Repository logo
 

SOX17 is a critical specifier of human primordial germ cell fate.


Change log

Authors

Irie, Naoko 
Weinberger, Leehee 
Tang, Walfred WC 
Kobayashi, Toshihiro 
Viukov, Sergey 

Abstract

Specification of primordial germ cells (PGCs) marks the beginning of the totipotent state. However, without a tractable experimental model, the mechanism of human PGC (hPGC) specification remains unclear. Here, we demonstrate specification of hPGC-like cells (hPGCLCs) from germline competent pluripotent stem cells. The characteristics of hPGCLCs are consistent with the embryonic hPGCs and a germline seminoma that share a CD38 cell-surface marker, which collectively defines likely progression of the early human germline. Remarkably, SOX17 is the key regulator of hPGC-like fate, whereas BLIMP1 represses endodermal and other somatic genes during specification of hPGCLCs. Notable mechanistic differences between mouse and human PGC specification could be attributed to their divergent embryonic development and pluripotent states, which might affect other early cell-fate decisions. We have established a foundation for future studies on resetting of the epigenome in hPGCLCs and hPGCs for totipotency and the transmission of genetic and epigenetic information.

Description

Keywords

ADP-ribosyl Cyclase 1, Animals, Cell Differentiation, Cell Line, Tumor, Embryoid Bodies, Embryonic Stem Cells, Epigenesis, Genetic, Germ Cells, Humans, Induced Pluripotent Stem Cells, Mice, Positive Regulatory Domain I-Binding Factor 1, Repressor Proteins, SOXF Transcription Factors, Seminoma, Sequence Analysis, RNA

Journal Title

Cell

Conference Name

Journal ISSN

0092-8674
1097-4172

Volume Title

160

Publisher

Cell Press
Sponsorship
Wellcome Trust (096738/Z/11/Z)
We thank Rick Livesey and his lab for help with the culture of hESCs; Sohei Kitazawa and Janet Shipley for the TCam-2 cells; Nigel Miller and Andy Riddell for cell sorting, Roger Barker, Xiaoling He, and Pam Tyers for collection of human embryos; and Charles Bradshaw for help with bioinformatics. We thank members of the Surani and Hanna labs for important discussions and technical help. N.I. is supported by Grant-in-Aid for fellows of the JSPS and by BIRAX (the Britain Israel Research and Academic Exchange Partnership) initiative, who provided a project grant to J.H.H. and M.A.S. J.H.H. is supported by Ilana and Pascal Mantoux, the Kimmel Award, ERC (StG-2011-281906), Helmsley Charitable Trust, ISF (Bikura, Morasha, ICORE), ICRF, the Abisch Frenkel Foundation, the Fritz Thyssen Stiftung, Erica and Robert Drake, Benoziyo Endowment fund, and the Flight Attendant Medical Research Institute (FAMRI). J.H.H. is a New York Stem Cell Foundation Robertson Investigator. W.C.C.T. is supported by Croucher Foundation and Cambridge Trust; M.A.S. is supported by HFSP and a Wellcome Trust Investigator Award.