers of participants are provided in Table 1. Details of contributing studies are provided in eTables 2-3.
Spectrum of functional alleles in PLA2G7 and effects on Lp-PLA2 activity (red estimates) and coronary heart disease risk (black estimates); * Carriage of any of the four loss-of-function variants c.109+2T>C, Arg82His; Val279Phe; Gln287Ter; † One study did not provide tabular data to enable calculation of CHD odds ratios in heterozygotes or homozygotes. Hence, numbers are less than those presented for the per allele analysis in Table 2; LoF = Loss-of-function.
JOURNAL CONTRIBUTOR'S PUBLISHING AGREEMENT

To be completed by the owner of copyright in the Contribution

TITLE OF CONTRIBUTION: GENETIC INVALIDATION OF LD-RAO AS A THERAPEUTIC
INTENDED FOR PUBLICATION IN: European Journal of Preventive Cardiology

AUTHOR NAME(S): GREGSON JH, FREITAS DF
CORRESPONDING AUTHOR: GREGSON J
ADDRESS: MARIE WESTON, SAGE PUBLICATIONS LTD, 1 OLIVER'S YARD, 55 CITY ROAD, LONDON EC1Y 1SP, UK (Email: Marie.Weston@sagepub.co.uk, FAX: +44(0) 207 324 8600)

COPYRIGHT ASSIGNMENT
I represent that the Contribution is owned by me unless the following is checked:

☐ Work made for hire for employer/Work done in the course of employment – The Contribution was prepared by me at the request of my employer and within the scope of my employment and copyright in the Contribution is owned by my employer. (Both the Contributor and an authorized representative of the Contributor's employer must sign this Agreement.) Employer name:

☐ U. S. Government work - I am an employee of the United States Government and prepared the Contribution as part of my official duties. (If the Contribution was not prepared as part of the Contributor's official duties, it is not a U.S. Government work. If the Contribution was jointly authored, all the co-authors must have been U.S. Government employees at the time they prepared the Contribution in order for it to be a U.S. Government work; if any co-author was not a U.S. Government employee, then the Contribution is not a U.S. Government work. If the Contribution was prepared under a U.S. Government contract or grant, it is not a U.S. Government work – in such case, copyright is usually owned by the contractor or grantee.)

In consideration for publication in the above Journal, of the above Contribution, I hereby assign to the European Society of Cardiology ('the Proprietor') copyright in the Contribution and in any abstract prepared by me to accompany the Contribution for the full legal term of copyright and any renewals thereof throughout the world in all formats, and through any medium of communication now known or later conceived or developed.

If you or your funder wish your article to be freely available online to non-subscribers immediately upon publication (gold open access), you can opt for it to be included in SAGE Choice, subject to payment of a publication fee. For further information, please visit SAGE Choice.

In the event I provide Supplemental Material to the Journal, I hereby grant to the Proprietor the non-exclusive right and licence to produce, publish and make available and to further sub-license the material, in whole or in part, for the full legal term of copyright and any renewals thereof throughout the world in all languages and in all formats, and through any medium of communication now known or later conceived or developed.

By signing this Contributor Agreement I agree both to the above provisions and to the terms of the agreement attached below.

Contributor:
Signed: Date:

The author who has signed above warrants that he/she is authorized to sign on behalf of him/herself and, in the case of a multi-authored Contribution, on behalf of all other authors of the Contribution.

Authorised Representative of Employer (if Work made for hire/done in the course of employment box is checked)
Signed: Date:

Terms of the Agreement page 1 of 5
This Agreement may be signed and executed in the following ways:

- Traditional hard copy – please sign and return the Agreement.
- By fax – please sign and fax a copy of the Agreement.
- By e-mail – a scanned hard copy of the Agreement with your signature on it or a digital original copy with your electronic signature are equally acceptable.

Further
- One contributor may sign on behalf of any co-authors if authorized to do so by the co-authors.
- All parties may sign one document OR
- Individual parties may sign separate copies of the same agreement (using any of the methods described above) and return them individually.

