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We describe here a library aimed at automating the solution of partial differential equations

using the finite element method. By employing novel techniques for automated code generation,
the library combines a high level of expressiveness with efficient computation. Finite element
variational forms may be expressed in near mathematical notation, from which low-level code

is automatically generated, compiled and seamlessly integrated with efficient implementations of
computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces
to the library are provided in the form of a C++ library and a Python module. This paper
discusses the mathematical abstractions and methods used in the design of the library and its
implementation. A number of examples are presented to demonstrate the use of the library in
application code.

Categories and Subject Descriptors: G.4 [Mathematical software]: Algorithm Design, Effi-
ciency, User Interfaces; G.1.8 [Numerical analysis]: Partial differential equations—Finite Ele-

ment Methods; D.1.2 [Programming techniques]: Automatic Programming

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: DOLFIN, FEniCS, Code Generation, Form Compiler

1. INTRODUCTION

Partial differential equations underpin many branches of science and their solution
using computers is commonplace. Over time, the complexity and diversity of sci-
entifically and industrially relevant differential equations has increased, which has
placed new demands on the software used to solve them. Many specialized libraries
have proved successful for a particular problem, but have lacked the flexibility to
adapt to evolving demands.

Software for the solution of partial differential equations is typically developed
with a strong focus on performance, and it is a common conception that high
performance may only be obtained by specialization. However, recent developments
in finite element code generation have shown that this is only true in part [Kirby
et al. 2005; Kirby et al. 2006; Kirby and Logg 2006; 2007]. Specialized code is still
needed to achieve high performance, but the specialized code may be generated,
thus relieving the programmer of time-consuming and error-prone tasks.

We present in this paper the library DOLFIN which is aimed at the automated
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Fig. 1. DOLFIN assembles any user-defined variational form on any (simplex) mesh for a wide
range of finite elements using any user-defined or built-in linear algebra backend. DOLFIN relies
on a form compiler for generation of the problem-specific code. The form compiler generates code
conforming to the UFC (Unified Form-assembly Code) interface, either at compile-time or run-

time, and the generated code is called during assembly by the compiler. A small interface layer
is required for each linear algebra backend and is implemented as part of DOLFIN for PETSc,
Trilinos/Epetra, uBLAS and MTL4.

solution of partial differential equations using the finite element method. As will be
elaborated, DOLFIN relies on a form compiler to generate the innermost loops of
the finite element algorithm. This allows DOLFIN to implement a general and ef-
ficient assembly algorithm. DOLFIN may assemble arbitrary rank tensors (scalars,
vectors, matrices and higher-rank tensors) on simplex meshes in one, two and three
space dimensions, for a wide range of user-defined variational forms, and for a
wide range of finite elements, including arbitrary degree continuous and discontin-
uous Lagrange elements, Brezzi–Douglas–Marini elements, Brezzi–Douglas–Fortin–
Marini elements, Raviart–Thomas elements, Nédélec elements and a number of oth-
ers. Furthermore, tensors may be assembled into any user-defined data structure,
or any of the data structures implemented by one of the built-in linear algebra
backends. For any combination of computational mesh, variational form, finite el-
ement and linear algebra backend, the assembly is performed by the same code, as
illustrated schematically in Figure 1, and code generation allows the assembly code
to be efficient and compact.
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1.1 The FEniCS Project

DOLFIN functions as the main programming interface and problem solving environ-
ment of the FEniCS Project [FEniCS 2009], a collaborative effort towards the devel-
opment of innovative concepts and tools for the automation of computational math-
ematical modeling, with an emphasis on partial differential equations. All FEniCS
components are released under the GNU General Public License or the GNU Lesser
General Public License, and are made freely available at http://www.fenics.org.

Initially, DOLFIN was a monolithic, stand-alone C++ library including imple-
mentations of linear algebra, computational meshes, finite element basis functions,
variational forms and finite element assembly. Since then, DOLFIN has undergone
a number of design iterations and some functionality has now been ‘outsourced’
to other FEniCS components and third-party software. The design encompasses
coexistence with other libraries, and permits a user to select particular components
(classes) rather than to commit to a rigid framework or an entire package. The
design also allows DOLFIN to provide a complex and feature-rich system from a
relatively small amount of code, which is made possible through automation and
design sophistication.

For linear algebra functionality, third-party libraries are exploited, with a com-
mon programming interface to these backends implemented as part of DOLFIN.
Finite element basis functions are evaluated by FIAT [Kirby 2009; 2004; 2006] and
variational forms are handled by the FEniCS Form Compiler (FFC) [Logg et al.
2009; Kirby and Logg 2006; 2007]. Alternatively, DOLFIN may use SyFi/SFC [Al-
næs and Mardal 2009a; 2009b] for these tasks, or any other form compiler that
conforms to the Unified Form-assembly Code (UFC) interface [Alnæs et al. 2009]
for finite element code. Just-in-time compilation is handled by Instant [Alnæs et al.
2009]. DOLFIN also provides built-in light-weight plotting through Viper [Skavhaug
2009]. FIAT, FFC, SyFi/SFC, UFC, Instant and Viper are all components of the
FEniCS Project. Data structures and algorithms for computational meshes remain
implemented as part of DOLFIN, as is the general assembly algorithm.

1.2 Relation to existing finite element software

Traditional object-oriented finite element libraries, including deal.II [Bangerth et al.
2007] and Diffpack [Langtangen 2003], provide basic tools such as computational
meshes, linear algebra interfaces and finite element basis functions. This greatly
simplifies the implementation of finite element methods, but the user must typ-
ically implement the assembly algorithm (or at least part of it), which is time-
consuming and error prone. There exist today a number of projects that seek to
create systems that, at least in part, automate the finite element method, including
Sundance [Long et al. 2009], GetDP [Dular et al. 2009], FreeFEM++ [Pironneau
et al. 2009], and LifeV [Deparis et al. 2009]/Life [Prudhomme 2008]. All of these
rely on some form of preprocessing (compile-time or run-time) to allow a level of
mathematical expressiveness to be combined with efficient run-time assembly of
linear systems. DOLFIN differs from these project in that it relies more explicitly
on code generation, which allows the assembly algorithms to be decoupled from
the implementation of variational forms and finite elements. As a result, DOLFIN
supports a wider range of finite elements than any of the above-mentioned libraries
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since it may assemble any finite element variational form on any finite element space
supported by the form compiler and finite element backend.

1.3 Outline

The remainder of this paper is organized as follows. We first present a background
to automated finite element computing in Section 2. We then discuss some general
design considerations in Section 3 before discussing the design and implementation
of DOLFIN in Section 4. We present in Section 5 a number of examples to illustrate
the use of DOLFIN in application code, which is followed by concluding remarks
in Section 6.

