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 7 

ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the 8 

transition from a microbial world to the one we know today. The enigmatic organisms of 9 

the Ediacaran hold the key to understanding the early evolution of metazoans and their 10 

ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information 11 

they divulge is a thorough understanding of their taphonomy: of what is preserved and 12 

how it is preserved, and also of what is not preserved. Fortunately, this Period is also 13 

recognized for its abundance of soft-tissue preservation, which is viewed through a wide 14 

variety of taphonomic windows. Some of these, such as pyritization and carbonaceous 15 

compression, are also present throughout the Phanerozoic, but the abundance and variety 16 

of moldic preservation of body fossils in siliclastic settings is unique to the Ediacaran. In 17 

rare cases, one organism is preserved in several preservational styles which, in 18 

conjunction with our increased understanding of the taphonomic processes involved in 19 

each style, allow us to more confidently interpret aspects of the biology and ecology of 20 

the organisms preserved. Several groundbreaking advances in this field have been made 21 

since the 1990s, and have paved the way for increasingly thorough analyses and elegant 22 

interpretations.  23 



 24 

INTRODUCTION: THE IMPORTANCE OF TAPHONOMY 25 

 26 

Taphonomic analyses can provide valuable insights into a spectrum of 27 

paleobiological questions, including biology, tissue composition, and paleoecology, as 28 

well aspects of the paleoenvironment such as sediment pore-water composition and ocean 29 

water geochemistry. In celebrated examples, unique taphonomic windows and 30 

exceptional preservation have allowed fundamental questions about a group to be 31 

resolved. Ediacaran macrofossils are amongst the least-well understood of any 32 

macrobiotic assemblage in terms of their biology, paleoecology, and phylogenetic 33 

affinity. A thorough understanding of the processes involved in their preservation is 34 

required to distinguish between taphonomic artifact and genuine morphological features. 35 

Accordingly, there is a long history of actualistic taphonomic analyses undertaken on this 36 

biota, combining field-based observations with petrographic and experimental data. 37 

Furthermore, recent research has demonstrated that the coincidence of multiple 38 

taphonomic windows operating on the same organisms allow us to resolve fundamental 39 

questions regarding the taphonomic processes themselves; each window provides a test-40 

bed against which the others can be compared. Of all Ediacaran macrofossil assemblages, 41 

those traditionally referred to as the ‘Ediacara biota’ (e.g. Gehling, 1999; Narbonne, 42 

2005) have been the most intensively scrutinised, and thus form the focus of this 43 

discussion. 44 

The most notable difference between the Ediacaran and the Phanerozoic is the 45 

abundance of moldic preservation of soft parts in sand-grade sediments, but the 46 



differences in geochemistry and taphonomic processes between the two are not yet fully 47 

understood. There remain fundamental questions regarding life and its preservation in the 48 

Ediacaran, including the composition of the soft parts of the organisms, the taphonomic 49 

biases imparted by the various paleoenvironments in which the organisms lived, and the 50 

relationship between organism, microbial mat, and sediment. Only by understanding the 51 

taphonomy of these organisms can we begin to confidently elucidate other aspects of 52 

their biology. Herein, we review Ediacaran diversity and paleobiology, discussing the 53 

dominant preservational styles, the importance of microbial mats, and a few intriguing 54 

oddities. We explore the limitations to our current knowledge, and suggest future 55 

directions for research in this fascinating Period. 56 

 57 

 Ediacaran macrofossils – it’s life, but not as we know it!  58 

The Ediacaran Period (635-541 Ma; Knoll et al., 2004) hosts the earliest 59 

macrofossils currently known from the rock record. These include the ~600 Ma Lantian 60 

biota (Yuan et al., 2011), and the much more widely-studied assemblages commonly and 61 

collectively referred to as the Ediacara biota (e.g. Gehling, 1999; Narbonne, 2005; see 62 

MacGabhann, 2014 for a discussion). Assemblages included in the latter biota span some 63 

40 Ma of Earth history, from immediately after the Gaskiers glaciation to the base of the 64 

Cambrian (Fedonkin et al., 2007; Narbonne et al., 2012), and shape our ideas of early 65 

metazoan evolution and the development of Phanerozoic ecosystem structure. They also 66 

provide a means of calibrating molecular clocks and the origination of metazoan clades 67 

(Erwin et al., 2011). They are thought by many to include some of the earliest metazoans 68 

(e.g. Narbonne, 2005), but interpretations regarding their phylogenetic affinity are as 69 



varied as the organisms themselves. They have been interpreted as, or allied to, stem- or 70 

crown-group metazoans (e.g. Glaessner, 1979; Clapham et al., 2003; Sperling and 71 

Vinther, 2010; Sperling et al., 2011), algae (Ford, 1958), xenophyophores (large benthic 72 

foraminifera; Seilacher et al., 2003), fungal-grade organisms (Peterson et al., 2003), an 73 

extinct Kingdom (the Vendobionta; Seilacher, 1984, 1992) and even lichens (Retallack, 74 

1994). Part of this confusion is, at least in part, attributable to the historic treatment of the 75 

biota as one phylogenetic group, when it almost certainly includes representatives from 76 

many disparate clades (Xiao and Laflamme, 2009; Erwin et al., 2011). Treatment of the 77 

organisms on a ‘case by case basis’ will, no doubt, lead to a clearer understanding of the 78 

diversity and biology of the organisms present. 79 

Most workers now recognize several distinct groups (Fedonkin et al., 2007; 80 

Laflamme et al., 2013), including: 1) rangeomorphs, characterised by repeated branching 81 

which creates a pseudo-fractal, “modular” architecture  (Narbonne, 2004; Brasier et al., 82 

2012); 2) arboreomorphs, which are similar in gross appearance to rangeomorphs but 83 

have a different (non-fractal) branching pattern; 3) kimberellomorphs, which are 84 

bilaterally symmetrical, display clearly defined anterior-posterior differentiation and have 85 

at least three concentric zones; 4) erniettomorphs, which are modular and consist of 86 

tubular units, and 5) dickinsoniomorphs, which are also modular but show anterior-87 

posterior differentiation. Four additional groups are defined based purely on their 88 

symmetry: bilateralomorphs (which are likely polyphyletic; Laflamme et al., 2013), 89 

triradialomorphs, tetraradialomoprhs, and pentaradialomorphs (Laflamme et al., 2013). 90 

Although considered phylogenetically distinct, individuals of all described groups 91 

comprise serially-repeated units.  92 



Three assemblages have been proposed: the Avalon, White Sea and Nama 93 

assemblages (Waggoner, 2003). Whilst these correlate broadly with current 94 

understanding of paleogeography and age, debate as to the extent of the influence of 95 

depositional environment on biotic composition of any given site persists (Grazhdankin, 96 

2004; Droser et al., 2006; Gehling and Droser, 2013). Understanding the 97 

paleoenvironment of a site, and thus the biases imposed on taphonomic processes, is of 98 

critical importance in assessing the fidelity of the fossil assemblage to the life assemblage 99 

(e.g. Grazhdankin et al., 2008).   100 

Many sites record diverse subaqueous communities (e.g. Xiao et al., 2013), 101 

comprising upright and flat-lying forms, and some thought to be wholly or partially 102 

buried in the sediment; the majority were benthic, sessile, and epifaunal (Narbonne, 2005; 103 

Laflamme and Narbonne, 2008). Whilst scant evidence for motility has been documented 104 

from the oldest of these sites (Liu et al., 2010), it is not until the latest Ediacaran that 105 

bioturbation (e.g. Chen et al, 2013; Meyer et al., 2014c) and macro-benthic predation 106 

(e.g. Hua et al., 2003) become obvious. Microbial mats are widespread and well-107 

documented from these assemblages, and have been implicated in their paleoecology 108 