TERMS OF THE AGREEMENT

Warranties

I warrant to the Proprietor and to SAGE that the Contribution is my original work, that I have the full power and authority to enter into this Agreement and to convey the rights granted herein to the Proprietor and to submit the work for first publication in the Journal and that it is not being considered for publication elsewhere and has not already been published elsewhere, either in printed or electronic form, that I have obtained and enclose all necessary permissions for the reproduction of any copyright works not owned by me (including artistic works, e.g. illustrations, photographs, charts, maps, other visual material, etc.) contained in the Contribution and in any Supplemental Material I provide and that I have acknowledged all the source(s), that the Contribution and any Supplemental Material I provide contain no violation of any existing copyright, other third party rights or any libellous or untrue statements and does not infringe any rights of others, and I agree to indemnify, defend and hold harmless the Proprietor and SAGE against any claims in respect of the above warranties. I further agree to be bound by the Terms of the Agreement provided herein as part of this Agreement which outline the circumstances under which work may be reused.

SAGE for its benefit in accordance with the provisions of the Contracts (Rights of Third Parties) Act 1999 hereby asserts its right to the protection of the above warranties and indemnities.

Declaration of Conflicting Interests

I certify that:
1. All forms of financial support, including pharmaceutical company support, are acknowledged in the Contribution
2. Any commercial or financial involvements that might present an appearance of a conflict of interest related to the Contribution are disclosed in the covering letter accompanying the Contribution and all such potential conflicts of interest will be discussed with the Editor as to whether disclosure of this information with the published Contribution is to be made in the Journal.
3. I have not signed an agreement with any sponsor of the research reported in the Contribution that prevents me from publishing both positive and negative results or that forbids me from publishing this research without the prior approval of the sponsor.
4. I have checked in the manuscript submission guidelines whether this Journal requires a Declaration of Conflicting Interests and complied with the requirements specified where such a policy exists.
It is not expected that the details of financial arrangements should be disclosed. If the Journal does require a Declaration of Conflicting Interests and no conflicts of interest are declared, the following will be printed with your article: 'None Declared'.

Termination

The Proprieter and SAGE, together in their sole, absolute discretion, may determine that the Contribution should not be published in the Journal. If in the rare circumstance the decision is made not to publish the Contribution after accepting it for publication, then all rights in the Contribution granted to the Proprieter shall revert to you and this Agreement shall be of no further force and effect, and neither you nor the Proprieter nor SAGE will have any obligation to the other with respect to the Contribution.

Supplemental Material

Supplemental Material includes all material related to the Contribution, but not considered part of the Contribution, provided to SAGE by you as the Contributor. Supplemental Material may include but is not limited to datasets, audio-visual interviews including podcasts (audio only) and vodcasts (audio and visual), appendices, and additional text, charts, figures, illustrations, photographs, computer graphics, and film footage. Your grant of a non-exclusive license for these materials to SAGE in no way restricts re-publication of Supplemental Material by you or anyone authorized by you.

Counterparts; Facsimile

This Agreement may be executed in counterparts each of which shall be deemed the original, all of which together shall constitute one and the same Agreement. A faxed copy or other electronic copy shall be deemed as an original.

Electronic Signature Authorization

This transaction may be conducted by electronic means and the parties authorize that their electronic signatures act as their legal signatures of this Agreement. This Agreement will be considered signed by a party when his/her/its electronic signature is transmitted. Such signature shall be treated in all respects as having the same effect as an original handwritten signature. (You are not required to conduct this transaction by electronic means or use an electronic signature, but if you do so, then you hereby give your authorization pursuant to this paragraph.)

Modification; Entire Agreement; Severability

No amendment or modification of any provision of this Agreement shall be valid or binding unless made in writing and signed by all parties. This Agreement constitutes the entire agreement between the parties with respect to its subject matter, and supersedes all prior and contemporaneous agreements, understandings and representations. The invalidity or unenforceability of any particular provision of this Agreement shall not affect the other provisions, and this Agreement shall be construed in all respects as if any invalid or unenforceable provision were omitted.