2. AUTOMATED FINITE ELEMENT COMPUTING

DOLFIN automates the assembly of linear and nonlinear systems arising from the
finite element discretization of partial differential equations expressed in variational
form. To illustrate this, consider the reaction–diffusion equation

−∆u + u = f (1)

on the unit square Ω = (0, 1)× (0, 1) with f(x, y) = sin(x) cos(y) and homogeneous
Neumann boundary conditions. The corresponding variational problem on V =
H1(Ω) reads:

Find u ∈ V : a (v, u) = L (v) ∀v ∈ V, (2)

where

a(v, u) =

∫

Ω

∇v · ∇u + vu dx, (3)

L(v) =

∫

Ω

vf dx. (4)

To assemble and solve a linear system AU = b for the degrees of freedom U ∈ R
N

of a finite element approximation uh =
∑N

i=1 Uiφi ∈ Vh ⊂ V , where the set of basis

functions {φi}
N
i=1 spans Vh, in DOLFIN one may simply define the bilinear (3) and

linear forms (4), and then call the two functions assemble and solve. This is
illustrated in Table I where we list a complete program for solving the reaction–
diffusion problem (1) using piecewise linear elements.

The example given in Table I illustrates the use of DOLFIN for solving a partic-
ularly simple equation, but assembling and solving linear systems remain the two
key steps in the solution of more complex problems. We return to this in Section 5.

2.1 Automated code generation

DOLFIN may assemble a variational form of any rank1 from a large class of vari-
ational forms and it does so efficiently by automated code generation. Following
a traditional paradigm, it is difficult to build automated systems that are at the
same time general and efficient. A system which is general, that is, a system which
solves a large class of problems, is often not as efficient as a special purpose system

1Rank refers here to the number of arguments to the form. Thus, a linear form has rank one, a

bilinear form rank two, etc.
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Python code

from dolfin import *

mesh = UnitSquare(32, 32)

V = FunctionSpace(mesh, "CG", 1)

v = TestFunction(V)

u = TrialFunction(V)

f = Function(V, "sin(x[0])*cos(x[1])")

A = assemble(dot(grad(v), grad(u))*dx + v*u*dx)

b = assemble(v*f*dx)

uh = Function(V)

solve(A, uh.vector(), b)

plot(uh)

Table I. A complete program for solving the reaction–diffusion problem (1) and plotting the
solution. This and other presented code examples are written for DOLFIN version 0.9.1.

that solves a smaller class of problems or just a single problem. However, through
automated code generation, one may build a system which is both general and ef-
ficient; general if one may generate code for a large class of problems, and efficient
since code may be generated specifically for each particular problem.

DOLFIN relies on a form compiler to automatically generate code for the inner-
most loop of the assembly algorithm from a high-level mathematical description of
a finite element variational form, as discussed in Kirby and Logg [2006] and Ølgaard
et al. [2008]. As demonstrated in Kirby and Logg [2006], computer code can be
generated which outperforms the usual hand-written code for a class of problems
by using representations which can not reasonably be implemented by hand. Fur-
thermore, automated optimization strategies can be employed [Kirby et al. 2005;
Kirby et al. 2006; Kirby and Logg 2007; Ølgaard and Wells 2009] and different
representations can be used, with the most efficient representation depending on
the nature of the differential equation [Ølgaard and Wells 2009]. Recently, similar
results have been demonstrated in SyFi/SFC [Alnæs and Mardal 2009b].

Code generation adds an extra layer of complexity to a software system. For this
reason, it is essential to isolate the parts of a program for which code must be gener-
ated. The remaining parts may be implemented as reusable library components in a
general purpose language. Such library components include data structures and al-
gorithms for linear algebra (matrices, vectors and linear/nonlinear solvers), compu-
tational meshes, representation of functions, input/output and plotting. However,
the assembly of a linear system from a given finite element variational formula-
tion must be implemented differently for each particular formulation and for each
particular choice of finite element function space(s). In particular, the innermost
loop of the assembly algorithm varies for each particular problem. Consequently,
finite element libraries like deal.II and Diffpack require that this innermost loop
be implemented by the user. DOLFIN follows a similar strategy of re-usable com-
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Fig. 2. An automated system (DOLFIN) using a JIT compiler (FFC or SyFi/SFC) to generate
special purpose code for a subset of its input. For a typical finite element application, Input 1
consists of the variational problem and the finite element(s) used to define it, and Input 2 consists
of the mesh.

ponents at higher levels, but relies on a form compiler to generate the code for
the innermost loop from a user-defined high-level description of the finite element
variational form.

DOLFIN partitions the user input into two subsets: data that may only be han-
dled efficiently by special purpose code, and data that can be efficiently stored and
manipulated by general purpose library components. For a typical finite element
application, the first set of data may consist of a finite element variational problem
and the finite element(s) used to define it. The second set of data consists of the
mesh and possibly other parameters that define the problem. The first set of data is
given to a form compiler that generates special purpose code. That special purpose
code may then use the second set of data as input to compute the solution. If the
form compiler is implemented as a just-in-time (JIT) compiler, one may seamlessly
integrate the code generation into a problem solving environment to automatically
generate, compile and execute generated code at run-time on demand. We present
this process schematically in Figure 2.

2.2 Compilation of variational forms

Users of DOLFIN may use one of the two form compilers FFC or SyFi/SFC2

to generate problem-specific code. When writing a C++ application based on
DOLFIN, users must call the form compiler explicitly from the command-line prior
to compile-time. The form compiler generates C++ code which may be included
in a user program. The generated code defines a number of classes that may be
instantiated by the user and passed to the DOLFIN C++ library. In particular, the
user may instantiate form objects which correspond to the variational forms given
to the form compiler and which may be passed as input arguments to the assembly
function in DOLFIN. When using DOLFIN from Python, DOLFIN automatically
handles the communication with the form compiler, the compilation (and caching)
of the generated code and the instantiation of the generated form classes at run-time
(JIT compilation).

2DOLFIN may be used in conjunction with any form compiler conforming to the UFC interface.
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3. DESIGN CONSIDERATIONS

The successful development of DOLFIN has been driven by two keys factors. The
first is striving for technical innovation. Examples of this include the use of a form
compiler to generate code and new data structures for efficient representation of
computational meshes [Logg 2009]. A second driving force is provided by the needs
of applications; diverse and challenging applications have demanded and resulted
in generic solutions for broad classes of problems. Often the canonical examples
have not exposed limitations in the technology. These have only become evident
and then addressed when attempting to solve challenging problems at the limits of
current technology. It is our experience that both these components are necessary
to drive advances and promote innovation.

We comment below on some specific design considerations that have been impor-
tant for the design and development of DOLFIN.

3.1 Languages and language features

DOLFIN is written primarily in C++ with interfaces provided both in the form
of a C++ class library and a Python module. The bulk of the Python interface
is generated automatically using SWIG [SWIG 2009; Beazley 2003], with some
extensions hand-written in Python3. The Python interface offers the performance
of the underlying C++ library with the ease of an intuitive scripting language.
Performance critical operations are developed in C++, and users can develop solvers
based on DOLFIN using either the C++ or Python interface.

A number of C++ libraries for finite element analysis make extensive use of
templates. Templated classes afford considerable flexibility and can be particularly
useful in combining high-level abstractions and code re-use with performance as
they avoid the cost inherent in virtual function calls in C++. However, the extensive
use of templates can obfuscate code, it increases compile time substantially and
compiler generated error messages are usually expansive and difficult to interpret.
We have chosen to use templates in DOLFIN where performance demands it, and
where it may enable reuse of code. However, a number of key operations in a
finite element library which require a function call involve a non-trivial number of
operations within the function, and in these cases we make use of traditional C++
polymorphism. This enhances readability and simplifies debugging compared to
template-based solutions, while not affecting run-time performance since the extra
cost of a virtual function call is negligible compared to, for example, computing an
element matrix or inserting the entries of an element matrix into a global sparse
data structure. At the highest levels of abstraction, users are exposed to very
few templated classes and objects, which simplifies the syntax of user-developed
solvers. The limited use of templates at the user level also simplifies the automated
generation of the DOLFIN Python interface.

