Transplantation

Conversion from calcineurin to mammalian target of rapamycin inhibitors in liver transplantation: a meta-analysis of randomised controlled trials

--Manuscript Draft--

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>TPA-2015-0625R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Conversion from calcineurin to mammalian target of rapamycin inhibitors in liver transplantation: a meta-analysis of randomised controlled trials</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Section/Category:</td>
<td>Clinical Science</td>
</tr>
<tr>
<td>Corresponding Author's Institution:</td>
<td>Addenbrooke's Hospital</td>
</tr>
<tr>
<td>First Author:</td>
<td>Thomas E Glover, MBBChir</td>
</tr>
<tr>
<td>Corresponding Author E-Mail:</td>
<td>kosmo@doctors.org.uk</td>
</tr>
<tr>
<td>Manuscript Classifications:</td>
<td>Clinical Transplantation (Adult); Liver/Hepatic; Immunosuppression (Clinical and Experimental); Immunosuppressive drugs - toxicities</td>
</tr>
</tbody>
</table>

Additional Information:

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting of Randomized Clinical Trials follows the CONSORT statement: http://www.consort-statement.org (if applicable).</td>
<td>N/A</td>
</tr>
<tr>
<td>If your manuscript reports a clinical trial, the name of the trial registry and the registration number/identifier of the trial is included on the title page (if applicable).</td>
<td>N/A</td>
</tr>
<tr>
<td>You must disclose funding received for this work from any of the following organizations:</td>
<td>Other</td>
</tr>
<tr>
<td>If Other. Please specify: as follow-up to "You must disclose funding received for this work from any of the following organizations:</td>
<td>NIHR</td>
</tr>
<tr>
<td>Individuals cited approve all acknowledgments, personal communications, and unpublished observations</td>
<td>Yes</td>
</tr>
<tr>
<td>In submitting this form as corresponding author, I confirm that each author agrees with the points checked above and has participated sufficiently in the intellectual content, the analysis of data, if applicable, and the writing of the manuscript to take public responsibility for it. Each author has reviewed the manuscript, believes it represents valid work, and approves it for submission. Moreover, should the Editors request the data upon which the manuscript is based, the authors shall produce it.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Do you have color illustrations? No

If you wish to be notified when your article publishes ahead of print, you may provide your Twitter handle to be included in journal tweets about your manuscript.

All procedures and studies involving human subjects have been carried out according to the ethical guidelines outlined by The Transplantation Society
http://www.tts.org/index.php?option=com_content&view=article&id=11&Itemid=14 and have involved no commercial transactions or other unethical practices in obtaining donor organs.

Reporting of all human and animal studies conforms to the following:

RETAINED RIGHTS: Except for copyright, other proprietary rights related to the Work (e.g., patent or other rights to any process or procedure) shall be retained by the author. To reproduce any text, figures, tables, or illustrations from this Work in future works of their own, the author must obtain written permission from Wolters Kluwer Health, Inc. ("WKH").

ORIGINALITY: Each author warrants that his or her submission to the Work is original, does not infringe upon, violate, or misappropriate any copyright or other intellectual property rights, or any other proprietary right, contract or other right or interest of any third party, and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published nor shall be submitted for publication elsewhere while under consideration by this Publication.

AUTHORSHIP RESPONSIBILITY: Each author warrants that he or she has participated sufficiently in the intellectual content, the analysis of data, if applicable, and the writing of the Work to take public responsibility for it. Each has reviewed the final version of the Work, believes it represents valid work, and approves it for publication. Moreover, should the editors of the Publication request the data upon which the work is based, they shall produce it.
PREPRINTS: Upon acceptance of the article for publication, each author warrants that he/she will promptly remove any prior versions of this Work (normally a preprint) that may have been posted to an electronic server.

DISCLAIMER: Each author warrants that this Work contains no libelous or unlawful statements and does not infringe or violate the publicity or privacy rights of any third party, libel or slander any third party, contain any scandalous, obscene, or negligently prepared information, or infringe or violate any other personal or proprietary right of others. Each author warrants that the Work does not contain any fraudulent, plagiarized or incorrectly attributed material. Each author warrants that all statements contained in the Work purporting to be facts are true, and any formula or instruction contained in the Work will not, if followed accurately, cause any injury, illness, or damage to the user. If excerpts (e.g., text, figures, tables, illustrations, or audio/video files) from copyrighted works are included, a written release will be secured by the author prior to submission, and credit to the original publication will be properly acknowledged. Each author further warrants that he or she has obtained, prior to submission, written releases from patients whose names or likenesses are submitted as part of the Work. Should the Editor or WKH request copies of such written releases, the author shall provide them in a timely manner.

DISCLOSURES/CONFLICT OF INTEREST
Each author must identify any financial interests or affiliations with institutions, organizations, or companies relevant to the manuscript by completing the form below. Additionally, any financial associations involving a spouse, partner or children must be disclosed as well.

Note: Some sections below come from the ICMJE Uniform Disclosure Form for Potential Conflicts of Interest at http://www.icmje.org/downloads/coi_disclosure.pdf (dated July 2010).

Did you or your institution at any time receive payment or support in kind for any aspect of the submitted work (including No
but not limited to grants, consulting fee or honorarium, support for travel to meetings for the study or other purposes, fees for participation in review activities such as data monitoring boards, statistical analysis, end point committees, and the like, payment for writing or reviewing the manuscript, provision of writing assistance, medicines, equipment, or administrative support, etc...)?

Other: Did you or your institution at any time receive additional payments or support in kind for any aspect of the submitted work?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Please indicate whether you have financial relationships (regardless of amount of compensation) with entities. You should report relationships that were present during the 36 months prior to submission including board membership, consultancy, employment, expert testimony, grants/grants pending, payment for lectures including service on speakers bureaus, payment for manuscript preparation, patents (planned, pending or issued), royalties, payment for development of educational presentations, stock/stock options, travel/accommodations/meeting expenses unrelated to activities listed (for example, if you report a consultancy above there is no need to report travel related to that consultancy), etc.

Other (err on the side of full disclosure): Please indicate whether you have any additional financial relationships (regardless of amount of compensation) with entities. You should report relationships that were present during the 36 months prior to submission.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Other Relationships

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No other relationships/conditions/circumstances that present potential conflict of interest</td>
</tr>
</tbody>
</table>

AUTHOR’S OWN WORK: In consideration of WKH's publication of the Work, the author hereby transfers, assigns, and otherwise conveys all his/her copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to WKH. If WKH should decide for any reason not to publish the Work, WKH shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor WKH shall be under any

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I agree</td>
</tr>
</tbody>
</table>
further liability or obligation. Each author grants WKH the rights to use his or her name and biographical data (including professional affiliation) in the Work and in its or the journal's promotion. Notwithstanding the foregoing, this paragraph shall not apply, and any transfer made pursuant to this paragraph shall be null and void if (i) the Work has been accepted by WKH for publication, and (ii) the author chooses to have the Work published by WKH as an open access publication.

WORK MADE FOR HIRE: If this Work or any element thereof has been commissioned by another person or organization, or if it has been written as part of the duties of an employee, an authorized representative of the commissioning organization or employer must also sign this form stating his or her title in the organization.