(e.g. Seilacher, 1999).  109 

 110 

Peeking through the taphonomic windows at a soft-bodied world 111 

The Ediacaran is conspicuous for its sheer abundance of soft-tissue preservation. 112 

Dozens of sites are known from across five continents, and include representatives from 113 

multiple paleoenvironmental settings hosting abundant and diverse communities. They 114 

allow a glimpse onto a world populated almost entirely by soft-bodied organisms. 115 



Without such abundant preservation of these soft parts, we would have little knowledge 116 

of macro-benthic life during most of this critical interval of Earth history; mineralization 117 

in macro-organisms only evolves in the terminal Ediacaran (e.g. Grant, 1990; Grotzinger 118 

et al., 2000; Penny et al., 2014), and the makers of known trace fossils largely remain 119 

elusive.  120 

Many aspects of the Ediacaran paleoenvironment differed to the Phanerozoic, and 121 

different taphonomic biases held sway: sediment surfaces were sealed by microbial mats, 122 

scavenging and deep bioturbation were absent, and the organisms were largely sessile and 123 

immotile. Consequently, there was a lack of disturbance and an attendant lack of 124 

significant time-averaging. Microbes are often cited as key to preservation (e.g. Briggs, 125 

2003; Raff and Raff, this volume), and they formed ubiquitous mats in the Ediacaran (see 126 

Binding it all together, below). It also had a potentially very different sedimentary and 127 

oceanic chemistry, with lower seawater sulfate concentrations (Canfield et al., 2008), 128 

abundant labile dissolved organic carbon in the deep oceans (Sperling et al., 2011), and a 129 

condensed sediment-water geochemical profile, favoring early diagenetic mineralization 130 

(Callow and Brasier, 2009b).  131 

The multiple views provided onto the community by the different taphonomic 132 

windows, coupled with the lack of significant time-averaging, give us greater confidence 133 

in the relative completeness of ecosystems. This has allowed inferences about community 134 

successions (Clapham et al., 2003), evolutionary progressions (Xiao and Laflamme, 135 

2009) and ecological interactions to be made (Clapham and Narbonne, 2002; Clapham et 136 

al., 2003; Droser et al., 2006; Darroch et al., 2013). Nevertheless, details of the anatomy 137 

of many Ediacaran organisms are largely unknown. Only external and, rarely, internal 138 



surfaces are preserved (Meyer et al., 2014a, 2014b); in marked contrast to the 139 

Phanerozoic, convincing evidence of preserved internal structures is virtually absent 140 

(though see Dzik, 2002, 2003; Narbonne, 2004). 141 

 142 

VARIETY IS THE SPICE OF LIFE 143 

 144 

The taphonomic windows through which we can view the biota are many and 145 

varied, each giving us a different perspective on their biology. Crucially, some organisms 146 

are preserved in more than one taphonomic mode, allowing the biases induced by each 147 

mode to be ascertained (e.g. Grazhdankin et al., 2008). Ediacaran preservation is 148 

dominated by three major taphonomic modes: 1) moldic; 2) replication by early 149 

diagenetic minerals; and 3) carbonaceous compression, each of which are detailed below. 150 

Two or more modes sometimes combine in an individual specimen (Fig. 1; Cai et al., 151 

2012). The mode in which a fossil is preserved depends on a variety of factors, many of 152 

which are still incompletely understood, but which include the nature of the burial 153 

sediment and depositional environment (Narbonne, 2005), the nature of the microbial 154 

community (Gehling, 1999; Gehling et al., 2005), and the chemistry of the pore waters 155 

(Mapstone and McIlroy, 2006; Callow and Brasier, 2009b).  156 

 157 

Upsides and downsides: moldic preservation 158 

Moldic preservation is the most abundant and typical preservational style of the 159 

Ediacaran (Fig. 2–4; e.g. Gehling, 1999; Steiner and Reitner, 2001; Narbonne, 2005; 160 

Grazhdankin et al., 2008; Cai et al., 2012) but, barring a handful of exceptional examples 161 



(e.g. MacGabhann et al., 2007), is largely unknown outside of this Period. Terms used to 162 

describe the nature of the molds, and their relationship to the beds preserving the fossils, 163 

were introduced by Glaessner and Wade (1966). Features observed on the top surface of a 164 

bed are termed epirelief (Fig. 2), and those seen on the base of a bed are hyporelief (Fig. 165 

3). Features which form hollows or depressions have negative relief (Fig. 2a,c,d,f; Fig. 166 

3a,b,c) and those which protrude above the substrate surface have positive relief (Fig. 167 

2b,e; 3e). The sense of relief is thought to involve an interplay between the relative 168 

resistance of the soft parts to collapse, and the timing of substrate lithification (Gehling, 169 

1999; Narbonne, 2005): more robust or recalcitrant parts collapse or decay more slowly, 170 

and so are cast by still-soft material from the underlying bed being injected upwards 171 

(creating negative hyporelief; Fig. 3a,b,c/positive epirelief impressions; Fig. 2b,e), whilst 172 

more fragile, fluid-filled or labile parts collapse or decay quickly, creating impressions 173 

which are filled and presumably cast by material from the overlying bed subsiding into 174 

the void (resulting in positive hyporelief; Fig. 3e/negative epirelief impressions; Fig. 175 

2a,c,d,e; Fig. 4). The latter process likely requires stabilization of the lower surface of the 176 

organism prior to complete decay in order to retain the observed level of morphological 177 

detail (Darroch et al., 2012). Both senses of relief may be seen even within a single 178 

specimen, and in different specimens of the same taxon from different localities (Fig. 2b–179 

e). In the Avalon Assemblage sites of Newfoundland and Charnwood Forest, the fossils 180 

are only seen preserved as epirelief impressions (Fig. 2; Fig. 4); the counterparts are as 181 

yet unknown.  182 

The influence of the nature of the surrounding sediment and the depositional 183 

environment on the taphonomy of an organism is apparent from the four styles of moldic 184 



preservation proposed by Narbonne (2005), but is not yet completely understood. He 185 

considers “Conception-style” preservation to be attributable to early diagenesis of 186 

reactive minerals in a smothering volcanic ash. In contrast, the classic White Sea 187 

Assemblage sites of Australia preserve their fossils on the bases of event beds 188 

(hyporelief), for which Narbonne (2005) coined the term “Flinders-style” (Fig. 3c,e). This 189 

style is also observed in the sandstone-and-shale facies of the White Sea (Grazhdankin, 190 

2004), and has been suggested to be characteristic of shallow-marine environments 191 

between fair- and storm-wave base. In both regions, fossils may in whole or in part be 192 

preserved as positive or negative relief features. In his “Fermeuse-style preservation”, 193 

only the bases of holdfasts, and trace fossils, are preserved (Narbonne, 2005). In “Nama-194 

style preservation” (Narbonne, 2005), named after its occurrence in the Nama Group of 195 

Namibia, three-dimensional internal and external molds of fossils (Fig. 3d,f,g) are 196 

preserved within storm event beds and channel-fill deposits deposited above fair-weather 197 

wave base. Whilst it has also been reported from the Spaniard’s Bay locality of 198 

Newfoundland (Fig. 4; Narbonne, 2004), other authors have interpreted the taphonomic 199 

mode there to be more akin to death mask preservation, with the higher relief of the 200 

fossils attributable to their preservation within scours in the underlying bed (Brasier et al., 201 

