Repository logo
 

The phase of iron catalyst nanoparticles during carbon nanotube growth


Change log

Authors

Wirth, CT 
Bayer, BC 
Gamalski, AD 
Esconjauregui, S 
Weatherup, RS 

Abstract

We study the Fe-catalyzed chemical vapor deposition of carbon nanotubes by complementary in situ grazing-incidence X-ray diffraction, in situ X-ray reflectivity, and environmental transmission electron microscopy. We find that typical oxide supported Fe catalyst films form widely varying mixtures of bcc and fcc phased Fe nanoparticles upon reduction, which we ascribe to variations in minor commonly present carbon contamination levels. Depending on the as-formed phase composition, different growth modes occur upon hydrocarbon exposure: For γ-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For α-rich catalyst mixtures, Fe3C formation more readily occurs and constitutes part of the nanotube growth process. We propose that this behavior can be rationalized in terms of kinetically accessible pathways, which we discuss in the context of the bulk iron–carbon phase diagram with the inclusion of phase equilibrium lines for metastable Fe3C. Our results indicate that kinetic effects dominate the complex catalyst phase evolution during realistic CNT growth recipes.

Description

Keywords

carbon nanotube, CVD, Fe, carbide, catalyst, XRD, ETEM

Journal Title

Chemistry of Materials

Conference Name

Journal ISSN

0897-4756
1520-5002

Volume Title

Publisher

American Chemical Society (ACS)
Sponsorship
European Research Council (279342)
S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). We acknowledge the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation facilities. We acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. C.T.W. and C.S.E. acknowledge funding from the EC project Technotubes. A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. R.S.W. acknowledges funding from EPSRC (Doctoral training award) and B.C.B. acknowledges a Research Fellowship at Hughes Hall, Cambridge.