GOVERNMENT EMPLOYEES: If the Work or a portion of it has been created in the course of any author's employment by the United States Government, check the "Government" box at the end of this form. A work prepared by a government employee as part of his or her official duties is called a "work of the U.S. Government" and is not subject to copyright. If it is not prepared as part of the employee's official duties, it may be subject to copyright.

INSTITUTIONAL REVIEW BOARD/ANIMAL CARE COMMITTEE APPROVAL: Each author warrants that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.

WARRANTIES: Each author warranty made in this form is for the benefit of WKH and the Editor; each author agrees to defend, indemnify, and hold harmless those parties for any breach of such warranties.

The journal will permit the author(s) to deposit for display a "final peer-reviewed manuscript" (the final manuscript after peer-review and acceptance for publication but prior to the publisher's copyediting, design, formatting, and other services) 12 months I agree
after publication of the final article on the author's personal web site, university's institutional repository or employer's intranet, subject to the following:

* You may only deposit the final peer-reviewed manuscript.

* You may not update the final peer-reviewed manuscript text or replace it with a proof or with the final published version.

* You may not include the final peer-reviewed manuscript or any other version of the article on any commercial site or in any repository owned or operated by any third party. For authors of articles based on research funded by the National Institutes of Health ("NIH"), Welcome Trust, Howard Hughes Medical Institute ("HHMI"), or other funding agency, see below for the services that WKH will provide on your behalf to comply with "Public Access Policy" guidelines.

* You may not display the final peer-reviewed manuscript until twelve months after publication of the final article.

* You must attach the following notice to the final peer-reviewed manuscript: "This is a non-final version of an article published in final form in (provide complete journal citation)".

* You shall provide a link in the final peer-reviewed manuscript to the journal website.

"Public Access Policy" Funding Disclosure

Please disclose below if you have received funding for research on which your article is based from any of the following organizations:

<table>
<thead>
<tr>
<th>Please select</th>
<th>Author's Own Work</th>
</tr>
</thead>
</table>

Any additional comments?

Compliance with RCUK and Wellcome Trust Open Access Policies

Both the Research Councils UK (RCUK) and the Wellcome Trust have adopted policies regarding Open Access to articles that have been funded by grants from the RCUK or the Wellcome Trust.
Trust. If either “Wellcome Trust” or “Research Councils UK (RCUK)” has been selected above, and
the authors of the applicable article choose to have the article published as an open access publication, the
following policies will apply:

* If the article is to be published pursuant to the “Gold” route of Open
 Access, both the RCUK and the
 Wellcome Trust require that WKH make
 the article freely available immediately
 pursuant to the Attribution 4.0
 Creative Commons License, currently
 found at
 http://creativecommons.org/licenses/by/4.0/legalcode
 (the “CC BY License”). The CC BY
 License is the most accommodating of the
 Creative Commons licenses and allows
 others to distribute, remix, tweak, and build upon the article, even
 commercially, as long as they
 credit the authors for the original creation.

* If the article is to be published pursuant to the “Green” route of Open
 Access, both the RCUK and the
 Wellcome Trust require that WKH make
 the article freely available within six
 months pursuant to the Attribution-
 NonCommerical 4.0 Creative Commons
 License, currently found at
 http://creativecommons.org/licenses/by-nc/4.0/legalcode (the “CC
 BY-NC License”). The CC BY-NC License
 allows others to remix, tweak,
 and build upon the article non-
 commercially, and although their new
 works must also acknowledge the authors
 for the original creation and
 be non-commercial, they don't have to
 license their derivative works on
 the same terms.

As a service to our authors, WKH will
identify the National Library of Medicine
(NLM) articles that require deposit
pursuant to the RCUK and Wellcome
Trust policies described in this section. This
Copyright Transfer Agreement provides the
mechanism for identifying such articles.

WKH will transmit the final peer-reviewed
manuscript of an article based on
research funded in whole or in part by
either RCUK or the Wellcome Trust to
Upon NIH request, it remains the legal responsibility of the author to confirm with NIH the provenance of his/her manuscript for purposes of deposit. Author will not deposit articles him/herself. Author will not alter the final peer-reviewed manuscript already transmitted to NIH.

With respect to the “Green” route of Open Access, author will not authorize the display of the final peer-reviewed manuscript prior to 6 months following publication of the final article.

Authors of articles that have been funded from grants from the RCUK or the Wellcome Trust are required to sign the WKH Open Access License Agreement prior to publication of the applicable article. Please contact the Editorial Office of the applicable journal to receive the Open Access License Agreement that is to be signed in connection with the publication of the article.

I am the person in question for this submission or otherwise have approval to complete this agreement.

CME/CE Disclosure

Each author must identify and disclose any financial associations involving a spouse, partner or children by completing the Family Disclosure question below, and whether any off-label uses or unapproved drugs or devices are discussed in his/her manuscript by completing the Off-Label Use/Unapproved Drugs or Products question below. In the event that the Work is published as a continuing education or continuing medical education article, this information will be provided to the accrediting body and may be included in the published article. When applicable, articles accepted for publication may need to comply with additional standards related to CME or CE accreditation. Please refer to guidelines for authors for details. WKH and its affiliates reserve the right to publish the manuscript as a continuing education article.

Family Disclosure

No other relationships/conditions/circumstances that present potential conflict of interest
<table>
<thead>
<tr>
<th>Author Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas E Glover, MBBChir</td>
</tr>
<tr>
<td>Christopher JE Watson, MD, FRCS</td>
</tr>
<tr>
<td>Paul Gibbs, FRCS</td>
</tr>
<tr>
<td>J Andrew Bradley, PhD, FMedSci</td>
</tr>
<tr>
<td>Evangelia E Ntzani, MD, PhD</td>
</tr>
<tr>
<td>Vasilis Kosmoliaptsis, M.D., Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context: Conversion to mammalian target of rapamycin inhibitors (mTORi) is often utilised in liver transplantation to overcome calcineurin inhibitor (CNI) nephrotoxicity but the evidence base for this approach is not well defined. Objective: To summarise the evidence, from randomised-clinical-trials (RCTs), for conversion from CNI to mTORi-based immunosuppression after liver transplantation. Data Sources: Databases and conference abstracts were searched up to August 2015. Study Selection: RCTs evaluating conversion from CNI to mTORi-based maintenance immunosuppression following adult liver transplantation. Data Extraction: Descriptive and quantitative information was extracted; summary mean difference (MD) and risk ratio (RR) estimates were synthesized under a random-effects model. Heterogeneity was assessed using the Q statistic and I². Data synthesis: Ten RCTs, with a total of 1,927 patients, met the final inclusion criteria. Patients converted to mTORi had significantly better renal function at 1 year following randomisation compared to patients remaining on CNI (MD: 7.48 mL/min/1.73m², 95%CI: 3.18-11.8). The risks of graft loss (RR: 0.77, 95%CI: 0.29-2.09, I²: 31%) and patient death (RR: 1.05, 95%CI: 0.63-1.73, I²: 0%) were similar for patients converted to mTORi and patients remaining on CNI. However, conversion to mTORi was associated with a higher risk of acute rejection (RR: 1.76, 95%CI: 1.33-2.34, I²: 0%) and study discontinuation due to adverse events (RR: 2.17, 95%CI: 1.38-3.44, I²: 63%) up to one year post-randomisation. Conclusions: Conversion from CNI to mTORi following liver transplantation is associated with improved renal function after one year but increases the risk of acute rejection and may be poorly tolerated.</td>
</tr>
</tbody>
</table>
Conversion from calcineurin to mammalian target of rapamycin inhibitors
in liver transplantation: a meta-analysis of randomised controlled trials

