Repository logo
 

Engineering change modelling using a function-behaviour-structure scheme


Type

Thesis

Change log

Authors

Hamraz, Bahram 

Abstract

Engineering changes are unavoidable and occur throughout the lifecycle of products. Due to the high interconnectivity of engineering products, a single change to one component usually has knock-on effects on other components causing further changes. This change propagation significantly affects the success of a product in the market by increasing development cost and time-to-market. As such engineering change management is essential to companies, but it is a complex task for managers and researchers alike.

To address this challenge, the thesis at hand investigates the state-of-the-art of research in engineering change management and develops a method to support engineering change propagation analysis, termed FBS Linkage. This method integrates functional reasoning with change prediction. A product is modelled as a network of its functional, behavioural, and structural attributes. Change propagation is then described as spread between the elements along the links of this network.

The FBS Linkage concept is designed based on a comprehensive set of requirements derived from both the literature and industry practices as well as a comparative assessment of existing change methods and functional reasoning schemes. A step-by-step technique of building and using an FBS Linkage model is demonstrated. The method’s potential benefits are discussed. Finally, the application of the method to two industrial case studies involving a diesel engine and a scanning electron microscope is presented. The method evaluation indicates that the benefits of the method outweigh its application effort and pinpoints areas for further refinement.

Description

Some of the work contained in this dissertation has been published and presented as below:

  • B.Hamraz, N.H.M.Caldwell, D.C.Wynn, and P.J.Clarkson, (2013): Requirements-based Development of an Improved Engineering Change Management Method. Journal of Engineering Design, online first, DOI: 10.1080/09544828.2013.834039.
  • B.Hamraz, N.H.M.Caldwell, and P.J.Clarkson, (2013): A Holistic Framework for Categorisation of Literature in Engineering Change Management. Systems Engineering 16 (4).
  • B.Hamraz, O.Hisarciklilar, K.Rahmani, D.C.Wynn, V.Thomson, and P.J.Clarkson, (2013): Change Prediction Using Interface Data. Concurrent Engineering 21 (2), pp. 139-154.
  • B.Hamraz, N.H.M.Caldwell, and P.J.Clarkson, (2012): A Multi-domain Engineering Change Propagation Model to Support Uncertainty Reduction and Risk Management in Design. Journal of Mechanical Design 134 (10), pp. 100905.01-14.
  • B.Hamraz, N.H.M.Caldwell, and P.J.Clarkson, (2012): A Matrix-calculation-based Algorithm for Numerical Change Propagation Analysis. Transactions on Engineering Management 60 (1), pp. 186-198.
  • B.Hamraz, N.H.M.Caldwell, and P.J.Clarkson, (2012): FBS Linkage Model – Towards an Integrated Engineering Change Prediction and Analysis Method. Proceedings of the International Design Conference (DESIGN'10), Dubrovnik, Croatia, pp. 901-910.

Date

Advisors

Keywords

Engineering changes, Change propagation, Engineering change management, Functional reasoning, Engineering design, Product development, Product modelling

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
This work was supported partly by the Engineering and Physical Sciences Research Council (EPSRC) and partly by the Transatlantic Partnership for Excellence in Engineering (TEE).