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ABSTRACT: Single-grain, (RE)−Ba−Cu−O [(RE)BCO)]
bulk high-temperature superconductors have significant potential
for application as trapped field magnets in a range of engineering
devices. However, it is not trivial to fabricate single grains of
(RE)BCO due to the complexity of the growth process,
especially when the sample diameter exceeds 25 mm. In
particular, difficulties associated with the seed crystal can lead
to poor grain growth or to complete growth failure. We have
employed an optimized buffer technique, which was determined by optimizing targeted critical parameters of the buffer pellet,
including the choice of the buffer pellet composition and its aspect ratio, for the reliable fabrication of large, single grains of
(RE)BCO. Potential candidates for the buffer pellet composition have been identified to yield successful grain growth and good
superconducting properties. The optimum aspect ratio of the buffer pellet was also determined as part of this study. The
optimized buffer pellet capped with the seed crystal has been demonstrated to work effectively as an efficient seed crystal and to
aid significantly the growth of the Y-123 phase. We show that this optimized buffer technique ameliorates problems associated
with both interfacial stress (commonly occurring at the seed/sample interface) and problems of grain contamination. We have
fabricated a 40.8 mm diameter single-grain bulk superconductor and more than 25 single-grain YBCO samples with diameters in
the range 25−35 mm by a significantly improved top-seeded melt growth process.

1. INTRODUCTION

The top-seeded melt growth (TSMG) process is a well-
established route for the fabrication of bulk Y−Ba−Cu−O
(YBCO) superconductors that can carry large critical current
densities and generate large trapped magnetic fields.1−4 It is
well-known that these materials exhibit a critical current
density, Jc, as large as 104 to 105 A/cm2 within the grain,
even at liquid nitrogen temperatures, 77 K.5,6

Unfortunately, the presence of grain boundaries has an
adverse effect on the superconducting properties of polycrystal-
line YBCO samples by reducing the magnitude of Jc by as much
as 2 to 3 orders of magnitude.7 It is necessary, therefore, to
eliminate grain boundaries from the bulk YBCO microstructure
if these materials are to support large supercurrent loops that
flow over large areas to generate a large magnetic moment and
hence a large trapped magnetic field. Theoretically, the trapped
field, Bt, varies as Bt ∝ Jc × r, where r is the radius of the
supercurrent loop, which indicates that it is desirable to have
either a large value of Jc, a large value of r, or a large value of
both parameters for optimum performance. As a result, it is
highly desirable to fabricate bulk YBCO superconductors in the
form of large, single grains with high Jc values.
In practice, the maximum value of Jc for YBCO is determined

by various microstructural features, including the nature and
size of nonsuperconducting inclusions,8 the presence of defects,
such as twins,9 twin boundaries,10 and nanodefects,11 and
oxygen deficient regions,12 which can provide effective flux
pinning sites and resist the Lorentz force in the presence of a

magnetic field. In general, however, engineering of the YBCO
sample microstructure to provide increased flux pining is
difficult and invariably further complicates an existing and
difficult materials process.
Increasing sample size to increase trapped field, on the other

hand (i.e., increasing the radius of the supercurrent loop), is a
more practical option for achieving larger trapped fields. This,
again, is an involved task since the growth of the super-
conducting YBa2Cu3O7−x (Y-123) phase is relatively compli-
cated and depends on various growth parameters.6,13 Y-123
melts incongruently when heated above its peritectic temper-
ature, Tp (1005 °C in air), and decomposes into a solid
Y2BaCuO5 (Y-211) phase and a barium-rich liquid phase
comprising BaCuO2 and CuO. These phases recombine to
form Y-123 on subsequent cooling of the material below Tp. In
general, this process often generates multiple grain nucleation
sites, resulting in the formation of a multigrained YBCO
microstructure. As a consequence, a seeding technique has been
developed over the past 25 years to enable the fabrication of
large, single-grain bulk superconductors.14 Suitable seed crystals
are required to exhibit certain features to effectively nucleate
epitaxial grain growth, including a similar crystal structure to
that of the Y-123 phase, phase stability, and higher melting
temperature growth.15,16 Fortunately, for the YBCO system,
these criteria are satisfied by both Nd-123 and Sm-123 phase
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compounds, which have a higher Tp than that of Y-123 (1068
and 1054 °C, respectively). In addition, Mg-doped Nd-123
generic seed crystals have been developed recently to aid the
TSMG processing of all (RE)BCO bulk superconductors
(where RE is a rare earth element, such as Nd, Sm, or Gd).17