2013). Regardless, the exquisite preservation on this bed is remarkable, and is dependent 202 

on a so-far unique combination of taphonomic artifice. This likely includes the burial of 203 

the frond within sediment (Brasier et al., 2013), which exposed the entirety of the frond 204 

to mineralizing pore waters, and unusually rapid and thorough mineralization, which was 205 

potentially a function of pore water chemistry with favorable iron and sulfur ion 206 

concentrations (see discussion of death mask preservation below). 207 



Several taphonomic experiments have sought to replicate moldic preservation of 208 

soft parts, but these have typically used specimens from only one species (Darroch et al., 209 

2012) or one phylum (Seilacher, 1984; Norris, 1989; Bruton, 1991). This limits their 210 

usefulness in interpreting the soft-part composition or phylogentic affinity of the fossils, 211 

as limited comparison between tissue types or phyla can be made (under the same set of 212 

experimental parameters). Indeed, the different responses and preservation potential of 213 

the cnidarian taxa studied by Norris (1989) hints at the importance of the structure and 214 

composition of an organism on its taphonomy. Under favorable conditions, medusoids 215 

and chondrophorans produce simple concentric or radial impressions; pennatulids appear 216 

more susceptible to contraction even under burial and compression, with the stalk and 217 

polyps producing clear impressions, but most branches retracting into an indistinct mass. 218 

Interestingly, no impression of musculature was produced in these experiments (Norris, 219 

1989); its preservation in the Phanerozoic typically involves phosphatization (Briggs, 220 

2003 and refs. therein), which seems to play only a minor role in the Ediacaran outside of 221 

Doushantuo-type preservation (Schiffbauer et al., this volume). Is the absence of 222 

musculature in the Ediacaran original, or due to failure of preservation? Additionally, 223 

only the influence of the content of organic matter in the sediment was investigated 224 

(Norris, 1989; Darroch et al., 2012); other parameters (e.g. grain size, composition) exert 225 

an as yet unquantified influence. These experiments have also been conducted under an 226 

array of environmental conditions, from water-covered (Bruton, 1991; Darroch et al., 227 

2012) to water-saturated with compression (Norris, 1989) to dry (beach strandline; 228 

Bruton, 1991). Interestingly, experiments conducted under water but without mats or 229 

compression result in poor or absent impressions, as the buoyancy of the decaying 230 



organism lifts it off the sediment surface (Norris, 1989; Bruton, 1991). Whilst these 231 

experimental approaches represent great leaps forward in our taphonomic understanding, 232 

greater finesse is required to determine the relative influences of the many variables (see 233 

Sansom, this volume).    234 

Breaking the mold: Gehling’s death mask hypothesis.— 235 

Once formed, the impressions must be rapidly stabilized in order to be preserved. 236 

Groundbreaking work into understanding this mode of preservation, and particularly how 237 

biological structures could be preserved in their original positive relief, was made by 238 

Gehling (1999), based on observations from the Flinders Ranges. The elegant “death 239 

mask” hypothesis he proposed consists of four main stages:  240 

1) Organisms living on a microbial mat were smothered by sediment;  241 

2) Labile or fluid-filled organisms/tissues decayed rapidly, leaving impressions 242 

which were infilled by sediment from the overlying bed, while more robust 243 

organisms/tissues persisted;  244 

3) Sulfur-reducing bacteria exploited the organic material of both carcasses and 245 

mat, releasing reduced sulfur compounds which combined with iron in the sediment, 246 

resulting in the formation of pyrite. This pyrite coated the lower surface of the now-247 

collapsed labile organisms/tissues, and the upper surface of the recalcitrant 248 

organisms/tissues, stabilizing the impressions and forming the so-called “death mask”;  249 

4) Death masks which formed over more recalcitrant tissues were infilled from 250 

below by still-unlithified sediment.  251 

 252 



The pyrite thus formed is observed on the base of the event bed, comprising a sole veneer 253 

of sediment grains infilled by interstitial pyrite; this layer is typically no more than a few 254 

sand grains thick (Gehling et al., 2005; Mapstone and McIlroy, 2006). The reactions 255 

involved can be summarized thus (Gehling et al., 2005): 256 

 257 

a) SO4 + CH4 = H2S + 2OH- + CO2;  258 

b) Fe2+ + H2S = FeS + 2H+ ;  259 

c) FeS + H2S + 2R = FeS2 + 2HR (R = organic compounds).   260 

 261 

Several factors influence pyrite precipitation, which in turn influences the anatomical 262 

fidelity of the resulting impression (Darroch et al., 2012; Meyer et al., 2014b). In 263 

pyritization, a balance exists between the quantity, quality and distribution of organic 264 

matter, and the availability of sulfate and iron ions in the system (see Farrell, this 265 

volume). Several factors may have contributed to the comparative prevalence of this 266 

taphonomic mode in Ediacaran systems. First, the buried microbial mat provided both a 267 

diverse population of decay bacteria and a ready supply of organic matter at the horizon 268 

which hosts the fossils (Gehling, 1999). Secondly, sealing of the sediment by the 269 

microbial mat re-establishing on top of the event bed may have been particularly 270 

important in isolating the now anoxic/dysoxic pore waters from the oxic water column 271 

above, controlling the availability of sulfate ions and maintaining anoxic pore waters in 272 

even porous sediments (Gehling et al., 2005; Callow and Brasier, 2009b).  273 

This model has since been expanded upon (Gehling et al., 2005; Mapstone and 274 

McIlroy, 2006; Laflamme et al., 2011), as its ubiquity and variability has become 275 



appreciated. Comparable pyrite sole veneers have been described from the Amadeus 276 

Basin of Australia (Mapstone and McIlroy, 2006), and inferred from hematite partings 277 

(Gehling et al., 2005) and Fe and S within preserved microbial mats (Laflamme et al., 278 

2011) from Newfoundland. Fossils from the Nama Group were originally thought to have 279 

been preserved via a different process (Narbonne, 2005), but this has since been 280 

questioned (Meyer et al., 2014a, 2014b). These fossils have a thin coating of pyrite that 281 

lines the voids left by the external walls of the organism. The thinness of the pyrite 282 

coating has been attributed to the dearth of organic matter in the system; in the absence of 283 

a microbial mat, the sole source of organic matter was the carcass and sediment (Meyer et 284 

al., 2014a, 2014b). Pyritization has also been implicated in the preservation of specimens 285 

from the White Sea (Dzik, 2003) and the Gaojiashan biota (Cai et al., 2012), and replaces 286 

the organic wall of frond stems from Siberia (Steiner and Reitner, 2001). 287 

Formation of a pyritiferous sole veneer or parting is also key in the recovery of 288 

the fossils: it provides a surficial horizon which is more susceptible to weathering than 289 

the bulk rock (Mapstone and McIlroy, 2006; Meyer et al., 2014a, 2014b), allowing the 290 

rocks to split along those horizons where fossils have been preserved. The red iron-oxide 291 

and iron-oxyhydroxide staining resulting from this weathering also aids field 292 

identification of likely fossil-bearing surfaces (Fig. 3e,f; Gehling et al., 2005).  293 

If pyrite is the only mineral involved in making the death mask, then the level of 294 

morphological detail retained in fossils is difficult to reconcile with their collapse and/or 295 

decay prior to pyritization (which does not occur until step 3 of Gehling’s 1999 model). 296 

Recent evidence suggests that either authigenic aluminosilicate templating (see below) or 297 



the microbial mat (see Binding it all together, below) may have stabilized the impression 298 

during the earliest stages of its formation (Darroch et al., 2012).  299 

 300 

Coatings of clay – the timing of aluminosilicate mineralization. 301 

The role and importance of clay minerals in soft tissue preservation is 302 

controversial, but they have been generated experimentally during early stages of decay 303 

(Darroch et al., 2012). Clays are most famously invoked in the preservation of Burgess 304 

Shale fossils, although the precise timing of its formation is debated (Orr et al., 1998; 305 