Thomas E Glover¹, Christopher JE Watson¹, Paul Gibbs¹, J Andrew Bradley¹, Evangelia E Ntzani²,³*, Vasilis Kosmoliaptsis¹*

¹Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK

²Evidence-based Medicine Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece

³Center for Evidence-Based Medicine, Department of Health Services, Policy and Practice, School of Public Health, Brown University, RI, USA

*EEN and VK are joint senior authors

Correspondence
Vasilis Kosmoliaptsis MD PhD FRCS
Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK
Tel: 01223 761337
Email: vk256@cam.ac.uk

Funding
The study was funded in part by the NIHR Cambridge Biomedical Research Centre.
Footnotes

Author Contributions

TEG: acquisition of data; analysis and interpretation of data; drafting of the manuscript; statistical analysis

CJEW: research design; analysis and interpretation of data; drafting of manuscript

PG: analysis and interpretation of data; drafting of manuscript

JAB: research design; analysis and interpretation of data; drafting of manuscript

EEN: research design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; statistical analysis; study supervision

VK: research design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; statistical analysis; study supervision

The authors report no conflicts of interest.

Thomas E Glover (teg30@cam.ac.uk), Christopher JE Watson (cjew2@cam.ac.uk), Paul Gibbs (pg244@cam.ac.uk), J Andrew Bradley (jab52@cam.ac.uk), Evangelia E Ntzani (entzani@cc.uoi.gr), Vasilis Kosmoliaptsis (vk256@cam.ac.uk)
List of abbreviations

1. CI: confidence intervals
2. CKD: Chronic Kidney Disease
3. **CKD-EPI: Chronic Kidney Disease - epidemiology**
4. CNI: Calcineurin Inhibitor
5. CrCl: Creatinine Clearance
6. EMBASE: Excerpta Medica Database
7. GFR: Glomerular Filtration Rate
8. ITT: Intention-to-Treat
9. MDRD: Modification of Diet in Renal Disease
10. mTORi: mammalian Target of Rapamycin inhibitor
11. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
12. RCT: Randomised Controlled Trial
13. RCSEng: Royal College of Surgeons of England
14. RR: Risk Ratio
15. SMD: standardised mean difference
Abstract

Context: Conversion to mammalian target of rapamycin inhibitors (mTORi) is often utilised in liver transplantation to overcome calcineurin inhibitor (CNI) nephrotoxicity but the evidence base for this approach is not well defined.

Objective: To summarise the evidence, from randomised-clinical-trials (RCTs), for conversion from CNI to mTORi-based immunosuppression after liver transplantation.

Data Sources: Databases and conference abstracts were searched up to August 2015.

Study Selection: RCTs evaluating conversion from CNI to mTORi-based maintenance immunosuppression following adult liver transplantation.

Data Extraction: Descriptive and quantitative information was extracted; summary mean difference (MD) and risk ratio (RR) estimates were synthesized under a random-effects model. Heterogeneity was assessed using the Q statistic and I^2.

Data synthesis: Ten RCTs, with a total of 1,927 patients, met the final inclusion criteria. Patients converted to mTORi had significantly better renal function at 1 year following randomisation compared to patients remaining on CNI (MD: 7.48 mL/min/1.73m², 95%CI: 3.18-11.8). The risks of graft loss (RR: 0.77, 95%CI: 0.29-2.09, I^2: 31%) and patient death (RR: 1.05, 95%CI: 0.63-1.73, I^2: 0%) were similar for patients converted to mTORi and patients remaining on CNI. However, conversion to mTORi was associated with a higher risk of acute rejection (RR: 1.76, 95%CI: 1.33-2.34, I^2: 0%) and study discontinuation due to adverse events (RR: 2.17, 95%CI: 1.38-3.44, I^2: 63%) up to one year post-randomisation.

Conclusions: Conversion from CNI to mTORi following liver transplantation is associated with improved renal function after one year but increases the risk of acute rejection and may be poorly tolerated.
Introduction

The calcineurin inhibitors (CNIs) tacrolimus and ciclosporin are the principal components of maintenance immunosuppressive therapy following orthotopic liver transplantation and have made a major contribution to current long term transplant outcomes with 5-year graft survival approaching 70% (1, 2). However, CNIs are associated with a number of potentially serious side effects including nephrotoxicity, diabetes, hypertension, and neurotoxicity that contribute to morbidity and mortality following transplantation. Renal impairment is a particular problem following liver transplantation, with 10-20% of recipients progressing to stage 4 or 5 chronic kidney disease within 5 years of transplantation, with CNI therapy being a major contributing factor (3-5).

Mammalian target of Rapamycin inhibitors (mTORi) are a distinct class of immunosuppressive agents that have a different mode of action to that of CNIs although they bind to the same intracellular immunophilin as tacrolimus, namely FKBP12. The mTORi/FKBP12 complex binds to and inhibits the TORC1 complex, inhibiting proliferation of many cell types, including lymphocytes (6). The mTORi include sirolimus and the more recently introduced sirolimus analogue, everolimus, designed with the aim of improving oral bioavailability (7). The side effect profile of mTORi is different to that of CNI and includes impaired wound healing, mouth ulcers, skin rashes, arthralgia, diabetes, hyperlipidaemia and pneumonitis (8). Importantly mTORi do not share the same nephrotoxicity as CNIs which makes them an attractive alternative to CNIs for maintenance therapy after liver transplantation; although they do cause glomerular disease in some patients resulting in marked proteinuria (9). De novo use of mTORi after liver transplantation is avoided because of concerns relating to hepatic artery thrombosis and poor wound healing (10). Interest has focussed, instead, on the delayed introduction of mTORi to allow reduction or elimination of CNIs to preserve or improve renal function while maintaining adequate levels of immunosuppression. A number of randomised controlled trials (RCTs) have examined the
potential benefits of introducing either sirolimus or everolimus after liver transplantation using a variety of protocols that differ with respect to the timing of conversion to mTORi, whether CNI are eliminated or reduced and in the level of baseline renal function at the time of mTORi introduction. Such studies have given conflicting results on the efficacy and side effect profile of mTORi, but have led to an increasing recognition that mTORi have a potentially important role to play in preserving renal function after liver transplantation.

We have undertaken a systematic review and meta-analysis of randomised trials to assess the evidence base for conversion from CNI to mTORi-based maintenance immunosuppression after liver transplantation with a particular focus on preservation of renal function.
METHODS

Eligibility criteria, information sources and search strategy

A systematic literature search was performed using PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and the Transplant Library at the Royal College of Surgeons of England (RCSEng) up to August 2015 using a predefined algorithm (Table S1) without language restrictions. Abstracts from conferences were searched for relevant publications using the algorithm implemented in the Transplant Library of the RCSEng (11). References included in pertinent systematic reviews were also screened.

