3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides

Yuzheng Guo¹, Dameng Liu², John Robertson¹

¹Department of Engineering, Cambridge University, Cambridge CB2 1PZ, United Kingdom

²State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

The transition metal dichalcogenides (TMDs) are two-dimensional layered solids with van der Waals bonding between layers. We calculate their Schottky barrier heights (SBHs) using supercell models and density functional theory. It is found that the SBHs without defects are quite strongly pinned, with a pinning factor S of about S=0.3, a similar value for both top and edge contact geometries. This arises because there is direct bonding between the contact metal atoms and the TMD chalcogen atoms, for both top and edge contact geometries, despite the weak interlayer bonding in the isolated materials. The Schottky barriers largely follow the metal induced gap state (MIGS) model, like those of three-dimensional semiconductors, despite the bonding in the TMDs being largely constrained within the layers. The pinning energies are found to be lower in the gap for edge contact geometries than for top contact geometries, which might be used to obtain p-type contacts on MoS₂.
The transition metal dichalcogenides (TMDs) (MX$_2$, where M=Mo/W; X=S/Se/Te) are valuable two-dimensional systems, which unlike graphene are semiconductors with a band gap and so are useful for field effect transistors (FETs). They are particularly useful because they make ultra-thin body devices and are suitable for end of the roadmap logic devices such as tunnel FETs (TFETs). The carrier mobilities of TMDs are reasonably high, but it is known experimentally that their device performances tend to be limited by their contact resistance. It appears that most contacts possess Schottky barriers and are not ohmic.

There is a desire to control the Schottky barrier heights (SBHs) by varying the contact metal so as to try to minimize contact resistance. Due to the van der Waals inter-layer bonding, it might be expected that the contact metal is also weakly bonded to the MX$_2$ layer, so that the SBH would vary strongly with contact metal work function, and the Schottky barrier might approach the Schottky limit of weak pinning. This would allow the contact properties to be easily controlled just by varying the metal work function. In practice, this seems not to occur; the SBH seems to be quite strongly pinned. The SBH also seems to depend quite strongly on process conditions, indicating the presence of process-induced defects. Furthermore, the contact Fermi energy is generally pinned in the upper half of the band gap in MoS$_2$, which favors n-type devices. As bipolar devices are desirable for some applications, it is useful to know if these are possible for MoS$_2$ itself using high work function electrodes, or if different TMDs are needed for p-type devices.

A better understanding of the Schottky barriers in TMDs is desirable. Fermi level pinning arises from the presence of interface gap states in the TMD which can generally be either due to intrinsic states or to defect states. The least pinning occurs in the defect-free case. There have
been previous calculations of ideal, defect-free SBs for TMDs21-26, but less extensive than those given here. Here, we provide a comprehensive calculation of Schottky barrier heights of four TMDs with twelve metals (Sc, Mg, Al, Ti, Cr, Mo, Ru, Co, Ni, Pd, Pt, MoO\textsubscript{3}) covering a wide range of work functions, for both on-top and edge contact geometries. We show that the defect-free SBHs in fact follow the metal induced gap state (MIGS) model27-31 that applies to three-dimensional semiconductors, so that relatively strong Fermi level pinning is expected even for defect-free interfaces. Any defects that do form will then cause additional pinning and lower the S value. This insight provides a framework to understand TMD contacts as a whole.

Method

Here, the electronic structure of metal contacts on TMDs is studied directly using density functional theory (DFT) calculations on supercells containing layers of metal and a monolayer of TMD or metal on a block of TMD layers representing the bulk TMD. We use supercells with TMD, metal and no vacuum. We use 6 layers of TMD to represent the bulk TMD, as this is large enough for its gap to be within 0.05 eV of the bulk value32. We choose six layers of metal in the face-centered cubic or the body-centered cubic structure. For most metals, the (111) face of the metal is placed on a hexagonal 2x2 supercell of the TMD, and the metal supercell lattice constant is forced to match the TMD cell lattice constant (Fig 1a-c). The metal is allowed to relax perpendicular to the layers, to conserve its volume, which is important because the atomic volume is the main factor determining a metal’s work function33. For most metals, the lattice mismatch is under 6%, but test calculations with other mismatches in supercells with up to 8x8 lateral cells (0.5% lattice mismatch) were carried out to test the stability of our results. Generally, no symmetry is applied within the supercell, as this allows the contact metal atoms to relax
around the MX$_2$ atoms. For the Sc case, the Sc atom is much larger and a 1x1 Sc lattice fits on a 2x2 MX$_2$ supercell. However, here we fix the symmetry for the case of Sc, to stop a reaction between Sc and the MoS$_2$ which leads to Sc sulfide formation, and which we want to avoid. We also include MoO$_3$:MoS$_2$ interfaces to study a high work function case. Here, we use models with a 4x5 supercell of MoS$_2$ for a good lattice match.