Gaines et al., 2005; Butterfield et al., 2007; Page et al., 2008; Anderson et al., 2011). 306 

Authigenic clays were fist suggested to have played a role in the preservation of 307 

Ediacaran fossils by Wade (1969), and they have recently been noted in association with 308 

fossils in several Ediacaran localities. In the Amadeus Basin, aluminosilicates occur as 309 

part of a complex suite of very early diagenetic minerals, which consist of authigenic 310 

quartz, illite, K-feldspar, chlorite, smectite, glauconite, and lastly hematite after pyrite 311 

(Mapstone and McIlroy, 2006). These cements fill interstitial space between the sand 312 

grains of the enclosing sediment, and stabilized the fossil impressions throughout burial. 313 

In addition to the interstitial minerals, these authors noted a “matted” fabric of clay 314 

minerals, hematite and silt grains which form a superficial coating on the fossils. Rather 315 

than representing a death mask, which would have additionally included pyrite 316 

framboids, they interpreted this coating to record fines falling out of suspension onto the 317 

associated mat prior to burial (Mapstone and McIlroy, 2006).  318 

Clay minerals and pyrite appear involved in the preservation of fossils from the 319 

Doushantuo and Dengying formations (Anderson et al., 2011) and from the Gaojiashan 320 



Lagerstätte (Cai et al., 2012; Meyer et al., 2012). In the Gaojiashan Lagerstätte, three-321 

dimensional fossils which have the finest level of three-dimensional morphological detail 322 

are pervasively pyritized (Fig. 1a,b,f); two-dimensional carbonaceous compression fossils 323 

are stabilized by Fe-rich clay minerals (Fig. 1c,d,e,g). Based on their composition, 324 

spheroidal aggregate habit, and the fact that the fossils they template retain poorer 325 

morphological detail, these clays are thought to reflect relatively late diagenetic 326 

replacement of an earlier mineral which stabilized the fossil but which formed later in the 327 

diagenetic sequence than pyrite (which is associated with the best fossils).  328 

An association of pyrite and Fe-and Mg-rich aluminosilicates has also been 329 

documented from the Fermeuse Formation in Newfoundland (Laflamme et al., 2011), 330 

which is notable for its abundance of discoidal fossils assigned to Aspidella terranovica 331 

Billings (Billings, 1872; Gehling et al., 2000). This study found that Aspidella specimens 332 

interpreted as holdfasts were preserved in three dimensions, and were coated in a thin 333 

layer of finer-grained material. The interior of the holdfast and the surrounding sediment 334 

is sand-grade and principally composed of Si and Na (analyzed using EDS); the interior 335 

sediment was slightly richer in Al, Ca, K, Fe, Na, Mg, P, and Mn, but poorer in C. This 336 

was thought to record a vital effect, with sediment inferred to have been incorporated into 337 

the holdfast during life (Laflamme et al., 2011). However, it could alternatively record 338 

post-mortem precipitation of clay minerals within the holdfast as a function of its specific 339 

decay microenvironment. The finer-grained material coating the fossils had higher 340 

concentrations of Al, Mg, Fe, Ti, K, Mg, and S than both the holdfast interior and the 341 

exterior sediment. This finer-grained layer, which is of variable thickness, was interpreted 342 



to record authigenic aluminosilicate and pyrite growth in a decaying biofilm which had 343 

completely surrounded the holdfast during life (Laflamme et al., 2011).  344 

Authigenic chlorite also preserves compressed discs in the Jinxian biota, which 345 

are found in stratigraphic association with carbonaceous compressions of Chuaria, 346 

Shousienia and Tawuia (Zhang et al., 2006).  347 

 348 

Caught on film: carbonaceous compressions 349 

Carbon compression fossils are best known from Chinese localities, with 350 

examples from the Gaojiashan Lagerstätte (Fig. 1c,d; Cai et al., 2012), Doushantuo 351 

Formation (Fig. 5a; Anderson et al., 2011), Miaohe (Xiao et al., 2002; Zhu et al., 2008), 352 

Lantian (Fig. 5c–f; Yuan et al., 2011) and Jinxian (Zhang et al., 2006) biotas, and also 353 

from the Denying Formation (Sun, 1986). Preservation of fossils in this mode has enabled 354 

inferences about the nature of the original composition of the organism (i.e., 355 

recalcitrance) and, by extension, phylogenetic affinity (Zhu et al., 2008) to be made. 356 

Assemblages of the ~550 – 590 Ma Miaohe biota are found in black shales in the 357 

Yangtze Gorges, and host a diverse range of macrofossils, many of which are interpreted 358 

as algae based on the sub-millimetric resolution of preservation and the observation of 359 

delicate thalli-like structures (Xiao et al., 2002). Specimens preserved in a comparable 360 

manner to the Miaohe fossils are documented from the White Sea and from Siberia, 361 

where they occur in finely-laminated, silicified calcareous mudstones of the Khatyspyt 362 

Formation (Steiner and Reitner, 2001; Grazhdankin et al., 2008). Kerogenization of 363 

carbonaceous compressions has been documented from the Gaojiashan, and has been 364 

inferred to have contributed to stabilization of the fossils (Cai et al., 2012). 365 



Although the paleoenvironments are very different, carbonaceous compression 366 

fossils do not seem to differ from typical Phanerozoic fossils such as Carboniferous 367 

plants (see Locatelli, this volume) preserved in this way: at first glance, they appear to be 368 

a simple film of organic carbon compressed onto the sediment surface. However, the 369 

extent of microbial influence in their preservation is uncertain, particularly for those 370 

fossils which also have a moldic component. Although comparisons have been made 371 

between Ediacaran carbonaceous compressions which are associated with clay minerals 372 

and/or pyrite, and preservation in the Burgess Shale (e.g. Anderson et al., 2011; Cai et al., 373 

2012; Meyer et al., 2012), the presence or influence of any differences in sedimentology, 374 

pore water chemistry or even nature of microbial community on preservation between the 375 

sites is unknown. Given the uncertainty regarding the phylogenetic affinity and biological 376 

composition of Ediacaran organisms, it is also unclear to what degree the composition of 377 

tissues would affect the quality or type of preservation within this taphonomic spectrum.   378 

 379 

Bridging the taphonomic void 380 

The large number of biotas now known enables the preservation of single taxa to 381 

be compared across different paleoenvironments and taphonomic windows, and thus the 382 

biases imparted by each to be elucidated (Fig. 5; Grazhdankin et al., 2008; Zhu et al., 383 

2008). This promises to allow original ecological variability in assemblages to be 384 

distinguished from secondary, taphonomic effects. The exclusion of certain organisms 385 

from deposits in which fossils are preserved as carbonaceous compressions has been 386 

shown to be a purely taphonomic artifact, and may record differences in original tissue 387 

composition (Grazhdankin et al., 2008). In the Khatyspyt Formation of Siberia, fossils are 388 



preserved in two, facies-dependent, modes: as carbonaceous compressions and by 389 

authigenic carbonate cementation. Charnia is commonly found in the latter, but is only 390 

observed in the former as “phantoms” where it fortuitously distorts co-occurring 391 

carbonaceous films (Grazhdankin et al., 2008). In some cases, individual fossils are 392 

preserved in multiple modes, suggesting a complex taphonomic pathway (Cai et al., 393 

2012). The fine balance between these modes may provide insights into the nature of the 394 

original organic material, and/or the chemistry of the host sediment. In order to preserve a 395 

carbonaceous compression, decay by sulfate-reducing bacteria, and hence pyrite 396 

formation, must be halted early. This may be accomplished by overwhelming the system 397 

with disseminated organic carbon, or by limiting diffusion of sulfate from seawater into 398 

the sediment.  399 

 400 

BINDING IT ALL TOGETHER: THE IMPORTANCE OF MICROBIAL MATS 401 

 402 

In contrast to much of the Phanerozoic, microbial mats played a conspicuous role 403 

in the preservation of soft parts in the Ediacaran, and may be at least partly responsible 404 

for the comparative abundance of soft-tissue preservation at this time (Seilacher, 1984; 405 