In mirroring mathematical concepts in the library design, sharing of data be-
tween objects has proved important. For example, objects representing functions
may share a common object representing a function space, and different function

3These extensions deal primarily with JIT compilation, i.e., code generation, assembly and wrap-
ping, of objects before sending them through the SWIG-generated Python interface to the under-

lying C++ library.
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spaces may share a common object representing a mesh. We have dealt with
this issue though the use of shared pointers, and in particular the C++ Technical
Report 1 (TR1) std::tr1::shared ptr and Boost boost:shared ptr (DOLFIN
currently uses boost:shared ptr since this is better supported by SWIG than is
std::tr1::shared ptr). In managing data sharing, this solution has reduced the
complexity of classes and improved the robustness of the library. While we make
use of shared pointers, they are generally transparent to the user and need not
be used in the high-level interface, thereby not burdening a user with the more
complicated syntax.

3.2 Interfaces

Many scientific libraries perform a limited number of specialized operations which
permits exposing users to a minimal, high level interface. DOLFIN provides such
a high-level interface for solving partial differential equations, which in many cases
allows non-trivial problems to be solved with less than 20 lines of code (as we will
demonstrate in Section 5). At the same time, it is recognized that methods for
solving partial differential equations are diverse and evolving. Therefore, DOLFIN
provides interfaces of varying complexity levels. For some problems, the minimal
high level interface may suffice, whereas other problems may be solved using a
mixture of high- and low-level interfaces. In particular, users may often rely on
the DOLFIN Function class to store and hide the degrees of freedom of a finite
element function. Nevertheless, the degrees of freedom of a function may still be
manipulated directly if necessary to handle special cases.

The high level interface of DOLFIN is based on a small number of classes rep-
resenting common mathematical abstractions. These include the classes Matrix,
Vector, Mesh, FunctionSpace, Function and VariationalProblem. In addition
to these classes, DOLFIN provides a small number of free functions, including
assemble, solve and plot. We discuss these classes and functions in more detail
in Section 4.

DOLFIN relies on external libraries for a number of important tasks, including
the solution of linear systems. In cases where functionality provided by external
libraries must be exposed to the user, simplified wrappers are provided. This way,
DOLFIN preserves a consistent user interface, while allowing different external li-
braries which perform similar tasks to be seamlessly interchanged. It also permits
DOLFIN to set sensible default options for libraries with complex interfaces that
require a large number of parameters to be set. This is most evident in the use of
libraries for linear algebra. Consider for example the creation of a sparse matrix of
size M×N . This may be accomplished in DOLFIN in a single line, either by Matrix

A(M, N); (in C++) or A = Matrix(M, N) (in Python). When DOLFIN is config-
ured to use PETSc as linear algebra backend, this involves calls to the PETSc func-
tions MatCreateSeqAIJ (or MatCreateMPIAIJ), MatSetType, MatSetOption and
MatSetFromOptions. However, while the simplified wrappers defined by DOLFIN
may often suffice, access is permitted to the underlying wrapped objects so that
advanced users may operate directly on those objects when necessary.
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Fig. 3. UML diagram for the central components and classes of DOLFIN.

4. DESIGN AND IMPLEMENTATION

Like many other finite element libraries, DOLFIN is designed as a collection of
classes partitioned into components/libraries of related classes. However, while
these classes are typically implemented as part of the library, see, e.g., Bangerth
et al. [2007], DOLFIN relies on automated code generation and external libraries
for the implementation of a large part of the functionality. Figure 3 shows a UML
diagram for the central components and classes of DOLFIN. These include the linear
algebra classes, mesh classes, finite element classes and function classes. As already
touched upon above, the linear algebra classes consist mostly of wrapper classes
for external libraries. The finite element classes Form, FiniteElement and DofMap

are also wrapper classes but for generated code, whereas the classes Assembler,
VariationalProblem together with the mesh and function classes are implemented
as regular C++ classes (with Python wrappers) as part of DOLFIN. All classes are
defined as part of the C++ namespace dolfin or the Python module dolfin,
respectively. In the following, we address these key components of DOLFIN, in
order of increasing abstraction. In addition to the components depicted in Figure 3,
DOLFIN includes a number of additional components for input/output, logging,
plotting and solution of ordinary differential equations.

4.1 Linear algebra

DOLFIN is designed to allow the transparent use various specialized linear algebra
libraries. This includes the use of data structures for sparse and dense matri-
ces, preconditioners and iterative solvers, and direct linear solvers. This approach
allows users to leverage the particular strengths of different libraries through a
simple and uniform interface. Currently supported linear algebra backends include
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Default PETSc Trilinos uBLAS MTL4
vector Vector PETScVector TrilinosVector uBLASVector MTL4Vector
sparse matrix Matrix PETScMatrix TrilinosMatrix uBLASSparseMatrix MTL4Matrix
dense matrix — — uBLASDenseMatrix —

Table II. Basic DOLFIN linear algebra classes.

PETSc [Balay et al. 2009], Trilinos/Epetra [Heroux et al. 2005], uBLAS4 [Walter
et al. 2009] and MTL4 [Gottschling and Lumsdaine 2009]. Interfaces to the direct
solvers UMFPACK [Davis 2004] (sparse LU decomposition) and CHOLMOD [Chen
et al. 2008] (sparse Cholesky decomposition) are also provided.

The implementation of the DOLFIN linear algebra interface is based on C++
polymorphism. A common abstract base class GenericMatrix defines a minimal
matrix interface suitable for finite element assembly, and a subclass of Generic-

Matrix implements the functionality for each backend by suitably wrapping native
data structures of its respective backend. Similarly, a common abstract base class
GenericVector defines a minimal interface for vectors with subclasses for all back-
ends. The two interface classes GenericMatrix and GenericVector are themselves
subclasses of a common base class GenericTensor. This enables DOLFIN to im-
plement a common assembly algorithm for all matrices and vectors (or any other
rank tensor) for all linear algebra backends.

Users may instantiate matrices and vectors for any given backend using one of
the existing wrapper classes listed in Table II: uBLASMatrix, PETScMatrix etc.
Users may also define their own linear algebra backend by subclassing the base
classes GenericMatrix and GenericVector (or GenericTensor). However, many
times a user may not have a particular preference regarding the choice of linear
algebra backend and may then instantiate one of the default classes Matrix and
Vector. These classes hold a pointer to a GenericMatrix and GenericVector

respectively which is automatically instantiated to a concrete subclass5 such as
uBLASMatrix or PETScMatrix depending on the current choice of default backend,
which is controllable by a simple option. A user may access the underlying object
for a particular backend in order to perform specialized operations that are not
catered for through the DOLFIN interface. For example, the PETSc Mat pointer
of a PETScMatrix may be accessed by a call to the function PETScMatrix::mat().
Also, a DOLFIN linear algebra object can be created from a shared pointer to the
third-party linear algebra object.