Thin films of MgO18−20 and NdBCO/YBCO/MgO21,22 have
also been investigated for their use as potential seed crystals in
the YBCO and SmBCO systems, but Mg from the thin film
seed crystal substrate can diffuse into the parent bulk and thus
can cause contamination problems.
Epitaxial single grains of YBCO can now be fabricated

routinely by TSMG employing a suitable seed crystal, which is
placed on the top surface of the precursor pellet at room
temperature (so-called cold seeding) and by subsequently
cooling the sample slowly through the peritectic solidification
temperature after decomposition. However, this is an involved
process, and the optimization of many parameters, such as
choice of seed, homogeneity of precursor powders, the use of
grain refiners, etc., is critical to the growth process. A small
disturbance in the growth conditions in the vicinity of the
growth front, for example, can affect adversely the single-grain
growth process itself and result in incomplete or multigrain
growth. Figure 1 shows photographs of a selection of failed
YBCO samples to illustrate the complexity of the TSMG
process.

The effects of seed dimensions on the growth of the Y-123
phase have been studied by Kim et al. in an attempt to fabricate
larger single grains.23 The results of this study show that larger
and thicker seed crystals generally yield improved, more
controlled growth of Y-123. However, it is difficult to fabricate
seed crystals that exhibit these properties consistently, with
thicker seeds containing more imperfections. On the other
hand, thinner seed crystals tend to melt relatively easily under
the influence of corrosive liquid phases at elevated temperature
during melt processing. Indeed, seeds can melt at temperatures
below their actual melting temperature24 due to the formation
of a non-equilibrium state in the presence of the Ba-rich liquid
phase. Many factors, such as the seeding method, holding time
at temperature, composition of the seed, the precursor pellet,
etc., can further influence the melting temperature of the seed
crystal. The growth process becomes more complicated still
when large sized bulk samples are to be fabricated (for example,
samples of diameter >25 mm) and is influenced critically by the
following factors:

(i) the slow growth rate of the Y-123 phase;
(ii) non-availability of a source of yttrium, which is critical

during the growth of the Y-123 phase;
(iii) the formation of subgrains in the system;
(iv) non-uniformity in the distribution of heat across the

volume of a large sample;
(v) appropriate choice of seed.

It has also been observed that Nd-123/Sm-123 seeds often
contaminate the main (RE)BCO system by the diffusion of
Nd/Sm, which tends to form solid solutions that reduce the
uniformity of Jc(B) across the sample volume.

25 This potentially
serious problem has been addressed partly by employing a
buffer pellet between the seed crystal and the precursor
pellet.26,27 In the present article, we investigate the TSMG
process using a buffer layer as follows:

(i) To determine if the buffer pellet really aids the growth of
the Y-123 phase;

(ii) to determine an effective composition for the buffer
pellet;

(iii) to investigate the aspect ratio of the buffer pellet on the
growth process;

(iv) to determine whether the buffer pellet can negate the
effects of any small defects present in the seed crystal.

The results of this study demonstrate clearly that large,
single-grain bulk YBCO superconductors with a diameter up to
40.8 mm can be melt-processed easily and routinely with a very
high success rate (>95%) by employing a buffer layer pellet of
optimized composition.

2. EXPERIMENTAL SECTION
Commercial Y-123 (3N, Toshima), Y-211 (3N, Toshima), and CeO2
(3N, Alfa Aesar) powders were used as initial precursors to fabricate
single grain bulk superconductors. The size of the Y-123 and Y-211
particles was ∼1−3 μm. Twenty-five wt % Y-211 and 0.5 wt % CeO2
were added to the Y-123 powder and mixed together thoroughly using
a mechanical mixer for 3 h. CeO2 was added to the precursor to refine
the grain size of Y-211 inclusions in the fully processed single grain
and therefore to enhance flux pinning. The mixed precursor powders
were pressed uniaxially into discs both for the main green pellet and
the buffer pellet, as shown in Figure 2. Details of the quantities of
powder used and the dimensions of the as-pressed green pellets are
given in Table 1.