Gehling et al., 2005). Their ubiquity on the sea-floor is widely supported by a myriad of 406 

field and petrographic fabrics (e.g. Gehling, 1999; Steiner and Reitner, 2001; Noffke et 407 

al., 2002; Gehling et al., 2005; Grazhdankin and Gerdes, 2007; Callow and Brasier, 408 

2009b; Wilby et al., 2011; Lan and Chen, 2012). These fabrics include microbially-409 

induced sedimentary structures (“MISS”, sensu Noffke et al., 2001) such as wrinkle 410 

marks, reticulate network fabrics, old elephant skin textures and pustular fabrics (see 411 



Gehling, 1999, and refs. therein), as well as “bubble trains” (Laflamme et al., 2012; 412 

though see Brasier et al., 2013 for an alternative explanation of these structures). Despite 413 

this abundant evidence, there are only scant reports of microbial body fossils outside of 414 

the Doushantuo Formation of China (Hofmann et al., 1979; Callow and Brasier, 2009a).  415 

The timing of pyritization relative to collapse of the organism as per the death 416 

mask model (see discussion above), and the attendant difference in sense of relief of the 417 

resultant fossil, testifies to the importance of microbes in Ediacaran preservation (Gehling 418 

et al., 2005; Narbonne, 2005). Sites in the Flinders Ranges with thicker microbial mats 419 

(evidenced by prominent surface textures) show negative hyporelief preservation of 420 

fossils: pyrite formed before collapse of the organisms. By comparison, sites with thinner 421 

microbial mats (relatively subdued microbial textures) exhibit composite and shallow, 422 

positive hyporelief preservation: pyrite formed after collapse of the organisms. Therefore, 423 

a thicker mat induced earlier formation of a death mask. Similarly, Narbonne (2005) 424 

attributes “Flinders-style” preservation to rapid mineralization related to the presence of 425 

the thick mats which could develop in the environments where this style is common 426 

(Seilacher, 1984; Gehling, 1999). In contrast, he suggests that organisms preserved either 427 

by poor examples of “Flinders-style” preservation or by “Nama-style” preservation are 428 

attributable to their occurrence in environments above fair-weather wave base, which 429 

would have lacked a well-developed mat. In contrast, “Fermeuse-style” preservation has 430 

been suggested to have arisen from failure of the overlying bed to lithify before complete 431 

decay of the organism, due to either an absence of a mat, or the presence of a mat 432 

composed entirely of heterotrophic and/or sulfur-oxidizing bacteria (Narbonne, 2005). 433 



Additionally, the extacellular polymeric substance (EPS) produced by the 434 

microbial mat likely played an import role in the initial formation and stabilization of the 435 

fossil impression by binding the sediment grains prior to precipitation of authigenic 436 

minerals (Darroch et al., 2012). In a series of experiments, the impressions which retained 437 

the finest morphological detail and lasted the longest were those that contained microbial 438 

mats (Darroch et al., 2012). These samples preserved exceptional detail (as scored on 439 

their taphonomic index) for two weeks after death of the subject, compared to one week 440 

in samples with no mat. In mat-hosted samples, precipitation of pyrite precursors initiated 441 

after just one day and reached maximum extent after two weeks. In samples without 442 

mats, pyrite precursors initiated after two weeks in unsterilized sand, and failed to initiate 443 

in sterilized sand. The importance of microbial mats in preservation is highlighted when 444 

this recent experimental approach is compared with those conducted in the 1980s and 445 

1990s, particularly given the relatively low return rate of recognizable impressions in 446 

experimental runs with otherwise similar conditions (Norris, 1989).   447 

 448 

ASPIDELLA EVERYWHERE! THE ABUNDANCE OF HOLDFASTS 449 

 450 

Without doubt, the most abundant macrofossils found throughout the Ediacaran 451 

are discoidal. The majority of these belong to the taxon Aspidella, which brings under its 452 

umbrella many different, and previously taxonomically distinguished, forms (Gehling et 453 

al., 2000). They are thought to principally represent holdfasts (Gehling et al., 2000; 454 

Laflamme et al., 2011; MacGabhann, 2007), and may be so profusethat they entirely 455 

cover bedding surfaces, as seen in the Fermeuse Formation of Newfoundland (Fig. 6e). 456 



Only rarely are holdfasts preserved on the same horizon as their fronds (e.g. in 457 

Charnwood Forest, Fig. 2b,d; Wilby et al., 2011); in most localities, either one or the 458 

other is preserved. Most holdfasts were likely buried within the sediment, in whole or in 459 

part, and their frequent concentric rings are generally interpreted as collapse structures. 460 

On certain surfaces, only fronds of certain taxa are associated with holdfasts (e.g. 461 

Charniodiscus in Mistaken Point, Newfoundland). In these cases, the holdfasts are 462 

typically positive epirelief, and have been inferred to record upper surfaces of holdfasts 463 

which protruded above the mat surface in life and were preserved before their collapse by 464 

rapid mineralization of the ash (Conception-style preservation; Narbonne, 2005). Fronds 465 

on these surfaces which appear without associated holdfasts (e.g. Charnia) may have had 466 

ones which remained entirely buried within the sediment during their life and death 467 

(Laflamme et al., 2007), and so are out of the plane of preservation. Some localities 468 

preserve only holdfasts and trace fossils (“Fermeuse-style” preservation; Narbonne, 469 

2005). 470 

There may be several taphonomic reasons for the relative abundance of holdfasts 471 

to fronds. First, their in vivo position within the sediment means that, even if the holdfasts 472 

collapse after death or are tugged out, they may still leave an expression, such as collapse 473 

structures formed as sediment falls back into the void left after decay (Narbonne, 2005), 474 

and shear structures (Tarhan et al., 2010), respectively. Secondly, their anchorage within 475 

(Laflamme et al., 2011) or beneath (Mapstone and McIlroy, 2006) the mat means that 476 

they are less likely than the frond to be tugged out and removed by the current. Thirdly, 477 

their presence within or close to the zone of active diagenesis (the “mixed layer”; Callow 478 

and Brasier, 2009b) gives them a higher preservation potential. Finally, there is some 479 



evidence that holdfasts were made of more resistant material; they may be preserved as 480 

carbonaceous compressions while stems are replicated by pyrite (Steiner and Reitner, 481 

2001), or as positive epirelief structures while fronds are preserved in negative epirelief 482 

(Fig. 2e; 4a,b,d,f; Narbonne, 2005). Their comparative persistence may lead to their 483 

preservation even in conditions conducive to only slow mineralization (cf. Darroch et al., 484 

2012).  485 

 486 

UNRAVELLING THE RAVAGES OF TIME: BIOSTRATINOMY AND THE 487 

GRADATION OF FORMS 488 

 489 

Biostratinomy encompasses the effects of post-mortem compaction, contraction 490 

(whether by dehydration or bacterial decay), folding, and transport (Gehling et al., 2005), 491 

which necessarily influence the final morphology of the fossil. Compared to the 492 