Compared to a template-based solution, polymorphism may incur overhead as-
sociated with the cost of resolving virtual function calls. However, as the most
performance-critical function call to the linear algebra backend during assembly,
the insertion of a local element matrix into a global sparse matrix, typically in-
volves a considerable amount of computation/memory access, the extra cost of the
virtual function call may be neglected. For special cases in which the overhead of
a virtual function call is not negligible, operating directly on the underlying object
avoids this overhead.

4Krylov solvers and preconditioners for uBLAS are implemented as part of DOLFIN.
5This is sometimes referred to as the envelope-letter design pattern, see [Gamma et al. 1995].
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C++ code

// Create matrix and vectors

Matrix A(N, N);

Vector b(N);

// Assemble matrix and vector (normally handled by DOLFIN)

for (int e = 0; e < num_elements; e++)

{

unsigned int rows[3] = {...};

unsigned int cols[3] = {...};

double avals[9] = {...};

double bvals[3] = {...};

A.add(avals, 3, rows, 3, cols);

b.add(bvals, 3, rows);

}

// Apply changes

A.apply();

b.apply();

// Solve linear system

Vector x;

solve(A, x, b, gmres, ilu);

Table III. Basic use of linear algebra classes and solvers using the DOLFIN C++ interface. The
calls to Matrix::apply() and Vector::apply() tell the linear algebra backends to finalize the
assembly, corresponding to calls to MatAssemblyBegin() and MatAssemblyEnd() for PETSc and
GlobalAssemble() for Trilinos/Epetra.

Linear solvers are available through the solve() function6 which solves a lin-
ear system using one of a number of available methods, including LU factorization
(sparse or dense), the conjugate gradient method, GMRES and BiCGStab, us-
ing an optional preconditioner, including incomplete LU factorization, incomplete
Cholesky factorization and algebraic multigrid from either Hypre [Hypre 2009] or
ML [Heroux et al. 2005]. We exemplify the use of the DOLFIN linear algebra classes
and solvers in Table III.

4.2 Meshes

The DOLFIN Mesh class is based on a simple abstraction that allows dimension-
independence, both in the implementation of the DOLFIN mesh library and in user
code. In particular, the DOLFIN assembly algorithm is common for all simplex
meshes in one, two and three space dimensions. We provide here an overview of
the DOLFIN mesh implementation and refer to Logg [2009] for details.

A DOLFIN mesh consists of a collection of mesh entities that define the topology
of the mesh, together with a geometric mapping embedding the mesh entities in

6Linear solvers may alternatively be instantiated using the LinearSolver class or one of the

specialized classes, e.g., uBLASKrylovSolver or PETScKrylovSolver.
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Entity Class Dimension Codimension

Mesh entity MeshEntity d D − d

Vertex Vertex 0 D

Edge Edge 1 D − 1

Face Face 2 D − 2

Facet Facet D − 1 1

Cell Cell D 0

Table IV. DOLFIN mesh abstractions and corresponding classes. Users may refer to a mesh entity
either by a topological dimension and index or as a named mesh entity such as a vertex with a
specific index.

C++ code

Mesh mesh("mesh.xml");

for (CellIterator cell(mesh); !cell.end(); ++cell)

for (VertexIterator vertex(*cell); !vertex.end(); ++vertex)

cout << vertex->dim() << " " << vertex->index() << endl;

Python code

mesh = Mesh("mesh.xml")

for cell in cells(mesh):

for vertex in vertices(cell):

print vertex.dim(), vertex.index()

Table V. Basic use of DOLFIN mesh iterators for iterating over all vertices of all cells of a mesh
in C++ (top) and Python (bottom).

R
d. A mesh entity is a pair (d, i), where d is the topological dimension of the mesh

entity and i is a unique index of the mesh entity. A similar approach may be found
in Knepley and Karpeev [2009]. Mesh entities are numbered within each topological
dimension from 0 to nd − 1, where nd is the number of mesh entities of topological
dimension d. For convenience, mesh entities of topological dimension 0 are referred
to as vertices, entities of dimension 1 edges, entities of dimension 2 faces, entities
of codimension 1 facets and entities of codimension 0 cells. These concepts are
summarized in Table IV.

Algorithms operating on a mesh can often be expressed in terms of iterators [Berti
2002; 2006]. The mesh library provides the general iterator MeshEntityIterator in
addition to the specialized mesh iterators VertexIterator, EdgeIterator, Face-
Iterator, FacetIterator and CellIterator. We illustrate the use of iterators in
Table V.

The DOLFIN mesh library also introduces the concept of a mesh function. A
mesh function and its corresponding implementation MeshFunction is a discrete
function on the set of mesh entities of a specific dimension. It is only defined on a
set of mesh entities which is in contrast to functions represented by the DOLFIN
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Function class which take a value at each point x in the domain covered by the
mesh. The class MeshFunction is templated over the value type which allows users,
for example, to create a boolean valued mesh function over the cells of a mesh to
indicate regions for mesh refinement, an integer valued mesh function on vertices to
indicate a mapping from local to global vertex numbers (for a parallel distributed
mesh) or a float valued mesh function on cells to indicate material data.

The simple object-oriented interface of the DOLFIN mesh library is combined
with efficient storage of the underlying mesh data structures. Objects like vertices,
edges and faces are never stored. Instead, DOLFIN stores all mesh data in plain
C/C++ arrays and provides views of the underlying data in the form of the class
MeshEntity, its subclasses Vertex, Edge, Face, Facet and Cell, together with their
corresponding iterator classes. An earlier version of the DOLFIN mesh library used
a full object-oriented model also for storage, but the simple array-based approach
has reduced storage requirements and improved the speed of accessing mesh data by
orders of magnitude [Logg 2009]. In its initial state, the DOLFIN Mesh class only
stores vertex coordinates, using a single array of double values, and cell–vertex
connectivity, using a compressed row-like data structure consisting of two arrays of
unsigned int values. Any other connectivity, such as, vertex–vertex, edge–cell or
cell–facet connectivity, is automatically generated and stored whenever it is required
or asked for. Thus, if a user solves a partial differential equation using piecewise
linear elements on a tetrahedral mesh, only cell-vertex connectivity is required and
so edges and faces are not generated. However, if quadratic elements are used,
edges are automatically generated and cubic elements will lead to a generation of
faces as well as edges.

In addition to efficient representation of mesh data, the DOLFIN mesh library im-
plements a number of algorithms which operate on meshes, including adaptive mesh
refinement, mesh coarsening, mesh smoothing, mesh partitioning (implemented us-
ing ParMETIS) and mesh updating/smoothing, which is useful in formulations for
fluid–structure interaction. DOLFIN does currently not provide support for mesh
generation, except for a number of simple shapes like squares, boxes and spheres.
The following code illustrates adaptive mesh refinement in DOLFIN:

C++ code

MeshFunction<bool> cell_markers(mesh, mesh.topology().dim());

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

if (...)

cell_markers(*cell) = true;

else

cell_markers(*cell) = false;

}

mesh.refine(cell_markers);

mesh.smooth();

plot(mesh);
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4.3 Finite elements

DOLFIN supports a wide range of finite elements. At present, the following ele-
ments are supported:

(1) H1 conforming finite elements:
(a) CGr, arbitrary degree continuous Lagrange elements.