As-pressed YBCO discs capped with different buffer pellets,
consisting of powders of Y-123 + Y-211 + CeO2, Y-211, and Y-211
+ Ba3Cu5O8, supported by bars of yttria-stabilized zirconia, were

Figure 1. Photographs of a selection of failed YBCO samples to
illustrate the complexity of the TSMG process.

Figure 2. (a) Schematic assembly of the precursor pellet, buffer layer,
and seed crystal prior to melt processing. (b) Actual arrangement of
different buffer pellets on the YBCO precursor pellets for fabricating
samples A−D by top-seeded melt growth (TSMG). Nd-123 seed
crystals were used as seeds in each case.
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arranged on alumina plates, as shown in Figure 2. A reference sample
without a buffer pellet was also processed for purposes of comparison.
Slab-shaped Nd-123 seeds, cleaved along the (00l) plane, were placed
on the top surfaces of the precursor/buffer pellet assemblies, and the
entire arrangements were melt-processed in a box furnace as described
elsewhere.13 Briefly, this involved heating the samples to 1054 °C and
holding for 1 h to enable complete incongruent melting of the Y-123
phase into solid Y-211 and a liquid phase. The samples were then
cooled rapidly to 1010 °C and then slow cooled at 0.8−0.2 °C/h to
980 °C to ensure heterogeneous nucleation and growth of the Y-123
phase. Finally, the samples were furnace-cooled to room temperature.
The fully melt-processed samples were annealed in flowing oxygen at
440 °C for 150 h.
Sections of the fully processed grains were prepared for micro-

structural studies using a diamond saw (Minitom, Struers) and a
mechanical polisher (Knuth Rotor 2 and Struers DAP-7). The
microstructures of these samples were examined using an optical
microscope equipped with a polarizer (Eclipse ME 600, Nikon, and
Capture 2.0, DinoLite) and a scanning electron microscope equipped
with EDX (S-3400, Hitachi). The top surfaces of all the samples
prepared as part of this study were polished using a SiC paper based
autopolisher to obtain the flat, smooth surfaces required for trapped
field measurements. Each of the samples was subjected to a magnetic
field of 1.3 T (generated using an electromagnet, Hirst Magnetic
Instruments Ltd.), with B applied parallel to the c axis of the samples,
prior to field cooling to 77 K. The applied field was then removed, and
the trapped magnetic flux density on the top surface of each of the
samples measured using an automatic, scanning Hall probe system
comprising an array of 19 Hall probes spaced uniformly over the top
surface of the samples. Further details of the trapped field
measurement system can be found elsewhere.28,4 The air gap between
the sample surface and the Hall probe array in each measurement was
approximately 0.8−1 mm.

3. RESULTS AND DISCUSSION

3.1. Different Buffer Pellet Composition. Photographs
of four YBCO samples (samples A−D) prepared under similar
conditions and capped with different buffer pellets (Figure 2
and Table 1) processed using the TSMG technique are shown
in Figure 3. These images can be used to assess the quality of
the samples and the general success of the melt process in each
case.
3.1.1. Growth Mechanism. Samples A−D were sectioned

through the sample thickness and polished using an
autopolisher with an abrasive medium of grit size 1 μm. SiC
abrasive paper and diamond paste were used subsequently to
yield a polished surface that was smooth to within 1 μm. Low-
magnification optical micrographs of the cross-sections through
the complete thickness of each sample are shown in Figure 4.
It can be seen that the use of a buffer pellet aids significantly

the growth of the Y-123 phase but that the detail of the growth
depends critically on the construction and composition of the
buffer pellet used. Typical, characteristic growth of the Y-123
phase is observed in sample A, where no buffer was used, as
reported frequently elsewhere.29,30 In this process, epitaxial

growth is initiated at the position of the seed and progresses
characteristically both in the a−b plane and in the c direction of
the sample. The growth process observed in samples B−D, on
the other hand, differs significantly from this standard process
when buffer pellets are used, as discussed further below.
The grain growth process appears to have occurred