All randomized controlled trials evaluating conversion from CNI to mTORi-based maintenance immunosuppression in adult isolated liver transplantation were considered. Studies were deemed eligible if they evaluated abrupt or slow conversion to mTORi, in first or subsequent liver transplant recipients, irrespective of time after transplantation and baseline renal function. Studies that were considered eligible included those where the intervention (conversion to mTORi) and reference (CNI continuation) groups received additional maintenance immunosuppression comprising antimetabolites (mycophenolate or azathioprine) and steroids. Observational and non-controlled studies, studies evaluating paediatric patients and animal studies were excluded (Figure 1). Detailed methodology on data extraction, on data synthesis and statistical analyses, and on assessment of trial methodological quality is presented as supplementary information. Analyses were performed in RevMan 5 (Cochrane Collaboration, 2010) and STATA 10 (STATA Corp., College Station, IL). All p-values are two tailed. The study is reported according to the PRISMA checklist (12).
Results

A total of 1,382 potentially relevant citations were identified (PubMed: 636, EMBASE: 508, Cochrane Central Register of Controlled Trials: 130, Centre for Evidence in Transplantation Library: 108). Following review of titles and abstracts and removal of duplicate publications, 42 potentially eligible articles were identified. Ten trials, including a total of 1,927 randomised patients, were selected for inclusion in the meta-analysis (Figure 1). Two randomised controlled trials were excluded: the study reported by Herlenius et al because it evaluated conversion from CNI to either sirolimus or mycophenolate mofetil without inclusion of a reference arm (13); and the study reported by Asrani et al because it evaluated *de novo* rather than delayed use of sirolimus, and reduction rather than cessation of tacrolimus (10).

All included studies were designed to evaluate the safety and efficacy of conversion from CNI to mTORi immunosuppression in adult liver transplant patients. Study design characteristics, immunosuppression regimens and reported outcomes for each trial are summarized in Table S2. The median sample size was 112 participants (IQR 41-271) and the median treatment duration was 12 months (min 12 months, max 72 months). All studies reported renal function, acute rejection, graft loss, patient survival and adverse events. Renal function was measured by radionuclide method in one trial (14) and estimated using Cockcroft-Gault (15-20), Chronic Kidney Disease Epidemiology Collaboration (21, 22) and MDRD formulae (23, 24) in the remaining studies (25, 26). Early conversion to mTORi (defined as ≤6 months after transplantation) was evaluated in 4 studies (16, 17, 21, 25), whereas 6 studies evaluated late conversion to mTORi (14, 15, 18-20, 26). Five studies, including 943 participants, examined conversion from CNI to everolimus (17, 20, 21, 25, 26), whereas the remaining 5 studies, including 984 participants, evaluated conversion from CNI to sirolimus (14-16, 18, 19). There was variation in baseline renal function, both within and
between studies, but the majority of patients had mild or moderate renal dysfunction at the time of randomisation (CKD stage II or III).

The risk of bias was evaluated using the Cochrane’s Collaboration tool (Table S3). Allocation sequence generation was described in 9 studies, but allocation concealment was clearly reported only by Watson et al (14). Eight studies were open-label, whereas 2 studies did not report blinding parameters. Attrition was adequately reported in all studies and was generally low (<20%) and intention-to-treat analyses were reported in all trials. Table S5 shows the proportion of patients that failed to be randomised or discontinued the allocated treatment, for each study. At the meta-analysis level, there was no indication of small study effects, based on either funnel plot asymmetry or the Begg-Mazumbar statistic; we acknowledge that this conclusion is based on a limited number of studies.

Assessed outcomes and evidence synthesis

Renal function

Renal function at 1 year following randomisation was reported by all included studies. Because of variability in the reporting of this outcome (six studies reported GFR estimates whereas four studies reported CrCl measurements/estimates; Table S2), the standardised mean difference (SMD) between the mTORi and the CNI groups was calculated. In the ITT analysis, patients converted to mTORi had significantly better renal function at 1 year following randomisation compared to patients remaining on CNI (SMD: 0.40, 95% CI: 0.17-0.63, I²: 78%; Figure 2A). Transformation of SMD into the GFR scale corresponded to a mean difference of 7.48 mL/min/1.73m² (95% CI: 3.18-11.8) between the two groups. When studies were stratified according to time of conversion to mTORi (early versus late conversion, defined as ≤6 months after transplantation), there was a non-statistically significant trend towards a more favourable GFR difference between mTORi and CNI groups in the early conversion trials (SMD: 0.53, 95% CI: 0.28-0.77, I²: 69%) compared to late
conversion trials (SMD: 0.22, 95% CI: -0.06 to 0.49, I^2: 52%), with reduction in heterogeneity only for late conversion trials (Figure 2B). Trial stratification according to mTORi type (sirolimus versus everolimus) showed no significant subgroup differences (SMD: 0.44, 95% CI: 0.16-0.71, I^2: 70% for everolimus conversion trials versus SMD: 0.37, 95% CI: -0.04 to 0.77, I^2: 81% for sirolimus conversion trials; Figure 2C).

To further address heterogeneity for renal function at 1 year following conversion to mTORi, sensitivity analyses were performed excluding 2 trials evaluating CNI minimisation in the reference group (20, 25) or steroid elimination regimens (25). Overall, there was no change in heterogeneity compared to the original meta-analysis (SMD: 0.35, 95% CI: 0.12-0.58, I^2: 74% for GFR at 1 year). A recent study indicated that estimation of GFR using the MDRD formula may lead to incorrect interpretation of renal function in liver transplant patients; we have, therefore, performed additional sensitivity analysis excluding 2 trials that reported GFR estimates based on MDRD (25, 26) and a similar effect to the original meta-analysis was observed (SMD: 0.31, 95% CI: 0.09-0.53, I^2: 74%). Moreover, meta-regression analyses accounting for baseline GFR or CrCl estimates, showed that baseline renal function had no significant effect on the difference in renal function between mTORi and CNI groups at 1 year following randomisation (data not shown).

Acute rejection

All included studies contributed to the meta-analysis evaluating the association between conversion from CNI to mTORi based immunosuppression and acute liver allograft rejection (Table S4). All studies used the definition of biopsy proven acute rejection (BPAR) except those by Eisenberger et al and Shenoy et al (15, 19). Conversion to mTORi compared to CNI maintenance was associated with higher risk of reported acute rejection up to one year post-randomisation (RR: 1.76, 95% CI: 1.33-2.34, I^2: 0%; Figure 3). Analysis based on a definition of BPAR showed similar findings (RR: 1.77, 95% CI: 1.33-2.36, I^2: 0% for patients converted to mTORi). There was a higher risk of acute rejection following conversion to
mTORi both in sirolimus conversion trials (RR: 2.19, 95% CI: 1.36-3.54, I²: 0%) and everolimus conversion trials (RR: 1.57, 95% CI: 1.10-2.23, I²: 0%) and overall, subgroup analyses did not reveal statistically significant differences between subgroups (data not shown).

Liver allograft loss and mortality

Three studies contributed to the meta-analysis evaluating the association between conversion from CNI to mTORi based immunosuppression and liver allograft loss (16, 17, 21), whereas in the remaining seven studies none of the liver allografts were lost within the first year post-randomisation (graft loss was censored for patient death with the exception of the Spare the Nephron study that reported a composite outcome of death and graft loss) (14, 15, 18-20, 25, 26). Patients converted to mTORi had similar risk of allograft loss compared to patients remaining on CNI (RR: 0.77, 95% CI: 0.29-2.09, I²: 31%; excluding the Spare the Nephron trial did not change the RR significantly but eliminated heterogeneity). Overall, 12 patients in the mTORi group and 17 patients in the CNI group lost their graft within the first year post-randomisation. There were no reported allograft losses in late conversion trials but the data were too sparse to allow for sensitivity or meta-regression analyses.