(2) H(div) conforming finite elements:
(a) RTr, arbitrary degree Raviart–Thomas elements [Raviart and Thomas

1977];
(b) BDMr, arbitrary degree Brezzi–Douglas–Marini elements [Brezzi et al.

1985]; and
(c) BDFMr, arbitrary degree Brezzi–Douglas–Fortin–Marini elements [Brezzi

et al. 1987].

(3) H(curl) conforming finite elements:
(a) NEDr, arbitrary degree Nédélec elements (first kind) [Nédélec 1980].

(4) L2 conforming finite elements:
(a) DGr, arbitrary degree discontinuous Lagrange elements; and
(b) CR1, first degree Crouzeix–Raviart elements [Crouzeix and Raviart 1973].

We note that CGr is strictly speaking not a finite element in the sense of the
standard Ciarlet definition which defines a finite element by a triplet (K,P,N )
where K is a domain, P a (polynomial) function space on K and N is a basis for
the dual space P ′. We here amend the definition of a finite element to include
the notion of a local-to-global mapping, that is, an association of local degrees
of freedom with local or global mesh entities. We may thus amend the standard
Lagrange element Pr by associating each degree of freedom on the boundary of K
with either a local or global mesh entity (vertex, edge or face) to obtain either a
CGr element or DGr element.

Arbitrary combinations of the above elements may be used to define mixed ele-
ments. Thus, one may for example define a Taylor–Hood element by combining a
vector-valued CG2 element with a scalar CG1 element. Arbitrary nesting is sup-
ported, thus allowing a mixed Taylor–Hood element to be used as a building block
in an extended mixed formulation. In Section 5, we exemplify the use of mixed
elements for mixed formulations of the Poisson equation. Presently, DOLFIN only
supports elements defined on simplices. This is not a technical limitation in the
library design, but rather a reflection of current user demand.

DOLFIN relies on a form compiler such as FFC for the implementation of finite
elements. FFC in turn relies on FIAT for tabulation of finite element basis functions
on a reference element. In particular, for any given element family and degree r from
the list of supported elements, FFC generates C++ code conforming to a common
interface specification for finite elements which is part of the UFC interface. Thus,
DOLFIN does not include a large library of finite elements, but relies on automated
code generation, either prior to compile-time or at run-time, for the implementation
of finite elements. The generated code may be used for efficient run-time evaluation
of finite element basis functions, derivatives of basis functions and evaluation of
degrees of freedom (applying the functionals of N to any given function). However,
these functions are rarely accessed by users as a user is not heavily exposed to the
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details of a finite element beyond its declaration, and since DOLFIN automates
the assembly of variational forms based on code generation for evaluation of the
element matrix. Detailed aspects of automated finite element code generation can
be found in Ølgaard et al. [2008] for discontinuous elements and in Rognes et al.
[2009] for H(div) and H(curl) elements.

4.4 Function spaces

The concept of a function space plays a central role in the mathematical formulation
of finite element methods for partial differential equations. DOLFIN mirrors this
concept in the class FunctionSpace. This class defines a finite dimensional function
space in terms of a Mesh, a FiniteElement and a DofMap (degree of freedom map):

C++ code

class FunctionSpace

{

public:

...

private:

...

boost::shared_ptr<const Mesh> _mesh;

boost::shared_ptr<const FiniteElement> _element;

boost::shared_ptr<const DofMap> _dofmap;

};

The mesh defines the domain, the finite element defines the local basis on each
cell and the degree of freedom map defines how local function spaces are patched
together to form the global function space. Functionality of the FunctionSpace

class includes extraction of subspaces (for mixed spaces), evaluation of the global
basis at arbitrary points and interpolation of functions in the function space.

Incorporating the mathematical concept of function spaces in the library design
provides a powerful abstraction, especially for sharing data in a transparent and
simple fashion. In particular, several functions may share the same function space
and thus the same mesh, finite element and degree of freedom mapping.

4.5 Functions

Closely related to the concept of a function spaces, DOLFIN provides an abstrac-
tion for mathematical functions in the form of the class Function. A Function

may be evaluated at arbitrary points on a finite element mesh, used as a coefficient
in a variational form, saved to file for later visualization or plotted directly from
within DOLFIN. The DOLFIN Function class is particularly powerful for supply-
ing and exchanging data between different models in coupled problems, as will be
demonstrated in Section 5.

A Function may be represented in one of two ways. It can be expressed as a
linear combination of basis functions on a discrete finite element space, in which
case the Function stores the coefficients in a Vector, or the function evaluation
can be defined by a user through overloading the Function::eval() function. We
refer to these as “discrete” and “user-defined” Functions, respectively. In both
cases, the Function must be defined on a FunctionSpace. Thus, a Function may
either be defined by a FunctionSpace and a Vector or a FunctionSpace and an
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evaluation operator. Most operations on a Function remain the same regardless of
the underlying representation. Thus, any Function may be used as a coefficient in
a variational form or plotted. However, only a discrete Function may be used to
store solutions of variational problems.

Evaluation of discrete Functions at arbitrary points is handled efficiently us-
ing the GNU Triangulated Surface Library [GTS 2009]. With the help of GTS,
DOLFIN locates which cell of the Mesh of the FunctionSpace contains the given
point. The function value may then be computed by evaluating the finite element
basis functions at the given point (using the FiniteElement of the FunctionSpace)
and then evaluating the linear combination using the coefficients found in the
Vector (using the DofMap of the FunctionSpace). In other words, the function
value is given by

uh(x) =

n
∑

i=1

UιK(i)φ
K
i (x), x ∈ K, (5)

where {φK
i }n

i=1 is the local finite element basis on the cell K, ιK : {1, 2, . . . , n} →
{1, 2, . . . , N} is the degree of freedom mapping on K and U ∈ R

n is the vector of
coefficients for the function uh.

As mentioned, a user may define a Function by overloading the eval() func-
tion of the Function class. This functor construct provides a powerful mechanism
for defining complex functions. In particular, the functor construct allows a user
to attach data to a Function. Thus, a user may, for example, read data from a
file in the constructor of a Function subclass which is then later accessed in the
eval() callback function. For the definition of functions given by simple expres-
sions, like f(x) = sin(x) or g(x, y) = sin(x) cos(y), the DOLFIN Python interface
provides simple and automated JIT compilation of function expressions. While the
Python interface does allow a user to overload the eval() function from Python7,
this may be inefficient as the call to eval() involves a callback from C++ to a
Python function and this may be called repeatedly during assembly (once on each
cell). However, JIT compilation avoids this by automatically generating, compiling,
wrapping and linking C++ subclasses of the Function class. The Python C++
interface also allows direct interpolation or projection of user-defined Functions
onto a given FunctionSpace. Table VI illustrates use of the DOLFIN Function

class in Python.