continuously for sample B, for which the buffer pellet had
the same composition as that of the main YBCO pellet. In this
case, the buffer pellet behaved effectively as a large, secondary
seed to enable nucleation and growth of the Y-123 phase. The
advantage of this method is that the seeding becomes a lot
easier, which has considerable potential for the fabrication of
samples with larger diameters (>25 mm). A direct consequence
of the use of a buffer layer in this way is that a relatively small
seed can be used to initiate the growth process. In addition, the
buffer layer/seed process is tolerant of minor imperfections of
the seed, such as small distortions at the seed edges that are
commonly generated during the cleaving process, which do not
affect significantly the growth of the Y-123 phase in the
presence of a buffer layer. This is apparent in Figure 4b, where
the seed used to fabricate sample B is relatively thin and is not
of any specific, regular shape. It is also apparent from this figure
that the use of the buffer layer effectively widens the growth
region compared to that with a conventional, non-buffered
TSMG process.

Table 1. Dimensions and Weights of Samples A−D before and after TSMG

before processing after processing

sample
code composition of the buffer pellet

dia
(mm)

weight of the YBCO disc
(g)

weight of the buffer
(g)

dia
(mm)

weight of the sample
(g)

A no buffer 32 35.05 0 25.62 33.09
B 75 wt % Y-123 + 25 wt % Y-211 +

0.5 wt % CeO2

32 35.07 0.54 25.5 33.67

C Y-211 32 35.03 0.52 25.2 32.82
D Y-211, Ba3Cu5O8 32 35.04 0.52 25.45 32.79

Figure 3. Top and side views of TSMG processed YBCO sample A
(with no buffer pellet) and samples B, C, and D (fabricated with
different buffer pellets).
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Schematic diagrams illustrating non-buffered and buffered
growth for samples A and B are shown in Figure 5. It can be
seen from this figure that the buffer pellet acts effectively as a
single seed. This, clearly, aids the seeding process and
demonstrates that a small seed is adequate to seed samples
with large diameters, thus assisting the single-grain growth of
YBCO.
3.1.2. Subgrain Formation in Samples C and D. The

photographs of the top surfaces of samples A and B (Figure 3)
show that these exhibit four facet lines that extend to the edges
of the samples, which, therefore, constitute a single grain. On
the other hand, subgrains are present in samples C and D, for
which the buffer pellets were composed of Y-211 only and Y-
211 + liquid phase, respectively. This was clearly evident when
the top surfaces of these samples were polished, as can be seen
in Figure 6. A possible reason for this is that the Y-211 buffer
layer phase fails to melt at the processing temperature and, as a
result, forms multiple nucleation centers during the growth
process. The role of the buffer pellet in aiding the growth of the
Y-123 phase remains evident, however, in Figure 4c,d, despite
the formation of subgrains. The distortion of the buffer layer
and the orientation of the seed in sample D, for which the
liquid phase and the Y-211 layer in the buffer were layered
separately, results from the outflow of liquid phase during the
heat treatment of this sample. As a result, the seeding process
itself is influenced directly and critically by the properties of the
buffer layer.

3.1.3. Trapped Field Measurements. Each sample was
cooled to 77 K in an applied external magnetic field of 1.3 T,
and the magnitude of the trapped field on its surface was
measured by a hand-held probe. Trapped field profiles were

Figure 4. Optical micrographs of the cross sections of samples A−D.

Figure 5. Schematic illustration of the growth of the Y-123 phase for samples A (with no buffer) and B (with a buffer pellet). The ability of the buffer
pellet to seed a sample of larger diameter is clearly evident from this figure.

Figure 6. Polished surfaces of samples A−D (note that the buffer
pellets have been removed).
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recorded employing an assembly of 19 Hall probe sensors at a
height of 1 mm above the sample surface, as described
elsewhere.28 The trapped field profiles (both the 3D plots and
contour maps) obtained for each sample at 77 K are shown in
Figure 7. It can be seen that sample B exhibits the highest

trapped field of the four samples studied, with a peak field of

∼0.65 T at 77 K.
In addition to exhibiting the highest peak field value, the

trapped field pattern for sample B shows the highest degree of

symmetry of all the samples fabricated in this study. On the

Figure 7. (a−d) Trapped field profiles at 77 K obtained for samples A−D, respectively.
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other hand, the trapped field patterns obtained for samples C
and D exhibit either multiple or distorted peaks, confirming the
presence of subgrains in these samples, as discussed earlier. The
maximum value of trapped field in each of the samples at 77 K
is shown in Figure 8. It can be seen from the figure that the
sample B exhibits the best peak performance at 77 K by some
margin.

