Repository logo
 

Threading plasmonic nanoparticle strings with light.


Type

Article

Change log

Authors

Herrmann, Lars O 
Valev, Ventsislav K 
Tserkezis, Christos 
Barnard, Jonathan S 
Kasera, Setu 

Abstract

Nanomaterials find increasing application in communications, renewable energies, electronics and sensing. Because of its unsurpassed speed and highly tuneable interaction with matter, using light to guide the self-assembly of nanomaterials can open up novel technological frontiers. However, large-scale light-induced assembly remains challenging. Here we demonstrate an efficient route to nano-assembly through plasmon-induced laser threading of gold nanoparticle strings, producing conducting threads 12±2 nm wide. This precision is achieved because the nanoparticles are first chemically assembled into chains with rigidly controlled separations of 0.9 nm primed for re-sculpting. Laser-induced threading occurs on a large scale in water, tracked via a new optical resonance in the near-infrared corresponding to a hybrid chain/rod-like charge transfer plasmon. The nano-thread width depends on the chain mode resonances, the nanoparticle size, the chain length and the peak laser power, enabling nanometre-scale tuning of the optical and conducting properties of such nanomaterials.

Description

Keywords

0306 Physical Chemistry (incl. Structural), 1007 Nanotechnology, 0303 Macromolecular and Materials Chemistry, 0205 Optical Physics, Nanotechnology, Bioengineering

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

5

Publisher

Springer Science and Business Media LLC
Sponsorship
Engineering and Physical Sciences Research Council (EP/G060649/1)
Engineering and Physical Sciences Research Council (EP/H007024/1)
Engineering and Physical Sciences Research Council (EP/K028510/1)
Engineering and Physical Sciences Research Council (EP/L027151/1)
European Research Council (320503)
European Research Council (240629)