4.6 Variational forms

DOLFIN allows general variational forms to be expressed in a form language that
mimics mathematical notation. For example, consider the bilinear form of the
standard Stokes variational problem. This may be conveniently expressed in the
form language as illustrated in Table VII. The form language allows the expression
of general multilinear forms of arity ρ on the product space V 1

h × V 2
h × · · · × V ρ

h of

a sequence {V j
h }

ρ
j=1 of finite element spaces on a domain Ω ⊂ R

d,

a : V 1
h × V 2

h × · · · × V ρ
h → R. (6)

7SWIG supports cross-language polymorphism using the director feature.
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Python code

# Create mesh

mesh = UnitSquare(32, 32)

# Define function space and function

V = VectorFunctionSpace(mesh, "CG", 2)

f = Function(V, ("sin(x[0])", "cos(x[1])"))

# Project to a discrete function

g = project(f, V)

# Evaluation point and values

x = numpy.array((0.1, 0.2))

values = numpy.array((0.0, 0.0))

# Evaluate user-defined function f

f.eval(values, x)

print "f(x) =", values

# Evaluate discrete function g (projection of f)

g.eval(values, x)

print "g(x) =", values

# Plot functions

plot(f)

plot(g)

Table VI. Defining, projecting, plotting and evaluating functions using the DOLFIN Python in-
terface.

Mathematical notation

a(v, u) =
R

Ω
grad v · grad u − div v p + q div u dx

Code

a = (dot(grad(v), grad(u)) - div(v)*p + q*div(u))*dx

Table VII. Expressing the bilinear form for the Stokes equations in DOLFIN.

Such forms are fundamental building blocks in linear and nonlinear finite element
analysis. In particular, linear forms (ρ = 1) and bilinear forms (ρ = 2) are central
to the finite element discretization of partial differential equations. Forms of higher
arity are also supported as they may sometimes be of interest, see Kirby and Logg
[2006].

DOLFIN currently relies on the form language of FFC for expression of varia-
tional forms. The FFC form language allows the expression of any multilinear form
based on a small set of basic form operators, including addition, multiplication,
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Operator Expression

Addition v + w

Multiplication v*w

Indexing v[i]

Differentiation v.dx(i)

Integration v*dx

Table VIII. Basic form operators in DOLFIN/FFC. Compound operators defined in terms of these
basic operators include dot(), cross(), avg(), jump(), grad(), curl() and div().

indexing, differentiation and integration, as summarized in Table VIII. Future ver-
sions of DOLFIN (and FFC) will instead use the Unified Form Language (UFL) [Al-
næs et al. 2009]. Forms can involve integrals over cells, interior facets and exterior
facets. Line and surface integrals which do not coincide with cell facets are not yet
supported, although developments in this direction for modeling crack propagation
are under way [Nikbakht and Wells 2009]. For details on the FFC form language,
we refer to the FFC user manual [Logg et al. 2009].

A user of the DOLFIN C++ interface will typically define a set of forms in
one or more form files and call FFC on the command-line. The generated code
may then be included in the user’s C++ program. As an illustration, consider
again the bilinear form of the Stokes problem as expressed in Table VII. This may
be entered together with the corresponding linear form L = v*f*dx in a text file
named Stokes.form which may then be compiled with FFC:

ffc -l dolfin Stokes.form

This will generate a C++ header file Stokes.h which a user may include in a C++
program to instantiate the pair of forms:

C++ code

#include <dolfin.h>

#include "Stokes.h"

...

int main()

{

...

StokesFunctionSpace V(mesh);

StokesBilinearForm a(V, V);

StokesLinearForm L(V);

...

}

When used from Python, form compilation is handled automatically by DOLFIN.
If a form is encountered during the execution of a program, the necessary C++ code
is automatically generated and compiled. The generated object code is cached so
that code is generated and compiled only when necessary. Thus, if a user solves
the Stokes problem twice, code is only generated the first time, as the JIT compiler
will recognize the Stokes form on subsequent runs.
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4.7 Finite element assembly

Given a variational form, the DOLFIN assemble() function assembles the corre-
sponding global tensor. In particular, a matrix is assembled from a bilinear form, a
vector is assembled from a linear form, and a scalar value is assembled from a rank
zero form (a functional).

To discretize the multilinear form (6), we may introduce a basis {φj
k}

Nj

k=1 for each

function space V j
h , j = 1, 2, . . . , ρ, and define the global tensor

Ai = a(φ1
i1

, φ2
i2

, . . . , φρ
iρ

), (7)

where i = (i1, i2, . . . , iρ) is a multi-index. If the multilinear form is defined as
an integral over Ω = ∪K∈Th

K, the tensor A may be computed by assembling the
contributions from all elements,

Ai = a(φ1
i1

, φ2
i2

, . . . , φρ
iρ

) =
∑

K∈T

aK(φ1
i1

, φ2
i2

, . . . , φρ
iρ

), (8)

where aK denotes the contribution from element K. We further let {φK,j
k }

nj

k=1

denote the local finite element basis for V j
h on K and define the element tensor AK

(the “element stiffness matrix”) by

AK
i = aK(φK,1

i1
, φK,2

i2
, . . . , φK,ρ

iρ
). (9)

The assembly of the global tensor A thus reduces to the computation of the element
tensor AK on each element K and the insertion of the entries of AK into the
global tensor A. In addition to contributions from all cells, DOLFIN also assembles
contributions from all exterior facets (facets on the boundary) and all interior facets
if required.

The key to the generality and efficiency of the DOLFIN assembly algorithm
lies in the automated generation of code for the evaluation of the element tensor.
DOLFIN relies on generated code both for the evaluation of the element tensor
and the mapping of degrees of freedom. Thus, the assembly algorithm may call
the generated code on each cell of the mesh, first to compute the element tensor
and then again to compute the local-to-global mapping by which the entries of the
element tensor may be inserted into the global tensor.

The complexity inherent in non-trivial forms, such as those which involve mixed
element spaces, vector elements and discontinuous Galerkin methods, is not ex-
posed in the form abstraction. DOLFIN is unaware of how the element matrix is
represented or how forms are integrated. It simply provides coefficient and mesh
data to the generated code and assembles the computed results. The algorithm for
computing the element tensor is instead determined by the form compiler. Various
algorithms are possible, including both quadrature and a special tensor representa-
tion, and the most efficient algorithm can depend heavily on the nature of the form
[Kirby and Logg 2006; Ølgaard and Wells 2009].

To assemble a Form a, a user may simply call the function assemble() which
computes and returns the corresponding tensor. Thus, a bilinear form may be
assembled by
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C++ code

Matrix A;

assemble(A, a);

in C++ and

Python code

A = assemble(a)

in Python. Several optional parameters may be given to specify either assembly
over specific subdomains of the mesh or reuse of tensors.

4.8 Boundary conditions

DOLFIN supports natural as well as essential boundary conditions. Natural bound-
ary conditions are enforced weakly as part of a variational problem and are typically
of Neumann or Robin type, but may also be of Dirichlet type as will be demon-
strated Section 5. Essential boundary conditions are typically of Dirichlet type
and are enforced strongly at the linear algebra level. DOLFIN also supports the
specification of periodic boundary conditions. We here describe the definition and
application of strong Dirichlet boundary conditions.

We define a Dirichlet boundary condition in terms of a function space V , a
function g and a subset of the boundary Γ ⊆ ∂Ω,

u(x) = g(x) ∀x ∈ Γ. (10)

The corresponding definition in the DOLFIN Python interface reads

Python code

bc = DirichletBC(V, g, gamma)

where V is a FunctionSpace, g is a Function and gamma is a SubDomain. Alterna-
tively, the boundary may be defined in terms of a MeshFunction marking a portion
of the facets on the mesh boundary. The function space V defines the space to which
the boundary condition will be applied. This is useful when applying a Dirichlet
boundary condition to particular components of a mixed or vector-valued problem.