3.1.4. Contamination Problems. It is well-known that Nd/
Sm ions from Nd-123/Sm-123 seed crystals can diffuse into
bulk YBCO superconductors during heat treatment to a
distance of about 0.1−1 mm below the position of the
seed,24,26,31 which results in the formation of a solid solution
that reduces the uniformity of Jc(B) throughout the volume of
the sample.31 Nd/Sm ions substitute typically on the Ba site in
the Y-123 phase, which suppresses Tc of the YBCO bulk
sample, at least locally. In the present work, the best performing
buffer pellet composition (sample B) has the potential to
prevent, or at least inhibit, the diffusion of Nd/Sm from the
seed crystal. For this purpose, the concentration of Nd in the
as-grown sample was investigated by carrying out EDX studies
on selected regions of samples A and B. This involved scanning
the Nd concentration over several, equispaced frames of size 50
× 50 μm2, from the surface of the sample to the bottom of its
cross-section, as shown in Figure 9.
It can be seen from Figure 9 that Nd is present up to a depth

of ∼1 mm from the seed/YBCO interface in sample A,
corresponding to the zone within which solid solution
formation occurs. The Nd concentration decreases rapidly

with distance in sample B and disappears completely at the
bottom surface of the buffer layer to yield a bulk YBCO sample
free from solid solution (i.e., with only Nd present as a trace
element and below the sensitivity level of the measurement).
Kim et al. established that the diffusion of Nd from the seed

crystal into the bulk Y-123 matrix can be prevented by
employing Y-211 buffer pellets of thickness > 3 mm,26,31

although these authors did not investigate whether the use of
the buffer resulted in the formation of subgrains in the YBCO
sample. It has been established in the present study that the
diffusion of Nd/Sm into the YBCO bulk is prevented by the
buffer pellet configuration used for the fabrication of sample B.
In addition, this configuration yields a fully processed sample
that traps a greater magnetic field and inhibits the formation of
subgrains. As a result, the sample B buffer pellet configuration is
preferred over that of Y-211 for the fabrication of bulk YBCO
samples with improved superconducting and microstructural
properties.

3.1.5. Bypassing the Interfacial Stress. It is well-known that
lattice mismatch effects often cause large stresses at the
interface between two materials.11,32 The fabrication of YBCO
superconductors by any seeding process characteristically
generates a variety of such interfaces, which, typically, are the
origin of crack formation. For example, the crystallographic
misfit between Nd-123 and Sm-123 seed crystal compounds
with the Y-123 phase formed during the TSMG process is
unavoidable. Sample B, with buffer pellet capping, however,
functioned to absorb the major cracks generated at the seed/
buffer interface, which resulted in a bulk YBCO sample that was
almost free from severe cracks. Optical and scanning electron
micrographs obtained at the seed/buffer and buffer/YBCO
interfaces of sample B are shown in Figure 10. It can be seen
that very few cracks are present at the buffer/YBCO interface
region (Figure 10b).

In this case, the buffer pellet together with the seed crystal
acts as a single, large homoseed crystal and effectively aids the
growth of the RE-123 phase. As a result, this configuration
enables the buffer pellet to effectively absorb defects that occur
during the initial stage of growth via lattice mismatch effects,
thus inhibiting their formation in the main bulk microstructure.
Typically, this optimized buffer pellet configuration can be
considered to be a hybridized seeding technique that bridges
both the hot seeding and cold seeding techniques while
retaining the advantages of both (i.e., the ease of placing the
seed crystal on the green body at room temperature and

Figure 8. Trapped field measured by a hand-held Gauss meter at the
surface of samples A−D.

Figure 9. Nd concentration measured along the thickness of samples
A (with no buffer) and B (with buffer).

