Repository logo
 

An auto-parametrically excited vibration energy harvester


Change log

Authors

Seshia, AA 

Abstract

Parametric resonance, as a resonant amplification phenomenon, is a superior mechanical amplifier than direct resonance and has already been demonstrated to possess the potential to offer over an order of magnitude higher power output for vibration energy harvesting than the conventional direct excitation. However, unlike directly excited systems, parametric resonance has a minimum threshold amplitude that must be attained prior to its activation. The authors have previously presented the addition of initial spring designs to minimise this threshold, through non-resonant direct amplification of the base excitation that is subsequently fed into the parametric resonator. This paper explores the integration of auto-parametric resonance, as a form of resonant amplification of the base excitation, to further minimise this activation criterion and realise the profitable regions of parametric resonance at even lower input acceleration levels. Numerical and experimental results have demonstrated in excess of an order of magnitude reduction in the initiation threshold amplitude for an auto-parametric resonator (∼0.6 ms−2) as well as several folds lower for a parametric resonator with a non-resonant base amplifier (∼4.0 ms−2), as oppose to a sole parametric resonator without any threshold reduction mechanisms (10's ms−2). Therefore, the superior power performance of parametric resonance over direct resonance has been activated and demonstrated at much lower input levels.

Description

Keywords

Auto-parametric, Resonance, Initiation threshold, Piezoelectric, Vibration energy harvesting

Journal Title

Sensors and Actuators, A: Physical

Conference Name

Journal ISSN

0924-4247

Volume Title

Publisher

Elsevier BV
Sponsorship
Engineering and Physical Sciences Research Council (EP/I019308/1)
Engineering and Physical Sciences Research Council (EP/K000314/1)
Engineering and Physical Sciences Research Council (EP/L010917/1)
This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/I019308/1].