Once a boundary condition has been defined, it can be applied in one of two
ways. The simplest is to act upon the assembled global system:

Python code

bc.apply(A, b)

For each degree of freedom to be constrained, this call will zero the corresponding
row in the matrix, set the diagonal entry to one and put the Dirichlet value at
corresponding position in the right-hand side vector. An optional argument can
be provided for updating the boundary conditions in a nonlinear Newton iteration.
Alternatively, the boundary condition may be supplied directly to the assembler
which will then apply it in a manner that preserves any symmetry of the global
matrix:
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Python code

A, b = assemble_system(a, L, bc)

4.9 Variational problems

At the highest level of abstraction, objects may be created that represent variational
problems of the canonical form (2). Such a variational problem may be defined and
solved by

Python code

problem = VariationalProblem(a, L)

u = problem.solve()

A constraint on the trial space in the form of one or more Dirichlet conditions may
be supplied as additional arguments. Other parameters include the specification
of the linear solver and preconditioner (when appropriate) and whether or not the
variational problem is linear. In the case of a nonlinear variational problem, the
bilinear form is interpreted as the Gateaux derivative of a nonlinear form L = F
satisfying

F (v) = 0 ∀ v ∈ V. (11)

4.10 File I/O and visualization

DOLFIN provides input/output for objects of all central classes, including Vector,
Matrix, Mesh, MeshFunction and Function. Objects are stored to file in XML
format. For example, a Mesh may be loaded from and stored back to file by

C++ code

File file("mesh.xml");

Mesh mesh;

file >> mesh;

file << mesh;

Mesh data may be converted to the native DOLFIN XML format from Gmsh,
Medit, Diffpack, ABAQUS, Exodus II and StarCD formats using the conversion
utility dolfin-convert.

Solution data may be exported in a number of formats, including the VTK XML
format which is useful for visualizing a Function in VTK-based tools, such as
ParaView. DOLFIN also provides built-in plotting for Mesh, MeshFunction and
Function using Viper:

C++ code

plot(mesh);

plot(mesh_function);

plot(u);

5. APPLICATIONS

We present here a collection of examples to demonstrate the use of DOLFIN for
solving partial differential equations and related problems of interest. A more
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Form compiler code

element = FiniteElement("Lagrange", "triangle", 1)

p = Function(element)

n = FacetNormal("triangle")

M = p*n[1]*ds

Table IX. Definition of the functional for computing the lift.

extensive range of examples are distributed with the DOLFIN source code. For a
particularly complicated application to reservoir modeling, we refer to Wells et al.
[2008]. Some issues of particular relevance to solid mechanics problems are discussed
in Ølgaard et al. [2008].

5.1 Evaluating functionals

We begin with the simplest form that we can evaluate, a functional. In the absence
of shear forces, the lift acting on a body can be computed by integrating the pressure
multiplied by a suitable component of the unit vector normal to the surface of
interest. The definition of this functional is shown in Table IX. From this definition,
code may be generated and used as input for the C++ program shown in Table X.

Another common application of functionals is the evaluation of various norms or
evaluating the error of a computed solution when the exact solution is known. For
example, one may define the squared L2, H1

0 and H1 norms as follows:

Python code

L2 = v*v*dx

H10 = dot(grad(v), grad(v))*dx

H1 = L2 + H10

Alternatively, one may use the built-in DOLFIN functions norm() and errornorm()

to evaluate norms and errors:
Python code

print norm(v, "L2")

print norm(v, "H1")

print norm(v, "H10")

print norm(v, "Hdiv")

...

print errornorm(u, uh, "L2")

print errornorm(u, uh, "H1")

print errornorm(u, uh, "H10")

print errornorm(u, uh, "Hdiv")

...

5.2 Solving linear partial differential equations

To illustrate the use of DOLFIN for solving simple linear partial differential equa-
tions, we consider Poisson’s equation −∆u = f discretized using three different
methods: an H1 conforming primal approach using standard continuous Lagrange
basis functions; a mixed method using [H(div)]d × L2 conforming elements; and a
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C++ code

#include <dolfin.h>

#include "Lift.h"

using namespace dolfin;

// Define sub domain for body

class Body : public SubDomain

{

bool inside(const double* x, bool on_boundary) const

{

return (x[0] > DOLFIN_EPS && x[0] < (1.0 - DOLFIN_EPS) &&

x[1] > DOLFIN_EPS && x[1] < (1.0 - DOLFIN_EPS) &&

on_boundary);

}

};

int main()

{

// Read pressure field function from file

Function p("pressure.xml.gz");

// Functional for lift

FacetNormal n;

LiftFunctional M(p, n);

// Assemble functional over sub domain

Body body;

cout << "Lift: " << assemble(M, body) << endl;

}

Table X. Code listing for computing the lift on a body.

discontinuous Galerkin method using L2 conforming discontinuous Lagrange basis
functions.

5.2.1 H1 conforming discretization of Poisson’s equation. For the standard H1

conforming approach, the bilinear and linear forms are given by

a(v, u) =

∫

Ω

∇v · ∇u dx, (12)

L(v) =

∫

Ω

vf dx, (13)

and the forms may be specified in DOLFIN by
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Python code

V = FunctionSpace(mesh, "CG", 1)

v = TestFunction(V)

u = TrialFunction(V)

f = Function(V, ...)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

5.2.2 [H(div)]d × L2 conforming discretization of Poisson’s equation. For the
mixed version of the Poisson problem, with u = 0 on ∂Ω, the bilinear and linear
forms read [Brezzi and Fortin 1991]:

a(τ, w;σ, u) =

∫

Ω

τ · σ − (∇ · τ)u + w (∇ · σ) dx, (14)

L(τ, w) =

∫

Ω

wf dx, (15)

where τ, σ ∈ V , w, u ∈ W and

V = {τ ∈ H (div,Ω) : τ |K ∈ BDMr (K) ∀K} , (16)

W =
{

w ∈ L2 (Ω) : w|K ∈ Pr−1 (K) ∀K
}

. (17)

The corresponding implementation in DOLFIN for r = 2 reads:

Python code

V = FunctionSpace(mesh, "BDM", 2)

W = FunctionSpace(mesh, "DG", 1)

mixed_space = V + W

(tau, w) = TestFunctions(mixed_space)

(sigma, u) = TrialFunctions(mixed_space)

f = Function(W, ...)

a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx

L = w*f*dx

5.2.3 L2 conforming discretization of Poisson’s equation. For a discontinuous
interior penalty formulation of the Poisson problem, the bilinear and linear forms
read:

a(v, u) =

∫

Ω

∇v · ∇u dx −

∫

Γ0

JvK · 〈∇u〉ds −

∫

Γ0

〈∇v〉 · JuKds

−

∫

∂Ω

JvK · ∇u ds −

∫

∂Ω

∇v · JuKds +

∫

Γ0

α

h
JvK · JuKds +

∫

∂Ω

α

h
vu ds (18)

and

L(v) =

∫

Ω

vf dx, (19)

where Γ0 denotes all interior facets and v, u ∈ V =
{

v ∈ L2 (Ω) : vK ∈ Pr (K) ∀K
}

.
The corresponding implementation in DOLFIN for r = 1 reads as follows:
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Python code

V = FunctionSpace(mesh, "DG", 1)

v = TestFunction(V)

u = TrialFunction(V)

f = Function(V, ...)