Figure 10. Optical micrographs obtained for sample B at the (a) seed/
buffer and (b) buffer/YBCO interfaces. (c) Electron micrograph taken
at the seed/buffer interface.
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seeding grain growth via a crystal of the same composition as
that of the parent bulk).
It is clear from these investigations that the buffer

configuration adopted for sample B is the most successful for
fabricating large, single grain YBCO samples by the TSMG
technique. Further engineering of the aspect ratio of the buffer
pellet was performed subsequently, as described below.
3.2. Geometry of the Buffer Pellet. Small pellets with

different aspect ratios (Rh/r) were prepared and characterized in
order to investigate the influence of geometric configuration on
the effectiveness of the buffer pellets for seeding. These pellets
were fabricated from YBCO precursor powders (using the same
configuration for the fabrication of sample B, as mentioned
above) by uniaxially pressing the constituent powders into
cylindrical shapes with different geometric parameters, as
summarized in Table 2. Sm-based seeds were chosen for this

study in an attempt to verify the compatibility of buffer pellets
compared to other available seeds. SmBCO single-crystal seeds
fabricated as described elsewhere33 were cleaved along the a−b
plane, sectioned into small slabs, and placed on the top surface
of each of the buffer pellets, as shown schematically in Figure
2a. Essentially, the assembly of the SmBCO single-crystal seed
and the buffer pellet acts as a coherent seed arrangement in the
TSMG processing of bulk YBCO superconductors. Five
samples, #1, #2, #3, #4, and #5, were fabricated by varying
the aspect ratio of the buffer pellet from 3.0 to 1.1, as described
in Table 2, corresponding to ratios of 3.0, 2.3, 1.9, 1.6, and 1.1,
respectively. Photographs of the top and side surfaces of the as-
processed TSMG YBCO for samples #1 to #5 grown with
buffer pellets of different Rh/r are shown in Figures 11 and 12.
The geometric parameters corresponding to each of the

samples are given in Table 2. It is evident from Figures 11 and
12 that the growth of the Y-123 phase is more complete for a
buffer pellet aspect ratio of 1.1 (sample #5) and that
incomplete growth, to varying degrees, is observed for the
other samples. Subgrains form randomly in the case of sample
#1, which has the highest Rh/r of 3.0 for the buffer pellet, and
irregular facet lines are present in the top surface of the sample.
The orientation of the buffer pellet, and hence the driver of the
seeding process, appears to improve and aid better the growth
of the Y-123 phase as the aspect ratio decreases from 3.0 to 1.1.
This is perhaps due to the fact that the effect of seeding through
the buffer layer is active when r = h for the buffer pellet. This
ensures that there is no problem associated with undercooling,
as occurred for sample #1, while, at the same time, the crack/
diffusion problems of associated with Nd/Sm diffusing from the
seed crystal to the parent bulk are eliminated to a large extent.
Sample #5, on the other hand, exhibits well-defined, 4-fold
faceted growth symmetry of the Y-123 phase.
It can be seen further from Figure 12 that the extent to which

the processed buffer pellets tilt reduces progressively from
samples #1 to #5, thereby enabling more controlled, stable

growth of the Y-123 phase. The titled growth morphology of
the buffer pellet might be the source of the double-faceted lines
in samples #2, #3, and #4. It is well-known that any small
misorientation during seeding can affect critically the grain
growth of the Y-123 phase.34 It can be concluded, therefore,
that the growth configuration of sample #5, where r ≈ h or Rh/r
≈ 1, is close to optimum for the growth of a single YBCO grain
of good quality.
The serious failure of sample #1 (with Rh/r of 3.0) is

understandable given the height of the buffer pellet (5.9 mm)
after heat treatment. Such a large buffer pellet height results in a
relatively longer time for an efficient seeding process to occur
since the growth rate of the Y-123 phase is very small, of the
order of 0.2−0.5 mm/h.35 In this case, therefore, the seeding
process is dominated by undercooling effects in this sample,
which result in the formation of a large number of subgrains.