Phanerozoic, fewer biostratinomic processes operated in Ediacaran times. Scavengers 493 

consume or disarticulate carcasses, but are unknown from the Period, and bioturbation 494 

was limited. Those processes which would have endured throughout the Proterozoic into 495 

the Phanerozoic are microbial decay and abiotic (physical) disturbance. Syn- or post-496 

mortem distortion of the morphology of the organism by physical processes has been 497 

recorded from localities around the globe, and includes wrinkling (Gehling, 1991), 498 

folding (Seilacher, 1992) and ripping (Runnegar and Fedonkin, 1992). If different parts of 499 

an organism had dissimilar rheologies, they will be affected differently by shared 500 

biostratinomic processes. For example, the crenellated part of Kimberella shows 501 

comparatively greater deformation or wrinkling than the rest of the organism, and is 502 



accordingly inferred to have been a broad, flattened “foot” which was less robust than a 503 

surrounding, unmineralized shell (Fig. 3a; Fedonkin and Waggoner, 1997).  504 

In fossils from Newfoundland, the quality of preservation is seen to decrease 505 

along their length; there is greater opportunity for sediment to settle beneath the more 506 

distal and lateral parts of the frond during felling (Laflamme et al., 2007). Fronds of 507 

increasing size may show variations in susceptibility to current-induced stacking of 508 

branches and compression of overall form. The observed change from I to V to U and to 509 

O plan-view morphology in Bradgatia with overall increase in size may thus reflect 510 

increased resistance to this process (Brasier et al., 2013), rather than a purely ontogenetic 511 

signal (Flude and Narbonne, 2008). On a finer scale, the branching pattern of 512 

rangeomorphs may also be affected during the burial event, for example the current-513 

induced imbrication of primary branches recorded in specimens from Spaniard’s Bay, 514 

Newfoundland (Fig. 4; Brasier et al., 2013). If this interpretation is correct, it is 515 

unnecessary for these branches to have been either constrained in a sheath or attached to 516 

each other, as has been proposed for some taxa (Narbonne et al., 2009). 517 

 518 

Sweeping up: interpreting “mops” 519 

The potential extent of modification of form by physical disruption is further 520 

evidenced by so-called “mop” structures (Tarhan et al., 2010). They have a highly 521 

variable appearance and relief, but are consistently aligned parallel to ripped-up stems on 522 

the same bed, have well-defined distal margins, and subparallel internal lineations that 523 

are orthogonal to the margin. There is a gradation from typical Aspidella holdfasts to full 524 

“mop”, consistent with these structures representing an effect imposed upon an organism 525 



rather than a discrete taxon. “Mops” are thus interpreted to be the result of current shear 526 

on frond holdfasts; the fronds themselves are not preserved, and are suggested to have 527 

been either torn off by the current or held above the preservational surface (Tarhan et al., 528 

2010). They may alternatively have been held out of the plane of preservation. Upstream 529 

parts of “mops” have a range of distal margin shapes, and are interpreted as buckled and 530 

compressed parts of the holdfast, whereas downstream, linear structures are interpreted as 531 

torsion-induced stretch marks. The smallest “mops” are expressed solely as distortion of 532 

the surrounding sediment, suggesting that the smallest fronds were removed entirely. This 533 

may provide an explanation for the lack in many communities of specimens below a few 534 

centimeters. Alternatively, it may be that the entire mop spectrum represents disturbance 535 

and distortion of the microbial mat arising from plucking out of the holdfast, and are 536 

therefore a form of MISS (Laflamme, pers. comm.. 2014).  537 

 538 

Is it all rot? Iveshediomorphs 539 

Forms currently referred to as “iveshediomorphs” (Fig. 6a–d) are contentious, and 540 

include a wide spectrum of morphologies. These were originally described from 541 

Charnwood Forest as discrete taxa, and include Ivesheadia, Blackbrookia, Pseudovendia 542 

and Shepshedia (Boynton and Ford, 1979, 1995); similar forms in Newfoundland are 543 

referred to as “pizza discs”, “lobate discs” and “bubble discs” (Narbonne et al., 2001; 544 

Laflamme et al., 2012). A full spectrum between such forms and fronds exhibiting fine 545 

detail has been documented from several bedding planes in Newfoundland, leading to the 546 

interpretation of “ivesheadiomorphs” as the remnants of dead organisms which were in 547 

the process of microbial decay at the time of burial (Liu et al., 2011). The irregular, 548 



unusually high relief and often network-like internal features of these forms were 549 

suggested to represent a conflation of sediment trapped by EPS and gas derived from the 550 

decay process (Liu et al., 2011). However, other authors have suggested alternative 551 

explanations: Laflamme et al. (2012) interpret these structures as purely microbial in 552 

origin, and Wilby et al. (2011) propose that at least some of the forms may be created by 553 

differential loading on the fossil-bearing surface following collapse of organisms within 554 

the overlying bed.  555 

 556 

All full up: the timing of sand infills 557 

Resolution of both the mechanism and timing (in vivo or post-mortem) of 558 

sediment infill is of great significance for current interpretations of the biology of the 559 

organisms in which they are found. Rangeomorphs and erniettomorphs have been 560 

interpreted as osmotrophs, absorbing dissolved organic carbon from the water column 561 

(Laflamme et al., 2009). The proposed model requires the organisms to have had a very 562 

small (< 2 %) volume of metabolically-active material, which could potentially have been 563 

achieved by in vivo incorporation of sediment (Laflamme et al., 2009). If this can be 564 

demonstrated, then an osmotrophic mode of life is plausible; if not, then the inert material 565 

must be a fluid, which might be expected to exert its own influence on the rheology of the 566 

organism and on its taphonomic behaviour.     567 

Sand fills observed in stalks of fronds from the Amadeus Basin exhibit ripple 568 

cross-lamination contiguous to that of the surrounding sediment, and are convincingly 569 

demonstrated to record post-mortem slumping of sediment into the stalk (Mapstone and 570 

McIlroy, 2006). In contrast, it has been suggested that sand in the holdfasts (“bulbs”) and 571 



central stalks of fossils of Rangea from Namibia was incorporated into the body of the 572 

organism during life, based on the similarity of the sediment within the “bulb” and stalk 573 

to that infilling the gutter casts below the fossil (Vickers-Rich et al., 2013). A similar in 574 

vivo fill has been interpreted in holdfasts from the Fermeuse Formation of Newfoundland 575 

(see Aspidella section above; Laflamme et al., 2011).  576 

If this in vivo interpretation holds, then such a fill could have served to stabilise or 577 

anchor the organisms. However, a post-mortem infilling might explain the recorded 578 

presence of a gap in the sediment fill part way up the stalk (Vickers-Rich et al., 2013), 579 

their Fig. 7.3,7.4), which is hard to reconcile with the in vivo interpretation. In contrast, a 580 

taphonomic sand infill is more difficult to argue for specimens of taxa such as Ernietta 581 

which are preserved as three-dimensional sediment casts. There are no obvious tears or 582 

punctures through which sediment could enter, and it might be expected that a post-583 

mortem fill would be less pervasive than an in vivo one, either restricted to a few 584 

(damaged) individuals or to partial infills. If these fossils represent templates of the 585 

external surface which have been infilled by uncemented sediment (Meyer et al., 2014a, 586 

