The rise of technology in diabetes care. Not all that is new is necessarily better.

Abstract
Health-care technologies have brought many benefits to the medical profession and to patients. The introduction of the continuous subcutaneous insulin infusion (CSII) pump and continuous glucose monitoring (CGM) devices offers patients with Type 1 diabetes (T1D) the opportunity to optimise their blood glucose control and are increasingly being championed as a routine treatment approach for young people. However, the current evidence base does not convincingly support arguments for the generalized application of CSII and CGM into routine clinical practice. The ‘patient-medical device interface’ is clearly a complex paradigm, and central to its success is the degree of adherance, understanding and engagement demonstrated by the patient with the technology. The introduction CSII / CGM technologies into the daily routine care of the patient imposes both psychological and ‘time-effort’ burdens that many patients and families with T1D will find demanding. The current application of these devices cannot therefore be considered a panacea for the self-management of T1D, and raises a number of challenging problems, including those of a practical, health-economic and ethical nature that need to be fully resolved before it and other emerging technologies can be considered to have achieved this status.

Introduction
Health-care technologies have brought many benefits to the medical profession and to patients. Indeed, the rise of modern medicine has largely been founded on the introduction of innovative technologies, resulting in the more effective diagnosis and management of many medical conditions, with consequent improvements in patient quality of life and survival. However, these advancements in medical care have not been achieved without substantial cost to health-care systems and to society in general (1) (2). The increased use, and reliance, on technology has inevitably resulted in changes to how health-care is delivered, raising questions and concerns of an economic and ethical nature (3). Moreover, many of the technologies in medicine are widely used without good evidence of their safety and efficacy (4). There is also an assumption that ‘high tech’ equates to ‘high quality’ and to ‘high priority’ (5); a perspective that is frequently held by patients and the public, and which is often driven by a biased section of the health care profession and by an increasingly misinformed media. It is therefore not surprising that a general social myth
Pediatric Diabetes
pervades that stipulates that ‘new’ is better than ‘old’, ‘advanced’ better than ‘simple’ and that ‘more’ is better than ‘little’ (3).

The above issues are also pertinent to the field of children and young people’s diabetes, where, over the last two decades, there have been a plethora of technologies introduced into the market pace and into routine clinical practice. Prominent amongst these developments have been the introduction of the continuous subcutaneous insulin infusion (CSII) pump and continuous glucose monitoring (CGM) systems, devices that are increasingly being championed as a routine treatment approach for young people with Type 1 diabetes (T1D) by some clinicians and health-care organizations. However, the current evidence base does not convincingly support arguments for the generalized application of CSII and CGM into routine clinical practice; either from a clinical effectiveness point of view, nor from a health-economic and ethical perspective.

Clinical effectiveness - the inconclusive evidence base

Whilst diabetes related technologies such as CSII or CGM (either alone or in combination as ‘sensor augmented pump’ (SAP)) are now widely used in many countries, their effectiveness in clinical practice has not been consistently demonstrated, and neither is it clear which patients are most likely to benefit from it. It is generally accepted that comparisons and assessment of clinical effectiveness of medical technologies are determined on an ‘evidence based’ basis, relying on data from appropriately designed, and sufficiently powered, randomized controlled trials, rather from than observational studies. However such an evidence base for CSII and CGM based technologies is rather limited, particularly when studies relevant to children and adolescence with diabetes are specifically considered.

When looked at individually, most recent observational studies and published RCTs in young people appear to report either small, or modest, improvements in diabetes related outcomes, when CSII or CGM are compared against ‘conventional’ approaches to diabetes management with multiple daily injection (MDI) regimens (6-9) or with self-monitoring of blood glucose (SMBG) using portable blood glucose measuring devices (10-12). However, when the data from these studies are combined and subjected to a systematic review and meta-analyses (SRMA) the same conclusions are not always supported. The SRMA is viewed as more powerful and influential in terms of evidence gathering and decision-making, with data from RCTs given priority over observational
Pediatric Diabetes studies. In a meta-analysis of RCTs conducted in patients with T1D (n 15) between 2002 and 2008, CSII was associated with a slightly lower glycated haemoglobin index ((HbA1c) random-effects weighted mean difference, 0.2%; 95% confidence interval (CI), 0.3, 0.10), but had no significant effect on either severe or nocturnal hypoglycemia rates, when compared to MDI therapy (13). Similar findings have also been reported in a recent meta-analysis performed by Yeh and colleagues, who pooled together the data from 33 RCTs performed in children or adults with T1D; which compared CSII vs MDI (n 19), CGM vs SMBG (n 10) or SAP vs MDI + SMBG (n 4) (14). Their results showed that for patients with T1D, CSII was no different to MDI therapy in terms of glycemic control; with similar reductions in HbA1c levels and hypoglycaemia rates observed between the treatment groups. A separate sub-analysis of those RCTs specific to children and adolescent with T1D (n 7) did not differ in its conclusions. However, in contrast to these observations there was moderate to high strength evidence from RCTs comparing the effectiveness of CGM against SMBG to suggest that CGM technology might confer some benefit in terms of improved glycemic control (14); but this effect, was dependent on CGM adherence rates and was highest in those studies were ‘sensor’ adherence was sustained at levels of 60% or above (14).