All studies reported mortality up to 1 year post-randomisation. Overall, 38 (3.6%) patients in the mTORi group and 29 (3.4%) patients in the CNI group died within the first year post-randomisation. There were no differences in mortality between patients converted to mTORi and those remaining on CNI (RR: 1.05, 95% CI: 0.63-1.73, I²: 0%). Risk ratios and heterogeneity were similar when trials were stratified according to time of conversion to mTORi or according to mTORi type.

Adverse events

Adverse events were reported by all studies included in the meta-analysis, although there were differences between studies in the nature and incidence of the reported adverse events.
The risk of study discontinuation due to adverse events up to 1 year post-randomisation was greater in patients converted to mTORi than in patients remaining on CNI (RR: 2.17, 95% CI: 1.38-3.44, I^2: 63%; Figure 4). Stratification by time of conversion showed that the risk of study discontinuation following conversion to mTORi was statistically significantly higher in late conversion trials (RR: 5.02, 95% CI: 2.91-8.68, I^2: 0%) compared to early conversion trials (RR: 1.57, 95% CI: 1.14-2.15, I^2: 42%). Risk ratios and heterogeneity did not change significantly if trials were stratified according to type of mTORi. Sensitivity analyses showed similar risk ratios for the overall and subgroup analyses but eliminated heterogeneity for early conversion trials (RR: 1.71, 95% CI: 1.34-2.17, I^2: 0%) and everolimus conversion trials (RR: 1.98, 95% CI: 1.45-2.71, I^2: 0%).

Reported adverse events along with risk ratio estimates and 95% CI up to one year post-randomisation are summarised in Figure 5. Compared to patients on CNI continuation, those converted to mTORi had a higher risk of hyperlipidaemia (4.7% and 26.5% respectively; RR: 4.81, 95% CI: 3.06-7.55, I^2: 0%); hypercholesterolaemia (4.9% and 22.8% respectively; RR: 4.18, 95% CI: 1.79-9.75, I^2: 57%); requirement for new statin therapy (7.4% and 16.1% respectively; RR: 10.18, 95% CI: 4.26-24.33, I^2: 0%); proteinuria (1.0% and 4.1% respectively; RR: 3.19, 95% CI: 1.40-7.28, I^2: 0%); and oedema (9.0% and 20.1% respectively; RR: 2.08, 95% CI: 1.58-2.74, I^2: 0%). There was a non-statistically significant trend towards higher risk of infections in the mTORi conversion group (47.4%, compared to 38.0% of patients maintained on CNI; RR: 1.18, 95% CI: 0.98-1.43, I^2: 52%). Patients converted to mTORi had a lower risk of requiring renal replacement therapy (RR: 0.48, 95% CI: 0.21-1.11, I^2: 19%) that did not reach statistical significance. Heterogeneity was significant for studies reporting hypercholesterolaemia and this was eliminated for the three studies (17, 20, 26) evaluating conversion to everolimus (RR: 2.51, 95% CI: 1.39-4.54, I^2: 0%). Similarly, subgroup
analyses for infections showed similar risk ratios to the pooled analysis but heterogeneity was eliminated for everolimus and late conversion trials (data not shown).

Longer term outcomes

Longer term renal function (>1 year) was reported by only two of the included trials. The H2304 study showed that patients converted to mTORi had significantly higher renal function at 3 years following randomisation compared to patients remaining on CNI (ITT analysis, MD: 17.0 mL/min/1.73m², 95% CI: 13.5-20.6) (27); a similar trend was reported for an ‘on-treatment’ population by the PROTECT study at 3 years follow up (MD: 6.9 mL/min/1.73m², 95% CI: 1.7-12.3) (28). No differences were reported between patients remaining on CNI and those converted to mTORi in the three studies reporting allograft loss (18, 27, 28) and the two studies reporting patient death (27, 28) 3 years following randomisation (data not shown).
Discussion

The findings from this systematic review and meta-analysis of RCTs show that conversion from CNI to mTORi-based maintenance immunosuppression after liver transplantation is associated with a significant improvement in renal function at 12 months following conversion. Graft and patient survival were equivalent in patients converted to mTORi and those remaining on CNI, but recipients converted to mTORi had a higher risk of acute graft rejection. Moreover, discontinuation due to adverse events was more commonly observed in patients converted to mTORi.

A previous meta-analysis published in 2010 evaluated the use of sirolimus in patients with renal impairment after liver transplantation and concluded that conversion to mTORi was associated with a non-significant trend towards improved renal function (29). While several observational studies were assessed, only three RCTs (including a total of 86 patients) were available at that time for inclusion in the analysis (14, 15, 19). In the present study a further seven RCTs (2 evaluating sirolimus and 5 evaluating everolimus) were available for analysis (giving a total of 1,927 patients) enabling a more robust, direction-consistent estimate of the effect of CNI discontinuation on renal function. Given the observed marked heterogeneity (I²: 78%) for trials reporting on the effect of mTORi conversion on renal function, caution is required with respect to the magnitude of the overall estimate for this outcome. Subgroup and sensitivity analyses reinforced the overall conclusion that conversion to mTORi was associated with improved renal function but did not eliminate heterogeneity. The present analysis showed that conversion to mTORi did not have an adverse effect on graft or patient survival compared to CNI continuation and minimal heterogeneity was observed for these outcomes.

It has been reported that conversion to mTORi and discontinuation of CNI without adequate antibody induction therapy increases the risk of acute rejection (17, 21). The present meta-analysis showed that conversion to mTORi is associated with a higher risk of acute rejection.
although the cumulative sample size cannot support a well-powered subgroup analysis.

Nevertheless in one of the studies the study arm examining conversion to everolimus and
CNI elimination was discontinued because of a high incidence of biopsy proven acute
rejection (21). While the present analysis did not show a difference in acute rejection between
trials evaluating abrupt and tapered discontinuation of CNI, it has been suggested that tapered
discontinuation is preferable, especially when mTORi conversion is introduced within the
first few months of liver transplantation (17). CNI minimisation is an alternative strategy to
CNI withdrawal after conversion to mTORi and may allow preservation of renal function
without compromising efficacy of immunosuppression (30). Two of the RCTs included in the
present analysis adopted this approach, one of which reported superior GFR in the mTORi
group whereas the other showed equivalent renal function after one year (20, 25). Experience
in renal transplantation suggests that there is enhanced nephrotoxicity when CNIs are
combined with mTORi (31-33).

There is currently a trend towards early (≤6 months after transplantation) rather than late
conversion to mTORi after liver transplantation before residual kidney function deteriorates
and chronic kidney disease is established. Three out of the five most recent RCTs included in
the present analysis evaluated early conversion to everolimus (the earliest being conversion at
10 days) and included recipients with relatively high baseline estimated GFR. Our meta-
analysis showed that early versus late conversion to mTORi was associated with a trend
towards better renal function at twelve months; however, our analysis was underpowered to
exhibit a robust subgroup difference and, therefore, the evidence for the optimal time for
conversion to mTORi is inconclusive. Nevertheless, it is notable that every one of the early
conversion trials showed a statistically significant improvement in renal function 12 months
after conversion to mTORi, whereas five out of the six trials evaluating late conversion to
mTORi did not show a statistically significant difference in 12-month renal function between
the CNI and mTORi groups.
Mammalian target of rapamycin inhibitors are associated with a number of well described side effects that may limit the ability of patients to tolerate them (8, 34, 35). Our analysis confirmed this, indicating that the risk of study discontinuation following mTORi conversion was twice that of patients maintained on CNIs and trial withdrawal due to adverse events was more likely after late conversion to mTORi. Withdrawal rates in patients converted to mTORi varied widely between RCTs from only 5% to as high as 55%. Overall, there was a substantial risk of adverse events following conversion to mTORi and this represents a significant barrier for their utility in preserving renal function after liver transplantation.