2014b), how did this sediment penetrate a more-or-less continuous veneer after its 587 

formation? Perhaps these organisms did have an in vivo fill; in that case, how was this 588 

achieved?  589 

Fully understanding the biostratinomy of the organisms can be hugely useful in 590 

determining various aspects of their biology. The observation of torsion-induced stretch 591 

marks in holdfasts indicates both that these were firmly anchored in the sediment, and 592 

that they were sufficiently elastic to deform rather than snap or tear. This, in turn, casts 593 

doubt on interpretations of structures such as “mops” and isolated Aspidella specimens 594 



which invoke ripping off the frond. We can infer that tissues which do show evidence of 595 

tearing under the same conditions were likely more rigid. That organisms can fold over 596 

indicates a certain degree of flexibility, and the style of fold can provide additional 597 

information on body rheology: assuming no decay had occurred, those that kink over at a 598 

sharp line (e.g. dickinsoniids) were likely more rigid/solid than those which show more 599 

sinuous or irregular folds (e.g. the rangeomorph, Fractofusus).  600 

 601 

KNOW YOUR LIMITS: PRESERVATIONAL BIASES AND UNKNOWABLE 602 

UNKNOWNS 603 

 604 

Although soft-tissue preservation is reasonably common in the Ediacaran, with 605 

bed after bed preserving fossils, it is by no means perfect, and has its own inherent 606 

problems and biases. Two-dimensional records of three-dimensional organisms are by 607 

their very nature either composite (with structures at multiple levels in the organism 608 

compressed together into one plane) and/or partial; usually, only one side of an organism 609 

is cast. This is most problematic for organisms with a highly three-dimensional 610 

morphology, such as multifoliate rangeomorphs (sensu Laflamme and Narbonne, 2008) 611 

and erniettomorphs, as opposed to flatter organisms such as unifoliate rangeomorphs 612 

(sensu Laflamme and Narbonne, 2008) and dickinsoniids. Imagine how the two-613 

dimensional impression of a bushy plant would compare to its three-dimensional 614 

morphology, and how much more complex and confused, and less representative of the 615 

living morphology, this would be in contrast to the compression of a plant like a fern. 616 



This is exemplified in the changing morphology and decreased clarity of branching of 617 

Bradgatia with increasing size (see Biostratinomy section above). 618 

As in any Lagerstätte, we must still consider what has not been preserved, in 619 

terms of both parts of the organisms and of whole organisms. For those specimens which 620 

have been transported and deposited in death assemblages (Namibian channel-fill 621 

deposits), we have lost information regarding their in situ ecology, such as their relative 622 

abundances and spatial distributions, as well as their position relative to the sediment-623 

water interface. The limits of the resolution of preservation also render invisible any 624 

meiofauna which may have been present, and so we have no knowledge of these 625 

components of the ecosystem (Sperling et al., 2013). Any organism capable of motility 626 

(Liu et al., 2010) has a greatly reduced chance of being captured in the ecosystem than its 627 

sessile compatriots. Despite early (now-refuted) suggestions of discoidal fossils as 628 

medusoids (e.g. Sprigg, 1947, 1949; Glaessner and Wade, 1966), there is to date no 629 

convincing evidence of pelagic forms. As such, we have no knowledge whatsoever of the 630 

macroscopic life which may have been present in the water column during the Ediacaran. 631 

By extension, if these organisms did have a planktonic dispersal stage (discussed in 632 

Darroch et al., 2013), it is unlikely that this would be captured. Apparent support for such 633 

a life stage is the lack of preserved individuals smaller than a centimeter, despite sub-634 

millimetric preservation, and that even the very smallest fossils currently known are 635 

identical in morphology to adult forms (Liu et al., 2012, 2013).  636 

For the organisms that we do see, the overwhelming dominance of two-637 

dimensional, external moldic preservation means that we have little, if any, evidence of 638 

internal anatomy. Reported examples of internal “struts” in rangeomorphs from 639 



Spaniard’s Bay (Narbonne, 2004) have subsequently been explained as branches filled by 640 

sediment casting the underside of the upper surface and creating positive epirelief 641 

impressions (Fig. 4b,c), rather than casting the lower surface and creating negative 642 

epirelief impressions (Fig. 4a,d,e,f), as is typical at this locality ( Brasier et al., 2013). The 643 

ridges originally interpreted as struts are accordingly inferred to be the divisions between 644 

higher-order branches (Brasier et al., 2013). The differential collapse of branches within 645 

the frond (Fig. 4b) could be taken to suggest the in vivo presence of a hydrostatic skeleton 646 

which became punctured and subsequently deflated, but could alternatively simply record 647 

relaxation in response to decay (Brasier et al., 2013). Discrimination between the 648 

competing hypotheses will remain challenging until further evidence comes to light.  649 

Three-dimensional fossils are rare, restricted to occurrences of “Nama-style 650 

preservation” (Narbonne, 2005) and within certain carbonate deposits (Xiao et al., 2005; 651 

Grazhdankin et al., 2008): most fossils have relief but are essentially two-dimensional (in 652 

the sense that only one side, or a composite of both sides, of the organism is captured). 653 

This means that, for the vast majority of specimens, there is no evidence for what the 654 

other side looked like. There is also little indication of the original volume of the 655 

organism, due to both biostratinomic and burial compaction. 656 

Explanations for the absence of internal structures in Ediacaran fossils include: 1) 657 

decay outpaced their fossilization; 2) the microenvironment created by their decay inside 658 

the body cavity was not conducive to fossilization; 3) the extrinsic environment was 659 

incompatible with their fossilization, perhaps because of sediment sealing; 4) 660 

comparatively low oceanic sulfate concentrations (e.g. Canfield et al., 2008) favored 661 

pyritization of the organisms’ external surface; or 5) the organisms lacked substantive 662 



internal structures. Until sufficient and suitable fossils are available to permit the 663 

undertaking of destructive analyses (e.g. Laflamme et al., 2011), resolution of this 664 

question may remain elusive. 665 

 666 

CONCLUSIONS AND QUANDARIES 667 

 668 

Exciting progress is being made in several fields of Ediacaran endeavour, 669 

including paleoecology (Clapham and Narbonne, 2002; Clapham et al., 2003; Darroch et 670 

al., 2013), anatomy (e.g. Fedonkin and Waggoner, 1997; Narbonne et al., 2009; Brasier et 671 

al., 2012; Vickers-Rich et al., 2013), ontogeny (e.g. Laflamme et al., 2004; Antcliffe and 672 

Brasier, 2007) and phylogentic relationships (e.g. Erwin et al., 2011; Laflamme et al., 673 

2013). Taphonomic processes and biases impact all aspects of paleobiology; an 674 

understanding of these is therefore paramount if we are to further elucidate the nature of 675 

the original organisms and their communities. Great strides are being made, with elegant 676 

experimental work (McIlroy et al., 2009; Darroch et al., 2012) enhancing detailed 677 

petrographic and field-based studies (e.g. Gehling, 1999; Xiao et al., 2005; Grazhdankin 678 

et al., 2008; Laflamme et al., 2011). Taphonomic modes as disparate as moldic 679 

preservation, pyritization, carbonaceous compression, clay mineral precipitation, and 680 

carbonate mineralization are all observed in Ediacaran sites across the globe, sometimes 681 

with multiple modes within a single fossil (Cai et al., 2012). There does appear to be a 682 

broad correlation between taphonomic style and depositional environment (e.g. 683 

Narbonne, 2005; Grazhdankin et al., 2008), with moldic and death mask preservation 684 

most common in siliciclastic and volcaniclastic settings, and carbonaceous compression 685 



fossils occurring predominantly in shales and carbonates. Clay mineralization appears to 686 

occur in all environments. However, the extent of the influence exerted by 687 

paleoenvironment, and of the disparate factors this includes, remains uncertain. Fifteen 688 

years on from the proposal of the death mask model (Gehling, 1999), perhaps it is time to 689 

consider how the plethora of biotas featuring pyritization relate to this model, and to one 690 

another. 691 

The location of an organism with respect to the sediment-water interface imparts a 692 

significant taphonomic bias, as those structures which were located within the sediment 693 

during life were more readily preserved in death. This bias is a likely cause of the greater 694 

abundance of holdfasts with respect to fronds (see Aspidella section above). Other 695 

taphonomic biases are much more poorly understood, with a few rare exceptions (e.g. the 696 

scarcity of rangeomorphs in Miaohe-type preservation; Grazhdankin et al., 2008). 697 