Whilst comparisons of glycemic indices such as HbA1c and hypoglycemia rates are usually the primary outcomes of most RCTs, evaluation of patient quality of life (QoL) measures are increasingly considered to be of equal importance. It is frequently assumed that use of the latest technology is associated with greater satisfaction and contentment from a user perspective when compared to conventional treatment methods or use of older technology (3). However the evidence base derived from the diabetes setting does not convincingly support this common misconception. Low strength evidence from SRMAs suggest that CSII might confer improved QoL on patients when compared to MDI therapy, whereas CGM does not appear to have any significant impact on patient QoL when compared to standard methods of blood glucose monitoring (14).

However, it is important to acknowledge that even these SRMAs need to be interpreted with caution. Firstly, their conclusions may be already out of date given the rapidly evolving, new improved devices being introduce into the market. Secondly, SRMAs are themselves significantly limited by the poor design quality of the trials included in the analyses. The biggest problem is due to the risk of bias resulting from the lack of blinding (participants; clinicians and data assessors) and from the incomplete data and selective
Pediatric Diabetes

outcome reporting, which is evident in most of the published trials. For these reasons doubt has been cast on whether SRMAs are relevant for clinical and economic decision making purposes as they may be significantly underestimating the utility and effectiveness of current CSII / CGM systems (15, 16). Alternate ‘decision-making’ based approaches to meta-analyses (i.e. through the pre-selection of specific clinical trials based on their intended use) have been proposed, yet even when this technique is applied the evidence in favour of CSII against conventional MDI is only modestly increased and is of weak statistical significance (16).

Observational studies, particularly those utilizing large national / multinational databases, should not be discounted. Whilst these types of studies also present a risk of bias, the data collected is invariably from over a longer period of time and is more representative of a ‘typical’ or ‘standard’ clinic population. Studies by the Hvidoere International Study Group, found no association between glycaemic control and type of insulin regimen, whether analyzed at an individual patient or by center of care level (17). Other national, multi-center, databases have reported inconsistent and contrasting observations regarding the relationship between type / mode of insulin delivery regime and outcome measures such as HbA1c or hypoglycaemia frequency (18) (19) (20). A recent combined analysis of data from 3 large national databases suggests that CSII confers improved glycaemic control compared to MDI, yet closer scrutiny of the data reveals that this result was almost entirely due to the contribution from one of the databases; representing a population with traditionally higher background mean HbA1c values (21). This contrasts with the data from the other two databases included in this study, where little or no difference in glycaemic control was observed between CSII and MDI patients (21). Indeed in keeping with this, other observational and RCT studies demonstrate that the greatest effective of either CSII is seen in those patients with poorest glycemic control (i.e. highest HbA1c or severest / most frequent hypoglycaemia) at baseline (7, 22, 23). Furthermore, under clinical trial conditions the greatest benefit of technology use is seen in those patients who adhere strictly and engage frequently with treatment regimen requirements. CGM use, either independently or directly linked with CSII (as sensor augmented pump (SAP)), delivers its greatest benefits in terms of improved HbA1c and hypoglycaemia frequency in those patients who actively used CGM monitoring as instructed. Several studies document a clear relationship between improved HbA1c and reduced hypoglycaemia frequency with the number of days per week of use (24) (25) (26), with greatest benefits seen in those who wear and engage with their devices for at least 60 to 70% of the time (14). However,
most observational studies reveal that less than half of young people using CGM use their
device for greater than 70% of the time, and that after one year from onset 41% of patients
had discontinued using it (25, 27). This suggests that under free-living conditions issues
regarding the acceptability and utility of CGM appears to be a major hurdle limiting the
effectiveness of this type of technology. This observation also emphasises the point that
whatever the type of intervention, diabetes management is primarily dependent on patient
behaviour and acceptability (28) and that technologies such as CSII and CGM impose an
increased degree of burden and responsibility that inevitably many patients and families
struggle to accept and to adhere to over the longer term. Whilst patients perceive diabetes
technology use to have many positive attributes it is clear that many negative attitudes
also co-exist (29-31).