Specifically, our analyses showed that conversion to mTORi is associated with an increased risk of hyperlipidaemia and hypercholesterolaemia, although the requirement for new statin therapy was not different to patients maintained on CNI. Limited data from retrospective studies suggested a beneficial effect of conversion to mTORi on management of hypertension (36), however, there was insufficient high-quality evidence to examine this association in our study. Conversion to mTORi also increased the risk of dermatological adverse events and mouth ulceration, but the rate of infections was similar to that of patients receiving CNI maintenance. Pooled analysis from two early and one late conversion trials did not confirm the known association of mTORi with poor wound healing. A significant drawback of treatment with mTORi is the development of proteinuria which may reach the nephrotic range, especially following exposure to high sirolimus concentrations (37); our analysis confirmed this association, although the reported proteinuria levels were usually mild or less often moderate whereas development of nephrotic range proteinuria was rare and occurred in the presence of significant pre-existing renal injury.

The majority of RCTs included in our meta-analysis were not powered to detect a difference in graft or patient survival and given the high rate of study withdrawals reported, the true effect of mTORi conversion on graft and patient outcomes is still to some extent uncertain. This is especially the case for long-term outcomes, given that only three of the ten studies...
included in the meta-analysis reported outcomes beyond one year. Evidence from retrospective analyses suggest that sirolimus immunosuppression is associated with a significant graft and patient survival benefit after liver transplantation for hepatocellular carcinoma (38-40); only two trials examined outcomes following mTORi conversion in this subgroup of patients and, compared to patients maintained on CNI, reported a non-significant reduction in disease recurrence in the everolimus group (25) and significantly better graft/patient survival in the sirolimus group (16). Both studies, however, were underpowered to examine outcomes in patients undergoing liver transplantation for hepatocellular carcinoma and strong evidence on the utility of mTORi in this subgroup of patients is still lacking. Similarly, the evidence from cohort studies regarding the effect of mTORi on hepatitis C recurrence and fibrosis progression in patients undergoing liver transplantation for hepatitis C related cirrhosis is equivocal (36, 41, 42); although the study by Villamil et al (26) suggested that conversion to everolimus reduces liver fibrosis progression, further large randomised-controlled trials are needed to provide clear evidence as to optimal immunosuppression in this group of patients.

It is important to acknowledge some additional limitations of the present meta-analysis. Publication and language bias may be operating in any clinical field; however, the comprehensive search algorithm utilised herein, including the Cochrane Controlled Trials Registry and the Transplant Library at the RCSEng that are built from multiple large databases, enhanced the detection of smaller trials and we would, therefore, expect that incorporation of any unpublished evidence would not substantially alter the overall status of the evidence. This notion was supported by the observed consistency of the reported summary effects in small studies. Moreover, although randomised evidence is protected from selection bias, performance and detection bias could be potential confounders. An approach towards addressing this would be to exclude open-label studies. Unfortunately, all included studies were, by necessity, open-label trials and, therefore, trial exclusion was not an
available option. Finally, a number of study parameters could potentially interfere with our study results. The inclusion of trials examining conversion to either sirolimus or everolimus utilising heterogeneous treatment algorithms; the variation in baseline renal function between studies; and the distinct patient characteristics within individual trials might have contributed to the observed heterogeneity. Nevertheless, the all-inclusiveness and randomised nature of the analysed evidence limits potential sources of bias; alternative research designs, such as individual patient data meta-analysis, which may further address confounding lie beyond the scope of the present study.

In conclusion, the currently available randomised evidence indicates that conversion from CNI to mTORi following liver transplantation is associated with improved renal function at 12 months and this benefit is likely to be more pronounced when conversion occurs early after transplantation before irreversible kidney injury is established. In deciding the optimal immunosuppression strategy for their patients, clinicians should be alert to the increased risk of acute rejection following conversion to mTORi which is, however, treatable and has no effect on short-term graft and patient outcomes. Conversion to mTORi, especially when attempted late after transplantation, may be poorly tolerated and careful patient selection is important to maximise the benefits of this intervention. No firm conclusions can be drawn about the relative efficacy of different mTORi, and the relative advantages of CNI minimisation versus discontinuation.
References

Figure Legends

Figure 1. Flowchart of included studies

Abbreviations: EMBASE, Excerpta Medica Database; CNI, Calcineurin Inhibitor; mTOR, mammalian Target of Rapamycin; RCT, randomised controlled trial.

Figure 2A: Mammalian target of rapamycin inhibitor versus calcineurin inhibitor; mean GFR up to 1 year post-randomisation

Figure 2B: Mammalian target of rapamycin inhibitor versus calcineurin inhibitor; mean GFR up to 1 year post-randomisation stratified by time post-transplant

Figure 2C: Mammalian target of rapamycin inhibitor versus calcineurin inhibitor; mean GFR up to 1 year post-randomisation stratified by type of mammalian target of rapamycin inhibitor sirolimus and everolimus

Abbreviations: GFR, Glomerular Filtration Rate; CNI, Calcineurin Inhibitor; mTOR, mammalian Target of Rapamycin

5 patients in the mTOR inhibitor arm and 4 patients in the CNI arm of this study were excluded from the initial randomised population (by the authors of the study) because of missing post-baseline GFR data (forming the intention-to-treat population)

1 patient randomised to receive mTOR inhibitor was excluded from the intention-to-treat analysis (by the authors of the study) because they did not receive the allocated intervention after randomisation

Figure 3. Mammalian target of rapamycin inhibitor versus calcineurin inhibitor; any rejection up to 1 year post-randomisation

Abbreviations: CNI, Calcineurin Inhibitor; mTOR, mammalian Target of Rapamycin
*5 patients in the mTOR inhibitor arm and 4 patients in the CNI arm of this study were excluded from the initial randomised population (by the authors of the study) because of missing post-baseline GFR data (forming the intention-to-treat population)

**1 patient randomised to receive mTOR inhibitor was excluded from the intention-to-treat analysis (by the authors of the study) because they did not receive the allocated intervention after randomisation

** Figure 4. Mammalian target of rapamycin inhibitor (mTORi) versus calcineurin inhibitor (CNI); adverse events up to 1 year post-randomisation leading to study discontinuation

The safety population analysis is reported (all eligible studies reported adverse events for the safety population defined as the total number of patients that received at least one dose of the allocated intervention). Abbreviations: CNI, Calcineurin Inhibitor; mTOR, mammalian Target of Rapamycin

*4 patients in each arm of this study were excluded from the initial randomised population (by the authors of the study) because they did not receive the allocated intervention after randomisation

**1 patient in the mTOR inhibitor arm and 2 patients in the CNI arm of this study were excluded from the initial randomised population (by the authors of the study) because they did not receive the allocated intervention after randomisation