The electronic structure is calculated using the CASTEP plane wave DFT code34 with the electronic interaction modeled by the PBE style generalized gradient approximation, ultrasoft pseudopotentials and without spin-orbit coupling (not yet included in CASTEP). A cutoff energy of 480 eV converges the total energy to less than 0.01 eV per atom. The DFT errors for van der Waals bonding are corrected using the Grimme35,36 scheme. The screened exchange (SX) hybrid functional37 is used to correct the band gap error of DFT where necessary. Hybrid functionals correct well the band gap error for 3D and bulk 2D semiconductors. But they under-estimate the quasi-particle gap of monolayer 2D semiconductors because of the large exciton energies38,39 in these poorly screened systems.

The (p-type) Schottky barrier height is the energy difference between the valence band maximum (VBM) and the metal Fermi level, E_f. In practice, this can be difficult to extract from the interface band structures or local density of states because of a strong hybridization between the metal states and the TMD states22. We therefore use a reference energy method, in which the Mo 4s or W 5s semi-core level is used as a reference level in the supercell system to derive the metal E_f and the VBM energies from this reference level, and thus the SBH is derived as the difference between these two values. This is the theoretical analogue of Kraut’s40 method in photoemission.

Results and Discussion
Fig. 2 plots the calculated values of the SBHs for monolayer (ML) and bulk MoS$_2$ against the metal work functions. We used 11 metals to cover a wide range of work functions from Sc (3.5 eV) to Pt (5.65 eV), and we also included MoO$_3$ at 6.6 eV. The experimental work function values are taken from Michaelson41. The SBHs are seen to follow a linear dependence quite closely, despite the different metal reactivities,

$$\phi_p = E_0 + S(\Phi_M - E_0)$$ \hspace{1cm} (1)

Here, E_0 is a reference energy of the gap states that pin the Fermi energies at the SBH. If the pinning is due to intrinsic states such as MIGS, then E_0 would be the charge neutrality level (CNL). The CNL is the energy up to which the MIGS are filled on a neutral surface. The slope $S=d\phi_p/d\Phi_M$ is the pinning factor. It varies between $S=1$ for unpinned interfaces (Schottky limit) to $S=0$ for strongly pinned interfaces (Bardeen limit)28,29. S can be related for the general case to the density of interface gap states that cause the pinning, N, by42

$$S = \frac{1}{1 + \frac{N\delta e^2}{\varepsilon\varepsilon_0}}$$ \hspace{1cm} (2)

where δ is the decay length of these states and $\varepsilon\varepsilon_0$ is the dielectric constant around the interface. Thus, S varies inversely with N, and a large N gives a small S.

In order to display the SBH results for different TMDs, or the bulk and monolayer cases on the same diagrams, we align the bands by their CNLs27,28 and express the barrier heights with respect to the isotropically averaged CNLs. The CNLs are calculated from the band energies of the isolated semiconductors30, using the SX band energies to avoid the band gap error (Table 1).
In Fig. 2, we see that the slope S has a similar value for both the monolayer ($S=0.28$) and bulk ($S=0.33$) cases. The value of $S=0.28$ for a monolayer compares to previous calculated values of $S \approx 0.3$ by Kang et al25, and by Gong et al22. This value of $S \approx 0.3$ indicates moderate Fermi level pinning. It compares to an experimental value of $S=0.1$ found by Das et al11, indicating strong pinning. From Eqn. (2), this stronger pinning than the MIGS model must arise from the presence of extra gap states, and we argue elsewhere43,44 that these states are due to defects as proposed experimentally18.