n = FacetNormal(mesh)

h = MeshSize(mesh)

alpha = 4.0

a = dot(grad(v), grad(u))*dx \

- dot(jump(v, n), avg(grad(u)))*dS \

- dot(avg(grad(v)), jump(u, n))*dS \

- dot(mult(v, n), grad(u))*ds - dot(grad(v), mult(u, n))*ds \

+ alpha/h(’+’)*dot(jump(v, n), jump(u, n))*dS \

+ alpha/h*v*u*ds

L = v*f*dx

5.3 Solving time-dependent partial differential equations

Unsteady problems can be solved by defining a variational problem to be solved in
each time step. We illustrate this by solving the convection-diffusion problem,

u̇ + b · ∇u −∇ · (c∇u) = f. (20)

The velocity field b = b(x) may be a user-defined function or an earlier computed
solution from a Stokes or Navier–Stokes problem. Multiplying (20) with a test
function and integrating in space and time, we obtain

∫ T

0

∫

Ω

v u̇ + v b · ∇u + c∇v · ∇u dxdt =

∫ T

0

∫

Ω

vf dxdt, (21)

for a suitable choice of boundary conditions. Discretizing in time using the cG(1)
method (the test function is discontinuous and piecewise constant in time and the
trial function is continuous and piecewise linear), it follows that the variational
problem (21) reduces to

∫

Ω

v (un
h − un−1

h ) + knv b · ∇ūn
h + knc∇v · ∇ūn

h dx =

∫ tn

tn−1

∫

Ω

vf dxdt, (22)

where kn = tn − tn−1 is the size of the time step and ūn
h = (un

h + un−1
h )/2. We may

implement the problem (22) in DOLFIN by moving all terms involving un−1
h to the

right-hand side. Alternatively, we may rely on the built-in operators lhs() and
rhs() to extract the pair of bilinear and linear forms as illustrated in Table XI. In
Table XII we show the corresponding C++ program.

5.4 Solving nonlinear partial differential equations

Solution procedures for nonlinear differential equations are inherently more complex
and diverse than those for linear equations. With this in mind, the design of
DOLFIN allows users to build complex solution algorithms for nonlinear problems
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Form compiler code

scalar = FiniteElement("Lagrange", "triangle", 1)

vector = VectorElement("Lagrange", "triangle", 2)

v = TestFunction(scalar) # test function

u1 = TrialFunction(scalar) # solution at t_n

u0 = Function(scalar) # solution at t_{n-1}

b = Function(vector) # convective velocity

f = Function(scalar) # source term

c = 0.005 # diffusivity

k = 0.05 # time step

u = 0.5*(u0 + u1)

F = v*(u1 - u0)*dx + k*v*dot(b, grad(u))*dx + k*c*dot(grad(v), grad(u))*dx

a = lhs(F)

L = rhs(F) + k*v*f*dx

Table XI. Specification of the variational problem for the unsteady convection-diffusion equa-

tion (20).

using the basic building blocks assemble() and solve(). However, a built-in
Newton solver is also provided which suffices for many nonlinear problems. We
illustrate this below for the following nonlinear Poisson-like equation:

−∇ ·
(

1 + u2
)

∇u = f in Ω, (23)

u = 0 on ∂Ω. (24)

Multiplying by a test function v ∈ V = H1
0 (Ω) and integrating over the domain Ω,

we obtain

F (u; v) ≡

∫

Ω

(

1 + u2
)

∇v · ∇u dx −

∫

Ω

vf = 0, (25)

where we note that F : V × V → R is nonlinear in its first argument and linear
in its second argument. To solve the nonlinear problem by Newton’s method, we
compute the Gateaux derivative DuF (u; v) and obtain

a(u; v, δu) ≡ DuF (u; v)δu =
dF (u + ǫδu; v)

dǫ

∣

∣

∣

∣

ǫ=0

=

∫

Ω

(

1 + u2
)

∇v · ∇δu dx +

∫

Ω

2uδu∇v · ∇u dx.

(26)

We note that F (u; ·) : V → R is a linear form for every fixed u and that a(u; ·, ·) :
V × V → R is a bilinear form for every fixed u. A full solver for (23)–(24) in the
case f(x, y) = x sin y is presented in Table XIII.

6. CONCLUSIONS

We have presented a problem solving environment that largely automates the fi-
nite element approximation of solutions to differential equations. This is achieved
by generating computer code for parts of the problem which are specific to the
considered differential equation, and designing a generic library which reflects the
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C++ code

// Read velocity field and extract mesh

Function velocity("velocity.xml.gz");

const Mesh& mesh(velocity.function_space().mesh());

// Read sub domain markers

MeshFunction<unsigned int> sub_domains(mesh, "subdomains.xml.gz");

// Create function space

ConvectionDiffusionFunctionSpace V(mesh);

// Source term and initial condition

Constant f(0.0);

Function u(V);

u.vector().zero();

// Set up forms

ConvectionDiffusionBilinearForm a(V, V);

a.b = velocity;

ConvectionDiffusionLinearForm L(V);

L.u0 = u; L.b = velocity; L.f = f;

// Set up boundary condition

Constant g(1.0);

DirichletBC bc(V, g, sub_domains, 1);

// Linear system

Matrix A;

Vector b;

// Assemble matrix and apply boundary conditions

assemble(A, a);

bc.apply(A);

// Parameters for time-stepping

double T = 2.0; double k = 0.05; double t = k;

// Output file

File file("temperature.pvd");

// Time-stepping

while (t < T)

{

assemble(b, L);

bc.apply(b);

solve(A, u.vector(), b, lu);

file << u;

t += k;

}

Table XII. Implementation of the solver for the unsteady convection-diffusion equation (20).
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Python code

from dolfin import *

# Create mesh and define function space

mesh = UnitSquare(32, 32)

V = FunctionSpace(mesh, "CG", 1)

# Define boundary condition

g = Constant(mesh, 0)

bc = DirichletBC(V, g, DomainBoundary())

# Define source and solution functions

f = Function(V, "x[0]*sin(x[1])")

u = Function(V)

# Define variational problem

v = TestFunction(V)

du = TrialFunction(V)

a = (1.0 + u*u)*dot(grad(v), grad(du))*dx + \

2*u*du*dot(grad(v), grad(u))*dx

L = (1.0 + u*u)*dot(grad(v), grad(u))*dx - v*f*dx

# Solve nonlinear variational problem

problem = VariationalProblem(a, L, bc, nonlinear=True)

problem.solve(u)

# Plot solution and solution gradient

plot(u)

plot(grad(u))

Table XIII. Implementation of a solver for the nonlinear Poisson problem (23)–(24).

mathematical formulation of the problems. Using a high level of mathematical
abstraction and automated code generation, the system can be designed for both
performance and readability, allowing new models to be implemented rapidly and
solved efficiently.

Until recently, the focus has been on automating the assembly of linear systems
arising from the finite element discretization of variational problems, in particular
with regards to providing a general implementation independent of the variational
problem, the mesh, the discretizing finite element space(s) and the linear algebra
backend. Ongoing work is now focusing on adding support for efficient parallel
computing and automated error estimation/adaptivity. It is expected that parallel
computing will be supported by DOLFIN 1.0 to be released in the second half
of 2009.
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