Repository logo
 

A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs.


Type

Article

Change log

Authors

Patel, Ameera X 
Bullmore, Edward T 

Abstract

Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org.

Description

Keywords

Connectivity, Degrees of freedom, Despiking, Graph theory, Inference, Probabilistic, Statistic, Wavelet despike, fMRI, Adult, Brain, Child, Connectome, Data Interpretation, Statistical, Humans, Magnetic Resonance Imaging

Journal Title

Neuroimage

Conference Name

Journal ISSN

1053-8119
1095-9572

Volume Title

Publisher

Elsevier BV
Sponsorship
Medical Research Council (G0001354)
Medical Research Council (G1000183)
Wellcome Trust (085686/Z/08/C)
Wellcome Trust (093875/Z/10/Z)
This work was supported by the Wellcome Trust- and GSK-funded Translational Medicine and Therapeutics Programme (085686/Z/08/C, AXP) and the University of Cambridge MB/PhD Programme (AXP). The Behavioral and Clinical Neuroscience Institute is supported by the Wellcome Trust (093875/Z/10/Z) and the Medical Research Council (G1000183). ETB works half-time for GlaxoSmithKline and half-time for the University of Cambridge; he holds stock in GSK.