Elucidation of these biases is of absolute import for paleoecological studies: as they 698 

become known, we can begin to appreciate which site-to-site differences in assemblage 699 

composition are original (ecological), and which are secondary (taphonomic overprint).  700 

Perhaps the most appropriate way to investigate these biases is through expansive 701 

experimental work. Such studies may also help to answer why moldic preservation is so 702 

prevalent in the Ediacaran as opposed to the Phanerozoic. The effects of a range of 703 

physical and chemical parameters have been tested in various taphonomic experiments 704 

(see e.g. Briggs, 2003, and refs. therein; Sansom, this volume). However, such studies 705 

have yet to be systematically extended to investigate systems which would be more 706 

applicable to the Ediacaran, e.g. those with microbial mats (with the exception of Darroch 707 

et al., 2012). Trace metals such as molybdenum, which are limiting nutrients for life (e.g. 708 



(Glass et al., 2012), are becoming widely used as tracers of productivity and ocean redox 709 

conditions in the Proterozoic (e.g. Scott et al., 2008), but nothing is known about their 710 

specific effects on decay-related microbial activity, and therefore on taphonomy.  711 

A major caveat to such taphonomic experimentation is the enduring uncertainty 712 

surrounding the original biological composition of Ediacaran organisms, which will 713 

likely only be resolved upon discovery of an assemblage preserving cellular-level detail. 714 

Currently, inferences regarding relative degrees of robustness and rigidity may be made 715 

based on biostratinomic grounds, but these can only tell us so much. Taphonomic 716 

experiments sampling a wide variety of tissue and cell types from as many branches of 717 

the tree of life as possible may provide our best hope: by comparing the behaviours of 718 

different biological compositions to features seen in fossils, it may be possible to relate 719 

the two, and consequently to infer the original composition of the organism or its parts. 720 

Of course, this must be repeated for the many potential variables already discussed in 721 

order for any such inferences to be made with any degree of confidence, rendering the 722 

number of experiments required unfeasible.   723 

One quandary peculiar to Avalon Assemblage localities is the true nature(s) of 724 

“ivesheadiomorphs”. Do all “ivesheadiomorphs” as currently defined (Liu et al., 2011) 725 

have the same genesis? Are they all taphomorphs of known taxa? Are they all microbial 726 

colonies (Laflamme et al., 2012)? Do any represent discrete macro-organisms (Boynton 727 

and Ford, 1979, 1995)? Do some have a different origin? The answers to these questions 728 

have great potential impacts for several aspects of paleoecological studies, including 729 

living biomass, species diversity and disparity, and spatial distributions: if these 730 

structures are dead and decaying organisms, they must inherently have a different effect 731 



on the rest of the community than if they were living organisms. Whatever they are, why 732 

is their occurrence seemingly restricted to Avalonian, deep-water systems? Is this an 733 

environmental signal, or a function of the microbial community present? If they really do 734 

include taphomorphs, could different organisms have created distinguishably different 735 

forms, and could these be related back to their progenitors (cf. Liu et al., 2011)? 736 

Paradigm shifts in understanding will probably depend not on the development of 737 

analytical techniques, but rather on the discovery of new, higher-resolution preservational 738 

windows. 739 
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FIGURE 1.—Preservation of single fossils from the Gaojiashan biota in multiple taphonomic 
styles, reproduced from Cai et al., 2012 with the permission of Elsevier. All reflected light 
photographs except b (SEM photomicrograph). a) Cross-section through a pyritized Conotubus 
hemiannulatus specimen; b) pyrite framboids on the exterior of the specimen in a); c, d) 
carbonaceous compression fossils; e) replication by green-coloured aluminosilicate minerals; f) 
specimen exhibiting both pyritization (rust-coloured area, black arrows) and carbonaceous 
compression (grey parts, white arrows); g) specimen preserved in both carbonaceous compression 
and greenish aluminosilicate minerals (central part of the tube); h) specimen exhibiting all three 
preservational styles (pyritization between black arrows, carbonaceous compression and 
aluminosilicate mineral replication between white arrows). Rectangles in c, d, and f indicate areas 
analyzed via ESEM EDS. 
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FIGURE 2.—a) Exceptional preservation in the Avalon Assemblage - a Culmofrons specimen from the 
Bonavista Peninsula, Newfoundland. Note that the frondose portion of the fossil is preserved in negative 
epirelief, and the stalk is preserved in positive relief. Photo courtesy of Alex Liu. b) Small Primocandelabrum 
specimen from the Bonavista Peninsula, with holdfast, stalk and branch axes preserved in positive epirelief. 
The frondose portions are not evident in this fossil. c) A Primocandelabrum specimen from Charnwood 
Forest, UK. Note that in contrast to b, the stalk and holdfast are preserved in negative epirelief, indicating a 
difference in the relative timings of collapse and lithification of the beds in the two sites. Plaster cast of GSM 
105969; d) Charniodiscus specimen from Charnwood Forest, with central and branch axes preserved in low 
postivie epirelief, and the holdfast in negative epirelief. Plaster cast of GSM 106069; e) Charniodiscus 
specimen from the Bonavista Peninsula, Newfoundland, with central and branch axes and the holdfast all 
preserved in positive epirelief. Scale bars are 2 cm (a, c, d) and 1 cm (b, e). 
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FIGURE 3.—Examples of mouldic preservation from the White Sea (a, b, d) and Namibia (c, e, f, g). a) 
Kimberella displaying three distinct zones (om = outer margin; cr = crenellated part; cd = central depression); 
b) Yorgia with a disturbed proximal region (upper left); c) Rangea with clear rangeomorph branching; d) 
death assemblage of Ventogyrus; e) Pteridinium specimen  with prominent red staining on the bed surface; f) 
Pteridinium; g) Ernietta. Scale bars are 1 cm (a, b) and 2 cm (c ¬ g). All images courtesy of Marc Laflamme.
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FIGURE 4.—Specimens from Spaniard’s Bay, Newfoundland. a) Bradgatia with exquisite preservation down 
one side only; b) Beothukis with good, negative epirelief, distal (upper insert) and poorer, positive epirelief, 
proximal preservation (lower insert); c) unidentified frond with relatively high relief on the right, and lower 
relief on the left; d) Beothukis with a prominent disc structure at the base and either a basal sheath or current 
scour (smooth area); e) Charnia with negative epirelief preservation; f) Trepassia with exquisite preservation 
and a basal sheath/ current scour. All scale bars: 5 mm.
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FIGURE 5.— One species preserved in multiple taphonomic modes. Reproduced from Xiao et al., 
2013 with permission from GSA. a) Eoandromeda octobrachiata preserved in black shale, from the 
uppermost Doushantuo Formation at Wenghui (China); b) E. octobrachiata preserved as a 
siliclastic mold from the Ediacara Member sandstone (South Australia); c–f): Flabelophyton 
lantianensis preserved in black shales of the lower Lantian Formation (South China); g, h) similar 
forms from the Ediacara Member sandstone (Australia). Arrowheads point to globose holdfasts, and 
arrows point to organic mass at base. Black scale bars = 5 mm, white scale bars = 1 cm.
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FIGURE 6.—a) Large iveshediomorph from Bonavista Peninsula, Newfoundland; b) inset of a) showing 
reticulate network texture; c) “pizza disc” sensu Narbonne 2001 from the Mistaken Point Ecological Reserve, 
Newfoundland; d) “bubble strip” sensu Laflamme et al. 2012 from Spaniard’s Bay, Newfoundland; e) 
numerous small Aspidella holdfasts from Ferryland, Newfoundland. Scale bars are 5 cm (a, b, c) and 1 cm (d, 
e).
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