Governing Law; Arbitration

This Agreement shall be deemed to be a contract made in England and shall be construed and applied in all respects in accordance with English law and the parties submit and agree to the jurisdiction of the English courts.

If any difference shall arise between you and SAGE touching the meaning of this Agreement or the rights and liabilities of the parties thereto, the same shall be referred to the arbitration of two persons (one to be named by each party) or their mutually agreed umpire, in accordance with the provision of the England Arbitration Act 1996 or any amending or substituted statute for the time being in force.
Your rights as author

- You may do whatever you wish with the version of the article you submitted to the journal – version 1.
- You may not post the accepted version (version 2) of the article on your own personal website, your department’s website, the repository of your institution, the repository of another institution or a subject repository, until 12 months after first publication of the article in the journal.
- Once the article has been accepted for publication, you may use the accepted article (version 2) for your own teaching needs or to supply on an individual basis to research colleagues, provided that such supply is not for commercial purposes.
- You may use the accepted article (version 2) in a book you write or edit any time after publication in the journal.
- You may not post the published article (version 3) on any website or in any repository without permission from SAGE.
- When posting or re-using the article please provide a link to the appropriate DOI for the published version of the article on SAGE Journals (http://online.sagepub.com).

All commercial or any other re-use of the published article should be referred to SAGE. More information can be found at: https://uk.sagepub.com/en-gb/sa/journals-permissions

When posting or re-using the article, you should provide a link/URL from the article posted to the SAGE Journals Online site where the article is published: http://online.sagepub.com and please make the following acknowledgment: ‘The final, definitive version of this paper has been published in <journal>, Vol/Issue, Month/Year by SAGE Publications Ltd, All rights reserved. © [PROPRIETOR]

The Proprietor and SAGE’s use of the work

You have assigned copyright in your article to the Proprietor. This helps us to ensure adequate protection against infringement of copyright protected material through breach of copyright or piracy anywhere in the world. It also ensures that requests by third parties to reprint or reproduce a contribution, or part of it in any format, are handled efficiently in accordance with our general policy which encourages dissemination of knowledge inside the framework of copyright.

Where practicable, we advise third parties to inform you of their request to re-use your material. This does not apply to blanket arrangements covering the Journal as a whole. Please keep our mailing list up to date with your institutional or business address changes to help us to do this. Inadvertent failure to inform you will not constitute a material breach of this Agreement.

Terms of the Agreement page 4 of 5
Your responsibilities as author: inclusion of other copyright material

SAGE is sympathetic to the needs of scholars to include other copyright material, and is happy to provide guidance on this. Responsibility for obtaining permission to use any other copyright material rests with you as the author of the Contribution.

If your Contribution includes material which is not your copyright, you are responsible for submitting with your manuscript the written permission from those who control copyright in that material to include it and reproduce it within your Contribution. In most cases this will be the publisher of the work. As the Journal is available in both print and electronic media and may be translated or archived, this permission needs to be for all media in all languages in perpetuity. You are responsible for the payment of any permission fees.

Fair Dealing information for your reference:

Fair Dealing provisions under UK copyright law and/or the Fair Use provisions under US law for use of material in review, and/or other International Copyright Laws allow for the limited use of third party copyright materials in particular circumstances, without the requirement to obtain permission as above.

The term ‘fair dealing’ is not defined in UK legislation itself but should be viewed from a qualitative as well as a quantitative perspective. There are no set rules which cover what is or is not fair dealing. For guidance:

- Fair dealing can only apply to material used for specific purposes including those of criticism and review and news reporting and incidental use.

- Permission should always be sought where reproduction could reasonably be construed as competing with the sale of the original source and/or where the amount of copying is substantial.

- Whether you are including material with permission, or on the basis that it falls under ‘fair dealing’ or ‘fair use’, you must include acknowledgement of the copyright holder and original publication of the material.

If you are in doubt, please ask for advice from SAGE or the journal editor.