Cost effectiveness - the health economic uncertainties
The costs of diabetes care have continued to rise inexorably year on year for most
developed countries (32), with a substantial proportion of this attributable to patients with
Type 1 diabetes and to the increasing use of technologies such as CSII and CGM.
Assessment of the cost - benefit of these technologies has therefore become a priority for
healthcare providers (33) and for the medical insurance industry, who increasingly are
seeking best value for money. Relatively few studies have been published to date, and
whilst some recent reports have predicted favourable health-economic outcomes
associated with the medium to long-term use of CSII, CGM or SAP when compared to
standard treatment approaches (based on a incremental cost effectiveness ratio threshold
of $50,000 per quality-adjusted life years) (34-37), others have clearly not (38, 39). This
inconsistency in cost-effectiveness forecasting is not a surprise given the different
analytical models used and the projected health-care assumptions made within them.
Moreover, given the poor quality of clinical trials, and the heterogeneity of the study
populations included, meaningful prediction of the cost - benefit impacts of these
interventions are far from certain. Furthermore, the relevance of these health-economic
analyses to children and young people with diabetes is also questionable due to the fact
that the background risk factor and disease progression assumptions employed in these
models are based from observations made in adult populations. Therefore the long-term
cost-benefits of these technologies to young patients with T1D over other treatment
approaches remains significantly in doubt, and further questions whether the current trend
for increased introduction of CSII and CGM into routine practice is justified or represents
‘good value for money’.
Affordability and Access - the financial and ethical constraints

As health care costs continue to increase can we afford to pay for the widespread usage of these technologies? Despite the lack of good evidence, and because of the increasing demand by clinicians and patients, many health care organizations and providers have been compelled to produce guidance as to who should have access to these technologies (40, 41). Yet in most cases this guidance is too general, variably interpreted, and have ‘selection’ criteria that are not specific enough to identify those patients and families most likely to benefit. Furthermore many patients transitioning to the more expensive technologies may be already achieving good glycemic control with standard treatment approaches. As a result many patients starting or transferring to CSII or CGM fail to optimize their diabetes control beyond that achieved with cheaper conventional treatment regimens, or are unable to sustain initial improvements over the longer term (42) (27). Given the relatively high costs of these technologies this scenario does not represent ‘good value for money’ and raises a critical ‘affordability’ issue that our increasingly financially stretched health care systems cannot ignore. Whether accessed via publicly funded or via ‘private’ medical insurance based systems, diabetes technology is set to impose a significant financial burden on the individual and on society in general; contributing to health care cost inflation and draining much needed resources from other areas of care. This financial burden will inevitably result in inequities in access to technology: with those health care providers / systems who can afford not to ration their supplies, and those individuals who have the means of paying, gaining access to these devices over and above those who cannot.

Barriers to patient access to technology also exist for other, more complex, discriminatory reasons. There is good evidence that were CSII / CGM should be readily available, that some patients who would benefit from using these devices do not access them. Clinician preference / center bias for other treatment options may be one explanation for this, but several studies have revealed that diabetes technology uptake is significantly lower in patients from certain racial/ethnic groups, and may be independently influenced by other socio-economic (e.g. medical insurance status; household income) and cultural factors (21, 43-45). Understanding the reasons for these barriers and overcoming them will be important for insuring that patients from low income and from minority groups are not discriminated against and are not denied the benefits that technology could bring to some of them.
Pediatric Diabetes

Conclusions
Given the current state of the art, and the evidence base available, the assertion that relatively complex and costly medical devices should be generalized to the typical patient with T1D, delivering ‘superior’ or ‘better’ outcomes over the long-term compared to conventional insulin therapy approaches, seems misplaced and unfounded. This is not to say that in the future that diabetes related technologies such as CSII and CGM (and more advanced integrated systems) will not achieve this status, as there is not doubt that technology will evolve and improve, and may even become cheaper and therefore ‘cost-effective’, with time. Before this goal is achieved significant barriers will need to be overcome that not only improves the technical and clinical efficacy of these devices but also reduces the significant practical and psychological burdens that the current generation of devices impose. In the meantime, as we advance toward that goal, diabetes technologies such as CSII and CGM should be targeted to those patients who stand to obtain clear benefit over and above that could be achieved with conventional treatment approaches. This also means removing the discriminatory barriers that currently seems to disadvantage patients belonging to certain ethnic and socio-economic groups. As success (in glycaemic terms at least) is highly dependent on human behavior (29, 30), and on the degree and durability of engagement with technology over the longer term, it makes sense to develop appropriate tools and resources to rationalize the selection (and indeed de-selection) of patients / families for technology use (46). Furthermore, clinicians must remain pragmatic and flexible in their approach to insulin therapy and must not loose sight of the alternate approaches available to them. New technologies must also be thoroughly and critically assessed with the same rigor as drugs are (47), and health-care workers and patients must be equally informed about the uncertainties of their benefits as well as their ‘hyped’ gains (3). Ultimately treatment regimens should always be individualized and diabetes care teams should be focused on achieving glycaemic targets by whatever means best suitable to the patient.
Pediatric Diabetes

References

41. NICE. Diabetes (Type 1 and Type 2) in Children and Young People: Diagnosis and Management. Diabetes (Type 1 and Type 2) in Children and Young People: Diagnosis and Management. National Institute for Health and Care Excellence (UK) Copyright (c) 2015 National Collaborating Centre for Women's and Children's Health., London, 2015.