We next consider the edge contact geometry. Here, the metal layer bonds directly to the MX_2 planes. In this geometry, the metals bond directly to the TMD layers via covalent bonds. This geometry is the same as for contacts on three-dimensional semiconductors, so that strong pinning can be expected. The benefits of edge contacts were recently noted for graphene45, where they greatly increase the effective mobilities. We consider only the monolayer case. There are three possible edge contact geometries for MX_2 as shown in Fig 1(d-f); the non-polar armchair interface where the metal bonds to both Mo and S sites, the zigzag S-terminated interface where the metal bonds to S sites, and the zigzag Mo-terminated interface where the metal bonds to Mo sites.

Fig 3(a) shows the calculated p-type SBHs for these three cases for monolayer MoS\textsubscript{2}, referenced to the VBM, and including the SBH values for the top-contact geometry for reference. A notable result is that the slopes S are very similar for all three edge contact cases, and also very similar to that for the top contact case. The similar S values emphasize that the same degree of pinning occurs in each case, which from (2) implies a similar density of gap states is causing the pinning in each case. It suggests that the bonding is quite similar in both cases, as discussed below.
The second notable result is that the SBH value is similar for the three different edge contact geometries, despite the very different bonding types, with unlike or like atom bonds. The typical cause of a shift in barrier heights is the presence of an interfacial dipole layer for the polar interfaces46. The absence of a significant shift suggests that the Mo-S bonding is not very polar, and that any dipole is small. Indeed, we calculate a Mulliken charge for MoS\textsubscript{2} of \(+0.30\) e for Mo and \(-0.15\) e for S, indicating that MoS\textsubscript{2} is not very ionic.

A third result is that the p-type SBH is \(~0.7\) eV lower for edge contacts than for top contacts. As the previous result showed that any dipole layers due to polar bonding are small, we argue that barrier height shift between top and edge contacts is due to the anisotropy of the bonding and crystal field effects. The CNL is the branch point energy of the complex band structure of the semiconductor, where the integral \(G(E)\) over the density of band states \(N(E')\) is zero30,

\[
G_i(E) = \int_{E_0}^{E_\infty} \frac{N(E')dE'}{E-E'} = 0 \tag{3}
\]

This integral is formally taken from \(-\infty\) to \(+\infty\), as in Tersoff27. In practice, it is taken over the energy range of the sulfur 2p states and Mo 4d states, which are the upper 7 valence bands and lower 4 conduction bands30. The density \(N\) can be further decomposed into angular orbitals, which can take the bonding directional dependence into account.

The integral (3) is single valued for the case of isotropic semiconductors, such as the cubic semiconductors27,30. On the other hand, the intra-layer bonding in TMDs is quite anisotropic, so that the partial density of states differs quite considerably for the states of \(a_1\) symmetry bonding along the \(z\) direction (relevant to top contacts) to those of \(e\) symmetry bonding along the \(x\), \(y\) direction47 (relevant to edge contacts). This is seen in Fig 3(b). We see that the upper valence
band of MoS$_2$, which is uniquely filled for the trigonal biprism geometry, contains no Mo d$_{xz}$ and d$_{yz}$ states. The Mo states of d$_{z^2}$, d$_{x^2-y^2}$ and d$_{xy}$ symmetry form peaks directly on either side of the band gap, and so their average energy lies near midgap. On the other hand, the Mo states of d$_{xz}$ and d$_{yz}$ symmetry form density of states peaks away from the gap on the valence band side, so their average is displaced to lower energies, as also seen in ref 47. Thus, the CNL of a_1 states, relevant to top contacts, lies at about 0.7 eV higher energy than the CNL of the e symmetry states, relevant to edge contacts (Fig 3b). This accounts for the higher average barrier heights for top contacts. In practical terms, it suggests that more p-type contacts can be implemented for MoS$_2$ by using the edge contact geometry.

We now extend the SBH calculations for top-contacts to other TMDs such as monolayer MoSe$_2$, MoTe$_2$ and WS$_2$ to consider the chemical trends. The same range of metals is used. Fig 4 shows the calculated barrier heights. We see that the calculated pinning factors lie in a similar range. We find that the SBHs on WS$_2$ have a similar trend of SBH values as in MoS$_2$, except that the SBHs of MoSe$_2$, MoTe$_2$ and WS$_2$ are shifted lower in the gap.