***1 patient in the mTOR inhibitor arm did not receive the allocated intervention after randomisation but was included in the safety population of the CNI arm (by the authors of the study) because the patient had been receiving CNI prior to randomisation

** Figure 5. Pooled risk ratio estimates and 95% confidence intervals for adverse events up to 1 year following conversion to mammalian target of rapamycin inhibitor
*All studies reported graft loss censored for patient death apart from the Spare the Nephron study that reported a composite outcome of death and graft loss; excluding the Spare the Nephron trial did not change the risk ratio for graft loss significantly.
Conference proceedings 2000-2015 (21 eligible abstracts, no additional studies identified)
Contact Pharmaceutical Company
Contact corresponding authors

Title and Abstracts (1382)
PubMed (636)
Centre for Evidence in Transplantation Library (108)
EMBASE (508)
Cochrane Central Register of Controlled Trials (130)
All CNI search terms
All mTOR inhibitor search terms
All liver transplantation search terms
Includes non-English, through August 2015

Exclude 1340 articles:
Duplicates
Abstracts
Not liver transplant
Not RCTs

Full text review: 42 articles

Exclude 32 articles:
No CNI in control arm
CNI not fully eliminated
No mTOR inhibitor-based intervention
Extensions of trials

Appropriate for analysis: 10 articles

Included articles
10 Randomised Trials
1927 patients

Kappa = 0.83
94.4% agreement
Figure 2A

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>mTOR inhibitor</th>
<th>CNI</th>
<th>Weight</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdellah 2012</td>
<td>61.05</td>
<td>18.7</td>
<td>393</td>
<td>14.5%</td>
</tr>
<tr>
<td>de Simone 2009</td>
<td>53.8</td>
<td>12.8</td>
<td>72</td>
<td>12.7%</td>
</tr>
<tr>
<td>de Simone 2012</td>
<td>79.3</td>
<td>25.6</td>
<td>231</td>
<td>19.6%</td>
</tr>
<tr>
<td>Eisenberger 2009</td>
<td>63</td>
<td>25.8</td>
<td>8</td>
<td>12.8%</td>
</tr>
<tr>
<td>Masetti 2010</td>
<td>87.6</td>
<td>26.1</td>
<td>52</td>
<td>12.6%</td>
</tr>
<tr>
<td>PROTECT</td>
<td>80.3</td>
<td>26.4</td>
<td>96</td>
<td>24.5%</td>
</tr>
<tr>
<td>Shenoy 2007</td>
<td>72</td>
<td>27</td>
<td>20</td>
<td>22.0%</td>
</tr>
<tr>
<td>Spare The Nephron</td>
<td>78.6</td>
<td>27.6</td>
<td>148</td>
<td>28.02%</td>
</tr>
<tr>
<td>Villamil 2014</td>
<td>70.2</td>
<td>21.7</td>
<td>22</td>
<td>18.5%</td>
</tr>
<tr>
<td>Watson 2007</td>
<td>63.4</td>
<td>13.3</td>
<td>13</td>
<td>16.2%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1055</td>
<td>862</td>
<td>100.0%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: $\hat{\tau}^2 = 0.09$; $\chi^2 = 40.88$, df = 9 ($P < 0.00001$); $I^2 = 78$

Test for overall effect: $Z = 3.42$ ($P = 0.0006$)
Figure 2B

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>mTOR inhibitor</th>
<th>CNI</th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD Total</td>
<td>Mean SD Total</td>
<td>IV, Random, 95% CI</td>
</tr>
<tr>
<td>1.17.1 Early Conversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Simone 2012</td>
<td>79.3 25.6 231</td>
<td>69.7 20.8 243</td>
<td>0.41 [0.23, 0.59]</td>
</tr>
<tr>
<td>Masetti 2010</td>
<td>87.6 26.1 52</td>
<td>59.9 12.6 26</td>
<td>1.22 [0.71, 1.73]</td>
</tr>
<tr>
<td>PROTECT</td>
<td>80.3 26.4 96</td>
<td>72.1 24.5 98</td>
<td>0.32 [0.04, 0.60]</td>
</tr>
<tr>
<td>Spare The Nephron</td>
<td>78.6 27.61 148</td>
<td>64.7 28.02 145</td>
<td>0.50 [0.27, 0.73]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>527</td>
<td>512</td>
<td>49.3%</td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.04; Chi² = 9.72, df = 3 (P = 0.02); I² = 69%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 4.24 (P < 0.0001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.17.2 Late Conversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdelmalek 2012</td>
<td>61.05 18.7 393</td>
<td>62.63 19.6 214</td>
<td>-0.08 [-0.25, 0.08]</td>
</tr>
<tr>
<td>de Simone 2009</td>
<td>53.8 12.8 72</td>
<td>52.5 12.7 73</td>
<td>0.10 [-0.22, 0.43]</td>
</tr>
<tr>
<td>Eisenberger 2009</td>
<td>63 25 8</td>
<td>57.9 12 8</td>
<td>0.25 [-0.74, 1.23]</td>
</tr>
<tr>
<td>Sheny 2007</td>
<td>72 27 20</td>
<td>58 22 20</td>
<td>0.56 [-0.08, 1.19]</td>
</tr>
<tr>
<td>Villami 2014</td>
<td>70.2 21.7 22</td>
<td>62.6 18.5 21</td>
<td>0.37 [-0.23, 0.97]</td>
</tr>
<tr>
<td>Watson 2007</td>
<td>63.4 13.3 13</td>
<td>49.7 16.2 14</td>
<td>0.69 [0.10, 1.69]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>528</td>
<td>350</td>
<td>50.7%</td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.05; Chi² = 10.50, df = 5 (P = 0.06); I² = 52%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.53 (P = 0.13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1055</td>
<td>862</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.09; Chi² = 40.88, df = 9 (P < 0.00001); I² = 78%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.42 (P = 0.0006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi² = 2.75, df = 1 (P = 0.10), I² = 63.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2C

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>mTOR inhibitor</th>
<th></th>
<th>CNI</th>
<th></th>
<th></th>
<th>Std. Mean Difference</th>
<th></th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16.1 EVR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Simone 2009</td>
<td>53.8</td>
<td>12.8</td>
<td>72</td>
<td>52.5</td>
<td>12.7</td>
<td>73</td>
<td>11.9%</td>
<td>0.10 [-0.22, 0.43]</td>
</tr>
<tr>
<td>de Simone 2012</td>
<td>79.3</td>
<td>25.6</td>
<td>231</td>
<td>69.7</td>
<td>20.8</td>
<td>243</td>
<td>14.3%</td>
<td>0.41 [0.23, 0.59]</td>
</tr>
<tr>
<td>Masetti 2010</td>
<td>87.6</td>
<td>26.1</td>
<td>52</td>
<td>59.9</td>
<td>12.6</td>
<td>26</td>
<td>8.9%</td>
<td>1.22 [0.71, 1.73]</td>
</tr>
<tr>
<td>PROTECT</td>
<td>80.3</td>
<td>26.4</td>
<td>96</td>
<td>72.1</td>
<td>24.5</td>
<td>98</td>
<td>12.7%</td>
<td>0.32 [0.04, 0.60]</td>
</tr>
<tr>
<td>Villami 2014</td>
<td>70.2</td>
<td>21.7</td>
<td>22</td>
<td>62.6</td>
<td>18.5</td>
<td>21</td>
<td>7.5%</td>
<td>0.37 [-0.23, 0.97]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>473</td>
<td>461</td>
<td>55.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.06; Chi² = 13.37, df = 4 (P = 0.010); I² = 70%
Test for overall effect: Z = 3.13 (P = 0.002)