Table 2. Geometric Parameters of the Buffer Pellets

before TSMG after TSMG

sample no. weight (g) radius (mm) height (mm) Rh/r

#1 0.36 2.0 5.9 3.0
#2 0.30 2.2 5.1 2.3
#3 0.24 1.9 3.7 1.9
#4 0.22 1.9 3.1 1.6
#5 0.13 1.9 2.1 1.1

Figure 11. Top view of the TSMG processed YBCO samples #1, #2,
#3, #4, and #5 with buffer pellets of different aspect ratios (3.0 to 1.1).

Figure 12. Side view of YBCO samples (#1 to #5) fabricated with
buffer pellets of different Rh/r.
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3.3. Fabrication of Large-Sized Bulk YBCO Super-
conductors. Attempts have been made by several researchers
to fabricate large single grains of (RE)BCO in general, and
YBCO in particular, but with very limited success when the
diameter of the sample exceeds around 25 mm. Subgrains form
very easily in samples of this size, which results, typically, in the
production of multigrained bulk superconductors with an
involved and optimized processing methodology.
A large-sized YBCO bulk superconductor of ∼40.8 mm

diameter was fabricated in the present study by TSMG using an
optimized buffer pellet configuration of identical composition
to that of the YBCO sample (75 wt % Y-123 + 25 wt % Y-211 +
0.5 wt % CeO2), as shown in Figure 13a. The trapped field
profile measured at a height of 2.2 mm above its top surface
shown in Figure 13b confirms the single-grain nature of this
sample. This is relatively low compared to that shown in Figure
8 due to the larger distance between the surface of the sample
and the Hall probe.

3.4. Batch Processing of Samples with Buffer Pellets.
More than 25 YBCO samples of diameter varying between 25
and 35 mm were fabricated using the methodology developed
in this investigation with a success rate of 95% in order to verify
the reproducibility of the process. This involved capping the
pressed discs with buffer pellets composed of Y-123, Y-211, and
CeO2 powders and using Nd-123 seeds. The buffer pellet/Nd-
123 seed combination acts effectively as a single seed and aids
the growth of the Y-123 phase. The introduction of the buffer
layer seeding technique has increased the success rate of the
melt processing of larger diameter samples in this study to 95%.
Photographs obtained from the YBCO samples fabricated
following this methodology are shown in Figure 14 for
purposes of illustration.

4. SUMMARY AND CONCLUSIONS
An optimized, effective seeding process is essential for
controlled and reproducible growth of single-grain YBCO

Figure 13. (a) Photograph of a large, single-grain YBCO sample of 40.8 mm diameter. Trapped field profiles: 3D lobe (b) and 2D contour map (c)
for the sample at 77 K. The polished sample surface on which the trapped field profile was measured is shown in the inset of (b).

Figure 14. Photographs of a batch of YBCO samples fabricated using capped buffer pellets. Single-grain growth of the Y-123 phase is indicated by
the presence of the four facet lines in each sample.
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throughout the entire sample using the top-seeded melt growth
technique. A methodology has been developed to increase the
success rate significantly of melt processing single-grain YBCO
bulk superconductors using the TSMG process. This involved
investigating systematically different buffer pellet arrangements
to serve as effective nucleation and growth sites for the Y-123
phase in bulk YBCO. The geometric aspect of the buffer pellet
was also varied, and the best configuration was identified from
the resulting YBCO grain growth morphologies, with the buffer
pellet aspect ratio Rh/r of ∼1 yielding the best seeding
performance. In particular, this configuration did not suffer
from the effects of tilting during single-grain growth and,
simultaneously, avoided serious microstructural defects asso-
ciated with crystallographic misorientation of the seed. A large,
YBCO sample of 40.8 mm diameter was fabricated successfully
using the optimized buffer pellet configuration. In addition, a
number of YBCO samples with diameters in the range 25−35
mm were grown successfully using this optimized buffer
seeding technique. This enabled subsequently the fabrication
of large, single-grain bulk YBCO superconductors with a
success rate in excess of 95%. It is reasonable to speculate that,
by employing a buffer pellet, larger single grains can be grown
by adjusting the seed/buffer pellet dimensions and the thermal
window for melt growth. The buffer pellet and seed crystal
arrangement effectively forms a single seed, which overcomes
the problem of serious lattice mismatch that is otherwise
present. The present work has significant potential for
application to the practical fabrication of large, single-grain
YBCO components for a range of engineering and techno-
logical applications.
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