We can derive a fitted value of the CNL for top contact on monolayer MoS$_2$ from Fig 3a as 1.45 eV above the valence band. This assumes an ionization potential (IP) of 5.98 eV for ML MoS$_2$, derived from the experimental IP of bulk MoS$_2$ of 5.47 from Jaegermann et al48, allowing for the VB shift with layer number. The fitted CNL value is within 0.05 eV of the calculated value in right margin of Fig 3a.

Monch28 noted that the pinning factors of different 3D semiconductors obeyed an empirical relationship

$$S = \frac{1}{1 + 0.1(\varepsilon_s - 1)^2} \quad (4)$$
where ε_∞ is the optical dielectric constant. The pinning factor for MoTe$_2$ is lower than in MoS$_2$ because of its narrower band gap and larger ε_∞ value, according to (4).

Fig. 5 shows that the experimental SBH values of 3D semiconductors follow this dependence (4) quite well. Taking the optical dielectric constants of TMDs from the literature49, we can plot the S versus ε_∞ in Fig. 5 according to eq (4). The data points follow relationship (4) reasonably closely but lie slightly below the 3D line. The slope is quite similar. It is interesting to see that old experimental data points for the 2D GaS-GaTe series of Kurtin50 have a similar slope to the 3D semiconductors.

The combination of experimental data for 3D semiconductors, our calculated S values for TMDs, and previous data for the GaS 2D semiconductors suggest that all three families follow a similar model, the MIGS model. However, for a given ε_∞, the $(1/S) - 1$ value is shifted lower for the 2D GaS family and the 2D TMDs, corresponding to a lower net density of MIGS (N) in equation (2).

We now explain why the TMDs tend to follow the MIGS model, despite their two-dimensional bonding. It is because the top contact metal atoms strongly bond to the TMDs, and the contact metal to chalcogen bonds are as short as in the edge contacts. The bond lengths between contact metals and the S sites of MoS$_2$ are shown in Fig 6(a). The intra-layer Mo-S bond length is 2.41 Å. The bond lengths for top contacts cover a range, due to the lower symmetry. For the shortest distance, the bond length is the same as for the edge contacts, Fig 6(a). Thus, there is mostly strong bonding between the contact metal atoms and the S atoms. It is not van der Waals bonding. Interestingly, the presence of top contact bonds does not disrupt the intra-layer M-X bonds of the MoS$_2$ or WS$_2$ layer, because MoS$_2$ and WS$_2$ are both strongly bonded systems with a large heat of formation44, Mo and W being at the center of the transition metal series. The
second point is that the chalcogens are third or higher row elements and their atoms can over-coordinate without affecting the interlayer bonding of MoS$_2$. They are not like C atoms in graphene. Thus, the pinning factors, the similarity of top and edge contacts, and the contact atom bond lengths all support the idea that MX$_2$ SBHs follow the standard MIGS model. The MIGS states themselves can be seen as gap states decaying away from the electrode interface in Fig 6(b).

Experimentally, the preparation of contacts can lead to the creation of defects. These give rise to extra pinning as seen by the experiments of Das11 and McDonnell18. The effect of defects on SBHs in these systems has been studied theoretically by Liu et al43 and Guo et al51. The different SBH between top and edge contacts could also introduce a local variation of SBHs and might also account for the data of McDonnell18.

Finally, we considered MoO$_3$/MoS$_2$ contacts for the extremely high work function case. O-deficient MoO$_3$ is a degenerate n-type semiconductor with a work function of 6.6 eV50. Fig 7(a,b) shows the O-rich and non-polar MoO$_3$ faces. The non-polar face gives a SBH that falls on the trend line in Fig 2. The O-rich interface gives a much more p-type SBH, closer to the valence band, Fig 7c. Thus, MoO$_3$ electrode is a valuable method to give a hole contact, as found by experiment19. The introduction of O vacancies, moving from the O rich interface towards the non-polar interface leads to a large change in SBH.

In summary, the contact problem for 2D TMDs has been studied by detailed DFT calculations. A strong Fermi level pinning effect is found for all defect-free metal:TMD interfaces. The calculated Schottky barrier heights follow the standard MIGS model, despite van der Waals inter-layer bonding. The strong pinning occurs because the contact metal atoms are quite strongly bonded to the S atoms of MoS$_2$, even for top contacts, while not disturbing the intra-
layer Mo-S bonding. The Fermi level is pinned near the conduction band for MoS$_2$ and nearer midgap for other 2D TMDs. The pinning factor is 0.3 for MoS$_2$ and is lower for other 2D materials. This explains why most MoS$_2$ MOSFETs are n-type. Defects increase the pinning, and reduce the dependence of SBH on contact metal work function even further, and shift the pinning energy towards the anion vacancy defect level.

