Repository logo
 

Osteoinduction by combining bone morphogenetic protein (BMP)-2 with a bioactive novel nanocomposite.

Accepted version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Sharma, A 
Meyer, F 
Best, SM 
Cameron, RE 

Abstract

OBJECTIVES: There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite. METHODS: BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Alkaline phosphatase activity of C2C12 cells was increased by the presence of all BMP-2/nanocomposite discs compared with the presence of a blank disc (p = 0.0022), and increased with increasing incubation concentrations of BMP-2, showing successful adsorption and bioactivity of BMP-2. A burst release profile was observed for BMP-2 from the nanocomposite. CONCLUSIONS: Functionalisation of α-TCP/PLGA with BMP-2 produced osteoinduction and was dose-dependent. This material therefore has potential application as an osteoinductive agent in regenerative medicine.

Description

Keywords

BMP-2, Ceramics, Nanocomposite, Orthopaedics, Osteoinduction, Polymer, Tissue engineering

Journal Title

Bone Joint Res

Conference Name

Journal ISSN

2046-3758
2046-3758

Volume Title

1

Publisher

British Editorial Society of Bone & Joint Surgery