1.16.2 SRL

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>mTOR inhibitor</th>
<th></th>
<th>CNI</th>
<th></th>
<th></th>
<th>Std. Mean Difference</th>
<th></th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdelmalek 2012</td>
<td>61.05</td>
<td>18.7</td>
<td>393</td>
<td>62.63</td>
<td>19.6</td>
<td>214</td>
<td>14.5%</td>
<td>-0.08 [-0.25, 0.08]</td>
</tr>
<tr>
<td>Eisenberger 2009</td>
<td>63</td>
<td>25</td>
<td>8</td>
<td>57.9</td>
<td>12</td>
<td>8</td>
<td>4.1%</td>
<td>0.25 [-0.74, 1.23]</td>
</tr>
<tr>
<td>Shenoy 2007</td>
<td>72</td>
<td>27</td>
<td>20</td>
<td>58</td>
<td>22</td>
<td>20</td>
<td>7.2%</td>
<td>0.56 [-0.08, 1.19]</td>
</tr>
<tr>
<td>Spare The Nephron</td>
<td>78.6</td>
<td>27.61</td>
<td>148</td>
<td>64.7</td>
<td>28.02</td>
<td>145</td>
<td>13.5%</td>
<td>0.50 [0.27, 0.73]</td>
</tr>
<tr>
<td>Watson 2007</td>
<td>63.4</td>
<td>13.3</td>
<td>13</td>
<td>49.7</td>
<td>16.2</td>
<td>14</td>
<td>5.4%</td>
<td>0.89 [0.10, 1.69]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>582</td>
<td>401</td>
<td>44.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.14; Chi² = 21.09, df = 4 (P = 0.0003); I² = 81%
Test for overall effect: Z = 1.77 (P = 0.08)

Total (95% CI) | 1055 | 862 | 100.0% | | | | |

Heterogeneity: Tau² = 0.09; Chi² = 40.88, df = 9 (P < 0.0001); I² = 78%
Test for overall effect: Z = 3.42 (P = 0.0006)
Test for subgroup differences: Chi² = 0.08, df = 1 (P = 0.77), I² = 0%
Figure 3

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>mTOR inhibitor Events</th>
<th>Total Events</th>
<th>CNI Events</th>
<th>Total Events</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdelmalek 2012</td>
<td>46</td>
<td>393</td>
<td>13</td>
<td>214</td>
<td>23.0%</td>
<td>1.93 [1.07, 3.49]</td>
<td></td>
</tr>
<tr>
<td>de Simone 2009</td>
<td>3</td>
<td>72</td>
<td>1</td>
<td>73</td>
<td>1.6%</td>
<td>3.04 [0.32, 28.56]</td>
<td></td>
</tr>
<tr>
<td>de Simone 2012</td>
<td>46</td>
<td>231</td>
<td>26</td>
<td>243</td>
<td>40.6%</td>
<td>1.86 [1.19, 2.91]</td>
<td></td>
</tr>
<tr>
<td>Eisenberger 2009</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masetti 2010</td>
<td>3</td>
<td>52</td>
<td>2</td>
<td>26</td>
<td>2.7%</td>
<td>0.75 [0.13, 4.21]</td>
<td></td>
</tr>
<tr>
<td>PROTECT</td>
<td>17</td>
<td>96</td>
<td>15</td>
<td>98</td>
<td>20.0%</td>
<td>1.16 [0.61, 2.18]</td>
<td></td>
</tr>
<tr>
<td>Shenoy 2007</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>20</td>
<td>1.1%</td>
<td>1.00 [0.07, 14.90]</td>
<td></td>
</tr>
<tr>
<td>Spare The Nephron</td>
<td>18</td>
<td>148</td>
<td>6</td>
<td>145</td>
<td>10.1%</td>
<td>2.94 [1.20, 7.19]</td>
<td></td>
</tr>
<tr>
<td>Villamil 2014</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>21</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watson 2007</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>14</td>
<td>0.9%</td>
<td>5.36 [0.28, 102.12]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1055</td>
<td>862</td>
<td>100.0%</td>
<td></td>
<td></td>
<td>1.76 [1.33, 2.34]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>136</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.00$; $\text{Chi}^2 = 5.00$, df = 7 ($P = 0.66$); $I^2 = 0\%$

Test for overall effect: $Z = 3.91$ ($P < 0.0001$)
Figure 4

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>mTOR inhibitor Events</th>
<th>Total</th>
<th>CNI Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdelmalek 2012</td>
<td>94</td>
<td>389</td>
<td>11</td>
<td>210</td>
<td>16.7%</td>
<td>4.61 [2.53, 8.42]</td>
<td></td>
</tr>
<tr>
<td>de Simone 2009</td>
<td>16</td>
<td>72</td>
<td>0</td>
<td>73</td>
<td>2.4%</td>
<td>33.45 [2.04, 547.28]</td>
<td></td>
</tr>
<tr>
<td>de Simone 2012</td>
<td>60</td>
<td>230</td>
<td>34</td>
<td>241</td>
<td>20.2%</td>
<td>1.85 [1.26, 2.70]</td>
<td></td>
</tr>
<tr>
<td>Eisenberger 2009</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>2.0%</td>
<td>3.00 [0.14, 64.26]</td>
<td></td>
</tr>
<tr>
<td>Masetti 2010</td>
<td>13</td>
<td>52</td>
<td>8</td>
<td>26</td>
<td>14.5%</td>
<td>0.81 [0.39, 1.71]</td>
<td></td>
</tr>
<tr>
<td>PROTECT</td>
<td>30</td>
<td>101</td>
<td>14</td>
<td>102</td>
<td>17.2%</td>
<td>2.16 [1.22, 3.83]</td>
<td></td>
</tr>
<tr>
<td>Sheno 2007</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>1.9%</td>
<td>3.00 [0.13, 69.52]</td>
<td></td>
</tr>
<tr>
<td>Spare The Nephron</td>
<td>51</td>
<td>148</td>
<td>35</td>
<td>146</td>
<td>20.4%</td>
<td>1.44 [1.00, 2.07]</td>
<td></td>
</tr>
<tr>
<td>Villamil 2014</td>
<td>5</td>
<td>22</td>
<td>0</td>
<td>21</td>
<td>2.3%</td>
<td>10.52 [0.62, 179.27]</td>
<td></td>
</tr>
<tr>
<td>Watson 2007</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>14</td>
<td>2.2%</td>
<td>5.36 [0.28, 102.12]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI)

<table>
<thead>
<tr>
<th>Events</th>
<th>Total</th>
<th>Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1055</td>
<td>861</td>
<td>100.0%</td>
<td>2.17</td>
<td>[1.38, 3.44]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events

<table>
<thead>
<tr>
<th>Events</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>102</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.23; Chi² = 24.30, df = 9 (P = 0.004); I² = 63%

Test for overall effect: Z = 3.33 (P = 0.0009)
Supplemental Digital Content to Be Published

Click here to download Supplemental Digital Content to Be Published: Supplementary Information_Revised_clean_copy.doc