The authors acknowledge the financial support of EPSRC grant EP/J011592.
References

Table 1 Comparison of band gaps calculated by GGA and SX, and the isotropically averaged CNL values calculated from the SX bands.

<table>
<thead>
<tr>
<th></th>
<th>GGA</th>
<th>SX</th>
<th>Isotropic CNL calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS$_2$-ML</td>
<td>1.55</td>
<td>1.88</td>
<td>0.95</td>
</tr>
<tr>
<td>MoSe$_2$-ML</td>
<td>1.53</td>
<td>1.71</td>
<td>0.84</td>
</tr>
<tr>
<td>MoTe$_2$-ML</td>
<td>1.38</td>
<td>1.46</td>
<td>0.72</td>
</tr>
<tr>
<td>WS$_2$-ML</td>
<td>1.94</td>
<td>2.13</td>
<td>1.07</td>
</tr>
<tr>
<td>WSe$_2$-ML</td>
<td>1.64</td>
<td>1.82</td>
<td>0.73</td>
</tr>
<tr>
<td>WTe$_2$-ML</td>
<td>1.55</td>
<td>1.31</td>
<td>0.63</td>
</tr>
<tr>
<td>MoS$_2$-3D</td>
<td>0.97</td>
<td>1.3</td>
<td>0.70</td>
</tr>
<tr>
<td>MoSe$_2$-3D</td>
<td>0.95</td>
<td>1.16</td>
<td>0.43</td>
</tr>
<tr>
<td>MoTe$_2$-3D</td>
<td>0.78</td>
<td>1.01</td>
<td>0.33</td>
</tr>
<tr>
<td>WS$_2$-3D</td>
<td>1.17</td>
<td>1.44</td>
<td>0.88</td>
</tr>
<tr>
<td>WSe$_2$-3D</td>
<td>1.15</td>
<td>1.33</td>
<td>0.77</td>
</tr>
<tr>
<td>WTe$_2$-3D</td>
<td>1.01</td>
<td>1.07</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Figure captions

1. Bonding at (a) Ti-MoS₂, (b) Cr-MoS₂, (c) Ni-MoS₂ top contacts. Mo= cyan, S= yellow, metal blue/grey. Edge metal-MoS₂ contacts, top views. (d) non-polar armchair, (e) S-terminated zigzag, (f) and Mo terminated zigzag. Mo= cyan, S = yellow, metal = purple.

2. Comparison of calculated Schottky barrier heights for top contacts on bulk and monolayer MoS₂ in GGA, referenced to their charge neutrality levels. Monolayer data and band edges = red, bulk data and band edges = black.

3(a) Calculated p-type SBHs for the three edge-contacted ML MoS₂ interface, compared to the case of top-contacted ML MoS₂, referenced to valence band maximum. Note the similar pinning factors S for each case. (b) Calculated Mo d density of states separated into angular components, showing the different contributions to the bands.

4. Comparison of calculated p-type barrier heights for monolayer MoS₂, MoSe₂, MoTe₂ and WS₂ refered to their CNLs. Colors of data points, fit, and band edges for each compound.

5. Experimental values of pinning factors S for 3D semiconductors, for the 2D series GaS, GaSe and GaTe ref 49), and our calculated values of pinning factors for bulk MoS₂, MoSe₂, MoTe₂ and WS₂ plotted against optical dielectric constant.

6. (a) Comparison of contact metal – S bond lengths for top and edge contacts for various metals on MoS₂. (b) Partial density of states at MoS₂ layers away from a Ni/MoS₂ interface, showing the decay of the metal induced gap states.

7 (a,b) MoO₃ O-rich and non-polar interfaces with MoS₂. O=red, Mo= cyan, S= yellow. (c) Calculated Schottky barrier heights for O-rich and non-polar MoO₃ faces on monolayer MoS₂.
and WS₂, referred to VB edge. For MoS₂ we have also included the O-rich surface with O vacancy defect at the MoO₃ interface, labeled as V₀.
Fig. 1.
Figure 2
Figure 3
Fig. 4.
Fig. 5
Figure 6
Figure 7